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Surface Acoustic Wave (SAW) devices are widely used in multitude of device concepts mainly 
in Micro Electro Mechanical Systems (MEMS) and communication electronics. As such, 
SAW based micro-sensors, actuators and communication electronic devices are well known 
applications of SAW technology. Due to their solid state design and fabrication compatible 
with other modern technologies such as Microwave Integrated Circuits (MIC), MEMS, (Charge 
Coupled Devices) CCD and integrated optic devices, SAW based sensors are considered to be 
extremely reliable. For example, SAW based passive micro sensors are capable of measuring 
physical properties such as temperature, pressure, variation in chemical properties, and SAW 
based communication devices perform a range of signal processing functions, such as delay 
lines,  lters, resonators, pulse compressors, and convolvers. In recent decades, SAW based 
low-powered actuators and micro uidic devices have signi cantly contributed towards their 
popularity.

SAW devices are based on propagation of acoustic waves in elastic solids and the coupling 
of these waves to electric charge signals via an input and an output Inter Digital Transducers 
(IDT) that are deposited on the piezoelectric substrate. Since the introduction of the  rst SAW 
devices in the 1960s, this  exibility has facilitated a great level of creativity in the design of 
different types of devices, which has resulted in low cost mass production alongside with 
modern electronic, biomedical and similar systems. 

In recent times, SAW devices have become an indispensable part of the modern electronic 
communication industry due to their usefulness as IF, RF, and GPS  lters for various 
applications. Over the years, SAW devices are known to offer superior performance in 
communication due to a range of factors such as high stability, excellent aging properties, 
low insertion attenuation, high stopband rejection and processing gain, and narrow transition 
width from passband to the stopband. Therefore, it is evident that SAW based wireless 
communication is a well-established  eld in RF–MEMS and Bio–MEMS devices, and has a 
great potential to incorporate with modern biosensors, micro actuators and biological implants. 
Furthermore, passive SAW sensors can be RF controlled wirelessly through a transceiver unit 
over distances of several meters, without the need of a battery. Hence, such devices are well 
suited for use in a wide range of sensor and identi cation systems.

This book consists of 20 exciting chapters composed by researchers and engineers active in 
the  eld of SAW technology, biomedical and other related engineering disciplines. The topics 
range from basic SAW theory, materials and phenomena to advanced applications such as 
sensors actuators, and communication systems. As such,  rst part of this book is dedicated to 
several chapters that present the theoretical analysis and numerical modelling such as Finite 
Element Modelling (FEM) and Finite Difference Methods (FDM) of SAW devices. Then, some 
exciting research contributions in SAW based actuators and micro motors are presented in 
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part two of this book. In part three, a fruitful collection of research outcomes that are based on 
SAW sensing applications are presented.

We are excited that this collection of up-to-date information and research outcomes on SAW 
technology will be of great interest, not only to all those working in SAW based technology, 
but also to many more who stand to bene t from an insight into the rich opportunities that this 
technology has to offer, especially to develop advanced, low-powered biomedical implants 
and passive communication devices.

Editor

Don W. Dissanayake, 
The School of Electrical and Electronic Engineering, 

The University of Adelaide, 
Australia
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The Eigen Theory of Waves  
in Piezoelectric Solids 

Shaohua Guo 
Zhejiang University of Science and Technology 

P.R.China 

1. Introduction 
It is difficult to answer how many elastic waves exist in anisotropic solids. The traditional 
viewpoint believes that there are only two bulk elastic waves in solids, one is the dilation 
wave discovered by Poisson in 1892, and the other the shear wave discovered by Stokes in 
1899. The existence of the P-wave and the S-wave was also verified by the classical elastic 
theory. However, with the discovery of some new phenomena of elastic waves in 
anisotropic solids, it is found that the limitations of classical elastic theory have become 
obvious. Furthermore, the current concepts and theories of elastic waves can not answer 
several basic questions of elastic wave propagation in anisotropic solids. For example, how 
many elastic waves are there? How many wave types are there? What is the space pattern of 
elastic waves? As we know, the Christoffel’s equation, which is often used to describe 
anisotropic elastic waves in the classical elastic theory, can not indicate the space pattern 
and the complete picture of elastic wave propagation in anisotropic solids, but only show 
the difference of propagation in the different directions along an axis or a section (Vavrycuk, 
2005). The reason for this is that the classical elastic wave equations, expressed by 
displacements can not distinguish the different elastic sub-waves (except for isotropic 
solids), because the elasticity and anisotropy of solids are synthesized in an elastic matrix. 
Similarly, for the electromagnetic fields, except for the Helmholtz’s equation of 
electromagnetic waves in isotropic media, the laws of propagation of electromagnetic waves 
in anisotropic media are also not clear to us. From the Maxwell’s equation, the explicit 
equations of electromagnetic waves in anisotropic media could not be obtained because the 
dielectric permittivity matrix and magnetic permeability matrix were all included in these 
equations, so that only local behaviour of electromagnetic waves, for example, in a certain 
plane or along a certain direction, can be studied (Yakhno et al., 2006).  
The theory of linear piezoelectricity is based on a quasi-static approximation (Tiersten et al., 
1962). In this theory, although the mechanical equations are dynamic, the electromagnetic 
equations are static and the electric field and the magnetic field are not coupled. Therefore it 
does not describe the wave behaviour of electromagnetic fields. Electromagnetic waves 
generated by mechanical fields (Mindlin, 1972) need to be studied in the calculation of 
radiated electromagnetic power from a vibrating piezoelectric device (Lee et al., 1990), and are 
also relevant in acoustic delay lines (Palfreeman, 1965) and wireless acoustic wave sensors 
(Sedov et al., 1986), where acoustic waves produce electromagnetic waves or vise versa. When 
electromagnetic waves are involved, the complete set of Maxwell equation needs to be used, 
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coupled to the mechanical equations of motion. Such a fully dynamic theory is called 
piezoelectromagnetism by some researchers (Lee, 1991). Piezoelectromagnetic SH waves were 
studied by Li (Li, 1996) using scalar and vector potentials, which results in a relatively 
complicated mathematical model of four equations. Two of these equations are coupled, and 
the other two are one-way coupled. In addition, a gauge condition needs to be imposed. A 
different formulation was given by Yang and Guo (Yang et al., 2006), which leads to two 
uncoupled equations. Piezoelectromagnetic SH waves over the surface of a circular cylinder of 
polarized ceramics were analyzed. Although many works have been done for the 
piezoelectromagnetic waves in piezoelectric solids, the explicit uncoupled equations of 
piezoelectromagnetic waves in the anisotropic media could not be obtained because of the 
limitations of classical theory. In this chapter, the idea of eigen theory presented by author 
(Guo, 1999; 2000; 2001; 2002; 2005; 2007; 2009; 2009; 2010; 2010; 2010) is used to deal with both 
the Maxwell’s electromagnetic equation and the Newton’s motion equation. By this method, 
the classical Maxwell’s equation and Newton’s equation under the geometric presentation can 
be transformed into the eigen Maxwell’s equation and Newton’s equation under the physical 
presentation. The former is in the form of vector and the latter is in the form of scalar. As a 
result, a set of uncoupled modal equations of electromagnetic waves and elastic waves are 
obtained, each of which shows the existence of electromagnetic and elastic sub-waves, 
meanwhile the propagation velocity, propagation direction, polarization direction and space 
pattern of these sub-waves can be completely determined by the modal equations.  
In section 2, the elastic waves in anisotropic solids were studied under six dimensional eigen 
spaces. It was found that the equations of elastic waves can be uncoupled into the modal 
equations, which represent the various types of elastic sub-waves respectively. In section 3, the 
Maxwell’s equations are studied based on the eigen spaces of the physical presentation, and 
the modal electromagnetic wave equations in anisotropic media are deduced. In section 4, the 
quasi-static theory of waves in piezoelectric solids (mechanical equations of motion, coupled to 
the equations of static electric field, or Maxwell’s equations, coupled to the mechanical 
equations of equilibrium) are studied based on the eigen spaces of the physical presentation. 
The complete sets of uncoupled elastic or electromagnetic dynamic equations for piezoelectric 
solids are deduced. In section 5, the Maxwell’s equations, coupled to the mechanical equations 
of motion, are studied based on the eigen spaces of the physical presentation. The complete 
sets of uncoupled fully dynamic equations for piezoelectromagnetic waves in anisotropic 
media are deduced, in which the equations of electromagnetic waves and elastic ones are both 
of order 4. The discussions are given in section 6. 

2. Elastic waves in anisotropic solids 
2.1 Concepts of eigen spaces 
The eigen value problem of elastic mechanics can be written as 

  1,2, ,6i i i iλ= =Cϕ ϕ    (1) 

where C is a standarded matrix of elastic coefficients, iλ  is eigen elasticity, and is 
invariables of coordinates, iϕ  is the corresponding eigen vector, and satisfies the 
orthogonality condition of basic vectors. 

 Τ=C ΦΛΦ  (2) 
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where 1 2 6, , ,λ λ λ= ⎡ ⎤⎣ ⎦diagΛ , { }1 2 6, , ,=Φ ϕ ϕ ϕ is the modal matrix of elastic solids, it is 
orthogonal and positive definite one, satisfies T I=Φ Φ . 
The eigen spaces of anisotropic elastic solids consist of independent eigen vectors, it has the 
structure as follows 

 * *
1 1[ ] [ ]m mW W W= ⊕ ⊕ϕ ϕ  (3) 

where the possible overlapping roots are considered, and ( )6m ≤  is used to represent the 
number of independent eigen spaces. Projecting the stress vector σ  and strain vector ε  on 
the eigen spaces, we get 

 * * * *
1 1 m mσ σ= + +σ ϕ ϕ  (4) 

 * * * *
1 1 m mε ε= + +ε ϕ ϕ  (5) 

where *
iσ  and *

iε are modal stress and modal strain, which are stress and strain under the 
eigen spaces respectively, and are different from the traditional ones in the physical meaning. 
Eqs.(4) and (5) are also regarded as a result of the sum of finite number of normal modes. 
The modal stress and modal strain satisfy the normal Hook’s law 

 * * 1,2, ,i i i i mσ λ ε= =  (6) 

2.2 Modal elastic wave equations 
When neglecting body force, the dynamics equation and displacement equation of elastic 
solids are the following respectively 

 ik k iuσ ρ′ =  (7) 

 1 ( )
2ij i j j iu uε ′ ′= +  (8) 

From Eqs.(7) and (8), we can get the following equation 

 2ik kj jk ki ijσ σ ρε′ ′+ =  (9) 

Because of the symmetry on ( ),i j in Eq.(9) we can rewrite it in the form of matrix. 

 Δ ttρΔ=σ ε  (10) 
where 

 
( )

( )
( )

11 31 21

22 32 21

33 32 31

23 23 22 33 21 31

13 13 12 11 33 32

12 12 13 23 22 11

0 0 0
0 0 0
0 0 0
0

0

0

∂ ∂ ∂⎡ ⎤
⎢ ⎥∂ ∂ ∂⎢ ⎥
⎢ ⎥∂ ∂ ∂
⎢ ⎥= ∂ ∂ ∂ + ∂ ∂ ∂⎢ ⎥
⎢ ⎥
∂ ∂ ∂ ∂ + ∂ ∂⎢ ⎥
⎢ ⎥∂ ∂ ∂ ∂ ∂ + ∂⎣ ⎦

Δ  (11) 
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It is seen that Δ is a symmetrical differential operator matrix, and 2 /ij ji i jx x∂ = ∂ = ∂ ∂ ∂ , 
2 /tt t tΔ = ∂ ∂ ∂ . 

It is proved by author that the elastic dynamics equation (10) under the geometrical spaces 
of three dimension can be converted into the modal equations under the eigen spaces of six 
dimension 

 * * * 1,2, ,i i i tt i i mλ ε ρΔ εΔ = =  (12) 
and 

 Δ* T* * 1,2, ,i i i i mΔ = =ϕ ϕ  (13) 

where *Δ i is called as the stress operator. From Eq.(12), we have 

 * * *
2

1Δ , 1,2, ,i i tt i
i

ε ε= ∇ =i m
v

 (14) 

The calculation shows that the stress operators are the same as Laplace’s operator (either 
two dimensions or three dimensions) for isotropic solids, and for most of anisotropic solids. 
In the modal equations of elastic waves, the speeds of propagation of elastic waves are the 
following 

 , 1,2, ,i
iv i mλ

ρ
= =  (15) 

Eqs.(14) and (15) show that the number of elastic waves in anisotropic solids is equal to that 
of eigen spaces of anisotropic solids, and the speeds of propagation of elastic waves are 
related to the eigen elasticity of anisotropic solids. 

2.3 Elastic waves in isotropic solids 
There are two independent eigen spaces in isotropic solids 

 (1) (5)
1 1 2 2 6[ ] [ , , ]W W W= ⊕ϕ ϕ ϕ  (16) 

where 

 
1 2

3

3 2[1,1,1,0,0,0] , [0,1, 1,0,0,0]
3 2
6 [2, 1, 1,0,0,0] ,      ( 4,5,6)

6

T T

T
i i iξ

⎫
= = − ⎪⎪

⎬
⎪= − − = = ⎪⎭

ϕ ϕ

ϕ ϕ
 (17) 

where iξ is a vector of order 6, in which i th element is 1 and others are 0. 
The eigen elasticity and eigen operator of isotropic solids are the following 

 
( )1 2

* 2 * 2
1 2

3 2 , 2 ,
1 1, ,
3 2III III

λ λ μ λ μ ⎫= + =
⎪
⎬

Δ = ∇ Δ = ∇ ⎪
⎭

 (18) 
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where λ and μ are Lame constants, 2
III∇ is Laplace’s operator of three dimention. Thus, there 

exist two independent elastic waves in isotropic solids, which can be described by the 
following equations 

 2 * *
III 1 1( 2 ) ( , ) ( , )x t x tλ μ ε ρε+ ∇ =  (19) 

 2 * *
III 2 2( , ) ( , )x t x tμ ε ρε∇ =  (20) 

It will be seen as follows that Eqs.(19) and (20) represent the dilation wave and shear wave 
respectively. 
Using Eq. (5), the modal strain of order 1 of isotropic solids is  

 * T*
1 1 11 22 33

3 ( )
3

ε ε ε ε= ⋅ = + +ϕ ε  (21) 

Eq. (21) represents the relative change of the volume of elastic solids. So Eq. (19) shows the 
motion of pure longitudinal wave. 
Also from Eq. (5), the modal strain of order 2 of isotropic solids is 

                                                  * * * *
2 2 1 1ε ε= −ϕ ε ϕ   (22) 

By the orthogonality condition of eigenvectors, we have 

                     

* * * T * * 1/2
2 1 1 1 1

2 2 2 1/2
1 2 2 3 3 1

[( ) ( )]

1    { [( ) ( ) ( ) ]}
3

ε ε ε

ε ε ε ε ε ε

= − ⋅ −

= − + − + −

ε ϕ ε ϕ
 (23) 

Eq. (23) represents the pure shear strain on elastic solids. So Eq. (20) shows the motion of 
pure transverse wave. 

2.4 Elastic waves in anisotropic solids 
2.4.1 Cubic solids 
There are three independent eigen spaces in a cubic solids 

                              (1) (2) (3)
1 1 2 2 3 3 4 5 6[ ] [ , ] [ , , ]W W W W= ⊕ ⊕ϕ ϕ ϕ ϕ ϕ ϕ  (24) 

where 1 2 6, , ,ϕ ϕ ϕ  are the same as in Eq. (17). 
The eigenelasticity and eigenoperator of cubic solids are 

 
1 11 12 2 11 12 3 44

* 2 * 2 * *
1 2 3

2 , , ,
1 1, , ,
3 2III III III

c c c c cλ λ λ

Δ Δ Δ

= + = − = ⎫
⎪
⎬

= ∇ = ∇ = ∇ ⎪⎭

 (25) 

Thus, there exist three independent elastic waves in cubic solids, which can be described by 
following equations 

                                       * * *( , ) ( , ) 1,2,3i i i ix t x t iλ ε ρεΔ = =  (26) 
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where 

                                              *
1 11 22 33

3 ( )
3

ε ε ε ε= + +  (27) 

                                 * 2 2 1/2
2 22 33 11 22 33

1 1[ ( ) (2 ) ]
2 6

ε ε ε ε ε ε= − + − −  (28) 

                                             * 2 2 2
3 32 31 12

1 ( )
2

ε ε ε ε= − −  (29) 

It is seen that there exist three elastic waves in cubic solids, one of which is the quasi-
dilation wave, and two others are the quasi-shear waves. 

2.4.2 Hexagonal solids 
There are four independent eigen spaces in a hexagonal (transversely isotropic) solids 

 (1) (1) (2) (2)
1 1 2 2 3 3 6 4 4 5[ ] [ ] [ , ] [ , ]W W W W W= ⊕ ⊕ ⊕ϕ ϕ ϕ ϕ ϕ ϕ  (30) 

where 

          

1,2 11 12 T13
1,2 2 2 31,2 11 12 13

T
3

[1,1, ,0,0,0]
( ) 2

2 [1, 1,0,0,0,0] , 4,5,6
2 i i

c cc
cc c c

i

λ

λ

− − ⎫
= × ⎪

− − + ⎪
⎬
⎪

= − = = ⎪
⎭

,    ξ

ϕ

ϕ ϕ

 (31) 

The eigenelasticity and eigenoperator of hexagonal solids are 

                           

( )
( )

2
211 12 33 11 12 33

1,2 13

3 11 12 4 44
2

* *13
1,2 2 2

1,2 11 12 13

* 2 * 2
3 4 12

2 ,
2 2
, ,

,
2

2 1, 2 ,
3 2

III

II III

c c c c c c c

c c c

c

c c c

λ

λ λ

Δ
λ

Δ Δ

⎫+ + + +⎛ ⎞ ⎪= ± +⎜ ⎟ ⎪⎝ ⎠
⎪

= − = ⎪⎪
⎬

= ∇ ⎪
⎪− − +
⎪
⎪= ∇ = ∇ + ∂ ⎪⎭

 (32) 

Thus there exist four independent elastic waves in hexagonal solids, which can be described 
by following equations 

 * * *( , ) ( , ) 1,2,3 ,4i i i ix t x t iλ ε ρεΔ = =   (33) 
where  

               1,2 11 12* 13
1,2 11 22 332 2 131,2 11 12 13

[ ( ) ]
( ) 2

c cc
cc c c

λ
ε ε ε ε

λ

− −
= × + +

− − +
 (34) 
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cc c c
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The Eigen Theory of Waves in Piezoelectric Solids   

 

7 

                                              ( )2* 2
3 11 22 12

1
2

ε ε ε ε= − +  (35) 

 * 2 2
4 32 31

1 ( )
2

ε ε ε= +  (36) 

It is seen that there exist four elastic waves in hexagonal solids, two of which are the quasi-
dilation wave, and two others are the quasi-shear waves. 

3. Electromagnetic waves in anisotropic solids 
3.1 Eigen spaces of electromagnetic solids 
In anisotropic electromagnetic solids, the dielectric permittivity and magnetic permeability 
are tensors instead of scalars. The constitutive relations are expressed as follows 

 = ⋅D e E  (37) 

 = ⋅B Hμ  (38) 

where the dielectric permittivity matrix e  and the magnetic permeability matrix μ  are 
usually symmetric ones, and the elements of the matrixes have a close relationship with the 
selection of reference coordinate. Suppose that if the reference coordinates is selected along 
principal axis of electrically or magnetically anisotropic solids, the elements at non-diagonal 
of these matrixes turn to be zero. Therefore, Eqs. (37),(38) are called the constitutive 
equations of electromagnetic solids under the geometric presentation. Now we intend to get 
rid of effects of geometric coordinate on the constitutive equations, and establish a set of 
coordinate-independent constitutive equations of electromagnetic media under physical 
presentation. For this purpose, we solve the following problems of eigen-value of matrixes 

 ( ) 0η− =e I φ    (39) 

 ( )γ−μ ϑ = 0I  (40) 

where ( )1,2,3I Iη =  and ( )1,2,3I Iγ =  are respectively eigen dielectric permittivity and 
eigen magnetic permeability, which are constants of coordinate-independent. ( )1,2,3I I =φ  
and ( )1,2,3I I =ϑ  are respectively eigen electric vector and eigen magnetic vector, which 
show the electrically principal direction and magnetically principal direction of anisotropic 
solids, and are all coordinate-dependent. We call these vectors as eigen spaces. Thus, the 
matrix of dielectric permittivity and magnetic permeability can be spectrally decomposed as 
follows 

 =e ΤΨΓΨ  (41) 

 
Τ=μ ΘΠΘ  (42) 

where [ ]1 2 3, ,diag η η η=Γ  and [ ]1 2 3, ,diag γ γ γ=Π  are the matrix of eigen dielectric 
permittivity and eigen magnetic permeability, respectively. { }1 2 3, ,=Ψ φ φ φ  and 
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{ }1 2 3, ,=Θ ϑ ϑ ϑ  are respectively the modal matrix of electric media and magnetic media, 
which are both orthogonal and positive definite matrixes, and satisfy, T = IΨ Ψ , T = IΘ Θ . 
Projecting the electromagnetic physical qualities of geometric presentation, such as the 
electric field intensity vector E, magnetic field intensity vector H, magnetic flux density 
vector B and electric displacement vector D into eigen spaces of physical presentation, we get 

 Τ= ⋅*D DΨ             Τ= ⋅*E EΨ  (43) 

 
Τ= ⋅*B BΘ             

Τ= ⋅*H HΘ   (44) 
Rewriting Eqs.(43) and (44) in the form of scalar, we have  

 
*
I ID Τ= ⋅ I = 1- nDφ     

*
I IE Τ= ⋅ I = 1- nEφ  (45) 

 *
I IB Τ= ⋅ I = 1 - nBϑ     *

I IH Τ= ⋅ I = 1 - nHϑ  (46) 
where ( )3n ≤ are number of electromagnetic independent subspaces. These are the 
electromagnetic physical qualities under the physical presentation. 
Substituting Eqs. (43) and (44) into Eqs. (37) and (38) respectively, and using Eqs.(45) and 
(46) yield  

 * *
I I ID Eη= I = 1 - n  (47) 

 * *
I I IB Hγ= I = 1 - n  (48) 

The above equations are just the modal constitutive equations of electromagnetic media in 
the form of scalar. 

3.2 Matrix expression of Maxwell’s equation 
The classical Maxwell’s equations in passive region can be written as 

 ,IJK K J Ie H D=  (49) 

 ,IJK K J Ie E B= −  (50) 
Now we rewrite above equations in the form of matrix as follows 

 
1 1

2 2

3 3

0
0

0

z y

z x t

y x

H D
H D
H D

−∂ ∂⎡ ⎤ ⎧ ⎫ ⎧ ⎫
⎢ ⎥ ⎪ ⎪ ⎪ ⎪∂ −∂ = ∇⎨ ⎬ ⎨ ⎬⎢ ⎥

⎪ ⎪ ⎪ ⎪⎢ ⎥−∂ ∂ ⎩ ⎭ ⎩ ⎭⎣ ⎦

 (51) 

or  

 [ ]{ } { }c tH DΔ = ∇  (52) 

 
1 1

2 2

3 3

0
0

0

z y

z x t

y x

E B
E B
E B

−∂ ∂⎡ ⎤ ⎧ ⎫ ⎧ ⎫
⎢ ⎥ ⎪ ⎪ ⎪ ⎪∂ −∂ = −∇⎨ ⎬ ⎨ ⎬⎢ ⎥

⎪ ⎪ ⎪ ⎪⎢ ⎥−∂ ∂ ⎩ ⎭ ⎩ ⎭⎣ ⎦

 (53) 
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1 1
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0
0
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z y

z x t
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E B
E B

−∂ ∂⎡ ⎤ ⎧ ⎫ ⎧ ⎫
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Or 

   [ ]{ } { }d tE BΔ = −∇  (54) 

where [ ]dΔ  and [ ]cΔ  are respectively defined as the matrix of electric operators and  
magnetic operators, and [ ] [ ]d cΔ = Δ . 
Substituting Eqs.(37) and (38) into Eqs. (52) and (54), we have 

 [ ]{ } [ ]{ }c tH e EΔ = ∇  (55) 

 [ ]{ } [ ]{ }d tE HμΔ = −∇  (56) 

Substituting Eq. (55) into (56) or Eq. (56) into (55) yield 

 [ ]{ } [ ][ ]{ }2
tH e Hμ= −∇  (57) 

 [ ]{ } [ ][ ]{ }2
tE e Eμ= −∇  (58) 

where [ ] [ ][ ]d c= Δ Δ  is defined as the matrix of electromagnetic operators as follows 

 [ ]
( )

( )
( )

2 2

2 2

2 2

z y xy xz

yx x z yz

zx zy x y

⎡ ⎤− ∂ + ∂ ∂ ∂
⎢ ⎥
⎢ ⎥= ∂ − ∂ + ∂ ∂
⎢ ⎥
⎢ ⎥∂ ∂ − ∂ + ∂⎣ ⎦

 (59) 

3.2.1 Electrically anisotropic solids 
In anisotropic dielectrics, the dielectric permittivity is a tensor, while the magnetic 
permeability is a scalar. So Eqs. (57) and (58) can be written as follows 

 [ ]{ } [ ]{ }2
0tH e Hμ= −∇  (60) 

 [ ]{ } [ ]{ }2
0tE e Eμ= −∇  (61) 

Substituting Eqs. (43), (44) and (47) into Eqs. (60) and (61), we have 

 { } [ ]{ }* * 2 *
0tH Hμ Γ⎡ ⎤ = −∇⎣ ⎦  (62) 

 { } [ ]{ }* * 2 *
0tE Eμ Γ⎡ ⎤ = −∇⎣ ⎦  (63) 

where [ ] [ ][ ]T*⎡ ⎤ = Ψ Ψ⎣ ⎦  is defined as the eigen matrix of electromagnetic operators under 
the eigen spaces, is a diagonal matrix. Thus Eqs. (62) and (63) can be uncoupled in the form 
of scalar. 

 
* * 2 *

0 0 1I I I t IH H I nμ η+ ∇ = = −  (64) 
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* * 2 *

0 0 1I I I t IE E I nμ η+ ∇ = = −  (65) 

Eqs.(64) and (65) are the modal equations of electromagnetic waves in anisotropic 
dielectrics. 

3.2.2 Magnetically anisotropic solids 
In anisotropic magnetics, the magnetic permeability is a tensor, while the dielectric  
permittivity is a scalar. So Eqs. (57) and (58) can be written as follows 

 [ ]{ } [ ]{ }2
0tH e Hμ= −∇  (66) 

 [ ]{ } [ ]{ }2
0tE e Eμ= −∇  (67) 

Substituting Eqs. (43), (44) and (48) into Eqs. (66) and (67), we have 

 { } [ ]{ }* * 2 *
0tH e HΠ⎡ ⎤ = −∇⎣ ⎦  (68) 

 { } [ ]{ }* * 2 *
0tE e EΠ⎡ ⎤ = −∇⎣ ⎦  (69) 

where [ ] [ ][ ]T*⎡ ⎤ = Θ Θ⎣ ⎦  is defined as the eigen matrix of electromagnetic operators under 

the eigen spaces, is a diagonal matrix. Thus Eqs. (68) and (69)can be uncoupled in the form 
of scalar. 

 * * 2 *
0 0 1I I I t IH e H I nγ+ ∇ = = −  (70) 

 * * 2 *
0 0 1I I I t IE e E I nγ+ ∇ = = −  (71) 

Eqs.(70) and (71) are the modal equations of electromagnetic waves in anisotropic 
magnetics. 

3.3 Electromagnetic waves in anisotropic solids 
In this section, we discuss the propagation behaviour of electromagnetic waves only in 
anisotropic dielectrics. 

3.3.1 Isotropic crystal 
The matrix of dielectric permittivity of isotropic dielectrics is following 

 
e

e
e

11

11

11

0 0⎡ ⎤
⎢ ⎥= 0 0⎢ ⎥
⎢ ⎥0 0⎣ ⎦

e  (72) 

The eigen-values and eigen-vectors are respectively shown as below 

 [ ]11 11 11, ,diag e e e=Γ  (73) 
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1 0 0
0 1 0
0 0 1

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

Ψ  (74) 

We can see from the above equations that there is only one eigen-space in isotropic crystal, 
which is a triple-degenerate one, and the space structure is following  

 
( ) [ ]3

1 1 2 3, ,W φ φ φ=W  (75) 

The basic vector of one dimension in a triple-degenerate subspace is 

 { }*
1

3 1,1,1
3

T=φ  (76) 

The eigen-qualities and eigen-operators of isotropic crystal are respectively shown as below 

 ( )*
1 1 2 3

1
3

E E E E= + +  (77) 

 ( )* 2 2 2
1

1
3 x y z
⎡ ⎤= − ∂ + ∂ + ∂⎣ ⎦  (78) 

Thus the equations of electromagnetic waves in isotropic crystal can be written as 

 ( )( ) ( )2 2 2 2
1 2 3 0 11 1 2 3x y z tE E E e E E Eμ∂ + ∂ + ∂ + + = ∂ + +  (79) 

or 

 ( )2 2 2 2
1 0 11 1x y z tE e Eμ∂ + ∂ + ∂ = ∂  (80) 

 ( )2 2 2 2
2 0 11 2x y z tE e Eμ∂ + ∂ + ∂ = ∂  (81) 

 ( )2 2 2 2
3 0 11 3x y z tE e Eμ∂ + ∂ + ∂ = ∂   (82) 

The velocity of the electromagnetic wave is  

 
0 11

1c
eμ

=  (83) 

Eq. (79) is just the Helmholtz’s equation of electromagnetic wave. 

3.3.2 Uniaxial crystal 
The matrix of dielectric permittivity of uniaxial dielectrics is following 

 
e

e
e

11

11

33

0 0⎡ ⎤
⎢ ⎥= 0 0⎢ ⎥
⎢ ⎥0 0⎣ ⎦

e  (84) 
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The eigen-values and eigen-vectors are respectively shown as below 

 [ ]11 11 33, ,diag e e e=Λ  (85) 

 
1 0 0
0 1 0
0 0 1

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

Ψ  (86) 

We can see from the above equations that there are two eigen-spaces in uniaxial crystal, one 
of which is a double-degenerate space, and the space structure is following  

 
( ) [ ] [ ]2 1

1 1 2 2 3,W Wφ φ φ= ⊕W  (87) 

The basic vectors in two subspaces are following 

 { }*
1

2 1,1,0
2

T=φ  (88) 

 { }*
2 0,0,1 T=φ  (89) 

The eigen electric strength qualities of uniaxial crystal are respectively shown as below 

 T
3

*
2 2E = ⋅ EE =φ  (90) 

 T * T *
1 21 2= −E EEφ φ  (91) 

Multiplying Eq.(91) with 2φ  , using T
2 1 0⋅ =φ φ  and ( )T 1 1,2i i i⋅ = =φ φ , we get 

 ( ) ( )TT * T *
2 2

* 2 2
1 2 2 1 2E E E= − − = +E EE Eφ φ  (92) 

The eigen-operators of uniaxial crystal are respectively shown as below 

 ( )* 2 2 2 2
1 2 2x y z xy= − ∂ + ∂ + ∂ − ∂  (93) 

 ( )* 2 2
2 x y= − ∂ + ∂  (94) 

Therefore, the equations of electromagnetic waves in uniaxial crystal can be written as 
below 

 ( )2 2 2 2 2 2 2 2 2
1 2 0 11 1 22 2x y z xy tE E e E Eμ∂ + ∂ + ∂ − ∂ + = ∂ +  (95) 

 ( )2 2 2
3 0 33 3x y tE e Eμ∂ + ∂ = ∂   (96) 

 
The velocities of electromagnetic waves are respectively as follows 
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 ( )1

0 11

1c
eμ

=   (97) 

 ( )2

0 33

1c
eμ

=  (98) 

It is seen that there are two kinds of electromagnetic waves in uniaxial crystal. 

3.3.3 Biaxial crystal 
The matrix of dielectric permittivity of biaxial dielectrics is following 

 22

33

e
e

e

11 0 0⎡ ⎤
⎢ ⎥= 0 0⎢ ⎥
⎢ ⎥0 0⎣ ⎦

e  (99) 

The eigen-values and eigen-vectors are respectively shown as below 

 [ ]11 22 33, ,diag e e e=Λ  (100) 

 
1 0 0
0 1 0
0 0 1

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

Ψ  (101) 

We can see from the above equations that there are three eigen-spaces in biaxial crystal, and 
the space structure is following 

 ( ) [ ] ( ) [ ] ( ) [ ]1 1 1
1 1 2 2 3 3W W Wφ φ φ= ⊕ ⊕W  (102) 

The eigen-qualities and eigen-operators of biaxial crystal are respectively shown as below 

 T
1

*
1 1E = ⋅ EE =φ  (103) 

 T
2

*
2 2E = ⋅ EE =φ   (104) 

 T
3

*
3 3E = ⋅ EE =φ  (105) 

 ( )* 2 2
1 z y= − ∂ + ∂  (106) 

 ( )* 2 2
2 x z= − ∂ + ∂  (107) 

 ( )* 2 2
3 x y= − ∂ + ∂   (108) 

Therefore, the equations of electromagnetic waves in biaxial crystal can be written as below 

 ( )2 2 2
1 0 11 1z y tE e Eμ∂ + ∂ = ∂  (109) 
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 ( )2 2 2
2 0 22 2x z tE e Eμ∂ + ∂ = ∂  (110) 

 ( )2 2 2
3 0 33 3x y tE e Eμ∂ + ∂ = ∂  (111) 

The velocities of electromagnetic waves are respectively as follows 

 ( )1

0 11

1c
eμ

=  (112) 

 ( )2

0 22

1c
eμ

=  (113) 

 ( )3

0 33

1c
eμ

=    (114) 

It is seen that there are three kinds of electromagnetic waves in biaxial crystal. 

3.3.4 Monoclinic crystal 
The matrix of dielectric permittivity of monoclinic dielectrics is following 

 
11 12

12 22

33

e e
e e

e

0⎡ ⎤
⎢ ⎥= 0⎢ ⎥
⎢ ⎥0 0⎣ ⎦

e   (115) 

The eigen-values and eigen-vectors are respectively shown as below 

 [ ]1 2 33, ,diag eη η=Γ  (116) 

 

( )

( )
[ ]

T

T

T

12 1 11
2 2 121 11 12

12 2 11
2 2 122 11 12

,1,0

1, ,0

0,0,1

e e
ee e

e e
ee e

η

η

η

η

1

2

3

⎧ ⎡ ⎤−⎪ = ⎢ ⎥
⎪ ⎣ ⎦− +
⎪
⎪ ⎡ ⎤−⎪ =⎨ ⎢ ⎥

⎣ ⎦⎪ − +
⎪
⎪ =
⎪
⎪⎩

φ

φ

φ

 (117) 

where 

 ( ) ( )
2

11 22 2
1,2 11 22 12

1
2 2

e e
e e eη

+ ⎡ ⎤= ± − +⎢ ⎥⎣ ⎦
, 3 33eη =  (118) 

We can see from the above equations that there are also three eigen-spaces in monoclinic 
crystal, and the space structure is following 
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 ( ) [ ] ( ) [ ] ( ) [ ]1 1 1
1 1 2 2 3 3W W Wφ φ φ= ⊕ ⊕W  (119) 

The eigen-qualities and eigen-operators of monoclinic crystal are respectively shown as below 

 
( )

( )T
1

*
1 1 1 11 12 22 2

1 11 12

1E e e E
e e

η
η

= ⋅ ⎡ − + ⎤⎣ ⎦
− +

EE =φ  (120) 

 
( )

( )T
1

*
2 2 12 2 11 22 2

2 11 12

1E e e E
e e

η
η

= ⋅ ⎡ + − ⎤⎣ ⎦
− +

EE =φ  (121) 

 T
3

*
3 3E = ⋅ EE =φ  (122) 

 
( )

( ) ( )
22

* 2 2 2 2 212 1 11 1 11
1 2 2

12 121 11 12

2z y x z xy
e e e

e ee e
η η

η

⎡ ⎤⎛ ⎞ ⎛ ⎞− −⎢ ⎥= − ∂ + ∂ + ∂ + ∂ − ∂⎜ ⎟ ⎜ ⎟
⎢ ⎥− + ⎝ ⎠ ⎝ ⎠⎣ ⎦

 (123) 

 
( )

( ) ( )
22

* 2 2 2 2 212 2 11 2 11
2 2 2

12 122 11 12

2x z z y xy
e e e

e ee e
η η

η

⎡ ⎤⎛ ⎞ ⎛ ⎞− −⎢ ⎥= − ∂ + ∂ + ∂ + ∂ − ∂⎜ ⎟ ⎜ ⎟
⎢ ⎥− + ⎝ ⎠ ⎝ ⎠⎣ ⎦

 (124) 

 ( )* 2 2
3 x y= − ∂ + ∂  (125) 

Therefore, the equations of electromagnetic waves in monoclinic crystal can be written as below 

 ( ) ( )1 1
* 2
1 1 11 12 2 0 1 1 11 12 2te e E e e Eη μ η η⎡ − + ⎤ = ∂ ⎡ − + ⎤⎣ ⎦ ⎣ ⎦E E  (126) 

 ( ) ( )1 1
* 2
2 12 2 11 2 0 2 12 2 11 2te e E e e Eη μ η η⎡ + − ⎤ = ∂ ⎡ + − ⎤⎣ ⎦ ⎣ ⎦E E  (127) 

 ( )2 2 2
3 0 33 3x y tE e Eμ∂ + ∂ = ∂  (128) 

The velocities of electromagnetic waves are respectively as follows 

 ( )

( ) ( )

1

2
211 22

0 11 22 12

1

1
2 2

c
e e

e e eμ

=
⎧ ⎫+⎪ ⎪⎡ ⎤+ − +⎨ ⎬⎢ ⎥⎣ ⎦⎪ ⎪⎩ ⎭

 (129) 

 ( )

( ) ( )

2

2
211 22

0 11 22 12

1

1
2 2

c
e e

e e eμ

=
⎧ ⎫+⎪ ⎪⎡ ⎤− − +⎨ ⎬⎢ ⎥⎣ ⎦⎪ ⎪⎩ ⎭

 (130) 

 ( )3

0 33

1c
eμ

=  (131) 
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It is seen that there are also three kinds of electromagnetic waves in monoclinic crystal. In 
comparison with the waves in biaxial crystal, the electromagnetic waves in monoclinic 
crystal have been distorted. 

4. Quasi-static waves in piezoelectric solids 
4.1 Modal constitutive equation of piezoelectric solids 
For a piezoelectric but nonmagnetizable dielectric body, the constitutive equations is the 
following 

 T= ⋅ − ⋅c h Eσ ε  (132) 

 = ⋅ + ⋅D h e Eε  (133) 

 = ⋅B Hμ  (134) 

where h is the piezoelectric matrix.  
Substituting Eqs. (5), (43) and (44) into Eqs. (132)-(134), respectively, and multiplying them 
with the transpose of modal matrix in the left, we have 

 TΤ Τ Τ= −* *c h EΦ σ Φ Φε Φ Ψ  (135) 

 T T T= +* *D h e EΨ Ψ Φε Ψ Ψ  (136) 

 T T *=B HΘ Θ μΘ  (137) 
 

Let T=G hΨ Φ , T T T=G hΦ Ψ , that is a coupled piezoelectric matrix, and using Eqs.(2), (41) 
and (42), we get 

 T= −* * *G Eσ Λε  (138) 

 = +* * *D G Eε Γ  (139) 

 * *=B HΠ  (140) 
 

Rewriting the above equations in the form of scalar, we have 

 * * * 1 - 1 -T
i i i iJ Jg E i m J nσ λε= − = =  (141) 

 * * * 1 - 1 -I I I Ij jD E g I n j mη ε= + = =  (142) 

 * * 1 -I I IB H I nγ= =  (143) 
 

Eqs.(138)-(140) are just the modal constitutive equations for anisotropic piezoelectric body, 
in which { } { }T

Ij I jg hφ ϕ= ⎡ ⎤⎣ ⎦ , { } { }TTT
iJ i Jg hϕ φ= ⎡ ⎤⎣ ⎦ , T

iJ Jig g= are the coupled piezoelectric 

coefficients.  
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4.2 Modal equation of elastic waves in piezoelectric solids 
When only acoustic waves are considered, we can use the of quasi-static electromagnetic 
approximation. In this case, the mechanical equations are dynamic, the electromagnetic 
equations are static and the electric field and the magnetic field are not coupled. 
The static electric field equations and dynamic equations are given as follows 

 * * 0 1I ID I n∇ = = −  (144) 

 * * * 1,2, ,i i tt i i mσ ρ εΔ = Δ =   (145) 

where 

 [ ] [ ][ ]* T⎡ ⎤∇ = Ψ ∇ Ψ⎣ ⎦  (146) 

 [ ]
11 21 31

12 22 32

13 23 33

∂ ∂ ∂⎡ ⎤
⎢ ⎥∇ = ∂ ∂ ∂⎢ ⎥
⎢ ⎥∂ ∂ ∂⎣ ⎦

 (147) 

Substituting Eq.(142) into Eq.(144), we have 

 * * * * 0I I I I Ij jE gη ε∇ +∇ =   (148) 

The above can also be rewritten as follows 

 * * * * 0 1 - 1 -Ji
J J J i

J

g
E J n i mε

η

⎛ ⎞
∇ +∇ = = =⎜ ⎟⎜ ⎟

⎝ ⎠
   (sum to i) (149) 

According to the principle of operator, Eq.(148) becomes 

 * * 1 - 1 -Jk
J k

J

g
E J n k mε

η

⎛ ⎞
= − = =⎜ ⎟⎜ ⎟

⎝ ⎠
  (150) 

In same way, Substituting Eq.(141) into Eq.(145), we have 

 * * * * * 1T
i i i i iJ J tt ig E i mλε ρ εΔ − Δ = ∇ = −   (151) 

Using Eq.(150), Eq.(151) becomes 

 * * * * * 1 1JkT
i i i i iJ ik i tt i

J

g
g i m J nλε δ ε ρ ε

η

⎛ ⎞
Δ + Δ = ∇ = − = −⎜ ⎟⎜ ⎟

⎝ ⎠
 (152) 

According to the principle of operator, Eq.(152) becomes 

 * * * 1 1JkT
iJ ik i i i tt i

J

g
g i m J nδ λ ε ρ ε

η

⎡ ⎤⎛ ⎞
⎢ ⎥+ Δ = ∇ = − = −⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

    (sum to J) (153) 
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They are the equations of elastic waves in quasi-static piezoelectricity, in which the 
propagation speed of elastic waves is the folloing 

 1

JkT
i iJ ik

J J
i

g
g

v i m
λ δ

η

ρ

⎛ ⎞
+ ⎜ ⎟⎜ ⎟

⎝ ⎠= = −
∑

 (154) 

4.3 Modal equation of electromagnetic waves in piezoelectric solids 
When electromagnetic waves are involved, the complete set of Maxwell equation needs to 
be used, coupled to the static mechanical equations as follows 

 * * 0 1,2, ,i i i mσΔ = =  (155) 

 { } { }* * * * 1I I t I IE B I nϑΔ = −∇ = −  (156) 

 { } { }* * * * 1I I t I IH D I nφΔ = ∇ = −  (157) 

Substituting Eq. .(141)-(143) into Eq.(155)-(157), we have 

 { } { }* * * 1I I t I I IE H I nϑ γΔ = −∇ = −  (158) 

 { } { }( )* * * * 1I I t I I I Ij jH E g I nφ η εΔ = ∇ + = −  (159) 

 ( )* * * 0 1T
i i i iJ JλεΔ − = = −g E i m  (160) 

Transposing Eq.(158), and multiplying it with { }*IΔ , and also using Eq.(159), we have 

 { }{ } { } { } ( )* * * * *T T
I I I tt I I I I I Ij jE E gϑ φ γ η εΔ Δ = −∇ +  (161) 

Let { } { }* * * T

I I I= Δ ⋅ Δ and { } { }T
I I Iξ ϑ φ= , Eq.(159) can be written as 

 * * * *
I I tt I I I I tt I I Ij jE E gξ γ η ξ γ ε+∇ = −∇  (162) 

From Eq.(160), Using the principle of operator, and changing the index, we have 

 * * 1,2, ,6
T
jK

j K
j

g
E jε

λ

⎛ ⎞
⎜ ⎟= =⎜ ⎟
⎝ ⎠

 (sum to K)  (163) 

Substituting Eq.(163) into Eq.(162), we get the equations of electric fields 

 * * * 0
T
jK

I I tt I I I Ij IK I
j

E g Eξ γ η δ
λ

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟+ ∇ + =

⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

g
 (sum to j, K) (164) 
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 1

JkT
i iJ ik

J J
i

g
g

v i m
λ δ

η

ρ
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T
jK

j K
j

g
E jε

λ

⎛ ⎞
⎜ ⎟= =⎜ ⎟
⎝ ⎠
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Substituting Eq.(163) into Eq.(162), we get the equations of electric fields 

 * * * 0
T
jK

I I tt I I I Ij IK I
j

E g Eξ γ η δ
λ

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟+ ∇ + =

⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

g
 (sum to j, K) (164) 
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In same way, we can get the equations of magnetic fields 

 * * * 0
T
jK

I I tt I I I Ij IK I
j

H g Hξ γ η δ
λ

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟+ ∇ + =

⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

g
      (sum to j, K)  (165) 

Eqs.(164) and (165) are just the eigen equations of electromagnetic waves in piezoelectric 
solids, the speed of electromagnetic waves are the following 

 2 1 1I T
jK

I I I Ij IK
j

c I n

gξ γ η δ
λ

= = −
⎡ ⎤⎛ ⎞
⎢ ⎥+ ⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

g
 (166) 

4.4 Eigen properties of polarized ceramics 
In this section, we discuss the propagation laws of piezoelectromagnetic waves in an 
polarrized ceramics poled in the 3x -direction. The material tensors in Eqs.(132)-(134) are 
represented by the following matrices under the compact notation 

 

11 12 13

12 11 13

13 13 13

44

44

66

0 0 0
0 0 0
0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

c c c
c c c
c c c

c
c

c

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

, 

31

31

33

15

15

0 0
0 0
0 0
0 0

0 0
0 0 0

h
h
h

h
h

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

, 
11

11

33

0 0
0 0
0 0

e
e

e

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

, 
11

11

33

0 0
0 0
0 0

μ
μ

μ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (167) 

where ( )66 11 12
1
2

c c c= − . 

There are four independent mechanical eigenspaces as follows 

 (1) (1) (2) (2)
1 1 2 2 3 3 6 4 4 5[ ] [ ] [ , ] [ , ]mechW W W W W= ⊕ ⊕ ⊕ϕ ϕ ϕ ϕ ϕ ϕ  (168) 

where 

               

1,2 11 12 T13
1,2 2 2

131,2 11 12 13

T
3

[1,1, ,0,0,0]
( ) 2

2 [1, 1,0,0,0,0] , 4,5,6
2 i i

c cc
cc c c

i

λ

λ

− − ⎫
= × ⎪

− − + ⎪
⎬
⎪

= − = = ⎪
⎭

,      ξ

ϕ

ϕ ϕ

 (169) 

 

2
211 12 33 11 12 33

1,2 13

3 11 12 4 44

2
2 2
,

c c c c c c c

c c c

λ

λ λ

⎫+ + + +⎛ ⎞ ⎪= ± + ⎪⎜ ⎟ ⎬⎝ ⎠
⎪

= − = ⎪⎭

  (170) 

Then, we have 

                                 *
1,2 1,2=ϕ ϕ , *

3
3 1, 1,0,0,0,1

3
T

= −⎡ ⎤⎣ ⎦ϕ , *
4

2 0,0,0,1,1,0
2

T
= ⎡ ⎤⎣ ⎦ϕ               (171) 



 Acoustic Waves 

 

20 

There are two independent electric or magnetic eigenspaces as follows 

 ( ) [ ] ( ) [ ]2 1
1 1 2 2 3,eleW W W= ⊕φ φ φ  (172) 

 ( ) ( )2 1
1 1 2 2 3,magW W W= ⊕⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ϑ ϑ ϑ  (173) 

where 
                                           11 11 33, ,diag e e e= ⎡ ⎤⎣ ⎦Γ , 11 11 33, ,diag μ μ μ= ⎡ ⎤⎣ ⎦Π                               (174)  

 
1 0 0
0 1 0
0 0 1

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

Ψ , 
1 0 0
0 1 0
0 0 1

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

Θ  (175) 

Then, we have 

                                     * *
1 1

2 1,1,0
2

T
= = ⎡ ⎤⎣ ⎦φ ϑ , * *

2 2 0,0,1 T
= = ⎡ ⎤⎣ ⎦φ ϑ  (176) 

It is seen that the electric subspaces are the same as magnetic ones for polarrized ceramics. 
Thus, the physical quantities, the coupled coefficients and the corresponding operators of 
polarrized ceramics are calculated as follows 

 *
1 ,2 1,2 11 22 1,2 33[ ]a bε ε ε ε= + + , ( )*

3 11 22 12
3

3
ε ε ε ε= − + , ( )*

4 32 31
2

2
ε ε ε= +  (177) 

 
( )

( ) ( )

* 2 2 2 2 2
1,2 1,2 1,2

* 2 2 * 2 2 2
3 4

2 1
3 2

,

, 2 2

x y z

x y x y z xy

a b ⎫Δ = ∂ + ∂ + ∂ ⎪
⎬

Δ = ∂ + ∂ Δ = ∂ + ∂ + ∂ + ∂ ⎪⎭

 (178) 

 ( )2
*
1 1

2
2

E = E + E , ( )2
*
1 1

2
2

H = H + H , 3
*
2E = E , 3

*
2H = H  (179)                          

 ( )* 2 2 2 2
1

1 2 2
2 x y z xy= − ∂ + ∂ + ∂ − ∂ , ( )* 2 2

2 x y= − ∂ + ∂  (180) 

and             
1 1,2I Iξ = =  

( ) ( )
11 21 31 41 15

12 1 31 1 33 22 2 31 2 33 32 42

0, 0, 0,
2 , 2 , 0, 0

g g g g h
g a h b h g a h b h g g

= = = =

= + = + = =
   

( ) ( )
11 12 13 14 15

21 1 31 1 33 22 2 31 2 33 23 24

0, 0, 0,
2 , 2 , 0, 0

T T T T

T T T T

g g g g h
g a h b h g a h b h g g

= = = =

= + = + = =
 

where 
13

1,2 2 2
1,2 11 12 13( ) 2

ca
c c cλ

=
− − +

, 1,2 11 12
1,2

13

c c
b

c
λ − −

= . 
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1 1 2 2 3,magW W W= ⊕⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ϑ ϑ ϑ  (173) 

where 
                                           11 11 33, ,diag e e e= ⎡ ⎤⎣ ⎦Γ , 11 11 33, ,diag μ μ μ= ⎡ ⎤⎣ ⎦Π                               (174)  

 
1 0 0
0 1 0
0 0 1

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

Ψ , 
1 0 0
0 1 0
0 0 1

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

Θ  (175) 

Then, we have 

                                     * *
1 1

2 1,1,0
2

T
= = ⎡ ⎤⎣ ⎦φ ϑ , * *

2 2 0,0,1 T
= = ⎡ ⎤⎣ ⎦φ ϑ  (176) 

It is seen that the electric subspaces are the same as magnetic ones for polarrized ceramics. 
Thus, the physical quantities, the coupled coefficients and the corresponding operators of 
polarrized ceramics are calculated as follows 

 *
1 ,2 1,2 11 22 1,2 33[ ]a bε ε ε ε= + + , ( )*

3 11 22 12
3

3
ε ε ε ε= − + , ( )*

4 32 31
2

2
ε ε ε= +  (177) 
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( ) ( )

* 2 2 2 2 2
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* 2 2 * 2 2 2
3 4

2 1
3 2
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, 2 2

x y z

x y x y z xy

a b ⎫Δ = ∂ + ∂ + ∂ ⎪
⎬

Δ = ∂ + ∂ Δ = ∂ + ∂ + ∂ + ∂ ⎪⎭

 (178) 

 ( )2
*
1 1

2
2

E = E + E , ( )2
*
1 1

2
2

H = H + H , 3
*
2E = E , 3

*
2H = H  (179)                          

 ( )* 2 2 2 2
1

1 2 2
2 x y z xy= − ∂ + ∂ + ∂ − ∂ , ( )* 2 2

2 x y= − ∂ + ∂  (180) 

and             
1 1,2I Iξ = =  
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4.5 Elastic waves in polarized ceramics 
There are four equations of elastic waves in polarized ceramics, in which the propagation 
speed of elastic waves is the folloing, respectively 

 2 1
1v λ

ρ
=  (181) 

 

( ) ( )2 22 2
1 31 1 33 2 31 2 33

2
2 11 33
2

2 2a h b h a h b h
e ev

λ

ρ

+ +
+ +

=   (182) 

 2 11 12
3

c cv
ρ
−

=   (183) 

 

2
15

44
2 11
4

hc
ev

ρ

+
=  (184) 

It is seen that two of elastic waves are the quasi-dilation wave, and two others are the quasi-
shear waves, and only two waves were affected by the piezoelectric coefficients, which 
speeds up the propagation of second and fourth waves. 

4.6 Electromagnetic waves in polarized ceramics 
There are two equations of electromagnetic waves in polarized ceramics, in which the 
propagation speed of electromagnetic waves is the folloing, respectively  

 
( )

2
1 22 2

1 31 1 33 15
11 11

2 44

1

2
c

a h b h he
c

μ
λ

=
⎡ ⎤+
⎢ ⎥+ +
⎢ ⎥⎣ ⎦

 (185) 

 
( )

2
2 22

2 31 2 33
22 22

2

1

2
c

a h b h
eμ

λ

=
⎡ ⎤+
⎢ ⎥+
⎢ ⎥⎣ ⎦

  (186) 

It is seen that two electromagnetic waves are all affected by the piezoelectric coefficients, 
which slow down the propagation of electromagnetic waves. 

5. Fully dynamic waves in piezoelectric solids 
When fully dynamic waves are considered, the complete set of Maxwell equation needs to 
be used, coupled to the mechanical equations of motion as follows 

 * * * 1,2, ,i i tt i i mσ ρ εΔ = ∇ =  (187) 

 { } { }* * * * 1I I t I IE B I nϑΔ = −∇ = −  (188) 
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 { } { }* * * * 1I I t I IH D I nφΔ = ∇ = −  (189) 

Substituting Eqs. (141)-(143) into Eqs. (187)- (189), respectively, we have 

 ( )* * * *
i i i tt iλε ρ εΔ − = ∇T

iJ Jg E   (sum to J)  (190) 

 { } { }* * * 1I I t I I IE H I nϑ γΔ = −∇ = −   (191) 

 { } { }( )* * * * 1I I t I I I Ij jH E g I nφ η εΔ = ∇ + = −  (192) 

Transposing Eq.(191), and multiplying it with { }*IΔ , and using Eq.(192), we have 

 ( )* * * 1 1I tt I I I I tt I I Ij jE g I n j mξ γ η ξ γ ε+∇ = −∇ = − = −   (sum to j) (193) 

where { }{ }* * * T

I I I= Δ Δ and { } { }* *T

I I Iξ ϑ φ= . Eq.(190) can be written as follows 

 ( )* * * * 1 1j j tt j jλ ρ εΔ − ∇ = Δ = − = −T
jI Ig E I n j m     (sum to I) (194) 

where ( )*
I tt I I Iξ γ η+∇  and ( )*

j j ttλ ρΔ − ∇  are the electromagnetic dynamic operator and 
mechanical dynamic operator, respectively. In order to investigate the mutual effects 
between mechanical subspaces and electromagnetic subspaces, multiplying Eq.(191) with 
the mechanical dynamic operator and Eq.(192) with the electromagnetic dynamic operator, 
and substituting Eq. (194) into Eq. (193) and Eq. (193) into Eq. (194), we have 

 ( )( ) ( ) ( )* ** * *j jT
j j tt I tt I I I I tt I I Ij j jK KE gλ ρ ξ γ η ξ γΔ − ∇ +∇ = −∇ Δ g E   (sum to K) (195) 

 ( )( ) ( ) ( )( )* ** * *I I
I tt I I I j j tt j j tt Iξ γ η λ ρ ε ξ γ ε+∇ Δ − ∇ = Δ −∇T

jI I Ik kg g   (sum to k) (196) 

where ( )* j
IE  notes the I th modal electric field induced by j th mechanical subspace, and 

( )* I
jε  the j th modal strain field induced by I th electromagnetic subspace. Reorganizing 

Eqs.(195) and (196), we get 

( ) ( ) ( ) ( )* * ** * * * 0j j jT
tttt I I I I tt I j I I j I Ij jK KI I j j I IE g E Eρ ξ γ η ρ ξ γ λη δ λ⎡ ⎤∇ +∇ −Δ + − Δ =⎣ ⎦g  

   1 1= − = −I n j m     (sum to k) (197) 

( ) ( ) ( ) ( )* * ** * * * 0I I IT
tttt I I I j tt I j I I j I Ij jK KI j j j I jgρ ξ γ η ε ρ ξ γ λη δ ε λ ε⎡ ⎤∇ +∇ −Δ + − Δ =⎣ ⎦g     

 1 1= − = −I n j m     (sum to k) (198) 

In same way, we can obtain the modal magnetic field equations as follows 

( ) ( ) ( ) ( )* * ** * * * 0j j j
tttt I I I I tt I j I I j I Ij I j j I Iρ η γ ξ ρ γ ξ λη δ λ⎡ ⎤∇ +∇ −Δ + − Δ =⎣ ⎦

T
jK KIH g g H H  
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 1 1= − = −I n j m     (sum to k) (199) 

From the above results, we can see that when considering the mutual effects between 
mechanical subspaces and electromagnetic subspaces, the electromagnetic wave equations 
become four-order partial differential ones, meanwhile elastic wave equation still keep in 
the form of four-order partial differential ones. 

6. Conclusions 

In the first place, we analyzed here the elastic waves and electromagnetic waves in 
anisotropic solids. The calculation shows that the propagation of elastic waves in anisotropic 
solids consist of the incomplete dilation type and the incomplete shear type except for the 
pure longitudinal or pure transverse waves in isotropic solids. Several novel results for 
elastic waves were obtained, for example, there are two elastic waves in isotropic solids, 
which are the P-wave and the S-wave. There are three elastic waves in cubic solids, one of 
which is a quasi-P-waves and two are quasi-S-waves. There are four elastic waves in 
hexagonal (transversely isotropic) solids, half of which are quasi-P-waves and half of which 
are quasi-S-waves. There are five elastic waves in tetragonal solids, two of which are quasi-
P-waves and three of which are quasi-S-waves. There are no more than six elastic waves in 
orthotropic solids or in the more complicated anisotropic solids. For electromagnetic waves, 
the similar results were obtained: 1) the number of electromagnetic waves in anisotropic 
media is equal to that of eigen-spaces of anisotropic media; 2) the velocity of propagation of 
electromagnetic waves is dependent on the eigen-dielectric permittivity and eigen-magnetic 
permeability; 3) the direction of propagation of electromagnetic waves is related on the 
eigen electromagnetic operator in the corresponding eigen-space; 4) the direction of 
polarization of electromagnetic waves is relevant to the eigen-electromagnetic quantities in 
the corresponding eigen-space. In another word, there is only one kind of electromagnetic 
wave in isotropic crystal. There are two kinds of electromagnetic waves in uniaxial crystal. 
There are three kinds of electromagnetic waves in biaxial crystal and three kinds of distorted 
electromagnetic waves in monoclinic crystal. Secondly, the elastic waves and 
electromagnetic waves in piezoelectric solids both for static theory and for fully dynamic 
theory are analyzed here based on the eigen spaces of physical presentation. The results 
show that the number and propagation speed of elastic or electromagnetic waves in 
anisotropic piezoelectric solids are determined by both the subspaces of electromagnetically 
anisotropic media and ones of mechanically anisotropic media. For the piezoelectric 
material of class 6mm, it is seen that there exist four elastic waves, respectively, but only two 
waves were affected by the piezoelectric coefficients. There exist two electromagnetic waves, 
respectively, but the two waves were all affected by the piezoelectric coefficients. The fully 
dynamic theory of Maxwell’s equations, coupled to the mechanical equations of motion, are 
studied here. The complete set of uncoupled dynamic equations for piezoelectromagnetic 
waves in anisotropic media are deduced. For the piezoelectric material of class 6mm, it will 
be seen that there exist eight electromagnetic waves and also eight elastic waves, 
respectively. Furthermore, in fact of I jc v , except for the classical electromagnetic waves 
and elastic waves, we can obtain the new electromagnetic waves propagated in speed of 
elastic waves and new elastic waves propagated in speed of electromagnetic waves. 
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1. Introduction 
Natural multilayers can be frequently observed, like the layered soils and rocks for example 
(Kausel & Roesset, 1981; Kennett, 1983). They are also increasingly used as artificial 
materials and structures in engineering practices for their high performances (Nayfeh, 1995). 
For instances, cross-ply and fibrous laminated composites have been applied in naval 
vessels, aeronautical and astronautical vehicles, and so on for the sake of high strength and 
light weight (Nayfeh, 1995); piezoelectric thin film systems have been used in various 
surface acoustic wave (SAW) and bulk acoustic wave (BAW) devices in electronics and 
information technology in order to accomplish smaller size, lower energy consumption, 
higher operating frequency and sensitivity, greater bandwidth, and enhanced reception 
characteristics (Auld, 1990; Adler, 2000). Consequently, as a widespread category of 
inhomogeneous materials and structures, multilayered structures deserve special concern 
about their mechanical and acoustical behavior, especially the dynamic behavior since it is 
what these structures differ most markedly from the homogeneous materials and structures. 
Investigation of acoustic wave propagation in multilayered structures plays an essential role 
in understanding their dynamic behavior, which is the main concern in design, 
optimization, characterization and nondestructive evaluation of multilayered composites 
(Lowe, 1995; Chimenti, 1997; Rose, 1999) and acoustic wave devices (Auld, 1990; Rose, 1999; 
Adler, 2000). Nevertheless, the top and bottom surfaces and the interfaces in a multilayered 
structure cause reflection and/or transmission of elastic waves, giving rise to coupling of 
various fundamental wave modes in adjacent layers. In multilayered structures consisting of 
anisotropic media, even the fundamental wave modes themselves are mutually coupled in 
each layer (Achenbach, 1973). As a result, the analysis of acoustic waves in multilayered 
structures always remains an extraordinary complex problem, and it is very difficult to 
obtain a simple and yet numerically well-performed, closed-form analytical solution for a 
general multilayered structure. 
For the above reasons, various matrix formulations have been developed for the analysis of 
acoustic wave propagation in multilayered media from diverse domains (Ewing et al., 1957; 
Brekhovskikh, 1980; Kennett, 1983; Lowe, 1995; Nayfeh, 1995; Rose, 1999), since the 
beginning of this research subject in the midst of last century. Most of these matrix methods 
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were presented initially for multilayered structures consisting of isotropic (transversely 
isotropic) materials, and then extended to those structures made of anisotropic elastic and 
piezoelectric layers. These matrix methods fall into two groups. One group is those 
numerical methods based on discrete models, such as the boundary element method (BEM) 
(Makkonen, 2005), the finite difference method (FDM) (Igel et al., 1995; Makkonen, 2005), 
the finite element method (FEM) (Datta et al., 1988; Makkonen, 2005) and the hybrid method 
of BEM and FEM (BEM/FEM) (Makkonen, 2005). This group of methods is powerful for 
modeling acoustic waves in multilayered structures with various geometries and 
boundaries. However, they have the disadvantage that the results are approximate, and 
particularly certain high frequency components must be thrown off in any discrete model. 
The accuracy of the computational results and the stability of the numerical algorithms 
depend greatly on the discretization in the temporal and spatial domains. Calculation 
efficiency will be dramatically decreased if higher accuracy is pursued. The other group is 
those analytical methods based on continuous (distributed-parameter) model, among which 
the transfer matrix method (TMM) (Lowe, 1995), also referred to as the propagator matrix 
method (PMM) (Alshits & Maugin, 2008), is the typical one. TMM (Thomson, 1950; Haskell, 
1953; Lowe, 1995; Nayfeh, 1995; Adler, 1990, 2000) leads to a system equation with 
dimension keeping small and unchanged as the number of layers increases, since in the 
formulation the basic unknowns of the intermediate layers are eliminated by matrix 
products. Thus, TMM has the advantage of high accuracy and high efficiency in most cases, 
but it suffers from numerical instability in the case of high frequency-thickness products 
(Nayfeh, 1995; Adler, 1990, 2000; Lowe, 1995; Tan, 2007). Aiming at circumventing this kind 
of numerical difficulty, different variant forms of TMM as well as analytical matrix methods 
have been proposed, including the stiffness matrix method (Kausel & Roesset, 1981; Shen et 
al., 1998; Wang & Rokhlin, 2001, 2002a; Rokhlin & Wang, 2002a; Tan, 2005), the spectral 
element method (Rizzi & Doyle, 1992; Chakraborty & Gopalakrishnan, 2006), the surface 
impedance matrix method (Honein et al., 1991; Degettekin et al., 1996; Zhang et al., 2001; 
Hosten & Castaings, 2003; Collet, 2004), the hybrid compliance/stiffness matrix method 
(Rokhlin & Wang, 2002b; Wang & Rokhlin, 2004a; Tan, 2006), the recursive asymptotic 
stiffness matrix method (Wang & Rokhlin, 2002b, 2004b, 2004c), the scattering matrix 
method (Pastureaud et al., 2002) and the compound matrix method (Fedosov et al., 1996), 
for instances. Tan (Tan, 2007) compared some of these methods in mathematical algorithm, 
computational efficiency and numerical stability. However, most of these alternative 
formulations lack uniformity in a certain degree, and are computationally complicated and 
inefficient, especially for the high frequency analysis. 
Lately, Pao and his coworkers (Pao et al, 2000; Su et al., 2002; Tian et al., 2006) developed the 
method of reverberation-ray matrix (MRRM) for evaluating the transient wave propagation 
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advantages and its comparison to the TMM in various aspects was discussed by Pao et al. 
(Pao et al., 2007). However, the original formulation of MRRM is based on the wave 
potential functions, which confines this numerically stable and uniform matrix method from 
extending to layered anisotropic structures. In fact, it is impossible to use wave potential 
functions for an arbitrarily anisotropic medium, in which the fundamental wave modes are 
mutually coupled (Achenbach, 1973). Thus, Guo and Chen (Guo & Chen, 2008a, 2008b; Guo, 
2008; Guo et al., 2009) presented a new formulation of MRRM based on state-space 
formalism and plane wave expansion for the analysis of free waves in anisotropic elastic 
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The objective of this chapter is to present the general and unified formulation of the method 
of reverberation-ray matrix (MRRM) for the analysis of acoustic wave propagation in 
multilayered structures of arbitrarily anisotropic elastic and piezoelectric media based on 
the state-space formalism and Fourier transforms. In Section 2, the state equation for each 
layer made of an arbitrarily anisotropic elastic/piezoelectric material is derived from the 
three-dimensional linear theory of elasticity/piezoelectricity with the help of Fourier 
transforms, and the solution to the state equation boils down to an eigenvalue problem from 
which the propagation constants and characteristic mode coefficients can be obtained 
numerically for a specified frequency. Then the traveling wave solution to the state equation 
can be written in explicit form in terms of unknown amplitudes as well as known 
propagation constants and characteristic mode coefficients. In Section 3, we show how the 
multilayered anisotropic structure is described in both the global and the local dual 
coordinates. From the boundary conditions on the upper and lower surfaces with applied 
external forces and the continuity conditions at the interfaces, the scattering relation, which 
expresses one group of equations for the unknown wave amplitudes in dual local 
coordinates, is appropriately constructed such that matrix inversion is avoided. Due to the 
uniqueness of physical essence, the two solutions expressed in dual local coordinates should 
be compatible with each other, leading to the phase relation, which represents the other 
group of equations for the unknown wave amplitudes in dual local coordinates. Care must 
be taken of to properly establish the phase relation such that all exponentially growing 
functions are excluded. The number of simultaneous equations from the phase and 
scattering relations amount exactly to the number of unknown wave amplitudes in dual 
local coordinates, and hence the wave solution can be determined. To reduce the dimension, 
we substitute the phase relation into the scattering relation to obtain a system equation, 
from which the dispersion relation for free wave propagation is obtained by letting the 
determinant of coefficient matrix vanish, and the steady-state and transient wave 
propagation due to the external force excitations can be obtained by inverse Fourier 
transforms. Section 4 gives numerical examples of guided wave propagation in cross-ply 
elastic composite structures. Dispersion curves for different configurations, various 
boundary conditions and in particular at the high frequency range are illustrated to show 
the versatility and numerical stability of the proposed formulation of MRRM. Effects of 
configurations and boundaries on the dispersion spectra are clearly demonstrated through 
comparison. Conclusions are drawn in Section 5, with highlights of advantages of the 
proposed general formulation of MRRM for characterizing the acoustic waves in 
multilayered anisotropic structures. 

2. State space formalism for anisotropic elastic and piezoelectric layers 
2.1 Governing equations and state vectors 
Consider a homogeneous, arbitrarily anisotropic elastic medium. From the three-
dimensional linear elasticity (Synge, 1956; Stroh, 1962; Nayfeh, 1995) we have the 
constitutive relations 

 σ ε=ij ijkl klc  (1) 
the strain-displacement relations 

 , ,( ) / 2kl k l l ku uε = +  (2) 
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and the equations of motion (in absence of body forces) 

 σ ρ=,ij j iu  (3) 

where the comma in the subscripts and superposed dot imply spatial and time derivatives, 
σ ij , ε kl  and iu  are respectively the stress, strain and displacement tensors, ijklc  are the 
elastic constants, and ρ  is the material density. The dynamic governing equations can be 
simplified by eliminating the strain tensor to 

 σ = +, ,( ) / 2ij ijkl k l l kc u u            σ ρ=,ij j iu  (4) 

It is commonly difficult to obtain solutions to Eq. (4) for an anisotropic medium of the most 
general kind as there are 21 independent elastic constants in total, and the deformations in 
different directions and of different kinds are coupled. However, for an arbitrarily 
anisotropic elastic layer, the state space formulation (Tarn, 2002a) can be established by 
grouping the field variables properly. Assume that the correspondence between the digital 
indices and coordinates follows a usual rule, i.e. →1 x , →2 y , and →3 z . If the z  axis is 
along the thickness direction of the laminate, we divide the stresses into two groups: the 
first consists of the components on the surface of z =const., and the second consists of the 
remaining components. The combination of the displacements = T[ , , ]u u v wv  and the first 
group of stresses σ τ τ σ= T[ , , ]zx zy zv  gives the state vector σ= T T T[( ) ,( ) ]uv v v . 
For piezoelectric materials of the most general kind, in the catalogue of three-dimensional 
linear theory (Ding & Chen, 2001), we have the constitutive relations instead of Eq. (1) 

 σ ε= −ij ijkl kl kij kc e E , ε β= +i ikl kl ik kD e E   (5) 

the strain-displacement relations of Eq. (2) are further supplemented by 

 ϕ= − ,k kE  (6) 

and the equations of motion in Eq.(3) are complemented with (in absence of free charges) 

 =, 0i iD  (7) 

where iD , kE  and ϕ  are respectively the electric displacement, field and potential tensors, 
and kije  and βik  are the piezoelectric and permittivity constants, respectively. In view of Eqs. 
(2), (6) and (5), the dynamic governing equations become 

 
σ ϕ

β ϕ
= + +⎧

⎨ = + −⎩

, , ,

, , ,

( ) / 2
( ) / 2

ij ijkl k l l k kij k

i ikl k l l k ik k

c u u e
D e u u

          
σ ρ=⎧
⎨ =⎩

,

, 0
ij j i

i i

u
D

 (8) 

where the coupling between the mechanical and electrical fields is clearly seen. It is noted 
that the independent piezoelectric and permittivity constants of arbitrarily piezoelectric 
media should be 18 and 6 respectively, adding further complexity to the solution procedure. 
However, for an anisotropic piezoelectric layer of the most general kind, the state space 
formalism (Tarn, 2002b) can also be established just as for arbitrarily anisotropic elastic 
layer. This will be illustrated in the following section. For piezoelectric materials, the state 
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vector is defined by T T T[( ) ,( ) ]u σ=v v v , with T[ , , , ]u u v w ϕ=v  being the generalized 

displacements and T[ , , , ]zx zy z zDσ τ τ σ=v  the first group of generalized stresses. 

2.2 Fourier transforms and state equations 
By virtue of the triple Fourier transform pairs as follows 

 ii iˆ( ; , ; ) ( , , , )e e e d d dyx ykk x t
x yf k k z f x y z t x y tωω

+∞ +∞ +∞ −− −

−∞ −∞ −∞
= ∫ ∫ ∫  (9) 

 ii3 i1 ˆ( , , , ) ( ) ( ; , ; )e e e d d d
2

yx kk t
x y

yx
y xf x y z t f k k z k kωω ω

π
+∞ +∞ +∞

−∞ −∞ −∞
= ∫ ∫ ∫  (10) 

the generalized displacements and stresses as well as dynamic governing equations given in 
Eqs. (4) and (8) in the time-space domain can be transformed into those in the frequency-
wavenumber domain, where ω  is the circular frequency; xk  and yk  are the wavenumbers 
in the x  and y  directions, respectively; = −i 1  is the unit imaginary; and the z -
dependent variable in the frequency-wavenumber domain is indicated with an over caret. 
By eliminating the second group of generalized stresses, the transformed Eqs. (4) and (8) in a 
right-handed coordinate system can be reduced to a system of first-order ordinary 
differential equations with respect to the state vector, which contains / 2vn  generalized 
displacement components and / 2vn  generalized stress components, as follows 

 =
ˆd ( ) ˆ( )
d

z z
z

v Av  (11) 

 

which is usually referred to as the state equation. The coefficient matrix A of order ,v vn n×  
with all elements being functions of the material constants, the circular frequency ω  or the 
wavenumbers xk  and yk , can be written in a blocked form 

 11 12

21 22

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

A A
A

A A
 (12) 

where 

−= − 1
11 33iA G W , −= 1

12 33A G , −= − T 1
22 33iA W G  

 

( )ρω −= − + + + + −2 2 2 T 1
21 11 22 12 21 33x y x yk k k kA M G G G G W G W  

(13) 

with = +31 32x yk kW G G . For a layer of arbitrarily anisotropic elastic material, we have 

 = 6vn , 
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

1 1 1 2 1 3

2 1 2 2 2 3

3 1 3 2 3 3

k l k l k l

kl k l k l k l

k l k l k l

c c c
c c c
c c c

G , = 3M I  (14) 

while for a layer of arbitrarily anisotropic piezoelectric material, we have 
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 = 8vn , 

β

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥

−⎣ ⎦

1 1 1 2 1 3 1

2 1 2 2 2 3 2

3 1 3 2 3 3 3

1 2 3

k l k l k l l k

k l k l k l l k
kl

k l k l k l l k

k l k l k l kl

c c c e
c c c e
c c c e
e e e

G , 
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

3 0
0 0
I

M  (15) 

where 3I  denotes the identity matrix of order 3. 

2.3 Traveling wave solutions to the state equation 
According to the theory of ordinary differential equation (Coddington & Levinson, 1955), 
the solution to the state equation (11) can be expressed as 

 ( ) ( )
σ σ

⎧ ⎫ ⎧ ⎫
= = =⎨ ⎬ ⎨ ⎬

⎩ ⎭ ⎩ ⎭

ˆ ( )ˆ ( ) exp expˆ ( )
u uz

z z z
z

v Φ
v Φ Λ w Λ w

v Φ
 (16) 

where ⋅exp( )  denotes the matrix exponential function; Λ  and Φ  are the ×v vn n  diagonal 
eigenvalue matrix and square eigenvector matrix of the coefficient matrix A , respectively; 

uΦ  and σΦ  are the ×/2v vn n  sub-matrices of Φ  corresponding to the generalized 
displacement and stress vectors, respectively; and w  is the vector of undetermined 
coefficients with vn  components.  
When combined with the common factors in the integrand of inverse transform in Eq. (10), 
the solutions in Eq. (16) are interpreted as the total response corresponding to harmonic 
plane traveling waves with different wavenumbers λ− i  in the z  direction ( = 1,2, , vi n ) 
and common wavenumbers − xk  and − yk  in the x  and y -directions at a common radian 
frequency ω , where λi  is the i th component of the diagonal wavenumber matrix Λ . The 
corresponding undermined coefficient iw denotes the wave amplitude, and the components of 
the corresponding eigenvector iΦ  give the state variable response coefficients of the thi wave.  
According to the nature of wavenumber λ− i , the characteristic waves can be divided into 
two groups, the an  arriving waves with their z -axis projection along the negative direction 
and the dn  departing waves with their z -axis projection along the positive direction 
(Ingebrigtsen & Tonning, 1969). Denote the respective sub eigenvalue matrices as −Λ  (of 
order a an n× ) and +Λ  (of order d dn n× ), both being diagonal, the respective sub eigenvector 
matrices as −Φ  (of order v an n× ) and +Φ  (of order v dn n× ), and the respective amplitude 
vectors as a  (the arriving wave vector) and d  (the departing wave vector). Obviously, we 
have T T T[ , ]=w a d . Therefore, the matrices −Λ  and −Φ  and the vector a  correspond to the 
eigenvalues iλ , which satisfy Re( ) 0iλ− <  or Re( ) 0,Im( ) 0i iλ λ− = − < , while the matrices +Λ  
and +Φ  and the vector d  are associated with the remaining eigenvalues. It is easily seen 
that we always have a d vn n n+ =  with 6vn =  for elastic materials and 8vn =  for 
piezoelectric materials. Consequently, the solution to the state equation given in Eq. (16) can 
be rewritten as 

 
[ ] ( )

( )
( )

( )σ σσ

−
− +

+

− + −

− + +

⎡ ⎤ ⎧ ⎫
= ⎨ ⎬⎢ ⎥

⎩ ⎭⎣ ⎦
⎡ ⎤⎧ ⎫ ⎧ ⎫⎡ ⎤

= =⎨ ⎬ ⎨ ⎬⎢ ⎥⎢ ⎥
⎣ ⎦⎩ ⎭ ⎩ ⎭⎣ ⎦

expˆ( )
exp

ˆ ( ) exp
ˆ ( ) exp

u u u

z
z

z

z z
z z

aΛ 0
v Φ Φ

d0 Λ

v Φ Φ aΛ 0
Φ Φv d0 Λ

 (17) 
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where −uΦ  and σ −Φ  are ×/ 2v an n  sub eigenvector matrices of −Φ  corresponding to the 
generalized displacement and stress vectors, respectively; +uΦ  and σ +Φ  are those 

×/ 2v dn n  sub eigenvector matrices of +Φ . It is noted from Eq. (17) that the only unknowns 
in the solutions are the wave amplitudes, which should be determined from the system 
equation formulated by simultaneously considering the dynamic state of all constituent 
layers of the structure and their interactions. This will be shown in the following section 
within the framework of reverberation-ray matrix analysis. 

3. Unified formulation of MRRM 

The schematic of a multilayered anisotropic structure of infinite lateral extent is depicted in 
Fig. 1, which consists of a perfect stacking of n  homogeneous arbitrarily anisotropic elastic 
or piezoelectric layers. From up to down, the layers are denoted in order by numbers 1 to n , 
and the top surface, interfaces and bottom surface in turn are denoted by numbers 1 to 

+ 1N , bearing the fact that =n N . The top and bottom surfaces are denoted by 1  and 
1N +  respectively, and the upper and lower bounding faces of an arbitrary layer, j  for 

instance, are respectively denoted by J  and K , with =J j  and = + 1K j  and the layer will 
be referred to as JK  or KJ . 
 

          

       
Fig. 1. The schematic of an n-layered anisotropic laminate 

3.1 Description of the structural system 
A global coordinate system ( , , )X Y Z  with its origin located on the top surface and the Z - 
axis along the thickness direction, as shown in Fig. 1a, is established for the system analysis 
of the whole structure. The physical variables associated with a surface/interface will be 
described in the global coordinates, and will be affixed with a single superscript, J  or K  for 
example, to indicate their affiliation. 
As a unique feature of MRRM, a pair of dual local coordinates ( , , )JK JK JKx y z  and 
( , , )KJ KJ KJx y z  is used to describe each layer JK  (or KJ ), with JKz  originating from J  to K  
and zKJ from K  to J , JKy  and KJy  in the same direction as the Y -axis, and JKx  in the same 
and KJx  in the opposite direction of the X -axis, as shown in Fig. 1b. The physical variables 

(b) Description of a typical layer j  in 
local dual coordinates 
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j
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(a) Description of the laminated 
structure in global coordinates 
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inside the layers will be described in the local dual coordinates and double superscripts,  JK  
or KJ  for instance, will be affixed to any physical quantity to denote the corresponding 
coordinate system and the pertaining layer. As an example, ˆ JKv  and ˆ KJv  are the state 
vectors for layer JK  (or KJ ) in the coordinates ( , , )JK JK JKx y z  and ( , , )KJ KJ KJx y z , respectively.  
To make the sign convection more clear, physical variables are deemed to be positive as it is 
along the positive direction of the pertinent coordinate axis. 
It is seen from Fig. 1b that the dual local coordinates are both right-handed, thus the state 
equations in Eq. (11) and the traveling wave solutions in Eqs. (16) and (17) all come into 
existence for an arbitrary layer JK  (or KJ ) in ( , , )JK JK JKx y z  and ( , , )KJ KJ KJx y z , which are 
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From Eqs. (20) and (21) we see that there are totally vn N×  arriving wave amplitudes and 
vn N×  departing wave amplitudes for all layers in dual local coordinates, which should be 

determined by 2 vn N×  relations. It is deduced that the basic unknowns (wave amplitudes) 
in the MRRM double in number due to the particular description of dynamic state in dual 
local coordinates, as compared with that in other analytical methods which are usually 
based on single local coordinates. However, by doing so in the MRRM, the boundary 
conditions on surfaces and continuous conditions at interfaces take on an extremely simple 
form since the exponential functions in the solutions no longer appear, as will be seen from 
Section 3.2. Furthermore, as will be shown in Section 3.3, the arriving and departing wave 
amplitudes in dual local coordinates are related directly from the point of view of wave 
propagation through the layer. Thus it shall be possible to deduce a system equation in 
terms of only the departing wave vectors of all layers. In such a case, the dimension of the 
system equation will be the same as the one of other analytical methods based on single 
local coordinates, such as the stiffness matrix method and the spectral element method, as 
discussed in Section 3.4.  

3.2 Scattering relation from coupling conditions on surfaces and at interfaces 
3.2.1 Local scattering relations of top and bottom surfaces 
As depicted in Fig. 2, the response of state variables on the top and bottom surfaces, 12ˆ (0)v  
and ( 1)ˆ (0)N N+v , corresponding to various waves in the top and bottom layers, respectively, 
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should be in accordance with the external state variables 1ˆ Ev  (= 1 T 1 T Tˆ ˆ[( ) ,( ) ]uE Eσv v ) and ( 1)ˆ N
E

+v  
(= ( 1) ( 1)T T Tˆ ˆ[( ) ,( ) ]N N

uE Eσ
+ +v v ) , i.e.  

 

 
Fig. 2. The top and bottom surfaces of the multilayered anisotropic structure 
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v E E

+ +=T v T v  (22) 

where ,E uE Eσ=< >T T T  is a transformation matrix with /2vuE n=T I  and /2vE nσ = −T I ; 
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elastic layers and 1,1, 1, 1u =< − − − >T  and 1, 1,1,1σ =< − >T  for piezoelectric layers. Here 
< ⋅ >  denotes the (block) diagonal matrix with elements (or sub-matrices) only on the main 
diagonal and /2vnI  represents the identity matrix of order / 2vn .  
By virtue of Eqs. (20) and (21), the solutions to 12ˆ (0)v  and ( 1)ˆ (0)N N+v  can be obtained as 

 
12

12 12 12 12 12
12

ˆ (0) − +

⎧ ⎫⎪ ⎪⎡ ⎤= = ⎨ ⎬⎣ ⎦ ⎪ ⎪⎩ ⎭

a
v Φ w Φ Φ

d
 (23) 

 
( 1)

( 1) ( 1) ( 1) ( 1) ( 1)
( 1)

ˆ (0)
N N

N N N N N N N N N N
N N

+
+ + + + +

− + +

⎧ ⎫⎪ ⎪⎡ ⎤= = ⎨ ⎬⎣ ⎦ ⎪ ⎪⎩ ⎭

a
v Φ w Φ Φ

d
 (24) 

where the exponential functions disappear since the thickness coordinates on the surfaces 
are always zero in the corresponding local coordinates. This is the main advantage of 
introducing the dual local coordinates. It should be noticed that half of the components of 
vectors 1ˆ Ev  and ( 1)ˆ N

E
+v  are known, which are denoted by vectors 1ˆ Kv  and ( 1)ˆ N

K
+v , respectively, 

while the remaining half are unknown, denoted by vectors 1ˆ Uv  and ( 1)ˆ N
U

+v , respectively.  
Substituting Eqs. (23) and (24) into Eq. (22), we can derive 
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K K

+ + + + + + ++ = =A a D d T v s  (25) 
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where 12A , 12D , ( 1)N N+A , ( 1)N N+D , 1
KT  ( ( 1)N

K
+T ) are the coefficient matrices with components 

extracted, in accordance with 1ˆ Kv  and ( 1)ˆ N
K

+v , from 12
−Φ , 12

+Φ , ( 1)N N+
−Φ , ( 1)N N+

+Φ  and ET  ( ET  
and vT ) respectively. 1

0s  and ( 1)
0
N+s are excitation source vectors with / 2vn  components of 

the top and bottom surfaces, respectively. Particularly as far as free waves are concerned, if 
the top surface is mechanically traction-free (and electrically open-circuit), we have  

 1 1 1 1 1 Tˆ ˆ ˆ ˆ ˆ[ , , ]K E X Y Zσ τ τ σ= = =v v 0  (or 1 1 1 1 1 1 Tˆˆ ˆ ˆ ˆ ˆ[ , , , ]K E X Y Z ZDσ τ τ σ= = =v v 0 ) (26) 

 12 12
σ −=A Φ , 12 12

σ +=D Φ  (27) 

and when the top surface is mechanically fixed (and electrically closed-circuit) we have 

 1 1 1 1 1 Tˆ ˆ ˆ ˆ ˆ[ , , ]K uE X Y Zu u u= = =v v 0  (or 1 1 1 1 1 1 Tˆ ˆ ˆ ˆ ˆ ˆ[ , , , ]K uE X Y Z Zu u u ϕ= = =v v 0 ) (28) 

 12 12
u−=A Φ , 12 12

u+=D Φ  (29) 

For mixed boundary conditions, the form of known quantities and coefficient matrices can 
also be worked out accordingly. The boundary conditions on the bottom surface can be 
similarly deduced and will not be discussed for brevity. 
Eq. (25) can be further written in a form of local scattering relations on the top and bottom 
surfaces 

 1 1 1 1 1
0+ =A a D d s , ( 1)1 1 1 1

0
NN N N N ++ + + ++ =A a D d s  (30) 

where 1 12=a a  ( ( 1)1 N NN ++ =a a ) and 1 12=d d  ( ( 1)1 N NN ++ =d d ) are the arriving and departing 
wave vectors of the top (bottom) surface, 1 12=A A  ( ( 1)1 N NN ++ =A A ) and 1 12=D D  
( ( 1)1 N NN ++ =D D ) are 12/ 2v an n×  ( ( 1)/2 N N

v an n +× ) and 12/2v dn n×  ( ( 1)/2 N N
v dn n +× ) coefficient 

matrices corresponding to the arriving and departing wave vectors of the top (bottom) 
surface, respectively. 
It should be pointed out that the form of local scattering relations at the boundaries given in 
Eq. (30) is also valid for surface waves in a multilayered structure. 

3.2.2 Local scattering relations of a typical interface 
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Since the adjacent layers in the structure are perfectly bonded, the state variables should be 
continuous across the interfaces. Taking the typical interface J as shown in Fig. 2 for 
illustration, the compatibility of the generalized displacements and equilibrium of the 
generalized forces require 

 ˆ ˆ(0) (0)JI JK
v =T v v  (31) 

This gives, according to the solutions in Eqs. (20) and (21), 

 
JI JI JI JK JK JK

u u u u u u
JI JI JI JK JK JK

σ σ σ σ σ σ

− + − +
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T Φ T Φ a Φ Φ a
T Φ T Φ d Φ Φ d

 (32) 

It should be noticed once again that there is no exponential functions in the coupling 
equation (32) for interfaces. By grouping the arriving and departing wave vectors of relevant 
layers into the local arriving and departing wave vectors of the interface T T T[( ) ,( ) ]J JI JK=a a a  
and T T T[( ) ,( ) ]J JI JK=d d d , Eq. (32) is reduced to the local scattering relation of the typical 
interface J  

 J J J J+ =A a D d 0  (33) 

where the ( )JI JK
v a an n n× +  and ( )JI JK

v d dn n n× +  coefficient matrices JA  and JD , respectively, are 

 
JI JK

J u u u
JI JK

σ σ σ

− −

− −

⎡ ⎤−
= ⎢ ⎥−⎣ ⎦

T Φ Φ
A

T Φ Φ
, 

JI JK
J u u u

JI JK
σ σ σ

+ +

+ +

⎡ ⎤−
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T Φ Φ
D

T Φ Φ
 (34) 

There are altogether N – 1 (n – 1) interfaces in the multilayered structure, so that we have 
1N −  ( 1n − ) local scattering equations like Eq. (33). 

3.2.3 Global scattering relation of the structure 
The local scattering relations of top surface, interfaces and bottom surface have respectively 

/ 2vn , ( 1)vn N× −  and / 2vn  equations, which are grouped together from up to down to 
give the vn N×  global scattering relation 

 0+ =Aa Dd s  (35) 

where the global arriving and departing wave vectors a  and d  are 

T( 1) ( 1)12 T 21 T 23 T T T T T( ) ,( ) ,( ) , ,( ) ,( ) , ,( ) ,( )N N N NJI JK + +⎡ ⎤= ⎣ ⎦a a a a a a a a  
T( 1) ( 1)12 T 21 T 23 T T T T T( ) ,( ) ,( ) , ,( ) ,( ) , ,( ) ,( )N N N NJI JK + +⎡ ⎤= ⎣ ⎦d d d d d d d d  

(36) 

the corresponding ( ) ( )v vn N n N× × ×  coefficient matrices A  and D  are 

 1 2 1, , , , ,J N +=< >A A A A A , 1 2 1, , , , ,J N +=< >D D D D D  (37) 

and 
T( 1)1 T T T T

0 0 0( ) , , , ,( )N +⎡ ⎤= ⎣ ⎦s s 0 0 s   is the global excitation source vector. It should be noted 
that the forming process of scattering relations in Eqs. (30), (33) and (35) exclude matrix 
inversion as compared to that in the original formulation of MRRM (Pao et al, 2000, 2007; Su 
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et al., 2002; Tian et al., 2006), which guarantees the numerical stability and at the same time 
enables the inclusion of surface and interface wave modes, in the proposed formulation of 
MRRM (Guo & Chen, 2008a, 2008b; Guo, 2008; Guo et al., 2009).  

3.3 Phase relation from compatibility conditions of layers 
3.3.1 Local phase relation of a typical layer 
Considering the formation of the dual local coordinates of a typical layer JK (KJ) as 
discussed in Section 3.1, we have the geometrical dual transformation relations 

 JK KJx x= − , JK KJy y= , JK JK KJz h z= − , d dJK KJz z= −  (38) 

where JKh  ( KJh= ) represents the thickness of layer JK (KJ), and the physical dual 
transformation relations 

 ( ) ( )ˆ ˆJK JK KJ KJ
vz z=v T v  (39) 

By virtue of Eqs. (18) and (19), Eqs. (38) and (39), and the definitions of eigenvalue and 
eigenvector, it is derived that 

 1( ) ( )KJ KJ JK JK
v vz z −= −A T A T , JK KJ= −Λ Λ , JK KJ

v=Φ T Φ  (40) 

It is interpreted that if JKλ  and JK
λφ  are the eigenvalue and eigenvector of the coefficient 

matrix JKA , then JKλ−  and JK
v λT φ  must be the corresponding eigenvalue and eigenvector of 

the coefficient matrix KJA . The equality relations between the numbers of arriving and 
departing waves in dual local coordinates, i.e. JK KJ

a dn n=  and JK KJ
d an n= , are also implied. 

Substituting Eqs. (20) and (21) into Eq. (39), and in view of Eq. (40) and 1 ,v v
−=T T  one 

obtains the local phase relation of a typical layer JK  (KJ) 

 ( )
( )

exp

exp

JK JKJK KJ JKJK JK
a

KJ JKKJ JK KJJK JK
d

h

h
−

+

⎡ ⎤−⎧ ⎫ ⎧ ⎫ ⎧ ⎫⎡ ⎤ ⎡ ⎤⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢ ⎥= =⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎢ ⎥ ⎢ ⎥
⎢ ⎥⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎣ ⎦ ⎣ ⎦⎩ ⎭ ⎩ ⎭ ⎩ ⎭⎣ ⎦

Λ 0a d dP 0 0 I
0 P I 0a d d0 Λ

 (41) 

where the JK JK
a an n×  and JK JK

d dn n×  diagonal matrices exp( )JK JK JKh−= −P Λ  and 
exp( )KJ JK JKh+=P Λ  are referred to as local phase matrices, and JK

aI  and JK
dI  are identity 

matrices of order JK
an  and JK

dn , respectively. It should be noted that the exponentially 
growing functions, which usually cause numerical instability (such as in the TMM) for large 
values of the frequency-thickness product, have been completely excluded from the phase 
matrices JKP  and KJP , since we always have Re( ) 0JK JKhλ− >  or 
Re( ) 0,  Im( ) 0JK JK JK JKh hλ λ− −= >  ( Re( ) 0JK JKhλ+ <  or Re( ) 0,  Im( ) 0JK JK JK JKh hλ λ+ += < ). As 
indicated by Eq. (41), there are vn  equations in the local phase relation of each layer. 

3.3.2 Global phase relation of the structure 
Grouping together the local phase relations for all layers from up to down yields the global 
phase relation with vn N×  equations 

 = =a Pd PUd  (42) 

where the ( ) ( )v vn N n N× × ×  block diagonal matrices P , named the global phase matrix, is 
composed of 
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3.3.2 Global phase relation of the structure 
Grouping together the local phase relations for all layers from up to down yields the global 
phase relation with vn N×  equations 

 = =a Pd PUd  (42) 

where the ( ) ( )v vn N n N× × ×  block diagonal matrices P , named the global phase matrix, is 
composed of 
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 ( 1) ( 1)12 21 23, , , , , , , ,N N N NJI JK + +=< >P P P P P P P P  (43) 

the variant of the global departing wave vector d  is related to the wave vector d  by the 
( ) ( )v vn N n N× × ×  block diagonal matrix U , which is referred to as the global permutation 
matrix, to account for the different sequence of components arrangement between d  and d . 
The specific forms of U  and d  are as follows 

 ( 1)12 23, , , , , N NJK +=< >U U U U U , 
v v

JK
JK a
n n JK

d
×

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

0 I
U

I 0
 (44) 

 
T( 1) ( 1)21 T 12 T 32 T T T T T( ) ,( ) ,( ) , ,( ) ,( ) , ,( ) ,( )N N N NIJ KJ + +⎡ ⎤= ⎣ ⎦d d d d d d d d  (45) 

It is seen from Eq. (42) that the global arriving and departing wave vectors a and d, 
consisting of respectively the arriving and departing wave amplitudes in local dual 
coordinates of all layers and having the same forms as those in the global scattering relation in 
Eq. (36), are related directly through the global phase relation, which enables the dimension 
reduction of the system equation, making the final scale the same as the one in other 
analytical methods which are based on single local coordinates. 

3.4 System equation and dispersion equation 
The global scattering relation in Eq. (35) and global phase relation in Eq. (42) contain 
respectively vn N×  equations for the vn N×  unknown arriving wave amplitudes (in a ) 
and vn N×  unknown departing wave amplitudes (in d ). Thus the wave vectors can be 
determined. Substitution of Eq. (42) into Eq. (35) gives the system equation 

 0( )+ = =APU D d Rd s  (46) 
where = +R APU D  is the system matrix.  
If there is no surface excitation, i.e. s0 = 0 and the free wave propagation problem is considered, 
the vanishing of the system matrix determinant yields the following dispersion equation 

 ( ; ; )x yk k ω =R 0  (47) 

which may be solved numerically by a proper root searching technique (Guo, 2008). Thus, 
the complete dispersion curves of various waves can be obtained, as illustrated in Section 4 
for multilayered anisotropic elastic structures. 
If there is surface excitation, from Eq. (46) we have 

 1 1
0 0( )− −= + =d APU D s R s  (48) 

Further making use of the global phase relation (42), the solution of the state vector in Eq. 
(20) and the inverse Fourier transform in Eq. (10) with respect to the wavenumbers, the 
steady-state response of state variables of a layer at circular frequency ω can be expressed as 
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and the transient response should be obtained from the corresponding steady-state response 
by means of inverse Fourier transform with respect to frequency as 
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Eqs. (49) and (50) can be solved numerically by the FFT technique (Guo, 2008). 

4. Numerical examples 
To verify the proposed method, we consider laminated composites with reinforced fibers 
alternately aligning along the x-axis (0°) and the y-axis (90°). The material properties of a 
lamina with fibers in 0° and 90° directions are given in Table 1.  
 

Lamina ρ  c11 c12 c13 c22 c23 c33 c44 c55 c66 
0° 1200 1.6073 0.0644 0.0644 0.1392 0.0692 0.1392 0.035 0.0707 0.0707 
90° 1200 0.1392 0.0644 0.0692 1.6073 0.0644 0.1392 0.0707 0.035 0.0707 

Note: The unit of density is kg/m3 and that of stiffness is 1011 N/m2. 
Table 1. Material properties of 0° and 90° laminas 

In the previous work (Guo & Chen, 2008a), dispersion curves have been calculated for a 
single layer of 0° lamina and a triple-layered structure with a 0°/90°/0° configuration with 
equal thickness of each lamina. The obtained results were compared with those obtained by 
the finite element stiffness method (Datta et al., 1988) (Figs. 4 and 8 for single layer and Figs. 
5 and 9 for triple layers therein). The excellent agreement validates our derivation and the 
computer codes. Nevertheless, it should be pointed out that the proposed MRRM is 
analytical, based on continuous (distributed-parameter) model. Thus, it can give more 
accurate results but at less computational expense especially in the high-frequency range. 
Recently, the characteristics of free waves in single PZT-4 and/or barium sodium niobate 
(BSN) layers have been discussed (Guo et al., 2009) for different boundary conditions, and 
dispersion curves of bi-layered, triple-layered and ten-layered piezoelectric structures 
composed of alternate PZT-4 and BSN layers with equal thickness were also presented (Guo 
& Chen, 2008b; Guo et al., 2009). 
Here in this chapter, a four-layered composite with a 0°/90°/0°/90° configuration is 
considered. The waves are assumed to propagate in the X -direction for illustration, i.e. 

xk k=  and 0yk = . Note that the formulations established in previous sections are valid for 
waves propagating in any direction in the XOY  plane. For the sake of presentation, we 
define the dimensionless quantities, including frequency Ω , wavenumber γ , wavelength L 
and phase velocity V by /(2 )sH cω πΩ = , /(2 )kHγ π= , 22 / 4 /( )L H kHπλ π= =  and 

/ sV c c= , respectively, where H  is the total thickness of the composite plate, k , λ  and c  
are respectively the wavenumber, wavelength and phase velocity, 55 0( )sc c ρ °=  is the 
shear wave velocity constant with 55 0( )c °  and 0( )ρ °  the stiffness coefficient and material 
density of 0° lamina. The thickness of the 0° and 90° laminas are denoted as 1h  and 2h , 
respectively. 
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and the transient response should be obtained from the corresponding steady-state response 
by means of inverse Fourier transform with respect to frequency as 
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In the previous work (Guo & Chen, 2008a), dispersion curves have been calculated for a 
single layer of 0° lamina and a triple-layered structure with a 0°/90°/0° configuration with 
equal thickness of each lamina. The obtained results were compared with those obtained by 
the finite element stiffness method (Datta et al., 1988) (Figs. 4 and 8 for single layer and Figs. 
5 and 9 for triple layers therein). The excellent agreement validates our derivation and the 
computer codes. Nevertheless, it should be pointed out that the proposed MRRM is 
analytical, based on continuous (distributed-parameter) model. Thus, it can give more 
accurate results but at less computational expense especially in the high-frequency range. 
Recently, the characteristics of free waves in single PZT-4 and/or barium sodium niobate 
(BSN) layers have been discussed (Guo et al., 2009) for different boundary conditions, and 
dispersion curves of bi-layered, triple-layered and ten-layered piezoelectric structures 
composed of alternate PZT-4 and BSN layers with equal thickness were also presented (Guo 
& Chen, 2008b; Guo et al., 2009). 
Here in this chapter, a four-layered composite with a 0°/90°/0°/90° configuration is 
considered. The waves are assumed to propagate in the X -direction for illustration, i.e. 

xk k=  and 0yk = . Note that the formulations established in previous sections are valid for 
waves propagating in any direction in the XOY  plane. For the sake of presentation, we 
define the dimensionless quantities, including frequency Ω , wavenumber γ , wavelength L 
and phase velocity V by /(2 )sH cω πΩ = , /(2 )kHγ π= , 22 / 4 /( )L H kHπλ π= =  and 

/ sV c c= , respectively, where H  is the total thickness of the composite plate, k , λ  and c  
are respectively the wavenumber, wavelength and phase velocity, 55 0( )sc c ρ °=  is the 
shear wave velocity constant with 55 0( )c °  and 0( )ρ °  the stiffness coefficient and material 
density of 0° lamina. The thickness of the 0° and 90° laminas are denoted as 1h  and 2h , 
respectively. 
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4.1 Dispersion curves of multilayered anisotropic structures with free surfaces 
First, the laminas of the four-layered composite structure are assumed to have equal 
thicknesses and the top and bottom surfaces of the composite are assumed to be traction-
free. The dispersion curves, in terms of frequency-wavenumber spectra, wavelength-
frequency spectra and phase velocity-frequency spectra, are presented in Figs. 4(a), 4(b) and 
4(c) respectively. 
The sub-figures (a) to (c) in Fig. 4 show similar dispersion properties of free waves in the 
four-layered composite as compared with those for single and triple layers. The quasi P-SV 
and SH bulk modes, surface and interface modes and characteristic asymptotic line are 
obtained all at once from the dispersion equation by a root searching algorithm. 

4.2 Dispersion curves in high frequency range 
The frequency-wavenumber, wavelength-frequency and phase velocity-frequency spectra 
with dimensionless frequency Ω in the range of 100 to 102 are given in Figs. 5(a), 5(b) and 
5(c) respectively, which indicate the proposed formulation of MRRM can assure a good 
numerical stability in the high-frequency range. Since the wave modes at small values of 
wavelength and phase velocity are relatively intensive and difficult to differentiate within 
this frequency range, as implied in Figs. 4(b) and 4(c), the dimensionless wavelength L and 
phase velocity V are specified within 0.75~2.00 and 10~50 in Figs. 5(b) and 5(c), respectively.  

4.3 Effects of configuration on the dispersion curves 
Next, the thickness of the 0° and 90° laminas of the four-layered composite are assumed to 
be unequal in order to study the effect of configuration on the characteristics of free waves. 
The dispersion curves for cases 1 2/ 1 / 4h h =  and 1 2/ 4 /1h h =  as well as their comparison 
with those for the equal thickness case (denoted as 1 2/ 1 /1h h = ) are depicted in Fig. 6, with 
the frequency-wavenumber, wavelength-frequency and phase velocity-frequency spectra 
given in the sub-figures (a), (b) and (c) respectively.  
It is seen from Fig. 6 that the dispersion curves of a specified wave mode corresponding to 
the case 1 2/ 1 /1h h =  locate in between those for cases 1 2/ 1 / 4h h =  and 1 2/ 4 /1h h = . As 
also indicated in Fig. 6, the thickness ratio has a distinct effect on the characteristics of all 
free wave modes. The effect is however somehow larger for the higher-order wave modes 
than the lower-order ones.  

4.4 Effects of boundary conditions on the dispersion curves 
In order to show the effects of boundary conditions on the dispersion characteristics, the 
same 0°/90°/0°/90° laminated composite with equal layer thicknesses is considered for two 
different boundary conditions: one is that both the top and bottom surfaces are fixed and the 
other is that the top surface is traction-free while the bottom surface is fixed. The dispersion 
curves for the two cases are given in Fig. 7 and compared with those for a laminate with free 
surfaces. 
It is seen from Fig. 7 that some parts of the dispersion curves of certain specified modes for 
the four-layered composite with different surface conditions may coincide, but they may be 
completely different at other parts or for other modes. Fig. 7 indicates that the boundary 
conditions have a complex effect on the dispersion characteristics of free waves in 
multilayered anisotropic structures. In-depth study is needed. 
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Fig. 4. Dispersion curves of the 0°/90°/0°/90° laminated composite with free surfaces 



 Acoustic Waves 

 

40 

0.0

0.4

0.8

1.2

1.6

2.0

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0
Dimensionless imaginary wave number γ I

D
im

en
si

on
le

ss
 c

ir
cu

la
r f

re
qu

en
cy

  Ω

Dimensionless real wave number γ R  
(a) Frequency-wavenumber spectra 

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0
Dimensionless circular frequency  Ω

D
im

en
si

on
le

ss
  w

av
el

en
gt

h 
   

L

 
(b) Wavelength-frequency spectra 

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0

D
im

en
si

on
le

ss
 p

ha
se

 v
el

oc
ity

   
V

Dimensionless circular frequency  Ω

90 0/p sc c° °

90 0/s sc c° °
0 0/s sc c° °

0 0/p sc c° °

 
(c) Phase velocity-frequency spectra 

 
Fig. 4. Dispersion curves of the 0°/90°/0°/90° laminated composite with free surfaces 
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Fig. 5. Dispersion curves at high frequency of the four-layered composite with free surfaces 
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Fig. 6. Comparisons of dispersion curves of the composite with different configurations 
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Fig. 6. Comparisons of dispersion curves of the composite with different configurations 
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Fig. 7. Comparison of dispersion curves of the composite with different boundary conditions 
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5. Conclusion 
We present a unified formulation of the method of reverberation-ray matrix (MRRM) for the 
analysis of acoustic wave propagation in multilayered anisotropic elastic/piezoelectric 
structures based on the state space formalism and Fourier transforms in the framework of 
three-dimensional elasticity or piezoelectricity. The proposed formulation of MRRM includes 
all wave modes in the structure and possesses good numerical stability by properly excluding 
exponentially growing function and matrix inversion operation. It is therefore suitable for the 
accurate analysis of acoustic waves in complex multilayered anisotropic structures by a 
uniform computer program. In comparison with the well-known traditional transfer matrix 
method, the present MRRM is unconditionally numerically stable, irrespective of the total 
number of layers, the thickness of individual layers and the frequency. Besides, in comparison 
with the numerical methods based on discrete models, the present MRRM is based on a 
continuous model (distributed-parameter model) and gives accurate results at a much smaller 
computational cost especially in the high-frequency range. Numerical results indicate a high 
accuracy and broad versatility of the proposed formulation of MRRM for wave propagation in 
multilayered anisotropic structures with various configurations and boundary conditions in 
any frequency range. The obtained dispersion curves and their dependence on the structural 
configurations and boundary conditions shall be useful in the design and optimization of 
laminated composites and acoustic wave devices.  
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with the numerical methods based on discrete models, the present MRRM is based on a 
continuous model (distributed-parameter model) and gives accurate results at a much smaller 
computational cost especially in the high-frequency range. Numerical results indicate a high 
accuracy and broad versatility of the proposed formulation of MRRM for wave propagation in 
multilayered anisotropic structures with various configurations and boundary conditions in 
any frequency range. The obtained dispersion curves and their dependence on the structural 
configurations and boundary conditions shall be useful in the design and optimization of 
laminated composites and acoustic wave devices.  
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1. Introduction 
Diodes play an essential and important role in controlling current flow in the electric 
circuits. The rectification mechanisms utilize thermo electrons in vacuum tubes and the 
difference in energy band structures between p – n junctions of semiconductors. Ever since 
the advent of nanotechnology, efforts were made to realize a nano diode, and rectification of 
current is achieved by using geometric effects on electron scattering by asymmetric 
scatterers.(Song et al., 1998; Fleischmann & Geisel, 2002; Linke et al., 1998). In contrast, the 
rectification mechanism of acoustic waves is not established, and then rectification 
mechanisms of acoustic waves attract much attention from both theoretical (Liang et al., 
2009) and experimental viewpoints (Chang et al., 2006). 
Recent theoretical work proposed a rectification mechanism of acoustic waves utilizing 
mode conversion of acoustic waves owing to elastic anharmonicity in the constituent 
materials (Liang et al., 2009), and then the efficiency of rectification of the proposed model 
depends on the amplitude of acoustic waves. In addition, there is difficulty in finding 
suitable materials for fabricating the system. 
We have proposed a rectification mechanism for acoustic waves (Krishnan et al., 
2007;Shirota et al., 2007) based on geometric effects on scattering of acoustic waves by 
asymmetric scatterers, and have confirmed, with numerical simulations, the rectification 
effects of acoustic waves for bulk acoustic waves (Krishnan et al., 2007; Shirota et al., 2007), 
and Rayleigh waves in the surface (Tanaka et al., n.d.). In this chapter, we review the 
rectification mechanism, and illustrate the capability of rectification for bulk acoustic waves, 
and Rayleigh waves, respectively. Surface acoustic waves (SAWs) are exploited in a variety 
of devices, and then the proposed rectification mechanism is expected to provide novel 
functions to the acoustic wave devices. 
The chapter is organized as follows; we introduce a model of rectifier for acoustic waves, 
and provide the methodology in §2. The numerical results for bulk transverse and 
longitudinal waves and Rayleigh waves in the surface are given in §3. A summary and 
future prospects are given in §4. 

2. Model and methodology 
The acoustic wave rectifier to be discussed consists of an elastically isotropic material 
containing a one-dimensional array of isosceles-triangular holes with summit angle α in the 
y direction, whose axis is in the z direction as shown in Fig. 1(a). The distance between the 
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Fig. 1. (a) Schematic view of our model that shows the rectification effect for acoustic waves. 
(b) z–polarized transverse acoustic wave reflection from isosceles-triangular holes drilled in 
an elastically isotropic material. The triangles are separated by the same distance as the base, 
and are aligned in the y direction. The thick arrows indicate the directions (I) and (II) of 
incident waves. The thin arrows show reflection and transmission of waves in the very short 
wavelength limit, where the diffraction is ignored. 
 

neighboring triangles is the same as the base length a of the triangles (thus the periodicity in 
the y direction is D = 2a). The holes are left empty in order to get strong reflection of acoustic 
waves. 
Rectification for acoustic waves with very short wavelength in this system is apparent. 
Considering case (I) that acoustic rays propagate from the left region toward a matrix with 
equilateral-triangular holes (α = π/3) of periodically aligned in the y direction as shown in 
Fig. 1(b), one half of them are scattered backward, and the rest passes between the 
scatterers. The resultant transmission rate becomes 0.5. On the other hand, the transmission 
rate becomes 1 for case (II) where the rays impinge on the summits of the triangular voids 
from the right region, since the rays reflected from the surface are transmitted to the left 
region through the passes between the holes. Thus the acoustic waves are rectified in the 
very short wavelength limit. 
The prediction by the ray-acoustics cannot be immediately applied to the wave propagation 
at finite wavelength because of decay in the geometric effects and of interference effects. The 
waves peculiar to the geometry of scatterers decay near the scatterers and only the 
azimuthally symmetric waves propagate in the asymptotic field as a cylindrical wave in a 
two-dimensional (2D) system or a spherical wave in a 3D one. Thus the rectification seems 
impossible for finite wavelength, however, the present system works as a rectifier for 
acoustic waves as shown below. 



 Acoustic Waves 

 

48 

a 
(I) (II) 

x

y 

z a 

α

θ

(a)

(b)

x 

y z (I) 
(II) 

 
Fig. 1. (a) Schematic view of our model that shows the rectification effect for acoustic waves. 
(b) z–polarized transverse acoustic wave reflection from isosceles-triangular holes drilled in 
an elastically isotropic material. The triangles are separated by the same distance as the base, 
and are aligned in the y direction. The thick arrows indicate the directions (I) and (II) of 
incident waves. The thin arrows show reflection and transmission of waves in the very short 
wavelength limit, where the diffraction is ignored. 
 

neighboring triangles is the same as the base length a of the triangles (thus the periodicity in 
the y direction is D = 2a). The holes are left empty in order to get strong reflection of acoustic 
waves. 
Rectification for acoustic waves with very short wavelength in this system is apparent. 
Considering case (I) that acoustic rays propagate from the left region toward a matrix with 
equilateral-triangular holes (α = π/3) of periodically aligned in the y direction as shown in 
Fig. 1(b), one half of them are scattered backward, and the rest passes between the 
scatterers. The resultant transmission rate becomes 0.5. On the other hand, the transmission 
rate becomes 1 for case (II) where the rays impinge on the summits of the triangular voids 
from the right region, since the rays reflected from the surface are transmitted to the left 
region through the passes between the holes. Thus the acoustic waves are rectified in the 
very short wavelength limit. 
The prediction by the ray-acoustics cannot be immediately applied to the wave propagation 
at finite wavelength because of decay in the geometric effects and of interference effects. The 
waves peculiar to the geometry of scatterers decay near the scatterers and only the 
azimuthally symmetric waves propagate in the asymptotic field as a cylindrical wave in a 
two-dimensional (2D) system or a spherical wave in a 3D one. Thus the rectification seems 
impossible for finite wavelength, however, the present system works as a rectifier for 
acoustic waves as shown below. 

Rectifying Acoustic Waves   

 

49 

Here we consider acoustic waves propagating through an array of triangular holes drilled in 
an isotropic material. In this case the equations of motion governing the displacement 
vectors u(r, t) are given by 

 ( ) ( ) ( ) ( ), , 1,2,3 i j iju t t iρ σ= ∂ =x r r  (1) 

 ( ) ( ) ( ) , ,ij ijmn n mt c u tσ = ∂r x r  (2) 

where r = (x, z) = (x,y, z) and the summation convention over repeated indices is assumed in 
Eqs. (1) and (2). ρ (x) and cijmn (x) are the position-dependent mass density and elastic 
stiffness tensor of the system, and σij (r, t) is the stress tensor. Furthermore, we need to 
impose proper boundary conditions for SAWs. SAWs should satisfy the stress-free 
boundary condition at the surface z = 0, or 

 ( )3 30 0 0 1,2,3 .i i mn n mz zc u iσ
= =

= ∂ = =  (3) 

Solving the equations with finite-difference time-domain (FDTD) method numerically, we 
can obtain the time evolutions of displacement vectors u(r, t) and stress tensors σij (r, t) at 
each point in the system. To calculate the transmission rate through the periodic array of 
triangle holes, we define the acoustic Poynting vector Ji (r, t) = ju− (r, t)σji(r, t) from the 
continuity of energy flow. In terms of the Fourier components of the displacement û (r,ω) 
and the stress tensor ˆ ijσ  (r,ω), the energy flow at frequency ω in the x direction at the 
position x is expressed by 

 ˆ ˆ ˆ( , ) 4 Im ( , ) ( , ) .x j jxJ x u dydzω π ω ω σ ω∗⎡ ⎤= − ⎣ ⎦∫ r r  (4) 

Hence we can determine the transmission rate T (ω) by the ratio of the element of the 
acoustic Poynting vector in the x direction ˆ ( , )x DJ x ω  to that in the absence of scatterers 

0ˆ ( , ),x DJ x ω  which is given by 

 ( ) ( )
( )0

ˆ ,
,ˆ ,

x D

x D

J x
T

J x
ω

ω
ω

=  (5) 

where xD is the detecting position which is on the right side of the scatterers for case (I) and 
on the left side of the scatterers for case (II). We introduce an efficiency η(ω) to quantify 
rectification by 

 I II

I II

( ) ( )( )
( ) ( )

T T
T T

ω ωη ω
ω ω

−
=

+
 (6) 

where TI and TII are the transmission rates for cases (I) and (II), respectively. 

3. Numerical results 
3.1 Bulk acoustic waves 
In the section we illustrate the rectifying effects of bulk acoustic waves propagating in the x-
direction. Because of the homogeneity in the z direction, the governing equations (1) and (2) 
are decoupled into two independent sets; one is expressed by 
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where the acoustic wave is z-polarized transverse wave, referred to as single mode. Another 
is the acoustic waves termed mixed modes with polarization in the x – y plane, which obey 
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The mixed modes consist of longitudinal and transverse waves due to the scattering by the 
triangular voids since the mode conversion between the longitudinal and transverse waves 
takes place for scattering. 

3.1.1 Single mode 
Figure 2 shows the transmission rates versus frequency in the case of equilateral-triangular 
holes (α = π/3) and isosceles-triangular holes (α = 2π/9) for two opposite incident directions 
(I) and (II). For both types of triangular holes, there is not noticeable difference in the 
transmission rates between the two incident directions at low frequency; ωa/vt < π. On the 
other hand, we find remarkable dependence in the transmission rates on the incident 
directions at ωa/vt > π. Above the threshold frequency ωtha/vt = π, the transmission rate for 
(I) is approximately T = 0.5 that is the same as the magnitude predicted from the ray-
acoustics, showing small dips in magnitude at the multiples of the threshold frequency. The 
transmission rate for (II) is larger than that for (I), and also shows periodic dips in 
magnitude with the same period as (I). The obvious difference in the transmission rates 
above the threshold frequency between (I) and (II) indicates that the rectification occurs at 
the wavelength comparable to the dimension of scatterers, i. e. a/λ >1/2 due to the linear 
dispersion relation ω = kvt =2πvt/λ. Although the periodic dips, which appear when ωa/vt = 
nπ (n = 1, 2, 3, . . .), are common to both the equilateral- and isosceles-triangular holes, the 
latter system has advantageous properties for rectification of acoustic waves; the 
transmission rates for (II) of α = 2π/9 are larger than those for α = π/3. This indicates that 
the rectification is enhanced with decreasing α. 
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The mixed modes consist of longitudinal and transverse waves due to the scattering by the 
triangular voids since the mode conversion between the longitudinal and transverse waves 
takes place for scattering. 

3.1.1 Single mode 
Figure 2 shows the transmission rates versus frequency in the case of equilateral-triangular 
holes (α = π/3) and isosceles-triangular holes (α = 2π/9) for two opposite incident directions 
(I) and (II). For both types of triangular holes, there is not noticeable difference in the 
transmission rates between the two incident directions at low frequency; ωa/vt < π. On the 
other hand, we find remarkable dependence in the transmission rates on the incident 
directions at ωa/vt > π. Above the threshold frequency ωtha/vt = π, the transmission rate for 
(I) is approximately T = 0.5 that is the same as the magnitude predicted from the ray-
acoustics, showing small dips in magnitude at the multiples of the threshold frequency. The 
transmission rate for (II) is larger than that for (I), and also shows periodic dips in 
magnitude with the same period as (I). The obvious difference in the transmission rates 
above the threshold frequency between (I) and (II) indicates that the rectification occurs at 
the wavelength comparable to the dimension of scatterers, i. e. a/λ >1/2 due to the linear 
dispersion relation ω = kvt =2πvt/λ. Although the periodic dips, which appear when ωa/vt = 
nπ (n = 1, 2, 3, . . .), are common to both the equilateral- and isosceles-triangular holes, the 
latter system has advantageous properties for rectification of acoustic waves; the 
transmission rates for (II) of α = 2π/9 are larger than those for α = π/3. This indicates that 
the rectification is enhanced with decreasing α. 
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Fig. 2. Transmission rate versus frequency. The dashed and solid lines indicate the transmission 
rate for α = π/3 and 2π/9, respectively. Each case of (I) and (II) is bundled with an ellipse. 
 

Within the ray acoustics approximation, the transmission rate of (II) is expected to be 1 for 
α < π/3 and 0.5 for α > π/2, and varies as T = (1/2) + cosα for π/3 < α < π/2. On the other 
hand, the transmission rate of (I) becomes 0.5, independent of α. For finite wavelength, the 
transmission rate changes with α as shown in Fig. 2, showing a larger transmission rate at 
α = 2π/9 than that at α = π/3. From the results, we expect that the rectification effects decay 
with increasing α. To investigate the angle dependence, we examine the change in the 
transmission rates for variation of α. Generating a wave packet having a Gaussian spectral 
distribution of central frequency ωC = (5π/2)(vt/a) with Δω = (π/2)(vt/a), we evaluate the 
transmission rate for the wave packet, defining 
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Figure 3 plots the transmission rates defined by Eq. (7) versus α. The difference in the 
transmission rates decreases with increasing α. However, the rectification effects survive for 
α > π/2. We also find that the transmission for (I) is slightly larger than 0.5. We can regard 
these deviations from the predictions based on the ray acoustics as diffraction effects. 
The threshold frequency for the rectification and the periodic change in the transmission 
rate originate from the interference effects. Because of the periodic structure in the y-
direction, the wavenumber in the y direction is discretized in unit of n

a
π , so that the 

dispersion relation of the acoustic waves becomes subband structure given by 

 
2

2 ,t t x
nv k v k
a
πω ⎛ ⎞= = + ⎜ ⎟

⎝ ⎠
 (8) 

where n is an integer. Figure 4 shows the dispersion relation of single mode for the summit 
angle α = π/3 together with the corresponding transmission rate. When the incident waves 
with ky = 0 are elastically scattered, the waves are transited to the waves with finite ky. 
However, below the threshold frequency ωtha/vt, there is no waves with finite ky, so that the 
incident waves in the x-direction are scattered only forward or backward, even if the waves 
are scattered from the legs of triangles, resulting in the transmission rates independent of 
the incident-wave directions. 
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Fig. 3. Transmission rate defined by Eq. (7) versus the summit angle α. The thick dashed and 
solid lines indicate the transmission rate for cases (I) and (II), respectively. The thin solid 
lines indicate the transmission rates for (I) and (II) based on the ray acoustics. 
 

 
Fig. 4. (a) Transmission rate versus frequency for single modes through single-array of 
triangular holes with α = π/3. The labels (I) and (II), designated by red and blue solid line, 
respectively, indicate the incident direction of acoustic waves. The vertical dashed lines 
indicate the positions of nπvt/a, where n = 1, 2, . . . where vt are the velocity of transverse 
waves. (b) Dispersion relation of single modes within the empty-lattice approximation. 
 

Redirection of the incident waves for scattering occurs only in the frequency region above 
the threshold frequency. Since each dispersion relation of the waves with finite ky becomes 
minimum at kx = 0, the density of states diverges, resulting in remarkable scattering into the 
waves with finite ky and kx = 0 when the frequency matches the subband bottoms. The 
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the threshold frequency. Since each dispersion relation of the waves with finite ky becomes 
minimum at kx = 0, the density of states diverges, resulting in remarkable scattering into the 
waves with finite ky and kx = 0 when the frequency matches the subband bottoms. The 
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geometry of the scatterers enhances or suppresses the redirection depending on the incident 
directions of the wave. Hence, the rectification occurs only above the threshold frequency 
and the dips in the transmission rates take place. 

3.1.2 Mixed mode 
The transmission rates versus frequency for mixed modes are shown in Fig. 5, when the 
longitudinal waves are transmitted. We assumed the matrix made of tungsten, whose the 
mass density ρ and the elastic stiffness tensors C11, C44 are 19.317g cm–3 and 5.326×1012dyn 
cm–2, 1.631 × 1012dyn cm–2, respectively. The velocities of bulk longitudinal and transverse 
waves are vl = 5.25 × 105cm s–1 and vt = 2.906 × 105cm s–1. (Kittel, 2004) 
The red and blue solid lines indicate two different incident directions (I) and (II), 
respectively. The two transmission rates agree for ωa/vt < π, and we can see the difference 
between the transmissions for ωa/vt > π, although it is not as large as that for the single 
modes, manifesting rectification of the mixed modes. Unlike the single modes, we can see 
two kinds of periodic changes in transmission rates above ωa/vt = π; one is periodic 
modulation with period Δωa/vt = π, indicated by the black dashed vertical lines, and another 
is periodic variations with period Δωa/vt = π × vl/vt ~ 1.807π, indicated by the green ones. In 
addition, some aperiodic dips in the transmission rate indicated by the arrows appear above 
ωa/vt = π. These dips shift when the shape of the triangular hole changes. Very interestingly 
there is no rectification in high frequency regions (ωa/vt > 13) because, for the waves 
impinging on the summit, the mode conversion from longitudinal waves to transverse ones 
is strongly caused and the scattered transverse waves return to the incident direction. 

3.2 Surface acoustic waves 
Figure 6(a) shows the frequency dependences of the transmission rates for SAWs with the 
incident-wave directions (I) and (II) which are denoted by red and blue solid lines, 
respectively. For numerical evaluation, the matrix is assumed to be polycrystalline silicon 
regarded as an isotropic medium, where the mass density ρ and the stiffness tensors C11, C44 

are 2.33g cm–3 and 1.884 × 1012dyn cm–2, 0.680 × 1012dyn cm–2, respectively. (Tamura, 1985) 
Then the velocities of bulk longitudinal and transverse waves are vl = 8.99 × 105cm s–1 and vt 

= 5.40 × 105cm s–1, respectively. The equation for the velocity of a Rayleigh wave in an 
isotropic medium with a surface is given by 
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 (9) 

where ξ = vR/vt (vR is the velocity of Rayleigh wave). (Graff, 1991) Solving Eq. (9), we obtain 
ξ = 0.914. A wave packet with z-polarized vector is used as an incident wave in order to 
excite SAWs in the system. Below the threshold frequency corresponding to the wavelength 
of SAWs equivalent to the periodicity of the array, both the transmission rates are coincident 
because the waves with long wavelength cannot recognize the geometrical difference. 
However, above the threshold frequency, the transmission rate shows obvious rectification of 
SAWs as well as periodic dips with respect to frequency, resulting from the strong interference 
effects of scattered SAWs. We also find the periodic structure of the transmission rate of case 
(II) is more pronounced than that of case (I) because the former makes the mode conversion 
more accessible than the latter due to the geometry of the scatterers. 
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Fig. 5. Transmission rate versus frequency for mixed modes through single-array of 
triangular holes with α = π/3. (I) and (II), designated by red and blue solid line, respectively, 
indicate the incident direction of acoustic waves. The vertical black dashed lines (as shown 
in Fig. 4) and green ones indicate the positions of nπvt/a and nπvl/a, where vl and vt are the 
velocity of longitudinal and transverse waves, respectively, and n is a positive integer (n = 1, 
2, 3, . . .). The arrows indicate the dips whose positions depend on the geometry of 
triangular holes such as the summit angle α and the length of base a. 
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Fig. 6. (a) Transmission rate versus frequency for SAWs through single-array of triangular 
holes with α = π/3. The labels (I) and (II), designated by red and blue solid line, 
respectively, indicate the incident directions of SAWs. The vertical dashed lines indicate the 
positions of 2nξπvt/D, where n = 1, 2, . . . where ξ = vR/vt (vR and vt are the velocity of 
Rayleigh and transverse waves, respectively). (b) Dispersion relation of SAWs within the 
framework of empty-lattice approximation. 
 

Figure 6(b) shows the dispersion relation of SAWs within the framework of empty-lattice 
approximation to reveal the origin of the periodic dips in Fig. 6(a). Within the empty-lattice 
approximation the subband structures due to the periodicity of the y direction appear in the 
dispersion relation, which are given by 
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Fig. 6. (a) Transmission rate versus frequency for SAWs through single-array of triangular 
holes with α = π/3. The labels (I) and (II), designated by red and blue solid line, 
respectively, indicate the incident directions of SAWs. The vertical dashed lines indicate the 
positions of 2nξπvt/D, where n = 1, 2, . . . where ξ = vR/vt (vR and vt are the velocity of 
Rayleigh and transverse waves, respectively). (b) Dispersion relation of SAWs within the 
framework of empty-lattice approximation. 
 

Figure 6(b) shows the dispersion relation of SAWs within the framework of empty-lattice 
approximation to reveal the origin of the periodic dips in Fig. 6(a). Within the empty-lattice 
approximation the subband structures due to the periodicity of the y direction appear in the 
dispersion relation, which are given by 
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The dispersion relation can be obtained by replacing the wavevector k in the dispersion 

relation of Rayleigh waves ( )22 by 2 /R x yv k k k n Dω π= + + where 2πn/D is the reciprocal 

lattice vector in the y direction. The dips in Fig. 6(a) correspond to the band edges of the 
subband structure, manifesting that the periodic dips in the transmission are due to the 
Bragg reflection of SAWs in the y direction. It should be noted that the shift of the band 
edges for the SAWs is modified by a factor of ξ as much as that for bulk transverse waves. 
Figure 7 shows the efficiency for the rectification of SAWs which is denoted by black solid 
line. The thin blue lines indicate the efficiency for bulk transverse waves as reference. The 
efficiency for SAWs is lower than that for bulk waves because of the mode conversion from 
SAWs to bulk waves due to the triangular scatterers. 
Figure 8 (a) shows the transmission rate versus frequency for shear horizontal (SH) modes 
through the single-array of triangular holes. For excitation of SH waves in the system, we 
use a wave packet with y-polarization vector as an incident wave. The threshold frequency 
above which the rectifying effect occurs becomes exactly 2πvt/D where vt is the velocity of 
SH waves. Above the threshold frequency, the transmission rates exhibit dips periodically at 
multiples of the threshold frequency due to the same mechanism as the SAWs and bulk 
waves. However, the SH waves are inefficient compared to the SAWs as shown in Fig. 8(b). 
The inversions between the transmissions of cases (I) and (II) occur around ωD/vt ≈18. 

4. Summary and future prospects 
We proposed an acoustic-wave rectifier and numerically demonstrated the rectification 
effects on bulk waves as well as SAWs above the threshold frequencies. The rectification 
mechanism is due to the geometric effects of the asymmetric scatterers on acoustic wave 
scattering, which is enhanced by interference among the scattered waves. The threshold 
frequency for the rectification results from the periodic arrangement of scatterers. Hence, it 
is possible to tune the rectifier by adjusting the position of the scatterers. The findings of this 
work can be applied not only to sound waves in solids or liquids but also to optical waves, 
leading to new devices in wave engineering. 
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Fig. 7. Efficiency for the rectification of SAWs (α = π/3). The solid black and thin blue lines 
indicate the efficiencies for SAWs and bulk single modes (T), respectively. The efficiency of 
the SAW rectifiers is slightly lower than that of the bulk single mode. 
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Fig. 8. (a) Transmission rate versus frequency for SH modes through single-array of triangular 
holes with α = π/3. The labels, (I) and (II), designated by red and blue solid line, respectively, 
indicate the incident direction of acoustic waves. (b) Efficiency for the rectification of SH 
waves. 
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1. Introduction 
The underlying physics of nonconventional quantum plasmas has been introduced long 
ago. Analytical investigations of collective interactions between an ensemble of degenerate 
electrons in a dense quantum plasma dates back to early fifties. The general kinetic 
equations for quantum plasmas were derived and the dispersion properties of plasma 
waves were studied (Klimotovich & Silin, 1952). It was thought that the quantum 
mechanical behaviour of electrons, in the presence of heavier species modifies the well 
known properties of plasma. The dynamics of quantum plasmas got particular attention in 
the framework of relationship between individual particle and collective behavior. 
Emphasizing the excitation spectrum of quantum plasmas, theoretical investigations 
describe the dispersion properties of electron plasma oscillations involving the electron 
tunneling (Bohm & Pines, 1953; Pines, 1961). A general theory of electromagnetic properties 
of electron gas in a quantizing magnetic field and many particle kinetic model of non-
thermal plasmas was also developed treating the electrons quantum mechanically (Zyrianov 
et al., 1969; Bezzerides & DuBois, 1972). Since the pioneering work of these authors which 
laid foundations of quantum plasmas, many theoretical studies have been done in the 
subsequent years. The rapidly growing interest in quantum plasmas in the recent years has 
several different origins but is mainly motivated by its potential applications in modern 
science and technology (e.g. metallic and semiconductor micro and nanostructures, 
nanoscale plasmonic devices, nanotubes and nanoclusters, spintronics, nano-optics, etc.). 
Furthermore, quantum plasmas are ubiquitous in planetary interiors and in compact 
astrophysical objects (e.g., the interior of white dwarfs, neutron stars, magnetars, etc.) as 
well as in the next generation intense laser-solid density plasma interaction experiments. 
Such plasmas also provide promises of important futuristic developments in ultrashort 
pulsed lasers and ultrafast nonequilibrium phenomena (Bonitz, 1898; Lai, 2001; Shukla & 
Eliasson, 2009). 
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Contrary to classical plasmas, the number density of degenerate electrons, positrons/holes 
in quantum plasmas is extremely high and they obey Fermi-Dirac statistics whereas the 
temperature is very low. Plasma and quantum mechanical effects co-exist in such systems 
and many unusual effects like tunneling of electrons, quantum destabilization, pressure 
ionization, Bose-Einstein condensation and crystallization etc. may be equally important 
(Bonitz et al., 2009). Their properties in equilibrium and nonequilibrium are governed by 
many-body effects (collective and correlation effects) which require quantum statistical 
theories and versatile computational techniques. The average inter-particle distance n–1/3 
(where n is the particle density) is comparable with electron thermal de Broglie wavelength 
λBe (= /mvte, where  is Planck’s constant divided by 2π, m is the electronic mass and vte is 
thermal speed of electron). The overlapping of wave functions associated with electrons or 
positrons take place which leads to novel quantum effects. 
It was recognized long ago that the governing quantum-like equations describing collective 
behavior of dense plasmas can be transformed in the form of hydrodynamic (or fluid) 
equations which deals with macroscopic variables only (Madelung, 1926). Here, the main 
line of reasoning starts from Schrodinger description of electron. The N-body wave function 
of the system can be factored out in N one-body wave functions neglecting two-body and 
higher order correlations. This is justified by weak coupling of fermions at high densities. 
The coupling parameter of quantum plasmas decreases with increase in particle number 
density. For hydrodynamic representation, the electron wave function is written as ψ = n  
exp(iS/ ) where n is amplitude and S is phase of the wave function. Such a decomposition 
of ψ was first presented by Bohm and de Broglie in order to understand the dynamics of 
electron wave packet in terms of classical variables. It introduces the Bohm-de Broglie 
potential in equation of motion giving rise to dispersion-like terms. In the recent years, a 
vibrant interest is seen in investigating new aspects of quantum plasmas by developing non-
relativistic quantum fluid equations for plasmas starting either from real space Schrodinger 
equation or phase space Wigner (quasi-) distribution function. (Haas et al., 2003, Manfredi & 
Haas, 2001; Manfredi, 2005). Such approaches take into account the quantum statistical 
pressure of fermions and quantum diffraction effects involving tunneling of degenerate 
electrons through Bohm-de Broglie potential. The hydrodynamic theory is also extended to 
spin plasmas starting from non-relativistic Pauli equation for spin- 1

2  particles (Brodin & 
Marklund, 2007; Marklund & Brodin, 2007). Generally, the hydrodynamic approach is 
applicable to unmagnetized or magnetized plasmas over the distances larger than electron 
Fermi screening length λFe (= vFe/ωpe, where vFe is the electron Fermi velocity and ωpe is the 
electron plasma frequency). It shows that the plasma effects at high densities are very short 
scaled. 
The present chapter takes into account the dispersive properties of low frequency 
electrostatic and electromagnetic waves in dense electron-ion quantum plasma for the cases 
of dynamic as well as static ions. Electrons are fermions (spins=1/2) obeying Pauli’s 
exclusion principle. Each quantum state is occupied only by single electron. When electrons 
are added, the Fermi energy of electrons εFe increases even when interactions are neglected  
(εFe ∝ n2/3). This is because each electron sits on different step of the ladder according to 
Pauli’s principle which in turn increases the statistical (Fermi) pressure of electrons. The de 
Broglie wavelength associated with ion as well as its Fermi energy is much smaller as 
compared to electron due to its large mass. Hence the ion dynamics is classical. Quantum 
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diffraction effects (quantum pressure) of electrons are significant only at very short length 
scales because the average interparticle distance is very small. This modifies the collective 
modes significantly and new features of purely quantum origin appear. The quantum ion-
acoustic type waves in such system couples with shear Alfven waves. The wave dispersion 
due to gradient of Bohm-de Broglie potential is weaker in comparison with the electrons 
statistical/Fermi pressure. The statistical pressure is negligible only for wavelengths smaller 
than the electron Fermi length. For plasmas with density greater than the metallic densities, 
the statistical pressure plays a dominant role in dispersion. 

2. Basic description 
The coupling parameter for a traditional classical plasma is defined as 
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Debye screening length. Such a plasma obeys Boltzmann distribution function in which the 
ordering ΓC  << 1 corresponds to collisionless and ΓC   1 to collisional regime. So, a classical 
plasma can be said collisionless (ideal) when long-range self-consistent interactions 
(described by the Poisson equation) dominate over short-range two-particle interactions 
(collisions). 
When the density is very high , r  become comparable to thermal de Broglie wavelength of 
charged particles defined by 
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where h is the Planck’s constant. Here, the degeneracy effects cannot be neglected i.e., 
31 Bnλ  and the quantum mechanical effects along with collective (plasma) effects become 

important at the same time. Such plasmas are also referred to as quantum plasmas. Some 
common examples are electron gas in an ordinary metal, high-density degenerate plasmas 
in white dwarfs and neutron stars, and so on. From quantum mechanical point of view, the 
state of a quantum particle is characterized by the wave function associated with the particle 
instead of its trajectory in phase space. The Heisenberg uncertainty principle leads to 
fundamental modifications of classical statistical mechanics in this case. The de Broglie 
wavelength has no role in classical plasmas because it is too small compared to the average 
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interparticle distances. There is no overlapping of the wave functions and consequently no 
quantum effects. So the plasma particles are considered to be point like and treated 
classically. 
However, in quantum plasmas, the overlapping of wave functions takes place which 
introduces novel quantum effects. It is clear from (3) that the de Broglie wavelength 
depends upon mass of the particle and its thermal energy. That is why, the quantum effects 
associated with electrons are more important than the ions due to smaller mass of electron 
which qualifies electron as a true quantum particle. The behavior of such many-particle 
system is now essentially determined by statistical laws. The plasma particles with 
symmetric wave functions are termed as Bose particles and those with antisymmetric wave 
function are called Fermi particles. We can subdivide plasmas into (i) quantum (degenerate) 
plasmas if 31 Bnλ<  and (ii) classical (nondegenerate) plasmas if 3 1Bnλ < . The border between 
the degenerate and the non-degenerate plasmas is roughly given by 
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For quantum plasmas, the Boltzmann distribution function is strongly modified to Fermi- 
Dirac or Bose-Einstein distribution functions in a well known manner, i.e., 
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where β = 1/kBT; ε is the particle energy and µ is the chemical potential. The ‘+’ sign 
corresponds to Fermi-Dirac distribution function (for fermions with spin 1/2, 3/2, 5/2, . . .) 
and ‘_’ sign to Bose-Einstein distribution function (for bosons with spin 0, 1, 2, 3, . . .). The 
different signs in the denominators of (5) are of particular importance at low temperatures. 
For fermions, this leads to the existence of Fermi energy (Pauli principle), and for bosons, to 
the possibility of macroscopic occupation of the same quantum state which is the well 
known phenomenon of Bose-Einstein condensation. 
Let us consider a degenerate Fermi gas of electrons at absolute zero temperature. The 
electrons will be distributed among the various quantum states so that the total energy of 
the gas has its least possible value. Since each state can be occupied by not more than one 
electron, the electrons occupy all the available quantum states with energies from zero (least 
value) to some largest possible value which depends upon the number of electrons present 
in the gas. The corresponding momenta also starts from zero to some limiting value (Landau 
& Lifshitz, 1980). This limiting momentum is called the Fermi momentum pF given by 

 ( )1/323 .Fp nπ=  (6) 

Similarly, the limiting energy is called the Fermi energy εF which is 

 ( )
2 2 2/323

2 2
.F

F
p n
m m

π= =ε  (7) 



 Acoustic Waves 

 

60 

interparticle distances. There is no overlapping of the wave functions and consequently no 
quantum effects. So the plasma particles are considered to be point like and treated 
classically. 
However, in quantum plasmas, the overlapping of wave functions takes place which 
introduces novel quantum effects. It is clear from (3) that the de Broglie wavelength 
depends upon mass of the particle and its thermal energy. That is why, the quantum effects 
associated with electrons are more important than the ions due to smaller mass of electron 
which qualifies electron as a true quantum particle. The behavior of such many-particle 
system is now essentially determined by statistical laws. The plasma particles with 
symmetric wave functions are termed as Bose particles and those with antisymmetric wave 
function are called Fermi particles. We can subdivide plasmas into (i) quantum (degenerate) 
plasmas if 31 Bnλ<  and (ii) classical (nondegenerate) plasmas if 3 1Bnλ < . The border between 
the degenerate and the non-degenerate plasmas is roughly given by 

 
3

3 1.
2B

B

hn n
mk T

λ
π

⎛ ⎞
⎜ ⎟= =
⎜ ⎟
⎝ ⎠

 (4) 

For quantum plasmas, the Boltzmann distribution function is strongly modified to Fermi- 
Dirac or Bose-Einstein distribution functions in a well known manner, i.e., 

 ( ) ( )
1 ,

1
f

eβ μ−
=
⎡ ⎤±⎢ ⎥⎣ ⎦

ε
ε  (5) 

where β = 1/kBT; ε is the particle energy and µ is the chemical potential. The ‘+’ sign 
corresponds to Fermi-Dirac distribution function (for fermions with spin 1/2, 3/2, 5/2, . . .) 
and ‘_’ sign to Bose-Einstein distribution function (for bosons with spin 0, 1, 2, 3, . . .). The 
different signs in the denominators of (5) are of particular importance at low temperatures. 
For fermions, this leads to the existence of Fermi energy (Pauli principle), and for bosons, to 
the possibility of macroscopic occupation of the same quantum state which is the well 
known phenomenon of Bose-Einstein condensation. 
Let us consider a degenerate Fermi gas of electrons at absolute zero temperature. The 
electrons will be distributed among the various quantum states so that the total energy of 
the gas has its least possible value. Since each state can be occupied by not more than one 
electron, the electrons occupy all the available quantum states with energies from zero (least 
value) to some largest possible value which depends upon the number of electrons present 
in the gas. The corresponding momenta also starts from zero to some limiting value (Landau 
& Lifshitz, 1980). This limiting momentum is called the Fermi momentum pF given by 

 ( )1/323 .Fp nπ=  (6) 

Similarly, the limiting energy is called the Fermi energy εF which is 

 ( )
2 2 2/323

2 2
.F

F
p n
m m

π= =ε  (7) 

Dispersion Properties of Co-Existing Low Frequency Modes in Quantum Plasmas   

 

61 

The Fermi-Dirac distribution function becomes a unit step function in the limit T → 0. It is 
zero for µ < ε and unity for ε < µ. Thus the chemical potential of the Fermi gas at T = 0 is 
same as the limiting energy of the fermions (µ = εF). The statistical distribution of plasma 
particles changes from Maxwell-Boltzmann ∝ exp(–ε/kBT) to Fermi-Dirac statistics ∝ exp 
[(β(ε – εF ) + 1)]–1 whenever T approaches the so-called Fermi temperature TF , given by 
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m
π≡ =ε  (8) 

Then the ratio χ = TF /T can be related to the degeneracy parameter 3
Bnλ  as, 
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2F BT T nχ π λ= =  (9) 

It means that the quantum effects are important when 1  TF /T. In dense plasmas, the 
plasma frequency ωp = (4πne2/m)1/2 becomes sufficiently high due to very large equilibrium 
particle number density. Consequently, the typical time scale for collective phenomena  
(ωp)–1 becomes very short. The thermal speed vT = (kBT/m)1/2 is sufficiently smaller than the 
Fermi speed given by 
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With the help of plasma frequency and Fermi speed, we can define a length scale for 
electrostatic screening in quantum plasma i.e., the Fermi screening length λF (= vFe/ωpe) 
which is also known as the quantum-mechanical analogue of the electron Debye length λDe. 
The useful choice for equation of state for such dense ultracold plasmas is of the form 
(Manfredi, 2005) 
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where the exponent  γ = (d + 2) /d with d = 1, 2, 3 denoting the dimensionality of the system, 
and P0 is the equilibrium pressure. In three dimensions, γ  = 5/3 and P0 = (2/5) n0εF which 
leads to 

 ( )2 2 2/3 5/3/ 5 (3 ) .P m nπ=  (12) 

For one dimensional case, ( )2 2 3
03 and / 3 .F eP mv n nγ = =  It shows that the electrons obeying 

Fermi-Dirac statistics introduce a new pressure at zero temperature called the Fermi 
pressure, which is significant in dense low temperature plasmas. The Fermi pressure 
increases with increase in number density and is different from thermal pressure. 
Like classical plasmas, a coupling parameter can be defined in a quantum plasma. For 
strongly degenerate plasmas, the interaction energy may still be given by 〈U〉, but the kinetic 
energy is now replaced by the Fermi energy. This leads to the quantum coupling parameter 
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which shows that ΓQ ∝ n–1/3. So the peculiar property of quantum plasma is that it 
increasingly approaches the more collective (ideal) behavior as its density increases. 
Quantum plasma is assumed to be collisionless when ΓQ

 << 1 because the two body 
correlation can be neglected in this case. This condition is fulfilled in high density plasmas 
since εF = εF (n). In the opposite limit of high temperature and low density, we have  

31 Bnλ>>  and the system behaves as a classical ideal gas of free charge carries. Another 
useful form of ΓQ

 is as follows 
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which shows the resemblance with classical coupling parameter which may be recovered in 
the limit λF →λD. 

3. Governing equations 
Suppose that the N-particle wave function of the system can be factorized into N one-
particle wave functions as ( )1 2 1 1 2 2( , ,···, ) ( )···· ( ).N N Nψ ψ ψΨ =x x x x x x  Then, the system is 
described by statistical mixture of N states ,  1,2,...,ψ Nα α =  where the index α sums over 
all particles independent of species. We then take each ψα  to satisfy single particle 
Schrodinger equation where the potentials (A, φ) is due to the collective charge and current 

densities. For each  ψα , we have corresponding probability pα such that 
1

1
N

pα
α=

=∑  and all 

types of entanglements are neglected in the weak coupling limit. To derive the quantum 
fluid description, we define  exp( / )ψ n iSα α α= where nα and Sα are real and the velocity 
of αth particle is / ( / ) .v S m q m cα α α α α= ∇ − A  Next, defining the global density 
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= ≡∑  and separating the real and 

imaginary parts in Schrodinger equation, the resulting continuity and momentum balance 
equation take the form 
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The last term in (16) is the statistical pressure term. For high temperature plasmas, it is simply 
thermal pressure. However, in low temperature and high density regime, the Fermi pressure is 
significant which corresponds to fermionic nature of electrons and P is given by equation (12). 
In the model (15)-(16), it is assumed that pressure P = P(n) which leads to the appropriate 
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equation of state to obtain the closed system of equations. For typical length scales larger than 

λFe, we have approximated the -term as ( ) ( )2 2

1
/ / .

N
p n n n nα α α

α=
∇ ≈ ∇∑  This term is 

gradient of the so called Bohm-de Broglie potential. The equations (15)-(16) are commonly 
known as the quantum fluid equations which are coupled to the Poisson’s equation and 
Ampere’s law to study the self -consistent dynamics of quantum plasmas (Manfredi 2005; 
Brodin & Marklund, 2007). This model has obtained considerable attention of researchers in 
the recent years to study the behaviour of collisionless plasmas when quantum effects are 
not negligible. Starting from simple cases of electrostatic linear and nonlinear modes in two 
component and multicomponent plasmas, e.g., linear and nonlinear quantum ion waves in 
electron-ion (Haas et al., 2003, Khan et al., 2009), electron-positron-ion (Khan et al., 2008, 
2009) and dust contaminated quantum plasmas (Khan et al., 2009), the studies are extended 
to electromagnetic waves and instabilities (Ali, 2008). Some particular developments have 
also appeared in spin-1/2 plasmas (Marklund & Brodin, 2007; Brodin & Marklund, 2007; 
Shukla, 2009), quantum electrodynamic effects (Lundin et al., 2007) and quantum 
plasmadynamics (Melrose, 2006). It is to mention here that the inclusion of simple collisional 
terms in such model is much harder and the exclusion of interaction terms is justified by 
small value of ΓQ. 

4. Fermionic pressure and quantum pressure 

For dense electron gas in metals with equilibrium density ne0
  1023cm–3, the typical value of 

Fermi screening length is of the order of Angstrom while the plasma oscillation time period 
1( )peω−  is of the order of femtosecond. The electron-electron collisions can been ignored for 

such short time scales. The Fermi temperature of electrons is very large in such situations 
i.e., TFe  9 × 104K which shows that the electrons are degenerate almost always (Manfredi & 
Haas, 2001). The Fermi energy, which increases with the plasma density, becomes the 
kinetic energy scale. The quantum criterion of ideality has the form 

 
2 3

1.Q

Fe

e n
Γ <<≈

ε
 (17) 

The parameter ΓQ decreases with increasing electron density, therefore, a degenerate 
electron plasma becomes even more ideal with compression. So, even in the fluid 
approximation, it is reasonable to compare the statistical pressure term arising due to the 
fermionic character of electrons and the quantum Bohm-de Broglie potential term in the 
ultracold plasma. 
Let us consider two-component dense homogenous plasma consisting of electrons and ions. 
The plasma is embedded in a very strong uniform magnetic field B0 ẑ ; where B0 is the 
strength of magnetic field and ẑ  is the unit vector in z-axis direction. However, plasma 
anisotropies, collisions and the spin effects are not considered in the model for simplicity. 
The low frequency (in comparison with the ion cyclotron frequency Ωci = eB0/mic, where e, 
mi and c are the magnitude of electron charge, ion mass and speed of light in vacuum, 
respectively) electric and magnetic field perturbations are defined as 

( )1 ˆ/zc A tφ −= −∇ − ∂ ∂E z  and ˆ ,zA⊥ ⊥= ∇ ×B z  respectively, where φ is the electrostatics wave 
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potential and Az is the component of vector potential along z-axis. For very low temperature 
plasma by assuming that the ions behave classically in the limit TFi << TFe (where TFi is the 
ion Fermi temperature), the pressure effects of quantum electrons are relevant only. In this 
situation the Fermi pressure which is contribution of the electrons obeying the Fermi-Dirac 
equilibrium is of most significance. In linearized form, the gradient of Fermi pressure for 
spin- 1

2  electrons from (12) leads to 
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where the perturbation is assumed to be proportional to exp[i (k · r – ωt)]. The index 0 and 1 
is used to denote the equilibrium, and perturbation, respectively. The -term in expression 
(16) i.e., the gradient of the Bohm-de Broglie potential in the linear limit may be written as 
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where Pq has the dimensions of pressure. Notice that (3π2)2/3  9.6 and 2
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n =  where r  is 
the average interparticle distance. If k ~ 106cm–1 is assumed, then near metallic electron 
densities i.e., ne0

 ~ 1023cm–3, we have, r  ~ 10–8cm; which shows that 
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The inequality (20) shows that the variation of quantities should be on length scales that are 
larger than λFe and the fluid model is useful on such scales (Khan & Saleem, 2009). 

5. Dynamics of ions and electrons 
Starting from the fluid equations (15)-(16), it is assumed that the quantum effects of ions are 
neglected due to their larger mass in the limit TFi << TFe. The equation of motion for jth 
species may be written as, 
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where j = e, i for electron, and ion. Furthermore, the ions are assumed to be singly charged 
i.e., qj = e (–e) for electrons (ions) and the steady state is defined as ne0 = ni0. The linearized ion 
velocity components in the perpendicular and parallel directions are 
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where j = e, i for electron, and ion. Furthermore, the ions are assumed to be singly charged 
i.e., qj = e (–e) for electrons (ions) and the steady state is defined as ne0 = ni0. The linearized ion 
velocity components in the perpendicular and parallel directions are 
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with vE and vpi being the electric and polarization drifts, respectively. Similarly, the 
components of electron velocities in perpendicular and parallel directions can be written, 
respectively, as, 
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where vqe and vDe are defined as the quantum and diamagnetic type drifts, respectively,  
|∂t|  ωpe, ck, and ne0 = ni0 = n0. The continuity equation for jth species can be expressed as 
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The Poisson’s equation is 
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and the Ampere’s law can be written as, 
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5.1 Mobile ions 
Let us consider that the ions as well as electrons are mobile. The electron and ion continuity 
equations lead to 

 ( ) ( )1 1 0 0 1 1. 0.e i pi ez izn n n n v v
t z
∂ ∂

− − ∇ + − =
∂ ∂

v  (29) 

Using expressions (22), (27) and (28) in the above equation, we obtain 
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where 0 0/ 4A iv B n mπ=  is the speed of Alfven wave, and we have defined the current as 

1 0 1 1( ).z iz ezJ en v v− Ion continuity equation along with (22) and (23) yields, 
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Eliminating Az1 from (30) and (31) and Fourier analyzing, we obtain, 
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where we have defined the quantum ion-acoustic type speed as / ,q q ic T m=  the ion 
Larmor radius at effective electron temperature as ρq = cq/Ωci, the Alfven wave frequency as 
ωA = kzvA and Φ1 = eφ1=Tq. The effective temperature of electrons (in energy units) is defined 
as Tq = ( 2k2/4me + 2kBTFe/3), which is a pure quantum mechanical effect. The first term in Tq 

corresponds to quantum Bohm-de Broglie potential, and the second term represents the 
electron Fermi energy. So the parameters cq and ρq contain the contribution of both the terms. 
The Poisson’s equation (27) gives 
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with ( )2
04 /pi in e mω π= being the ion plasma frequency. Using (32) and (33), we obtain 
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The electron parallel equation of motion leads to, 
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From Ampere’s law, we find 2
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where λe = c/ωpe is the electron collisionless skin depth and the small term in the curly 
brackets appears from ion parallel velocity component. From (34) and (36), we obtain the 
linear dispersion relation of low frequency coupled electrostatic and electromagnetic modes 
in dense cold magnetoplasma as, 
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Since me/mi << 1, therefore relation (37) reduces to 
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In the limit 2 2 1,e kλ ⊥ <<  (38) can be written as 
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If we assume /Av ck k⊥<<  in a quasi-neutral limit ne1 ≈ ne1, (39) leads to 
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The above relation can be found in the recent paper of Saleem et al. (Saleem et al., 2008) if 
the density inhomogeniety is neglected there and we assume kBTFene1 << ( 2/4me)∇2ne1. 
However, the pressure effects of dense ultracold electron plasma are negligible only for 
wavelengths smaller than the electron Fermi wavelength (Manfredi & Haas, 2001). The 
plasmas found in the compact astrophysical objects (e.g., white dwarfs and neutron stars) 
have very high densities and correspondingly, very small interparticle distances. Then the 
electron statistical pressure effects are significant over the length scales larger than λBe and it 
plays a dominant role in wave dispersion. 
In case of small parallel ion current, equation (38) yields, 
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Expression (41) shows the effects of electron inertia on shear Alfven wave frequency at 
quantum scale lengths of electrons in a dense ultracold magnetoplasma. If the electron 
inertia is neglected, (41) may be written as 
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For ,A
ck

kv ⊥<<  we have 
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 ( )2 2 2 2 21 ,z A qk v kω ρ ⊥= +  (43) 

which shows the dispersion of shear Alfven wave frequency due to quantum effects 
associated with electrons in a dense quantum magnetplasma. 

5.2 Immobile ions 
Now we assume that the ions are immobile. Then Ampere’s law leads to 
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The perpendicular component of electron fluid velocity from (21) becomes 
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Using (27), (28) and (45) in the electron continuity equation, we obtain 
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where Ωce = eB0/mec is the electron cyclotron frequency. Then using (25), (44) and (46) along 
with electron continuity equation, we have 
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Using (47) with Poisson’s equation, and Fourier transforming the resulting expression, we 
obtain the linear dispersion relation as follows 
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where 0 0/ 4 ,   and / .q

peAe e q q q e
v

v B n m v T mωπ= Λ = =  The above equation shows that the 
wave frequency strongly depends on the quantum nature of electrons which gives rise to 
the dispersion due to the fermionic pressure and diffraction effects. The last term in square 
brackets in denominator is negligibly small in general. In an earlier paper, such a relation 
has been derived in the absence of electron statistical effects (Shukla & Stenflo, 2007). 
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wave frequency strongly depends on the quantum nature of electrons which gives rise to 
the dispersion due to the fermionic pressure and diffraction effects. The last term in square 
brackets in denominator is negligibly small in general. In an earlier paper, such a relation 
has been derived in the absence of electron statistical effects (Shukla & Stenflo, 2007). 
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However, it is seen that the contribution of Fermi pressure is dominant in the wave 
dispersion as compared with the quantum pressure arising due to Bohm-de Broglie 
potential. 

6. Parametric analysis 

Plasmas found in the interior of Jovian planets (Jupiter, Saturn), in compact astrophysical 
objects e.g., white dwarf stars and neutron stars (Lai, 2001; Bonitz, et al., 2009) as well as 
dense electron Fermi gas near metallic densities (Manfredi 2005) are typical examples of 
what is known as quantum plasmas. Here, we numerically analyze the quantum effects on 
such dense plasmas arising due to Fermi pressure and Bohm-de Broglie potential of electron 
using typical parameters. The hydrodynamic model is useful for understanding the 
properties of long wavelength perturbations (> λFe) in such systems. The density in the 
interior of white dwarf stars is of the order of 1026cm–3. For such densities, we have vFe ≅ 
108cm/s, λFe ≅ 4 × 10–9cm and  r   ≅ 2 × 10–9cm. For vte < vFe, we have λBe > λFe and 3

0 1e Ben λ > . 
The choice of k⊥ ~ 106cm–1 shows that the wavelength of perturbation is much larger than λBe 

and r . Since we have assumed kz << k⊥ in deriving the dispersion relation, therefore we 
take kz/k⊥ ~ 0.002. These parameters are used to numerically analyze the dispersion relation 
(38). Figs. (1) and (2) shows the dispersive contribution of electrons quantum effects on 
shear Alfven waves and electrostatic waves, respectively. We use the high magnetic field of 
the order 108G which is within the limits of dense astrophysical plasmas (Lai, 2001). It leads 
to 2 2

e kλ ⊥ ≅ 0.003, ρq ≅ 0.3 × 10–5cm, vA ≅ 2×106cm/s and ck⊥/k >> vA. The overall contribution 
of the quantum effects in wave dispersion is weak but the effect of electron Fermi pressure is 
more important as compared with corresponding quantum diffraction term. The dispersion 
is predominantly due to the Fermi pressure of electrons. It may be mentioned here that TFe is 
a function of density and assumes very large values. The dispersion relation (48) is plotted 
in Fig. (3) for relatively less dense plasmas with ne0

  1024cm–3. Such densities are relevant to  
 

 
Fig. 1. (Color online). The Alfven wave frequency ω is plotted vs wave numbers kz and k⊥ for 
mobile ions using typical parameters of white dwarf stars i.e., ne0  ≅ 1026cm–3

 and B0 ≅ 108G. 
Case (a) corresponds to the frequency when the effect of Fermionic pressure is not considered 
and case (b) when considered. It is evident from (b) that the wave frequency is increased by 
two orders of magnitude when electron fermionic pressure is taken into account. 
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Fig. 2. (Color online). The quantum ion-acoustic wave frequency ω is plotted from (38) 
against the wave numbers kz and k⊥using the same parameters as in Fig. 1. Case (a) refers to 
the wave frequency when the effect of Fermi pressure is not included, whereas case  
(b) when included. 

 
Fig. 3. (Color online). The linear dispersion relation (48) for immobile ions is plotted with  
ne0  ≅ 1 × 1024cm–3and B0 ≅ 1 × 108G. The wave frequency is much higher in the present case 
becase of the dynamics of electrons with the background of stationary ions. 
 

the dense Fermi gas of electrons with the background of stationary positive ions (Manfredi 
2005) as well as dense plasmas in the outer layers of white dwarfs. For ω << Ωce, and kz ~ 
0.002k⊥, it is found that 2 2

qk⊥Λ  ≅ 0.03 which is due to the dominant contribution of electron 
Fermi pressure since the dispersive effects due to quantum diffraction term are negligibly 
small. The approximations and the assumptions made in deriving the dispersion relation 
(48) are satisfied in the parameteric range used for numerical work. The fluid model may be 
used for physical understanding of the waves in dense plasmas even if 2 2 1q kρ ⊥ >  since we 
have T << TFe. The results also indicate that the well known electron and ion plasma wave 
spectra in dense plasmas is significantly modified by quantum nature of electrons. 
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7. Concluding remarks 
The self-consistent dynamics of low frequency linear modes in a dense homogenous electron 
ion quantum magnetoplasma has been investigated. Using quantum hydrodynamic 
approach, the generalized dispersion relation is obtained to investigate the properties of 
electrostatic and electromagnetic waves. The dispersion relation for coupled electrostatic 
and shear Alfven waves reveals the dispersive effects associated with Fermi pressure of 
electrons and quantum Bohm-de Broglie potential. For illustration, we have applied our 
results to the dense magnetoplasma with n0

 ~ 1026cm–3 which seems to be possible locally in 
the dense astrophysical objects e.g., white dwarf stars (Lai, 2001; Bonitz et al., 2009). The 
dispersion relation has also been obtained for dense plasma with the background of 
stationary ions in the presence of very high magnetic field. In the case of immobile ions, only 
electromagnetic part survives and the dispersion enters through the electron quantum 
effects. This case may be of interest for the self-consistent dynamics of electrons in dense 
plasma systems with background of immobile ions. The analysis of the waves in different 
limiting cases shows that the contribution of electron Fermi pressure is dominant over the 
quantum pressure due to Bohm-de Broglie potential for mobile as well as immobile ions. It 
is also shown that the the quantum behavior of electrons in high density low temperature 
plasmas modifies wave frequency at short length scales. 
The field of quantum plasmas is extremely rich and vibrant today. The investigation of 
quantum plasma oscillations in unmagnetized and magnetized charged particle systems of 
practical importance has been a subject of interest in the recent years. In dense astrophysical 
plasmas such as in the atmosphere of neutron stars or the interior of massive white dwarfs, 
the magnetic field and density varies over a wide range of values. For instance, the magnetic 
field is estimated to be varying from kilogauss to gigagauss (petagauss) range in white 
dwarfs (neutron stars) and the density n0

 lies in the range 1023 – 1028cm–3. The quantum 
corrections to magnetohydrodynamics can be experimentally important in such systems 
(Haas, 2005). Similarly, in magnetars, and in the next generation intense laser-solid density 
plasma interaction experiments, one would certainly have degenerate positrons along with 
degenerate electrons. Apart from theoretical perspective, such plasmas also holds promises 
of providing future technologies. 
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1. Introduction 
For the first time the problem of acoustic wave scattering on elongated spheroids was stated 
in works [Cpence & Ganger, 1951], [Burke, 1966], [Kleshchyov & Sheiba, 1970]. Work 
[Cpence & Ganger, 1951] considers the problem of sound scattering on a elongated spheroid 
with various boundary conditions. Work [Burke, 1966] considers the problem of sound 
scattering on a rigid spheroid in the long-wave approximation. Work [Kleshchyov & Sheiba, 
1970] considers the problems of sound wave scattering on a elongated spheroid where 
angular characteristics for sound wave scattering on a soft and rigid elongated spheroid 
were found. 
The studies of acoustic field of spheroidal radiators were considered in works [Chertock, 
1961], [Andebura, 1969], where acoustic field, radiation impedance of arbitrary elongated 
spheroid were defined. Work [Andebura, 1976] considers integral characteristics of the 
interaction between spheroid and incident sound wave with different spheroid orientations 
relating to propagation direction of incident wave. 
The diffraction problem of plane sound wave on elongated rigid revolution bodies within 
the field of small values of wave rate is considered in work [Fedoryuk, 1981], where 
scattering amplitude asymptotics are found. Work [Tetyuchin & Fedoryuk, 1989] describe 
plane sound wave diffraction on a elongated rigid revolution body in liquid, give 
calculation scattering diagrams on a steel and aluminium spheroid with lateral incidence of 
a plane wave.      
Work [Boiko, 1983] considers the case of plane wave scattering on a thin revolution body 
that differs from medium with its contractiveness and density. The principal term of 
evanescent field asymptotics was found, angular characteristics for plane wave scattering by 
rigid elongated spheroid in geometrical scattering field were given.  
The questions of sound scattering by gas-filled spheroidal fish-maw are considered in works 
[Haslett, 1962], [Babailov & Kanevskyi, 1988]. A fish-maw is given as a elongated soft 
spheroid, frequency-angle characteristics of inverse scattering are given as well as resonance 
characteristic spheroidal maw. 
In recent decades a number of works devoted to sound scattering on spheroids were 
published by Kleshchyov А.А. [Kleshchyov, 1986; 1992; 2004]. These works are devoted to 
studies of sound scattering on fish and fish flock maws near surface and bottom. A gas maw 
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is approximated by soft elongated spheroid; the flock is divided to a definite number of 
scatterers. The scattered sound is formed shape at the cost of signal interference, scattered 
by separate scatterers, on condition that the distance between scatterers is more than 
scatterer’s dimensions. The fish flock is near one of the two boundarys: either water-air or 
water-bottom. At that it is assumed that the boundarys are plane and ideal, the air is 
replaced by vacuum, the bottom is ideally firm. Scattering characteristics of separate maws 
in the form of soft elongated spheroid are calculated with ranges from angular and radially 
spheroidal functions.  
The problem of plane acoustic wave scattering on spheroidal shells was considered in works 
[Werby & Green, 1987], [Weksler et al., 1999]. These works study the surface waves directly on 
scatterers themselves, they describe frequency dependence of inverse scattering in farfield.  
Some questions of experimental studies of acoustic wave scattering on elongated form 
bodies are considered in works [Stanton, 1989], [Lebedev & Salin, 1997].  
Last years some works appeared, written by [Belkovich et al., 2002], [Kuzkin, 2003], devoted 
to acoustic wave scattering on spheroids in waveguides. This problem appears when active 
acoustic monitoring of Cetacea population in world's oceans and seas. The model problem 
of sound wave diffraction on elongated soft spheroids (Cetacea) is considered, when 
locating them in ocean waveguide. Diffuse sound field is analysed as a parameter function: 
spheroid dimensions, its position relative to sound source and detector, vertical profile of 
sound speed in waveguide, acoustic parameters of bottom boundary.  
Except the works above devoted to linear scattering with spheroids, there are several works 
devoted to nonlinear acoustic spectroscopy [Guyer & Johnson, 1999], [Lebedev et al., 2005]. 
Work [Guyer & Johnson, 1999] considers the problem of nonlinear acoustic defect diagnosis 
in materials and formations. Work [Lebedev et al., 2005] is devoted to solving the problem 
of nonlinear defect acoustic spectroscopy in geomaterials. A cavity model in the form of 
oblate spheroid is taken as a defect. The crack on a thin bar is shown as an example of defect 
isolation problem solving.  
However the problem of interacting acoustic wave scattering on elongated spheroid has not 
been under study before. It becomes one of current interest when using parametric acoustic 
array for remote diagnostics of aquatic medium. This problem can also appear within 
biological environment diagnostics, where high nonlinear nature and nonhomogeneities are 
in the near field of a radiating unit. This chapter studies the scattering problem of 
nonlinearly interacting plane acoustic waves on rigid elongated spheroid. 

2. Wave problems in elongated spheroidal coordinates  
When solving the problems of wave diffraction on elongated form bodies, confocal 
coordinates, spheroidal in particular, are often used. These coordinates are used within 
studying acoustic wave radiating and scattering by ellipsoids, cigar-shaped bodies, as well 
as within studying diffraction by circular apertures [Skudrzyk, 1971].  
When studying diffraction on cigar-shaped bodies, the elongated spheroidal coordinates 
system is used. Coordinate surfaces are spheroids const=ξ  and two-sheeted hyperboloids 

const=η . The elongated spheroid is formed by ellipse rotation round its longer axis (Fig.1). 
Within ellipse rotation round shorter axis, the oblate spheroid is formed. A great number of 
revolution body surfaces can be described with the help of spheroidal coordinate systems. 
Orb and cylinder can be considered as special cases of spheroidal surfaces, a continued thin 
bar and disks are confluent spheroids.   
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Fig. 1. Elliptic coordinate system 

Ellipse is a geometrical locus, their sum of the distances 1r and 2r  from two given points 
(focal points) is constant [Abramovitz & Stegun, 1971]:  

 dconstrr ξ==+ 21 ,       or   ξ=
+
d

rr 21 ,  

where d - distance between ellipse focuses, ξ - radial coordinate.      
The length of ellipse longer axis L  is (Fig.1)   — 21 rrL += , or  dL ξ= , shorter axis D  is 
defined from formula )( 12 −= ξdD .   
Parameter ξ  is an ellipse eccentricity measure - Lde = , it follows that e1=ξ . With 1=ξ  
ellipse degenerates into the interval with length d , with ∞=ξ  ellipse grades into circle of 
infinite radius. For long distances product dξ  is equal in practice to duplicated distance 
from the origin of axis system.  
The coordinate, equivalent to coordinate θ  in a polar system, is obtained with the help of 
confocal hyperboloids (Fig.1) 

  θη cos==
−
d

rr 21 ,  

where η - angular coordinate. 
The hyperbolic curve is  a geometrical locus, their difference of the distances 1r and 2r , from 
two given points (focal points 1F  and 2F ) is constant (Fig.2). In spherical coordinates  angle 
θ  is an angle between radius-vector of observation point ( , , )M ξ η ϕ  and coordinate axis x  
(Fig.3).      
With larger coordinate value ξ  spheroidal coordinates grade into spherical ones, and angle 
θ  in formula θη cos=  corresponds to asymptote angle for hyperbolic curve η . 
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Fig. 2. Ellipse basic parameters  

 
Fig. 3. Scatterer in elongated spheroidal coordinates system 

3. Theory 
To present the problem, the system of elongated spheroidal coordinates ξ, η, ϕ  was chosen. 
The foci of the spheroid coincide with the foci of the spheroidal coordinate system. The 
spheroid is formed by the ellipse ξ0 rotated about a major axis, which coincides with the x - 
axis of the Cartesian system. The geometry of the problem is presented in Fig.4. The 
coordinate surfaces are: for the spheroids - ξ=const and for the two-sheeted hyperboloids - 
η=const. 
Elongated spheroidal coordinates are related to Cartesian coordinates by the following 
expressions [Tikhonov & Samarskyi, 1966]: 

     ξη0hx = ,   ϕηξ cos))(( 22
0 11 −−= hy ,   ϕηξ sin))(( 22

0 11 −−= hz ,  
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where 20 dh = , and d  is the interfocal distance. Spheroidal coordinates ξ, η, ϕ  are 
considered within the limits: ∞<≤ ξ1 ; 11 ≤≤− η ; πϕ 20 ≤≤ . 
   

 
Fig. 4. Geometry of the problem 

The perfect spheroid was put into homogeneous medium. The spheroid’s surface is 
characterized by the coordinate ξ0. Assuming that interacting plane high-frequency acoustic 
waves of the unit pressure amplitude falls on the spheroid at an arbitrary polar angle θ0 
(θ0=arccosη0) and an azimuthal angle ϕ0, we express the acoustic pressure as: 

 [ ])cos(exp trkip nnni ωθ −−= 00 , (1) 

where nk - is the wave number, =n 1,2 according to the waves with frequencies 1ω  and 2ω , 
and  0r  is the radius-vector of the polar coordinate system. 
Consider an incident plane wave in the spheroidal coordinate system [Skudrzyk, 1971]: 
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where ),( η0hkS nml  is the normalized angular first-order function and ),()( ξ0
1 hkR nml  is the 

radial spheroidal first-order function. 
After the plane wave scattering on the spheroid, the scattered spheroidal wave of pressure 
will propagate as an outgoing wave [Kleshchyov & Klyukin, 1987] 

 ∑∑
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where the coefficient ),( 00 ξhkA nml  is dependent on boundary conditions on the spheroid 
surface, and ),()( ξ0

3 hkR nml  is the radial spheroidal third-order function.    
In this case the spheroid is considered to be acoustically rigid, so the Neumann boundary 
condition must be applied on the surface: 
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To solve the problem of the non-linear interaction of the primary high-frequency waves, we 
combine expression (4) with its complex-conjugate part. 
Nonlinear wave processes between incident and scattered waves surrounding the spheroid 
can be described with the inhomogeneous wave equation [Novikov et al., 1987]:   
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where Q  is the volume density of the sources of secondary waves, 0c  is the sound velocity 
in the medium, ε  is the quadratic nonlinearity parameter, 0ρ  is the density of the 
unperturbed medium, and )(1p  and )(2p  are the total acoustic pressures of the primary and 
secondary fields.  
It is important to note that the waves of the primary field are the high frequency waves: 
incident plane waves ip  and scattered spheroidal waves sp  with angular frequencies  1ω  
and 2ω .  The waves of the secondary field are the waves that appear as a result of the non-
linear interaction of initial high frequency waves. This includes the difference frequency 



 Acoustic Waves 

 

78 

where the coefficient ),( 00 ξhkA nml  is dependent on boundary conditions on the spheroid 
surface, and ),()( ξ0

3 hkR nml  is the radial spheroidal third-order function.    
In this case the spheroid is considered to be acoustically rigid, so the Neumann boundary 
condition must be applied on the surface: 

 0
0

=⎟
⎠

⎞
⎜
⎝

⎛
∂
∂

+
∂
∂

=ξξn
p

n
p nsni , (3)                          

and the coefficient ),( 00 ξhkA nml  will be determined by the following expression: 

),(

),(
),(),( '

'

)(

)(

00
3

00
1

0000
ξ

ξ
ηεξ

hkR

hkR
hkSihkA

nml

nml
nmlm

l
nml −=   

where ),(
')(

00
1 ξhkR nml  and ),(

')(
00

3 ξhkR nml  are the derivatives of the first- and third-order 
functions, 1=mε ,  for 0=m ,  2=mε ,  for 0>m . 
With the appearance of the scattered spheroidal wave, the total acoustic pressure of the 
primary field around the spheroid will have the form:

 
 

[ ] [ ] +
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−+−=+= ∑∑ ∑∑

∞

=

∞

≥

∞

=

∞

≥0 0
00

1 2
m ml m ml

nnmlnnmlnsni mtihkDltihkBppp )(exp)()(exp)()( ϕωπω    

      [ ] [ ]
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−−+−−+ ∑∑ ∑∑

∞

=

∞

≥

∞

=

∞

≥0 0
00 2

m ml m ml
nnmlnnml mtihkDltihkB )(exp)()(exp)( ϕωπω  (4) 

where   
)(cos),(),(),()( )(

00
1

0000 2 ϕϕξηη −= mhkRhkShkShkB nmlnmlnmlnml , 

ϕξηξ mhkRhkShkAhkD nmlnmlnmlnml cos),(),(),()( )(
0

3
00000 2= .  

To solve the problem of the non-linear interaction of the primary high-frequency waves, we 
combine expression (4) with its complex-conjugate part. 
Nonlinear wave processes between incident and scattered waves surrounding the spheroid 
can be described with the inhomogeneous wave equation [Novikov et al., 1987]:   

 2

212

0
4
0

2

22

2
0

22 1
t
p

c
Q

t
p

c
p

∂
∂

−=−=
∂

∂
−∇

)()(
)(

ρ
ε , (5) 

where Q  is the volume density of the sources of secondary waves, 0c  is the sound velocity 
in the medium, ε  is the quadratic nonlinearity parameter, 0ρ  is the density of the 
unperturbed medium, and )(1p  and )(2p  are the total acoustic pressures of the primary and 
secondary fields.  
It is important to note that the waves of the primary field are the high frequency waves: 
incident plane waves ip  and scattered spheroidal waves sp  with angular frequencies  1ω  
and 2ω .  The waves of the secondary field are the waves that appear as a result of the non-
linear interaction of initial high frequency waves. This includes the difference frequency 

Research of the Scattering of Non-linearly Interacting Plane  
Acoustic Waves by an Elongated Spheroid   

 

79 

wave Ω=− 12 ωω , the summation frequency wave 12 ωω + , and the second harmonic waves 
12ω , 22ω .    

The wave equation (5) is solved by the method of successive approximations. In the first 
approximation, the solution is represented by the expression (4) for the total acoustic 
pressure of the primary field )1(p . To determine solution in the second approximation )2(p , 
the right-hand side of equation (5) should feature four frequency components: second 
harmonics of the incident waves    ( 12ω , 22ω ) and ( 21 ωω + , Ω=− 12 ωω ).  
The expression for the volume density of secondary waves sources at the difference 
frequency Ω  is:  
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To solve the inhomogeneous wave equation (5) with the right-hand side given by equation 
(6) in the second approximation, we seek the solution in the complex form  
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Substitution of the expression (7) into the inhomogeneous wave equation (5) gives the 
inhomogeneous Helmholtz equation:  
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The solution to the inhomogeneous Helmholts equation (8) has the form of a volume 
integral of the product of the Green function with the density of the secondary wave sources 
[Novikov et al., 1987] [Lyamshev & Sakov, 1992]:  
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where )( 1rG  is the Green function, 1r  is the distance between the current point of the 
volume ),,( '''' ϕηξM  and the observation point ),,( ϕηξM  (Fig.4), and 'ξ

h , 'η
h , 'ϕ
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scale factors [Corn & Corn, 1968]: 
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In the far field rr <<' , the Green function is determined by the asymptotic expression  
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The integration in equation (9) is performed over the volume V occupied by the second 
wave sources and bounded in the spheroidal coordinates by the relations  

Sξξξ ≤≤ '
0 ,         11 ≤≤− 'η  ,        πϕ 20 ≤≤ ' . 

This volume has the form of a spheroidal layer of the medium, stretching from the 
spheroid’s surface to the non-linear interaction boundary (Fig.4). An external spheroid with 
coordinate Sξ  appears to be the boundary of this area. Coordinate Sξ  is defined by the size 
of the non-linear interaction area between the initial high-frequency waves. This size is 
inversely proportional to the coefficient of viscous sound attention associated with the 
corresponding pumping frequency. Beyond this area, the initial waves are assumed to 
attenuate linearly.   
After the integration with respect to coordinates 'ϕ  and 'η  (considering the high-frequency 
approximation), equation (9) takes the form  
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(from here on, the time factor )exp( tiΩ  is omitted). 
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(from here on, the time factor )exp( tiΩ  is omitted). 
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The expression (10) for the total acoustic pressure of the difference-frequency wave 
),,()( ϕηξ2

−P  consists of four spatial components. The first component ),,()( ϕηξ2
1−P  

corresponds to the part of the acoustic pressure of the difference-frequency wave, that is 
formed in the spheroidal layer of the non-linear interaction area by the incident high-
frequency plane waves 1ω  and 2ω . The second component ),,()( ϕηξ2

2−P  describes the 
interaction of the incident plane wave of frequency 1ω  with the scattered spheroidal wave 
of frequency 2ω . The third component ),,()( ϕηξ2

3−P  corresponds to the interaction of the 
scattered plane wave of frequency 2ω  with the scattered spheroidal wave of 1ω . The fourth 
component ),,()( ϕηξ2

4−P  characterises the interaction of two scattered spheroidal waves with 
frequencies 1ω  and 2ω . 

4. Results 

To obtain the final expression of the total acoustic pressure of the difference-frequency wave 
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−P , consider the first spatial component ),,()( ϕηξ2
1−P  from equation (10), which 

characterises the non-linear interaction between incident plane waves of highfrequency:   
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It should be noted that this is the only component that gives no information about the 
scatterer. The boundaries of the integration layer are directly defined by the elongated 
spheroid shape.       
Using representation of the plane wave in the spheroidal coordinate system and substituting 

)( 0hkB nml , the expression (11) takes the form  
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After the final integration with respect to the coordinate 'ξ , the expression for the first 
component (12) has the form  
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From the expression (13) for the first component ),,()( ϕηξ2
1−P  of the total acoustic pressure of 

the difference-frequency wave, it follows that the scattering diagram of this component is 
determined by the function )( ηη ±01 . This function depends on the coordinate 0η  or, the 
polar coordinate system, equivalent to the angle of incidence 0θ  of the highfrequency plane 
waves. The scattering diagram of the first component ),,()( ϕηξ2

1−P  are shown in Fig.5 for 
angle of incidence of the high-frequency plane waves 0

0 30=θ  )( 50 =−hk . 
   

 
Fig. 5. Scattering diagram of the spatial component ),,()( ϕηξ2

1−P  of the total acoustic 
pressure produced by the difference-frequency wave by a rigid elongated spheroid for: 

2f =1000 kHz, 1f =880 kHz, −F =120 kHz, 0hk− =5, 0θ = 030 , ≈021 hk , 40, 0h =0,01 м, 
0ξ =1,005  (relations axis - 1:10), ξ =7. 

In the direction of the angle of incidence (with respect to the z-axis), the scattering diagrams 
have major maximums. Increase of the amplitude of the spheroidal wave produced by the 
scatterer leads to additional maximums in lateral directions (irrespective of the angle of 
incidence). This result is connected with the increase of the function η1 . Increasing the 
extent of the interaction region (the coordinate Sξ ) results in the narrowing of the scattering 
lobes; this scenario corresponds to increasing the size of the re-radiating volume around the 
scatterer.  
The elongated spheroid has radial dimension 00510 ,=ξ  with the semi-axes correlation 1:10. 
Acoustic pressure of the difference frequency wave has been calculated in the far field of the 
scattering spheroid, i.e. in the Fraunhofer region.   
Therefore, the scattering field can be considered as being shaped by. Shadowing of the 
secondary waves sources by the scatterer itself can occur in the Rayleigh region. Here it is 
necessary to take into account wave dimensions of the scatterer as well as the distance to the 
point of observation ),,( ϕηξM . In the cases presented in this contribution, the point of 
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observation was at radial distances 7=ξ and 15, which exceeded the length of the elongated 
spheroid by an order magnitude.  
 Now consider the second ),,()( ϕηξ2

2−P  and third ),,()( ϕηξ2
3−P  components from the equation 

(10) for the total acoustic pressure of the difference-frequency wave, these components 
characterise the non-linear interaction of the incident plane waves with the scattered 
spheroidal ones waves:  
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Values of )( 0hkB nml  and )( 0hkD nml  are substituted into equation (14) and the plane wave 
expansion is used. For the axially symmetrical scattering problem (perfect spheroid), the 
high-frequency asymptotic forms the angular spheroidal 1st- order function ),( η0hkS nml  
and the radial spheroidal 3rd - order function ),( ')( ξ0

3 hkR nml  [Kleshchyov & Klyukin, 1987], 
[Abramovitz & Stegun, 1971]:  

[ ]''

')(

exp
),(

' ξ
ξ

ξ
ξ 0

0

1
0

3

0
hik

hk
ihkR

n
n

l

hk
nml

n

−−

∞→
≈ . 

Then equation (11) takes the form  

  [ ]
⎢
⎢
⎢

⎣

⎡
−−−

−
≈ ∫ −

−

−
−

S

dhkhkhki
hkk

hkAiC
P

ξ

ξ

ξηξξη
ηη

ϕηξ
0

0001022
02

022
2 12

2 ''')( )sin()(exp
)(

)(
),,(  

 [ ]
⎥
⎥
⎥

⎦

⎤
−−− ∫ −

S

dhkhkhki
ξ

ξ

ξ
ξ

ηξ
ξη

0

2
0

00102
'

'

'
' )sin()(exp . (15) 

After the final integration [Prudnikov et al., 1983], the expression for the 2nd component of 
the total acoustic pressure of the difference-frequency wave takes the form 

 )()()()()( ),,( 2
24

2
23

2
22

2
21

2
2 −−−−− +++= PPPPP ϕηξ ,  (16) 

where  

⎥
⎦

⎤
⎢
⎣

⎡ −

−−
≈

−

−
−−

2

022

0
2
02

022
2221 112 u

iuiu
hkk

hkAiC
P S )exp()exp(

))((
)()(

,
ξξ

ηηη
∓ , 

[ ]⎥
⎦

⎤
⎢
⎣

⎡
−−−−−

−

−−
≈

−

−
−− )Ei()Ei(

)exp()exp(
))((

)()(
, 0222

0

022

0
2
02

022
2423 112

ξξ
ξ

ξ
ξ

ξ

ηηη
iuiuu

iuiu
hkk

hkAC
P S

S

S∓ , 

)( ηη 0001022 hkhkhku −−= ∓ . 



 Acoustic Waves 

 

84 

The expression for the 3rd component ),,()( ϕηξ2
3−P  is similar to the expression (15). An 

analysis of equation (15) shows that the behaviour of scattering diagrams for the 
components ),,()( ϕηξ2

2−P  and ),,()( ϕηξ2
3−P is determined mainly by the function 

))(( ηηη −− 111 0 , where the dependence on the angle of incident 0θ  (that is 0η ) is not 
clear. The scattering diagram of these components are shown in Fig.6, for 0

0 30=θ  
)( 50 =−hk . These diagrams have maximums in the backward and side directions ( 00 and 

)090± . The increase of the wave size of the spheroidal scatterer leads to additional 
maximums, which depend on the angle of incident of the high-frequency plane waves.   
 

 
Fig. 6. Scattering diagram of the spatial components ),,()( ϕηξ2

2−P , ),,()( ϕηξ2
3−P  by a rigid 

elongated spheroid for: 2f = 1000 kHz, 1f =880 kHz, −F =120 kHz, 0hk− =5, 0θ = 030 , 
0ξ =1.005, ξ =7. 

Now, we consider the fourth component ),,()( ϕηξ2
4−P  of the total acoustic pressure of the 

difference-frequency wave. This component characterises the non-linear interaction of the 
scattered spheroidal waves with frequencies 1ω  and 2ω : 
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After some algebraic manipulations, equation (17) takes the form  
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The scattering diagram of the fourth component ),,()( ϕηξ2

4−P  are shown in Fig.7, for  
0

0 30=θ )( 50 =−hk . Their configuration is primarily determined by the function 
))(( ηηη −− 111 0  of equation (18). As indicated above, this function has a maximum in the 

backward direction and slightly depends on the angle of incidence. Increasing of the 
spheroidal scatterer wave size results increases lateral scattering.   
 

 
Fig. 7. Scattering diagram of the spatial component ),,()( ϕηξ2

4−P  by a rigid elongated 
spheroid for: 2f = 1000 kHz, 1f =880 kHz, −F =120 kHz, 0hk− =5, 0θ = 030 , 0ξ =1.005, ξ =7. 

Fig.8 presents the scattering diagram of the total acoustic pressure in the difference-
frequency wave ),,()( ϕηξ2

−P  according to the asymptotic expressions for spatial 
components. In this case, the angle of incidence is 0

0 30=θ )( 50 =−hk , and the coordinate 
7=ξ .  

Fig.9 shows wave scattering diagrams of difference frequency  ),,()( ϕηξ2
−P  on rigid 

elongated spheroid 0ξ =1,005 with different incidence angle values of inflation incident 
waves 0θ = 00 ; 090 .  
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Fig. 8. Scattering diagram of the total acoustic pressure the difference-frequency wave 

),,()( ϕηξ2
−P  by a rigid elongated spheroid for: 2f = 1000 kHz, 1f =880 kHz, −F =120 kHz,   

0hk− =5, 0θ = 030 , 0ξ =1,005, ξ =7.  

 

 
Fig. 9. Scattering diagrams of the total acoustic pressure the difference-frequency wave 

),,()2( ϕηξ−P  by a rigid elongated spheroid for: 2f = 1000 kHz, 1f =880 kHz, −F =120 kHz, 

0hk− =5, 0ξ =1,005, ξ =7, 0θ = 00 ; 090 . 
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With incidence angle 0θ = 00  diagrams have got the basic maximums back, with the increase 
of spheroid wave dimension, the modest lateral scattering appears. With incidence angle 

0θ = 060  diagrams are of the similar form 0θ = 030 , with conformable maximums in 
decrease direction, in mirrorlike, as well as back.  
With incidence angle 0θ = 090  diagrams have got the basic maximums back and lateral 
directions. With the wave dimension growth, modest intermediate levels can be observed. It 
follows from Fig.9 that angle value change 0θ  leads generally to the change of maximums 
position in the line of incidence and reflex angle.  
It is emphasized that the figures illustrate the dependence of acoustic pressure ),,()( ϕηξ2

−P  
on the polar angle ηθ arccos=  but not on the angle of asymptote of the hyperbola η . This 
presentation is conventionally employed for the scattering diagrams in spheroidal 
coordinates [Cpence & Ganger, 1951], [Kleshchyov & Sheiba, 1970].   
The diagrams are presented in the xoz plane (Fig.4). Polar angle θ  varies in the range 00  to 

0360 ; the value of the angle 00=θ  corresponds to the position of x  axis, and the value 
090=θ  corresponds to z axis.  The arrow here shows the direction of the initial plane wave 

incidence. The axisymmetry of the diagrams with respect to x  axis has been taken into 
account and two diagrams with positive and negative directions of the angle 0180±=θ  
have been combined.  
Fig.10 shows a spatial simulation of the scattering diagram of the total acoustic pressure 

),,()2( ϕηξ−P  for 0
0 30=θ  ( 50 =−hk , 7=ξ , an arrow indicates the direction of the initial wave 

incidence). It is a surface of revolution, and the rotation axis is the larger axis of the 
elongated spheroid, that is the x- axis. 
 

 
Fig. 10. Spatial model of scattering diagram of the total acoustic pressure the difference-
frequency wave ),,()2( ϕηξ−P  by a rigid elongated spheroid for: 1f =880 kHz,   −F =120 kHz, 

0hk− =5, 0θ = 030 , ξ =7. 
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5. Discussion 

Although investigation of the linear scattering of acoustic waves by the elongated spheroid 
has been considered previously, results of the scattering of the nonlinearly interacting 
acoustic wave were not reported. In most previous publications, the problem is investigated 
when the angles of incidence of acoustic waves are 00=θ and 090 [Kleshchyov & Sheiba, 
1970], [Tetyuchin & Fedoryuk, 1989].   
In article [Kleshchyov & Sheiba, 1970] the calculated diagrams of plane acoustic wave 
scattering by a similar size spheroid ( 00510 ,=ξ , 100 =kh ) at angle of incidence 030=θ  are 
presented. Also in this work the scattering diagram has maximums symmetrical to the angle 
of incidence (mirror lobes) with respect to z axis [Burke, 1966], [Boiko, 1983]. At angle of 
incidence 00=θ  forward scattering dominates. The basic maximum is aligned with 0140 . 
When the angle of incidence is 090=θ (lateral incidence), there are only two maximums – 
forward and backward. 
An analysis of the acoustic pressure distribution of the difference-frequency wave scattered 
field shows that the scattering diagrams have maximums in a backward direction. In 
direction to the angle of incidence, in lateral and transverse directions, plane waves have 
maximums. Incident high-frequency plane waves form the scattering field in backward and 
forward directions, and scattered spheroidal waves form the scattering field in transverse 
direction. An increase in the wave size of the spheroidal scatterer changes maximum levels, 
and an increase in the size of the interacting area around the elongated spheroidal scatterer 
leads to narrowing of these maximums.  
It is important to note that in this work we considered the case when the scattered field is 
generated by the secondary wave sources located in the volume around the spheroid. In the 
case of the linear scattering, these sources are located on the surface of the spheroid. The 
mirror maximums 030 and 0150  appear as a result of the asymptotics of the first spatial sum 

),,()( ϕηξ2
1−P  as confirmed in [2]. Therefore, the plotted scattering diagrams are in conformity 

with the results of 090  [Burke, 1966], [Kleshchyov & Sheiba, 1970], [Boiko, 1983], [Tetyuchin 
& Fedoryuk, 1989].  
As for the numerical evaluation of the acoustic pressure, it is necessary to note the 
following. In view of the complexity of mathematical calculations, the obtained asymptotics 
allow for qualitative evaluation of the spatial distribution of the acoustic pressure in the 
scattered field. It would be more adequate to compare the results with experimental data. 
Unfortunately, experiments in non-linear conditions have not been carried out. For the sake 
of better understanding of contribution of the separated sums into the cumulative acoustic 
field, results were presented for two values of the wave dimension and the angle of 
incidence.  
It should be noted, that description of wave processes in spheroidal coordinates have 
several peculiarities. For example, comparing the acoustic pressure distribution at the 
distance from the scatterer, the results given in [Abbasov & Zagrai, 1994], [Abbasov & 
Zagrai, 1998], [Abbasov, 2007] can be taken. Spheroidal coordinates in a far field transform 
into spherical ones )( 00 →h  and ),,(),,( )()( ϕθϕηξ rPP 22

−− → . The results of this research are 
in agreement with results of prior studies of the scattering process described in spherical 
coordinates.  
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6. Conclusion 
Summing up the secondary field studies on the difference frequency wave with interacting 
acoustic wave scattering on elongated spheroid, it should be noted that: 
- the statement of the problem has been formulated and problem peculiarities of 

scattering in elongated spheroidal coordinates has been described, the solution of non-
homogeneous wave equation in the second approximation and Helmholtz 
nonhomogeneous equation on the difference frequency wave has been obtained;  

- high-frequency asymptotic expressions of  general acoustic pressure of difference 
frequency wave have been obtained; they consist of spacing terms, characterizing 
nonlinear interaction between incident plane and scattered spheroidal waves;  

- the assumption diagrams of difference frequency wave scattering on different distances 
from spheroidal scatterer, for different incident angles and different wave dimensions: 

1500 ÷=− ,hk ,  incident angles 0θ = 00 , 030 , 060 , 090 ,  radial distances ξ =3; 7; 15, have 
been obtained;  

- the obtained diagrams of difference frequency wave scattering have basic maximums in 
back, lateral directions and in the incidence and reflex line (reflection lobe) of inflation 
waves, three-dimensional diagram models of  difference frequency wave scattering on 
elongated spheroid have been featured.  

The method of successive approximations has been used for the description of wave 
processes with weak non-linearity. The diagrams are presented that illustrate the 
distribution of acoustic pressure of the scattered field. In view of the obtained theoretical 
results, the method of successive approximations is an adequate tool for solving the problem 
of the scattering of non-linearly interacting waves by an elongated spheroid. 
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1. Introduction 
Recently, the study on elastic waves in phononic crystal plates is becoming a research 
hotspot due to its potential applications, especially in wireless communication, transducer 
and sensor system [1-10]. The phononic crystal plates commonly consist of two materials 
with large contrast in elastic properties and densities, arranging in a periodic (or 
quasiperiodic) array. The absolute band gaps in composite plates can forbid the propagation 
of all elastic wave modes in all directions. Comparing with the bulk wave and surface 
acoustic wave devices, phononic crystal plates have better performance in elastic wave 
propagation since the phase speed of most Lamb wave modes (except for A0 mode) is faster 
than surface wave mode, and also the wave energy in plates is totally confined between the 
upper and nether free-stress boundaries regardless of the air damp and self-dissipation, 
which provides a special potentiality in micro-electronics in wireless communication.  
The propagation of Lamb waves is much more complicated than bulk wave and surface 
acoustic wave in terms of the free-stress boundaries which can couple the longitudinal and 
transversal strain components. The first attempt to describe the propagation of Lamb waves 
with wavelength comparable with the lattice is due to Auld and co-workers [11-12], who 
studied 2D composites within the couple-mode approximation. Alippi et al. [13] have 
presented an experimental study on the stopband phenomenon of lowest-order Lamb 
waves in piezoelectric periodic composite plates and interpreted their results in terms of a 
theoretical model, which provides approximate dispersion curves of the lowest Lamb waves 
in the frequency range below the first thickness mode by assuming no coupling between 
different Lamb modes. The transmissivity of the finite structure to Lamb wave modes was 
also calculated by taking into account the effective plate velocities of the two constituent 
materials [14]. Based on a rigorous theory of elastic wave, Chen et al.[1] have employed 
plane wave expansion (PWE) method and transient response analysis (TRA) to demonstrate 
the existence of stop bands for lower-order Lamb wave modes in 1D plate. Gao et al.[8] have 
developed a virtual plane wave expansion (V-PWE) method to study the substrate effect on 
the band gaps of lower-order Lamb waves propagating in thin plate with 1D phononic 
crystal coated on uniform substrate. They also studied the quasiperiodic (Fibonacci system) 
1D system and find out the existence of split in phonon band gap [2]. In order to reduce the 
computational complexity without losing the accuracy, Zhu et al.[9] have promoted an 
efficient method named harmony response analysis (HRA) and supercell plane wave 
expansion (SC PWE) to study the behavior of Lamb wave in silicon-based 1D composite 
plates. Zou et al.[10] have employed V-PWE method to study the band gaps of plate-mode 
waves in 1D piezoelectric composite plates with substrates. 
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The chapter is structured as follows: we firstly introduce the theory and modeling used in 
this chapter in Section 2. In Section 3, we focus on the band gaps of lower-order Lamb waves 
in 1D composite thin plates without/with substrate. In Section 4, we study the lamb waves 
in 1D quasiperiodic composite thin plates. In Section 5, we focus on acoustic wave behavior 
in silicon-based 1D phononic crystal plates for different structures, and finally in Section 6, 
we study the band gaps of plate-mode waves in 1D piezoelectric composite plates 
without/with substrates. 

2. Theory and modeling of phononic crystal plates 
In this section, we give the theory and modeling of phononic crystal plates with different 
structures: the periodic structure without/with substrate, and the quasiperiodic structure.  

2.1 Periodic structure without substrate by PWE method  
As shown in Fig. 1, the periodic composite plate consists of material A with width Ad , 
material B with Bd , lattice spacing A BD d d= + , and filling rate defined by A /f d D= . The 
wave propagates along the x  direction of a plate bounded by planes 0z =  and z L= .  
 

 
Fig. 1. 1D periodic composite plate consisting of alternate A and B strips. 

In the periodic structure, all field components are assumed to be independent of the y  
direction. In an inhomogeneous linear elastic medium with no body force, the equation of 
motion for displacement vector ( , , )x z tu  can be written as 

   ( ) [ ( ) ],p q pqmn n mx c xρ = ∂ ∂u u  ( 1,2,3),p =  (1) 

where ( )xρ  and ( )pqmnc x  are the x -dependent mass density and elastic stiffness tensor, 
respectively. Due to the spatial periodicity in the x direction, the material constants, ( )xρ  
and ( )pqmnc x  can be expanded in the Fourier series with respect to the 1D reciprocal lattice 
vectors (RLVs), as follows 

 ( ) ,jGx
G

G
x eρ ρ= ∑  (2) 

 ( ) ,jGx G
pqmn pqmn

G
c x e c= ∑  (3) 

where Gρ and G
pqmnc are expansion coefficients of the mass density and elastic stiffness 

tensor, respectively. From the Bloch theorem and by expanding the displacement vector 
( , , )x z tu  into Fourier series, one obtains  
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 ( , , ) ),x zjk x j t jGx jk z
G

G
x z t e e eω−= ∑ (u A  (4) 

where xk  is a Bloch wave vector and ω  is the circular frequency, 1 2 3( , , )G G G GA A A=A  is the 
amplitude vector of the partial waves, and kz  is the wave number of the partial waves along 
the z direction. Substituting Eqs. (2)-(4) into Eq. (1), one obtains homogenous linear 
equations to determine both 1 2 3( , , )G G GA A A  and kz .  

'

'

'

1' 2 2 '
11 44 12 44

' 2 2 2
44 44

' ' 2 2 3
12 44 44 11

( )( ) 0 ( ) ( )

0 ( )( ) 0 0,

( ) ( ) 0 ( )( )

x x z x x z G

x x z G

x x z x x z G

Ac k G k G c k c k G c k G k

c k G k G c k A

c k G c k G k c k G k G c k A

ρω

ρω

ρω

⎛ ⎞⎛ ⎞+ + + − + + + ⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟

+ + + − =⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟+ + + + + + −⎝ ⎠⎝ ⎠

 (5) 

Supposing that the materials A and B are cubic materials, it is obvious that the wave motion 
polarized in the y-direction, namely SH wave, decouples to the wave motions polarized in 
the x- and z-directions, namely, P and SV waves. It is relatively simple to discuss the SH 
wave so that we focus our attentions to P and SV waves, and the equation of motion for 
Lamb waves becomes 

 
'

'

1' 2 2 '
11 44 12 44

' ' 2 2 3
12 44 44 11

( )( ) ( ) ( )
0 ,

( ) ( ) ( )( )

x x z x x z G

x x z x x z G

Ac k G k G c k c k G c k G k

c k G c k G k c k G k G c k A

ρω

ρω

⎛ ⎞⎛ ⎞+ + + − + + + ⎜ ⎟⎜ ⎟
⎜ ⎟ =⎜ ⎟
⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟+ + + + + + −⎝ ⎠⎝ ⎠

 (6) 

If one truncates the expansions of Eqs. (2) and (3) by choosing n  RLVs, one will obtain 4n  
eigenvalues ( )l

zk , ( 1 4 )l n= − . For the Lamb waves, all of the 4n  eigenvalues ( )l
zk  must be 

included. Accordingly, displacement vector of the Lamb waves can be taken of the form 

 
( ) ( )4 4

( )( ) ( )' '

1 1
( , , ) ,

l l
x z x z

n n
i k G x i t iK z i k G x i t ik z

G G
G l G l

x z t e e e X eω ω ε+ − + −

= =

⎛ ⎞ ⎛ ⎞
= =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∑ ∑ ∑ ∑ l

lu A  (7) 

where ( )l
Gε  is the associated eigenvector for the eigenvalue ( )l

zk , lX  is the weighting 
coefficient to be determined, and the prime of the summation expresses that the sum over 
G  is truncated up to n .  
The boundary conditions are the stress-free on the upper (z = 0) and rear (z = L) surfaces 

 3 0, 3 0 , 0p z L p mn n m z Lc u= == ∂ =T     ( 1,3).p =  (8) 

which Tp3 is the stress tensor and L is the plate thickness. Eq. (8) leads to 4n homogeneous 
linear equations for Xl l = (1- 4n), as follows 

 

(1) (2) (4 )
11, 1, 1,

(1) (2) (4 ) 2
2 , 2 , 2 ,
(1) (2) (4 )
3, 3, 3 ,

(1) (2) (4 )
4 , 4 , 4 , 4

0,

n
G G G

n
G G G

n
G G G

n
G G G n

XH H H
XH H H

HX
H H H

H H H X

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ = =
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥

⎣ ⎦⎣ ⎦

…

� ��
�

…

 (9) 
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where H  is a 4 4n n×  matrix with components 

 ' ' '
( ) 3( ) 1( )( )44 '
1, [( ) ],l l ll

x zG G G G G
C k G kε ε−= + +H  (10a) 

 ' '' '
( ) 3( ) 1( )( )11 12 '
2, ( ) ,l l ll

z xG G G G GG G
H C k C k Gε ε− −= + +  (10b) 

 ' ' '
( ) 3( ) 1( )( ) ( )44 '
3, [( ) ] exp( ),l l ll l

x z zG G G G G
H C k G k jk Lε ε−= + + ×  (10c) 

 ' '' '
( ) 3( ) 1( )( ) ( )11 12 '
4, [ ( ) ] exp( ).l l ll l

z x zG G G G GG G
H C k C k G jk Lε ε− −= + + ×  (10d) 

From Eq. (9) one notes that to obtain nontrivial solution for the lX , the determinant of the 
boundary condition matrix should be equal to zero. The ω  of the Lamb wave modes are 
thus found by searching for the values of ω  that simultaneously make the Eq. (6) and 
det(  )H  equal to zero. In practice, an iterative search procedure is usually required to find 
these ω  [15-16]. 

2.2 Periodic structure with substrate by V-PWE method 
As shown in Fig.2, the composite plate with substrate consists of the 1D phononic crystal 
(PC) layer coated on C substrate. The PC layer consists of the material A with the width Ad  
and the material B with the width Bd . 
 

 
Fig. 2. The 1D periodic composite plate consisting of alternate A and B strips with a 
substrate C. 
We develop a V-PWE method to calculate the dispersion curves of Lamb wave modes 
propagating along the x direction in the presence of the uniform substrate. Here, we give the 
equations of V-PWE method for the piezoelectric periodic structure with substrate. One can 
have the equations for non-piezoelectric situation by omitting the piezoelectricity 
components and the electrical boundary conditions. 
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In the situation of piezoelectric composite plate with substrate, the equations governing the 
motion of lattice displacement ( , , )m x z tu  and electrical displacement ( , , )m x z tD in this 
inhomogeneous system are given by 

 ( ) ,m m m
j i ijx u Tρ = ∂  (11) 

 0,m
i iD∂ =   (12) 

 ( ) ( ) ,m m m m m
ij ijkl l k lij lT c x u e x φ= ∂ + ∂  (13) 

 ( ) ( ) ,m m m m m
i ikl l k il lD e x u xε φ= ∂ − ∂  (14) 

where , , , , ;i j k l x z= 1,2m = (1 represents phononic layer; 2 represents the substrate, 
respectively). ( , , ),x z tm

ijT  ( , , ),m x z tD  ( , , ),m x z tu  ( , , ),m x z tϕ  ( ),m xρ  ( ),m
ijklc x  ( ),m

lije x  and 
( )m

il xε  are the stress vector, electrical displacement vector, displacement vector, electric 
potential, x-dependent mass density, elastic stiffness, piezoelectric, and dielectric constant 
tensors, respectively. It comes into notice that in fact the material constants depend on the z-
direction due to the existence of the substrate, as follows 

 
1

1
2

2

( ),     (0 )
( , )

,       ( 0)

x z h
x z

h z

α
α

α

⎧ < <⎪= ⎨
− < <⎪⎩

 (15) 

where ( , , , )ijkl lij ilc eα ρ ε= , 2 2 2 2( , , , )ijkl lij ilc eρ ε  are the material constants for the substrate.  

Due to the spatial periodicity, the Bloch theorem can be applied to the PC layer, but it 
cannot be simply applied to the substrate layer. However, one notice that the triangle basic 
function set in the Fourier series is an orthogonal and complete set, each components in the 
Fourier series must satisfied the boundary conditions at the interface between the PC layer 
and the substrate at z = 0, namely the continuities of the normal stress, normal displacement, 
normal electrical displacement and electric potential.   

 1 2
0 0 ,iz z iz zT T= ==  1 2

0 0 ,iz z iz zu u= ==  1 2
0 0 ,z z z zD D= ==  1 2

0 0 ,z zφ φ= ==  ( , )i x z= . (16) 

Therefore, the displacement and electric potential fields in the substrate layer also must be 
expanded to the Fourier series with the period that is same as the PC layer in order to satisfy 
the boundary conditions. Then the substrate layer can be treated as a virtual periodic 
structure that has the same filling fraction and period as the PC layer. Thereupon, the Bloch 
theorem can be applied to both the PC and the substrate layers. 
Due to the spatial periodicity in the x direction, the material constants can be expanded in 
Fourier series with respect to the 1-D reciprocal-lattice vector (RLV) G, as follows: 

   ( ) ,jGx
G

G
x eα α= ∑  (17) 

where αG is the corresponding Fourier coefficient. Utilizing the Bloch theorem and 
expanding the displacement vector and electric potential into Fourier series in the PC and 
the substrate layers, one obtains 
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 ( )( , , ) ( A ),
m

x zj k x t jGx jk zm m
G

G
x z t e e eω−= ∑u  (18) 

 ( )
3( , , ) ( ),

m
x zj k x t jGx jk zm m

G
G

x z t e e A eωφ −= ∑  (19) 

where xk  is a Bloch wave vector, ω  is the circular frequency, and m
zk  is the wave number 

along the z-direction, 1 2( , )m m m
G G GA A=A  and 3

m
GA  are the amplitude vectors of the partial 

waves and electric potential, respectively. Substituting Eqs. (17)-(19) into Eqs. (11)-(14), one 
can obtain the eigenvalue problem with respect to m

zk : 

 2( ) U 0,m m m m m m
z zk k+ + ⋅ =A B C  (20) 

where 1 2 3{ , , }m m m m T
G G GA A A=U is called the generalized displacement vector, the 3 3n n×  

matrices mA , mB , and mC are functions of xk , G , ω , m
Gρ , ijklm

Gc , lijm
Ge , ilm

Gε , and n is the 
number of RLV.  
Here, we consider the stress-free boundary conditions and two kinds of the electrical 
boundary conditions. For the 1-D problem, we have 
the stress free boundary conditions: 

 
1

1 0,iz z hT = =   
2

2 0,iz z hT =− =  ( , ),i x z=  (21) 

the OC boundary conditions: 

1 1

1 ,air
z zz h z h

D D
= =

=   
1 1

1 ,air
z h z h

φ φ
= =

=  

               
2 2

2 ,air
z zz h z h

D D
=− =−

=
2 2

2 ,air
z h z h

φ φ
=− =−

=  (22) 

        ( 0 ,
air

air
zD

z
φε ∂

= −
∂

  11
0 1 10 F/m,ε −= × ) 

the SC boundary conditions: 

 
1

1 0,
z h

φ
=

=       
2

2 0.
z h

φ
=−

=  (23) 

 

Putting ( ) ( )j l j lm m m
lG GA X β=  ( 1 3j = − , 1 6 ,l n= − 1,2m = ), where ( )j l m

Gβ  is the associated 
eigenvector of the eigenvalue ( )l m

zk , and m
lX  is the weighting coefficient that can be 

determined from the boundary conditions for different layers, one obtains: 0⋅ =H X  from 
the equations (16), (21) and (22) [or (23)], where H  is a 12 12n n×  matrix. The existence of a 
nontrivial solution of m

lX  needs the determinant of matrix H  to be zero 

 det( ) 0.=H  (24) 

Then one can obtain the dispersion relations of the Lamb waves propagating in a 1-D PC 
layer coated on a substrate. 



 Acoustic Waves 

 

96 

 ( )( , , ) ( A ),
m

x zj k x t jGx jk zm m
G

G
x z t e e eω−= ∑u  (18) 

 ( )
3( , , ) ( ),

m
x zj k x t jGx jk zm m

G
G

x z t e e A eωφ −= ∑  (19) 

where xk  is a Bloch wave vector, ω  is the circular frequency, and m
zk  is the wave number 

along the z-direction, 1 2( , )m m m
G G GA A=A  and 3

m
GA  are the amplitude vectors of the partial 

waves and electric potential, respectively. Substituting Eqs. (17)-(19) into Eqs. (11)-(14), one 
can obtain the eigenvalue problem with respect to m

zk : 

 2( ) U 0,m m m m m m
z zk k+ + ⋅ =A B C  (20) 

where 1 2 3{ , , }m m m m T
G G GA A A=U is called the generalized displacement vector, the 3 3n n×  

matrices mA , mB , and mC are functions of xk , G , ω , m
Gρ , ijklm

Gc , lijm
Ge , ilm

Gε , and n is the 
number of RLV.  
Here, we consider the stress-free boundary conditions and two kinds of the electrical 
boundary conditions. For the 1-D problem, we have 
the stress free boundary conditions: 

 
1

1 0,iz z hT = =   
2

2 0,iz z hT =− =  ( , ),i x z=  (21) 

the OC boundary conditions: 

1 1

1 ,air
z zz h z h

D D
= =

=   
1 1

1 ,air
z h z h

φ φ
= =

=  

               
2 2

2 ,air
z zz h z h

D D
=− =−

=
2 2

2 ,air
z h z h

φ φ
=− =−

=  (22) 

        ( 0 ,
air

air
zD

z
φε ∂

= −
∂

  11
0 1 10 F/m,ε −= × ) 

the SC boundary conditions: 

 
1

1 0,
z h

φ
=

=       
2

2 0.
z h

φ
=−

=  (23) 

 

Putting ( ) ( )j l j lm m m
lG GA X β=  ( 1 3j = − , 1 6 ,l n= − 1,2m = ), where ( )j l m

Gβ  is the associated 
eigenvector of the eigenvalue ( )l m

zk , and m
lX  is the weighting coefficient that can be 

determined from the boundary conditions for different layers, one obtains: 0⋅ =H X  from 
the equations (16), (21) and (22) [or (23)], where H  is a 12 12n n×  matrix. The existence of a 
nontrivial solution of m

lX  needs the determinant of matrix H  to be zero 

 det( ) 0.=H  (24) 

Then one can obtain the dispersion relations of the Lamb waves propagating in a 1-D PC 
layer coated on a substrate. 

Acoustic Waves in Phononic Crystal Plates   

 

97 

2.3 Periodic structure without/with substrate by FE method 
In order to study the elastic wave in the phononic crystal plates, transient response analysis 
(TRA) and the harmony response analysis (HRA) are presented here by finite element (FE) 
method.  
First, the TRA is employed to calculate the transmitted power spectra (TPS) for the finite 
periodic structure. The FE solution involves the discretization of the domain into a number 
of elements, approximating the displacement values interior to the elements in term of its 
nodal value through the shape functions of the chosen element and the determination of 
nodal values [17]. 

 
Fig. 3. Modified plate geometry in the Finite Element calculations 

Fig. 3 shows the configuration of the modified composite plate in the Finite Element 
calculations, in which the superlattices with ten periods (the length is 20 mm) is bounded by 
two pure tungsten plates (the length is 100 mm) at two sides. Lamb waves are excited by the 
force function ( )f t  that is a triangle wave at 0x = , and are received at 140x =  mm [18]. 
The generation source is far from the periodic structure in order to obtain approximate 
plane waves when the wavefronts reach it. The step sizes of temporal and spatial 
discretization in the finite model are fine enough for the convergence of the numerical 
results (increasing the number of elements of the finite element mesh is equivalent to 
increasing the number of harmonics in PWE method). The vertical displacement of a node at 
upper surface of the plate behind the superlattices array at 140x =  mm is collected as 
function of time. For a sufficiently large number of these vertical displacement data on the 
time axis, the displacement fields are Fourier transformed into the frequency domain to 
yield the TPS.  
We also promote an efficient method named HRA to study the propagation and 
transmission of acoustic waves in 1D phononic crystal plates. Comparing with TRA [1,2,8], 
HRA is more time-saving due to its direct calculation in frequency domain and more 
powerful for the acquirability of displacement field under certain frequency load, which can 
be further employed to the designation of various phononic crystal functionalities such as 
filters, resonators and waveguides. With this method, we can study the cases both without 
and with substrates. Taking the gradient of the displacement fields, we can further study the 
strain distribution in the plates, and it is really a very direct way to understand how the 
band gaps form in phononic crystal plates by comparing displacement fields under different 
frequency loads (inside/outside band gaps).  
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Any continual periodic loads can produce continual periodic response (harmony response) 
in phononic crystal plates. HRA is a method used to define the stabilized response of linear 
structures under time-harmonic loads. By calculating the responses (usually displacement 
fields) under different frequency loads, we can obtain the transmitted power spectra in the 
detected region. HRA is a linear analysis regardless of any nonlinear characteristics. For 
multi-element structure, the Newton’s second law can be expressed as follows:  

 { } { } { } { }=int ext+ +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦M D C D R R  (25a) 

 { } { }=int ⎡ ⎤⎣ ⎦R K D  (25b) 

 { } { } ( )= expext i tΩR F  (25c) 

where ⎡ ⎤⎣ ⎦M , ⎡ ⎤⎣ ⎦C  and ⎡ ⎤⎣ ⎦K  are general mass matrix, damping matrix and stiffness matrix, 
respectively; { }D  and { } ( )exp i tΩF  are nodal degree of freedom vector and nodal external 
load vector, respectively. Eq (25a) describes a dynamic balance among inertial force, 
damping force, inner force { }intR  and external load force { }extR . The forced vibration of the 
structure will finally come to a stabilized status in which every node moves in harmonic 
motion with the same frequency (Ω ). Further, we can express { }D  into: 

 { } { } ( )exp i t= ΩD D  (26) 

where { }D  is the complex nodal degree of freedom vector. By substituting Eq (26) into Eqs 
(25a)-(25c), we can obtain: 

 ( ){ } { }2i+ Ω −Ω =⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦K C M D F  (27) 

where { }D  can be obtained using Frontal solver. We choose imaginary component of { }D  
to build up the stabilized displacement field under different frequency loads. It is necessary 
to mention that TRA requires much more substeps to obtain the nodal degree of freedom 
vector at certain detected time for the reason that the time step tΔ  should obey the 
following criterion for numerical convergence in Newmark method: [19]  

 
2

crit

max
t

fπ
Ω

Δ ≤  (28) 

where maxf  is the maximum frequency of interest. critΩ  is defined to be: 

 
2

2crit
γ β⎛ ⎞Ω = −⎜ ⎟

⎝ ⎠
 (29) 

where β  is chosen to be ( )21 2 4γ +  with 1 2γ ≥  to achieve as large high frequency 
dissipation as possible. We choose 0.2756β = , 0.55γ =  in the numerical calculation of TRA. 
In each substep, a very complex iteration is employed, which takes the form: 



 Acoustic Waves 

 

98 

Any continual periodic loads can produce continual periodic response (harmony response) 
in phononic crystal plates. HRA is a method used to define the stabilized response of linear 
structures under time-harmonic loads. By calculating the responses (usually displacement 
fields) under different frequency loads, we can obtain the transmitted power spectra in the 
detected region. HRA is a linear analysis regardless of any nonlinear characteristics. For 
multi-element structure, the Newton’s second law can be expressed as follows:  

 { } { } { } { }=int ext+ +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦M D C D R R  (25a) 

 { } { }=int ⎡ ⎤⎣ ⎦R K D  (25b) 

 { } { } ( )= expext i tΩR F  (25c) 

where ⎡ ⎤⎣ ⎦M , ⎡ ⎤⎣ ⎦C  and ⎡ ⎤⎣ ⎦K  are general mass matrix, damping matrix and stiffness matrix, 
respectively; { }D  and { } ( )exp i tΩF  are nodal degree of freedom vector and nodal external 
load vector, respectively. Eq (25a) describes a dynamic balance among inertial force, 
damping force, inner force { }intR  and external load force { }extR . The forced vibration of the 
structure will finally come to a stabilized status in which every node moves in harmonic 
motion with the same frequency (Ω ). Further, we can express { }D  into: 

 { } { } ( )exp i t= ΩD D  (26) 

where { }D  is the complex nodal degree of freedom vector. By substituting Eq (26) into Eqs 
(25a)-(25c), we can obtain: 

 ( ){ } { }2i+ Ω −Ω =⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦K C M D F  (27) 

where { }D  can be obtained using Frontal solver. We choose imaginary component of { }D  
to build up the stabilized displacement field under different frequency loads. It is necessary 
to mention that TRA requires much more substeps to obtain the nodal degree of freedom 
vector at certain detected time for the reason that the time step tΔ  should obey the 
following criterion for numerical convergence in Newmark method: [19]  

 
2

crit

max
t

fπ
Ω

Δ ≤  (28) 

where maxf  is the maximum frequency of interest. critΩ  is defined to be: 

 
2

2crit
γ β⎛ ⎞Ω = −⎜ ⎟

⎝ ⎠
 (29) 

where β  is chosen to be ( )21 2 4γ +  with 1 2γ ≥  to achieve as large high frequency 
dissipation as possible. We choose 0.2756β = , 0.55γ =  in the numerical calculation of TRA. 
In each substep, a very complex iteration is employed, which takes the form: 

Acoustic Waves in Phononic Crystal Plates   

 

99 

 

{ } { } { } { } { } ( )

{ } { } ( ) { } ( )

1
21 1

1 2

2

2

2

eff ext n n n
n+ n+

n n n

tt

t

t

β

β ββ

γ β γ βγ

β β β

+
⎛ ⎞−
⎜ ⎟⎡ ⎤ = + + +⎡ ⎤⎣ ⎦⎣ ⎦ ⎜ ⎟ΔΔ⎜ ⎟
⎝ ⎠

⎛ ⎞− Δ −
⎜ ⎟+ + +⎡ ⎤⎣ ⎦⎜ ⎟Δ⎜ ⎟
⎝ ⎠

D DD
K D R M

D DD
C

 (30a) 

 { } { } { }( ) { } ( ) { } ( )1
1

2

2
n n n n

n

t

t

γ β γ βγ

β β β
+

+

− Δ −−
= − −

Δ

D DD D
D  (30b) 

 { }
{ } { } { }( ) { } ( )1

21

1 2

2
n n n n

n

t

t

β

ββ
+

+

− − Δ −
= −

Δ

D D D D
D  (30c) 

where ( ) ( )2eff t tβ γ β⎡ ⎤ = Δ + Δ +⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦K M C K . The initial condition for Eqs (30a)-(30c) is 
shown as follows: 

 { } { } { } { }( )1
00 00

ext−= − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦D M R K D C D  (31) 

With Eqs (30a)-(30c) and (31), we can obtain { }1D , { }2D , { }3D , and so forth. From the 
above-mentioned details, it is obvious that the numerical calculation of TRA is more 
complicated than that of HRA and therefore requires more computation resources when the 
model being larger. 
In TRA or HRA, we need to suppress reflections from the hard boundary to get rid of the 
unwanted resonance peaks. Based on the wave equation in spherical coordinate, artificial 
boundary can be equivalent to many continuous distribution parallel viscous-spring 
systems. The coefficients of stiffness and damping are given as follows: 

 T
T

GK
LN
α

= ; N
N

GK
LN
α

=  (32a)                          

 T
G

C
N
ρ

= ; N
E

C
N
ρ

=  (32b) 

where TK  and NK  are tangential and normal stiffness coefficients of springs, respectively; 
ρ  is the material density of matrix silicon; TC  and NC  are tangential and normal damping 
coefficients, respectively; G  and E  are shear modulus and Young’s modulus of matrix 
silicon, respectively; L  and N  are the distance from exciting source to artificial boundary 
and number of viscous-spring systems attached to the boundary, respectively; Tα  and Nα  
are the tangential and normal modified coefficients for artificial boundary, respectively. Tα  
and Nα  are assigned with 0.67 and 1.33, respectively [20]. 

2.4 Periodic structure without/with Substrate by SC-PWE method 
The super-cell plane wave expansion (SC-PWE) method is another efficient way to calculate 
the plate-mode waves of the phononic crystal plates. As shown in Fig. 4, we establish a 3D 
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model in Cartesian coordination to calculate the elastic band structures of 1D phononic 
crystal plates, where the periodic composite plate consists of alternate A and B strips, C is 
the LIM layer, and D is the substrate, respectively [21]. 

 
Fig. 4. (a) 1D Lamb wave phononic crystal plate sandwiched between two layers of 
homogeneous materials, and (b) 3D super-cell used in the computation. 

The LIM is an imaginary material with relatively low elastic moduli for approximately 
meeting the requirement of free boundary condition and an extremely low mass density, 
which leads the sound speed in the LIM to be much larger than that in usual solid material. 
In this chapter, the LIM is assumed as an isotropic material with 6

11 2 10C = ×  N/m2, 
6

44 1 10C = ×  N/m2, 12 0C =  N/m2 and 41 10ρ −= ×  kg/m3. The choice of such unphysical 
high sound speeds for the LIM is in good agreement with the numerical condition derived 
by Tanaka et al [22]. With these values, both good numerical convergence and computing 
accuracy can be achieved. The thickness of plate h  is assumed to be 2 mm and 2 3h h h= +  
where 3 0h =  mm for the case without substrate. The thickness of the LIM layer 1h  is 
defined to be 25h  to reduce unexpected wave coupling between two nearest phononic 
layers in z direction [23]. In the absence of body force and strain in y  direction, the SH 
mode wave in 1D plate can be decoupled. Regardless of the wave propagating in y  
direction, the elastic wave equations of phononic crystal are given by: 

 ( ) [ ( ) ]p q pqmn n mu C uρ = ∂ ∂r r  ( 1,2,3)p =  (33) 

where ( , )x z=r . This equation can be solved by a standard Fourier expansion to ( )ρ r , 
( )pqmnC r  and ( , )u tr , which are all position-dependent values. For convenience, we put 

( , )pqmnCα ρ=  and then we can obtain the following equations: 

 ( ) exp[ ( )]
x z

x z
G

i G x G zα α= +∑∑ G
G

r  (34) 
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 ( )( , ) exp[ ( )]
x z

i t
x z

G
u t u i G x G z e ω⋅ −= +∑∑ k r

G
G

r  (35) 

where ( , )x zk k=k  is the Bloch wave vector and the 2D reciprocal-lattice vector ( , )x zG G=G , 
respectively. Substituting equations (34) and (35) into wave equation (33), we can obtain: 

 

11 12 13

2 21 22 23

31 32 33

M M M
u uM M M

M M M

ρ
ω ρ

ρ

′− ′ ′ ′

′ ′ ′− ′ ′ ′

′− ′ ′ ′

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟ = ⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠

G G G,G G,G G,G

G G G GG,G G,G G,G

G G G,G G,G G,G

 (36a) 

The explicit expressions of the matrix elements lmM ′G,G , ( 1 3l m= = − ) are:   

11 11 44
, ( )( )x x x x z zk G k G G GM C C′ ′ ′− −′ ′= + + +G G G G G G         12

, 0M ′ =G G                

 13 12 44
, ( ) ( )z x x x x zG k G k G GM C C′ ′ ′′ ′= + + +G G G-G G-G         21

, 0M ′ =G G  (36b) 

22 44 44
, ( )( )x x x x z zk G k G G GM C C′ ′ ′′ ′= + + +G G G-G G-G         23

, 0M ′ =G G                 

31 44 12
, ( ) ( )z x x x x zG k G k G GM C C′ ′ ′′ ′= + + +G G G-G G-G         32

, 0M ′ =G G                 

                              33 44 11
, ( )( )x x x x z zk G k G G GM C C′ ′ ′′ ′= + + +G G G-G G-G                                    

where the Fourier coefficients pqC ′G-G are related to ( )pqmnC r  in a conventional manner. As 
shown in equation (36a), characteristic frequency ω  is exactly the squared generalized 
eigenvalue of density matrix and elastic constant matrix. The coefficients pqC ′−G G  and ρ ′G-G  
takes the form: 

 3
( )

1 ( )exp[ ( ) ]
Supercell

c
i d

V
α α′ ′= − − ⋅∫∫∫G-G r G G r r  (37) 

where Vc is the volume of super-cell. With the above-mentioned equations, we can easily 
obtain the band structure of 1D phononic crystal plate. 

2.5 Quasiperiodic structure by FE method 
As shown in Fig.5, the quasiperiodic composite plate consists of material A of width Ad  and 
material B of width Bd . The lattice spacing is A BD d d= + . When the distribution of 
materials A and B is arranged according to the Fibonacci sequence, one obtains a 
quasiperiodic system [24]. We create the Fibonacci sequence B, BA, BAB, BABBA, 
BABBABAB, BABBABABBABBA, … according to the production rule 1 2|j j jS S S− −=  for 

3j ≥  with 1S B=  and 2S BA= . When A and B are put along the chain alternately, a 
periodic model is obtained. We introduce parameter /A Bd dΦ =  to describe the ratio of the 
two components. Φ  is fixed at 1.0 and the number of layers N is 13 throughout the section 
unless otherwise stated. The wave propagates along the x direction of the plate bounded by 
planes 0z =  and z L= . We consider a 2D problem, in which all field components are 
assumed to be y independent. 
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Fig. 5. The configuration of 1D quasiperiodic composite plate consisting of Tungsten and 
Silicon strips arranged following the Fibonacci sequence. 
To demonstrate the structures of the band gaps for Lamb waves in the 1D quasiperiodic 
systems and the difference from that of periodic systems, we calculate TPS of the transient 
Lamb waves by using the TRA. We suppose that a Lamb wave is excited by a line laser 
pulse with a spatial Gaussian distribution (Gaussian radius = 0.2 mm). The laser pulse, 
which is normally incident to the surface of the studied plates, generates the Lamb wave 
propagating along the x direction. The laser-generated force source f(t) is simulated as a 
delta function, which is perpendicular to the surface of the plate [25]. 
The elastic properties of the materials in the numerical calculations are the same as 
mentioned in above sections; and the thickness of the plates (L) of 1.0 mm. The step sizes of 
temporal and spatial discretization in the FE calculations are fine enough for the 
convergence of the numerical results. Lamb waves are excited by the force function f(t) at 
x=0, and are received at the point 10 mm away from the superlattices array. The generation 
source is far from the Fibonacci superlattices in order to obtain approximately plane waves 
when the wave fronts reach the plate. The received vertical displacement in time domain is 
Fourier-transformed into the frequency domain to yield the TPS. 
We also adopt the HRA to study three quasiperiodic systems. Two Generalized Fibonacci 
Systems (Type A and Type B) [26] are obtained inductively through the following 
transformations: 

 A AAB→ , B A→  for Type A Fibonacci System (38a) 

 A ABB→ , B A→  for Type B Fibonacci System (38b) 

We can generate the two quasiperiodic systems, as shown as follows:  

 …AABAABAAABAABAAABAAB  for Type A Fibonacci System (39a) 

 …ABBAAABBABBABBAAABBA  for Type B Fibonacci System (39b) 
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It is interesting to find out that Generalized Fibonacci Systems are very flexible in forms and 
by changing the transformations ( A ABA→ , B A→ …) we can obtain many other 
quasiperiodic systems.  
Then, we can introduce the third quasiperiodic system (Double-period System) into this 
model. The recursion relation for Double-period System is A AB→ , B AA→  [27]. With the 
recursion relation, we can obtain the sequence of the Double-period System: 

 …ABAAABABABAAABAAABAA for Double-period System (40) 

 

 
Fig. 6. The schematic diagram of the four systems: Periodic System, Type A Fibonacci 
System, Type B Fibonacci System and Double-period System, respectively. 
Fig. 6 shows the scheme of the four different systems, namely, Periodic System, Type A 
Fibonacci System, Type B Fibonacci System and Double-period System, respectively. In 
numerical simulations, the homogeneous media A and B are gold and silicon, with the 
thicknesses of media A and B are 2 mm, and the widths of media A and B are 0.4 and 1.6 
mm, respectively. 
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3. Lower-order lamb waves in 1D composite thin plates without/with 
substrate 
In order to demonstrate the existence of band gaps for low-order Lamb wave modes in the 
1D periodic structure as shown in Fig.1, we have calculated the dispersion curves for a cubic 
medium (silicon) of a l mm thick plate by considering only the fundamental term in the 
Fourier and Floquet series [16], as shown in Fig. 7(a).  Fig. 7(b) displays the dispersion  
 

 

 
Fig. 7. Schematic representation of the Lamb wave dispersion curve for (a) a homogeneous 
Si plate with 1.0L = mm (b) composite thin plate (W / Si)  with 0.5f = , 1.0L = mm, and 

2.0D = mm. 
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curves of four lower-order modes along the boundary of the mini-Brillouin zone with filling 
ratio 0.5f = , 1.0L =  mm, and 2.0D =  mm. One can obviously observe the modifications 
produced by resonant reflections in the strip lattice. The dashed vertical line identifies the 
frequency zone where all the Lamb wave modes are resonantly reflected by the periodic 
lattice of strips. The proposed approach allows one to identify that the forward propagating 
Lamb wave modes are not coupled with the backward propagating modes.  
By comparing Fig. 7(a) with Fig. 7(b), one can easily find that there exists a band gap from 
1065 to 1642 kHz for the lower-order Lamb wave modes propagating in the 1D periodic 
structure. The gap width ( ΔΩ ) is 577 kHz and the corresponding gap/midgap ratio 
( / mΔΩ Ω , mΩ  is the midgap frequency) is approximately 0.426. In order to analyze the 
influence of the ratio L / D  for the band gap width, we also calculate the dispersion curves 
of the lower-order modes with 0.5f = , 2.0L =  mm, and 2.0D =  mm, as shown in Fig. 8. It 
is apparent that there are two band gaps (from 806 to 1167 kHz and from 1438 to 1863 kHz, 
respectively) for the ratio 1L / D = . The gap widths are 361 and 425 kHz, and the 
corresponding gap/midgap ratios are about 0.366 and 0.255, respectively. 
 

 
Fig. 8. Dispersion curves of Lamb wave modes for 1D finite thickness composite plate with 
filling ratio 0.5f = , 2.0L =  mm, and 2.0D =  mm. 

Basically, there are three parameters that influence the formation of band gaps, i.e., /L D , 
f , and the contrast between the physical parameters of the constituents. It is rather 

intuitive that /L D  is very crucial for the formation of a band gap. If it is either too small or 
too large, there should be no band gaps for lower-order modes. Fig. 9 depicts the gap width 
of the lowest band gap as a function of /L D  with 0.5f =  and 2D =  mm for 
tungsten/silicon supperlattices. It is noteworthy to point out that the lowest band gap opens 
up over a domain of the ratio of /L D  defined by 0.15 / 1.64L D≤ ≤ . The maximum value 
of gap width appears at / 0.53L D ≈  for the lowest band gap and reaches 610 kHz as shown 
in Fig. 9. 
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Fig. 9. The width of the lowest band gap at the filling fraction f = 0.5 versus the value of  L/D. 

It is noted that the value of the normalized gap width of the lowest band gap in the systems 
increases progressively with the increase of the value of the ratio of /L D  until a critical 
value and then decreases. In fact, a plate can support a number of Lamb wave modes 
depending on the value of the ratio /L λ , where λ  is the acoustic wavelength. When the 
periodicity of these Lamb waves matches the lattice spacing, stop bands appear in the Lamb 
wave dispersion curves [28]. There is a high interaction when the wavelength of Lamb wave 
is close the lattice constant, which induces mode conversion and reflections. When the 
wavelength of Lamb wave is different from the periodicity of the lattice constant, the 
interaction is weak. On the another hand, the midgap frequency of forbidden gap is 
inversely proportional to the lattice constant D  [29], therefore, the value of the ratio of 

/L D  is important for the width of the band gap for the Lamb waves in the periodic 
composite systems. 
In order to demonstrate further the existence of the band gaps for the lower-order modes in 
the 1D periodic structure, the finite element method (FEM) is employed to calculate the 
transmitted power spectra (TPS) for the finite periodic structure as shown in Fig.3.  
Fig. 10 shows the TPS for the 1D composite structure plate with 0.5f = , 1.0L =  mm, and 

2.0D =  mm. There is a broad region from 1060 to 1630 kHz that is less than –30dB. The 
result shows good agreement with that by PWE method. The TPS is also depicted in Fig. 10 
from a pure Tungsten plate with the same dimensions, and no sharp attenuation in any 
frequency domain is observed. 
For the second sample, ,f  ,D  and the configuration are the same with the first one, and 
only the thickness of the plate is different (L=2 mm). Fig. 11 depicts the TPS for 1D plate 
with periodic structure and without periodic structure. The frequency range of the gaps of 
Lamb waves by PWE is almost the same with those of large attenuation in the calculated 
TPS .The first gap extends from the frequency of 804 up to 1176 kHz and the second from 
1436 to 1869 kHz, which are less than –45dB. 
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Fig. 9. The width of the lowest band gap at the filling fraction f = 0.5 versus the value of  L/D. 
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Fig. 10. The TPS computed by the FE method with 0.5f = , 1.0L =  mm, and 2.0D =  mm 
through the composite pate (solid line) and a pure Tungsten plate (dashed line). 
 

 
Fig. 11. The TPS computed by the FE method with 0.5f = , 2.0L =  mm, and 2.0D =  mm: 
through the composite plate (solid line) and through a pure Tungsten plate (dashed line). 
It is interesting to notice that there are some slight dips centered at about 0.4MHz in Fig. 6, 
or 0.5MHz and 1.3MHz in Fig. 11. These dips attribute to the band gaps of antisymmetric 
modes, but not absolute band gap of both symmetric and antisymmetric modes, which can 
be observed in Figs. 7(b) and 8, indicated by the arrows 1, 2 and 3. On the other hand, the 
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lower frequency components of the modes is mainly excited for the thin plate [30], so that 
the TPS energy displays a monotonic decrease as the frequency increases as shown in Fig. 
10. When the plate is thicker, the higher frequency components increase, which makes the 
attenuation of the TPS energy less, as shown in Fig. 11.  
Since various modified photonic crystal structures, such as regular arrangements of 
individual metal nanoparticles on dielectric substrate, have been the subject of extensive 
research in recent years, it is meaningful to study the elastic modes in the system with PC 
layer coated on uniform substrate [31]. In fact, from the application point of view, when the 
thickness of the periodic thin plate is of the order of magnitude of several hundred 
micrometers, one needs to use substrate to support such a plate. Therefore, the effect of the 
substrate is important and cannot be neglected. 
We study the influence of substrate on the band structure of the Lamb wave in PC layer by 
FEM. We also employ V-PWE to calculate the dispersion curves of Lamb wave. As we shall 
demonstrate that the locations and widths of band gaps on the dispersion curves from the 
V-PWE method are in good agreement with the results from the TPS by FEM. 
In order to demonstrate the influences of different substrates on band gaps in the PC layer 
with substrate, we study three types substrate: hard material (Tungsten), soft material 
(Rubber) and medium hardness material (Silicon). The corresponding TPS (in green, blue, 
and red, respectively) are shown in Fig. 12 (a-b) for different h2. For comparison, we also 
show the case without substrate (black). 
It can be easily seen that there exist two band gaps for the Lamb modes propagating in the 
1D periodic model. The first gap extends from the frequency of 820 kHz up to 1160 kHz and 
the second one from 3050 kHz to 3360 kHz, which is less than –38 dB, as shown in Fig. 12 
(black line). 
Comparing the TPS of the 1D PC layer without substrate (black line) with that of coated 
Tungsten substrate (green line) [Fig. 12(a)], we can see that the width of the first band gap 
decreases to some slight dips centered at about 1.0MHz (green line). The second band gap 
has a little decay in frequency domain (from 2850 to 3250 kHz). This demonstrates that the 
influence of hard substrate on band gaps is strong even when the substrate is very thin. The 
band gaps disappear rapidly when the substrate becomes thicker as shown in Fig. 12(b). It is 
because when the substrate becomes thicker, more energy will go via the substrate instead 
of via the PC, so that the interference from different periodic layers becomes less important. 
The TPS for the 1D PC layer coated on Rubber substrate with different thickness h2 are also 
shown in Fig. 12(a-b) (blue line). It is seen that there is no obvious change in the band gaps 
when the substrate is thin, especially, for the first band gap at low frequency region. 
However, as the thickness of substrate increases, interesting things happen, as shown in Fig. 
12(b) (h2=0.5mm). The band gap in the PC layer coated on Rubber substrate does not 
disappear but becomes smoother in the band gaps domain. Three band gaps appear, 
namely, from 750 kHz up to 1200 kHz, from 1720 kHz up to 1950 kHz and from 2920 kHz 
up to 3640 kHz, respectively. Compared with the band gap of the PC plate without 
substrate, we can see a broad band appears in the range of 1720 kHz and 1950 kHz. From 
Fig. 12(b), it is clearly seen that more band gaps appear, such as some band gaps in low 
frequency domain, which is opposite to the hard substrate. The appearance of more bands is 
due to the more interference from the boundary as Rubber is softer than Tungsten and 
Silicon, therefore there is more reflection at the interface between the PC and the substrate.  
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Fig. 12. (color online) The TPS for the 1D PC layer without substrate (black line), and for  
the 1D PC layer coated on Tungsten substrate (green line), Rubber substrate (blue line), 
Silicon substrate (red line), respectively, with different 2h : (a) 2 0.125h =  mm;  
(b) 2=0. 50h  mm 
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We also show the TPS for the 1D PC layer coated on Silicon substrate with different 
substrate thickness h2. From Fig. 12(a) (red line), it can be easily found that there exist two 
band gaps for the Lamb modes propagating in the 1D PC layer coated on Silicon substrate. 
The first gap extends from 920 kHz up to 1280 kHz and the second from 3050 kHz to 3400 
kHz, which are less than –40dB. Compared with Fig. 12(a) (black line and red line), we can 
see there is no obvious change between the band gaps when the substrate is thin. Although 
there are some band gaps appearing like some band gaps in low frequency domain when 
the thickness of substrate increases, the depth of band gap decreases. For example, one can 
see that although there is a band gap at about 1.5 MHz, the depth of band gaps for the 
model of Silicon substrate becomes very small as the thickness of substrate increases. 
Therefore, the influence of the Silicon substrate is between those of the hard substrate and 
the soft substrate. 
To verify our numerical results, we calculate the dispersion curves of Lamb wave modes 
propagating along the x direction in the presence of the uniform substrate by V-PWE 
method. 
Fig. 13 displays the dispersion curves of the lower-order modes of the 1D PC layer coated on 
Silicon substrate with different substrate thickness h2. It is apparent that there are two band 
gaps (from 980 to 1285 kHz and from 3020 to 3380 kHz, respectively) for the h2=0.125mm, as 
shown in Fig. 13(a). The gap widths are 305 kHz and 360 kHz, respectively, and the 
corresponding gap/mid-gap ratios are about 0.269 and 0.112, respectively. The results 
calculated by the V-PWE method show that the locations and widths of band gaps on the 
dispersion curves are in good agreement with the results on the transmitted power spectra 
by FEM, as shown in Fig. 12(a) (red line). 
Some band gaps appear in low frequency domain with the increase in the thickness of 
substrate, which is also found by V-PWE method. For example, we can see that there are 
three band gaps (from 685 to 820 kHz, from 1320 to 1590 kHz and from 3120 to 3250 kHz) 
for the model of Silicon substrate with the thickness of 0.5mm as shown in Fig. 13(b), which 
is in good agreement with the results by FEM as shown in Fig. 12(b) (red line).  
Here, we give a qualitative physical explanation of above results. When the substrate is 
Tungsten material, because the ratio of acoustic impedances of Tungsten and Silicon 

/ 0.2S S T TC Cρ ρ ≈  (where ( )S SCρ  and ( )T TCρ  are the mass densities (the acoustic 
velocities of longitudinal wave) of Silicon and Tungsten, respectively), the interface between 
the PC layer and the substrate is equivalent to a hard boundary condition, at which the 
phase change of the reflected wave pressure is less than 90°. The superposition of the 
reflective wave will destroy the formation condition of band gap, as the formation of band 
gap is due to the destructive interference of the reflective waves. Therefore, the influences 
on band gaps are significant even when the substrate is very thin. On the other hand, due to 
the interface is not strictly strong, the Lamb wave can transmit partially to the uniform 
substrate, and then the band gaps disappear rapidly when the substrate becomes thicker.  
In contrast, when the substrate is Rubber material, because the acoustic impedances of 
Silicon is approximately seven times of that of Rubber, the interface between the PC layer 
and the substrate can be approximately considered a soft boundary, at which the phase 
change of the reflected wave is larger than 90°. The superposition of the reflective waves 
will lead to the band gap. As the substrate is very thin, the influences on band gaps are 
negligible. On the other hand, as the interface is not strictly a pressure-released boundary, 
the Lamb wave can transmit partially to the uniform substrate. Because the mass density 
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and the elastic constants of Silicon are much larger than that of Rubber, the acoustic wave 
will be localized in the soft Rubber material. Therefore, band gaps become deeper as the 
thickness of substrate increases. If the substrate is Silicon, which is the same as the matrix 
material, the acoustic wave does not reflect at 0z = , In this case, the influence of the 
substrate is between those of the hard substrate and the soft substrate. 

 
Fig. 13. The dispersion curves of Lamb modes of the 1D PC layer coated on Silicon substrate 
with different 2h : (a) 2=0.125h  mm; (b) 2=0.50h  mm 
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4. Lamb waves in 1D quasiperiodic composite thin plates 
In this section, we study numerically the band gaps of Lamb waves in 1D quasiperiodic thin 
plate. The motivation of the study lies in the factor that a lot of real-world materials are 
quasiperiodic [32-33]. In particular, since Merlin et al.[34] reported the realization of 
Fibonacci superlattices, a lot of interesting physical phenomena have been observed in x-ray 
scattering spectra, Raman scattering spectra, and propagating modes of acoustic waves on 
corrugated surfaces [35-37]. 
First, we show the dependence of TPS on L/D. From Fig. 14(a-e), the TPS are shown for the 
periodic and quasiperiodic composite plates with L/D= 0.3, 0.5, 0.54, 0.6, and 0.68, 
respectively. For comparison, the TPS for a pure Silicon plate of 1 mm thickness is also 
shown in order to demonstrate the band gaps. Fig. 14(a) shows that for such a pure silicon 
plate there is no band gap at all. However, two band gaps are clearly seen in the periodic 
system. The first band extends from frequency of 570 up to 760 kHz and the second one 
from the 1550 up to 1960 kHz. With the same parameters, the two bands are not so obvious 
in a quasiperiodic plate. 
When L/D is increased to 0.5 [see Fig. 14(b)], interesting things happen. It is evident that for 
the periodic model there exists a band gap from 1050 up to 1615 kHz. However, for the 
quasiperiodic plate, a clear band split is seen from 1085 up to 1286 kHz and from 1460 up to 
1710 kHz, and a new band appears in the range of 2010-2275 kHz. 
As L/D is increased to 0.54 [Fig. 14(c)] and 0.6 [Fig. 14(d)], the only band gap in the periodic 
system does not change too much; it just shifts a little toward the high frequency. However, 
the situation changes in the quasiperiodic system. In the case of / 0.54L D = , the band gap 
is split into two subbands, namely, from 1210 up to 1380 kHz and from 1505 up to 1780 kHz. 
Two more new bands appear from 2050 up to 2420 kHz and from 2750 up to 2950 kHz. In 
the case of / 0.6L D = , only two bands appear, namely, from 1360 up to 1949 kHz and from 
2205 up to 2685 kHz. 
From the results shown in Figs. 14(a)-(d), we can say that the band structures of a 
quasiperiodic system depend strongly (or sensitively) on the parameter L/D, whereas that 
in a periodic system does not. A quasiperiodic system has more forbidden gaps than that a 
periodic system has. This can be explained from the following. The 1D Fibonacci sequence is 
the project of the 2D square periodic lattice; it implicitly includes the periodicity of a 
multidimensional space. In fact, a quasiperiodic structure may be considered as a system 
made up of many periodic structures [38].  
Moreover, the change of the ratio L/D also leads to the changes of the number of splitting 
band gaps. Physically, as the ratio L/D changes to an appropriate value, due to reflections at 
the plate boundaries, the interaction between longitudinal and transversal strain 
components becomes strong. For the Lamb modes, the restriction of boundary conditions 
leads to intermode Bragg-like reflections in the quasiperiodic superlattices [39]. As a result, 
much more physical phenomena are present compared with the bulk wave propagation in 
the Fibonacci chains. 
In general, there are three parameters that influence the formation of band gaps, namely, 
L/D, Φ , and λ  (the acoustic wavelength). The number of Lamb wave modes in a plate 
depends on the value of /L λ . The midgap frequency of forbidden gap is inversely 
proportional to the lattice spacing D  [29]. Therefore, it is rather intuitive that L/D is very 
crucial for the formation of band gaps for Lamb waves. In fact, it is also found that the 
difference between the forbidden gaps in quasiperiodic and periodic systems disappears  
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Fig. 14. (color online) The TPS for the periodic plate (blue), the quasiperiodic plate (red), and 
a pure Silicon plate (dashed black), respectively. (a) L/D=0.3, (b) L/D=0.5, (c) L/D=0.54, (d) 
L/D=0.6, (e) L/D=0.68. 
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Fig. 15. (color online) The TPS of the quasiperiodic plate with N=21 (blue) and N=34 (red), 
and a pure Silicon plate (dashed black); L/D =0.5. 
when the ratio L/D is larger than 0.68, as shown in Fig. 14(e). In this figure, one can see that 
there is only one forbidden gap in both the periodic and quasiperiodic systems. The gap 
extends from 1350 (1570) up to 1970 (2136) kHz for the periodic (quasiperiodic) system, 
respectively. It means that the difference of band gaps between quasiperiodic and periodic 
systems basically disappears as the lattice spacing decreases. 
Furthermore, in order to investigate the finite size effect on band gaps, we calculate the TPS 
for 21N =  and 34 for / 0.5L D = . The results are shown in Fig. 15, which tells us that the 
number of splitting band gaps in quasiperiodic superlattices does not increase with the 
addition of the layer number of Fibonacci sequences. The result is quite different from those 
in the quasiperiodic photonic and phononic crystals of the bulk waves [40-41].  
Lastly we study the influence of the thickness of sublattices on the band gap. We calculate 
the TPS for the cases of / 0.618Ad D =  and / 0.618Bd D = . The results are shown in Fig. 16. 
There is only one band gap in the structure of / 0.618Ad D =  ( / 0.382Bd D = ). The gap 
extends from the frequency of 1565 up to 1790 kHz. However, four band gaps are observed 
in the systems with / 0.382Ad D =  ( / 0.618Bd D = ). The four bands are from 950 up to 1130 
kHz, from 1310 up to 1550 kHz, from 1780 up to 2030 kHz, and from 2250 up to 2530 kHz, 
respectively. One can easily find that the material (Tungsten) with larger values of the 
elastic constant and mass density influences the band gap more than the material (Silicon) 
with smaller values of the elastic constant and mass density. 
In conclusion, we have examined the band gap structures of Lamb waves in the 1D 
quasiperiodic composite thin plates by calculating the TPS from the FEM. The band gap 
structures of the Lamb waves are quite different from those of bulk waves. Specifically, the 
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respectively. One can easily find that the material (Tungsten) with larger values of the 
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quasiperiodic composite thin plates by calculating the TPS from the FEM. The band gap 
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Fig. 16. (color online) The TPS of the quasiperiodic plate / 0.618Ad D =  (blue) and 

/ 0.618Bd D =  (red), and a pure Silicon plate (dashed black); L/D =0.5. 
number of splitting band gaps depends strongly on the values of L/D  owing to resonance 
of the coupling of the longitudinal and transversal strain components at the plate 
boundaries. However, the split of band gaps is independent of the layer number of 
Fibonacci sequences. Moreover, we have found that the structure of the band gaps depends 
very sensitively on the thickness ratio of the sublattices A and B in the quasiperiodic 
structures which might find applications in nondestructive diagnosis. 

5. Acoustic wave behavior in silicon-based 1D phononic crystal plates 
In this section, we employ HRA to study the propagation and transmission of acoustic waves 
in silicon-based 1D phononic crystal plates without/with substrate. We also employ HRA to 
study quasiperiodic systems such as Generalized Fibonacci Systems and Double-period 
System, and the results show that some new phononic band gaps form in quasiperiodic 
systems, which hold the potential in the application of acoustic filters and couplers. 
In Fig. 17, the parameters of finite element models for both TRA and HRA are set to be: the 
plate thickness 2H =  mm, the distance from exciting source to the left edge of plate (also 
the distance from the receiver to the right edge of plate) 1 15L =  cm, the length of 
superlattice 20S =  cm, the number of finite elements per meter 10000N =  m-1, the distance 
between exciting source and receiver 2 30L =  cm, the width of the exciting source region 
(source function is Guassian function) 4δ =  mm. In fact, the theoretical models for TRA and 
HRA are analogous to laser-generated Lamb wave system and piezoelectricity-generated 
Lamb wave system, respectively.   
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Fig. 17. The plate geometry in the finite element models for both TRA and HRA method; the 
upper surface is located at z = H. 
We choose two cases (without/with substrate and different quasiperiodic systems) to 
investigate the acoustic wave behavior in phononic crystal plates. 
For the plate without substrate, we set filling factor 0.2f = , lattice constant 2a =  mm, plate 
thickness 2H =  mm, without substrate. The number of inclusions is 100 and all the 
inclusions are embedded periodically in the middle of plate. 

 
Fig. 18. (a) The transient vertical displacement at the upper surface of phononic crystal plate 
without substrate, calculated by TRA method; (b) Normalized transmitted power spectrum 
for phononic crystal plate without substrate. 
In TRA, as seen in Fig. 18(a), the transient vertical displacement at the upper surface of 
phononic crystal plate is shown when the time ranges from 0 to 200 μs. Transforming the 
vertical displacement from time domain to frequency domain and normalizing by the 
transmitted power spectrum of homogeneous plate, we can obtain the normalized 
transmitted power spectrum of phononic crystal plate with periodic superlattice, as shown 
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in Fig. 18(b), and an obvious band gap is observed in the range from 0.9512 to 1.047 MHz, 
which means the elastic wave located in this gap is extremely attenuated. Applying the 
Super-cell PWE or HRA, we recalculate the band structure and normalized transmitted 
power spectrum, respectively for comparison and the data are shown in Fig. 19. 

 
Fig. 19. (a) Dispersion curves of Lamb wave modes for phononic crystal plate without 
substrate, calculated by Super-cell PWE; (b) Normalized transmitted power spectrum for 
phononic crystal plate without substrate, calculated by HRA method. 
From both Fig. 19(a) and 19(b), we can see a main band gap located around 1 MHz 
(0.9511~1.1300 MHz in Fig. 19(a); 0.9510~1.0560 MHz in Fig. 19(b)), which accords with the 
Fig. 18(b). Note that there exists a very narrow band gap in low frequency zone as shown in 
Fig. 19(a) (0.7332 MHz~0.762 MHz), or the D point (0.7335 MHz) in Fig. 19(b). Therefore, the 
result of HRA is more consistent with Super-cell PWE than of TRA, and importantly the 
HRA method is more efficient in calculations of not only normalized transmitted power 
spectrum but also space distribution of elastic wave field for the reason mentioned above. 
Hereon we choose three points (A: 0.9 MHz, B: 1 MHz, C: 1.1 MHz) in Fig. 19(b) for the 
study of propagation of Lamb waves under different frequency loads (inside/outside the 
band gap).  
As seen from Fig. 20, the displacement fields under different frequency loads are quite 
different. In Fig. 20(b), the load frequency locates inside the band gap and the displacement 
field seems like being blocked by the superlattice, in which the periodic structure forbids the 
propagation of elastic waves along the plate. However, when the load frequency locates 
outside the band gap in Fig. 20(a) and 20(c), the elastic waves propagate without any 
obvious attenuation. 
Then, we add an extra substrate to the established model. The thickness of substrate is set to 
be 0.2 mm. Applying the Super-cell PWE and HRA, we can obtain the dispersion curves of 
Lamb wave modes and normalized transmitted power spectrum, respectively, as shown in 
Fig. 21, in which the first band gap exists in low frequency zone (0.7413~0.7767 MHz in Fig. 
21(a); 0.7520~0.7730 MHz in Fig. 21(b)) and the main band gap (second band gap) locates at 
high frequency zone (0.9852~1.1240 MHz in Fig. 21(a); 0.9853~1.0580 MHz in Fig. 21(b)). 
Comparing Fig. 21 with Fig. 19, one can observe that the first band gap width in the plate 
with substrate is larger than that of the plate without substrate and main band gap (the 
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second band gap) width is narrowed and shifted towards high frequency zone, which 
accord with previous works [4,23,42]. 
In addition to the periodic systems, we adopt the HRA to study the quasiperiodic systems. 
The normalized transmitted power spectra are calculated for phononic crystal plates with 
the above three quasiperiodic systems, as shown in Fig. 22(a)-(c), in which the normalized 
transmitted power spectrum of periodic system is also plotted for comparison. 

 

 

 

 
Fig. 20. The displacement fields at the frequency loads of 0.9 MHz (A point in Fig. 19(b)) (a), 
1 MHz (B point in Fig. 19(b)) (b) and 1.1 MHz (C point in Fig. 19(b)) (c), respectively. 
Corresponding plot in each figure is enlarged. 
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Fig. 21. (a) Dispersion curves of Lamb wave modes for phononic crystal plate with substrate, 
calculated by Super-cell PWE; (b) Normalized transmitted power spectra for phononic 
crystal plates both with and without substrate (substrate thickness: 0.2 mm), calculated by 
HRA method. 

 

 
Fig. 22. Normalized transmitted power spectra for Type A Fibonacci System (a),  
Type B Fibonacci System (b) and Double-period System (c), respectively. 
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As shown in Fig. 22(a), for Type A Fibonacci System, a new band gap is opened in low 
frequency zone (0.7925~0.8622 MHz) and the main band gap (corresponding to the one in 
the periodic system) splits into two separated sub-band gaps (0.9282~0.9667 MHz and 
0.9942~1.0730 MHz). In addition, an obvious attenuation is observed in lower frequency 
zone (0.276~0.384 MHz). 
For Type B Fibonacci System, the main band gap shifts to the low frequency zone 
(0.8915~0.9978 MHz) with its gap width almost unchanged, as shown in Fig. 22(b), and three 
new band gaps form in lower frequency zone (0.114~0.162 MHz, 0.192~0.288 MHz and 
0.498~0.57 MHz). 
For Double-period System, the main band gap shifts to high frequency zone (1.0180~1.1340 
MHz) and four new band gaps are opened in the low frequency zone (0.216~0.294 MHz, 
0.336~0.468 MHz, 0.6238~0.7265 MHz and 0.792~0.84 MHz), as shown in Fig. 22(c). 
From the above-mentioned information, we convincingly demonstrate the band gap 
distribution of quasiperiodic systems is more complicated and meaningful than of periodic 
systems and the reason is supposed to be that quasiperiodicity unlike periodicity can 
provide more than one reciprocal lattices. 

6. Band gaps of plate-mode waves in 1D piezoelectric composite  
plates without/with substrates 
As well known, the ceramic material will have the piezoelectricity only after it is polarized. 
In convenience, we define the non-polarized PZT-5H ceramic as the non-piezoelectric 
material, which has the same elastic constants as the polarized PZT-5H. Fig. 23 provides five 
schematic representations of the plate-mode waves for non-polarization, x-polarization with 
OC, x-polarization with SC, z-polarization with OC, and z-polarization with SC, 
respectively. The first band gaps (FBG) widths shown by the gray area in Fig. 23(a)-(e) are 
2.088, 2.072, 2.368, 2.368, and 2.6 MHz, respectively. On the whole, the FBG are always 
broadened by polarizing piezoelectric ceramics at the same values of f and h/D. Comparing 
the Fig. 23(b) and (c) (or Fig. 23(d) and (e)), the FBG width with SC is larger than that with 
OC for the same polarized direction, whereas the FBG width of z-polarization with SC is the 
largest. In our example, the FBG width of z-polarization with OC is equal to the FBG width 
of x-polarization with SC, which means the z-polarized PZT-5H ceramics is easy to produce 
a larger FBG width. 
The V-PWE method is applied to calculate the dispersion curves of Lamb wave propagating 
in the x-direction when the existence of uniform substrate. Since the substrate affects the 
width and starting frequency of the PC layer, the thickness of the substrate will be an 
important parameter of the system. Meanwhile, the filling fraction f is another critical 
parameter that affects the formation, width and starting frequency of the FBG [43,44]. Fig. 24 
(a) and (b) display the dependence of the FBG widths and starting frequencies with the 
filling fraction f and the ratio of 2h to 1h at 1h =0.8mm, D =2mm with OC when the PC 
layer is coated on an epoxy substrate. As shown in Fig. 24(a), the FBG width increases 
progressively with the increase of the value of f  at a certain value of 2 1/h h  until a critical 
value then decreases and the width decreases gradually with the increase of the value of 

2 1/h h  at a certain value of f . The FBG width takes the maximum value when there is no 
substrate, and decreases with the increase of the substrate’s thickness at any values of f . 
The FBG width takes a larger value when f and 2 1/h h  take values in the domain 0.45-0.65 
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and 0-0.8, respectively. This domain is useful in the engineering field. The FBG width 
decreases slowly when 2 1/h h  takes values from 0 to 0.4 ( slowhΔ ) and decreases rapidly 
when 2 1/h h  takes values from 0.4 to 0.80 ( rapidhΔ ) as f  takes values from 0.45 to 0.65( fΔ ). 
As shown in Fig. 25(b), the FBG starting frequency decreases gradually with the increase of 
the value of f  at a certain value of 2 1/h h  until a critical value then increases. The starting 
frequency increases progressively with the increase of the value of 2 1/h h  at a certain value 
of f  until a critical value then decreases, but the change of the starting frequency is small. 
On the whole, the epoxy substrate reduces the FBG width obviously and has little influence 
on the FBG starting frequency. 
 
 
 
 

 
 

Fig. 23. The 1D plate-mode waves for different polarizations under different boundary 
conditions with 0.5f =  and /h D =0.8 (D=2mm): (a) Non-polarization, (b) x-polarization 
with OC, (c) x-polarization with SC, (d) z-polarization with OC, and (e) z-polarization with SC. 
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Fig. 24. The FBG widths (a) and starting frequencies (b) versus f  and 2 1/h h  ( 1h =0.8mm, 
D =2mm) with OC coated on epoxy substrate. 

7. Conclusions 
In this chapter, we first examine the band structures of lower-order Lamb wave modes 
propagating in the 1D periodic composite thin plate based on the PWE for infinitely long 
periodic systems and have calculated the TPS for finite systems by using the FE method. As 
shown, the TPS through a superlattice with ten periods has prominent dips at frequencies 
corresponding to the gaps in band structure. A crucial parameter, namely, the ratio of L/D, 
was discussed, and the value of the ratio of L/D was emerging as critical parameters in 
determining the existence of band gaps for the Lamb waves in the periodic structures. Thus, 
we can achieve the needed width of band gap for Lamb wave by varying the thickness of 
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plate. Then, we study the substrate effect on the band gaps of lower-order Lamb waves 
propagating in thin plate with 1D phononic crystal layer coated on uniform substrate. The 
results show that when the substrate is hard, the influences on band gap are significant, and 
the band gaps disappear rapidly as the substrate becomes thicker. However, when the 
substrate is soft, the depth of band gaps becomes larger as the thickness of substrate 
increases. A virtual plane wave expansion method is developed to calculate the dispersion 
curves of Lamb wave. The locations and widths of band gaps on the dispersion curves are in 
good agreement with the results from the transmitted power spectra by FEM. 
The band gap structure of Lamb waves in the 1D quasiperiodic composite thin plate is also 
studied by calculating the TPS from the FEM. The band gap structures of the Lamb waves 
are quite different from those of bulk waves. Specifically, the number of splitting band gaps 
depends strongly on the values of L/D owing to resonance of the coupling of the 
longitudinal and transversal strain components at the plate boundaries. However, the split 
of band gaps is independent of the layer number of Fibonacci sequences. Moreover, we have 
found that the structure of the band gaps depends very sensitively on the thickness ratio of 
the sublattices A and B in the quasiperiodic structures which might find applications in 
nondestructive diagnosis. 
We have promoted an efficient HRA method to investigate the acoustic wave behavior in 
silicon-based 1D phononic crystal plates. The HRA method can not only save much time in 
the calculation of transmitted power spectrum but also acquire information of the 
displacement field under different frequency loads at the same time. Applying HRA and 
supercell PWE, we have studied the periodic structures both without and with substrate. 
From the displacement field map, we find that the elastic wave is completely blocked by the 
superlattice when the load frequency is inside the acoustic band gap. After introducing 
different kinds of quasiperiodic structures, we studied the normalized transmitted power 
spectra in details and find out that the original main band gap in periodic structure may 
split or shift to low or high frequency zones in different quasiperiodic structures. 
Furthermore, new band gaps in low frequency zone may be opened which provide potential 
application in the field of wave filtering as well as sound isolation. 
Finally, we study the band gaps of plate-mode waves in 1D piezoelectric composite plates 
without/with substrates. We found that the FBG is always broadened by polarizing 
piezoelectric ceramics, and the FBG widths with SC are always larger than that with OC for 
the same polarization. The FBG width decreases gradually as the substrate’s thickness 
increases and the FBG starting frequency increases progressively as the thickness increases 
on the whole. Our researches show that it is possible to control the width and starting 
frequency of the FBG in the engineering according to need by choosing suitable values of 
the substrate’s thickness, the filling fraction with different electrical boundary conditions. 
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1. Introduction 
Seismic exploration is one of the main geophysical methods to extract quantitative 
inferences about the Earth’s interior at different scales from the recording of seismic waves 
near the surface. Main applications are civil engineering for cavity detection and landslide 
characterization, site effect modelling for seismic hazard, CO2 sequestration and nuclear-
waste storage, oil and gas exploration, and fundamental understanding of geodynamical 
processes. Acoustic or elastic waves are emitted either by controlled sources or natural 
sources (i.e., earthquakes). Interactions of seismic waves with the heterogeneities of the 
subsurface provide indirect measurements of the physical properties of the subsurface 
which govern the propagation of elastic waves (compressional and shear wave speeds, 
density, attenuation, anisotropy). Quantitative inference of the physical properties of the 
subsurface from the recordings of seismic waves at receiver positions is the so-called seismic 
inverse problem that can be recast in the framework of local numerical optimization. The 
most complete seismic inversion method, the so-called full waveform inversion (Virieux & 
Operto (2009) for a review), aims to exploit the full information content of seismic data by 
minimization of the misfit between the full seismic wavefield and the modelled one. The 
theoretical resolution of full waveform inversion is half the propagated wavelength. In full 
waveform inversion, the full seismic wavefield is generally modelled with volumetric 
methods that rely on the discretization of the wave equation (finite difference, finite 
element, finite volume methods). 
In the regime of small deformations associated with seismic wave propagation, the 
subsurface can be represented by a linear elastic solid parameterized by twenty-one elastic 
constants and the density in the framework of the constitutive Hooke’s law. If the 
subsurface is assumed isotropic, the elastic constants reduce to two independent 
parameters, the Lamé parameters, which depend on the compressional (P) and the shear (S) 
wave speeds. In marine environment, the P wave speed has most of the time a dominant 
footprint in the seismic wavefield, in particular, on the hydrophone component which 
records the pressure wavefield. The dominant footprint of the P wave speed on the seismic 
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wavefield has prompted many authors to develop and apply seismic modelling and 
inversion under the acoustic approximation, either in the time domain or in the frequency 
domain. 
This study focuses on frequency-domain modelling of acoustic waves as a tool to perform 
seismic imaging in the acoustic approximation. In the frequency-domain, wave modelling 
reduces to the resolution of a complex-valued large and sparse system of linear equations 
for each frequency, the solution of which is the monochromatic wavefield and the right-
hand side (r.h.s) is the source. Two key issues in frequency-domain wave modelling concern 
the linear algebra technique used to solve the linear system and the numerical method used 
for the discretization of the wave equation. The linear system can be solved with Gauss 
elimination techniques based on sparse direct solver (e.g., Duff et al.; 1986), Krylov-subspace 
iterative methods (e.g., Saad; 2003) or hybrid direct/iterative method and domain 
decomposition techniques (e.g., Smith et al.; 1996). In the framework of seismic imaging 
applications which involve a large number of seismic sources (i.e., r.h.s), one motivation 
behind the frequency-domain formulation of acoustic wave modelling has been to develop 
efficient approaches for multi-r.h.s modelling based on sparse direct solvers (Marfurt; 1984). 
A sparse direct solver performs first a LU decomposition of the matrix which is independent 
of the source followed by forward and backward substitutions for each source to get the 
solution (Duff et al.; 1986). This strategy has been shown to be efficient for 2D applications 
of acoustic full waveform inversion on realistic synthetic and real data case studies (Virieux 
& Operto; 2009). Two drawbacks of the direct-solver approach are the memory requirement 
of the LU decomposition resulting from the fill-in of the matrix during the LU 
decomposition (namely, the additional non zero coefficients introduced during the 
elimination process) and the limited scalability of the LU decomposition on large-scale 
distributed-memory platforms. It has been shown however that large-scale 2D acoustic 
problems involving several millions of unknowns can be efficiently tackled thanks to recent 
development of high-performance parallel solvers (e.g., MUMPS team; 2009), while 3D 
acoustic case studies remain limited to computational domains involving few millions of 
unknowns (Operto et al.; 2007). An alternative approach to solve the time-harmonic wave 
equation is based on Krylov-subspace iterative solvers (Riyanti et al.; 2006; Plessix; 2007; 
Riyanti et al.; 2007). Iterative solvers are significantly less memory demanding than direct 
solvers but the computational time linearly increases with the number of r.h.s. Moreover, 
the impedance matrix, which results from the discretization of the wave equation, is 
indefinite (the real eigenvalues change sign), and therefore ill-conditioned. Designing 
efficient pre-conditioner for the Helmholtz equation is currently an active field of research 
(Erlangga & Nabben; 2008). Efficient preconditioners based on one cycle of multigrid 
applied to the damped wave equation have been developed and leads to a linear increase of 
the number of iterations with frequency when the grid interval is adapted to the frequency 
(Erlangga et al.; 2006). This makes the time complexity of the iterative approaches to be 
O(N4), where N denotes the dimension of the 3D N3

 cubic grid. Intermediate approaches 
between the direct and iterative approaches are based on domain decomposition methods 
and hybrid direct/iterative solvers. In the hybrid approach, the iterative solver is used to 
solve a reduced system for interface unknowns shared by adjacent subdomains while the 
sparse direct solver is used to factorize local impedance matrices assembled on each 
subdomains during a preprocessing step (Haidar; 2008; Sourbier et al.; 2008). A short review 
of the time and memory complexities of the direct, iterative and hybrid approaches is 
provided in Virieux et al. (2009). 
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The second issue concerns the numerical scheme used to discretize the wave equation. Most 
of the methods that have been developed for seismic acoustic wave modelling in the 
frequency domain rely on the finite difference (FD) method. This can be justified by the fact 
that, in many geological environments such as offshore sedimentary basins, the subsurface 
of the earth can be viewed as a weakly-contrasted medium at the scale of the seismic 
wavelengths, for which FD methods on uniform grid provide the best compromise between 
accuracy and computational efficiency. In the FD time-domain method, high-order accurate 
stencils are generally designed to achieve the best trade-off between accuracy and 
computational efficiency (Dablain; 1986). However, direct-solver approaches in frequency-
domain modelling prevent the use of such high-order accurate stencils because their large 
spatial support will lead to a prohibitive fill-in of the matrix during the LU decomposition 
(Stekl & Pratt; 1998; Hustedt et al.; 2004). Another discretization strategy, referred to as the 
mixed-grid approach, has been therefore developed to perform frequency-domain 
modelling with direct solver: it consists of the linear combination of second-order accurate 
stencils built on different rotated coordinate systems combined with an anti-lumped mass 
strategy, where the mass term is spatially distributed over the different nodes of the stencil 
(Jo et al.; 1996). The combination of these two tricks allows one to design both compact and 
accurate stencils in terms of numerical anisotropy and dispersion. 
Sharp boundaries of arbitrary geometry such as the air-solid interface at the free surface are 
often discretized along staircase boundaries of the FD grid, although embedded boundary 
representation has been proposed (Lombard & Piraux; 2004; Lombard et al.; 2008; Mattsson 
et al.; 2009), and require dense grid meshing for accurate representation of the medium. The 
lack of flexibility to adapt the grid interval to local wavelengths, although some attempts 
have been performed in this direction (e.g., Pitarka; 1999; Taflove & Hagness; 2000), is 
another drawback of FD methods. These two limitations have prompted some authors to 
develop finite-element methods in the time domain for seismic wave modelling on 
unstructured meshes. The most popular one is the high-order spectral element method 
(Seriani & Priolo; 1994; Priolo et al.; 1994; Faccioli et al.; 1997) that has been popularized in 
the field of global scale seismology by Komatitsch and Vilotte (1998); Chaljub et al. (2007). A 
key feature of the spectral element method is the combined use of Lagrange interpolants 
and Gauss-Lobatto-Legendre quadrature that makes the mass matrix diagonal and, 
therefore, the numerical scheme explicit in time-marching algorithms, and allows for 
spectral convergence with high approximation orders (Komatitsch & Vilotte; 1998). The 
selected quadrature formulation leads to quadrangle (2D) and hexahedral (3D) meshes, 
which strongly limit the geometrical flexibility of the discretization. Alternatively, 
discontinuous form of the finite-element method, the so-called discontinuous Galerkin (DG) 
method (Hesthaven & Warburton; 2008), popularized in the field of seismology by Kaser, 
Dumbser and co-workers (e.g., Dumbser & Käser; 2006) has been developed. In the DG 
method, the numerical scheme is strictly kept local by duplicating variables located at nodes 
shared by neighboring cells. Consistency between the multiply defined variables is ensured 
by consistent estimation of numerical fluxes at the interface between two elements. 
Numerical fluxes at the interface are introduced in the weak form of the wave equation by 
means of integration by part followed by application of the Gauss’s theorem. Key 
advantages of the DG method compared to the spectral element method is its capacity of 
considering triangular (2D) and tetrahedral (3D) non-conform meshes. Moreover, the 
uncoupling of the elements provides a higher level of flexibility to locally adapt the size of 
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the elements (h adaptivity) and the interpolation orders within each element (p adaptivity) 
because neighboring cells exchange information across interfaces only. Moreover, the DG 
method provides a suitable framework to implement any kind of physical boundary 
conditions involving possible discontinuity at the interface between elements. One example 
of application which takes fully advantage of the discontinuous nature of the DG method is 
the modelling of the rupture dynamics (BenJemaa et al.; 2007, 2009; de la Puente et al.; 2009). 
The dramatic increase of the total number of degrees of freedom compared to standard 
finite-element methods, that results from the uncoupling of the elements, might prevent an 
efficient use of DG methods. This is especially penalizing for frequency-domain methods 
based on sparse direct solver where the computational cost scales with the size of the matrix 
N in O(N6) for 3D problems. The increase of the size of the matrix should however be 
balanced by the fact the DG schemes are more local and sparser than FEM ones (Hesthaven 
& Warburton; 2008), which makes smaller the numerical bandwidth of the matrix to be 
factorized. 
When a zero interpolation order is used in cells (piecewise constant solution), the DG 
method reduces to the finite volume method (LeVeque; 2002). The DG method based on 
high-interpolation orders has been mainly developed in the time domain for the 
elastodynamic equations (e.g., Dumbser & Käser; 2006). Implementation of the DG method 
in the frequency domain has been presented by Dolean et al. (2007, 2008) for the time-
harmonic Maxwell equations and a domain decomposition method has been used to solve 
the linear system resulting from the discretization of the Maxwell equations. A 
parsimonious finite volume method on equilateral triangular mesh has been presented by 
Brossier et al. (2008) to solve the 2D P-SV elastodynamic equations in the frequency domain. 
The finite-volume approach of Brossier et al. (2008) has been extended to low-order DG 
method on unstructured triangular meshes in Brossier (2009). 
We propose a review of these two quite different numerical methods, the mixed-grid FD 
method with simple regular-grid meshing and the DG method with dense unstructured 
meshing, when solving frequency-domain visco-acoustic wave propagation with sparse 
direct solver in different fields of application. After a short review of the time-harmonic 
visco-acoustic wave equation, we first review the mixed-grid FD method for 3D modelling. 
We first discuss the accuracy of the scheme which strongly relies on the optimization 
procedure designed to minimize the numerical dispersion and anisotropy. Some key 
features of the FD method such as the absorbing and free-surface boundary conditions and 
the source excitation on coarse FD grids are reviewed. Then, we present updated numerical 
experiments performed with the last release of the massively-parallel sparse direct solver 
MUMPS (Amestoy et al.; 2006). We first assess heuristically the memory complexity and the 
scalability of the LU factorization. Second, we present simulations in two realistic synthetic 
models representative of oil exploration targets. We assess the accuracy of the solutions and 
the computational efficiency of the mixed-grid FD frequency-domain method against that of 
a conventional FD time-domain method. In the second part of the study, we review the DG 
frequency-domain method applied to the first-order acoustic wave equation for pressure 
and particle velocities. After a review of the spatial discretization, we discuss the impact of 
the order of the interpolating Lagrange polynomials on the computational cost of the 
frequency-domain DG method and we present 2D numerical experiments on unstructured 
triangular meshes to highlight the fields of application where the DG method should 
outperform the FD method. 
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Although the numerical methods presented in this study were originally developed for 
seismic applications, they can provide a useful framework for other fields of application 
such as computational ocean acoustics (Jensen et al.; 1994) and electrodynamics (Taflove & 
Hagness; 2000). 

2. Frequency-domain acoustic wave equation 
Following standard Fourier transformation convention, the 3D acoustic first-order velocity-
pressure system can be written in the frequency domain as 
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where ω is the angular frequency, κ(x, y, z) is the bulk modulus, b(x, y, z) is the buoyancy, 
p(x, y, z, ω) is the pressure, vx(x, y, z, ω), vy(x, y, z, ω), vz(x, y, z, ω) are the components of the 
particle velocity vector. fx(x, y, z, ω), fy(x, y, z, ω), fz(x, y, z, ω) are the components of the 
external forces. The first block row of equation 1 is the time derivative of the Hooke’s law, 
while the three last block rows are the equation of motion in the frequency domain. 
The first-order system can be recast as a second-order equation in pressure after elimination 
of the particle velocities in equation 1, that leads to a generalization of the Helmholtz 
equation: 
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where x = (x,y, z) and s(x,ω) = ∇ · f denotes the pressure source. In exploration seismology, 
the source is generally a local point source corresponding to an explosion or a vertical force. 
Attenuation effects of arbitrary complexity can be easily implemented in equation 2 using 
complex-valued wave speeds in the expression of the bulk modulus, thanks to the 
correspondence theorem transforming time convolution into products in the frequency 
domain. For example, according to the Kolsky-Futterman model (Kolsky; 1956; Futterman; 
1962), the complex wave speed c  is given by: 
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where the P wave speed is denoted by c, the attenuation factor by Q and a reference 
frequency by ωr. 
Since the relationship between the wavefields and the source terms is linear in the first-
order and second-order wave equations, equations 1 and 2 can be recast in matrix form: 
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 ,+ = =⎡ ⎤⎣ ⎦M S u Au b  (4) 

where M is the mass matrix, S is the complex stiffness/damping matrix. The sparse 
impedance matrix A has complex-valued coefficients which depend on medium properties 
and angular frequency. The wavefield (either the scalar pressure wavefield or the pressure-
velocity wavefields) is denoted by the vector u and the source by b (Marfurt; 1984). The 
dimension of the square matrix A is the number of nodes in the computational domain 
multiplied by the number of wavefield components. The matrix A has a symmetric pattern 
for the FD method and the DG method discussed in this study but is generally not 
symmetric because of absorbing boundary conditions along the edges of the computational 
domain. In this study, we shall solve equation 4 by Gaussian elimination using sparse direct 
solver. A direct solver performs first a LU decomposition of A followed by forward and 
backward substitutions for the solutions (Duff et al.; 1986). 

  ( )= =Au LU u b  (5) 

 ;= =Ly b Uu y  (6) 

Exploration seismology requires to perform seismic modelling for a large number of 
sources, typically, up to few thousands for 3D acquisition. Therefore, our motivation behind 
the use of direct solver is the efficient computation of the solutions of the equation 4 for 
multiple sources. The LU decomposition of A is a time and memory demanding task but is 
independent of the source, and, therefore is performed only once, while the substitution 
phase provides the solution for multiple sources efficiently. One bottleneck of the direct-
solver approach is the memory requirement of the LU decomposition resulting from the fill-
in, namely, the creation of additional non-zero coefficients during the elimination process. 
This fill-in can be minimized by designing compact numerical stencils that allow for the 
minimization of the numerical bandwidth of the impedance matrix. In the following, we 
shall review a FD method and a finite-element DG method that allow us to fullfill this 
requirement. 

3. Mixed-grid finite-difference method 
3.1 Discretization of the differential operators 
In FD methods, high-order accurate stencils are generally designed to achieve the best 
tradeoff between accuracy and computational efficiency (Dablain; 1986). However, direct-
solver methods prevent the use of high-order accurate stencils because their large spatial 
support will lead to a prohibitive fill-in of the matrix during the LU decomposition (Hustedt 
et al.; 2004). Alternatively, the mixed-grid method was proposed by Jo et al. (1996) to design 
both accurate and compact FD stencils. The governing idea is to discretize the differential 
operators of the stiffness matrix with different second-order accurate stencils and to linearly 
combine the resulting stiffness matrices with appropriate weighting coefficients. The 
different stencils are built by discretizing the differential operators along different rotated 
coordinate systems ( x , y , z ) such that their axes span as many directions as possible in 
the FD cell to mitigate numerical anisotropy. In practice, this means that the partial 
derivatives with respect to x, y and z in equations 1 or 2 are replaced by a linear combination 
of partial derivatives with respect to x , y  and z  using the chain rule followed by the 
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discretization of the differential operators along the axis x , y  and z . In 2D, the coordinate 
systems are the classic Cartesian one and the 45°-rotated one (Saenger et al.; 2000) which 
lead to the 9-point stencil (Jo et al.; 1996). In 3D, three coordinate systems have been 
identified (Operto et al.; 2007) (Figure 1): [1] the Cartesian one which leads to the 7-point 
stencil, [2] three coordinate systems obtained by rotating the Cartesian system around each 
Cartesian axis x, y, and z. Averaging of the three elementary stencils leads to a 19-point 
stencil. [3] four coordinate systems defined by the four main diagonals of the cubic cell. 
Averaging of the four elementary stencils leads to the 27-point stencil. The stiffness matrix 
associated with the 7-point stencil, the 19-point stencil and the 27-point stencil will be 
denoted by S1, S2, S3, respectively. 
The mixed-grid stiffness matrix Smg is a linear combination of the stiffness matrices just-
mentioned: 

 32
1 1 2 3 ,

3 4mg
www= + +S S S S  (7) 

where we have introduced the weighting coefficients w1, w2 and w3 which satisfy: 

 1 2 3 1w w w+ + =  (8) 

In the original mixed-grid approach (Jo et al.; 1996), the discretization on the different 
coordinate systems was directly applied to the second-order wave equation, equation 2, 
with the second-order accurate stencil of Boore (1972). Alternatively, Hustedt et al. (2004) 
proposed to discretize first the first-order velocity-pressure system, equation 1, with second-
order staggered-grid stencils (Yee; 1966; Virieux; 1986; Saenger et al.; 2000) and, second, to  
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Fig. 1. Elementary FD stencils of the 3D mixed-grid stencil. Circles are pressure grid points. 
Squares are positions where buoyancy needs to be interpolated in virtue of the staggered-
grid geometry. Gray circles are pressure grid points involved in the stencil. a) Stencil on the 
classic Cartesian coordinate system. This stencil incorporates 7 coefficients. b) Stencil on the 
rotated Cartesian coordinate system. Rotation is applied around x on the figure. This stencil 
incorporates 11 coefficients. Same strategy can be applied by rotation around y and z. 
Averaging of the 3 resultant stencils defines a 19-coefficient stencil. c) Stencil obtained from 
4 coordinate systems, each of them being associated with 3 main diagonals of a cubic cell. 
This stencil incorporates 27 coefficients (Operto et al.; 2007). 
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eliminate the auxiliary wavefields (i.e., the velocity wavefields) following a parsimonious 
staggered-grid method originally developed in the time domain (Luo & Schuster; 1990). The 
parsimonious staggered-grid strategy allows us to minimize the number of wavefield 
components involved in the equation 4, and therefore to minimize the size of the system to 
be solved while taking advantage of the flexibility of the staggered-grid method to discretize 
first-order difference operators. The parsimonious mixed-grid approach originally proposed 
by Hustedt et al. (2004) for the 2D acoustic wave equation was extended to the 3D wave 
equation by Operto et al. (2007) and to a 2D pseudo-acoustic wave equation for transversely 
isotropic media with tilted symmetry axis by Operto et al. (2009). The staggered-grid 
method requires interpolation of the buoyancy in the middle of the FD cell which should be 
performed by volume harmonic averaging (Moczo et al.; 2002). 
The pattern of the impedance matrix inferred from the 3D mixed-grid stencil is shown in 
Figure 2. The bandwidth of the matrix is of the order of N2

 (N denotes the dimension of a 3D 
cubic N 3 domain) and was kept minimal thanks to the use of low-order accurate stencils. 
 

1

65

129

193

257

321

385

449

1 65 129 193 257 321 385 449
Column number of impedance matrix

 
Fig. 2. Pattern of the square impedance matrix discretized with the 27-point mixed-grid 
stencil (Operto et al.; 2007). The matrix is band diagonal with fringes. The bandwidth is 
O(2N1N2) where N1 and N2 are the two smallest dimensions of the 3D grid. The number of 
rows/columns in the matrix is N1 × N2 × N3. In the figure, N1 = N2 = N3 = 8 

3.2 Anti-lumped mass 
The linear combination of the rotated stencils in the mixed-grid approach is complemented 
by the distribution of the mass term ω2/κ in equation 2 over the different nodes of the 
mixed-grid stencil to mitigate the numerical dispersion: 

 
2

2
000 1 2 3 4

000 0 1 2 3
,m m m m

p p p pp w w w wω ω
κ κ κ κ κ

⎛ ⎞⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤+ + +⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎜ ⎟⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎝ ⎠
⇒  (9) 

where 
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 2 3 4
1 1.

6 12 8
m m m

m
w w ww + + + =  (10) 

In equation 9, the different nodes of the 27-point stencils are labelled by indices lmn where 
l,m,n ∈ {−1, 0,1} and 000 denotes the grid point in the middle of the stencil. 
We used the notations 
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This anti-lumped mass strategy is opposite to mass lumping used in finite element methods 
to make the mass matrix diagonal. The anti-lumped mass approach, combined with the 
averaging of the rotated stencils, allows us to minimize efficiently the numerical dispersion 
and to achieve an accuracy representative of 4th-order accurate stencil from a linear 
combination of 2nd-order accurate stencils. The anti-lumped mass strategy introduces four 
additional weighting coefficients wm1, wm2, wm3 and wm4, equations 9 and 10. The coefficients 
w1, w2, w3, wm1, wm2, wm3 and wm4 are determined by minimization of the phase-velocity 
dispersion in infinite homogeneous medium. Alternatives FD methods for designing 
optimized FD stencils can be found in Holberg (1987); Takeuchi and Geller (2000). 

3.3 Numerical dispersion and anisotropy 
The dispersion analysis of the 3D mixed-grid stencil was already developed in details in 
Operto et al. (2007). We focus here on the sensitivity of the accuracy of the mixed-grid 
stencil to the choice of the weighting coefficients w1, w2, w3, wm1, wm2, wm3. We aim to design 
an accurate stencil for a discretization criterion of 4 grid points per minimum propagated 
wavelength. This criterion is driven by the spatial resolution of full waveform inversion, 
which is half a wavelength. To properly sample subsurface heterogeneities, the size of 
which is half a wavelength, four grid points per wavelength should be used according to 
Shannon’s theorem. 
Inserting the discrete expression of a plane wave propagating in a 3D infinite homogeneous 
medium of wave speed c and density equal to 1 in the wave equation discretized with the 
mixed-grid stencil gives for the normalized phase velocity (Operto et al.; 2007): 

 32
1

2(3 ) (6 ) (3 3 ) ,
3 42ph

wG wv w C C B A B C
Jπ

= − + − − + − + −  (11) 

where J = (wm1 + 2wm2C + 4wm3B + 8wm4A) with 

cos cos cos ,                               
cos cos cos cos cos cos ,
cos cos cos .                        
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and a = 2
G
π

 cosφcos θ; b = 2
G
π

 cosφsin θ; c = 2
G
π

 sinφ. Here, the normalized phase velocity is 
the ratio between the numerical phase velocity ω/k and the wave speed c. G = h

λ  = 2
kh
π

 is the 
number of grid points per wavelength λ. φ and θ are the incidence angles of the plane wave. 
We look for the 5 independent parameters wm1, wm2, wm3, w1, w2 which minimize the least-
squares norm of the misfit (1. − phv ). The two remaining weighting coefficients wm4 and w3 
are inferred from equations 8 and 10, respectively. We estimated these coefficients by a 
global optimization procedure based on a Very Fast Simulating Annealing algorithm (Sen & 
Stoffa; 1995). We minimize the cost function for 5 angles φ and θ spanning between 0 and 
45°and for different values of G. 
In the following, the number of grid points for which phase velocity dispersion is minimized 
will be denoted by Gm. The values of the weighting coefficients as a function of Gm are given in 
Table 1. For high values of Gm, the Cartesian stencil has a dominant contribution (highlighted 
by the value of w1), while the first rotated stencil has the dominant contribution for low values 
of Gm as shown by the value of w2. The dominant contribution of the Cartesian stencil for large 
values of Gm is consistent with the fact that it has a smaller spatial support (i.e., 2 × h) than the 
rotated stencils and a good accuracy for G greater than 10 (Virieux; 1986). The error on the 
phase velocity is plotted in polar coordinates for four values of G (4, 6, 8, 10) and for Gm=4 in 
Figure 3a. We first show that the phase velocity dispersion is negligible for G=4, that shows the 
efficiency of the optimization. However, more significant error (0.4 %) is obtained for 
intermediate values of G (for example, G=6 in Figure 3a). This highlights the fact that the 
weighting coefficients were optimally designed to minimize the dispersion for one grid 
interval in homogeneous media. We show also the good isotropy properties of the stencil, 
shown by the rather constant phase-velocity error whatever the direction of propagation. The 
significant phase-velocity error for values of G greater than Gm prompt us to simultaneously 
minimize the phase-velocity dispersion for four values of G: Gm= 4,6,8,10 (Figure 3b). We show 
that the phase-velocity error is now more uniform over the values of G and that the maximum 
phase-velocity-error was reduced (0.25 % against 0.4 %). However, the nice isotropic property 
of the mixed-grid stencil was degraded and the phase-velocity dispersion was significantly 
increased for G=4. We conclude that the range of wavelengths propagated in a given medium 
should drive the discretization criterion used to infer the weighting coefficients of the mixed 
grid stencil and that a suitable trade-off should be found between the need to manage the 
heterogeneity of the medium and the need to minimize the error for a particular wavelength. 
Of note, an optimal strategy might consist of adapting locally the values of the weighting 
coefficients to the local wave speed during the assembling of the impedance matrix. This 
strategy was not investigated yet. 
 

Gm 4,6,8,10 4 8 10 20 40
wm1 0.4966390 0.5915900 0.5750648 0.7489436 0.7948160 0.6244839
wm2 7.51233E-02 4.96534E-02 5.76759E-02 1.39044E-02 3.71392E-03 5.06646E-02
wm3 4.38464E-03 5.10851E-03 5.56914E-03 6.38921E-03 5.54043E-03 1.42369E-03
wm4 6.76140E-07 6.14837E-03 1.50627E-03 1.13699E-02 1.45519E-02 6.8055E-03
w1 5.02480E-05 8.8075E-02 0.133953 0.163825 0.546804 0.479173
w2 0.8900359 0.8266806 0.7772883 0.7665769 0.1784437 0.2779923
w3 0.1099138 8.524394E-02 8.87589E-02 6.95979E-02 0.2747527 0.2428351  

Table 1. Coefficients of the mixed-grid stencil as a function of the discretization criterion Gm 

for the minimization of the phase velocity dispersion. 
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Fig. 3. Phase-velocity dispersion shown in spherical coordinates for four values of G. (a) The 
phase-velocity dispersion was minimized for G = 4. (b) the phase-velocity dispersion was  
minimized for 4 values of G: 4, 6, 8 and 10. 

Comparison between numerical and analytical pressure monochromatic wavefields computed 
in a homogeneous medium of wave speed 1.5 km/s and density 1000 kg/m3 confirms the 
former theoretical analysis (Figure 4). The frequency is 3.75 Hz corresponding to a propagated 
wavelength of 400 m. The grid interval for the simulation is 100 m corresponding to G = 4. 
Simulations were performed when the weighting coefficients of the mixed-grid stencils are 
computed for Gm = 4 and Gm = {4, 6, 8,10}. The best agreement is obtained for the weighting 
coefficients associated with Gm = 4 as expected from the dispersion analysis. 
 

2 3

D
ep

th
 (k

m
)

Pr
es

su
re

 w
av

ef
ie

ld
 (r

ea
l p

ar
t)

Pr
es

su
re

 w
av

ef
ie

ld
 (r

ea
l p

ar
t)

b)

c)

a)

Gm = 4

Gm = 4,6,8,10

0 1 2 3 4 5 6 7 8 9 10 11 12

0

0 1 2 3 4 5 6 7 8 9 10 11 12

0

Y (km)

Y (km)

 
Fig. 4. (a) Real part of a 3.75-Hz monochromatic wavefield computed with the mixed-grid 
stencil in a 3D infinite homogeneous medium. The explosive point source is at x=2 km, y=1 
km, z=2 km. (b-c) Comparison between the analytical (gray) and the numerical solution 
(black) for a receiver line oriented in the Y direction across the source position. The thin 
black line is the difference. The amplitudes were corrected for 3D geometrical spreading.  
(b) Gm = 4, 6, 8, 10. (c) Gm = 4. 
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3.4 Boundary conditions 
In seismic exploration, two boundary conditions are implemented for wave modelling: 
absorbing boundary conditions to mimic an infinite medium and free surface conditions on 
the top side of the computational domain to represent the air-solid or air-water interfaces. 

3.4.1 PML absorbing boundary conditions 
We use Perfectly-Matched Layers (PML) absorbing boundary conditions (Berenger; 1994) to 
mimic an infinite medium. In the frequency domain, implementation of PMLs consists of 
applying in the wave equation a new system of complex-valued coordinates x  defined by 
(e.g., Chew & Weedon; 1994): 

 1.
( )xx x xξ

∂ ∂
=

∂ ∂
 (12) 

In the PML layers, the damped wave equation writes: 

 
2 1 ( ) 1 ( ) 1 ( ) ( , ) ( , ),

( ) ( ) ( ) ( ) ( ) ( ) ( )x x y y z z

b b b p s
x x x x y y y y z z z z

ω ω ω
κ ξ ξ ξ ξ ξ ξ

⎡ ⎤∂ ∂ ∂ ∂ ∂ ∂
+ + + = −⎢ ⎥

∂ ∂ ∂ ∂ ∂ ∂⎢ ⎥⎣ ⎦

x x x x x
x

 (13) 

where ξx(x) = 1 + iγx(x)/ω and γx(x) is a 1D damping function which defines the PML 
damping behavior in the PML layers. These functions differ from zero only inside the PML 
layers. In the PML layers, we used ( )2( ) 1 ( )pml

L x
Lx c cos πγ −= −  where L denotes the width of 

the PML layer and x is a local coordinate in the PML layer whose origin is located at the 
outer edges of the model. The scalar cpml is defined by trial and error depending on the width 
of the PML layer. The procedure to derive the unsplitted second-order wave equation with 
PML conditions, equation 13, from the first-order damped wave equation is given in Operto 
et al. (2007). 
The absorption of the PML layers at grazing incidence can be improved by using 
convolutional PML (C-PML) (Kuzuoglu & Mittra; 1996; Roden & Gedney; 2000; Komatitsch 
& Martin; 2007). In the C-PML layers, the damping function ξx(x) becomes: 

 ( ) ,x
x x

x

dx i
i

ξ κ
α ω

= +
+

 (14) 

where dx and αx are generally quadratic and linear functions, respectively. Suitable 
expression for κx, dx and αx are discussed in Kuzuoglu & Mittra (1996); Collino & Monk 
(1998); Roden & Gedney (2000); Collino & Tsogka (2001); Komatitsch & Martin (2007); 
Drossaert & Giannopoulos (2007). 

3.4.2 Free surface boundary conditions 
Planar free surface boundary conditions can be simply implemented in the frequency 
domain with two approaches. In the first approach, the free surface matches the top side of 
the FD grid and the pressure is forced to zero on the free surface by using a diagonal 
impedance matrix for rows associated with collocation grid points located on the top side of 
the FD grid. Alternatively, the method of image can be used to implement the free surface 
along a virtual plane located half a grid interval above the topside of the FD grid (Virieux; 
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1986). The pressure is forced to vanish at the free surface by using a ficticious plane located 
half a grid interval above the free surface where the pressure is forced to have opposite 
values to that located just below the free surface. 
From a computer implementation point of view, an impedance matrix is typically built row 
per row. One row of the linear system can be written as: 

 
1 2 3 1 2 3

3 2 1

000
1,1 1,1 1,1

i i i i i i
i i i

a p s
=− =− =−

=∑ ∑ ∑  (15) 

where 
1 2 3i i ia  are the coefficients of the 27-point mixed grid stencil and 000 denote the indices 

of the collocation coefficient located in the middle of the stencil in a local coordinate system. 
The free surface boundary conditions writes: 

 
2 3 2 31 0 ,i i i ip p− = −  (16) 

for i2 = {−1, 0,1} and i3 = {−1, 0,1}. The indices i1=-1 and i1=0 denotes here the grid points just 
above and below the free surface, respectively. 
For a grid point located on the top side of the computational domain (i.e., half a grid interval 
below free surface), equation 15 becomes: 

 ( )2 3 2 3 2 3 2 3 2 3
3 2 3 2

1 1 0 1 0 000
1,1 1,1 1,1 1,1

,i i i i i i i i i i
i i i i

a p a a p s−
=− =− =− =−

+ − =∑ ∑ ∑ ∑  (17) 

where 
2 31i ip−  has been replaced by the opposite value of 

2 30 i ip  according to equation 16. 
Our practical experience is that both implementation of free surface boundary conditions 
give results of comparable accuracy. Of note, rigid boundary conditions (zero displacement 
perpendicular to the boundary) or periodic boundary conditions (Ben-Hadj-Ali et al.; 2008) 
can be easily implemented with the method of image following the same principle than for 
the free surface condition. 

3.5 Source implementation on coarse grids 
Seismic imaging by full waveform inversion is initiated at frequency as small as possible to 
mitigate the non linearity of the inverse problem. The starting frequency for modelling can 
be as small as 2 Hz which can lead to grid intervals as large as 200 m. In this framework, 
accurate implementation of point source at arbitrary position in a coarse grid is critical. One 
method has been proposed by Hicks (2002) where the point source is approximated by a 
windowed Sinc function. The Sinc function is defined by 

 ( )( ) ,sin xsinc x
x
π

π
=  (18) 

where x = (xg − xs), xg denotes the position of the grid nodes and xs denotes the position of the 
source. The Sinc function is tapered with a Kaiser function to limit its spatial support. For 
multidimensional simulations, the interpolation function is built by tensor product 
construction of 1D windowed Sinc functions. If the source positions matches the position of 
one grid node, the Sinc function reduces to a Dirac function at the source position and no 
approximation is used for the source positioning. If the spatial support of the Sinc function  
 



 Acoustic Waves 

 

138 

2 3

D
ep

th
 (k

m
)

Pr
es

su
re

 w
av

ef
ie

ld
 (r

ea
l p

ar
t)

Pr
es

su
re

 w
av

ef
ie

ld
 (r

ea
l p

ar
t)

0 1 2 3 4 5 6 7 8 9 10 11 12

0

Y (km)

0 1 2 3 4 5 6 7 8 9 10 11 12

0

Y (km)

b)

c)

a)

 
Fig. 5. a) Real part of a 3.75-Hz monochromatic wavefield in a homogeneous half space. (b) 
Comparison between numerical (black) and analytical (gray) solutions at receiver positions. 
The Sinc interpolation with 4 coefficients was used for both the source implementation and 
the extraction of the solution at the receiver positions on a coarse FD grid. 
intersects a free surface, part of the Sinc function located above the free surface is mirrored 
into the computational domain with a reverse sign following the method of image. Vertical 
force can be implemented in a straightforward way by replacing the Sinc function by its 
vertical derivative. The same interpolation function can be used for the extraction of the 
pressure wavefield at arbitrary receiver positions. The accuracy of the method of Hicks 
(2002) is illustrated in Figure 5 which shows a 3.5-Hz monochromatic wavefield computed 
in a homogeneous half space. The wave speed is 1.5 km/s and the density is 1000 kg/m3. 
The grid interval is 100 m. The free surface is half a grid interval above the top of the FD 
grid and the method of image is used to implement the free surface boundary condition. 
The source is in the middle of the FD cell at 2 km depth. The receiver line is oriented in the Y 
direction. Receivers are in the middle of the FD cell in the horizontal plane and at a depth of 
6 m just below the free surface. This setting is representative of a ocean bottom survey 
where the receiver is on the sea floor and the source is just below the sea surface (in virtue of 
the spatial reciprocity of the Green functions, sources are processed here as receivers and 
vice versa). Comparison between the numerical and the analytical solutions at the receiver 
positions are first shown when the source is positioned at the closest grid point and the 
numerical solutions are extracted at the closest grid point (Figure 5b). The amplitude of the 
numerical solution is strongly overestimated because the numerical solution is extracted at a 
depth of 50 m below free surface (where the pressure vanishes) instead of 6 m. Second, a 
significant phase shift between numerical and analytical solutions results from the 
approximate positioning of the sources and receivers. In contrast, a good agreement 
between the numerical and analytical solutions both in terms of amplitude and phase is 
shown in Figure 5c where the source and receiver positioning were implemented with the 
windowed Sinc interpolation. 

3.6 Resolution with the sparse direct solver MUMPS 
To solve the sparse system of linear equations, equation 4, we used the massively parallel 
direct MUMPS solver designed for distributed memory platforms. The reader is referred to 
Guermouche et al. (2003); Amestoy et al. (2006); MUMPS team (2009) for an extensive 
description of the method and their underlying algorithmic aspects. The MUMPS solver is 
based on a multifrontal method (Duff et al.; 1986; Duff and Reid; 1983; Liu; 1992), where the 
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resolution of the linear system is subdivided into 3 main tasks. The first one is an analysis 
phase or symbolic factorization. Reordering of the matrix coefficients is first performed in 
order to minimize fill-in. We used the METIS algorithm which is based on a hybrid 
multilevel nested-dissection and multiple minimum degree algorithm (Karypis & Kumar; 
1999). Then, the dependency graph which describes the order in which the matrix can be 
factored is estimated as well as the memory required to perform the subsequent numerical 
factorization. The second task is the numerical factorization. The third task is the solution 
phase performed by forward and backward substitutions. During the solution phase, 
multiple-shot solutions can be computed simultaneously from the LU factors taking 
advantage of threaded BLAS3 (Basic Linear Algebra Subprograms) library and are either 
assembled on the host or kept distributed on the processors for subsequent parallel 
computations. 
We performed the factorization and the solutions phases in complex arithmetic single 
precision. To reduce the condition number of the matrix, a row and column scaling is 
applied in MUMPS before factorization. The sparsity of the matrix and suitable equilibration 
have made single precision factorization accurate enough so far for the 2D and 3D problems 
we tackled. If single precision factorization would be considered not accurate enough for 
very large problems, an alternative approach to double precision factorization may be the 
postprocessing of the solution by a simple and fast iterative refinement performed in double 
precision (Demmel (1997), pages 60-61 and Langou et al. (2006); Kurzak & Dongarra (2006)). 
The main two bottlenecks of sparse direct solver is the time and memory complexity and the 
limited scalability of the LU decomposition. By complexity is meant the increase of the 
computational cost (either in terms of elapsed time or memory) of an algorithm with the size 
of the problem, while scalability describes the ability of a given algorithm to use an 
increasing number of processors. The theoretical memory and time complexity of the LU 
decomposition for a sparse matrix, the pattern of which is shown in Figure 2, is O(N4) and 
O(N6), respectively, where N is the dimension of a 3D cubic N3 grid. 
We estimated the observed memory complexity and scalability of the LU factorization by 
means of numerical experience. The simulations were performed on the SGI ALTIX ICE 
supercomputer of the computer center CINES (France). Nodes are composed of two quad-
core INTEL processors E5472. Each node has 30 Gbytes of useful memory. We used two MPI 
process per node and four threads per MPI process. In order to estimate the memory 
complexity, we performed simulations on cubic models of increasing dimension with PML 
absorbing boundary conditions along the 6 sides of the model. The medium is homogeneous 
and the source is on the middle of the grid. Figure 6a shows the memory required to store 
the complex-valued LU factors as a function of N. Normalization of this curve by the real 
memory complexity will lead to a horizontal line. We found an observed memory 
complexity of O(Log2(N)N3.9) (Figure 6b) which is consistent with the theoretical one. In 
order to assess the scalability of the LU factorization, we consider a computational FD grid 
of dimensions 177 x 107 x 62 corresponding to 1.17 millions of unknowns. The size of the 
grid corresponds to a real subsurface target for oil exploration at low frequency (3.5 Hz). We 
computed a series of LU factorization using an increasing number of processors Np, starting 
with 

refpN  = 2. The elapsed time of the LU factorization (TLU) and the parallelism efficiency 
(TLU(

refpN ) × 
refpN  /TLU(Np) × Np) are shown in Figure 6(c-d). The efficiency drops rapidly 

as the number of processors increased, down to a value of 0.5 for NP = 32 (Figure 6d). This 
clearly indicates that the most suitable platform for sparse direct solver should be composed 



 Acoustic Waves 

 

140 

of a limited number of nodes with a large amount of shared memory. The efficiency of the 
multi-r.h.s solution phase is significantly improved  by using multithreaded BLAS3 library. 
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Fig. 6. (a-b) Memory complexity of LU factorization. (a) Memory in Gbytes required for 
storage of LU factors. (b) Memory required for storage of LU factors divided by Log2N.N3.9. 
N denotes the dimension of a 3D N3 grid. The largest simulation for N = 207 corresponds to 
8.87 millions of unknowns. (c-d) Scalability analysis of LU factorization. (c) Elapsed time for 
LU factorization versus the number of MPI processes. (d) Efficiency. 

3.7 Numerical examples 
We present acoustic wave modelling in two realistic 3D synthetic velocity models, the 
SEG/EAGE overthrust and salt models, developed by the oil exploration community to 
assess seismic modelling and imaging methods (Aminzadeh et al.; 1997). The simulation 
was performed on the SGI ALTIX ICE supercomputer just described. 

3.7.1 3D EAGE/SEG overthrust model 
The 3D SEG/EAGE Overthrust model is a constant density onshore acoustic model covering 
an area of 20 km × 20 km × 4.65 km (Aminzadeh et al.; 1997)(Figure 7a). From a geological 
viewpoint, it represents a complex thrusted sedimentary succession constructed on top of a 
structurally decoupled extensional and rift basement block. The overthrust model is 
discretized with 25 m cubic cells, representing an uniform mesh of 801 × 801 × 187 nodes. 
The minimum and maximum velocities in the Overthrust model are 2.2 and 6.0 km/s 
respectively. We present the results of a simulation performed with the mixed-grid FD 
method (referred to as FDFD in the following) for a frequency of 7 Hz and for a source 
located at x=2.4 km, y=2.4 km and z=0.15 km. The model was resampled with a grid interval 
of 75 m that corresponds to four grid points per minimum wavelength. The size of the 
resampled FD grid is 266 x 266 x 62. PML layers of 8 grid points were added along the 6 
sides of the 3D FD grid. This leads to 6.2 millions of pressure unknowns. For the simulation, 
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we used the weights of the mixed-grid stencil obtained for Gm = 4, 6, 8, 10. These weights 
provided slightly more accurate results than the weights obtained for Gm = 4, in particular 
for waves recorded at long source-receiver offsets. The 7-Hz monochromatic wavefield 
computed with the FDFD method is compared with that computed with a classic O(Δt2,Δx4) 
staggered-grid FD time-domain (FDTD) method where the monochromatic wavefield is 
integrated by discrete Fourier transform within the loop over time steps (Sirgue et al.; 2008) 
(Figure 7). 
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Fig. 7. (a) Overthrust velocity model. (b-c) 7-Hz monochromatic wavefield (real part) 
computed with the FDFD (b) and FDTD (c) methods.(d) Direct comparison between FDFD 
(gray) and FDTD (black) solutions. The receiver line in the dip direction is: (top) at 0.15-km 
depth and at 2.4 km in the cross direction. The amplitudes were corrected for 3D 
geometrical spreading; (bottom) at 2.5-km depth and at 15 km in the cross direction. 
 

We used the same spatial FD grid for the FDTD and FDFD simulations. The simulation 
length was 15 s in the FDTD modelling. We obtain a good agreement between the two 
solutions (Figure 7d). The statistics of the FDFD and FDTD simulations are outlined in Table 
2. The FDFD simulation was performed on 32 MPI processes with 2 threads and 15 Gbytes 
of memory per MPI process. The total memory required by the LU decomposition of the 
impedance matrix was 260 Gbytes. The elapsed time for LU decomposition was 1822 s and 
the elapsed time for one r.h.s was 0.97 s. Of note, we processed efficiently groups of 16 
sources in parallel during the solution step by taking advantage of the multi-rhs 
functionality of MUMPS and the threaded BLAS3 library. The elapsed time for the FDTD 
simulation was 352 s on 4 processors. Of note, C-PML absorbing boundary conditions were 
implemented in the full model during FDTD modelling to mimic attenuation effects   
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Model F (Hz) h(m) nu (106) MLU(Gb) TLU(s) Ts(s) N f d f d
p N f dtd

P Tf dtd(s)
Over. 7 75 6.2 260 1822 0.97 32 4 352
Salt 7.34 50 8.18 402.5 2863 1.4 48 16 211  

Table 2. Statistics of the simulation in the overthrust (top row) and in the salt (bottom row) 
models. F(Hz): frequency; h(m): FD grid interval; nu: number of unknowns; MLU: memory 
used for LU factorization in Gbytes; TLU: elapsed time for factorization; Ts: elapsed time for 
one solution phase; fdfd

pN : number of MPI processors used for FDFD; fdtd
pN : number of MPI 

processors used for FDTD; Tfdtd: elapsed time for one FDTD simulation. 
 

Model Method Pre. (hr) Sol. (hr) Total (hr) Pre. (hr) Sol. (hr) Total (hr)
Over. FDTD 0 21.7 21.7 0 0.96 0.96
Over. FDFD 0.5 0.54 1.04 0.5 0.0134 0.51
Salt FDTD 0 39 39 0 0.94 0.94
Salt FDFD 0.8 0.78 1.58 0.80 0.016 0.816  

Table 3. Comparison between FDTD and FDFD modelling for 32 (left) and 2000 (right) 
processors. The number of sources is 2000. Pre. denotes the elapsed time for the source-
independent task during seismic modelling (i.e., the LU factorization in the FDFD 
approach). Sol. Denotes the elapsed time for multi-r.h.s solutions during seismic modelling 
(i.e., the substitutions in the FDFD approach). 
 

implemented with memory variables. To highlight the benefit of the direct-solver approach 
for multi-r.h.s simulation on a small number of processors, we compare the performances of 
the FDFD and FDTD simulations for 2000 sources (Table 3). If the number of available 
processors is 32, the FDFD method is more than one order of magnitude faster than the 
FDTD one thanks of the efficiency of the solution step of the direct-solver approach. If the 
number of processors equals to the number of sources, the most efficient parallelization of 
the FDTD method consists of assigning one source to one processor and performing the 
FDTD simulation in sequential on each processor. For a large number of processors, the cost 
of the FDFD method is dominated by the LU decomposition (if the 2000 processors are 
splitted into groups of 32 processors, each group being assigned to the processing of 
2000/32 sources) and the computational cost of the two methods is of the same order of 
magnitude. This schematic analysis highlights the benefit of the FDFD method based on 
sparse direct solver to tackle efficiently problems involving few millions of unknowns and 
few thousands of r.h.s on small distributed-memory platforms composed of nodes with a 
large amount of shared memory. 

3.7.2 3D EAGE/SEG salt model 
The salt model is a constant density acoustic model covering an area of 13.5 km × 13.5 km × 
4.2 km (Aminzadeh et al.; 1997)(Figure 8). The salt model is representative of a Gulf Coast 
salt structure which contains salt sill, different faults, sand bodies and lenses. The salt model 
is discretized with 20 m cubic cells, representing an uniform mesh of 676 x 676 x 210 nodes. 
The minimum and maximum velocities in the salt model are 1.5 and 4.482 km/s 
respectively. We performed a simulation for a frequency of 7.34 Hz and for one source 
located at x=3.6 km, y=3.6 km and z = 0.1 km. The model was resampled with a grid interval 
of 50 m corresponding to 4 grid points per minimum wavelength. The dimension of the 
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resampled grid is 270 x 270 x 84 which represents 8.18 millions of unknowns after addition 
of the PML layers. We used the weights of the mixed-grid stencil inferred from Gm = 4, 6, 8, 
10. Results of simulations performed with the FDFD and FDTD methods are compared in 
Figure 8. The length of the FDTD simulation was 15 s. 
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Fig. 8. (a) Salt velocity model. (b-c) 7.33-Hz monochromatic wavefield (real part) computed 
with the FDFD (b) and the FDTD (c) methods. (d) Direct comparison between FDFD (gray) 
and FDTD (black) solutions. The receiver line in the dip direction is: (top) at 0.1-km depth 
and at 3.6 km in the cross direction. The amplitudes were corrected for 3D geometrical 
spreading. (bottom) at 2.5-km depth and at 15 km in the cross direction. 
The statistics of the simulation are outlined in Table 2. We obtain a good agreement between 
the two solutions (Figure 8d) although we show a small phase shift between the two 
solutions at offsets greater than 5 km. This phase shift results from the propagation in the 
high-velocity salt body. This phase shift is higher when the FDFD is performed with weights 
inferred from Gm = 4. The direct-solver modelling was performed on 48 MPI process using 2 
threads and 15 Gbytes of memory per MPI process. The memory and the elapsed time for 
the LU decomposition were 402 Gbytes and 2863 s, respectively. The elapsed time for the 
solution step for one r.h.s was 1.4 s when we process 16 rhs at a time during the solution 
step in MUMPS. The elapsed time for one FDTD simulation on 16 processors was 211 s. As 
for the overthrust model, the FDFD approach is more than one order of magnitude faster 
than the FDTD one when a large number of r.h.s (2000) and a small number of processors 
(48) are used (Table 3). For a number of processors equal to the number of r.h.s, the two 
approaches have the same cost. Of note, in the latter configuration (NP=Nrhs), the cost of the 
FDFD modelling and of the FDTD modelling are almost equal in the case of the salt model 
(0.94 h versus 0.816 h) while the FDFD modelling was almost two times faster in the case of 
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the smaller overthrust case study (0.96 h versus 0.51 h). This trend simply highlights the 
higher scalability of the FDTD method. 

4. Finite-element Discontinuous Galerkin method in the frequency domain 
We just presented applications of the FD frequency-domain method in weakly-contrasted 
media with flat topography where the FD where the FD method is expected to perform well. 
However, in land exploration seismology, there is a need to perform elastic wave modelling 
in area of complex topography such as foothills and thrust belts (Figure 9). Moreover, 
onshore targets often exhibit weathered layers with very low wave speeds in the near 
surface which require a locally-refined discretization for accurate modelling. In shallow 
water environment, a mesh refinement is also often required near the sea floor for accurate 
modelling of guided and interface waves near the sea floor. Accurate modelling of acoustic 
and elastic waves in presence of complex boundaries of arbitrary shape and the local 
adaptation of the discretization to local features such as weathered near surface layers or sea 
floor were two of our motivations behind the development of a discontinuous finite element 
method on unstructured meshes for acoustic and elastic wave modelling. 
 

 
Fig. 9. Application of the DG method in seismic exploration. (a) Velocity model 
representative of a foothill area affected by a hilly relief and a weathered layer in the near 
surface. (b) Close-up of the unstructured triangular mesh locally refined near the surface. (c) 
Example of monochromatic pressure wavefield. 

4.1 hp-adaptive Discontinuous Galerkin discretization 
In the finite-element framework, the wavefields are approximated by means of local 
polynomial basis functions defined in volume elements. In the following, we adopt the 
nodal form of the DG formulation, assuming that the wavefield vector is approximated in 
triangular or tetrahedral elements for 2D and 3D problems, respectively: 

 
1

( , , , , ) ( , , , ) ( , , , ),
id

i ij j j j ij
j

u x y z t u x y z x y zω ω ϕ ω
=

= ∑  (19) 
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where u  is the wavefield vector of components u  = (p,vx,vy,vz). i is the index of the element 
in an unstructured mesh. iu (ω,x,y,z) denotes the wavefield vector in the element i and (x,y, 
z) are the coordinates inside the element i. In the framework of the nodal form of the DG 
method, φij denotes Lagrange polynomial and di is the number of nodes in the element i. The 
position of the node j in the element i is denoted by the local coordinates (xj,yj,zj). 
In the following, the first-order acoustic velocity-pressure system, equation 1, will be written 
in a pseudo-conservative form: 

 
{ }

( )
, ,

,
x y z

u u sθ θ
θ∈

= ∂ +∑M N  (20) 
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Nθ u  are linear fluxes and s  is the source vector. 
The first step in the finite-element formulation is to obtain the weak form of the first-order 
acoustic velocity-stress system by multiplying equation 20 by a test function φir and 
integration over the element volume Vi 

 
{ }

( )
, ,

,
i i i

ir i i ir i ir iV V V
x y z

u dV u dV s dVθ θ
θ

ϕ ϕ ϕ
∈

= ∂ +∑∫ ∫ ∫M N  (23) 

where r ∈ [1,di ]. In the framework of Galerkin methods, we used the same function for the 
test function and the shape function, equation 19. 
Integration by parts of the right hand side of equation 23 leads to: 

 
{ }
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x y z x y z

u dV u dV n u dS s dVθ θ θ θ
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⎜ ⎟
⎝ ⎠

∑ ∑∫ ∫ ∫ ∫M N N  (24) 

where Si is the surface of the element i and n  = (nx,ny,nz) is the outward pointing unit 
normal vector with respect to the surface i. We recognize in the second term of the right-
hand side of equation 24 the numerical flux fi defined by: 

 
{ }, ,

· i i
x y z

n uθ θ
θ∈

= ∑n f N  (25) 

A suitable expression fi/k of the numerical flux fi should guarantee the consistency between 
the values of the wavefield computed at a node shared by two neighbor elements i and k.  
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In this study we used centered fluxes for their energy conservation properties (Remaki; 
2000): 

 / 2
i k

i k i
u u+⎛ ⎞= ⎜ ⎟

⎝ ⎠
f f  (26) 

Assuming constant physical properties per element and plugging the expression of the 
centered flux, equation 26, in equation 24 give: 
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( ) ( )
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1 ,
2i i ik i

i

i ir i ir i ir ik i k ir iV V S V
k Nx y z

u dV u dV u u dS s dVθ θ
θ

ϕ ϕ ϕ ϕ
∈∈

= − ∂ + + +∑ ∑∫ ∫ ∫ ∫M N P  (27) 

where k ∈ Ni represents the elements k adjacent to the element i, Sik is the face between 
elements i and k; and P is defined as follow: 

 
{ }, ,

,ik ik
x y z

n θ θ
θ∈

= ∑P N  (28) 

where nikθ is the component along the θ axis of the unit vector ikn  of the face Sik. 
Equations 27 shows that the computation of the wavefield in one element requires only 
information from the directly neighboring elements. This highlights clearly the local nature 
of the DG scheme. If we replace the expression of iu  and ku  by their decomposition on the 
polynomial basis, equation 19, we get: 

 ( ) ( )
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⎡ ⎤⊗ = − ⊗ + ⊗ + ⊗ + ⊗⎣ ⎦∑ ∑M K N E Q F Q G I K  (29) 

where the coefficients rj of the mass matrix Ki, of the stiffness matrix Ei and of the flux 
matrices Fi and Gi are respectively given by: 
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 (30) 

In equation 29, iu  and is  gather all nodal values for each component of the wavefield and 
source. I is the identity matrix and ⊗ is the tensor product of two matrices A and B: 
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where (n × m) denotes the dimensions of the matrix A. The four matrices Ki, Ei, Fik and Gik 

are computed by exact numerical integration. 
It is worth noting that, in equation 30, arbitrary polynomial order of the shape functions can 
be used in elements i and k indicating that the approximation orders are totally decoupled 
from one element to another. Therefore, the DG allows for varying approximation orders in 
the numerical scheme, leading to the p-adaptivity. 
Equation 30 can be recast in matrix form as: 

  =A u s  (32) 

In contrast to the parsimonious FD formulation, we do not eliminate the auxiliary velocity 
wavefields from the system because the elimination procedure is a cumbersome task in the 
DG formulation. 

4.2 Which interpolation orders? 
For the shape and test functions, we used low-order Lagrangian polynomials of orders 0, 1 
and 2, referred to as Pk, k ∈ 0, 1, 2 in the following (Brossier; 2009; Etienne et al.; 2009). Let’s 
remind that our motivation behind seismic modelling is to perform seismic imaging of the 
subsurface by full waveform inversion, the spatial resolution of which is half the propagated 
wavelength and that the physical properties of the medium are piecewise constant per 
element in our implementation of the DG method. The spatial resolution of the FWI and the 
piecewise constant representation of the medium direct us towards low-interpolation orders 
to achieve the best compromise between computational efficiency, solution accuracy and 
suitable discretization of the computational domain. The P0 interpolation (or finite volume 
scheme) was shown to provide sufficiently-accurate solution on 2D equilateral triangular 
mesh when 10 cells per minimum propagated wavelength are used (Brossier et al.; 2008), 
while 10 cells and 3 cells per propagated wavelengths provide sufficiently-accurate 
solutions on unstructured triangular meshes with the P1 and the P2 interpolation orders, 
respectively (Brossier; 2009). Of note, the P0 scheme is not convergent on unstructured 
meshes when centered fluxes are used (Brossier et al.; 2008). This prevents the use of the P0 

scheme in 3D medium where uniform tetrahedral meshes do not exist (Etienne et al.; 2008). 
A second remark is that the finite volume scheme on square cell is equivalent to second-
order accurate FD stencil (Brossier et al.; 2008) which is consistent with a discretization 
criterion of 10 grid points per wavelength (Virieux; 1986). Use of interpolation orders greater 
than 2 would allow us to use coarser meshes for the same accuracy but these coarser meshes 
would lead to an undersampling of the subsurface model during imaging. On the other 
hand, use of high interpolation orders on mesh built using a criterion of 4 cells par 
wavelength would provide an unnecessary accuracy level for seismic imaging at the 
expense of the computational cost resulting from the dramatic increase of the number of 
unknowns in the equation 32. 
The computational cost of the LU decomposition depends on the numerical bandwidth of 
the matrix, the dimension of the matrix (i.e., the number of rows/columns) and the number 
of non-zero coefficients per row (nz). The dimension of the matrix depends in turn of the 
number of cell (ncell), of the number of nodes per cell (nd) and the number of wavefield 
components (nwave) (3 in 2D and 4 in 3D). The number of nodes in a 2D triangular and 3D 
tetrahedral element is given by Hesthaven and Warburton (2008): 
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where k denotes the interpolation order (Figure 10). 
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Fig. 10. Number of P0, P1, P2 nodes in a triangular (a) and tetrahedral (b) element. 

The numerical bandwidth is not significantly impacted by the interpolation order. The 
dimension of the matrix and the number of non zero elements per row of the impedance 
matrix are respectively given by nwave ×nd ×ncell and (1+nneigh)×nd ×nder +1, where nneigh is the 
number of neighbor cells (3 in 2D and 4 in 3D) and nder is the number of wavefield 
components involved in the r.h.s of the velocity-pressure wave equation, equation 20. Table 
4 outlines the number of non zero coefficients per row for the mixed-grid FD and DG 
methods. Increasing the interpolation order will lead to an increase of the number of non 
zero coefficients per row, a decrease of the number of cells in the mesh and an increase of 
the number of nodes in each element. The combined impact of the 3 parameters nz, ncell, nd on 
the computational cost of the DG method makes difficult the definition of the optimal 
discretization of the frequency-domain DG method. The medium properties should rather 
drive us towards the choice of a suitable discretization. To illustrate this issue, we perform a 
numerical experiment with two end-member models composed of an infinite homogeneous 
and a two-layer model with a sharp velocity contrast at the base of a thin low-velocity layer. 
Both models have the same dimension (4 km x 4 km). The top layer of the two-layer model 
has a thickness of 400 m and a wave speed of 300 m/s, while the bottom layer has a wave 
speed of 1.5 km/s. During DG modelling, the models were successively discretized with 10 
cells per minimum wavelength on an equilateral mesh for the P0 interpolation, 10 cells per 
local wavelength on unstructured triangular mesh for the P1 interpolation and 3 cells per 
local wavelength on unstructured triangular mesh for the P2 interpolation. A fourth 
simulation was performed where P1 interpolation is applied in the top layer while P0 

interpolation is used in the bottom layer. Table 5 outlines the time and memory requirement 
of the LU factorization and multi-r.h.s solve for the FD and DG methods. Among the 
different DG schemes, the P2 scheme is the most efficient one in terms of computational time 
and memory for the two-layer model. This highlights the benefit provided by the decreasing 
of the number of elements in the mesh resulting from the h adaptivity coupled with a coarse 
discretization criterion of 3 cells per local wavelength. The mixed P0-P1 scheme performs 
reasonably well in the two-layer model although it remains less efficient than the P2 scheme. 
In contrast, the performances of the P0 and P2 schemes are of the same order in the 
homogeneous model. This highlights that P2 scheme does not provide any benefit if the h 
adaptivity is not required. The P1 scheme is the less efficient one in homogeneous media 
because it relies on the same discretization criterion than the P0 scheme but involves an 
increasing number of nodes per element. As expected, the FD method is the most efficient 
one in the homogeneous model thanks to the parsimonious formulation which 
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FD2D DG2D
P0

DG2D
P1

DG2D
P2

FD3D DG3D
P0

DG3D
P1

DG3D
P2

nd 1 1 3 6 1 1 4 10
nz 9 5-9 13-25 24-48 27 6-16 21-61 51-151  

Table 4. Number of nodes per element (nd) and number of non-zero coefficients per row of 
the impedance matrix (nz) for the FD and DG methods. Left: 2D case; Right: 3D case. nz 

depends on the number of wavefield components involved in the r.h.s of the first-order 
wave equation, nder, unlike the parsimonious FD method applied to the second-order wave 
equation. 

Test Resource P0 P1 P0-P1 P2 FD
Cell/point numbers 113 097 136 724 116 363 12 222 9 604
Degrees of freedom 339 291 1 230 516 417 477 219 996 9 604

Homog. TLU (s) 0.7 8.5 0.8 1.5 0.16
MemLU (Gb) 1.34 5.84 1.62 1.49 0.1
Ts (s) 11.6 40.9 13.6 7.2 0.5
Cell/point numbers 2 804 850 291 577 247 303 32 664 232 324
Degrees of freedom 8 414 550 2 624 193 1 416 243 587 952 232 324

Two-lay. TLU (s) 57.5 15.0 6.4 3.4 1.3
MemLU(Gb) 31.68 11.44 5.58 3.02 1.18
Ts (s) 274.3 83.3 46.8 18.9 2.7  

Table 5. Computational ressources required for the forward problem solved with DGs P0, P1, 
P0-P1 and P2 and optimized FD method in two simples cases, on 16 processors. 
Nomenclature: Homog: homogeneous model. Two − lay: two-layer model. TLU: time for LU 
factorization. MemLU: memory required by LU factorization. Ts: time for 116 r.h.s solve. 

involves only the pressure wavefield and the optimized discretization criterion of 4 grid 
points per wavelength. The time and memory costs of the FD and P2-DG methods are of the 
same order in the two-layer model. However, the P2-DG method will be the method of 
choice as soon as sharp boundaries of arbitrary geometries will be present in the model due 
to the geometrical flexibility provided by the unstructured triangular mesh. 

4.3 Boundary conditions and source implementation 
Absorbing boundary conditions are implemented with unsplitted PML in the frequency-
domain DG method (Brossier; 2009) following the same approach than for the FD method 
(see section PML absorbing boundary conditions). Free surface boundary condition is 
implemented with the method of image. A ghost cell is considered above the free surface 
with the same velocity and the opposite pressure components to those below the free 
surface. This allows us to fulfill the zero pressure condition at the free surface while keeping 
the correct numerical estimation of the particle velocity at the free surface. Using these 
particle velocities and pressures in the ghost cell, the pressure flux across the free surface 
interface vanishes, while the velocity flux is twice the value that would have been obtained 
by neglecting the flux contribution above the free surface (see equation 26). As in the FD 
method, this boundary condition has been implemented by modifying the impedance 
matrix accordingly without introducing explicitely the ghost element in the mesh. The rigid 
boundary condition is implemented following the same principle except that the same 
pressure and the opposite velocity are considered in the ghost cell. Concerning the source 
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excitation, the point source at arbitrary positions in the mesh is implemented by means of 
the Lagrange interpolation polynomials for k ≥ 1. This means that the source excitation is 
performed at the nodes of the cell containing the source with appropriate weights 
corresponding to the projection of the physical position of the source on the polynomial 
basis. When the source is located in the close vicinity of a node of a triangular cell, all the 
weights are almost zero except that located near the source. In the case of the P2 

interpolation, a source close to the vertex of the triangular cell is problematic because the 
integral of the P2 basis function over the volume of the cell is zero for nodes located at the 
vertex of the triangle. In this case, no source excitation will be performed (see equation 29). 
To overcome this problem specific to the P2 interpolation, one can use locally a P1 
interpolation in the element containing the source at the expense of the accuracy or 
distribute the source excitation over several elements or express the solution in the form of 
local polynomials (i.e., the so-called modal form) rather than through nodes and 
interpolating Lagrange polynomials (i.e., the so-called nodal form). Another issue is the 
implementation of the source in P0 equilateral mesh. If the source is excited only within the 
element containing the source, a checker-board pattern is superimposed on the wavefield 
solution. This pattern results from the fact that one cell out of two is excited in the DG 
formulation because the DG stencil does not embed a staggered-grid structure (the 
unexcited grid is not stored in staggered-grid FD methods; see Hustedt et al. (2004) for an 
illustration). To overcome this problem, the source can be distributed over several elements 
of the mesh or P1 interpolation can be used in the area containing the sources and the 
receivers, while keeping P0 interpolation in the other parts of the model (Brossier et al.; 
2008). Of note, use of unstructured meshes together with the source excitation at the 
different nodes of the element contribute to mitigate the checker-board pattern in the in P1 

and P2 schemes. The same procedure as for the source is used to extract the wavefield 
solution at arbitrary receiver positions. 

4.4 Numerical examples 
We present below two applications involving highly-contrasted media where the DG 
method should outperform the FD method thanks to the geometric flexibility provided by 
unstructured triangular or tetrahedral meshes to implement boundary conditions along 
interfaces of arbitrary shape. 

4.4.1 Acoustic wave modelling in presence of cavities 
We design a model that mimics a perfect 2D oceanic waveguide of dimension 20 000 m x  
2 000 m. Applications of modelling ocean waveguide are for instance acoustic imaging of 
the oceanic currents, continuous monitoring of fish populations and localization of 
scattering sources. A free surface and a rigid surface explicit boundary conditions are 
implemented on the top and on the bottom of the water column to mimic the sea surface 
and the sea floor, respectively. A pressure source, located at position (x = 1000m; z = 1000m), 
propagates the direct wave in the homogeneous water layer as well as waves which are 
multi-reflected from the top and the bottom boundaries. Result of the simulation with the 
DG-P2 scheme at 10 Hz is shown in Figure 11a. In a second simulation, we added a circular 
cavity of diameter 400 m in the center of the waveguide. A free surface boundary condition 
is implemented along the contour of the cavity. The unstructured triangular meshing 
around the cavity allows for an accurate discretization of the circular cavity (Figure 12). 
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Simulation in the waveguide with the cavity is shown in Figure 11b. Comparison with the 
simulation performed in the homogeneous waveguide (Figure 11a) highlights the strong 
interaction between the multi-reflected wavefield with the scattering source and the intrinsic 
non linearity of oceanic imaging resulting from complex wavepaths in the water column. 
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Fig. 11. Pressure wavefield in the oceanic waveguide without (a) and with (b) a circular 
cavity in the water column. Note that two 500-m layers of PML absorbing conditions are 
implemented at the two ends of the model. 
 

 
Fig. 12. Wave guide - Cavity model mesh: zoom on the cavity position. 

4.4.2 Acoustic wave modelling in galleries 
A second potential application of the DG method is the modelling of the air/solid contact in 
the framework of blast reduction in acoustic problems. The selected target illustrates the 
impact of the gallery design on blast reduction with application to military safety. The 
gallery geometry is delineated by the solid black lines in Figure 14. Due to the high wave 
speed contrast between the air and the solid, an adaptive mesh with a mesh refinement in 
the air layer was designed to minimize the number of degrees of freedom in the DG 
simulation (Figure 13). Figure 14(a-c) shows the horizontal velocity wavefield at the 
frequencies 50, 100 and 200 Hz resulting from an explosive source located near the entrance 
of the gallery. The wavefield in the main gallery is clearly attenuated thanks to the anti-blast 
first gallery and the multiple angles which hinders energy propagation. 
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Fig. 13. (a) Gallery model geometry. Real part of the horizontal velocity wavefield at 
frequencies (b) 50 Hz, (c) 100 Hz and (d) 200 Hz. 

 

 
Fig. 14. Zoom on the gallery model mesh. Note the size of cells adapted to local wavespeed. 

5. Conclusion and perspectives 
We have reviewed two end-member numerical methods to perform visco-acoustic wave 
modelling in the frequency domain with sparse direct solvers. Two benefits of the frequency 
domain compared to the time domain are the straightforward and inexpensive 
implementation of attenuation effects by means of complex-valued wave speeds and the 
computational efficiency of multi-source modelling when a sparse direct solver is used to 
solve the linear system resulting from the discretization of the wave equation in the 
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Fig. 13. (a) Gallery model geometry. Real part of the horizontal velocity wavefield at 
frequencies (b) 50 Hz, (c) 100 Hz and (d) 200 Hz. 

 

 
Fig. 14. Zoom on the gallery model mesh. Note the size of cells adapted to local wavespeed. 

5. Conclusion and perspectives 
We have reviewed two end-member numerical methods to perform visco-acoustic wave 
modelling in the frequency domain with sparse direct solvers. Two benefits of the frequency 
domain compared to the time domain are the straightforward and inexpensive 
implementation of attenuation effects by means of complex-valued wave speeds and the 
computational efficiency of multi-source modelling when a sparse direct solver is used to 
solve the linear system resulting from the discretization of the wave equation in the 
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frequency domain. The first discretization method relies on a parsimonious staggered-grid 
FD method based on a compact and accurate stencil allowing for both the minimization of 
the numerical bandwidth of the impedance matrix and the number of unknowns in the FD 
grid. The discretization criterion which can be used with this method is 4 grid points per 
minimum wavelength. We have shown the efficiency of the method for tackling 3D 
problems involving few millions of unknowns and few thousands of right-hand sides on 
computational platform composed of a limited number of processors with a large amount of 
shared memory. Since the FD lacks geometrical flexibility to discretize objects of complex 
geometries, we have developed a 2D discontinuous finite element method on unstructured 
triangular mesh. The DG method is fully local in the sense that each element is uncoupled 
from the next, thanks to the duplication of variables at nodes shared by two neighboring 
elements. This uncoupling allows for a flexible implementation of the so-called h − p 
adaptivity, where the size of the element can be adapted to the local features of the model 
and the order of the interpolating polynomials can be adapted within each element. The 
price to be paid for the geometrical flexibility of the discretization is the increase of the 
number of unknowns compared to continuous finite element methods. We have illustrated 
the fields of application where the frequency-domain DG method should perform well. A 
first perspective of this work concerns the investigation of other linear algebra techniques to 
solve the linear system and overcome the limits of sparse direct solver in terms of memory 
requirement and limited scalability. Use of domain decomposition methods based on hybrid 
direct-iterative solvers should allow us to tackle 3D problems of higher dimensions. A 
second perspective is the improvement of the frequency-domain DG method to make 
possible the extension to 3D. One possible improvement is the use of heterogeneous 
medium properties in each element of the mesh to allow for higher-order interpolation 
orders. Another field of investigation concerns the numerical flux, which is a central 
ingredient of the DG method. Although we used centered fluxes for their energy 
conservation properties, other fluxes such as upwind fluxes should be investigated for 
improved accuracy of the scheme. 
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1. Introduction 
The ability of acoustic waves to pass through a slot or vacuum (air) gap between 
piezoelectric crystals which are not contacting with each other, for the first time has noted   
Kaliski (Kaliski, 1966). In those years the interest of a researchers to the phenomenon first of 
all was connected to the being widely discussed problem of generation and amplification of 
ultrasonic waves that propagate along boundary of a piezoelectric medium adjoining semi-
conductor with a drift current (Gulyaev, 2005). More important it turned out to use Kaliski's 
idea of acoustic wave passage through a gap of piezoelectric crystals in metrological 
purposes. Firstly for development of contactless measurements of electro-acoustic fields in 
crystals, at which are excluded or minimized the distortions caused by own loading action 
of transducer. Secondly for search of effective ways of contactless excitation of acoustic 
oscillations in solids.  
Because of anisotropy and of weakly expressed transversal piezoelectricity the case of cubic 
piezoelectric crystals that has considered Kaliski for shear waves of horizontal polarization 
(Kaliski, 1966) have not shown the proper efficiency of wave passage through a gap even 
with very small thickness and under condition of almost sliding incidence. Therefore in 
subsequent this phenomenon due to similarity to tunnel transition in the quantum 
mechanics (Landau & Lifshitz, 1991) named by acoustic tunneling (Balakirev & Gilinskii, 
1982), began to be considered for more suitable crystals of tetragonal and hexagonal  
systems.  The being reviewed cycle of investigations for case of strictly plane boundaries (a 
Balakirev & Gorchakov, 1977; Balakirev & Gorchakov, 1986), was finished (Balakirev et al., 
1978) by experimental detection of effect.   
By common result of the quoted works was the conclusion that the efficiency of acoustic 
tunneling is caused essentially by electromechanical coupling factor of crystals H, and with 
growth of thickness of a gap is very decreasing. The passage of an acoustic wave through a 
gap will be especially appreciable at angle of incidence α∼π/2−H 2(1+H 2)−1. So, even for such 
strong piezoelectric, as BaTiO3, we have H 2< 0.4 (Royer & Dieulesaint, 2000) with a 
following from here estimation α>75°. Therefore the opportunity of acoustic tunneling to 
using is very being complicated.    



 Acoustic Waves 

 

160 

The first attempt of overcoming this difficulty of practical realization of the phenomenon of 
acoustic tunneling was connected with known opportunity to control by coupling of 
acoustic and electric oscillation in crystal with high electrostriction by an external electrical 
field (Gulyaev, 1967; a Gulyaev & Plessky, 1977). In particular, for shear waves with 
horizontal polarization of displacement (SH-waves) that propagate across applied field, its 
action is similar to piezoelectricity of 6mm (4mm)-class crystals with piezoelectric modulus 
e15=aE0/2, where a is the coefficient of electrostriction, and E0 is the strength of electric field. 
However the simple reproduction of the above results for this case takes place (Filippov, 
1985) as the increase of piezoelectric activity of crystal with escalating of an electrical field 
almost up to a voltage of dielectric breakdown only a few decrease the suitable angles of 
incidence. The case, when the incident shear wave has vertical polarization and the external 
field is lying in a plane of incidence, also was considered by Filippov (Filippov, 1985). It is 
more interesting as in such conditions the acceptable for practical purposes angles of 
incidence can be lowered up to forty degrees. 
Results received in (Filippov, 1985), have encouraged the researchers of the phenomenon of 
acoustic tunneling, but have not brought the complete satisfaction because of necessity in 
using a source of a high voltage. The attention has been addressed to other opportunity to 
increase the efficiency of tunneling of waves through a gap not only on intermediate angles 
of incidence, but also small ones. In its basis is laid the account of resonant properties of a 
gap as a waveguide of the slotted electroacoustic wave (Balakirev & Gorchakov, 1977 b;  
Gulyaev & Plessky, 1977 b). For achievement of declared object it was necessary to change 
resonant properties of a gap appreciably. As an effective way it was offered the using of 
piezocrystals with a periodic shape of surfaces (Gulyaev & Plessky, 1978) or with periodic 
inertial loading in form of guideway layer from other dielectric material (Gulyaev et al., 
1978).  
At a geometrical resonance of incident wave with the period of profile or loading impedance 
of boundaries the effective excitation of the appropriate mode of a slotted electroacoustic 
wave took place. In a result the complete passage through a gap, possible on conditions of 
excitation even at normal incidence, will be achieved. As in a gap there are two modes of 
slotted electroacoustic wave (Gulyaev & Plessky, 1977 b), for the given configuration of 
slotted structure it was possible to determine two frequencies ensuring for a wave the 
complete passage through a gap. In case of guidway boundary layers of an other dielectric 
with periodic inertial loading (Gulyaev et al., 1978) slotted electroacoustic waves of a gap 
are being replaced, as a matter of fact, by surface Love waves (Royer & Dieulesaint, 2000), 
which connect through a gap by an electrical field. The advantage of use of surface Love 
waves before slotted electroacoustic waves consists in much stronger boundary localization 
and, as a consequence, in their ability to form on appreciably smaller distances along 
guidway boundary. Due to this the resonant tunneling of waves through a gap "adjusted" 
on Love waves, can be carried out with the appreciably smaller apertures of an incident 
acoustic beam. Idea to take advantage of resonant properties of a gap for achievement of 
complete passage of a wave through a gap experimentally was realized in work 
(Grigor'evskii, 1987) for waves of vertical polarization, when resonant modes of a gap with a 
periodic profile of boundaries are surface Releigh-type waves. It is necessary to note, that in 
this experiment the passage of a wave through a gap of piezoelectrics with rectangular 
grooves was not quite complete. The authors have explained it by partial transformation in 
transversal waves of a longitudinal wave, which is falling normally on a gap with periodic 
grooves. 
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The concept of acoustic tunneling is successfully applied now to interpretation of transfer 
effects of wave disturbances between phononic crystals (Qui et al, 2005; Van Der Biest et al, 
2005; Pennec et al, 2009). Strictly speaking, there is not here the obvious analogy to acoustic 
tunneling of waves through a slot between piezoelectric crystals because of absence of a 
vacuum gap. Instead of it in respect to tunneling phonons consider the forbidden zone of 
phononic crystals, and role of the electric-field coupling between piezoelectric crystals begin 
to play the allowed states, which arise in the forbidden zone because of infringements of 
Bragg interference requirements by discrepancy of the periods of lattices or by introduction 
of artificial defects of periodic structure of phononic crystals. 
Other direction of modern researches of acoustic tunneling, which directly continues early 
works (Balakirev & Gorchakov, 1977 a; Balakirev & Gorchakov, 1986; Balakirev et al, 1978; 
Filippov, 1985), is connected with taking into account the relative longitudinal displacement 
of piezoelectric crystals divided by a gap. As we know, earlier in all works on acoustic 
tunneling in piezoelectric layered structures with a gap the crystals always relied fixed. 
There are, however, some reasons, on which the acoustic tunneling in conditions of relative 
longitudinal displacement of piezoelectric crystals represents doubtless interest. So, in 
practice the relative moving of bodies is one of the main occasions for using of contactless 
ways of introduction of acoustic oscillations. On the other hand, in sphere of high 
technologies (robotics, mechatronics) the important place occupies monitoring relative 
moving of elements of designs that, in particular, means development of sensor controls 
using piezoelectric effect. At last, the relative longitudinal displacement of piezoelectrics in 
slot-type structures is possible to consider and as the additional factor of the processing of  
signal information by standard means of acoustoelectronics. 
Present article is written on materials of the publications (Gulyaev et al, 2007 a; Gulyaev et 
al, 2007 b; Maryshev & Shevyakhov, 2007), concerning only of case of shear waves of 
horizontal polarization in piezoelectric crystals of some classes of crystallographic symmetry 
with ideal plane boundaries of a gap, which are not subjected to any periodic impedance 
loading. The appropriate generalizations, for example, account not only electrical, but also 
magnetic connection of crystals (piezomagnetics) by fields through a gap are represented by 
matter of the nearest future. Confirming it we shall refer to work (Vilkov et al, 2009), in 
which tunneling of shear magnetoelastic waves through a gap of ferromagnetic crystals 
testing relative longitudinal displacement recently was considered. 

2. Tunneling of a shear wave through a gap of piezoelectric crystals with 
relative longitudinal motion  
2.1 Shear elastic wave in a moving crystal 
The typical geometry of boundary problem of acoustic tunneling through a gap of pair 
piezoelectric crystals with relative longitudinal motion is submitted on Fig. 1. On it one of 
crystals (bottom) moves with the given constant velocity V, whereas other (top) is in rest. 
Generally crystals can differ in the parameters, have various orientations of crystallographic 
axes and belong to various classes of crystal symmetry. However, it is important, that falling 
on a gap on the part of immobile crystal the acoustic wave was a piezoactive wave, i.e. was 
accompanied in its deformations by electric fields, and the surfaces of crystals – boundaries 
of a gap, were not covered with metal electrodes.  
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Fig. 1. Geometry of acoustic wave tunneling through a gap of piezoelectric crystals with 
relative longitudinal motion 

From elementary reasons the following way of consideration of acoustic tunneling in 
conditions of relative longitudinal motion of piezoelectric crystals arises. It is necessary to 
connect with each of crystal own system of coordinates. For immobile crystal "1" it is the 
laboratory system of coordinates x0yz. For a moving crystal "2" it is the passing coordinate 
system x0yz . The propagation of acoustic waves in own coordinate systems of crystals, 
where both of them are immobile, is being described, obviously, by the standard manner 
(Balakirev & Gilinskii, 1982; Royer & Dieulesaint, 2000). However, because of coupling by 
electric fields through a gap it is impossible already to consider these wave processes  as 
isolated ones and refraction of waves by a gap must be described in one common coordinate 
system. For this purpose any of own coordinate systems of crystals is suitable, but more 
preferably to use  the laboratory system of coordinates, as according with logic of subject 
matter just with the one are connected the acoustic radiator and detector of a reflected wave. 
Thus, we need to describe waves, passing into a moving crystal, with a point of the observer 
of laboratory system of reference. In language of mathematics it means that in equations for 
moving crystal we transfer from coordinates  x, y, z  to coordinates  x, y, z.  
If to accept reasonable restriction V<<c, where c is velocity of light, the transfer of 
disturbances by electric fields through a gap can rely instantaneous. It will be first and 
foremost is in accordance with usually used quasistatic approximation for determination of 
the electric fields, which accompany the acoustic waves in piezoelectric crystals (Balakirev & 
Gilinskii, 1982; Royer & Dieulesaint, 2000). Secondly, we then may be limited by mechanical 
relativity and to use for connection of coordinate systems x0yz and x0yz Galilean 
transformation  

 ttzzyytVxx ~,~,~,~~ ===+= .  (1) 

Here t  and t is the time, which has equal duration in both systems of reference. 
Let's consider identical piezoelectric crystals of a class 6 (4, 6mm, 4mm, ∞m) with common 
orientation of axes of symmetry of high order 6 (4), along coordinate directions z and z. In 
shear waves of horizontal polarization the elastic displacement uj (here and everywhere are 
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lower j=1, 2 is the number of a crystal) also are parallel these directions: u1=u1(x,y,t)||z and 
u2=u2(x,y,t)||z . Therefore according to the equations of state for a piezoelectric material the 
working components of stress tensor Tik and vector of an electrical induction D for a moving 
crystal have in the passing system of coordinates the form (Balakirev & Gilinskii, 1982; 
Royer & Dieulesaint, 2000) 
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The similar expressions, but already in laboratory system of coordinates, turn out for the 
immobile crystal. They directly follow from the formulas (2), (3), if in them to change 
number of a crystal j=2 for number j =1 and instead of coordinates x, y  to use accordingly 
laboratory coordinates x, y. In the formulas (2), (3) ϕ is the potential of an electrical field, λ is 
shear modulus, e15 and e14 is the piezoelectric modules of longitudinal and transverse 
piezoelectric effect, ε is the permittivity of a crystal. 
By the initial equations for electroelastic fields of SH-waves propagating in a plane x0y of a 
moving piezoelectric crystal, are the equations 
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where ρ is density. First of them represents the equation of elastic medium motion, and 
second expresses the fact of absence of free carriers of a charge in piezoelectric crystal and in 
quasi-static approximation with high accuracy replaces with itself complete system of the 
Maxwell equations for determination of an electrical field. For immobile piezoelectric in 
view of the above-stated replacement of number of a crystal and use of laboratory 
coordinates we have the similar equations. Let's remind that partial derivatives on spatial 
variables in the equations (4) are summarized on a repeating index, forming tensor 
convolutions. 
Result of substitution of expressions (2), (3) in the equations (4) will be well known 
(Balakirev & Gilinskii, 1982; Royer & Dieulesaint, 2000) the equations of piezocrystal 
acoustics for waves of a SH-type 
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Similarly for immobile crystal is received 
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The difference between the equations (5), (6) is defined by differences in pairs of differential 
operators: ∂/∂t, ∂/∂t and ∇2=∂2/∂x2+∂2/∂y2, ∇2=∂2/∂x2+∂2/∂y2. By rule of indirect 
differentiation of functions with many variables the connection between them it is possible 
to open, using relations 
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As from (1) follows, that 1~,~,1~,1~ =
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(7) are equal to zero, on the basis (7) we come to equalities 
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From here it is visible, that in the equations (5) transitions from coordinates of passing 
system of reference to laboratory coordinates are reduced to the following replacement of 
the differential operators: ∇2→∇2, ∂/∂t→∂/∂t+V∂/∂x. On this basis the equations (5) can 
give a form 
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We shall be interested in propagation of plane monochromatic SH-waves in moving 
piezoelectric from a position of the observer to laboratory system of reference, not accepting, 
while, in attention limitation of the sizes of a crystal. Then according to second of the 
equations (8) we have ϕ2=u2(e15/ε2), where u2∼exp[i(k2r−ωt)]  is the solution of the wave 
equation 
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we come to next dispersion relation for SH-waves in a moving crystal 
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In expressions (9), (10) ct is the velocity of shear waves in a piezoelectric material, λ* is the 
shear modulus modified by piezoelectric effect. 
The formula (10) establishes connection of a SH-wave frequency in laboratory system of 
reference ω with wave number k2, and also shows dependence of phase velocity of a wave 
v2=ω/k2 from a direction of propagation in relation to a direction of a crystal motion. Thus, a 
consequence of a crystal motion concerning the observer is the anisotropy of propagation of 
SH-waves. If the left side of equality (10) to transfer to the right, the dispersion relation will 
accept a form of a difference of two squares with a zero right part: 
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Accordingly, it will break up to two independent equations 

 2
22 kVk tc±=ω .  (11) 

The presence of two various dispersion branches has basic meaning for understanding of 
specificity of acoustic tunneling of waves through a gap of piezoelectrics, undergoing the 
relative longitudinal displacement. In the beginning we shall notice, that the ray or group 
velocity of waves can be defined on known (Balakirev & Gilinskii, 1982; Royer & 
Dieulesaint, 2000) to the formula Vg =∂ω/∂k2. From (11) differentiation ω on k2 and taking 

into account, that 2
22 k=k , we receive 

 2nVV tg c±= ,  (12) 

where the value n2=k2/k2 is the vector of wave normal of a SH-wave. On the other hand, 
expression (11) it is possible to write as ω=k2V±ctk2 and after division on k2 to receive 
expression for phase velocity 

 tc±= 22v Vn .  (13) 

Multiplying both sides (13) on n2, we come to a conclusion, that the phase velocity of a wave 
v2=v2n2 coincides with its group velocity Vg and for the observer of laboratory system of 
reference represents expected result of Galilean addition of velocity of wave propagation 
concerning a crystal with velocity of moving of the  crystal. 
Pair of signs in expressions (11) - (13) should not cause bewilderment, as the propagation of 
plane monochromatic waves along any elected direction in a crystal can occur by a counter 
manner. For an immobile crystal direct and return propagation of waves (+n2 is the wave 
normal for a wave direct, and −n2 - for a wave of return propagation) are made equally with 
velocity ct. The crystal motion brings in a difference to their propagation, indicating about 
acquisition by a crystal of such quality, as nonreciprocity of propagation. An evident picture 
of nonreciprocity of wave propagation because of a crystal motion demonstrate on Fig. 2, 3 
polar curves of the reduced phase velocity  

 1cosv2 ±θβ=
tc

,  
tc

V
=β , (14)  

where θ is the angle between vectors n2 and V. At construction the polar curves we were 
guided by a rule to correlate to waves of direct propagation orientation wave normal in side 
from pole and, opposite, for waves of return propagation to consider as it oriented along a 
direction of wave propagation in the side of a pole. We agree also to represent the polar 
curves of phase velocity of waves of direct propagation by continuous lines, and polar 
curves of phase velocity of waves of return propagation - dashed lines. Let's notice, that the 
equality (13), resulting to the formula (14), represents balance of projections of velocities 
participating in Galilean addition, on a direction of wave propagation. In this connection the 
value v2 for waves of return propagation turned out negative, and at construction of the 
polar curves its modulus was used.    
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Fig. 2. Polar curves of phase velocity of SH-wave propagation at subsonic velocities of a 
crystal motion 

The accepted way of graphic representation of polar curves excludes mess in definition of 
types of waves (direct or return propagation) and choice of the appropriate orientation wave 
normal. For an example, on Fig. 2 thin straight line allocates a direction of propagation of a 
SH-wave, which in the top point is crossed with dashed polar curve of return propagation  
(v2<0) for β=0.3. Thus, this point we correlate a return wave with wave normal, as shown by 
arrow directed to a pole. The same wave, but only direct propagation, we have the right to 
connect with the bottom point laying in crossing of a line of propagation with curve 2, 
which is mirror reflection of dashed polar curve concerning a vertical line passing through a 
pole. Last circumstance is a geometrical consequence of rearrangement by places of waves 
of direct and return propagation at inversion of velocity of a crystal motion of what it is 
uneasy to be convinced by substitution β→−β in (13), (14). 
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Fig. 3. Polar curve of phase velocity of a SH-wave propagation at supersonic crystal motion 
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At subsonic velocities of a crystal motion (β<1, Fig. 2) circular at β=0 polar curve 1, identical 
at direct and return propagation, is horizontal stretched (is compressed) for waves of direct 
(return) propagation in sector of polar angles |θ|<π/2. In sector of angles |θ|>π/2 takes 
place opposite. Such deformation of polar curves, reflecting property of nonreciprocity of 
SH-wave propagation in a moving crystal, is expressed, naturally, the more strongly, than 
above velocity of a crystal. At supersonic velocities (β>1, Fig. 3) the change of polar curves 
by motion of a crystal is complicated by an opportunity of mutual transformation of waves 
of direct and return propagation. On mathematical language it will be expressed by change 
of sign of phase velocity v2 in the formula (14). So, at β>1 and angles θ>π/2 the first term 
βcosθ of the right side of expression for the phase velocity of a wave of direct propagation 
will be negative and, since an angle of transformation θ*+=arccos(−1/β), begins to surpass in 
magnitude unit. Thus instead of former values v2>0 we shall receive, as the certificate of the 
come transformation of a wave in a wave of return propagation, v2<0. On the polar curves of 
phase velocity the range of transformation will settle down of a symmetrically horizontal 
axis and it will found in sector of obtuse (acute) angles between two thin straight lines, 
crossed in a pole, on Fig. 3 for waves of direct (return) propagation. 
The parts of polar curves of phase velocity appropriate to the transformed waves, look like 
petals. On Fig. 3 such petals appropriate to transformation of a wave of direct propagation 
to a wave of return propagation, is shown by a dashed line. Instead of it the directly 
propagating waves receive mirror imaged concerning a vertical and shown continuous line 
a petal of waves, which are transformed by a crystal motion from waves of return 
propagation in waves of direct propagation. Certainly, that in the crystal, i.e. in a passing 
system of coordinates any transformation of waves does not occur. It appears possible only 
with transition to a position of the observer of laboratory system of reference, and in this 
sense is effect typically of a relativistic nature. As at transformation of a wave there is an 
inversion its wave normal, this phenomenon can be classified as specific, relativistic version 
of the known phenomenon of conjugation of wave front (Fisher, 1983; Brysev et al, 1998; 
Fink et al, 2000). But if in a basis of the processes, described in the literature, the 
parametrical effects put, nonlinear first of all, here conjugation of wave front is provided 
with the linear laws of Galilean kinematics.                        

2.2 Refractive properties of a gap 
After we have established characteristics of shear wave propagation caused by relative 
motion of a crystal, it is possible to begin definition of those waves, which arise in crystals 
on the different sides of a gap under action of a wave, falling on it. As shown in Fig. 1, we 
shall believe, that the incidence of a shear wave on a gap occurs on the side of immobile 
crystal. Then, it is necessary to understand frequency ω as a frequency of incident wave. 
Standard for the wave refraction problems (Balakirev & Gilinskii, 1982; Royer & Dieulesaint, 
2000) the need of phase conjugation of harmonic fields on boundaries of a gap y=±h follows 
from boundary conditions (will be discussed more in details in section 2.3) and means 
identical concurrence of phases of oscillations in all arising waves and near-boundary 
electrical fields with a phase of oscillations of incident wave. Or else, if the incident wave 
has a phase multiplier exp[i(kxx−ωt)], the same phase multiplier will characterize oscillations 
with change of longitudinal coordinate x and time t in all other arising waves. Accordingly, 
the law of wave refraction is formulated as equality of frequencies of waves to frequency of   
incident wave 
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 ω≡ω=ω=ω TRi , (15) 

and as the predefiniteness of projections of wave vectors to a direction of boundaries of a 
gap by a projection of a wave vector of incident wave 

 xkkkk ≡== )T(
||

)R(
||

)i(
|| . (16) 

In expressions (15), (16) indexes i, R, T show an belonging of examined parameter according 
to incident, reflected (arising in immobile crystal) and refracted (arising in a moving crystal) 
to waves.  
In view of equality (6) for waves in immobile crystal we have a dispersion relation 

 22
1

2 ω=ktc . (17) 

From two its possible branches ctk1=±ω for incident wave we, actually, elect a branch of 
directly propagating wave ctk1=ω. It specifies a positive sign in (15). Thus, in the subsequent 
transformations with use of expressions (15), (16) we accept, that ω>0, k1>0 and accordingly 
kx=k1sinα>0, where α is the angle of incidence (see Fig. 1). 
As k1= n1ω/ct , where n1 is the vector of a wave normal, the refractve curve, described by a 
vector k1=k1(n1) in the incident plane x0y, has for waves in immobile crystal the form of a 
circle of radius ω/ct . In particular, the incident wave has the wave normal n1(i)=(sinα, 
−cosα). In view of (16) a wave normal n1(R)=(nx(R), ny(R)) any other wave arising in immobile 
crystal, also is characterized by value nx(R)=sinα and noticing further, that nx(R)2+ny(R)2=1, we 
have ny(R)=±cosα. The negative sign here actually is already used for an incident wave, so on 
reasons connected with causality, we are compelled to stop the choice on a positive sign. 
Thus, in immobile crystal in addition to the incident wave there is only one reflected wave 
with the wave normal n1(R)=(sinα, cosα), which is propagated in side from the boundary y=h. 
It is obvious, that in complete conformity with Mandelstam' principle of radiation the 
following from dispersion relation (17) the expression for the group velocity of waves in 
immobile crystal Vg(1)=n1ct is confirmed with ability of this wave to take aside energy from 
boundary.  
For waves arising in a moving crystal under action of incident wave, it is easier all to 
proceed from expression (13) and formula for a wave vector k2=ωn2(T)/v2 , where n2=(nx(T), 
ny(T)) - vector of wave normal. Meaning, that in examined case Vn2=Vnx(T)=Vsinαt (αt - angle 
of refraction), we receive 
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According to (18) there are two refraction branches, appropriate to signs "plus" (k2+) and 
"minus" (k2

−) in the formulas (12) - (14). The conditions of existence of the branches express 
the mentioned above requirement of positive values of wave numbers k2

±>0 at the elected 
way of representation of problem solution in laboratory system of reference by means of 
waves of direct propagation ω>0. In this sense the formula (18) does not add the new 
information that was received in the previous section, and only translates its in the terms of 
wave vectors more convenient for consideration of refractive effects.  
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The first refraction branch with wave number k2+  we arrange to name as a usual branch, as 
for it the waves in a moving crystal represent waves of a direct propagation irrespective of a 
choice of system of reference. Really, if, using (1) to compare phases of oscillations of a wave 
in passing exp[ikxx−Ωt ] and laboratory system of reference exp[ikxx−ωt], for frequency of a 
wave in passing system of reference it is not difficult to receive expression 

 Vk 2−ω=Ω .  (19) 

It shows Doppler shift of frequency of a wave and at substitution k2+ from (18) determines 
always positive values of frequencies Ω+=Ω(k2+)=ω(1+βsinαt)−1. On the contrary, at the 
substitution in (19) k2

−, we receive Ω−=Ω(k2
−)=−ω(βsinαt−1)−1 and for the second refraction 

branch we have Ω−<0, whereas ω>0. Thus, in case of this refraction branch, the waves, 
refracted in a moving crystal, are in relation to the crystal waves with the reversed wave 
front, but are perceived in laboratory system of reference as waves of direct distribution. 
Therefore it is possible to name a refraction branch k2

−  as a reverse refraction branch. 
As against known results (Fisher, 1983; Brysev et al, 1998; Fink et al, 2000) the phenomenon 
of conjugation of wave front, examined by us, has of a purely kinematic origin. It is caused 
by drift action of a medium moving at a transonic velocity along the wave incident from the 
immobile crystal, which exhaustively compensates the reverse propagation of a refracted 
wave relative to the crystal and eventually provides its spatial synchronism (by means of 
electrical fields induced via the gap) with waves that are true of direct propagation in the 
immobile piezoelectric crystal.   
On Fig. 4, 5 solid lines show typical refraction curves of direct propagating waves which are 
described by the ends of wave vectors k2 from (18) at change of a direction of a vector wave 
normal n2 in a plane of incidence. They correspond to two qualitatively different cases of 
SH-wave refraction by a gap at subsonic (β<1, Fig. 4) and very supersonic (β>2, Fig. 5) 
velocities of relative crystal motion. Simultaneously with it the dashed circles represent on 
Fig. 4, 5 dependences k1(n1)  for SH-waves in immobile crystal. At β<1 takes place only 
usual refraction (refraction curve is marked "plus"). The incident wave with a wave vector  
 
 

 
Fig. 4. Polar curves of refraction for the case β<1. 
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Fig. 5. Polar curves of refraction for the case β>2. 

kI=(k1sinα, −k1cosα) defines valid (16) identical in all other waves a horizontal projection kx. 
The wave vectors reflected kR and refracted in a moving crystal kT of waves will be, 
therefore, are directed from the origin 0 to points of crossing of appropriate refraction 
curves by a thin vertical line cutting on a horizontal a segment, equal kx, so that the energy 
was removed by waves on a direction of their propagation from boundaries of crystals. 
Thus, we have kR=(k1sinα, k1cosα), kT=(k2sinαt, −k2cosαt). 
In case of β>1 branch usual refraction exists in intervals 0<θ<θ1* and θ2*<θ<2π  of polar angle 
θ=π/2−αt, where θ2*=2π−θ1*, θ1*=arccos(−1/β). In addition to it, as shown in Fig. 5, in the 
sector of angles |θ|<arccos(1/β) there is a branch inversed refraction, marked by sign 
"minus". However, if β<2, its curve lays more to the right of a dashed circle for a refraction 
curve of immobile crystal. For this reason appropriate inversed refraction of a wave are not 
capable to be raised in a moving crystal by incident wave and refraction picture does not 
differ that is submitted on Fig. 4. At velocities of relative motion of crystals is twice higher 
sound usual refraction will be replaced, as shown in Fig. 5, inversed refraction. It will take 
place, since the angle of incidence α0, at which  

 
1

1sin 0 −β
=α . (20) 

In order to conclude this condition in expression (18) for wave number of the inversed wave 
k2

− it is necessary to accept αt=π/2 and to take into account following from (16) equality 
k2

−=k1sinα. In passing we shall notice, that in a regime of sliding propagation αt=π/2   
difference of longitudinal projections kx of wave vectors for inversed and usual refracted 
waves is given by the formula  
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Fig. 5. Polar curves of refraction for the case β>2. 
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From (21) we have Δkx>0 at any finite values of quantity β. On geometry this fact means 
absence of crossing of usual and inversed refraction curves. Physically it shows existence of 
the refracted wave always in a form of single wave, fist (at α<α0) as usual, and then (at α>α0, 
if α0∈[0, π/2]),), - as the inversed wave. As the transition from usual to inversed refraction is 
reached by change of a sign cosαt (at an invariance of all other parameters of a wave), at 
construction of the solution there is a temptation to describe it in the terms of usual 
refraction, not resorting to consideration of two separate solutions. By an implicit manner 
such opportunity contains in refractive relations. Really, at usual refraction from (16), (18) 
the expression turns out 
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According to the requirement k2
−>0, that is equivalent also to following from (16), (18) 

condition βsinα>1, the actual inclusion by the formula (22) case not only usual, but also 
inversed refraction (cosαt→−cosαt) is obvious. Thus, not ordering beforehand to cosαt of a 
negative sign, i.e. describing refraction of a SH-wave in a moving crystal as usual, with use 
of the formula (22) it is possible automatically to take into account transition to inversed 
refraction.  

2.3 Solution of a boundary problem 
The connection between crystals is carried out by electrical fields penetrating through a gap. 
Therefore it is necessary to consider the equations (6), (8) together with the Laplace equation 
for potential ϕ of an electrical field in a gap 

 02 =ϕ∇ . (23) 

It is got, if, considering a gap as very rarefied material medium with permeability εg, instead 
of the equations (4) to use in laboratory system of coordinates the equation ∇D=0, where 
D=εgE is the induction, and E=−∇ϕ is the strength of a field. According to the equation (6)   
and accepted on a Fig. 1 picture of incidence, for immobile crystal we have 
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In the moving crystal on base of equations (8) and stated above idea to consider the 
tunneling wave as a single wave of usual refraction, we have 
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To the expressions (24), (25) we shall add expression for an electric field potential in a gap 

 )]exp()exp()][(exp[ ykDykCtxki xxx −+ω−=ϕ . (26) 

This expression follows from the equation (23). 
In the formulas (24) - (26) values Φj represent potentials of fields of near-boundary electrical 
oscillations, U is the known amplitude of incident wave. The coefficients of reflection (R) 
and passage of incident wave through the gap (T), and also amplitude of potentials of near-
boundary electrical oscillations F1, F2, C, D are subject still to determination. With this 
purpose we use boundary conditions of a problem, which mean a continuity of electrical 
potentials, y-components of an electrical induction and absence of shear stresses Tzy at y=±h. 
As the values Dy(2), Tyz(2) included in boundary conditions, do not contain derivative on time, 
they will not change at transitions from passing system of reference to laboratory system of 
reference. In result the boundary conditions will accept in laboratory system of reference the 
form 
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After substitution (24) - (26) in (27) and solution of forming system of the nonhomogeneous 
algebraic equations we shall receive representing for us interest coefficients 
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where we have 
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In these formulas, H 2 and H⊥2 are the square coefficients of electromechanical coupling for 
the longitudinal and transverse piezoeffect respectively, ξ=kxh is wave half-width of the gap, 
and gεε=ε / . In a particular case β=0 when the relative longitudinal motion of piezoelectric 
crystals is absent, we have ky(1)=ky(2)≡ky, ky/kx=tanθ (θ=π/2−α is the glancing angle) the 
expression (28)-(30) leads in earlier known results (Balakirev & Gilinskii ,1982).  

2.4 Discussion of results 
The main attention we shall concentrate here on angular spectra of coefficients of reflection 
and passage of waves through a gap. For the beginning we shall notice, that in limiting cases 
h→∞ and εg→∞ ( )0→ε  the expressions (28) - (30) show absence of passage T→0. In the first 
case it is caused by the disappearance of coupling of crystals by electrical fields through a 
gap in process of increase of its thickness. In the second case takes place a shielding of fields 
of a gap due to metallization of crystal surfaces. 
Typical behaviour of angular dependences of modules of reflection coefficient |R| and the 
passage coefficient |T|, calculated on the formulas (28) - (30) for pair of crystals LiIO3 with 
parameters H 2=0.38, H ⊥2=0.002, 2.8=ε , demonstrate Fig. 6 and 7. As can be seen, a general 
tendency in the case of usual refraction is a decrease in the extent of wave tunneling into the 
moving crystal with increasing angle of incidence. This trend is more pronounced in the 
angular dependences of the reflection coefficient R. Indeed, even at relatively small 
velocities, the opposite (antiparallel) relative longitudinal displacement (RLD) (β=−0.05, see 
curve 1 in Fig. 6) lead to extension of the wedge of transparency (depicted by the dashed 
curve in the region of large α) by more than a half toward greater angles (|R|min>0.6). 
However, a nearly complete extension of this wedge (Fig. 7, curve 3) takes place only for  
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Fig. 6. Plots of reflection coefficient |R| versus angle of incidence α for a pair of 
piezoelectric LiIO3 with an extremely thin (ξ=10−6) gap for an RLD velocity of β=−0.05 (1), 
0.05 (2), −2.5 (3), and 2.5 (4). The inset shows the angular dependence of the reflection 
coefficient in the case of reverse refraction for β=2.05 and various gap thicknesses ξ=10−3 (1), 
10−2 (2), 0.06 (3), and 10−6 (dashed curve). 
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Fig. 7. Plots of the transmission coefficient |T| versus angle of incidence α for a pair of 
piezoelectric LiIO3 crystals with a thin (ξ=10−3) gap for an RLD velocity of β=−0.5 (1), 0.1 (2), 
0.5 (3) and 2.01 (dashed curve). 

ultrahigh velocities of the opposite RLD (β<0, |β|>2). However, a comparison of curves 1 – 
3 in Fig. 7 shows that no significant decrease in the transmission of waves through the gap 
takes place and the possibility of practical application of the effect of wave tunneling is 
retained. 
In the case of parallel RLDs (β>0) the transparency wedge under the usual refraction 
conditions is not only extended with increasing β, but is additionally shifted toward smaller 
incidence angles by the appearing region of total reflection (Fig. 6, curves 2). The angular 
dependences of transmission (Fig. 7, curves 2 and 3) show well-pronounced peaks at the 
limiting angles α* of total reflection (sinα*=(1+β)−1).  The left sides of these peaks apparently 
correspond to the conditions of effective tunneling of incident wave into the moving crystal. 
However, it should be taken into account that, in view of the proximity to α*, the tunneling 
waves will have very small transverse components (ky(2)≥0) of the wave vector. Thus, the 
effective tunneling of waves into the moving crystal is possible, but only for small (or very 
small) angles of refraction for moderate (Fig. 7, curve 3) and even small (Fig. 7, dashed 
curve) angles of incidence. 
In the latter case, ultra-high RLD velocities (β>2) are necessary, which make possible the 
reverse refraction. As for the phenomenon of tunneling as such, the region of reverse 
refraction α>α** (sinα**=(β−1)−1, α**∼82° for the dashed curve in Fig. 7) does not present much 
interest because formula (13) implies "closing" of the gap for ky(1)+ ky(2)=0 with significant 
decrease in the transmission coefficient |T | in the vicinity of the corresponding incidence 
angle. On the other hand, there is an attractive possibility of enhancement of the reflected 
wave for |R|>1 (see Fig. 6, curve 4 and the inset to Fig. 6, curves 1 – 3), which is related to 
the fact that the wave in a moving crystal in the case of reverse refraction propagated (as 
indicated by dashed arrow in Fig. 1) toward the gap and carries the energy in the same 
direction. Naturally, an increase in the gap width leads to decrease in electric coupling 
between crystals and in the enhancement of reflection (see the inset to Fig. 6, curves 1 – 3).  
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3. Tunneling of shear waves by a vacuum gap of piezoelectric 6- and 222-
class crystal pair at the uniform relative motion 

In this section we consider the effect of tunneling of shear waves in the layered structure of 
piezoelectric crystals with a gap for the crystal pair of  6 (6mm, 4, 4mm, ∞m) and 222 (422, 
622, 4 2m, 4 3m, 23) class symmetry, undergoing relative longitudinal motion. This case 
allows, to estimate influence of elastic and electric anisotropy on tunneling of SH-waves in a 
moving crystal in conditions of difference of its symmetry from symmetry of an immobile 
crystal. We assume that the shear wave falls on the part of the immobile crystal of a class 6. 
Now, instead (8) we shall have in laboratory system of reference the equations 
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The equations (6) remain in force, but with a clause, that in them all parameters of a crystal 
are marked by an index "1", i.e. ρ→ρ1, λ→λ55(1), e15→ e15(1) and ε→ε1(1). 
Following from (6), (31) the dispersion relation of SH-waves and Snell’s condition (16) allow 
to establish the refraction low in form of the inverse dependence 
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Here v1=(λ55(1)*/ρ1)1/2 is the velocity of SH-waves in immobile crystal, λ55(1)*= λ55(1)+ 
e15(1)2/ε1(1), v2||=(λ55(2)/ρ2)1/2 is the velocity of SH-wave propagation in a moving crystal 
along [100]-direction (axis x), a=λ44(2)/λ55(2) is the elastic anisotropy factor of moving crystal. 
Function Q2(αt), determinated by equality 
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is the square of electromechanical coupling factor for SH-waves propagating in (001)-plane 
of a crystal.  
The expression (32) shows that at subsonic velocities of crystal motion there exists only 
usual refraction, corresponding to the top sign. It is not accompanied by the inversion of 
wave fronts and has the top threshold of incident angle α*, such that sinα*=v1/(V+v2||). At 
the supersonic velocities of crystal motion V>v2|| total reflection for the usual refraction 
(α*<α<α**) becomes possible even at smaller rigidity of a moving crystal. Second refraction 
branch appropriate to the bottom sign in formula (32) and accompanied by the inversion of 
wave fronts, is possible only at supersonic velocities of crystal motion and additional 
condition V>v1+v2||. The bottom threshold of this branch α** exceeds the value α* is 
determined by equality sinα**=v1/(V−v2||). On Fig. 8, 9 the curves usual and inversed 
refraction, received by calculation under the formulas (32), (33) for pair of crystals Pb5Ge3O11 
– Rochell salt with parameters taken from (Royer & Dieulesaint, 2000; Shaskolskaya, 1982) 
are submitted accordingly. 
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Fig. 8. Curves usual refraction of a wave by a gap Pb5Ge3O11 – Rochell salt: 1 – β=V/v2||=0.5, 
2 – β=1.5, 3 – β=1.8 (β=0 – dashed curve).   
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Fig. 9. Curves reversed refraction of a wave by a gap Pb5Ge3O11 – Rochell salt: 1 – 
β=V/v2||=2.35, 2 – β=2.4, 3 – β=2.5, 4 – β=2.6 (β=0 – dashed curve).   
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The solutions of the equations (6), (20) will keep the form (24), (26), and instead of (25) from 
the equations (31) we shall receive 
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The values ky(2) and s in expressions (34) are accordingly imaginary q=−iky(2) (for solution (34) 
in writing we chose the case of usual refraction) and real q=s a root of the characteristic 
equation [(ω−kxV)2v2||

−1a−1+q2−akx2](bkx2−q2)+Q02kx2q2=0, where b=ε1(2)/ε2(2) is the factor of 
electric anisotropy of a crystal, and Q0=Q(0). As against the solution (25) for pair of identical 
hexagonal crystals the near-boundary oscillations any more are not only electrical. They are 
the connected electro-elastic oscillations, which are made with amplitude A and phase 
φ=kxx−ωt. 
The physical sense of boundary conditions will not change. For the top boundary y=h on 
former it is possible to use conditions (27). On the bottom boundary y=−h their change will 
be caused by the appropriate differences of the state equations for 222-class crystals from the 
equations (2), (3) (Royer & Dieulesaint, 2000). After substitution of expressions (24), (26), (34) 
in boundary conditions and solutions of system of the algebraic equations we shall receive 
expressions for amplitude coefficients. For example, in the case of a very thin gap (kxh→0) 
we have 
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The value Ψ characterizes mutual piezoelectric connection of crystals through a gap and is 
defined by equalities 
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There are f1=e14(1)/e15(1), f2=e14(2)/e25(2), and Q12=e15(1)2/[ε1(1)λ55(1)*]. 
The numerical accounts show, that elastic and electrical anisotropy of a moving crystal does 
not cause essential changes in angular spectra of reflection and passage of SH-waves 
through a gap. The distinctions of symmetry of the crystals in addition to their relative 
motion are reduced by efficiency of acoustic tunneling. Thus, the assumption, that in a slot 
structure of crystals, from which one with strong longitudinal, and another with strong 
transverse piezoelectric effect, is possible appreciable shift of effective acoustic tunneling in 
area of moderate incident angles, has not found confirmation. The amplitude A of near-
boundary electro-elastic oscillations is usually small and does not vary almost under 
influence of crystal motion. In a considered case of crystals of various classes of symmetry 
amplification the reflected wave in conditions inversed refraction (superreflection) also 
takes place. However, similarly to acoustic tunneling the superreflection appears well 
appreciable only at sliding angles of incidence.       



 Acoustic Waves 

 

178 

4. Conclusion  
In this article we have touched upon the poorly investigated problem of refraction of 
acoustic waves by a gap of piezoelectric crystals with relative longitudinal motion. By the 
basic result was the conclusion about existence not only usual, but also so-called inversed 
refraction, capable to replace the usual refraction at superfast motion of a crystal with 
velocity twice above velocity of a sound. We have shown, that if usual refraction underlies 
representations about the tunneling of acoustic waves through a gap, with the inversed 
refraction the opportunity of amplification of reflection is connected.  
Both these phenomena, however, provide essential changes of a level of the reflected signals 
because of a crystal motion (it is interesting to applications), only at the sliding angles of 
incidence. It is represented, therefore, most urgent search of conditions and means, which 
would allow to advance in area of moderate or small angles of incidence. With this purpose, 
as we have found out, is unpromising to use anisotropy of elastic and electrical properties of 
a moving crystal or distinction in classes of symmetry of crystals. 
We believe that there are two approaches to the decision of a problem. It is, first, search and 
use of hexagonal piezoelectric crystals with equally strong both longitudinal, and trasverse 
piezoactivity. Secondly, it is the application already of known piezoelectric materials, but 
having not a plane, and periodically profiled boundaries of a gap. It is doubtless, that the 
appropriate theoretical researches of effects acoustic refraction by a gap of piezoelectric 
crystals with relative motion are required. In particular, it is desirable to consider a case of 
refraction of piezoactive acoustic waves of vertical polarization. We hope, that present 
article will serve as stimulus for the further study of acoustic refraction in layered structures 
of piezoelectric crystals with relative motion. 
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1. Introduction 
MEMS technologies have made it possible to fabricate small size, and high performance 
implantable devices to meet critical medical and biological needs such as site specific in–vivo 
drug delivery, Lab–on–a–Chip (LoC), micro total analysis systems, and polymerase chain 
reaction (PCR). 
Actuators are one of the important components in Bio-MEMS, especially for fluid 
manipulation. The design of a suitable actuator device to pump the fluid at the microscale, 
for accurate operation, is of great importance. Many types of microactuators have been 
developed to match different requirements for various applications (Tsai & Sue, 2007; 
Varadan & Varadan, 2000). With miniaturisation, physical scaling laws inherently favour 
some technologies and phenomena over others. In some cases, technologies that can be 
made by micromachining work well at the microscopic scale, but have no analogy or 
usefulness in the macroscopic scale. Moreover most of these actuators are too complicated to 
fabricate within a micropump structure. 
Notably, Surface Acoustic Wave (SAW) devices are used to develop micromachines such as 
ultrasonic micromotors and fluid transfer methodologies such as flexural micropumps 
(Wixforth, 2003; Strobl et al., 2004). Currently available microfabrication technologies such 
as photolithography and X–ray lithography with a combination of other processes have 
enabled the use of SAW devices for a variety of self–contained MEMS applications, which 
have advanced functionality and performance. The key benefits of these micromachines are; 
their small size, ease of production, and low–cost. The use of SAWdevices for micro 
actuation applications provides the great benefit of controlling and interrogation of devices 
remotely, without direct physical user intervention (Dissanayake et al., 2007; Varadan & 
Varadan, 2000; Jones et al., 2008). 
In this chapter, SAW based novel batteryless and low–powered, secure, and wireless 
interrogation as well as actuation mechanisms for implantable MEMS devices such as 
actuators are introduced and investigated. This approach is based on SAW technology and 
significantly different from currently existing techniques, as the proposed method consists 
of dual functionality; the secure interrogation and actuation. Consequently such a 
microactuator can be embedded in a microfluidic device to modulate the fluid flow using 
less power compared to other mechanisms, such as piezoelectric micropumps. In Section 2, 
the use of SAW devices for micro actuation is presented and discussed. Section 3 explains 
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the operation of the SAW device based microactuator. The underlying theoretical model is 
then elaborated in Section 4 and followed by Section 5, which presents a method to derive 
the electric potential for electrostatic actuation. Section 6 shows a theoretical boundary 
condition analysis for the proposed model. Section 7 presents detailed Finite Element 
Modelling (FEM) of the actuator. Then simulation results are discussed in Section 8, and 
followed by the conclusion in Section 9. 

2. SAW device based microactuator 
SAW devices are widely used in MEMS applications, which require secure, wireless, and 
passive interrogation Jones et al. (2008). These devices are recognised for their versatility 
and efficiency in controlling and processing electrical signals. They are based on 
propagation of acoustic waves in elastic solids and the coupling of these waves to electric 
charge signals via an input and an output Inter Digital Transducers (IDT) that are deposited 
on the piezoelectric substrate. As shown in Figure 1, a SAW device consisting of a solid 
substrate with input and output IDTs Jones et al. (2008). An IDT is an array of narrow and 
parallel electrodes connected alternately to two bus bars made out of thin–film metal. The 
purpose of placing a set of IDTs on a SAW device is to provide a coupling between the 
electrical signal received (or transmitted) and the mechanical actuation of the piezoelectric 
substrate material. Since SAW devices are mostly used for wireless applications, a micro–
antenna is need to be attached to the input IDT. 
 

 
Fig. 1. Standard SAW device consist of a piezoelectric substrate, input IDT, and an output 
IDT. Input IDT is connected to a micro-antenna for wireless communication, and a load is 
connected to the output IDT for measurements. 

Acoustic waves in these devices are propagating as surface waves, and hence can be 
perturbed easily by modifications to the substrate surface. Such features have enabled a 
large number of resonant sensors for applications such as chemical sensors Ruppel et al. 
(2002), gyroscopes Varadan & Varadan (2000), and accelerometers Subramanian et al. (1997). 
SAW devices also find application in oscillators, pulse compressors, convolvers, correlators, 
multiplexers and demultiplexers Ruppel et al. (2002). 
SAW device related technology has been utilised to design and develop MEMS based 
microaccelerometers and gyroscopes for military and similar applications (Varadan & 
Varadan, 2000; Subramanian et al., 1997). The technology used in those applications is 
similar to the capacitor effect generated by programmable tapped delay lines, which use the 
principle of air gap coupling (Milstein & Das, 1979) between the SAW substrate and a silicon 
superstrate; a silicon layer superimposed on the SAW device. These capacitors are then used 
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to control the amount of RF coupling from the input IDT on the SAW substrate to the output 
terminal on the silicon chip (Subramanian et al., 1997). It is a well known method to use a 
sandwich structure of semiconductor on piezoelectric substrate to form the so called space–
charge coupled SAW devices and SAW convolvers (Milstein & Das, 1979). 
Such an approach can be utilised in the design of a SAW based microactuator. The proposed 
approach for the actuator design is converse to the method used by Varadan et. Al 
(Subramanian et al., 1997) for the microaccelerometer design. Being an elastic deformation 
wave on a piezoelectric substrate, the SAW induces charge separation. Thus it carries an 
electric field with it, which exists both inside and outside the piezoelectric substrate and 
decays according to Laplace’s equation. In this SAW device based actuator, a thin 
conductive plate is placed on top of the output IDT, which is separated by an air–gap. The 
conductive plate does not alter the mechanical boundary conditions of the SAW substrate, 
but causes the surface to be equipotential and the propagating electric potential to be zero at 
the surface of the conductive plate. As a result, an electrostatic force is generated between 
the conductive plate and the output IDT in the SAW device causing micro deformations in 
the conductive plate. 

3. Proposed microactuator operation 
Figure 2 depicts the wireless interrogation unit for the SAW based microactuator. The 
actuator is made of a conductive material or alternatively, it can be made of a material such 
as Silicon (Si) or Silicon Nitride (Si3N4) and the bottom surface of the microactuator can be 
coated with a thin conductive material such as Gold, Platinum or Aluminium. The SAW 
substrate is made out of 128-YX-Lithium Niobate (LiNbO3), as it is best suited for Rayleigh 
wave propagation. 
 

 

 

Input IDT 
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                     Piezoelectric Substrate 

RF Pulses 

PC Phase 
Measurement 

Mixer 

FM 
Generator 

System 
Antenna 

Antenna 

Micro Actuator 

 
Fig. 2. Wireless interrogation unit for SAW device based actuator. The microactuator is 
placed on top of the output IDT of a SAW device. SAW device consists of a piezoelectric 
substrate, input IDT, and output IDT. Input IDT is connected to a micro-antenna for wireless 
interrogation. 
Effectively, the output IDT and the conductive plate are used to generate an air–gap coupled 
SAW based electrostatic actuator. The device operation is as follows. The input IDT 
generates Rayleigh waves using inverse piezoelectric effect based on the RF signal that is 
being fed to the SAW device through the microstrip antenna. The Output IDT regenerates 
the electric signal using the piezoelectric effect of the SAW device. As it was explained in 
Section 2, the generated electrostatic field between this propagating electric potential wave 
and the conductive plate on top of the output IDT creates a compulsive and repulsive force 
between the two. Since the conductive plate is a thin flexural plate, it bends as a function of 
the applied electrostatic field enabling its use as a microactuator. 
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4. Theoretical analysis of the electrostatic actuation 
In this section, a detailed theoretical analysis is carried out to analyse the generated 
electrostatic force at the conductive actuator. In achieving this, first the behavior of the 
propagating SAW on piezoelectric media is analysed. Then the analysis is focused towards 
deriving a general expression for the electric potential regenerated at the output IDT of the 
SAW device. Additionally, a boundary condition analysis is also presented, considering a 
specific scenario; the placement of the conductive actuator on top of the output IDT as 
shown in Figure 3. 

4.1 Problem description 
A variety of approaches have been followed by other researchers to investigate the SAW 
propagation in different piezoelectric substrates. These include, but not limited to, 
Potassium Niobate (KNbO3), Lithium Tantalate (LiTaO3), Lead Potassium Niobate 
(Pb2KNb5O15 or PKN) (Dvoesherstov et al., 2000; Dvoesherstov & Chirimanov, 1999), and 
various cuts in Lithium Niobate LiNbO3 (Gardner et al., 2001). However, the requirement of 
a detailed analysis of the use of 128-XY LiNbO3, specific to the novel SAWbased actuator is 
of great importance. Therefore a descriptive theoretical analysis was carried out and 
presented in following sections. 
In a SAW device, IDT patterns can be considered as a periodic structure. When an acoustic 
wave propagates on the surface through the periodic structure, it is partially reflected at 
each IDT finger. Depending on the operating frequency of the acoustic wave, the reflected 
parts interfere constructively or destructively (Zaglmayr et al., 2005). Generally, these 
reflections are considered to be very small and therefore, in this analysis the effect of the 
reflections is discarded and it is assumed that a surface wave propagate through each IDT 
finger only once. As can be seen from Figure 3, the direction of periodicity is denoted by x1, 
the surface normal direction by x3, and their perpendicular direction by x2 following a right-
handed coordinate system. The dimensional extension of electrodes in x2 direction (length of 
the IDT fingers) is much larger in comparison to the periodicity. Additionally, a 
homogenous material topology is assumed in x2 direction for this analysis. 

4.2 Rayleigh waves 
In general, SAWs consist of different types of propagation modes that are considered to be 
3D. It is highly important to choose a suitable propagation mode for the SAW device 
especially when it is designed for microfluidic applications. Therefore, different acoustic 
modes need to be analysed. For example, one would expect horizontal shear SAW mode to 
be more useful than Rayleigh SAW mode. This is because when a SAW device is in vitro, 
Rayleigh SAW mode is rapidly damped out, due to the pressure generated by the 
surrounding fluid (Jones et al., 2008). In contrast to the general approach of using the SAW 
device surface to transfer the fluid, the proposed approach uses an actuator (conductive 
plate), which is on top of the SAW substrate. As a result the fluid flow is isolated from the 
SAW substrate and hence it prohibits the interaction of the fluid with the SAW mode. 
Moreover, Rayleigh SAW mode is best suited for space-charge related applications as most 
of the energy in this mode is concentrated within one wavelength of the substrate (Milstein 
& Das, 1979), as shown in Figure 4. Hence, considering the measures taken to isolate the 
SAW substrate from the fluid in this approach, Rayleigh SAW mode was chosen. 
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Fig. 3. A concept drawing of the SAW actuator model. Side view: Air–gap separated 
conductive actuator is placed above the output IDT of the SAW device (not to scale). Top 
view: The actuator consists of flexures to reduce the spring constant. SAW substrate is a 
rotated crystal cut to make sure the wave propagation in x1 direction and h is the height of 
the air gap. 

 

 
Fig. 4. Rayleigh Wave Mode which shows elliptical particle displacements (Gardner et al., 
2001). 

Rayleigh waves propagates near the surface of the piezoelectric substrate, the amplitude 
decreases rapidly within depth in x3 direction, and becomes negligibly small within the 
depth of a few wavelengths from the surface (Zaglmayr et al., 2005). This behaviour is 
further elaborated and mathematically represented in coming sections. 
The orientation of the piezoelectric material affects the SAW propagation on the substrate. 
Therefore, a certain crystal cut is required to direct the surface wave towards a desired 
direction. Here for this analysis, 128-XY LiNbO3 is chosen as the substrate material due to its 
high electromechanical coupling coefficient (Čiplys & Rimeika, 1999; Gardner et al., 2001). 
This orientation facilitate the Rayleigh mode to propagate in x1 direction and contained in a 
sagittal plane define by x1–x3 plane. Therefore, instead of performing a full three-
dimensional analysis, a model reduction is performed in the geometric domain and the 
analysis is carried out within the sagittal plane. 
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In order to derive an expression for the resultant electrostatic force, the following 
assumptions are made of the model and the analysis, as well as simplifications to both are 
mentioned. In piezoelectric materials, the frequency of the induced electric field wave is 
sufficiently small enough to reasonably assume the electromagnetic coupling effects to be 
negligible. This means that local perturbations are felt almost instantaneously through out 
the substrate (Gantner et al., 2007; Kannan, 2006; Maugin, 1985). 
Additionally, if l is the largest characteristic dimension of the actuator structure and c is the 
speed of light, the generated electromagnetic coupling effects can be safely discarded, if the 
operating frequency of the device is much less than the ratio c/l (Zaglmayr et al., 2005; 
Horenstein et al., 2000). Here, for l ~ 3 mm, c/l ≈ 100 GHz. Therefore, since the chosen signal 
frequency of SAW is in the range of 50 – 100 MHz (  c/l), electromagnetic coupling effects 
can be safely discarded, and hence the electric field can be treated as quasi–static. 

4.3 Piezoelectric equations 
In piezoelectric analysis, quasi–static electric field is achieved by setting the permeability to 
zero, corresponding to an infinite speed of the electromagnetic wave. Using Maxwell’s 
equations, electromagnetic quasi–static approximation can be written as 

 ,i
i

E
x

∂Φ
= −

∂
 (1) 

 · 0,D∇ =  (2) 

where E is the electric field intensity, Φ is the electric potential, D is the electric flux density 
(dielectric displacement) and xi (for i = 1, 2, 3) shows the direction of interest as shown in 
Figure 3. Here, Equation 2 elaborate the fact that piezoelectric materials are insulators hence 
there are no free volume charges (Zaglmayr et al., 2005). Moreover, from the mechanical 
equations of motion, the relationship between the mechanical displacement u, and the 
mechanical stress T is given by 
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where ρ is the density of the piezoelectric substrate. For a piezoelectric media, the relation 
between the mechanical strain S and mechanical displacement u can be written as 
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In order to investigate the behaviour of the electric potential and the mechanical 
displacement of SAW, the constitutive equations for piezoelectric material are also need to 
be considered. The constitutive equations for piezoelectric material can be obtained by 
extending Hook’s law and the electrostatic equation for the electric flux density. Therefore, 
the relationship between D, E, T and S in a SAW substrate can be written as 
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where cijkl is the stiffness tensor for constant electric field, eijk is the piezoelectric coupling 
tensor (ekij is the corresponding transpose tensor of eijk), εij is the permittivity tensor for 
constant strain and i, j, k, l vary from 1 to 3. It should be noted that the mechanical stiffness 
matrix [c] and the permittivity matrix [ε] are symmetric. Additionally, the direct and 
converse piezoelectric effects are also symmetric, hence in piezoelectric matrix [e], the 
coupling coefficients are equal for both the effects (Zaglmayr et al., 2005). These symmetry 
considerations allow the reduction of the corresponding matrices of the material tensors; [c] 
to a 6×6 symmetric matrix, [ε] to a 3×3 symmetric matrix, and [e] to a 6×3 matrix. 
Equations 1– 6 lead to a system of four coupled equations, which are represented by 
Equations 7 and 8. 
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This relationship between mechanical displacement and electric potential is considered in a 
semi–infinite, isotropic and homogenous linear elastic space as shown in Figure 4. As was 
mentioned above, the piezoelectric crystal cut ensures the Rayleigh wave propagate in the 
x1-x3 sagittal plane as shown in Figure 3. An alternative definition to the sagittal plane, can 
be given as, the plane defined by the real wave vector (wave number) k and the unit vector 
normal to the surface of the SAW substrate (x3 direction). 
Various approaches have been proposed by researchers to solve wave propagation on 
anisotropic substrates (Zaglmayr et al., 2005; Gantner et al., 2007; Adler, 2000). The method 
of partial waves is considered to be a commonly used technique to analyse different SAW 
modes on anisotropic substrates such as piezoelectrics. Therefore, in this research the 
method of partial waves is used to solve this wave propagation phenomena for the SAW 
actuator model. As a result, plane wave solutions of the form given in Equations 9 and 10 
are considered for the mathematical modelling of this device, 

 3 1i i ( )
1 3( , , ) ,

mkb x k x vtm m
j ju x x t e eα −=  (9) 

 3 1i i ( )
1 3 4( , , ) ,

mkb x k x vtm mx x t e eα −Φ =  (10) 

where the m
jα  values are linear coefficients that depend on the decaying constant bm is the 

phase velocity of the wave, k (= 2π/λ) is the wave vector, λ is the wavelength, i is the 
standard imaginary unit (= 1− ), m = 1, 2, 3, 4 and j = 1, 2, 3. 
Equations 7 and 8, a linear system for the coefficients m

jα  can be obtained and solved. In 
solving these equations, it is necessary to transform the material parameters of the SAW 
substrate to match the coordinate system of the problem. This is discussed in Section 4.4. 
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4.4 Transformation of coordinates 
As it was mentioned above, different crystal cuts consist of different material properties. 
Therefore it is significant to consider the specific orientation of the selected crystal for a 
specific analysis, to obtained the desired SAW mode. In the equations of motion the material 
parameters are expressed in terms of structural coordinate axes that are selected for 
convenient boundary condition and excitation requirements. However, the material 
parameters are presented in the form of [c], [ε], and [e] matrices as was mentioned in Section 
4.3, and these are expressed according to the crystalline axes. Therefore it is necessary to 
transform the material parameters to match the coordinate system of the problem. 
Generally, the parameters are transformed using a transformation matrix [r] given by 
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where the elements of this matrix are the direction cosines between the crystalline axis and 
the problem axis (Subramanian et al., 1997; Kannan, 2006; Wolfram MathWorld, 2009). 
In this research, the X–convention is followed for specifying the order of rotation of the axes. 
The rotations specified by the Euler angle set that are related to the X-convention and the 
rotation order are explained in Figure 5. 

 
                                (a)                                         (b)                                       (c) 

Fig. 5. Transformation of coordinate system. Transformation of coordinate system using X– 
convention. Here x1x2x3 is the structural coordinate system and XYZ is the crystal coordinate 
system. Here x1 determines the wave propagation direction and x3 is normal to the crystal 
surface. Initially both of these axes are parallel to each other. While the structural coordinate 
axes always remain same, the crystal axes XYZ are rotated by an angle φ around Z axis, then 
by an angle θ around X axis and finally by an angle ψ once again around Z axis. The 
direction cosines are then derived based on the Euler angles. 
Once the transformation matrix is defined, the matrices that define the crystal properties 
([c], [ε], and [e]) are then transformed using the Bond–Transformation procedure 
(Upadhyay, 2004). The advantage associated with the this procedure, for stiffness and 
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compliance, is that Bond-Transformation is directly applied on stiffness or compliance 
constants given in abbreviated subscript notation. Therefore the transformation laws of this 
procedure can be shown as 
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where [MB] is the Bond–Transformation matrix given by 
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[rT] denotes the transpose of the matrix [r]. [cr ] is the transformed stiffness matrix, [er ] is the 
transformed piezoelectric matrix and [εr] is the transformed permittivity matrix. These 
transformed matrices can be used to derive more specific partial wave equations for a 
certain SAW mode for a known crystal cut as shown in the following section. 
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It is highly important to select a piezoelectric material with high electromechanical coupling 
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In order to derive the specific plane wave equations for this crystal, partial wave Equations 9 
and 10 are substituted into the Equations 7 and 8 with the rotated material parameters. As a 
result, the following Eigenvalue problem can be obtained. 

 0.⋅ =M α  (14) 

Alternatively the above equation can be written as, 
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 (15) 

The matrix coefficients in Equation 15 are shown below. It should be noted that for a 128-
YXLiNbO3 crystal c15, c16, c35, c36, c45, and c46 = 0. Additionally, e11, e31, e41, e53, e63 and ε13 = 0. 
Therefore as shown below, the matrix coefficients in M become simpler and the Eigenvalue 
problem expressed in Equation 15 becomes easier to solve. 

2 2
11 55 15 11 11 55 11

2
12 45 14 56 16 12 14 56

2
13 35 13 55 15 13 13 55

2
14 53 51 13 11 14 51 13

2
22 44 46 66

2

( ) ( )      

              

( ) ( )      

( ) ( )       

2

m c b c b c m c b c

m c b c c b c m c c b

m c b c c b c m c c b

m e b e e b e m e e b

m c b c b c

= + + ⇒ = +

= + + + ⇒ = +

= + + + ⇒ = +

= + + + ⇒ = +

= + + 2
22 44 66

2 2
23 34 36 45 56 23 34 56

2 2
24 43 41 63 61 24 43 61

2 2
33 33 35 55 33 33 55

2
34 33 31 53 51 34

               

      

       

     

( )

(

          2

(

)

)

m c b c

m c b c c b c m c b c

m e b e e b e m e b e

m c b c b c m c b c

m e b e e b e m

⇒ = +

= + + + ⇒ = +

= + + + ⇒ = +

= + + ⇒ = +

= + + + ⇒ = 2
33 51

2 2
44 33 13 11 44 33 11( 2

  

    

   

  

( ) )

e b e

m b b m bε ε ε ε ε

+

= − + + ⇒ = − +

 

In order to evaluate the non–trivial solution for Equation 15, the Eigenvalue problem, det 
(M) = 0, is required to be solved. This results in a system of characteristic equations for 
displacement amplitudes and electric potential in which the phase velocity v of the wave is 
used as unknown parameters. In general case, this system of characteristic equations is 
reduced to an eighth order polynomial in the decaying constant b for a given value of phase 
velocity. However, the resulting roots of b are either purely real or complex conjugate pairs. 
Since these roots leads to Rayleigh waves that decay with the depth along x3, only the roots 
with negative imaginary parts are accepted to be consistent with the physical meaning of 
wave propagation in piezoelectric media (Gardner et al., 2001; Ippolito et al., 2002). There 
are four such roots for b (denoted as bm for m = 1, 2, 3, 4) and for each such value, there exist 
a unique Eigenvector α m. A general solutions is then obtained as a linear combination of 
partial waves such that each wave decays almost to zero as it shifts into the crystal depth 
approximately at a distance of several wavelengths from the surface (x3 = 0). Furthermore, 
the solution consists of three displacement components uj (j = 1, 2,3) and the electric 
potential Φ as described by the Equations 16 and 17. 
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In order to evaluate the non–trivial solution for Equation 15, the Eigenvalue problem, det 
(M) = 0, is required to be solved. This results in a system of characteristic equations for 
displacement amplitudes and electric potential in which the phase velocity v of the wave is 
used as unknown parameters. In general case, this system of characteristic equations is 
reduced to an eighth order polynomial in the decaying constant b for a given value of phase 
velocity. However, the resulting roots of b are either purely real or complex conjugate pairs. 
Since these roots leads to Rayleigh waves that decay with the depth along x3, only the roots 
with negative imaginary parts are accepted to be consistent with the physical meaning of 
wave propagation in piezoelectric media (Gardner et al., 2001; Ippolito et al., 2002). There 
are four such roots for b (denoted as bm for m = 1, 2, 3, 4) and for each such value, there exist 
a unique Eigenvector α m. A general solutions is then obtained as a linear combination of 
partial waves such that each wave decays almost to zero as it shifts into the crystal depth 
approximately at a distance of several wavelengths from the surface (x3 = 0). Furthermore, 
the solution consists of three displacement components uj (j = 1, 2,3) and the electric 
potential Φ as described by the Equations 16 and 17. 
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Additionally, during the derivation of the solution in the form of a SAW, it is assumed that 
the wave vector k is always parallel to the free surface, while the constant–phase surfaces are 
always normal to the free surface. Furthermore, it is considered that the multiplier in 
Equations 16 and 17, which depends on the x3 coordinate, determines the displacement 
amplitude, and the wave properties of the solution are determined by the multiplier 

1i ( ).k x vte −  The weighting coefficients Cm of these plane waves are chosen to satisfy the 
mechanical and electrical boundary conditions at the surface of the piezoelectric substrate 
specific to this SAW based actuator model, which is discussed in detail in Section 6. But first, 
in Section 5, an expression is derived for the electric potential at the output IDT, using 
Equation 17. 

5. Electric potential at output IDT 
In order to determine the electrostatic field generated between the output IDT and the 
conductive plate, the evaluation of the electric potential at the output IDT is required. Here, 
once the plane wave equation is evaluated for the electric potential wave in the SAW device 
(Equation 17), an analysis is carried out to evaluate an expression for the electric potential at 
the output IDT. In achieving this, the following assumptions and simplification are made to 
the design apart from previously mentioned simplifications. 
i. The crystal cut is best set so that the SAW is directly propagating in the x1 direction to 

allow an orthogonal interaction between the SAW and the output IDT. 
ii. The orientation of the IDT is such that a SAW is generated in the direction of maximum 

SAW–propagation speed. 
iii. The acoustic wave is assumed to pass the output IDT once, and interact with no 

reflections caused by impedance mismatches (Gardner et al., 2001; Ippolito et al., 2002). 
iv. The acoustic wave interact with the IDT in the near field where SAW can be treated as a 

travelling wave as was discussed before. 
Due to the periodic nature of the propagating waves and the placement of the IDTs, the 
analysis is initially carried out only for a single period, and then extended to the whole 
structure. The single period placement of the output IDT is shown in Figure 6. 
As explained in Figure 6, each finger in the IDT is assigned a negative or positive value that 
is determined by the finger’s connection to either positive or negative bus bar. Therefore, the 
output IDT fingers are represented as square waves with the period defining wave length of 
the SAW and the duty cycle defining the finger width (Skinner et al., 2006). This width is 4

λ  
for a metallisation ratio of 0.5. For the SAW based electrostatic actuator model, initially a 
basic model of the IDT configuration is used. 
While the output IDT is considered as a combination of square waves, the SAW is defined as 
a propagating plane wave as was elaborated in Section 4.5. In order to obtain the time 
response of the SAW interaction with the output IDT, a cross–correlation is applied to the 
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Fig. 6. Periodic IDT finger representation. IDT finger representation for one wavelength (λ) 
with a metalisation ratio of 1

2 . Each finger is connected to one of the two bus bars, with one 
bus bar assigned a positive value and the other assigned a negative value. 
 

SAW and the IDT signals. Cross–correlation is a method by which two different function are 
compared over time with one time–fixed function and one time–shifted function. Within one 
wavelength of the IDT, the analysis has to be carried out in two parts, considering the space 
above the output IDT fingers (0 ≤ x1 ≤ 4

λ
 ∪ 2

λ  ≤ x1 ≤ 3
4
λ ) and the space above the output IDT 

gap between fingers ( 4
λ < x1 < 2

λ  ∪ 3
4
λ

 < x1 < λ). This is because the metal based IDT fingers 
consist of an equipotential distribution for a given time, and the gaps between the fingers 
consist of a space varying electric potential distribution in x1 direction. 

IDT Segment in Range (0 ≤ x1 ≤ 4
λ

 ∪ 2
λ  ≤ x1 ≤ 3

4
λ

 ): 

As shown in Figure 7, analysis of a single IDT finger will serve as the basis for the analysis 
for a single periodic structure and then for the entire IDT structure. Therefore, the cross-
correlation between the SAW potential signal Φ(x1, x3, t), and the first finger connected to 
the positive bus bar (0 ≤ x1 ≤ 4

λ
 ) can be expressed as 

1 3 ( ) 1 3( , , ) (     )( , , )C x x t g x x t+ += Φ∗  

                                                                           
/4

1 3 ( )0
( , , )· ( )

T
x x t g dτ τ τ+= Φ +∫  

                        1 3
2 ( , , ).

8
x x t

kv
λ√

= Φ −  (18) 

Here, g(+) represents the positive square wave of the finger as can be seen from Figure 7. 



 Acoustic Waves 

 

192 

 

 
 

Fig. 6. Periodic IDT finger representation. IDT finger representation for one wavelength (λ) 
with a metalisation ratio of 1

2 . Each finger is connected to one of the two bus bars, with one 
bus bar assigned a positive value and the other assigned a negative value. 
 

SAW and the IDT signals. Cross–correlation is a method by which two different function are 
compared over time with one time–fixed function and one time–shifted function. Within one 
wavelength of the IDT, the analysis has to be carried out in two parts, considering the space 
above the output IDT fingers (0 ≤ x1 ≤ 4

λ
 ∪ 2

λ  ≤ x1 ≤ 3
4
λ ) and the space above the output IDT 

gap between fingers ( 4
λ < x1 < 2

λ  ∪ 3
4
λ

 < x1 < λ). This is because the metal based IDT fingers 
consist of an equipotential distribution for a given time, and the gaps between the fingers 
consist of a space varying electric potential distribution in x1 direction. 

IDT Segment in Range (0 ≤ x1 ≤ 4
λ

 ∪ 2
λ  ≤ x1 ≤ 3

4
λ

 ): 

As shown in Figure 7, analysis of a single IDT finger will serve as the basis for the analysis 
for a single periodic structure and then for the entire IDT structure. Therefore, the cross-
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Fig. 7. SAW and single finger correlation. Superimposition of the SAW and a single finger of 
the output IDT. g(+) represents the equipotential behaviour of the conductive finger. Two 
SAWs are T/8 apart from one another. 
 

The electric potential at this IDT finger can be considered as the average value of the 
correlated signal C+(x1, x3, t) over the finger width fw, due to the equipotential nature of the 
metal based fingers. As the metalisation ratio is 0.5 in this analysis, fw = λ/4 and this relate to 
T/4 in time scale, where T (= λ/v) is the time period of the SAW. Therefore, the electric 
potential generated at the first finger connected to the positive bus bar can be written as 

 

/4
1 3 1 3 10

32

( , , )  ( , , )

2                     ( , , ).
8

V x x t C x x t dx

T x t

λ

λ
π

+ +=

= Φ

∫
 (19) 

By following an identical approach, the electric potential at the finger connected to the 
negative bus bar ( 2

λ  ≤ x1 ≤ 3
4
λ ) can be derived and the result can be written as 

 1 3 32
2( , , ) ( , , ).

8
TV x x t x tλ
π− = − Φ  (20) 

IDT Segment in Range ( 4
λ < x1 < 2

λ  ∪ 3
4
λ

 < x1 < λ):  

Once the analysis is simplified by considering the aforementioned assumptions and 
simplifications, the electric potential at the gaps between the fingers can be considered to 
consist of the same electric potential of the propagating SAW as shown in Equation 17. 
Therefore 

 1 3 1 3( , , ) ( , , ).gapV x x t x x t= Φ  (21) 

Based on the above analysis, the total electric potential generated by a single period of the 
output IDT can be expressed as 
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where Ψ = V+(x1, x3, t) = 2
2T
π

 Φ( 8
λ , x3, t), and Ω = Vgap(x1, x3, t) = Φ(x1, x3, t). This is further 

elaborated graphically in Figure 8. Consequently, due to the periodic nature of the IDT, this 
expression can be easily extended to derive the electric potential for the full output IDT. 
Therefore, for an output IDT with Np finger pairs, the total electrostatic potential at the 
output IDT can be expressed as 
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Here, n = 0, 1, 2, ..., (Np –1) and Ψ and Ω are as explained before. 
Once the general expressions is derived, a boundary condition analysis is carried out to 
specify values for the weighting coefficients in Equations 22 and 23. This analysis is further 
unfolded in next section. 
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                              (a) time = t                                                           (b) time = t –T/8 
 

Fig. 8. SAW correlation and the electric potential at the output IDT. Correlation between 
SAW electric potential and the output IDT of the SAW device is demonstrated. For a 
periodic IDT structure, one finger pair is represented, hence one time period (T = λ/v) is 
considered. Equipotential IDT fingers are represented by square waves. (a) Electric potential 
of the propagating SAW, SAW(t) is peaked at the center of output IDT fingers (considered at 
time t). (b) Electric potential of the propagating SAW is T/8 seconds delayed compared to 
SAW(t). In both the cases, the cross-correlated electric signal consists of equipotentials across 
IDT fingers. 
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Therefore, for an output IDT with Np finger pairs, the total electrostatic potential at the 
output IDT can be expressed as 
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Here, n = 0, 1, 2, ..., (Np –1) and Ψ and Ω are as explained before. 
Once the general expressions is derived, a boundary condition analysis is carried out to 
specify values for the weighting coefficients in Equations 22 and 23. This analysis is further 
unfolded in next section. 
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                              (a) time = t                                                           (b) time = t –T/8 
 

Fig. 8. SAW correlation and the electric potential at the output IDT. Correlation between 
SAW electric potential and the output IDT of the SAW device is demonstrated. For a 
periodic IDT structure, one finger pair is represented, hence one time period (T = λ/v) is 
considered. Equipotential IDT fingers are represented by square waves. (a) Electric potential 
of the propagating SAW, SAW(t) is peaked at the center of output IDT fingers (considered at 
time t). (b) Electric potential of the propagating SAW is T/8 seconds delayed compared to 
SAW(t). In both the cases, the cross-correlated electric signal consists of equipotentials across 
IDT fingers. 
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6. Boundary condition analysis 
As it was highlighted above, the weighting coefficients in Equations 16 and 17 need to be 
determined based on the electrical and mechanical boundary conditions applicable for the 
SAW device based actuator model. Therefore, in this section a detailed analysis is presented 
to determine these weighting coefficients. 
Mechanical boundary conditions: 
At the output IDT area of the SAW substrate, the IDT mass is taken to be negligible for 
simplicity, so that the mechanical force acting on the SAW substrate can be discarded. 
Hence the surface is considered to be mechanically free. This can be mathematically 
expressed as 

 3 0,j
j

T =∑  (24) 

where T is the mechanical stress tensor and j = 1, 2, 3. 
Electrical boundary conditions: 

In the SAW based electrostatic actuator model, the electric potential generated at the output 
IDT region was investigated and evaluated in Section 5. Based on Equation 23, at the surface 
where the output IDT is deposited (x3 = 0), the electrical boundary condition constitute an 
electric potential at the IDT fingers, and the electric potential at the gaps between the IDT 
fingers. Respectively, these regions can be noted as (0 ≤ x1 ≤ 4

λ
 ∪ 2

λ  ≤ x1 ≤ 3
4
λ ) and  

( 4
λ < x1 < 2

λ  ∪ 3
4
λ

 < x1 < λ) which correspond to Figure 6 for one period of the output IDT 
structure. As explained in Section 5, the electric potential wave at the output IDT fingers act 
as an equipotential time varying wave throughout the positive and negative IDT fingers 
(independent of x1). Whereas the electric potential wave at the gap between the fingers, still 
a time varying and a moving wave (a function of x1). 
However, in the SAW device based actuator model (Figure 3), the conductive plate is placed 
at a height h above the output IDT, and connected to the common ground of the device. 
Therefore, the electric potential approaches zero at x3 = h. It should be noted that the electric 
potential above the SAW substrate satisfies Laplace’s equation, which results in an 
exponentially decaying electric signal in x3 direction, and can be written as 

 3 3 1i ( )
1 3( , , ) ,kx kx k x vt

L L Lx x t A e B e e− −⎡ ⎤Φ = +⎣ ⎦  (25) 

where AL and BL are constants. Additionally, the electric potential and the electric flux 
density in x3 direction are continuous at the surface (x3 = 0) (Subramanian et al., 1997; 
Maugin, 1985), which can be mathematically expressed as 

 3 3 3

3 3 3

( 0 )  ( 0) ( 0 ),

( 0 )  ( 0) ( 0 ).

x x x

D x D x D x

− +

− +

Φ = = Φ = = Φ =

= = = = =
 (26) 

Equation 23 along with conditions highlighted in Equation 26 are considered together to 
eliminate both AL and BL in Equation 25. First, the electrical boundary condition at the 
conductive plate is considered. Since the conductive plate mounted at a distance h above the 
substrate, the electric potential at x3 = h becomes zero. Therefore, from Equation 25, 
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Once BL is eliminated, Equation 25 can be rewritten as, 

 3 3 12 i ( )
1 3( , , ) .kx kh kx k x vt

L Lx x t A e e e− −⎡ ⎤Φ = −⎣ ⎦  (28) 

To evaluate the constant AL, electrical boundary condition at the surface of the substrate  
(x3 = 0) is need to be considered. However, as shown in Equation 23, the electric potential at 
the output IDT area is a combination of various potentials due to the output IDT and the 
gap between them. Therefore, two different electric potential signals have to be considered 
in the analysis, one considering the space above the output IDT (0 ≤ x1 ≤ 4

λ
 ∪ 2

λ  ≤ x1 ≤ 3
4
λ ) 

and the other, the space above the output IDT gap ( 4
λ < x1 < 2

λ  ∪ 3
4
λ

 < x1 < λ). More 
importantly, this distinction does not affect the final result due to the similarity in the 
procedure followed for the derivation of AL. Therefore the approach is shown only for one 
case. 
Considering the plane wave Equation 23 for electric potential and Equation 28, and the 
continuity Equation 26, AL can be evaluated as follows, 
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The relationship between the electric flux density and the electric field can be written as  
D = ε0E. Considering this relation along with Equation 1, a relationship between the electric 
flux density and the electric potential in the gap in x3 direction can be written as 

 1 3
3 1 3 0

3

( , , )( , , ) .L x x tD x x t
x

ε ∂Φ
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∂
 (30) 

Hence, using the above equation, the electric flux density at x3 = 0 is calculated and written 
as follows. 
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Additionally, another alternative expression for electric flux density at x3 = 0 can be obtained 
from Equation 6. Therefore, 

 3 1 3 3( ,0, ) .S
jk jk j j

j k j
D x t e S Eε= +∑∑ ∑  (32) 
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Ultimately, by equating Equations 31 and 32, another Eigenvalue problem is formulated, 
where the variables consist of the weighting coefficients. The resulting boundary conditions 
can be written out in matrix form as follows. 
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Here the value of X depends on the position of the conductive plate above the SAW device 
(h), and takes the value of –1 for the case where the plate is at an infinite height above the 
substrate (h →∞). In this analysis, the phase velocity is explicitly present in Equations 16 and 
17, and implicitly present in the roots bm and in the linear coefficients αm as mentioned 
before. Therefore a suitable value for phase velocity should be chosen for which the 
determinant of the coefficients in the Eigenvalue problem presented in Equation 33 
vanishes, hence satisfy the associated boundary conditions. 
It is important to realise that the above two Eigenvalue problems presented in Equations 15 
and 33 are required to be solved simultaneously using iterative numerical procedures. This 
is due to the implicit dependency of decaying constants bm on phase velocity v, and explicit 
dependency of Eigenvectors of linear coefficients αm on v. Once a suitable phase velocity is 
found, the weighting coefficients Cm can be determined. As a result, a complete solution is 
obtained for the electric potential at the output IDT (Equation 23). 

6.1 Electrostatic force generation 
In electrostatic actuation, the electrostatic force applied on electrostatic plates can be 
described using the parallel plate capacitor effect (Tsai & Sue, 2007) as 
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2
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where ε is the dielectric coefficient of the medium between the plates, A is the effective plate 
area,WP(x1) is the instantaneous deflection of the actuator in x3 direction, h is the initial plate 
spacing, and Φ is the applied electric potential between the plates. 
In order to carry out the analysis to derive an expression for the resultant electrostatic force, 
the assumptions and simplifications mentioned in Section 4.2 are applied. Additionally, the 
electric field lines produced by the positive IDT fingers terminate either at the negative IDT 
fingers or at the conductive plate. For simplicity however, the effect of the electrostatic 
coupling between the IDT fingers, as well as the fringe capacitances (between the electrodes 
and the diaphragm), is discarded in this analysis. 
Due to the periodic nature of the propagating waves and the placement of the IDTs, the 
electrostatic force analysis is initially carried out only for a single period, and then extended 
to the whole structure, similar to the electric potential calculation that is presented in Section 
5. The single period placement of the output IDT is shown in Fig. 6. 
Previously in Section 5, different segments of the output IDT were considered in analyzing 
the electric potential at output IDT. In this section, a similar approach is followed also in 
analysing the electrostatic force at the output IDT. Here, within one wavelength of the IDT, 
the analysis is carried out in two parts; one part considering the region above the output 
IDT electrodes (0 ≤ x1 ≤ 4

λ
 ∪ 2

λ  ≤ x1 ≤ 3
4
λ ) and other, the region above the output IDT finger 

gaps ( 4
λ < x1 < 2

λ  ∪ 3
4
λ

 < x1 < λ). This is due to the fact that was proven in Section 5; IDT 
fingers consisting of an equipotential distribution for a given time instance, while the gaps 
between the fingers consisting of a space varying electric potential distribution in x1 

direction as shown in Equation 23. In this analysis, an IDT with finger width of fw and finger 
length of fl is considered. For a metallisation ratio of 0.5 as in Fig. 6, the finger spacing is also 
fw. 

IDT Segment in Range (0 ≤ x1 ≤ 4
λ

 ∪ 2
λ  ≤ x1 ≤ 3

4
λ ): 

The electrostatic force generated by the electrode finger, which is connected to the positive 
bus bar F(+) can be evaluated considering Equations 23 and 34. As a result of the quadratic 
dependency of force to the applied electric potential, the force generated between the plate 
and the electrode finger, which is connected to the negative bus bar F(–) is equal to F(+). 
Therefore, 
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 (35) 

where ε0 is the dielectric coefficient of air. 

IDT Segment in Range ( 4
λ < x1 < 2

λ  ∪ 3
4
λ

 < x1 < λ): 

A slightly different approach is needed to evaluate the electrostatic force generated between 
the conductive plate and finger gaps. This is because of the space varying electric potential 
distribution mentioned above. Each finger gap is divided into Ns subdivisions in x1 direction, 
so that each subdivision has a width of w

s

f
N  and a length of fl (≈ aperture of the IDT). 

Combining the relevant range in Equations 23 and 34, and after some algebraic 
simplifications, the electrostatic force generated by each gap can be evaluated as 
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for j = 1, 2, 3,.., Ns. Therefore, for a distance of single wavelength (λ), the total electrostatic 
force generated is 

 ( ) ( ) ( )2 .gapF F Fλ +⎡ ⎤= +⎣ ⎦  (37) 

Furthermore, the above results can be used to extend the analysis to the evaluation of the 
resultant electrostatic force (F(tot)) generated by an output IDT with Np pairs of fingers. From 
Equations 35 – 37, 
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for j = 1, 2, 3,.., Ns and 0 .w pl

st
f f N
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ε
=  

As the doubly–clamped actuator is deflected due to the applied electrostatic force, an elastic 
restoring force is developed in the actuator. At equilibrium, the kinetic energy becomes zero, 
and actuator’s potential energy reaches to a maximum. Therefore, to determine the 
displacement achieved by the actuator, the calculated electrostatic force and the elastic 
restoring force need to be considered at their equilibrium point (Washizu, 1975; Hu et al., 
2004). However, this become a complex problem to solve since both the forces (F(+) and F(gap)) 
depend on the actuator’s instantaneous displacement Wp(x1). Therefore, to obtain an 
accurate solution for WP(x1), analytical methods or numerical analysis methods such as FEM 
are required. 

7. Finite element modelling of the actuator 
For the Finite Element Analysis (FEA) of the actuator, a coupled–filed analysis is required 
since electrostatic and solid interactions are involved. Two distinct coupled–field methods 
can be identified in ANSYS; (i) Direct-coupling method, and (ii) Load transfer method 
(ANSYS Incorporation, 2009). 
The direct–coupling method involves just one analysis that uses a coupled–field element 
type containing all necessary degrees of freedom. The coupling is handled by calculating 
element matrices or element load vectors that contain all necessary terms. Whereas the load 
transfer methods involve two or more analysis with each belonging to a different field, and 
two fields are coupled by applying results from one analysis as loads in another analysis. 
There are different types of load transfer analysis in ANSYS; (i) ANSYS Multi–field Solver 
(MFS and MFX), (ii) Physics file based load transfer, and (iii) Unidirectional load transfer 
(ANSYS Incorporation, 2009). Suitability of these methods for a certain analysis depends on 
the physics fields involved, and whether the load transfer is unidirectional or not. Therefore, 
it is crucial to chose the most appropriate method to analyse a given scenario in order to 
achieve more accurate results in a reasonable simulating time. However, for MEMS 
applications ANSYS Multi–field solver is highly appropriate as it is a solver for sequentially 
coupled field analysis. Therefore in this research, ANSYS MFS is used for FEA of the SAW 
device based actuator. 
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7.1 Preparation of the model for analysis 
The steps that were followed in the design and modelling of this device is as follows. 
Initially the geometry is created, and then element and material properties are defined for 
the actuator and the air–gap. As depicted in Figure 9, SOLID95 and SOLID122 element types 
are used for the structural and electrostatic models respectively. SOLID95 element has 
capabilities such as plasticity, creep, stress stiffening, large deflection, and large strain 
capability hence highly suitable for the design of microactuators. Whereas, SOLID122 is a 
3D, 20–node, charge based electric element, which has one degree of freedom (Voltage) at 
each node. It is designed to tolerate irregular shapes without much loss of accuracy. 
Moreover, SOLID122 elements have compatible voltage shapes and are well suited to model 
curved boundaries and applicable to 3D electrostatic and time–harmonic, quasi–static 
electric field analysis (ANSYS Incorporation, 2009). In this modelling, the effect of the output 
IDT is designed by coupling a set of nodes at the bottom of the air–gap to match the desired 
IDT pattern and assigning a Volt Degree–of– Freedom (DoF) to those nodes. 
Next, the geometry is meshed to a fine level to accommodate for accurate micro level 
changes in the structure. Once the geometry is meshed, relevant electric and mechanical 
boundary conditions are applied. After setting the boundary conditions and constrains, a 
static analysis is carried out mainly to check for the convergence criteria. Once the results 
are converged in static analysis, then a model analysis is carried out to extract the natural 
frequencies of the conductive actuator. As a result, the operating mode for the actuator can 
be realised, and then a transient analysis is performed for a long enough time period that is 
dictated by the natural frequency mode of the actuator and the frequency of operation of the 
SAW device. This is an important step in the modelling process as it helps to decide on an 
optimal completion time for the transient analysis, since the transient simulations generally 
take a longer time to complete. 
To simplify the analysis, the performance of the thin conductive plate with a smaller width 
was initially considered. Additionally, half–symmetry is exploited due to the symmetrical 
nature of the model. As a result, a reduced number of nodes and elements were generated for 
the model, and hence reduced simulation times and improved CPU usage were achieved. 

 
Fig. 9. SOLID95 and SOLID122 element geometries. 3D, 20–node elements used in the 
design of actuator and the air–gap (ANSYS Incorporation, 2009). SOLID95 element has 
capabilities such as plasticity, creep, stress stiffening, large deflection, and large strain 
capability. SOLID122 is a charge based electric element with one degree of freedom 
(Voltage) at each node. SOLID122 elements are well suited to model curved boundaries and 
applicable to 3D electrostatic and time–harmonic quasi–static electric field analysis (ANSYS 
Incorporation, 2009). 
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changes in the structure. Once the geometry is meshed, relevant electric and mechanical 
boundary conditions are applied. After setting the boundary conditions and constrains, a 
static analysis is carried out mainly to check for the convergence criteria. Once the results 
are converged in static analysis, then a model analysis is carried out to extract the natural 
frequencies of the conductive actuator. As a result, the operating mode for the actuator can 
be realised, and then a transient analysis is performed for a long enough time period that is 
dictated by the natural frequency mode of the actuator and the frequency of operation of the 
SAW device. This is an important step in the modelling process as it helps to decide on an 
optimal completion time for the transient analysis, since the transient simulations generally 
take a longer time to complete. 
To simplify the analysis, the performance of the thin conductive plate with a smaller width 
was initially considered. Additionally, half–symmetry is exploited due to the symmetrical 
nature of the model. As a result, a reduced number of nodes and elements were generated for 
the model, and hence reduced simulation times and improved CPU usage were achieved. 

 
Fig. 9. SOLID95 and SOLID122 element geometries. 3D, 20–node elements used in the 
design of actuator and the air–gap (ANSYS Incorporation, 2009). SOLID95 element has 
capabilities such as plasticity, creep, stress stiffening, large deflection, and large strain 
capability. SOLID122 is a charge based electric element with one degree of freedom 
(Voltage) at each node. SOLID122 elements are well suited to model curved boundaries and 
applicable to 3D electrostatic and time–harmonic quasi–static electric field analysis (ANSYS 
Incorporation, 2009). 
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8. Simulations and results 
8.1 Static analysis 
Initially, the static analysis was carried out to determine the static displacement of the 
actuator. In order to mimic the effect of the electric potential wave generated at the output 
IDT of the SAW device, a set of interleaved electrodes were used and every alternative 
electrode was coupled, so that one set of electrodes act as the positive bus bar and the other 
as the negative bus bar. Hence, in the microactuator modelling, the whole SAW device was 
replaced at simulation level. Material properties of silicon were used for the doubly–
clamped conductive plate, which in turn acts as a microactuator. The conductive plate 
dimensions were chosen to be 1000 μm × 2 μm × 10 μm (L×H×W). The gap between the 
electrodes and the conductive plate h was taken to be 10 μm and was considered to be filled 
with air. For static analysis, a 10 Volt input voltage was applied to the positive bus bar. The 
negative bus bar and the conductive plate was connected to a common ground to form the 
electrostatic field. 
Initial FEA results are verified using a commonly used Rayleigh–Ritz method based analytical 
model. For comparison purposes, displacement versus voltage results were plotted and are 
shown in Figure 10. A good correlation can be observed between the analytical and simulation 
results for the microactuator. However, FEA results demonstrate slightly lower displacements 
for a given voltage. This is mainly because the full thickness of the actuator was considered in 
the simulated 3D model in FEA, whereas the actuator was modeled as a thin plate in the 
Rayleigh–Ritz method based analytical model. Therefore, the higher bending stiffness reduces 
the effective mid–beam displacement in the FEA model. It should be noted that the actuator 
displacement can be increased by reducing the gap between the conductive plate and the 
output IDT, reducing the thickness of the conductive plate, and reducing the stress level 
applied at the actuator by optimising the clamping mechanism. 
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Fig. 10. Simulation and theoretical results. Comparison of simulated and theoretical results 
for the SAW actuator. Displacement VS Voltage plot for the mid-beam displacement in the 
conductive plate actuator above the SAW device. 
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Once the static analysis was completed more detailed transient analyses were performed in 
ANSYS to investigate the dynamic behavior of the actuator. 

8.2 Transient analysis 
It should be noted that when a conductive beam is subject to a dynamically changing 
electrostatic field, the displacement behaviour needs to be calculated analytically or 
numerically; using advanced simulation tools equipped with in built algorithms, such as 
ANSYS. This section presents the transient simulation results carried out for the conductive 
plate with the same dimensions mentioned in the static analysis above. Moreover, an AC 
sinusoidal wave with a frequency of 50 MHz and a peak voltage of 10 volts were used to 
emulate the electric potential wave at the output IDT as proven in Equation 23. The 
conductive plate is connected to ground so that the plate acts as an equipotential surface. 
However, the node density of the model, and the CPU processing power were found to be 
major constrains that restricted longer transient analysis (ex: 1000×T, where T is the period 
of SAW). Moreover, a higher node density was needed to effectively represent the output 
IDT in FEA model. By considering these factors, transient simulations were performed for 
400×T during this analysis. 
 

         
                              (a) t = 0.2 μs                                                                (b) t = 1.0 μs 

       
                              (c) t = 2.0 μs                                                               (d) t = 4.0 μs 

Fig. 11. Transient analysis results for intermediate steps. Deflection results for the actuator 
performance at various time steps during the transient analysis. Half–symmetry is exploited 
due to the symmetrical nature of the model. The flexural behaviour is observed during 
stabilisation period. 
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Figures 11 – 12 depict the actuator displacements for different steps in transient analysis. As 
a thinner actuator is modelled in ANSYS, the flexural behavior of the actuator is first 
observed. As the time progresses, the deflection profile of the actuator is found to be similar 
to the profile obtained from the Rayleigh–Ritz method based analysis.  
Figures 12 (c) and (d) depict the contour plot of the Von Mises stress distribution of the 
actuator. Here, Von Mises stress can be used to predict the yielding of any of the materials 
used, under any loading condition. The maximum Von Mises stress in this scenario is 0.121 
MPa, which is much lower than the yield strengths of the selected material. This 
demonstrates that the actuator’s deflection is well within the elastic range of the materials 
used. 
As can be seen from these simulations, micro displacements are successfully obtained using 
SAW based actuation method. Figure 13 shows the mid–beam and the quarter–beam 
displacement variations over a simulation time of 400×T. Based on the static analysis 
however, it was shown that displacements up to ~3 μm can be achieved using SAW device 
 
 

      
            (a) Displacement, Isometric View.                    (b) Displacement, Side View. 

       
               (c) Von Mises stress, Isometric View.            (d) Von Mises stress, Clamped edge. 
Fig. 12. Transient analysis results for final step. Deflection and Von Mises stress analysis 
results for the actuator performance at t = 8.0 μs. Half–symmetry is exploited due to the 
symmetrical nature of the model. The maximum Von Mises stress in this scenario is 0.121 
MPa, which is near the clamped edge. This is much lower than the yield strengths of the 
selected material, hence demonstrating that the actuator’s deflection is well within the 
elastic range. 
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Fig. 13. Displacement VS Time plot of the mid–beam. Analysis carried out for 400×T, where 
T is the time period of the SAW signal. As the time increases the mid–beam displacement as 
well as the quarter–beam deflection increase at an increasing rate. 
 

based actuation. As a result, it is proven that even after 400×T, still the dynamic 
displacement does not show any periodic nature but in the process of gaining more 
displacement. Based on these results, it is evident that the actual operating frequency of the 
conductive plate during actuation is a very much a scaled down version of the SAW 
frequency. 

9. Conclusion 
In this chapter, the use of a SAW device to generate microactuations was demonstrated. 
Detailed theoretical analysis explaining how the entire SAW device based actuator 
operation was carried out and boundary conditions applicable for presented design was 
used to derive the electric potential wave forms, hence the electrostatic field between the 
SAW device and the conductive plate. Displacement analysis of the conductive actuator was 
obtained. Static analysis results were generated using the ANSYS simulation tool, and 
compared with the theoretical results obtained by Rayleigh–Ritz method. A good correlation 
between the theoretical and simulated displacement curves were observed. 
Once the static analysis was completed, the dynamic behaviour of the SAW device based 
electrostatic actuator was studied using transient analysis. This is more substantial in 
investigating the operating frequency of the conductive plate. Since the SAW frequency is in 
the range between 50 MHz–1 GHz it was crucial to verify the effective operating frequency 
of the conductive plate. Because of the time varying electrostatic field, it was found that the 
oscillating frequency of the actuator is much less than that of the SAW frequency. Therefore, 
the applicability of this SAW based secure and wireless interrogation for implantable MEMS 
devices is clearly demonstrated. 
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Fig. 13. Displacement VS Time plot of the mid–beam. Analysis carried out for 400×T, where 
T is the time period of the SAW signal. As the time increases the mid–beam displacement as 
well as the quarter–beam deflection increase at an increasing rate. 
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1. Introduction 
Ultrasonic motors, as one kind of actuators, have attracted a lot of attention since it was 
proposed more than 20 years ago. In such kind of motors, the sliders (for linear motors) or 
the rotors (for rotary motors) are driven by the frictional forces between the sliders (rotors) 
and the stators when ultrasonic waves are propagating on the stators. Since then, the 
ultrasonic motors have been developed and applied successfully in wide fields, such as 
mechanical, optic, electronic, and automatic, as well as aeronautic and astronautic industries 
and technologies because of their unique advantages over conventional electro-magnetic 
ones, such as high driving forces and torques, easy controllability, quiet operation, non-
electromagnetic induction, etc. (Sashida & Kenjo, 1993; Ueha & Tomikawa, 1993). Besides, 
with the rapid development of micro-electro-mechanical system (MEMS), miniature 
ultrasonic motors were developed (Dong et al., 2000; Zhang et al., 2006). However, the direct 
contact between the sliders (rotors) and the stators restricts the velocity and working 
lifetime of the motors, then a new kind of non-contact motors were presented, where a fluid 
is introduced between the stator and slider. Thus, instead of the frictional force, acoustic 
streaming excited by the acoustic wave on the stator and propagating in the fluid is used for 
driving the slider or rotor to move (Nakamura et al., 1990; Yamayoshi & Hirose, 1992; Hu et 
al., 1995; Cheng et al., 2007). 
On the basis of conventional ultrasonic motors, several studies on new types of ultrasonic 
motors (actuators) with the driving forces coming from surface acoustic waves (SAWs) were 
presented (Moroney et al., 1989; Kurosawa et al., 1994). For the SAW motors, the SAWs are 
excited by interdigital transducers (IDTs) deposited on surfaces of piezoelectric substrates or 
thin films, and the SAW energies are concentrated in the thin layers near the surfaces of the 
substrates (for Rayleigh waves) or in the thin films (for Lamb waves). In addition to the 
characteristics of conventional ultrasonic motors, the SAW motors have more advantages, 
such as the high operation frequency, high speed, high energy density around the surfaces, 
and higher output force/torque, etc. Meanwhile, since the SAWs are excited by IDTs, which 
can be fabricated with planar technologies of semiconductor industries, the new types of 
motors are suitable for miniaturizing and integrating with integrated circuits and MEMS 
devices, etc.     



 Acoustic Waves 

 

208 

To overcome the difficulties of the frictional drive and extend the applications of the motors, 
several kinds of non-contact SAW linear motors (actuators) were developed (Sano, et al., 
1997), in which a fluid layer (or a drop) is introduced between the stator and slider (rotor) of 
the actuator. Then a SAW streaming excited by the IDT and propagating in the fluid covered 
on the surface of the stator, instead of the frictional force, is used to drive the slider (rotor), 
by which the required driving power of the actuators is reduced greatly and the lifetime can 
be extended (Shiokawa, et al. 1990; Takeuchi, et al., 1994; Gu, et al., 2008). The non-contact 
SAW actuators have been widely used in chemical and biochemical fields (Takeuchi et al., 
2005).    
In this chapter, the structures and characteristics of IDTs for exciting SAWs and the excited 
SAW modes on different substrates are introduced briefly. Then the structures of the stators 
and sliders (rotors), theories and characteristics of the conventional contact linear and rotary 
SAW motors are presented. In addition, the mechanisms, structures and characteristics of 
non-contact SAW actuators, as well as some applications of the motors (actuarors), are also 
described and discussed.  

2. Generation and propagation mode of SAWs 
2.1 Structure and characteristic of interdigital transducers 
SAWs can be generated by many different types of transducers. Up to now, a most popular 
and effective type of the transducers is the interdigital transducer (IDT), which consists of 
two interlocking comb-shaped metallic electrode arrays. For the simplest structure, the 
metallic electrodes have the same length (aperture) and the same width λ/4 as that of the 
gap, where λ is the SAW wavelength, as shown in Fig.1(a). The IDT is deposited on a 
piezoelectric substrate by the photolithographic technology. When a RF voltage with the 
same frequency as that of the IDT is applied to the IDT, the electric field components change 
sign from gap to gap, so that a corresponding periodic mechanical strain field is produced 
through the piezoelectric effect of the substrate.     
The IDT radiates acoustic waves in both forward and backward directions, but 
unidirectional radiation can be obtained with special interdigital arrays. The simplest one is 
to use two identical interdigital transducers separated by a distance (n+1/4)λ, where n is an 
integer; both transducers are driven from two generators having 90 degree phase difference 
between them, or by a single generator with a quarter-wavelength of electrical transmission 
line connecting both transducers. As a result, the generated waves traveling to the right 
from each transducer add up, while those traveling to the left cancel from each other. The 
unidirectionality increases the conversion efficiency of the transducer by 3 dB since waves 
radiate in only one direction instead of two directions, and the bandwidth is reduced by this 
operation. In addition, for undirectional transducers, the waves incident to the left 
transducer from the right are not as strongly reflected as from a bidirectional array (White, 
1970).     
For the substrates with a weak piezoelectric effect, if the nonlinear effect is neglected, the 
SAW vibration amplitude is approximately proportional to the electrode number N, but the 
bandwidth is inversely proportional to N of the IDT. Meanwhile, in order to obtain the SAW 
field with appropriate homogeneity, the length of the electrodes (aperture) of the IDTs 
should also be suitably enlarged if the size of the IDT has no limit. 
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SAW vibration amplitude is approximately proportional to the electrode number N, but the 
bandwidth is inversely proportional to N of the IDT. Meanwhile, in order to obtain the SAW 
field with appropriate homogeneity, the length of the electrodes (aperture) of the IDTs 
should also be suitably enlarged if the size of the IDT has no limit. 
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Fig. 1. Schematic diagram of transducer and SAW modes on different substrates: (a) 
interdigital transducer; (b) Rayleigh wave; (c) Lamb wave; (d) Bleustein-Gulyaev (B-G) 
wave; (e) shear horizontal plate wave; (f) Love wave 

2.2 Mode and characteristic of SAWs 
For different piezoelectric substrates, the IDT may excite waves with different modes, which 
depend on the materials and cut directions of the piezoelectric crystals or polarization 
directions of ceramics, as well as on the piezoelectric thin films with special growth 
directions on substrates. Generally, the wave modes are classified in five types as shown in 
Figs. 1(a)-1(f). 
(i) In the Rayleigh wave mode shown in Fig.1(b), the surface particles in the sagittal plane of 
the substrate move in a retrograde elliptical trajectory relative to the SAW propagation 
direction, as shown in Fig.2(a). Besides, the amplitude of the Rayleigh mode decreases 
almost exponentially with the depth in the substrate, and the penetration depth of the wave 
is considered to be one wavelength range as shown in Fig.2(b). Therefore, the acoustic 
energy is concentrated in a thin layer beneath the surface with the depth about one 
wavelength of the Rayleigh wave. (ii) The Lamb wave propagates in a thin plate shown in 
Fig.1(c), so it is also called as the plate wave. There are two kinds of modes for Lamb wave, 
i.e., symmetric and anti-symmetric modes as shown in Fig.2(c), which may be considered as 
the composition of two Rayleigh waves propagating on both boundaries of a plate as the 
thickness of the plate is just over one wavelength. The symmetric and anti-symmetric modes 
of Lamb wave can be obtained by the composition of both Rayleigh modes with opposite 
phases and the same phases, respectively. (iii) For the Bleustein-Gulyaev (B-G) wave shown 
in Fig.1(d), it is a horizontally polarized surface wave propagating on an infinite 
piezoelectric substrate. (iv) For shear horizontal plate wave (SH plate wave) (see Fig.1(e)), 
the thickness of the substrate (thin plate) is half of the wavelength, and (v) for the Love 
wave (Fig.1(f)), the SH wave propagates in a thin layer covered on the substrate (White, 
1970; Auld, 1973).  
Therefore, for the last three kinds of the SAW modes, the vibrations of the surface particles 
are perpendicular to the wave propagation direction, but parallel to the surface of the  
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Fig. 2. Characteristics of SAWs propagating in elastic isotropic medium; (a) particle motion 
orbit of Rayleigh wave; (b) particle displacement of Rayleigh wave; (c) Lamb wave: 
symmetric and anti-symmetric modes.  

substrate. For ultrasonic motors, the particle displacement of the surface is required to have 
a component perpendicular to the surface of the substrate, so, up to now, only Rayleigh and 
Lamb modes are used as the driving sources of the SAW motors.    

3. Conventional SAW motors        
Since a kind of ultrasonic micro-motors driven by Lamb waves with high frequencies 
excited by IDT was reported in 1989 (Moroney et al., 1989), several kinds of SAW motors 
driven by Rayleigh waves excited by IDTs have been developed. The first prototype of SAW 
linear motors was presented by Kurosawa et al., in which two pairs of IDTs with the central 
frequency about 10 MHz were prepared perpendicularly on a piezoelectric substrate, then 
two Rayleigh waves were excited in cross directions and a two-dimensional SAW motor 
was built-up (Kurosawa et al., 1994; 1996). Generally, for the conventional SAW linear 
motors, the sliders in contact with the stators are directly driven by the frictional forces 
between the sliders and stators. Based on the SAW linear motors, a kind of SAW rotary 
motor operated in similar conditions was also developed (Zhang et al., 2000). These SAW 
motors have similar operation principles, characteristics, and theories, which are described 
separately in this section. 

3.1 Principle of SAW linear motors 
SAW motors are composed of stators and sliders, where the stators are SAW devices (such 
as delay lines). A typical structure of SAW linear motors is shown in Fig.3(a) (Asai et al., 
1999). The slider is in directly contact with the stator and driven by the frictional force 
between the slider and the stator induced by the SAW propagating in the stator. The 
acoustic wave mode used in the most of the conventional SAW motors is Rayleigh wave 
excited by IDT deposited on piezoelectric substrate. The driving force applied on the slider 
is induced by the particle motions and in the direction opposite to the SAW propagation. 
Since the amplitude of the Rayleigh wave decreases exponentially with the depth in the 
substrate, the acoustic energy is concentrated in a thin layer beneath the surface with a 
thickness of about one wavelength of the SAW. Therefore, the energy density is very high, 
which is beneficial for improving the utilization efficiency of the acoustic energy. 
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between the slider and the stator induced by the SAW propagating in the stator. The 
acoustic wave mode used in the most of the conventional SAW motors is Rayleigh wave 
excited by IDT deposited on piezoelectric substrate. The driving force applied on the slider 
is induced by the particle motions and in the direction opposite to the SAW propagation. 
Since the amplitude of the Rayleigh wave decreases exponentially with the depth in the 
substrate, the acoustic energy is concentrated in a thin layer beneath the surface with a 
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Fig. 3. SAW linear motor: (a) structure of motor; (b) stator with IDTs; (c) slider with 
projections on a Si wafer.  

However, when the acoustic amplitude is large enough, the wave propagation may become 
nonlinear, such as generation of harmonic frequencies and frequency mixing. These effects 
may act as unwanted sources of wave attenuation. Therefore, in the practical applications of 
SAW motors, the operation conditions must be considered in compromise and optimization. 

3.2 Structure of SAW linear motors 
(a) SAW stators 
For SAW motors, the ordinary SAW mode is Rayleigh waves, in which the substrates of 1280 
Y-cut X-propagation LiNbO3 (1280 YX-LiNbO3) crystals are always used as the stators since 
the LiNbO3 crystal substrates have a high electro-mechanical coupling coefficient, and the 
cut direction of LiNbO3 crystals is the propagation direction of pure Rayleigh mode. 
Generally, one pair of IDTs are fabricated by the photolithographic technology on substrates 
as shown in Fig.3(b). One of the IDTs is applied by a RF voltage with the frequency 
consistent with the central frequency of the IDT, thus the SAW in Rayleigh mode is excited 
and propagating in two directions on the surface of the LiNbO3 substrate. The other IDT can 
be used to receive the SAW for checking the wave propagation. In addition, some soft 
materials (absorbers) are applied on the areas between the IDTs and boundaries of the 
substrate to absorb the superfluous SAWs for eliminating the reflections of the boundaries. 
In the SAW motor studies, the SAW frequency is generally taken in the range of 1-100 MHz. 
Considering the vibration amplitude of the SAW is approximately proportional to the 
electrode number of the IDT, in order to increase the SAW energy, the electrode number 
should be large enough, such as more than 10 pairs. Meanwhile, to make the SAW field 
more homogeneous, the aperture of the IDTs should also be large, such as more than 20 
wavelengths, thus the sizes of the IDT and the stator will be much larger. Therefore, to 
miniaturize the SAW motors, the frequency of the SAW should be increased to decrease the 
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size of the IDTs. However, the vibration amplitude should also be decreased because the 
SAW amplitude is approximately inversely proportional to the frequency of the IDTs. As 
the motors are fabricated to operate at very high frequencies, the vibration amplitudes of the 
SAWs are very small, so it is required that the surface of the stators should be very smooth, 
i.e., with very fine roughness (Takasaki et al., 1998; Cheng et al., 2002).  
On the other hand, the Lamb wave is another kind of wave modes used in SAW motors, 
which is excited in thin piezoelectric plates (films) as shown in Fig.2(c) and is suitable for 
manufacturing micro-motors (micro-actuators) used in micro-electro-mechanical systems.  

(b) Sliders        
Generally, the sliders in SAW linear motors could be thin plates or small balls fabricated by 
various materials, such as silicon wafers or aluminum sheets, steel balls and/or ruby balls, 
etc. In order to control the contact pressure and contact area between the sliders and stators, 
spherical-shaped sliders may be preferably adopted. To increase the friction-driving force, it 
is better to manufacture the contact area of the slider with a multi-sphere shape, such as an 
array of small bumps at the contact surface of a silicon wafer slider, as shown in Fig. 3(c), 
especially for the motors operating in higher frequencies (Takasaki et al., 1998; 2000).  

3.3 Characteristic and performance of SAW linear motors 
The moving velocity and the output force of SAW linear motors driven by the frictional 
forces are dependent upon the driving voltage of the IDTs and the contact pressure between 
the stators and sliders. To get suitable velocity and output force of the motors, the contact 
pressure must be controlled by applying preload, such as applying leaf springs or magnets. 
For example, for a SAW motor with the frequency about 10 MHz, a Si wafer with projection 
array shown in Fig.3(c) was used as a slider under a leaf spring preload of about 30 N, the 
transient responses of the slider motion under different driving voltages were measured by 
a laser vibrometer as shown in Fig.4(a) (Kurosawa, 2000). Sequentially, a miniaturized SAW 
motor with the frequency of about 50 MHz was presented, in which the Si wafer was used 
as a slider and a magnetic force was used to control the preload. The moving speeds of the 
silicon slider under different driving voltages were measured as shown in Fig.4(b) (Takasaki 
et al., 1998), in which the maximum output force was calculated as 0.036 N, that is 28% of 
the preload,. To investigate the effect of the slider material on the transient response of the 
motor, three kinds of materials were used as the sliders and the results were shown as 
Fig.4(c) (Kurosawa et al., 1994).  
Up to now, the SAW motors driven with much higher frequencies have been fabricated. For 
example, a motor operating at about 100 MHz has been accomplished, therefore the size of 
the stator was greatly reduced to 3×12.5×0.5 mm3. The results showed that the motor had a 
high speed of 0.3 m/s and a high output force of 13 mN (Shigematsu & Kurosawa, 2006). 
To increase the efficiency of SAW motors, two kinds of power circulation methods were 
developed (Asai et al., 1999). The first power circulation method is shown in Fig.5(a), in 
which two driving IDTs and two unidirectional IDTs are required. The excited traveling 
wave is received by one unidirectional IDT and converted into electric energy. Another 
unidirectional IDT excites a circulated traveling wave using the electric energy. Each 
unidirectional IDT is located at a suitable position, then the excited wave and circulated 
wave can add up with each other. The second method is shown in Fig.5(b), in which two  
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Fig. 4. Transient response of SAW motor: (a) at about 10 MHz; (b) at 50 MHz; (c) at about 10 
MHz.  
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Fig. 5. Structure of stator using two power circulation methods 
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unidirectional IDTs and an electrical combiner are required. The output port of the combiner 
is connected to the exciting unidirectional IDT and the input ports are connected to the other 
IDT and a RF electric power source. The excited SAW is received by the other IDT and 
converted to electric energy, and further put into the combiner, which makes the energy to 
be recycled.   
However, on the other hand, the abrasion is one problem that influences the lifetime of the 
motor driven by frictional force. To avoid the problem, segment-structured diamond-like 
carbon film coatings were proposed to be applied for the friction material (Fujii et al., 2007). 
The segment-structured film coatings could be deposited on the sliders and/or on the 
stators, which are available as the projections on the silicon sliders. 

3.4 SAW rotary motors 
On the basis of the SAW linear motors, SAW rotary motors were developed, in which two 
pairs of IDTs were deposited in parallel on the surface of 1280 YX-LiNbO3 substrate as the 
stator shown in Fig.6(a) (Zhang et al., 2000). In the stator, while IDT-1 and IDT-3 are applied 
a RF voltage with the central frequency of the IDTs, two SAWs with anti-parallel 
propagation directions are excited. As a rotor is located at the center of the stator and spans 
on both SAW waves, the anti-parallel propagations of both SAWs produce one pair of 
oppositely directed frictional forces on the rotor, which result in a torque driving the rotor to 
rotate in anti-clock-wise. It is easy to invert the rotation direction by using the other two 
IDTs (2 and 4) to excite other pair of anti-parallel SAW waves. 
For the rotary motors initially built-up, the prototype using Rayleigh waves is shown in 
Fig.6(b), the IDTs are composed of 20 pairs interdigital electrodes with the aperture of 25 
mm and the operation frequency of about 10 MHz. The rotors are circular disks, in which a 
series of small holes distributed axisymmetrically near the fringe, and the holes are filled 
with small balls as shown in Fig.6(c). The disks and balls can be made by different materials, 
such as plexiglass disks and steel balls, etc. The motor speeds were measured by a digital 
video camera and analyzed by an image processing program. As the IDTs are supplied with 
the driving voltage of 100 Vp-p about 2 seconds, the angular displacement and rotation speed 
of the rotary motor gradually increase to about 2000 degrees (5.5 circles) and 20 rad/sec, 
respectively. From the transient response, the maximum torque and torque-speed 
relationships are estimated using the method proposed by Nakamura et al. (1991), by which 
it is found that the maximum output torque is 3.3 Ncm, and the steady rotation speed is 180 
rpm at the driving voltage of 100 Vp-p. 

4. Theoretical simulation of SAW motors  
4.1 Theory and numerical simulation of linear SAW motors 
The first attempt to describe the energy transfer from the acoustic wave to the slider in the 
linear SAW motors, perhaps, was presented by the mechanism that the slider is in 
alternative phase of levitation and contact with the stator, and then the slider motion is in 
sequential step-like behavior (Helin et al., 1998). Based on the mechanism, as the SAW 
motor driven by Rayleigh wave has a spherical slider, the theoretical model can be 
simplified as shown in Fig.7(a), in which the displacement (xellip ,yellip) of the surface particle 
of the stator can be expressed as (Morita et al., 1999)  



 Acoustic Waves 

 

214 

unidirectional IDTs and an electrical combiner are required. The output port of the combiner 
is connected to the exciting unidirectional IDT and the input ports are connected to the other 
IDT and a RF electric power source. The excited SAW is received by the other IDT and 
converted to electric energy, and further put into the combiner, which makes the energy to 
be recycled.   
However, on the other hand, the abrasion is one problem that influences the lifetime of the 
motor driven by frictional force. To avoid the problem, segment-structured diamond-like 
carbon film coatings were proposed to be applied for the friction material (Fujii et al., 2007). 
The segment-structured film coatings could be deposited on the sliders and/or on the 
stators, which are available as the projections on the silicon sliders. 

3.4 SAW rotary motors 
On the basis of the SAW linear motors, SAW rotary motors were developed, in which two 
pairs of IDTs were deposited in parallel on the surface of 1280 YX-LiNbO3 substrate as the 
stator shown in Fig.6(a) (Zhang et al., 2000). In the stator, while IDT-1 and IDT-3 are applied 
a RF voltage with the central frequency of the IDTs, two SAWs with anti-parallel 
propagation directions are excited. As a rotor is located at the center of the stator and spans 
on both SAW waves, the anti-parallel propagations of both SAWs produce one pair of 
oppositely directed frictional forces on the rotor, which result in a torque driving the rotor to 
rotate in anti-clock-wise. It is easy to invert the rotation direction by using the other two 
IDTs (2 and 4) to excite other pair of anti-parallel SAW waves. 
For the rotary motors initially built-up, the prototype using Rayleigh waves is shown in 
Fig.6(b), the IDTs are composed of 20 pairs interdigital electrodes with the aperture of 25 
mm and the operation frequency of about 10 MHz. The rotors are circular disks, in which a 
series of small holes distributed axisymmetrically near the fringe, and the holes are filled 
with small balls as shown in Fig.6(c). The disks and balls can be made by different materials, 
such as plexiglass disks and steel balls, etc. The motor speeds were measured by a digital 
video camera and analyzed by an image processing program. As the IDTs are supplied with 
the driving voltage of 100 Vp-p about 2 seconds, the angular displacement and rotation speed 
of the rotary motor gradually increase to about 2000 degrees (5.5 circles) and 20 rad/sec, 
respectively. From the transient response, the maximum torque and torque-speed 
relationships are estimated using the method proposed by Nakamura et al. (1991), by which 
it is found that the maximum output torque is 3.3 Ncm, and the steady rotation speed is 180 
rpm at the driving voltage of 100 Vp-p. 

4. Theoretical simulation of SAW motors  
4.1 Theory and numerical simulation of linear SAW motors 
The first attempt to describe the energy transfer from the acoustic wave to the slider in the 
linear SAW motors, perhaps, was presented by the mechanism that the slider is in 
alternative phase of levitation and contact with the stator, and then the slider motion is in 
sequential step-like behavior (Helin et al., 1998). Based on the mechanism, as the SAW 
motor driven by Rayleigh wave has a spherical slider, the theoretical model can be 
simplified as shown in Fig.7(a), in which the displacement (xellip ,yellip) of the surface particle 
of the stator can be expressed as (Morita et al., 1999)  

Surface Acoustic Wave Motors and Actuators:Mechanism, Structure, Characteristic and Application   

 

215 

Hole Ball Rot

Axle Axle hole 
Supporting 
steel ball 

Rotor

(c)

1280YX-LiNbO3

IDT-1 IDT-2

IDT-3 IDT-4(a)

LiNbO3 substrate 
IDT-1 IDT-2 

IDT-3 IDT-4 (b)

 
Fig. 6. Schematic diagram of the SAW rotary motor. (a) stator; (b) SAW rotary motor; (c) rotor 
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where A is the amplitude, ω is the angular frequency, k is the wave number, α is the ratio of 
the tangential amplitude to the normal amplitude of the vibration, and xslider and yslider are 
the coordinate positions of the slider. During the operation, the slider experiences two 
situations: one is in levitation and the other is in contact with the stator as shown in Fig.7(b) 
and (c) respectively. 
If yellip < yslider, the slider is in levitation as shown in Fig.7(b), then the motion equations are  
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where P is the preload to the slider, M is the mass of the slider, and g is the gravity.  
If yellip > yslider, the slider is in contact with the stator as shown in Fig.7(c), so it obtains a 
frictional force in the tangential direction. The motion equations are written as    
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where N is the normal supporting force in the normal direction, μ is the frictional coefficient 
and vslider is the speed of the slider. The contact force is calculated using the Herzian contact 
theorem as follows (Timoshenko et al., 1970) 
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                                                      (b)                                             (c) 
Fig. 7. Theoretical model of SAW linear motor: (a) position of slider; (b) levitation; (c) contact 
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where R is the radius of the rotor, Ei and σi (i =1,2 represent the slider and the stator, 
respectively) are the Young’s module and Poisson’s ratio, respectively. 
To calculate the displacement and speed of the slider, the Euler method is used as 
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The simulation results for the motor driven by a pulse-modulated force with the frequency 
of 9.6 MHz are shown in Fig.8, where the left (Fig.8(a)) depicts the driving force, while the 
middle and right show the moving speed and the displacement respectively (Morita et al., 
1999). The results are in agreement with those of the experiments.    
Recently, further studies on the friction-driven SAW motors have been reported in details 
including the measurements, analyses, modeling, physics of contact, and design criteria, 
which were published in five papers separately (Shigematsu & Kurosawa, 2008a; 2008b; 
2008c; 2008d; 2008e). It is clearly that these papers provide a systematical information, 
experiments and theories for optimizing the designs, manufactures and applications of the 
friction-driven SAW motors. 
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The simulation results for the motor driven by a pulse-modulated force with the frequency 
of 9.6 MHz are shown in Fig.8, where the left (Fig.8(a)) depicts the driving force, while the 
middle and right show the moving speed and the displacement respectively (Morita et al., 
1999). The results are in agreement with those of the experiments.    
Recently, further studies on the friction-driven SAW motors have been reported in details 
including the measurements, analyses, modeling, physics of contact, and design criteria, 
which were published in five papers separately (Shigematsu & Kurosawa, 2008a; 2008b; 
2008c; 2008d; 2008e). It is clearly that these papers provide a systematical information, 
experiments and theories for optimizing the designs, manufactures and applications of the 
friction-driven SAW motors. 
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Fig. 8. Numerical simulations of transient response for linear motor: (a) driving force; (b) 
moving speed; (c) displacement 

4.2 Rotary motor   
On the basis of the theoretical model of the linear motors, the similar theoretical model of the 
rotary motors has been constructed (Cheng et al., 2002; 2003a; 2003b). Owing to the axisymmetry, 
only two balls at the fringe of the rotor are considered for simplicity as shown in Fig.9(a). 
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Fig. 9. Numerical simulations of rotary motors: (a) theoretical model; (b) angular 
displacement versus time; (c) anglular velocity versus time. 
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When the ball is levitating, the motion equations are as  
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where m is the mass of the ball, I is the moment of inertia of the rotor with respect to the 
axis. When the ball is contacting the stator, the motion equations are  
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where R is the radius of the rotor. The supporting force on the ball is calculated as 

 

1 1 12 22 2
1 2

1 2

4 1 1, ,
3

Er dN E
E E
σ σ

−
⎛ ⎞− −

= = +⎜ ⎟
⎝ ⎠

  (8) 

 

where r is the radius of the small ball. 
For the rotary motor with the SAW frequency of 30 MHz, the experimental and theoretical 
results of the angular displacement and speed are shown in Fig.9(b) and (c) (Cheng et al., 
2002). From the figure, it can be seen that the simulation results are roughly consistent with 
the experimental results with slight deviations, which might be induced by the following 
reasons: the friction between the axis and the rotor is neglected and, especially, only two 
balls’ motions are considered in the theoretical calculations for simplicity. Further 
calculations showed that as the number of the balls increases, the rotary motion is more 
stable and closer to that of the experiments (Cheng et al., 2003b).      

5. Non-contact SAW motors and actuators 
The SAW motors described above are driven by the frictional forces generated by direct 
contact between the sliders (or rotors) and the stators, which restrict the motion velocity  
and working lifetime of the motors. On the other hand, as the amplitude of the SAW 
decreases to less than the surface roughness of the stators, it is not possible to drive the 
motors by the frictional force. In order to overcome the deficit of the friction-driven motors 
and expand the application fields of the motors, non-contact SAW motors were proposed, in 
which a fluid layer is introduced in the interface between the stator and slider (rotor). As a 
high frequency voltage is supplied to the IDT which is deposited on the stator, the SAW 
(Rayleigh wave) will be excited by the IDT, which further radiate longitudinal waves in the 
fluid media between the slider (rotor) and stator. As the second-order effect of the wave 
propagation, the acoustic streaming is induced, whose viscous force drives the slider (rotor) 
to move.  
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contact between the sliders (or rotors) and the stators, which restrict the motion velocity  
and working lifetime of the motors. On the other hand, as the amplitude of the SAW 
decreases to less than the surface roughness of the stators, it is not possible to drive the 
motors by the frictional force. In order to overcome the deficit of the friction-driven motors 
and expand the application fields of the motors, non-contact SAW motors were proposed, in 
which a fluid layer is introduced in the interface between the stator and slider (rotor). As a 
high frequency voltage is supplied to the IDT which is deposited on the stator, the SAW 
(Rayleigh wave) will be excited by the IDT, which further radiate longitudinal waves in the 
fluid media between the slider (rotor) and stator. As the second-order effect of the wave 
propagation, the acoustic streaming is induced, whose viscous force drives the slider (rotor) 
to move.  
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5.1 SAW streaming 
When acoustic waves travel through a medium, if the acoustic intensity is not high, the 
acoustic wave propagation is a linear phenomenon, i.e., only the acoustic energies 
propagate, the medium does not move globally. However, as the wave amplitude increases, 
the nonlinear effect appears, and an interesting feature of the sound field, i.e., the medium 
presents steady motions, becomes evident. Such a nonlinear phenomenon is called “acoustic 
streaming” (Nyborg, 1958; 1965). These flows can be generated around the surfaces of 
obstacles immersed in intensive acoustic fields and/or vibrating elements and near 
bounding walls. Similarly, when SAWs (Rayleigh waves) with high intensity reach the 
boundary between fluids and solids, the transmission mode is changed from the Rayleigh 
mode to the leaky Rayleigh mode. Meanwhile, the leaky Rayleigh waves radiate the acoustic 
energy in the fluid, and then the fluid is driven to move, which is called “SAW streaming” 
because the phenomenon involves essentially the same physics as the “acoustic streaming” 
(Shiokawa et al., 1990).    
(a) Experiment of SAW streaming 
The Rayleigh wave can readily radiate a longitudinal wave into a fluid when the surface 
with the Rayleigh wave propagation is in contact with a fluid layer. When the fluid volume 
is small and the acoustic power increases above a certain threshold, the fluid begins to move 
in the direction of the SAW propagation, which provides an observable pattern of the SAW 
energy flow. Moreover, if the substrate surface is hydrophobic, a lot of droplets are expelled 
from the liquid surface as shown in Fig.10 (Shiokawa et al., 1989; 1995; Uchida et al., 1995).  
 

 
Fig. 10. Water jet streaming excited by SAW. 
(b) Theory of SAW streaming    
The general equation of hydrodynamics of viscous fluids is as follows (Shiokawa, et al., 
1990): 

 2 1 ( ),
3

F P v vη η= −∇ + ∇ + ∇ ∇ ⋅  (9) 

where F is the net force per unit volume due to stress, ρ is the density, η is the shear viscosity 
coefficient and v is the particle velocity.  
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Based on the continuity equation, one can obtain: 

 0 1
( ) ( ) ,v v v v v F F

t
ρ ρ ρ∂

+ ⋅∇ + ∇ ⋅ = −
∂

 (10) 

where 

 0 1
( ) ,    ( ) .vF F v v v v

t
ρ ρ ρ∂

= − = ⋅∇ + ∇ ⋅
∂

 (11) 

For acoustic waves vary sinusoidally with time at the frequency ω, in order to obtain a 
streaming equation from Eqs. (10) and (11), it is need to retain the terms up to the second 
order and take the time average over a suitable number of cycles. Noting that the time 
average of F0 should be zero in the steady state, then 

 1 0 0( ) ,F v v v vρ ρ− = ⋅∇ + ∇ ⋅   (12) 

in which 〈 〉 means “time average”, and F1 is the exact force of the acoustic streaming.  

5.2 Non-contact SAW linear motors and actuators 
(a) Initial non-contact SAW linear motors 
The first non-contact linear SAW motor (manipulator) using Rayleigh wave was proposed 
as shown in Fig.11(a), in which a liquid droplet is put on the surface of the stator and a small 
slider is placed on the liquid droplet (Sano et al., 1997). The propagating SAW drives the 
liquid droplet to move in the SAW propagation direction by SAW streaming, and the slider 
moves with the droplet together. For the motors with different frequencies, the amplitude of 
the Rayleigh waves measured by a laser probe and normalized by the wavelength versus 
the driving voltage is shown in Fig. 11(b), and the dependence of moved distance of the 
slider on the voltage is shown in Fig. 11(c), which shows that the motors are suitable to be 
used as non-contact actuators, such as micromanipulators.  

(b) New type of non-contact SAW linear motors 
Recently, a new type of non-contact SAW motors was proposed, in which a thin liquid layer 
surrounded by a thin glass wall was put on the surface of the stator as shown in Fig.12(a). In 
the experiments, two kinds of IDTs with different frequencies and sizes were deposited, and 
the effects of the SAWs with different frequencies on the performances of the non-contact 
motors were studied (Gu et al., 2009).  

5.3 Theoretical model of non-contact SAW linear motors 
If the SAW propagation surface is in contact with liquid, based on the ultrasonic wave 
radiation mechanism, an approximate theoretical model is developed as shown in Fig.12(b). In 
the liquids (z > 0), the particle displacement (ux, uz) can be written as (Shiokawa et al., 1989) 
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                                                (b)                                                               (c) 
Fig. 11. SAW manipulator: (a) schematic diagram; (b) amplitude/wavelength VS voltage; (c) 
distance VS voltage. 
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Fig. 12. Non-contact SAW linear motors: (a) schematic diagram of structure; (b) theoretical 
model 

where A is the horizontal vibration amplitude of the particle, ω is the angular frequency (for 
simplicity, the SAW harmonics are neglected), KL is the wave number, and α is a complex 
propagation constant of the leaky SAW, VL and VW are the velocities of the leaky SAW and 
longitudinal wave of the liquid, respectively. VL can be calculated by applying a 
perturbation method, which treats the leaky wave as a first-order perturbation on the non-
leaky wave propagation, and assuming the boundary conditions satisfy that both the 
displacement and the stress are continuous at the interface between the liquid and solid 
substrate (z = 0) (Campbell & Jones, 1970). 
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According to the theory of near-boundary acoustic streaming, the basic equations used for 
the streaming are (Nyborg, 1958; Shiokawa et al., 1990) 

 0 1 1 1 1F U U U Uρ= − 〈 ⋅∇ + ∇ ⋅ 〉 ,  (14) 

 2
2 2 0U P Fμ∇ − ∇ + = ,  (15) 

where ρ0 and µ are the density and viscosity of the fluid respectively, the bracket indicates a 
time average over a large number of cycles, 1U  is the particle velocity of the stator surface, 

2U  is the streaming velocity, and 2P  is the acoustic pressure of the liquid at the interface 
between the liquid and stator. Both 2U  and 2P  are time-independent second-order 
perturbation quantities as the effect of the viscosity of the liquid (such as water) is ignored, 
F  is the acoustic streaming force, which is a nonlinear quantity. 
Substituting the x and z components of 1U , i.e., ux and uz of Eq. (13), into Eqs. (14), the x and 

z components of F , i.e., Fx and Fz, are given by      
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= − + +

= − + +
, (16) 

where α1 and ki are the imaginary parts of α and kL, respectively. Fz does not contribute to 
the motion of the slider, so the Fx is just considered as the force acting on the levitated slider. 
Since ki is always a minus value, Fx is attenuated with the distance x. 
The following analyses are conducted with the model shown in Fig.12(b), in which the 
thickness of the liquid is z0 and the acoustic streaming force acted on the slider in x direction 
is Fx(z0). As the slider is with the area L2 and thickness h, considering the thickness of the 
slider is generally very small compared with the acoustic wavelength, the acoustic 
streaming force is constant in the thickness range of the slider. Thus the acoustic streaming 
force acted on the slider at x position, Fsum(x), is given by: 

 0( ) ( ) .
x L

sum x
x

F x Lh F z dx
+

= ∫   (17) 

Therefore, the acceleration of the slider at x position is given by: 

 2
s

( )sumF xa
hLρ

= , (18) 

where ρs is the density of the slider. 
Considering the resistant force of the liquid, there is a threshold force Ft(x) for the slider 
starts to move, i.e., only as the horizontal vibration amplitude A>Ar, the streaming force can 
drive the slider to move, then the acceleration can be rewritten as 

 2
s

( ) ( ) .sum tF x F xa
hLρ
−

=  (19) 

According the acceleration, the transient velocity of the slider can be obtained, so as the 
displacement.  
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5.4 Experimental and theoretical results    
In the experiments, the substrates of the SAW delay lines (stators) are 1280 YX-LiNbO3 
piezoelectric crystals with the size of about 75 ×18 ×1 mm3. On the substrates, two kinds of 
IDT pairs with different frequencies and sizes are fabricated for studying the effects of the 
operation frequency on the performance of the non-contact motors (Gu et al., 2009). In the 
first type of the motors, the IDT has 20 pairs of electrodes with the aperture of 12 mm and 
the central frequency of about 10 MHz, where a rectangular cell (31.3 ×12.8 ×12 mm3) 
surrounded by thin glass walls with the thickness of 0.8 mm is put on the surface of the 
stator to contain the liquid (water) layer. The other type has 45 pairs of electrodes with the 
aperture of also 12 mm and the central frequency of about 24 MHz, and a rectangular cell 
with the size of 31.2 ×12 ×12 mm3 is used. The exciting voltage Vp-p of the IDT can be 
adjusted in the range of 0-140 V. The slider is a circular aluminum slice with the diameter of 
6 mm, the thickness of 0.24 mm, and the density of 2.7 g/cm3. The thickness of the liquid 
layer between the stator and slider can be adjusted in the range of 1-8 mm.  
The motion (displacement) of the slider is recorded by a high-speed digital video camera, 
and then the data of the motion are extracted and processed by a computer. Thus the 
transient velocity of the sliders can be measured and calculated. Since the transient velocity 
in fluctuating, the average of the transient velocities is taken as the moving velocity of the 
slider. According to the results, the first motor with the frequency about 10 MHz has faster 
transient velocity than the second one (about 24 MHz).   

(a) Transient velocity versus time 
For the first motor, the transient velocity of the slider is obtained as shown in Fig. 13(a), in 
which the thickness of the liquid (water) layer is about 3.2 mm and the driving voltage Vp-p 

is 21.2 V. From Fig.13(a) it can be seen that the transient velocity increases very fast at first 
(about 0.1 second), and then approaches to saturation with slight oscillations. The oscillation 
may be induced by the vortical flows and the measurement errors. For the second motor, 
similar results can also be obtained, however, in order to obtain the same transient velocity 
at the same thickness of the water layer, the exciting voltage Vp-p should be about 79.2 V. 

(b) Velocity of slider versus exciting voltage 
The velocity variations of the slider with the exciting voltages of the motors are investigated. 
For the first motor, as the thickness of the liquid (water) layer is about 4.0 mm, the result is 
shown in Fig.13(b), in which the threshold voltage Vt is about 12 V. When the exciting 
voltage Vp-p increases from 12 V to 60 V, the velocity increases linearly essentially, but the 
velocity increases with a little slower in the lower voltage range (less than 30 V). Similarly, 
for the second motor, the threshold voltage Vt is about 20 V, and the velocity of the slider 
increases approximately linearly with the voltage in the range of 80 – 120 V, although in the 
lower voltage range (20 – 80 V), the increasing tendency of the velocity is slower. Since the 
experimental conditions are very complicated, such as the reflections of waves by the glass 
walls of the cell and so on, the experimental errors are always in the range about 10%. 
Generally speaking, the velocity varying behavior against the exciting voltage of the SAWs 
is similar for both motors with different frequencies. There exists a limited threshold 
voltage, below which the sliders cannot move. As the voltages are larger than the threshold, 
the velocity of the sliders increases with the exciting voltage approximately in linear way, 
although the increase is more like exponential in the lower voltage range.  
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Fig. 13. Velocity of non-contact SAW linear motor: (a) transient velocity; (b) average velocity 
VS voltage; (c) average velocity VS thickness of liquid layer (f=9.959 MHz) 

In the theoretical simulations, taking VL = (3931 + j67.7) m/s and VW = 1500 m/s (Campbell 
& Jones, 1970; Shiokawa et al., 1989), the relation between the slider velocity and the 
amplitude of the SAW for the motor can be obtained by Eqs.(16) - (19). Considering the 
amplitude of the SAW is proportional to the exciting voltage (Sano et al., 1997), the relation 
between the slider velocity and the exciting voltage for both motors can be obtained, one of 
which is shown in Fig.13(b), which shows that the slider velocity increases linearly with the 
exciting voltage as the voltage is beyond the threshold. It demonstrates that the theoretical 
result is essentially in agreement with that of the experiments. 
Compared with the performance of the contact SAW motors, it can be found that the driving 
voltage for the non-contact motors is reduced distinctly. Therefore, the moving velocity and 
lifetime can be increased greatly.  
(c) Slider velocity versus thickness of liquid layer 
The relation between the slider velocity and the thickness of the liquid (water) layer for both 
motors is also studied experimentally and theoretically. In the experiments, it is found that 
the varying tendency of the slider velocity versus the thickness of the liquid layer for both 
motors is very similar. The result of the first motor is shown in Fig.13(c), which shows that, 
when the thickness of liquid (water) layer is larger than 3 mm, the velocity of the slider 
decreases exponentially with the increasing thickness of the water layer. However, as the 
thickness of the water layer is less than 3 mm, the slider velocity reduces with the 
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Fig. 13. Velocity of non-contact SAW linear motor: (a) transient velocity; (b) average velocity 
VS voltage; (c) average velocity VS thickness of liquid layer (f=9.959 MHz) 

In the theoretical simulations, taking VL = (3931 + j67.7) m/s and VW = 1500 m/s (Campbell 
& Jones, 1970; Shiokawa et al., 1989), the relation between the slider velocity and the 
amplitude of the SAW for the motor can be obtained by Eqs.(16) - (19). Considering the 
amplitude of the SAW is proportional to the exciting voltage (Sano et al., 1997), the relation 
between the slider velocity and the exciting voltage for both motors can be obtained, one of 
which is shown in Fig.13(b), which shows that the slider velocity increases linearly with the 
exciting voltage as the voltage is beyond the threshold. It demonstrates that the theoretical 
result is essentially in agreement with that of the experiments. 
Compared with the performance of the contact SAW motors, it can be found that the driving 
voltage for the non-contact motors is reduced distinctly. Therefore, the moving velocity and 
lifetime can be increased greatly.  
(c) Slider velocity versus thickness of liquid layer 
The relation between the slider velocity and the thickness of the liquid (water) layer for both 
motors is also studied experimentally and theoretically. In the experiments, it is found that 
the varying tendency of the slider velocity versus the thickness of the liquid layer for both 
motors is very similar. The result of the first motor is shown in Fig.13(c), which shows that, 
when the thickness of liquid (water) layer is larger than 3 mm, the velocity of the slider 
decreases exponentially with the increasing thickness of the water layer. However, as the 
thickness of the water layer is less than 3 mm, the slider velocity reduces with the 
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decreasing thickness of the water layer, which might be attributed to that the viscous drag 
effect increases when the thickness of the water layer gradually becomes small (Betchov & 
Criminale, 1967). As a result, while the thickness of the water layer increases gradually in 
the range of 0 – 3 mm until the liquid flow becomes stability, the velocity of the slider 
becomes faster. Besides, as the liquid layer thickness is less than 1 mm, the slider cannot be 
driven to move by the exciting voltage (Vp-p) of 50 V. In this case, the slider may be 
sometimes in contact with the stator since the liquid layer is too thin. It is also implied that 
the slider motion of the non-contact SAW motors is driven much easier than that of the 
contact SAW motors with the same SAW devices (stators).  
Meanwhile, the theoretical simulations are also accomplished by suitably selecting the 
relevant parameters. The simulated result for the first motor is also plotted in Fig.13(c). It 
can be seen that the theoretical result is in good agreement with that of the experiment.  

5.5 Non-contact SAW rotary motor 
On the basis of the friction-driven rotary motors, non-contact rotary motors were developed, 
in which the same rotors and substrates are used as in contact motors. Similarly, the rotor is 
suspended in a thin liquid layer filled in a liquid cell located on the stator, and the angular 
displacement and angular speed are measured in different driving voltages as shown in 
Figs.14(a) and (b). In addition, to study the influence of the viscosity of the liquid layer, the 
mixed liquids composed of water and glycerine with different ratios are used, and the 
dynamic viscosity is measured by a viscometer. As the operating frequency is 9.845 MHz, 
the dynamic response is obtained at different times as shown in Fig. 14 (a), the angular 
speed changing with the driving voltage and the dynamic viscosity of the liquid are also 
obtained as shown in Figs.14(b) and (c), respectively. The related theoretical study is in 
progress. 

6. Microactuator driven by different SAW modes 
6.1 Microactuators driven by Lamb waves 
An initial micromotor using a Lamb wave (flexural plate wave) has been presented, in 
which the stator is a ZnO film (1µm) deposited on Si3O4 film (2 µm) and both films are 
deposited on a Si wafer, and then the related area of Si wafer is etched as shown in Fig.15 
(Moroney et al., 1989). A small polysilicon slice put on the Si3O4 film is driven by the Lamb 
wave excited by IDT fabricated on the ZnO film, the polysilicon slice can move linearly or 
rotationally as the Lamb waves are excited or reflected in different directions. This kind of 
motors can be used in MEMS technology. 
Furthermore, since Lamb wave devices are able to operate in fluids (water), a fluid motion 
(SAW streaming) produced by Lamb waves excited by IDT at the composite of Si3O4 and 
ZnO membrane with the thickness of 4 µm was also observed (Moroney et al., 1991). The 
velocity of the flexural plate wave is much lower than the sound velocity in fluids (water), 
thus the structure acts as nearly lossless acoustic waveguides. Then the fluorescent 
polystyrene spheres with the diameter about 2.5 µm are put in the fluid to make the motion 
visible. The observed pumping speed is proportional to the square of the wave amplitude,  
the speed was 100 µm/s for a RF driving voltage of 8V and a wave amplitude of 6.5 nm. A 
nonlinear model based on acoustic streaming theory was presented to predict the velocities, 
which was in good agreement with the experiments. 
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In addition, some other micromachined actuators have also been presented by several 
groups, where ultrasonic flexural plate waves traveling along thin piezoelectric membranes 
were used to excite acoustic fields in the fluids contacted with the membranes (Luginbuhl et 
al., 1998; Meng et al., 2004). These kinds of microactuators have been used for transportation 
of particles and/or droplets in micro-biological research fields.  

6.2 Micromanipulators driven by leaky waves 
Practically, micromanipulators using leaky waves in thin liquid layers produced by SAW 
devices with very high frequency about 100 MHz were fabricated by several groups. One of 
them is shown in Fig. 16 (Takeuchi et al., 1994), where the tip of the substrate of the Rayleigh 
wave device was immersed with a Rayleigh angle in a liquid layer (or drop). At the interface 
of the substrate and liquid, the SAW is converted to leaky waves, which then become 
longitudinal waves in the liquid. As the wave intensity is high, the acoustic streaming (or 
radiated force) drives small glass particles to move in 1- or 2-dimensional way in the liquid 
if there are two pairs of SAW devices located perpendicular to each other. It can be used in 
bioengineering and micromachining (Renaudin et al., 2006).   
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Fig. 14. Response of non-contact rotary motor: (a) angular displacement VS time; (b) angular 
speed VS voltage; (c) angular speed versus the dynamical viscosity of liquid layer  
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Fig. 16. Manipulator driven by leaky wave: (a) sketch of set up; (b) SAW device and 
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Fig. 17. Schematic diagram of SAW actuator system used for tracking microdroplet. 

7. Potential applications 
Apparently, the SAW motors and actuators have wide applications in micro-electro-
mechanical systems and biological sciences and technologies. As examples, the motors 
would be capable of operating in multiple degrees of freedom, such as two dimensional 
translation stages and self-actuated spherical joints to be rotated about two orthogonal axes, 
which are amenable to integrate into diverse structures and machines, such as robots 
(NASA Tech Briefs, 2003). Practically, SAW-actuated devices have also been used for drop 
translation, microchannel pumping, drop manipulation, micromixing, microparticle 
collection and concentration, forming specific examples of the potential of technology, as 
lab-on-a-chip devices for microarray technology and rapid bioscaffold cell seeding, etc. (Qi 
et al., 2008). Meanwhile, the acoustic streaming has also been used in atomization systems. 
As an example, a set up of SAW actuator used for tracking droplets is shown in Fig. 17 
(Renaudin et al., 2009). 

8. Conclusion   
The conventional linear and rotary motors driven by IDT-excited SAWs in the frequency 
range of 1–100 MHz have been introduced briefly. For the conventional SAW motors, the 
sliders (or rotors) and the stators are in direct contact, and the driving mechanism is the 
frictional force between the sliders (rotors) and the stators. On the other hand, a new type of 
noncontact motors has been developed. Instead of the frictional forces, the acoustic 
streaming, which is excited by SAWs propagating in the fluids covered on the surfaces of 
the stators, is used to drive the sliders.  
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The SAW motors as micro-actuators will be very useful in advanced industrial technologies 
and/or biotechnical engineering due to their various advantages, such as very short 
response time, low driving voltage, large output force or torque, miniaturized size, easy 
control and batch production, etc.  
On the other hand, several theoretical models have been presented and the numerical 
simulations for the motors and actuators in contact and noncontact types have also been 
performed. The theoretical results are in good agreement with those of the experiments, 
which demonstrate that the theoretical models can well be used to explain the working 
mechanism of the motors (actuators). Therefore, by combining the theoretical models and 
experimental results, the constructions and the performances of various SAW motors 
(actuators) can be optimized.     
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1. Introduction 
The newly developed methods enjoy the advantages of an optical channel for data transfer 
(parallel data processing in real time, high operating speed, and noise immunity) and the 
advantages typical of integrated optics (compactness, low power consumption, high 
sensitivity in information signal processing, stability against external action, and the 
possibility of using the batch-fabrication technique). The aforesaid advantages account for 
the wide use of waveguide acoustooptic (AO) units (WAOU) in computing, fiber-optic, 
telecommunication, and other photonic systems [1-3]. Conventional WAOUs are 
constructed from 3D elements. However, size, power consumption, and sensitivity to 
environmental conditions (vibrations, temperature variations, etc.) set limits on the 
applications of these devices. The WAOU (typical functional scheme is shown on fig. 1) is 
based on the waveguide AO Bragg diffraction of the modulated light beam on a modulated 
surface acoustic wave (SAW) and the registration of this diffraction image. One of the main 
WAOU parameters is product TAΔf, where TA = Wopt/V is the maximum delay time, which 
is known to be equivalent to the propagation time of the SAW leading edge through the 
optical beams, where Wopt is the optical beam width, V- the SAW velocity, and Δf is the 
working frequency band.  
The x axis is directed along the propagation of the optical beam, the y axis is orthogonal to 
the waveguide plane and directed to its depth, and the z coordinate is perpendicular to the 
direction of propagation of the optical beam. 
SAW operates as an optical driving transparency [4,5]. It executes following important 
operations: 
- changing of deflection angle by means of change of SAW frequency (frequency of 

applied RF-signal) - this property is used for optical deflectors, scanners, switches; 
- changing of intensity of diffracted beam by means of change of power of applied RF-

signal - this property is used for amplitude modulation; 
- changing of frequency of diffracted beam depended on changing of SAW frequency - 

frequency  modulation. 
SAW is generated with an electro-acoustical transducer [6]. The transducer type is usual 
inter digital transducer (IDT). 
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Fig. 1. Functional scheme WAOU, where k0, k1 – optical wave vectors, K – SAW wave 
vector, W(z) – optical aperture function, Wa – SAW aperture. Solid lines show optical 
beams. The source of optical radiation, lens system and registration unit  are not shown. 

The optical wave passes three areas. The optical wave aperture function W(z) is formed in  
first area. This means that the optical wave must be rather wide. There is AO diffraction in 

 the second area. The SAW aperture aW  (is about hundreds mμ ) defines the AO diffraction 
region dimension along the optical beam. This area is situated in a diffused optical 
waveguide on the lithium niobate crystal surface for the device. There are two optical waves 
in this area: the undiffracted wave and the diffracted wave. The diffracted wave has the 
information product of the optical and acoustical signals. The third area realizes two 
functions: separation diffraction optical beam (from input optical beam) and the AO 
diffraction image transmission to a CCD array. The separation is obtained on the property 
that undiffracted and diffracted beams have the different propagation angles. 
Main purpose. To increase the efficiency of the methods we must use and a proposed make 
it possible to process both a synthesized optical aperture and a synthesized acoustic 
aperture.  
The problems of theoretical researches, mathematical models, simulation and experimental 
investigation of the based on Y-cut lithium niobate crystal  AO units for real time data 
processing are discussed. 
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The propagation of plane optical beams is analyzed in the diffraction approximation with a 
negligible diffraction distortion (they are quasi parallel) and Fraungoffer approximation [7] 
is reasonable in this case. So, it is possible to use Fourier transformation for longitudinal 
optical fields. We suppose that only the TE0 – optical mode exists in a planar optical 
waveguide. For such a waveguide, we can split the Maxwell equations and consider the 
time and coordinate components. The analysis of the coordinate components yields a one 
dimensional mode equation and a two-dimensional wave equation (with effective refractive 
index Neff). For the TE-mode polarisation of guide optical waves the mode Maxwell equation 
become according to equation [8]: 
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where ρ=κ0y, κ0 is the optical wave number, E is optical field distribution normal to the 
boundary surface of the waveguide, n(ρ) is function of refractive index profile (RIP)  normal 
to the boundary surface of the waveguide. For titanium diffused waveguides the theoretical 
and experimental research leads us to a profile function for the refractive index given  
by [9]: 
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where  ns  is the substrate refractive index, n0 - is the maximum the refractive index related 
to Ti-diffusion near the surface, a - is the effective depth of the Ti-profile, b - is the depth of 
the for out-diffusion, α - is the fraction of the exponential profile. This result was achieved 
by the optimization of the profile function comparing calculated and measured values of the 
effective refractive indices for multimode waveguides. 
We study the propagation of light in the region of AO interaction assuming that the Bragg 
diffraction is realized, the properties of the waveguide mode remain unchanged, reflected 
waves are absent, the amplitude of the diffracted wave slowly increases (we can neglect the 
second derivation), and the perturbation of the waveguide permittivity caused by the  SAW 
propagation is small [10,11]. The total diffraction losses are insignificant.  
The diffraction efficiency of optical beam on SAW submits to the following parity [4,5]: 

2 2sin( )( )( )aqWD A f
q

= , where 2
00( ) ( ) acA f f P= Γ  - AO interaction coefficient, 00( )fΓ  - 

interaction integral for AO diffraction for TE0- TE0 mode regime (the interaction integral for 
Y-cut lithium niobate crystal was learned in [11, 12], and it’s the frequency dependent is 
shown on fig. 2a), f – SAW frequency, 2

ac eff IDTP U Y= , effU - IDT supply voltage, IDTY - IDT 

radiative transconductive,   2 2( )
2
kq AΔ

= + , kΔ  - disagreement wave vector (see fig. 2b), Wa 

- ITD aperture. 
With allowance for the phase mismatch kΔ  [3], the relation between the amplitude 
functions of the incident and undiffracted T0(x) and diffracted T1(x) optical waves is 
determined by the solution to the equations of bound modes [10]. Using these assumptions, 
we can analytically solve the wave equations and derive integral expressions [5]. 
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Fig. 2. (a) Plots of the frequency dependent of  interaction integral for AO diffraction for TE0- 
TE0 mode regime, (b) The vector diagram of Bragg AO diffraction with disagreement optical 
wave vector 

2. Real time multi-channel time-integrated correlation unit 
2.1 Introduction 
A classical time-integrated AO correlator (TIAOC) consists of a source of optical radiation 
(SOR), a collimating objective, an AO cell, an imaging objective, a spatial filter rejecting the 
null beam, and a CCD array [3, 13]. The main parameters of the AO correlator—the 
maximum delay time TA. This parameter determines the range of delay times ΔTA. The 
input signal gin(t) is used for time modulation of the light beam (for example, internal 
modulation of a laser or an LED). The second signal hin(t) modulates the amplitude of the 
acoustic wave with carrier frequency f0. This wave is used for space–time modulation of the 
transmittance of the acousto-optic cell. The Bragg diffraction angle of the optical beam 
corresponds to the carrier frequency of the acoustic wave. Since the incident light intensity 
and the cell transmittance are proportional to gin(t) and hin(t – z/V), respectively, the 
intensity distribution of the diffracted beam depends on the product gin(t)hin(t – z/V). The 
cell image is projected on the CCD array, which integrates the intensity distribution with 
respect to time. The signal from the CCD array yields the spatial distribution of the 
correlation functions of signals gin(t) and hin(t).  

2.2 Mathematical model of a mutli-channal WAOU for time-integrated correlation data 
processing in real time 
One method for increasing the integration of the correlation channels is multicolor data 
processing [14]. In this case, a single device contains N independent correlators. The 
correlation channels employ optical beams with different wavelengths. This approach 
facilitates parallel data processing in real time, diminishes the operating costs of an 
individual acousto-optic correlation channel, and makes it possible to avoid crosstalk and 
intermode losses. 
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For the multi-channel TIAOC whose scheme is shown in fig. 3, the input signal gin(t) 
represents a superposition of N independent optical signals corresponding to different 
wavelengths mλ , where 1...m N= . Each optical beam is amplitude modulated. The second 
input signal hin(t) represents a superposition of N independent electric signals, each of which 
generates a SAW at the corresponding frequency f0m and modulates its amplitude. The value 
of the carrier frequency is determined from the condition for the maximum in the overlap 
integral for the AO interaction of the SAW and the corresponding optical beam with a 
certain wavelength. Each optical beam is diffracted by the corresponding SAW in a 
waveguide AO Bragg cell (WBAOC). All cells are commoning the own chip. In the far-field 
region, the total diffracted optical field is a superposition of diffracted optical fields with 
different wavelengths. A prism is used in the focal plane of the imaging objective to 
spatially separate the optical beams. Thus, N independent correlation signals are 
simultaneously detected in the image plane in real time, which means that N independent 
correlation channels are realized in a single device. 

 
Fig. 3. Functional optical scheme of the multi-channel real time integrated TIAOC: 1 SOR, 2 
collimating tens, 3 WBAOC, 4 image lens objective, 5 CCD array, 6 total correlation function 
7 prism, 8  spatial filter. It's show two independent channel  with deferent wavelengths). 
Solid lines show typical paths of optical beams in the device from the SOR to the CCD-array.  
With regard to the above conditions, the diffracted field of the mth optical wave obeys the 
following equation: 

 2 2 *
1 1 1 0 0 0

2( , ) ( ) ( , ) ( ) ( ) ( , )
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where T0 and T1 are the longitudinal components of the incident and diffracted waves, 
respectively. Then, the distribution of the longitudinal component of the m-th diffracted 
optical wave is represented as  

1
0
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where f  is the modulation frequency. 
The optical field outside the waveguide is a 2D field, whose transverse size is mainly 
determined by the quantity Wopt and the diffraction broadening. In the first approximation, 
we can neglect the diffraction broadening of the beam, since its angular divergence is about 
0,1x10-2 rad. The vertical size of the field depends on the ratio 

subn
λ . For the TE0 mode, the 

field distribution along the vertical axis determined by (1) is close to the Gaussian 
distribution. Therefore, all effects are concentrated in the transverse cross section of the 
optical field. This makes it possible to analyze the propagation of light in the correlator 
under study in the one-dimensional approximation. 
For known parameters of the imaging objective, the intensity distribution for the mth 
correlation channel in the image plane is given by 
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where Rmag is the magnification of the imaging objective, IntT  is  time integrated, σ  is the 
resolution of the imaging objective, and 

mWBAOCI  is the integral intensity of the diffracted 
light for a m-th correlation channel, ,in outt t  are the translate coefficients of the  prisms 
providing the chip incoupling/outcoupling of optical radiation,  st  is the translate 
coefficient of the  prism providing the separation of optical radiation. 

2.3 Computer  simulation results 
Using the model proposed, we theoretically analyze the values of the physical parameters of 
a hybrid five channel TIAOC. The WAOC consists of five WAOBCs that serve as a time 
optical transparency. The lens system of the correlator is made up of volume objective lenses 
[15]. For the numerical calculations, we use the following parameters. The  effective depths 
of the refractive index profile are 2.24 and 6.52 mμ  and 2nΔ = 0.005. The SAW velocity is 
3488 m/s. Using these parameters, we perform computer simulation to optimize the IDT 
structure for each correlation channel. The value of the rectangular optical aperture function 
is Wopt = 7 mm. The resulting field is a superposition of independent optical fields 
corresponding to individual correlation channels. The spatial separation depends on the 
optical properties and configuration of the prism. The aperture and the focal length of the 
imaging objective are 120 and 16 mm, respectively. The magnification is Rmag = 1/16. Both 
input modulating signals are rectangular signals of equal duration. The computer 
simulation results predict complete separation of the diffracted and undiffracted optical 
beams in the focal plane of the imaging objective. 
At the given values of the physical parameters, we numerically study the characteristics of a 
hybrid five channel TIAOC. The table 1 shows the main parameters of this device. Figure 4 
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demonstrates the results of the computer simulation of the diffraction patterns in the 
correlator image plane for various durations of the input signals. In the case under 
consideration, the total correlation function consists of five parts. 
 
Parameters/correlation channel 1 2 3 4 5 
1. Optical radiation wavelength in vacuum, µm 1,06 0,92 0,88 0,83 0,78 
2. Maximum delay time Ta, sμ  2 2 2 2 2 
3. IDT parameters      
3.1. Central carrier frequency f0, MHz 251 277 321 380 436 
3.2. Principal Bragg angle, deg. 1,0 1,1 1,2 1,3 1,5 
3.3. Frequency bandwidth, MHz 14 15 16 16 18 
3.4. Aperture, µm 380 400 400 420 450 
3.5. Number of the fingers 53 51 49 47 41 
3.5. Voltage standing-wave ratio in the 
working frequency range 1,2 1,2 1,2 1,2 1,2 

4. Dynamic range, dB 25 25 25 25 25 
5. Minimum power of the RF signal, mW 90 70 60 50 50 
6. Minimum power of the optical signal, mkW 0,22 0,19 0,17 0,15 0,15 

Table 1. 

The maximum number of independent TIAOCs employing WAOCs based on the Y-cut 
lithium niobate substrate is 100. 

 
Fig. 4. Total correlation output signals for various durations of the input signals: from TA to 
0.05TA (the delay time of gin(t) relative to hin(t) is  0.5TA ). The families of curves correspond 
to the first (left-hand) to fives (right-hand) correlation channels, respectively 
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Using a mathematical model of the multi-channel TIAOC, one can also numerically analyze 
the characteristics of a hybrid monochrome TIAOC, in particular, at relatively small SAW 
variations. The validity of such an approach follows from the comparative analysis of the 
theoretical and experimental data. We employ an experimental prototype whose structure is 
described in detail in [16]. For the numerical calculations, we assume that, as in [16], WAOC 
contains a single WBAOC and two prisms providing the incoupling and outcoupling of 
optical radiation. The numerical experiments are performed for the wavelength in a vacuum 

0λ  = 0.78  mμ , the SAW velocity V = 3488 m/s, and  an optical aperture function whose 
value is 7 mm. The remaining initial data correspond to the experimental sample from [16].  
Figure 5a demonstrates the results of the computer simulation and experimental data on the 
dependences of the normalized correlation peak height on the duration of the input signals 
at their relative duration of 0.5 TA. The experimental peak value is determined relative to the 
optical signal that is generated at the output of the device in the steady-state mode. The 
numerically calculated results can be presented in a similar way. Note also that the 
contributions related to additional biases applied to the optical source and WBAOC 
(pedestal contributions) are not taken into account in the results of the numerical 
calculations and experimental data. 
 

 
Fig. 5. (a) Plots of the normalized correlation peak height (Jp, norm) vs. duration (in 
fractions of TA ) of input signals at a relative delay of 0.5TA : (1) rectangular optical aperture 
function, (2) experimental optical aperture function, (3) experimental data from [16], and 
(triangles) experimental points. (b) Experimental optical aperture function. 
Based on the comparative analysis of the numerical and experimental data, we draw the 
following conclusion. The proposed mathematical model can be used to analyze the affect of 
variations in the SAW velocity on the correlation signal, since both dependences are linear. 
However, the slope of the calculated curve differs from the slope of the experimental curve. 
This is due to the fact that the shape of the experimental aperture function significantly 
differs from the rectangular shape. The real shape is important in the calculation of the 
parameters of the given TIAOC. For comparison, Fig. 5a shows similar results calculated 
with allowance for the shape of the aperture function used in the experiments (Fig. 5b). In 
this case, the slopes are virtually identical. 
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2.4 Conclusion 
We propose an AO method for time-integrated multi-channel correlation data processing in 
real time. This method enables one to significantly increase the number of independent 
correlation channels. We develop a mathematical model of a multicolor AO device for real-
time correlation analysis with time integration. We theoretically and numerically analyze 
the characteristics of a hybrid five channel correlator, whose AO chip is based on the Y-cut 
lithium niobate substrate. Multi-channel AO correlators with time integration make it 
possible to simultaneously detect up to 100 correlation functions provided that Y-cut lithium 
niobate serves as the substrate. 

3. Bandwidth AO unit for the real-time spectrum analyzis of optical signals 
3.1 Introduction 
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as an optical transparency. Then, a component of the optical signal is deflected due to Bragg 
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where mλ  is the radiation wavelength of the m-th component in the waveguide. 
The number of the diffracted optical beams corresponds to the number of the frequency 
components of the original optical signal. The resulting diffraction field is focused with an 
aplanatic lens (9) on the end of the waveguide and is detected with a photodetector array 
(3). 
The mathematical model of the waveguide AO spectrum analyzer of the optical radiation is 
similar to the well-developed and experimentally tested model of the waveguide AO 
spectrum analyzer of radio signals [16]. The differences are as follows: first, the parameter 
under study is the radiation wavelength rather than the radio frequency (which is fixed); 
second, the chromatic dependence of the overlap integral of the Bragg AO interaction needs 
to be taken into account. 
The optical wave diffracts on SAW. Thus the diffraction efficiency of an each optical 
component submits to the following parity: 
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Fig. 6. Scheme of the waveguide Bragg AO device for the real-time spectral analysis of the 
broadband optical signals: solid lines show optical beams. 
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2

2
0( , )

2
m

m m
kq A fλ

Δ⎛ ⎞= +⎜ ⎟
⎝ ⎠

, mkΔ  - disagreement wave vector for corresponding optical 

component. 
The frequency of a everyone diffracted optical beam will be moved on frequency fo. And the 
quantity of diffracted optical beams corresponds to quantity of frequency components of an 
initial signal. 
In general, the band of the working optical frequencies is bounded by the SAW excitation 
band, the AO interaction band, the frequency band of the overlap integral, which 
characterizes the AO properties of the material, and the band of the optical frequencies in 
which the planar waveguide supports a single TE0 mode. The last two parameters are 
significantly more important than the first two parameters. A single IDT is insufficient for 
the analysis of the broadband optical signals, since the band of the analyzed optical 
frequencies is relatively narrow (about 100 nm) [4, 5]. In contrast to the monochromatic case, 
the characteristic is strongly asymmetric, since the overlap integral decreases with 
increasing wavelength at relatively large λΔ . For this reason, a multiple-IDT system is used 
to increase the width of the frequency band. In this system, the crossed structure of acoustic 
beams enables one to maximize the diffraction efficiency. Several IDTs that excite SAW are 
placed at the Bragg angle relative to the propagation direction of the channeled radiation. The 
complexity of this scheme lies in the manifestation of the interference effects for the optical 
beams diffracted by different SAW beams. This leads to a significant nonuniformity of the 
frequency characteristic. To solve this problem, we need to employ computer simulation for 
the amplitude and phase tuning of the device (both the topological parameters of the cell and 
the electric circuit for the matching of the IDT and RF systems are tuned). It is demonstrated in 
[5] that the amplitude and phase matching is stable only for three IDT’s. 
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3.2 Mathematical model of AO units for the real-time spectrum aanalysis of bandwidth 
optical signals 
In case greatest possible value (~300 nm) of a bandwidth of an optical signal (such signals 
can propagated in waveguide at only TE0-mode regime) use 3 ITD obviously insufficiently. 
One of ways of increase of a optical frequency bandwidth is entering an additional 
mismatch of wave vectors with the purpose of increase of a total optical frequency 
bandwidth, but as the consequence is observed decrease of diffraction efficiency. This 
approach is realised by change of value of a angle between an optical beam and SAW front, 
that is achieved additional turn of the ITD. Thus should be satisfied condition: 
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where n=0,1,2,3. 
Thus the diffraction efficiency of a each optical component submits to a parity (7). The 
regime of low diffraction efficiency allows to simplify parities describing optical fields: 
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where T0 - longitudinal initial optical field component, T1- longitudinal diffracted optical 
field component, Ф(z) - phase of longitudinal diffracted optical field component [4,5]. 
The optical field each wave components is the sum an optical field generated appropriate 
SAW, extending under different angles to an initial optical beam. Presence several coherent 
the optical field results in them interference. Then the optical field separate wave 
components under condition of low efficiency diffraction submits to the following parity: 
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The given field by means of an integrating lens is transferred on a ruler of photoreceivers 
placed in a lens focal plane. The intensity distribution of each wave component in a focal 
plane of an integrating lens is described by parity [17]: 
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where s - the distance from the point on last lens contour to the observation point, φ - the 
angle between the ray coming to the point ξ to point (x0,z), ψ - the angle between the phase 
and  group velocity for the ray directed towards the observation point, Ф2(z) - the phase of 
optical ray at the point ξ. 
The total optical field is superposition of fields a each optical component. 
An increase in the aperture function leads to an additional decrease in the sensitivity of the 
frequency characteristic to the interference effects. This is due to the averaging of the phases 
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of the diffracted beams. It follows from the analysis of the phase dependences of the 
interfering beams that the interference effects are completely eliminated provided that the 
optical aperture satisfies the following condition: 

 opt 24
W λΔ

>>
ΔΘ

   (12) 

where λΔ  is the wavelength band of the analyzed radiation and ΔΘ  is the difference 
between the Bragg angles of the neighboring IDT’s. For the typical parameters λΔ = 100 nm 
and ΔΘ =0.0017, condition (12) is satisfied for an optical aperture of about 100 mm. 
However, such large apertures cannot be technically realized in the integrated optical 
devices, and the aforementioned property provides for only partial compensation of the 
interference effects. 

3.3 Computer simulation results 
We develop two modifications of the AO devices for the spectral analysis of the red and IR 
broadband optical signals. In these devices are based on Y-cut lithium niobate. The 
refractive index profile of diffusion planar optical waveguide is described the following 
parameters. For the first modification, the effective depths are 2.24 and 6.52 mkm and  
Δn2= 0.005. For the second modification, the effective depths are 2.42 and 6.12 mkm and  
Δn2 = 0.008. TIPE technology [18] is used to fabricate aplanatic lenses. We assume that the 
optical aperture function is nearly Gaussian and its values for the first and second 
modifications are Wopt = 5 and 7 mm, respectively. The SAW velocity is 3488 m/s. Based on 
these parameters, we employ computer simulation to optimize (i) the IDT-system design 
with respect to the maximization of the band of the analyzed optical frequencies and (ii) the 
topology of the lens system with respect to the maximization of the optical resolution using 
the method proposed in [19]. The table 2 demonstrates the main parameters of the two 
modifications obtained with the numerical and experimental study.  
 

Mod. 1 Mod. 2 Parameters 
simul. exper. [16] simul. 

1 Optical radiation waveguide range     
- low wavelength, nm,  600 605 765 
- high wavelength, nm, 935 915 1125 
2 Working wavelength band, nm 335 315 360 
3 Resolution of two optical wavelengths, nm, 2.9 3.5 3.1 
4 Measuring fixed frequency for  RF signal, MHz 394 396 326 
5 Diffraction efficiency, %/W 1.5 0.8 0.3 
6 Dynamic range, dB  25 23 25 
7 Low level of measured optical signal, μW 10 10 10 
8 Input RF signal power level, W 0.4 0.6 1.2 
9 Voltage standing wave ratio for driving RF 
signal 1,8 2 1.8 

Table 2. 
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Figure 7a shows the numerically calculated dependence of the optical transmittance of the 
first modification on the wavelength. At a level of –3 dB, the working wavelength band is 
slightly greater than 335 nm in the range from 935 to 600 nm. For comparison, we also 
present the experimental characteristic of this AO device from [16]. Figure 7b shows the 
wavelength dependence of the calculated optical transmittance for the second modification. 
At a level of –3 dB, the working wavelength band is 360 nm in the range from 1125 to 765 
nm. Note that the parameters of the device are chosen with allowance for the technological 
requirements for its fabrication. A working band of 360 nm is the ultimate band for the 
single mode diffusion waveguides under study [14]. The optical signals with such 
maximum bandwidth can be supported with the waveguides under study in the IR range 
 

Fig. 7. Plots of optical transmittance D vs. wavelength for (a) the first modification of the 
spectrum analyzer, (b)  for the second modification of the spectrum analyzer. 

The comparative analysis yields a good agreement between the theoretical and experimental 
data on the first modification. In particular, the difference between the RF signals is less than 
1%, the difference between the central optical frequencies is almost 10%, and the difference 
between the working transmission bands is less than 10%. 
Figure 8 demonstrates the experimentally determined accuracy of the measurement of the 
optical signal wavelength with the first modification in which a laser diode serves as the 
source of the optical signal.  
The left panel shows the typical response of the device. At a fixed frequency of the RF signal 
and a stable radiation of the laser diode, the response is symmetric (Fig. 8a). A variation in 
the input current of the laser diode leads to a variation in the radiation wavelength, which 
causes a variation in the response (Fig. 8b). In this case, the voltage difference between the 
Nth and (N + 1)th pixels is 0.2 V. The response can be symmetrized by tuning the oscillator 
frequency. The difference between the oscillator frequencies is 38 kHz. Thus, the wavelength 
of the laser diode is varied by 0.054 nm. In practice, we can observe and measure a voltage 
difference of about 10 mV between the (N – 1)th and (N +1)th pixels. Hence, the ultimate 
accuracy of the wavelength measurement for the optical signal in the device under study is 
no worse than 0.01 nm. 
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Fig. 8. Photographs of the responses for the first modification of the AO device. 

3.4 Conclusion 
We developed and numerically studied two modifications of the AO device for the spectral 
analysis of broadband red and IR optical signals. We employ a mathematical model which is 
similar to the experimentally tested mathematical model of the waveguide AO analyzer of 
radio signals. The comparative analysis yields a good agreement between the theoretical 
and experimental results. The band of the working optical frequencies is 360 nm in the range 
765–1125 nm. The wavelength resolution of the two optical signals determined with the 
Rayleigh criterion is 3 nm. The optical wavelength is measured with an accuracy of 0.01 nm. 
The minimum level of the analyzed optical signal is 10 mkW. In particular, the differences 
between the RF signals, the central optical frequencies, and the working transmission bands 
are less than 1%, almost 10%, and less than 10%, respectively. The parameters of the device 
are chosen based on the real technological and topological requirements for its elements. 

4. Methods for real-time optical scanning of larde data arrays 
4.1 Introduction 
A distinctive feature of the methods proposed is a significant increase in the number of 
scanning points (information bits) in comparison to the classical method involving spectral 
analysis of broadband RF signals based on waveguide AO Bragg interaction [4, 16]. In a 
conventional scanning system, the frequency of the controlling RF signal fed to a scanning 
unit is discretely varied within the frequency band of the device. A variation in frequency 
leads to a variation in the diffraction angle of the optical beam [10]: 
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where Θo is the angle between the fronts of the optical beam and surface acoustic wave,  and 
Θa is the angle between the SAW propagation direction and the z axis.  
A variation in the diffraction angle causes a shift of the focused optical beam to the 
neighboring point in the focal plane coinciding with the side surface of the waveguide. The 
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A variation in the diffraction angle causes a shift of the focused optical beam to the 
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scanning is thus realized. The discrete step in the frequency variation depends on the 
frequency resolution of the optical focusing system [4]. The number of scanning points is 
given by 

 T
f

fN
R
Δ

=  (14) 

where fΔ  is the frequency band and fR   is the resolution of the focusing optical system. 

The hardware for realizing the above method employs a source of optical radiation and a 
waveguide acoustooptic chip. The chip contains a planar optical waveguide, optical 
input/output elements, an optical system consisting of collimating and focusing lenses, and 
a waveguide AO Bragg cell. Note that for scanner elements based on Y-cut lithium niobate, 
the number of scanning points is no greater than 1000 for the ultimate values of fΔ  and fR  
[4]. However, the technical realization of such a device is difficult and expensive [16]. 

4.2 Method for one-dimensional  scanning  
A conventional method for 1D scanning can be improved to achieve a significant increase in 
the amount of data processed in real time using an approach that employs a synthesized 
(with a few optical beams) aperture of the optical field. The total information field is divided 
into subareas, each of which is irradiated with an individual optical beam controlled by the 
corresponding WAOBC. In the case under consideration, the first optical beam is incident on 
the corresponding cell at an angle maxΘ  equal to a double Bragg angle corresponding to the 
upper bound limit of the cell working frequency range. The next optical beam is incident on 
the second WAOBC at an angle max cΘ + ΔΘ , where cΔΘ  is the working range of angles of 
the previous cell. In the general case, the angle of incidence of the current optical beam 
differs from the previous one by cΔΘ  (Fig. 9). Thus, the scanning range increases by a factor 
of M, where M is the number of cells.  
A similar WAOBC system is placed symmetrically with respect to the optical axis. Note the 
matching of the working range of angles of the focusing system (ΘL) and the total working 
range of the WAOBC system. Hence, the number M satisfies the following condition: 
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Thus, the total number of scanning points is given by 

 2
totalT TN MN=  (16) 

We investigate the propagation of a monochromatic coherent quasi-plane optical wave with 
a predetermined aperture function W(z). We assume that the AO Bragg phase matching 
condition [5] is satisfied, the diffraction efficiency is about a few percent. In the general case, 
the aperture of the surface acoustic field is synthesized with a few electroacoustic IDTs.  
In the far-field zone, the electrical component of optical field diffracted by a each WAOBC is 
represented as 
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Fig. 9. Functional scheme of the waveguide AO scanning device: 1 WAOC, 2 WAOBC, 3 
focusing lens objective, and 4total information field. Solid lines show typical paths of optical 
beams in the device from the SOR to the scanning region. The SOR and collimating lens 
system are not shown. 

where ϖ  and 0k  are the frequency and wave number of the TE0 mode; Ω  and K  are the 
frequency and wave number of the SAW; ( )BA f  is the Bragg AO interaction coefficient 
corresponding to parameter ( )A f , determined in sec. 1.,  N is the number of IDTs; Wa is the 
j-th IDT aperture; ( , , )B x z fΦ  is the phase related to the RF electric signal passing through 
the matching electric circuit, SAW propagation from the electroacoustic transducer to the 
region of acoustooptic interaction, and interference depending on the acoustic field topology 
[5, 11]; and ( )fα is the SAW decay coefficient, which was analyzed in detail in [6]. This field 
is focused using a waveguide lens objective with focal length F. In the back focal plane of the 
objective, the field distribution is represented as 
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where TSc  is the scanning time. 
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where TSc  is the scanning time. 
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4.3 Computer simulation results 
Using the above approach, we developed a AO planar scanning device based on Y-cut 
lithium niobate. This device makes it possible to selectively process more than 3000 
information bits in real time. The device consists of four WAOBCs (two cells on each side of 
the optical axis). It is possible to arbitrarily control the cells. Using the model proposed, we 
numerically study the characteristics of this scanner working in real time. In numerical 
experiments, we employ the following typical initial data presented in the table 3. The 
aperture function of the optical beam is nearly Gaussian, and the corresponding value is 
Wopt = 5 mm.  
 

Parameter  
Planar waveguide   
Effective refractive index for TE0 mode 2.19176 
Difference between maximum refractive indices of the waveguide and 
substrate 0.8x10-2 

Depth of the Gaussian profile, µm 2.42 
WAOBC parameters  
Total working frequency range at a level of 3 dB, MHz 1090 
Range of diffraction angles, rad 0.111 
Maximum diffraction efficiency, %/W 0.97 
Number of sections in the first IDT  17 
Aperture of the first IDT, µm 450 
Number of sections in the second IDT 23 
Aperture of the second IDT, µm 280 
Electric power of the RF signal, W  0.6 
Voltage standing-wave ratio in the working frequency range less than 2 
Parameters of the optical lens system  
Difference between maximum refractive indices of the TIPE lens and 
substrate  

Effective depth of the TIPE lens,  µm 0,0328 
Focal length of the collimating system, mm 4.24 
Number of lenses of the focusing objective 2 
Focal length of the focusing objective, mm 35 
Aperture of the focusing objective, mm 15.8 
Size of the scanning optical spot, mkm 0.22 
Main characteristics of the WAOC  
Number of WAOBCs 4 
Aperture of the optical beam, mm 5 
Angle between the optical axis and the optical beam for the first WAOBC, 
rad 0.130 

Angle between the optical axis and the optical beam for the second 
WAOBC, rad 0.240 

Total number of scanning points 4360 
 
Table 3. 
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Based on these parameters, we employ computer simulation to optimize the IDT system of 
the WAOBC. The system consists of two fan IDTs [20] spanning the following frequency 
ranges: 230–720 and 720–1320 MHz. Figure 10 shows the frequency characteristic of the 
WAOBC. The elements transforming the aperture function of the optical beam are 
manufactured using TIPE technology [19]. The topology and parameters of the lens system 
are determined by (i) the ratio of effective refractive indices outside and inside the lens with 
regard to the aberration of optical beams with large angular aperture, (ii) condition (15), (iii) 
the optical beam aperture, and (iv) the size of the substrate. With allowance for all these 
characteristics and a substrate length of 80 mm, we use computer simulation to optimize the 
topological parameters of the scanning device. The table lists the results of optimization. The 
maximum allowed frequency resolution Rf of Gaussian optical beams with a 5-mm aperture 
equals 1 MHz [19]. Then, the number of points scanned in real time using the device under 
consideration is 4360. The size of the scanning optical spot (0.22 µm ) is close to the 
diffraction limit. 
 

 
Fig. 10. Frequency characteristic of the WAOBC 

4.4 Method for 2D scanning  
We can realize 2D optical scanning simultaneously using two types of waveguide AO 
diffraction (Bragg (coplanar) and radiative (collinear)) [21]. Figure 11 gives a functional 
scheme of the 2D scanning device taking into account the aforementioned results.  
In the case under consideration, the waveguide mode of TE0 polarization propagating in the 
WAOC from the corresponding SOR to the scanning plane is transformed in the following 
manner. First, the collimating system (not shown in Fig. 11) forms a wide-aperture optical 
beam. Then, the beam propagating through the WAOBC is diffracted by a SAW under 
Bragg conditions. The diffracted optical beam is deflected from the initial direction by the 
double Bragg angle (see expression (13)). In the case of radiative diffraction, this beam is 
deflected into the substrate owing to the interaction with a collinearly propagating SAW. 
The angle at which the optical beam is re-emitted into the substrate is given by [10] 
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Fig. 11. Functional scheme of the AO scanning device for processing of 2D data arrays: (1) 
WAOC, (2) WAOBC, (3) IDT, (4) volume focusing lens objective, and (5) total information 
field. Solid lines show typical paths of optical beams in the waveguide and to the scanning 
plane. Dashed lines show the trajectories of optical beams re-emitted into the substrate.  
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where rdΘ  is the angle between the guided mode and the mode of radiation and subn  is the 
refractive index of the substrate. Then, separation of the optical beams takes place. A doubly 
diffracted optical beam is projected onto the scanning plane using a volume lens objective. 
Non diffracted and singly diffracted optical beams are rejected with a spatial filter. A variation 
in the working frequencies of the IDT system placed at a Bragg angle relative to the z axis and 
IDT placed at a mean Bragg angle relative to the x axis leads to 2D motion of the doubly 
diffracted optical beam on the screen. We analyze the propagation of light in a single mode 
planar waveguide with simultaneous application of two types of AO interaction using 
approximations similar to those mentioned above. Then, the diffraction field of a forward 
optical wave at a certain cross section is given by the following system of equations: 
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where T2(x) is the amplitude function of a doubly diffracted optical wave, α  is the sum of 
decay coefficients of the optical beam and the collinearly propagating SAW, β  is the 
diffraction divergence coefficient of the collinearly propagating SAW, rdA  is the efficiency 
of radiative AO interaction, which similar to coefficient ( )A f , where the parameter 00Γ  is 
replace of the factor rdГ , and rdГ  is the overlap integral for TE0–TMsub diffraction.  
For an arbitrary RIP of a waveguide, the solution to this system of equations can be found 
only using numerical methods under the following initial conditions: T0(0) = 1 and T1(0) = 
T2(0) = 0. Note that, in contrast to the Bragg case, the frequency characteristic of radiative 
diffraction exhibits a strong nonuniformity owing to interference effects related to the 
finiteness of the spectrum of the radiation mode. 

4.5 Computer simulation of characteristic of the AO unit for 2D scanning 
In the part of the approach proposed, we developed an AO unit for 2D scanning whose 
WAOC is based on Y-cut lithium niobate. For numerical experiments, we choose similar 
initial data. The optical aperture function is Wopt = 3 mm. We employ the same WAOBC. 
Based on these parameters, we use computer simulation to optimize an IDT generating a 
SAW that propagates collinearly to the optical beam. The parameters of the SAW are as 
follows: central frequency, 571 MHz; frequency range, 523–635 MHz; IDT aperture, 3100 

mμ ; metallization coefficient, 0.51; and voltage standing-wave ratio, no greater than 2 in the 
entire frequency range of the IDT. Based on the deflection of each diffracted optical beam, 
the angles of IDTs relative to the x axis are -0.24, -0.13, 0.13, and 0.24 rad. Figure 12 shows 
the results of computer simulation of the resulting frequency characteristic for a single 2D 
AO scanning channel at a radiative AO interaction length La–o = 2.5 cm. In the case under 
consideration, for an electric power of the control RF signals of 0.5 W, the maximum 
diffraction efficiency is 0.3%. In accordance with the Rayleigh criterion, the number of 
resolved states is 650 points on the vertical axis and 650 points on the horizontal axis. The 
total information field is then 2600 x650 points (information bits). 

4.6 Conclusion 
We analyze original methods for real-time optical scanning of large data arrays based on 
waveguide AO Bragg interaction with a synthesized optical aperture using a few optical 
beams. The methods proposed make it possible to process both one- and 2D data arrays. A 
distinctive feature of the methods is an increase in the number of scanning points in 
comparison to the classical method involving spectral analysis of broadband RF signals 
based on waveguide AO Bragg interaction. We developed a mathematical model of a 
waveguide AO scanning device with a large number of based on Y-cut lithium niobate, the  
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Fig. 12. Frequency characteristic of a single 2D scanning channel: right, left, and cross 
hatching correspond to the ranges   - 2-3,  - 1-2,  - 0–1 dB, respectively. 
 

number of points for real-time 1D scanning is 4360. There exist two factors accounting for 
the practical importance of the mathematical model proposed in this work. First, the 
mathematical model is based on the experimentally tested mathematical model of a 
waveguide AO spectrum analyzer. Second, we choose the parameters of the device based on 
real technological and topological requirements for its elements. Note that all the elements 
of the AO scanning device (except for SOR) can be realized for a single substrate. 
Using the method for 1D scanning, we developed a mathematical model of a WAOU for 
real-time 2D scanning. We perform computer simulation of its characteristics for Y-cut 
lithium niobate. The number of points for real-time scanning is 650 on the vertical axis and 
2600 on the horizontal axis. The parameters of the IDT generating a collinear SAW are 
calculated under the same conditions as the parameters of the IDT in a WAOBC. The 
aforesaid facts make it possible to conclude that the model proposed can be applied in 
practice. 

5. Saw velocity fluctuation effects 
5.1 Introduction 
In the development of waveguide AO devices for data processing, one must analyze the 
accuracy level in the reproduction of the predetermined characteristics. For example, if an 
AO device is designed based on a certain value of the surface acoustic wave velocity V0 and 
a real value of velocity V1 differs from this value owing to several factors, the characteristics 
are changed. In practice, multiple mechanisms lead to a variation in the physical properties 
of the substrate material, which, in turn, causes variations in the SAW velocity [6]. The most 
typical mechanisms are related to the ambient temperature, the ionization effect, and the 
spread of velocities due to errors in the crystal orientation. Note that we consider the case in 
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which the external action does not result in mechanical variations in the components of 
devices.  
We numerically study the characteristics of two basic AO devices for real-time information 
processing: time-integrating correlator and broadband spectrum analyzer (AOSA) of radio 
signals. Both devices are based on a waveguide AO chip  that is fabricated on a Y-cut 
lithium niobate substrate. 

5.2 Mathematic model 
We analyze the scenarios in which the deviation of the SAW velocity from the calculated 
value is small, so that the relative variation in the velocity is several percent. In this 
approximation, we assume that, in the range under study, the SAW velocity exhibits a linear 
dependence on a certain factor. This assumption is in agreement with the experimental data 
from [1]. Then, such a dependence can be represented as [22] 

 1 0 0
0

(1 )VV V V
V

χ Δ
= = − , (21) 

where 
0

1 V
V

χ Δ
= − , and 0 1V V VΔ = −  is a variation in the SAW velocity. Parameter χ  can 

be physically interpreted as a coefficient of the SAW velocity fluctuations. Note that, in the 
case under study, this coefficient is constant.  
Morgan proposes studying the effect of a minor degradation of the SAW velocity on the 
characteristics of the device using the model of a linear source and a linear receiver located 
at a free crystal surface [22]. He also assumes that the diffraction, propagation loss, and 
SAW dispersion can be neglected in the analysis. For distance l between the source and the 
receiver, the calculated time delay is 0

0
lt V= , whereas 1

1
lt V= is the time delay that 

corresponds to a certain level of the effect of one of the degradation mechanisms. The 
relationship between these delays is given by 

 1 0
1t t
χ

= ,  (22) 

This causes a variation in the time scale of the pulse response of the electroacoustic IDT, 
which is described with functions 0( )h t  and 1( )h t at the SAW velocities V0 and V1, 
respectively. The relationship between the pulse responses is represented as 1 0( ) ( )h t h tχ= . 
We assume that the pulse responses correspond to the short-circuiting mode, so that the 
effect of the external action on the matching circuits is eliminated. It is demonstrated in [22] 
with neglect of minor variations in the amplitude that the frequency response functions of 
the device exhibit frequency rescaling with a factor of 1

χ . Thus, parameter 1
χ can be 

physically interpreted as the scaling factor. In the range under study, coefficient remains 
unchanged, so that parameter 1

χ  is also constant. 

A variation in the SAW velocity results in a variation in the characteristics of the AO 
diffraction. For the isotropic Bragg diffraction, a relatively small diffraction angle 1Θ  is 
given by 
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Hence, the diffraction angle is scaled as 1
χ  in the range under study. Therefore, first, the 

spectrum of spatial frequency is corrected in the same way and, second, an additional 
mismatch of the wavevectors of the incident and diffracted waves emerges. This leads to a 
shift of the SAW frequency f0, at which the AO diffraction is realized with the maximum 
efficiency. Then, a new value of the frequency is written as 1 0f fχ= . Note that the maximum 
diffraction efficiency remains unchanged provided that a variation in the overlap integral is 
neglected.  
A minor variation in the diffraction angle affects separation sΔ  of the incident and 
diffracted beams in the focal plane of a lens. In the approximation of geometrical optics, the 

following expression is valid: 1 0
1s s
χ

Δ = Δ , where 1 0,s sΔ Δ  are the separations with regard to 

and with neglect of the degradation, respectively. 
The working frequency band fΔ  of the AO device is determined by the following main 
factors: the SAW excitation band and the AO interaction band [5]. For the isotropic Bragg 
diffraction, the working frequency band is given by the following expression taking into 
account the spread of the SAW velocities: 
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where fc is the central frequency. Neglecting the second term in parentheses in the 
numerator, we conclude that fΔ  quadratically depends on the SAW velocity fluctuation 
coefficient. 

5.3 Analysis of the TIAOC characteristics 
A variation in the time scale directly affects one of the main parameters of the AO 
correlator—the maximum delay time TA. In the presence of the SAW velocity fluctuations, 
this parameter is given by 
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where Wopt is the optical beam aperture. Note that the scaling laws for ATΔ  and AT  are 
identical. 
A relative delay τ  of the AO correlator is scaled similarly to TA. One must take into account 
the time of the SAW propagation from IDT to the AO interaction region, which is similarly 
scaled: 
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where γ is a fraction of TA and L is the distance between IDT and the AO interaction region. 
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Based on the analysis of expressions (25) and (26), we draw the following conclusion. In 
spite of the scaling of parameters AT , ATΔ  and τ , the range of the relative delays τΔ  of the 
correlator is the same as in the absence of the SAW velocity spread, so that quantity γ  is not 
scaled. 
The scaling of the working frequency band leads to a variation in the AOTIC base. At a 
constant integration time, it can be estimated as 

 2
1 0N Nχ= , (27) 

where N1 and N0  are the AO correlator bases with regard to and with neglect of the SAW 
velocity spread, respectively. 
Consider the effect of a variation in the SAW velocity on the transformation of the 
correlation signal. For numerical experiments, we employ a mathematical model of the 
multi-channel TIAOC. Using a mathematical model of the multi-channel TIAOC, one can 
also numerically analyze the characteristics of a hybrid monochrome TIAOC, in particular, 
at relatively small SAW variations. The validity of such an approach follows from the 
comparative analysis of the theoretical and experimental data. We employ an experimental 
prototype whose structure is described in detail in [16]. The numerical experiments are 
performed for the wavelength in a vacuum 0λ  = 0.78  µm, the initial SAW velocity V0 = 3488 
m/s, and a rectangular optical aperture function whose value is 7 mm.  
To estimate the variation in the shape of the correlation signal in the presence of the SAW 
velocity fluctuations, we analyze a model scenario in the absence of propagation loss. Such 
an approach makes it possible to account for the transformations of the correlation signal. 
Let information signals with equal durations (TA) have a relative delay of 0.5 TA. In this case, 
the SAW velocity can differ from the calculated value. For the numerical experiments, we 
choose the same initial data as in the previous case. The optical aperture function and all of 
the signals applied to the device have rectangular shapes. 
Figure 13 demonstrates the results of the computer simulation. At the first stage, when the 
SAW velocity coincides with the calculated velocity, a classical correlation signal in the 
image plane represents an almost equilateral triangle. When the SAW velocity decreases, the 
shape of this signal is varied. In the case under study, a simultaneous shrinkage of the left- 
and right hand wings of the correlation signals leads to its narrowing. This is due to the 
spatial compression of the acoustic signal, which is proportional to a variation in the SAW 
velocity. However, in all of the transformations, the correlation peak amplitude remains 
unchanged. The reason for this lies in the dependence of this amplitude on the integration 
time, which remains constant (TA). The following conclusion can be drawn from the 
simulation results. The expression that can be used to estimate the narrowing of the 
correlation signal in the above range of a decrease in the SAW velocity is written as 

 
1 0cor corW Wχ= , (28) 

where 
1corW and 

0corW are the apertures (widths) of the correlation signal with regard to and 
neglect of a decrease in the SAW velocity, respectively. 
An increase in the SAW velocity leads to a substantially different transformation of the 
correlation signal: it becomes asymmetric. In the case under study, a decrease in the left-
hand wing is accompanied by an increase in the right-hand wing. This is due to the spatial 
extension of the acoustic signal, which is proportional to the variation in the SAW velocity.  
 



 Acoustic Waves 

 

256 

Based on the analysis of expressions (25) and (26), we draw the following conclusion. In 
spite of the scaling of parameters AT , ATΔ  and τ , the range of the relative delays τΔ  of the 
correlator is the same as in the absence of the SAW velocity spread, so that quantity γ  is not 
scaled. 
The scaling of the working frequency band leads to a variation in the AOTIC base. At a 
constant integration time, it can be estimated as 

 2
1 0N Nχ= , (27) 

where N1 and N0  are the AO correlator bases with regard to and with neglect of the SAW 
velocity spread, respectively. 
Consider the effect of a variation in the SAW velocity on the transformation of the 
correlation signal. For numerical experiments, we employ a mathematical model of the 
multi-channel TIAOC. Using a mathematical model of the multi-channel TIAOC, one can 
also numerically analyze the characteristics of a hybrid monochrome TIAOC, in particular, 
at relatively small SAW variations. The validity of such an approach follows from the 
comparative analysis of the theoretical and experimental data. We employ an experimental 
prototype whose structure is described in detail in [16]. The numerical experiments are 
performed for the wavelength in a vacuum 0λ  = 0.78  µm, the initial SAW velocity V0 = 3488 
m/s, and a rectangular optical aperture function whose value is 7 mm.  
To estimate the variation in the shape of the correlation signal in the presence of the SAW 
velocity fluctuations, we analyze a model scenario in the absence of propagation loss. Such 
an approach makes it possible to account for the transformations of the correlation signal. 
Let information signals with equal durations (TA) have a relative delay of 0.5 TA. In this case, 
the SAW velocity can differ from the calculated value. For the numerical experiments, we 
choose the same initial data as in the previous case. The optical aperture function and all of 
the signals applied to the device have rectangular shapes. 
Figure 13 demonstrates the results of the computer simulation. At the first stage, when the 
SAW velocity coincides with the calculated velocity, a classical correlation signal in the 
image plane represents an almost equilateral triangle. When the SAW velocity decreases, the 
shape of this signal is varied. In the case under study, a simultaneous shrinkage of the left- 
and right hand wings of the correlation signals leads to its narrowing. This is due to the 
spatial compression of the acoustic signal, which is proportional to a variation in the SAW 
velocity. However, in all of the transformations, the correlation peak amplitude remains 
unchanged. The reason for this lies in the dependence of this amplitude on the integration 
time, which remains constant (TA). The following conclusion can be drawn from the 
simulation results. The expression that can be used to estimate the narrowing of the 
correlation signal in the above range of a decrease in the SAW velocity is written as 

 
1 0cor corW Wχ= , (28) 

where 
1corW and 

0corW are the apertures (widths) of the correlation signal with regard to and 
neglect of a decrease in the SAW velocity, respectively. 
An increase in the SAW velocity leads to a substantially different transformation of the 
correlation signal: it becomes asymmetric. In the case under study, a decrease in the left-
hand wing is accompanied by an increase in the right-hand wing. This is due to the spatial 
extension of the acoustic signal, which is proportional to the variation in the SAW velocity.  
 

Real Time Methods for Wideband Data Processing Based on Surface Acoustic Waves   

 

257 

 
 

 
 
 

Fig. 13. Normalized correlation signal (J, norm) in the TIAOC image plane with regard to the 
SAW velocity fluctuations for an input signal duration of TA and a relative delay of 0.5TA at 
χ = (1) 1.2, (2) 0.9, and (3) 1.1 

The maximum amplitude of the correlation peak linearly decreases with an increasing 
parameter χ . 
A similar analysis can be performed for other pulse durations and the corresponding 
integration times. It follows from the calculated results that a decrease in the pulse duration 
causes transformations of the correlation signal that are similar to the above 
transformations.  
In a real device, we must take into account the variation in the delay in the acoustic path. As 
mentioned, this leads to a variation in the relative delay of the signals. To eliminate the 
effect of the acoustic delay, we consider a general case in which the relative delay is varied 
in the entire allowed range 0– TA. It follows from [23] that the correlation peak height 
exhibits an approximately parabolic decrease in the absence of the SAW velocity 
degradation. Using a similar approach, we generalize the simulated results on the case of 
the spread of the SAW velocities. Figure 14 shows the results of the analysis. It is seen that a 
decrease in the SAW velocity causes a symmetric decrease in the correlation peak. Opposite 
results are obtained when the SAW velocity increases. A sharper decrease in the correlation  
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Fig. 14. Plots of the normalized correlation peak height (Jp, norm) vs. relative delay γ (in 
fractions of TA) for input pulses with a duration of TA with regard to the SAW velocity 
fluctuations at χ = (1) 1.2, (2) 0.9, and (3) 1.1 
peak height is observed at γ  < 0.5 TA, whereas the peak height starts increasing (in 
comparison with the ideal scenario) at γ  > 0.5 TA. Note that, at γ  > 0.8 TA, the peak height 
becomes higher than that in the ideal case. Such a character of this dependence is realized at 
any variations in the SAW velocity in the range under study. 

5.4 Analysis of the AOSA characteristics 
We analyze the manifestation of a minor variation in the SAW velocity in the output 
characteristics of the broadband AOSA. For this purpose, we employ the experimentally 
verified mathematical model of this device from [5]. By analogy with the above analysis, we 
choose the experimental device whose structure is described in detail in [16]. For the 
numerical calculations, we assume that the WAOC contains WBAOC with a complicated 
ITD system, integrating lens, and incoupling and outcoupling optical prisms. The remaining 
initial data correspond to the experimental device from [16]. The aplanatic lenses for the 
WAOC are manufactured using the TIPE technology [19]. We assume that the optical 
aperture function exhibits a nearly Gaussian shape with the width Wopt = 5 mm. Using these 
parameters, we perform computer simulation to optimize the interdigitated structure, which 
is needed to realize the maximum band of the analyzed radio frequencies, and to optimize 
the topology of the WAOC lens system, which is needed for the maximum optical resolution 
with the technique from [5]. 
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Fig. 14. Plots of the normalized correlation peak height (Jp, norm) vs. relative delay γ (in 
fractions of TA) for input pulses with a duration of TA with regard to the SAW velocity 
fluctuations at χ = (1) 1.2, (2) 0.9, and (3) 1.1 
peak height is observed at γ  < 0.5 TA, whereas the peak height starts increasing (in 
comparison with the ideal scenario) at γ  > 0.5 TA. Note that, at γ  > 0.8 TA, the peak height 
becomes higher than that in the ideal case. Such a character of this dependence is realized at 
any variations in the SAW velocity in the range under study. 
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parameters, we perform computer simulation to optimize the interdigitated structure, which 
is needed to realize the maximum band of the analyzed radio frequencies, and to optimize 
the topology of the WAOC lens system, which is needed for the maximum optical resolution 
with the technique from [5]. 
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Note several features of the realization of the broadband AO diffraction by the synthesized 
acoustic field. These are related to the differences of the overlap integral, interference 
phenomena, and acoustic loss at low and high frequencies. To estimate the variation in the 
working frequency band related to the SAW velocity fluctuations, we analyze two WBAOC 
modifications. Each cell contains three IDT structures that generate an acoustic field with 
crossed beams. The first cell is constructed for the frequency range 0.3–0.7 GHz. The second 
cell works in the frequency range 0.7–1.3 GHz. The experimental and theoretical parameters 
and frequency characteristics of the cells can be found in [23]. 
Figure 15 shows the simulated diffraction characteristics of both cells in the presence of the 
SAW velocity fluctuations: plots of the normalized working frequency band (at a level of –3 
dB) and the diffraction efficiency at the critical frequency (nonuniformity of the frequency 
response), where the highest sensitivity to the SAW velocity variations is realized, vs. 
parameter χ . For the first and second cells, the critical frequencies are 567 and 1010 MHz, 
respectively. The analysis of the simulated results makes it possible to reach the following 
conclusions. The scaling of the working frequency band in the range of relatively small 
variations in the SAW velocity linearly depends on parameter χ . The slope of this curve for 
the high-frequency cell 2 is higher than that for the low-frequency cell 1. An increase in the 
nonuniformity of the frequency response is related to a violation of the phase relationships 
[5]. Note its developed frequency dependence. To determine the level of the effect of the 
mechanism under study at which the allowed level (e.g., –3 dB) is exceeded, a detailed 
simulation is needed in each specific case. 
 
 
 
 

 
 

 
 

Fig. 15. Plots of (a) the normalized working frequency band (Δf, norm) and (b) diffraction 
efficiency D at the critical frequency vs. SAW velocity fluctuation coefficient for (1) the first 
and (2) second cells. 
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The SAW velocity fluctuation also causes a variation in the WAOC frequency resolution. It 
follows from the numerically calculated distributions of the optical intensity at the focal 
plane of the integrating lens that, for the processing of two RF signals with allowance for a 
10% variation in the SAW velocity, the resolution is virtually inversely proportional to 
parameter χ  (Fig. 16). Note that, in the ideal case, the frequency resolution is 2 MHz. 
Based on the simulated results for the working frequency band and the resolution, we 
conclude that the number of points of the broadband AOSA remains almost unchanged in 
the low-frequency range in the presence of SAW velocity fluctuations.  
 
 

 
 
 

Fig. 16. Plot of the AOSA normalized frequency resolution (Rf, norm) vs. SAW velocity 
fluctuation coefficient 

5.5 Conclusion 
The characteristics of two basic AO devices (time-integrating correlator and broadband 
spectrum analyzer of radio signals) are theoretically analyzed and numerically studied in 
the presence of SAW velocity fluctuations. The devices are based on a waveguide AO chip 
that is fabricated at a Y-cut lithium niobate substrate. In the analyzed range of the SAW 
velocity fluctuations, the SAW velocity linearly depends on the level of the degradation 
factor. This causes the scaling of the characteristics of the device. Several parameters (Bragg 
diffraction angle, separation of optical beams, maximum delay time, range of delay times, 
relative delay, and frequency resolution) are scaled with a coefficient that is equal to the 
inverse relative variation in the SAW velocity. For the narrowband and broadband 
scenarios, the working frequency band exhibits quadratic and linear scalings, respectively. 
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The correlator base is quadratically scaled, and the number of points of the spectrum 
analyzer remains almost unchanged. The correlation peak height exhibits complicated 
variations in the presence of the SAW velocity fluctuations. The range of the correlator 
relative delays is not scaled. 

6. Conclusions 
The newly developed methods for real time data processing are proposed. To increase the 
efficiency of the methods we must use and a proposed make it possible to process both a 
synthesized optical aperture and a synthesized acoustic aperture. The mathematical models 
of the units whose acousto-optic chip is based on the Y-cut lithium niobate substrate are 
developed. We theoretically and numerically analyzed the unit characteristics under design 
and technology conditions. The results obtained can be used for the practical elaboration of 
the high efficiency AO devices.  
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1. Introduction  
When an alternating electric field is applied to an interdigitated transducer (IDT) on a 
piezoelectric material, an acoustic wave is generated. The wave can propagate in a direction 
perpendicular to the surface of the material into the bulk (bulk acoustic wave, BAW) or 
along the surface of the material (surface acoustic wave, SAW). This piezoelectric effect is 
manifested in either a Rayleigh mode (vertical and surface normal) or as a shear horizontal 
wave (in-plane) [Galipeau et al 1997]. The most commonly used bulk acoustic wave device 
is the Quartz Crystal Microbalance (QCM), which is generally made of quartz sandwiched 
between two electrodes. In contrast a surface acoustic wave propagating within a thin 
surface layer, which has a lower acoustic velocity than that of the piezoelectric substrate, is 
called a Love wave and such devices are typically operated in the Shear Horizontal (SH) 
wave mode. Waves propagating in a thin plate with a thickness much less than the acoustic 
wavelength are called a flexural plate or Lamb waves [Luginbuhl et al 1997]. These acoustic 
wave technologies and devices have been commercially exploited for more than 60 years in 
industrial applications [Ballantine et al 1996. Hoummady et al., 1997] and currently the 
telecommunications industry is one of the largest consumers, primarily in mobile phones 
and base stations, which account for ~3 billion acoustic wave filters annually. Other 
promising and growing applications include automotive applications (pressure acceleration, 
or shock sensors), medical applications (chemical sensors), and other industrial applications 
(including temperature, mass, viscosity, vapour and humidity sensors).   
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Most acoustic wave devices can be used as sensors because they are sensitive to mechanical, 
chemical, or electrical perturbations on the surface of the device [Lucklum & P. Hauptmann 
2003, Grate et al 2003]. Acoustic wave sensors have the advantage that they are versatile, 
sensitive and reliable, being able to detect not only mass/density changes, but also viscosity, 
wave functions, elastic modulus, conductivity and dielectric properties. They have many 
applications in monitoring a large number of parameters which include pressure, moisture, 
temperature, force, acceleration, shock, viscosity, flow, pH, ionic contaminants, odour, 
radiation and electric fields [Shiokawa & Kondoh 2004, Wohltjen et al. 1997]. Recently, there 
has been an increasing interest in acoustic wave based biosensors to detect traces of 
biomolecules through specific bioreactions with biomarkers. These include DNA, proteins 
(enzymes, antibodies, and receptors), cells (microorganisms, animal and plant cells, cancer 
cells etc.), tissues, viruses, as well as the detection of chemical substances through specific 
chemical absorption layers [Cote et al 2003, Kuznestsova, and Coakley 2007, Teles & Fonseca 
2003]. By detecting traces of associated molecules, it is possible to diagnose diseases and 
genetic disorders, prevent potential bioattachment, and monitor the spread of viruses and 
pandemics [Vellekoop 1998, Shiokawa & Kondoh 2004, Gizeli 1997]. Compared with other 
common bio-sensing technologies, such as surface plasmon resonance (SPR), optical fibres, 
and sensors based on field effect transistors or cantilever-based detectors, acoustic wave 
based technologies have the combined advantages of simple operation, high sensitivity, 
small size and low cost, with no need for bulky optical detection systems [Lange et al 2008]. 
By far the most commonly reported acoustic wave based biosensor is QCM [Markx, 2003], 
which can be operated in a liquid environment using a thickness shear-mode. The 
advantages of QCM include: (1) simplicity in design and (2) a high Q factor. However, less 
attractive features of QCM biosensors are a low detection resolution due to the low 
operating frequency in the range of 5~20 MHz and a large base mass; a thick substrate 
(0.5~1 mm) and large surface area (>1 cm2) which cannot easily be scaled down. In contract 
SAW based biosensors have their acoustic energy confined within a region about one wave 
length from the surface, and so the basemass of the active layer is roughly one order of 
magnitude smaller than that of the QCM. Therefore, the sensitivity of the SAW devices is 
dramatically larger than  that of the QCM. The longitudinal or Rayleigh mode SAW device 
has a substantial surface-normal displacement that rapidly dissipates the acoustic wave 
energy into the liquid, leading to excessive damping, and hence poor sensitivity and noise. 
However, waves in a SH-SAW device propagate in a shear horizontal mode, and therefore 
do not easily radiate acoustic energy into the liquid [Barie & Rapp 2001, Kovacs & Venema 
1992] and hence the device maintains a high sensitivity in liquids. Consequently SH-SAW 
devices are particularly well suitable for bio-detection, especially for “real-time” monitoring. 
In most cases, Love wave devices operate in the SH wave mode with the acoustic energy 
trapped within a thin waveguide layer (typically sub-micron). This enhances the detection 
sensitivity by more than two orders of magnitude compared with a conventional SAW 
device owing to their much reduced base mass [Josse et al 2001, Mchale 2003]. They are 
therefore frequently employed to perform biosensing in liquid conditions [Lindner 2008, 
Kovacs et al 1992, Jacoby & Vellekoop 1997]. 
Acoustic wave technologies are also particularly well suited to mixing and pumping and as 
a result are an attractive option for microfluidics applications [Luo et al 2009]. Taking the 
SAW device as one example, Rayleigh-based SAW waves have a longitudinal component 
that can be coupled with a medium in contact with the surface of the device. When liquid 
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(either in bulk or droplet form) exists on the surface of a SAW device, the energy and 
momentum of the acoustic wave are coupled into the fluid with a Rayleigh angle, following 
Snell’s law of refraction (see Fig. 1) [Wixforth 2004, Shiokawa et al 1989]. The Rayleigh 
angle, θ, is defined by  

 1sin l

S

v
v

θ − ⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠
 (2) 

where vl and vs are the velocities of the longitudinal wave in solid and liquid. The generated 
acoustic pressure can create significant acoustic streaming in a liquid which can be used to 
enable liquid mixing, pumping, ejection and atomization [Newton et al 1999]. This pressure 
facilitates rapid liquid movement and also internal agitation, which can be used to speed up 
biochemical reactions, minimize non-specific bio-binding, and accelerate hybridization 
reactions in protein and DNA analysis which are routinely used in proteomics and 
genomics [Toegl et al 2003, Wixforth et al 2004]. Surface acoustic wave based liquid pumps 
and mixers [Tseng et al 2006, Sritharan et al 2006], droplet positioning and manipulation 
[Sano et al 1998], droplet ejection and atomization systems [Chono et al 2004, Murochi et al 
2007], and fluidic dispenser arrays [Strobl et al 2004] have been proposed and developed.  
They have distinct advantages, such as a simple device structure, no moving-parts, 
electronic control, high speed, programmability, manufacturability, remote control, 
compactness and high frequency response [Renaudin et al 2006, Togle et al 2004, Franke & 
Wixforth 2008].  
 

 
Fig. 1. Principle of surface acoustic wave streaming effect: interaction between propagating 
surface acoustic wave and a liquid droplet causing acoustic streaming inside droplet  

Acoustic wave devices can be used for both biosensing and microfluidics applications, 
which are two of the major components for lab-on-a-chip systems. Therefore, it is attractive 
to develop lab-on-chip bio-detection platforms using acoustic wave devices as this 
integrates the functions of microdroplet transportation, mixing and bio-detection. To date, 
most of the acoustic devices have been made from bulk piezoelectric materials, such as 
quartz (SiO2), lithium tantalate (LiTaO3), lithium niobate (LiNbO3) and sapphire (Al2O3). 
These bulk materials are expensive, and are less easily integrated with electronics for control 
and signal processing. Piezoelectric thin films such as PZT, ZnO and AlN have good 
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piezoelectric properties, high electro-mechanical coupling coefficient, high sensitivity and 
reliability [Pearton  et al 2005]. They can be grown in thin film form on a variety of 
substrates, which include silicon, making these materials promising for integration with 
electronic circuitry, particularly for devices aimed for one-time use, low-price and mass 
production [Muralt 2008] (see Table 1). Amongst these, PZT has the highest piezoelectric 
constant and electromechanical coupling coefficient. However, for biosensing applications, 
PZT films have disadvantages such as higher acoustic wave attenuation, lower sound wave 
velocities, poor biocompatibility and worst of all, the requirement for extremely high 
temperature sintering and high electric field polarization, which make them largely 
unsuitable for integration with electronics (see Table 1). ZnO shows a high piezoelectric 
coupling, and it is easy to control the film stoichiometry, texture and other properties 
compared with that for AlN film [Jagadish & Pearton 2006]. Zinc oxide is considered  
 

Materials ZnO AlN PZT Quartz 128o cut 
LiNbO3 

36o cut 
LiTaO3 

PVDF 

Density 
(g/cm3) 5.61 3.3 7.8 2.64 4.64 7.45 1.79 

Moulus 
(GPa) 110-140 300-350 61 71.7  225 0.16 

Hardness 4-5 
GPa 15 GPa 7-18 

GPa Moh’s 7 

Moh’s 5 
Knoop 
800-
1000 

70-110  
Knoop 
700-
1200 

Shore 
D75-85 

refractive 
index 

1.9 to 
2.0 1.96 2.40 1.46 2.29 2.18 1.42 

Piezo-
constant     
d33 (pC/N) 

12 4.5, 6.4 289-380, 
117 2.3(d11) 19-27 -21 -35 

Coupling 
coefficient, k 

0.15- 
0.33 0.17-0.5 0.49 0.0014 0.23 0.2 0.12-0.2 

Effective 
coupling 
coefficient, 
k2 (%) 

1.5-1.7 3.1-8 20-35 8.8-16 2-11.3 0.66-
0.77 2.9 

Acoustic 
velocity by 
transverse 
(m/s) 

6336 
(2650) 

11050 
(6090) 

4500 
(2200) 

5960 
(3310) 3970 3230-

3295 2600 

Dielectric 
constant  8.66 8.5-10 380 4.3 85 (29) 54 (43) 6-8 

Coefficient 
of thermal 
expansion 
(CTE, x10-6) 

4 5.2 1.75 5.5 15 -16.5 42-75 

Table 1. Comparison of common piezoelectric materials [Fu et al 2010] 
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biosafe and therefore suitable for biomedical applications that immobilize and modify 
biomolecules [Kumar & Shen 2008]. A summary of the recent development on ZnO film 
based microfluidics and sensing have been reported by Fu et al 2010.  Currently, there is 
some concern that ZnO film is reactive, and unstable even in air or moisture and the 
stability and reliability is potentially a major problem.  
AlN has a very large volume resistivity and is a hard material with a bulk hardness similar 
to quartz, and is also chemically stable to attack by atmospheric gases at temperatures less 
than 700ºC. Compared with ZnO, AlN also shows a slightly lower piezoelectric coupling.  
However, the Rayleigh wave phase velocity in AlN is much higher than that in ZnO, which 
suggests that AlN is better for high frequency and high sensitivity applications [Lee et al 
2004]. The combination of its physical and chemical properties is consequently promising 
for practical applications of AlN both in bulk and thin-film forms. Using AlN potentially 
enables the development of acoustic devices operating at higher frequencies, with improved 
sensitivity and performance (insertion loss and resistance) in harsh environments 
[Wingqvist et al 2007a]. AlN thin films have other attractive properties such as high thermal 
conductivity, good electrical isolation and a wide band gap (6.2 eV). Therefore, AlN thin 
films have been used, not only for the surface passivation of semiconductors and insulators, 
but also for both optical devices in the ultraviolet spectral region and acousto-optic devices.  
This chapter will focus on reviewing recent progress covering the issues related to AlN film 
preparation, its microstructure, piezoelectric properties and device fabrication as well as 
applications related to microfluidcis and biosensing.  

2. AlN film processing and characterization 
The AlN crystal belongs to a hexagonal class or a distorted tetrahedron (see Fig. 2), with 
each Al atom surrounded by four N atoms [Chiu et al 2007]. The four Al–N bonds can be 
categorized into two types: three are equivalent Al–N(x) (x = 1, 2, 3) bonds, B1, and one is a 
unique Al–N bond, B2, in the c-axis direction or the (002) orientation. Since the B2 is more 
ionic, it has a lower bonding energy than the other bonds [Chiu et al 2007].  The highest 
value of Kt2 and the piezoelectric constant are in the c-axis direction, thus the AlN film 
growing with c-axis orientation has much better piezoelectricity when an acoustic wave 
device is excited in the film thickness direction.  

2.1 AlN deposition methods 
Many different methods have been used to prepare AlN films.  These include chemical 
vapour deposition (CVD) or plasma enhanced CVD (PECVD) [Sanchez et al 2008, Tanosch 
et al 2006, Ishihara et al 2000, Liu et al 2003], filtered arc vacuum arc (FAVC) [Ji et al 2004], 
molecular beam deposition (MBE) [Kern et al 1998], hydride vapour phase epitaxy (HVPE) 
[Kumagai et al 2005], pulsed laser deposition (PLD) [Lu et al, 2000, Liu et al 2003, Baek et al 
2007], and sputtering [Mortet et al 2003 and 2004, Auger et al 2005, Clement et al 2003].  Of 
these technologies, MBE can grow a single-crystal epitaxial AlN film with other advantages 
which include precise control over the deposition parameters, atomic scale control of film 
thickness and in situ diagnostic capabilities. However, it has limitations of low growth rate, 
expensive instrument setup and a high process temperature from 800 to 1000oC. 
Unfortunately this results in thermal damage of the AlN layers during deposition, as well as 
the substrate depending on the material.  CVD technology including metal organic CVD 
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(MOCVD) and PECVD is also of great interest for AlN film growth because it not only gives 
rise to high-quality films but also is applicable to large-scale production. However, its high 
process temperature (about 500 to 1000 °C) may be inappropriate for CMOS-compatible 
processes and this causes large thermal stresses in the films, which potentially restricts the 
choice of substrate. The main advantages of PLD are its ability to create high-energy source 
particles, permitting high-quality film growth at potentially low substrate temperatures 
(typically ranging from 200 to 800 °C) in high ambient gas pressures in the 10–5–10–1 Torr 
range.  One disadvantages of PLD is its limited deposition size and uniformity.   
 

 
Fig. 2. (a) Hexagonal structure of AlN and (b) tetrahedral structure, with one Al atom 
surrounded by four N atoms [Chiu et al 2007]. 

One of the most popular thin film deposition techniques for AlN films is sputtering (DC, 
radio-frequency magnetron and reactive sputtering). They can be deposited in an N2/Ar 
reactive atmosphere by DC reactive sputtering pure Al, or by RF sputtering using an AlN 
target. Sputtering methods can deposit a good crystalline AlN thin film at a relatively low 
temperature (between 25 °C and 500 °C) and the sputtered films normally exhibit good 
epitaxial film structure [Engelmark et al 2000]. DC Sputtering using an Al target can result 
in “target poisoning” caused by the accumulation of charging on the target, which causes 
arcing or a decrease in the sputtering rate. Switching the choice of power supply from DC to 
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RF addresses this problem, but at the cost of lower deposition rate and more expensive and 
complex equipment. Pulsed-DC reactive sputtering provides a solution to this limitation 
and also brings other advantages, which include higher film uniformity and higher plasma 
activity [Cherng et al. 2007, 2008]. 
From a MEMS fabrication point of view, reactive sputtering is one of the best methods, with 
good reproducibility and compatibility with planar device fabrication technology. In this 
section, we will focus on the processing, texture and acoustic wave properties of the 
sputtered AlN films. 

2.2 Influence of process parameters  
The quality of the sputtered AlN thin films depends on plasma power, working pressure, 
substrate temperature, RF power and substrate materials. Increasing the RF power causes 
higher kinetic energy of adatoms when they arrive on the substrate, which provides enough 
energy for the formation of the (0 0 0 2) preferred orientation of AlN layers. On the other 
hand, increased RF power also raises the number of ejected species from the target, which 
results in an increased growth rate as a function of RF power. 
Gas pressure potentially also has a significant influence on AlN film deposition with 
increasing the sputtering pressure up to 1.33 Pa being reported to improve the crystalline 
quality of the (0 0 0 2)-oriented AlN layers. However, it was also noted that further increases 
in the sputtering pressure degraded the crystalline quality [Gao et al 2007]. Increasing in the 
sputtering pressure will raise the probability of collisions between  sputtered particles and 
nitrogen atoms simply because of more gas atoms are available for ionization. Therefore, the 
average energy of the sputtered particles is increased which improves the crystalline 
quality. However, further increase in sputtering pressure results in the reduction of mean 
free path of N or Ar ions, which leads to a reduction of the energy of sputtered and 
deposited atoms, thus degrading the crystalline quality [Gao et al 2007]. 
Okamoto et al 2000 observed a change of the preferred crystallographic orientation by 
increasing the N2 partial pressure, and Baek et al. 2007 detected the same effect when the 
substrate temperature and N2 gas fluence were changed. Sudhir et al. 1998 demonstrated 
that the surface morphology and structure of the AlN films can be actively controlled by 
adjusting the nitrogen partial pressure during the film deposition. They attributed the 
observed dependence of the structural quality to the change in the surface diffusion of 
adatoms, given by L ∼ (Dτ)1/2, where D is the diffusion coefficient and τ is the residence time 
of adatoms. Larger values of diffusion length imply more time for the adatoms to find 
energetically favourable lattice positions, thus reducing the density of surface defects and 
improving the crystal quality [Sudhir et al 1998].  
Leong and Ong 2004 prepared reactive magnetron sputtered AlN films by varying 
parameters such as substrate temperature Ts, radio frequency power Pw, and substrate 
materials (including silicon, platinum coated silicon and sapphire). The effects of these 
parameters on film microstructure as a function of deposition temperature are shown in Fig. 
3. This identifies the regions of nearly amorphous (na-) AlN, polycrystalline (p-) AlN, 
texture (t-) AlN and epitaxial (e-) AlN on three substrate materials, i.e. Si(100), 
Pt(111)/Si(100) and Al2O3(001), respectively. The ‘na-AlN” means that the microstructure of 
AlN has a highly disordered matrix containing small randomly orientated crystals, which 
normally forms at a lower rf power, and low temperature [Leong & Ong 2004].  At higher 
temperature and power, the thermal energy gained by the depositing species is larger, and 
the atoms are more mobile. Hence, the species more readily aggregate and crystallize, 
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resulting in the formation of larger grains compared with those present in the na-AlN 
structure. Increases in Ts and Pw have the effects of increasing the thermal energy of the 
species on the substrate surface, and enhancing the crystallization of the deposits and 
preferential orientation of grains. It should be noted that sapphire substrate have better 
lattice matching with the AlN, which facilitates the epitaxial growth of the AlN structure 
[Leong & Ong 2004].  
 

 
Fig. 3. Effects of the process parameters on film microstructure on three substrate materials, 
i.e. Si(100), Pt(111)/Si(100) and Al2O3(001) [Leung & Ong 2004] 

Because of the reactivity of Al, a high-purity source Al material and an oxygen-free 
environment are required to grow high-quality AlN film [Vashaei et al 2009]. Hence, oxygen 
has a significant influence on AlN film growth during sputtering, and contamination due to 
residual oxygen or water can seriously interfere with the formation of the AlN film 
structure. Growth rate of the AlN film decrease with increased oxygen in the sputtering gas 
and their predominant polarity also changes from Al polarity to N polarity with increase in 
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the oxygen concentration [Vergara et al 2004, Cherng et al 2008 a and b]. Increased oxygen 
concentration in sputtering gas increases Al-O bonding, as the bonding energy of Al-O (511 
kJ/mol) is higher than that of Al-N (230 kCal/mol) [Akiyama et al 2008], and formation of 
Al-O bond significantly deteriorates the piezoelectric response of the AlN films.  
The quality of AlN films is affected by any contamination during sputtering [Cheung & Ong 
2004], resulting from target impurity, gas impurity, and residual oxygen/moisture from 
both inside (adsorption) and outside (leakage) the working chamber. Out-gassing is a 
critical parameter that must be controlled for quality of AlN crystals, and effect of the out-
gassing rate has been evaluated by observing the pressure increase with time after the 
designated base pressure has been reached and the pump was shut down (as shown in Fig. 
4). The FWHM (full width of half maximum) from an X-ray diffraction rocking curve and 
the residual stress of the films has been obtained in order to compare the film quality 
[Cherng 2008 and 2009]. 

 
Fig. 4. Outgassing rate evaluated by observing the pressure increase with time after the 
designated base pressure was reached and the pump was shut down where the slope of 
each curve indicates its outgassing rate respectively. The sputtering system was either 
pumped down to a base pressure of 3 × 10− 6 Torr (thus termed HBP, high base pressure) or 
1 × 10− 6 Torr (thus termed MBP, medium base pressure) or 4 × 10− 7 Torr (thus termed LBP, 
low base pressure) before admitting the gas mixture in, in order to examine the effects of 
outgassing [Cherng & Chang, 2008] 

Figures 5(a) and (b) show the effect of working pressure on FWMH and film stress at 
different outgasing levels.  The FWHM decreases and residual stress becomes more 
compressive with decreasing working pressure. As the pressure is decreased, the mean free 
path of the sputtered atoms becomes comparable with the target-to-substrate distance 
(λmfp=5 / P, where λmfp is in cm and P in mTorr) [O'Hanlon 1989], and hence less gas phase 
scattering is observed. The result is that sputtered Al atoms arrive on the surface of the 
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growing film with most of their energy retained. They transfer a substantial amount of 
energy to the growing film, and thus increase the mobility of the adatoms and can then 
move to the lattice sites which form a closest-packed (0002) plane with the lowest surface 
energy. In fact, the energy delivered to the growing film is sufficiently high so that fully 
(0002)-textured (texture coefficient=1) AlN films with FWHM of the rocking curve lower 
than 2° are readily obtainable without substrate heating. In addition to the aforementioned 
“atom-assisted deposition” [Iriarte et al 2002], a second mechanism, namely, “atomic 
peening” [Windischmann 1992] is also at work. Since N atoms are lighter than Al, the 
reflection coefficient of N ions is high sufficient for a large fraction of them bombarding the 
Al target to be neutralized and reflected off the target surface upon impact. This results in 
additional bombardment of the growing film by energetic N neutrals. On the other hand, Ar 
ions are effectively not reflected since they are heavier than Al. Both the atom assisted 
deposition and atomic peening mechanisms require a sufficiently low working pressure so 
the energetic particles do not lose much of their energy while travelling through the gas 
phase. This explains why as the working pressure decreases, the FWHM of the rocking 
curve decreases and the residual stress becomes more compressive [Cherng & Chang, 2008].  
Lower outgassing levels show a better figure-of-merit that not only the FWHM of the 
rocking curve is lower, but also the change of residual stress with pressure occurs in a much 
smoother manner and with much smaller magnitude. X-ray Photoelectron Spectroscopy 
(XPS) analyses for four selected samples circled in Fig. 5(a), reveal higher oxygen contents 
for samples with higher outgassing. SEM observations show thinner and slanter columnar 
structure in the AlN film when outgassing is higher upon sputtering. Both of the lower 
residual stress levels and the lower FWHM values at lower outgassing can be attributed to 
oxygen-related extended defects [Cherng & Chang, 2008]. 
Figure 5 © shows the relationship between FWHM and pressure at different target-to-
substrate distances. At a longer target-to-substrate distance, the insensitive region shrinks 
and the threshold value shifts to a lower pressure [Cherng & Chang, 2008]. This is due to the 
decreasing ratio of mean free path to target-to-substrate distance, indicating more gas phase 
scattering and thus worse film quality. 
With increasing nitrogen concentration, atomic peening is favoured while atom-assisted 
deposition basically remains unaffected. The former explains the decreasing FWHM values 
and more compressive stress with increasing N2 %, as shown in Figs. 6(a) and (b). At a lower 
base pressure, the influence of atmospheric composition diminishes to such an extent that 
the FWHM of the rocking curve practically stays the same between 20 and 90 % N2. This 
finding, together with the insensitive FWHM vs. pressure regions (see Fig. 6)  reveal that 
oxygen contamination is the most dominant factor for the film properties. In the other hand 
the residual stress at lower outgassing rates varies little with nitrogen content. The oxygen 
related extended defects are deductive to compressive stress, instead of tensile stress, which 
is normally caused by re-sputtering type of defects. As seen in Fig. 6(c), the FWHM of the 
rocking curve decreases with increasing substrate temperature. This is consistent with the 
higher mobility of adatoms at higher substrate temperatures. Once again, the behaviour at 
lower outgassing becomes insensitive with substrate temperature. At this point, it is worth 
noting that at low outgassing, a somewhat “insensitive” region and/or a so-called 
“threshold” behaviour exists with all process-related parameters, e.g., working pressure, 
atmosphere composition, and substrate temperature. This emphasizes the crucial role 
oxygen contamination plays in pulsed-DC reactive sputtering of AlN thin films. 
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Fig. 5. Effect of working pressure on (a) XRD FWHM; and (b) film stress at various 
outgassing levels; and (c) on XRD FWHM at various target-to-substrate distances [Cherng et 
al 2008]. 
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Fig. 6. Effect of atmospheric composition on (a) XRD FWHM (b) residual stress at various 
outgassing levels; (c) effect of substrate temperature on XRD FWHM at various outgassing 
levels [Cherng et al 2008]. 
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Fig. 6. Effect of atmospheric composition on (a) XRD FWHM (b) residual stress at various 
outgassing levels; (c) effect of substrate temperature on XRD FWHM at various outgassing 
levels [Cherng et al 2008]. 
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2.3 Two-step deposition 
The growth dynamic or surface kinetic roughening of the sputtered AlN films grown on Si 
(100) substrates has been thoroughly studied, and a two-stage growth regime identified 
[Auger et al 2005]. In the first step, the growth dynamic is unstable with significant sticking 
probabilities of the impinging particles.  The films have a mixture of well textured and 
randomly oriented crystals. In the second regime, the films are homogeneous and well 
textured, and the growth is dominated by the shadowing effect induced by the 
bombardment of impinging particles [Auger et al 2005]. Based on this effect, a two-step 
pulsed-DC reactive sputtering model has been proposed with various process parameters 
including working pressure, discharge power, and reactive atmosphere during two stage 
sputtering [Cherng et al 2008, 2009]. Two-step sputtering for an AlN piezoelectric layer 
generally consists of a 10-min deposition for the base layer and a subsequent 50-min sputter 
for the top layer. As a comparison, one-step sputtering (60 min) has also been conducted 
with the same sputter parameters as those used for the base layer in two-step sputtering.  

2.3.1 Two-step working pressure method 
Figure 7 shows the effects of working pressure on (a) XRD FWHM, and (b) residual stress of 
AlN piezoelectric layer for both one-step and two-step sputtering, respectively. The data for 
two-step sputtering, when compared to their one-step counterparts, show a better figure-of-
merit in that not only the FWHM of the rocking curve is smaller, but also the magnitude of 
the residual stress is smaller and its variation with pressure is smoother [Cherng et al 2008]. 
If we attribute the first step sputtering to initial nucleation and the second step to the 
subsequent growth of the AlN film, then the better film quality for two-step sputtering 
(when compared to its one-step counterpart with the same process parameters used for the 
base layer) has to be due to the sputtering conditions for the growth of the top layer [Cherng 
et al 2008]. Therefore, as far as the rocking curve width and residual stress are concerned, it 
is fair to say that growth, instead of nucleation, dominates the performance of two-step 
working pressure method.  
For the AlN film deposited on Mo substrates, the FWHM values for both the 1-step and 2-
step methods do not vary with working pressure and remain at the same low value of about 
1.3o as shown in Fig. 7 (a) [Cherng et al 2008]. This is further confirmed by Fig. 7(b), where 
both the 1-step and 2-step methods using Mo substrates show low residual stress, regardless 
of the working pressure. 

2.3.2 Two-step power method 
For one-step sputtering on Si, the FWHM of the rocking curve decreases with increasing 
discharge power as shown in Fig. 8. This is due to the enhanced atom-assisted deposition 
and atomic peening mechanisms at a higher power. The sputter yield (at higher discharge 
voltage) and plasma concentration (more ionized species at higher discharge current) have 
been increased. Growth, instead of nucleation, dominates the performance of two-step 
power method on Si, because the data of two-step sputtering are much better than that of its 
one-step counterpart as also shown in Fig. 8 [Cherng et al 2009].  

2.3.3 Two-step nitrogen concentration method 
With increasing nitrogen concentration, atomic peening is favoured while atom-assisted 
deposition remains unaffected. For one-step sputtering on Si, this enhanced atomic peening 
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Fig. 7. Effects of working pressure on (a) XRD FWHM, and (b) residual stress of AlN 
piezoelectric layer for both one-step and two-step sputtering, respectively [Cherng et al 2008] 
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Fig. 8. Effects of discharge power on XRD FWHM for both one-step and two-step sputtering 
[Cherng et al 2009]. 
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Fig. 7. Effects of working pressure on (a) XRD FWHM, and (b) residual stress of AlN 
piezoelectric layer for both one-step and two-step sputtering, respectively [Cherng et al 2008] 
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Fig. 8. Effects of discharge power on XRD FWHM for both one-step and two-step sputtering 
[Cherng et al 2009]. 
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is thought to be responsible for the decreasing FWHM of the rocking curve from 40 to 60 % 
of N2, as shown in Fig. 9. The higher FWHM value at 100 % N2 is probably due both to the 
excess atomic peening (causing re-sputtering) and to the worsened sputter yield (since N 
has a lower sputter yield than Ar). It is worth noting that the target does not exhibit any 
hysteresis-related phenomenon even under pure nitrogen. The employment of pulsed 
power is believed to be able to clean up the surface of the Al target effectively [Cherng et al 
2009]. On the other hand, the FWHM behaviour for the two-step atmosphere method on Si 
seems to be mostly determined by initial nucleation rather than subsequent growth. The 
data for this is much closer to those of the one-step counterparts which employ the same 
sputtering conditions for the base layer. This phenomenon is just the opposite to the one 
observed for the other two-step methods described above, and has to be closely related to 
the atomic peening mechanism. It is thought that in the case of lighter bombarding particles 
(N atoms for atomic peening vs. Al atoms for atom assisted growth), the sputtering 
conditions for subsequent growth are not appropriate to alter the effects of the initial 
nucleation [Cherng et al 2009]. For deposition on Mo, once again, the quality of the AlN 
piezoelectric film is dominated by the underlying Mo film, regardless of the reactive 
atmosphere, as evidenced by the two-step sputtering data of the AlN and Mo films. 
In conclusion, a methodology of two-step pulsed-DC reactive sputtering has been 
systematically evaluated for making (0002)-textured AlN thin films with independent 
control of rocking curve width and residual stress. This methodology was best 
demonstrated by the two-step working pressure method on Si, which was capable of 
reactively sputtering AlN thin films with almost constant rocking curve widths of about 2o, 
with a constant deposition rate of about 36 nm/min, and a continuously adjustable residual 
stress between −926 and −317 MPa [Cherng et al 2008 and 2009]. In addition, it was noted 
that growth dominated the performances of both the two step working pressure method 
and the two-step power method, while nucleation dominated the two-step atmosphere 
method.  
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Fig. 9. Effects of reactive atmosphere on XRD FWHM for both one-step and two-step 
sputtering [Cherng et al 2009]. 
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3. Piezoelectric properties of sputtered AlN films 
3.1 Film thickness effect 
For a SAW device made on a very thin AlN film (less than a few hundreds of nanometers), 
the acoustic wave can penetrate much deeper into the substrate as the film thickness is 
normally much less than one wavelength. In this case, the energy of a SAW device is largely 
dissipated in the substrate where the wave predominantly propagates. Therefore, the wave 
velocity of the SAW approaches the Rayleigh velocity of the substrate material as shown in 
Fig. 10(a) [Clement et al 2003, 2004]. When the AlN film thickness is increased, the acoustic 
velocity gradually changes to that of AlN film. However, there is normally a cut-off 
thickness, below which no wave mode can be detected, due to the low electromechanical 
coupling coefficient for a very thin AlN film. A Rayleigh-type wave (called the fundamental 
mode or mode 0) can be generated when the film is thin. With increasing film thickness, a 
higher order acoustic wave mode known as the Sezawa wave (mode 1) can be obtained. A 
Sezawa mode is realized from a layered structure in which the substrate has a higher 
acoustic velocity than the overlying film. This wave exhibits a larger phase velocity (higher 
resonant frequency) than the Rayleigh wave for a fixed thickness, and is thus desirable for 
high frequency applications.  In a similar manner to that of Rayleigh wave, the resonant 
frequency and the phase velocity of the Sezawa wave decreases with film thickness. There 
are other higher order acoustic wave modes (modes 2 and 3, etc.) as shown in Fig. 10(a) 
[Clement et al 2003].  
There are two key issues for the piezoelectric properties of the AlN acoustic wave device: 
the electro-mechanical coupling coefficient keff2 and the quality factor Q. The effective 
coupling coefficient (keff2) is related to the relative spacing between the resonant frequency 
and the parallel resonant frequency, and it determines the bandwidth for a band-pass filters. 
Fig 10 (b) shows the effective coupling coefficients of different wave modes as a function of 
the thickness ratio of the electrode-to-piezoelectric layers for AlN thin-film resonators 
[Clement et al 2003]. The quality factor Q is determined by the energy conversion efficiency 
from electrical into mechanical energy. However, improving one of those two parameters 
can cause a decrease of the other one, therefore, it would be necessary to optimize both 
parameters using one figure of merit (FOM), defined by the product of keff2×QD [Grate 2000].   

3.2 Effects of electrodes  
For an AlN based acoustic wave device, parameters such as the Q factor, resonant frequency 
and effective coupling constant are determined by the film and electrode material quality, as 
well as the electrode thickness and film roughness [Lee et al 2002].  Common used electrode 
materials include (111) oriented face centered cubic (fcc) metals such as Al, Pt and Ni, (110) 
oriented body centered (bcc) materials like Mo and W, and hexagonal metals with a (002) 
orientation including Ti and Ru [Lee et al 2004].  Some commonly used electrode materials 
for AlN SAW devices include Mo, W, Ti, Al, Au, Pt, Ni and TiN, and Ag, Co, Cr, Cu Fe, Nb, 
Ni, Zn, Zr have also been reported as electrodes for these acoustic wave devices [Lee et al 
2004, Akiyama et al 2004]. Metallic electrodes can help promote the growth of highly c-axis 
oriented AlN films., and they can also contribute to the confinement of the mechanical 
energy in the piezoelectric layer at the resonant frequency. A high acoustic impedance 
mismatch between the piezoelectric layer and the electrodes is normally preferred, thus for 
this purpose, the heavy and stiff metals are the candidates of choice. 
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Fig. 10(a). Phase velocity for AlN film as a function of thickness/wavelength ratio for 
different acoustic wave modes (b). Effective coupling coefficient as a function of thickness 
ratio of electrode-to-piezoelectric layers for AlN thin-film resonators [Clement et al 2003]. 

Gold electrodes show the best resonant characteristics. The characteristics of Ag and Cu 
electrodes are very close to those obtained for gold, but much cheaper. Al and Mo have low 
resistivity and high Q factors with Mo being one of the most reported electrodes in the AlN 
film based acoustic devices, because it promotes the growth of highly textured AlN films 
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[Akiyama et al 2005, Huang et al 2005 a and b, Lee et al 2003, Okamoto et al 2008, Cherng et 
al 2004]. It was reported that the best-textured AlN films deposited by sputtering on metallic 
surfaces have been grown on Pt substrates [Lanz & Muralt 2005].     
For the AlN FBAR device, the bottom metal layer significantly affects the texture of AlN 
films and its electro-acoustic properties. AlN films deposited on the materials with fcc lattice 
structure show a high c-axis orientation, especially for Au and Pt [Tay et al 2005]. Ti has a 
hexagonal structure similar to that of AlN [Lee et al 2004, Chou et al 2006], while W has a 
low acoustic attenuation, small mismatch in the coefficient of thermal expansion and high 
acoustic impedance with AlN, and is thus a good electrode material for AlN devices. Ni has 
often been chosen because of its surface smoothness, but the AlN film texture on Ni is not as 
good as that on the other fcc metals. Tantalum [Hirata et al 2007] and iridium [Clement et al 
2009] have also been reported as electrodes for AlN film growth. Iridium is of interest as it is 
a precious metal similar to Pt but considerably cheaper, with a high sound velocity 
(5300 m/s), and a lower diffusivity in Si than other heavy metals (Au, Pt) [Benda et al 1998].  
The thickness ratio of AlN and top or bottom electrodes has been reported to have a 
significant influence on piezoelectric effect of AlN films  [Huang et al 2005 a and b, Akiyama 
et al 2004]. Lee et al 2002 found that a resonator with a thicker Mo electrode can provide 
higher Q values than those with thinner Mo electrode.  

3.3 Film texture and substrate effect  
AlN films with strong texture can have good piezoelectric coefficients, high 
electromechanical coupling, and acoustic velocities approaching those of the single crystal 
AlN.  The sputtering process parameters significantly affect the orientation of the deposited 
AlN films.  Okano et al. 1992 identified that the c-axis orientation increases as the N2 
concentration in the mixture of Ar and N2 decreases, while Naik et al 1999 have shown that 
the c-axis orientation increases as the sputtering pressure is reduced. AlN films have been 
reported to show preferred (002) growth orientation on a number of materials which include 
silicon, quartz, glass, LiNbO3 [Caliendo et al 2003, Lee et al 2004], GaAs [Cheng et al 1998], 
GaN/Sapphire [Kao et al 2008,Xu et al 2006], SiC [Takagaki  et al 2002] and ZnO layer [Lim 
et al 2001].  For AlN film growth, the texture of film is the result of competitive growth of 
(100) and (001) planes [Clement et al 2003]. When the (001) crystal growth is favourite, the 
AlN crystals will grow with a (002) orientation. When (100) crystal growth is more favourite, 
the other orientations can be dominant, such as (103) (100) (110) and (102) etc.  The energy 
input into the plasma adatoms during film growth is the dominant parameter that controls 
the film orientation. The possible solutions for better orientation include: higher plasma 
energy, higher Ar ion energy, application of negative self-bias voltage, shorter target-to-
substrate distance and lower pressure. [Clement et al 2003].  
Sputtered AlN films normally show a (002) film texture, which results in longitudinal (or 
Rayleigh) wave modes and is therefore good for sensing in air or gas. However, as 
explained before, if liquid exists on the sensing surface, excessive damping and attenuation 
of the propagating wave occurs when the longitudinal mode couples into the liquid. This 
problem can be solved by generating a shear-horizontal (SH) SAW, which propagates on a 
piezo-material by an in-plane shear horizontal motion [Wingqvist et al 2007], and 
dramatically reduces SAW coupling into a liquid medium [Mchale 2003].  However, the 
commonly observed (002) texture in the sputtered AlN films is unsuitable for generating 
SH–SAWs. In addition, using a pure shear wave is not efficient for driving liquid droplets 
forward. A good approach to solving the problem is to develop AlN films in which the c-
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axis is inclined relative to the surface normal, thus allowing both longitudinal and shear 
wave modes to be generated [Webber 2006]. These two modes will have different 
frequencies and thus can be individually controlled for either pumping or sensing purposes.  
To the best of our knowledge, there are no reports of the application of both the functions 
(microfluidics and biosensing) on a c-axis inclined AlN based SAW device in liquid 
conditions. The techniques for the deposition of the inclined AlN film include: (1) using a 
tilted substrate (up to 45o) with a controlled position under the sputter-target; (2) using a 
high energy nitrogen ion beam aimed at the desired angle with respect to the substrate 
surface normal [Yanagitani & Kiuchi 2007]. Obtaining the inclined AlN films strongly 
depends on the sputtering pressure, temperature, the oblique incidence of particles [Yang et 
al 2009]. C-axis inclined AlN films have been deposited on different substrates, including 
silicon and diamond [Fardeheb-Mammeri et al 2008]. Bjurstrom et al 2004 systematically 
studied the electromechanical coupling coefficient for both the shear and longitudinal 
modes at different AlN inclined angles. The k2 of longitudinal mode has a maximum value 
for C-axis AlN crystals (θ=0o), but gradually decreases as angle increases. On the contrary, 
the k2 value of shear mode gradually increases as the inclined angle is increased from 0 to a 
peak value at angle of 45o.  The k2 value of the two modes reaches to a similar value at angle 
of 30 to 35o [Bjurstrom et al 2004].  
The acoustic velocity in an AlN/Si SAW device also depends on the orientation of the Si 
substrate, being about 4700 m/s for Si (111) and 5100 m/s for Si (100) [Clement 2003]. AlN 
films have been deposited on 128o LiNbO3 substrate in order to enhance the SAW velocity 
and improve the temperature stability, i.e., decrease the temperature coefficient of frequency 
(TCF) [Kao et al 2003, Wu et al 2001 and 2002]. 
Recently, there has been much research on the deposition of AlN on diamond for SAW 
devices [Mortet et al 2003, Kirsch et al 2006, Le Brizoual et al 2007, Paci et al 2007, Elmazria 
et al 2003 and 2009, El Hakiki et al 2007, Wu et al 2009, Shih et al 2009, Iriarte et al 2003, 
Benedic et al 2008, Lin et al 2009]. The drive for this is that diamond substrates offer a higher 
phase velocities (6 km/s to 16 km/s) [Wu et al 2008]. Figure 12 shows dispersion curves of 
the first five Rayleigh SAW modes of IDT/(002) AlN/(111) diamond devices plotted as a 
function of the film thickness ratio h/λ.  The phase velocity of each mode decreases as the 
film thickness ratio increases. For mode 0, the value of phase velocity is determined by the 
SAW velocity of (111) diamond, i.e., 10.9 km/s at h/λ =0 and the film thickness ratio h/λ 
increases, the phase velocity rapidly decreases. At h/λ =3, the velocity of the (002) 
AlN/diamond is about 5.4 km/s. It can be observed that the harmonic peaks of modes 1, 2, 
3, and 4 cut off at the critical point where the phase velocity is equal to the shear bulk wave 
velocity in (111) diamond (12.3 km/s). For example, the cut-off of mode 1 occurs at h/λ= 
0.172, mode 2 at h/λ =0.295, mode 3 at h/λ= 0.594, and mode 4 at h/λ=0.693 [Wu et al 2008]. 
Similar results have been reported by Benetti et al 2005.  
The formation process and growth mechanism of an AlN layer on a (001) diamond substrate 
has been studied by Imura M et al, 2010.  At the initial stage of AlN growth on diamond, the 
randomly oriented AlN grains are generated and grown three dimensionally with the 
formation of columnar domains due to the 20% lattice mismatch between AlN and 
diamond. At the second stage of growth, the c-axis-oriented AlN grain grows by 
incorporating the randomly oriented AlN grains. This occurs because of the high-growth 
rate of AlN grains along the [0001] direction [Imura M et al, 2010].  Diamond is a better 
substrate for epitaxial AlN growth than Si (111) [Imura M et al, 2010], but it is expensive, 
needs to be deposited at a high temperature, and the resulting surface roughness of the 
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diamond film is normally quite high. Other alternative choices are diamond-like-carbon 
(DLC) and nanocrystalline diamond films. 
 

 
Fig. 11. Electromechanical coupling for both shear and longitudinal modes at different AlN 
crystal tilt, θ  [Bjurstrom et al 2004]  

 
Fig. 12. Phase velocities dispersion curves of the first five Rayleigh SAW modes propagation 
in the IDT/(002)AlN/(111)diamond [Wu et al 2008]. 
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Recently, AlN has been grown on SiC/Si substrate at a relatively low cost. The CTE of the 
SiC closely matches that of AlN, and the lattice mismatch is less than 1%. Both materials 
have been used in applications in high temperature packaging, and AlN thin films have 
been used as buffer layers for SiC grown on Si substrate [Chung & Kim 2007]. Therefore, SiC 
is an ideal candidates for a buffer layer of AlN films grown on SiO2/Si substrates for SAW 
applications at different temperatures [Hoang & Chung et al 2009].   
The AlN’s temperature dependent ultrasonic properties (including ultrasonic attenuation 
coefficient, ultrasonic velocity, and acoustic coupling coefficient constant) have been 
calculated in the temperature range 200 to 800K by Pandey & Yadav 2009.  The total 
attenuation is mainly dominated by phonon-phonon interaction, and the attenuation 
decreases from 200– 400 K sharply but it increases gradually from 400–800 K. Thus the 
temperature 400 K is the characteristic temperature for AlN. The decrease in attenuation 
from 200–400 K is due to the temperature variation of the thermal relaxation time or thermal 
conductivity of the material [Pandey & Yadav 2009].  A gradual increase in the attenuation 
from 400–800 K correlates mainly the temperature variation of the ultrasonic velocities or 
second order elastic constants.  The temperature dependent ultrasonic velocity gives direct 
information about temperature variation of elastic constants, and the ultrasonic attenuation 
directly relates to the thermal conductivity or thermal relaxation time at temperature below 
400 K and the elastic constants/ velocity of AlN above 400 K [Pandey & Yadav 2009]  
During sputtering, particle bombardment can induce large film stress [Iborra et al 2004], and 
films with large compressive stress can cause buckling–induced delamination in the 
deposited films and fracture in the released devices. In Ar/N2 based deposition system for 
AlN film, the energy of Ar ions colliding with the substrate controls the preferred 
orientation of the AlN films. The direction and energy of the ions determine the residual 
stress levels of the AlN films. The film stress or energy of the Ar bombardment can be 
adjusted by the substrate bias voltage during sputter deposition. Thermal annealing is a 
good method for post-treatment to reduce the film stress and improve the coating quality 
[Hung & Chung 2009].  

4. MEMS processing and functionalization of AlN films 
There are some reports on surface micromachining of AlN [Hara et al 2005], and chromium 
has been used to form both a good etch mask and electrode [Saravanan et al 2006].  
Germanium can be used as the sacrificial layer for the AlN films, instead of common 
amorphous silicon, SiO2, or other metal layer. AlN can be etched in aqueous solutions, such 
as KOH, NaOH, HF/H2O, HF/HNO3, tetramethyl ammonium hydroxide (TMAH), and the 
etch rate is temperature and crystal polarity sensitive [Jasinki et al 2003, Sheng et al 1988, 
Tan et al 1995]. Dilutate TMAH etches AlN but when with silicic acid and ammonium 
persulphate, it can be used to etch silicon with a very low etch rate for AlN film, and thus 
can be used for sacrificial etching [Kar et al 2009]. AlN can be electrochemically etched in 
electrolytes, such as HPO3 (60oC to 90oC) or KOH solutions, and the etch rate is strongly 
dependent on the coating quality (from tens of nm/min up to a few μm/min). The reaction 
can be expressed as [Zhang & Edgar 2005]: 

 AlN+6KOH → Al(OH)3 ↓ + NH3 ↑ + 3K2O ↓ (5) 
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For dry etching process, AlN is normally etched using chlorine based plasma, such as 
chlorine and BCl3, rather than a fluorine, as aluminum fluoride is stable and non-volatile 
[Khan et al 2002 or 2006]. Etching in a Cl-based plasma is normally isotropic, and the volatile 
reaction product is AlCl3 at high temperatures (above 180oC) or Al2Cl6 at a room 
temperature [Engelmark 2003].  
 

 
 

Fig. 13. Schematic diagram of antibody immobilized AlN/sapphire [Chiu et al 2008]  

Recently, there have been studies for the surface functionalisation of AlN film for biosensing 
applications [Chiu et al 2008]. For example, by using silane, a new chemical layer can form 
on the AlN, and the functional groups on the silane surface can then be used as anchor 
points for the antibodies. In reference [Chiu et al 2008], antibody immobilized AlN/sapphire 
was prepared using the process shown schematically in Fig. 13. The AlN films were pre-
treated prior to silanization using two methods. In the first method, they were treated by 
exposure to oxygen plasma. The second method treated the AlN surfaces by ultrasonication 
in 3/1 (in vol%) piranha solution, followed by rinsing in DI water. Piranha treatment was 
chosen because it is commonly used as a surface preparation method for silanization of 
other types of inorganic surfaces. Improved silane surfaces should create a more stable and 
ordered silane layer for the linkage of antibody, phage or other detecting ligands in the 
biosensor under development [Chiu et al 2008].  The treated AlN samples were silanized 
with octadecyltrichlorosilane (OTS). The ability to produce repeatable, homogeneous layers 
of selected chemical groups by silane derivatization of the AlN surface is considered to be a 
promising step in the development of a biosensor that uses surface immobilized phage or 
antibody ligands for analyte detection [Chiu et al 2008]. 

5. Thin film acoustic devices for biosensor applications 
5.1 AlN SAW device 
AlN based SAW devices have been reported as promising for high frequency, high 
sensitivity applications [Chiu etal 2008, Caliendo 2003 a and b, Xu et al 2004, Assouar et al 
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2002, Mortet et al 2003, Clement at al 2004]. For example, AlN Rayleigh SAW device with 
velocity of 4590 m/s has been fabricated for surface biofunctionalization using amiosilane 
molecules as cross-linker to form a monolayer of DNA-Au particle [Chiu etal 2008]. 
Electrostatic interaction between the positively charged surface amine groups and 
negatively charged DNA-Au nanoparticle conjugates allows the self-assembly of a probe 
nanoparticle monolayer onto the functionalized AlN surfaces under physiological 
conditions. Results showed that Au nanoparticles can play multiple roles in SAW sensing 
for probe molecule immobilization, signal amplification, and labelling [Chiu et al 2008].  
The substrate can have a significant effect on the acoustic velocities of the AlN SAW devices. 
For example, Clement et al 2007 have reported that SAW velocity depends on the 
orientation of Si wafers (4700 m/s for Si (111) and 5100 m/s for Si (100)). AlN films 
deposited on a LiNbO3 substrate have been reported to form a highly sensitive Love mode 
sensing device [Kao et al 2003 and 2004]. To increase the operating frequency, it is common 
to use substrate materials with high acoustic velocities, including sapphire, SiC, diamond, 
etc. Assouar et al 2002 reported a SAW device on a sapphire substrate, which achieved a 
velocity of 5536 m/s, compared with 5055 m/s measured on a silicon substrate. The acoustic 
wave velocity associated with sapphire is very close to that of AlN, which limits the acoustic 
velocity dispersion. AlN/sapphire is hence an attractive structure for SAW devices 
operating at very high temperature and high frequency applications in harsh conditions 
[Aubert et al 2010]. Takagaki et al 2002 fabricated AlN SAW devices on SiC substrates, with 
a higher-order Rayleigh mode and a frequency of 19.5 GHz, corresponding to a velocity 
above 7000 m/s. Benetti et al 2005 fabricated (002) AlN/diamond/Si SAW devices, with a 
velocity of 8200 m/s for Rayleigh mode waves and 10784 m/s for Sezawa mode waves.  
SH-SAW has been generated using AlN film with laser micromachined grooves [Xu et al 
2004]. This required the formation of grooves with periodicity smaller than half the 
wavelength of the SAW, thus the longitudinal waves is damped and only the SH-SAW can 
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sensitivity is also significant as the AlN/Si Lamb wave device has a non-zero temperature 
coefficient of frequency (TCF) in the range −20 to −25 ppm/oC [Wingqvist et al 2009].  
Therefore, temperature compensation is normally necessary.  Different types of temperature 
compensation methodology have been proposed for AlN Lamb wave devices [Zuo et al 
2010, Lin et al 2010, and Wingqvist et al 2009]. For example, AlN was deposited on P+ doped 
silicon (which has a positive TCF of 9 ppm/K) to compensate the temperature effect. The 
most reported method is to use AlN/SiO2 composite layer structure (as SiO2 has a TCF of 85 
ppm/K) [Bjurstorm et al 2007, Lin et al 2010].  The Lamb wave resonators with almost zero 
TCF have been fabricated using a composite AlN/SiO2 membrane structure with different 
AlN/SiO2 thicknesses (see Fig. 14) [Wingqvist et al 2009], with a Q factors of around 1400 at 
a frequency of around 755 MHz.  
 

 
Fig. 14. Temperature coefficient of frequency as a function of the SiO2 thickness for AlN 
plates of varying thicknesses normalized to the wavelength (λ) [G. Wingqvist et al, 2009-b] 

5.3 AlN FBAR device 
Probably, the most of common AlN based acoustic wave biosensor is FBAR structure.  
Similar to the QCM, an FBAR device (shown in Fig. 16a) consists of a submicron thick 
piezoelectric film membrane sandwiched between two metallic electrodes [Ruby 2007, 
Benetti 2005]. The frequency shift Δf due to mass loading Δm of an acoustic wave device can 
be calculated by [Buttry & Ward 1992] 
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where A, ρ, μ and fo are the area, density, shear modulus and intrinsic resonant frequency, 
respectively. Owing to the much reduced thickness, the FBAR device operates at high 
frequencies, up to a few GHz, and the attachment of a small target mass can cause a large 
frequency shift – typically a few MHz. This makes the signal easily detected using simple 
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electronic circuitry. Figure 15 summarizes the sensitivity range for different types of 
resonators according to their normal operational frequency ranges [Rey-Mermet at al  2004]. 
The advantages of the FBAR device includes: (1) the ability to fabricate the device using 
standard CMOS processing and compatible materials allowing integration with CMOS 
control circuitry; (2) the significantly reduced size and sample volume.  These features 
together with the intrinsic high sensitivity make the FBAR devices ideal for highly sensitive 
real time diagnostic biosensor arrays, which provide quantitative results at a competitive 
cost. However, for the membrane based FBAR design, the membrane fragility and the 
difficulty in its manufacture are significant issues which have yet to be fully addressed. 
 

 
Fig. 15. Sensitivity range for different types of resonators according to their common applied 
frequency ranges (Rey-Mermet at al  2004) 

In addition to the membrane based FBAR structure, there is another common FBAR 
structure that uses an acoustic mirror deposited between the piezoelectric layer and the 
substrate (see Fig. 16b). The acoustic mirror is composed of many quarter-wavelength layers 
of alternating high and low acoustic impedance layers. Due to the high impedance ratio of 
the acoustic mirror, the acoustic energy is reflected and confined inside the top piezoelectric 
layer, thus maintaining an excellent resonant bandwidth. This design has a better 
mechanical robustness and a simpler process control compared with the membrane-based 
structures. Also cheap substrates, such as glass or plastics can be used, thus the cost can be 
reduced.  Disadvantages for this type of FBAR design is that the process requires thickness 
and stress control for each layer, increasing the number of the fabrication steps.  
There is a third FBAR design which uses a front side etching process [Kang et al 2005].  
Initially a sacrificial layer is deposited on the substrate followed by the electrodes and the 
piezoelectric film depositions. The release of the structure from the substrate is through an 
air gap made by reactive ion etching of the sacrificial layer. The required selectivity control 
during the etching process is critical during the fabrication. One disadvantage is the 
potential liquid trapping inside the gap during biodetection.   
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An AlN FBAR device has been first reported by Latin et al 1981, and has already been 
successfully commercialized in the communication industry [Kim et al 2001, Tadigadapa et 
al 2009], and has also been used as chemical or gas sensors [Benetti, et al 2005]. FBAR 
biosensors have recently attracted great attention due to their inherent advantages 
compared with SAW and QCM biosensors: high sensitivity, low insertion loss, high power 
handling capability and small size [Bjurstrom et al 2004, Kang et al 2005, Loebl et al 2003, 
Chiu 2007 and 2008].  AlN based FBAR devices have been used to detect carcioembryonic 
antigen (cEA), a type of glycoprotein associated with breast, colorectal and lung cancer, and 
the fabricated FBAR device has a frequency of 2.477 GHz, and a sensitivity of 3514 Hz 
cm2/ng [Lee et al 2010]. For FBAR, the thickness of the piezoelectric film AlN is comparable 
with that of the electrode, or bottom layer, being similar to SiO2 or Si3N4. Therefore, the 
materials for the electrodes and their thickness can influence significantly the performance 
of the FBAR device.  
 

    
Fig. 16. Types of FBAR resonators: (a) membrane FBAR, (b) air gap FBAR and (c) solid 
mounted resonator. 

For liquid FBAR sensing, there is good reason to deposit an AlN film in which the c-axis is 
inclined relative to the surface normal, thus allowing both longitudinal and shear wave 
modes to be generated [Weber 2006].  Wingqvist et al. 2007 have fabricated a biochemical 
sensor based on inclined c-axis AlN for cocaine and heroin detection (see Fig. 17). The FBAR 
sensor was tested in an immunoassay using avidin/antiavidin detection with a sensitivity of 
800 Hz cm2/ng [Wingqvist et al. 2007].  However, the quality factors was low (100 to 150 for 
FBAR and 2,000 for QCM) and noise level high, thus the overall detection limit of FBAR is 
not as good as for QCM devices (detection limit of FBAR was twice as much for a 
commercial QCM) [Wingqvist et al. 2007].  Wingqvist et al 2009 also used shear mode FBAR 
devices for multilayer protein sensing, i.e., alternating layers of streptavidin and biotinated 
BAS, as well as cross-linking of fibrinogen with EDC activation of its carboxyl groups.  
 

 
Fig. 17. Schematic picture of lateral FBAR structure comprising the resonator with two 
electrodes solidly mounted on an acoustic Bragg mirror (from Wingqvist et al 2007a,b) 
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Another popular method to use FBAR devices in liquid solution is to use lateral field 
excitation (LFE) of the piezoelectric layer. This requires both signal and ground electrodes 
being in-plane and parallel on the exposed surface of the AlN film (as can be seen by 
comparing the conventional longitudinal FBAR electrode design and LFE FBAR design in 
Fig. 18). A laterally excited AlN thickness shear mode resonator is extremely simple to 
fabricate and highly sensitive to surface perturbations. The resonator configuration consists 
of a laterally excited, solidly mounted AlN thin film resonator and the device has been 
reported to operate stably in biologically equivalent environments such as NaCl in 
deionized water [Dickherber et al 2008, Corso et al 2007, 2008].   
 

 

                                     (a)              (b) 

Fig. 18. Comparison of (a) the conventional longitudinal FBAR electrode design;  and  
(b) LFE FBAR design 
Xu et al 2010 have proposed a new FBAR of high quality factors Qs operating in liquid 
media. The FBAR is made of a suspended circular shaped AlN ring sandwiched between the 
top and bottom Au electrodes, which can be excited in a contour mode (Fig. 19). By exciting 
in its radial-extensional mode, the resonator experiences the shear viscous damping instead 
of the squeeze damping, which significantly alleviates the acoustic energy dissipated in the 
contacting liquid. By having a low motional resistance or coupling with liquids, the contour 
mode FBAR achieved Qs up to 189, which is more than 13-19 times than conventional FBAR 
device in liquids and the resonator was used to test an aptamer—thrombin binding pair, 
with a mass resolution of 1.78 ng cm2 [Xu et al 2010].  
 

 
Fig. 19. Schematic figure of the contour-mode AlN FBAR biosensor contacting with a liquid 
droplet [Xu et al 2010]  
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Although FBAR based biosensor exhibit a high sensitivity and good resolution, there are 
some issues to be addressed. For example, they normally have high acoustic wave 
attenuation and low quality factor due to potential thin film material defects and thin 
membranes. Other issues include the sensor packaging and the effect of high frequency on 
biochemistry [Wingquist et al 2007 a and b]. Zhang & Kim 2005 have reported that the 
second harmonic mode of wave can be excited at a frequency about twice of the 
fundamental resonance, thus the FBAR using the second harmonic longitudinal mode can 
have a high Q factor and a low dissipation of acoustic energy into the liquid. Similar to 
Lamb wave device, the temperature stability of the FBAR is a critical issue, and a composite 
layer of AlN/SiO2 is a common method that can be employed to compensate for the 
temperature effect.  

6. AlN film for microfluidic applications 
In an AlN based SAW device, the interaction between the longitudinal acoustic wave and 
liquid droplets can be used to create acoustic streaming which can establish a stable 
streaming pattern with a double vortex (see Fig. 20). This SAW streaming induces an 
efficient mixing and agitation within the droplets, which can be utilised to produce good 
micromixers [Fu et al 2007, Fu et al 2010]. When an RF voltage is applied to the IDTs on a 
piezoelectric film, the water droplet becomes deformed from its original shape (following 
the Rayleigh angle) with an increased leading edge and a decreased trailing edge contact 
angle.  After surface hydrophobic treatment, the liquid droplets can be pumped forward, 
with the droplet movement being a combination of rolling and sliding, which is also 
dependent upon the power applied and the droplet size. 
 

 
Fig. 20. Numerical 3D illustration showing the droplet SAW interaction leading to 3D 
complex flow patterns due to SAW energy attenuation and Reynolds stresses formation 
which in turn producing effective steady force acting in the fluid body “(Courtesy from Mr. 
Alghane Mansuor) 

When the RF power applied to the IDT of an AlN SAW device is sufficiently high, tiny 
liquid droplets will be ejected from the surface. Ejection of small particles and liquid has 
many applications ranging from inkjet printing, fuel and oil ejection and bio-technology. 
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Flexural plate waves or Lamb waves have also been proposed for pumping, agitating and 
enhancing biochemical reactions [Nguyen & White 1999], with the principle that fluid 
motion via the travelling flexural wave in an AlN membrane can be used for the transport of 
liquids. The potential applications include a micro total analysis system (μTAS), cell 
manipulating systems, and drug delivery systems [Meng et al 2000]. However, there are few 
studies on microfluidic applications based on the AlN acoustic wave devices, which is a 
potentially very interesting research topic. 

7. Future trends for AlN devices for lab-on-a-chip 
The elements required for operating detection as part of a lab-on-a-chip system include: (1) 
transportation of liquids such as blood or biofluids containing DNA/proteins into an area 
on which probe molecules have been pre-deposited, (2) mixing/reaction of the extracted 
DNA or proteins with oligonucleotide or the antibody binders, and (3) detection of an 
associated change in the physical, chemical, mechanical or electrical signals. Thin film based 
acoustic wave devices can be used to fabricate lab-on-chip bio-detection systems, which 
combine the functions of microdroplet transportation, mixing and bio-detection.  
Device integration at the device, wafer and system level is critical issue for the lab-on-chip 
fabrication. Wafer level integration of AlN FBAR device with CMOS fabrication has been 
reported by Campanella et al 2008. It has electrical connection between FBAR and CMOS.  
Sharma et al 2010 have fabricated a shear mode AlN solidly mounted resonator microfluidic 
sensor, which is fully IC compatible, integrating a SMR sensor chip with a PDMS 
microfluidic channel system. The c-axis AlN film has been used to generate shear mode 
wave and the AlN SMR device operated at the 1.2 GHz range, with a Q factor of 100 in 
water.  
Acoustic wave technologies can be integrated with other technologies, such as the surface 
plasma resonance (SPR) method [Homola et al 1999]. SPR sensor technology has been 
commercialized and SPR biosensors have become an important tool for characterizing and 
qualifying biomolecular interactions. A combination of SAW microfluidics and SPR sensing 
would appear to be sensible for both microfluidic and detection functions. A potential 
problem is that the surface temperature change induced by acoustic excitation may cause 
changes in refractive index, which is used for SPR sensor detection. A pulse mode SAW 
signals can be used to minimize this effect. Acoustic wave microfluidic devices can also be 
combined with liquid or gas chromatography, which can be used to identify the protein or 
molecules by mass spectroscopy [Sokolowski et al 2006]. Integration of a SAW with optical 
methods enables the simultaneous qualification of biological soft layers formed on the 
sensor surface under different density, viscosity, thickness and water content.  
For digital microfluidics, there is a need to precisely and continuously generate liquid 
droplets. AlN acoustic wave technology can be used for the ejection of liquid droplets, but it 
is rather difficult to precisely control the micro-droplet generation. A potential technology to 
overcome the drawbacks is to combine electrowetting-on-dielectrics (EWOD) [Li et al 2009] 
with SAW-microfluidics. In the past ten years, EWOD technology has been successfully 
developed to dispense and transport nanolitre to microlitre bio-samples in droplet form at 
the exact volume required [Fair 2007]. However, one of the weaknesses is that EWOD 
technology does not provide efficient micro-mixing, and requires the integration of other 
technologies e.g. CMOS to realise bio-reaction and biosensing. A novel idea is to integrate 
the thin films based SAW devices with the EWOD device to form lab-on-a-chip equipped 
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with well developed functionalities of droplet generation, transportation by EWOD, mixing 
and biosensing using SAW technology [Li et al 2010].  
Acoustic wave devices can easily be integrated with standard CMOS technology. Dual SAW 
or FBAR devices can be fabricated next to each other, so that the neighbouring devices can 
be used as a sensor-reference combination. One of the devices without pre-deposited probe 
molecules can be used as a reference, while the other one with probe molecules can be used 
to sense. Using such a combination, the errors due to temperature drift or other interference 
on the sensing measurement can be minimized. Multi-sensor arrays can easily be prepared 
on a chip and a judicious selection of different immobilized bio-binders enables the 
simultaneous detection of multiple DNA or proteins, leading to accurate diagnosis of a 
disease or detection of multiple diseases in parallel. The creation of these cost-effective 
sensor arrays can increase the functionality in real time and provide parallel reading 
functions.  
Currently, one limitation of acoustic wave device applications is that they require expensive 
electronic detection systems, such as network analyzers. A final product aimed at the end 
user market must be small, portable and packaged into a highly integrated cost effective 
system. The detection of a resonant frequency can be easily realized using standard 
oscillator circuits which can measure the sensor losses based on a portable device.  The 
required purposely built electronics for acoustic wave sensing are being developed, but at 
present they are still bulky and heavy. Fabrication of portable thin film based acoustic wave 
detection devices is also promising and will enable the system size to be minimised along 
with reducing the power consumption. A wireless RF signals can be used to remotely power 
and control/monitor physical, chemical and biological quantities by using acoustic wave 
devices, without requiring a directly wired power supply. Currently for a lab-on-chip 
device, sample pre-treatment, purification and concentration, as well as a good interface 
between the user and the integrated sensing system also need to be developed. A simple, 
robust, cheap packaging method is also critical for commercialization. 

8. Summary 
AlN films have good piezoelectric properties and a high electro-mechanical coupling 
coefficient, and are hence a promising technology for the fabrication of fully automated and 
digitized microsystems with low cost, fast response, reduced reagent requirement and 
precision. In this chapter, recent development on preparation and application of AlN films 
for acoustic wave-based microfluidics and bio-sensors has been discussed. The 
microstructure, texture and piezoelectric properties of the films are affected by sputtering 
conditions such as plasma power, gas pressure, substrate material and temperature as well 
as film thickness.  AlN acoustic wave devices can be successfully used as bio-sensors, based 
on a biomolecular recognition system. Among these biosensors, surface acoustic wave, 
Lamb wave and film bulk acoustic resonator devices using inclined films are promising for 
applications in highly sensitive bio-detection systems for both dry and liquid environments. 
The acoustic wave generated on the AlN acoustic devices can also induce significant 
acoustic streaming, which can be employed for mixing, pumping, ejection and atomization 
of the fluid on the small scale depending on the wave mode, amplitude and surface 
condition. An integrated lab-on-a-chip diagnostic system based on these thin film based 
acoustic wave technologies has great potential, and other functions such as droplet creation, 
cell sorting, as well as precise bi-detection can be obtained by integration with other 
advanced technologies. 
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1. Introduction 
Thymus is an aromatic and medicinal plant of increasing importance in horticulture and 
economics. Thymus is a genus of about 350 species of aromatic perennial herbs in the family 
Lamiaceae (mint family), and native to Europe, North Africa and Asia. Its essential oil has 
found diverse applications in pharmacy and medicine. Its volatile phenolic oil, for example 
thymol and carvacrol, has been reported to have antibacterial, antimycotic, antioxidative, 
and mammalian age delaying properties. Also thymus serves as a flavoring agent for a 
variety of food products and used as an antiseptic agent for its antimicrobial properties [1-
3]. The content of essential oil varies drastically with climate, time of harvest and storage 
conditions [4-6]. 
For many years, GC and GC-MS have been used widely for the characterization of the 
volatile aroma components in thymus species. However, traditional GC method requires 
several routine isolation procedures including solvent extraction [7, 8], steam distillation [9, 
10], and simultaneous distillation extraction [11]. These methods involve excessive 
manipulation of the sample, a very costly, time-consuming procedure, are limited in aroma 
correlation, and do not allow on-line measurements which may lead to inadequate results. 
Recently, headspace solid-phase microextraction (HS-SPME) as a successful solvent-free 
sampling technique has been introduced for purpose of aroma analysis [12, 13]. Especially, 
aroma analysis demands rapid and simple procedure, because new aroma components may 
arise from chemical and biochemical reactions promoted by heat and oxidation conditions. 
Also, aromas are usually composed of complex mixtures of many volatiles, human sensory 
evaluation by trained panelists is important in aroma analysis. However, it has many 
limitations which involve a very expensive, time-consuming procedure, and subjectiveness 
of expert. Therefore, the development in analytical method which provides rapid, simple, 
low-cost procedure and the clear relationship between their sensory impacts is one of the 
most desirable subjects in aroma chemistry. 
A few years later, a new technique, based on the fast gas chromatography combined with 
uncoated high quartz surface acoustic wave sensor (GC/SAW, zNose) [14-17] appeared to 
be one of the suitable methods. Its principle has many similarities comparative to the human 
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perception system. The advantages of GC/SAW include simplicity, real-time detection of 
volatiles, non-destructive, portability and lower costs in comparison to a portable GC-MS. 
Fast GC/SAW permits quantification and pattern recognition by fragrance pattern, called a 
VaporPrint derived from the frequency of a SAW sensor. Moreover, good sensitivity at the 
high picogram to nanogram level makes it possible to detect sensitive aroma materials 
quantitatively [15, 18]. The method validation of GC/SAW and adaptability to a variety of 
applications were reported in our previous paper [18]. 
Statistical analysis methods including principal component analysis (PCA) have been 
successfully applied for the quality control and classification of various herbal medicines or 
aroma plants. PCA analysis and hierarchical clustering analysis (HCA) as pattern 
recognition analysis involves the discrimination of chromatographic data of herbal extracts 
or aroma plants with similar species [19, 20]. Pattern recognition analysis based on the 
chromatographic data can predict and evaluate the quality control of aroma plants. 
The aim of this study is to show the application and exploration of the developed GC/SAW 
methodology to the analysis of the volatile aroma composition profiles among thymus 
species in order to introduce this advantageous alternative analytical technique in 
pharmacy, medicine, and horticulture.  

2. Experimental 
2.1 Materials 
Thymus (T. quinquecostotus, T. quinquecostotus var. japonica, T. mongolicus, T. serpyllum) plants 
grown nearby Pocheon city, Kyunggi-Do in South Korea were collected by sunny day 
sampling in September 2005. The geographical origins of T. quinquecostotus and its variety 
are from South Korea. T. mongolicus is in Northeastern Asia, and T. serpyllum is in Europe. 
The medicinal plant material consists of stem and leaves which are raw, elapsed for 5 days 
at 5 °C and air-dried for 13 days or 16 months. All standard chemicals of analytical grade 
were purchased from Sigma-Aldrich (St. Louis, Mo, USA) and Tokyo Kasei (Nihonbashi, 
Tokyo Japan). Organic solvents of a chromatographic grade were obtained from J .T. Baker. 
The commercially available carboxen-divinylbenzene-polydimethylsiloxane (CAR-DVB-
PDMS) SPME fiber (film thickness, 50/30 µm) was purchased from Supelco (Bellefonte, PA, 
USA) and used. 

2.2 GC/SAW (zNose) description 
GC/SAW (4100 vapor analyzer, Electronic Sensor Technology, New Bury Park, USA) 
composed with the fast gas chromatograph and surface acoustic wave sensor is used to 
detect vapors of the volatile organic compounds. The GC/SAW is especially sensitive to low 
concentrations.  
The uncoated piezo-electric quartz crystal SAW (Surface Acoustic Wave) sensor [14] 
represents a new class of GC detector. The specificity of the uncoated SAW sensor is based 
upon the temperature of the crystal surface and the vapor pressure characteristics of the 
condensates. At a given crystal temperature, analytes with dew points closer to the crystal 
temperature will interact and be detected better than those with dew points well above the 
SAW temperature. The high Q crystal is in contact with a thermoelectric element, which 
controls the temperature for cooling during vapor adsorption and for heating during 
cleaning of the crystal and operates by maintaining highly focused and resonant surface 
acoustic waves of 500 MHz on its surface.  
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2.3 GC/SAW analytical conditions and procedure 
About 1.0 g of each air-dried thymus sample was weighed into a 40-ml glass vial sealed with 
a screw cap containing a Teflon/silicone septa. The capped vial was allowed to equilibrate 
with the headspace in the vial under the 60% humidity and 24 °C for 1 h just before analysis. 
GC/SAW utilizes two steps to analyze vapors: the sampling process and the injection 
process. The headspace vapor is swept at 30 ml/min via a pump into the inlet, then the 
vapor passes through the valve where the compounds are adsorbed onto the Tenax trap 
inside the system. Switching the valve to the injection process causes helium gas to flow 
backwards through the Tenax trap and onto the column. During the injection process, the 
Tenax trap is heated rapidly to 200 °C to desorb the material. Details of this procedure were 
reported in our previous paper [18]. GC column was heated from 32 °C to 120 °C at a rate of 
3 °C/s and the sampling time was 1 s. Helium (99.999%) was used as a carrier gas at 3.2 
ml/min (0.053 ml/s). 6% cyanopropyl phenyl polydimethylsiloxane (DB-624, J&W 
Scientific, Folsom, CA, USA, 1 m x 0.25 mm i.d., 0.25 µm film thickness) fused silica capillary 
column was used. The set-up temperatures were at 30 °C for sensor, 130 °C for inlet port, 
and 110 °C for valve. Triplicate measurements per vial were carried out. All analytical 
procedures were completed within 30 s. The shorter total time-to-result per sample allows 
several replicated analyses of a sample. 

2.4 Headspace solid-phase microextraction (HS-SPME) 
About 2.0 g of air-dried thymus sample was placed in 25-ml vial sealed with an aluminum 
cap containing a Teflon /silicone septa. The capped vial was kept to equilibrate under the 
humidity of 60% and 24 ºC for 1 h before HS-SPME sampling. The carboxen-divinylbenzene-
polydimethylsiloxane (CAR-DVB-PDMS) SPME fiber (film thickness, 50/30 µm) was used 
because it was most efficient among the various types of fiber for most volatile organic 
compounds [12, 21]. The SPME fiber was exposed to the headspace above the thymus sample 
vial at 24 ºC for 1 h. After adsorption, the SPME fiber was retracted from the sample vial and 
immediately inserted into the injection port of the GC-MS where thermal desorption was 
performed at 240 ºC for 1 min.  

2.5 GC-MS analysis 
The sample analysis was carried out with a Thermoquest-Finnigan ion trap GC–MS (Austin, 
Texas, USA) equipped with 6% cyanopropyl phenyl polydimethylsiloxane (DB-624, J&W, 30 
m x 0.25 mm i.d., 1.4 µm film thickness) and a Hewlett-Packard 6890 Series GC system with 
an Agilent 5973N Mass Selective Detector (Agilent Technologies, Wilmington, DE, USA) 
equipped with 5% phenyl polydimethylsiloxane (Ultra 2 column, Agilent, 25 m x 0.25 mm 
i.d., 0.33 µm film thickness). The oven temperature was initially maintained at 50 °C for 3 
min and then programmed to 220 °C for 5 min at a rate 5 °C/min. Injector and transfer line, 
and quadrupole temperatures were set at 240 ºC, 250 ºC, and 150 ºC, respectively. Helium 
(99.999%) was used as a carrier gas at 1.0 ml/min. The sample was injected under split 
mode (split ratio 1:30). The mass spectrometer was run in the electron impact (EI) mode 
with electron energy at 70eV, scanning the 50.0-400.0 amu. The ion source temperatures of 
ion trap GC-MS and quadrupole GC-MS were maintained at 200 °C , 230 °C, respectively. 
Triplicate measurements per vial were carried out. 
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2.6 Data analysis for pattern recognition 
Data transformation for pattern recognition was performed using MS Excel. Fifteen 
components were chosen based on the corresponding GC/SAW and HS-SPME-GC-MS 
profile. Especially, fifteen components such as α-pinene, camphene, β-myrcene, p-cymene, 
γ-terpinene, terpinolene, cis-sabinene hydrate, camphor, borneol, α-terpineol, thymol 
methyl ether, thymoquinone, thymol, β-caryophyllene and β-bisabolene were found as 
characteristic components in GC/SAW and HS-SPME-GC-MS profile. And then the 
response of each peak was applied from the triplicate measurements. Finally, pattern 
recognition techniques have been used for the discrimination of the materials. Principal 
component analysis (PCA) is a pattern recognition technique and statistical analysis. PCA 
was also carried out using MVSP. 3.1 version (Kovach Computing Service, Anglesey, Wales) 
in order to classify thymus species. 

3. Results and discussion 
3.1 Identification of volatile herbal aroma compounds for air-dried for 13 days of 
thymus species by GC/SAW 
By using fast GC/SAW, volatile herbal aroma profiles for thymus species were obtained. The 
materials sequentially exit from the column and they land and stick on the SAW sensor. 
When an analyte adsorbs on the surface of the sensor, the frequency of SAW sensor is 
altered, which affects the detection signal in direct proportion to the amount of condensate. 
Fig. 1(A)-(E) shows chromatograms of volatile aroma compounds for air-dried for 13 days of 
thymus species. The area of each peak is correlated to its concentration and is expressed in 
frequency counts (Cts). The identification of each aroma compounds shown by GC/SAW 
was carried out by comparison with authentic standards and GC–MS analysis and their 
relative proportions (% total amounts) are summarized in Table 1. The herbal aroma 
components of thymus species consist mostly of monoterpene hydocarbons (α-pinene, 
camphene, β-myrcene, and terpinolene), oxygenated monoterpenes (cis-sabinene hydrate, 
camphor, borneol, α-terpineol, and thymoquinone), a monoterpene phenol (thymol), 
monoterpene phenol precursors (p-cymene and γ-terpinene), a monoterpene phenol 
derivative (thymol methyl ether) and sesquiterpenes (β-caryophyllene and β-bisabolene). 
The grouping of compounds has an important meaning as responsible for the characteristic 
aroma of thymus.  
Fifteen compounds were identified, especially in T. quinquecostotus species, which are from Jeju 
and Mt Gaya in South Korea, the characteristic, distinctive components such as p-cymene 
(26.4%, 24.2%), γ-terpinene (10.3%, 10.5%), and active thymol (29.0%, 33.1%) were constituted 
65.7%, 67.8% of the total amounts, respectively. In addition, oxygenated monoterpenes such as 
cis-sabinene hydrate (0.6%, 0.7%), camphor (6.6%, -), borneol (4.7%, 5.7%) and thymoquinone 
(11.6%, 12.5%) were constituted 23.5% and 18.9% of the total amounts as the secondly most 
abundance, respectively. Lesser amounts of monoterpene hydrocarbons: α-pinene (0.9%, 
0.8%), camphene (0.9%, -), β-myrcene (5.3%, 3.3%), terpinolene (1.2%, 2.4%) were constituted 
8.3% and 6.5% of the total amounts, respectively, and β-caryophyllene (2.5%, 6.8%) as 
sesquiterpene was also found. T. quinquecostotus var. japonica species is a variety of T. 
quinquecostotus and its geographical origin is Ulreung island in South Korea. p-Cymene 
(15.8%), γ-terpinene (9.0%), and thymol (33.5%) were also found as characteristic components 
and constituted 58.3% of the total amounts. Also, oxygenated monoterpenes (32.3%), 
monoterpene hydrocarbons (5.5%), and sesquiterpenes (3.9%) were found. 
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Table 1. Composition and identification of aroma components for air-dried for 13 days and 
16 months of thymus species by GC/SAW 
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Generally, thymol, phenolic monoterpene, defines the essential oil quality because of its 
active pharmacological properties. It was reported that γ-terpinene and p-cymene are the 
precursors of phenolic monoterpenes such as thymol and carvacrol in T. vulgaris by Granger 
and Passet [22]. It was also proposed that γ-terpinene assumes an important role in the 
aromatization whose product is p-cymene. They reported that p-cymene is the precursor of 
thymol by hydroxylation in T. vulgaris L. plant [23]. Moreover, the concentration of p-
cymene and γ-terpinene are found to vary in coincidence with the variation in their 
corresponding phenolic monoterpene products [24] and γ-terpinene decreases its 
concentration and p-cymene increases in the essential oil [25].  
In T. mongolicus species (the origin of Northeastern Asia), active phenolic monoterpene 
(thymol) and its corresponding monoterpene hydrocarbon precursor (γ-terpinene) were not 
found, whereas oxygenated monoterpenes, such as borneol (21.0%), α-terpineol (41.8%), 
were identified as characteristic predominant compounds and constituted 62.8% of the total 
amounts. T. serpyllum species (the origin of Europe) contain almost the same chemical 
components with those of T. quinquecostotus. Especially, a monoterpene phenol derivative 
(thymol methyl ether: 12.7%) was only found as characteristic component. It was tentatively 
identified by comparison of its GC-MS data, because its reference standard is not 
commercially available.  

3.2 Discrimination of thymus species using VaporPrint image based on GC/SAW 
By comparing the relative contents, chemical composition for characteristic components of 
air-dried for 13 days of T. quinquecostotus species which are originated from Jeju and Mt. 
Gaya in South Korea were almost same: the active monoterpene phenol (thymol: 29.0%, 
33.1%), its corresponding precursors (p-cymene: 26.4%, 24.2%, γ-terpinene: 10.3%, 10.5%) 
and oxygenated monoterpenes (borneol: 4.7%, 5.7%, thymoquinone: 11.6%, 12.5%). It is 
interesting to note that the components found in the same species of different geographical 
origin in same country are almost same. Also, the proportion of such components is same.  
The GC/SAW provides a visually recognizable fragrance pattern (VaporPrint image) 
derived from the frequency of SAW sensor. This image is created by transforming the time 
variable to a radial angle with the beginning and end of the analysis. This image transfers 
the olfactory response to a visual response [18]. These fragrance images are a useful for 
comparing delicate differences of various thymus species for species identification. The 
fragrance patterns for air-dried for 13 days of thymus species are shown in Fig. 1(A')-(E'). As 
shown in Fig. 1(A') and (B'), these same species present almost same fragrance patterns.  
In its variety species (the origin of Ulreung island in South Korea), the most components are 
similar in chemical compositions between original and its variety, specific components which 
are p-cymene (original species: Jeju 26.4%; Mt. Gaya 24.2%, its variety species: 15.8%), borneol 
(original species: Jeju 4.7%; Mt. Gaya 5.7%, its variety species: 18.4%) were shown a different 
compositions. Also, β-bisabolene (2.4%) was found additionally in variety species. Therefore, 
such differences seem to result in a small differences in fragrance pattern (Fig. 1(A') and (C')). 
T. serpyllum species (the origin of Europe) contain almost same chemical components with 
those of T. quinquecostotus, but show a substantial different chemical compositions: active 
thymol (T. serpyllum : 34.1%, T. quinquecostotus : Jeju 29.0%; Mt. Gaya 33.1%), active thymol 
precursors (T. serpyllum : 20.0%, T. quinquecostotus : Jeju 36.7%; Mt. Gaya 34.7%), oxygenated 
monoterpenes, (T. serpyllum : 14.9%, T. quinquecostotus : Jeju 23.5%; Mt. Gaya 18.9%), and 
sesquiterpenes (T. serpyllum : 9.3%, T. quinquecostotus : Jeju 2.5%; Mt. Gaya 6.8%) were found 
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Fig. 1. Comparison of chromatograms for various thymus species by GC/SAW. (A) T. 
quinquecostotus, Jeju, Korea; (B) T. quinquecostotus, Mt. Gaya, Korea; (C) T. quinquecostotus var. 
japonica, Ulreung island, Korea; (D) T. mongolicus, Northeastern Asia; (E) T. serphyllum, 
Europe; (A΄)-(E΄) their corresponded fragrance patterns using VaporPrint. 
Peak identities: a, α-Pinene; b, Camphene; c, β-Myrcene; d, p-Cymene; e, γ-Terpinene; f, 
Terpinolene; g, cis-Sabinene hydrate; h, Camphor; i, Borneol; j, α-Terpineol; k, Thymol 
methyl ether; l, Thymoquinone; m, Thymol; n, β-Caryophyllene; o, β-Bisabolene. 
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, respectively. Therefore, distinctive differences seem to result in a substantial differences in 
fragrance pattern (Fig. 1(E')). 
As a result, it turned out that each species has own characteristic fragrance pattern owing to 
its own chemical compositions and its own characteristic fragrance patterns are conducive 
to species identification. 

3.3 Comparison of GC/SAW and HS-SPME-GC-MS method for air-dried for 13 days of 
thymus species 
The compositions of aroma compounds of thymus species extracted by HS-SPME using 
CAR/DVB/PDMS fiber and then analyzed by GC-MS are presented in Table 2. Their GC-
MS total ion chromatograms are shown in Fig. 2. The alphabetic numbers of peaks shown in 
Fig. 2 correspond to the numbers indicated in GC/SAW chromatograms (Fig. 1). These 
results are comparable to those given by GC/SAW, including the characteristic components 
and chemical composition. Fifty-four compounds were detected by HS-SPME-GC-MS.  
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Fig. 2. Comparison of chromatograms for various thymus species by HS-SPME-GC-MS. (A) T. 
quinquecostotus, Jeju, Korea; (B) T. quinquecostotus, Mt. Gaya, Korea; (C) T. quinquecostotus var. 
japonica, Ulreung island, Korea; (D) T. mongolicus, Northeastern Asia; (E) T. serphyllum, Europe. 
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Fig. 2. Comparison of chromatograms for various thymus species by HS-SPME-GC-MS. (A) T. 
quinquecostotus, Jeju, Korea; (B) T. quinquecostotus, Mt. Gaya, Korea; (C) T. quinquecostotus var. 
japonica, Ulreung island, Korea; (D) T. mongolicus, Northeastern Asia; (E) T. serphyllum, Europe. 
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Fig. 2. Continued 
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As shown in Table 3, characteristic components and analytical tendency for air-dried for 13 
days of thymus species detected by GC/SAW and HS-SPME-GC-MS are similar, but the 
abundance ratios between these two methods are different. In T. quinquecostotus species, 
monoterpene phenols (thymol, carvacrol) and monoterpene phenols precursors (p-cymene, 
γ-terpinene) were also dominant (76.0%) like GC/SAW (66.8%). But, the amounts of total 
monoterpene phenols are 11.7% by HS-SPME-GC-MS, 31.1% by GC/SAW and monoterpene 
phenols precursors are 64.3% by HS-SPME-GC-MS, 35.7% by GC/SAW. In comparison of T. 
quinquecostotus var. japonica species and its original species, these results show similar 
analytical tendency with GC/SAW. For instance, p-cymene decreases from 46.3% to 22.2% 
by HS-SPME-GC-MS and from 25.3% to 15.8% by GC/SAW (an average value is indicated 
in bold) (Table 1 and 2). While oxygenated monoterpene increases from 11.3% to 17.6% by 
HS-SPME-GC-MS and from 21.2% to 32.3% by GC/SAW. In T. mongolicus species, the 
characteristic and dominant components are borneol and α-terpineol in similar to the results 
by GC/SAW. But, the amounts of borneol and α-terpineol are 8.0% and 31.0% by HS-SPME-
GC-MS; 21.0% and 41.8% by GC/SAW, respectively (Table 1 and 2). Interestingly, the 
significant amount of thymol methyl ether and carvacrol methyl ether which are not almost 
found in other species were found in T. serpyllum species. The amounts are 20.5% by HS-
SPME-GC-MS and 12.7% by GC/SAW.  

3.4 Compositions of volatile herbal aroma compounds of thymus species of elapsed 
for 16 months by GC/SAW  
The compositions of volatile herbal aroma compounds of thymus species of elapsed for 16 
months extracted by GC/SAW are presented in Table 1. As a result, according to elapse for 
16 months, there are slightly differences in the relative quantities of their characteristic 
constituents than those of 13 days: in T. quinquecostotus species and its variety, active thymol 
precursor p-cymene increases from 25.3% to 29.6% and from 15.8% to 25.1%, respectively, 
whereas active thymol decreases from 31.1% to 26.7%, 33.5% to 24.1%, respectively (an 
average value is indicated in bold). However, for T. serpyllum species, there appears 
distinctive differences compared to those dried for 13 days: p-cymene also increases from 
15.8% to 30.4% and thymol substantially decreases from 34.1% to 1.1%, while thymol 
precursor γ-terpinene is not found and sesquiterpene β-bisabolene increases 2 times. In T. 
mongolicus species, α-terpineol as the characteristic and dominant component also slightly 
decreases from 41.8% to 35.9%.  

3.5 Principal component analysis for GC/SAW and HS-SPME-GC-MS responses of 
thymus species 
Fig. 3(A) shows principal component analysis (PCA) for GC/SAW responses of air-dried for 
13 days and 16 months of thymus species. PCA were carried out using MVSP. 3.1 version in 
order to classify the thymus species. As a result, a good classification among four different 
species: T. quinquecostotus, T. quinquecostotus var. japonica, T. mongolicus, and T. serpyllum was 
obtained. Additionally, the classification of same species which are from different 
geographical origin in same country, classification of original species and its variety for T. 
quinquecostotus, classification as an air-drying term for 13 days and 16 months for T. 
quinquecostotus showed good results. In these results, it turned out that discrimination of 
various thymus species by using VaporPrint image based on GC/SAW are very clear, which 
was reproducible data points shown in Fig. 3(A).  
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As shown in Table 3, characteristic components and analytical tendency for air-dried for 13 
days of thymus species detected by GC/SAW and HS-SPME-GC-MS are similar, but the 
abundance ratios between these two methods are different. In T. quinquecostotus species, 
monoterpene phenols (thymol, carvacrol) and monoterpene phenols precursors (p-cymene, 
γ-terpinene) were also dominant (76.0%) like GC/SAW (66.8%). But, the amounts of total 
monoterpene phenols are 11.7% by HS-SPME-GC-MS, 31.1% by GC/SAW and monoterpene 
phenols precursors are 64.3% by HS-SPME-GC-MS, 35.7% by GC/SAW. In comparison of T. 
quinquecostotus var. japonica species and its original species, these results show similar 
analytical tendency with GC/SAW. For instance, p-cymene decreases from 46.3% to 22.2% 
by HS-SPME-GC-MS and from 25.3% to 15.8% by GC/SAW (an average value is indicated 
in bold) (Table 1 and 2). While oxygenated monoterpene increases from 11.3% to 17.6% by 
HS-SPME-GC-MS and from 21.2% to 32.3% by GC/SAW. In T. mongolicus species, the 
characteristic and dominant components are borneol and α-terpineol in similar to the results 
by GC/SAW. But, the amounts of borneol and α-terpineol are 8.0% and 31.0% by HS-SPME-
GC-MS; 21.0% and 41.8% by GC/SAW, respectively (Table 1 and 2). Interestingly, the 
significant amount of thymol methyl ether and carvacrol methyl ether which are not almost 
found in other species were found in T. serpyllum species. The amounts are 20.5% by HS-
SPME-GC-MS and 12.7% by GC/SAW.  

3.4 Compositions of volatile herbal aroma compounds of thymus species of elapsed 
for 16 months by GC/SAW  
The compositions of volatile herbal aroma compounds of thymus species of elapsed for 16 
months extracted by GC/SAW are presented in Table 1. As a result, according to elapse for 
16 months, there are slightly differences in the relative quantities of their characteristic 
constituents than those of 13 days: in T. quinquecostotus species and its variety, active thymol 
precursor p-cymene increases from 25.3% to 29.6% and from 15.8% to 25.1%, respectively, 
whereas active thymol decreases from 31.1% to 26.7%, 33.5% to 24.1%, respectively (an 
average value is indicated in bold). However, for T. serpyllum species, there appears 
distinctive differences compared to those dried for 13 days: p-cymene also increases from 
15.8% to 30.4% and thymol substantially decreases from 34.1% to 1.1%, while thymol 
precursor γ-terpinene is not found and sesquiterpene β-bisabolene increases 2 times. In T. 
mongolicus species, α-terpineol as the characteristic and dominant component also slightly 
decreases from 41.8% to 35.9%.  

3.5 Principal component analysis for GC/SAW and HS-SPME-GC-MS responses of 
thymus species 
Fig. 3(A) shows principal component analysis (PCA) for GC/SAW responses of air-dried for 
13 days and 16 months of thymus species. PCA were carried out using MVSP. 3.1 version in 
order to classify the thymus species. As a result, a good classification among four different 
species: T. quinquecostotus, T. quinquecostotus var. japonica, T. mongolicus, and T. serpyllum was 
obtained. Additionally, the classification of same species which are from different 
geographical origin in same country, classification of original species and its variety for T. 
quinquecostotus, classification as an air-drying term for 13 days and 16 months for T. 
quinquecostotus showed good results. In these results, it turned out that discrimination of 
various thymus species by using VaporPrint image based on GC/SAW are very clear, which 
was reproducible data points shown in Fig. 3(A).  
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Table 2. Composition and identification of aroma components for air-dried for 13 days and 
16 months of thymus species by HS-SPME-GC-MS 
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Table 2. Continued 
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Table 3. Comparison of composition of aroma compounds for air-dried for 13 days of thymus 
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Table 3. Comparison of composition of aroma compounds for air-dried for 13 days of thymus 
species by HS-SPME-GC-MS and GC/SAW 
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Fig. 3(B), (B') shows PCA for HS-SPME-GC-MS responses of air-dried for 13 days and 16 
months of thymus species. As a result, a good classification among species of completely 
different chemotypes was obtained. But, the classification of T. quinquecostotus which are 
same species of different geographical origin in same country (from Jeju and Mt. Gaya in 
South Korea), classification of original species and its variety for T. quinquecostotus, grouped 
as an air-drying term 13 days and 16 months for T. quinquecostotus appeared to be quite 
lower than those achieved by GC/SAW.  
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Fig. 3. Comparison of principal component analysis for GC/SAW (A) and HS-SPME-GC-MS 
(B), (B') responses of thymus species. (A) air-dried 13 days and 16 months by GC/SAW;  
(B) air-dried 13 days by Thermoquest-Finnigan ion trap GC–MS (Austin, Texas, USA) 
equipped with 6% cyanopropyl phenyl polydimethylsiloxane (DB-624, J&W, 30 m x 0.25 
mm i.d., 1.4 µm film thickness); (B') air-dried 16 months by Hewlett-Packard 6890 Series GC 
system with an Agilent 5973N Mass Selective Detector (Agilent Technologies, Wilmington, 
DE, USA) equipped with 5% phenyl polydimethylsiloxane (Ultra 2 column, Agilent, 25 m x 
0.25 mm i.d., 0.33 µm film thickness).  
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3.6 Changes of composition of aroma compounds according to elapse for T. 
quinquecostotus var. japonica by GC/SAW 
Fig. 4 shows chromatograms of volatile aroma compounds according to elapse for T. 
quinquecostotus var. japonica by GC/SAW. The changes of composition of their volatile aroma 
compounds are summarized in Table 4. 
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Fig. 4. Changes of composition of aroma compounds according to elapse for 
T.quinquecostotus var. japonica by GC/SAW. (A) fresh raw; (B) elapsed for 5 days at 5°C; (C) 
air-dried for 13 days at room temperature; (D) air-dried for 16 months at room temperature; 
(A’)-(D’) their corresponded fragrance patterns using VaporPrint. 
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Fig. 4. Changes of composition of aroma compounds according to elapse for 
T.quinquecostotus var. japonica by GC/SAW. (A) fresh raw; (B) elapsed for 5 days at 5°C; (C) 
air-dried for 13 days at room temperature; (D) air-dried for 16 months at room temperature; 
(A’)-(D’) their corresponded fragrance patterns using VaporPrint. 
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Peak 
No. 

tR 

(s) 
Components Thymus-quinquecostotus var. japonica 

(Ulreung island) 
   Rawa          5 Daysb          13 Daysc        16 Monthsd 

   %              %               %                % 
a 11.140 α -Pinene 1.3(8.20) 0.7(4.21) 0.9(7.63) 1.4(1.49) 
b 11.920 Camphene 0.8(2.53) 0.4(1.75) 0.5(7.66) 0.5(5.02) 
c 13.280 β -Myrcene 3.5(5.90) 3.5(3.86) 3.1(6.05) 3.3(1.85) 
d 14.500 p-Cymene 25.5(6.24) 13.6(4.83) 15.8(7.57) 25.1(1.58) 
e 15.520 γ -Terpinene 5.2(4.98) 10.2(3.95) 9.0(8.65) 12.4(7.99) 
f 16.300 Terpinolene 1.1(2.70) 0.7(2.64) 1.0(3.90) 0.4(4.30) 

g 17.440 cis-Sabinene 
hydrate 0.3(8.68) 0.3(5.22) 0.4(4.23) 0.3(3.18) 

h 19.020 Camphor – – – – 
i 19.820 Borneol 10.5(2.80) 9.1(3.65) 18.4(1.24) 9.6(1.71) 
j 20.560 α -Terpineol – – – – 

k 21.520 Thymol methyl 
ether – – – – 

l 22.480 Thymoquinone 14.9(3.35) 1.6(0.70) 13.5(5.81) 18.4(3.86) 
m 24.340 Thymol 20.4(1.65) 37.4(5.37) 33.5(4.08) 24.1(0.73) 
n 27.480 β-Caryophyllene 7.1(2.46) 8.8(8.92) 1.5(2.39) 1.9(2.20) 
o 30.080 β -Bisabolene 9.4(5.03) 13.7(5.19) 2.4(2.40) 2.6(1.84) 

Table 4. Change of composition of volatile aroma compounds according to elapse for 
T.quinquecostotus var. japonica by GC/SAW 
a Fresh sample, it was analyzed as soon as possible after it was picked.  
b It was elapsed for 5 days at 5°C. 
c It was dried for 13 days at room temperature. 
dIt was dried for 16 months at room temperature 

In the raw sample which are prepared as soon as possible after it was picked, monoterpene 
phenol (thymol: 20.4%) is lower than its corresponding precursor (p-cymene, γ-terpinene: 
30.7%). Whereas, in the case of two samples which are elapsed for 5 days at 5 °C and air-
dried for 13 days at room temperature, active thymol (33.5%~37.4%) is higher than its 
corresponding precursor (23.8%~24.8%). Additionally, thymoquinone (13.5%), borneol 
(18.4%) in 13 days sample increased than those of 5 days sample. After elasping for 16 
months, the concentration of active thymol (24.1%) and borneol (9.6%) considerably 
decreased, whereas thymoquinone (18.4%) increased in high intensity. 

As these results, they also show some interesting characteristic feature for the influence of 
air-drying on the volatile aroma compositions. In the aspect of pharmacological effects, it 
was found that active monoterpene phenol (thymol) reaches its highest concentrations after 
it was dried for 5 days or 13 days, which is much higher than in fresh or over-dried for a 
long times. 

4. Conclusion 
On the basis of this study, it is concluded that the GC/SAW analytical method shows high 
speed detection within ten seconds, a relatively high reproducibility compared with HS-
SPME method, simplicity, and making it possible to detect sensitive aroma materials 
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quantitatively. It also enables to discriminate the botanical and geographical origin of 
thymus species by recognizable fragrance pattern analysis. 
As a result, a new methodology by GC/SAW can serve as an alternative analytical 
technique for the analysis of discrimination of thymus species that provides second unit 
analysis, simple, highly sensitive analytical method, and fragrance pattern recognition 
compared to the conventional HS-SPME-GC-MS technique. In addition, it would be a first 
report to deal with the volatile herbal actual compositions and discrimination of thymus 
species by GC/SAW and will be applied to a variety of applications.  
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1. Introduction 
Monitoring and studying the pressure effect on liquid physical properties are becoming 
increasingly important in the food (Le Bail et al., 2003), chemical (Schettino et al., 2008), 
cosmetic (Sonneville-Aubrun et al., 2004) and pharmaceutical industry (Masson et al, 2001). 
High-pressure research of the physical properties of liquids has been stimulated by the fast 
development of such technologies as biodiesel production (Demirbas, 2008), high pressure 
food processing and conservation (Bamberger et al., 1999). High pressure processing enables 
inactivation of pathogenic microorganisms without decreasing the nutritional values and 
organoleptic properties. Rheological data provide information on molecular structure of the 
processed food. The knowledge of viscosity changes with pressure is also very important for 
food-processing plant design. Viscosity measurement on-line is necessary for control of food 
quality at different stages of the process.  
Knowledge of the effect of pressure on the viscosity of polymer melts containing dissolved 
gases and on the viscosity of carbonaceous materials used in the impregnation process 
(Kosinskii, 2009) is also very important. Acoustic measurements offer also a potentially 
practical manner for the in situ characterization of reservoir fluids (e.g., crude oil) under 
reservoir conditions of pressure (Ball et al., 2002). The rheological properties of liquid 
lubricants (Bair et al., 2001) under high pressure determine friction and wear and they are 
fundamental properties for tribological evaluation of rolling bearings, gears and traction 
devices. High-pressure technologies (up to 1 GPa) have proved a great potential in modern 
bioengineering as a method of modification of biotechnological materials. The knowledge of 
physical properties (e.g., viscosity, compressibility) of treated substance is essential for 
understanding, design and control of the process technology. Measurement techniques for 
“in-situ“ determining of physical parameters of liquids under high pressure allow insight 
into the phenomena governing the microstructural modifications occurring in the treated 
substance. High-pressure transitions in liquids can be investigated by the measurement of 
the viscosity or the acoustic wave phase velocity in function of hydrostatic pressure. 
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Pressure is an important parameter in processes of glass making when pressures in regime 
of some hundreds of megapascals occur e.g., in injection molding or pressure-assisted 
sintering. Changes in the melt viscosity upon pressurization result in changes in the glass 
transition temperature and the working regime for glasses (Del Gaudio et al., 2009).  
In earth science interesting information can be obtained from the high-pressure rheological 
investigations of molten minerals (Bingwell et al., 2004). Moreover, oil-based drilling fluids 
have become widely used in oil industry because of their distinct advantage over water-
based drilling fluids. However, unlike water-based drilling fluids, oil-based drilling fluids 
show significant rheological properties dependence on temperature and pressure. It is 
highly recommended to measure rheology of the actual mud system at high pressures prior 
to drilling operations (Zhao et al., 2008).  
The properties of water at high pressures are investigated for the purpose of studying the 
physical chemistry, geophysics, planetology, and the most diverse problems in science and 
engineering. At pressures lower than 1 GPa, the rheological properties of water, including 
viscosity, are essential for the investigation of hydrodynamic and heat transfer processes. At 
present, the rheological properties of water are used in designing power plants of some 
types, as well as in developing new technologies in the food industry and medicine where, 
in particular, the shock compression of water has come to be used to lithotripsy (Mineev & 
Funtikov, 2005).  
Direct measurements of the physical properties such as density, compressibility and isobaric 
heat capacity are very difficult under conditions of very high pressure. The speed of sound 
is closely linked with these thermodynamic properties and can be measured relatively easily 
and with high accuracy over wide ranges of temperature and pressure. An understanding of 
the pressure dependence of sound speed, attenuation, and relaxation frequencies can 
provide valuable information as to transport quantities such as fluid viscosity and thermal 
conductivity along with ratios of specific heats. Additionally, sound speed is closely related 
to derivatives of the equation of state. Therefore, the precision of these derivatives is often 
substantially better when they are deduce from the speed of sound rather than obtained 
from the analysis of classical pVT data. 
Up to date, high pressure viscosity measurements were performed only in laboratory 
conditions, using conventional mechanical methods (Kulisiewicz & Delgado, 2010), 
developed as early as in the second half of the nineteenth century (Shames, 2002), (Ferguson 
& Kemblowski, 1991). The conventional mechanical methods followed works of such 
eminent scientists as Stokes, Navier, Poiseuille, Couette, et al. The common factor of all 
conventional mechanical methods is their inability to measure the viscosity on-line, without 
interfering with the industrial process controlled. Since on-line monitoring is necessary in 
process automation a need for new real-time monitoring methods emerged.  
In this work new ultrasonic methods for the measurement of the viscosity of liquids under 
high pressure are presented (Kiełczyński et al., 2008a). These methods employ SH (shear 
horizontal) surface waves of the Love and Bleustein-Gulyaev (B-G) type. The energy of the 
SH surface wave is concentrated in the vicinity of the waveguide surface. Thus, the SH 
surface wave velocity and attenuation strongly depend on the boundary conditions on the 
waveguide surface which is viscoelastically loaded. Application of these SH surface waves 
extends considerably range of measuring pressures (up to 1 GPa). Moreover, the viscosity 
measurement is simplified and can be computerized. This enables on-line measurements of 
liquid viscosity.  



 Acoustic Waves 

 

318 

Pressure is an important parameter in processes of glass making when pressures in regime 
of some hundreds of megapascals occur e.g., in injection molding or pressure-assisted 
sintering. Changes in the melt viscosity upon pressurization result in changes in the glass 
transition temperature and the working regime for glasses (Del Gaudio et al., 2009).  
In earth science interesting information can be obtained from the high-pressure rheological 
investigations of molten minerals (Bingwell et al., 2004). Moreover, oil-based drilling fluids 
have become widely used in oil industry because of their distinct advantage over water-
based drilling fluids. However, unlike water-based drilling fluids, oil-based drilling fluids 
show significant rheological properties dependence on temperature and pressure. It is 
highly recommended to measure rheology of the actual mud system at high pressures prior 
to drilling operations (Zhao et al., 2008).  
The properties of water at high pressures are investigated for the purpose of studying the 
physical chemistry, geophysics, planetology, and the most diverse problems in science and 
engineering. At pressures lower than 1 GPa, the rheological properties of water, including 
viscosity, are essential for the investigation of hydrodynamic and heat transfer processes. At 
present, the rheological properties of water are used in designing power plants of some 
types, as well as in developing new technologies in the food industry and medicine where, 
in particular, the shock compression of water has come to be used to lithotripsy (Mineev & 
Funtikov, 2005).  
Direct measurements of the physical properties such as density, compressibility and isobaric 
heat capacity are very difficult under conditions of very high pressure. The speed of sound 
is closely linked with these thermodynamic properties and can be measured relatively easily 
and with high accuracy over wide ranges of temperature and pressure. An understanding of 
the pressure dependence of sound speed, attenuation, and relaxation frequencies can 
provide valuable information as to transport quantities such as fluid viscosity and thermal 
conductivity along with ratios of specific heats. Additionally, sound speed is closely related 
to derivatives of the equation of state. Therefore, the precision of these derivatives is often 
substantially better when they are deduce from the speed of sound rather than obtained 
from the analysis of classical pVT data. 
Up to date, high pressure viscosity measurements were performed only in laboratory 
conditions, using conventional mechanical methods (Kulisiewicz & Delgado, 2010), 
developed as early as in the second half of the nineteenth century (Shames, 2002), (Ferguson 
& Kemblowski, 1991). The conventional mechanical methods followed works of such 
eminent scientists as Stokes, Navier, Poiseuille, Couette, et al. The common factor of all 
conventional mechanical methods is their inability to measure the viscosity on-line, without 
interfering with the industrial process controlled. Since on-line monitoring is necessary in 
process automation a need for new real-time monitoring methods emerged.  
In this work new ultrasonic methods for the measurement of the viscosity of liquids under 
high pressure are presented (Kiełczyński et al., 2008a). These methods employ SH (shear 
horizontal) surface waves of the Love and Bleustein-Gulyaev (B-G) type. The energy of the 
SH surface wave is concentrated in the vicinity of the waveguide surface. Thus, the SH 
surface wave velocity and attenuation strongly depend on the boundary conditions on the 
waveguide surface which is viscoelastically loaded. Application of these SH surface waves 
extends considerably range of measuring pressures (up to 1 GPa). Moreover, the viscosity 
measurement is simplified and can be computerized. This enables on-line measurements of 
liquid viscosity.  

Application of Acoustic Waves to Investigate the Physical Properties of Liquids at High Pressure   

 

319 

2. Mechanical measuring methods for the measurement of liquid viscosity  
Among the mechanical methods, the methods using rolling ball (King et al., 1992), falling 
ball (Nakamura et al., 2005), falling needle (Sha, 1997), and falling cylinder (Schaschke et. al., 
2008) are the most popular. Rotational viscometers of Couette type (Matveev et al., 2005) 
form another group of high-pressure viscometers. The critical parts of rotating viscometers 
are seals. The third group of viscometers is based on the Hagen-Poiseuille formula for 
capillary flow (Ripple, 1992). Similarly, a modified capillary tube viscometer is a high-
pressure extrusion slit die viscometer (Lan & Tseng, 2002). Another type of viscometers is a 
sliding plate viscometer. In these viscometers, the medium to be tested is charged in 
between two parallel sliding plates. After shear rate and shear stress are measured, the 
viscosity can be readily evaluated according to the Newton equation of viscosity (Koran & 
Dealy, 1999). However, it is very difficult to extend conventional methods to determine the 
viscosity at high pressure. One of the problems is to control the trajectory of the falling 
(rolling) ball and to track its movements. The resetting of the sinker or rolling ball also 
present difficulties. An eccentric fall of the sinker can cause significant errors in determining 
viscosity based on sinker descent time. Falling sinker viscometers and rolling ball 
viscometers have very long measuring times at high viscosities. Moreover, capillary type 
viscometers pose problems with pressure gradients.  
Conventional mechanical methods and devices for measuring viscosity of liquids possess 
many disadvantages: 
1. presence of moving parts 
2. measurements are tedious and time consuming 
3. require special sophisticated equipment 
4. large dimensions 
5. difficult to computerize 
The application of rotary viscometers is limited due to the problems with generated heat 
and leakage during the transmission of the rotation into high-pressure chamber. Due to 
inherent limitations, the conventional methods cannot operate in real-time, and are only 
laboratory methods. 
There exist also other methods employing different physical phenomena, e.g., magnetic field 
(Mattischek & Sobczak, 1997), (Royer et al., 2002) and light scattering (Fukui et al., 2010), for 
measuring the viscosity of liquids at high pressure. However, they need very complicated 
equipment and specially developed high-pressure chambers.  
This is why, their use for measuring liquid viscosity at high pressure is very limited.  

3. Ultrasonic methods 
3.1 Bulk acoustic waves 
Due to the disadvantages of the mechanical methods a need for new measuring methods 
arose. To this end, ultrasonic methods for the measurements of the viscosity of liquids under 
high pressure were proposed. Ultrasonic waves are mechanical disturbances, propagating in a 
material medium, at frequencies above 20 kHz. Present day technology enables for routine 
generation and detection of ultrasonic waves in the frequency range from ~20 kHz to ~2 GHz. 
However, the frequency range used in acoustic viscosity sensors is usually limited to 1-20 
MHz. The ultrasonic methods due to their accuracy and relative simplicity can be applied in 
the study of liquid state. Ultrasonic velocity and attenuation measurements have proved to be 
useful in investigations of structures of liquids and interactions between the molecules.  
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Standing waves (resonators) and travelling waves (waveguides) were used to investigate 
the rheological properties of liquids at high pressure. For example, a torsionally oscillating 
piezoelectric quartz rod was applied as an ultrasonic viscosity sensor (Phillippoff, 1963), 
(Collings & McLaughlin, 1971), (Ruttle & Stephenson, 1975). In this type of ultrasonic 
sensors bulk type waves were applied. The acoustic energy of bulk waves is distributed in 
the entire volume of the resonator. The contact with a measured liquid takes place on the 
surface of the resonator. This results in the moderate sensitivity of this type of viscosity 
sensors.  
A high-pressure (up to 300 MPa) torsional shear wave rheometer has been developed by 
Kulisiewicz (Kulisiewicz et al., 2007). This measurement system uses transmission of small 
amplitude torsional shear waves generated and detected by piezoelectric elements. In order 
to determine the complex shear modulus the measurement of the time of flight of the bulk 
torsional acoustic wave travelling between driver and sensor plates (distance 0.3–1 mm) is 
used to assess the wave velocity. To perform the viscosity measurement a very complicated 
calibration procedure is needed.  
Modified crystal plate (langasite) resonators were also used to measure the viscosity of liquids 
at high pressure (Andle et al., 2008). This attempt was not successful because of the enormous 
troubles in the construction of the resonator. The structure of the resonator is fragile and not 
robust. Moreover, the range of measuring pressures was very modest (up to 60 MPa).  
To overcome the disadvantages of the bulk wave methods, the author has proposed to use 
the SH surface acoustic waves of the Love and Bleustein-Gulyaev (B-G) type (Kiełczyński & 
Płowiec, 1989). At the beginning, the measurement of the liquid viscosity was carried out at 
the atmospheric pressure.  
Subsequently, SH surface waves, i.e., Love waves and acousto-electric Bleustein-Gulyaev 
waves were used as a tool to measure the rheological parameters of liquids at high pressure 
(Kiełczyński et al., 2008a), (Kiełczyński et al., 2008b).  

4. Surface acoustic waves  
4.1 Love waves  
The Love wave propagates in a semi-infinite layered structure shown in Fig.1. Here, an 
elastic isotropic layer is rigidly attached to an isotropic and elastic half-space. Love waves 
can exist in special layered structures where phase velocity of the SH volume wave in the 
surface layer is smaller than that in the substrate, (Achenbach, 1973), (Farnell, 1978), 
(Royer&Dieulesaint, 2000). Mechanical vibrations of the shear horizontal surface wave are 
performed along the x2 axis parallel to the propagation surface (x1 = 0) and perpendicularly 
to the direction of propagation x3. The energy of Love waves is concentrated in the vicinity 
of the surface. The amplitude 1( )f x  of the surface Love wave should vanish for 1x →∞ . 
The penetration depth of the Love wave is of the order of the wavelength. At low 
frequencies the energy of the Love wave propagates mainly in the substrate. As the 
frequency increases the fraction of energy travelling in the surface layer increases. This 
improves sensitivity to surface perturbations like liquid viscous loading.  
The propagation of Love waves in the layered waveguides is governed by the differential 
problem (Sturm-Liouville problem). Solving this problem, we obtain a set of pairs 
( )1, ( )i if xβ , namely, the eigenvalue ,iβ  and eigenvector 1( )if x  correspond to the 
propagation constant and distribution of the mechanical displacement with depth 1x  of the 
Love wave. The index 1i =  refers to the fundamental mode. Higher modes of Love waves 



 Acoustic Waves 

 

320 

Standing waves (resonators) and travelling waves (waveguides) were used to investigate 
the rheological properties of liquids at high pressure. For example, a torsionally oscillating 
piezoelectric quartz rod was applied as an ultrasonic viscosity sensor (Phillippoff, 1963), 
(Collings & McLaughlin, 1971), (Ruttle & Stephenson, 1975). In this type of ultrasonic 
sensors bulk type waves were applied. The acoustic energy of bulk waves is distributed in 
the entire volume of the resonator. The contact with a measured liquid takes place on the 
surface of the resonator. This results in the moderate sensitivity of this type of viscosity 
sensors.  
A high-pressure (up to 300 MPa) torsional shear wave rheometer has been developed by 
Kulisiewicz (Kulisiewicz et al., 2007). This measurement system uses transmission of small 
amplitude torsional shear waves generated and detected by piezoelectric elements. In order 
to determine the complex shear modulus the measurement of the time of flight of the bulk 
torsional acoustic wave travelling between driver and sensor plates (distance 0.3–1 mm) is 
used to assess the wave velocity. To perform the viscosity measurement a very complicated 
calibration procedure is needed.  
Modified crystal plate (langasite) resonators were also used to measure the viscosity of liquids 
at high pressure (Andle et al., 2008). This attempt was not successful because of the enormous 
troubles in the construction of the resonator. The structure of the resonator is fragile and not 
robust. Moreover, the range of measuring pressures was very modest (up to 60 MPa).  
To overcome the disadvantages of the bulk wave methods, the author has proposed to use 
the SH surface acoustic waves of the Love and Bleustein-Gulyaev (B-G) type (Kiełczyński & 
Płowiec, 1989). At the beginning, the measurement of the liquid viscosity was carried out at 
the atmospheric pressure.  
Subsequently, SH surface waves, i.e., Love waves and acousto-electric Bleustein-Gulyaev 
waves were used as a tool to measure the rheological parameters of liquids at high pressure 
(Kiełczyński et al., 2008a), (Kiełczyński et al., 2008b).  

4. Surface acoustic waves  
4.1 Love waves  
The Love wave propagates in a semi-infinite layered structure shown in Fig.1. Here, an 
elastic isotropic layer is rigidly attached to an isotropic and elastic half-space. Love waves 
can exist in special layered structures where phase velocity of the SH volume wave in the 
surface layer is smaller than that in the substrate, (Achenbach, 1973), (Farnell, 1978), 
(Royer&Dieulesaint, 2000). Mechanical vibrations of the shear horizontal surface wave are 
performed along the x2 axis parallel to the propagation surface (x1 = 0) and perpendicularly 
to the direction of propagation x3. The energy of Love waves is concentrated in the vicinity 
of the surface. The amplitude 1( )f x  of the surface Love wave should vanish for 1x →∞ . 
The penetration depth of the Love wave is of the order of the wavelength. At low 
frequencies the energy of the Love wave propagates mainly in the substrate. As the 
frequency increases the fraction of energy travelling in the surface layer increases. This 
improves sensitivity to surface perturbations like liquid viscous loading.  
The propagation of Love waves in the layered waveguides is governed by the differential 
problem (Sturm-Liouville problem). Solving this problem, we obtain a set of pairs 
( )1, ( )i if xβ , namely, the eigenvalue ,iβ  and eigenvector 1( )if x  correspond to the 
propagation constant and distribution of the mechanical displacement with depth 1x  of the 
Love wave. The index 1i =  refers to the fundamental mode. Higher modes of Love waves 

Application of Acoustic Waves to Investigate the Physical Properties of Liquids at High Pressure   

 

321 

are labeled by 1i > . Similar Sturm-Liouville problem describes propagation of light waves 
in planar optical waveguides and motion of quantum particles in a potential well 
(Schrödinger equation). 
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Fig. 1. a) Excitation of the Love wave in the layered waveguide by means of the PZT plate 
transducer (3). Cu surface layer (1) is deposited on a steel substrate (2), b) Love wave 
amplitude distribution with the depth 1x  for two different frequencies ( 1 2f f> ).  

The Love wave has a multimode character. In the present paper, we have restricted our 
attention to the propagation of the fundamental mode of Love waves.  
Love waves are excited by the plate transducer (3) attached to the waveguide face, see Fig.1. 
The sending-receiving transducer (3) is excited to shear vibrations parallel to the waveguide 
surface and generates impulses of the Love wave that propagate along the waveguide 
surface. Theoretical and experimental analysis of the generation of SH surface waves by 
means of a plate transducer is presented in (Kinh & Pajewski, 1980). 

4.2 Bleustein-Gulyaev (B-G) waves  
Bleustein-Gulyaev (B-G) waves are shear horizontal acousto-electric waves, and they have 
no elastic counterpart (Royer & Dieulesaint, 2000), (Nakamura, 2007). If there is no 
piezoelectric effect, B-G wave degenerates to the shear bulk wave.  
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The distribution of the B-G wave mechanical displacement is similar to that of the Love 
wave. The B-G wave is capable of propagating along the surface of some crystals, e.g., with 
6mm  or 2mm  symmetry (Zhang et al., 2001), as well as along the surface of properly 
polarized piezoelectric ceramics, see Fig.2.  
Metallization of the PZT ceramic surface lowers the penetration depth of the B-G wave. In 
this case the penetration depth is of the order of a wavelength. Hence, in the metallized 
surface condition the B-G wave is more sensitive to liquid loading. B-G waves are excited 
similarly as Love waves, using the plate transducer (Kiełczyński et al., 2004), see Fig.2. 
 

 
Fig. 2. Excitation of the B-G wave in a piezoceramic PZT waveguide (2) covered on the 
surface by a very thin metallic (Ag) layer (1) by means of the PZT plate transducer (3). PZT 
ceramics (both in the transducer and waveguide) is polarized along the axis 2x .  

The Love wave is a dispersive wave (i.e., the phase velocity is dependent on frequency) and 
can exhibit higher waveguide modes than fundamental one. By contrast, the B-G wave is a 
nondispersive wave. Moreover, an advantage of B-G wave for liquid sensing application is 
that B-G wave has no multiple modes. This makes that inverse determination of liquid 
properties by utilizing B-G wave is easier than that by utilizing SH surface waves of the 
Love type. Both types of SH surface waves are widely used in resonators, sensors and delay 
lines.  

5. Application of SH surface waves for determining the rheological 
parameters of liquids at atmospheric pressure  
To overcome the drawbacks of the bulk wave method, shear horizontal (SH) surface 
acoustic waves (SAW) such us: 
1.     Love waves and 
2.     Bleustein-Gulyaev (B-G) waves 
have been introduced for the viscosity measurements under ambient pressures (Kiełczyński 
& Płowiec, 1989). These waves have only one SH component of mechanical displacement 
perpendicular to the direction of wave propagation and parallel to the waveguide surface. 
The energy of these waves is concentrated in the vicinity of the surface being in contact with 
a measured liquid. In consequence, the sensitivity of the viscosity sensors using SH surface 
acoustic waves (SAW) can be several orders larger than the sensitivity of the sensors 
employing bulk shear acoustic waves. 
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To measure the viscosity of liquid Rayleigh waves were also applied. Rayleigh waves have 
at least two components of vibrations i.e., longitudinal and vertical transverse, which cannot 
be separated. When Rayleigh waves propagate at a solid-liquid interface, the surface normal 
displacement radiates compressional waves into the liquid. Consequently, Rayleigh waves 
can be completely attenuated within the propagation range of the sensing device. Therefore, 
Rayleigh waves are impractical for use in the measurements of liquid viscosity. However, 
Rayleigh waves can be successfully applied in gas phase sensors.  
In measurements of liquid viscosity, the effect of an investigated liquid on the properties of 
acoustic waves propagating in waveguides is primordial. The liquid presented on the 
waveguide surface loads it mechanically. The value of this load is proportional to the value 
of the mechanical impedance ZL of a liquid medium (Kiełczyński et al., 2004). The 
mechanical impedance of a layer of liquid loading the surface of the SH surface wave (i.e., 
Love or B-G wave) waveguide is equal to the characteristic shear impedance of the liquid ZL 
for plane waves: 

 ( )1 2
L L LZ Gρ= ⋅  (1) 

where: ' ''LG G jG= +  is the complex shear modulus of the liquid defined as the ratio (T/S) of 
the shear stress T to the shear strain S, Lρ  is the liquid density and ( )1 21j = − .  
      In general, liquid loading of the sensor surface changes the phase velocity v  and the 
attenuation α  of the SH surface wave. The complex propagation constant γ  of the SH 
surface wave changes (Ballantine et al., 1997):  
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where: jγ α β= + , vβ ω= , 0v  is the phase velocity of the non-perturbed SH surface wave 
on the free surface, and ω  is the angular frequency of the SH surface wave.  
Significant experimental indications result from Eq.2. Namely, (1) by measuring the time 
delay between two subsequent echoes, one can determine the relative change in phase 

velocity of the surface wave 
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of the surface wave is determined experimentally. Knowledge of the change in complex 
propagation constant γ  is fundamental to the established nondestructive method used to 
determine the rheological parameters of a liquid medium.  
By applying the perturbation method one can prove that the change in the complex 
propagation constant γ  of the SH surface wave produced by viscoelastic liquid loading is as 
follows (Auld, 1973):  
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where: 2v  is the SH surface wave amplitude on the waveguide surface ( 1 0x = ), P  is the 
mean power on the unit width of the SH surface wave. The coefficient K  is the 
characteristic quantity for each SH surface wave waveguide and depends solely on the 
material parameters of the waveguide and frequency (Kiełczyński & Płowiec, 1989).  
Knowing the change in the complex propagation constant γΔ  from the experiment, we can 
calculate the complex shear impedance of a liquid L L LZ R jX= + . Subsequently, by 
separating the real and imaginary parts of the Eq.1 we can calculate the real G′  and 
imaginary G′′  parts of the complex shear modulus LG  of the liquid and, consequently, the 
rheological parameters of a viscoelastic liquid.  

6. Application of SH surface waves for measuring the viscosity of liquids at 
high pressure 
The Love wave and the Bleustein-Gulyaev (B-G) wave method for measuring the viscosity 
of liquids at high pressures have been established in the Laboratory of Acoustoelectronics of 
the Institute of Fundamental Technological Research, Polish Academy of Sciences in 
Warsaw, Poland (Kiełczyński et al., 2008a), (Kiełczyński et al., 2008b). 
The SH SAW method for measuring the viscosity of liquids at high pressures possesses 
many advantages: 
1.     absence of moving parts 
2. operation in real time 
3. short measuring time 
4. high sensitivity 
5. low power consumption 
6. small dimensions, simple and robust construction of the sensor 
7. possibility of computerization 
8. output signal is electrical 
9. no leakage problems 
10. no heating caused by shear  

6.1 Measuring set up  
High-pressure chamber was designed and fabricated in the Institute of Physics at Warsaw 
University of Technology (Rostocki et al., 2007). High pressure was generated in a thick-
walled cylinder of 17 mm internal diameter with a simple piston and Bridgman II sealing 
system. The piston-cylinder assembly was working with a 20–tonne hydraulic press, driven 
by hand operated pump. The maximum pressure in this arrangement is limited to about 1.2 
GPa due to the hydraulic press working range. For pressure measurement, a typical 500 Ω 
manganin transducer was used. Its resistance was measured with a precise HP 34970 
multimeter. An accuracy of the pressure measurement was better than ± 0.5 MPa. All 
experiments were carried out at the temperature 293 K. Temperature was measured with the 
Cu – Constantan thermocouple placed inside the chamber. The described previously 
viscosity sensor (B-G or Love waveguide, see Figs.1, 2 and 4) was placed inside the high-
pressure chamber, see Fig.3.  
The piezoelectric transducer attached to the SH surface wave waveguide, manganin coil and 
thermocouple were connected with the external measuring setup by an electrical 
multichannel lead-through. 
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Fig. 3. Ultrasonic set up for measuring the viscosity and pressure of liquids under high 
pressure. 
 

 
Fig. 4. Love wave waveguide (Cu surface layer on a steel substrate) connected to the high-
pressure lead-through (on the left).  

In the setup for measuring viscosity using the SH surface wave, see Fig.3, the sending-
receiving piezoelectric transducer is driven by the TB-1000 pulser-receiver computer card 
(Matec, USA). The TB-1000 pulser generates the rf tone burst with a frequency f = 2 MHz 
and length equal to 0.5 μs. The repetition period equals 0.4 ms. The SH surface wave 
impulse generated by the transducer is reflected in multiple ways between two opposite 
edges of the SH surface wave waveguide (Fig. 4). The signals received by the transducer, see 
Figs.5a, b, are amplified by the TB-1000 receiver and sent into the PDA-500 digitizer card 
(Signatec, USA). This card samples and digitizes the input analog signals. The stored signals 
are then analyzed by computer software. For each measurement, the ultrasonic signal is 
averaged 1024 times in order to improve the signal – to – noise ratio. A computer program 
which controls the operation of the pulser–receiver card and digitizer card was written in C 
language.  

6.2 Theoretical background  
In this paper, the liquids investigated under high pressure are treated as the Newtonian 
liquids. The model of a Newtonian liquid was used by (Philippoff, 1963). He stated that the 
majority of oils in the considered shearing rate (about 1 MHz), and under high pressure are  
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Fig. 5. (a) Oscillogram of the SH surface wave impulses reverberating in the waveguide 
unloaded with an investigated liquid, and b) Oscillogram of the SH surface wave impulses 
reverberating in the waveguide loaded with an investigated liquid.  

the Newtonian liquids. This can justify the use of a Newtonian liquid model in our paper. 
For the case of a Newtonian (viscous) liquid, the shear mechanical impedance ZL (defined as 
a ratio of the shear stress to the shear vibrational velocity) can be expressed as follows 
(Landau&Lifshitz, 1958): 
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where: η  is the viscosity, Lρ  is the density of a liquid and ( )1 21j = − .  
So that, we may regard formula (5) as holding for the liquids considered in the paper.  

 
2 22 2L L

L L

R X
η

ωρ ωρ
= =   (5) 

where: RL and XL is a real and imaginary part of the mechanical shear impedance of a liquid.  
The shear mechanical impedance of a liquid L L LZ R jX= +  can be determined from the 
measurement of the change in attenuation and time of flight of wave-trains that propagate 
in the waveguide loaded by a liquid (Kiełczyński et al., 2004), see Fig.6.  
The real part RL of the shear mechanical impedance of a liquid can be expressed as, see Fig.6:  

 
( )0 1

1 1ln
2L

A A
R
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where: 0
1A  and 1

1A  represent amplitudes of the first echo of the SH surface wave for an 
unloaded ( )0

1A  and loaded ( )1
1A  waveguide respectively, L is the length of the waveguide 

covered with an investigated liquid. 
 

 
Fig. 6. Scheme of the SH surface wave measuring method, (a) free (nonloaded) waveguide 
surface and (b) waveguide surface loaded with a viscoelastic liquid. 1) waveguide of the SH 
surface wave, (2) sending+receiving transducer, and (3) layer of an investigated viscoelastic 
liquid.  

6.3 Experimental results (Love waves)  
An example of variations in viscosity of liquids as a function of hydrostatic pressure 
measured by the Love wave method is presented in Fig.7  (Kiełczyński et al., 2008b), 
(Rostocki et al., 2010).  
Castor oil is a vegetable oil, that is a triglyceride in which approximately ninety percent of 
fatty chains are ricinoleic acid. Oleic and linoleic acids are the other significant components. 
Castor oil and its derivatives have applications in the manufacturing of soaps, lubricants, 
hydraulic and brake fluids, paints, dyes, coatings, inks, cold resistant plastics, waxes and 
polishes, nylon, pharmaceuticals and perfumes.  
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Fig. 7. Variations in viscosity of castor oil, as a function of hydrostatic pressure, measured by 
the Love wave method, 2f MHz= . Red arrow indicates the hydrostatic pressure such as on 
the bottom of the Marianas Trench.  

The pressure was generated in 10 MPa steps then kept constant for about 2-5 minutes. 
During that time the pressure was carefully observed. That allowed to identify pressure 
drop due to the first order phase transition and to observe whether the system is reaching 
thermodynamic equilibrium. After approaching 0.6 GPa the pressure was kept constant for 
about 20 hours to enable the phase transformation to occur. During the phase transition the 
small drop of pressure and increment of viscosity was observed.  
As it can be seeing in Fig.7, the experimental curve up to about 400 MPa is almost tangential 
to the exponential curve which represents the Barus formula ( ) ( )0 expp pη η α= , (continuous 
curve in Fig.7), where: 0η  is the viscosity at atmospheric pressure and α  is the viscosity – 
pressure coefficient. Above 400 MPa the experimental points are raising slower than the 
theoretical prediction. Finally, at 600 MPa when the pressure rise was stopped for about 20 
hours the viscosity has risen to the new value characteristic for the high-pressure phase of 
castor oil. The further increment of viscosity was rather linear function of pressure.  

6.4 Experimental results (Bleustein-Gulyaev waves) 
Similar as in the case of Love waves, measurements of high-pressure liquid viscosity were 
also performed using the Bleustein-Gulyaev wave method. Fabrication of the B-G wave 
waveguide is easy and its construction is simpler that that of the Love wave. On the other 
hand, Love wave waveguides are more robust and mechanically resistant.  
A triglyceride and unsaturated fat: a triolein (C17 H33 COO)C3 H5 was investigated. Triolein 
is a model liquid in investigations of high-pressure phenomena in the natural oils that are 
very important in biodiesel technologies as well as in high-pressure food processing.  
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drop due to the first order phase transition and to observe whether the system is reaching 
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pressure coefficient. Above 400 MPa the experimental points are raising slower than the 
theoretical prediction. Finally, at 600 MPa when the pressure rise was stopped for about 20 
hours the viscosity has risen to the new value characteristic for the high-pressure phase of 
castor oil. The further increment of viscosity was rather linear function of pressure.  

6.4 Experimental results (Bleustein-Gulyaev waves) 
Similar as in the case of Love waves, measurements of high-pressure liquid viscosity were 
also performed using the Bleustein-Gulyaev wave method. Fabrication of the B-G wave 
waveguide is easy and its construction is simpler that that of the Love wave. On the other 
hand, Love wave waveguides are more robust and mechanically resistant.  
A triglyceride and unsaturated fat: a triolein (C17 H33 COO)C3 H5 was investigated. Triolein 
is a model liquid in investigations of high-pressure phenomena in the natural oils that are 
very important in biodiesel technologies as well as in high-pressure food processing.  
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Most of the natural oils like castor oil, soybean oil, rapeseed oil, etc. consist of triglycerides 
of various fatty acids. The statistical characteristics of the molecular composition of these 
oils have made difficulties for the interpretation of the phenomena observed at high 
pressure. Therefore experiments have been concentrated upon well-defined triacylglycerol 
(triglyceride) structures.  The triolein is very good model-liquid for the whole group of 
triglycerides since the phase transition takes place within only several dozen minutes after 
the application of sufficient pressure. That allows for more detailed and accurate studies 
than similar phase transition in vegetable oils taking even up to ten days from the 
application of sufficient pressure to the start of the phase transition.  
Variations in viscosity of triolein as a function of hydrostatic pressure measured by the B-G 
wave method is presented in Fig.8 (Kiełczyński et al., 2008a). Up to about 500 MPa the 
viscosity was increasing exponentially according to the known empirical Barus formula 
(continuous curve in Fig.8). After approaching 700 MPa the compression was stopped and 
the piston in the high-pressure chamber was fixed to enable the phase transformation to 
occur undisturbed. During the phase transition a pressure drop of about 100 MPa was 
observed in the chamber. The viscosity showed the further rise despite the pressure drop. It 
means that volume occupied by the resulting high-pressure phase diminishes. After the 
termination of the phase transformation process, the further increase of viscosity with 
increasing pressure was observed. The changes of viscosity during the decompression 
process inducing the high-pressure phase decomposition have shown large hysteresis 
(upper curve). Large hysteresis indicates existence of large internal friction forces. The phase 
transition in the case of triolein (Fig.8) lasts 1 hour. By contrast the phase transition in castor 
oil (Fig.7) is completed after 20 hours. 
 

 
Fig. 8. Variations in viscosity of triolein, as a function of hydrostatic pressure, measured by 
the Bleustein-Gulyaev (B-G) wave method, 2f MHz= . Red arrow indicates the hydrostatic 
pressure such as on the bottom of the Marianas Trench.  
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7. Measurement of sound speed in liquids at high pressure  
For the measurements of the phase velocity of longitudinal ultrasonic waves we have 
constructed the setup (Fig.9) especially designed to obtain a low level of parasitic ultrasonic 
signals (Kiełczyński et al., 2009).  
High-pressure chamber and computer cards are the same as in the viscosity measurements 
described previously. A special mounting of transducers in the high-pressure chamber was 
fabricated. The transducers were 5 MHz LiNbO3 (Y36 cut) plates (Boston Piezo-Optics Inc., 
USA). The phase velocity of the longitudinal ultrasonic wave was measured using a cross-
correlation method (Sugasawa, 2002) to evaluate the time of flight (TOF). 
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Fig. 9. Ultrasonic setup for measuring the phase velocity of longitudinal acoustic waves in 
liquids as a function of hydrostatic pressure.  

For the sending and receiving of wave pulses the TB-1000 pulser-receiver computer card 
(Matec, USA) was used. The TB-1000 pulser generated the rf tone burst with a frequency 5 
MHz and length equal to 0.3 sμ . The longitudinal wave impulse generated by the sending 
transducer propagated in investigated liquid and was detected by the receiving transducer. 
The PDA-500 digitizer card (Signatec, USA) sampled and digitized the signals received by 
the transducer and amplified by the TB-1000 receiver. The stored signals were then analyzed 
by computer software. For each measurement, the ultrasonic signal was averaged 1024 times 
in order to improve the signal-to-noise ratio. A computer program that controls the 
operation of the pulser-receiver card and digitizer card was written in C++ language. The 
time of flight of the ultrasonic pulses (see Fig.10) was evaluated by applying the cross-
correlation method (Sugasawa, 2002), (Viola & Walker, 2003). The cross-correlation method 
is a global differential method. Due to this reason, the cross-correlation method does not 
depend on the trigger level and delays in cables and amplifiers. The change in the height of 
the column of a liquid caused by the piston movement was measured by a digital caliper. 
The piezoelectric transducers and manganin coil were connected with the external 
measuring setup by an electrical multichannel lead-through.  
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Fig. 10. Time of flight (TOF) between two ultrasonic impulses (delimited by cursors) is 
evaluated by using the cross-correlation method.  
The sound velocity vL was calculated using the formula:  

 0
L

lv
t

=
Δ

   (7) 

where: 0l  is the distance between sending and receiving transducer, tΔ  is time of flight 
(TOF) of the ultrasonic signal.  
The isothermal compressibility Tβ  is given by the formula:  

 1
T

V
V p

β ∂
= −

∂
 (8) 

where: V is the volume of a liquid in the chamber for a given value of the hydrostatic 
pressure p.  

7.1 Results  
The measurements of the phase velocity (Fig.11) and isothermal compressibility (Fig.12) of 
triolein were carried out in function of hydrostatic pressure up to 650 MPa.  
The pressure was generated in 20 MPa steps then kept constant about 2 min. that allowed to 
control whether the system was reaching equilibrium. Up to 450 MPa the phase velocity was 
increasing monotonically with pressure (arrow 1 in Fig.11). After approaching 450 MPa the 
compression was stopped, and the piston in the high-pressure chamber was fixed to enable 
the phase transformation to occur undisturbed. During the phase transition a pressure drop 
of about 150 MPa was observed in the chamber. It means that the volume occupied by the 
resulting high-pressure phase of triolein diminished. The phase velocity showed the further 
rise despite the pressure drop (arrow 2 in Fig.11). Finally the phase velocity has risen to the 
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new value characteristic for the high-pressure phase of triolein. Once the phase transition 
was completed the pressure was further increased up to about 650 MPa (arrow 3 in Fig.11). 
The phase velocity of longitudinal waves in high-pressure phase has increased 
monotonically. After approaching 650 MPa the decompression process was started (arrow 4 
in Fig.11). At the point marked in Fig.11 by a the decomposition of the high-pressure phase 
started. Between points marked by a and b two phases coexisted in triolein. 
Compressibility is an important property. It enters into many pressure-dependent 
thermodynamic expressions, and is an essential parameter for the design and use of any 
high-pressure equipment. Compressibility is dependent on the intermolecular forces acting 
within the substance, that is, it is the result of the balance between attractive and repulsive 
potentials. Compression results in decreasing the average intermolecular distance and 
reducing rotational and translational motion. Compressibility of liquids decreases with 
pressure, since the initial “free volume” has largely disappeared, and the repulsive potential 
is stronger than the attractive at high pressure. (Barbosa, 2003) 
The isothermal compressibility of triolein presented in Fig. 12 was calculated using Eq.8. 
The volume changes VΔ  were determined from the changes of the height of the triolein 
column measured by the slide caliper. The arrows indicated by numbers 1, 2 and 3 in Fig.12 
refer (similarly as in Fig.11) to the low-pressure phase, phase transition and high-pressure 
phase respectively.  
It is worth noticing that the value of isothermal compressibility Tβ  during the phase 
transition is negative. Moreover, the isothermal compressibility of high-pressure phase is 
different than that of low-pressure phase.  
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Fig. 11. Phase velocity vL of longitudinal acoustic waves in triolein in function of hydrostatic 
pressure. (1) refers to low-pressure phase, (2) indicates the phase transition, (3) refers to 
high-pressure phase, and (4) indicates the decompression, 5f MHz= . Red arrow indicates 
the hydrostatic pressure such as on the bottom of the Marianas Trench.  
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Fig. 12. Isothermal compressibility of triolein Tβ  as a function of hydrostatic pressure. 
During the phase transformation (arrow 2) Tβ  is negative. 5f MHz= . Red arrow indicates 
the hydrostatic pressure such as on the bottom of the Marianas Trench. 

7.2 Possibility of measurement of various physical (thermodynamic) parameters  
The speed of sound is a particularly interesting property to study as it provides an indirect 
way to all of the observable thermodynamic properties of a single fluid phase. This way is a 
convenient one experimentally because sound speed measurements may be made quickly 
and accurately over ranges of temperature and pressure by means of largely automated 
apparatus.  
The knowledge of the thermodynamic properties of pure organic liquids is of practical 
interest to industries in different fields, such as chemical, pharmaceutical industries, and 
food technology, because the applied industrial procedures are influenced by the 
temperature and pressure dependence of the used liquids.  
The seven thermodynamic variables: pressure, volume, temperature, entropy, and the three 
components of the vector fluid velocity, can be related to one another through the equation 
of state, the equation of energy conservation, and also through the equation of continuity for 
mass and momentum, and the second law of thermodynamics. (Heydemann&Houck, 1969), 
(Stallard et al., 1969).  
The densities, isobaric heat capacities, isobaric thermal expansions, isentropic 
compressibilities, isothermal compressibilities, and internal pressures as functions of 
temperature and pressure can be calculated using the experimental speeds of sound under 
elevated pressures together with the densities and heat capacities at atmospheric pressure 
(Oakley et al, 2003a), (Oakley et al, 2003b). 
The bulk modulus of biodiesels determines the spray characterisics upon injection. As the 
fuel injection in the engine is approximately an adiabatic process, the adiabatic bulk 
modulus seems to be more useful than the isothermal one in estimation of the fuel injection 
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timing. The only experimental method that leads directly to adiabatic modulus is the 
acoustic one, based on the measurement of the speed of sound. The method is relatively 
simple tool for determination of thermodynamic properties, especially at high pressures 
(Dzida & Prusakiewicz, 2008).  
The measurements of ultrasonic velocity can be applied for studying the nature of molecular 
systems and physicochemical properties of liquid mixtures and solutions. The results are 
interpreted in terms of molecular interaction between components of the liquid mixtures. A 
study of the thermophysical properties as a function of pressure and temperature in a 
homologous series of chemical compounds is of great interest not only for industrial 
applications (for example, the petroleum industry), but also for fundamental aspects for 
understanding the influence of the chain length of the components on the liquid structure 
and the developing models for an accurate representation of the liquid state. To this aim, 
ultrasonic speed measurements under pressure have been successfully applied (Daridon et 
al., 2002).  
The experimental determination of the non-linearity parameter B/A is possible using the 
measurement of the ultrasonic wave velocity change due to an isentropic change of the 
static pressure (Khelladi et al., 2009), (Plantier et al., 2002).  

8. Measurement of the physical properties of liquids during phase transition  
High hydrostatic pressure can change molecular structure and intermolecular interactions in 
liquids. (Kulisiewicz et al., 2007), (Nithya et al., 2009). Rheological parameters describe 
macroscopic properties of a material. However, they are governed by molecular structure 
and mutual interactions of molecules in the material. Therefore, rheological parameters can 
be correlated with micro-structural parameters of a liquid (Delgado et al., 2010).  
Investigation of phase transitions is important in lubricants, since rheological properties of 
lubricants can change during phase transitions. Investigations of the phase transitions in 
vegetable oils (e.g., castor oil or olive oil) and in the triglycerides (e.g., triolein) are of great 
importance. Vegetable oils are usually excellent boundary lubricants. They show higher 
viscosity index than mineral oils and they are environmentally friendly. In general, 
vegetable oils are highly attractive substitutes for petroleum based oils. Unfortunately their 
high-pressure behavior was not yet systematically investigated. The most important is to 
determine the range of pressures when phase transition (solidification) begins (Mia et al., 
2007). 
Investigation of phase transitions is also very important in food industry and in food 
conservation. Phase transitions can modify irreversibly the molecular structure and quality 
of food products. Media with high molar volumes like edible oils and fats exhibit phase 
transition at pressure levels about several hundred megapascals.  
Investigation of phase transitions was impossible with conventional mechanical methods. 
By contrast, the proposed novel SH surface wave methods enable for the measurement of 
the rheological parameters of liquids during phase transitions.  
As it is seen in Figs.7, 8, 11 and 12 during phase transitions a step change in liquid viscosity, 
phase velocity and compressibility occurs. This phenomenon is a clear indication that phase 
transitions in a liquid were initiated. 
The kinetics of the phase transition, as a function of pressure, was investigated during phase 
velocity measurements in triolein. Pressure changes, occurring during phase transition, 
were registered with the piston locked in a fixed position, see Fig. 13. At stable pressure 
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The kinetics of the phase transition, as a function of pressure, was investigated during phase 
velocity measurements in triolein. Pressure changes, occurring during phase transition, 
were registered with the piston locked in a fixed position, see Fig. 13. At stable pressure 
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conditions (450 MPa) the pressure remained constant in the first 30 minutes. Subsequently, a 
rapid decrease of pressure was observed, due to a phase transition in triolein. After about 60 
minutes the pressure level stabilized on 330 MPa. This means that phase transition was 
complete. As a result, a new high-pressure phase in triolein with different microstructure 
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the low-pressure phase. The high-pressure induced phase transitions in vegetable oils are 
the phase transitions of first order.  
To the author’s knowledge, the measurement of the phase velocity of longitudinal acoustic 
waves in liquids during the phase transitions was not reported in the scientific literature and 
is a novelty. Measurement of the viscosity and sound speed in liquids during phase 
transitions is an original author’s contribution. 
 

 
Fig. 13. Variation in pressure on time during the phase transition in triolein.  

9. Summary 
In this Chapter new methods for measuring the viscosity of liquids at high pressure are 
presented. Measurement of liquid viscosity at high-pressure is important in tribology in 
rolling bearings, in design and exploitation of ship diesel engines, in the chemical, 
pharmaceutical and cosmetic industries as well as in bio-fuels, and food conservation. 
Based on the SH surface Love and Bleustein-Gulyaev waves, we designed novel methods 
and devices to characterize viscosity of liquids at high pressure. The SH SAW viscosity 
sensor is electrically responsive. Owing to this fact, modern methods of the digital signal 
acquisition and processing can be efficiently used. The measuring setup operates in real-
time and can be employed for measuring liquid viscosity under high-pressure in the course 
of the technological processes. In general, the SH SAW method has high sensitivity and high 
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time process monitoring and control thereby reducing down time and increasing product 
quality in food, chemical, cosmetic, pharmaceutical and petroleum industry. 
The SH SAW method can be computerized. This enables continuous (on-line) monitoring of 
the rheological parameters of a liquid “in situ” in the processing line. Small dimensions of 
the viscosity sensor and the absence of moving parts are substantial advantages of this 
method. Only an electrical lead-through is needed. Therefore, it is very easy to assemble the 
sensor into the high-pressure chamber. 
Ultrasonic methods using SH surface waves enable the measurement of the liquid viscosity 
in difficult access places such as pipelines and tanks.  
In general, conventional mechanical methods enable the measurement of viscosity only up 
to about 200 MPa. In some cases, extending the measuring range up to 400 MPa may be 
possible after overcoming the enormous difficulties. Classical methods are in principle 
mechanical methods and can not be applied “in situ”. 
Application of ultrasonic waves extends considerably the range of pressures (up to 1 GPa) 
employed during the measurement of viscosity.  
We measured the viscosity of liquid not only in the exponential range but also during the 
phase transitions, at high pressure phase and during the decompression. This is a novelty.  
The measurements of the rheological properties of liquids during the phase transitions are 
not possible using conventional mechanical methods. On the other hand, application of the 
ultrasonic methods enables both the detection of phase transitions and investigation of their 
kinetics. This makes it also possible to determine the changes in microstructure occurring 
during the phase transitions.  
To the author’s knowledge, the measurements of liquid viscosity and sound speed under 
high-pressure during the phase transition and during the pressure decompression have not 
been reported in the scientific literature. This is an original author’s contribution. 
In future research it would be desirable to measure the physical properties of liquids in 
function of temperature and pressure. In this way, additional thermodynamic parameters 
could be determined (e.g., molar volume or adiabatic specific heat). The measurements 
should be extended into the non-Newtonian liquids (e.g., slurries, drilling fluids). In future 
the developed method could be applied in industry for on-line operation to investigate 
lubricants and bio-fuels (bio-diesels) and to control the food processing.  
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1. Introduction  
The tire pressure monitoring system (TPMS) can not only make the driver more safety, but 
also save fuel and protect the tire. Tire safety is attracting the driver's attention, the United 
States had developed laws to enforce the TPMS installation in the car. In this paper, the 
basic structure and the implement method of TPMS are introduced. The SAW theory and 
some surface acoustic wave (SAW) temperature and pressure sensors which suit for the 
TPMS application are illustrated, because the passive sensor is becoming the focus in the 
TPMS research field. Passive SAW sensor is the good choice for TPMS, according to its 
wireless, passive, small size, zero age rate etc. The wireless passive SAW TPMS is one of the 
most important research direction. 
For the typical applications of automotive TPMS, a novel microsensor based on SAW is 
reported in this paper. The kernel structure and design theory of this sensor with a single 
sensing unit are introduced. With the theory of SAW delay line, the effects of temperature 
and pressure on the microsensor were able to be reflected by the variations of the radio 
frequency (RF) echo signals. The accurately measured temperature and pressure values 
were obtained by using of a weight factor in the data process. The excellent agreement 
between the pressure and temperature results measured by the sensor and the direct 
measurement data is presented. The practical results in the certain ranges of pressure and 
temperature demonstrated that the microsensor is able to measure temperature (0kPa-
200kPa) and pressure (20ºC-100ºC) at the same time. For SAW sensors the temperature 
measurement accuracy can reach 0.05ºC, and the pressure measurement accuracy can reach 
7.2kPa. In the areas of TPMS, where reliability and durability are really demanding, the 
reported microsensor has its practicability and potential market with its advantages of 
simple structure, and wireless and passive working mode. 

2. Background of tire pressure monitoring system 
Security, economy and comfort of the automobile are the basic demands for the customers. 
Automakers have made significant improvements on vehicle safety in recent years, such as 
Antilock-Braking System (ABS), Traction Control System (TCS), 4 Wheel Steering (4WS) and 
Electronic-Stability Program (ESP) in today’s vehicle products. The applications of these 
technologies can contribute to highway-accident reduction, i.e., ensuring that the vehicle is 
in good condition for use. 
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Tire condition is one of the greatest contributors to safety. Paradoxically, studies in the 
United States reveal that although about 85% of the population recognizes the importance of 
maintaining properly inflated tires, most drivers wait until the vehicle’s service interval to 
have a car service person check the tires. Tire pressure may have an influence on any crash 
that involves braking, since low tire pressure can result in increased stopping distances. 
Road safety can cost as many as 40,000 lives every year across Europe. 
With vehicle-service intervals that now approach 50,000 km for some models, lack of 
attention to routine maintenance clearly creates unnecessary hazards. Under-pressure tires 
sometimes are not easy to be observed, because the circumference changes relatively little 
from 1 to 3 bar of internal pressure, and 30% under-pressure is nearly undetectable to a 
casual observer. Fig. 1 shows that it is difficult for an ordinary driver to tell the difference 
between two tires with different pressures (David, 2004). A study from the U.S. DoT 
(Department of Transportation) that surveyed 11,530 vehicles nationwide showed that 27% 
of passenger cars and 33% of light trucks operated with one or more substantially under-
pressure tires. The consequences of tire under-pressure are increased fuel costs, reduced tire 
and tread life, tire blowouts and tread separation, dual wheel assembly problems and 
additional high temperature problems. Incorrect tire pressure can affect the handling, 
braking and stability of a vehicle and, according to industry statistics, may be responsible 
for hundreds of thousands of accidents each year. One of the automotive safety 
requirements that is becoming more prominent is the use of TPMS, which alerts the driver 
when tire pressure or temperature drops to an unsafe level, just like the warning lights that 
signal low fuel level. 
 

  
Fig. 1. A fully inflated tire (left) and one with only 70% pressure (right) (David, 2004) 

Unsurprisingly, vehicle manufacturers and regulatory authorities are keenly interested in 
techniques for TPMS. This fits to visions and strategies of vehicle manufacturers, automotive 
suppliers and tire manufacturers. This development was mainly driven by vehicle 
manufacturers. Although automakers recognized this requirement as long ago as 1970, but a 
cost-effective solution simply wasn’t available at that time. Today’s technologies can satisfy 
the requirement in an affordable way, so the U.S. DoT mandates that most vehicles built 
from now on should carry a TPMS, and all vehicles sold in the United States must be 
equipped with TPMS starting from 2007. Key legislation appeared in the TREAD 
(Transportation Recall Enhancement, Accountability, and Documentation) Act of November 
2001, with main support work coming from the U.S. NHTSA (National Highway Traffic 
Safety Administration). 
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TPMS not only provides enhanced safety for drivers and passengers, offers more 
convenience, but also eliminates guesswork to the tire pressure and temperature. TPMS will 
warn drivers when a tire is abnormal, preventing tire damage and subsequent accidents. 
TPMS will not only help prevent accidents, but save as much as $1.7 billion each year in fuel 
and vehicle maintenance costs, as under-pressure tires shorten tire life and increase fuel 
consumption, according to NHTSA. TPMS meets the demand for improved vehicle safety, 
performance, reliability and fuel efficiency. The future business for TPMS is set to be huge. 
Consultant firm strategy analytics expects TPMS to become the fastest-growing automotive 
electronics system, reaching 30 million units by 2010. 

3. TPMS implementation methods 
TPMS turns tire pressure checking into an automatic process. TPMS can measure the tire 
pressure and temperature parameters automatically utilizing sensors inside the tires at any 
time. According to the measurement results, TPMS can give drivers an alarm when the 
pressure or temperature in tires is abnormal so that the drivers can take the appropriate 
corrective action (Wang et al., 2003). In this way, the tire pressure and temperature are kept 
at normal level, and the resistance of tire rolling is reduced, tire abrasion and fuel 
consumption are decreased, tire’s service-life is increased, so the economy and safety of the 
car are improved greatly. 
Currently, two methods of TPMS are being developed, which are indirect TPMS and direct 
TPMS (David, 2004). Direct TPMS measures the tire pressure and temperature through the 
sensors which are installed in the tires.  Indirect TPMS obtains tire pressure through external 
software algorithms by analyze rotational speed of each wheel. 

3.1 Indirect TPMS 
Indirect methods use wheel speed sensors and ECU of the ABS system which are already 
existed in the car to infer low tire pressure by looking for a wheel that is spinning faster than 
the others. The technique works by comparing the rotational speed of each wheel in normal 
driving mode, since a tire’s rolling radius depends on the air pressure inside. This method 
minimizes implementation cost by taking advantage of the fact that ABS appears in virtually 
every vehicle product. However, the radius also depends on many other variables, which do 
not make ABS-based TPMS very reliable. Problems that might occur using indirect TPMS 
are listed as follows: 
1. The system needs calibration before it can sense different tire conditions. In addition, 

tire changing requires resetting the system to relearn the dynamic relationship between 
each wheel. 

2. In a test carried out by the U.S. DoT, an indirect TPMS didn’t detect some kinds of low 
tire pressures when two low-pressure tires were on the same side or axle, or all four 
tires were under-pressure to a similar degree. 

3. Slip at the wheels disturbs the pressure-sensing algorithm. 
4. Speed, acceleration, uneven tire wear and production tolerances affect rolling radius. 
5. The system is unable to detect tire deflation of typically less than 30%. 

3.2 Direct TPMS 
The direct TPMS utilizes sensors installed inside tires to measure and feedback the pressures 
and temperatures directly. Wireless technologies for data transmission have to be used, 
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because the wheel is a rotating system which can’t be connected by a wire. The direct TPMS 
uses RF technology for transmitting sensor data to the vehicle. The most commonly used 
frequency for transmitting the measured tire information to the receiver is about 433 MHz. 
This frequency can be freely used in Europe. In the United States a similar license-free 
frequency is 315 MHz. The receivers consist of antenna, processor, memory and a user 
interface. Products for the aftermarket usually have a receiver that contains all of these 
components in one box. 
The direct TPMS can be classified as three classes according to the sensor installation place. 
First, clamp-on-rim sensors can be installed on the well bed of the rim with a stainless steel 
clamp, which is showed in the left of Fig. 2. This fixing method can usually be used in 
aftermarket products, when the same product must suit a large variety of cars. Secondly, 
valve-attached sensors can be fixed on the bottom end of the tire valve, as shown in the 
middle of Fig. 2. In this case, the sensor is actually located on the very same spot as when 
using a clamp on the rim well bed. Different rims require different valves, which means that 
this fixing method is better for the original equipment market, where it only has to fit a 
specific car model with limited variety of wheel types. Thirdly, valve-cap-integrated sensors 
are to try and squeeze the sensor electronics inside a valve cap, which is showed in the right 
of Fig.2. This fixing method is easy and suitable for aftermarket and especially heavy 
vehicles, but this method may make the tire sensor more dangerous for exposure outside. 
 

        
Fig. 2. Picture from three types 

There are two types of direct TPMS according to the power method of the sensor. One type 
uses the active sensors, that is to say the TPMS contains a component for electric power 
supply by batteries. The main components of an active battery operated in TPMS are 
battery, processor, memory, sensors, radio component, and antenna. Some of these 
components are usually integrated on a single chip to save weight and space and to reduce 
power consumption. The battery is the most problematic component. It limits the operation 
time of the sensor, and the existing batteries have also temperature limitations. In very cold 
or high temperature they may not work properly or may even be destroyed completely. The 
other type uses the passive sensors, that is to say the sensor needn’t use battery as a power, 
the sensor can get the working energy from the others methods such as the RF singles or an 
generator near the sensors. 
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3.3 Comparison between indirect TPMS & direct TPMS 
Compared with the indirect approach, the direct method demonstrated its advantages in 
many aspects. First, direct measurement provides a much more accurate indication of tire 
pressure. Secondly, it can report individual tire status. Thirdly, the signal is always available 
even when the vehicle is parked. The direct TPMS can ensure tires are properly inflated and 
running optimally at all the time. The direct method also has downsides that include higher 
installation cost, a limited battery life of five to ten years, and the potential for sensor 
damage during the installation of spare tires or through driver error by kerbing the tire. 
From Table 1, one can see clearly about the difference between indirect TPMS and direct 
TPMS. 
 

Performance Direct Indirect 
Accuracy Higher Lower 
Detect Multiple Low Tires Yes No 
Affected by Acceleration No Yes 
Affected by Loose Surfaces No Yes 
Speed Range 0 to vehicle max 20 to 110 km/hr 
Incremental Cost Higher Lower 
Vulnerable to Tire Mount 
Process Yes No 

Power Source at Each Wheel Yes No 

Table 1. PMS Implementation Methods(Freescale Semiconductor, Inc.) 

4. Products and researches for TPMS 
A lot of works have been done on TPMS in the USA, Japan, Germany, and UK. Austria. 
Continental corp., Siemens corp., and Nokia corp. have provided some productions of 
TPMS (Wang et al., 2003). As required by the market demands, almost all of the companies 
are focus on direct TPMS products, only a few companies concentrate on indirect TPMS. The 
tire manufacturer Continental AG is one of the companies who supplies indirect TPMS 
products. Its product is called Deflation Detection System (DDS) which is installed in BMW 
M3. 
There are many companies that have done a lot of work on direct TPMS.  For example, 
Freescale Semiconductor (USA), Philips Semiconductors and Sensonor (Norway) 
manufacture commercial components for TPMS products. SmarTire (Canada) is the oldest 
supplier in the TPMS market, its products can be ascended to 1990. RoadSnoop Pressure 
Watch is made from the Finnish tire manufacturer Nokian Tyres plc. Both of them have 
aftermarket products as shown in Fig. 3, and their sensors are fixed on the rims with 
stainless steel bands. SmarTire’s receiver is fixed on the dashboard or on the windscreen and 
connected to the cigarette lighter of the car for power supply. RoadSnoop’s receiver is a 
small wireless battery-operated device, which can be put on any place inside the car, where 
it can be easily seen and heard. Schrader Electronics from UK is the manufacturer of the 
standard valve-attached TPMS sensors which are used in cars like Aviator, Pathfinder, 
Peugeot 607, Citroen C8, and etc.. Information of lots of products similar to the Schrader’s 
can be found on the Internet. These products also contain valve fixed sensors, such as Beru 
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and Siemens VDO Automotive from Germany, Pacific Industrial and Omron from Japan. 
U.S. companies such as Fleet Specialties with “Tire Sentry” and Advantage Enterprises with 
“Pressure Pro” have the valve-cap-integrated tire sensors used in the direct TPMS. 
 

     
Fig. 3. SmarTire’s TPMS product (Left) & RoadSnoop’s Pressure Watch (Right) 

The direct TPMS using passive sensors is not available in commercial products. The German 
IQ-Mobil GmbH is developing a batteryless TPMS, which is called RDKS. This product is 
only available in prototype. Fig. 4 shows the size of the chip and how the transponder is 
mounted on the tire valve. 
 

    
Fig. 4. IQ-Mobil’s sensor attached on a tyre valve and the size of the electronics 

More technical details can be found about TPMS sensors.  For instance, Freescale 
Semiconductor introduces the MPXY8020 tire pressure monitoring sensor, SensoNor uses 
SP12T sensor, Philips Semiconductors has P2SC (Philips' signal conditioning chip) family, 
etc. The MPXY8020 sensor is comprised of a capacitive pressure sensing element, a 
temperature sensing element, and an interface circuit with the wake-up feature. All the parts 
of the sensor are integrated on a single chip. Some companies’ TPMS is similar to 
MPXY8020, the others produce pressure sensor elements using the piezoresistive 
technology. Some detailed features about the sensors are shown in Table 2. 
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Sensor Model 
(Company) 

Max . 
Operating 
Pressure 

Pressure 
Resolution 

Pressure 
Accuracy 

Temperatur
e Range 

Temperatu
re 

Accuracy 
MPXY8020A 
(Freescale) 637.5 kPa 2.5 kPa ±7.5 kPa ±4 °C 

Sensor (SmarTire) 538 kPa -- ±10 kPa ±3 °C 
SP12T 

(SensoNor) 1400 kPa 2.97 kPa ±28 kPa 

-40 °C to 
+125 °C 

±4 °C 

Pressure Watch 
(RoadSnoop) 350 kPa -- ±12 kPa -40 °C to 

+120 °C ±6 °C 

RDKS (IQ-Mobil) 1200 kPa 0.2 kPa -- -40 °C to 
+170 °C -- 

Table 2. Comparison of some commercial sensors based on TPMS 
Up to now three different techniques of information transmission have been applied to 
direct TPMS: radio transmission employing an active sensor unit inside the tire, inductive 
transmission and radio transmission via reflection (passive transponder). Currently, the 
TPMS consisting of an active, battery powered sensor unit inside each wheel dominates the 
market. A typical TPMS product contains active semiconductor circuits, a sensor circuit, a 
wake-up unit and a transceiver unit. All the units are powered by a lithium battery which 
limits the lifetime of the sensor units, i.e., the battery must be replaced when the power was 
run out. Although the TPMS companies declare that the battery can be used 5 to 10 year for 
normal vehicle use, tire sensors will use the power of the battery more quickly if the car 
keeps working. It will be more complex to design if it contain active semiconductor circuits 
and the wake-up unit in each of the tire, and will make the sensor part heavier. In order to 
guarantee a life time of at least 5 to 10 years the battery needs to have several hundred mAh 
capacity, which causes the battery to be relatively big and heavy. Furthermore, in some 
cases, remote sensor systems are affected by strong thermal, mechanical, or electromagnetic 
loads so that batteries, semiconductors, and active elements are likely to be damaged. So a 
better way should be found to avoid these problems. The obvious solution would be to 
replace the battery with some other component to get energy, because the electrical power 
supply of sensor is necessary. For example, the battery can be replaced by an inductive 
transmission or a local power generation. The main benefits are the increase of reliability 
and environmental friendliness and the reduction of maintenance efforts. Surface Acoustic 
Wave sensors are a good choice. The SAW sensor needn’t the power supply unit and the 
wake-up unit, and only an antenna is needed for the transceiver unit. This means that the 
sensing devices gets the necessary energy from the radio signal which is obtained through 
the antenna. The circuit design is much simpler than the traditional sensor of TPMS. 
The recent research mainly focus on developing the TPMS with wireless passive SAW 
sensors.  The SAW sensor is small, light, reliable, stable, passive, and sensitive. It is not 
affected by strong thermal, mechanical and electromagnetic loads. From Table 3, one can see 
the differences between the active sensor and the passive sensor. 
In addition, the SAW sensor works very well in bad environment, closed chambers, moving 
and rotating parts of engine. So it can be embedded in the surface of the tire or fixed around 
the rim.  It is one of the best choices for the TPMS sensors. In 1996, Alfred Pohl and F.Seifert 
started to research the wireless passive SAW sensor used in the tires in University of 
Technology Vienna (Pohl & Seifert, 1997). They designed the SAW pressure sensor based on  
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 Active Sensor Passive Sensor 
Measuring Range Same 

Operating Temperature Range Same 
Survival Temperature Range Same 

Basic Principle Capacitive SAW 
Size Large Small 

Weight Heavy Light 
Typical TX Range Long Short 

Wake Up Yes No 
Battery Needed Yes No 

Design Complexity High Low 
Aging Rate Normal Low 

RF Transmitter Yes No 

Table 3. The comparison between an active sensor and a passive sensor 
the SAW delay line and verified the design. But the signal processing was very difficult 
because of the noise disturbance, and they didn’t go further in this aspect. In the same year, 
W. Buffll and M. Rusko et al. designed the wireless passive SAW sensor based on two SAW 
resonators with different frequencies in Germany (Buff et al., 1998). This sensor had better 
precision and not affected by movement and rotation. Since the sensor was sensitive to both 
pressure and temperature, it was affected by cross-disturbance. In 1998, Reinhard Steindl 
and Alfred Pohl designed the SAW hybrid sensor based on the combination of the SAW 
delay line and the conventional pressure sensor (Steidl et al., 1998). This sensor could 
measure both pressure and temperature, and its precision was high, but there were 
questions in practical realization and signal processing. 
In conclusion, the research of wireless passive SAW sensor is still in the early period and 
currently there is no manufacturing solution available because of questions in theory and 
technique. In order to apply the SAW sensor in TPMS, not only the design methods of 
wireless passive SAW sensors but also the arithmetic in dealing with the feedback sensing 
data should be considered. In recent years, some novel materials and technologies have be 
developed in this field, thus it is possible for wireless passive SAW sensors to make better 
performance through novel sensor design and new fabrication technology. 

5. Application of wireless passive SAW sensors in TPMS 
A schematic drawing of the TPMS as an example of a wireless SAW hybrid sensor system is 
shown in Fig. 5 As the functional principle of the wireless SAW sensor system has already 
been described (Schimetta et al., 2000) , only a short survey should be given here. The 
measurement cycle is initiated by a high frequency electromagnetic burst signal emitted 
from the wheel arch antenna of the central transceiver unit. This signal is received by the 
antenna of the SAW transponder unit mounted on the rim. The IDT connected to the 
antenna transforms the received signal into a SAW. In the IDT the reflected acoustic waves 
which include the sensor information are reconverted into an electromagnetic pulse train 
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which include the sensor information are reconverted into an electromagnetic pulse train 
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and retransmitted to the central transceiver unit, where the received signal is amplified, 
down converted and analyzed. The antennae of the transceiver were set at every wheel arch 
and connected with the transceiver with twisted-pair. The transceiver sends wireless signals 
with every antenna to the SAW sensors in the tires and receives the reflected signals from 
the SAW sensors in the tires. In addition, the transceiver sends the received signals to the 
computer and display unit by CAN bus. The signals are processed in the computer unit and 
the tire state is displayed in the display unit. 
 

 
Fig. 5. Schematic drawing of a SAW sensor system applied to TPMS (Schimetta et al., 1997) 

The transceiver begins to send and receive pulse signals periodically as long as the car starts. 
In every period, firstly the transceiver sends the RF interrogation signal to the first tire 
sensor and receives its reflected signals, then the transceiver sends the signals to the second 
tire sensor and receives the return signals from the second tire sensor. In this way the 
transceiver does on the third and the fourth tire sensors. The tire code, pressure and 
temperature information are all included in the reflected signals. The computer unit 
processes these reflected signals. First of all, it recognizes the tire code and calculates the tire 
pressure and temperature, then stores the data as the tire state information, finally every tire 
pressures and temperatures are averaged in some periods as each tire pressure and 
temperature. The differences between the tire pressure, temperature and the correct values 
are calculated. The alarm is given to the driver in the display unit if the difference is out of 
the secure valve, otherwise only the pressure and temperature are displayed in the display 
unit. 

5.1 Principles of wireless SAW sensors 
The applicability of passive SAW devices for remote sensing was found for decade years. 
SAW sensors can be built with a SAW delay line element connected to an antenna. The SAW 
delay line consists of a substrate, an interdigital transducer (IDT), and a reflector. The 
working sequence of the wireless passive SAW sensor are illustrated in Fig. 6: 
1. The transceiver sends RF interrogation signal which is received by the antenna of the 

SAW sensor. 
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2. The IDT which is connected to the antenna, transforms the received signal which is an 
electrical RF voltage applied between the two opposing electrode combs into a SAW. 

3. The SAW propagates on the piezoelectric crystal and is partially reflected by reflectors 
placed in the acoustic path. 

4. The reflected waves are reconverted into an electromagnetic pulse train by the IDT and 
are retransmitted to the radar unit. 

5. The high frequency electromagnetic signal is amplified and down converted to the base 
band frequency in the RF module of the radar unit. 

6. Then the sensor signals are analyzed with a digital signal processor. 
7. Finally the measurement results can be transferred to a personal computer for post 

processing and data storage. 
 

SAWsensor 
Transceiver

Feedback echo 

Data processing

RF interrogation signal 

 
Fig. 6. Principle of a wireless SAW sensor 

Fig. 6 illustrates suggested principles for SAW remote sensor device, which basically can be 
utilized in two different ways. The sensor signal can be produced by SAW device itself 
which means that the delay time is varied due to, e.g., varying temperature or applied 
pressure causing stress and a deformation of the device. Alternative configurations for this 
approach include the application of chirp-transducers and SAW resonators (Reindl et al., 
1998). Another sensor device, which changes its impedance under the influence of the 
quantity to be sensed, is attached to a second IDT acting as reflector structure. This load 
impedance determines the amplitude and phase of the reflected SAW burst (Steidl et al., 
1998). 
The velocity of a SAW is approximately the factor 100 000 smaller than the velocity of light 
or radio signals. Therefore the propagation velocity of SAW allows a long delay time to be 
realized within a small chip. A time delay of 1 us requires a chip length between 1.5mm and 
2mm, depending on the substrate material which cause the different SAW transmitting 
velocity, whereas in 1us a radio signal propagates 300m in free space. Therefore, pulse 
response of SAW sensors with time delays of several microseconds can be separated easily 
from environmental echoes, which typically fade away in less than 1-2us. If the reflectors are 
arranged in a predefined bit pattern like a bar code an RF identification system can be 
realized with a readout distance of several meters. SAW transponders are small, robust, 
inexpensive, and can withstand extreme conditions. Fig. 7 shows a typical response signal of 
a SAW ID-tag together with the interrogation impulse and environmental echoes (Reindl et 
al., 1998). 
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Fig. 7. Interrogation pulse, environmental echoes, and RF response of a SAW reflective delay 
line (Reindl et al., 1997). 

5.2 Wireless passive SAW sensors 
A schematic drawing of a SAW pressure sensor is shown in Fig. 8 The SAW propagates on a 
quartz diaphragm, bending under hydrostatic pressure. To bend the diaphragm in a defined 
manner, there has to be a constant reference-pressure at the other side of the diaphragm. 
This is realized by a hermetically closed cavity with the reference pressure inside. Therefore 
with a sand-blast unit a blind-hole was structured into a quartz cover plate, which is of the 
same substrate material as the diaphragm (Scholl et al., 1998). 
 

 
Fig. 8. Schematic drawing of a SAW pressure sensor (Scholl et al., 1998) 
A monolithically packaged SAW radio transponder and pressure sensor are developed for 
the application to a TPMS (Oh et al., 2008), showed in Fig. 9 The device contains the wireless 
transponder, which converts analog signal into digital one without any auxiliary electronic 
circuits and transmits the converted data wirelessly. The realization of the mechanical A/D 
conversion is possible since the SAW radio transponder is connected to the touch-mode 
capacitive pressure sensor. The SAW radio transponder and touch-mode sensor are 
fabricated using a surface micromachining and a bulk micromachining technologies, 
respectively. The performance of the integrated, passive and wireless pressure sensor meets 
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the design specifications such as linearity, sensitivity and noise figure. This approach can 
increase the accuracy of signal detection, if more A/Ds are used, but the number of the A/D 
are restricted by the MEMS fabrication method, so the sensor can not reach the high 
accuracy. Paper (Schimetta et al., 2000) proposed the concept of using hybrid sensors to 
achieve the pressure sensor, includes SAW sensor and the corresponding non-contact 
capacitive pressure sensor, the corresponding matching circuit are needed between them. 
The sensing structure relatively complex, and can only measure pressure changes. 
 

 
Fig. 9. A schematic illustration of embedded MEMS A/D converter with SAW wireless 
transponder (Oh et al., 2008). 

An U.K. company Transense is developing SAW sensor technology for tire monitoring 
purposes. It’s sensor uses the SAW device as a diaphragm between the side of the sensor 
subjected to tire pressure and a sealed reference chamber. The energy needed is provided 
from the signal of the receiver component. The Triple SAW Pressure Device provides 
temperature compensated pressure measurement from a single quartz die operating in a 
simple bending mode. Fig. 10 shows how the SAW sensor is used in TPMS. 
 

 
Fig. 10. SAW sensor used in TPMS. 
The important of TPMS is introduced, and the TPMS implement method is discussed in this 
section. For the disadvantage of active sensor used in TPMS, this paper introduced some 
kinds of wireless passive SAW sensors. The wireless passive SAW pressure and temperature 
sensor with single sensing unit is showed. The SAW sensor has the simple structure and 
small size compared with the active TPMS sensor. The passive SAW sensor will replaced the 
active sensor used in TPMS in the future due to its advanced features shows in this paper. 
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6. A novel pressure and temperature SAW microsensor 
Typical applications of surface acoustic wave (SAW) sensors using MEMS technology for 
the measurement of temperature (Kim et al., 2004) (Bao et al., 1987) and pressure (Schimetta 
et al., 2000) (Oh et al., 2008) have been studied for years. Due to their advantages of wireless 
and averting the need for power supply at the sensor location, SAW sensors are able to be 
used in such moving and harsh conditions as tire pressure monitoring (Ballandras et al., 
2006). In practical applications, such as tire pressure monitoring systems, it is necessary to 
measure both pressure and temperature simultaneously. The common solution is to use 
more than one sensing units to measure pressure and temperature separately, in which case, 
however, the whole structure of the SAW sensor is complicated for manufacturing and 
packaging. The preliminary design theory of a novel wireless and passive SAW 
microsensor, which comprises single sensing unit and is able to measure real-time pressure 
and temperature accurately was suggested by the authors recently (Li et al., 2008). In this 
letter, further investigation on this novel sensor is to be reported both in theory analysis and 
practical test. In the following sections, the design theory and test results for the SAW sensor 
will be described. 

6.1 Design and theory for SAW microsensor 
The SAW microsensor in this letter comprised an interdigital transducer (IDT), three 
reflectors, R1, R2, and R3, on the top surface of a piezoelectric substrate. The schematic 
diagram of the sensor structure is shown in Fig. 11. The three reflectors located on the both 
sides of the IDT, such a design being able to minimize the energy loss of echo signal from 
each reflector. d1, d2, and d3 are the distances between the IDT and R1, R2, and R3, 
respectively. The double values of the traveling time differences of SAW signal, τ12, τ13 
between R1 and R2, R1 and R3 can be respectively defined as Equation (1): 

 ( )1 1
1

2 2i i
i

d d d
v v

τ
−

= =
i i   (i = 2, 3) (1) 

where, d12 and d13 are the differences between d2 and d1, d3 and d1, respectively, v the 
propagation velocity of SAW signal. The phase differences φ12 and φ13 between the echo 
signals reflected by R2 and R1, R3 and R1 are defined as Equation (2): 

 1 0 1i iϕ ω τ=   (i = 2, 3) (2) 

where ω0 is the angular frequency of RF pulse signal. 
The Part A bottom of the piezoelectric substrate was attached on the sensor package while 
Part B was left free to form a cantilever for pressure measurement. The dimensions of the 
whole piezoelectric substrate, including Parts A and B, are the function of circumstance 
temperature. For Part A of the substrate, τ12 is the function of temperature change ΔT and 
can be described as Equation (3) (Bao et al., 1987) [2]: 

 ( )0
12 12( ) 1T Tτ τ αΔ = + Δ   (3) 

where α  is the temperature coefficient of the SAW device substrate, τ120 the initial value of 
τ12 under initial temperature. Combining Equations (1), (2), and (3), Equation (4) is obtained. 
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Fig. 11. (a) Vertical view, and  (b) profile view of schematic diagram of the sensor structure 
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Here, 0
12d  is the initial value of d12 under initial temperature. 

Since d13, which is the difference between d3 and d1 in Part B, is affected by both ΔT and 
pressure, Equation (5) can be set up if the correlation of the effects of ΔT and pressure on τ13 
is neglected (Li et al., 2008). 

  0
13 13( , ) 1P PT Tτ ε τ ε αΔ = + + Δ⎡ ⎤⎣ ⎦  (5) 

Here, εP is the change of d13 caused by the pressure, τ130 the initial value of τ13 under initial 
temperature. Thus combining Equations (1), (2), (4), and (5), the phase shift being principally 
linear with applied pressure φP can be expressed as: 

  ( )0 0
13 13 12 12 13 12P d d Wϕ ϕ ϕ ϕ ϕ= − = −  (6) 

where d130 is the initial value of d13 under initial temperature, W the weighted factor and 
equal to d130/d120. 

6.2 Device and tests for SAW microsensor 
Y-Z cut LiNbO3 was used as the substrate material of the sensor. The dimensions of the 
sensor die are 18 mm long, 2 mm wide, and 0.5 mm thick, respectively. The IDT and the 
three reflectors R1, R2, and R3 were patterned onto the surface of the substrate using MEMS 
lift-off fabrication process. Fig. 12a is the schematic diagraph of a completely packaged 
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sensor. Fig. 12b is the photograph of a real microsensor without the packaging header cap, 
showing more structural details inside the sensor. The package, which includes a sensitive 
membrane and a header cap together with the package base attaching part of the substrate 
bottom, sealed the piezoelectric substrate in a vacuum cavity. The sensitive end of the 
piezoelectric cantilever contacts the membrane with negligibly small pre-force. The pressure 
difference between the cavity and the outside pressure can cause the deformation of the 
cantilever end along the vertical direction through the sensing membrane. The SAW signal 
frequency for this sensor is 433 MHz, corresponding to a wavelength of 8 μm. The IDT 
aperture is 50 times wave length, and d1, d2, and d3 are 2400 μm, 4800 μm, and 7000 μm, 
respectively. Fig. 13 shows the different measured echo signals reflected from the 
correspondent reflectors of the sensor with an oscilloscope (DSA70604, Tektronix Co. Ltd., 
Pudong New Area, Shanghai, China). (Li et al., 2009) 
The SAW microsensor with complete packaging was tested in a sealed chamber, inside 
which the air pressure and temperature are controllable. The pressure was measured with 
the pressure meter embedded in an electro-pneumatic regulator (ITV2030, 1 kPa resolution, 
SMC, 1 Claymore Drive #08-05/06 Orchard Towers, Singapore). A Pt100 thermal resistance 
connected with a digital meter (0.1 °C resolution) was used to measure the inside 
temperature of the chamber. The pulse signals for testing the sensor were generated and 
received by a vector signal generator SMJ100A and a spectrum analyzer FSP, respectively. 
Both were made by Rohde-Schwarz, Mühldorfstraße 15, München, Germany. The test 
temperature and pressure values were recorded by a time interval of 10 s. 
 

 
(a) 

 
(b) 

Fig. 12. (a) Schematic diagraph of a completely packaged sensor, and (b) photograph of a 
real microsensor without the packaging header cap 
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Fig. 13. Different measured echo signals from the reflectors 

6.3 Results for SAW microsensor 
Fig. 14a shows the measured data of phase differences φ12, φ13 within the time range of 700 s, 
which are corresponding to the temperature and temperature effected pressure values, 
respectively. Using the measured φ12 by the SAW sensor and Equation (4), the calculated 
temperature values are compared with the direct measurement temperature data and 
shown in Fig. 14c. They match each other well although the calculated values have a higher 
temperature resolution than the direct measurement results, which was limited by the Pt 100 
thermal resistance characteristics in the temperature range between 27.9 and 29.1 °C. The 
calculated pressure values eliminating the temperature variation effect using Equation (6) 
are shown in Fig. 14b, which agree the direct measured pressure data very well ranging 
from 0 to 150 kPa. (Li et al., 2009) 

7. Conclusion 
In this chapter, TPMS sensors are introduced, then a novel wireless passive SAW pressure 
and temperature microsensor with single sensing unit is reported. Its structural design, 
theoretical analysis, and test results are described. The calculated pressure and temperature 
values with this sensor measurement agree with the directly measured data very well. 
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1. Introduction     
Surface Acoustic Wave (SAW) sensors demonstrate superior selectivity for the detection of 
chemical agents. Due to their solid state design and fabrication, compatible with other 
modern technologies such as MIC (microwave integrated circuits), MEMS (micro-electro-
mechanical-systems), CMOS, CCD (charge coupled devices) and integrated optic devices, 
SAW chemical sensors are extremely reliable. They have compact structure, high sensitivity, 
small size, outstanding stability, low cost, fast real-time response, passivity, and above all 
the ability to be incorporated in complex data processing systems. They can be used for in 
situ monitoring and sensing systems [Ho et al., 2003; Wohltjen & Dessy, 1979; Wohltjen, 
1984; Comini, 2009] and for wireless sensing and monitoring in harsh environment [Pohl, 
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wave motion which travels along the surface of a solid material, referred to as substrate. The 
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electrical signal. The basic SAW device consists of two interdigital transducers (IDTs) on a 
piezoelectric substrate such as quartz, Fig. 1. 
Each IDT is a reversible transducer made of interleaved metal electrodes, which are used to 
convert an electrical signal to an acoustic wave and vice versa. An IDT is a bidirectional 
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Fig. 1. The basic structure of a SAW device. 

A sinusoidal voltage v of frequency f applied to the input IDT forms an electric field which 
through the piezoelectric effect causes a strain pattern of periodicity 2d, where d denotes the 
distance between the centres of the electrodes. If the frequency f is such that 2d is close to the 
surface wave wavelength, a surface wave will be launched in two opposite directions away 
from the transducer. The surface wave causes the corresponding electric field in the output 
transducer and thus the voltage at the impedance ZL. The magnitude of the output signal is 
the function of the ratio of the signal’s wavelength and the distance 2d. If the distance 2d is 
equal to the wavelength, the magnitude of the output voltage is maximal. The 
corresponding frequency is then called the centre or synchronous frequency of the device. 
The magnitude of the output voltage decays as the frequency shifts from the centre 
frequency. It means that a SAW device is a transversal bandpass filter with constant group 
delay. Therefore, it is usually called a SAW filter or delay line type of a SAW device. The 
phase characteristic is a function of the distances between the electrodes and the amplitude 
characteristic is a function of the electrodes’ number and lengths. The width of the 
electrodes usually equals the width of the inter-electrode gaps giving the maximal 
conversion of electrical to mechanical signal and vice versa. The minimal electrode width 
obtained in industry is around 0.3 μm, which determines the highest frequency of around 
3 GHz. The commonly used substrate crystals are: quartz, lithium niobate, lithium tantalate, 
zinc oxide and bismuth germanium oxide. They have different piezoelectric coupling 
coefficients and temperature sensitivities. The ST quartz is used for the most temperature 
stable devices. The wave velocity is a function of the substrate material and is in the range of 
1500 m/s to 4800 m/s, which is 105 times lower than the electromagnetic wave velocity. This 
enables the construction of a small size delay line of a considerable delay.  
In the second type of SAW devices, called SAW resonators, Fig. 2, IDTs are used only as 
converters of electrical to mechanical signals and vice versa, but the amplitude and phase 
characteristics are tailored using the reflections of the wave from either metal stripes or 
grooves of small depths.  
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Fig. 2. a) One-port SAW resonator and b) two-port SAW resonator. 

SAW resonators are made as one-port or two-port devices. In a one-port SAW resonator 
only one IDT, placed in the centre of the device, is used for both, input and output, 
transductions. The input electrical signal connected to IDT, via antenna or directly, forms an 
acoustical wave in the piezoelectric substrate which travels along the surface on both sides 
from the transducer. The wave reflects from the reflective array and travels back to the 
transducer, which transforms it back to the electrical signal. The attenuation of the signal is 
minimal if the frequency of the input signal matches the resonant frequency of the device. 
The resonant frequency is determined by the geometries of the transducer and reflectors, the 
distance between the transducer and the reflectors and the wave velocity. The wave velocity 
depends upon the substrate type, and the temperature. One-port resonators are used in 
oscillators. Two-port resonators are used as narrow bandpass filters. The dimensions of 
resonators are smaller than the delay line filters of the same centre frequency and 
bandwidth.  
Beginning from around year 1970, versatile SAW devices were developed for pulse 
compression radars, band pass filters for the TV receivers (sets), and radio systems. The rise 
of mobile radio of the eighties, and particularly cellular telephones, caused an increase in the 
demand for SAW filters, so that they are now produced in vast number.  
In the last three decades SAW devices of both types have found applications as 
identification tags, sensors of different physical quantities, chemical sensors, and biosensors 
[Pohl, 2000; Seifert at al., 1994; Hribšek et al., 2009; Hribšek et al., 2010; Mitsakakis et al., 
2009]. They are used in consumer and highly professional devices and systems. SAW 
sensors are passive elements (they do not need power supply). The main advantage of all 
SAW sensors is their ability to be accessed wirelessly enabling remote monitoring in harsh 
environment. Wireless access is achieved simply by connecting an antenna to the input 
transducer. 
The operation of delay line SAW sensors is based on the fact that the measurand 
(temperature, pressure, strain, chemical vapour etc.) affects the propagation of the SAW in 
the sensor in attenuation and delay. If the sensor is heated, stretched or compressed, or if it 
is mass loaded, the substrate's length and its elasticity constants are changed. These changes 
cause velocity and phase delay variations, which then proportionally change the centre 
frequency, attenuation and time delay of the device. The first reported use of SAW 
technology for a sensor application was in 1975 for pressure sensing [Cullen & Reeder, 1975; 
Cullen & Montress, 1980]. SAW temperature sensors have millidegree resolution, good 



 Acoustic Waves 

 

362 

linearity, fast response, and low hysteresis [Pohl, 2000]. They are sealed in hermetic 
packages. The response time is about 0.3 s, 1000 times faster than in bulk acoustic wave 
(BAW) sensors. For temperatures up to 200°C lithium niobate is the ideal material for 
temperature sensors, because of its large temperature coefficient (TCD) of approximately 
90 ppm/°C and its high electro-acoustic coupling constant. For temperatures up to 1000°C 
langasit substrate is used. 
SAW chemical vapour sensors were invented by Wohltjen [Wohltjen & Dessy, 1979; 
Wohltjen, 1982]. A SAW chemical vapour sensor is made from a SAW device by placing 
chemically sensitive coatings (usually polymer films) on the device surface. The absorbed 
chemical vapours into the coating cause a change in the centre or resonant frequency of the 
sensor. A microcomputer can measure these changes and use them to determine the 
presence and concentration of chemical agents.  
The SAW sensor coatings have unique physical properties which allow a reversible 
adsorption of chemical agents. In order to make the whole system as compact as possible, 
the SAW device should be incorporated in CMOS or MEMS integrated circuits [Zaki et al., 
2006]. In that case piezoelectric material is placed on the top of the IC circuit, e.g. on the top 
of silicon or the isolating layer, usually silicon dioxide. Commonly used piezoelectric 
materials in classical SAW applications are ST-cut quartz and lithium niobate. Besides them 
ZnO, AlGaN, GaN, AlN are used [Zaki et al., 2006; Rufer et al., 2006; Assouar et al., 2000; 
Rufer et al., 2005; Kirsch et al., 2006; Kirsch et al., 2007; Omori et al., 2008]. Recently, 
multilayered substrates are used for the wave velocity increase [Ahmadi et al., 2004]. The 
highest velocities are achieved when the piezoelectric material is placed on the top of the 
diamond layer, due to its highest acoustic wave velocity [Assouar et al., 2000; Benetti et al., 
2004; Benetti et al., 2005; Besmaine et al., 2008; Hakiki et al., 2005; Mortet et al., 2008; Jian et 
al., 2008; Shikata et al., 2005]. Several piezoelectric materials in combination with 
diamond/silicon substrates have been investigated theoretically and experimentally. 
Theoretical calculation of the wave velocity in the multilayer structures is based on the 
solution of the wave equation demanding elaborate numerical computations. The use of 
diamond in the multilayered SAW structure has the following advantages: high frequencies 
up to 5 GHz, high coupling coefficients up to 1.2%, small temperature deviations, high 
power capability, and small device size without submicron lithography. The disadvantages 
of the layered SAW structures are the complex design and the problem related to the 
deposition of a piezoelectric layer with appropriate crystalline orientation. These facts 
probably have caused insufficient research on SAW sensors using diamond. Extreme 
chemical stability and bio-inertness [Specht et al., 2004] make diamond ideal material for 
sensors operating in harsh or biologic environments. 
This chapter describes principles of operation, analyses and modelling of delay line 
chemical vapour SAW sensors. 

2. Principles of chemical vapour SAW sensor operation 
The basic principle of chemical vapour SAW sensors is the reversible sorption of chemical 
vapours by a coating which is sensitive to the vapour to be detected. A transversal, or delay 
line, SAW chemical sensor can be schematically presented as in Fig. 3. It consists of two 
IDTs and a chemically sensitive thin layer placed between them on the top surface of the 
piezoelectric substrate. 
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Fig. 3. The basic configuration of a chemical SAW sensor.  

The surface wave is induced by an electrical signal applied to the input IDT. The output 
signal (voltage) is taken from the output IDT. The velocity and attenuation of the wave are 
sensitive to mass and viscosity of the thin layer, usually polymer film. The purpose of the 
thin layer is to absorb chemicals of interest. When the chemical is absorbed, the mass of the 
polymer increases causing a change in velocity and phase of the acoustic signal, which 
causes a change in amplitude and frequency of the output voltage at the load impedance ZL. 
Acoustic absorbers placed on the substrate edges damp unwanted SAW energy and 
eliminate spurious reflections that could cause signal distortions. 
The IDTs are identical with uniformly spaced electrodes of equal lengths and equal ratio of 
electrodes width and spacing. The number of electrodes defines the frequency bandwidth of 
a SAW device. The electrodes’ lengths and their number, and matching networks at the 
electrical ports, should be chosen to match the IDT input resistance, at the centre frequency 
f0, to the load resistance RL and the generator resistance Rg. In that case, the overall minimal 
loss due to IDTs is 12 dB. The wavelength corresponding to the centre frequency equals 2d  
(the distance between the electrodes of the same polarity). The centre frequency and the 
bandwidth are determined by the IDT`s geometry and the substrate type. 
The middle part of a SAW sensor, a delay line, is generally treated as lossless. However, its 
losses can be neglected only for lower frequencies and small delays (small distances 
between the transducers). The transfer function of the delay line is normally assumed unity, 
although this may not be true for high frequencies ( 0.5 GHzf >  ) or if there are films in the 
propagation path [Golio, 2008]. In communications, in electrical filtering applications, the 
distance between the IDTs is small. Quite opposite, in chemical sensors this part is essential 
and must have a certain length, usually 100–200 wavelengths [Martin et al., 1994], which 
should be taken into account. 
The frequency and the magnitude of the output voltage across the load are proportional to 
the mass loading of the sensing part. The output voltage in the presence of sensing material 
(without vapour) serves as a reference. The difference of the output voltage in the presence 
of vapour and the reference is proportional to the vapour concentration. Sometimes the 
output voltage is directly measured, but usually a SAW delay line is placed in the feedback 
loop of the oscillator, Fig. 4, so that the oscillation frequency is proportional to the 
measurand and it can be easily measured.  
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Fig. 4. SAW delay line oscillator. 

Time delay τ  of the SAW delay line sensor is the ratio of acoustical length L (distance 
between the first electrodes of the input and output transducers) and SAW velocity v. 
Generally, in the known sensor applications, L and v are changed due to a temperature 
change, mechanical stress, and strain, or because of a mass loading from a thin surface layer. 
In chemical vapour sensors L does not change so that the relative change of the delay due to 
the variation of a loading from a thin sensitive layer, with or without the vapour, denoted as 
measurand y, can be expressed as follows: 

  d d d d
d y
v y y

v y
τ γ
τ

= − =  (1) 

where yγ  can be called the delay sensitivity with respect to y . It is determined by the 
orientation and type of crystalline material used to fabricate the sensor [Pohl, 2000; 
Živković, 2003].  
The oscillations are sustained if the following conditions are met: 
- amplification in the open loop is greater than 1, 
- net phase in the closed loop, acoustical plus electrical, equals 2nπ , where n  is the 

number of the mode, e.g.,: 

   A
2 ( ) 2fL f n

v
π

φ π+ =  (2) 

where f  is the oscillation frequency, and Aφ  is the phase of the amplifier. Since the 
electrical delay is much smaller than acoustical, from (1) and (2) can be found: 

  d d dy
f y
f

τ γ
τ

= − = −  (3) 

which gives the straight influence of the measurand on the frequency. To avoid temperature 
influence on measuring results sensors should be made on ST-cut quartz.  
In some applications the sensor is a part of a more sophisticated system. In that case two 
equal SAW sensors are used: one is vapour-free and serves as reference, the other one is 
exposed to vapour and actually performs the sensing function, Fig. 5. The two SAW sensors 
are embedded into electrical oscillator circuits and the frequency shift between the 
oscillators is proportional to the gas concentration. Using an electronic circuit called the 
mixer the voltage proportional to the vapour concentration is obtained from the frequency 
shift. 
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Fig. 5. Block diagram of a differential chemical SAW sensor system.  

3. Analyses and modelling of delay line SAW sensors 
According to equation (3) the goal of the analysis of SAW chemical sensors is the derivation 
of formulas which connect the frequency shift and chemical quantities (e.g., vapour 
concentration). The existing analysis approaches are usually: (a) the analysis based on the 
wave equation solutions [Wohltjen & Dessy, 1979; Martin et al., 1994], (b) the analysis based 
on published formulas derived from the wave equation [Grate & Klusty, 1991; Grate & 
Zellers, 2000], and (c) approximate analysis by means of equivalent electro-mechanical 
circuits [Živković et al., 2009]. In the first two approaches chemical SAW sensors have been 
analyzed mainly from the chemical point of view without giving any relations between 
chemical quantities and the geometry of the SAW sensor and matching conditions at its 
electrical ports. Only in the last approach the derived formulas give the straightforward 
connection between the chemical vapour concentration and the geometry of the SAW 
sensor, sensing part, and substrate properties. The most complete analyses based on the 
wave equation are reported in [Martin et al., 1994].  
In all of these approaches the centre frequency 0f  without sensing film should be known. 
The centre frequency is proportional to the wave velocity v  and inversely proportional to 
the wavelength 0λ  (which is equal to the period of IDTs 0 2dλ = ): 

  0
0

vf
λ

=  (4) 

If the substrate is single layer piezoelectric crystal the centre frequency can be easily 
calculated from the IDT geometry and velocity of the material (can be found in the open 
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literature). However, if the substrate is multilayered, as is the case when the sensor is 
imbedded in MEMS or integrated circuits or when diamond is used, theoretical velocity 
determination is rather tedious task and numerical calculation methods are to be performed 
in each case separately [Mortet et al., 2008; Benetti et al., 2004; Adler et al., 1990]. 

3.1 Analyses based on wave equation 
It is well known that the exact analysis using surface wave theory is very complex even in 
the case of a free surface and single layer piezoelectric substrate [Farnell, 1977; Martin et al., 
1994; Golio, 2008; Ballantine et al., 1997]. It can be found in classical SAW books [Farnell, 
1977; Farnell, 1978; Feldman & Henaff, 1989] for single piezoelectric substrate. It starts from 
the second Newton’s law applied to particle motion, which gives a set of partial differential 
equations. The equations are solved for the appropriate boundary conditions and relations 
between mechanical and electrical quantities of a piezoelectric substrate. The Maxwell’s 
equations for the electromagnetic field should be taken into account, as well.  
Velocity determination is performed by solving wave equations. The wave equations are the 
partial differential equations of the form [Farnell, 1977; Farnell, 1978; Hribšek, 1982; Hribšek, 
1986]: 
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=
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=
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∑ , ( 1,2,3)m =  (5) 

where 
ρ  is the density of the substrate, 

mu  is displacement in the direction mx , 
mjT  is the component of the stress tensor, 
jx ’s are space coordinates, 

t  is  time, and 
mn nmT T= . 

Surface wave is propagating in 1x  direction, and 3x  direction is normal to the surface, 
Fig. 1. 
For the piezoelectric substrate the relations between mechanical and electrical variables can 
be expressed as follows: 

  mn mnpq pq pmn pT c S e E= − , ( , , , 1,2,3)m n p q =  (6) 

  m mnp np mn nD e S Eε= +  (7) 

where 
pmne  are the piezoelectric constants of the material (elements of the piezoelectric tensor), 

mnpqc  are elastic constants of the material measured at the constant electric field, 

mpε  are dielectric constants measured at the constant mechanical conditions, 

pE  is electric field, 

mD  is electric displacement, and 

pqS  is relative mechanical displacement defined as 
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Besides that, Maxwell’s equations for electromagnetic field are taken into account. Based on 
the fact that the electromagnetic field is slowly varying, it can be assumed to be static, e.g., 
that the electric field is the gradient of a scalar, but variable, potential ϕ : 
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The lack of free charges in the substrate yields 
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Using (6)–(10), equations (5) and (10) can be transformed to a more convenient form 

  
22 2

2
pm

mnpq pmn
m q p m

uu c e
x x x xt

ϕρ
∂∂ ∂

− =
∂ ∂ ∂ ∂∂

, (11) 

  
22

p
mp mpq

m p m q

u
e

x x x x
ϕε

∂∂
=

∂ ∂ ∂ ∂
. (12) 

Last equation represents the Laplace equation for anisotropic piezoelectric materials. The 
equations are solved for the appropriate mechanical and electrical boundary conditions at 
the surface 3 0x = . For the unloaded surface, the Laplace equation holds for the potential 
above the surface and 
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Potential and electric displacement 3D  also satisfy the continuity equation for 3 0x = , while 
for 3x = ∞  vanish. Consequently, potential ϕ  has the form 

   13 j ( )(0)e e k x vtkxϕ ϕ −−=  (14) 

where k vω=  is the wave number and v  is the wave velocity. 
Equations (11) and (12) can be solved only numerically using various methods. One method 
is to represent the solution as a sum of partial solutions given by [Farnell, 1977; Farnell, 
1978] 
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Each partial solution must satisfy equations (11)–(12) and equals zero for 3x = ∞ . By 
substituting partial solutions in (11) and (12), a set of four linear algebraic equations is 
formed in which the coefficients are the functions of density and elastic, dielectric and 
piezoelectric constants of the substrate. In order to get non trivial solutions, the determinant 



 Acoustic Waves 

 

368 

of the system must be zero, which gives an algebraic equation of the eighth order (degree) in 
( )ib . Since the wave amplitude decays with substrate’s depth, only four solutions within 

lower halfplane of the complex variable b  are of interest. Consequently, the solution has the 
form 
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Coefficients k , ( )ib  and ( )iα  are the functions of velocity v . Weighting coefficients iC  are 
found to satisfy boundary conditions at 3 0x = . From these conditions a set of four 
equations is obtained. Velocity v  is calculated setting the determinant of the system to zero. 
Even in the case of substrate crystals with symmetry, where many of the coefficients c , e  
and ε  are equal to zero, the explicit solution for velocity cannot be found. The solution has 
to be found numerically, using iterative procedures. When the velocity is calculated, the 
coefficients iC  can be found, e.g., solutions for the particle motion (displacements) and 
potential. The procedure can be used for any substrate, but the calculation time depends on 
the substrate type. From (16) is obvious that all variables are independent of 2x  and 2u . The 
wave amplitude decays exponentially with the distance from the surface, so that the most of 
the wave energy is confined within the depth of one wave length. Therefore, the motion in 

1x  direction can be generally represented as 

  1j
1 1 3( )e t xu u x ω γ−= , j jk

v
ωγ α α= + = +  (17) 

where  
γ  is complex propagation factor and  
α  is attenuation [Ballantine et al., 1997]. 
For multi layer substrates calculations are even more difficult. In that case, equations (11) 
and (12), assuming 2 0u =  and that all variables are independent of 2x , expand to three 
two-dimensional partial differential equations with three unknowns: particle displacement 
components 1u  and 3u  and potential component φ . To find the velocity, these three 
equations along with two equations for normal stress and one equation for normal electrical 
displacement are solved in each layer with appropriate boundary conditions at the top and 
bottom surface and across the interfaces. To find the velocity, matrix techniques can be used 
[Ahmadi et al., 2004; Adler et al., 1990].  
The finite element method (FME) can be also used for multilayer substrates analyses 
[Sankaranarayanan et al., 2005]. It is employed to calculate the effective phase velocity in 
multilayer structures with diamond [Hashimoto, 2000; Plessky & Koskela, 2000; Sung et al., 
2009]. 
At McGill University PC Acoustic Wave Software was developed for the velocities 
calculation in multilayer substrates [Adler et al., 1990]. 
Derivation of the frequency shift due to the sensing film and chemical quantities can be 
found from (4): 

  0

0

f v
f v
Δ Δ
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The velocity shift is not solely determined by the material constants but also by the ratio 
between the thickness of the piezoelectric layer and the wavelength corresponding to the 
centre frequency. 
Applying perturbation method to the solutions of the wave equation, Tiersten and Sinha 
derived a formula relating velocity change to film properties for the case of an acoustically 
thin, elastic film [Tiersten & Sinha, 1978]. Wohltjen first applied the Tiersten formula to 
analyze the response of polymer-coated SAW sensors [Wohltjen, 1984].  
The simplest (and the one most utilized) interaction for SAW sensor applications is the 
response due to changes in the mass density on the device surface. For that case, in 
[Ballantine et al., 1997] the relation between the changes in wave velocity, changes in wave 
energy density, and fractional change in mass density of the lossless medium is derived: 

  
0 0 0

v U
v U

ρ
ρ

Δ Δ Δ
= − = −  (19) 

where 0v , 0U  and 0ρ  denote unperturbed propagation velocity, energy density and 
density, respectively. Using expression (19), solutions for velocities from the wave equation 
and grouping together all the substrate-dependent constants, result in the expression for the 
mass-induced change of the thin film in SAW propagation velocity in the form 

  0
0

m s
v c f

v
ρΔ

= −  (20) 

where mc  is the mass sensitivity factor, and sρ  is the density of the mass load. Coefficient 
mc  for quartz, lithium niobate and gallium arsenide can be calculated from the data given in 

[Table 3.1, Ballantine et al., 1997]. 
In [Martin et al., 1994] a perturbation method is also used to find the changes in the complex 
propagation factor (velocity and attenuation) contributed by acoustically thin and thick visco-
elastic polymer films. In acoustically thin films, displacement is uniform across the film and 
varies only in the direction of propagation. For thick films, inertial effects cause a phase lag 
across the film for shear displacements. To obtain velocity changes linearly proportional to 
absorbed vapour concentration, it is necessary that the film remains in the acoustically thin 
regime [Martin et al., 1994]. The regime of the film operation can be determined from the ratio 
R of cross-film to in-plane gradients induced by the SAW [Martin et al., 1994]: 

  0

| |
Afv hR

G
ρ

=  (21) 

where  
ρ , h and G are the film density, thickness, and shear modulus, respectively;  
A is a substrate-dependent parameter (having a value of 1.9 for ST-cut quartz) [Martin et al., 
1994].  
When the film coating is sufficiently thin (small h) and rigid (large G) such that R<< 1, the 
film is acoustically thin. If the film properties are such that R>>1, the film is acoustically thick. 
When the films are elastic the intrinsic elastic moduli are real, resulting in zero attenuation 
changes, and the Tiersten formula [Tiersten & Sinha, 1978] for fractional velocity change, 
written in terms of the Lamé constants ( λ , μ ) [Martin et al., 1994; Ballantine et al., 1997]: 
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Where ω  is the angular frequency and ic  are the elastic constants of the material. 
Wohltjen described the frequency shift sfΔ  due to a thin, non-conducting film as [Wohltjen, 
1984] 

  2 2 2
1 2 2 R( ) (4 / )[( ) / 2 )]sf k k F h k F h Vρ μ λ μ λ μΔ = + − + +  (23) 

where  
F  is the centre frequency of a SAW device,  

RV   is the wave velocity in the substrate, and  
1k , 2k  are material constants of the substrate. If only mass loading is taken into account, 

frequency shift is calculated using the first term in (23). 
In [Grate et al., 1988; Grate et al., 1992] frequency shift vfΔ  due the vapour sorbed in the 
film is given by 

  s v
v

f C Kf
ρ

Δ
Δ =  (24) 

where  
vC  is the concentration of the vapour in the vapour phase, and  

K  is the partition coefficient, which is the ratio of the concentration of the vapour in the 
sorbent phase, sC , to the concentration of the vapour in the gas phase, vC . 
In [Grate & Zellers, 2000] equation (24) is modified to include the contribution of swelling-
induced modulus changes to vapour sensor responses: 
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3.2 Analysis based on published formulas 
Typically, the published formulas which connect frequency shifts and chemical compounds 
quantities are applied formally, without any insight into the influence of many properties of 
a real SAW delay line (geometry, propagation losses, technological constraints, and 
production tolerances) on the frequency change. This is the reason why some researchers 
perform more experiments than needed, or have difficulties in explaining discrepancies 
between the expected and measured values [Joo et al., 2005]. The mostly used formula for 
the frequency shift is actually equation (20) expressed in a slightly different form. In 
[Balcerzak & Zhavnerko, 2007] it has the form (neglecting the changes of viscoelasticity, 
dielectric constant and electric conductivity of the layer) 

  2
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1f K f m
A

Δ = Δ  (25) 
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where  

sK  is a constant (for lithium niobate 11 2 1
s 5.49 10 s m gK − −= ⋅ ),  

0f  is operating frequency of the sensor,  
A  is the surface of chemosensitive layer,  and  

mΔ  is the change of mass bonded to the sensor. 
In [Benetti et al., 2004] it is in the form  

  2
0m sf c f h ρ′Δ = − Δ  (26) 

where  
mc  is the mass sensitivity coefficient (frequency  independent),  

h′  is the thickness of the part of the coating that incorporates gas molecules, and  
sρΔ  is the mass density change due to absorption. 

In [Ho et al., 2003] modifications of (24) are used. 

3.3 Analyses based on the electro-mechanical equivalent circuit 
The analysis of transversal chemical SAW sensors, based on the electro-mechanical 
equivalent circuit, develops in a straight forward manner explicit general relations between 
electrical signals, voltages or frequencies, and vapour detection estimations taking into 
account properties of real SAW devices [Živković et al., 2009]. The whole sensor is modelled 
as a two-port network consisting of three parts: (1) the input interdigital transducer, (2) the 
delay line that is the sensing part, and (3) the output interdigital transducer, Fig. 6. The 
transducers are modelled as three-port networks and the delay line as a two-port network. 
The closed form formula for vapour concentration estimation is derived using analogy 
between electrical and mechanical quantities, the properties of the surface wave and the 
technological process and implementation of the sensor. 
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Fig. 6. The equivalent circuit of a SAW sensor. 

The characteristic SAW acoustic impedance of the unloaded substrate is designated by 0Z  
and the acoustic impedance due to the mass loading of the thin film is mZ : 

  0 sZ A vρ=  (27) 
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  m m mZ A vρ=  (28) 
where  
A  is the substrate cross-section area through which the waves propagate,  

sρ  is the mass density of the piezoelectric substrate,  
v  is the SAW velocity in the piezoelectric substrate,  

mA  is the cross-section area of the thin film, and  
mρ  is the mass density of the film.  
g gZ R=  and L LZ R=  are purely resistive electrical impedances of the generator and the 

electrical load, respectively.  
The relative variation of the centre frequency due to the mass loading is equal to the relative 
variation of the wave velocity, equation (18), and can be found using the equivalent circuit 
of a mass loaded delay line, Fig. 7. 
 

F1 Z0

Zm

F2

v v

 
Fig. 7. The equivalent circuit of a mass loaded delay line. 

By analogy between electrical and mechanical quantities, the relative variation of frequency 
and the relative variation of velocity, for mZ  much smaller than 0Z , are 

  m m m
w

0 0 s 0

f v Z h K
f v Z

ρ
ρ λ

Δ Δ − −
= = =  (29) 

where  
mρ  and mh  are the density and thickness of the thin layer, respectively,  
sρ  is the density of the piezoelectric substrate, and  
wK  is a coefficient that depends on the technological process and implementation of the 

sensor.  
The components of the wave decay exponentially inside the substrate and the penetration is 
of the order of one wavelength. Therefore, in (29), instead of the substrate thickness, one 
wavelength 0λ  is used. From the last equation fΔ  can be determined as 

  2m m
0 w

s

hf f K
v

ρ
ρ

Δ = −  (30) 

The last equation shows that the higher sensitivity will be obtained if the centre frequency is 
higher, thickness and density of the film larger, and the substrate density and velocity 
smaller. This means that quartz ( 3

s 2.62 g cmρ = ) is a better choice for the substrate than 
lithiumniobate ( 3

s 4.7 g cmρ = ). Furthermore, if ST-cut quartz is used temperature 
dependence can be neglected. Using the last equation the frequency shift, pfΔ , due to the 
sensing film (without vapour) can be determined: 
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where pρ  and ph  are the density and thickness of the film, respectively.  
Using the same reasoning, the fact that ph is much smaller than 0λ , and the partition 
coefficient K , the frequency shift vapfΔ  due to the concentration of the vapour in the vapour 
phase vC  (concentration in the ambient), can be calculated as: 

  p
vap v

p

f
f KC

ρ
Δ

Δ =  (32) 

4. Conclusion 
Analysis of chemical SAW sensors can be approached to in three ways: (1) exact analysis by 
solving the wave equation, (2) published formulas which connect frequency shifts and 
chemical compounds quantities, and (3) approximate analysis by means of equivalent 
electro-mechanical circuits. 
The exact analysis of SAW sensors using surface wave theory is very complex even in the 
case of a free surface of a single layer piezoelectric substrate.  
The published formulas which connect frequency shifts and chemical compounds quantities 
are applied formally, without any insight into the influence of many properties of a real 
SAW delay line (geometry, propagation losses, technological constraints, and production 
tolerances) on the frequency change. This is the reason why some researchers perform more 
experiments than needed, or have difficulties in explaining discrepancies between the 
expected and measured values. 
The analysis based on electro-mechanical equivalent circuits of SAW sensors connects, in a 
straight forward manner, electrical signals and chemical vapour concentrations, taking into 
account important properties of real SAW devices, such as propagation losses, technological 
constraints, and production tolerances. The unique feature of this approach is a set of closed 
form analytic expressions for vapour concentration estimations. The expressions explicitly 
relate the vapour concentration, substrate parameters, and centre frequency. They enable 
insight into the influence of the sensor design parameters on the sensor performance and 
predict very efficiently and correctly the frequency and voltage shifts due to the vapour 
concentrations. The closed-form expressions can be used for the design of optimal sensors 
for a given vapour. 
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1. Introduction   
To determine the mechanical strength of films, coatings and solids the loss of adhesion or 
fracture must be investigated. The failure of interfaces and bulk materials is a dominant 
issue in microelectronics with multilayer systems and micro-electro-mechanical-system 
(MEMS), nano-electro-mechanical-system (NEMS) and sensor devices, based essentially on 
single-crystal silicon as basic material, which is considered here in detail.  
A versatile tool that is quite often used for strength analysis is the scratch tester, where a 
diamond stylus is drawn across the coated surface under increasing load to determine the 
critical load, or the stylus is used as an indenter. These methods are versatile, but besides 
being influenced by the properties of the system itself they also depend on several test 
parameters, such as scratching velocity and stylus properties, which affect the critical load. 
Owing to the complexity of the failure processes involved, in connection with strongly 
inhomogeneous deformation fields, it is generally very difficult to extract quantitative 
values of the cohesion or fracture strength (Lacombe, 2006). In fact, the most widely used 
testing methods, such as peel, pull, scratch, blister, indentation and beam-bending tests, 
usually involve plastic deformations, which are difficult to analyze (Wei & Hutchinson, 
1998). Some of these quasi-static methods do not reach the strength limit of the strongest 
material systems or require intricate sample preparation. 
In this review the contact-free measurement of the strength of interfaces and bulk materials 
will be discussed employing pulsed lasers to launch strongly nonlinear stress pulses. In fact, 
quantitative information on the failure strength of materials can be obtained by laser-based 
excitation and detection techniques. Normally a nanosecond laser pulse is used to excite 
either bulk or surfaces acoustic stress waves, which develop shocks during propagation. In 
these laser-controlled pump-probe setups a continuous-wave (cw) laser probe is used to 
measure the transient surface displacement or surface velocity, providing the information 
on the elastic stresses achieved. The laser techniques are contact-free and normally need no 
artificial seed crack to induce failure because stresses of 5-10 GPa can be attained in the 
elastic shock pulses generated.  
For studying interfacial strengths usually bulk acoustic waves are used. With a laser pulse a 
one-dimensional (1D) compressive longitudinal wave packet is launched in a thin metal film 
covering the back side of the substrate. The critical failure stress of the film/substrate 
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interface is reached by the transformation of this compressive pulse into a tensile stress 
pulse upon reflection at the opposite free film surface. The critical load is extracted from the 
surface distortions caused by pulse reflection at the film surface (see, for example, Wang et 
al., 2003a).  
Surface acoustic waves (SAWs) are employed to elucidate the fracture modes of solids by 
inducing surface-breaking cracks. The elliptically polarized surface wave pulses are 
generated by strongly focusing laser pulses into a line at the surface. These elastic pulses 
develop shock fronts during propagation along the surface by frequency-up conversion 
processes, if the shock formation length is smaller than the attenuation length of the wave. 
The transient displacement or surface velocity of the elastic pulse propagating along the 
surface is monitored at two locations (Lomonosov et al., 2001).  
When dynamic fracture techniques with high strain rates of ≥106 s-1 are used the undesirable 
inelastic deformation effects of quasi-static methods can be reduced considerably. Such high 
elastic peak stresses can be generated, for example, by high velocity impact of a flyer plate, 
by detonations, by particle beams or pulsed laser irradiation. The application of lasers is 
preferable owing to contact-free operation and the spatial control of the impulsive load by 
the laser pulse energy, pulse duration and the possibility of focusing the radiation.  
In high-rate fracture experiments with nanosecond bulk waves usually the resistance to 
dynamic failure or spall strength is measured. Note that this is not an intrinsic material 
property because its value depends on the competition between stress growth due to wave 
interactions and stress relaxation due to the formation of voids. In ductile materials 
spallation is a rather complex kinetic process including nucleation, growth and coalescence 
of microvoids and microcracks. For this reason, it is not an intrinsic threshold phenomenon 
(Kanel, 2010). In brittle materials failure occurs by nucleation of microcracks and their 
further extension. Important information has been reported on the ultimate strength of 
layered systems involving different film/substrate combinations of metals, dielectrics and 
semiconductors. 
In dynamic fracture experiments using nanosecond SAW pulses, similar strain rates ≥106 s-1 
can be realized. Owing to the strong evolution of tensile stress during pulse propagation, no 
reflection of the surface pulse is needed, as in the case of bulk waves. Since in single crystals 
plane SAWs propagate along a well-defined crystallographic plane and in a given direction, 
they allow the investigation of the anisotropic fracture behaviour. Extensive results for the 
formation of surface-breaking cracks in different geometries (crystal planes and directions) 
are discussed for single-crystal silicon. The method also yields the critical fracture stress for 
the selected geometries. The size dependence of strength at the nano-scale is also discussed. 

2. Experimental 
The quantitative investigation of spallation, delamination and fracture mechanics by laser 
ultrasonics is based on the efficient excitation of longitudinal, shear and surface acoustic 
waves by strong nanosecond (picosecond or femtosecond) laser pulses. Especially methods 
that apply bulk stress pulses to study mode-I, mode-II and mixed-mode failure in film 
systems have found widespread use in recent years. The investigation of crack formation in 
bulk materials by nonlinear SAWs is a relatively new field of nonlinear ultrasonics. 
The original bulk method is based on laser excitation of longitudinal compressive waves on 
the side of the sample opposite to the film (see Fig. 1). The nanosecond pulse of a Nd:YAG 
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the selected geometries. The size dependence of strength at the nano-scale is also discussed. 
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Fig. 1. Setup for tensile interfacial spallation with a pulsed laser, consisting of layers for 
shock formation, substrate with test film and interferometer to monitor the film surface 
(Gupta et al., 1990; Wang et al., 2003a). 
laser is collimated at the absorbing medium to an area of about 1-3 mm diameter (Gupta et 
al., 1990). Usually, the elastic pulse is generated by absorption of laser radiation in a ~0.5 µm 
thick metal (Al) layer, which is sandwiched between the back side of the substrate and an 
about 10 µm thick transparent confining layer (SiO2, waterglass). Instead of an Al film as 
absorbing medium a 20 µm thick layer of silicone grease, containing fine MoS2 particles, has 
been employed to excite stress waves by laser breakdown (Ikeda et al., 2005). Tensile stress 
is generated when the compression pulse is reflected from the free film surface. At the 
surface the resulting stress is zero and reaches its maximum at a distance equal to half of the 
spatial pulse extension. This restricts the thickness of the films to be delaminated. The 
situation can be improved by modifying the profile of the stress pulse using an unusual 
nonlinear property of fused silica, which develops a rarefaction shock at the tail of the pulse 
for compressive stresses below 4 GPa, as shown in Fig. 1. (Wang et al., 2003a). In this case 
the tensile stress reaches its maximum at a distance of the width of the post-peak shock, 
making the method applicable for significantly thinner films. From measurements of the 
transient out-of-plane displacement or velocity of the free film surface at the epicenter by a 
laser interferometer, the interfacial strength is obtained for specular and diffuse surfaces 
using a cw laser as probe (Pronin & Gupta, 1993). 
Besides longitudinal stress pulses also shear pulses can be obtained by using a triangular 
fused silica prism for partial mode conversion of the excited longitudinal compressive wave 
into a shear wave upon oblique incidence onto a surface, as illustrated in Fig. 2 (Wang et al., 
2003b; Wang et al., 2004; Hu & Wang, 2006; Kitey et al., 2009). With an optimized setup, 
nearly complete conversion into high amplitude shear pulses, and therefore mode-II 
fracture by in-plane shear stress, can be achieved at a prism angle of θ = 57.7° (Hu & Wang, 
2006). In fact, controlled mixed-mode loading and the quantitative analysis of the stresses 
involved is possible. It is important to note that in most practical situations thin films tend to 
fail under mixed-mode I+II conditions. 
Controlled dynamic delamination of thin films has been achieved recently by insertion of a 
weak adhesion region below the film to be delaminated (Kandula et al., 2008a). While 
spallation experiments characterize the interface strength or critical stress for microvoid or 
microcrack initiation the delamination process can be more closely associated with the 
propagation of cracks. 
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Fig. 2. Setup for shear stress delamination with a pulsed laser, fused-silica prism for mode 
conversion and interferometer to monitor the film surface (Hu & Wang, 2006). 

In only a few studies have femtosecond lasers been employed to investigate spallation of 
metal targets (Tamura et al., 2001). With such ultrashort laser pulses ultrafast strain rates of 
≥108 s-1 may be accessible. These laser pulses with intensities in the 1015 W/cm2 range launch 
shock pulses with a steep unloading stress profile. The effects of femtosecond laser-driven 
shocks using very high laser pulse energies have been described recently based on time-
resolved measurement of the surface velocity by Doppler interferometry (Cuq-Lelandais et 
al., 2009; de Rességuier et al., 2010). 
SAWs are guided waves that penetrate approximately one wavelength deep into solids. 
Thus, the main part of the elastic energy stays within this depth during wave propagation 
along the surface. Note that the elliptically polarized surface waves possess in-plane and 
out-of-plane displacements, and thus both a longitudinal and shear component. In the 
corresponding pump-probe setup a pulsed nanosecond laser is employed to launch a 
nanosecond SAW pulse with finite amplitude, which is sufficiently nonlinear to develop 
shocks during propagation (Lomonosov et al., 2001). A distinctive property of SAWs is their 
intrinsic tensile stress and its further development during nonlinear pulse evolution. A cw 
laser is used for detection of the moving surface distortions at two different surface locations 
(Kolomenskii et al., 1997).  
Typically, a Nd:YAG laser radiating at 1.064 µm with 30−160 mJ pulse energy and 8 ns pulse 
duration was applied in single-pulse experiments. As depicted in Fig. 3, the explosive 
evaporation of a thin layer of a highly absorbing carbon suspension (ink), deposited only in 
the source region, is used to launch SAW pulses with sufficient amplitude for nonlinear 
evolution. By sharply focusing the pump laser pulse with a cylindrical lens into a narrow 
line source, a plane surface wave propagating in a well-defined crystallographic direction is 
launched. If the shock formation length is smaller than the attenuation length a propagating 
SAW pulse with finite amplitude develops a steep shock front. These nonlinear SAW pulses 
gain amplitudes of about 100−200 nm, as compared with few nanometers for linear SAWs. 
The shape of the pulse changes not only due to frequency-up conversion but in addition 
frequency-down conversion processes take place, caused by the elastic nonlinearity of the 
solid. The value of the absolute transient surface displacement can be detected with a 
stabilized Michelson interferometer. In most experiments, however, the more versatile 
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Fig. 2. Setup for shear stress delamination with a pulsed laser, fused-silica prism for mode 
conversion and interferometer to monitor the film surface (Hu & Wang, 2006). 

In only a few studies have femtosecond lasers been employed to investigate spallation of 
metal targets (Tamura et al., 2001). With such ultrashort laser pulses ultrafast strain rates of 
≥108 s-1 may be accessible. These laser pulses with intensities in the 1015 W/cm2 range launch 
shock pulses with a steep unloading stress profile. The effects of femtosecond laser-driven 
shocks using very high laser pulse energies have been described recently based on time-
resolved measurement of the surface velocity by Doppler interferometry (Cuq-Lelandais et 
al., 2009; de Rességuier et al., 2010). 
SAWs are guided waves that penetrate approximately one wavelength deep into solids. 
Thus, the main part of the elastic energy stays within this depth during wave propagation 
along the surface. Note that the elliptically polarized surface waves possess in-plane and 
out-of-plane displacements, and thus both a longitudinal and shear component. In the 
corresponding pump-probe setup a pulsed nanosecond laser is employed to launch a 
nanosecond SAW pulse with finite amplitude, which is sufficiently nonlinear to develop 
shocks during propagation (Lomonosov et al., 2001). A distinctive property of SAWs is their 
intrinsic tensile stress and its further development during nonlinear pulse evolution. A cw 
laser is used for detection of the moving surface distortions at two different surface locations 
(Kolomenskii et al., 1997).  
Typically, a Nd:YAG laser radiating at 1.064 µm with 30−160 mJ pulse energy and 8 ns pulse 
duration was applied in single-pulse experiments. As depicted in Fig. 3, the explosive 
evaporation of a thin layer of a highly absorbing carbon suspension (ink), deposited only in 
the source region, is used to launch SAW pulses with sufficient amplitude for nonlinear 
evolution. By sharply focusing the pump laser pulse with a cylindrical lens into a narrow 
line source, a plane surface wave propagating in a well-defined crystallographic direction is 
launched. If the shock formation length is smaller than the attenuation length a propagating 
SAW pulse with finite amplitude develops a steep shock front. These nonlinear SAW pulses 
gain amplitudes of about 100−200 nm, as compared with few nanometers for linear SAWs. 
The shape of the pulse changes not only due to frequency-up conversion but in addition 
frequency-down conversion processes take place, caused by the elastic nonlinearity of the 
solid. The value of the absolute transient surface displacement can be detected with a 
stabilized Michelson interferometer. In most experiments, however, the more versatile 
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Fig. 3. Setup for exciting plane SAW pulses with shocks using pulsed laser irradiation and 
two-point cw laser probe-beam deflection to monitor the transient surface velocity 
(Lomonosov et al., 2001). 

transient deflection of a cw probe-laser beam is monitored by a position-sensitive detector, 
to determine the surface velocity or shear displacement gradient (Lomonosov et al., 2001). In 
the two-point-probe scheme the SAW profile usually is registered at distances of 1−2 mm 
and 15−20 mm from the line source. The pulse shape measured at the first probe spot is 
inserted as an initial condition in the nonlinear evolution equation to simulate the nonlinear 
development of the SAW pulse and to verify agreement between theory and experiment at 
the second probe spot. 

3. Interfacial decohesion by longitudinal and shear waves 
3.1 Determination of the interfacial spallation and delamination strength 
Up to now in most bulk experiments longitudinal pulses have been used for spatially 
localized spallation or delamination of films by pure tensile stresses (mode I). As discussed 
before, the tensile stress pulse reflected at the free film surface is responsible for the more or 
less complete removal (spallation) of the film predominantly in the irradiated area. From the 
interferometric measurement of the transient out-of-plane displacement at the film surface, 
the stress development in the substrate and at the interface can be inferred.  
For a substrate with a single layer the evolution of the substrate stress pulse σsub and the 
interface stress σint are determined using the principles of wave mechanics. If the film 
thickness h is smaller than the spatial spread of the substrate pulse during the rise time trise, 
i.e., h << cfilm×trise, where cfilm is the wave speed in the film, the following approximations can 
be applied to estimate the substrate and interface stresses. Note that in this situation the 
loading region is large compared to the actual film thickness. For a Gaussian compressive 
1D stress pulse launched in the absorbing metal layer and propagating towards the 
substrate one finds under this condition (Wang et al., 2002). 

                          sub sub
1 du(t) ( c)
2 dt

σ ρ= −   (1) 

where the assumption is made that the displacement amplitude of the wave in the substrate 
is half that at the free surface, and u is the displacement of the free film surface. Here ρ is the 
density of the substrate and c the longitudinal speed of the stress wave in the substrate. 
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The tensile stress acting at the film/substrate interface can be estimated by assuming that 
the stress is given by (ρh)film multiplied by the acceleration of the free surface 

 
2

int film 2
d u(t) ( h)
dt

σ ρ= −  (2) 

The subscripts ‘sub’ and ‘film’ represent substrate and film properties, respectively. When 
the film thickness becomes comparable to the spatial extension of the rising part of the 
pulse, i.e., h ≈ cfilm × riset , the following equation provides a more accurate 1D description of 
the stress history at the interface, because in reality the stress loading of the interface results 
from the superposition of the incoming compressive wave and the reflected tensile pulse 

                                          int film film film
1(t,h) ( ) v(t h / c ) v(t h / c )
2

cσ ρ= + − −⎡ ⎤⎣ ⎦  (3) 

Here v is the measured surface velocity v = du/dt (Gupta et al., 2003). For small values of 
h/cfilm this equation transforms into Equation (2), which is analogous to Newton’s second 
law of motion, stating that the interface tensile strength is given by the mass density of the 
film times the outward acceleration of the centre of mass of the film (Wang et al., 2002). 
These 1D approximations provide physical insight into the relevant stress loading processes. 
Numerical simulations are needed to obtain a more accurate description of the three-
dimensional evolution of the stress field. 
The treatment of the more complicated mixed-mode case, where tensile and shear stresses 
act simultaneously, can be found in several publications (Wang et al., 2003b); Wang et al., 
2004; Hu & Wang, 2006; Kitey et al., 2009). In these reports the equations have been derived 
that are needed to extract the interfacial adhesion strengths for mixed-mode failure and to 
compare these results with those for purely tensile loading. 
Here the derivation is presented for an experimental arrangement similar to the one shown 
in Fig. 2, where the shear wave travels nearly perpendicular to the film surface (φ = 60° and γ 
≈ 86.9°), following Hu and Wang (2006). The stress waves S1 and L2 load the film interface 
with different mode-mixities at points A and B. At these points another mode conversion 
takes place, when S1 and L2 reach the film surface. The out-of-plane displacements u⊥A and 
u⊥B and the in-plane displacements u||A  and u||B  can be calculated as a function of L1, S1, 
and L2 (Hu & Wang, 2006). The results indicate that the out-of-plane displacement at point B 
is about 2.5 times that at point A. 
From the information on the displacements the substrate and interface stresses are derived 
on the basis of the 1-D approximation (Hu & Wang, 2006) 

 22 LL
sub sub

du
( c )

dt
σ ρ= −  (4)                          

   11 SS
sub s sub

du
( c )

dt
τ ρ= −  (5) 

 
2

X X
film film 2

d u( h)
dt

σ ρ ⊥= −  (6)                          
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2

X ll X
int film 2

d u( h)
dt

τ ρ= −  (7) 

where the normal and shear stresses in the substrate at the points X (A or B) caused by L2 

and S1 are given by 2L
subσ  and 1S

subτ , respectively (see Fig. 2). The corresponding normal and 
shear interface stresses are X

intσ and X
intτ  and the out-of-plane and in-plane displacements are 

u⊥X and u||X, respectively. The relatively large ratio of the shear to the normal interface 
stress of ~14 indicates nearly pure shear loading for this particular configuration of the silica 
prism.  

3.2 Results of interface spallation and delamination experiments 
Especially spallation experiments have been performed for a large variety of layered 
material systems. The controlled delamination of a film is more difficult to achieve, but has 
been reported recently (Kandula et al., 2008a). In the following results obtained for some 
characteristic systems are selected to illustrate the potential of this laser-based method to 
study pure and mixed-mode decohesion of thin films in layered systems. 
Si/SixNy/Au system 
Mixed-mode failure was studied in this particular work using a silicon wafer of 730 nm 
thickness covered with a SixNy passivation layer (400 nm) and an Au film of thickness of 300 
nm, 600 nm, or 1200 nm reported recently (Kandula et al., 2008a). The back side of the silicon 
substrate was bonded to a fused silica prism equipped with an Al layer (400 nm) and a 
confining waterglass layer. For the pure tensile strength between the Au film and passivated 
silicon substrate a critical stress of 245 MPa was found. Under mixed-mode conditions, 
delamination was observed at about 142 MPa tensile stress and about 436 MPa shear stress. 
Thus, by applying the shear load the tensile strength was reduced by approximately 100 MPa. 
The effective stress in the mixed-mode case was about 449 MPa. An interpretation of this 
finding in comparison with mode-I failure is that mixed-mode decohesion consumes more 
energy. It is important to note that the laser spallation method clearly yields mode-resolved 
strength values, whereas the stress fields generated by conventional scratch, peel, pull, blister 
and indentation tests are difficult to analyze quantitatively due to stress inhomogeneities and 
plastic deformations involved in these techniques. 
To illustrate the whole measurement and evaluation procedure of this laser technique, the 
registered photo-diode signal is presented in Fig. 4a), the corresponding normal surface 
displacement is shown in Fig. 4b), the substrate shear stress is displayed in Fig. 4c) and the 
tensile and shear stress components acting at the interface are exhibited in Fig. 4d) for a 600 
nm Au film deposited on a passivated silicon substrate (Kitey et al., 2009).  
Si/TaN/Cu system 
In the case of very thin films, the reflected tensile pulse may overlap with the incoming 
compressive pulse, reducing the effective stress at the interface. In this situation it can 
happen that the critical fracture strength of the substrate material is first reached at a certain 
penetration depth of the tensile pulse into the substrate. By increasing the film thickness the 
incoming and reflected pulse can be separated, finally leading to film spallation. Such a 
behaviour has been observed for silicon covered by a bilayer of TaN/Cu. The TaN layer 
thickness was fixed at 20 nm, whereas the Cu layer was varied in five steps between 100 nm 
and 10 µm. At a Cu-layer thickness ≤1 µm, silicon fracture with an intrinsic tensile strength 
 



 Acoustic Waves 

 

384 

a)

0.05

0.07

0.09

0.11

0.13

475 480 485 490 495 500 505 510
Time (ns)

Ph
ot

o-
di

od
e 

ou
tp

ut
 (V

)

 

 b)

0

0.1

0.2

0.3

0.4

475 480 485 490 495 500 505 510
Time (ns)

D
is

pl
ac

em
en

t (
µm

)

 

c)

-0.5
-0.4
-0.3
-0.2
-0.1

0
0.1
0.2

475 480 485 490 495 500 505 510
Time (ns)

Su
bs

tr
at

e 
St

re
ss

 (G
Pa

)

 

 d)

-100
0

100

200

300
400
500

475 480 485 490 495 500 505 510
Time (ns)

In
te

rf
ac

e 
 S

tr
es

s 
(M

Pa
)

normal stress
shear stress

 
Fig. 4. Mixed-mode failure of a 600 nm Au film on passivated silicon: a) displacement 
fringes of incident shear wave S1, b) time dependence of out-of-plane displacement of film 
surface, c) substrate shear stress τsub and d) normal and shear interface stresses (Kitey et al., 
2009).  

of approximately 5 GPa was observed, while at Cu-layer thicknesses of ≥5 µm the Si/TaN 
interface was debonded at about 1.4 GPa (Gupta et al., 2003). 
Silica/W/W film system 
Recently, the fracture of bulk polycrystalline tungsten and spallation of a tungsten/tungsten 
interface, produced by magnetron sputtering of a tungsten film, was studied (Hu et al., 
2009). For polycrystalline bulk tungsten a strength of 2.7−3.1 GPa was found. Crack 
propagation occurred essentially along certain crystallographic orientations by coalescence 
of microvoids due to grain boundary decohesion. Only at extremely high strain rates did in-
plane cracks not distinguish between the bulk and boundaries of grains and propagated 
along relatively straight paths of lengths two-to-three times the laser loading diameter. The 
observed spall strengths were substantially higher than the value of ~0.5 GPa reported for 
plate-impact shock loading at strain rates of about 105 s-1 and the stress of 1.2 GPa observed 
under quasi-static loading (see Hu et al., 2009). The interfacial strength of the 
tungsten/tungsten interface, created by sputtering, was only 875 MPa. 
Si/SixNy/PBO system 
The interface strength of a dielectric polymer film has been studied in a multilayer system 
(Si/SixNy/PBO) consisting of a poly(p-phenylene benzobisoxazole) (PBO) film (5 µm), which 
is used as stress buffer in microelectronics, a silicon nitride (SixNy) interface layer of 30 nm 
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Fig. 4. Mixed-mode failure of a 600 nm Au film on passivated silicon: a) displacement 
fringes of incident shear wave S1, b) time dependence of out-of-plane displacement of film 
surface, c) substrate shear stress τsub and d) normal and shear interface stresses (Kitey et al., 
2009).  

of approximately 5 GPa was observed, while at Cu-layer thicknesses of ≥5 µm the Si/TaN 
interface was debonded at about 1.4 GPa (Gupta et al., 2003). 
Silica/W/W film system 
Recently, the fracture of bulk polycrystalline tungsten and spallation of a tungsten/tungsten 
interface, produced by magnetron sputtering of a tungsten film, was studied (Hu et al., 
2009). For polycrystalline bulk tungsten a strength of 2.7−3.1 GPa was found. Crack 
propagation occurred essentially along certain crystallographic orientations by coalescence 
of microvoids due to grain boundary decohesion. Only at extremely high strain rates did in-
plane cracks not distinguish between the bulk and boundaries of grains and propagated 
along relatively straight paths of lengths two-to-three times the laser loading diameter. The 
observed spall strengths were substantially higher than the value of ~0.5 GPa reported for 
plate-impact shock loading at strain rates of about 105 s-1 and the stress of 1.2 GPa observed 
under quasi-static loading (see Hu et al., 2009). The interfacial strength of the 
tungsten/tungsten interface, created by sputtering, was only 875 MPa. 
Si/SixNy/PBO system 
The interface strength of a dielectric polymer film has been studied in a multilayer system 
(Si/SixNy/PBO) consisting of a poly(p-phenylene benzobisoxazole) (PBO) film (5 µm), which 
is used as stress buffer in microelectronics, a silicon nitride (SixNy) interface layer of 30 nm 
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or 400 nm thickness and a silicon wafer  (Kandula et al., 2008b). Stress wave propagation in 
this multilayer system was analyzed analytically and numerically, by neglecting the 
influence of the silicon nitride layer in the analysis. At strain rates of about 107 s-1 and laser 
fluences of 65 mJ/mm2, compressive stresses of up to 3.5 GPa could be obtained. Such a 
stress is sufficient to fracture bulk silicon in certain configurations as observed already 
before (Wang et al., 2002). As expected, the failure of the film interface was observed at 
much lower laser fluences and varied strongly with the preparation, treatment and 
thickness of the PBO layers, yielding an upper tensile interface stress of about 0.35 GPa. 
Si/neuron cell system 
First experimental results and finite element simulations on the extension of the laser-
induced bulk stress wave technique to the investigation of biological samples such as 
cell/substrate adhesion have been reported (Hu et al., 2006). In this pioneering work the 
noncontact detachment of neuron cells from a silicon substrate was studied. Since the time 
scale of the experiment is in the nanosecond range cells remain essentially undisturbed 
before their detachment, which is not the case with other techniques. While adhesion could 
be characterized only in terms of the critical Nd:YAG laser fluence, it can be expected that 
the method will be able to quantify the adhesion strength in the near future. The principal 
detachment mechanism predicted by the simulations performed is strain-driven failure 
resulting from the cell’s tendency to flatten and elongate along the substrate (Miller et al., 
2010). 

4. Fracture of anisotropic crystals by surface acoustic wave pulses 
4.1 Determination of the bulk fracture strength 
With SAWs, strong nonlinearities and very high strains in the range of 0.01 can be realized 
much more easily than with bulk waves (Lomonosov et al., 2001; Lomonosov & Hess, 2002). 
As mentioned before, SAWs are guided waves that only penetrate approximately one 
wavelength deep into the solid. This particular property reduces diffraction losses as 
compared with acoustic bulk waves. In addition, frequency-up conversion concentrates the 
energy in an even smaller depth from the surface. For certain crystal geometries the 
displacements of SAWs are confined to the sagittal plane, defined by the in-plane 
propagation direction x1 and the surface normal x3. Thus, x2 is normal to the sagittal plane. 
To extract quantitative values of fracture strengths from experiments with laser-induced 
SAWs, a theoretical description of shock formation in a SAW pulse with finite amplitude 
during its propagation in a nonlinear elastic medium is required. A suitable nonlinear 
evolution equation that also takes into account dispersion of SAWs has been developed to 
describe solitary surface pulses in layered systems (Lomonosov et al., 2002; Eckl et al., 2004; 
Hess & Lomonosov, 2010). In systems without a length scale, such as single crystals, the 
dispersion term is not needed because SAWs are not dispersive. Therefore, in silicon, the 
profiles of the recorded SAW pulses were simulated by solving the following dispersionless 
nonlinear evolution equation 

         *
n 0 n' n-n' n' n'-n

0 n' ´n n' n
i B nq F(n' / n)B B 2 (n / n')F * (n / n')B B

τ < < >

⎡ ⎤∂
= +⎢ ⎥∂ ⎣ ⎦

∑ ∑  (8) 

where Bn is the n-th harmonic of the signal, τ the stretched coordinate along the direction of 
wave propagation, q0 the fundamental wave number and F(x) a dimensionless function. This 
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function describes the efficiency of frequency conversion and depends on the ratio of the 
second-order to third-order elastic constants of the selected geometry. For example, F(1/2) 
describes the efficiency of second-harmonic generation. Comparison with experiments 
showed that this equation provides a quantitative description of nonlinear SAW evolution 
(Lomonosov & Hess, 2002; Lehmann et al., 2003). 
Experimentally, the SAW pulse is measured at two surface spots by laser-probe-beam 
deflection, one 1-2 mm from the source and the other at a distance of 15−20 mm (see Fig. 3). 
The calibration procedure exploits the predictor-corrector method for the iterative solution 
of the evolution equation, which connects the Fourier components of the transient profiles 
measured at the first and the second probe spots. Since the distance between the two probe 
spots was fixed, the observed changes depend only on the initial magnitude of the absolute 
strain. The aim was to determine the calibration factor ‘a’, with the dimension [1/volt], in 
the equation u31 = a×U(t), where u31 is the surface velocity or shear displacement gradient 
and U(t) is the signal measured at the first probe spot. The solution with correct calibration 
factor should describe the profile registered at the second probe spot and allows one to 
estimate the absolute surface strain at any other location, e.g., where a surface crack can be 
seen. The spectrum of the initial laser-excited transient was limited to about 200 MHz, 
mainly due to the laser pulse duration of 8 ns. The purpose was to measure the surface slope 
at a position close to the source, where frequency components in the gigahertz range are still 
negligible. As can be clearly seen in Fig. 5, the sharp spikes developed at larger propagation 
distances could no longer be recorded with the experimental setup. Since in a nonlinear 
medium like a silicon crystal both frequency-up conversion and frequency-down conversion 
processes take place, a lengthening of the pulse profile occurs simultaneously with shock 
formation. This effect is proportional to its magnitude, and therefore the pulse length can be 
used as a sensitive measure of the nonlinear increase of strain. In particular, when the shock 
fronts become steeper this quantity can be determined quite accurately (Lomonosov & Hess, 
2002; Kozhushko & Hess 2007). 
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Fig. 5. Typical pulse shapes measured at the first and second probe spots in silicon. 
Comparison of the latter experimental profile with the predicted shape with spikes explains 
the calibration procedure of fitting the length of the pulse (Kozhushko & Hess, 2007).  
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4.2 Results for mode-resolved fracture strength of silicon 
Up to now there is no generally accepted microscopic theory of brittle fracture of materials, 
because only simulations are possible on the molecular level. Certainly, dynamic fracture 
consists of two stages, namely nucleation and subsequent propagation of the crack tip. In 
the experiments considered here, fracture was induced by intrinsic surface nucleation with 
SAWs propagating along defined geometries. For some special geometries the shocked SAW 
pulse introduced not only a single crack but a whole field of about 50−100 µm long cracks by 
repetitively fracturing the crystal after a certain additional propagation distance along the 
surface that was sufficient to restore the shocks.  
Previous fracture experiments indicate that the {111} plane is the weakest cleavage plane in 
silicon. Failure usually occurred perpendicular to the SAW propagation direction and 
extended along one of the Si{111} cleavage planes into the bulk. There are three orthogonal 
pairs of stress components defining three fracture modes, namely tensile or opening σ11, in-
plane shear or sliding σ31 and out-of-plane shear or tearing σ21, briefly called fracture modes 
I, II and III, respectively.  
By assuming that the {111} plane is the weakest cleavage plane of silicon, geometries were 
chosen where the intersection line of the {111} cleavage plane with the free surface was 
normal to the wave vector of the plane SAW pulse. The four basic cleavage planes provide a 
set of possible orientations. We studied the geometries Si(112)[111], Si(111)[112], Si(223)[334] 
and Si(221)[114], which are a subset of the general set of geometries (m m n)[n n 2m], where 
the particle displacements are confined to the sagittal plane, and therefore only the σ11 

opening stress component has a non-zero value at the surface (Kozhushko & Hess, 2008). 
Note that in the coordinate system associated with tilted cleavage planes the initial σ11 stress 
can be represented by simultaneously acting orthogonal components, which are associated 
with a tensile mode and an in-plane shearing mode. The orientation of the family of {111} 
cleavage planes, which are normal to the sagittal plane, is displayed in Fig. 6. In all these 
cases, the initial σ11 opening stress can be represented by two orthogonal components with 
their ratio defined by the tilt angle of the cleavage plane with respect to the surface normal.  
 
 

 
 

Fig. 6. Crystallographic configurations of the Si{111} cleavage planes normal to the sagittal 
section, e.g., for the subset of the (m m n)[n n 2m] geometries (Kozhushko & Hess, 2007). 
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In the following discussion results are presented for the low-index planes Si(112), Si(111), 
Si(223), Si(221) and Si(110) and SAW propagation in selected directions, described in more 
detail previously (Lomonosov & Hess, 2002; Kozhushko et al., 2007; Kozhushko & Hess, 
2007; Kozhushko & Hess, 2008; Kozhushko & Hess, 2010) 
Silicon (112) plane 

Initiation of impulsive fracture by nonlinear SAW pulses in the Si(112)< 111 > geometry 
revealed that SAW pulses propagating in the < 111 > direction induced fracture at 
significantly lower laser pulse energies, and thus at lower SAW strains, than the mirror-
symmetric wave propagating in the opposite <11 1 > direction. This surprising effect is a 
consequence of differences in the elastic nonlinearity of the two propagation directions. 

The easy-cracking configuration was used for fracture experiments with low laser pulse 
energies of 30−40 mJ. An optical microscope image of the induced crack field of a typical 
fractured surface is presented in Fig. 7. The vertical line at the right-hand side is the imprint 
of the laser-generated line source. The position of the first probe spot was approximately 0.5 
mm from the source. With further propagation the finite SAW pulse developed the critical 
stress needed for fracture. At a distance of about 1 mm from the source the first crack can be 
seen. For crack nucleation and formation of the crack faces a certain amount of energy is 
needed. The resulting loss in pulse energy mainly reduces the high frequency part of the 
SAW pulse spectrum. The crack field extending further to the left-hand side is the result of 
repetitive fracture processes, occurring due to repetitive recovery of the shock fronts during 
propagation after each fracture event.  
On the surface the cracks extended into the < 110 > direction, perpendicular to the SAW 
propagation direction and sagittal plane, with a length of up to 50 µm, controlled by the 
length of the SAW pulse in the nanosecond range. As expected, failure occurred along the 
intersection line of the surface with the {11 1 } cleavage plane (see Fig. 6). The resulting peak 
value of the σ11 stress at the surface is associated with the tensile strength of the material for 
nucleation of cracks at the surface. A series of experiments yielded about 4.5 GPa for the 
critical opening stress of silicon at the surface in this particular geometry. Note that here 
only normal stress acts on the {11 1 } cleavage plane, which is perpendicular to the surface 
for this particular geometry, and consequently the nucleation of cracks can be considered as 
a pure mode-I process (Kozhushko & Hess, 2007). 
 

 
Fig. 7. Optical microscope image of the Si(112) surface after propagation of a single 
nonlinear SAW pulse in the < 111 > direction from the source on the right side to the left 
(Kozhushko & Hess, 2007).  
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Silicon (111) plane 

For this geometry we also made the observation that counterpropagating nonlinear SAW 
pulses, moving in opposite directions, e.g., in the < 11 2> and <11 2 > directions on the 
Si(111) plane, develop completely different nonlinear pulse shapes. In the easy-cracking 
geometry Si(111) < 112 > the tensile fracture strength was in the range of about 4 GPa. The 
surface-nucleated cracks propagated into the bulk along the {11 1 } cleavage plane, which is 
inclined by 19.5° to the normal of the free surface (see Fig. 6). According to the boundary 
conditions for SAWs, only the tensile opening stress σ11 is nonzero at the surface in the 
initial coordinate system. 
This tensile stress of σ11 = 4 GPa can be represented by a set of orthogonal components in the 
coordinate system associated with the tilted cleavage plane { 111} . The stresses in the new 
coordinate system are calculated by applying the transformation rule σij = AikAjlσkl, where 
Aik is the corresponding rotation matrix around x2. As in the initial coordinate system only 
σ11 has a non-zero value at the surface, we find the tensile stresses σ11T(t) = cos2ϕσ11(t) and 
σ33T (t) = sin2ϕσ11(t), and the shearing stress components σ13T(t) = σ31T = −(1/2)sin2ϕσ11(t), 
where x1T is normal to the { 111 } cleavage plane and ϕ is the angle of rotation around x2. In 
the following estimate the time dependence will be omitted. The amplitudes of the 
calculated stress components were reduced according to the transformation law. The mean 
value of the predicted σ11 stress at the first fracture point is 4.0 GPa. The value of σ11T is 
equal to 3.6 GPa and can be considered as an estimate of the fracture strength of silicon in 
this special geometry (Kozhushko et al., 2007; Lomonosov & Hess, 2008).  
In fact, a combination of mode I (tensile opening) and mode II (in-plane shearing or sliding) 
processes is expected to control this fracture geometry. The resulting stress components for 
a biaxial fracture mechanism in the tilted coordinate system are σ11T = 3.6 GPa and σ31T = –1.3 
GPa. In addition, a smaller contribution from the component σ33T = 0.4 GPa has to be taken 
into account in a rigorous treatment. Fig. 8 illustrates the ‘biaxial’ fracture components with 
respect to the {11 1 } cleavage plane for this geometry (Kozhushko & Hess, 2010). 
Silicon (223) plane 

A very small tilt of the cleavage plane from the surface normal of 8° (see Fig. 6) generates a 
σ31T component acting as sliding mode of fracture along the {11 1 } cleavage plane with a 
value of σ31T = −0.14 σ11. Since fracture is a dynamic process, even such a relatively small 
shear stress may play an important role during crack extension. The other components are 
σ11T = 0.98 σ11 and σ33T = 0.02 σ11. A series of such experiments resulted in a critical fracture 
strength of only σ11 ≈ 3.0 GPa in this geometry, the lowest critical opening stress found for 
the investigated geometries (Kozhushko & Hess, 2010). 
Silicon (221) plane 

In this fracture geometry the tilt of the cleavage plane is 35.3° to the surface normal (see Fig. 
6). A laser pulse energy of about 70 mJ had to be applied to achieve fracture in the easy 
cracking direction, namely the Si(221)< 11 4> geometry. As the stress acting normal to the 
{ 111}  cleavage plane is reduced to 2/3 of the initial σ11 stress at the surface, all components 
can be easily obtained as described above as σ11T = 0.67 σ11, σ31T = −0.48 σ11 and σ33T = 0.33 σ11. 
It is noteworthy that nearly half of the initial tensile stress of σ11 = 3.5 GPa is transformed to 
an in-plane-shearing action in this case. 
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Fig. 8. Scheme of the crack nucleation process for the easy cracking geometry Si(111)< 11 2> 
with biaxial crack components and propagation along the { 111} cleavage plane, tilted by 
19.5° to the surface normal. 

The first crack was nucleated ~1 mm from the line source. At a distance of ~3 mm from the 
sources several fracture tracks generated a number of cracks located at larger distances from 
the source. In contrast to the previous geometries, these cracks consisted of a line along 
< 110 > and two branches with an angle of about 70°. This angle is very close to the angle 
between the intersection lines of the { 111 } and { 111 } cleavage planes with the surface, 
providing an example of crack bifurcation after nucleation. Numerical estimates show that 
these planes undergo fracture induced by the following stress components: σ11T = 0.67 σ11, 
σ22T = 0.31 σ11, σ21T = 0.45 σ11, σ31T = 0.13 σ11, σ32T = 0.09 σ11 and σ33T = 0.03 σ11. The opening 
stress component σ11T has the same value as the opening stress component of the { 111 } 
plane. These components bifurcate and draw cracks along the initial cleavage plane. Note 
that initial failure occurs along the line normal to the direction of the wave vector of the 
SAW pulse. This supports our basic assumption that tension of chemical bonds normal to 
the cleavage plane is strongly involved in the process of crack nucleation, while other stress 
components also influence the mechanical strength and furthermore may induce branching 
after nucleation or draw crack tips along other cleavage planes (Kozhushko & Hess, 2007; 
Kozhushko & Hess, 2010). 
Silicon (110) plane 

The geometry Si(110)< 111 > was chosen because one plane of the {111}-cleavage-plane 
family is normal to the surface and the direction of the wave vector. The SAW solution 
indicates that the value of the out-of-plane shearing component σ21, stretching the material 
normal to the sagittal plane, is not zero since in this geometry particle motion is no longer 
restricted to this plane. 
It was demonstrated that a steep shock front is generated in the Si(110)< 111 > geometry by 
transient SAW pulse evolution. Calculations of the stress field resulted in a positive σ11 peak, 
which means that the acting forces stretch bonds normal to the cleavage plane. Moreover, 
there are also displacements of particles along the x2-coordinate axis, normal to the sagittal 
plane, which produce non-zero stress at the surface. The out-of-plane shearing component 
σ21 can be associated with fracture mode III and the σ22 stress stretches the material normal 
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to the sagittal plane. These contributions, however, are relatively small, since the analysis 
yields σ11/σ21 ≈ 15 and σ11/σ22 ≈ 7 for the peak stress components at the surface. 
Dynamic fracture under the predominant action of biaxial stresses in the Si(110)< 111 > 
geometry was studied to further examine a more complicated mixed case. There is no 
difference for nonlinear pulse evolution of counterpropagating SAWs in this particular 
geometry. Fracture could be achieved only by increasing the laser pulse energy up to about 
150 mJ and no extensive crack field could be observed. The average value found for the 
initial critical tensile stress σ11 was about 7 GPa. The transformation of the coordinate system 
of the SAW solution to the fracture geometry gives the following estimates of the peak stress 
components for the second plane normal to the free surface, namely { 111 }, in comparison 
with the initial { 111 } cleavage plane: σ11T = 0.2 σ11, σ21T = 0.22 σ11 and σ22T = 0.95 σ11. These 
components are strong enough to branch the nucleated crack (Kozhushko & Hess, 2007; 
Kozhushko & Hess, 2010).  

4.3 Comparison of fracture strength for different silicon geometries 
The examples presented show that in the selected geometries SAWs generate dominating 
tensile stress at the surface, which is responsible for the nucleation of surface-breaking 
cracks. Several multi-mode fracture processes were characterized in anisotropic silicon. The 
technique provides values of the tensile stress between 3 and 7 GPa for the low-index-plane 
geometries responsible for nucleation and the corresponding tensile and shear stress 
components governing crack propagation into the bulk in those systems, where the weakest 
{111} cleavage plane deviates from the surface normal (see Table 1). The observed stresses of 
several gigapascals agree with the bulk strength of about 3-5 GPa estimated for undefined 
silicon geometries by longitudinal stress pulses (Wang et al., 2002; Gupta et al., 2003).  
 

Geometry σ11 (GPa) σ11T (GPa) σ31T (GPa) σ33T (GPa) σ22T (GPa) 
Si(112)<-1-11> 4.5 GPa     
Si(223)<-3-34> 3.0 GPa 2.9 GPa –0.42 GPa   
Si(111)<-1-12> 4.0 GPa 3.6 GPa –1.3  GPa 0.4 GPa  
Si(221)<-1-14> 3.5 GPa 2.3 GPa 0.46 GPa 0.11 GPa 1.1 GPa 
Si(110)<1-11> 7.0 GPa 1.4 GPa   6.7 GPa 

Table 1. Cleavage geometries with tensile stress at the surface and tensile and shear stress 
components for the family of {111} cleavage planes deviating from the surface normal. 

4.4 Fracture behaviour of silicon in mesoscopic and nanoscopic systems 
With the extension of crystalline silicon devices and sensors to smaller and smaller sizes the 
dependence of the mechanical strength on the system size becomes an important issue. In 
applications of MEMS and NEMS devices, for example, the mechanical stability is essential 
for their manipulation, functionalization and integration into complexer systems. In general 
it is expected that the strength increases with decreasing size of the system due to the 
smaller number of crystal defects such as voids, microcracks or dislocations. In the early 
work on the fracture strength of silicon whiskers with diameters at the micrometer scale 
(~1−20 µm) tensile fracture strengths of 2−8 GPa were found. This is in the same range as the 
values measured here for well-defined test geometries. This may be interpreted by the 
assumption that similar fracture geometries and failure mechanisms were involved in these 
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processes. In more recent experiments using nanowires with diameters of 700 to 100 nm the 
strength increased from 0.03 to 2−4 GPa (Gordon et al., 2009). For the mechanical properties 
of self-welded [111] single-crystal silicon nanowire bridges, grown between two silicon 
posts, the maximum bending stress increased from 300 to 830 MPa for a wire diameter 
decreasing from 200 to 140 nm, depending on the loading conditions (Tabib-Azar et al., 
2005). This means that at the micrometer scale the mechanical strength of the best silicon 
materials is comparable with the strength of wafers at the millimeter scale. This is consistent 
with the observation that size effects do not play a role on the elastic behaviour of silicon 
nanowires with a diameter >100 nm (Sohn et al., 2010). 
In recent years, several techniques such as the chemical vapor deposition (CVD) vapor 
liquid solid (VLS) or CVD-VLS method have been developed to grow nanowires with 
diameters down to the few nanometer range. Currently, however, it is very difficult to 
extract general conclusions from this pioneering work, since contradictory results have been 
reported for the size effects of mechanical properties. It seems that the strength of silicon can 
increase to about 12 GPa, as the nanowire diameter decreases to 100−200 nm (Hoffmann et 
al., 2006) and 15−60 nm (Zhu et al., 2009) in wires grown along the [111] direction. This 
value comes already near to the theoretical strength for tensile cleavage of silicon along the 
{111} plane of 22 GPa obtained by ab initio calculations for an ideal silicon lattice (Roundy & 
Cohen, 2010). A similar value of 21 GPa has been reported by Dubois et al. in 2006. In Fig. 9 
the strength values measured for macroscopic, mesoscopic and nanoscopic silicon systems 
are compared with ab initio theory of an ideal silicon crystal. It is interesting to note that for 
silicon the difference between the highest measured and ideal strength is only a factor of 
two, while it is 1-2 orders of magnitude for diamond (Hess, 2009).  
Nanowires with a diameter below 20 nm can grow in the [111], [110] and [112] directions. 
For [110]-oriented nanowires with diameter <60 nm ductile failure has been observed (Han 
et al., 2007), while for [111]-oriented wires with diameters of 100−200 nm brittle failure 
occurred without plastic deformation (Heidelberg et al., 2006). These findings point to 
changes in the fracture behaviour at the nano-scale, which seem to be connected with the 
increasing surface/volume ratio and a smaller influence of defects. 
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Fig. 9. Comparison of theoretical and experimental strength values for ideal and real silicon 
systems with decreasing size.  
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4.5 Molecular dynamics simulation of molecular silicon fracture mechanisms  
Ab initio calculations are quite accurate but up to now provided only the brittle fracture 
strength of a few selected low-index failure configurations of silicon without detailed 
mechanistic information on the dynamics of the rearrangement of bonds. It is important to 
note that brittle fracture is a complicated multi-scale phenomenon involving nanoscopic and 
mesoscopic length scales. Atomic-scale crack growth proceeds via individual bond breaking 
events of variously oriented bonds depending on crack speed, which controls the individual 
propagation steps of fracture. These fundamental processes can be studied by simulations 
combining classical potentials and quantum mechanics, describing the stress fields and 
chemical rearrangements at the crack tip. For silicon such simulations have been performed 
giving new insight into the various possibilities of crack nucleation and extension. In the 
well studied case of cracking along the Si{111} cleavage plane, for example, it is possible to 
discriminate between clean continuous propagation of a crack along {111} by breaking six-
member rings and discontinuous fracture by the formation of five- and seven-member rings 
in a recontruction process, as illustrated in Fig. 10. In the bulk, plastic deformation along the 
dislocation glide is prohibited if the Peierls stress for the movement of nucleated 
dislocations is too high, as assumed for low temperatures (Kermode et al., 2008). 
Recent simulations of the fracture mechanism in silicon nanowires by the modified 
embedded atom method (MEAM) potential indicate that cleavage is initiated by nucleation 
of a surface microcrack, while shear failure is initiated by the nucleation of a dislocation at 
the surface (Kang & Cai, 2010). Contrary to the situation in the bulk, failure seems to be 
controlled by the nucleation of dislocations and not by the dislocation mobility in these nano  
 

 
Fig. 10. Illustration of two different cracking modes of silicon: a) clean continuous crack 
propagation along {111} by breaking six-member rings and b) discontinuous fracture by the 
formation of five- and seven-member rings. The dashed line indicates the dislocation glide. 

systems. It is interesting to note that nanowires with a diameter below 4 nm fail by shear 
processes at any temperature. For nanowires with a diameter >4 nm these simulations 
predict a fracture stress of 13 GPa for nanowires grown along the [110] direction and 15 GPa 
for the [111] direction, at a strain rate of 5×108 s-1. This indicates that for nanowires with a 
diameter in the nanometer range the fracture strength of [110] nanowires may be lower than 
that of the [111] nanowires, contrary to the behaviour of bulk silicon. One has to bear in 
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mind, however that the theoretical strain rates are many orders of magnitude higher than 
those of conventional fracture techniques, whereas for laser-induced fracture the difference 
in the strain rate is approximately two orders of magnitude. In fact, the higher strain rates 
used in the simulations could be the reason for the higher strength, as compared with the 
experimental value of about 12 GPa. While it is still difficult to compare molecular-dynamics 
simulations with experiments performed at the same time scale fracture of nanowires allows 
a comparison with theory at least on the same length scale. 

5. Conclusions 
Laser-induced stress pulses provide a novel efficient tool to elucidate the mode-specific 
spallation and delamination of films. Here the shock-pulse method measures the interface 
strength. In anisotropic crystals intrinsic nucleation at the surface by uni-axial and multi-
axial fracture can be studied. The defined loading geometries realized with bulk and surface 
waves allow a straightforward interpretation in comparison with conventional methods. 
Therefore, the laser methods provide important insight into the relevant pure mode but also 
multi-mode failure processes. In fact, the critical stress or failure strength of spallation, 
delamination, fracture and cleavage can be determined in layered and anisotropic materials. 
For high-quality materials such as single-crystal silicon the measured critical stress 
components may be compared with ab initio calculations, performed for well-defined low-
index geometries, to judge the mechanical quality of real materials. Owing to the high strain 
rates (~106 s-1) involved, the influence of plastic deformations is reduced. This usually allows 
a more sensitive and accurate analysis of the mechanical strength, which is of increasing 
interest in thin-film technology and sensor device fabrication. The mechanical strength of 
nano-scale systems such as nanowires is currently under intense investigation. First 
interesting results on the mechanical response of MEMS structures have been reported 
(Kimberley et al., 2008). Important mechanistic insight into the atomic-scale processes 
during crack nucleation and propagation is provided by molecular dynamics simulations.  
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1. Introduction     
The material science and characterization is a field concerned with inventing new materials 
and improving previously known materials by developing a deeper understanding of 
properties under different physical conditions. The properties of materials depend upon 
their composition, structure, synthesis and processing. Many properties of materials depend 
strongly on the structure, even if the composition of the material remains same. This is why 
the structure-property or microstructure property relationships in materials are extremely 
important. 
On the basis of different physical properties, the materials are classified mainly into five 
categories: (a) metals and alloys, (b) semi-metals and semiconductors, (c) ceramics, glasses 
and glass-ceramics, (d) polymers, and (e) composite materials. Functional classification of 
materials includes aerospace, biomedical, electronic, energy and environmental, magnetic, 
and optical (photonic) materials. The structural classification of materials are of two types as 
(a) crystalline (single crystal and polycrystalline), and (b) amorphous. 
The selection of a material and the potential to be manufactured economically and safely 
into useful product is a complicated process. It requires the complete knowledge of 
constituent material not only after production but also in processing. Increased competition 
and need of higher productivity and better products from material producing industries are 
creating more stringent requirements for process and quality control. This demands the 
characterization of materials. The topic material characterization essentially includes the 
evaluation of elastic behaviour, material microstructure and morphological features, 
associated mechanical properties etc. The destructive, semi-destructive and non-destructive 
testing (DT & NDT) techniques are available for the complete characterization. These 
characterization techniques are the basic tool for the quality control and quality assurance of 
the material or component or product.  
Ultrasonics, which is a sub category of acoustics deals with acoustics beyond the audio limit. 
The application of ultrasonics falls into two categories as high frequency- low intensity and 
low frequency – high intensity. The low intensity application carries the purpose of simply 
transmitting energy through the medium in order to obtain the information about the 
medium or to convey information through the medium. High intensity application 
deliberately affects the propagation medium or its contents. So, the low intensity and high 
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intensity application of ultrasonic wave belongs in non-destructive and destructive 
techniques of characterization respectively.  
The quantities, ultrasonic velocity and attenuation are the important parameters, which are 
required for the ultrasonic non-destructive technique of material characterization. The 
ultrasonic velocity is related to the elastic constants and density of material. Hence, it gives 
the information about the mechanical, anisotropic and elastic properties of medium through 
it passes. It is also important in low temperature physics because it is involved in the 
evaluation of Debye average velocity and Debye temperature. Ultrasonic velocity in 
nanofluid depends on the concentration of nano-particles of material dispersed in polymer 
matrix, thus it is not only important at bulk scale but also at nanoscale. When the ultrasonic 
wave propagates through the medium, its some part of energy is attenuated through the 
different mechanism like thermal loss, scattering, absorption, electron-phonon interaction, 
phonon-phonon interaction, and magnon-phonon interaction etc., called as ultrasonic 
attenuation. The   coefficient of ultrasonic attenuation correlates several physical properties 
like elastic constants, guruneisen parameter, thermal conductivity, thermal relaxation time, 
acoustic coupling constant, thermal energy density, specific heat, particle size, density, 
Debye average velocity, and concentration etc. Thus, the material can be characterized with 
the knowledge of ultrasonic parameters under different physical conditions.  
Normally, the ultrasonic NDT of material characterization are used for the determination of 
(a) elastic constants (Shear modulus, Bulk modulus, Young modulus and lame modulus), (b) 
microstructure (grain size, texture, density etc.), (c) discontinuity (porosity, creep damage, 
fatigue damage etc.), and mechanical properties (tensile strength, shear strength, hardness 
etc.). The new work in this field also provides the characterization of advanced and smart 
materials like GMR etc. Now a day, the synthesis and characterization of nanomaterials and 
nanofluids are also in touch of ultrasonic NDT&E. 
In this chapter, ultrasonic material property characterization has been considered. Initially, 
it covers information about the ultrasonic wave, its mode of propagation and characteristic 
properties. After this, a brief study of ultrasonic velocity and attenuation in solid has been 
discussed, which covers the theoretical evaluation and experimental measurements of these 
ultrasonic parameters. Later on, the characterization of different material (metals, alloys, 
platinum group metals, nanomaterials, nanofluid, semiconductor etc) has been discussed on 
the basis of these ultrasonic quantities and related parameters.  

2. Ultrasonic wave 
As a sub category of acoustics, ultrasonics deals with the acoustics above the human hearing 
range (the audio frequency limit) of 20 kHz. Unlike audible sound waves, the ultrasonic 
waves are not sensed by human ear due to the limitations on the reception of vibrations of 
high frequency and energies by the membrane. Ultrasonic wave exhibits all the 
characteristic properties of sound. Ultrasonic vibrations travel in the form of wave, similar 
to the way light travels. However, unlike light waves, which can travel in vacuum, 
ultrasonic wave requires elastic medium such as a liquid or a solid. The wavelength of this 
wave changes from one medium to another medium due to the elastic properties and 
induced particle vibrations in the medium. This wave can be reflected off with very small 
surfaces due to having much shorter wavelength. It is the property that makes ultrasound 
useful for the non-destructive characterization/testing of materials. The knowledge of 
generation/detection of ultrasonic wave and its characteristics is important for its precise 
and suitable application.  
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waves are not sensed by human ear due to the limitations on the reception of vibrations of 
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characteristic properties of sound. Ultrasonic vibrations travel in the form of wave, similar 
to the way light travels. However, unlike light waves, which can travel in vacuum, 
ultrasonic wave requires elastic medium such as a liquid or a solid. The wavelength of this 
wave changes from one medium to another medium due to the elastic properties and 
induced particle vibrations in the medium. This wave can be reflected off with very small 
surfaces due to having much shorter wavelength. It is the property that makes ultrasound 
useful for the non-destructive characterization/testing of materials. The knowledge of 
generation/detection of ultrasonic wave and its characteristics is important for its precise 
and suitable application.  
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2.1 Sources of ultrasonic wave  
The ultrasonic wave (UW) can be generated with the mechanical, electrostatic, 
electrodynamic, electromagnetic, magnetostrictive effect, piezoelectric effect, and laser 
methods.  
Mechanical method or Galton Whistle method is an initial method for the generation of 
ultrasonic wave. This uses mechanical shock or friction for the generation of wave in 
frequency range of 100 kHz to 1 MHz. A high frequency of ultrasonic wave (10 to 200 MHz) 
can be generated using electrostatic method. The magneto inductive effect is used in 
electrodynamic method for the production of ultrasound. The mechanical deformation in 
ferromagnetic material in presence of magnetic field is called as magnetostriction. This 
phenomenon is most pronounced in metals such as nickel, iron, cobalt and their alloys. 
Magnetostriction effect is used for generation of ultrasonic wave in magnetostrictive effect 
method. Most common method for generation of ultrasound is the Piezoelectric effect 
method. In this method, inverse Piezoelectric effect is used for generation of UW. When a 
laser light incident on the surface of suitable material, its some portion of energy is absorbed 
at the surface with in the skin depth and rest get reflected. The absorbed energy produces 
tangential stress and then bulk strain through transient surface heating; as a result UW is 
produced in concerned medium.    

2.2 Transducers for ultrasonic wave  
The device that converts one form of energy to another form is called as transducer. An 
ultrasonic transducer converts electrical energy to mechanical energy, in the form of sound, 
and vice versa. The main components are the active element, backing, and wear plate 
(Fig.1). 
 

 
Fig. 1. Basic figure of an ultrasonic transducer  
a.    The Active Element 
The active element, which is piezo or ferroelectric material, converts electrical energy such as 
an excitation pulse from a flaw detector into ultrasonic energy. The most commonly used 
materials are polarized ceramics which can be cut in a variety of manners to produce different 
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wave modes. New materials such as piezo polymers and composites are also being employed 
for applications where they provide benefit to transducer and system performance. 
b.    Backing 
The backing is usually a highly attenuative, high density material that is used to control the 
vibration of the transducer by absorbing the energy radiating from the back face of the active 
element. When the acoustic impedance of the backing matches with the acoustic impedance of 
the active element, the result will be a heavily damped transducer that displays good range 
resolution but may be lower in signal amplitude. If there is a mismatch in acoustic impedance 
between the element and the backing, more sound energy will be reflected forward into the 
test material. The end result is a transducer that is lower in resolution due to a longer 
waveform duration, but may be higher in signal amplitude or greater in sensitivity. 
c.    Wear Plate 
The basic purpose of the transducer wear plate is to protect the transducer element from the 
testing environment. In the case of contact transducers, the wear plate must be a durable 
and corrosion resistant material in order to withstand the wear caused by use on materials 
such as steel. For immersion, angle beam, and delay line transducers, the wear plate has the 
additional purpose of serving as an acoustic transformer between the high acoustic 
impedance of the active element and the water. 
Now a days, following type of transducers are in use for different applications. 
1. Normal beam or single element or delay line transducer   
2. Dual element transducer 
3. Angle beam transducer 
4. Immersion transducer 
5. Mechanical focous transducer 
6. Electronic time delay focouing or array transducer 
7. Capacitive transducer 
In most of applications piezoelectric transducers are used for generating and receiving the 
ultrasonic waves. 

2.3 Characteristics of ultrasonic wave  
For the appropriate choice of ultrasonic wave with suitable frequency and intensity, the 
knowledge of some essential parameters related to transducer is important. The 
characteristic parameters of ultrasonic wave are: 
1.  Sound Field (Near field and far field): The sound field of a transducer is divided in two 

two zones; the near field region or Fresnel zone and far field region or Fraunhofer zone. 
In the near field region the ultrasonic beam converges and in the far field it diverges. 
The near field is the region directly in front of transducer where echo amplitudes goes 
through a series of maxima and minima and ends at the last maximum, at the distance 
N ( 2 2N D ν/ 4C D / 4λ= = ; N: near field distance, D: Element diameter, ν: frequency, c: 
material sound velocity, and λ: wavelength) from the transducer (Fig.2). The intensity 
variation along and across the axial distance up to near field region is approximately 
constant and after which it decreases. The beam boundary defines the limits of the 
beam to the point where the disturbance ceases to exist or falls below the threshold 
value.  The beam intensity at the boundary is reduces to one half (6dB) of the intensity 
at the beam axis (Fig.2). 
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(b) 

 
(c) 

Fig. 2. (a) sound field of transducer, (b) amplitude verses frequency of UW, (c) intensity of 
UW verses axial distance from transducer.  
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2. Focal zone: The starting and ending points of the focal zone on axis of transducer are 
located where pulse echo signal amplitude drops to -6dB of the amplitude at the focal 
point. If ZB and ZE are the beginning and end of the focal zone from the transducer then, 
then focal zone will be difference of them. The length of focal zone (FZ) is equal 
to 2

FNS [2 /(1 0.5 )]FS+ ; where SF: Normalized focal length=F/N, F: focal length, N: near 
field distance.  

3. Beam diameter: It is a parameter, which defines the transducers sensitivity. Smaller the 
beam diameter, the greater amount of energy is reflected by the flaw. At -6dB drop of 
intensity, the beam diameter (BD) at the focus is equal to 0.2568DSF or 1.02FC/νD. For 
the flat transducer, normalized focal length have value one. The Fig.3 represents the 
clear picture of focal zone and beam diameter. 

 

 
Fig. 3. Focal zone of transducer and beam diameter 

4.  Beam spread or half angle: The spreading of ultrasonic beam always take place as the 
wave travel from the transducer. In the near field, the beam has a complex shape that 
narrows, while in the far field it diverges. The divergence angle or beam spread angle 
(θ ) is equal to 1sin ( / )K Dλ−  or 1sin ( / )KC Dν− . Where K is a constant which depends 
on shape of transducer, edge of beam and method used to determine the beam spread.It 
is clear that beam spread from a transducer can be reduced by selecting a transducer 
with higher frequency or larger element diameter or both. Fig.4 shows a simplistic 
understanding of beam spread angle.    

 

 
Fig. 4. Ultrasonic beam divergence and angle of divergence 

2.4 Detection of ultrasonic wave  
There are various methods for the detection of UW. The methods are based on the principle 
of piezoelectric, electrostatic and magnetostriction effects. The classical methods like 
mechanical and optical methods are also used for the detection of UW. Normally the devices 
based on piezoelectric effect are used commercially for the detection of UW, these devices 
comes in electrical method of detection.  
The prime division of detection in electrical method are the Interferometer or continuous 
wave (CW) and Pulse technique (PT) methods. In CW method, the UW generated by the 
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source is passed through the concerned medium/specimen, which is reflected from the 
reflecting plate. The reflecting plate is adjusted towards the source such that the current in 
the oscillator of the source changes periodically in maxima or minima. The maximum in 
current corresponds to the half of wavelength interval due to the formation of standing 
wave between source and plate. This method is preferred in low frequency region for the 
measurements of ultrasonic parameters in liquids.  
The Pulse technique is utilized for detection or measurement of transit time in both liquids 
and solids. It uses piezoelectric transducer with and without delay lines for the production 
and detection of UW. In this method short duration electric pulses generates the UW with 
the broadband piezoelectric transducer. The generated longitudinal or shear wave are 
transmitted to the specimen. The reflected wave or echo by the medium are detected by the 
transducer on the principle of direct piezoelectric effect and echo pattern is obtained. Using 
this pattern, the exact transit time needed for a signal to travel between the front and back 
surface of the specimen or concerned medium is determined, that is used for determination 
of ultrasonic velocity and attenuation. The different pulse techniques for precise 
measurements or detection of UW are Sing around, Pulse superposition, Pulse echo overlap, 
Cross-correlation, Phase slope and Pulse transmission method.  Hydrophones are also 
piezoelectric transducer that generates electrical signal when subjected to pressure change 
or UW under water. It can detect UW in air, but will be less sensitive due to its design as 
having a good acoustic impedance match with water.   

3. Material characterization techniques (NDT & DT) 
The two major classification of material characterization technique are non-destructive 
testing (NDT) and destructive testing (DT).  Under destructive technique (such as: tensile 
testing, creep testing, impact testing, torsion testing, hardness testing etc.) of 
characterization the tested material or product can not be used again. The destruction of test 
object  usually makes this type of test more costly. Non-destructive testing technique is a 
specific procedure whereby the service ability of materials or components is not impaired by 
testing process. The various methods like visual testing, liquid penetrant testing, magnetic 
particle testing, eddy current testing, radiographic testing, ultrasonic testing, leak testing, 
thermography and neutron radiography are the NDT technique of material characterization. 
Among the various non-destructive testing and evalution (NDT&E) plays a key role in 
material characterization.Ultrasonic properties provide important diagnostic for 
microstructural properties as well as deformation processes in a material, controlling 
material behaviour based on the physical mechanism to predict future performance of the 
materials.  

4. Classification of ultrasonic application and testing 
The ultrasonic testing involves  both the low intensity and high intensity ultrasonic wave for 
the characterization, that belongs in non-destructive and destructive techniques of 
characterization respectively. Uses of high intensity and low frequency ultrasonic wave 
includes medical therapy and surgery, atomization of liquids, machining of materials, 
cleaning and wielding of plastics and metals, disruption of biological cells, and 
homogenization of materials. The low intensity and high frequency ultrasonic waves are 
applied for medical diagnosis, acoustical holography, material characterization etc. The low 
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intensity ultrasoud measurements provides a good diagnosis of material property and 
process control in industrial apllication (Alers, 1965; Green,1973;  Lowrance, 1975; Renolds, 
1978; Teagle, 1983; Smith, 1987; Varry, 1987; Thompson,1996; Jayakumar, 1998; Kumar, 2001; 
Raj, 2003;  Roth, 2003; Blodgett, 2005).  

5. Ultrasonic NDT as a material characterization 
There are four mode of propagation by which an ultrasonic wave can propagate in a 
medium, as: longitudinal or compressnal wave, transverse or shear wave, surface or 
Rayleigh wave and plate or lamb wave. The most common methods of ultrasonic 
examination utilize the longitudinal waves or shear waves. 
Ultrasonic velocity or attenuation are the parameters that correlate to structural 
inhomogenities or flaw size atomistic (interstitials), elastic parameters, precipitates, 
dislocations, ordering of molecules in liquid crystals, phase transformations, porosity and 
cracks, concentration of different components of alloys or mixed crystal system, vacancies in 
lattice sites, size of the nanoparticles in nano-structured materials, electrical resistivity, 
specific heat, thermal conductivity and other thermophysical properties of the materials 
depending upon the different physical conditions like temperature, pressure, 
crystallographic orientation, magnetization etc. Thus, ultrasonic study of a material 
provides information about elastic constants, microstructure, discountinuty, and mechanical 
properties under different condition.     

5.1 Ultrasonic velocity 
On the basis of mode of propagation there are four types of ultrasonic velocities, as 
longitudinal, shear, surface and lamb wave velocity. Longitudinal and shear wave velocities 
are more important for the material characterization because they are well related to elastic 
constants and density. However, it is independent of frequency of wave and dimension of 
the given material. The mechanical behaviour and anisotropic properties of the material can 
be well defined on the knowledge of ultrasonic velocity.  The mathematical formulations 
and measurement techniques for ultrasonic velocity are detailed in following heads.  

5.1 A Ultrasonic velocity, related parameters and its theoretical evaluation 
The mechanical properties of the solids differ from those of fluids in two important respects. 
Firstly, greater binding forces exist between their constituent atoms so that they support 
shear stress. Secondly, anisotropy may occur, especially in single crystal, in which the atoms 
form regular lattice. The velocity of ultrasonic wave of any kind can be determined from the 
elastic moduli (Y: Young’s modulus, G: modulus of rigidity, and σ: poisson’s ratio) and 
density (d) of the material. The logngitudinal and shear wave velocities (VL and VS) can be 
determined with following expressions. 
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In terms of lame’s moduli (λ and μ) , the ultrasonic velocities can be expressed as;  
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The stress strain relationships for anisotropic crystals vary with the direction. Thus velocity 
of ultrasonic wave varies with the direction of propagation of wave and mode of 
polarization. There are three type of ultrasonic velocity (one longitudinal and two shear 
wave) for each direction of propagation of wave in cubic (Mason, 1958; Singhal 2003) and 
hexagonal structured materials (Mason,1969; Alers,1958; Rosen,1970; Yadawa,2009). The 
expressions for the velocities are given in Table (1) and Table (2). In Tables 1-2, the V1 is 
longitudinal and V2 & V3 are the shear wave velocities of ultrasonic wave. The C11, C12, C44, 
C33 and C66 are the second order elastic constants. 
The Debye theory of specific heat has proven its usefulness because it is a single –parameter 
theory which describes the observation remarkebly well. Its one parameter, Debye 
temperature (TD) need not to be determined by any heat capacity measurements but can be 
calculated from the elastic moduli. Once this parameter has been determined from the elastic 
moduli, the Debye theory specifies the lattice contribution to the specific heat only to an 
accuracy of about 10 or 20% over most of temperature range. Because of this, the theoratical 
model assumes the solid to be an elastic continuum in which all sound waves travel at the 
same velocity independent of their wavelength. This model is satisfactory only in the limit of 
long wavelengths or low temperatures. The expression for the TD can be given as:  
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Here, is quantum of action and is equal to Planck’s constant divided by 2π ; KB is 
Boltzmann Constant; na is atom concentration. This Debye average velocity is important 
 

Direction of 
propagation 

Direction of 
polarization 

Type of 
wave 

Velocity 
expression 

Velocity 
notation 

100 Long. ( )1/2
11 /C d  V1=VL 

010 Shear ( )1/2
44 /C d  V2=VS1 

100 

001 Shear ( )1/2
44 /C d  V3=VS2 

110 Long. ( )1/2
11 12 44( 2 ) /2C C C d+ +  V1=VL 

001 Shear ( )1/2
44 /C d  V2=VS1 

110 

1 1 0 Shear ( )1/2
11 12( ) / 2C C d−  V3=VS2 

111 Long. ( )1/2
11 12 44( 2 4 ) / 3C C C d+ + V1=VL 111 

Any direction 
in 111 plane 

Shear ( )1/2
11 12 44( ) / 3C C C d− +  V2= V3 

VS1=VS2 

Table 1. Ultrasonic velocities for cubic structured materials 
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Direction of 
propagation 
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Velocity 
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Velocity 
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perpendicular to 
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 Long. 2 2
33 11 44

2 2
11 33 44

2 2 2 2

2 2 1/2 1/2
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V2=VS1 

At angle θ with 
the unique axis of 
the crystal 

 Shear 2 2 1/2
44 66[{ } /  d]C Cos C Sinθ θ+  V3=VS2 

Table 2. Ultrasonic velocities for hexagonal structured materials 

parameter in the low temperature physics because it is related to elastic constants through 
ultrasonic velocities. The Debye average velocity (VD) in the materials is calculated using the 
following equation (Oligschleger, 1996). 
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Here  the integration is over all directions and summation is over the type of ultrasonic 
velocities. Along the [100], [111] (for cubic crystal) and [001] (for hexagonal structured 
crystals) direction of propagation of wave, the equation (4) reduces as: 
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and along the [110] (for cubic) and any angle with the unique axis of hexagonal structured 
crystal, direction of propagation, the equation (4) reduces as: 
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Table 2. Ultrasonic velocities for hexagonal structured materials 

parameter in the low temperature physics because it is related to elastic constants through 
ultrasonic velocities. The Debye average velocity (VD) in the materials is calculated using the 
following equation (Oligschleger, 1996). 
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Here  the integration is over all directions and summation is over the type of ultrasonic 
velocities. Along the [100], [111] (for cubic crystal) and [001] (for hexagonal structured 
crystals) direction of propagation of wave, the equation (4) reduces as: 
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and along the [110] (for cubic) and any angle with the unique axis of hexagonal structured 
crystal, direction of propagation, the equation (4) reduces as: 
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On the knowlewdge of elastic constants, the theoretical evaluation of ultrasonic velocity and 
Debye average velocity in cubic and hexagonal structured materials can be done with help of 
expressions written in Table (1), Table (2) and equations (4a)-(4b). There are several theories 
(Ghate,1965; Mori,1978; Rao,1974; Yadav AK, 2008) for the calculation of elastic constants. The 
elastic constants depend on the lattice parameters of structured materials. The elastic constants 
and elastic moduli can be calculated with the knowledge of lattice parameters. 

5.1 B Measurement techniques of ultrasonic velocity 
The study of the propagation of ultrasonic waves in materials determines the elastic 
constants, which provides better understanding of the behaviour of the engineering 
materials. The elastic constants of material are related with the fundamental solid state 
phenomenon such as specific heat, Debye temperature and Grüneisen parameters. The 
elastic constants in the materials can be determined by measuring the velocity of 
longitudinal and shear waves. Elastic constants are related to interatomic forces, co-
ordination changes etc., and also with the impact shock, fracture, porosity, crystal growth 
and microstructural factors (grain shape, grain boundaries, texture and precipitates etc.). So, 
the study of ultrasonic velocity is useful not only for characterization of the structured 
materials, engineering materials, porous materials, composites, glasses, glass ceramics but 
also bioactive glasses, nanomaterials, nanofluids etc. 
Interferometer or continuous wave method and pulse technique are the general electrical 
method for the measurement of ultrasonic velocity. In CW method, the wavelength of wave 
in the test material is measured, which in turn provides the ultrasonic velocity with 
relation  V ν λ= . While in the Pulse technique, transit time (t: the time needed for a signal to 
travel between the front and back surface of the specimen or concerned medium) is 
measured with the help of echo pattern. If x is thickness of the material then ultrasonic 
velocity becomes equal to 2x/t.  
For precise measurement, the Pulse technique has been improved in the form of following 
techniques (Papadakis, 1976, Raj, 2004). 
a. Sing around 
b. Pulse superposition method 
c. Pulse echo overlap method 
d. Cross-correlation method and 
e. Phase slop method  
f. Pulse transmission method 
The pulse echo-overlap, pulse transmission and pulse superposition techniques are widely 
used techniques due to their absolute accuracy and precision respectively. Now a day, 
computer controlled devices of pulse echo overlap and pulse superposition techniques are 
being used. Resonance ultrasound spectroscopy and Laser interferometry are the recent 
techniques for the measurement of ultrasonic velocity in thin film, crystal, textured alloy etc.  

5.1 C Application of ultrasonic velocity 
Ultrasonic velocity has a wide range of application in the field of material characterization. 
Yet it is useful for the characterization or study of all the three phase of matter but here we 
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concentrate only its application to solid materials. It is used in the study of following 
properties of materials.  
1.  Elastic constants: The elastic moduli of a material are important for the understanding of 
mechanical behaviour. If VL and VS are the measured ultrasonic velocities of longitudinal 
and shear wave then longitudinal modulus (L), Shear modulus (G), Bulk modulus (B), 
Poisson’s ratio (σ),Young modulus (Y) and lame’s modulus (λ and μ) can be obtained with 
the following expression. 
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We can also find the stiffness constants or second and forth order elastic constants with the 
velocity. Using Table (1)-(2), one can find the second order elastic constants along different 
crystallographic direction for cubic and hexagonal structured materials. If we have 
ultrasonic velocity under different physical condition like temperature, pressure, 
composition of materials etc. then we can predict the mechanical behaviour of material in 
different physical condition. The anisotropy of material can be explained with the 
knowledge of anisotropy factor A=[2C44/(C11-C12)]. Knowledge of pressure derivatives of 
the elastic constants of a structured material can be used for the evaluation of Grüneisen 
parameter ( γ ). The Grüneisen parameter is used to describe anharmonic properties of 
solids. The quasi harmonic model is usually the starting point for the evaluation of mode 
gammas iγ  which is defined as [  (ln ) /  (ln )]i id d Vγ ω= − , where iω is a normal mode 
frequency of crystal lattice and V is the volume of the crystal. The values of iγ for low 
frequency acoustic modes in a given material can be obtained with the pressure derivates of 
elastic constants of that material. Finally the Grüneisen parameter is obtained with the 
average of iγ as shown in the following expression. 
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Different workers (Mason, 1965; Brugger, 1964; Anil, 2005; Yadav, 2007; Yadawa, 2009; 
Yadav AK,2008) have studied this property of the different structured materials like 
isotropic, cubic, rhombohedral and hexagonal structured materials. 
2.  Debye temperature and Debye average velocity: These parameters are essential for the 
understanding of lattice vibration and low temperature properties of the material. These 
parameters can be found directly with the velocity values using equation (4) for the cubic 
and hexagonal structured materials. A detail study of Debye temperature, velocity and 
related theories of different structured materials can be seen elsewhere (Alers, 1965).  
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3.  Porosity: The porosity of the porous material can be examined with the knowledge of 
elastic moduli and Poisson’s ratio as a function of pore volume fraction.  These parameters 
can be evaluated with help of measured velocity and density. A simple expression of Young 
modulus and shear modulus for a porous material can be written as, 
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 (7) 

Here Y0 and G0 are the modulus of material without pore; a,b and c are the constants; p is 
pore volume fraction which is equal to {1-(d/d0)} and; d is the bulk density determined 
experimentally from mass and volume while d0 is the theoretical density determined from 
XRD.   
The elastic moduli and Poisson ratio measured ultrasonically are compared with the 
theoretical treatment for the characterization. The elastic moduli of porous material are not 
only the function of porosity but also the pore structure and its orientation. The pore 
structure depends on the fabrication parameters like compaction pressure, sintering 
temperature and time. If the pores are similar in shape and distributed in homogeneous 
pattern then a good justification of mechanical property can be obtained with this study. 
5.  Grain size: There is no unique relation of average grain size with the ultrasonic velocity. 
The following typical graph (Fig. 5) shows a functional relation among velocity (V), grain 
size (D) and wave number (k). This has three distinct regions viz. decreasing, increasing and 
oscillating regions. Both the I and II region are useful for the determination of grain size 
determination, whereas region III is not suitable. 
 

 
Fig. 5. Ultrasonic velocity as a function of kD 

The obtained grain size with this study has good justification with grain size measured with 
metallography. The important advantage of using ultrasonic velocity measurements for the 
grain size determination is the accuracy in which ultrasonic transit time could be 
determined through electronic instrumentation. The different workers (Palanichamy, 1995) 
have studied this property for polycrystalline material with the study of ultrasonic velocity. 
6.  Anisotropic behaviour of compositional material: The intermetallic compound and alloys 
are formed by the mixing of two or more materials. These compounds have different 
mechanical properties depending on their composition. The different mechanical properties 
like tensile strength, yield strength, hardness (Fig.6) and fracture toughness at different 
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composition (Fig. 7), direction/orientation (Fig.8) and temperature can be determined by the 
measurement of ultrasonic velocity which is useful for quality control and assurance in 
material producing industries (Krautkramer, 1993;  Raj, 2004; Yadav & Singh 2001;  Singh & 
Pandey, 2009, Yadav AK, 2008).  
 
 

 
Fig. 6. Variation of velocity or hardness with temperature for some mixed materials 
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7.  Recrystallisation: The three annealing process that amend the cold work  microstructure 
are recovery, recrystallisation and grain growth. Among these processes, recrystallisation is 
the microstructural process by which new strain free grains form from the deformed 
microstructure. Depending on the material, recrystallisation is often accompanied by the 
other microstructural changes like decomposition of solid solution, precipitation of second 
phases, phase transformation etc. The hardness testing and optical metallography are the 
common techniques to the study the annealing behaviour of metals and alloys. A graph of 
longitudinal and shear wave velocity with annealing time (Fig.9) provides a more genuine 
understanding of recrystallisation process.  
 

 
Fig. 9. Variation of VL or VS with annealing time  

The variation of shear wave velocity represents a slight increase in recovery region followed 
by a rapid increase in the recrystallisation region and saturation in the completion of 
recrystallisation region. The slight increase in the velocity in the process of recovery is 
attributed to the reduction in distortion of lattice caused by the reduction in point defect due 
to their annihilation. The increase in velocity during recrystallisation is credited to the 
change in the intensity of lattice planes. The variation in longitudinal velocity have the just 
opposite trend to that of shear wave velocity which is credited to the change in texture and 
the dependence of velocity directions of polarisation and propagation of wave. The 
variation of velocity ratio (VL/VS) with annealing time shows a clear picture of 
recrystallisation regime (Fig. 10).  
 

 
Fig. 10. Variation of VL/VS with annealing time 
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The selection of ratio avoids the specimen thickness measurement and enhances the 
accuracy. In short we can say that the velocity measurement provides the accurate 
prediction of on set and completion times of recrystallisation.  
8.  Precipitation: For the desired strength of material or component, the precipitation is a 
process like recrystallisation. It is a metallurgical process for the improvement of strength of 
material. The strength of improvement depends on spacing, size, shape and distribution of 
precipitated particles. A measurement of longitudinal ultrasonic wave velocity with ageing 
time provides precise value of Young modulus at different ageing temperature 
(Bhattacharya, 1994; Raj, 2004). With the knowledge Young modulus, the strength of 
material at different time of ageing can be predicted.  Thus ultrasonic evaluation may be 
handy tool to study the precipitation reaction involving interstitial elements because this 
mechanism is associated with large change in the lattice strain. 
9.  Age of concrete: There are several attempts that have been made to find the elastic 
moduli, tensile strength, yield strength, hardness, fracture toughness and brittleness of 
different materials ( Lynnworth, 1977; Krautkramer,1977). Similarly the age of concrete 
material can be determined with knowledge of crush strength that can be found with the 
ultrasonic velocity. A graph of pulse velocity of ultrasonic wave and crush with age of 
concrete is shown in Fig 11. 
 

 
Fig. 11. Variation of velocity and crush strength with age of concrete 

10. Cold work and texture: The texture of compounds can be understood with the 
knowledge of ultrasonic velocity. The expression of texture designates an elastic anisotropy 
due to the non-random distribution of crystalline directions of the single crystals in the 
polycrystalline aggregates. On the contrary, the isotropic, untextured solid is characterized 
by a totally random distribution of the grains. A study on texture gives insight into the 
materials plastic properties. Ultrasonic velocity measurements provide the state of texture in 
the bulk. For this purpose, ultrasonic velocity with cross correlation method {VIJ; where I 
(direction of propagation) or J (direction of polarization) =1,2,3; 1:rolling, 2: transverse, 
3:normal) }or Rayleigh wave velocity in transverse direction is measured as function of cold 
work (Raj,2004). Accordingly, three longitudinal (V11, V22, V33) and six shears (V12, V21, V23, 
V32, V31 and V13) wave velocities are measured. The velocities are found to be identical when 
the direction of propagation and direction of polarization are interchanged. Yet the 
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direction are important for estimation of cold work with good precision but  V33 and V32 are 
found to be more suitable due to being easier in measurement. With the following relation, 
we can estimate the degree of cold work with help of velocity ratio (V33 /V32).  

 33 32/ 0.00527  (% cold work) -1.83 ;   { Correlation coefficient 0.9941}V V = =  (8) 

The following graph (Fig. 12) represents the variation of velocity ratio with cold work.   
 
 

 
Fig. 12. Variation of velocity ratio with cold work 

The Rayleigh wave velocity in transverse direction decreases with cold work and is linear in 
nature. A scatter in measurement is mainly attributed to the local variation in the degree of 
deformation, particularly close to surface caused by scattering.  Both the methods are 
appropriate for the evaluation of cold work percentage in stainless steel. Thus measurement 
of bulk and surface Rayleigh wave velocities on cold rolled plates provide a tool to monitor 
the percentage of cold work during rolling operation. 

5.2 Ultrasonic attenuation 
The intensity of ultrasonic wave decreases with the distance from source during the 
propagation through the medium due to loss of energy. These losses are due to diffraction, 
scattering and absorption mechanisms, which take place in the medium. The change in the 
physical properties and microstructure of the medium is attributed to absorption while 
shape and macroscopic structure is concerned to the diffraction and scattering. The 
absorption of ultrasonic energy by the medium may be due to dislocation damping (loss 
due to imperfection), electron-phonon interaction, phonon-phonon interaction, magnon-
phonon interaction, thermoelastic losses, and bardoni relaxation. Scattering loss of energy is 
countable in case of polycrystalline solids which have grain boundaries, cracks, precipitates, 
inclusions etc. The diffraction losses are concerned with the geometrical and coupling losses, 
that are little or not concerned with the material properties. Thus in single crystalline 
material, the phenomenon responsible to absorption of wave is mainly concerned with 
attenuation. An addition of scattering loss to the absorption is required for knowledge of 
attenuation in polycrystalline materials. So, the rate of ultrasonic energy decay by the 
medium is called as ultrasonic attenuation. 
The ultrasonic intensity/energy/amplitude decreases exponentially with the source. If IX is 
the intensity at particular distance x from source to the medium inside then: 

Cold work (%)

V33/V32 



 Acoustic Waves 

 

414 

 -  
0

X
XI I e α=  (9) 

where α is attenuation or absorption coefficient. If 
1XI  and 

2XI  are the intensities of 
ultrasonic waves at x1 and x2 distance then from equation (9) one can write the following 
expressions. 
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On solving the equations (10) and (11), one can easily obtain the following expression of 
ultrasonic attenuation. 
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The ultrasonic attenuation or absorption coefficient (α) at a particular temperature and 
frequency can be evaluated using equation (12). In pulse echo-technique the (X2-X1) is equal 
to twice of thickness of medium because in this technique wave have to travel twice distance 
caused by reflection, while is equal to medium thickness in case of pulse transmission 
technique. Attenuation coefficient is defined as attenuation per unit length or time. i.e. The α 
is measured in the unit of Np cm-1 or Np t-1. The expression of α in terms of decibel (dB) unit 
are written in following form. 

 
-

1

2

10
2 1

1 20log ;   in unit of dB/cm
( )

X

X

I
x x I

α =  (13a) 

 
-

1

2

10
2 1

20log ;   in unit of dB/ s
( )

X

X

IV
x x I

α μ=  (13b) 

5.2 A Source of ultrasonic attenuation 
The attenuation of ultrasonic wave in solids may be attributed to a number of different 
causes, each of which is characteristic of the physical properties of the medium concerned. 
Although the exact nature of the cause of the attenuation may not always be properly 
understood. However, an attempt is made here to classify the various possible causes of 
attenuation that are as. 
a. Loss due to thermoelastic relaxation  
b. Attenuation due to electron phonon interaction 
c. Attenuation due to phonon phonon interaction 
d. Attenuation due to magnon-phonon interaction 
e. Losses due to lattice imperfections 
f. Grain boundary losses 
g. Loss due Bardoni relaxation and internal friction 
A brief of these losses can be under stood by the following ways. 
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a. Loss due to thermoelastic relaxation  
A polycrystalline solid may be isotropic because of the random orientation of the constituent 
grains although the individual grains may themselves be anisotropic. Thus, when a given 
stress is applied to this kind of solid there will be variation of strain from one grain to 
another. A compression stress causes a rise in temperature in each crystallite. But because of 
the inhomogeneity of the resultant strain, the temperature distribution is not uniform one. 
Thus, during the compression half of an acoustic cycle, heat will flow from a grain that has 
suffered the greater strain, which is consequently at high temperature, to one that has 
suffered a lesser strain, which as a result is at lower temperature. A reversal in the direction 
of heat flow takes place during the expansion half of a cycle. The process is clearly a 
relaxation process. Therefore, when an ultrasonic wave propagates in a crystal, there is a 
relaxing flow of thermal energy from compressed (hot region) towards the expanded (cool 
region) regions associated with the wave. This thermal conduction between two regions of 
the wave causes thermoelastic attenuation. The loss is prominent for which the thermal 
expansion coefficient and the thermal conductivity is high and it is not so important in case 
of insulating or semi-conducting crystals due to less free electrons. The thermoelastic loss 
(α)Th for longitudinal wave can be evaluated by the Mason expression (Bhatia, 1967;  Mason, 
1950, 1965) . 
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where ω and VL are the angular frequency and longitudinal velocity of ultrasonic wave.  d, 
K and T are the density, thermal conductivity and temperature of the material. j

iγ  is the 
Grüneisen number, which is the direct consequence of the higher order elastic constants 
(Mason, 1965; Yadawa 2009).  In the case of shear wave propagation, no thermoelastic loss 
occurs because of no any compression & rarefaction and also for the shear wave, average of 
the Grüneisen number is zero. 
b. Attenuation due to electron-phonon  interaction 
Debye theory of specific heat shows that energy exchanges occur in metals between free 
electrons and the vibrating lattice and also predicts that the lattice vibrations are quantized in 
the same way as electromagnetic vibrations, each quantum being termed as phonon.Ultrasonic 
absorption due to electron-phonon interaction occurs at low temperatures because at low 
temperatures mean free path of electron is as compared to wavelength of acoustic phonon. 
Thus a high probability of interaction occurs between free electrons and acoustic phonons. The 
fermi energy level is same along all directions for an electron gas in state of equilibrium, i.e. the 
fermi surface is spherical in shape. When the electron gas is compressed uniformly, the fermi 
surface remains spherical. The passage of longitudinal ultrasonic wave through the electron 
gas gives rise to a sudden compression (or rarefaction) in the direction of the wave and the 
electron velocity components in that direction react immediately, as a result fermi surface 
becomes ellipsoidal. To restore the spherical distribution, collision between electron and lattice 
occur. This is a relaxational phenomenon because the continuous varying phase of ultrasonic 
wave upsets this distribution. 
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In a new approach we may understood that the energy of the electrons in the normal state is 
carried to and from the lattice vibrations by means of viscous medium, i.e. by transfer of 
momenta. Thus the mechanism is also called as electron-viscosity mechanism. The 
ultrasonic attenuation caused by the energy loss due to shear and compressional viscosities 
of electron gas for longitudinal (α)Long and shear waves (α)Shear are given as (Bhatia, 1967;  
Mason, 1950, 1965,66): 
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where ηe and χ represent the electronic shear and compressional viscosities of electron gas.  
c. Attenuation due to phonon–phonon interaction 
The energy quanta of mechanical wave is called as phonon. With the passage of ultrasound 
waves (acoustic phonons), the equilibrium distribution of thermal phonons in solid is 
disturbed. The re-establishment of the equilibrium of thermal phonons are maintained by 
relaxation process. The process is entropy producing, which results absorption. The concept 
of modulated thermal phonons provides following expression for the absorption coefficient 
of ultrasonic wave due to phonon–phonon interaction  in solids (α)Akh (Bhatia, 1967;  Mason, 
1950, 1958, 1964, 1965; Yadav & Singh 2001; Yadawa, 2009) . 

 
2

3 2 2
 C

2 (1 )Akh PP dV
ω τα α

ω τ
Δ

= =
+

 (16a) 

Where τ is the thermal relaxation time (the time required for the re-establishment of the 
thermal phonons) and V is longitudinal or shear wave velocity. CΔ  is change in elastic 
modulli caused by stress (by passage of ultrasonic wave) and  is given as: 
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Here E0 is the thermal energy density. CΔ  is related with the acoustic coupling constant (D), 
which is the measure of acoustic energy converted to thermal energy due to relaxation 
process and is given by the following expression: 
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Using equation (16c), the equation (16a) takes the following form under condition 1ωτ << . 
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d. Attenuation due to magnon-phonon interaction 
Ferromagnetic and ferroelectric materials are composed of ‘domains’ which are elementary 
regions characterized by a unique magnetic or electric polarization. These domains are 
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aligned along a number of directions, but generally oriented along the polarization vector 
that is known as direction of easy magnetization (or electrification). These usually follow the 
direction of the principal crystallographic axis. Cubic crystal of a ferromagnetic material has 
six directions of easy magnetization lying in positive or negative pairs along the three 
perpendicular co-ordinate axes. Thus two neighbouring domains are aligned at 900 or 1800. 
Because of the magnetostriction effect, assuming that the magnetostructive strain coefficient 
is positive (or negative), there is an increase (or decrease) in the length of domains in the 
direction of polarization. Which results an increase or decrease in elastic constants 
depending on sign of the magnetostructive coefficient. The magnitude of change depends 
on applied stress. The phenomenon is called as EΔ  effect. Thus when a cyclic stress such as 
produced by ultrasonic wave, is applied to a ferromagnetic or ferroelectric material, the 
domain wall displaced as a result of EΔ  effect that follows the hysterisis loop. Thus there is 
dissipation of ultrasonic energy. The loss per half cycle per unit volume is being given by 
area of hysterisis loop.  
The another cause of the attenuation in ferromagnetic material is due to production of 
micro-eddy current produced in domain walls by the periodic variation of magnetic flux 
density. A simple consideration of the ultrasonic attenuation in ferromagnetic material is 
due to magnetoelastic coupling i.e attenuation is caused by interaction between magnetic 
energy in form of spin waves (magnon- energy quanta of spin waves) and ultrasonic energy 
(phonon). Thus it is called as ultrasonic attenuation due to magnon-phonon interaction. 
e. Losses due to lattice imperfections 
Any departure from regularity in the lattice structure for a crystalline solid is regarded as an 
imperfection, includes point defects such as lattice vacancies and presence of impurity atom 
and dislocation etc. Imperfections enhance the absorption of ultrasonic wave. Attenuation due 
to dislocation can occur in more than one way e.g. attenuation due to edge or screw 
dislocation, which is due to forced vibration in imperfect crystal i.e. due to interaction of 
ultrasonic energy (phonon) and vibrational energy of impurity atom or dislocation (phonon). 
Dislocation drag is a parameter for which the phonon-phonon interaction can produce an 
appreciable effect on the motion of linear imperfections in the lattice through drag 
phenomenon. The thermal loss due to such motion can be computed by multiplying the 
following drag coefficients by the square of the dislocation velocity (Yadav & Pandey, 2005). 
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Where - (4 / 3)L Sχ ε ε= ; 0 / 3L L LE Dε τ= , 0 / 3S S SE Dε τ= , 11 12( 2 ) / 3B C C= + , 
11 12 44( ) / 3G C C C= − +  and  12 11 12/( )C C Cσ = + . Here G, ε , σ, Β and χ are the shear 

modulus, phonon viscosity, Poisson’s ratio, bulk modulus and hydrostatic compressional 
viscosity respectively. Lε  & Sε , DL & DS and τL & τS are phonon viscosity, acoustic coupling 
constant and thermal relaxation time for longitudinal and shear wave. C11, C12 and C44 are 
the second order elastic constants for cubic metals.  
f. Grain boundary losses 
The grain boundary losses occur due to random orientation of the anisotropic grains in 
polycrystalline solid. At each grain boundary there is discontinuity of elastic modulus. 
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Therefore when ultrasonic wave of small wavelength compared to grain size propagates in 
such solid, regular reflections occur at grain boundaries, causes loss. The loss depends on the 
degree of the anisotropy of the crystallites, mean grain diameter and wavelength of wave. 
When the grain size is comparable to wavelength of wave then the ultrasonic attenuation 
caused by elastic hysterisis at grain boundary and scattering is frequency dependent and 
can be related as: 

 4
1 2B f B fα = +  (18) 

Where B1 and B2 are constants for the given material.  
i.   Loss due Bardoni relaxation and internal friction: The attenuation maximum at low 
temperature in some metarials like (Pb, Cu, Ag and Al) whose position on temperature scale 
is a function of the frequency of measurement is called as Bardoni peaks (Bhatia, 1967). 
These peaks are very small but when the crystal is strained by one or two percent, the peaks 
appear very prominantaly. These peaks are relaxational peaks. This relaxation is due to 
dislocation which are in the minimum energy position and are moved over the Peierls 
energy barrier by thermal agitation. A freshly strained material have its dislocations lying 
along minimum energy regions. A dislocation line between two pining points could be 
displaced by thermal agitation, and that the small stress would bias the potential wells and 
cause a change in the number of residing in the side wells, thus producing a relaxation 
effect. A typical graph showing Bardoni peaks under unstrained and strained condition is 
shown in Fig.13. 
 

 
Fig. 13. Attenuation peaks at low temperature under unstrained and strained condition of 
materials  
As the temperature increases there is an exponential increase in loss occuring at high 
temoperatures. It is observed for a number of polycrystalline material which is due to grain 
boundary relaxation effect. Such peaks are absent for the single crystals. There is also 
attenuation peaks on temperature scale for a number of material due to internal friction. 
This has been ascribed to the drag of dislocation as they are pulled through a concentration 
of vacancies. The internal friction peaks are caused due to damping effect of dragging the 
dislocations along vacancies or it can be assumed to be associated with the breakway of 
dislocations from their pinning points caused by thermal vibrations of the dislocation. This 
loss is independent of frequency and is greatly enhanced by the amount of cold work. The 
position of peaks appear to be independent of impurity content of the material. The loss due 
to internal friction can be related to frequency with following equation. 
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Where ( / )E EΔ is the relaxation strength, f and Rf  are the frequency and  relaxation 
frequency respectively. Rf  is related to the activation energy (H). 
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Here 0  f is the frequency with which the unit causing the relaxation attacks the energy and 
T is the temperature. For the frequencies f greater than Rf , the equation (19a) takes the 
following form.  

 1 /0 H RTfE e
E f

α− −Δ
=  (20) 

On the basis of above theories of ultrasonic attenuation, it is clear that if hypothetical crystal 
under study is perfect, not ferromagnetic or ferroelectric then only three factors are 
predominantly responsible for ultrasonic attenuation that are attenuation due to 
thermoelastic relaxation, electron-phonon interaction and phonon-phonon interaction. 

 Total Th ep ppα α α α= + +  (21) 

For nanosized metallic crystals the dislocation drag parameter gives informative results that 
can be used for the analysis of nanostructured materials. The electron-phonon interaction is 
prominant only at low temperatures while phonon-phonon interaction is effective at high 
temperatures.  The total attenuation in magnetic material at high temperature is sharply 
affected with phonon-phonon and magnon-phonon interactions not only at bulk scale but 
also at nanoscale. When metal nano particles are dispersed in suitable polymer, then it is 
called as nanofluid. If the particles are of magnetic material then it is called as ferrofluid. 
The total ultrasonic attenuation in ferrofluid on the temperature scale can be written as: 

 Total V MP ppα α α α= + +  (22) 

where αV:absorption due to viscous medium, αMP: absorption due to interaction between 
acoustic phonon and magnon (energy quanta of spin wave associated with dis- persed 
particles) and αPP: absorption due to interaction between acoustic phonon and dispersed 
crystal lattice phonon.  

5.2 B Measurement techniques of ultrasonic attenuation 
Similar to velocity measurement, the pulse technique and continuous wave method are 
being used for the measurement of ultrasonic attenuation now a day. On the basis of 
measurement procedure, the pulse technique is mainly classified in pulse transmission 
technique, pulse-echo-technique and pulse echo overlap technique. Following is a short 
view of pulse echo and pulse transmission techniques for the measurement of attenuation. 
In the pulse-echo technique (PET) of ultrasonic testing, an ultrasound transducer generates 
an ultrasonic pulse and receives its echo. The ultrasonic transducer functions as both 
transmitter and receiver in one unit. The block diagram is shown in Fig 14. Most ultrasonic 
transducer units use an electronic pulse to generate a corresponding sound pulse, using the 
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piezoelectric effect. A short, high voltage electric pulse (less than 20 Ns in duration, 100-200 
V in amplitude) excites a piezoelectric crystal, to generate an ultrasound pulse. 
 
 

 
Fig. 14. Block diagram of PET 

The transducer broadcasts the ultrasonic pulse at the surface of the specimen. The ultrasonic 
pulse travels through the specimen and reflects off the opposite face. The transducer 
receives the reflected echoes. The ultrasound pulse keeps bouncing off the opposite faces of 
the specimen, attenuating with time. The attenuation coefficient can be determined by 
measuring the amplitudes of the echoes from the time domain trace using the following 
equation. 
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where Im and In are the maximum amplitude (voltage ) of the mth and nth pulse echoes 
respectively. X is the specimen thickness. Normally the first and second back wall echo are 
used that is m=2 and n=1. The accuracy of the transit time and attenuation in this technique 
depend on the selection of peak amplitude of echoes and its height respectively. The Overall 
accuracy in the transit time in this method is the order of nanosecond. 
In the Pulse transmission technique (PTT), there is separate transducer and receiver for 
producing and receiving the signal, that are attached on the both side of specimen through 
suitable couplant via wave guides (Fig.15).   
This technique can be used for the both velocity and attenuation measurement. For the 
velocity measurement, the transit times (t1 and t2) are determined in the in the absence and 
presence of the sample between waveguides. The difference of these transit times 
( 2 1t t tΔ = − ) provides the actual transit time for sample. If sample thickness is X then 
ultrasonic velocity in the sample becomes equal to /X tΔ . Similarly If Iw(f) refers to the 
amplitude of the received signal with the waveguides only and Is(f) refers to the amplitude 
of the received signal when the sample is inserted between the wave guides then the 
attenuation of the ultrasonic waves in the sample is measured using the following relation. 
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Fig. 15. Arrangement of transducer/receiver, waveguide and sample in PTT  
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Here TC  is combined transmission coefficient at the sample and waveguide interface, that 
can be calculated with the following relation.  
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Where ZW and ZS are the acoustic impedances of the waveguide and sample respectively. 
The exact value of attenuation in the material can not be measured from the direct 
measurements. It can be obtained only by the conventional attenuation method. The 
measured attenuation posses all loses introduced by couplant, diffraction, non-parallel 
specimen surfaces etc. The true value of attenuation can be obtained only when all these 
losses are accounted separately and subtracted from the experimental obtained value of 
attenuation. 

5.2 C Properties characterized with ultrasonic attenuation 
The ultrasonic attenuation coefficient is well correlated to several physical parameters and 
properties of the material. The following diagram (Fig.14) represents a view of their 
dependence.  
Being a broad relation with material properties, the several properties of the material can be 
defined like grain size, yield strength, ductile to brittle transition temperature, Neel 
temperature, deviation number, behaviour of mechanical and magnetic properties with 
temperature and composition etc. The phenomenon responsible for attenuation can also be 
understood with the knowledge of ultrasonic attenuation. Yet there are several work have 
been made for the characterization of material on the basis of velocity and attenuation  but 
here we will discuss the velocity attenuation in some structured materials like fcc, bcc, hcp, 
heaxagonal, NaCl / CsCl type  structured materials etc. 

6.  Ultrasonic attenuation and velocity in different materials 
Ultrasonic attenuation, velocity and their related parameters can be used to give insight into 
materials microstructures and associated physical properties. Behaviour of ultrasonic  
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Fig. 14. Dependence of attenuation coefficient on several parameters of the material.  

attenuation and velocity as a function of physical parameters related to different physical 
condition is used to characterize the material during the processing as well as after 
production. Ultrasonic can be used for the characterization of metal, rare-earth metal, 
semimetal, semiconductor, alloy, intermetallic, dielectric, glass, glass-ceramic, 
superconductor for the determination of their characteristic properties at different physical 
conditions like temperatures, pressure, field crystallographic direction,  electric and 
magnetic field. Ultrasonic can also be used for the preparation and investigation of 
nanomaterials. Thus it is an efficient tool for the diagnosis of the material not only in bulk 
scale but also in nanoscale. Such interpretation is important for the quality control and 
assurance of the material for the industries. On the basis of structure, the materials can be 
divided into two classes mainly as crystalline (single crystal and polycrystalline) and 
amorphous. The crystalline material can have different structures like fcc, bcc, hcp, 
hexagonal, NaCl / CsCl type, trigonal, orthorhombic, tetragonal, monoclinic, triclinic  etc. 
The ultrasonic study of some structured materials is written below. 
Monochalcogenides of the rare-earth elements (ReX, with Re=rare-earth element Re=La, Ce, 
Pr, Nd, Sm, Eu, Tm and X=S, Se and Te) comprise a large class of materials that crystallize in 
simple NaCl-type structure. ReX exhibits interesting electrical, optical and magnetic 
properties. The thulium monochalcogenides TmX (X=S, Se and Te) have NaCl-type 
structure. Tm compounds exhibit Van Vleck paramgnetism at low temperatures owing to 
crystal-field singlet ground states. TmS, TmSe and TmTe are golden metal, red brown 
coloured intermediate valance system and silver blue semiconductor respectively. These 
materials are technologically important having many applications ranging from catalysis to 
microelectronics. Ultrasonic attenuation and other associated parameters like ultrasonic 
velocities, acoustic coupling constants etc. along <100>, <110> and <111> directions in the 
temperature range 100-300K have been studuied elswhere (Singh, Pandey & Yadawa, 2009). 
The order of thermal relaxation time for TmTe, TmS and TmSe are found of the order of  
10-11sec, 10-12sec and 10-12-10-13sec respectively. This justifies that TmS, TmSe and TmTe have 
metallic, intermettallic and semiconducting behaviour. Total attenuation in these materials 
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volume, energy density, thermal relaxation time, thermal conductivity, elastic constants and 
density. 
The lowest attenuation is found in TmSe. This infers that this material has excellent purity 
and ductility in comparison to the TmS and TmTe. Thus on the basis of ultrasonic 
attenuation, the classification of materials can be made, i.e. it is either metallic, intermediate 
valence, semiconductor or dielectrics. Praseodymium and lanthanum monochalcogenides 
(PrS, PrSe, PrTe, LaS, LaSe, LaTe) are the materials which are used as a core material for 
carbon arcs in the motion picture industry for studio lighting projection. The ultrasonic 
study of these materials (Yadav & Singh, 2001, 2003) shows that the variation of ultrasonic 
attenuation with temperature in these are same as for thulium monochalcogenides. In the all 
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structure) with respect to physical and mechanical properties. NiAl has four key advantage: 
its density of ≈5.95 g/cm3 is approximately two thirds the density of state-of-the-art nickel-
base superalloys; its thermal conductivity is four to eight times that of nickel-base 
superalloys (depending on composition and temperature); it has excellent oxidation 
resistance. In both the polycrystalline and single crystal forms, NiAl is brittle at room 
temperature in most cases and ductile at high temperatures.The elastic and ultrasonic study 
of β-phase NiAl at high temperature has been done elsewhere (Yadav & Pandey, 2006). A 
comparison of second order elastic constant Ni and Al pure metals at ≈300K with the values 
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of NiAl implies that the elastic anisotropy of NiAl is lower than the value of Ni and Al. A 
low value of anisotropy favors instability. Thus the intermetallic compound NiAl is unstable 
in comparison to pure metal Ni and Al. The anisotropy (A) of NiAl is found to increases 
with temperature. Thus intermetallic NiAl is stable at very high temperatures (300-1400K). 
The longitudinal ultrasonic attenuation in NiAl is found to decreases very fastly from 300 to 
700K and slowly from 700K to 900K; then it recieves an increases gradually from ≈900 to 
1400K. The ductile to brittle transition temperature (DBTT) is only 625 to 700K. Yield 
strength of NiAl decreases from ≈900K. This is predicted as the ultrasonic attenuation 
increases gradually from this temperature. Thus the structural stability, abrupt change in 
ductility at ≈DBTT, disordering at ≈DBTT could be predicted on the basis of temperature 
variation of the elastic constants and the ultrasonic attenuation in of NiAl. 
Intermetallic compounds have received extensive attention in recent years because of 
technical promise as high temperature structural materials. The study of intermetallics has 
attracted the attention of the scientific world because of their anisotropic properties. It has 
also been found that fine application in advanced power engineering. Since many 
intermetallic compounds of different crystal structure have been found in alloy systems, the 
basic reason for their stability has drawn a great deal. The materials AgMg, CuZr, AuMg, 
AuTi, AuMn, AuZn and AuCd have a CsCl-type structure (B2 structure). The study of 
ultrasonic velocities, attenuation, Grüneisen parameters, non-linearity parameter (acoustic 
coupling constant), Debye temperature and thermal relaxation time at different 
crystallographic directions at room temperature can seen elsewhere (Singh & Pandey, 2009). 
The study of elastic constants shows that by introducing Mg, Zr, Ti, Mn, Zn, Cd in noble 
metals, the elastic behaviour slightly decreases due to loose interaction of impurity atoms 
with noble metal atoms. The Debye temperature (TD) for Ag, Au, Cu, Cd, Zn and Mg are 
226K, 289K, 224K, 214K, 272K and 400K respectively. The study also imples that the Debye 
temperature for mixed compounds with Ag or Cu lies between Debye temperatures of 
constituent materials while Debye temperature for mixed compounds with Au lies below 
than the constituent materials. The decrease or increase in Debye temperature indicates 
increase or decrease in acoustic contribution to the low temperature specific heat. The 
average sound velocities in these intermetallic compounds are not only larger than the noble 
metals but also with the Cs/Rb halides, which is due to low density of these compounds. 
Ultrasonic velocity in these materials decreases with their molecular weight. The velocity of 
these compounds is useful for determination of their anisotropic properties.The attenuation 
in these intermetallic compounds are mainly governed by phonon-phonon interaction and is 
greater than the Cs/Rb-halides and is less than the pure noble metals. The attenuation in 
these intermetallics are affected with combined effect of thermal conductivity, specific heat, 
average sound velocity and acoustic coupling constant. For CsCl-type structure, the 
deviation number Δ N exists from 1 to 3; Δ N denotes the difference of column number of 
noble metals and the secondary element in the helical periodic table. Δ N value for AgMg, 
CuZr, AuMg, AuTi, AuMn, AuZn and AuCd are 1, 3, 1, 3, 2, 1 and 1 respectively. The 
compounds AgMg, AuMg, AuZn and AuCd for which Δ N=1, have larger conductivity. 
The thermal conductivity are high for lower valued Δ N compounds. Since 

2 ( / )    k fα τ∝ ∝ thus one can write 2 ( / )  1/f Nα ∝ Δ . The ultrasonic attenuation in 
these intermetallics justify the above prediction. Thus, it may be concluded that in B2 
structured intermetallic compounds the nature of ultrasonic attenuation can be determined 
by the deviation number.  
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Vanadium, Niobium and Tantalum are the transition elements of 5thB group in b.c.c. phase 
with high melting points and exhibit variable valency. Niobium and Tantalum are highly 
unreactive metals. Vanadium is seldom used on its own, but it is used in alloys of metals 
and acts like an important catalyst in oxidation reactions. Niobium is used in chromium 
nickel stainless steel, because it is unreactive and not rejected by human body. Tantalum is 
used for making metal plates, screws and wires for replacing badly fractured bones. The 
ultrasonic attenuation in these metal (Singh, Pandey, Yadawa & Yadav, 2009) decreases with 
the temperature and becomes negligible upto 40K, while in other normal metal this comes 
upto temperature 80K. This indicates that the electron-phonon interaction is possible upto 
40K in these metals. Similar to other metals, the attenuation is dominated by the electrical 
resistance at low temperature in these metals.   
The group III nitrides have unique properties such as wide direct band gap, high thermal 
conductivity, high thermal stability, high volume resistivity and high dielectric constant 
which make them the most serious candidates for high power and high frequency electronic 
and deep ultraviolet (UV) opto-electronic devices. The GaN, AlN and InN are hexagonal 
wurtzite structured Semiconducting materials.  The temperature and orientation dependent 
ultrasonic study (Yadav & Pandey 2006; Pandey, Singh & Yadav 2007; Pandey & Yadav 
2009) confirms that the AlN has minimum attenuation coefficient in comparison to GaN and 
InN. The temperature variation of attenuation coefficient for GaN has maximum at 400 K. 
The ultrasonic attenuation behaviour of AlN is just opposite to that found for GaN. Both 
studies indicate that the AlN is more stable and pure at high temperatures as it has low 
attenuation at each temperature than for GaN and the characteristic temperature for both is  
400 K. It may also be predicted that at 400 K the material AlN has its purest and most ductile 
state as the ultrasonic attenuation in temperature range 300–800 K has a minimum at 400 K. 
The thermal conductivity/thermal relaxation and velocity/second order elastic constants 
are dominating factors to the ultrasonic attenuation before and after the temperature 400K 
respectively. The ultrasonic attenuation in GaN is affected by velocity and thermal energy 
density before 400K while after it the affecting factor is thermal relaxation time and acoustic 
coupling constant. In group III nitrides, the phonon-phonon interaction is the responsible 
mechanism for the total ultrasonic attenuation. The direction dependent ultrasonic study at 
room temperature of hexagonal structured rare-earth metals (Gd, Tb, Dy, Ho, Er and Tm), 
platinum group metal (Os and Ru), laves-phase compounds (TiCr2, ZrCr2 and HfCr2) and 
fission products precipitated in nuclear fuel (Mo-Ru-Rh-Pd alloys) are reported in literature 
(Yadawa etal. 2009; Yadav AK etal. 2008; Pandey & Yadawa etal. 2007, 2009). The variation 
ultrasonic velocities with the angle from the unique axis of crystalline material are similar 
for all hexagonal structured material and are predominantly affected with the combined of 
second order elastic constants, while velocity magnitude differs due different elastic 
properties. Thermal relaxation times of these compounds are the order of 10-12s which shows 
that the re-establishment of phonon distribution in equilibrium is obtained in 10-12s after the 
passes of ultrasonic beam. The study shows that platinum group metals and rare-earth 
metals are durable and stable in their alloy form. The hexagonal structured materials have 
high elastic constant and low attenuation in comparison to fcc, bcc, NaCl/CsCl type 
structured material.  
The ultrasonic study of fcc structured Pd and Pt, bcc structured Ta and hexagonal wurtize 
structured Zns at nanoscale indicates that the size dependent attenuation is dominated by 
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the thermal relaxation time/thermal conductivity (Yadav & Pandey, 2005; Pandey, Yadawa 
& Yadav 2007). The size variation of the thermal relaxation time for fcc/bcc follow the 
relation /

0(1 )xe λτ τ −= − while for hexagonal structure the expression is  /
0

xe λτ τ= ; here x: 
particle size, 0τ and λ : constants. The attenuation and dislocation drag coefficient at 
nanoscale are larger than the normal scale. 
When these nanoparticles are incorporated in suitable matrix (e.g. polymers) then 
nanofluids are formed. If the particles are of magnetic material then it is called as ferrofluid. 
The ultrasonic study of ferrofluid/nanofluid (Biwa, 2004; Singh DK etal 2009; Taketomi, 
1986; Skumiel, 2000, 2003, 2004; Temkin, 1998; Gomez Alvarez, 2002) justifies the fact the 
velocity depends on the concentration of incorporated materials into the matrix and is 
independent of particle size in low frequency regime. At high frequency, both the particle 
size and concentration of nanoparticles are the affecting factor to the ultrasonic velocity. 
Ultrasonic attenuation in nanofluid is function of particle size, particle volume fraction and 
frequency. Commonly, the temperature dependence of ultrasonic velocity (V) for liquids is 
written as 0 1V V V T= +  (V0 is ultrasonic velocity at initial temperature (273K), V1 is absolute 
temperature coefficient of velocity and T is temperature difference between experimental 
and initial temperature). But the appropriate expression of velocity in nanofluid/Ferrofluid 
might be written as: 2

0 1 2V V V T V T= + − . The third non linear term in velocity expression is 
caused by non-linear change in bulk modulus/density of solution/composite system with 
temperature. The ultrasonic study of Cr2O3 implies that the temperature variation of 
ultrasonic velocity in nano/ferrofluid mainly depends on the concentration of dispersed 
particles and the temperature variation of ultrasonic absorption provides direct information 
about Neel temperature of the ferrofluid. The Neel temperature of anti-ferromagnetic 
material increases at nanoscale. In the ferrofluid, absorption is mainly governed by viscous 
loss and magnon-phonon interaction below transition temperature while above it, the 
phonon-phonon interaction plays dominant role. The study of sound attenuation coefficient 
of magnetic fluid under an external magnetic fluid implies that the anisotropy in sound 
propagation is attributed to the two motions of the clusters of the ferrous colloidal particles 
in the fluid as rotational and translational (Taketomi 1986; Skumiel 2000, 2003, 2004). 
The absorption study in glasses show a peak in attenuation at low temperature with change 
in temperature in simple glasses like silica, GeO2, B2O3, As2O3 etc and in multicomponent 
glasses (Manghnami1,1974; Jackle, 1976). The change in velocity and attenuation in glasses 
are attributed to the structural change in glass network. The structural change are attributed 
to impurities or grain boundaries or anharmonicities of lattice. Several ultrasonic studies 
have been made to determine the elastic constants of the glasses such as alkali earth 
aluminosilicate, sodium borate, sodium borosilicate, and soda lime borosilicate glasses 
(Bhatti 1989; Rajendran, 2002). The transition temperature in high TC superconductors can 
be obtained with the ultrasonic study (Bardeen, 1957). In this study the exponential decay of 
ultrasonic attenuation below TC was used to obtain the energy gap in case of conventional 
mettalic superconductors, while change in ultrasonic velocity was used to explain transition 
temperatures for the type II superconductors.   
The Grain size can be determined with the study of ultrasonic attenuation  or relative 
attenuation (Papadakis, 1976). Normally the variation of ultrasonic attenuation or relative 
attenuation with average grain size or frequency follow the Fig. 15. 
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Fig. 15. variation of ultrasonic attenuation (α) or relative attenuation (αR)with average grain 
size or frequency. 

In this we can say the ultrasonics provide a big tool in the field of material characterization.  

7. Summary 
The present chapter deals the basics of ultrasonic wave generation and its detection. After 
that the theoretical and experimental techniques for the determination of ultrasonic 
properties have been discussed.  The formulation of direction dependent ultrasonic velocity 
and its experimental measurement techniques are detailed for the understanding of 
mechanical properties in solids. The Different mechanisms responsible for the ultrasonic 
attenuation in solid material are explained to recognize the several properties of materials. 
Later on, the study of ultrasonic parameters in different structured materials like fcc, bcc, 
hcp, hexagonal, glasses, superconductors, nano-materials etc. and in nanofluids/ferrofluid 
is carried out. The whole study provides a short view of ultrasonic wave and its application 
to material characterization. 
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1. Introduction 
The term acoustic refers to a periodic pressure wave. The term includes waves in the audio 
frequency range as well as those above audio frequency range (ultrasonic and hypersonic) 
and below the audio frequency range. Acoustic waves are characterized by their speed and 
absorption. Acoustic absorption is a measure of the energy removed from the acoustic 
waves by conversion to heat as the wave propagates through a given thickness of material; 
it has unit dB/cm (or Np/cm). Absorption is a material property, in contrast to attenuation, 
which includes energy loss due to scattering and reflection as well as and depends upon 
sample size and experimental configuration.  
The elastic and inelastic properties of solids are suitable for the study of acoustic dissipation 
which account for the direct conversion of acoustic energy into thermal energy. In 
measurement of the attenuation of acoustic waves in solids using pulse echo method, the 
attenuation is usually found to be greater than the absorption due to intrinsic dissipation. 
Acoustic energy is removed from the propagating acoustic wave, but is not immediately 
converted into heat. 
The most important cause of the attenuation is the scattering of acoustics wave from 
imperfections. In terms of phonon description of acoustic waves, this is a two-phonon 
process, in which incoming and outgoing phonons have different wave vectors. The 
perturbation at the scattering centre may be due to a mass difference of an impurity atom 
from the normal mass or to a change in interatomic forces.  
In polycrystalline solids, sound is scattered from the boundaries between the microcrystal 
grains. The grain boundaries act as scattering centers due to the discontinuity of the elastic 
constants, and the amount of loss depends on the grain size and on the wavelength of the 
acoustic wave. When the wavelength of the acoustic wave is small compared to the grain size, 
the loss is independent of frequency and inversely proportional to the mean grain diameter. 
When the wavelength is large compared to the grain size, the loss is proportional to the fourth 
power of the frequency (Rayleigh scattering) and to the third power of grain diameter. 
Another source of nondissipative loss is diffraction of acoustic field from the transducer. 
This is an important loss mechanism in megahertz frequency range, but at higher 
frequencies it is negligible. At higher frequencies, a loss mechanism occurs due to lack of 
flatness and parallelism of the end faces of the specimen. At higher frequencies (10 GHz), 
the wavelength of the sound in a solid is of the order of optical wavelength in visible range 
and hence, the surface of the specimen should be polished with optical quality. 
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Various causes can be attributed to the dissipation of acoustic waves propagating in 
different types of solids. These causes depend primarily on the physical conditions of the 
material under investigation. Having control over the physical conditions of the material, 
one cause can be studied eliminating others. Most of the energy from the propagating 
acoustic wave through the medium is absorbed and converted into heat. Following causes 
may be attributed to the attenuation of the acoustic wave propagating through a solid; 
(a) Electron-phonon interaction, (b) Phonon-phonon interaction, (c) Lattice imperfection, (d) 
Thermoelastic loss (e) Ferromagnetic and Ferroelectric losses and (f) NMR and Thermal 
relaxation etc.. In non conducting non-ferromagnetic solids at 50 K and above, phonon-
phonon interaction is the principal cause of acoustical dissipation. 
Among the wide band gap II-IV semiconductors, the barium chalcogenides [BaX, X=S, Se, 
Te] are interesting in connection with optoelectronic applications in blue light wavelength 
regime. The Barium Chalcogenides form very important closed shell ionic systems 
crystallized in the NaCl (B1) type and CsCl (B2) type structures at ambient conditions. 
Alkaline earth chalcogenides are currently under intense investigations driven by their 
applications in light emitting diodes (LEDs) and laser diodes (LDs). It is expected that these 
compounds may provide new II-IV candidates for the fabrication of various electrical and 
optical devices [Charifi et al. (2005) and Bouhemadou et al. (2006)]. 
Experimental as well as theoretical work on different aspects of these compounds has been 
reported in the recent past [Charifi et al. (2005), Bouhemadou et al. (2006), Hassan and 
Akbarzadeh (2006) and Cervantes et al (1998)]. However, results on temperature dependent 
acoustical behaviour of these chalcogenides viz. acoustical dissipation due to phonon-
phonon interaction, thermoelastic loss, dislocation damping, Gruneisen parameter, non-
linearity parameters and thermal relaxation time etc, which are very important parameters 
necessary to explain the microstructure and other related physical properties of these 
chalcogenides have not been studied. Recently, we studied in detail [Singh and Singh 2010] 
acoustical behaviour of these compounds starting from second and third order elastic 
constants (obtained at different temperatures), which were used to evaluate Gruneisen 
parameters and non-linearity parameters along different crystallographic directions viz. 
<100>, <110> and <111> for longitudinal and shear modes in the temperature range 50K-500 
K. Taking electrostatic and Born repulsive potentials and utilizing some parameters viz. 
nearest neighbour distance, hardness parameter and specific heat as a function of Debye 
temperature; acoustical dissipation coefficients were obtained at different temperatures. 

2. Absorption of acoustic waves by thermal phonons 
The anharmonic interactions among phonons in a solid are responsible for attenuation of 
ultrasonic waves, and are particularly important in insulators where absorption due to free 
electrons is absent. Also, when a longitudinal wave propagates in a crystalline solid, 
compression and rarefaction is produced and heat is transmitted from compressed part to 
rarefied parts and dissipation of acoustic waves occurs. Dislocation damping due to screw 
and edge dislocations also produces appreciable loss in solids.  

2.1 Phonon-phonon interaction  
In perfect, insulating, non-ferromagnetic and non-ferroelectric substances, dissipation of 
acoustical energy occurs mainly due to phonon-phonon (p-p) interaction and thermoelastic 
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loss. Akhiezer (1939) was first to propose the phonon-viscosity mechanism for acoustical 
dissipation, but he did not include the finite value of relaxation time for thermal equilibrium 
process. Bommel and Dransfeld (1960) later took this work considering the relaxation time 
to be finite. They obtained results comparable to the experimental results. Further, Woodruf 
and Ehrenreich (1960) used the Boltzmann equation method to evaluate the steady state 
distribution of thermal phonons and acoustical attenuation. They considered the N (normal) 
and U (Umklapp) processes. But due to insufficient information regarding parameter ‘ γ ’, 
used,  Mason (1965) used Gruneisen constant ( )j

iγ , which is related to second and third 
order elastic constants and this approach is found to be very useful for the estimation of 
ultrasonic attenuation in various crystals. 
At room temperature and in a wide temperature region also, thermal phonon relaxation 
time, thτ , varies from 10-10  sec to 10-12 sec from metallic to dielectric crystals. As temperature 
increases, thτ  decreases. Hence, condition 1thωτ <<  holds good and at the same time the 
individual phonon looses its significance and idea of the phonon gas having macroscopic 
parameter is described. In the Akhiezer regime (ωτ « 1), a sound wave passing through a 
solid can be attenuated by two processes. First, if the wave is longitudinal, periodic 
contractions and dilations in the solid induce a temperature wave via thermal expansion. 
Energy is dissipated by heat conduction between regions of different temperatures. This is 
called thermoelastic loss. Second, dissipation occurs as the gas of thermal phonons tries to 
reach an equilibrium characterized by a local (sound wave induced) strain. This is internal 
friction mechanism. 
The physical basis for obtaining attenuation coefficient is that the elastic constants 
contributed by thermal phonons relax [Bommel and Dransfield (1960), Pippard (1955) and 
Mason (1955)]. The phonon contribution to the unrelaxed elastic constants is evaluated by 
taking into consideration the change in energy of the thermal phonons due to applied 

instantaneous strain. The frequency of each mode iν  is changed by ji
i j

i
Sν

γ
ν
∂

= − , where j
iγ  

is generalised Gruneisen parameter & Sj is instantaneous strain. It is assumed that all the 
phonons of a given direction of propagation and polarization have equal change in 
frequency. Then phonons of ith branch and jth mode suffer a change in temperature 

0

ji
i j

T S
T

γΔ
= −  (T is the temperature). A relaxed elastic constant is obtained after there is 

phonon-phonon coupling among various branches and ΔTi relax to a common temperature 

change, TΔ  given by j
i j

T S
T

γΔ
= − ; where j

iγ  is the average value of j
iγ . 

The sudden application of acoustical pressure to a body at temperature T  causes different 
temperature increments for different phonon modes, which relax back to new equilibrium at 
a temperature T T+ Δ  through the phonon-phonon collision. This temperature difference 
lags behind the periodic stress and causes a relaxational absorption. 
The relation between the attenuation and eCΔ  (change in the elastic constant due to non-
equilibrium temperature separation of the phonon modes by the applied strain) is given as: 

 2 3 2 2/ 2 (1 )e th thC dVα ω τ ω τ= Δ +  (1) 

Where α the is attenuation in dB/cm, d  is density, ω  is angular frequency of the ultrasonic 
wave and V  is the velocity of the wave. 
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When the strain jS  is applied to the crystal, there is change in mode frequency given by: 

 0
1

(1 )j
i i i j

j
Sω ω γ

=
= − ∑  (2)                          

0iω  is frequency of the mode in the standard state. By measurements of SOEC and TOEC, it 
could be predicted that j

iγ  do not vary much. When the above expression is differentiated, 
one obtains: 

 0( / ) /j
i i j iSγ ω ω= ∂ ∂  (3) 

j
iγ  is known as Gruneisen number. A general formula for j

iγ  has been given by Brugger in 
terms of tensor notation: 

 ( ) / 2j jk
i i i j p q jkpq r s jkpqrs eU U N N C U U C Cγ γ− = − = + +  (4) 

Where jk  are the two index symbols for strain jS . pN  and qN  are the direction cosines for 
the propagation direction and eC  is the required elastic constant determined by the type of 
the wave and the direction of propagation. jU  and kU  are the direction cosines for the 
particle displacements. jkpqC  and jkpqrsC  are the second and third order elastic constants in 
tensor notations. Now a suddenly applied strain neither changes the number of modes nor 
their entropy. Mason considered thermal energy of the modes under Debye’s 
approximation, 

 2 2
0

3 ( / ) ( /(exp( / ) 1))gi
th i gi

i
U N kT d

ω
ω ω ω ω= ∑ −∫  (5) 

on differentiation of the sum of the elastic energy plus the total thermal energy of all modes, 
one obtains: 

 /j th jT U S= ∂ ∂  (6) 

3 3
0

3 ( / )( ( / ) ( /(exp( / ) 1))giS
ij j j i giC S S N kT d

ω
ω ω ω ω= + ∂ ∂ ∑ −∫  

and finally one gets: 

 23 ( ) 3j jS
j ij i i j i i

i i
T C E S Eγ γ= + ∑ + ∑  (7) 

where jT  is the stress associated with the strain jS , ijC  is the corresponding elastic 
constants resulting from no entropy exchange between any of the modes and j

iγ  is the 
Gruneisen number. iE  is the thermal energy associated with each direction and each mode. 
The above expression, shows that elastic constant changes by 

 23 ( )j
e i i

i
C E γΔ = ∑  (8) 

This development is valid for shear modes for which the average rise in temperature is zero. 
For longitudinal modes, the increase in modulus resulting from the difference between the 
adiabatic and isothermal conditions is to be supported and it is given by: 
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their entropy. Mason considered thermal energy of the modes under Debye’s 
approximation, 

 2 2
0

3 ( / ) ( /(exp( / ) 1))gi
th i gi

i
U N kT d

ω
ω ω ω ω= ∑ −∫  (5) 

on differentiation of the sum of the elastic energy plus the total thermal energy of all modes, 
one obtains: 

 /j th jT U S= ∂ ∂  (6) 

3 3
0

3 ( / )( ( / ) ( /(exp( / ) 1))giS
ij j j i giC S S N kT d

ω
ω ω ω ω= + ∂ ∂ ∑ −∫  

and finally one gets: 

 23 ( ) 3j jS
j ij i i j i i

i i
T C E S Eγ γ= + ∑ + ∑  (7) 

where jT  is the stress associated with the strain jS , ijC  is the corresponding elastic 
constants resulting from no entropy exchange between any of the modes and j

iγ  is the 
Gruneisen number. iE  is the thermal energy associated with each direction and each mode. 
The above expression, shows that elastic constant changes by 

 23 ( )j
e i i

i
C E γΔ = ∑  (8) 

This development is valid for shear modes for which the average rise in temperature is zero. 
For longitudinal modes, the increase in modulus resulting from the difference between the 
adiabatic and isothermal conditions is to be supported and it is given by: 
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 2(3 ( ) )j
e i i

i
C E CTγ γΔ = ∑ −  (9) 

Replacing the value of eCΔ , one gets: 

 2 3 2 2/6 (1 )th thED dVα ω τ ω τ= +  (10) 

for 

  1thωτ << , 2 3/6thED dVα ω τ=  (11) 

Equation (1) reduces to 

 2 2 3
0( / ) 2 ( /3) /l l l lf E D dVα π τ=  (12) 

and  

 2 2 3
0( / ) 2 ( /3) /S S S Sf E D dVα π τ=  (13) 

for longitudinal and shear waves, respectively. 

 where     2 29 ( ) (3 ( ) / )j j
i iD CT Eγ γ= < > − < >  (14) 

Here D  is the non-linearity constant. Mason and co-workers ( 1964) have obtained a 
number of tables in terms of second and third order elastic constants to calculate 2( )j

iγ< >  
and 2( )j

iγ< >  for different directions of propagation and polarization. Gruneisen numbers 
along different directions of propagation viz. <100>, <110> and <111> can be obtained using 
Mason (1965) approach.  
Thermal relaxation time, τ  (subscripts l and s for longitudinal and shear waves) is given as, 

 2
3

2
l

s
v

K
C V

τ
τ τ= = =

< >
 (15) 

Where K is thermal conductivity, vC  is specific heat per unit volume and V< >  is Debye 
average velocity given by 

 
( )3

3
V< >

  =  3
1

LV
  +  3

2

SV
 (16)  

The Debye temperature is given by [Jasiukiewicz & Karpus (2003)], 

                                                      ΘD =   ћ <V> qd / KB (17) 
KB is Boltzmann constant and  
 qd =      (6П2Na) 1/3  where Na  is atom concentration 
According to Mason and Batemann [1964], SOEC and TOEC are related by Gruneisen 

parameter j
iγ  and hence by non-linearity parameter, D. ( )2j

iγ  and j
iγ 2 are square 

average & average square Gruneisen parameters, V is sound wave velocity (Vl) for 
longitudinal wave  and (Vs) for shear wave  and d is density. 
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Fig. 1.Temperature variation of (α/f2)l  along different directions.  
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Fig. 2. Temperature variation of (α/f2)s  along different direction directions. 

The ultrasonic attenuation due to phonon-phonon interaction for longitudinal, (α/f2)l and 
shear waves, (α/f2)s are evaluated using equations (12) and (13), respectively. Typical 
attenuation versus temperature curves ((α/f2)l and (α/f2)s vs Temperature) along [100], [110] 
and [111] directions of propagation are shown in Figs. (1-2) , and it can be seen that the 
temperature dependence divides into two regions. Region 1, (upto Debye temperature of 
respective solids, which has been shown in Table 1) attenuation coefficient varies rapidly 
and in Region II, attenuation coefficient becomes temperature independent. To understand 
the physical processes involved, it is helpful to consider region I and II  
separately. When thωτ <1 (Region 2), where ω is the acoustic frequency and  thτ is the mean 
lifetime of thermal phonons, the phonon mean free path is short compared to the acoustic 
wavelength and phonons see a very gradual spatial gradient of the acoustic starin. In the 
opposite extreme ( thωτ >1), the phonon mean free path is long compared to the acoustic 
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wavelength, and the acoustic wave is best thought of as a beam of coherent phonons which 
are on an actual footing with the thermal phonons. The mode of interaction is then by 
phonon-phonon interaction.  
 

Compound ΘD (K) <V> (105cm/sec) M (Mol. Weight) 
BaS 200 4.18 169.39 
BaSe 170 2.61 216.28 
BaTe 143 2.39 264.92 

Table 1. Debye temperature (ΘD) and average Debye velocity (<V>) at 300 K     
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Fig. 3.Temperature variation of specific heat (Cv)  

The attenuation due to phonon-phonon interaction for longitudinal and shear waves (α/f2)l , 
(α/f2)s increases  up to ΘD and then becomes constant. When (ΘD/T) ≥ 1, (α/f2)l and (α/f2)s  
increase  and for values of temperatures satisfying (ΘD/T) <1, attenuation becomes nearly 
constant, because (α/f2)l or (α/f2)s due to p-p interaction is mainly affected by the specific 
heat, Cv ( since (α/f2) due to phonon-phonon interaction is related to Cv, (through the 
relaxation time). For (ΘD/T) ≥ 1, Cv increases and becomes nearly constant for the values 
satisfying (ΘD/T) <1, (Fig. 3).  
The value (α/f2) at a given temperasture is minimum for BaS and maximum for BaTe. The 
value of (α/f2) depends upon Debye temperature (ΘD). The Debye temperature is maximum 
for BaS and minimum for   BaTe, (Table 1). Thus greater the ΘD value, smaller is the 
attenuation. The value of ΘD depends on the Debye average velocity <V> and inverse of 
cube root of molecular weight i.e.  M-1/3 through (N/V) 1/3 where N is the Avogadro number 
and V (V = M/d, M= mol. wt. and d= density) is volume. <V> is maximum for BaS and 
minimum for BaTe, therefore larger is the <V>, smaller will be attenuation. The attenuation 
increases in these chalcogenide series with increasing the Molecular weight. The ΘD and 
<V> are SOEM dependent. Thus the increase in the value of (α/f2)l , (α/f2)s and (α/f2)th from 
BaS to BaTe is mainly influenced by SOEM values and Molecular weight. 



 Acoustic Waves 

 

438 

2.2 Thermoelastic loss 
In an isotropic polycrystalline solid, strain varies according to applied stress from one grain 
to another (Lucke, 1956). The substance is isotropic due to random orientation of grains. The 
individual grain may be anisotropic. The propagation of longitudinal wave creates 
compression and rarefactions throughout the crystal. The rarified regions are cooler than 
compressed regions and hence there is a flow of heat between the two regions and the 
direction of flow of this energy will be reversed after every half cycle. Since there is a 
relaxational phenomenon, there is a loss of energy. Attenuation due to this effect is given by 
(Mason, 1965) 

 2 2 32 ( ) /nn nn V nnf K C C dV C Cσ θα π= −  (17) 

where nnC σ  and nnC θ  are adiabatic and isothermal elastic constants, K is thermal 
conductivity and VC  is specific heat per unit mass. The difference between nnC σ  and nnC θ  
may be obtained with the help of SOEC and TOEC. This loss does not make any appreciable 
contribution to the total ultrasonic attenuation in case of dielectric and semiconducting 
crystals due to low value of thermal conductivity. In case of metals thermal conduction 
arises due to electronic and lattice contribution so it is large enough to cause appreciable 
contribution to the total ultrasonic attenuation. For shear wave propagation no compression 
or rarefaction occurs hence no thermoelastic loss. Propagation of sound wave through 
crystal produces compression and rarefactions as a result heat are transmitted from 
compressed region (at higher temperature) to rarefied region (at lower temperature) and 
hence thermoelastic loss occurs, which is given by. 

                                         αth =  

22 2

5

4

2

j
i

L

f KT

dV

π γ
  (18) 

Ultrasonic attenuation due to this effect has also been evaluated in case of barium 
monochalcogenides and is given in Fig. 4..    
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(α/f2)th is directly proportional to rate of heat transfer from compressed regions to rarefied 
regions. In the low temperature range, 50-200 K, heat is transferred at faster rate from 
compressional regions to the rarefied regions resulting larger rate of thermoelastic loss.  The 
rate of increase of thermoelastic loss is small beyond 200 K.  

2.3 Phonon processes and drag on dislocations 
A dislocation is a linear imperfection in a crystal. In edge dislocation, near the dislocation 
line, the crystal is severely strained. In a screw dislocation, Burger vectors are parallel to the 
dislocation line. In general, a dislocation is composed of mixtures of screw and edge 
dislocations. Another process for which thermal losses due to p-p interaction can produce 
an appreciable effect is the drag on disclocations as they are moved through a lattice. 
Leibfried et al. (1954) discussed the mechanism of scattering of phonons by moving 
disclocations and the results show that the resulting differential produces a drag force 
which is proportional to the velocity of the disclocation. Mason (1965) proposed a theory to 
explain the mechanism involved in the drag produced on a dislocation by phonon-viscosity. 
This was evaluated on the basis of the effect caused by the change in dimensions of phonon 
modes and their subsequent equilibrium through a thermal relaxation process. 
Dislocation damping due to screw and edge dislocations also produces appreciable loss due 
to phonon-phonon interaction. The loss due to this mechanism can be obtained by 
multiplying dislocation viscosities by square of dislocation velocity. Dislocation damping 
due to screw and edge dislocations is given by equations (21) and (22). 
The Phonon-viscosity, which is analogous to shear-viscosity in liquids damps the motion of 
both type (screw and edge) disclocations and has the value 

 2/ / 3thEDk C V EDη τ= < > =  (19) 

These phonon-viscosities are presented in the form of drag coefficients for the motion of 
screw and edge type of disclocations. Here the Cortell’s (Cortell, 1963) condition 0 3 / 4a b=  
is valid, where 0a the disclocation core radius and ‘b’ is is the Brugger’s vector. screwB  and 

edgeB  are given by 

 2 2/8B b aπ=  (20) 

substituting 0 3 / 4a b=  the above equation reduces to, 

 0.071screwB η=  (21) 

and 

 2 2(0.0532 0.0079( / ) /(1 )edgeB Kη μ χ σ= + −   (22) 

where σ , μ , K  and χ  are Poisson’s ratio, shear modulus, bulk modulus and 
compressional viscosity respectively. These values can be calculated using the relations 

 11 12 44( ) / 3C C Cμ = − + , 11 12( 2 ) / 3K C C= + ,  

 and (4 / 3 )l Sχ η η= −  (23)                    
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Compound Bscrew Bedge 

 Long. Shear Long. Shear 

BaS 0.23 0.10 0.45 0.55 

BaSe 0.29 0.17 0.60 0.79 

BaTe 0.47 1.30 1.07 3.22 

Table 2. Phonon viscosity due to screw and edge dislocation at 300K longitudinal (in cp) and 
shear (in mp.) waves.        

Debye average velocity and Debye temperature have been calculated using equations (16) 
and (17) and are presented in Table 2.  
Square average Gruneisen numbers < γij2 >l  and   < γij 2>s* and  average square Gruneisen 
parameter < γij >2 l  and < γij >2s and   < γij >2s*  for longitudinal and shear waves, nonlinearity 
coupling constants Dl, Ds, Ds*  and their ratios Dl/Ds, and Dl/Ds* along different directions 
of propagation are given in Table 3. Results are as expected [Mason (1967), Kor and Singh 
(1993)].  
     
Compound Direction < γij2 >l < γij >2 l   < γij >2s < γij >2s* Dl Ds D s*      Dl /Ds   Dl/Ds* 

100 0.94 0.17 0.04 -- 7.82 0.37 -- 20.81 -- 
BaS 

110 1.06 0.26 0.15 1.93 8.63 1.43 17.37 6.03 0.49 

100 0.90 0.24 0.04 -- 7.27 0.43 -- 16.79 -- 
BaSe 

110 1.04 0.36 0.22 1.80 8.04 1.98 16.28 4.06 0.49 

100 1.68 1.28 0.30 -- 10.63 2.73 -- 3.88 -- 
BaTe 

110 2.14 1.75 4.49 1.33 12.93 40.46 12.00 0.31 1.00 

Table 3.  Square Average and average square Gruneisen number for longitudinal < γij2 >l, < 
γij >2l and shear < γij >2s , < γij >2s*  Waves, nonlinearity coupling constants Dl , Ds and   
nonlinearity coupling constants ratios Dl / Ds , Dl / Ds* at 300K 
l   for longitudinal wave  
s    for shear wave, polarized along  [001]     
s*  for shear wave, polarized along [ 110 ] 
 

Viscous drag due to screw (Bscrew) and edge dislocations have been obtained (Bedge) using 
equation (21) and (22), as given in Table 2. 
The phonon mean free path due to phonon-phonon collision is a rapidly changing function 
of temperature at low temperatures. Fig. 4 shows the thτ vs T plot for barium 
monochalcogenides.. Thermal relaxation time is evaluated using equation (6). Temperature 
variation of thermal relaxation time is shown in Fig. 4 which shows exponential decay 
according to relation τ = τo exp (- t/T), where τo and t are constants. 
From the values of thermal relaxation time, it can be seen that the condition thωτ <<1 is 
satisfied even at GHz range acoustic wave frequency. 
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Fig. 4. Temperature variation of thermal relaxation time (τ). 

3. Conclusions 
Acoustical dissipation and related parameters have been evaluated over a wide temperature 
range using simple approach and starting from second and third order elastic constants. 
These values of second and third order elastic constants have been used to obtain acoustical 
Gruneisen parameters and non-linearity coupling constants. Utilizing values of non-
linearity coupling constants, ultrasonic arttenuation due to phonon-phonon interaction, 
thermoelastic loss and dislocation dampming due to screw and edge dislocations have been 
obtained over a wide temperature range. In the present approach, Grunesen parameters 
have been evaluated for longitudinal and shear modes by considering only finite number of 
modes (39 modes for longitudinal wave while 18 modes for shear waves). However, a more 
rigorous approach is needed, in which all possible phonon modes can be incorporated.  
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1. Introduction 
Passive remote wireless sensing employing properties of the surface acoustic wave (SAW) 
has gained currency during a couple of decades to measure different physical quantities 
such as temperature, force (pressure, torque, and stress), velocity, direction of motion, etc. 
with a resolution of about 1% [1]. The basic principle utilized in such a technique combines 
advantages of the precise piezoelectric sensors [2, 3, 4], high SAW sensitivity to the 
environment, passive (without a power supply) operation, and wireless communication 
between the sensor element and the reader (interrogator). Several passive wireless SAW 
devices have been manufactured to measure temperature [1], identify the railway vehicle at 
high speed [5], and pressure and torque [6]. 
The information bearer in such sensors is primarily the time delay of the SAW or the central 
frequency of the SAW device. Most passive SAW sensors are designed as reflective delay 
lines with M reflectors1 and operate as sketched in Fig. 1. At some time instant t0 = 0, the 
reader transmits the electromagnetic wave as an interrogating radio frequency (RF) pulse  
(K = 1), pulse burst (K > 1), pulse train, or periodic pulse burst train. The interdigital 
transducer (IDT) converts the electric signal to SAW, and about half of its energy distributes 
to the reflector. The SAW propagates on the piezoelectric crystal surface with a velocity v 
through double distances (2L1 and 2L2), attenuates (6 dB per µs delay time [5]), reflects partly 
from the reflectors (R1 and R2), and returns back to the IDT. Inherently, the SAW undergoes 
phase delays on the piezoelectric surface. The returned SAW is reconverted by the IDT to 
the electric signal, and retransmitted to the interrogator. While propagating, the RF pulse 
decays that can be accompanied with effects of fading. At last, K pairs of RF pulses (Fig. 1b) 
appear at the coherent receiver, where they are contaminated by noise. In these pulses, each 
inter distance time delay Δτ(2k)(2k–1) = 2(L2 – L1)/v, k ∈ [1,K], bears information about the 
measured quantity, i.e., temperature [1], pressure and torque [5], vehicle at high speed [6], 
etc. 
To measure Δτ(2k)(2k–1), a coherent receiver is commonly used [7], implementing the 
maximum likelihood function approach. Here, the estimate of the RF pulse phase relative to 
the reference is formed to range either from –π/2 to π/2  or from –π to π by, respectively, 

                                                 
1 Below, we consider the case of M = 2. 
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Fig. 1. Operational principle of remote SAW sensing with phase measurement: a) basic 
design of passive SAW sensors and b) reflected pulses at the coherent receiver detector [25]. 
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where I and Q are the in-phase and quadrature phase components obtained for the received 
pulse. With differential phase measurement (DPM), the phase difference in every pair of 
pulses is calculated by 

 2 2 1
ˆ ˆˆ

k k kθ θ −Θ = −  (3) 

and used as a current DPM. Here several estimates may be averaged to increase the signal-
to-noise ratio (SNR) [7]. Averaging works out efficiently if the mean values are equal. 
Otherwise, the differential phase diversity is of interest to estimate either the vehicle's 
velocity (Doppler shift) or the random error via 

 1
ˆ ˆ ˆ .k k k−Ψ = Θ −Θ  (4) 
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An accurate estimate ˆ
kΘ  is a principal goal of the receiver. To obtain it with a permitted 

inaccuracy in the presence of noise, the interrogating signal must be transmitted with a 
sufficient peak power that, however, should not be redundant. The peak power is coupled 
with the SNR. Therefore, statistical properties of ˆ

kΘ  and ˆ
kΨ  are of prime interest. Knowing 

these properties and the peak power of the interrogating pulse, one can predict the 
measurement error and optimize the system. In this Chapter, we discuss limiting and 
approximate statistical errors in the estimates (3) and (4). 

2. Signal model 
For SAW sensors with identification marks, the readers are often designed to interrogate the 
sensors with a linear frequency modulated (LFM) RF impulse request signal [8, 9] 

 
2

0 0( ) 2 ( )cos 2 ,
2
tx t Sa t f t απ θ

⎛ ⎞
= + +⎜ ⎟⎜ ⎟

⎝ ⎠
 (5) 

where 2S and θ0 are the peak-power and initial phase, respectively, f0 is the initial carrier 
frequency, and t is the current time. The LFM pulse can have a near rectangular normalized 
waveform a(t) of duration T such that α = Δω/T , where Δω is a required angular frequency 
deviation, overlapping all the sensor responses.  
It turns out that noise does not perturb x(t) substantially in the sensor. Therefore, assuming 
Gaussian envelope in the reflected pulses, the induced SAW reflected from the reflectors R1 

and R2 and then reconverted and retransmitted can be modeled with, respectively, 
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where 2( ),  [1,2 ],i t i Kβ ∈  is a normalized instantaneous power caused by attenuation and 
fading. The full phase shifts relative to the carrier and its constituent induced during the 
SAW propagation are given by, respectively, 

 2 1 2 1 2 1 0 , k k kψϑ φ θ− − −= − +  (8) 

 2 2 2 0 , k k kψϑ φ θ= − +  (9) 

where k ∈[1,K], φ2k–1 and φ2k are phase shifts caused by various reasons, e.g., RF wave 
propagation, Doppler effect, frequency shift between the signals, etc. Here, the relevant 
information bearing phase shifts can be evaluated with, respectively, 
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 1 2
2 1 2 1 2 24 and 4 .k k k k

L Lψ f ψ f
v v

π π− −= =  (10) 

At the receiver, each of the RF pulses ui(t), i ∈[1, 2K], is contaminated by zero mean additive 
stationary narrowband Gaussian noise n(t) with a known variance σ2, so that, at t = ti, we 
have a mixture 

 ( ) ( ) ( ) ( )cos[2 ( )],i i i i iy t u t n t V t f t tπ θ= + = +  (11) 

where Vi ≥ 0 is a positive valued envelope with the Rice distribution and |θi| ≤ π is the 
modulo 2π random phase2. Although the frequency fi in the reflected pulses can be different, 
below we often let the frequencies be equal, by setting fk = f0. The instantaneous peak SNR in 
yi(t) (Fig. 1b) is calculated by 

 
2

2
( ) .i

i
S tβ

γ
σ

=  (12) 

Because of noise, the actual phase difference3 

 2 2 1 2 1 2 k k k k kψ ψϑ ϑ − −Θ = − = −  (13) 

 2 1 1 2 2 4 [ ] k kf L f L
v
π

−= −  (14) 

 0 (2 )(2 1)2 ,       k kfπ τ −≅ − Δ  (15) 

where ϑ2k–1 = ϑ1(t2k–1), ϑ2k = ϑ2(t2k), ψ2k–1 = ψ1(t2k–1), and ψ2k = ψ2(t2k) cannot be measured 
precisely and are estimated at the coherent receiver via the noisy phase difference θ2k – θ2k–1 

as (3), using (1) or (2). Similarly, the time drift in kΘ  is evaluated by 

 1                             k k k−Ψ = Θ −Θ  (16) 

         2 2 1 2 2 2 3 .k k k kψ ψ ψ ψ− − −= − + + −  (17) 

So, instead of the actual angle kΘ , the coherent receiver produces its random estimate ˆ
kΘ  

and instead of kΨ  we have ˆ
kΨ . Note that, in the ideal receiver, Θk and ˆ

kΘ  as well as kΨ  

and ˆ
kΨ  have the same distributions [11]. 

3. Probability density of the phase difference 
Because both the received signal and noise induced by the receiver are essentially 
narrowband processes, the instantaneous phase θi in (11) has Bennett's conditional 
distribution 

                                                 
2 Throughout the paper, we consider the modulo 2π phase and phase difference. 
3 For the sake of simplicity, we assume equal phases φ(t2k) and φ(t2k–1). It is important that a linearly drifting phase 
difference φ(t2k) – φ(t2k–1) does not affect distribution of Θk [8] and may be accounted as a regular error. 
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2 /21
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and ( ) d

x t
i i i x e t

π
θ θ ϑ −

−∞
= − Φ = ∫  is the probability integral. It has been shown in 

[17, 13] that (18) is fundamental for the interrogating RF pulses of arbitrary waveforms and 
modulation laws. 
Employing the maximum likelihood function approach, the coherent receiver produces an 
estimate îθ  of θi [11]. Assuming in this paper an ideal receiver, we let îθ  = θi. Provided (18), 
the pdf of the information bearing phase difference Θk can be found for equal and different 
SNRs in the pulses and we notice that the problem is akin to that in two channel phase 
systems. 

3.1 Different SNRs in the RF pulses 
Most generally, one can suppose that the SNRs in the reflected pulses are different, γ2k–1 ≠ γ2k, 
owing to design problems and the SAW attenuation with distance. The relevant conditional 
pdf was originally published by Tsvetnov in 1969 [16]. Independently, in 1981,  
Pawula presented an alternative formula [21] that soon after appeared in [18] in a simpler 
form of 
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where 2 1 2 2 2 1 2 1 2( ) /2,    ( ) / 2,    arctan ,    cos ,k k k k k k k
γ
λγ γ γ γ γ γ ξ λ γ γ− − −= + = − = = Θ  and 

.k k kΘ = Θ −Θ  An equivalence of the Tsvetnov and Pawula pdfs was shown in [22]. 
To avoid computational problems, Tsvetnov expended his pdf in [20] to the Fourier series 
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where N is proportional to the maximum SNR in the pulses, cn(γ2k–1, γ2k) = cn(γ2k–1)cn(γ2k), and 
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where Iv(x) is the modified Bessel function of the first kind and fractional order v. The mean 
and mean square values associated with (20) have been found in [24] to be, respectively, 
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3.2 Equal SNRs in the RF pulses 
In a special case when the SNRs in the pulses ara supposed to be equal, kγ  = γ2k–1 = γ2k, the 
phase difference has the conditional Tsvetnov pdf [20] 
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k k k k k
ep z e dz

πγ
λγ γ λ

π
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∫  (24) 

where λk = kγ  cos kΘ . Note that Tsvetnov published his pdf in the functional form. The 
integral equivalent (24) shown in [11] does not appear in Tsvetnov's works. It can be 
observed that, by equal SNRs, (19) becomes (24), although indirectly. 

3.3 Probability density of the differential phase difference 
It has been shown in [22] that the pdf of the differential phase difference (DPD) has two 
equivalent forms.  
The first form of this pdf appears to be 
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By changing the variables, namely by substituting sin x with x and sin y with y, the pdf 
transforms to its second equivalent form of 
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where 
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and ( , , )x yζ Ψ  is given by (28) with 2 3 2 2 sink k kQ y γ γ− −= − Ψ  and 2 1 2k kI x γ γ−= +  

2 3 2 2 cos .k k ky γ γ− − Ψ  
One may arrive at the conclusion that neither (25) nor (31) allow for further substantial 
simplifications and closed forms even in the special case of equal SNRs in the first and 
second pulses. 

3.3.1 Equal SNRs in the first and second pulses 
By letting γ1 = γ2k–1 and γ2 = γ2k, the pdf pψ attains the form shown in [22] 
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and ( , , )kx yζ Ψ  is given by (28) with 1 2 sin kQ y γ γ= − Ψ  and 1 2 ( cos ).kI x yγ γ= + Ψ  

3.3.2 Equal SNRs in the pulses 
For SAW sensors with closely placed reflectors, one may suppose that all of the received RF 
pulses have equal SNRs, γ = γ2k–1 = γ2k. By setting γ  = γ and γ  = 0, substituting the 
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hyperbolic functions with the exponential ones, and providing the routine transformations, 
we arrive at the pdf originally derived in [25], 
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where 
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2 2 cos ,                            E x xy y= + Ψ +  (39) 
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Certainly, (37) can be used when there is no substantial difference in the RF pulses of the 
received burst, although (34) gives us a more realistic picture. Notwith-standing this fact, 
neither of the above discussed pdfs has engineering features. Below, we shall show that this 
disadvantage is efficiently circumvented with quite simple and reasonably accurate 
approximations. 

4. Von-Mises/Tikhonov-based approximations 
Observing the above-described probability densities of the phase difference and DPD, one 
can deduce they all these relations are not suitable for the engineering use and 
approximations having simpler forms would be more appropriate. It has been shown in [14] 
that efficient approximations can be found employing the von Mises/Tikhonov distribution 
known as circular normal distribution. The von Mises/Tikhonov pdf [15] is 

 0cos( )

0

1( ) ,
2 ( )

p e
I

α ϕ ϕϕ
π α

−=  (41) 

where α (γ ) is the SNR-sensitive parameter, φ is the mod 2π variable phase, and φ0 is some 
constant value. Commonly, (41) is used by the authors to approximate Bennett's pdf (18) for 
the instantaneous phase θ with the error of about 5% and α (γ ) specified in the least mean 
squares (LMS) sense. Shmaliy showed in [14] that (41) fits better the phase difference pdf 
with equal SNRs allowing for the approximation error lesser 0.6%. Referring to this fact, 
below we give simple and reasonably accurate von Mises/Tikhonov-based distributions for 
the phase difference and DPD. 

4.1 Phase difference 
To fit the phase difference Θk with arbitrary SNRs, Tsvetnov proposed in [16] an approximation 
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where 
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allowing for a maximum error of about 20%. Referring to [16], Shmaliy showed in [14] that 
(41) works out with a maximum error at γ2k–1 = γ2k  0.6 of about 0.6% if to write 
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where a = 0.525 and b = 1.1503 are determined in the least mean squares (LMS) sense. With 
γ2k–1 ≠ γ2k, the error increases up to about 5 % with the SNRs difference tending toward 
infinity. The mean and mean square values associated with (44), for a fixed αk, are, 
respectively, 
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where N is proportional to the SNR and 
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is a ratio of the modified Bessel functions of the first kind and integer order. It can be shown 
that, by zero and large SNRs, (44) becomes uniform and normal, respectively, 
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having in the latter case (50) the variance 2 1 / .kσ γΘ =  

4.2 Differential phase difference 
It has also been shown in [14] that, to fit kΨ , the following von Mises/Tikhonov- based 
approximations may be used with a maximum error of about 0.41 % at equal unit SNRs. For 
different and equal SNRs these pdfs are, respectively4, 
                                                 
4 (52) was originally derived in [17]. 
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The mean and mean square values associated with (51) and (52) are, respectively, 
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where n0(α k–1, α k) = n0(α k–1) n0(α k). 
Several important limiting cases can now be distinguished. 

4.2.1 Case 1: Large SNR in one of the signals 
With 1kγ  and 1k kγ γ− , the pdf (51) degenerates to the von Mises/Tikhonov density (41). 

4.2.2 Case 2: One of the signals is a pure noise 
Let 0kγ =  and 1 0kγ − ≠ . With 0kγ = , (51) transforms to the uniform density (49) 
disregarding the other SNR value. Therefore, (52) also becomes uniform. 

4.2.3 Case 3: Large and equal SNRs in the vectors 
With 11 k kγ γ− = , the pdf (52) degenerates to the normal density 

 
2( )

4( | , ) ,
4

k
k kk

k k kp e
γγ

γ
π

− Ψ −Ψ
Ψ Ψ ≅  (55) 

in which the variance is 2 2 / .kσ γΨ =  
As can be observed, all the von Mises/Tikhonov-based approximations have simple 
engineering forms allowing for small errors with typically near equal SNRs in the received 
SAW sensor pulses. 

5. Errors in the phase difference estimates 
To evaluate errors in the estimates of phase angles, let us assume that the actual phase 
difference between the received pulses of the SAW sensor is kΘ . At the receiver, this 
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engineering forms allowing for small errors with typically near equal SNRs in the received 
SAW sensor pulses. 

5. Errors in the phase difference estimates 
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Fig. 2. Errors in passive SAW sensing with DPM and γk = 1: (a) instantaneous εk, (b) 
differential phase diversity ˆ

kΨ , and (c) error probability PE(ζ ) [25]. Note that, with γk  1, 
the pdf tends to be normal and, by γk → 0, it becomes uniform. 
 

difference becomes noisy and is estimated as ˆ
kΘ  with the probability density (19) or (44). 

We thus have an estimate with the instantaneous error εk = kΘ  – ˆ
kΘ . Figure 2a illustrates the 

estimate errors for the case of γk = 1, in which we recognize the mean error (bias) and the 
mean square error (MSE), respectively, 

 ˆ ,k k k= Θ − Θε  (56) 

 2 2 2ˆ ˆ2 . k k k k k= Θ − Θ Θ + Θε  (57) 

When two neighboring values, ˆ
kΘ  and 1

ˆ
k+Θ , are unequal then the differential phase 

diversity ˆ
kΨ  occurs (Fig. 2b). If 〈 ˆ

kΨ 〉 = 0, then the estimates ˆ
kΘ  are mutually unbiased. 

Otherwise, 〈 ˆ
kΨ 〉 causes a bias in the multiple DPM that may be associated with the sensor 

movement (Doppler effect). 
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Fig. 3. Mean errors calculated for equal SNRs by (19) rigorously (bold) with cn (21) and 
approximately (dashed) by (44) with �n0 (48)[25]. 

5.1 Mean error 
The mean error (bias) in the estimate can be evaluated if we test the rigorous and 
approximate distributions by (56). That gives us 
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where An is the amplitude of the Fourier series component. One must let An = cn(γ2k–1, γ2k) as 
specified with (21) if the bias is calculated via the Tsvetnov/Pawula pdf (19). If the von 
Mises/Tikhonov-based approximating pdf (44) is used, then substitute An with �n0(αk) 
specified with (48). Note that in each of these cases, the length N of the series is practically 
limited by the doubled maximum SNR in the pulses. Figure 3 exhibits 〈εk〉 calculated 
rigorously, by cn, and approximately, by �n0, for equal SNRs kγ . Here, triangle points 
represent simulation. It is seen that the approximation is accurate in a whole range of angles 
and SNRs. 

5.2 Mean square error 
Employing (57) and reasoning along similar lines, one can find the MSE in the estimate in 
the form of 
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Fig. 4. Root MSEs calculated with equal SNRs. No visible error is observed between the 
rigorous estimate, by cn, and approximate estimate, by �n0. The asymptotic behavior (61) is 
dashed [25]. 
It may also be calculated approximately in two important special cases: 
• 0kγ <  dB, then 
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• If 13kγ >  dB, then 

 2 1 .k
kγ

≅ε  (61) 

Figure 4 sketches the root MSE (RMSE) calculated rigorously, by cn, and approximately, by 
�n0, for equal SNRs, kγ . One can observe that there is no visible difference between two 
curves and thus the von Mises/Tikhonov approximation is highly accurate. Furthermore, by 
large SNR 13kγ >  dB, both curves converge to the asymptotic line given by (61). 

5.3 Error variance and Cramér-Rao lower bound 
A measure of noise in the estimate is the variance calculated for a single DPM by 

 2 2 2ˆ ˆ .k k kσΘ = 〈Θ 〉 − 〈Θ 〉  (62) 
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With multiple DPM, the variance is often substituted with the Cramér-Rao lower bound 
(CRLB) having approximate, although typically simple representations. Supposing that the 
measurement vector x is formed with N readings as x = [x0 x1 . . . xN–1]T

 with the uncorrelated 
phase difference components xk having equal SNRs, αk = α, and actual phase difference Θ , 
the likelihood function can be written as 
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Accordingly, the CRLB calculates 
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N causes a substantial decrease in the estimate variance. It can also be shown that, for single 
DPM, the CRLB reduces to 
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where x0 may be assumed to be either 〈Θ〉 or Θ0. 
Figure 5 illustrates this analysis. We first notice that the von Mises/Tikhonov approximation 
does not produce a visible error, like in Fig. 4. By (65) and x0 = Θ0, The CRLB holds true for all 
angles and traces below the asymptotic line (61) owing to the function (45) (see the case of  
Θk = 0º). With x0 = 〈Θ〉, (65) produces more realistic values if SNRs > 0 dB and too large values 
with SNRs < 0 dB that may not be appropriate in applications (see the case of Θk = 130º). 

6. Error probability for the estimate to exceed a threshold 

The error probability PE of passive remote SAW sensing is the conditional probability  
P(ζ ≤ | kΘ  – ˆ

kΘ γ2k–1, γ2k) for the error in the estimate of the phase difference between  
two pulses | kΘ  – ˆ

kΘ | to exceed a threshold ζ. The PE is represented by the shadowed area 
in Fig. 2c. Its quantity does not depend on kΘ  and can be approximately estimated by 
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where x0 may be assumed to be either 〈Θ〉 or Θ0. 
Figure 5 illustrates this analysis. We first notice that the von Mises/Tikhonov approximation 
does not produce a visible error, like in Fig. 4. By (65) and x0 = Θ0, The CRLB holds true for all 
angles and traces below the asymptotic line (61) owing to the function (45) (see the case of  
Θk = 0º). With x0 = 〈Θ〉, (65) produces more realistic values if SNRs > 0 dB and too large values 
with SNRs < 0 dB that may not be appropriate in applications (see the case of Θk = 130º). 

6. Error probability for the estimate to exceed a threshold 

The error probability PE of passive remote SAW sensing is the conditional probability  
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kΘ γ2k–1, γ2k) for the error in the estimate of the phase difference between  
two pulses | kΘ  – ˆ

kΘ | to exceed a threshold ζ. The PE is represented by the shadowed area 
in Fig. 2c. Its quantity does not depend on kΘ  and can be approximately estimated by 
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Fig. 5. Variance estimate with single DPM for two angles Θ = 0º and Θ = 130º: rigorous 
(bold), asymptotic (dotted), and CRLBs (dashed) [24]. 

where An = cn(γ2k–1, γ2k) is specified with (21), if the bias is calculated via the 
Tsvetnov/Pawula pdf (19), and An must be substituted with n0(αk), if the von 
Mises/Tikhonov-based approximating pdf (44) is used. 
The estimate of PE is akin to that in the calculus of the conditional symbol error (SER) for the 
differentially coherent detection in digital communication channels with M-ary phase 
difference shift keying (MPDSK).We exploit it below to find approximate solutions for 
remote SAW sensing. 

6.1 Approximate estimates for equal SNRs 
Since PE(ζ) is kΘ  invariant, one can set kΘ  = 0 and go to the symmetric pdf p(Θ| kγ ). The 
error probability can thus be calculated for a threshold ζ to range from 0 to π as [11] 
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A similar formula employed in [18] is known as the conditional SER, 
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where M is an integer but may be arbitrary in a common case. By M = π/ζ, (71) becomes (70) 
and we notice that (71) was performed in [18] in the integral form that, by symmetry of the 
integrand, simplifies to (70). 
Alternatively, one can substitute (44) into (69) and arrive at the familiar von 
Mises/Tikhonov approximation 
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By employing the Fourier series analysis, one can also transform (72) to the com- 
putationally more preferable form of 
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Observing the above-given results concerning the error probability, several special cases can 
be distinguished. 

6.1.1 Large and equal SNRs 
It has been shown in [11] that large SNRs allow for the approximation of (69) by 

 ( )( | 1) 2 ,E k kP Qζ γ ζ γ≅  (74) 

where Q(x) = 1
2  erfc 

2
( )x  is the Gauss Q-function and erfc(x) is the complimentary error 

function. Several other approximate solutions found by Fleck and Trabka, Arthurs and 
Dym, Bussgang and Leiter, and Salz and Stein for π/ζ > 2 where reported in [18]. These 
solutions are, respectively, 
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where ( )( , ) 1 cos .k kX ζ γ γ ζ= − In turn, (44) becomes normal (50) with large SNRs, and one 
more approximation can be proposed for this case, namely 

 ( ) ( )( | 1) 2 2 .E k k kP Q Qζ γ ζ γ π γ≅ −  (79) 

It has been shown in [14] that, among all other known approximations, the von 
Mises/Tikhonov-based one (72) is most accurate. 
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6.1.2 Low and equal SNRs 
The case of SNR ≅  0 dB allows for an asymptotic form of (70), by letting ex ≅  1–x and then 
integrating; that is, 
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It turns out, however, that the inaccuracy of (80) is larger than that produced by (73), if we 
set N = 2. The latter approximation is given by 
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6.1.3 Very low and equal SNRs 
Let us finally consider the case of 1kγ . With such values of kγ , (80) simplifies to 
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and, because 2
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Again, we notice that (80) is not a rival here, being still lesser accurate, and, as a matter of 
fact, we note that only with SNR < –20 dB the approximate functions (83)-(85) trace along 
the same trajectory. 
Figure 6 illustrates the rigorous, by (70), and approximate, by (72), calculation of the error 
probability for equal SNRs and different values of the threshold. A splendid property of the 
von Misis/Tikhonov-based approximations is indicated instantly: the error is negligible in 
the whole range of angles with arbitrary values of SNRs. 

7. Phase difference drift rate 

A measure D of the drift rate of the phase difference Θk in the received RF pulse- burst has 
three critical applications: 1) It represents the drift rate error when the burst is used to 
increase the SNR in the received signal [7]; 2) When the SAW sensor is intended to measure 
a physical quantity, then D characterizes speed of change of this quantity; and 3) If the SAW 
reader system measures velocity of a moving object, then D gives a measure of acceleration. 
In applications, of interest are the mean value 〈D〉 and variance 2

Dσ  of the drift rate. 
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Fig. 6. Error probability for equal SNRs: rigorous (bold), by (70), and approximated by von 
Mises/Tikhonov's distribution (dashed), by (72) [25]. 

7.1 Mean drift rate 
The mean drift rate 〈D〉 can be evaluated employing both (51) and the mean value 〈Ψk〉 given 
in [11] as in the following, 
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where a reasonable series length is limited with N ≥ 2 max 1,2γ [3]. The estimate of 〈D〉 can 
be found by averaging ˆ

kΨ  at the coherent receiver as 
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Example 1: Burst length vs. the drift rate [25]. Consider a passive SAW sensor of 
temperature [10] operating at the frequency f0 = 2.45 GHz with the temperature sensitivities 
of the delay time difference St = 0.017 ns/K and phase difference Sp = 2πf0St = 0.262 rad/K. 
Suppose that the temperature rate at the sensor substrate is 1 K per 10 sec; that is  
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Fig. 7. The mean drift rate 〈D〉 for Ψ  = 5.55 × 10–3 rad: actual, by (88); Gaussian 
approximation; and simulation with Gaussian distribution, using (89) [25]. 

 
γ |Ψ̄|, rad

0.1π 0.3π 0.5π 0.7π 0.8π 0.9π
dB > 4 > 5 > 7 > 11 > 13 > 21  

Table 1. Allowed γ  for Accurate Estimation of 〈D〉 with Different Ψ  
 

Rt = 10–10
 K/ns. The phase difference mean drift rate is thus 〈D〉 = SpRt = 2.62×10–11

 rad/ns. 
The sensor is interrogated with the pulse-burst of K pulses and period T. During the burst 
length L = KT, temperature is changed at ΔT = RtL K and the phase difference at ΔΘ = 〈D〉L 
rad. For the allowed error of ε = 0.1º in the temperature range of Tr = 300º, the mean phase 
error is εp = πε/Tr = 1.047 × 10–3 rad. By ΔΘ = εp, the pulse-burst length is thus limited with 

9 0.04sec.10
rDL π −

〈 〉Τ≤ =×ε  
Example 2: Effect of the SNR on the mean drift rate [25]. Figure 7 shows effect of the SNR, 
by its equal values in each of the pulses, on 〈D〉 for Ψ  = 5.55 × 10–3 rad. Actual values are 
calculated by (88) for γ ≤ 20 and by (55) when γ > 20. Supposing that Ψ the Gaussian pdf (55) 
over all values of γ, we arrive at an approximation (dashed). For the latter case, the process 
was simulated and 〈D〉 calculated numerically (circles), by (89). As can be seen, the 
approximation errors practically vanish when γ exceeds 4 dB. Otherwise, bias occurs in the 
estimate. Table 1 gives the relevant values for Ψ  ranging from 0.1π to 0.9π. A simple 
measure of accuracy used here is when the exact and approximate values become visually 
indistinguishable. 
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Fig. 8. The standard deviation 2

Dσ  for different Ψ : actual (bold), by (90); Gaussian 
approximation (dashed) for Ψ  = 0.032 rad; and simulation with Gaussian distribution, 
using (91). 
 

γ |Ψ̄|, rad
0.1π 0.3π 0.5π 0.7π 0.8π 0.9π

dB > 8 > 9 > 10 > 13 > 18 > 23  
Table 2. Allowed γ for Accurate Evaluation of 2

Dσ  with Different Ψ  

7.2 Drift rate variance 
The phase difference drift rate variance can be represented, using (88), via the mean square 
value found in [11] to be [26] 

 

2
2 2

2

2
21 2

2 2
0 1 0 21

( ) ( )1 ( 1)4 cos
3 ( )

 
( )

k
D

nN
n n

k
n

D
T

I I n D
I IT n

σ

α απ
α α=

Ψ
= − 〈 〉

⎡ ⎤−
= + Ψ − 〈 〉⎢ ⎥

⎢ ⎥⎣ ⎦
∑

 (90) 

and its estimate obtained by averaging as 
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Figure 8 sketches the standard deviation 2
Dσ  evaluated by (90) and (91) for different 

values of Ψ . Along, we show the estimates (dashed) and simulated values calculated by 
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(91) for Ψ  = 0.032 rad assuming Gaussian approximation (55). For the comparison with the 
mean drift rate (Table 1), Table 2 gives minimum values of γ, for several Ψ , allowing for 
accurate evaluation of 2

Dσ . An important inference follows instantly. For the sake of 
minimum errors, the SNR in the pulses must be obtained larger than 23 dB for Ψ  ranging 
from –0.9π to 0.9π. We notice that similar values were found in [3] and [14] for the phase 
difference Θ. An analysis shows that the CRLB cannot be found for multiple DPM in simple 
functions and the best candidate for the estimate of 2

Dσ  still remains (91). 

8. Error probability for the drift rate to exceed a threshold 

In applications, the phase difference drift rate is often required to range below some allowed 
value. The relevant error probability PE can be characterized by the probability for the DPD 
to exceed a threshold ζ. Because the pdf of the modulo 2π angular measure is 2π-periodical, 
the PE is commonly ascertained by setting 0kΨ = . Using (51), we thus have 

                                               1 2( | , )E EP P ζ γ γ  

                                                    1 22 ( | , )dk kp
π

ζ

γ γ= Ψ Ψ∫                                                                  (92) 

                         ( )2 2
0 1 1 2 2

0 1 0 2

1 2 cos d .
( ) ( )

 I z z
I I

π

ζ

α α α α
π α α

= + +∫  (93) 

Expanding the integrand in (93) to the Fourier series 
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Fig. 9. Error probability of the drift rate to exceed a limit ζ with equal SNRs in the pulses: 
rigorous (dashed), by (37), and approximate (bold), by (95). 

Figure 9 illustrates the error probability calculated rigorously (dashed), by (37) and (92), and 
approximately (bold), by (95) for equal SNRs in the pulses. One infers that the 
approximation error is negligibly small in the whole range of angular measures. 

9. Conclusions 
This Chapter gives a statistical analysis of errors in passive remote wireless surface acoustic 
wave sensing. By using the relations discussed, one can design the sensor reader system in 
an optimal way from the standpoint of maximum accuracy in measurement and minimum 
energy in the interrogating pulse. We were concerned with both rigorous and approximate 
estimates of the phase difference errors. It was shown that the rigorous pdfs cannot be 
represented in closed forms. In turn, the von Mises/Tikhonov-based densities are simple 
and reasonably accurate that makes them very attractive for engineering applications. 
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