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Preface 

The human heart has a long evolutionary history. Recent developments in genetic
analysis suggest that the roots of some heart diseases stem from the hearts of our 
invertebrate and vertebrate ancestors. Whether squids, butterflies, grasshoppers or 
tarantulas possess predispositions for heart disease and death from heart failure in 
their natural environments is unknown. However, at least some of the events 
occurring during embryonic organogenesis of the human heart appear to reflect the 
evolutionary, and phylogenetic structural adaptations that may increase susceptibility
to the cardiac diseases found in humans. The basic structure and function of the 
vertebrate heart as a blood pump, derives from cardiac myocytes which are electrically
coupled by gap junctions. Tight coupling and compact arrangement of the cardiac 
myocytes are characteristic of the human heart. However, a looser coupling and
architecture was observed in the hearts of invertebrate and lower vertebrate animals. 
The loose arrangement characteristic of the human ancestral heart is adapted to a heart
that functions to pump hemolymph to the tissues by a, more or less, peristaltic
movement similar to that seen in the gastrointestinal tract. Such peristaltic pumping is 
adequate for animals possessing hearts which consist of a primitive conduit, for
insuring continuous flow of nutrients to tissues under relatively constant conditions
and demands. On the other hand, the hearts of mammals are designed to maintain a 
continuous flow of nutrients to tissues under more variable conditions than those of
invertebrates and lower vertebrates, thereby requiring responsiveness to complex 
stimuli such as those associated with changes in metabolic, emotional, immunological
and many other physiological functions.

Embryonic development of the gap junctions which give rise to tight electrical
coupling in the human heart appear to partly depend on the production of a proline
rich repeat unit structure of a protein named Xin, derived from the Chinese word for 
heart, center or core. Xin proteins are known to bind to various actin, cadherin and
catenin proteins which organize into zona adherens of gap junctions. When the Xin
proteins, together with others involved in the gap junction morphology, are deficient 
in mutant zebrafish, lethal cardiomyopathies and heart failures occur. When the Xin 
proteins are deficient in knockout mice, there is an absence of the compactness and 
tight electrical coupling characteristic of the mammalian heart, resulting in 
morphologies more or less like fish hearts, which results in cardiomyopathies and 
heart failures similar to those observed in humans with lethal neonatal 
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cardiomyopathies. Some neonatal cardiomyopathies appear to result from genetic 
defects in proteins associated with structuring the gap junctions for electrical coupling 
between neonatal cardiac myocytes. In addition to the aforementioned genetic 
abnormalities of gap junctions, epigenetic mechanisms which affect the electrical 
coupling, and signaling mechanisms of cardiac myocytes have been implicated in 
adaptive and maladaptive hypertrophy, remodeling and various morphological 
abnormalities of the heart. Such epigenetic modifications may explain congenital and 
acquired susceptibilities to cardiomyopathies and heart failures throughout a person’s 
life.  

Cardiac signaling has evolved based on endogenous myogenic pacemaker mechanisms 
for excitation and recovery by phases of depolarization and repolarization, and on 
exogenous visceral motor (autonomic) nerve directed mechanisms utilizing 
neurotransmitter release to regulate the phases of depolarization and repolarization. 
Invertebrate and lower vertebrate hearts, with loose electrical coupling by gap 
junctions, depend on the development of a pacemaker with higher rates of 
depolarization in the receiving areas to drive, via loose connectivity and electrical 
coupling, the pumping areas. These primitive hearts have thin layers of cardiac 
myocytes, not well organized into chambers. It seems that heart chambers with 
distinct layers of endothelium, and myocardium have evolved in parallel with more 
complex structures of Xin and other proteins organized as intercalated discs. These 
findings suggest that electrical coupling of cardiac myocytes has a large impact on 
determining heart morphology and, therefore, physiology.  

In this volume, Advances in Electrocardiograms - Methods and Analysis, the reader will 
revisit some classical concepts and will be introduced to a number of novel, innovative 
methods for recording and analyzing the human electrocardiogram. Being mindful of 
the important role of cardiac electricity in determining heart structure and function 
will, no doubt, lead the reader to a greater appreciation of the electrocardiogram in 
health and disease.  

 
Richard M. Millis, PhD 

Editor 
Dept. of Physiology & Biophysics 

The Howard University College of Medicine 
USA 
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Cardiac Anatomy 
Augusta Pelosi1 and Jack Rubinstein2 

1Michigan State University,  
2University of Cincinnati 

USA 

1. Introduction 
The understanding of development and formation of normal anatomic structures is 
fundamental to comprehend electrocardiograms, conduction patterns and abnormalities. 
The aim of this chapter is to provide an overview of the cardiac chambers, the valves, the 
cardiac vasculature and the relation with the electrical conduction. The chapter will also 
review embryologic features of the cardiac structures. 

2. Embryology 
The heart develops in several sequential steps. The order and the completion of the entire 
process during fetal life are fundamental for having a post-birth functional and normally 
structured heart and conduction system. This section will review the basic steps of this 
process through the development of the cardiac chambers, the septa formation, the 
development of the major vessels, and the circulation before and after birth. 
The heart is the first internal organ to form and become functional in the vertebrate 
development, (Srivastava, 2000) starting the first beats in humans by day 22 and the 
circulation by day 27-29. (Kelly, 2002, Pensky, 1992) Mesodermal cells migrate to an anterior 
and lateral position where they form bilateral primary heart fields (DeHaan 1963) which 
then coalesce to form two lateral endocardial tubes. (Harvey, 1999; Covin, 1998) The tubes 
fuse and merge into one endocardial tube surrounded by splanchnopleuric-derived 
myocardium. (Covin 1998) The cephalic and lateral folding of the embryo push the 
endocardial tube from a lateral position into the ventral midline. (Sherman, 2001) During the 
first month of gestation, the primitive, straight cardiac tube starts developing defined spaces 
with constrictions in series which will become the future cardiac structures: the sinu-atrium 
(most caudal), the primitive ventricle, the bulbus cordis, and the truncus arteriosus (most 
cephalad). (Abdulla, 2004; Angelini,1995) The primitive ventricle will eventually become the 
left ventricle whereas the right ventricle will develop from the proximal portion of the 
bulbus cordis. The distal portion of the right ventricle will form the outflow of both ventricles 
and the truncus arteriosus will form the root of the aorta and pulmonary arteries. (Abdulla, 
2004) The linear heart tube becomes polarized with a posterior inflow pole (venous pole) 
and an anterior outflow pole (arterial). The truncus arteriosus is connected to the aortic sac 
and through the aortic arches to the dorsal aorta. (Pensky, 1992) Conversely, the sinuatrium, 
composted of the primitive atrium and the sinus venosus, receives the vitelline veins (from 
the yolk sac, also draining the gastrointestinal system and the portal circulation), the 
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common cardinal veins (draining the anterior cardinal vein coming from the anterior part of 
the embryo), the posterior cardinal vein (from the posterior part of the embryo), and the 
umbilical veins (from the primitive placenta).  
Between day 22 and 28, the heart begins to fold and loop, as the epicardial cells start 
covering the outside layer of the heart tube. (Sherman, 2001)  The heart tube loops because 
of intrinsic properties of the myocardium which encode for the initiation of the looping 
process, rather than due to asynchronous growth compared to the outside structures. 
(VanMierop, 1979) This process occurs prior to the formation of the chambers within the 
heart tube. By day 28, the atria move in a position higher than the ventricles, with the 
outside marks which refer to the sinus venous, common atrial chamber, atrioventricular sulcus, 
ventricular chamber, and conotruncus (outflow tracts). (Sherman, 2001)  The bulboventricular 
sulcus, corresponding to the inner bulboventricular fold, starts to become visible from the 
outside. The heart assumes a U-shape where the bulbus cordis is located to the right and the 
primitive ventricle forms the left arm. The paired sinus venosus gives rise to the sinus horns. 
The two sinus horns are paired structures, which then fuse to form a transverse sinus venosus. 
(Abdulla, 2004) The entrance of the sinus venosus shifts rightward to enter into the right 
atrium. The right AV canal and right ventricle expand and align so that atria and ventricles are 
over each other, determining the alignment of the simultaneous left atrium and ventricle, and 
the proper alignment of the future aorta. (Sherman, 2001) The common atrioventricular 
junction changes into the atrioventricular canal, connecting the left side of the common atrium 
to the primitive ventricle. (Pensky, 1992) The inner surface is smooth except for the 
trabeculations, present at the level of the bulboventricular foramen. As the atrium grows, it 
pushes the bulbus cordis in the space between the two atria. (VanMierop, 1979) The symmetry 
in the development is lost by weeks 4-8 in the cardiac chambers and the aortic arches. (Kirby 
2002) The cardiac neural crest, originating from the neural tube in the region of the three 
somites, starts migrating through the aortic arches 3, 4, and 6 into the developing outflow tract 
(week 5 and 6). These cells are responsible for septation of the outflow tract and ventricles, the 
anterior parasympathetic plexus, (Sherman, 2001) the leaflets of the atrioventricular valves, 
and the cardiac conduction system. (Hildreth, 2008; Poelman,1999)  

2.1 Cardiac chambers and septation 
Atria. The auricles of the right and left atria originate from the primitive atria, while the 
smooth sections come from the tissue originating from the venous blood vessels (sinus 
venosus on the right and pulmonary veins on the left). At day 35 an indentation provoked by 
the bulbus cordis and truncus arteriosus begins to create, on the inner surface of the common 
atrium, a wedge of tissue called septum primum, which extends into the common atrium 
separating it into a left and right compartment. (Steding, 1994) The septum primum allows a 
concave-shaped edge to form permitting shunting of blood from right to left. Apoptosis of 
cells in the superior edge of the septum primum forms a new foramen called the ostium 
secundum. (VanMierop, 1979) The endocardial cushions fuse with the ostium primum 
obliterating it. The septum secundum forms to the right of the septum primum. The septum is 
incomplete with a foramen ovale near the floor of the right atrium allowing passage of blood 
from right to left through the foramen ovale. (Abdulla, 2004; Angelini, 1995) Both septum 
primum and secundum fuse with the septum intermedium of the AV cushion.  
Ventricles. The primary muscular ventricular septum begins to grow during the fifth week 
from the apex toward the atrioventricular valves. The initial growth is due to the growth of 
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the two ventricles in the opposite direction. (Abdulla, 2004) The trabeculations from the inlet 
regions cause the formation of a septum which grows with a mildly different angle. This 
septum will meet the primary septum and provoke the primary septum to protrude into the 
right ventricular cavity forming the trabeculae septomarginalis. The high portion of the 
interventricular septum has a concave upper ridge which forms the interventricular foramen. 
The foramen closes at the end of week 7 by the posterior endocardial tissue, and the right 
and left bulbar ridges. (Abdulla, 2004) The majoriy of the muscular part of the septum is 
formed by the fusion of these septa. The outflow tract septum has grown down on the upper 
ridge of the muscular ventricular septum and onto the inferior endocardial cushion, 
separating the ventricular chambers.  

2.2 Great vessels and arterial and venous development 
Outlow tract septation. The mechanism of outflow septation is somewhat controversial. The 
proximal portion of the outflow tract septum septates by the fusion of the endocardial 
cushions and joints the atrioventricular endocardial cushion tissue and the ventricular 
septum. (Waldo 1998) The distal portion septates by intervention of the cardiac neural crest. 
(Kirby 2002). The septation of the outflow (conotruncus) is coordinated with the septation of 
the ventricles and atria. The septa fuse with the atrioventricular (AV) cushions dividing the 
left and right AV canals. Several theories for this process have been proposed. In general, 
three embryologic areas can be considered: the conus, the truncus and the aortopulmonary. 
(Abdulla, 2004) Each develops a ridge which is responsible for the formation of the septum 
between the fourth (future aortic arch) and the sixth (future pulmonary artery) arches. The 
truncus ridges form the septum between the ascending aorta and the main pulmonary 
artery, whereas the conus ridge forms the septation between the right and left outflow tract. 
(Abdulla, 2004) 
Pulmonary arteries and veins. The main pulmonary artery develops from the trunctus 
arteriosus. The distal main and the right pulmonary artery develop from the ventral sixth aortic 
arch artery. The distal right and left have a different origin, deriving from the post branchial 
arteries. The ductus arteriosus develops from the left sixth aortic arch artery. The pulmonary 
venous system originates at the level of the left atrium, from a primitive vein sprout. These 
vessels anastomose with the veins extending from the bronchial bud. (Abdulla, 2004) 
Systemic veins. The sinus venosus initially communicates with the common atrium, by week 
7 the axis moves toward the right creating a connection between the right atrium and the 
sinus venosus. Around weeks 7-8 several changes occur to the venous system. The cardinal 
system is modified because the proximal left cardinal vein anastomoses with the right 
anterior cardinal vein via the left brachiocephalic vein creating the superior vena cava. The 
intermediate portion of the left cardinal vein degenerates and the portion close to the heart 
becomes the coronary sinus. (James, 2001) The left posterior cardinal vein degenerates, the 
right posterior cardinal vein becomes the azygous vein, and the left sinus horn contributes 
to the coronary sinus. The vitelline veins also undergo several changes: the right vitelline 
vein becomes the inferior vena cava. The course of the umbilical veins (coming from the 
placenta) is also modified by the degeneration of the left umbilical vein while the right 
umbilical vein connects to the right vitelline vein through the ductus venosus (derived from 
the vitelline veins). The veins draining into the left sinus venosus (left cardianal, umbilical, 
and vitelline) degenerate and the left sinus venosus becomes the coronary sinus, draining only 
the venous circulation of the heart. (Abdulla, 2004) 
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common cardinal veins (draining the anterior cardinal vein coming from the anterior part of 
the embryo), the posterior cardinal vein (from the posterior part of the embryo), and the 
umbilical veins (from the primitive placenta).  
Between day 22 and 28, the heart begins to fold and loop, as the epicardial cells start 
covering the outside layer of the heart tube. (Sherman, 2001)  The heart tube loops because 
of intrinsic properties of the myocardium which encode for the initiation of the looping 
process, rather than due to asynchronous growth compared to the outside structures. 
(VanMierop, 1979) This process occurs prior to the formation of the chambers within the 
heart tube. By day 28, the atria move in a position higher than the ventricles, with the 
outside marks which refer to the sinus venous, common atrial chamber, atrioventricular sulcus, 
ventricular chamber, and conotruncus (outflow tracts). (Sherman, 2001)  The bulboventricular 
sulcus, corresponding to the inner bulboventricular fold, starts to become visible from the 
outside. The heart assumes a U-shape where the bulbus cordis is located to the right and the 
primitive ventricle forms the left arm. The paired sinus venosus gives rise to the sinus horns. 
The two sinus horns are paired structures, which then fuse to form a transverse sinus venosus. 
(Abdulla, 2004) The entrance of the sinus venosus shifts rightward to enter into the right 
atrium. The right AV canal and right ventricle expand and align so that atria and ventricles are 
over each other, determining the alignment of the simultaneous left atrium and ventricle, and 
the proper alignment of the future aorta. (Sherman, 2001) The common atrioventricular 
junction changes into the atrioventricular canal, connecting the left side of the common atrium 
to the primitive ventricle. (Pensky, 1992) The inner surface is smooth except for the 
trabeculations, present at the level of the bulboventricular foramen. As the atrium grows, it 
pushes the bulbus cordis in the space between the two atria. (VanMierop, 1979) The symmetry 
in the development is lost by weeks 4-8 in the cardiac chambers and the aortic arches. (Kirby 
2002) The cardiac neural crest, originating from the neural tube in the region of the three 
somites, starts migrating through the aortic arches 3, 4, and 6 into the developing outflow tract 
(week 5 and 6). These cells are responsible for septation of the outflow tract and ventricles, the 
anterior parasympathetic plexus, (Sherman, 2001) the leaflets of the atrioventricular valves, 
and the cardiac conduction system. (Hildreth, 2008; Poelman,1999)  

2.1 Cardiac chambers and septation 
Atria. The auricles of the right and left atria originate from the primitive atria, while the 
smooth sections come from the tissue originating from the venous blood vessels (sinus 
venosus on the right and pulmonary veins on the left). At day 35 an indentation provoked by 
the bulbus cordis and truncus arteriosus begins to create, on the inner surface of the common 
atrium, a wedge of tissue called septum primum, which extends into the common atrium 
separating it into a left and right compartment. (Steding, 1994) The septum primum allows a 
concave-shaped edge to form permitting shunting of blood from right to left. Apoptosis of 
cells in the superior edge of the septum primum forms a new foramen called the ostium 
secundum. (VanMierop, 1979) The endocardial cushions fuse with the ostium primum 
obliterating it. The septum secundum forms to the right of the septum primum. The septum is 
incomplete with a foramen ovale near the floor of the right atrium allowing passage of blood 
from right to left through the foramen ovale. (Abdulla, 2004; Angelini, 1995) Both septum 
primum and secundum fuse with the septum intermedium of the AV cushion.  
Ventricles. The primary muscular ventricular septum begins to grow during the fifth week 
from the apex toward the atrioventricular valves. The initial growth is due to the growth of 
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the two ventricles in the opposite direction. (Abdulla, 2004) The trabeculations from the inlet 
regions cause the formation of a septum which grows with a mildly different angle. This 
septum will meet the primary septum and provoke the primary septum to protrude into the 
right ventricular cavity forming the trabeculae septomarginalis. The high portion of the 
interventricular septum has a concave upper ridge which forms the interventricular foramen. 
The foramen closes at the end of week 7 by the posterior endocardial tissue, and the right 
and left bulbar ridges. (Abdulla, 2004) The majoriy of the muscular part of the septum is 
formed by the fusion of these septa. The outflow tract septum has grown down on the upper 
ridge of the muscular ventricular septum and onto the inferior endocardial cushion, 
separating the ventricular chambers.  

2.2 Great vessels and arterial and venous development 
Outlow tract septation. The mechanism of outflow septation is somewhat controversial. The 
proximal portion of the outflow tract septum septates by the fusion of the endocardial 
cushions and joints the atrioventricular endocardial cushion tissue and the ventricular 
septum. (Waldo 1998) The distal portion septates by intervention of the cardiac neural crest. 
(Kirby 2002). The septation of the outflow (conotruncus) is coordinated with the septation of 
the ventricles and atria. The septa fuse with the atrioventricular (AV) cushions dividing the 
left and right AV canals. Several theories for this process have been proposed. In general, 
three embryologic areas can be considered: the conus, the truncus and the aortopulmonary. 
(Abdulla, 2004) Each develops a ridge which is responsible for the formation of the septum 
between the fourth (future aortic arch) and the sixth (future pulmonary artery) arches. The 
truncus ridges form the septum between the ascending aorta and the main pulmonary 
artery, whereas the conus ridge forms the septation between the right and left outflow tract. 
(Abdulla, 2004) 
Pulmonary arteries and veins. The main pulmonary artery develops from the trunctus 
arteriosus. The distal main and the right pulmonary artery develop from the ventral sixth aortic 
arch artery. The distal right and left have a different origin, deriving from the post branchial 
arteries. The ductus arteriosus develops from the left sixth aortic arch artery. The pulmonary 
venous system originates at the level of the left atrium, from a primitive vein sprout. These 
vessels anastomose with the veins extending from the bronchial bud. (Abdulla, 2004) 
Systemic veins. The sinus venosus initially communicates with the common atrium, by week 
7 the axis moves toward the right creating a connection between the right atrium and the 
sinus venosus. Around weeks 7-8 several changes occur to the venous system. The cardinal 
system is modified because the proximal left cardinal vein anastomoses with the right 
anterior cardinal vein via the left brachiocephalic vein creating the superior vena cava. The 
intermediate portion of the left cardinal vein degenerates and the portion close to the heart 
becomes the coronary sinus. (James, 2001) The left posterior cardinal vein degenerates, the 
right posterior cardinal vein becomes the azygous vein, and the left sinus horn contributes 
to the coronary sinus. The vitelline veins also undergo several changes: the right vitelline 
vein becomes the inferior vena cava. The course of the umbilical veins (coming from the 
placenta) is also modified by the degeneration of the left umbilical vein while the right 
umbilical vein connects to the right vitelline vein through the ductus venosus (derived from 
the vitelline veins). The veins draining into the left sinus venosus (left cardianal, umbilical, 
and vitelline) degenerate and the left sinus venosus becomes the coronary sinus, draining only 
the venous circulation of the heart. (Abdulla, 2004) 
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Aortic arches. The dorsal and ventral aorta are connected by six paired aortic arches. The 
first pair of aortic arches contributes to form the external carotid arteries. The second pairs 
regresses except a small portion forming the hyoid and stapedial arteries. The third pair 
forms the common and proximal part of the internal carotid arteries (the distal part is 
formed by the dorsal aorta). The left fourth arch forms the aortic arch  maintaining 
the connection between the ventral to the dorsal aorta. The right fourth constitutes part 
of the right subclavian. The fifth pair regresses. The sixth evolves into the main and 
right pulmonary artery, whereas the distal portion forms the ductus arteriosus. (Abdulla, 
2004) 
Coronary arteries. The proepicardial organ surrounds the myocardium as the heart starts 
looping, forming the epicardium. (Komiyama, 1996) These cells form the coronary 
vasculature. These cells originate from an independent population of splanchnopleuric 
mesoderm cells and migrate into the primary heart tube. The coronary arteries (smooth 
muscle, endothelial, and connective tissue) form prior to migration into the heart tube. 
(Harvey, 1999; Mikawa, 1996). 

2.3 Atrioventricular canal 
The atrioventricular valves form during the 5th to 8th weeks. (Larsen, 1997) By the end of 
the  5th week, parts of the ventricles are visible and the left ventricle supports most of the 
circumference of the AV canal. The endocardial cushion starts from the sides of the 
atrioventricular junction with a superior and inferior cushion. They move toward the center 
of the canal forming the septum intermedium and the right and left atrioventricular orifices. 
(Snell, 2008) The cushion is also responsible for completing the closure of the interatrial 
communication at the level of the septum primum. (Van Mierop, 1979) Migration of the AV 
canal to the right and the ventricular septum to the left serves to align each ventricle with its 
appropriate AV valve. The formation of the valves starts with an asynchronous growth of 
the atria in comparison to the atrioventricular junction. The sulcus invaginates into the 
ventricular cavity with the formation of a hanging flap which is covered by the atrial and 
the ventricular tissue. (Abdulla, 2004)   

2.4 Conduction system 
The primary myocardium originates the contracting and the conducting tissue. The origin of 
the sinus and atrioventricular (AV) node is not well known. The cells seem to originate at 
the original connection of the sinus venosus with the right and left superior cardinal veins. 
These small groups of cells follow the cardinal veins as they move to their final destination. 
The right cardinal vein becomes the superior vena cava and maintains its connection to the 
sinus (SA) node. The left cardinal vein becomes the superior left vena cava and it is 
transformed into the coronary sinus, leaving sometimes a small vessel (the vein of 
Marshall). In general, the conducting system is formed by the accumulation of conduction 
myocardial tissue around the bulboventricular foramen. The dorsal portion becomes the 
bundle of His, whereas the lower tracts form the left and right bundle branches. Portions of 
this specialized tissue (right atrioventricular ring and the retroaortic branch) form but then 
disappear during normal development. (Abdulla, 2004) 

2.5 Circulation 
The fetal circulation is in parallel and dependent on the placenta because the lungs are not 
functional. The circulation in the adult becomes in series. There are several differences 
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between the two systems. The oxygenated blood, through the umbilical veins, reaches the 
heart of the fetus and flows away once deoxygenated , through the umbilical arteries. Once 
entered the fetal body, the blood bypasses the liver  passing through the ductus venosus and 
enters the inferior vena cava to reach the right atrium. The position of the vena cava and the 
ligament of the inferior vena cava allow the blood to flow into the foramen ovale and into the 
left atrium. The foramen ovale appears like a valve formed by the foramen ovale and the 
ostium secundum. Part of the oxygenated blood in the right atrium mixes with the 
deoxygenated blood returning from the systemic circulation. From the left atrium, the blood 
follows the normal circulation and reaches the left ventricle, where it is pushed by the 
ventricular systole into the aorta. The venous return to the right atrium via superior vena 
cava follows the blood flow through the tricuspid valve into the pulmonary artery. Once the 
blood reaches the main pulmonary artery, it is diverted by the high pulmonary resistance 
into the ductus arteriosus at the level of the aortic isthmus. Only one-tenth of the right 
ventricular output reaches the lungs. The blood follows the descending aorta and returns to 
the placenta via the umbilical arteries. By the third month, the heart and major vessels are 
formed. However, the transition to the adult circulation occurs shortly after birth, when the 
umbilical cord is cut and the neonate takes the first breath. The lung expansion produces a 
drop in pulmonary resistance and increase in pressure inside the left atrium. Therefore, the 
pressure in the left atrium becomes mildly higher than the pressure on the right atrium, 
determining a closure of the valve flap associated with the foramen ovale, which transforms 
into a visible depression in the interatrial septum, called fossa ovalis. The increased 
concentration of prostaglandins, occurring with the parturition, results in the closure of the 
ductus arteriosus, which transforms into the ligamentum arteriosum. (Friedman, 1993) 
The dramatic changes occurring with birth determine rapid transition toward the adult 
circulation with complete separation of the left and right compartments. The heart is 
functionally and anatomically divided into left and right. Each side has two chambers: 
atrium and ventricle, one major artery per side (aorta to the left and pulmonary artery to the 
right), and a venous return system (venae cavae to the right and pulmonary veins to the 
left). The deoxygenated blood returns to the right atrium from the systemic circulation 
through the venae cavae, and flows into the right ventricle through the tricuspid valve; it is 
then pushed into the lungs through the pulmonary valve and artery. The blood, now 
oxygenated, returns to the left atrium via the pulmonary veins, goes into the left ventricle 
through the mitral valve, and it is pushed to the rest of the body via the aorta.   

3. Cardiac anatomy and thoracic cavity 
The thoracic cavity can be divided into several compartments by imaginary lines. The 
mediastinum is divided into superior and inferior mediastinum by the transverse thoracic 
plane, which extends  from the sternal angle  to the space between the thoracic vertebrae T4 
and T5. This line divides the thoracic cavity into superior and inferior mediastinum. The 
inferior mediastinum can be divided into an anterior, middle and posterior mediastinum. 
(Snell, 2008)  
The anterior mediastium is bounded by a line crossing the thorax from the trachea to the 
xiphoid, just anterior to the pericardium. The middle mediastinum is the central part and 
contains the heart and the pericardium. The posterior mediastinum is contained between 
the pericardium anteriorly and the anterior surfaces of the bodies of the thoracic vertebrae 
(T5-T12). (Snell, 2008) Superiorly the thorax narrows as it enters the neck (1st ribs, the 
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Aortic arches. The dorsal and ventral aorta are connected by six paired aortic arches. The 
first pair of aortic arches contributes to form the external carotid arteries. The second pairs 
regresses except a small portion forming the hyoid and stapedial arteries. The third pair 
forms the common and proximal part of the internal carotid arteries (the distal part is 
formed by the dorsal aorta). The left fourth arch forms the aortic arch  maintaining 
the connection between the ventral to the dorsal aorta. The right fourth constitutes part 
of the right subclavian. The fifth pair regresses. The sixth evolves into the main and 
right pulmonary artery, whereas the distal portion forms the ductus arteriosus. (Abdulla, 
2004) 
Coronary arteries. The proepicardial organ surrounds the myocardium as the heart starts 
looping, forming the epicardium. (Komiyama, 1996) These cells form the coronary 
vasculature. These cells originate from an independent population of splanchnopleuric 
mesoderm cells and migrate into the primary heart tube. The coronary arteries (smooth 
muscle, endothelial, and connective tissue) form prior to migration into the heart tube. 
(Harvey, 1999; Mikawa, 1996). 

2.3 Atrioventricular canal 
The atrioventricular valves form during the 5th to 8th weeks. (Larsen, 1997) By the end of 
the  5th week, parts of the ventricles are visible and the left ventricle supports most of the 
circumference of the AV canal. The endocardial cushion starts from the sides of the 
atrioventricular junction with a superior and inferior cushion. They move toward the center 
of the canal forming the septum intermedium and the right and left atrioventricular orifices. 
(Snell, 2008) The cushion is also responsible for completing the closure of the interatrial 
communication at the level of the septum primum. (Van Mierop, 1979) Migration of the AV 
canal to the right and the ventricular septum to the left serves to align each ventricle with its 
appropriate AV valve. The formation of the valves starts with an asynchronous growth of 
the atria in comparison to the atrioventricular junction. The sulcus invaginates into the 
ventricular cavity with the formation of a hanging flap which is covered by the atrial and 
the ventricular tissue. (Abdulla, 2004)   

2.4 Conduction system 
The primary myocardium originates the contracting and the conducting tissue. The origin of 
the sinus and atrioventricular (AV) node is not well known. The cells seem to originate at 
the original connection of the sinus venosus with the right and left superior cardinal veins. 
These small groups of cells follow the cardinal veins as they move to their final destination. 
The right cardinal vein becomes the superior vena cava and maintains its connection to the 
sinus (SA) node. The left cardinal vein becomes the superior left vena cava and it is 
transformed into the coronary sinus, leaving sometimes a small vessel (the vein of 
Marshall). In general, the conducting system is formed by the accumulation of conduction 
myocardial tissue around the bulboventricular foramen. The dorsal portion becomes the 
bundle of His, whereas the lower tracts form the left and right bundle branches. Portions of 
this specialized tissue (right atrioventricular ring and the retroaortic branch) form but then 
disappear during normal development. (Abdulla, 2004) 

2.5 Circulation 
The fetal circulation is in parallel and dependent on the placenta because the lungs are not 
functional. The circulation in the adult becomes in series. There are several differences 
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between the two systems. The oxygenated blood, through the umbilical veins, reaches the 
heart of the fetus and flows away once deoxygenated , through the umbilical arteries. Once 
entered the fetal body, the blood bypasses the liver  passing through the ductus venosus and 
enters the inferior vena cava to reach the right atrium. The position of the vena cava and the 
ligament of the inferior vena cava allow the blood to flow into the foramen ovale and into the 
left atrium. The foramen ovale appears like a valve formed by the foramen ovale and the 
ostium secundum. Part of the oxygenated blood in the right atrium mixes with the 
deoxygenated blood returning from the systemic circulation. From the left atrium, the blood 
follows the normal circulation and reaches the left ventricle, where it is pushed by the 
ventricular systole into the aorta. The venous return to the right atrium via superior vena 
cava follows the blood flow through the tricuspid valve into the pulmonary artery. Once the 
blood reaches the main pulmonary artery, it is diverted by the high pulmonary resistance 
into the ductus arteriosus at the level of the aortic isthmus. Only one-tenth of the right 
ventricular output reaches the lungs. The blood follows the descending aorta and returns to 
the placenta via the umbilical arteries. By the third month, the heart and major vessels are 
formed. However, the transition to the adult circulation occurs shortly after birth, when the 
umbilical cord is cut and the neonate takes the first breath. The lung expansion produces a 
drop in pulmonary resistance and increase in pressure inside the left atrium. Therefore, the 
pressure in the left atrium becomes mildly higher than the pressure on the right atrium, 
determining a closure of the valve flap associated with the foramen ovale, which transforms 
into a visible depression in the interatrial septum, called fossa ovalis. The increased 
concentration of prostaglandins, occurring with the parturition, results in the closure of the 
ductus arteriosus, which transforms into the ligamentum arteriosum. (Friedman, 1993) 
The dramatic changes occurring with birth determine rapid transition toward the adult 
circulation with complete separation of the left and right compartments. The heart is 
functionally and anatomically divided into left and right. Each side has two chambers: 
atrium and ventricle, one major artery per side (aorta to the left and pulmonary artery to the 
right), and a venous return system (venae cavae to the right and pulmonary veins to the 
left). The deoxygenated blood returns to the right atrium from the systemic circulation 
through the venae cavae, and flows into the right ventricle through the tricuspid valve; it is 
then pushed into the lungs through the pulmonary valve and artery. The blood, now 
oxygenated, returns to the left atrium via the pulmonary veins, goes into the left ventricle 
through the mitral valve, and it is pushed to the rest of the body via the aorta.   

3. Cardiac anatomy and thoracic cavity 
The thoracic cavity can be divided into several compartments by imaginary lines. The 
mediastinum is divided into superior and inferior mediastinum by the transverse thoracic 
plane, which extends  from the sternal angle  to the space between the thoracic vertebrae T4 
and T5. This line divides the thoracic cavity into superior and inferior mediastinum. The 
inferior mediastinum can be divided into an anterior, middle and posterior mediastinum. 
(Snell, 2008)  
The anterior mediastium is bounded by a line crossing the thorax from the trachea to the 
xiphoid, just anterior to the pericardium. The middle mediastinum is the central part and 
contains the heart and the pericardium. The posterior mediastinum is contained between 
the pericardium anteriorly and the anterior surfaces of the bodies of the thoracic vertebrae 
(T5-T12). (Snell, 2008) Superiorly the thorax narrows as it enters the neck (1st ribs, the 
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manubrium and the 1st thoracic vertebra), and inferiorly the anatomic separation with the 
abdomen is well defined by the diaphragm. Along the midline, the mediastinum is 
responsible for the separation into two equal cavities, the left and the right pulmonary 
cavities.  
The thoracic wall is formed of 12 ribs, the thoracic vertebrae, interventional discs, and the 
sternum. The ribs articulate with the thoracic vertebrae. The first 7 ribs are described as 
“true” because they articulate directly or indirectly with the sternum. The following ribs (8-
10) are referred as “false” because they connect indirectly to the sternum. Ribs 11 and 12 are 
referred as “floating” ribs because they do not connect to the sternum. A posterior 
depression to the rib accommodates the intercostal neurovascular bundles, located between 
the internal and innermost intercostals layers. The sternum, formed by sternebrae, is a flat 
bone composed of three parts: the manubrium, body, and the xiphoid process. The muscles 
of the thoracic cavity play a fundamental role in respiration and movement of the thoracic 
cavity. The intercostal muscles are composed of three layers: the external, internal and 
innermost intercostals muscles. The diaphragm attaches to the upper lumbar vertebrae at 
the level of the right and left crura (lumbar vertebra 1 through 3). Laterally the diaphragm 
attaches to the abdominal wall musculature and to the xiphoid process. The diaphragmatic 
dome is formed by a muscular external portion and a central aponeurosis. It contributes to 
respiration by contracting during respiration. The central tendon contains the opening of the 
inferior vena cava. In the right crus the esophagus passes through the diaphragm, while the 
aorta passes from the thorax behind the diaphragm. The transit of these structures occurs at 
the level of the vertebrae 8, 10 and 12. (Netter, 2010) 
The thoracic cavity contains the heart, lungs, great vessels, esophagus, trachea, thoracic 
duct, thymus and the autonomic innervations. The pleura covers the entire thoracic cavity.  
The aortic arch moves from right to left as it enters the posterior mediastinum and becomes 
vertical as it crosses T4. Through the posterior mediastinum it moves to the middle at the 
level of T5. It crosses the diaphragm via the aortic hiatus and enters the abdomen at the level 
of T12. It gives off the posterior intercostal arteries and the subcostal artery, the bronchial 
and the esophageal branches. At the level of the aortic arch, three arteries branch off: the 
most anterior is the brachiocephalic artery, the left common carotid artery, and the left 
subclavian artery. The brachiocephalic artery bifurcates to become the right common carotid 
and the right subclavian arteries. The subclavian arteries form the axillary and brachial 
arteries. The subclavian artery gives off the internal thoracic arteries which reenter the 
superior mediastinum along the sternum. Occasionally there is an additional artery from the 
aortic arch. (Netter, 2010) 
The internal jugular vein and the subclavian vein converge to form the brachiocephalic (or 
innominate) veins. These veins form two large trunks in either sides of the root of the neck 
and penetrate the superior mediastinum where they receive the contribution of the internal 
thoracic, inferior thyroid veins and the small pericardiophrenic veins, and the superior 
intercostal veins. The left crosses obliquely to join the right and form the superior vena cava. 
The superior vena cava enters the pericardial sac in the middle mediastinum to reach the 
right atrium from a superior position. The inferior vena cava enters from below. The 
azygous system consists of the azygous vein on the right and the hemiazygous and 
accessory hemiazygous vein on the left. The azygous and hemiazygous receives the blood 
from the abdomen and the subcostal vein. The azygous begins in the abdomen and enters 
the thorax via the aortic hiatus. It curves over the lung and drains into the superior vena 
cava. The hemiazygous crosses the diaphragm through the left crus and remains posterior  
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the aorta, esophagus and thoracic duct before terminating into the azygous vein. The 
accessory hemiazygous vein either joins the azygous or terminates  in the hemiazygous. 
The pulmonary trunk arises from the right ventricle on the anterior surface of the heart 
directing to the left and posteriorly, passing anteriorly to the base of the aorta. The 
pulmonary artery bifurcates into the left and right pulmonary artery. The right enters  the 
right lung passing under the aortic arch. The ligamentum arteriosum connects the left 
pulmonary artery to the aortic arch. (Netter, 2010) 
The trachea terminates at the bifurcation into the bronchi at the level of the superior 
mediastinum. The esophagus descends behind the trachea at the level of the superior 
mediastinum, entering the abdominal cavity through the diaphragm at the level of T10. 
(Netter, 2010) The thymus is found in the anterior portion of the superior mediastinum. It is 
directly behind the manubrium and may extend into the anterior mediastinum It contacts 
the aorta, the left brachiocephalic vein and the trachea. The aortic arch is located to the left 
of the trachea and esophagus. The azygous vein crosses anteriorly to them and to the right. 
The thoracic duct enters into the posterior mediastinum through the aortic hiatus and 
travels between the thoracic aorta and the azygous vein behind the esophagus. It then 
drains into the left venous system close to the junction of the internal jugular and subclavian 
veins. 
The superior mediastinum is crossed by the vagus and the phrenic nerve. The phrenic 
nerves originate from the ventral rami at the cervical levels  3, 4, 5. (Snell, 2008) They run 
along the neck, entering the thorax under the internal thoracic artery. The right nerve passes 
through the superior mediastinum, lateral to the right brachiocephalic vein and the superior 
vena cava. (Aquino, 2001) The left nerve passes lateral to the left subclavian artery and the 
aortic arch. Both nerves descend along the pericardium crossing through the middle 
mediastinum with the pericardiacphrenic artery (branch of the internal thoracic artery) and 
vein which empties into the subclavian vein. (Aquino, 2001) The vagus nerves leave the 
skull through the jugular foramen and descend along the carotid sheath. They give off cardiac 
branches in the neck (superior and inferior cardiac nerves) and a low number of small 
cardiac nerves in the superior mediastinum (thoracic cardiac branches), providing 
parasympathetic innervation to the heart via the cardiac nerve plexus. (Aquino, 2001; Snell, 
2008) The right nerve descends between the lung and the trachea and it gives off the 
recurrent laryngeal nerve before entering the superior mediastinum (at the level of the right 
subclavian). (Aquino, 2001)  It assists in the formation of the pulmonary plexus and then 
contributes to the formation of the esophageal plexus. (Snell, 2008) Conversely, the left 
descends between the carotid artery and the left subclavian artery and passes lateral to the 
aortic arch where it gives off the left recurrent laryngeal nerve, which passes under the arch 
just posterior to the ligamentum arteriosum. (Aquino, 2001)  The left portion follows 
laterally the trachea and esophagus and ramifies into the esophageal plexus. (Aquino, 2001) 
Therefore the esophageal plexus, created by the right and left vagus in the middle 
mediastinum, forms the anterior and posterior vagal trunk which enters the abdomen 
through the esophageal hiatus. (Aquino, 2001)  The sympathetic innervation is constituted 
by paired chains extending from the neck to the diaphram. (Aquino, 2001; Netter, 2010) The 
superior, middle, and inferior cardiac nerves provide postganglionic fibers to the heart 
providing sympathetic innervation. The thoracic ganglion and the inferior cervical ganglion 
form the “stellate ganglion” giving off the inferior cardiac nerve. (Snell, 2008) The cardiac 
plexus is a network of sympathetic and parasympathetic nerves primarily innervating the 
conduction system and the atria.  
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manubrium and the 1st thoracic vertebra), and inferiorly the anatomic separation with the 
abdomen is well defined by the diaphragm. Along the midline, the mediastinum is 
responsible for the separation into two equal cavities, the left and the right pulmonary 
cavities.  
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cavity. The intercostal muscles are composed of three layers: the external, internal and 
innermost intercostals muscles. The diaphragm attaches to the upper lumbar vertebrae at 
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most anterior is the brachiocephalic artery, the left common carotid artery, and the left 
subclavian artery. The brachiocephalic artery bifurcates to become the right common carotid 
and the right subclavian arteries. The subclavian arteries form the axillary and brachial 
arteries. The subclavian artery gives off the internal thoracic arteries which reenter the 
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right atrium from a superior position. The inferior vena cava enters from below. The 
azygous system consists of the azygous vein on the right and the hemiazygous and 
accessory hemiazygous vein on the left. The azygous and hemiazygous receives the blood 
from the abdomen and the subcostal vein. The azygous begins in the abdomen and enters 
the thorax via the aortic hiatus. It curves over the lung and drains into the superior vena 
cava. The hemiazygous crosses the diaphragm through the left crus and remains posterior  
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the aorta, esophagus and thoracic duct before terminating into the azygous vein. The 
accessory hemiazygous vein either joins the azygous or terminates  in the hemiazygous. 
The pulmonary trunk arises from the right ventricle on the anterior surface of the heart 
directing to the left and posteriorly, passing anteriorly to the base of the aorta. The 
pulmonary artery bifurcates into the left and right pulmonary artery. The right enters  the 
right lung passing under the aortic arch. The ligamentum arteriosum connects the left 
pulmonary artery to the aortic arch. (Netter, 2010) 
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(Netter, 2010) The thymus is found in the anterior portion of the superior mediastinum. It is 
directly behind the manubrium and may extend into the anterior mediastinum It contacts 
the aorta, the left brachiocephalic vein and the trachea. The aortic arch is located to the left 
of the trachea and esophagus. The azygous vein crosses anteriorly to them and to the right. 
The thoracic duct enters into the posterior mediastinum through the aortic hiatus and 
travels between the thoracic aorta and the azygous vein behind the esophagus. It then 
drains into the left venous system close to the junction of the internal jugular and subclavian 
veins. 
The superior mediastinum is crossed by the vagus and the phrenic nerve. The phrenic 
nerves originate from the ventral rami at the cervical levels  3, 4, 5. (Snell, 2008) They run 
along the neck, entering the thorax under the internal thoracic artery. The right nerve passes 
through the superior mediastinum, lateral to the right brachiocephalic vein and the superior 
vena cava. (Aquino, 2001) The left nerve passes lateral to the left subclavian artery and the 
aortic arch. Both nerves descend along the pericardium crossing through the middle 
mediastinum with the pericardiacphrenic artery (branch of the internal thoracic artery) and 
vein which empties into the subclavian vein. (Aquino, 2001) The vagus nerves leave the 
skull through the jugular foramen and descend along the carotid sheath. They give off cardiac 
branches in the neck (superior and inferior cardiac nerves) and a low number of small 
cardiac nerves in the superior mediastinum (thoracic cardiac branches), providing 
parasympathetic innervation to the heart via the cardiac nerve plexus. (Aquino, 2001; Snell, 
2008) The right nerve descends between the lung and the trachea and it gives off the 
recurrent laryngeal nerve before entering the superior mediastinum (at the level of the right 
subclavian). (Aquino, 2001)  It assists in the formation of the pulmonary plexus and then 
contributes to the formation of the esophageal plexus. (Snell, 2008) Conversely, the left 
descends between the carotid artery and the left subclavian artery and passes lateral to the 
aortic arch where it gives off the left recurrent laryngeal nerve, which passes under the arch 
just posterior to the ligamentum arteriosum. (Aquino, 2001)  The left portion follows 
laterally the trachea and esophagus and ramifies into the esophageal plexus. (Aquino, 2001) 
Therefore the esophageal plexus, created by the right and left vagus in the middle 
mediastinum, forms the anterior and posterior vagal trunk which enters the abdomen 
through the esophageal hiatus. (Aquino, 2001)  The sympathetic innervation is constituted 
by paired chains extending from the neck to the diaphram. (Aquino, 2001; Netter, 2010) The 
superior, middle, and inferior cardiac nerves provide postganglionic fibers to the heart 
providing sympathetic innervation. The thoracic ganglion and the inferior cervical ganglion 
form the “stellate ganglion” giving off the inferior cardiac nerve. (Snell, 2008) The cardiac 
plexus is a network of sympathetic and parasympathetic nerves primarily innervating the 
conduction system and the atria.  
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3.1 Heart in the thoracic cavity and external anatomy 
The heart is located within the thoracic cavity in the middle of the inferior mediastinum, it 
occupies a large portion of this space. It is surrounded by the pericardium. The pericardium 
is a mesothelium formed by an external fibrous and an internal serous surface. The external 
parietal surface is composed of the two layers: an external thickened fibrous on the outside 
and an inner serous surface on the inside. (Snell, 2008) The two layers are adhered. The 
internal serous membrane presents a parietal and a visceral layer. The inner visceral layer 
covers the heart forming the epicardium. There is a potential space between the visceral and 
parietal layers containing small amount of fluid produced by the mesothelial cells. The 
parietal pericardium covers the aorta, pulmonary artery forming the arterial reflections and 
the superior, inferior vena cava and pulmonary veins forming the venous reflections. The 
oblique pericardial sinus is formed by the venous reflection of the inferior vena cava and 
pulmonary veins. The transverse pericardial sinus is formed between the arterial reflections 
and the venous reflections. Inferiorly, the parietal pericardium is attached to the diaphragm. 
Anteriorly, the superior and inferior sternopericardiac ligaments secure the parietal 
pericardium to the manubrium and the xiphoid process, respectively. (Netter, 2010) 
Within the pericardium, the heart is a muscular four chamber organ connected to the rest of 
the thoracic cavity by two inflow and two outflow vessels. The orientation of the cardiac 
axis is oblique resulting in the apex being anterior and toward the left and a base located 
superior, posterior, and to the right of midline. The heartbeat is easily palpated between the 
5th and 6th ribs. The left border is formed by the left ventricle and the right border by the 
right atrium. The right ventricle is located anteriorly while the left atrium is located 
posteriorly in front of the spine. The external separation between the left and right ventricle, 
highlighting the interventricular septum, is the anterior interventricular sulcus (groove), 
which contains the anterior interventricular descending branch of the left coronary artery 
and the posterior interventricular sulcus (groove), containing the posterior interventricular 
(descending) artery and middle cardiac vein. The anatomical separation between the right 
atrium and right ventricle is provided by the right atrioventricular sulcus (coronary 
groove) in which the right coronary artery transits. The separation between the left atrium 
and left ventricle is highlighted by the left atrioventricular sulcus (coronary sulcus) 
containing the coronary sinus. The plane of this sulcus also contains the cardiac skeleton and 
the valves. The interatrial septum posteriorly is called the atrial sulcus. The intersection of 
the atrial sulcus and the posterior interventricular sulcus with the perpendicular coronary 
sulcus forms a cross shape on the posterior surface, called the crux cordis. (Netter, 2010) 

4. Anatomy of the cardiac chambers, valves, and major vessels 

The cardiac skeleton provides a scaffold for the attachment of the atrial and ventricular 
myocardium, the four valves and electrically insulates the atria from the ventricle. The 
fibrous structure present four rings for the opening of the aortic semilunar valve in the 
center and the other opening attached to it. The center is triangular shaped, called right 
fibrous trigone or central fibrous body, and it is included among the rings of the aortic 
semilunar valve, the medial parts of the tricuspid and mitral valve. The smallest left trigone 
is formed between the aortic semilunar valve and the anterior cusp of the mitral valve. The 
fibroelastic tissue from the right and left trigone partially encircle the AV opening to form 
the tricuspid and mitral annulus or annulus fibrosus. (Iaizzo, 2005) The annuli provide 
attachment to the myocardium and the AV leaflets. Strong collagen tissue from the right and 
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left trigone also encircles the semilunar rings. The membranous septum provides support to 
the medial cusps of the aortic valve and continues superiorly to form the atrial septum. The 
tendon of Todaro is a fibrous extension of the membranous septum that is continuous with the 
Eustachian valve of the inferior vena cava. (Netter, 2010)  

4.1 Right atrium and tricuspid valve 
The interior of the right atrium has three distinct parts. The posterior portion of the right 
atrium has a smooth wall and is referred as the sinus venarum (the embryologic right horn of 
the sinus venosus). (Netter, 2010) The smooth posterior wall receives the superior and the 
inferior venae cavae and the coronary sinus. The anterior portion is very thin-walled but 
along its walls run the muscle bundles called pectinate muscles. (Snell, 2008) The physical 
separation between the anterior and posterior parts is a ridge of muscle, the crista terminalis. 
(Snell, 2008) In the embryo, the crista terminalis separates the sinus venosus and the 
primitive atrium. (Abdulla, 2004) This prominence corresponds to the external sulcus 
terminalis. (Snell, 2008) It is more prominent on the side of the superior venae cava and then 
fades out toward the inferior vena cava. The pectinate muscles continue into the right 
auricle, a triangular-shaped space on the superior portion of the right atrium. (Snell, 2008) 
The right auricle is broad and blunt. It extends from the superior vena cava almost to the 
inferior vena cava. (Netter, 2010) The inferior border of the right atrium contains the ostium 
of the vena cava and the ostium of the coronary sinus. The ostium of the vena cava opens 
anteriorly with a fold of tissue, the inferior vena cava Eustachian valve (fetal remnant). It is 
sometimes absent, but when present, it may appear with several openings, called network of 
Chiari. The coronary sinus opening is located anteriorly and inferiorly to the orifice of the 
inferior vena cava. It is sometimes guarded by a valve-like structure, called the coronary-
sinus Thebesian valve. These two venous valves insert into a prominent ridge, the Eustachian 
ridge (sinus septum) which runs medial-lateral across the inferior border of the atrium and 
separates the os of the coronary sinus and inferior vena cava. Both valves originate from a 
large embryonic right venous valve. The interatrial septum forms the posteromedial wall of 
the right atrium. The interatrial septum has an interatrial and an atrioventricular part. It 
originates from the embryologic septum primum and septum secundum. It is muscular 
except for a central fibrous depression, called fossa ovalis resulting from the foramen ovale. It 
is surrounded by the limbus fossae ovalis, a muscular ridge surrounding the depression.  The 
fossa ovalis is positioned anterior and superior to the ostia of both the inferior vena cava and 
the coronary sinus. A tendinous structure, the tendon of Todaro, connects the valve of the 
inferior vena cava to the central fibrous body of the cardiac skeleton. It appears as a fibrous 
extension of the membranous portion of the interventricular septum. It moves obliquely 
within the Eustachian ridge and separates the fossa ovalis from the coronary sinus below. This 
tendon has a structural role to support the inferior vena cava and is a useful landmark to 
approximate the location of the AV node.The conduction system is also closely associated 
with the right atrium. The SA node is located between the myocardium and the epicardium 
in the superior portion of the right atrium. To localize the SA node, the intersection of the 
line passing through the sulcus terminalis, the lateral border of the superior vena cava and 
the superior border of the right auricle, identify the position of the SA node. To approximate 
the location of the AV node, it is necessary to identify the triangle of Koch: the base passes 
through the coronary sinus; the sides are the septal leaflets of the tricuspid valve and the 
tendon of Todaro.  
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The heart is located within the thoracic cavity in the middle of the inferior mediastinum, it 
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is a mesothelium formed by an external fibrous and an internal serous surface. The external 
parietal surface is composed of the two layers: an external thickened fibrous on the outside 
and an inner serous surface on the inside. (Snell, 2008) The two layers are adhered. The 
internal serous membrane presents a parietal and a visceral layer. The inner visceral layer 
covers the heart forming the epicardium. There is a potential space between the visceral and 
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pericardium to the manubrium and the xiphoid process, respectively. (Netter, 2010) 
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axis is oblique resulting in the apex being anterior and toward the left and a base located 
superior, posterior, and to the right of midline. The heartbeat is easily palpated between the 
5th and 6th ribs. The left border is formed by the left ventricle and the right border by the 
right atrium. The right ventricle is located anteriorly while the left atrium is located 
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groove) in which the right coronary artery transits. The separation between the left atrium 
and left ventricle is highlighted by the left atrioventricular sulcus (coronary sulcus) 
containing the coronary sinus. The plane of this sulcus also contains the cardiac skeleton and 
the valves. The interatrial septum posteriorly is called the atrial sulcus. The intersection of 
the atrial sulcus and the posterior interventricular sulcus with the perpendicular coronary 
sulcus forms a cross shape on the posterior surface, called the crux cordis. (Netter, 2010) 

4. Anatomy of the cardiac chambers, valves, and major vessels 

The cardiac skeleton provides a scaffold for the attachment of the atrial and ventricular 
myocardium, the four valves and electrically insulates the atria from the ventricle. The 
fibrous structure present four rings for the opening of the aortic semilunar valve in the 
center and the other opening attached to it. The center is triangular shaped, called right 
fibrous trigone or central fibrous body, and it is included among the rings of the aortic 
semilunar valve, the medial parts of the tricuspid and mitral valve. The smallest left trigone 
is formed between the aortic semilunar valve and the anterior cusp of the mitral valve. The 
fibroelastic tissue from the right and left trigone partially encircle the AV opening to form 
the tricuspid and mitral annulus or annulus fibrosus. (Iaizzo, 2005) The annuli provide 
attachment to the myocardium and the AV leaflets. Strong collagen tissue from the right and 
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left trigone also encircles the semilunar rings. The membranous septum provides support to 
the medial cusps of the aortic valve and continues superiorly to form the atrial septum. The 
tendon of Todaro is a fibrous extension of the membranous septum that is continuous with the 
Eustachian valve of the inferior vena cava. (Netter, 2010)  

4.1 Right atrium and tricuspid valve 
The interior of the right atrium has three distinct parts. The posterior portion of the right 
atrium has a smooth wall and is referred as the sinus venarum (the embryologic right horn of 
the sinus venosus). (Netter, 2010) The smooth posterior wall receives the superior and the 
inferior venae cavae and the coronary sinus. The anterior portion is very thin-walled but 
along its walls run the muscle bundles called pectinate muscles. (Snell, 2008) The physical 
separation between the anterior and posterior parts is a ridge of muscle, the crista terminalis. 
(Snell, 2008) In the embryo, the crista terminalis separates the sinus venosus and the 
primitive atrium. (Abdulla, 2004) This prominence corresponds to the external sulcus 
terminalis. (Snell, 2008) It is more prominent on the side of the superior venae cava and then 
fades out toward the inferior vena cava. The pectinate muscles continue into the right 
auricle, a triangular-shaped space on the superior portion of the right atrium. (Snell, 2008) 
The right auricle is broad and blunt. It extends from the superior vena cava almost to the 
inferior vena cava. (Netter, 2010) The inferior border of the right atrium contains the ostium 
of the vena cava and the ostium of the coronary sinus. The ostium of the vena cava opens 
anteriorly with a fold of tissue, the inferior vena cava Eustachian valve (fetal remnant). It is 
sometimes absent, but when present, it may appear with several openings, called network of 
Chiari. The coronary sinus opening is located anteriorly and inferiorly to the orifice of the 
inferior vena cava. It is sometimes guarded by a valve-like structure, called the coronary-
sinus Thebesian valve. These two venous valves insert into a prominent ridge, the Eustachian 
ridge (sinus septum) which runs medial-lateral across the inferior border of the atrium and 
separates the os of the coronary sinus and inferior vena cava. Both valves originate from a 
large embryonic right venous valve. The interatrial septum forms the posteromedial wall of 
the right atrium. The interatrial septum has an interatrial and an atrioventricular part. It 
originates from the embryologic septum primum and septum secundum. It is muscular 
except for a central fibrous depression, called fossa ovalis resulting from the foramen ovale. It 
is surrounded by the limbus fossae ovalis, a muscular ridge surrounding the depression.  The 
fossa ovalis is positioned anterior and superior to the ostia of both the inferior vena cava and 
the coronary sinus. A tendinous structure, the tendon of Todaro, connects the valve of the 
inferior vena cava to the central fibrous body of the cardiac skeleton. It appears as a fibrous 
extension of the membranous portion of the interventricular septum. It moves obliquely 
within the Eustachian ridge and separates the fossa ovalis from the coronary sinus below. This 
tendon has a structural role to support the inferior vena cava and is a useful landmark to 
approximate the location of the AV node.The conduction system is also closely associated 
with the right atrium. The SA node is located between the myocardium and the epicardium 
in the superior portion of the right atrium. To localize the SA node, the intersection of the 
line passing through the sulcus terminalis, the lateral border of the superior vena cava and 
the superior border of the right auricle, identify the position of the SA node. To approximate 
the location of the AV node, it is necessary to identify the triangle of Koch: the base passes 
through the coronary sinus; the sides are the septal leaflets of the tricuspid valve and the 
tendon of Todaro.  
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The tricuspid valve annulus lies on the floor of the right atrium, attached to the 
membranous portion of the septum. The tricuspid valve apparatus and the atrioventricular 
valve, is formed by an annulus, leaflets, papillary muscles, and the chordae tendinae. The 
AV orifice is reinforced by the annulus fibrosus of the cardiac skeleton. The three leaflets are 
the anterior (superior), posterior (inferior), and medial (septal). The leaflets have a smooth 
surface on the atrial side presenting only small nodules from the edges, called the noduli 
albini. (Netter, 2010) These appear to be present mostly in children and assure complete 
coaptation of the valve upon closure. The atrial side of the the leaflet is smooth whereas the 
ventricular surface is more irregular and provides insertion of the chordae. The anterior 
leaflet of the valve is the largest and extends from the medial border of the ventricular 
septum to the anterior free wall. The posterior leaflet extends from the lateral free wall to the 
posterior portion of the ventricular septum. The septal leaflet extends from the annulus to 
the medial side of the interventricular septum. 
The primary order of chordae connects the papillary muscle to the free edge of the leaflets 
with several fine strands, impeding the valve leaflets from inverting. The secondary order 
chordae connect the papillary muscle to a ventricular portion of the leaflet. They are 
stronger and less numerous, providing the major stability to the valve. The tertiary order 
connects the ventricular myocardium to the leaflet. They form bands which can contain 
muscles. The commissures connect the leaflets and they are named after the connected 
leaflets: anteroseptal, anteroposterior and posteroseptal. They never reach the annulus so 
they provide only incomplete separation of the leaflets. (Netter, 2010)  

4.2 Right ventricle and pulmonic valve 
The right ventricular cavity is separated into two sections: posteroinferior portion 
containing the inflow with the tricuspid valve, and the anterosuperior outflow portion, 
containing the pulmonary trunk. The separation between these two portions is formed by a 
small ridge of several muscular bands, the crista supraventricularis, the septal trabeculae (septal 
band), and the moderator band. These muscle bundles form the trabeculae septomarginalis, 
which form a semicircular arch (delineation of the outflow tract). (Netter, 2010) The inflow 
portion is heavily trabeculated by coarse trabeculae carneae, the outflow portion is named 
infundibulum and contains only a few trabeculae, and the subpulmonic area has a smooth 
surface. (Snell, 2008) Several papillary muscles connect the walls to the leaflets via the 
chordae tendinae. The anterior and the medial papillary muscles are always present, while 
additional papillary muscles can be present in variable number. The medial papillary 
muscle is located where the crista supraventricularis meets the septal band. It provides 
attachment to the chordae tendinae to the posterior and septal leaflet of the tricuspid valve. 
(Rogers, 2009) It is small in the adult heart. The largest papillary muscle is the anterior 
papillary muscle, which receives the chordae from the anterior and posterior leaflets of the 
tricuspid valve (Rogers, 2009) and it is located at the apex of the right ventricle.(Netter, 2010) 
The other papillary muscles (posterior and septal) are small and attach via chordae to the 
posterior and medial leaflet.  
The outflow portion originates superiorly in the right ventricle. The pulmonary trunk 
bifurcates into right and left pulmonary arteries. The ligamentum arteriosus, remnant of the 
fetal ductus arteriosus, connects the bifurcation of the pulmonary artery to the inferior surface 
of the aortic arch. The pulmonary valve, as the other semilunar valve, differs from the 
atrioventricular valves. There is not a defined annulus to support the valve. The first portion 
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of the vessel expands to form three pouches, the sinus of Valsalva which are mildly 
developed in the pulmonary artery compared to the aorta. The valvular leaflets are smooth 
and thin with a small fibrous nodule (nodulus Arantii) at the center of the free edge. (Netter, 
2010) 

4.3 Left atrium and mitral valve 
The left atrium has a smooth surface with a transverse axis larger than the vertical and 
sagittal axes. The internal surface of the left atrial vestibule is smooth because the pectinate 
muscles are confined within the auricle. The left auricle is a continuation of the upper 
anterior portion of the left atrium. It is located anteriorly over the atrioventricular sulcus. Its 
shape is variable but it tends to be narrowed and pointed. (Ho, 2002; Ho, 2009) Its inner 
surface is irregular by the pectinate muscles. The septal surface is mostly smooth except for 
the area of the foramen ovale. (Snell, 2008) The left atrium receives two or three pulmonary 
veins from the right and two pulmonary veins from the left lungs. (Netter, 2010) 
The mitral valve apparatus, as the other atrioventricular valve, is formed by an annulus, 
leaflets, papillary muscles and the chordae tendinae. The annulus is reinforced by the 
annulus fibrosus of the cardiac skeleton, supporting the posterior and lateral two-thirds of 
the mitral annulus. At the level of the right and left fibrous trigone, the annulus is reinforced 
by fibrous tissue. On the medial side, the attachment of the fibrous support of the aortic 
semilunar valve provides additional support. The valve has two leaflets: the anterior, also 
called medial or aortic, and the posterior (inferior or mural). (VanMieghen, 2010) The shape 
of the anterior leaflet resembles a trapezoidal shape. (Netter, 2010) The posterior leaflet is 
quite narrow and it subdivided into an anterior, central and posterior shape. When the valve 
closes, there is significant overlap of the leaflets. (Bolling, 2006) The connection between the 
leaflets is provided by the commissures, anterolateral and posteromedial. They never reach 
the annulus so they provide only incomplete separation of the leaflets. The leaflets have a 
smooth surface on the atrial side presenting only small nodules from the edges, called the 
noduli albini. These appear to be present mostly in children and assure complete coaptation 
of the valve upon closure. (Netter, 2010) The ventricular surface is more irregular and 
provides insertion of the chordae. The primary order of chordae connects the papillary 
muscle to the free edge of the leaflets with several fine strands, impeding the valve leaflets 
from inverting. The secondary order connects the papillary muscle to a more ventricular 
portion of the leaflet. They are stronger and less numerous, providing the greatest stability 
to the valve. The tertiary order connects the ventricular myocardium to the leaflet. (Bolling, 
2006; Netter, 2010) They form bands which can contain muscles. The primary and secondary 
orders are constituted partially by muscle in the mitral apparatus. This feature is indicative 
of the common embryologic origin of the papillary muscles, the chordae and most of the 
leaflets from the embryonic ventricular trabeculae, which were muscular in origin. (Netter, 
2010) 

4.4 Left ventricle and aortic valve 
The left ventricle has two separate portions, the inflow and the outflow separated by a 
fibrous band which provides attachment to the anterior mitral leaflet and the left and 
posterior aortic valve leaflets. The left ventricle is physiologically thicker than the right 
ventricle. The trabeculae carnae, presents mostly toward the apex, from the wall of the left 
ventricle but the muscular ridges are finer and less coarse compared to the walls of the right 
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The tricuspid valve annulus lies on the floor of the right atrium, attached to the 
membranous portion of the septum. The tricuspid valve apparatus and the atrioventricular 
valve, is formed by an annulus, leaflets, papillary muscles, and the chordae tendinae. The 
AV orifice is reinforced by the annulus fibrosus of the cardiac skeleton. The three leaflets are 
the anterior (superior), posterior (inferior), and medial (septal). The leaflets have a smooth 
surface on the atrial side presenting only small nodules from the edges, called the noduli 
albini. (Netter, 2010) These appear to be present mostly in children and assure complete 
coaptation of the valve upon closure. The atrial side of the the leaflet is smooth whereas the 
ventricular surface is more irregular and provides insertion of the chordae. The anterior 
leaflet of the valve is the largest and extends from the medial border of the ventricular 
septum to the anterior free wall. The posterior leaflet extends from the lateral free wall to the 
posterior portion of the ventricular septum. The septal leaflet extends from the annulus to 
the medial side of the interventricular septum. 
The primary order of chordae connects the papillary muscle to the free edge of the leaflets 
with several fine strands, impeding the valve leaflets from inverting. The secondary order 
chordae connect the papillary muscle to a ventricular portion of the leaflet. They are 
stronger and less numerous, providing the major stability to the valve. The tertiary order 
connects the ventricular myocardium to the leaflet. They form bands which can contain 
muscles. The commissures connect the leaflets and they are named after the connected 
leaflets: anteroseptal, anteroposterior and posteroseptal. They never reach the annulus so 
they provide only incomplete separation of the leaflets. (Netter, 2010)  

4.2 Right ventricle and pulmonic valve 
The right ventricular cavity is separated into two sections: posteroinferior portion 
containing the inflow with the tricuspid valve, and the anterosuperior outflow portion, 
containing the pulmonary trunk. The separation between these two portions is formed by a 
small ridge of several muscular bands, the crista supraventricularis, the septal trabeculae (septal 
band), and the moderator band. These muscle bundles form the trabeculae septomarginalis, 
which form a semicircular arch (delineation of the outflow tract). (Netter, 2010) The inflow 
portion is heavily trabeculated by coarse trabeculae carneae, the outflow portion is named 
infundibulum and contains only a few trabeculae, and the subpulmonic area has a smooth 
surface. (Snell, 2008) Several papillary muscles connect the walls to the leaflets via the 
chordae tendinae. The anterior and the medial papillary muscles are always present, while 
additional papillary muscles can be present in variable number. The medial papillary 
muscle is located where the crista supraventricularis meets the septal band. It provides 
attachment to the chordae tendinae to the posterior and septal leaflet of the tricuspid valve. 
(Rogers, 2009) It is small in the adult heart. The largest papillary muscle is the anterior 
papillary muscle, which receives the chordae from the anterior and posterior leaflets of the 
tricuspid valve (Rogers, 2009) and it is located at the apex of the right ventricle.(Netter, 2010) 
The other papillary muscles (posterior and septal) are small and attach via chordae to the 
posterior and medial leaflet.  
The outflow portion originates superiorly in the right ventricle. The pulmonary trunk 
bifurcates into right and left pulmonary arteries. The ligamentum arteriosus, remnant of the 
fetal ductus arteriosus, connects the bifurcation of the pulmonary artery to the inferior surface 
of the aortic arch. The pulmonary valve, as the other semilunar valve, differs from the 
atrioventricular valves. There is not a defined annulus to support the valve. The first portion 
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of the vessel expands to form three pouches, the sinus of Valsalva which are mildly 
developed in the pulmonary artery compared to the aorta. The valvular leaflets are smooth 
and thin with a small fibrous nodule (nodulus Arantii) at the center of the free edge. (Netter, 
2010) 

4.3 Left atrium and mitral valve 
The left atrium has a smooth surface with a transverse axis larger than the vertical and 
sagittal axes. The internal surface of the left atrial vestibule is smooth because the pectinate 
muscles are confined within the auricle. The left auricle is a continuation of the upper 
anterior portion of the left atrium. It is located anteriorly over the atrioventricular sulcus. Its 
shape is variable but it tends to be narrowed and pointed. (Ho, 2002; Ho, 2009) Its inner 
surface is irregular by the pectinate muscles. The septal surface is mostly smooth except for 
the area of the foramen ovale. (Snell, 2008) The left atrium receives two or three pulmonary 
veins from the right and two pulmonary veins from the left lungs. (Netter, 2010) 
The mitral valve apparatus, as the other atrioventricular valve, is formed by an annulus, 
leaflets, papillary muscles and the chordae tendinae. The annulus is reinforced by the 
annulus fibrosus of the cardiac skeleton, supporting the posterior and lateral two-thirds of 
the mitral annulus. At the level of the right and left fibrous trigone, the annulus is reinforced 
by fibrous tissue. On the medial side, the attachment of the fibrous support of the aortic 
semilunar valve provides additional support. The valve has two leaflets: the anterior, also 
called medial or aortic, and the posterior (inferior or mural). (VanMieghen, 2010) The shape 
of the anterior leaflet resembles a trapezoidal shape. (Netter, 2010) The posterior leaflet is 
quite narrow and it subdivided into an anterior, central and posterior shape. When the valve 
closes, there is significant overlap of the leaflets. (Bolling, 2006) The connection between the 
leaflets is provided by the commissures, anterolateral and posteromedial. They never reach 
the annulus so they provide only incomplete separation of the leaflets. The leaflets have a 
smooth surface on the atrial side presenting only small nodules from the edges, called the 
noduli albini. These appear to be present mostly in children and assure complete coaptation 
of the valve upon closure. (Netter, 2010) The ventricular surface is more irregular and 
provides insertion of the chordae. The primary order of chordae connects the papillary 
muscle to the free edge of the leaflets with several fine strands, impeding the valve leaflets 
from inverting. The secondary order connects the papillary muscle to a more ventricular 
portion of the leaflet. They are stronger and less numerous, providing the greatest stability 
to the valve. The tertiary order connects the ventricular myocardium to the leaflet. (Bolling, 
2006; Netter, 2010) They form bands which can contain muscles. The primary and secondary 
orders are constituted partially by muscle in the mitral apparatus. This feature is indicative 
of the common embryologic origin of the papillary muscles, the chordae and most of the 
leaflets from the embryonic ventricular trabeculae, which were muscular in origin. (Netter, 
2010) 

4.4 Left ventricle and aortic valve 
The left ventricle has two separate portions, the inflow and the outflow separated by a 
fibrous band which provides attachment to the anterior mitral leaflet and the left and 
posterior aortic valve leaflets. The left ventricle is physiologically thicker than the right 
ventricle. The trabeculae carnae, presents mostly toward the apex, from the wall of the left 
ventricle but the muscular ridges are finer and less coarse compared to the walls of the right 
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ventricle. (Snell, 2008) The wall of the basilar portion is smooth. The interventricular septum 
is muscular except in the area below the right and posterior aortic leaflets which is 
membranous. The separation between the muscular and membranous part is called limbus 
marginalis. (Netter, 2010) The membranous portion is divided into two parts by the origin of 
the medial leaflet of the tricuspid valve, creating an upper portion, the atrioventricular part 
(between the left ventricle and the right atrium) and the lower one, the interventricular part 
(between the left and right ventricle). Two major papillary muscles connect the wall to the 
atrioventricular valve. (VanMieghen, 2010) The anterior papillary muscle is larger than the 
posterior. Occasionally a third papillary muscle is present. (Netter, 2010) 
The outflow portion leads to the aorta through the aortic valve. The aortic valve, as the other 
semilunar valve, differs from the atrioventricular valves. There is not a defined annulus to 
support the valve. The first portion of the vessel expands to form three pouches, the sinus of 
Valsalva which are very obvious in the aorta. The wall of the vessel in this region is thinner 
than the aorta. The valvular leaflets are smooth and thin with a small fibrous nodule 
(nodulus Arantii) at the center of the free edge. Parallel to the free edges, a small area (lunula) 
of fine striations is evident. (Netter, 2010) 

4.5 Aorta and pulmonary artery 
The aortic semilunar valve is composed of three symmetric, semilunar-shaped cusps 
containing a recess called sinus of Valsalva. The junction of the sinuses and the aorta is 
called the sinotubular ridge since it makes a circular ridge. (Netter, 2010) When open, the 
valve forms a U-shape. The cusps are named based on the direction: the left and right (face 
the pulmonary valve), and the posterior. (Snell, 2008) The left and right have ostium on the 
inner surface opening into the left and right coronary arteries. The ostia are located below 
the sinotubular junction with the ostium of the left coronary; mildly superior and posterior 
to the right coronary ostium.The skeleton provides support to the structure. There is a small 
thickening on the center of the free edge of each cusp, the nodulus of Aramtius or Morgagni. 
The function of this nodule is to ensure complete closure. (Netter, 2010) From the nodule a 
line follows the free edge of the cusp, this line is called linea alba. Because of the increase 
aortic pressure, the linea alba, also present in the pulmonary cusps, is thicker and more 
pronounced. The plane of the aortic valve is mildly tilted. 
The pulmonary valve resembles the structure of the aortic valve with the three symmetric, 
semilunar-shaped cusps. The cusps are attached to the right ventricular infundibulum and 
the pulmonary trunk. (Netter, 2010) 

4.6 Coronary blood flow 
Variations to the described anatomy are common. (Snell, 2008) The right coronary artery 
emerges from the right anterior sinus of Valsalva and runs in the right atrioventricular sulcus. 
Along this path the right coronary artery gives off two branches: the conus arteriosus branch 
and the right atrial branches. The conus artery and the communicating arteries in the 
interventricular septum serve as an important collateral blood supply to the left ventricle, 
anterior regions and anterior two-thirds of the interventricular septum. The right atrial 
branch gives the SA nodal artery (50-73 % of hearts), (Anderson, 1998; Iaizzo, 2005; Cohn, 
2008) which runs along the anterior right atrium to the superior vena cava, encircling the 
vessels before reaching the SA node. As the right coronary artery reaches the AV groove, it 
gives several branches to the right atrium and ventricle, including the right marginal 

 
Cardiac Anatomy 

 

15 

branch, which supplies the right margin of the heart. (Snell, 2008; Netter, 2010) The right 
coronary artery follows the sulcus posteriorly, curves until it reaches the crux cordis). It 
branches downward to form the posterior interventricular (descending) artery in the 
posterior interventricular sulcus. It supplies the posterior free wall of the right ventricle and in 
85-90 % branches into smaller arteries (posterior septal arteries) to supply the distal one-
third of the interventricular septum. (Iaizzo, 2005) The atrioventricular nodal artery passes 
anteriorly to the base of the atrial septum and supplies the AV node (50-60 % of hearts), the 
proximal part of the bundles of His, and parts of the posterior interventricular septum. 
(Snell, 2008; Netter, 2010) The Kugel’s artery originates from either the left or the right 
coronary and runs anterior to posterior toward the atrial septum, providing collateral 
connection from the anterior arteries to the AV node and the posterior arteries. (Saremi, 
2008; Cohn, 2008) 
The left coronary artery originates from the left sinus of Valsalva and emerges from the 
aorta between the pulmonary trunk and the left atrial appendage. Under the appendage the 
artery divides into the anterior interventricular (left anterior descending artery) and the left 
circumflex artery. The anterior interventricular (descending) artery follows the anterior 
interventricular sulcus, curves around the apex and anatomose with the posterior descending. 
It branches to give the anterior septal perforating arteries, which enter the septal 
myocardium and supply the anterior two-thirds of the interventricular septum. The first 
perforator reaches the AV conduction system, the second or third perforator is the longest of 
the septal arteries and the main septal artery. This artery reaches the middle portion of the 
interventricular septum and sends branches to the moderator band. The branches called the 
diagonal arteries, originating from the anterior descending artery, reach the anterior free 
wall of the left ventricle. These arteries are named in order of appearance (first diagonal, 
second diagonal etc). The anterior interventricular artery also supplies the right and left 
ventricular free walls. One branch meets the artery from the right coronary artery at the 
level of the conus artery to form the circle of Vieussens. (Snell, 2008; Netter, 2010) The 
circumflex branch of the left coronary artery runs in the left atrioventricular sulcus and 
supplies most of the left atrium, the posterior and lateral free walls of the left ventricle and 
the anterior papillary muscle of the mitral valve. It divides into several branches to supply 
the left ventricle. The terminal branch is the largest. It continues through the AV sulcus to 
supply the posterior wall of the left ventricle and the posterior papillary muscle of the mitral 
valve. The circumflex artery supplies the SA node in 40-50 % of cases. (Iaizzo, 2005) In 30-60 
%, it is between the anterior and the circumflex artery, there are diagonal or intermediate 
arteries which extend toward the apex. (Iaizzo, 2005) In approximately 15% of patients the 
posterior descending artery also arises from the circumflex, while in 85% from the right 
coronary artery. Other variations to the normal pattern for both the left and the right 
coronary circulation are common in humans. (Snell, 2008; Netter, 2010) 
The venous circulation is divided into three systems: 1. the cardiac venous tributaries 
forming the coronary sinus, 2. the anterior cardiac veins (anterior right ventricular), and 3. 
the smallest cardiac (Thebesian) venous system. The satellite venous system, formed by the 
great, middle and posterior (small) cardiac veins, converge to form the coronary sinus and 
drain 49 % of myocardial blood. (Iaizzo, 2005, Snell, 2008) The anterior interventricular vein 
runs along the anterior interventricular sulcus with the anterior interventricular artery. Near 
the bifurcation of the left coronary artery, it turns and becomes the great cardiac vein. The 
great vein is formed by small tributaries from the left and right ventricle, and the anterior 
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ventricle. (Snell, 2008) The wall of the basilar portion is smooth. The interventricular septum 
is muscular except in the area below the right and posterior aortic leaflets which is 
membranous. The separation between the muscular and membranous part is called limbus 
marginalis. (Netter, 2010) The membranous portion is divided into two parts by the origin of 
the medial leaflet of the tricuspid valve, creating an upper portion, the atrioventricular part 
(between the left ventricle and the right atrium) and the lower one, the interventricular part 
(between the left and right ventricle). Two major papillary muscles connect the wall to the 
atrioventricular valve. (VanMieghen, 2010) The anterior papillary muscle is larger than the 
posterior. Occasionally a third papillary muscle is present. (Netter, 2010) 
The outflow portion leads to the aorta through the aortic valve. The aortic valve, as the other 
semilunar valve, differs from the atrioventricular valves. There is not a defined annulus to 
support the valve. The first portion of the vessel expands to form three pouches, the sinus of 
Valsalva which are very obvious in the aorta. The wall of the vessel in this region is thinner 
than the aorta. The valvular leaflets are smooth and thin with a small fibrous nodule 
(nodulus Arantii) at the center of the free edge. Parallel to the free edges, a small area (lunula) 
of fine striations is evident. (Netter, 2010) 

4.5 Aorta and pulmonary artery 
The aortic semilunar valve is composed of three symmetric, semilunar-shaped cusps 
containing a recess called sinus of Valsalva. The junction of the sinuses and the aorta is 
called the sinotubular ridge since it makes a circular ridge. (Netter, 2010) When open, the 
valve forms a U-shape. The cusps are named based on the direction: the left and right (face 
the pulmonary valve), and the posterior. (Snell, 2008) The left and right have ostium on the 
inner surface opening into the left and right coronary arteries. The ostia are located below 
the sinotubular junction with the ostium of the left coronary; mildly superior and posterior 
to the right coronary ostium.The skeleton provides support to the structure. There is a small 
thickening on the center of the free edge of each cusp, the nodulus of Aramtius or Morgagni. 
The function of this nodule is to ensure complete closure. (Netter, 2010) From the nodule a 
line follows the free edge of the cusp, this line is called linea alba. Because of the increase 
aortic pressure, the linea alba, also present in the pulmonary cusps, is thicker and more 
pronounced. The plane of the aortic valve is mildly tilted. 
The pulmonary valve resembles the structure of the aortic valve with the three symmetric, 
semilunar-shaped cusps. The cusps are attached to the right ventricular infundibulum and 
the pulmonary trunk. (Netter, 2010) 

4.6 Coronary blood flow 
Variations to the described anatomy are common. (Snell, 2008) The right coronary artery 
emerges from the right anterior sinus of Valsalva and runs in the right atrioventricular sulcus. 
Along this path the right coronary artery gives off two branches: the conus arteriosus branch 
and the right atrial branches. The conus artery and the communicating arteries in the 
interventricular septum serve as an important collateral blood supply to the left ventricle, 
anterior regions and anterior two-thirds of the interventricular septum. The right atrial 
branch gives the SA nodal artery (50-73 % of hearts), (Anderson, 1998; Iaizzo, 2005; Cohn, 
2008) which runs along the anterior right atrium to the superior vena cava, encircling the 
vessels before reaching the SA node. As the right coronary artery reaches the AV groove, it 
gives several branches to the right atrium and ventricle, including the right marginal 
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branch, which supplies the right margin of the heart. (Snell, 2008; Netter, 2010) The right 
coronary artery follows the sulcus posteriorly, curves until it reaches the crux cordis). It 
branches downward to form the posterior interventricular (descending) artery in the 
posterior interventricular sulcus. It supplies the posterior free wall of the right ventricle and in 
85-90 % branches into smaller arteries (posterior septal arteries) to supply the distal one-
third of the interventricular septum. (Iaizzo, 2005) The atrioventricular nodal artery passes 
anteriorly to the base of the atrial septum and supplies the AV node (50-60 % of hearts), the 
proximal part of the bundles of His, and parts of the posterior interventricular septum. 
(Snell, 2008; Netter, 2010) The Kugel’s artery originates from either the left or the right 
coronary and runs anterior to posterior toward the atrial septum, providing collateral 
connection from the anterior arteries to the AV node and the posterior arteries. (Saremi, 
2008; Cohn, 2008) 
The left coronary artery originates from the left sinus of Valsalva and emerges from the 
aorta between the pulmonary trunk and the left atrial appendage. Under the appendage the 
artery divides into the anterior interventricular (left anterior descending artery) and the left 
circumflex artery. The anterior interventricular (descending) artery follows the anterior 
interventricular sulcus, curves around the apex and anatomose with the posterior descending. 
It branches to give the anterior septal perforating arteries, which enter the septal 
myocardium and supply the anterior two-thirds of the interventricular septum. The first 
perforator reaches the AV conduction system, the second or third perforator is the longest of 
the septal arteries and the main septal artery. This artery reaches the middle portion of the 
interventricular septum and sends branches to the moderator band. The branches called the 
diagonal arteries, originating from the anterior descending artery, reach the anterior free 
wall of the left ventricle. These arteries are named in order of appearance (first diagonal, 
second diagonal etc). The anterior interventricular artery also supplies the right and left 
ventricular free walls. One branch meets the artery from the right coronary artery at the 
level of the conus artery to form the circle of Vieussens. (Snell, 2008; Netter, 2010) The 
circumflex branch of the left coronary artery runs in the left atrioventricular sulcus and 
supplies most of the left atrium, the posterior and lateral free walls of the left ventricle and 
the anterior papillary muscle of the mitral valve. It divides into several branches to supply 
the left ventricle. The terminal branch is the largest. It continues through the AV sulcus to 
supply the posterior wall of the left ventricle and the posterior papillary muscle of the mitral 
valve. The circumflex artery supplies the SA node in 40-50 % of cases. (Iaizzo, 2005) In 30-60 
%, it is between the anterior and the circumflex artery, there are diagonal or intermediate 
arteries which extend toward the apex. (Iaizzo, 2005) In approximately 15% of patients the 
posterior descending artery also arises from the circumflex, while in 85% from the right 
coronary artery. Other variations to the normal pattern for both the left and the right 
coronary circulation are common in humans. (Snell, 2008; Netter, 2010) 
The venous circulation is divided into three systems: 1. the cardiac venous tributaries 
forming the coronary sinus, 2. the anterior cardiac veins (anterior right ventricular), and 3. 
the smallest cardiac (Thebesian) venous system. The satellite venous system, formed by the 
great, middle and posterior (small) cardiac veins, converge to form the coronary sinus and 
drain 49 % of myocardial blood. (Iaizzo, 2005, Snell, 2008) The anterior interventricular vein 
runs along the anterior interventricular sulcus with the anterior interventricular artery. Near 
the bifurcation of the left coronary artery, it turns and becomes the great cardiac vein. The 
great vein is formed by small tributaries from the left and right ventricle, and the anterior 
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portion of the interventricular septum, the left atrium and the left ventricle. It also receives 
the large marginal vein which is parallel to the left marginal artery. The point of the great 
coronary vein becoming the coronary sinus is identified by the valve of Vieussens (a typical 
venous valve to prevent backflow), the space between the entry points of the oblique vein of 
the left atrium (vein of Marshall), and the posterior vein of the left ventricle. The oblique 
vein of Marshall runs superior to inferior along the posterior side of the left atrium, 
providing venous drainage of the area. It drains into the coronary sinus next to the great 
vein. The posterior vein ascends to the coronary sinus from the inferior portion of the left 
ventricle and provides drainage of the area. The coronary sinus also receives the middle 
vein. The veins, draining the posterior left and right ventricle and the interventricular 
septum, form the middle cardiac vein. This vein runs on the posterior interventricular 
sulcus and it enters the coronary sinus just before the right atrium. The small cardiac vein 
originates from the antero-lateral right ventricular wall and follows a path parallel to the 
marginal branch of the right coronary artery until it reaches the right atrioventricular sulcus. It 
turns and enters the coronary sinus with the middle cardiac vein. The small cardiac vein 
may be absent in 60 % of the cases. In 50 % of the cases it enters the right atrium directly. 
(Iaizzo, 2005) The anterior cardiac veins drain 24 % of myocardial blood and form a separate 
circuit which does not drain into the coronary sinus. (Iaizzo, 2005) They drain into the 
anterior right ventricular wall and travel superiorly to cross the right AV sulcus to enter the 
right atrium directly. When present, the right marginal vein follows the right marginal 
artery and enters the right atrium. It is considered part of the anterior veins. The third 
system is composed of small intramural intramyocardial veins called Thebesian veins 
draining 17 % of myocardial blood. (Iaizzo, 2005) These very small vessels don’t have 
valves. They drain within the cardiac chambers via the Thebesian ostia in both the atria and 
the ventricles, but most commonly into the atrial and ventricular septa. They are more 
prevalent on the right side. (Netter, 2010) 

5. Anatomy of the conduction system 
The cardiac impulse arises in the sinoatrial (SA) node, located near the entrance of the 
superior vena cava. Known as the cardiac pacemaker, it generates the fastest rate of impulse. 
The impulse spreads to the interatrial and internodal conduction pathways to reach the 
atrioventricular (AV) node. The conduction travels to the bundle of His and then divides 
into left and right branches. Each bundle branch terminates in a network of fibers called the 
Purkinje fibers, whose stimulus generates ventricular contraction.  
Under normal physiologic conditions the dominant pacemaker is the SA node, which in the 
adult fires at rate of 60 to 100 beat per minute (bpm). The overdrive suppression impedes 
other cells capable of spontaneous depolarization to become the dominant pacemaker. The 
cells located in the AV node and the Purkinje cells have a normal physiologic rate lower 
than the SA mode ranging from 25 to 55 bpm.  (Iaizzo, 2005) In pathologic conditions the 
myocardial tissue itself can also exhibit self excitability generating ectopic beats. The 
parasympathetic system dominates at rest and slows the sinoatrial rate.  

5.1 Sinus node 
The SA node is located on the roof of the right atrium at the junction of the right atrial 
appendage, the superior vena cava, and the sulcus terminalis. In the adult it is 1 mm below 
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the epicardium, 10-20 mm long and 5 mm thick. The P cells within the node are capable of 
spontaneous depolarization and are therefore responsible for generating the normal cardiac 
rhythm. (James, 2001) Importantly, the frequency of this depolarization is modulated by 
several factors both sympathetic and parasympathetic efferent innervation being the most 
important.  

5.2 Interatrial conduction 
After initial sinoatrial nodal excitation, depolarization spreads throughout the atria. The 
mechanism of impulse conduction through the atria is controversial. (Anderson, 1998; 
James, 2001) Excitation spreads through the myocardial atrial tissue cell-to-cell using 
specialized connections between the cells called gap junctions. Additional specialized 
conduction cells may be organized in pathways and constitute the internodal and interatrial 
pathways. It is believed, however, that there are three anatomic conduction pathways 
originating within the nodal tissue of the SA node or in the proximity of the node. The 
internodal tracts include the anterior internodal tract which extends from the anterior 
regions of the sinus node, travels on the roof of the right atrial septum and bifurcates into 
the Bachman’s bundle directed to the left atrium and a second tract descending to the AV 
node, along the anterior part of the interatrial septum. The middle internodal tract (or 
Wenckebach’s pathway) descends within the septum anteriorly to the fossa ovalis and 
reaches the AV node. It is the most inconsistent and not well developed. The third tract is 
called posterior internodal tract (Thorel’s), which passes along the crista terminalis through 
the Eustachian valve, posteriorly to the coronary sinus. (James, 2001) 

5.3 Atrioventricular node and His bundle 
The AV node, also called node of Tawara, is located on the floor of the right atrium included 
within the triangle of Koch. (Ho, 2006) The proximal AV bundle continues into the portions of 
the AV node: transitional zone and compact node. It continues with the penetrating distal 
AV bundle (His bundle). (Anderson, 1998) The excitation from the SA travels through the 
AV node tissue following two functional and anatomical pathways, the slow and the fast 
pathways. The slow pathway crosses the isthmus between the coronary sinus and the 
tricuspid annulus and has slower conduction velocity but a shorter effective refractory 
period. (Anderson, 1998) The fast pathway is located superiorly and the fibers enter the 
node transversally in the distal portion of the compact node. It has a shorter conduction but 
a longer effective refractory period. Normal conduction occurs along the fast pathways, 
however, premature beats and higher rates find the fast pathway during the refractory 
period and conduct along the slow pathway. This system is a protective mechanism. In 
normal conditions the AV node-His bundle represents the only communication between the 
atria and ventricle. However, direct connections to the ventricular myocardium through the 
fibrous skeleton have been found. They constitute accessory pathways. The Mahaim fibers 
connect the penetrating portion of the distal bundle and the AV node to the ventricular 
myocardium. An additional aberrant pathway is the bundle of Kent. (Iaizzo, 2005) 

5.4 Bundle branches 
The AV bundle from the AV node penetrates the central fibrous body and passes through 
the membranous septum as a common bundle and splits into left and right bundle branches 
at the apex of the muscular septum. The left bundle branch splits into fascicles as it travels 
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portion of the interventricular septum, the left atrium and the left ventricle. It also receives 
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the epicardium, 10-20 mm long and 5 mm thick. The P cells within the node are capable of 
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tricuspid annulus and has slower conduction velocity but a shorter effective refractory 
period. (Anderson, 1998) The fast pathway is located superiorly and the fibers enter the 
node transversally in the distal portion of the compact node. It has a shorter conduction but 
a longer effective refractory period. Normal conduction occurs along the fast pathways, 
however, premature beats and higher rates find the fast pathway during the refractory 
period and conduct along the slow pathway. This system is a protective mechanism. In 
normal conditions the AV node-His bundle represents the only communication between the 
atria and ventricle. However, direct connections to the ventricular myocardium through the 
fibrous skeleton have been found. They constitute accessory pathways. The Mahaim fibers 
connect the penetrating portion of the distal bundle and the AV node to the ventricular 
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at the apex of the muscular septum. The left bundle branch splits into fascicles as it travels 
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into the left subendocardic portion of the interventricular septum. Midway to the apex of 
the left ventricle, the left bundle splits into two major divisions, the anterior and posterior 
branches or fascicles. The right bundle continues inferiorly as a continuation of the bundle 
of His in the subendocardic portion of the interventricular septum.(James, 2001; Snell, 2008)  

5.5 Purkinje fibers 
The Purkinje fibers constitute a network of conduction specialized fibers arising from both 
left and the right bundle branches. They are characterized by rapid conduction. The fibers 
extend within the myocardium and the trabeculation of the right and left ventricle. One of 
the most common conduction pathways is the moderator band, which contains Purkinje 
fibers from the right bundle branch. (Snell, 2008) 
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Low-Frequency Response and the Skin-Electrode
Interface in Dry-Electrode Electrocardiography

Cédric Assambo and Martin J. Burke
University of Dublin, Trinity College

Ireland

1. Introduction

In recent years, there has been a growing interest in the area of ambulatory electrocardiogram
(ECG) recording using dry or unjelled electrodes for long-term physiological monitoring. The
key advantage of dry electrodes is the elimination of allergic reactions or other forms of skin
irritation, commonly associated with electrolyte gels. It results in the improvement of patient
comfort and compliance, allowing the recording technique to cater for a wider range of users
such as elderly, the long-term ill, cardiac rehabilitation patients, paediatrics and neonates.
Furthermore, dry-electrode recording does not require preparation of the electrodes before
or after application apart from cleaning and they can be re-used almost indefinitely. The
durability of dry electrodes over gel-based ones permits their shelf-life to be extended and
considerably increases the length of time for which they can be worn, allowing long-term
ambulatory ECG recording at much lower cost. Embedded in remote telemetry systems,
dry-electrode ECG recording can thus contribute to the improvement of health care delivery.
The investigation of the use of dry electrodes for ECG monitoring has led to the development
of several pasteless electrode systems which overcome the disadvantages associated with
traditional approaches employing wet electrodes. The following question however was
immediately raised: how should the recording amplifier be adapted to the high source
impedance commonly associated with dry electrodes? Optimised designs of the amplifier
front-end have usually involved measuring the impedance of the skin-electrode interface
(Burke & Gleeson, 2000; Chang et al., 2010; Ko et al., 1970; Mühlsteff & Such, 2004; Valverde
et al., 2004). Some solutions have then inserted resistors in series with unbalanced electrodes
to match the effective impedance seen at each input of the recording amplifier (Lee et al.,
2006). Others have fabricated dry electrodes having impedances lower in magnitude than
those of conventional Ag/AgCl wet electrodes (Chang et al., 2010; Wolfe & Reinhold, 1974).
Commercial dry-electrode Holter monitors providing diagnostic quality ECGs are however
not available to date. The recent development in 2009 of a wearable two-channel dry-electrode
ECG system called care.mon has shown some prospects in the realisation of long-term
telemetric application in the near future (Fuhrhop et al., 2009). The designers have admitted,
however, that their prototype cannot get a signal of the same quality as that of a standard
electrode Holter system.
A critical source of error was soon identified as low-frequency distortion introduced at the
amplifier’s front-end. In this chapter, the authors show how high-pass filtering can affect
the quality of the recorded ECG waveform and demonstrate that the risk of distortion is
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exacerbated by the presence of a frequency dependent skin-electrode impedance. New
approaches for the determination of the model parameters of the skin-electrode interface and
new input impedance requirements for dry-electrode ECG recording are then presented.

2. Importance of the recorder’s low-frequency response in diagnostic quality
electrocardiography

To ensure that the electrocardiograph’s output signal is an accurate representation of
the physiological input waveform, the amplifier must faithfully reproduce all frequency
components of the ECG signal. Out-of-band high frequency interfering signals are normally
removed from the preamplifier’s output by implementing linear-phase low-pass filters.
However, distortion introduced by an inadequate low-frequency response cannot generally
be corrected in real time by simple filtering in the subsequent amplification stages (Tayler
& Vincent, 1983). The quality of the recorder’s low-frequency response relies therefore
on the performance of the preamplifier’s front-end. To prevent recording error caused by
the electrocardiograph, the preamplifier must preserve the ECG signal by providing flat
amplitude response and linear or zero phase within the ECG bandwidth (Berson & Pipberger,
1966; Tayler & Vincent, 1983). Failure to fulfil these requirements can have serious clinical
implications.

2.1 Diagnostic implications of a poor low-frequency response
Berson & Pipberger have demonstrated that ECG preamplifiers implementing high-pass
filters with a poor low-frequency amplitude response are a potential source of recording
error that may lead to misdiagnosis of serious cardiac conditions (Berson & Pipberger, 1966).
They concluded that an increase of the filter’s cutoff frequency above 0.05 Hz or a roll-off
greater than 6 dB per octave causes distortion of the S-T segment and the T wave of the ECG
waveform. Yet, accurate measurement of slow deflections, especially in the first quarter of
the ST-T complex, is usually crucial for assessing the condition of the heart and its response
to therapy (Symanski & Gettes, 1993). For example, acute myocardial infarction, commonly
known as heart attack, is frequently accompanied by an elevation of the ST segment but
inadequate low-frequency response reduces this elevation and can produce an inversion of
the terminal part of the T wave, as shown in Fig. 1(a). In addition, it was reported that the
ECG of patients who had suffered damage to the surface of the heart, referred to as an old
infarct, usually shows a downward sloping S-T segment (Berson & Pipberger, 1966). Fig.
1(b) illustrates how poor high-pass filtering can modify the S-T segment by converting a
downward slope into an upward slope, which has a different clinical interpretation.
It was found that low-frequency distortion is generally greater for abnormal than for normal
ECG waveforms and for records having essentially monophasic QRS patterns than for those
having biphasic QRS complexes. Besides, it was observed that the increase in heart rate
associated with exercise can alter recording error in an unpredictable manner (Berson &
Pipberger, 1966).
The works of Berson & Pipberger were followed by studies led by Tayler & Vincent on the
low-frequency phase response of filters used in ECG recording (Tayler & Vincent, 1983). They
concluded that phase nonlinearity is also a major source of recording error and misdiagnosis.
For example, myocardial ischaemia is a disease that reduces the supply of blood to the
heart muscle and normally manifests itself in the ECG record as elevation or depression of
ST segments (Lynch et al., 1980). However, false ST segment shifts such as those depicted
in Fig. 2(a) have been noted with ambulatory ECG recorders exhibiting a nonlinear phase
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Fig. 1. Oscilloscope photographs of the electrocardiogram of patients suffering from (a) acute
myocardial infarction and (b) an old infarct (from (Berson & Pipberger, 1966)). In both
pictures, the upper record, labelled (i), is obtained with a simulated dc amplifier system
while the lower record , (ii), is the output of a high-pass filter having a 0.5-Hz cutoff and
24-dB-per-octave roll-off.
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Fig. 2. Electrocardiograms showing the effect of low-frequency distortion caused by
nonlinear phase response in the bandwidth of the ECG signal from (a) a patient’s record and
(b) a synthesised ECG waveform (modified from (Tayler & Vincent, 1983)). In (b), the input
waveform is filtered by an all-pass network with flat amplitude response from dc to 10 kHz
(± 1 dB), but a nonlinear phase response with a breaking point approaching the fundamental
frequency of the input waveform.
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exacerbated by the presence of a frequency dependent skin-electrode impedance. New
approaches for the determination of the model parameters of the skin-electrode interface and
new input impedance requirements for dry-electrode ECG recording are then presented.
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waveform. Yet, accurate measurement of slow deflections, especially in the first quarter of
the ST-T complex, is usually crucial for assessing the condition of the heart and its response
to therapy (Symanski & Gettes, 1993). For example, acute myocardial infarction, commonly
known as heart attack, is frequently accompanied by an elevation of the ST segment but
inadequate low-frequency response reduces this elevation and can produce an inversion of
the terminal part of the T wave, as shown in Fig. 1(a). In addition, it was reported that the
ECG of patients who had suffered damage to the surface of the heart, referred to as an old
infarct, usually shows a downward sloping S-T segment (Berson & Pipberger, 1966). Fig.
1(b) illustrates how poor high-pass filtering can modify the S-T segment by converting a
downward slope into an upward slope, which has a different clinical interpretation.
It was found that low-frequency distortion is generally greater for abnormal than for normal
ECG waveforms and for records having essentially monophasic QRS patterns than for those
having biphasic QRS complexes. Besides, it was observed that the increase in heart rate
associated with exercise can alter recording error in an unpredictable manner (Berson &
Pipberger, 1966).
The works of Berson & Pipberger were followed by studies led by Tayler & Vincent on the
low-frequency phase response of filters used in ECG recording (Tayler & Vincent, 1983). They
concluded that phase nonlinearity is also a major source of recording error and misdiagnosis.
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response at low frequency. Results revealed that the ST segment is more readily affected
by distortion when the point of maximum phase nonlinearity approaches the fundamental
frequency of the ECG signal, as shown in Fig. 2(b). Once phase nonlinearity is introduced at
the preamplifier front stage, its effects on the ST-T complex cannot be corrected subsequently
without distorting other portions of the ECG waveform (Tayler & Vincent, 1983).

2.2 Low-frequency performance requirements of ECG recorders
The empirical findings reported in (Berson & Pipberger, 1966) and (Tayler & Vincent, 1983)
have played a key role in defining the frequency response requirements of ECG recorders
utilised today and can be considered as part of the classical publications in ECG signal
conditioning. The traditional performance criteria have been enhanced by the addition
of specifications in the time domain. The evolution of the low-frequency performance
requirements in electrocardiography can be summarised as follows:

1. In the mid 1960s, to ensure that recording errors are kept under 50 μV in the early portion
of the ST-T complex, Berson & Pipberger recommended that ECG preamplifiers provide
a 0.05-Hz low-frequency cutoff with a 6-dB-per-octave roll-off (Berson & Pipberger, 1966),
as achieved for example by a single-pole high-pass filter. The American Heart Association
(AHA) has endorsed this low-frequency cutoff since 1967 (A.H.A., 1967) and added in 1985
that the amplitude response should be flat to within ±6 % (0.5 dB) over the range 0.14 to
30 Hz (A.H.A., 1985), as shown in Fig. 3(a).

2. In the early 1980s, Tayler & Vincent recommended that phase linearity must be maintained
down to the fundamental frequency of the physiological signal to allow high fidelity in
the reproduction of the ECG waveform (Tayler & Vincent, 1983). The AHA has adopted
this recommendation since 1985 by specifying that the phase shift introduced by the
amplifier should not be greater than that introduced by a 0.05-Hz, single-pole high-pass
filter (A.H.A., 1985), as depicted in Fig. 3(b).

3. In more recent years, specification of the low-frequency performance of
electrocardiographs based on the system’s impulse response have been introduced.
The International Electrotechnical Committee (IEC) and the American National Standard
Institute (ANSI) have indicated that a 300-μVs impulse shall not yield an undershoot on
the ECG record from the isoelectric line of greater than 100 μV, and shall not produce a
recovery slope of greater than 300 μVs−1 following the end of the impulse (Berson et al.,
2007; I.E.C., 2001), as illustrated in Fig. 4.

2.3 The effect of high-pass filtering on the ECG signal
The performance requirements can be explained from a simple mathematical model of the
physiological signal and the recording system. From a signal viewpoint, the ECG waveform
may be regarded as a periodic time function represented by the following Fourier series:

f (t) =
∞

∑
n=0

[
αncos

(
2πnt
TR−R

)
+ βnsin

(
2πnt
TR−R

)]
(1)

where TR−R is the R − R interval or cardiac cycle time and αn and βn are the Fourier
coefficients. The fundamental frequency of the ECG signal is therefore determined by 1/TR−R
and defines the heart rate while its dc component is given by α0.
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Fig. 3. Plots of the low-frequency (a) amplitude and (b) phase criteria illustrated with a
0.05-Hz single-pole high-pass filter. The shaded areas indicate the “forbidden” areas as
specified by the AHA (A.H.A., 1985).
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Fig. 4. Plots of the impulse response requirements (from (Berson et al., 2007; I.E.C., 2001)).

If A(s) represents the preamplifier’s transfer function, its response to the ECG signal defined
in eq. (1) can then be modelled in the Laplace domain by the following product:

Vout(s) = A(s)
∫ ∞

0
f (t)e−st dt (2)

Vout(t), the preamplifier’s response to f (t) in the time domain, is obtained from the inverse
Laplace transform of eq. (2) by convolution once A(s) is known.
Taking s = jω, the preamplifier response may also be specified in the frequency domain as
follows:

A(jω) = |G(ω)| ejθ(ω) (3)

with |G(ω)| its amplitude response and θ(ω) its phase response. An ideal amplitude response
is achieved when |G(ω)| is frequency-independent, which in practice would require the ECG
recorder to be dc-coupled to the source signal. This approach is, however, inadvisable due
to excessive base-line wander and artefacts commonly associated with dc-coupled recording
equipment. In addition, the large dc offset inherently present with dry electrodes would
quickly limit the obtainable gain of the amplification stages due to saturation. AC-coupling is
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have played a key role in defining the frequency response requirements of ECG recorders
utilised today and can be considered as part of the classical publications in ECG signal
conditioning. The traditional performance criteria have been enhanced by the addition
of specifications in the time domain. The evolution of the low-frequency performance
requirements in electrocardiography can be summarised as follows:
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that the amplitude response should be flat to within ±6 % (0.5 dB) over the range 0.14 to
30 Hz (A.H.A., 1985), as shown in Fig. 3(a).

2. In the early 1980s, Tayler & Vincent recommended that phase linearity must be maintained
down to the fundamental frequency of the physiological signal to allow high fidelity in
the reproduction of the ECG waveform (Tayler & Vincent, 1983). The AHA has adopted
this recommendation since 1985 by specifying that the phase shift introduced by the
amplifier should not be greater than that introduced by a 0.05-Hz, single-pole high-pass
filter (A.H.A., 1985), as depicted in Fig. 3(b).

3. In more recent years, specification of the low-frequency performance of
electrocardiographs based on the system’s impulse response have been introduced.
The International Electrotechnical Committee (IEC) and the American National Standard
Institute (ANSI) have indicated that a 300-μVs impulse shall not yield an undershoot on
the ECG record from the isoelectric line of greater than 100 μV, and shall not produce a
recovery slope of greater than 300 μVs−1 following the end of the impulse (Berson et al.,
2007; I.E.C., 2001), as illustrated in Fig. 4.

2.3 The effect of high-pass filtering on the ECG signal
The performance requirements can be explained from a simple mathematical model of the
physiological signal and the recording system. From a signal viewpoint, the ECG waveform
may be regarded as a periodic time function represented by the following Fourier series:
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coefficients. The fundamental frequency of the ECG signal is therefore determined by 1/TR−R
and defines the heart rate while its dc component is given by α0.
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If A(s) represents the preamplifier’s transfer function, its response to the ECG signal defined
in eq. (1) can then be modelled in the Laplace domain by the following product:

Vout(s) = A(s)
∫ ∞

0
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Laplace transform of eq. (2) by convolution once A(s) is known.
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follows:

A(jω) = |G(ω)| ejθ(ω) (3)

with |G(ω)| its amplitude response and θ(ω) its phase response. An ideal amplitude response
is achieved when |G(ω)| is frequency-independent, which in practice would require the ECG
recorder to be dc-coupled to the source signal. This approach is, however, inadvisable due
to excessive base-line wander and artefacts commonly associated with dc-coupled recording
equipment. In addition, the large dc offset inherently present with dry electrodes would
quickly limit the obtainable gain of the amplification stages due to saturation. AC-coupling is
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therefore unavoidable in diagnostic quality ECG recording but it comes at the cost of potential
amplitude and phase distortion as outlined by (Berson & Pipberger, 1966) and (Tayler &
Vincent, 1983). Because of phase nonlinearity, a non-constant group delay is introduced into
the ECG waveform. Consequently the low-frequency components of the QRS complex are
affected by a greater time delay than its high-frequency components and can therefore become
superimposed on the ST complex (Tayler & Vincent, 1983). Low-frequency phase distortion
is avoided if the phase shift or the group delay is made negligible. For example, the phase
shift introduced by a first order high-pass filter is less than 6◦ from a decade above the cutoff
frequency, fc. Therefore, if frequencies in the vicinity of the fundamental ECG frequency are
to be reproduced, the 3-dB low-frequency point must be about 10 times lower than 1/TR−R.
Considering a lower limit heart rate of 30 beats per minute gives 1/TR−R = 0.5 Hz and thus
fc = 0.05 Hz.
The impulse response requirements complement the frequency response specifications to
ensure that the fast varying signals in the ECG, such as the QRS complex and P wave, do not
generate noticeable depressions as result of filtering. A visible undershoot could, in fact, be
misinterpreted as an additional ECG component. The Common Standards for Quantitative
Electrocardiography (CSE) issued by the European Union defines the presence of a QRS
deflection as a waveform having an amplitude greater than or equal to 20 μV and a duration
greater than or equal to 6 ms (Berson et al., 2007). Moreover, the slope of the response after the
end of the input impulse must be minimised to preserve base line stability and allow accurate
amplitude measurement of the P wave and the QRS complex.

3. Effect of the skin-electrode interface on the low-frequency performance of ECG
recording systems

High pass-filtering is commonly achieved in dry-electrode ECG recording by inserting a
dc-blocking capacitor, Cin, in series with each sensing electrode as shown in Fig. 5. Zs
simulates the skin-electrode impedance and Rin is the input impedance of the recording
amplifier. Two electrical models of have been principal used to simulate the skin-electrode
interface at the preamplifier’s input: a simple single-time-constant RC network and a more
complete double-time-constant model.

V1

Skin-electrode 
impedance

Zs
Cin Rin

Vin

high-pass filter     

Vo

Ideal 
amplifier

Fig. 5. Schematic representation of a simple high-pass filter at the amplifier’s front-end.
AC-coupling achieved this way allows dc offset voltages associated with polarisation effects
at the skin-electrode interface to be blocked from the amplifier input.

3.1 A single-time-constant model of the skin-electrode interface
Fig. 6 shows the general form of the single-time-constant skin-electrode model which
represents the impedance of the electrode with a resistor, Re, in parallel with a capacitor,
Ce, while the lumped resistance of the skin and body tissue is simulated by a resistor, Rs.
However, because of its relatively low value, Rs is often omitted. The electrode polarisation
potential is modelled with a dc voltage source, VDC.
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Fig. 6. A standard single-time-constant representation of the skin-electrode interface. The
half-cell potential, VDC, introduces a dc offset but does not contribute to the ac impedance of
the interface.

The parameter values stipulated in international standards issued by both IEC and ANSI are
Re =0.62 MΩ and Ce=4.7 nF (Berson et al., 2007; Bruce et al., 2007; I.E.C., 2001; 2005). In all
standards it is stated that the skin-electrode impedance in series with any patient-electrode
connection must not result in a signal reduction of more than 6% of that obtained without
the simulated impedance. The standards specify that the preamplifier must provide an input
impedance of at least 10 MΩ at 10 Hz, since the magnitude of the simulated source impedance
would be equal to 0.6 MΩ at this frequency. In addition, a low-frequency cutoff at 0.05 Hz
or lower must be achieved by the amplifier, with the simulated skin-electrode impedance
disconnected. Given Rin = 10 MΩ, an input capacitance Cin = 0.33 μF is required to
implement a 0.05-Hz single-pole high-pass filter at the amplifier input. It must be noted,
however, that the input impedance specification does not take into account phase response,
impulse response or attenuation below 10 Hz.
In 2004, considering the amplitude and phase criteria recommended by the AHA (A.H.A.,
1990), the relationship between input impedance requirement and source impedance was
analytically studied by Valverde et al (Valverde et al., 2004) who suggested that for frequencies
below 100 Hz, the interface can be approximated by the electrode resistance, Re. It was
concluded that an amplifier having a low-frequency input impedance Rin > 17Re would not
cause more than 6% attenuation at 0.14 Hz nor introduce a phase shift of greater than 6◦ at 0.5
Hz. Based on electrode resistance Re = 150 kΩ, Rin was estimated at 2.4 MΩ at 0.14 Hz and
the dc-blocking capacitor was chosen as Cin = 2.2 μF.
In 2000, Burke & Gleeson (Burke & Gleeson, 2000) estimated the component values of the
skin-electrode interface as Rs = 10 kΩ, Re = 1.4 MΩ and Ce= 20 nF. The preamplifier
front-end was designed so that its input impedance would be significantly larger than that
of the skin-electrode impedance to minimise interference caused by motion artefact and
unwanted common-mode voltages. It was reported that the attenuation caused by Rs is
limited to 1% for Rin > 100Rs and the phase shift introduced by Re and Ce is kept below
1◦ in the bandwidth of the ECG signal for Rin > 60Re. The designed low-power preamplifier
achieved an input impedance of 260 MΩ and was coupled with a 1 μF dc-blocking capacitor.
Emphasis must be placed on the fact that input impedance requirements have not traditionally
included impulse response criteria. The authors have therefore evaluated the performance
of simulated high-pass filters based on the models outlined above to assess whether or
not amplitude, phase and impulse response criteria would be simultaneously met when
the electrode impedance is taken into account. A program was written in MATLAB to
determine and plot the low-frequency response of the skin-electrode-amplifier networks
based on the provided skin-electrode model and the amplifier’s front-end design. Plots of
the simulated amplitude, phase and impulse responses, together with the recovery slope are
shown in Fig. 7. Results are compared with the response of a 0.05-Hz single-pole high-pass
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therefore unavoidable in diagnostic quality ECG recording but it comes at the cost of potential
amplitude and phase distortion as outlined by (Berson & Pipberger, 1966) and (Tayler &
Vincent, 1983). Because of phase nonlinearity, a non-constant group delay is introduced into
the ECG waveform. Consequently the low-frequency components of the QRS complex are
affected by a greater time delay than its high-frequency components and can therefore become
superimposed on the ST complex (Tayler & Vincent, 1983). Low-frequency phase distortion
is avoided if the phase shift or the group delay is made negligible. For example, the phase
shift introduced by a first order high-pass filter is less than 6◦ from a decade above the cutoff
frequency, fc. Therefore, if frequencies in the vicinity of the fundamental ECG frequency are
to be reproduced, the 3-dB low-frequency point must be about 10 times lower than 1/TR−R.
Considering a lower limit heart rate of 30 beats per minute gives 1/TR−R = 0.5 Hz and thus
fc = 0.05 Hz.
The impulse response requirements complement the frequency response specifications to
ensure that the fast varying signals in the ECG, such as the QRS complex and P wave, do not
generate noticeable depressions as result of filtering. A visible undershoot could, in fact, be
misinterpreted as an additional ECG component. The Common Standards for Quantitative
Electrocardiography (CSE) issued by the European Union defines the presence of a QRS
deflection as a waveform having an amplitude greater than or equal to 20 μV and a duration
greater than or equal to 6 ms (Berson et al., 2007). Moreover, the slope of the response after the
end of the input impulse must be minimised to preserve base line stability and allow accurate
amplitude measurement of the P wave and the QRS complex.

3. Effect of the skin-electrode interface on the low-frequency performance of ECG
recording systems

High pass-filtering is commonly achieved in dry-electrode ECG recording by inserting a
dc-blocking capacitor, Cin, in series with each sensing electrode as shown in Fig. 5. Zs
simulates the skin-electrode impedance and Rin is the input impedance of the recording
amplifier. Two electrical models of have been principal used to simulate the skin-electrode
interface at the preamplifier’s input: a simple single-time-constant RC network and a more
complete double-time-constant model.
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Fig. 5. Schematic representation of a simple high-pass filter at the amplifier’s front-end.
AC-coupling achieved this way allows dc offset voltages associated with polarisation effects
at the skin-electrode interface to be blocked from the amplifier input.

3.1 A single-time-constant model of the skin-electrode interface
Fig. 6 shows the general form of the single-time-constant skin-electrode model which
represents the impedance of the electrode with a resistor, Re, in parallel with a capacitor,
Ce, while the lumped resistance of the skin and body tissue is simulated by a resistor, Rs.
However, because of its relatively low value, Rs is often omitted. The electrode polarisation
potential is modelled with a dc voltage source, VDC.
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of the skin-electrode impedance to minimise interference caused by motion artefact and
unwanted common-mode voltages. It was reported that the attenuation caused by Rs is
limited to 1% for Rin > 100Rs and the phase shift introduced by Re and Ce is kept below
1◦ in the bandwidth of the ECG signal for Rin > 60Re. The designed low-power preamplifier
achieved an input impedance of 260 MΩ and was coupled with a 1 μF dc-blocking capacitor.
Emphasis must be placed on the fact that input impedance requirements have not traditionally
included impulse response criteria. The authors have therefore evaluated the performance
of simulated high-pass filters based on the models outlined above to assess whether or
not amplitude, phase and impulse response criteria would be simultaneously met when
the electrode impedance is taken into account. A program was written in MATLAB to
determine and plot the low-frequency response of the skin-electrode-amplifier networks
based on the provided skin-electrode model and the amplifier’s front-end design. Plots of
the simulated amplitude, phase and impulse responses, together with the recovery slope are
shown in Fig. 7. Results are compared with the response of a 0.05-Hz single-pole high-pass
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filter equivalent to the amplifier operating with a dc-blocking capacitor but omitting the
skin-electrode impedance. A summary is given in Table 1.

max. phase max. max.

magitude @ undershoot slope

0.14-30 Hz 0.5 Hz after impulse

[dB] [◦] [mV] [mVs−1]

specification limit -0.5 6 -0.1 0.3

0.5-Hz single-pole high-pass filter -0.5 5.8 -0.093 0.03

IEC min. input impedance requirement −0.96 5.3 −0.25 53.6

solution proposed by Valverde et al -0.5 4.1 −0.11 0.49

solution proposed by Burke & Gleeson -0.05 0.1 -0.02 0.55

Table 1. Low-frequency performance of simulated skin-electrode-amplifier networks
compared to that of a single-pole 0.05-Hz high-pass filter. Bold case indicates that
performance requirement is not met.

Columns 2 and 3 indicate the maximum attenuation in the frequency range 0.14 to 30 Hz and
the phase shift at 0.5 Hz, respectively. Plots of the frequency response are presented in Figs.
7(a) and 7(b), which suggest that the amplitude and phase criteria would not be met if the IEC
minimum input impedance requirement was applied with the electrodes used in international
standards. It can be observed that the capacitive component of the simulated skin-electrode
introduces additional phase shift into the signal for frequencies above 10 Hz. However, these
criteria are fulfilled in the case of designs suggested by Valverde et al. and Burke & Gleeson.
Plots of the time response of the systems to a 300-mVs input impulse are presented in Fig.
7(c). The fourth column of Table 1 gives the maximum value of the undershoot following
the input impulse. It can be seen that the simulated impulse response using the minimum
input impedance specified by the IEC or Valverde’s solution would result in undershoots
greater than the specified limit. The threshold is however respected for the simulated system
based on the design proposed by Burke & Gleeson. Fig. 7(d) shows the corresponding
recovery slope and the last column of Table 1 gives its maximum value that must be limited
in magnitude to 0.3 mVs−1 to meet requirements. Results indicate that all three simulated
skin-electrode-amplifier networks would exceed the specified maximum recovery slope. The
recovery slope is significantly high when the IEC minimum input impedance requirement
is followed since it is expected to reach a maximum of 55.6 mVs−1, about 185 times the
specification limit.
These results demonstrate that amplitude, phase and impulse response criteria are not met
if the minimum IEC input impedance requirement is applied. In addition, an unsatisfactory
recovery slope is exhibited by electrocardiographs despite following the amplitude and phase
recommendations. The results also demonstrate that the risk of signal distortion can only be
assessed with accuracy when the skin-electrode impedance is taken into account.
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Fig. 7. Plots of (a) the amplitude response, (b) phase response, (c) impulse response and (d)
recovery slope of the simulated skin-electrode-amplifier networks compared to that of a
single-pole 0.05-Hz high-pass filter.

3.2 A double-time-constant model of the skin-electrode interface
Using the double-time-constant model depicted in Fig. 8(a), Mühlsteff et al. investigated in
2004 the complex impedance of the skin-electrode interface of silicone rubber dry electrodes
(Mühlsteff & Such, 2004). Measurements, taken in the frequency range 0.1 to 1000 Hz
indicated that the ac behaviour of the skin-electrode contact interface is not accurately
simulated by a single parallel RC-model. They proposed a double RC model with parameter
values in equilibrium estimated as: R1s + R3e = 8 kΩ, R2s = 140 kΩ, C2s = 3μF, R4e = 150kΩ
and C4e = 180 nF.

31Low-Frequency Response and the Skin-Electrode Interface in Dry-Electrode Electrocardiography



8 Will-be-set-by-IN-TECH

filter equivalent to the amplifier operating with a dc-blocking capacitor but omitting the
skin-electrode impedance. A summary is given in Table 1.

max. phase max. max.

magitude @ undershoot slope

0.14-30 Hz 0.5 Hz after impulse

[dB] [◦] [mV] [mVs−1]

specification limit -0.5 6 -0.1 0.3

0.5-Hz single-pole high-pass filter -0.5 5.8 -0.093 0.03

IEC min. input impedance requirement −0.96 5.3 −0.25 53.6

solution proposed by Valverde et al -0.5 4.1 −0.11 0.49

solution proposed by Burke & Gleeson -0.05 0.1 -0.02 0.55

Table 1. Low-frequency performance of simulated skin-electrode-amplifier networks
compared to that of a single-pole 0.05-Hz high-pass filter. Bold case indicates that
performance requirement is not met.

Columns 2 and 3 indicate the maximum attenuation in the frequency range 0.14 to 30 Hz and
the phase shift at 0.5 Hz, respectively. Plots of the frequency response are presented in Figs.
7(a) and 7(b), which suggest that the amplitude and phase criteria would not be met if the IEC
minimum input impedance requirement was applied with the electrodes used in international
standards. It can be observed that the capacitive component of the simulated skin-electrode
introduces additional phase shift into the signal for frequencies above 10 Hz. However, these
criteria are fulfilled in the case of designs suggested by Valverde et al. and Burke & Gleeson.
Plots of the time response of the systems to a 300-mVs input impulse are presented in Fig.
7(c). The fourth column of Table 1 gives the maximum value of the undershoot following
the input impulse. It can be seen that the simulated impulse response using the minimum
input impedance specified by the IEC or Valverde’s solution would result in undershoots
greater than the specified limit. The threshold is however respected for the simulated system
based on the design proposed by Burke & Gleeson. Fig. 7(d) shows the corresponding
recovery slope and the last column of Table 1 gives its maximum value that must be limited
in magnitude to 0.3 mVs−1 to meet requirements. Results indicate that all three simulated
skin-electrode-amplifier networks would exceed the specified maximum recovery slope. The
recovery slope is significantly high when the IEC minimum input impedance requirement
is followed since it is expected to reach a maximum of 55.6 mVs−1, about 185 times the
specification limit.
These results demonstrate that amplitude, phase and impulse response criteria are not met
if the minimum IEC input impedance requirement is applied. In addition, an unsatisfactory
recovery slope is exhibited by electrocardiographs despite following the amplitude and phase
recommendations. The results also demonstrate that the risk of signal distortion can only be
assessed with accuracy when the skin-electrode impedance is taken into account.
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Fig. 7. Plots of (a) the amplitude response, (b) phase response, (c) impulse response and (d)
recovery slope of the simulated skin-electrode-amplifier networks compared to that of a
single-pole 0.05-Hz high-pass filter.

3.2 A double-time-constant model of the skin-electrode interface
Using the double-time-constant model depicted in Fig. 8(a), Mühlsteff et al. investigated in
2004 the complex impedance of the skin-electrode interface of silicone rubber dry electrodes
(Mühlsteff & Such, 2004). Measurements, taken in the frequency range 0.1 to 1000 Hz
indicated that the ac behaviour of the skin-electrode contact interface is not accurately
simulated by a single parallel RC-model. They proposed a double RC model with parameter
values in equilibrium estimated as: R1s + R3e = 8 kΩ, R2s = 140 kΩ, C2s = 3μF, R4e = 150kΩ
and C4e = 180 nF.
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Fig. 8. Figures showing (a) the equivalent electrical representation of the skin-electrode
assumed by Mühlsteff et al and (b) a sample ECG recording (from (Mühlsteff & Such, 2004)).

An instrumentation amplifier having 10 MΩ input impedance was then used for recording
the ECG shown in Fig. 8(b). The record clearly displays the QRS complex and the T
wave. The P wave can also be identified despite its low amplitude. However, it can be
observed that the baseline is not horizontal, especially immediately following abrupt voltage
variations associated with the QRS complex and the T wave. Such effects can be attributed to
low-frequency distortion similar to that reported by Tayler & Vincent (Tayler & Vincent, 1983).
The authors have investigated the origin of the observed distortion by reproducing the
low-frequency response of the dry-electrode design suggested Mühlsteff et al. Several
different input capacitance values available in non-electrolytic form were used, ranging
from 0.33 to 3.3 μF. Given Rin = 10 MΩ, the 3-dB point of the simulated high-pass filters
varies between 0.05 and 0.005 Hz, and therefore meets AHA recommendations. This allows
assessment of whether or not the low-frequency distortion suspected on the ECG recording of
Fig. 8(b) might be caused by a degradation of the frequency response due to the presence of
the double-time-constant skin-electrode interface. Results are presented in Fig. 9 and Table 2.
Results from the simulated skin-electrode-amplifier network using the double-time-constant
model indicate that for Rin = 10 MΩ, a cutoff frequency of about 0.03 Hz or lower is needed
to fulfil both amplitude and phase requirements (Cin ≥ 0.47 μF). It suggests that the presence
of the modelled skin-electrode interface impedance has increased the effective 3-dB point of
the skin-electrode-amplifier network. However, this increase alone cannot explain the level
of distortion observed on the ECG of Fig. 8(b). Frequency response plots shown in Figs. 9(a)
and 9(b) suggest that the amplitude and phase response would remain very close to that of a
0.05-Hz single-pole high-pass filter if Cin was equal to 0.33 μF.
Fig. 9(c) gives plots of the systems’ response to a 3-mV pulse of 100-ms duration. As Rin
remains constant, the offset following the input impulse is less than 0.1 mV for Cin ≥ 1 μF,
suggesting that in the presence of the skin-electrode impedance defined above, a lower 3-dB
point of about 16 mHz is needed to meet the requirement of maximum undershoot. Fig. 9(d)
is a graph of the recovery slope after the 300-mVs input impulse. The maximum slope of the
response immediately after the impulse is about 1.6 mVs−1, five times the allowed limit, and
shows little variation when Cin is increased from 0.33 μF to 3.3 μF. In comparison, the recovery
slope exhibited by a 0.05 Hz high-pass filter is not greater than 0.03 mVs−1. Consequently, the
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slope of the impulse response is not satisfactory for the range of input capacitances simulated.
Excessively high recovery slope can therefore explain why the baseline of the ECG recording
of Fig. 8(b) is not horizontal, immediately following abrupt voltage variations.
These results confirm that amplitude and phase requirements provide necessary conditions
for the reproduction of low-frequency components of the ECG but they are not sufficient to
prevent distortion and possible clinical misinterpretation of the waveform.
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Fig. 9. Plots of (a) the amplitude response, (b) phase response, (c) impulse response and (d)
recovery slope of simulated transfer functions based on the design suggested by Mühlsteff et
al. compared to that of a 0.05-Hz single-pole high-pass filter.
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Fig. 8. Figures showing (a) the equivalent electrical representation of the skin-electrode
assumed by Mühlsteff et al and (b) a sample ECG recording (from (Mühlsteff & Such, 2004)).

An instrumentation amplifier having 10 MΩ input impedance was then used for recording
the ECG shown in Fig. 8(b). The record clearly displays the QRS complex and the T
wave. The P wave can also be identified despite its low amplitude. However, it can be
observed that the baseline is not horizontal, especially immediately following abrupt voltage
variations associated with the QRS complex and the T wave. Such effects can be attributed to
low-frequency distortion similar to that reported by Tayler & Vincent (Tayler & Vincent, 1983).
The authors have investigated the origin of the observed distortion by reproducing the
low-frequency response of the dry-electrode design suggested Mühlsteff et al. Several
different input capacitance values available in non-electrolytic form were used, ranging
from 0.33 to 3.3 μF. Given Rin = 10 MΩ, the 3-dB point of the simulated high-pass filters
varies between 0.05 and 0.005 Hz, and therefore meets AHA recommendations. This allows
assessment of whether or not the low-frequency distortion suspected on the ECG recording of
Fig. 8(b) might be caused by a degradation of the frequency response due to the presence of
the double-time-constant skin-electrode interface. Results are presented in Fig. 9 and Table 2.
Results from the simulated skin-electrode-amplifier network using the double-time-constant
model indicate that for Rin = 10 MΩ, a cutoff frequency of about 0.03 Hz or lower is needed
to fulfil both amplitude and phase requirements (Cin ≥ 0.47 μF). It suggests that the presence
of the modelled skin-electrode interface impedance has increased the effective 3-dB point of
the skin-electrode-amplifier network. However, this increase alone cannot explain the level
of distortion observed on the ECG of Fig. 8(b). Frequency response plots shown in Figs. 9(a)
and 9(b) suggest that the amplitude and phase response would remain very close to that of a
0.05-Hz single-pole high-pass filter if Cin was equal to 0.33 μF.
Fig. 9(c) gives plots of the systems’ response to a 3-mV pulse of 100-ms duration. As Rin
remains constant, the offset following the input impulse is less than 0.1 mV for Cin ≥ 1 μF,
suggesting that in the presence of the skin-electrode impedance defined above, a lower 3-dB
point of about 16 mHz is needed to meet the requirement of maximum undershoot. Fig. 9(d)
is a graph of the recovery slope after the 300-mVs input impulse. The maximum slope of the
response immediately after the impulse is about 1.6 mVs−1, five times the allowed limit, and
shows little variation when Cin is increased from 0.33 μF to 3.3 μF. In comparison, the recovery
slope exhibited by a 0.05 Hz high-pass filter is not greater than 0.03 mVs−1. Consequently, the
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slope of the impulse response is not satisfactory for the range of input capacitances simulated.
Excessively high recovery slope can therefore explain why the baseline of the ECG recording
of Fig. 8(b) is not horizontal, immediately following abrupt voltage variations.
These results confirm that amplitude and phase requirements provide necessary conditions
for the reproduction of low-frequency components of the ECG but they are not sufficient to
prevent distortion and possible clinical misinterpretation of the waveform.
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Fig. 9. Plots of (a) the amplitude response, (b) phase response, (c) impulse response and (d)
recovery slope of simulated transfer functions based on the design suggested by Mühlsteff et
al. compared to that of a 0.05-Hz single-pole high-pass filter.
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max. phase max. max.
magnitude @ undershoot slope
0.14-30 Hz 0.5 Hz after impulse

[dB] [◦] [mV] [mVs−1]
specification limit -0.5 6 -0.1 0.3
0.5-Hz single-pole high-pass filter -0.5 5.8 -0.093 0.03
Cin=0.33 μF −0.72 5.9 −0.14 1.68
Cin=0.47 μF -0.49 4.3 −0.11 1.65
Cin=1 μF -0.29 2.3 -0.08 1.63
Cin=2.2 μF -0.25 1.3 -0.07 1.62
Cin=3.3 μF -0.25 1 -0.06 1.62

Table 2. Low-frequency performance of simulated transfer functions based on the design
model by Mühlsteff et al. compared to that of a single-pole 0.05-Hz high-pass filter: Rin = 10
MΩ, R1s + R3e = 8 kΩ, R2s = 140 kΩ, C2s = 3 μF, C4e = 0.18 μF. Bold case indicates that the
requirement is not met.

3.3 Discussion
Simulation results have shown that the input impedance specification stated in international
standards is not consistent with the accompanying low-frequency performance requirements.
In addition, despite fulfilling both amplitude and phase criteria, some designs may fall
short of meeting the impulse response requirements when the skin-electrode impedance is
taken into account for dry-electrode recording. For the range of input capacitance values
used, simulations based on the double-time-constant skin-electrode model indicate that the
recovery slope is not significantly affected by a change of Cin. This can be explained by
the presence of capacitive elements as small as 0.18 μF in the skin-electrode interface. The
reactance of the electrode impedance is therefore considerably greater than that of Cin and
dominates the reactance of the skin-electrode-amplifier network. It can therefore be concluded
that:

1. Impulse response considerations must be included as an inherent part of the design
strategy of new dry-electrode preamplifiers.

2. A complete characterisation of the skin-electrode interface is fundamental for the
appropriate design of the amplifier front-end.

3. Meeting the impulse response specifications implies tighter requirements than compliance
with the amplitude and phase criteria when the electrode impedance is taken into account.

4. The optimum values of Rin and Cin must be determined in relation to the parameter values
of the skin-electrode interface so that all low-frequency requirements are simultaneously
fulfilled.

4. New methods of characterisation of the skin-electrode interface

Previous studies have demonstrated that measurement of the dc skin-electrode impedance
does not provide sufficient information. Because of the capacitive components, corresponding
to the epidermal layer and the electrode’s permittivity, ac measurement is needed to obtain
an accurate estimate of the skin-electrode impedance (Zepeda-Carapia et al., 2005). The
research group of which the authors are members has attempted to measure the resistive
and capacitive properties of wet and dry electrodes using two experimental approaches,
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namely frequency-domain based and time-domain based measurement. Several identification
algorithms were also considered by the group: an asymptotic method requiring only five
points extracted from the frequency response and curve fitting based on least squares error
minimisation algorithms.

4.1 Instrumentation set-up
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Fig. 10. Schematic representation of the measurement set-up assuming a
double-time-constant model.

Impedance spectroscopy is generally the method applied to characterise the skin-electrode
interface in the frequency range 0.05 Hz to 1 MHz (Burke & Gleeson, 2000; Chang et al.,
2010; Gruetzmann et al., 2007; Ko et al., 1970; Mühlsteff & Such, 2004; Valverde et al., 2004;
Zepeda-Carapia et al., 2005). The measured impedance is then fitted to an equivalent electrical
model to identify the resistive and capacitive elements of the interface. Fig. 10 shows the
instrumentation set-up considered by the authors for measuring the frequency response of
the skin-electrode interface which consists of a dual electrode configuration connected to a
resistive load, Rin. One electrode is fed with a sinusoidal voltage from a signal analyser
(Agilent 35670A) and connected to the body. A second electrode is used to detect the resulting
signal from the skin and feeds it to the input of the analyser. The selected signal analyser can
generate sinusoidal signals in the frequency range 15 mHz to 51 kHz.

4.2 The proposed identification method
Fig. 11 shows the asymptotic bode diagram and the simulated frequency response of the
interface based on the parameter values reported by Mühlsteff et al. (R1s + R3e = 8 kΩ,
R2s = 140 kΩ, C2s = 3 μF, R4e = 150 kΩ , C4e = 180 nF and Rin = 10 MΩ) (Mühlsteff &
Such, 2004). For the model provided, the phase response exhibits three local extrema at f1 =
0.45 Hz, f2 = 1.40 Hz and f3 = 5.26 Hz. The authors have developed a novel method for the
characterisation of the interface that relies upon knowledge of these three frequencies, and the
attenuation introduced by the interface at low and high frequency. Taking τ2s = R2sC2s and
τ4e = R4eC4e, the phase measured at the amplifier input and its first derivative with respect to
the angular frequency ω are given in eqs. (4) and (5) as:

ϕ (ω) = tan−1

⎛
⎝ ω R2sτ2s+R4eτ4e

Rin+2(R1s+R2s+R3e+R4e)
+ ω3τ2sτ4e

R4eτ2+R2sτ4e
Rin+2(R1s+R2s+R3e+R4e)

1+ω2 τ2
2s [Rin+2(R1s+R3e+R4e)]+τ2

4e [Rin+2(R1s+R3e+R4e)]
Rin+2(R1s+R2s+R3e+R4e)

+ω4 [Rin+2(R1s+R3e)]τ2
2sτ2

4e
Rin+2(R1s+R2s+R3e+R4e)

⎞
⎠

(4)
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max. phase max. max.
magnitude @ undershoot slope
0.14-30 Hz 0.5 Hz after impulse

[dB] [◦] [mV] [mVs−1]
specification limit -0.5 6 -0.1 0.3
0.5-Hz single-pole high-pass filter -0.5 5.8 -0.093 0.03
Cin=0.33 μF −0.72 5.9 −0.14 1.68
Cin=0.47 μF -0.49 4.3 −0.11 1.65
Cin=1 μF -0.29 2.3 -0.08 1.63
Cin=2.2 μF -0.25 1.3 -0.07 1.62
Cin=3.3 μF -0.25 1 -0.06 1.62

Table 2. Low-frequency performance of simulated transfer functions based on the design
model by Mühlsteff et al. compared to that of a single-pole 0.05-Hz high-pass filter: Rin = 10
MΩ, R1s + R3e = 8 kΩ, R2s = 140 kΩ, C2s = 3 μF, C4e = 0.18 μF. Bold case indicates that the
requirement is not met.

3.3 Discussion
Simulation results have shown that the input impedance specification stated in international
standards is not consistent with the accompanying low-frequency performance requirements.
In addition, despite fulfilling both amplitude and phase criteria, some designs may fall
short of meeting the impulse response requirements when the skin-electrode impedance is
taken into account for dry-electrode recording. For the range of input capacitance values
used, simulations based on the double-time-constant skin-electrode model indicate that the
recovery slope is not significantly affected by a change of Cin. This can be explained by
the presence of capacitive elements as small as 0.18 μF in the skin-electrode interface. The
reactance of the electrode impedance is therefore considerably greater than that of Cin and
dominates the reactance of the skin-electrode-amplifier network. It can therefore be concluded
that:

1. Impulse response considerations must be included as an inherent part of the design
strategy of new dry-electrode preamplifiers.

2. A complete characterisation of the skin-electrode interface is fundamental for the
appropriate design of the amplifier front-end.

3. Meeting the impulse response specifications implies tighter requirements than compliance
with the amplitude and phase criteria when the electrode impedance is taken into account.

4. The optimum values of Rin and Cin must be determined in relation to the parameter values
of the skin-electrode interface so that all low-frequency requirements are simultaneously
fulfilled.

4. New methods of characterisation of the skin-electrode interface

Previous studies have demonstrated that measurement of the dc skin-electrode impedance
does not provide sufficient information. Because of the capacitive components, corresponding
to the epidermal layer and the electrode’s permittivity, ac measurement is needed to obtain
an accurate estimate of the skin-electrode impedance (Zepeda-Carapia et al., 2005). The
research group of which the authors are members has attempted to measure the resistive
and capacitive properties of wet and dry electrodes using two experimental approaches,
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namely frequency-domain based and time-domain based measurement. Several identification
algorithms were also considered by the group: an asymptotic method requiring only five
points extracted from the frequency response and curve fitting based on least squares error
minimisation algorithms.

4.1 Instrumentation set-up
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Fig. 10. Schematic representation of the measurement set-up assuming a
double-time-constant model.

Impedance spectroscopy is generally the method applied to characterise the skin-electrode
interface in the frequency range 0.05 Hz to 1 MHz (Burke & Gleeson, 2000; Chang et al.,
2010; Gruetzmann et al., 2007; Ko et al., 1970; Mühlsteff & Such, 2004; Valverde et al., 2004;
Zepeda-Carapia et al., 2005). The measured impedance is then fitted to an equivalent electrical
model to identify the resistive and capacitive elements of the interface. Fig. 10 shows the
instrumentation set-up considered by the authors for measuring the frequency response of
the skin-electrode interface which consists of a dual electrode configuration connected to a
resistive load, Rin. One electrode is fed with a sinusoidal voltage from a signal analyser
(Agilent 35670A) and connected to the body. A second electrode is used to detect the resulting
signal from the skin and feeds it to the input of the analyser. The selected signal analyser can
generate sinusoidal signals in the frequency range 15 mHz to 51 kHz.

4.2 The proposed identification method
Fig. 11 shows the asymptotic bode diagram and the simulated frequency response of the
interface based on the parameter values reported by Mühlsteff et al. (R1s + R3e = 8 kΩ,
R2s = 140 kΩ, C2s = 3 μF, R4e = 150 kΩ , C4e = 180 nF and Rin = 10 MΩ) (Mühlsteff &
Such, 2004). For the model provided, the phase response exhibits three local extrema at f1 =
0.45 Hz, f2 = 1.40 Hz and f3 = 5.26 Hz. The authors have developed a novel method for the
characterisation of the interface that relies upon knowledge of these three frequencies, and the
attenuation introduced by the interface at low and high frequency. Taking τ2s = R2sC2s and
τ4e = R4eC4e, the phase measured at the amplifier input and its first derivative with respect to
the angular frequency ω are given in eqs. (4) and (5) as:

ϕ (ω) = tan−1

⎛
⎝ ω R2sτ2s+R4eτ4e

Rin+2(R1s+R2s+R3e+R4e)
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Rin+2(R1s+R2s+R3e+R4e)
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⎠
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Fig. 11. Plots of (a) the magnitude response and (b) the phase response of the skin-electrode
interface as defined by Mühlsteff et al. for Rin = 10 MΩ.

The three frequencies f1, f2 and f3 identified in Fig. 11(b) are associated with three angular
frequencies ω1 = 2π f1, ω2 = 2π f2 and ω3 = 2π f3 that correspond to the positive and real
solutions of dϕ(ω)

dω = 0. The following system of equations is then obtained:
⎧⎪⎪⎨
⎪⎪⎩

1 + a1ω2
1 + a2ω4

1 + a3ω6
1 = 0 (9)

1 + a1ω2
2 + a2ω4

2 + a3ω6
2 = 0 (10)

1 + a1ω2
3 + a2ω4

3 + a3ω6
3 = 0 (11)
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It can be shown that the system defined in eqs. (9) to (11) can be rearranged to give the
coefficients as:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a1 = − 1
ω2

1
− 1

ω2
2
− 1

ω2
3

(12)

a2 =
ω2

1 + ω2
2 + ω2

3
ω2

1ω2
2ω2

3
(13)

a3 = − 1
ω2

1ω2
2ω2

3
(14)

In addition, the magnitude response shown in Fig. 11(a) exhibits two asymptotes at low and
high frequency corresponding to:

a4 = lim
ω→0

����
Vin(ω)

Vs(ω)

���� =
Rin

Rin + 2 (R1s + R2s + R3e + R4e)
(15)

and

a5 = lim
ω→∞

����
Vin(ω)

Vs(ω)

���� =
Rin

Rin + 2 (R1s + R3e)
(16)

It can be noted that the magnitude response reaches more than 99.99% of its asymptotic values
at 15 mHz and 1 kHz, giving good estimates of a4 and a5. The coefficients defined in eqs. (12)
to (16) provide sufficient information for the identification of q = τ2sτ4e as the positive and
real solution of the following polynomial equation:

− 3a2
3a2

5
a2

4
− a1a3a5

a2
4

q2 +
a2
a4

q4 +
3
a5

q6 = 0 (17)

After solving eq. (17), the time constants are obtained from the positive solutions of the
following equation:

1 +

�
a1a4q2 + 3a3a5

� �
a3a5 − a4q3� a5 − (a4 − a5) q3 �a4q3 + a3a5

�
a4

a4
�
a3a2

5 − a2
4q3

�
q4

τ2 +
1
q2 τ4 = 0 (18)

Two valid solutions are then available for τ. In previous literature the skin contribution is
considered to be dominant, therefore the larger of the two solutions can be allocated to τ2s,
the second one being τ4e. Eqs. (12) to (18) are then utilised to determine the model parameters
as:

R4e =
Rin
2

(a5 − a4)
�
a4q4 + a5a3τ2

2s
�

(a3a5 − a4q3) a4a5
�
τ2

2s − q
� (19)

R2s =
Rin
2

(a5 − a4)

a4a5
− R4e (20)

C2s =
τ2s
R2s

(21)
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Fig. 11. Plots of (a) the magnitude response and (b) the phase response of the skin-electrode
interface as defined by Mühlsteff et al. for Rin = 10 MΩ.

The three frequencies f1, f2 and f3 identified in Fig. 11(b) are associated with three angular
frequencies ω1 = 2π f1, ω2 = 2π f2 and ω3 = 2π f3 that correspond to the positive and real
solutions of dϕ(ω)

dω = 0. The following system of equations is then obtained:
⎧⎪⎪⎨
⎪⎪⎩

1 + a1ω2
1 + a2ω4

1 + a3ω6
1 = 0 (9)

1 + a1ω2
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2 = 0 (10)

1 + a1ω2
3 + a2ω4

3 + a3ω6
3 = 0 (11)
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It can be shown that the system defined in eqs. (9) to (11) can be rearranged to give the
coefficients as:
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In addition, the magnitude response shown in Fig. 11(a) exhibits two asymptotes at low and
high frequency corresponding to:
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It can be noted that the magnitude response reaches more than 99.99% of its asymptotic values
at 15 mHz and 1 kHz, giving good estimates of a4 and a5. The coefficients defined in eqs. (12)
to (16) provide sufficient information for the identification of q = τ2sτ4e as the positive and
real solution of the following polynomial equation:
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After solving eq. (17), the time constants are obtained from the positive solutions of the
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Two valid solutions are then available for τ. In previous literature the skin contribution is
considered to be dominant, therefore the larger of the two solutions can be allocated to τ2s,
the second one being τ4e. Eqs. (12) to (18) are then utilised to determine the model parameters
as:
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C4e =
q

τ2sR4e
(22)

R1s + R3e =
Rin
2

(1 − a5)

a5
(23)

Only solutions that are real and positive are relevant for the purpose of parameter
identification. For example, the five reference points indicated in the bode plot of Fig. 11
suggest the following coefficient values:

a1 = −0.14s2rad−2 (24)

a2 = 1.7s2rad−2 (25)

a3 = −1.48s2rad−2 (26)

a4 = 0.998 (27)

a5 = 0.944 (28)

Applying theses values to eq. (17) yields:

− 7.78 x 10−12 − 2.30 x 10−7q2 + 1.8 x 10−3q4 + 3q6 = 0 (29)

Eq. (29) has a unique positive real solution at q = τ2sτ4e = 0.0114 s2. This value is then
inserted into eq. (18) to solve the following equation:

1 − 1.39 x 103τ2 + 7.71 x 103τ4 = 0 (30)

The two positive solutions are: τ2s = 0.423 s and τ4e = 0.027 s. Taking Rin = 10 MΩ, the
model parameters can then be deduced from eqs. (19) to (23) as:

R4e � 148 kΩ, R2s � 139 kΩ, C2s � 3 μF, C4e � 182 nF and R1s + R3e � 10 kΩ.

The small discrepancy observed between the estimated values and the simulated parameters
is due to floating point approximation error in solving eqs. (17) and (18) and the limited
precision with which a4 and a5 can be measured. The resolution method is described in more
detail by the authors in (Assambo et al., 2006).

4.3 Measurement results
A hardware model of the skin-electrode interface was constructed using actual resistors and
capacitors, based on the model provided by Mühlsteff et al. to assess the ability of the signal
analyser to reproduce the simulated results shown in Fig. 11. A pair of 3.3-μF and 220-nF
multi-layer ceramic capacitors simulated the effects of C2s and C4e, respectively, the original
capacitance values (3 μF and 180 nF) being unavailable. Fig. 12 compares the measurement
of magnitude and phase to that obtained as a result of the new identification method. Raw
measurement data are filtered to remove measurement noise and to facilitate the detection of
the two peaks and the trough in the phase response. The frequency of the three local extrema
in the phase response and the two extremum values in the magnitude response allow the five
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coefficients to be estimated and and the frequency response of the network to be simulated.
A theoretical curve is included to assess the precision of the measurement and the accuracy of
the fitted model.
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Fig. 12. Comparison between the measured data ((a) magnitude and (b) phase) and data
obtained as a result of the novel identification procedure for a constructed hardware model
defined in Table 3.

The accuracy of the method can be appreciated from the results shown in Table 3, which
suggest that if the skin-electrode interface in equilibrium behaves in a similar way as that
measured by Mühlsteff et al., the proposed method would then provide a fast and accurate
identification tool.

actual component value estimated value % error

R1s + R3e [kΩ] 8.20 8.47 +3.3 %

R2s [kΩ] 140.00 141.21 +0.9%

R4e [kΩ] 150.45 157.99 +5.1 %

C2s [μF] 3.340 3.395 +1.6%

C4e [μF] 0.219 0.218 -0.4 %

Table 3. Accuracy of the new identification method assessed from a constructed hardware
model.

Fig. 13 shows measurements obtained in vivo with wet and dry electrodes which are
significantly different than the results obtained with the hardware model.
It was observed that very often the phase response did not display two distinct peaks but
only a single peak as shown in Fig. 13(a). This means that the polynomial p(ω) = 1 + a1ω2 +
a2ω4 + a3ω6 has one real and positive root (ωi), one real and negative root (−ωi) and four
complex conjugate roots (ωj, ω∗

j , −ωj and −ω∗
j ). Similar results have been obtained from

simulation when the time constant τ2s and τ4e differ by less than one order of magnitude, as
shown in Fig. 14.
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C4e =
q

τ2sR4e
(22)

R1s + R3e =
Rin
2

(1 − a5)

a5
(23)

Only solutions that are real and positive are relevant for the purpose of parameter
identification. For example, the five reference points indicated in the bode plot of Fig. 11
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Eq. (29) has a unique positive real solution at q = τ2sτ4e = 0.0114 s2. This value is then
inserted into eq. (18) to solve the following equation:

1 − 1.39 x 103τ2 + 7.71 x 103τ4 = 0 (30)

The two positive solutions are: τ2s = 0.423 s and τ4e = 0.027 s. Taking Rin = 10 MΩ, the
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The small discrepancy observed between the estimated values and the simulated parameters
is due to floating point approximation error in solving eqs. (17) and (18) and the limited
precision with which a4 and a5 can be measured. The resolution method is described in more
detail by the authors in (Assambo et al., 2006).

4.3 Measurement results
A hardware model of the skin-electrode interface was constructed using actual resistors and
capacitors, based on the model provided by Mühlsteff et al. to assess the ability of the signal
analyser to reproduce the simulated results shown in Fig. 11. A pair of 3.3-μF and 220-nF
multi-layer ceramic capacitors simulated the effects of C2s and C4e, respectively, the original
capacitance values (3 μF and 180 nF) being unavailable. Fig. 12 compares the measurement
of magnitude and phase to that obtained as a result of the new identification method. Raw
measurement data are filtered to remove measurement noise and to facilitate the detection of
the two peaks and the trough in the phase response. The frequency of the three local extrema
in the phase response and the two extremum values in the magnitude response allow the five
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coefficients to be estimated and and the frequency response of the network to be simulated.
A theoretical curve is included to assess the precision of the measurement and the accuracy of
the fitted model.
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Fig. 12. Comparison between the measured data ((a) magnitude and (b) phase) and data
obtained as a result of the novel identification procedure for a constructed hardware model
defined in Table 3.

The accuracy of the method can be appreciated from the results shown in Table 3, which
suggest that if the skin-electrode interface in equilibrium behaves in a similar way as that
measured by Mühlsteff et al., the proposed method would then provide a fast and accurate
identification tool.
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C4e [μF] 0.219 0.218 -0.4 %

Table 3. Accuracy of the new identification method assessed from a constructed hardware
model.

Fig. 13 shows measurements obtained in vivo with wet and dry electrodes which are
significantly different than the results obtained with the hardware model.
It was observed that very often the phase response did not display two distinct peaks but
only a single peak as shown in Fig. 13(a). This means that the polynomial p(ω) = 1 + a1ω2 +
a2ω4 + a3ω6 has one real and positive root (ωi), one real and negative root (−ωi) and four
complex conjugate roots (ωj, ω∗

j , −ωj and −ω∗
j ). Similar results have been obtained from

simulation when the time constant τ2s and τ4e differ by less than one order of magnitude, as
shown in Fig. 14.
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(a) wet electrodes (Wandy, E-50mm Hydrogel).
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Fig. 13. Typical phase response measurements obtained in vivo from (a) wet electrodes and
(b) dry electrodes on the same subject.
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Fig. 14. Plot of the phase against frequency for different values of the ratio α = τ2s
τ4e

when
Rin = 10 MΩ, R1s + R3e = 8 kΩ, R2s = 140 kΩ and R4e = 150 kΩ.

4.4 Alternative approaches
Alternative approaches have been investigated to solve the parameter estimation problem in
situations where the phase response does not display the expected double-peak behaviour.
Dozio and Baba considered different fitting algorithms and measurement set-ups and
concluded that time-domain measurements combined with least squares error minimisation
were the most appropriate (Assambo et al., 2006; Baba & Burke, 2008; Dozio et al., 2007).

4.4.1 Fitting magnitude and phase
Dozio et al. first developed a least squares error minimisation program for fitting both the
magnitude and phase response (Assambo et al., 2006). The algorithm successfully converged
when applied to a pair of adhesive electrodes (Wandy, E-50mm Hydrogel) placed on the lower
abdomen and returned the the following model parameters:

R1s + R3e = 3.6 kΩ, R2s = 35.2 kΩ, C2s = 0.9 μF, R4e = 29.5 kΩ, C4e = 5.8 μF.
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The experiment also confirmed that a simple 3-parameter model is not suitable for describing
the skin-electrode impedance. The curve fitting algorithm did not however converge in the
case of dry, pasteless electrodes (WANDY, W-45) for which the phase response exhibited no
peak in the frequency range 0.05 to 30 Hz, as shown in Fig. 13(b). This was thought to be
because the peak existed at a frequency below the minimum range of the analyser.

4.4.2 Time-based measurement
Frequency-based measurements have been unsuccessful when applied to dry electrodes
since the characteristic frequencies are too low to allow reliable steady state measurement.
To overcome this limitation time-based measurements have been developed. Baba et al.
implemented a novel measurement technique that relies upon the time response of the
skin-electrode interface to a current source (Assambo et al., 2006; Baba & Burke, 2008; Dozio
et al., 2007). A constant current is fed through the body while measuring the skin-electrode
impedance and a high-frequency sine wave input current is used to determine R1s + R3e.
The knowledge of R1s + R3e reduces the complexity of the fitting procedure to only four
parameters and improves the accuracy of the results. Measurements were taken on seven
subjects, using seven different types of dry electrodes, under variable conditions of contact
pressure, electrode settling time and current level. Dozio developed a curve fitting program
for the time-based data acquired. The time-domain measurement procedure and the results
obtained are discussed in detail in (Baba & Burke, 2008).
Table 4 gives a summary of values for each component, measured across all subjects,
electrodes, locations and contact pressures as published by Baba & Burke (Baba & Burke,
2008). The identification of the skin-electrode interface model parameters from two hundred
and sixty eight measurements returned values of resistance ranging from 640 Ω to 2.54 MΩ
and of capacitance ranging from 0.01 μF to 432.35 μF, while values of the time constants
τ2s = C2sR2s and τ4e = C4eR4e varied from 0.02 s to 31.29 s. It was also discovered that
there were substantial differences in the component values and the time constants between
the rise and the fall phases in the step response of the skin-electrode interface. Worst-case
parameter values obtained can now be used in the design of the input differential amplifier in
ECG recording equipment to prevent low-frequency distortion of the ECG signal.

Current rise phase Current fall phase

min. max. min. max.

R1s + R3e [kΩ] 0.64 12 0.64 12

R2s [kΩ] 4.94 1760.24 23.87 2540.93

R4e [kΩ] 23.26 1840.52 84.78 1380.00

C2s [μF] 0.01 21.51 0.04 21.88

C4e [μF] 0.10 432.35 0.69 65.15

R1s + R2s + R3e + R4e [kΩ] 161.24 3616.83 125.82 3326.10

τ2s [s] 0.02 1.84 0.06 1.17

τ4e [s] 0.18 31.29 0.77 7.19

Table 4. Summary of dry electrode parameter values published by Baba & Burke from 268
measurements (Baba & Burke, 2008).

41Low-Frequency Response and the Skin-Electrode Interface in Dry-Electrode Electrocardiography



18 Will-be-set-by-IN-TECH

10−1 100 101 1020.05

0.1

0.15

0.2

0.25

0.3

Frequency (Hz)

P
ha

se
 [d

eg
re

es
]

(a) wet electrodes (Wandy, E-50mm Hydrogel).

10−2 10−1 100 101 1020

1

2

3

4

5

6

7

8

9

10

Frequency (Hz)

P
ha

se
 [d

eg
re

es
]

(b) dry electrodes (Wandy, E-45).

Fig. 13. Typical phase response measurements obtained in vivo from (a) wet electrodes and
(b) dry electrodes on the same subject.
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4.4 Alternative approaches
Alternative approaches have been investigated to solve the parameter estimation problem in
situations where the phase response does not display the expected double-peak behaviour.
Dozio and Baba considered different fitting algorithms and measurement set-ups and
concluded that time-domain measurements combined with least squares error minimisation
were the most appropriate (Assambo et al., 2006; Baba & Burke, 2008; Dozio et al., 2007).

4.4.1 Fitting magnitude and phase
Dozio et al. first developed a least squares error minimisation program for fitting both the
magnitude and phase response (Assambo et al., 2006). The algorithm successfully converged
when applied to a pair of adhesive electrodes (Wandy, E-50mm Hydrogel) placed on the lower
abdomen and returned the the following model parameters:

R1s + R3e = 3.6 kΩ, R2s = 35.2 kΩ, C2s = 0.9 μF, R4e = 29.5 kΩ, C4e = 5.8 μF.
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case of dry, pasteless electrodes (WANDY, W-45) for which the phase response exhibited no
peak in the frequency range 0.05 to 30 Hz, as shown in Fig. 13(b). This was thought to be
because the peak existed at a frequency below the minimum range of the analyser.

4.4.2 Time-based measurement
Frequency-based measurements have been unsuccessful when applied to dry electrodes
since the characteristic frequencies are too low to allow reliable steady state measurement.
To overcome this limitation time-based measurements have been developed. Baba et al.
implemented a novel measurement technique that relies upon the time response of the
skin-electrode interface to a current source (Assambo et al., 2006; Baba & Burke, 2008; Dozio
et al., 2007). A constant current is fed through the body while measuring the skin-electrode
impedance and a high-frequency sine wave input current is used to determine R1s + R3e.
The knowledge of R1s + R3e reduces the complexity of the fitting procedure to only four
parameters and improves the accuracy of the results. Measurements were taken on seven
subjects, using seven different types of dry electrodes, under variable conditions of contact
pressure, electrode settling time and current level. Dozio developed a curve fitting program
for the time-based data acquired. The time-domain measurement procedure and the results
obtained are discussed in detail in (Baba & Burke, 2008).
Table 4 gives a summary of values for each component, measured across all subjects,
electrodes, locations and contact pressures as published by Baba & Burke (Baba & Burke,
2008). The identification of the skin-electrode interface model parameters from two hundred
and sixty eight measurements returned values of resistance ranging from 640 Ω to 2.54 MΩ
and of capacitance ranging from 0.01 μF to 432.35 μF, while values of the time constants
τ2s = C2sR2s and τ4e = C4eR4e varied from 0.02 s to 31.29 s. It was also discovered that
there were substantial differences in the component values and the time constants between
the rise and the fall phases in the step response of the skin-electrode interface. Worst-case
parameter values obtained can now be used in the design of the input differential amplifier in
ECG recording equipment to prevent low-frequency distortion of the ECG signal.

Current rise phase Current fall phase

min. max. min. max.

R1s + R3e [kΩ] 0.64 12 0.64 12

R2s [kΩ] 4.94 1760.24 23.87 2540.93

R4e [kΩ] 23.26 1840.52 84.78 1380.00

C2s [μF] 0.01 21.51 0.04 21.88

C4e [μF] 0.10 432.35 0.69 65.15

R1s + R2s + R3e + R4e [kΩ] 161.24 3616.83 125.82 3326.10

τ2s [s] 0.02 1.84 0.06 1.17
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Table 4. Summary of dry electrode parameter values published by Baba & Burke from 268
measurements (Baba & Burke, 2008).
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5. New amplifier input impedance requirements for dry-electrode ECG recording

As seen in previous sections, the front-end amplifier plays a crucial role in the ability of the
ECG recorder to preserve the low-frequency components of the signal. The low-frequency
performance achieved by the amplifier in the presence of the electrode impedance is
principally determined by the magnitude of the input impedance of the recording system. Fig.
15 shows the equivalent impedance seen at the amplifier input when skin-electrode interface,
current limiting resistor (R1) and the dc-blocking capacitors (Cin) are taken into account.
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Fig. 15. Schematic representation of the equivalent impedance seen at the amplifier input.

The transfer function of the skin-electrode-amplifier network in this configuration is defined
as follows:

Hd(s) =
Vin(s)

V1(s)− V2(s)
= Rin

Cin
2

[
τ2sτ4es3 + (τ2s + τ4e) s2 + s

d3s3 + d2s2 + d1s + 1

]
(31)

where:
d1 = [Rin + 2 (R1 + R1s + R2s + R3e + R4e)]

Cin
2

+ τ2s + τ4e (32)

d2 = [[Rin + 2 (R1 + R1s + R3e)] (τ2s + τ4e) + 2R2sτ4e + 2R4eτ2s]
Cin
2

+ τ2sτ4e (33)

d3 = [Rin + 2 (R1 + R1s + R3e)]
Cin
2

τ2sτ4e (34)

In the following sections, the authors establish new input impedance requirements for use in
dry-electrode ECG recording.

5.1 Frequency response criteria
5.1.1 Amplitude response
The equivalent skin-electrode impedance, shown in Fig. 15, is responsible for a reduction in
the signal amplitude before reaching the amplifier input. Minimum attenuation is obtained at
high frequencies for which the impedance of capacitive elements in the electrode impedance
tends toward zero, ensuring:

|Hd(ω)| < Rin
Rin + 2 (R1 + R1s + R3e)

< 1 (35)
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At low frequencies, the source impedance is given by:

Ze(ω) = R1s + R3s +
R2s

1 + jωR2sC2s
+

R4e
1 + jωR4eC4e

+
1

jωC1
+ R1 (36)

The AHA recommends a maximum attenuation of 0.5 dB (or 6%) at 0.14 Hz, which establishes
the requirement:

Rin
|Rin + 2Ze (ω0.14)| > 0.94 (37)

where ω0.14 = 0.28π.
It can be shown that the condition specified in eq. (37) implies the following relationship
between Rin and the parameters of the skin-electrode interface:
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The amplitude response criterion is then fulfilled for Rin selected as follows:
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5.1.2 Phase response
The transfer function defined in eq. (31) can be rearranged so that real and imaginary parts
are more easily identified:

Hd(ω) = Rin
Cin
2

⎡
⎢⎢⎢⎢⎢⎣

�
(d1 − τ2s − τ4e)ω2 + [d2 (τ2s + τ4e)− d3]ω4 + d1d3τ2sτ4eω6�

+j
�
ω + (d1τ2s + d1τ4e − τ2sτ4e)ω3 + [d2τ2sτ4e − d3 (τ2s + τ4e)]ω5�

(1 − d2ω2)
2 + (d1ω − d3ω3)

2

⎤
⎥⎥⎥⎥⎥⎦

(40)
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The transfer function of the skin-electrode-amplifier network in this configuration is defined
as follows:

Hd(s) =
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In the following sections, the authors establish new input impedance requirements for use in
dry-electrode ECG recording.

5.1 Frequency response criteria
5.1.1 Amplitude response
The equivalent skin-electrode impedance, shown in Fig. 15, is responsible for a reduction in
the signal amplitude before reaching the amplifier input. Minimum attenuation is obtained at
high frequencies for which the impedance of capacitive elements in the electrode impedance
tends toward zero, ensuring:

|Hd(ω)| < Rin
Rin + 2 (R1 + R1s + R3e)

< 1 (35)
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At low frequencies, the source impedance is given by:
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The AHA recommends a maximum attenuation of 0.5 dB (or 6%) at 0.14 Hz, which establishes
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Rin >
2 ∗ 0.942

1 − 0.942

������

�
R1 + R1s + R3e +

R2s
1+τ2

2sω2
0.14

+ R4e
1+τ2

4eω2
0.14

�2

+
�
1 − 0.942� �R1 + R1s + R3e +

R2sτ2sω0.14
1+τ2

2sω2
0.14

+ R4eτ4eω0.14
1+τ2

4eω2
0.14

+ 1
ω0.14Cin

�2

+
2 ∗ 0.942

1 − 0.942

�
R1 + R1s + R3e +

R2s

1 + τ2
2sω2

0.14
+

R4e

1 + τ2
4eω2

0.14

�
(39)

5.1.2 Phase response
The transfer function defined in eq. (31) can be rearranged so that real and imaginary parts
are more easily identified:
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Replacing d1, d2 and d3 by their expressions as given in eq.(32) to (34) yields the following:
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(41)

where
RT = Rin + 2 (R1 + R1s + R2s + R3e + R4e) (42)

and
R13 = Rin + 2 (R1 + R1s + R3e) (43)

Since both imaginary and real parts of Hd(ω) are positive, an expression for the phase
response can then be extracted from (41) as:

Eq. (44) indicates that:
0 < ϕd(ω) < 90◦ , ∀ω ∈ �+∗ (45)

The phase introduced by a single-pole high-pass filter having a cutoff frequency fc is given
by:

Φ(ω) = tan−1
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2π fc
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The AHA recommends that the amplifier should introduce no more phase shift into the signal
than that which would be introduced by a linear 0.05-Hz, single-pole filter. This condition is
respected for ϕd(ω) < Φ(ω).
Both phase shifts belong to the interval ]0, π

2 [, in which the function tan is strictly increasing.
The phase criterion is therefore equivalent to:
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Taking ωc = 2π fc, the condition specified in eq. (47) is met for:
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The polynomial function of eq. (48) is positive when two conditions are satisfied: (i) the
coefficient of the highest power of ω is positive and (ii) there is no positive root. All roots
must therefore be negative or complex. Both conditions are simultaneously met when:
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Substituting τ2s = R2sC2s, τ4e = R4eC4e, R13 = Rin + 2 (R1 + R1s + R3e) and RT = R13 +
2 (R2s + R4e) , eqs. (49) and (50) become:
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Eq. (52) establishes the phase criterion at low frequency, when the reactance of the capacitive
effects in the skin-electrode interface tends towards infinity. At these frequencies C2s and C4e
are equivalent to open switches making the skin-electrode impedance purely resistive. Phase
shift is therefore solely introduced by the input capacitance Cin. This result is consistent with
traditional design strategies which state that low-frequency distortion can be prevented if
RinCin > 1/ωc, since other capacitive effects are neglected (Bergey et al., 1971; Valverde et al.,
2004).
As frequency increases, the effects of C2s and C4e must be considered and eq. (51) ensures
that the phase of the combined skin-electrode-amplifier network will not be greater than
that introduced by a high-pass filter having a single pole at fc = ωc/2π. Experience with
insulated electrodes have shown that the effect of changing skin impedance can be minimised
by making the coupling capacitance at least two orders of magnitude smaller than those of
the skin. Coupling capacitance values ranging from 50 nF to 1 fF (f= 10−15) have thus been
used with buffer amplifiers having 108 to 1018 Ω input impedance (Ko et al., 1970; Prance
et al., 2008; Taheri et al., 1994). Eq. (51) confirms that for Cin << {C2s, C4e}, the reactance of
the skin-electrode interface can be neglected, and therefore selecting RinCin > 1/ωc would
prevent distortion. However, this approach involves the use of ultra-high input impedance
amplifiers, whereas, the input impedance requirement can be relaxed if eq. (51) is applied
instead.
With fc = 0.05 Hz, the phase requirement is satisfied at all frequencies when the input
impedance is chosen such that for the worst-case values of skin-electrode parameters:

Rin >
20
π

�
1

C2s
+

1
C4e

+
1

Cin

�
(53)

45Low-Frequency Response and the Skin-Electrode Interface in Dry-Electrode Electrocardiography



22 Will-be-set-by-IN-TECH

Replacing d1, d2 and d3 by their expressions as given in eq.(32) to (34) yields the following:
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Since both imaginary and real parts of Hd(ω) are positive, an expression for the phase
response can then be extracted from (41) as:
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than that which would be introduced by a linear 0.05-Hz, single-pole filter. This condition is
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Taking ωc = 2π fc, the condition specified in eq. (47) is met for:
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The polynomial function of eq. (48) is positive when two conditions are satisfied: (i) the
coefficient of the highest power of ω is positive and (ii) there is no positive root. All roots
must therefore be negative or complex. Both conditions are simultaneously met when:
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Eq. (52) establishes the phase criterion at low frequency, when the reactance of the capacitive
effects in the skin-electrode interface tends towards infinity. At these frequencies C2s and C4e
are equivalent to open switches making the skin-electrode impedance purely resistive. Phase
shift is therefore solely introduced by the input capacitance Cin. This result is consistent with
traditional design strategies which state that low-frequency distortion can be prevented if
RinCin > 1/ωc, since other capacitive effects are neglected (Bergey et al., 1971; Valverde et al.,
2004).
As frequency increases, the effects of C2s and C4e must be considered and eq. (51) ensures
that the phase of the combined skin-electrode-amplifier network will not be greater than
that introduced by a high-pass filter having a single pole at fc = ωc/2π. Experience with
insulated electrodes have shown that the effect of changing skin impedance can be minimised
by making the coupling capacitance at least two orders of magnitude smaller than those of
the skin. Coupling capacitance values ranging from 50 nF to 1 fF (f= 10−15) have thus been
used with buffer amplifiers having 108 to 1018 Ω input impedance (Ko et al., 1970; Prance
et al., 2008; Taheri et al., 1994). Eq. (51) confirms that for Cin << {C2s, C4e}, the reactance of
the skin-electrode interface can be neglected, and therefore selecting RinCin > 1/ωc would
prevent distortion. However, this approach involves the use of ultra-high input impedance
amplifiers, whereas, the input impedance requirement can be relaxed if eq. (51) is applied
instead.
With fc = 0.05 Hz, the phase requirement is satisfied at all frequencies when the input
impedance is chosen such that for the worst-case values of skin-electrode parameters:
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5.2 Impulse response requirements
In more recent years, the IEC have defined more precisely the low-frequency criteria for ECG
signal reproduction in terms of the system impulse response. The response to a rectangular
pulse x(t) of amplitude Vm and duration T is limited to a maximum offset, ΔVmax, and a
maximum slope, smax. Fig. 16 shows in a generic form the impulse response requirement
defined by international standards.
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Fig. 16. Schematic illustrating the impulse response requirements.

The rectangular pulse x(t) is ideally modelled using the Heaviside unit step function u as:

x(t) = Vm [u(t)− u(t − T)] (54)

The Laplace transform of x(t) is therefore given by:

X(s) =
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s

�
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(55)

Using the transfer function Hd(s) defined in eq. (31), the frequency response Yd(s) of the
skin-electrode-amplifier network to the pulse X(s) is:

Yd(s) = X(s)Hd(s) = Vm
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where p0, p1 and p2 are the poles of Hd(s), and d1, d2 and d3 are defined in eqs. (32) to (34).
Substituting d3 by its expression allows Yd(s) to be simplified as follows:
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with R13 given in eq. (43). The impulse response can then be expanded by partial fractions as:
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where the three coefficients A0, A1 and A2 are functions of the parameters of the
skin-electrode-amplifier network. Eqs. (56) and (58) imply:
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Taking s = p0 yields:
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A similar approach leads to expressions for A1 and A2 as follows:
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The inverse Laplace transform of Yd(s) gives the corresponding response in time yd(t) as:
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If x(t) is an ideal pulse, the amplitude of the response following the end of the impulse is
given by:
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The derivative of y(t) at t > T defines the slope of the impulse response following the impulse:
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The poles p0, p1 and p2 are obtained by solving the polynomial d3s3 + d2s2 + d1s + 1 = 0.
Computing the equation with Mathematica returns the following solutions:
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In more recent years, the IEC have defined more precisely the low-frequency criteria for ECG
signal reproduction in terms of the system impulse response. The response to a rectangular
pulse x(t) of amplitude Vm and duration T is limited to a maximum offset, ΔVmax, and a
maximum slope, smax. Fig. 16 shows in a generic form the impulse response requirement
defined by international standards.

T

Vm

max. slope
(|ymax|

max. offset (|ymin| <   Vmax)
Time

Si
gn

al
 a

m
pl

itu
de

’

input impulse signal: x(t)
electrocardiograph response: y(t)

< smax )

Fig. 16. Schematic illustrating the impulse response requirements.

The rectangular pulse x(t) is ideally modelled using the Heaviside unit step function u as:

x(t) = Vm [u(t)− u(t − T)] (54)

The Laplace transform of x(t) is therefore given by:
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Using the transfer function Hd(s) defined in eq. (31), the frequency response Yd(s) of the
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The terms d1, d2 and d3 may be substituted with their expressions given in eqs. (32) to (34)
to evaluate p0, p1 and p2. This would allow yd(t) and y�d(t) to be represented in terms of
the parameters of the skin-electrode-amplifier network and the input impedance requirement
to be identified. However, this method involves solving non-linear functions in the complex
domain for which analytical solutions are not available. An alternative approach consists
of implementing a numerical algorithm to find the minimum value of Rin for which the
recording system meets the impulse response requirements. An algorithm was developed
in MATLAB to test the maximum undershoot and recovery slope for a range of values of Rin.

5.3 Results
Data collected from two hundred and sixty eight measurements of the skin-electrode interface
are analysed using the proposed methods. Measurements were taken on seven subjects,
using seven different types of dry electrodes, under variable conditions of contact pressure,
electrode settling time and current level. As for simulations referred to in Section 2.1, the
input capacitance is initially set at Cin = 0.33 μF. The current limiting resistor was chosen as
R1 = 100 kΩ, as recommended in previous literature (Burke & Gleeson, 2000).

5.3.1 Amplitude and phase criteria
Fig. 17(a) shows the frequency response of the skin-electrode-amplifier network when the
input impedance is selected following the amplitude response criterion defined in eq. (39).
For all measurements, the minimum input impedance that fulfils the amplitude response
recommendation varies from 21 MΩ to 115 MΩ. Fig. 17(b) gives the corresponding results
when the front-end is designed according to the phase response requirement indicated in eq.
(53). Meeting the phase criterion requires an input impedance between 21 MΩ and 750 MΩ.

5.3.2 Impulse response criteria
Results from the analysis of the impulse response for all measurements are presented in Fig.
17. A rectangular wave of amplitude 3 mV and duration 100 ms is used as input. The response
is analysed over a 2 s period. Fig. 17(c) shows a plot of the maximum undershoot produced
for a range of input impedance values between 10 MΩ and 10 GΩ. In Fig. 17(d), the maximum
absolute values of the slope of the responses following the impulse are shown over the same
range of input impedance values. With Cin = 0.33 μF, the required minimum input impedance
varies between 20 MΩ and 2 GΩ.
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Fig. 17. Plots of (a) the amplitude response, (b) phase response, (c) the maximum undershoot
and (d) the maximum recovery slope for 268 measurements of skin-electrode interface
impedance with Cin = 0.33μF and R1 = 100 kΩ.

5.3.3 Influence of the coupling capacitance
Tables 5 and 6 compare the values of input impedance suggested by the frequency response
and impulse response criteria. The values of Rin are given in both tables for a range
of non-electrolytic capacitance values of Cin varying from 0.1 μF to 3.3 μF, available in
multilayer ceramic forms. Table 5 gives the maximum values of input impedance suggested
by all measurements. When one pair of outlying values is removed from the results, the
requirements suggested by 99.2% of the data are shown in Table 6.
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to evaluate p0, p1 and p2. This would allow yd(t) and y�d(t) to be represented in terms of
the parameters of the skin-electrode-amplifier network and the input impedance requirement
to be identified. However, this method involves solving non-linear functions in the complex
domain for which analytical solutions are not available. An alternative approach consists
of implementing a numerical algorithm to find the minimum value of Rin for which the
recording system meets the impulse response requirements. An algorithm was developed
in MATLAB to test the maximum undershoot and recovery slope for a range of values of Rin.

5.3 Results
Data collected from two hundred and sixty eight measurements of the skin-electrode interface
are analysed using the proposed methods. Measurements were taken on seven subjects,
using seven different types of dry electrodes, under variable conditions of contact pressure,
electrode settling time and current level. As for simulations referred to in Section 2.1, the
input capacitance is initially set at Cin = 0.33 μF. The current limiting resistor was chosen as
R1 = 100 kΩ, as recommended in previous literature (Burke & Gleeson, 2000).

5.3.1 Amplitude and phase criteria
Fig. 17(a) shows the frequency response of the skin-electrode-amplifier network when the
input impedance is selected following the amplitude response criterion defined in eq. (39).
For all measurements, the minimum input impedance that fulfils the amplitude response
recommendation varies from 21 MΩ to 115 MΩ. Fig. 17(b) gives the corresponding results
when the front-end is designed according to the phase response requirement indicated in eq.
(53). Meeting the phase criterion requires an input impedance between 21 MΩ and 750 MΩ.

5.3.2 Impulse response criteria
Results from the analysis of the impulse response for all measurements are presented in Fig.
17. A rectangular wave of amplitude 3 mV and duration 100 ms is used as input. The response
is analysed over a 2 s period. Fig. 17(c) shows a plot of the maximum undershoot produced
for a range of input impedance values between 10 MΩ and 10 GΩ. In Fig. 17(d), the maximum
absolute values of the slope of the responses following the impulse are shown over the same
range of input impedance values. With Cin = 0.33 μF, the required minimum input impedance
varies between 20 MΩ and 2 GΩ.
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Fig. 17. Plots of (a) the amplitude response, (b) phase response, (c) the maximum undershoot
and (d) the maximum recovery slope for 268 measurements of skin-electrode interface
impedance with Cin = 0.33μF and R1 = 100 kΩ.

5.3.3 Influence of the coupling capacitance
Tables 5 and 6 compare the values of input impedance suggested by the frequency response
and impulse response criteria. The values of Rin are given in both tables for a range
of non-electrolytic capacitance values of Cin varying from 0.1 μF to 3.3 μF, available in
multilayer ceramic forms. Table 5 gives the maximum values of input impedance suggested
by all measurements. When one pair of outlying values is removed from the results, the
requirements suggested by 99.2% of the data are shown in Table 6.
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Cin [μF] 0.1 0.22 0.33 0.47 1 2.2 3.3
amplitude response: Rin [MΩ] 139 119 115 114 112 112 112

phase response: Rin [MΩ] 764 730 720 714 707 704 703
impulse response: Rin [MΩ] 2040 2040 2040 2040 2040 2040 2040

Table 5. Worst-case input impedance requirements as a function of the capacitance of the
dc-blocking capacitor Cin for all 268 measurements.

Cin [μF] 0.1 0.22 0.33 0.47 1 2.2 3.3
amplitude response: Rin [MΩ] 120 96 91 89 87 86 86

phase response: Rin [MΩ] 236 201 192 185 180 175 174
impulse response: Rin [MΩ] 429 429 429 429 429 429 429

Table 6. Worst-case input impedance requirements as a function of the capacitance of the
dc-blocking capacitor Cin for 99.2% of measurements.

Results for both tables indicate that the value of Rin levels out at around a value of Cin = 1
μF. As suggested by eq. (53), with increasing dc-blocking capacitance value, the parameters
of the skin-electrode interface become the limiting factor. All results confirm that meeting the
impulse response involves the highest values of input impedance, which are selected as the
target design value. This is seen to be 2 GΩ, well above the IEC specification value of 10 MΩ.
This again highlights the inappropriateness of this impedance specification for dry electrodes.

6. Conclusion

In this chapter, poor low-frequency response was shown to be a primary source of
measurement error that jeopardises the ability of the ECG recording to provide reliable
diagnostic clinical information. Despite being necessary to prevent base line wander,
high-pass filtering can cause distortion in the ECG signal if implemented inadequately. A
numerical tool was developed by the authors to assess the performance of passive high-pass
filters up to fourth order against standards requirements. Simulation results have highlighted
the lack of consistency between minimum input impedance requirement and low-frequency
specifications in ECG standards. It was also demonstrated that the input impulse criteria
imply more stringent requirements than the traditional amplitude and phase specifications.
In particular, it was shown that recording systems for which the impulse response exhibits an
unsatisfactory recovery slope may distort the ECG waveform despite providing acceptable
amplitude and phase characteristics in the signal bandwidth. The need for new input
impedance requirements that rely upon a complete characterisation of the skin-electrode
interface was therefore identified.
Different approaches have been undertaken to model the skin-electrode interface. Experiences
with self-adhesive electrodes confirmed that an early model which describes the interface as a
single-time-constant RC network is inadequate. A model involving two time constants proves
more accurate. Based on the latter model, an algorithm has been implemented to identify
the parameters of any double-time-constant system the phase response of which displays
a double-peak. Simulations returned highly accurate results when the two time constants
forming the system are in a ratio of greater than 10 to 1. The method reaches its limits,
however, when the time constants are close to each other and the difference in the phase of the
two peaks in the response becomes too small to be accurately measured by the instruments
available. Time-domain measurements were employed to obtain parameter values for dry,
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pasteless electrodes. The fitting procedure converged when the rise and fall phases of the
response were analysed separately, producing two estimates of the model parameters. The
authors have then derived, using a combination of analytical and numerical methods, a set
of input impedance requirements which ensure that performance specifications are met in
dry-electrode recording. The minimum requirement for the input resistance of the amplifier
is determined as 2 GΩ over a range of electrodes, measurement conditions and the value of
dc-blocking capacitors used. However, 99.2% of measurements suggested that a value of Rin
of 500 MΩ would meet requirements.
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1. Introduction 
The first descriptions of beneficial effects of left ventricular (LV) or simultaneous LV and 
right ventricular (RV) pacing were published more than 35 years ago (Vagnini et al.,1967; 
Tyers et al.,1970; Gibson et al.,1971). In 1994 Cazeau published the first successful cases of 
biventricular pacing in patients with severe congestive heart failure (CHF) and no 
conventional indication for cardiac pacing (Cazeau et al.,1994). At the same time Bakker and 
colleagues reported their experiences (Bakker et al.,2000), with epicardial LV pacing by 
thoracotomy. The transvenous approach via the coronary sinus (CS) tributaries was first 
published by Daubert in 1998 and was an important contribution in the application of 
cardiac resynchronization therapy (Daubert et al.,1998) (Fig 1). 
The transvenous approach has been more and more developed and has become the 
implantation technique of choice. CRT is recently categorized as class I level of evidence A 
in the European Society of Cardiology guidelines in patients with a dyssynchronous failing 
heart (Swedberg et al.,2005). In case of unsuccessful transvenous implantation, surgical LV 
lead placement can be achieved under direct visualization. Another approach for LV lead 
placement, when neither CS placement nor surgical options are available, is a trans-atrial 
septal puncture to pass the LV lead via the left atrium through the mitral valve and screw 
into the LV lateral wall (Leclercq et al.,1999; Jaïs et al.,1998; van Gelder et al.,2007), or by 
apical insertion of the LV lead (Kassaï et al.,2009). 

2. Venous access  
Venous access can be obtained by subclavian or axillary vein puncture or by the cephalic 
vein cut down method. 
The subclavian puncture is most frequently used for transvenous pacing leads. After the 
puncture is performed, a guide wire is passed into the subclavian vein and a dilator with a 
splitable sheath is advanced over the guide wire into the vein. The guide wire and the 
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1. Introduction 
The first descriptions of beneficial effects of left ventricular (LV) or simultaneous LV and 
right ventricular (RV) pacing were published more than 35 years ago (Vagnini et al.,1967; 
Tyers et al.,1970; Gibson et al.,1971). In 1994 Cazeau published the first successful cases of 
biventricular pacing in patients with severe congestive heart failure (CHF) and no 
conventional indication for cardiac pacing (Cazeau et al.,1994). At the same time Bakker and 
colleagues reported their experiences (Bakker et al.,2000), with epicardial LV pacing by 
thoracotomy. The transvenous approach via the coronary sinus (CS) tributaries was first 
published by Daubert in 1998 and was an important contribution in the application of 
cardiac resynchronization therapy (Daubert et al.,1998) (Fig 1). 
The transvenous approach has been more and more developed and has become the 
implantation technique of choice. CRT is recently categorized as class I level of evidence A 
in the European Society of Cardiology guidelines in patients with a dyssynchronous failing 
heart (Swedberg et al.,2005). In case of unsuccessful transvenous implantation, surgical LV 
lead placement can be achieved under direct visualization. Another approach for LV lead 
placement, when neither CS placement nor surgical options are available, is a trans-atrial 
septal puncture to pass the LV lead via the left atrium through the mitral valve and screw 
into the LV lateral wall (Leclercq et al.,1999; Jaïs et al.,1998; van Gelder et al.,2007), or by 
apical insertion of the LV lead (Kassaï et al.,2009). 

2. Venous access  
Venous access can be obtained by subclavian or axillary vein puncture or by the cephalic 
vein cut down method. 
The subclavian puncture is most frequently used for transvenous pacing leads. After the 
puncture is performed, a guide wire is passed into the subclavian vein and a dilator with a 
splitable sheath is advanced over the guide wire into the vein. The guide wire and the 
 



 
Advances in Electrocardiograms – Methods and Analysis 54

 
Fig. 1. The transvenous approach to CRT. 
Right atrial lead placed in the right atrial appendage. Right ventricular lead placed in the apex 
of the right ventricle. The left ventricular lead is advanced through the coronary sinus in one of 
the venous side branches running along the left postero-lateral wall of the left ventricle to 
allow synchronous activation of the left ventricle through continuous stimulation of left and 
right ventricular leads in a simultaneous or sequential way with an adjusted V-V interval. 

dilator are removed and the sheath is left in the vein for passage of the pacing lead. This 
technique is referred to as the Seldinger technique. With a single puncture both RA and RV 
leads can be introduced. The RV lead is placed in the right ventricle leaving the guide wire 
alongside the lead. The sheath is withdrawn and the retained wire is used to introduce a 
second sheath for the RA lead. A separate puncture is advisable to introduce the LV lead.  
 

 
Fig. 2. Venous contrast injection showing the cephalic vein (1), axillary vein (2) and the 
subclavian vein (3) running under the clavicle. (left panel) Complete occlusion of the axillary 
and subclavian vein before an upgrading of a DDD pacemaker to a biventricular pacemaker 
(right panel). 
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As an alternative the cephalic vein can be located and cannulated in the deltopectoral 
groove to introduce one or more pacing leads. Usually this approach is combined with the 
puncture method, because the cephalic vein is often too small to insert three leads.  
In our institution we prefer to start the implantation procedure with a contrast injection of 
20 cc in the peripheral vein of the arm to visualize the cephalic, axillary and subclavian vein 
(Fig 2).  
After the venography an image hold can help in case of a difficult puncture and RA and RV 
lead choice can be made depending on the size of the vessels and cardiac anatomy. If an 
upgrade to CRT is necessary subclavian thrombosis or severe stenosis is present in up to 15 
% of the patients and with a planned venography needless effort can be prevented and a 
desirable strategy can be determined. 
The left shoulder is the preferred implantation site, because it provides a more natural curve 
for the guiding catheter to enter the CS from the superior vena cava and right atrium. For 
implantation of a biventricular implantable cardioverter defibrillator (CRT-D) the left side is 
also preferable because of lower defibrillation threshold from this side. The cephalic vein cut 
down is used for both RA and RV leads and a separate puncture of the subclavian vein or 
axillary vein is used for the LV lead. This facilitates removal of the guiding delivery catheter 
for the LV lead with the slitting method. 
In case of an absent cephalic vein double or triple puncture of the subclavian or axillary vein 
is used to introduce separate sheaths for the three leads. The RV lead is first implanted to 
provide backup pacing in case of traumatizing the right bundle in patients with preexisting 
left bundle branch block or due to traumatic atrioventricular block with introduction of the 
guiding catheter in the CS, which occur in 1-4% of cases (Abraham et al.,2002; Kautzner et 
al.,2004) (Fig 3). 
 

 
Fig. 3. During manipulation of the right ventricular lead complete heart block can occur due 
to traumatizing the right bundle as shown above. After a non sustained VT a pause of 2.6 
seconds is followed by another non sustained VT and a second pause of 13.7 seconds in 
which only P waves are seen. 
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The RV lead can be screwed in the RV septum or placed in the RV apex. Although not 
proven is the mid septum position the best position to create an optimal separation between 
the RV and LV lead, which should be positioned in the postero-lateral wall. 
The RA lead is positioned in the right atrial appendage or in case of interatrial conduction 
time delay of more than 120 ms in the interatrial septum to synchronize both atria. 
Interatrial conduction time delay can be measured beforehand with echocardiography using 
the Doppler signal from the tricuspid and mitral inflow and the p wave on the 
electrocardiogram, which gives the interatrial mechanical delay (Fig 4). 
 

 
Fig. 4. Interatrial mechanical delay. With the use of echo-Doppler the inflow over the 
tricuspid and mitral valve can be obtained after which the difference between the electrical 
and mechanical activation of the right and left atrium can be measured. In the figure 
appointed as a for the right atrium and b for the left atrium. The difference between both 
gives the interatrial mechanical delay. 

3. How to insert the left ventricular lead 
3.1 Finding the coronary sinus 
The key step in the implantation procedure for resynchronization therapy is finding the 
entrance to the CS. The CS ostium measures 5-15 mm in diameter and is located on the 
posterior interatrial septum anterior to the Eustachian ridge and valve and posterior to the 
tricuspid annulus (Fig 5). 

Anatomy of the right atrium 
The Thebesian valve frequently covers a part of the ostium, but can as a fenestrated valve 
completely occlude the ostium. Other valves found in the CS, like the Vieussens, sometimes 
seen at the ostium of the primary postero-lateral vein,  opposite to the vein of Marshall and 
the non Vieussens valve at the ostium of the middle cardiac vein. Understanding the 
anatomy of the right atrium in the failing heart helps to successful access the CS. Non 
invasive imaging of the coronary venous anatomy has shown that the relationship between 
the RA and the CS in patients with congestive heart failure is quite different from that in 
patients with normal hearts (Chan et al.,2004). Due to the enlargement of the failing heart, 
the heart will rotate, causing the ostium of the CS to move to a low and posterior position in 
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the right atrium (León et al.,2005). Other landmarks seen with fluoroscopy can be used to 
identify the CS, such as calcifications of the right coronary artery, or the lucent adipose pad 
overlying the atrial-ventricular groove that marks the course of the CS. 
 

 
Fig. 5. The right atrium with the Thebesian valve partly covering the ostium of the coronary 
sinus. 

Cannulation of the CS is done with preshaped guiding delivery sheaths, which are available 
in many different models (Fig 6). The main purpose of the guiding delivery sheath is to 
provide stability and pushability of the LV lead during cannulation of one of the tributes of 
the CS and it also offers the possibility the make a venogram with the balloon catheter. 
 

 
Fig. 6. Several types of guiding delivery sheaths used for cannulation of the coronary sinus. 
The type used depends on the side of implantation, enlargement of the right atrium and 
angulation of the CS and stability given by the provided guiding delivery sheath. 

The guiding delivery sheath is brought into the subclavian vein through a 9 French sheath, 
so the guiding delivery catheter can move easily. The left anterior oblique (LAO) 30°-45° 
projection best guides CS access, because the CS runs toward the spine in a posterior 
direction to encircle the mitral annulus in that view. 
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overlying the atrial-ventricular groove that marks the course of the CS. 
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Fig. 7. The TORQR (1) is inside the guiding delivery sheath (2), left panel. Both catheters are 
brought into the roof of the right atrium (upper arrow), where the guiding delivery sheath is 
kept and the TORQR is advanced to cannulate the coronary sinus (lower arrow), right panel. 

The guiding delivery sheath is brought in the roof of the right atrium after which the EP 
catheter is advanced in the floor of the right atrium and pulled up with counterclockwise 
torque to direct it posterior to the ostium of the CS. (Fig 7, right panel) 
Another way is to maneuver the EP catheter into the right ventricle and then slowly 
withdrawn with counterclockwise torque towards the right atrium to engage the CS. 
Engagement of the CS ostium results in a characteristic rocking motion of the catheter due to 
systolic movement of the AV groove. The guiding delivery catheter is then pushed over the 
EP catheter as a railing system inside the CS to a distal position to prevent dislodgement. 
When numerous attempts fail to locate the ostium of the CS, coronary angiography catheters 
like the Amplatz L2-L3 can be used for contrast injections near the ostium of the CS or a 
guidewire (0.035 J wire) is introduced to explore the lower right atrium for the ostium of 
the CS. If this also fails a selective coronary angiography of the left coronary artery in the 
LAO 30°-45° projection will disclose the CS if the venous passage of contrast is visualized. 
Otherwise visualization with intra cardiac echocardiography has been proposed, but this 
technique is relatively expensive and experience is limited. 
After a learning curve the CS can be cannulated within several minutes, but even in 
experienced hands a failure rate to cannulate the CS is reported in the range of 1-3%. 
A rare case of failure is an anatomical aberrancy in which the CS has no communication 
with the RA. In this situation the CS drains into the venous circulation through a persistent 
left superior caval vein. This aberrancy is encountered in 3 out of 500 CS implants (Gelder et 
al.,2003). 
Once the CS is successfully cannulated the electrophysiology catheter can be exchanged for 
a balloon catheter to perform an occlusive CS venography in two projections LAO and RAO 
30°-45°. 

3.2 Retrograde coronary venography 
The use of venography of the CS is necessary to facilitate LV lead implantation. The balloon 
catheter is loaded with a PCI wire and the balloon catheter is advanced to the end of the 
guiding delivery sheath under fluoroscopy. The 0.014 PCI wire is pushed out the balloon 
catheter and advanced into the CS. This will prevent dissection from the CS by the balloon 
catheter. 
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The PCI wire will be pulled back to allow a retrograde contrast injection after balloon 
occlusion of the CS (Fig 8). This is done with a 10 cc syringe hand injection of contrast 
diluted with saline 0,9 %. 
Retrograde injection of contrast opacifies all potential target veins, valves, structures, 
collateral connections and specific anatomic details of the target veins that will help to make 
the right choice for the LV lead (Fig 9). It is desirable to make a long cine sequence to 
visualize collaterals or side branches occluded by the balloon. To avoid occlusion of side 
branches by the balloon catheter or if no side branches are visualized, contrast injections 
must be repeated at several levels in the CS. 
 

 
Fig. 8. Balloon catheter (1) with the PCI wire (2) and Y connector (3) together with a contrast 
syringe (4) to the side port. The balloon catheter is advanced in the CS with the PCI wire 
running before the balloon catheter to prevent dissection of the CS. After the PCI wire is 
pulled back a retrograde injection in the CS is made after balloon inflation (5). 
 

 
Fig. 9. Retrograde coronary venography of the coronary sinus. On the left panel the LAO 
projection shows the coronary sinus with two large postero-lateral branches (1 and 2) and a 
small lateral branch (3). The right side shows the RAO projection. In this projection we see 
again both postero-lateral branches (1 and 2) with second order branches and the great 
cardiac vein running over the anterior wall (4). 
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experienced hands a failure rate to cannulate the CS is reported in the range of 1-3%. 
A rare case of failure is an anatomical aberrancy in which the CS has no communication 
with the RA. In this situation the CS drains into the venous circulation through a persistent 
left superior caval vein. This aberrancy is encountered in 3 out of 500 CS implants (Gelder et 
al.,2003). 
Once the CS is successfully cannulated the electrophysiology catheter can be exchanged for 
a balloon catheter to perform an occlusive CS venography in two projections LAO and RAO 
30°-45°. 

3.2 Retrograde coronary venography 
The use of venography of the CS is necessary to facilitate LV lead implantation. The balloon 
catheter is loaded with a PCI wire and the balloon catheter is advanced to the end of the 
guiding delivery sheath under fluoroscopy. The 0.014 PCI wire is pushed out the balloon 
catheter and advanced into the CS. This will prevent dissection from the CS by the balloon 
catheter. 
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The PCI wire will be pulled back to allow a retrograde contrast injection after balloon 
occlusion of the CS (Fig 8). This is done with a 10 cc syringe hand injection of contrast 
diluted with saline 0,9 %. 
Retrograde injection of contrast opacifies all potential target veins, valves, structures, 
collateral connections and specific anatomic details of the target veins that will help to make 
the right choice for the LV lead (Fig 9). It is desirable to make a long cine sequence to 
visualize collaterals or side branches occluded by the balloon. To avoid occlusion of side 
branches by the balloon catheter or if no side branches are visualized, contrast injections 
must be repeated at several levels in the CS. 
 

 
Fig. 8. Balloon catheter (1) with the PCI wire (2) and Y connector (3) together with a contrast 
syringe (4) to the side port. The balloon catheter is advanced in the CS with the PCI wire 
running before the balloon catheter to prevent dissection of the CS. After the PCI wire is 
pulled back a retrograde injection in the CS is made after balloon inflation (5). 
 

 
Fig. 9. Retrograde coronary venography of the coronary sinus. On the left panel the LAO 
projection shows the coronary sinus with two large postero-lateral branches (1 and 2) and a 
small lateral branch (3). The right side shows the RAO projection. In this projection we see 
again both postero-lateral branches (1 and 2) with second order branches and the great 
cardiac vein running over the anterior wall (4). 
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The PCI wire can be left in the balloon catheter to steer it into the selected vein. Position can 
be checked by contrast injection through the Y connector. 
LV pacing from the lateral, postero-lateral or antero-lateral cardiac vein provides the 
optimal result of the CRT device (Butter et al.,2001). (Fig 10). Successful implantation also 
depends on the inclusion criteria, which should include mechanical dyssynchrony to 
provide responders to CRT (Scheffer et al.,2010; Yu et al.,2002; Bax et al.,2003). Stimulation at 
the LV site with the latest mechanical activation measured with TDI will provide the highest 
cardiac output (Ansalone et al.,2002). 
Storing digitally acquired images in two radiographic views (RAO 30°and LAO 30-45°) 
offer a reference for advancing PCI wires and LV pacing leads in the target branch of the 
CS.  
 

 
Fig. 10. Diagram of LV lead positions of 287 patients implanted with a CRT device combined 
figures from the Catharina Hospital, Eindhoven, The Netherlands and Maasstad Hospital 
Rotterdam in three years. Percentages indicate the rise in LV dP/dt compared to baseline. 
The preferred position is the basal lateral or mid lateral position measured with LV dp/dt 
immediately after implantation of a CRT device. These locations are also found by others to 
be the preferred position for optimal CRT. 

3.3 Accessibility of side branches 
Side branches too small for lead placement or complete absence of the side branches are a 
rare phenomenon, but can occasionally occur. Visualization of the middle cardiac vein can 
help to find a way to a lateral position for the LV lead. After coronary artery bypass surgery 
pericardial fibrosis or severe stenosis of the target vein may complicate the placement of the 
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LV lead. Coronary venoplasty or stenting is used in those patients to overcome these 
problems (Hansky et al.,2002; van Gelder et al.,2003) (fig 11).  
 

 
Fig. 11. Severe stenosis of a postero-lateral branch could be conquered with stenting after 
which the LV lead could be simply introduced. 

Sometimes there are no tributes found in the CS and just a small part of the entry of the 
target vein is shown on the retrograde venography of the CS. Totally occluded target veins 
can be opened with the use of PCI wires and balloon dilatation (Fig 12). 
With the knowledge of the retrograde venography of the CS the LV lead can be chosen, 
depending on the diameter and tortuosity of the target vein. Considerable advancements in 
LV lead design have led to numerous different unipolar, bipolar and multipolar LV leads. 
The LV leads can be used stylet driven or over the wire (OTW) similar to percutaneous 
coronary intervention.  
In general the stylet driven LV leads are larger in diameter and used for larger veins, but 
some can also be used OTW and are called hybrids. Advancement of these stylet driven 
leads is performed by bending the distal 1-2 cm of the stylet at an angle corresponding to the 
angle of entry of the target vein into the CS. With the use of the bended stylet the LV lead 
can be steered into the target vein and exchanged for a soft, straight stylet to push the lead 
inside the vein. Lead advancement is often facilitated by clockwise rotation and repeated 
pushing of the lead with slight retraction of the stylet. 
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LV lead. Coronary venoplasty or stenting is used in those patients to overcome these 
problems (Hansky et al.,2002; van Gelder et al.,2003) (fig 11).  
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In general the stylet driven LV leads are larger in diameter and used for larger veins, but 
some can also be used OTW and are called hybrids. Advancement of these stylet driven 
leads is performed by bending the distal 1-2 cm of the stylet at an angle corresponding to the 
angle of entry of the target vein into the CS. With the use of the bended stylet the LV lead 
can be steered into the target vein and exchanged for a soft, straight stylet to push the lead 
inside the vein. Lead advancement is often facilitated by clockwise rotation and repeated 
pushing of the lead with slight retraction of the stylet. 
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Fig. 12. a: coronary sinus projected in the RAO view with a total occluded posterolateral 
branch. (arrow pointing to occlusion) 
b: showing a balloon dilatation after a PCI wire crossed this total occlusion.  
c: slight filling of the postero-lateral branch. 
d: buddy wire technique to cross the difficulties in this narrowed vessel. (two arrows 
pointing to both PCI wires) 
e: Successful placements of the LV lead in the postero-lateral wall. (arrow) 
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3.4 The Over The Wire (OTW) technique 
The OTW technique is different and provides access of the PCI wire to the target vein. First 
the LV lead is loaded with a PCI wire. The distal 5 mm of the PCI wire is slightly bended 
(Fig 13) and the LV lead combined with the PCI wire is brought into the CS through the 
guiding delivery sheath near the target vein. 
 

 
Fig. 13. Over the wire technique showing the guiding delivery sheath (1) with the LV lead 
(2) pushed out of the guiding delivery catheter and the PCI wire going ahead to advance 
into the side branch of the CS. The slight bend in the PCI wire (arrow) makes it possible to 
steer the PCI wire in the desired direction. 

The PCI wire is advanced out the LV lead and with the ease of a torque steered in the 
desired vein. The PCI wire is advanced as distally as possible into the vein to provide a track 
for the lead. Subsequently the LV lead is pushed over the PCI wire into the vein, while the 
PCI wire is fixed or slightly retracted until the tip of the LV lead wedges or has a stable 
position. The OTW technique enables the pacing lead to go into secondary veins or to 
maneuver the LV lead to the optimal position. 
Several problems can come across why the PCI wire will not enter the target vein: valves at 
the entrance of the target vein, severe angulated proximal segments, very tortuous segments 
or a very small caliber of the vein. When the PCI wire cannot be advanced from the CS into 
the first branch, because there is an acute angle, a guide catheter is used. For this purpose 
special Attain catheters with different curves and soft tips are made (Fig 14 a, b) to cannulate 
the target vein. Instead standard coronary angiography catheters can be used. 
Depending on the angle of the ostium of the target vein an Attain Select catheter or a 
coronary angiography catheter can be used. This catheter introduced into the guiding 
delivery sheath and used as a telescoping catheter to hook on to the target vein enabling to 
give selective contrast injections to facilitate cannulation. Once the catheter engages the 
target vein a PCI wire is passed through the catheter and the PCI wire is advanced as 
distally as possible into the vein. Under continuous fluoroscopy the catheter is withdrawn 
while keeping the PCI wire in place. Thereafter the LV lead is frontloaded (not all LV leads 
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Fig. 12. a: coronary sinus projected in the RAO view with a total occluded posterolateral 
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give selective contrast injections to facilitate cannulation. Once the catheter engages the 
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distally as possible into the vein. Under continuous fluoroscopy the catheter is withdrawn 
while keeping the PCI wire in place. Thereafter the LV lead is frontloaded (not all LV leads 
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can be frontloaded) with the PCI wire and the LV lead is advanced while retracting the PCI 
wire like a rail system to the desired site. Occasionally the LV lead cannot be advanced 
because the PCI wire has not straightened the acute angle or tortuous segment and a stiffer 
guidewire can be helpful. If this will not work the use of a buddy wire or telescopic sheaths 
may be the last resort to bring the lead transvenous to the desired place. 
 

 
Fig. 14. Three Attain Select catheters (Medtronic) specially designed with a soft tip to 
cannulate side branches with sharp take off from the coronary sinus (left panel).  The Attain 
Select catheters can be loaded with PCI wires to engage the target vessel or to give contrast 
injections in the tributary to visualize the peripheral part (right panel). 

3.5 Special techniques or solutions for LV lead advancement 
The buddy wire technique refers to the placement of one or more PCI wires alongside the 
first wire to optimal straighten the vein and allow passage of the LV lead. (Fig 12 d) 
The telescoping sheath technique can only be used in larger diameter target veins, because 
the risk of perforation exists. The CS guiding delivery sheath must be at least 9 French and 
the target vein is cannulated with a heavy weight PCI wire. Over the PCI wire into the CS 
delivery guiding sheath is brought a smaller diameter straight CS sheath with a soft tip. On 
this CS catheter a Y connector is fastened to inject contrast if needed and allow visualization 
of the encroachment of the CS catheter into the target vein and dissection or perforation can 
be avoided. Sometimes even with the PCI wire in place the straightened CS sheath will not 
advance. The PCI wire is then replaced by an Attain Select catheter or coronary artery 
catheter that resembles the shape of the target vein and with manipulation of the tip the 
difficulties can be conquered.  
The straightened soft CS sheath is advanced over the Attain Select or coronary artery 
catheter and the latest is withdrawn, so a stylet driven LV lead can pass through. In large 
diameter veins it is not always possible to obtain a stable LV lead position and new 
designed LV leads can solve this problem (Fig 15). 
With the LV lead in place two new problems can be encountered, high left ventricular 
stimulation thresholds and phrenic nerve stimulation. Another more intriguing problem 
is ongoing mechanical dyssynchrony after implantation. This topic will be addressed in 
par.6. 
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Fig. 15. The Starfix lead (Medtronic) with deployable lobes. By pushing up the redundant 
blue tube, which covers the lead at the proximal part of the lead, the distal part of the tube 
will show deployment of three lobes. In this way the lead will fix itself in the target vein. 
The two lower pictures shows the Starfix lead brought in position in a large postero-lateral 
vein under fluoroscopy.  

4. The ECG in cardiac resynchronization therapy 
4.1 Electrocardiographic consequences of different stimulation sites 
Bi-ventricular pacing systems for ventricular resynchronization in the treatment of heart 
failure patients with a QRS complex > 120 ms and LBBB configuration have been employed 
for over 10 years. In these systems the ventricular stimulus is applied both to a left 
ventricular lead, positioned in one of the lateral, postero-lateral or posterior branches of the 
coronary sinus, and a right ventricular lead, positioned in an apical, septal or outflow tract 
position. Output on both leads can be programmed separately. In a normally functioning 
biventricular pacing system capture is obtained from both sites and the QRS morphology 
has a fusion pattern of right and left ventricular pacing.  
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The paced morphology of the QRS complex is dependent on the anatomical position of the 
right and left ventricular lead and a number of additional factors. Factors that determine the 
final morphology are 
1. Location of the right and left ventricular lead. 
2. Presence of anodal capture 
3. The programmed AV interval 
4. The programmed VV interval 
5. Intrinsic AV conduction 
An interaction between some of these factors also can contribute to the final morphology, 
like for instance the programmed AV interval and the intrinsic AV conduction, which may 
lead to fusion between paced an intrinsic ventricular activation.  

4.2 The ECG in right ventricular pacing 
The morphology for right ventricular pacing can be divided in pacing from the right 
ventricular apex, right ventricular septum and right ventricular outflow tract. In the following 
ECG stimulation from these sites in the same patient are demonstrated in figure 16. 
 

 
Fig. 16. ECG’s from RV apex, RV septum and RV outflow tract.  

The difference between the 3 locations is best appreciated from the frontal leads II and III 
that have a negative deflection during apex pacing (inferior to superior activation), a 
biphasic configuration during septum pacing indication interior to superior and superior to 
inferior activation, and a positive configuration during outflow tract pacing (superior to 
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inferior activation). The precordial leads show a LBBB pattern more or less similar for all 
locations. 
Figure 17 illustrates the effect of location of the RV lead combined with left ventricular 
pacing from the postero-lateral area. 
 

 
Fig. 17. Twelve lead ECG in biventricular pacing with LV pacing from a postero-lateral (PL) 
location in the coronary sinus combined with respectively RV apex, RV septum and RV 
outflow tract pacing. 

4.3 The ECG in left ventricular pacing 
The morphology of the stimulated QRS complex in left ventricular pacing has more 
variation than right ventricular pacing, due to the great variation of locations that can be 
obtained from the coronary venous anatomy. In a cross-section of the left ventricle, the 
segments can be divided in a posterior, postero-lateral, lateral, antero-lateral and anterior 
segment. In a longitudinal direction the left ventricle can be divided in 3 segments, the basal, 
the mid ventricular and apical segment. 
Recognition of the longitudinal segment is relatively easy. The basal location will result in 
activation from superior to inferior, which is best reflected in the frontal plane of the ECG in 
the lead II and III. Similar an apical location will result in a negative QRS complex in the 
leads II and III, due to the activation travelling from inferior to superior. A mid segment 
location will result in a biphasic configuration in the leads II and III. 
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For the traverse segments during LV pacing the precordial leads are mandatory. For the 
postero-lateral area the QRS complex in the precordial leads will be positive from V1 to V4-
5. For the posterior position the positive morphology will be limited to the leads V1-V3. In 
the lateral and antero-lateral positions there will a decrease in the positive amplitude in the 
pre-cordial leads which will gradually change to a negative deflection in the precordial 
leads. The closer the left ventricular stimulation electrode is located towards the 
intraventricular septum, the more resemblance there is with the morphology of right 
ventricular pacing characterized by a left bundle branch block pattern in the pre-cordial 
leads. 
The morphology during left ventricular pacing and the location of the stimulation electrode 
is illustrated in the ECG represented in figure 18. 
 

 
Fig. 18. Twelve lead ECG’s from different LV epicardial locations (coronary sinus) 
illustrating the relationship between QRS morphology and stimulation site. See text for 
further explanation. 

For the determination of the stimulation site with respect to the QRS morphology it is 
mandatory that left ventricular pacing is pure left ventricular pacing, not associated with 
any form of fusion with intrinsic activation. When pacing is performed in an atrial 
synchronous mode in patients with intrinsic AV conduction, the value of the programmed 
AV interval and the intrinsic AV conduction will determine the presence and degree of 
fusion (van Gelder et al. 2005). This is illustrated in figure 19.   
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Fig. 19. Right and left ventricular pacing in the same patient with intrinsic AV conduction. 
Right and left ventricular pacing are performed with varying AV intervals. The RV pacing 
morphology is not affected by the AV interval. For LV pacing the degree of fusion 
determines the variation in the QRS morphology.  

From this recording it is clearly demonstrated that for obtaining pure LV pacing, when 
pacing in an atrial synchronous mode, the AV interval should programmed to the shortest 
paced AV interval. Pacing in an atrial asynchronous mode (VVI) is no guarantee that fusion 
is excluded. Fusion can still be present when coincidentally LV pacing occurs simultaneous 
with intrinsic activation. 

4.4 Anodal stimulation in cardiac resynchronization therapy 
Primarily LV coronary sinus leads had a unipolar configuration. Therefore the can of the 
device was used as the positive anodal electrode for LV pacing. In case of pectoral muscle 
stimulation the pacing configuration could be changed from the LV electrode to the ring 
electrode of the right ventricular lead. However, in this configuration RV anodal stimulation 
could be initiated by LV pacing, which resulted in simultaneous pacing from the left and 
right ventricle (van Gelder et al. 2001). This phenomenon is illustrated in figure 20. 
An effective way of avoiding anodal stimulation is programming the device in the unipolar 
configuration using the can of the device as the anodal electrode (van Gelder et al., 2001). 
This is illustrated in figure 21, where changing the V-V interval is changing the morphology 
of the QRS for every value, so V-V programming is not hindered by anodal capture. When 
however, the LV configuration is changed from LVtip to RVring, in the presence of anodal 
capture the morphology doesn’t changing when changing the V-V interval from 80 to 60 
and 40 ms. However, when the V-V interval was changed from 40 to 20 ms and 
subsequently 0 ms changes in the QRS morphology were observed. 
This change in morphology is caused by triple site stimulation. When BiV pacing with a V-V 
interval of 40 ms or more is initiated, the LV stimulus captures LV (cathodal) as well as RV 
(anodal). This implies that the RV stimulus, which is delivered 40 to 80 ms later, is 
ineffective because the myocardial tissue is already refractory at the time of delivery of the 
RV stimulus. The myocardial tissue around the RV tip electrode is not immediately 
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For the traverse segments during LV pacing the precordial leads are mandatory. For the 
postero-lateral area the QRS complex in the precordial leads will be positive from V1 to V4-
5. For the posterior position the positive morphology will be limited to the leads V1-V3. In 
the lateral and antero-lateral positions there will a decrease in the positive amplitude in the 
pre-cordial leads which will gradually change to a negative deflection in the precordial 
leads. The closer the left ventricular stimulation electrode is located towards the 
intraventricular septum, the more resemblance there is with the morphology of right 
ventricular pacing characterized by a left bundle branch block pattern in the pre-cordial 
leads. 
The morphology during left ventricular pacing and the location of the stimulation electrode 
is illustrated in the ECG represented in figure 18. 
 

 
Fig. 18. Twelve lead ECG’s from different LV epicardial locations (coronary sinus) 
illustrating the relationship between QRS morphology and stimulation site. See text for 
further explanation. 

For the determination of the stimulation site with respect to the QRS morphology it is 
mandatory that left ventricular pacing is pure left ventricular pacing, not associated with 
any form of fusion with intrinsic activation. When pacing is performed in an atrial 
synchronous mode in patients with intrinsic AV conduction, the value of the programmed 
AV interval and the intrinsic AV conduction will determine the presence and degree of 
fusion (van Gelder et al. 2005). This is illustrated in figure 19.   
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Fig. 19. Right and left ventricular pacing in the same patient with intrinsic AV conduction. 
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determines the variation in the QRS morphology.  
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Fig. 20. Twelve lead ECG initially programmed in BiV pacing with LV pacing preceding RV 
pacing with 60 ms (V-V 60 ms). Because of this programmed value LV pacing dominates 
ventricular activation (R wave V1-5). But after programming LV output to 4.0V RV anodal 
capture occurs changing the QRS morphology due to simultaneous biventricular pacing. 

refractory when anodal stimulation from the ring electrode occurs. It takes a short time for 
the anodal RV activation to reach the surrounding tissue of the RV tip electrode. 
Refractoriness of the myocardial tissue at the time of delivery of the RV stimulus depends 
on the distance between the ring and tip electrode of the RV lead, the time difference 
between LV and RV stimulation (V-V interval), and the conduction velocity of the 
myocardium (van Gelder et al., 2005, Fig. 22). 
Anodal stimulation will not be present in configurations where the LV electrode is 
combined with the coil electrode of an ICD lead as anodal electrode, because of the surface 
area of this electrode which is around 500 mm2. The current density is too low to evoke 
anodal capture. However, when a true bipolar ICD lead (e.g. Medtronic) is combined with a 
device of a company that standard uses integrated bipolar (e.g. BostonScientific), 
programming LVtip to RV coil leads to stimulation between LV tip and RV ring with the 
potential possibility of anodal capture (van Gelder et al., 2008). 

4.5 The lead I paradox 
Follow-up is often performed using ECG monitoring with the limb leads, implicating that 
lead I is the most important indicator for recognition of right or left ventricular activation. 
We reported on the paradoxical morphology of the QRS complex in lead I, showing a 
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Fig. 21. Changing of V-V interval changes the QRS morphology. See text. 

 

 
Fig. 22. No change in QRS morphology during anodal capture when programming V-V 
interval from 80 to 40, but changes are observed after programming V-V interval below 24 ms.  
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Fig. 21. Changing of V-V interval changes the QRS morphology. See text. 

 

 
Fig. 22. No change in QRS morphology during anodal capture when programming V-V 
interval from 80 to 40, but changes are observed after programming V-V interval below 24 ms.  
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negative complex during right ventricular (RV) pacing and positive during left ventricular 
(LV) pacing in the same patient (van Gelder et al. 2008). 
During stimulation at the high septal site of the RV a negative QRS complex in lead I can be 
recorded. On the other hand a basal position of the LV lead in one of the posterior or 
postero-lateral veins may result in a positive deflection in lead I. When both phenomenon 
are present in the same patient, the configuration is in contradiction with the general finding 
of a positive QRS complex in lead I during RV pacing and negative during LV pacing and 
was called the lead I paradox. This paradoxical behavior might be an argument to record a 
precordial ECG lead (preferably V1) in the follow-up of patients with biventricular pacing 
systems (Fig. 23). 
 

 
Fig. 23. Twelve-lead ECG of patient 2 showing the paradoxical presentation in lead I of RV 
and LV pacing. However,in the precordial leads a LBBB pattern is observed during RV 
pacing and a RBBB pattern during LV pacing. 

The paradox in lead I has no relation to each other: a negative QRS complex in lead I during 
RV pacing has no effect on the positive QRS complex during LV pacing and vice versa. The 
negative QRS complex in lead I during RV high septal pacing is a known observation 
described during ventricular tachycardia arising from the RV outflow tract. A more anterior 
oriented position of the lead in the septum is more prone to this pattern due to the amount 
of ventricular myocardium depolarized from left to right, which is higher than with a 
posterior position of the lead. The presence of a preexisting right axis deviation with a 
negative QRS complex in lead I with fusion or pseudo fusion was ruled out as a cause by 
programming a short AV interval. 
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A positive QRS complex in lead I during LV pacing could be explained by the basal 
position of the LV lead combined with a more horizontal anatomical position of the long 
axis of the left ventricle or rotation of the left ventricle. Under these conditions, the 
ventricular myocardium is mainly depolarized in a right to left direction, thus giving rise 
to a negative QRS complex in lead I. Preexistence of an intrinsic positive QRS complex in 
lead I could be an explanation for the positive QRS complex during LV pacing due to 
fusion, which was ruled out as stated before. A positive QRS complex in lead I during LV 
pacing is also described by Kistler et al. (2003), but in their patient the LV lead was 
positioned in the great cardiac vein, close to the interventricular septum, whereas in all 
our patients CS leads were implanted in the postero-lateral area of the left ventricle (Fig. 
24). A positive QRS complex during LV pacing can also be observed when anodal 
stimulation from the RV ring electrode occurs. This RV activation might dominate in the 
“biventricular” activation resulting in a positive QRS complex. In our patients RV anodal 
stimulation was ruled out during LV pacing. The presence of scar tissue affecting QRS 
morphology in these patients was unlikely because the indication was dilated 
cardiomyopathy in the majority. 
 

 
Fig. 24. X rays showing the lead positions in right anterior oblique (RAO) view and left 
anterior oblique view( LAO) of a patient showing the Lead I paradox, see also figure 23. 

4.6 Electrode configuration in coronary sinus leads 
The over the wire leads addressed in the previous paragraph all had a unipolar 
configuration. This implies that LV pacing is delivered between the distal electrode of the 
CS lead and the can of the device or the anodal electrode of the RV lead. In case of an ICD 
lead, the coil electrode will serve as the anodal electrode in the majority of cases. One of the 
drawbacks of this configuration is anodal capture that can occur when a RV ring electrode is 
used as the anodal electrode. Anodal capture results in simultaneous LV and RV activation, 
even when a V-V interval with LV pacing preceding RV pacing is programmed, so V-V 
timing can be deregulated by anodal capture. 
Anodal RV capture can easily be prevented by the use of bipolar CS leads (e.g. Medtronic 
4194). In this lead the ring electrode has an electrode surface area of 38 mm2, but even in 
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negative complex during right ventricular (RV) pacing and positive during left ventricular 
(LV) pacing in the same patient (van Gelder et al. 2008). 
During stimulation at the high septal site of the RV a negative QRS complex in lead I can be 
recorded. On the other hand a basal position of the LV lead in one of the posterior or 
postero-lateral veins may result in a positive deflection in lead I. When both phenomenon 
are present in the same patient, the configuration is in contradiction with the general finding 
of a positive QRS complex in lead I during RV pacing and negative during LV pacing and 
was called the lead I paradox. This paradoxical behavior might be an argument to record a 
precordial ECG lead (preferably V1) in the follow-up of patients with biventricular pacing 
systems (Fig. 23). 
 

 
Fig. 23. Twelve-lead ECG of patient 2 showing the paradoxical presentation in lead I of RV 
and LV pacing. However,in the precordial leads a LBBB pattern is observed during RV 
pacing and a RBBB pattern during LV pacing. 

The paradox in lead I has no relation to each other: a negative QRS complex in lead I during 
RV pacing has no effect on the positive QRS complex during LV pacing and vice versa. The 
negative QRS complex in lead I during RV high septal pacing is a known observation 
described during ventricular tachycardia arising from the RV outflow tract. A more anterior 
oriented position of the lead in the septum is more prone to this pattern due to the amount 
of ventricular myocardium depolarized from left to right, which is higher than with a 
posterior position of the lead. The presence of a preexisting right axis deviation with a 
negative QRS complex in lead I with fusion or pseudo fusion was ruled out as a cause by 
programming a short AV interval. 
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positioned in the great cardiac vein, close to the interventricular septum, whereas in all 
our patients CS leads were implanted in the postero-lateral area of the left ventricle (Fig. 
24). A positive QRS complex during LV pacing can also be observed when anodal 
stimulation from the RV ring electrode occurs. This RV activation might dominate in the 
“biventricular” activation resulting in a positive QRS complex. In our patients RV anodal 
stimulation was ruled out during LV pacing. The presence of scar tissue affecting QRS 
morphology in these patients was unlikely because the indication was dilated 
cardiomyopathy in the majority. 
 

 
Fig. 24. X rays showing the lead positions in right anterior oblique (RAO) view and left 
anterior oblique view( LAO) of a patient showing the Lead I paradox, see also figure 23. 

4.6 Electrode configuration in coronary sinus leads 
The over the wire leads addressed in the previous paragraph all had a unipolar 
configuration. This implies that LV pacing is delivered between the distal electrode of the 
CS lead and the can of the device or the anodal electrode of the RV lead. In case of an ICD 
lead, the coil electrode will serve as the anodal electrode in the majority of cases. One of the 
drawbacks of this configuration is anodal capture that can occur when a RV ring electrode is 
used as the anodal electrode. Anodal capture results in simultaneous LV and RV activation, 
even when a V-V interval with LV pacing preceding RV pacing is programmed, so V-V 
timing can be deregulated by anodal capture. 
Anodal RV capture can easily be prevented by the use of bipolar CS leads (e.g. Medtronic 
4194). In this lead the ring electrode has an electrode surface area of 38 mm2, but even in 
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spite of this large surface area stimulation threshold is lower when the coil electrode of an 
ICD lead, with a surface area of approximately 500 mm2 is used as anodal electrode. 
 

 
Fig. 25. Dual unipolar lead Medtronic 4196 implanted in a postero-lateral branch of the 
coronary sinus with the corresponding ECG’s from pacing from proximal and distal 
electrode. 

More recently bipolar CS leads are introduced, in which the proximal electrode has a surface 
area approximately equal to the surface area of the distal electrode (e.g. Guidant Easytrak 2, 
Medtronic 4196). These leads are far from ideal when used in a bipolar configuration, 
because the small surface area at the proximal electrode gives a rise in lead impedance 
without an increase of current efficiency. The idea behind the lead is that the stimulating 
electrode can be switched from distal to proximal in a unipolar configuration, in which the 
coil of the ICD lead is used as anodal electrode. 
This option creates the possibility of changing non-invasively the pacing configuration, 
which can be useful in case of phrenic nerve stimulation or high stimulation threshold. The 
name “dual unipolar” or “dual cathodal lead” better covers the lead options than simply 
calling it a bipolar lead. In case of acceptable cathodal threshold from both electrodes a 
selection can be made based on the optimal hemodynamic effect. Figure 25 demonstrates the 
position of such a lead (Medtronic 4194) with corresponding ECG during LV pacing from 
the distal and proximal electrode.  
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Because of the difference in location of the pacing electrodes in the LVtip-can and LVring-
can configuration the QRS complex during LV paving also differs and also the 
hemodynamic effect can be changed by the choice of the stimulation electrode. Since the tip 
and ring electrode has an equal surface area the bipolar pacing configuration (LVtip-ring) 
can easily result in dual site pacing due to anodal capture at the ring electrode. This is 
illustrated in figure 26. 
 
 

 
 

Fig. 26. Twelve lead ECG with unipolar stimulation from tip and ring electrode,(LVtip-can 
and LVring –can). The morphology of the QRS complex during LVtip-ring pacing has a 
different morphology from both other configuration indicating dual site LV pacing by 
anodal capture. 

The hemodynamic effect of single and dual site LV paving is demonstrated in figure 27. 
From our initial experience it is clear that this example is representative for this lead with an 
inter-electrode distance of 21 mm. The single site best result does not become better by dual 
site pacing. 
In future developments quadripolar CS leads will be employed, which increase the number 
of pacing vectors thus increasing the possibilities to handle phrenic nerve stimulation or 
elevated stimulation threshold. However, if this option has also hemodynamic 
consequences still has to be investigated.  
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Fig. 27. Hemodynamic effect of single site (*LV tip and LV ring) and dual site LV pacing (LV 
tip-ring). 

5. Slitting or cutting the guiding delivery catheter 
The last step during the implantation procedure is the removal of the guiding delivery 
sheath. This is challenging because dislodgement of the LV lead is frustrating after a 
fatiguing implantation procedure.   
The LV lead is kept in place with a finishing stylet provided with the LV lead. A special cutting 
device is attached to the lead and the guiding delivery catheter is removed by longitudinal 
slitting. The guiding delivery sheath is withdrawn in one continuous smooth motion under 
continuous fluoroscopic observation. Another technique is the use of long finishing stylet to 
keep the LV lead in place and use the traditional break and peel-away method. 
With both techniques the long stylet or the cutting tool must be fixed in place, else 
redundancy of the LV lead introduces dislodgement, especially at the point the delivery 
sheath reaches the ostium of the CS. Advancing the finishing stylet or the LV lead at that 
point into the venous system paradoxically giving too much slack of the LV lead in the right 
atrium and the LV lead will drop out of the CS. Slight backward traction will prevent 
dislodgement by straightening the LV lead. Repositioning the LV lead without the back-up 
of the delivery sheath is occasionally achievable, but generally a new delivery sheath is 
needed to provide support for the renewed placement of the LV lead.  
In case habitual dislodgement occurs the Star-fix LV lead (Medtronic) can be inserted and 
fixed in the target vein to ensure a supplementary steady position. The finishing wire is 
drawn back and the LV lead must be secured with tight sewing collars around the sleeve of 
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the LV lead. The same is done with RA and RV lead and all three leads are attached to the 
CRT device and the implantation procedure is finished. 

6. Problems after LV lead placement 
High left ventricular stimulation threshold can be due to the presence of scar tissue, 
however the place for the LV lead is dictated by the native coronary venous anatomy and 
sometimes thresholds up to 3.5 Volt at 0.5-msec pulse duration are accepted. 
The other problem is left phrenic nerve stimulation causing diaphragmatic contraction. The 
left phrenic nerve is located anywhere along the lateral wall of the heart as multiple side 
branches of the phrenic nerve crosses broad areas of the pericardium. Phrenic nerve 
stimulation is not tolerated by the patient and repositioning of the LV lead is advisable even 
if pacing at outputs above 5 Volts with acceptable stimulation threshold stimulate the 
diaphragm. The patient is in a supine position during implantation and after the procedure 
the diaphragmatic threshold may drop and/or the LV lead threshold may rise with body 
changes and repositioning the LV lead to a tertiary branch or more proximal in the target 
vein can prevent a re-intervention with lead repositioning. 
The use of bipolar leads does not prevent left phrenic nerve stimulation. 
Special LV leads can be used with two electrodes that permit stimulation between one of the 
two electrodes and the anodal electrode of the RV lead, or coil electrode of the shock lead. 
Altering the LV-RV pacing vector may prevent left phrenic nerve stimulation. If left phrenic 
nerve stimulation persists one should go to surgical LV lead placement. 
A third problem one can encounter after implantation is ongoing mechanical dyssynchrony 
despite optimization of the CRT device. This is mostly due to inappropriate LV lead 
placement and sometimes a second LV lead to recruit more of the left ventricular wall is 
needed to gain mechanical synchrony. In such a case both LV leads are coupled to a Y-
splitter and attached in the LV port of the pacemaker (Fig 28) 
 

 
Fig. 28. X-ray of the chest showing a CRT device with a RA lead (1), RV lead screwed in the 
RVS (2) and two LV leads. The first LV lead (3) is positioned in a posterior branch. Because 
no mechanical resynchronization could be obtained a second lead (4) was placed afterwards 
in an antero-lateral branch, after which mechanical synchrony was achieved.  
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Fig. 27. Hemodynamic effect of single site (*LV tip and LV ring) and dual site LV pacing (LV 
tip-ring). 
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continuous fluoroscopic observation. Another technique is the use of long finishing stylet to 
keep the LV lead in place and use the traditional break and peel-away method. 
With both techniques the long stylet or the cutting tool must be fixed in place, else 
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High left ventricular stimulation threshold can be due to the presence of scar tissue, 
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sometimes thresholds up to 3.5 Volt at 0.5-msec pulse duration are accepted. 
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stimulation is not tolerated by the patient and repositioning of the LV lead is advisable even 
if pacing at outputs above 5 Volts with acceptable stimulation threshold stimulate the 
diaphragm. The patient is in a supine position during implantation and after the procedure 
the diaphragmatic threshold may drop and/or the LV lead threshold may rise with body 
changes and repositioning the LV lead to a tertiary branch or more proximal in the target 
vein can prevent a re-intervention with lead repositioning. 
The use of bipolar leads does not prevent left phrenic nerve stimulation. 
Special LV leads can be used with two electrodes that permit stimulation between one of the 
two electrodes and the anodal electrode of the RV lead, or coil electrode of the shock lead. 
Altering the LV-RV pacing vector may prevent left phrenic nerve stimulation. If left phrenic 
nerve stimulation persists one should go to surgical LV lead placement. 
A third problem one can encounter after implantation is ongoing mechanical dyssynchrony 
despite optimization of the CRT device. This is mostly due to inappropriate LV lead 
placement and sometimes a second LV lead to recruit more of the left ventricular wall is 
needed to gain mechanical synchrony. In such a case both LV leads are coupled to a Y-
splitter and attached in the LV port of the pacemaker (Fig 28) 
 

 
Fig. 28. X-ray of the chest showing a CRT device with a RA lead (1), RV lead screwed in the 
RVS (2) and two LV leads. The first LV lead (3) is positioned in a posterior branch. Because 
no mechanical resynchronization could be obtained a second lead (4) was placed afterwards 
in an antero-lateral branch, after which mechanical synchrony was achieved.  
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7. Concluding remarks 
The implantation of a LV lead in patients with congestive heart failure is technically a rather 
complex procedure. Implantation training for CRT has a significant learning curve. Duration 
of implantation and fluoroscopic time will greatly reduce with experience ( Kautzner et 
al.,2004).Implantation failure is due to inability to intubate the CS, unstable guiding delivery 
catheter, absence of suitable side branches in the postero-lateral region, coronary vein 
stenosis or occlusion, lead instability, high stimulation threshold, phrenic nerve stimulation 
or a combination of the above (Bentkover et al.,2003; Gras et al.,2002). 
Success depends on multiple factors including operator’s experience and technique, 
individual anatomy of the CS, threshold and phrenic nerve stimulation regions and 
available instrumentation and leads. With advanced materials and experienced operators up 
to 92 % of LV leads are successful via the transvenous approach (León et al.,2005). 
Complications inherent to LV lead implantation include CS dissection, intimal dissection of 
the target vein sometimes combined with acute thrombotic occlusion, hematoma in the wall 
of the target vessel, which can contribute to venous thrombosis and a life threatening 
complication due to wire exit is coronary venous perforation. Peri-implantation mortality 
risk is reported 0.4 % from ten pooled studies including 3,223 patients. Re-implantation 
occurs in 6-8% of patients within 6 months due to LV lead dislodgement, exit block or 
phrenic nerve stimulation (Greenberg et al.,2003). Further post-implantation risks are 
similar to conventional pacing. However if placement of a LV lead or the re-implantation 
fails one should consider surgical placement of an epicardial LV lead, which also can be 
performed with robotic assistance (DeRose et al.,2005) to provide the patient the benefit of 
CRT. In case surgery is contraindicated transseptal or transapical approaches with 
endocardial LV lead should be considered. 
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1. Introduction 

Heart rate is, among the many vital signs (respiration rate, blood oxygen saturation, arterial 
blood pressure, etc.), one of the most commonly measured and monitored. Whatever will be 
the sensing principle or the monitoring method used, data referred to the heart rate can be 
considered the primary vital sign information which is needed on a patient approach in both 
emergency and clinical situations. Heart rate data are used to measure anomalous rate or 
irregular pulse rate (arrhythmias) or heart block. The post-processing of the data can be 
used to verify trends or single events, providing precious elements to the patient diagnosis. 
Heart-rate variability (HRV) can be performed on recorded data in order to have an 
objective measure of eventual cardiac abnormalities (irregular beat-to-beat time is a 
prognostic factor for atrial fibrillation (Gorgas, 2004). Low HRV is also a known prognostic 
marker for several cardiovascular diseases. Other possible use of the heart rate data are 
related to the analysis of the circadian rhythm (sleep), temperature regulation, cardiac 
sympathetic nervous activity and synchronization with respiration rate.  
Since the past centuries, observation of the electrophysiologic effects related to the heart 
beats are reported. In 1842, Carlo Matteucci, Professor of Physics at the University of Pisa, 
shows that an electric current accompanies each heart beat. In 1902 Einthoven publishes 
(Einthoven, 1902) the first electrocardiogram recorded on a string galvanometer, opening 
the way to the electrocardiography (ECG) era which is still, nowadays, the primary heart 
rate monitoring procedure. 
To date, an enormous series of procedures, methods and devices for ECG monitoring are 
available on the market (Gorgels PM, 2007; Webster, 1988). The majority of these 
contributions are based on the need to place some electrodes on standard positions on the 
body surface (i.e. Einthoven’s triangle), as depicted in fig. 1. ECG measurements can be 
divided into two types according to where electrodes are attached or fixed. The first type 
involves measurements with conventional ”fixed-on-body” electrodes such as Ag–AgCl 
electrodes, and the other involves measurements using electrodes installed on appliances or 
furniture.  
Even if fixed-on-body electrodes (fig. 2) are reliable and give good signal quality, they are 
inconvenient and inadequate for long-term, everyday measurements. Moreover the 
presence of cables (one for each of the electrodes placed) can considerably limit the patient 
mobility and comfort, forcing him to maintain the initial position (supine) for all the 
monitoring period of time or limiting his/her movements because of the cables length.”  
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Fig. 1. Example of ECG electrodes placement and patient positioning for standard ECG 
monitoring. 

 

 
Fig. 2. Examples of ECG on-body electrodes commonly used for standard ECG: disposable, 
gel-impregnated, attachable electrodes (left), clamp reusable electrodes (center) and suction, 
reusable electrodes (right). 

“Fixed-in-the-environment” electrodes are nonintrusive and more adequate for long-term 
monitoring, and even if they also present some shortcomings, the nonintrusive nature of 
fixed-in-the-environment electrodes makes them an attractive option for daily monitoring. 
The main limit is the requirement of maintaining direct contact between the bare skin of the 
subject and the electrodes which is fixed in the environment (chair, seats, etc.), which limits 
the application of fixed-in-the-environment electrodes to a few cases.  
An alternative possibility for heart monitoring is phonocardiography, PCG (Webster, 1988; 
Dressier, 1970; Fowler, 1962; Durand and Pibarot, 1995) which consists essentially in 
recording/processing the acoustic waves produced by heartbeats and travelling through the 
body up to the skin. It was one of the first heart monitoring method developed and it is 
based on the observation that heart contractions produce acoustic waves travelling through 
the blood at the corresponding speed of sound. Therefore acoustic pick up of such waves 
can provide information on the periodic variation of pressure wave due to the heart 
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pulsation , as well as other information related to the heart mechanics and valves dynamics 
(fig.3). The typical speed of dilatation pressure waves varies between 4 m/s to 10 m/s. 
Increasing stiffness of arteries and veins due to aging or cardiac diseases increases the speed 
of dilatation waves. Consequently, study of propagation of dilatation waves has a clear 
physiological and clinical interest. PCG can be considered a non-invasive method, but it still 
requires the contact between the high sensitivity acoustic transducer (typically a 
piezoelectric microphone) and the patient skin and therefore it can’t be considered a 
solution to the problem of monitoring heart activity (in particular heart rate) without the 
direct contact between the device and the patient’s skin. 
 

 
Fig. 3. Example of ECG II-lead trace (top) and simultaneous phonocardiogram (down) 
traces. S1 and S2 are the main signals measured during an heart cycle; (FT is the filling time). 

A medical device frequently used to monitor patients pulse rate, is the pulse oximetry, PO 
(Webster, 1988; Alexander et al., 1989; Welch et al., 1990; Wahr et al., 1995). The device has 
been realized for the monitoring of oxygen saturation (percent of hemoglobin in the 
oxyhemoglobin configuration) in blood and is based on the different spectral absorption of 
hemoglobin and oxy-hemoglobin. In adults, PO’s sensing elements are normally placed on 
the finger tip (or ear lobe) where the two emitting LEDs and the photodiode are placed (fig. 
4). In addition to the digital read-out of O2 saturation, most pulse oximeters display also a 
plethysmographic waveform as the blood micro-vessels under the skin expand and contract 
with every heart beat; from this trace, heart rate is automatically extracted.  
As for the PCG microphone, the PO probe requires direct contact with the finger or ear lobe 
and it can’t be considered a non contact method. The main drawback of PO is the sensitivity 
to motion artifacts which can generate repeated erroneous data and consequently activate 
false alarms signals. 
In this chapter, the possibility to perform heart monitoring without physical contact with the 
subject is investigated and all available non contact methods are reviewed, trying also to 
predict the future trends of the technology. Before presenting such methods we will resume 
the motivations for such exploring the possibility of non contact monitoring of heart rate. 
Non contact detection and monitoring of human cardiac activity without contact through 
bedding and clothing is a valuable tool in intensive care monitoring, long term-monitoring 
and home health care applications as well as in other non clinical fields such as the case of 
workers health monitoring (i.e. airplane pilots, firefighters, etc.). Patients with conditions 
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Fig. 4. Common pulsatile signal on a pulse oximeter (top, left); Oxymeter front panel 
reporting blood saturation and heart rate (top, right). Oxymeter probes: finger clip (down , 
left) and hear lob clip (down, right). 

that can be perturbed or worsened by contact sensors include neonates (fig. 5), infants at risk 
of sudden infant death syndrome, and burn victims; a noncontact heart rate monitor provides 
a vital sign without affixed electrodes for these patients. Most alternatives to standard heart 
monitors need the application of electrodes or transducers (such as the case of thoracic belt) 
which often require accurate control or re-placement of electrodes/transducers during the 
monitoring period of time. Such aspect is sometimes critical and can also be impossible or 
undesirable in many situations. 
 

 
Fig. 5. Possible skin irritation effect on preterm infant due to prolonged use of skin ECG 
electrodes. 

An important advantage associated to the possibility to have a non contact sensing of the 
heart rate, it should be recalled, is the intrinsic compliance with the safety recommendations 
concerning risk of electric hazards which are particularly strong with electromedical 
apparatus. Moreover the absence of contact is particularly important in specific cases such 
as security (hidden or suspected subjects identification), monitoring of contaminated 
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patients, presence and conditions of live subjects in biologically and chemically 
contaminated environments, emergency (i.e. presence and conditions of subjects on a battle 
field, transport of patients), intensive care (pre-term infants, adults), long monitoring of vital 
signs as well as home monitoring especially of elderly adults (Abowd, 2002) and automatic 
activation emergency actions. 
A first class of proposals in this field has been based on the usage of non conductivity 
electrodes for ECG recording for example with electrodes embedded in the bed or the chair 
(Ishijima, 1993; Matsuda et al., 2008; Lim et al., 2006 and 2007), or have been based on 
techniques such as the ballistocardiography (Pollock, 1957; Morris, 1954) where the sensing 
part is installed into the bed, chair or wheelchair, in furniture or is directly based on the 
vibration monitoring of the skin, such as for seismocardiography (Salerno and Zanetti, 1990; 
Poliac et al., 1991; Sandham et al., 1998).  
More recently a laser-based, single point, non contact measurement method, named 
vibrocardiography (VCG), for the heart rate (HR) monitoring and the heart rate variability 
(HRV) assessment has been proposed. First studies using optical vibrometry (laser Doppler 
vibrometry) has been reported for the identification of the arterial pressure waves (Tomasini 
et al. in 1998). While a novel method, called vibrocardiography (VCG), has been later 
proposed to measure the velocity of displacement of the skin in correspondence of the chest 
wall (Scalise et al., 2005a;2005b;2006; Morbiducci et al., 2006; Scalise and Morbiducci, 2008). 
VCG has been demonstrated to be valid for the assessment of the cardiac frequency and 
variability and in Cardiac Resinchronization Theraphy as support in pacemaker 
programming after installation (Bocconcelli et al., 2006). The same laser-based optical 
approach has also been explored to have HR data correlated to the emotional state of the 
subject without the need of a physical contact (Rohrbaugh et al., 2007) as well as for the 
evaluation of biometric capabilities (Chen et al., 2010). 
Other non contact methods, based on electromagnetic (EM) approaches for heart and 
respiration monitoring, have also been proposed. The first microwave system (a microwave 
Doppler radar) was firstly proposed in early 1970s (Lin, 1975) for respiration detection and 
was based on bulky, heavy and expensive components; today many solutions have been 
proposed demonstrating the possibility of compact, lightweight and inexpensive mass-
producible solutions (Staderini, 2002; Matsui et al., 2004a and 2004b; Kim et al., 2007; 
Droitcour et al., 2001). The interest on the use of EM heart monitoring are based on the 
possibility to have data from the subject without the necessity of the direct contact with the 
skin or just the visibility of the skin (electromagnetic waves at certain frequencies can pass 
through the tissues). A series of different laboratory solutions as well as market available 
monitoring systems (see web references) have been already proposed. Finally HR 
monitoring based on image-based methods (Da Costa, 1995; Poh, 2010; Takano and Ohta, 
2007; Garbey et al., 2007), electrical impedance (Ischijima, 1993; Harland et al., 2002), 
acoustic and ultrasound (Tanaka et al., 2002) approaches have also been reported as valid 
principles for non contact heart rate monitoring. 

2. Non contact methods for heart monitoring 
Non contact detection and monitoring of human cardiac activity through bedding and 
clothing would be a valuable tool in intensive care monitoring and home health care 
applications. Patients with conditions that can be perturbed or worsened by contact sensors 
include neonates, infants at risk of sudden infant death syndrome, and burn victims; a 
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noncontact heart and respiration rate monitor could provide vital signs monitoring without 
affixed electrodes for these patients. Most alternatives to standard heart monitors need leads 
and contacts and often require accurate control or placement; this may be impossible or 
undesirable in many situations 
In this chapter, the non contact methods for heart monitoring proposed in the last years 
have been divided in four categories, based on the working principle: 
 Electromagnetic-based monitoring systems 
 Laser-based monitoring systems 
 Image-based monitoring systems 
 Other methods  
The common characteristic for all the methods, presented in the following, is that they aim 
to measure the surface (skin) displacement taking place because of the heart muscles 
contractions: change in the volume of the heart and consequently displacement of the 
external heart walls during systole move the tissues under the ribs and the soft intercostals 
tissues, causing the well perceived “beat” that everyone can experience simply putting the 
finger tip on the left-upper part of the thorax. Specific studies – carried out with optical 
methods - report that the maximum displacement takes place in the correspondence of the 
heart apex and it is reported to be in the order of about 600 m (Aubert et al., 1984; 
Ramachadran and Singh, 1989). It must, anyway, be remarked that the motion of the surface 
due to the heartbeat, which is indeed detectable also from the right part of the thorax, is 
largely influenced by the subject health conditions and position (supine, prone or on a side), 
by the gender, by age and by body shape. 

2.1 Electromagnetic-based monitoring methods 
The basic principle of radar is to transmit a microwave (radio) signal towards a target. 
The strength of the backscattered signal is measured. There are two variants of radar 
sensing used for heart rate monitoring: continuous-wave (CW) and wide band pulsed 
radar (UWB). 
Constant wave (CW) radar emits a continuous stream of electro-magnetic radiation. An 
antenna is used as transmitter and it radiates a signal to a target, the energy reflected from 
the target is detected by an antenna (it can be the same antenna used for transmission) and a 
mixer diode provides a tension proportional to the phase between the transmitted and 
received signal (which is related to the target movement). A filter section is needed to 
separate heartbeat from the respiration; valid measurements could be taken at a range 
exceeding 10 m. Microwave apexcardiography was demonstrated firstly with a continuous-
wave 2 GHz antenna placed in correspondence to the apex and precordial motions were 
detected (Lin et al., 1979). In general, CW radar methods, reported in literature, appear 
simpler respect to UWB radar, but it presents problems when multiple reflections, due to 
scattering characteristics of the surrounding environment, are present. With CW radar, the 
phase of the received signal is containing the information on the displacement of the target 
x(t) and, if we report the transmitted signal T(t) as: 

  ( ) cos 2 ( )T t A ft t    (1) 

Where, f is the frequency of the transmitted signal and Φ(t) is its phase; then, the received 
signal R(t) can be approximated, as: 
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where, K is the reduction of the amplitude A of the originally transmitted signal, θ0 is the 
phase shift due to the reflection at the surface, d0 is the distance between system and the skin 
surface. When the phase of R(t) is demodulated a signal proportional to the chest 
displacement (about ±1cm max, caused by the respiration activity and ± 0.6 mm, max caused 
by heart activity) can be inferred. The CW radar monitoring principle is reported in figure 6.  
 

 
Fig. 6. Principle of CW radar monitoring of the chest movement: phase shift (t) caused on 
the reflected wave by the chest displacement x(t). 

CW microwave reflectometers typically have a phase resolution of 1/200 fringe which 
corresponds to a spatial resolution of / 400, where  is the incident wavelength (Tateischi 
et al., 2007). For example, if a CW system working at a carrier frequency of 10 GHz is used 
(=3.0 cm) is used, the spatial resolution becomes 75 m, allowing a full detection of the 
heartbeats. A typical technique used to extract from the detected signal the part due to the 
heart rate, is by use of an high-pass filter with a cut-off frequency of 0.7 Hz. Nevertheless, 
most of the authors propose specific signal processing in order to enhance the SNR of the 
heart beat signal and for the removal of residual motion artifacts (Nagae & Mase, 2010). 
With opportune filtering and signal processing, it was demonstrated that heart rate and 
respiration rate can simultaneously be detected by the same microwave apparatus (Chan et 
al., 1987). Particular measuring conditions taking into consideration the presence of persons 
in rubble (Chuang et al., 1990), athletes (Greneker et al., 1997) and persons behind walls 
(Chen et al., 2000) were explored, demonstrating that the approach is robust and mature for 
a wide employment on different scenarios. An example of a possible laboratory set-up using 
CW microwave reflectometry to detect respiratory and heart rate activities is reported in 
figure 7 (Scalise et al., 2011). 
Experimental unfiltered phase signals acquired with the measurement system reported in 
fig. 7 (emitted signal at 6 GHz, 1 mW) are reported in fig. 8, for the case of a volunteer sitting 
on a chair and normally breathing (left) and holding the breath (right). 
For HR monitoring scope, the direct comparison between phase variation, as detected using 
the CW set-up reported in figure 7 and the simultaneously acquired ECG trace of the subject 
are reported (fig.9), putting in evidence the high time correlation between the two signals. 
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Fig. 7. Laboratory set-up for CW microwave reflectometry for respiratory and heart rate 
activities monitoring. 

 

20

25

30

35

40

45

50

55

0 2 4 6 8 10 12 14

ph
as
e,
 °

time, s  
 

20

25

30

35

40

45

50

55

0 2 4 6 8 10 12 14

ph
as
e,
 °

time, s  
Fig. 8. CW microwave reflectometry: Respiratory and heart beat activities (top) and only 
cardiac activity (bottom). 
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Fig. 9. Phase variation (normalized data respect to the max phase value, top) and ECG trace 
(down). 

HRV analysis with a 24 GHz CW microwave system monitoring a volunteer from the back 
of a sitting subject at a distance of 34 mm, showed a strong correlation of the HRV measures 
from the microwave system with that from the ECG system in 2-minute recordings in rest 
and during simple arithmetic task. Comparison of 5 min recordings demonstrated also that 
there were no significant differences in the temporal, frequency domains and in non-linear 
dynamic analysis of HRV measures derived from heartbeat and ECG, which suggested this 
technique may used as practical alternative to ECG for HRV analysis. (Lu et al., 2009). 
The second possible approach to the radar monitoring of the heart activity is based on the 
use of pulse radar (Staderini, 2002; Chia et al., 2005; Immorev & Tao, 2008) which are in the 
majority of the cases ultra wide band pulsed (UWB) radar. Unlike narrowband systems, 
which transmit continuous waveforms at a specific frequency, ultra-wideband (UWB) 
systems transmit narrow impulse-like signals that span a broad frequency range. The pulse 
width of such system is typically within a range of 100’s of ps to several ns, with rise times 
as fast as 50 ps, corresponding to a frequency range that can span several GHz. Since the 
energy of the pulse is distributed across a frequency band, the power spectral density is 
much lower in magnitude than a narrowband system reducing also the eventual 
interferences with other RF or MW apparatus. 
UWB application used to be limited mainly in military areas, however, since 2002, FCC has 
gradually allowed the commercial usage of these bandwidths (frequency for the UWB 
technique is 3.1-0.6 GHz in USA and 3.4-4.8 GHz and 6-8.5 GHz, in Europe) The power 
radiation requirement of UWB is strict and it usually it does not disturb the other 
equipments because UWB's spectrum is normally very low. Emitted pulses are spread over 
a wide frequency spectrum having a very short time duration (in the order of ns or sub-nano 
seconds of duration); the main advantage of such type of radar appears to be the low energy 
consumption due to the short pulses. Pulse radars make use of a pulse generator to allow 
the e.m. pulse transmission from the antenna and simultaneously the activate a so-called 
delay line used for controlling the sampling of the received echoes. Time duration between 
emitted and received echo is proportional to the target distance; the receiver can be activated 
at very short time intervals triggered by the delay-line (range gating). Thus, the length of the 
delay-line ensures that only pulses back-scattered from a certain distance are received. UWB is 
ideal in range measurement but can present some ambiguity in both range and velocity 
measurements. A typical set-up using a UWB-radar system is reported in figure 10. 
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Fig. 9. Phase variation (normalized data respect to the max phase value, top) and ECG trace 
(down). 
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UWB application used to be limited mainly in military areas, however, since 2002, FCC has 
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technique is 3.1-0.6 GHz in USA and 3.4-4.8 GHz and 6-8.5 GHz, in Europe) The power 
radiation requirement of UWB is strict and it usually it does not disturb the other 
equipments because UWB's spectrum is normally very low. Emitted pulses are spread over 
a wide frequency spectrum having a very short time duration (in the order of ns or sub-nano 
seconds of duration); the main advantage of such type of radar appears to be the low energy 
consumption due to the short pulses. Pulse radars make use of a pulse generator to allow 
the e.m. pulse transmission from the antenna and simultaneously the activate a so-called 
delay line used for controlling the sampling of the received echoes. Time duration between 
emitted and received echo is proportional to the target distance; the receiver can be activated 
at very short time intervals triggered by the delay-line (range gating). Thus, the length of the 
delay-line ensures that only pulses back-scattered from a certain distance are received. UWB is 
ideal in range measurement but can present some ambiguity in both range and velocity 
measurements. A typical set-up using a UWB-radar system is reported in figure 10. 
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Fig. 10. Laboratory set-up for UWB-radar sensing of heart rate. 

As for the case of CW systems, also UWB have been used to prove their capability in vital 
signs assessment. For example, data from 40 human volunteers at Walter Reed Army 
Institute of Research were collected using a micro-power impulse radar range finding 
prototype (Paulson et al., 2005). Readings from an ECG and pulse oximeter were captured 
simultaneously with MIR readings (Azevedo, 1996). MIR sensor readings were collected 
from each volunteer in four different body positions: standing upright, lying face up, lying 
on the right side, and lying face down. Since the readings of the MIR range finder prototype 
correspond to reflections off of tissue interfaces, rather than electrical impulses as in the 
ECG, body position was expected to be an important factor. Fixed range radar signals were 
compared to ECG, cardiac impedance, and acoustic heart signals showing well correlated 
relation among standard contact techniques (ECG) and the UWB-pulsed radar. 
UWB’s venture into the commercial domain of medical industry is now becoming a reality. 
Several vendors have been working on this technology to develop high value products 
aimed at the low-end and mid-range market segments in the patient monitoring and 
medical imaging markets (i.e. VSM, LifeWave and PAMTM3000, see references). Some UWB 
systems are now available on the market allowing the check of occupancy of the bed and the 
vital signs monitoring of patients (primary elderly). In particular, if the at-risk patient 
should leave the bed without control or needed assistance, the UWB system, placed 
underneath the patient mattress, will detect it and send the alarm. Moreover the system is 
designed to wirelessly transfer heart rate and respiration rate data to the patient monitor or 
the nursering station. In figure 11, some example of market-available sytems are reported. 
As against several imaging and patient monitoring modalities, UWB based medical 
technologies are expected to be impacted by the positive regulatory policies by European 
governments. In the United States, Federal Communication Commission (FCC) has 
mandated the use of UWB technology within the vast bandwidth of 3.1 to 10.6 GHz at 
power levels of -41 dB/MHz. On the other hand, there are no strict regulations mandating 
the use of certain frequency bandwidths for UWB devices for medical applications. In 
February 2007, the European Commission (EC) suggested that the use of UWB technology 
without mitigation is within the bandwidth of 4.2 to 4.8 GHz. It also accepted that in terms 
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Fig. 11. Kai Sensors’ technology platform enables wireless monitoring of vital signs (left); 
Wireless2000 (center), Microimpulse’s VSM (right). 

of the global use of this technology for medical as well as communication purposes, all UWB 
based devices shall operate above 6 GHz. Europe is likely to conform to this regulation by 
2011. Furthermore, since most hospital devices operate at frequencies much lower than 
UWB, the possibility of electromagnetic interference caused by such devices is also minimal. 
This is likely to allow vendors convince the end users about the safety and utility of such 
devices, thereby easing the route to market entry. 

2.2 Laser-based monitoring methods 
In the 90’s the first studies of skin deflections due to arterial blood pulses appeared; these 
were conducted with optical measurement systems (mostly laser interferometers), which, in 
those years, started to be available on the market. By means of a bulky, fiber-optic, 
Michelson interferometer, pulsatile movement of the artery (arterial wall) were firstly 
measured near a stenotic lesion in an embedded vessel, the maximum gradient of skin 
displacement has been shown to be proportional to the time derivative of the blood pressure 
profile within the underlying vasculature (Hong & Fox, 1997). Data were taken firstly on a 
phantom, then at eight different sites for manual palpation of rhythm and strength of 
arterial pulse, radial, brachial, carotid, temporal, popliteal, femoral, posterior tibial, and 
dorsalis pedis. Three cardiac auscultation points were also assessed by stethoscope: 
pulmonary (second left intercostal), tricuspid (lower left sternal border), and mitral valves 
(fifth intercostal space at the midclavicular line). This attempt was consider extremely 
promising, but still possible only in a laboratory environment were the optical interferometer 
can operate correctly. Nevertheless the fiber-optical probe used in this approach was placed 
over the skin by means of a skin adapter using a stethoscope bell placed on the distal side of 
the fiber (measurement side) need in order to minimize unwanted signal artifacts due to 
body movement. The authors observe that further research may be necessary to see whether 
this stretches or alters the skin at the sensing site, thus perturbing the natural skin surface 
vibration effect. This approach must therefore be considered (minimally) invasive and with 
contact. 
The possibility to detect the skin deflection due to the pressure pulse and correlate with the 
carotid pulse was firstly demonstrated (Tomasini et al., 1998) using a laser Doppler vibrometer 
(Castellini et al., 2006); in this case, the observation was carried out without any physical 
contact with a distance between the sensing head and the volunteers of about 1.5 m. The set-up 
proposed was based on the use of a single point Laser Doppler Vibrometer (LDVi) aiming to 
the volunteer neck in correspondence to the skin overlaying the carotid. Some years after, 
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Fig. 10. Laboratory set-up for UWB-radar sensing of heart rate. 
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Fig. 11. Kai Sensors’ technology platform enables wireless monitoring of vital signs (left); 
Wireless2000 (center), Microimpulse’s VSM (right). 

of the global use of this technology for medical as well as communication purposes, all UWB 
based devices shall operate above 6 GHz. Europe is likely to conform to this regulation by 
2011. Furthermore, since most hospital devices operate at frequencies much lower than 
UWB, the possibility of electromagnetic interference caused by such devices is also minimal. 
This is likely to allow vendors convince the end users about the safety and utility of such 
devices, thereby easing the route to market entry. 

2.2 Laser-based monitoring methods 
In the 90’s the first studies of skin deflections due to arterial blood pulses appeared; these 
were conducted with optical measurement systems (mostly laser interferometers), which, in 
those years, started to be available on the market. By means of a bulky, fiber-optic, 
Michelson interferometer, pulsatile movement of the artery (arterial wall) were firstly 
measured near a stenotic lesion in an embedded vessel, the maximum gradient of skin 
displacement has been shown to be proportional to the time derivative of the blood pressure 
profile within the underlying vasculature (Hong & Fox, 1997). Data were taken firstly on a 
phantom, then at eight different sites for manual palpation of rhythm and strength of 
arterial pulse, radial, brachial, carotid, temporal, popliteal, femoral, posterior tibial, and 
dorsalis pedis. Three cardiac auscultation points were also assessed by stethoscope: 
pulmonary (second left intercostal), tricuspid (lower left sternal border), and mitral valves 
(fifth intercostal space at the midclavicular line). This attempt was consider extremely 
promising, but still possible only in a laboratory environment were the optical interferometer 
can operate correctly. Nevertheless the fiber-optical probe used in this approach was placed 
over the skin by means of a skin adapter using a stethoscope bell placed on the distal side of 
the fiber (measurement side) need in order to minimize unwanted signal artifacts due to 
body movement. The authors observe that further research may be necessary to see whether 
this stretches or alters the skin at the sensing site, thus perturbing the natural skin surface 
vibration effect. This approach must therefore be considered (minimally) invasive and with 
contact. 
The possibility to detect the skin deflection due to the pressure pulse and correlate with the 
carotid pulse was firstly demonstrated (Tomasini et al., 1998) using a laser Doppler vibrometer 
(Castellini et al., 2006); in this case, the observation was carried out without any physical 
contact with a distance between the sensing head and the volunteers of about 1.5 m. The set-up 
proposed was based on the use of a single point Laser Doppler Vibrometer (LDVi) aiming to 
the volunteer neck in correspondence to the skin overlaying the carotid. Some years after, 



 
Advances in Electrocardiograms – Methods and Analysis 

 

92

researchers from the same group started an extensive and systematic analysis of the 
opportunities offered by the use of the LDVi as a non contact method (named 
vibrocardiography, VCG) to measure heart beat (Scalise et al., 2005, 2006 and 2008; Morbiducci 
et al., 2006), as well as the respiration activity (Scalise et al., 2011), the heart mechanics 
(Bocconcelli et al., 2006) and the artery stiffness (De Melis et al., 2008). Typically (Scalise et al., 
2005), VCG, is used to monitor superficial chest displacement due to the heart activity (fig. 12). 
 

 
 

 
Fig. 12. Vibrocardiography set-up; Top: block diagram of the experimental set-up with the 
reference instrument (ECG); Bottom: Image of a test session. 

Examples of typical signals, measured on two subjects (one male and one female), are reported 
in figure 13 with synchronous data acquisition from ECG reported for direct comparison.  
Very high shore have been obtained with heart rate variability (HRV) carried out using the 
VCG (Morbiducci et al., 2006; Scalise and Morbiducci, 2008). Scatter plot of the HR 
measured by VCG and standard instrument (ECG) on the previously examined subjects, are 
reported in figure 14; the time series (fig. 15) built up from the time intervals between 
consecutive R peaks (RR), and VCG time intervals from the thorax (VV). Right side depicts a 
detail (50 beats) to show the close relationship of the two time series.  
From results reported (Morbiducci et al., 2006; Scalise and Morbiducci, 2008), the results of 
the test of Bland–Altman put in evidence that significant differences are not present, from a 
clinical viewpoint. In fact, results showed mean percent differences of VCG derived 
descriptors, with respect to ECG ones, that do not threshold the 4.80% (3.03% mean value) 
for the LF/HF index and even lower for the other standard HRV parameters . 
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Fig. 13. Chest wall vibration (velocity) and ECG traces synchronously acquired, measured 
on two subjects (subject A: male, subject B: female). 

 

 
Fig. 14. Scatter plot of the heart rate measured by VCG (VV data) vs HR measured by ECG 
(RR). 

The possibility to access the heart rate data from a different site respect to the chest wall was 
demonstrated (Scalise and Morbiducci, 2008) using the neck region (carotid site) as 
measurement site. High quality results are obtainable (fig. 16) and like for optical VCG 
signals measured in different sites of the chest wall (Morbiducci et al., 2006; Scalise et al., 
2006), common morphologic features in the traces measured on the neck were observed, 



 
Advances in Electrocardiograms – Methods and Analysis 

 

92

researchers from the same group started an extensive and systematic analysis of the 
opportunities offered by the use of the LDVi as a non contact method (named 
vibrocardiography, VCG) to measure heart beat (Scalise et al., 2005, 2006 and 2008; Morbiducci 
et al., 2006), as well as the respiration activity (Scalise et al., 2011), the heart mechanics 
(Bocconcelli et al., 2006) and the artery stiffness (De Melis et al., 2008). Typically (Scalise et al., 
2005), VCG, is used to monitor superficial chest displacement due to the heart activity (fig. 12). 
 

 
 

 
Fig. 12. Vibrocardiography set-up; Top: block diagram of the experimental set-up with the 
reference instrument (ECG); Bottom: Image of a test session. 

Examples of typical signals, measured on two subjects (one male and one female), are reported 
in figure 13 with synchronous data acquisition from ECG reported for direct comparison.  
Very high shore have been obtained with heart rate variability (HRV) carried out using the 
VCG (Morbiducci et al., 2006; Scalise and Morbiducci, 2008). Scatter plot of the HR 
measured by VCG and standard instrument (ECG) on the previously examined subjects, are 
reported in figure 14; the time series (fig. 15) built up from the time intervals between 
consecutive R peaks (RR), and VCG time intervals from the thorax (VV). Right side depicts a 
detail (50 beats) to show the close relationship of the two time series.  
From results reported (Morbiducci et al., 2006; Scalise and Morbiducci, 2008), the results of 
the test of Bland–Altman put in evidence that significant differences are not present, from a 
clinical viewpoint. In fact, results showed mean percent differences of VCG derived 
descriptors, with respect to ECG ones, that do not threshold the 4.80% (3.03% mean value) 
for the LF/HF index and even lower for the other standard HRV parameters . 

 
Non Contact Heart Monitoring 

 

93 

 
Fig. 13. Chest wall vibration (velocity) and ECG traces synchronously acquired, measured 
on two subjects (subject A: male, subject B: female). 

 

 
Fig. 14. Scatter plot of the heart rate measured by VCG (VV data) vs HR measured by ECG 
(RR). 

The possibility to access the heart rate data from a different site respect to the chest wall was 
demonstrated (Scalise and Morbiducci, 2008) using the neck region (carotid site) as 
measurement site. High quality results are obtainable (fig. 16) and like for optical VCG 
signals measured in different sites of the chest wall (Morbiducci et al., 2006; Scalise et al., 
2006), common morphologic features in the traces measured on the neck were observed, 



 
Advances in Electrocardiograms – Methods and Analysis 

 

94

 

 
Fig. 15. Time series (relative to subject A and B of fig. 13) built up from the time intervals 
between consecutive R peaks (RR), and VCG time intervals from the thorax (VV). Right side 
depicts a detail (50 beats) to show the close relationship of the two time series. 

with only inter-subject minor differences. HRV analysis, performed using VCG on the 
neck, agrees with the one derived from ECG with mean percent differences of VCG 
derived descriptors, with respect to ECG ones, < 2.94%. (relative to RMSSD) for the time 
domain and the 3.12% (relative to the sympatho-vagal balance LF/HF) for the frequency 
domain. 
A very interesting comparison among ECG, phonocardiography (PCG) and VCG traces 
have been carried out in order to demonstrate the possibility to identify events of the cardiac 
mechanics, correlating the heart sounds relative to the closure of the mitral valve, and the 
following closure of the aortic and pulmonary valve with characteristic deflections 
identifiable on VCG traces (De Melis et al., 2007). Simultaneous acquisition of cardiac 
acoustic sounds, II-lead ECG trace and VCG are reported in figure 17, with indicated the S1-
S2 and W1-W2 intervals (differences < 1.4 ms).  
VCG was also explored (De Melis et al., 2008) as an alternative fully non contact method 
for the assessment of carotid–femoral pulse wave velocity (PWV), which is considered a 
gold standard method for assessing the stiffness of large arteries (high PWV values have 
been demonstrated to be associated with increased cardiovascular morbidity and 
mortality), and pulse transit time (PTT). With a simple approach (fig. 18), PWV and PTT 
were accurately measured with a mean PTTs of 75.85± 8.61 ms and 74.86± 8.63 ms for 
applanation tonometry (reference method) and VCG, respectively. A non contact method 
like optical VCG for the evaluation of large artery stiffness is considered of great interest 
because it could overcome limitations inherent to a contact method like arterial tonometry 
(based on contact piezo transducers manually kept in place), for which the debate on the 
influence of the contact of the probe over the skin on the measurements is still open in the 
scientific community. 
A recent application of VCG has been reported as preliminary study for the cardiac 
resinchronization of patient using pacing devices (Bocconcelli et al., 2006). In figure 19, an 
example of simultaneous VCG and ECG beat monitoring is reported and compared with the 
same data acquired on a patient with weak ventricular depolarisation. Authors 
demonstrated the feasibility of VCG to provide data needed for a correct setting of the 
cardiac stimulator in order to provide optimal cardiac re-synchronization. 
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Fig. 16. ECG monitoring (in V) on a volunteer and simultaneous VCG trace (in mm/s) from 
chest wall and from carotid site (top); 
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Fig. 16. ECG monitoring (in V) on a volunteer and simultaneous VCG trace (in mm/s) from 
chest wall and from carotid site (top); 
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Fig. 17. Example of one beat recordings from VCG and PCG with II lead ECG compared 
with a gold standard vital signs representation. 
 

    
Fig. 18. Sketch of the measurement setup (left) and picture of measurement site (carotid artery). 
 

     
Fig. 19. ECG (in V) and VCG traces (in mm/s) for an healthy subject (left) and for a patient 
(right). 
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Very promising use of laser Doppler vibrometry have been proposed in the field of 
biometrics where the measure of cardiovascular activity as biometric marker appear to be 
promising (Chen et al., 2010; Rohrbaugh et al., 2007). In contrast to the traditional, contact 
ECG approach for cardiac activity monitoring, the signal examined is derived from 
movements of the skin associated with the blood pressure pulse in the underlying carotid 
artery using LDVi. The varied structure of the skin surface displacements (including some in 
the submicrometer range) comprising the LDVi signal would seem nearly impossible to 
mimic. Our studies confirm that the LDVi pulse signal is sufficiently textured to support a 
high level of discriminability among individuals. The signal changes in appearance 
somewhat from one occasion to the next, and is affected by factors such as physical exercise 
and mental stress. Data collected from 285 individuals showed good performance of LDVi 
and of the data processing method described especially on data collected within the same 
session; the discriminability characteristic of the LDV pulse is well maintained across an 
individual 5-min session. The increasing match error of the intersession tests may be due to 
time-varying factors. 
Another field of application for laser-based heart rate monitoring methods has been 
proposed for distance monitoring of vital signs in risk environments. Proper functioning of 
the heart ensures the performance of the human body as well as sustenance of life, it can be 
used as a forward-looking indicator for assessing the performance limits of warfighters and 
athletes, prognosis of various health conditions, as well as for the determination of life signs 
in certain situations like triaging and battlefield management. Thus, in principle, detecting 
surface vibrations from the human subject allows information retrieval regarding the 
functionality and performance of the human heart. A novel laser-based vibrometer whose 
optical speckle-tolerant nature makes it ideal for assessing the surface vibration 
characteristics of, for example, human subjects whose surface quality is far from optically 
flat, is reported (Wang et al., 2010). The combination of excellent surface vibration detection 
sensitivity and optical speckle tolerance makes the novel pulsed laser vibrometer an ideal 
candidate for standoff monitoring and assessment of a human subject’s cardiac activity and 
functionality. At the moment only preliminary, qualitative results are reported for 
laboratory tests with this special experimental set-up which seems to be extremely powerful 
allowing life signs detection in non-ideal measurement conditions (such as the case of 
directly on skin or directly on specific part of the body). 

2.3 Image-based monitoring methods 
The application of image-based methods for heart rate monitoring is based on the 
observation that the deflection of a human vessels due to heartbeats can be visually 
observed from the consequent deflection that the skin surrounding an important vase. One 
of the first use of image-based methods for HR monitoring (Da Costa, 1995; Parra & Da 
Costa, 2001) proposes to video acquire the deflections proposing two methods (fig. 20). In 
the first the skin is illuminated by a 2 mW HeNe laser beam in the neighborhood of the vein. 
The reflected speckle pattern is acquired, digitized and a specifically developed code, based 
on speckle image processing, is used to evaluate the skin displacement caused by the 
mechanical deflection produced by the arterial wall deflections due to the systolic pressure 
wave travelling along the vascular tree. In the second method a small mirror glued to the 
skin is illuminated by the laser beam. The position of the light spot resulting from 
intersection of the reflected beam with an opaque observation plane is recorded and plotted 
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as a function of time. Both the methods proposed allows the remote sensing of the heartbeats 
the later being (minimally) invasive requiring the need to glue a mirror on the subject skin. 
Both the approach proposed don’t report quantitative results; only a graph is reported and 
non correlations with reference signals (i.e. simultaneous ECG) are reported. Therefore, even 
if the solutions proposed were promising at the time when were presented, they can’t be 
transferred to a real clinical environment or anyway can’t be operated out of controlled 
conditions usual in laboratories of optics in the reported form. In fact, full filed digital 
speckle image experimental set-up, as well as laser reflection systems, need to have precise 
and accurate control of the subject to the set-up relative positions in order to isolate any 
artifact/vibration disturbance to the measurement data.  
 

 
Fig. 20. Speckle image acquisition of skin surface deflections due to the systolic pressure 
wave (left) and laser reflectormetry of the mirror glued in correspondence of a large vase 
(right). 

More recently (Takano & Ohta, 2007), it has been proposed a new device combining a time-
lapse image from a handy video camera and image processing on a PC, and found that it 
could measure the 30s average heart and respiratory rates based on the changes in the 
brightness of the ROI set around the cheek of the unrestricted subject. Measurements were 
successfully conducted for subjects with or without facial cosmetics and that the system 
tended to detect the pulse rate more clearly around typical palpation points such as the 
common carotid artery and ulnar artery. Correlation coefficients of 0.90 has been obtained 
with respect heart rate measured with a pulse oxymeter. 
One of the most recent and promising application of image-based techniques is the 
“cardiocam”, as it has been named by its authors, which is a low-cost, non contact 
technology for measurement of physiological signals such as heart rate and breathing rate 
using a basic digital imaging device such as a webcam (Poh et al., 2010; Poh et al, 2011). The 
ability to perform remote measurements of vital signs is promising for enhancing the 
delivery of primary health care. It has been reported (Poh et al., 2011) Pearson’s correlation 
coefficients among reference sensor and the web-camera-based system of r=1 for heart rate 
detection and of r=0.92 for HF and LF (common heart rate variability analysis parameters); 
the root-mean-squared error of the HR was 1.24 beats/min. In particular the system, 
developed at the Affective Computing research group at MIT laboratory, is suited for home 
applications and particularly for telemedicine, in fact the only sensing element utilised for 
heart rate monitoring is a standard web-camera which could be easily integrated on already 
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existing home furniture or home components such as mirrors or also utilising already 
existing camera such as the one integrated in most of the modern notebook or mobile 
phones. Despite these definitely promising advantage, still the robustness of the system and 
the efficiency of the procedure on large scale need to be demonstrated and improvement on 
the frame rate is required for adequate heart rate variability’s analysis. 
Finally another image-based system has been developed in collaboration with Philips 
Research Laboratory (Van Rooijen et al., 2010; Wieringa et al., 2005) mainly addressed for 
optical pletismography using non contact reflection mode imaging at three wavelengths. 
Respiration rate as well as heart rate mean values were very well correlated over a 50s 
window. A prototype of a small battery operated heart rate monitoring camera has been 
realised and demonstrated on professional swimmers for unrestrained heart rate 
measurement (Van Rooijen et al., 2010). Nevertheless at the moment further investigation 
need to be carried out for investigating the influence of factors such as movement artifacts, 
subcutaneous fat, skin thickness, skin pigmentation and blood pressure have not yet been 
investigated. 

2.4 Other methods 
An interesting application for non contact monitoring of heart (and lung) activity, has been 
demonstrated using magnetic induction (Steffen & Leonhardt, 2007). The physical principle 
demonstrated is that the mechanical actions of heart, diaphragm and thorax move blood 
and air through the body; by impedance point of view, this is a movement of well-
conducting (blood) and poor conducting (air) matter inside the chest region. Inducing eddy 
currents into the tissue and measuring the re-inducted magnetic field externally, these 
impedance changes can be used as signals easily monitored. This is done using a simple 
arrangement based on one simple coil where excitation and measurement are performed. 
The proposed system assures a non contact monitoring (even if the coil needs to be placed 
sufficiently close to the thorax) and could be also integrated into textiles or integrated into 
bed. An high sensitivity to relative movements between coil and body is reported as the 
main limit of the technique. 
The capacitive coupling method was also investigated for heartbeat detection through the 
subject’s undergarments or an insulator (Kurita K, 2011). The potential of an electrode is 
measured against the body surface, thus, the capacitive coupling method enables detection 
of the human heartbeat under in situ conditions for a subject who is wearing clothing The 
capacitance is measured between the human body and an electrode that is isolated from the 
human body by a dielectric such as clothing. The experimental set-up used to demonstrate 
the principle is based on an electrode which is placed at a few centimeters from the 
subject’s chest, and the electrostatic induction current (on the order of pA) flowing 
through the electrode is measured. In such a scenario, we can express the induced current I 
flowing through the measurement electrode which is related to the electrostatically induced 
current generated because of the human heartbeat. The proposed method requires the use of 
a detection electrode (about 5 cm of radius) placed at 3 cm from the subject’s chest. The 
method appears promising even if the sensitivity to external induction currents (common in 
non-laboratory and hospitals environments), the necessity to use filters and the very low 
amplitude of the sensing currents (<pA) appear to be the weak points of this method. 
A different approach, reported in literature, is based on the pressure oscillations sensed 
from a sensing mat placed under a pillow (Zhu et al., 2006; Chen et al., 2005). The method is 
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(right). 
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existing home furniture or home components such as mirrors or also utilising already 
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non-laboratory and hospitals environments), the necessity to use filters and the very low 
amplitude of the sensing currents (<pA) appear to be the weak points of this method. 
A different approach, reported in literature, is based on the pressure oscillations sensed 
from a sensing mat placed under a pillow (Zhu et al., 2006; Chen et al., 2005). The method is 
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here reported because it is a non contact method even if it requires the use of a system 
(pillow) through which the pulse rate (and the respiration rhythm) is detected. Real-time 
implementation is conducted using a pressure sensors sensing trough catheters an air-free 
water-filled vinyl tube under a pillow during sleep. Data reported are very sensitive to body 
movements and to sensor placement below the pillow, which makes the proposed method 
needing further improvement before the use on large scale. 
A simpler approach is reported for measuring the physiological parameters, using an 
ultrasonic sensing of heart and respiration rate and movement behavior, developed for 
elderly people which are in bed. Bed structure oscillations due to the respiration and heart 
pulses are detected using an ultrasonic transmitter and an ultrasonic receiver installed in 
both sides of the bed rail (Mukai et al., 2009). When a person is lying in any position, on any 
bed area, then his/her physiological parameters alter the shape of the mattress and 
amplitude modulate the received signal. When the person is out of bed, the amplitude does 
not change, so the system also monitors in/out of bed status, allowing the detecting if the 
patient has left the bed, which makes it useful for use on subject monitoring (especially for 
elderly). 

3. Final remarks 
People are not used to wearing sensors in contact with their body in everyday life and for 
prolonged period of time, thus, in general, the compliance with sensors, electrodes and 
devices is very low. Nevertheless, there is a growing interest in continuous monitoring of 
the physiological activity of patients and non patients in order to gain information on their 
health status. The ideal solution would consist of using sensing systems that do not require 
physical contact with the user: the subject is not touched by a sensor at all. Accordingly, the 
sensing process could be unobtrusive to the user. Heart rate or respiration rate, for example, 
could be continuously monitored and data transmitted for remote signal analysis and 
feature extraction, allowing recognition of possible anomalous behavior or worsening of 
vital signs. 
As an important part of the pervasive health care systems are the sensing units, the 
computation units and the communication units that are directly related with the 
implementation costs of these kind of systems, but also with the easy acceptance by the 
users. Referring to the sensing units, the non-invasive and the unobtrusive characteristics 
are important requirements taking into account the acceptance from the user. In the past, 
different solutions have been proposed for improving the acceptance of such systems: the 
use of non conductivity electrodes for ECG recording, where the electrodes are embedded 
on the chair, ballistocardiography sensing, where the sensing part is embedded in bed, chair 
or wheelchair, in furniture and photoplethismography using oxymeters. Sensing units, as 
part of ubiquitous systems, which work without mechanical and electrical contact with the 
subject represent a big challenge.  
A possible field of application of new non contact method for heart rate monitoring is the 
heart rate variability (HRV) which has been shown to be a predictor of mortality after 
myocardial infarction and it is also associated with congestive heart failure, diabetic 
neuropathy, depression post-cardiac transplant, susceptibility to SIDS and poor survival in 
premature babies. HRV studies have also been used to examine autonomic function in the 
context of bodily pain. In recent years, the stress evaluation technique using the heart rate 
variability (HRV) has been recognized widely as an advanced diagnostic tool to prevent the 
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stress syndrome, for example, sleep sign while driving in a car, etc. HRV is typically carried 
out by means of long ECG analysis (more then 5/6 min).The HRV is obtained calculating RR 
intervals, however, evaluation of stress by ECG is not well suited for long-time monitoring 
due to the fact that several electrodes must be attached directly to a human body to acquire 
the ECG data. For this application non contact heart rate monitoring technique appear to be 
extremely interesting, especially for out of the hospital applications where application of 
electrodes are not feasible.  
Another interesting field of application is represented by the need of HR monitoring of 
subjects during MRI; in such case, in fact, it is not recommended the presence of any metallic 
object which could create a serious risk for the patient (due to the presence of very high RF 
field). In such a case the laser-based as well as the image-based method reported are very 
encouraging avoiding heart rate (as well as respiration rate) monitoring without the need of 
metallic or conductive electrodes and reducing the possible interference effects.  
A second important field of application where all the non contact heart rate monitoring 
technique could find important success is when the patient (or subject) can’t be easily accesses 
(subject buried under building ruins), can’t be safely accessed (contaminated subject) or it 
represents a risk for the operators to apply traditional monitoring procedures (such as the case 
of suspected victims). Remote sensing opportunities offered by laser-based, image based or 
electromagnetic-base techniques are extremely promising for those applications and have been 
demonstrated (at list in laboratory conditions) able to operate in such difficult conditions. 
Nowadays, the electromagnetic-based systems are more advanced respect to the other non 
contact methods; the developments in the area of Doppler radar permit to develop 
unobtrusive cardiac and respiratory activity measurements that satisfied the above 
mentioned requirements. Doppler radars in continuous wave (CW) and pulsed radar (UWB) 
have, recently, been introduced to various applications, including home monitoring, 
research and rescue operations. As final remarks, it can be observed as the RF or MW based 
monitoring techniques appear to be among the most close to be ready for commercial 
distribution (first systems are already available, as seen in paragraph 2.1). Very interesting 
are the possibility to monitor from distance and to allow the monitoring also trough layers 
of different materials (tissues, clothes, wall, etc) which solve the problem of a direct access to 
the subject skin as it is for the laser-based methods. The aspects related to the exposition to 
electromagnetic fields are resolved considering the very low power density used for the 
cited applications (typically < 1mW/cm2). Nevertheless, among the many papers published 
in this field, it appears necessary to act in a direction of a deep analysis of the phenomenon 
(interaction between RF wave and target, scattering from the target and the other 
environment objects, effect on the signal of the beam and of the antenna characteristics, etc.) 
using numerical simulation or developing specific codes in order to allow an optimal design 
of the RF monitoring system based not on empirical base, but on model based data of the 
many possible situations.  
There are three benefits comparing MW sensing with ECG recording system. First, the 
subject will feel comfortable and relaxed without any physical and psychological burden, 
which the waveforms of the heartbeat will more objective. Second, the heartbeat can be 
detected at a distance of several meters by penetrating the clothing, thus the microwave 
sensor can be attached to the ceiling of a room or somewhere can not be seen by the subject. 
The procedure of the setup will be easier than the 3-lead ECG recording system, which 
needs the professional person to operate it. Finally, the microwave sensor can be easily 
integrated in unobtrusive healthcare systems. 
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However, two aspects limit electromagnetic-based systems the current use in ambulatory 
recording: e.m systems are susceptible to significant motion artifacts and the propagation 
loss in free space. Advanced signal processing represents a possible solution for the 
reduction of motion artifacts overlapped with the heartbeat signal, which might enable the 
sensors to be effectively used for long-term recording in mobile patients. Another aspect is 
that the propagation loss of the microwave sensor in free space should be taken into 
consideration during the recording and when the distance is increased, the transmitted 
power should be increased as well. Finally with the development of the integrated circuits, 
high gain and narrow side-lobe antenna in tiny size, the electromagnetic sensors can be 
made very small in size.  
In reality, however, detecting human heartbeat at standoff via surface vibration monitoring 
poses a number of major technical hurdles. First of all, while physicians routinely monitor 
patient’s heartbeat by accessing specific areas of the human body like the chest, carotid, and 
temples where surface displacement caused by heartbeat is most profound, it is to be noted 
that such accessibility can be very difficult, if not impossible, to achieve in situations where 
manipulation of the human subject’s body is next to impossible for e.m. based systems, 
while feasible for laser-based methods. These situations include the inspection and 
evaluation of wounded, immobilized war fighters in the battlefield, real-time, standoff 
monitoring of astronauts operating inside space suits, as well as the monitoring of burn 
patients. The second technical challenge is the fact that while human body conducts acoustic 
vibrations relatively well, significant attenuation in the vibration strength excited by the 
heartbeat can be caused by the clothing, equipment, and other gears that the human subject 
might be wearing. As such, the surface vibrations that the human subject exhibits at the 
body parts accessible by the standoff interrogation technology can be greatly diminished, 
leading to the requirement of highly sensitive detection technologies in order to decipher 
such minute surface vibrations. Another technical hurdle relates specifically to laser based 
technologies which employ laser beams to conduct standoff monitoring of human subjects. 
Just like most of the objects we encounter in our daily lives, the surface quality of the human 
subject is far from optically flat, leading to the presence of optical speckles in the back-
scattered light beam. Such optical speckles cause conventional coherent detection sensors to 
fail due to the random nature of phase fluctuations in the optical speckles, leading to 
erroneous output readings and mis-information. As human subject’s body surface could be 
contaminated with sweat, grease, dirt, and even blood, it is safe to assume that abundant 
speckles exist in the laser light beam back-scattered from human subject’s surface. Thus, 
whatever laser based technology is to be used to monitor the surface vibration of human 
subjects, it is vital that they be highly tolerant to the presence of speckles in the light beams 
so as to minimize the output of erroneous information in analyzing the cardiac functionality 
of the subject under standoff interrogation. 
Image-based and the other methods reported appear to be promising for the simplicity of 
the hardware, the high degree of integration and the (probably) final cost, even if they need 
to be more deeply investigated in order to demonstrate they feasibility. 
Finally it is important to evaluate the possible scenarios for the future use of noncontact 
electromagnetic system for the detection of heart rate. With several potential medical 
applications and ready-to-launch UWB radar based monitoring products, the medical 
device industry is likely to observe significant changes. One of the biggest advantages for 
the UWB based medical sensing products is the low cost associated with them (this is not 
still to be proven for the laser-based systems as well as fort the others techniques here 
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proposed). With budgetary concerns being a perennial challenge for both the European and 
US medical device markets, these devices are likely to find ready acceptance. However, 
whether these technologies shall gradually cannibalize the conventional vital signs 
monitoring devices market is yet to be ascertained. Most of These technologies are likely to 
target unconventional end user groups (including home care, low acuity areas in hospitals 
and the military sector) instead of the conventional high-end hospital market and this seems 
to prospect the possibility to create a niche market segment for itself instead of penetrating 
into the conventional markets. Amongst all the UWB based medical devices, it is likely that 
the vital signs monitoring device to hit the market first. The progress of this niche market 
segment shall be observed carefully by other global vendors selling vital signs and patient 
monitoring devices. It is likely that many of the new entrants could get acquired by the 
leading patient monitoring vendors who do not have a significant presence in the home care 
or low acuity care market segments. This will help them diversify to new markets and 
ensure that their existing market shares are sustained, if not increased.  
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1. Introduction 

The analysis of the breath signal during sleep provides key information for the revelatory 
analysis of the clinical symptoms of sleep diseases such as sleep apnea, etc which disturbs 
normal sleep and further on can become the potential cause of heart diseases. This 
information can be used importantly for such purposes as to remove change quantity by 
breathing not only for the system modeling of the cardiovascular system for the function 
analysis of the autonomic nervous system (ANS), which is generated in the human body 
during sleep, but also for the accurate analysis during the analysis of the frequency of the 
changing rate of heartbeats, and the classification of significant electrocardiogram (ECG), 
which includes an accurate breath signal during sleep which has immense meaning (Park et 
al., 2004). 
In general, the methods measuring breath signals can be largely divided into a direct 
method and an indirect method.  A direct method which measures changes of air 
temperature around the nose by breathing and using a spirometer suggests a standard in 
research and can have accurate breath signals (Cysarz et al., 2008). However, because of the 
disadvantage of cumbersome and inconvenient measurements, an indirect method, which 
can measure the breath of the examinee without binding and consciousness in a relatively 
simple measurement method, is more preferred. As these indirect methods, a method, 
which extracts breath by measuring the inductance and impedance changes of the thorax by 
breath or by measuring column changes of the thorax, and ECG-derived respiratory (EDR) 
method, which induces breath signals from ECG by using impacts of changes of impedance 
within the thorax on ECG according to the filling and exhausting of air within the lungs 
which accompanies it during breathing, have been suggested (Yi et al., 2006; Moody et al., 
1985). 
However, in the case of using a method measuring inductance or impedance changes of the 
thorax or column changes of the thorax for monitoring the breath during sleeping, it can 
disturb the normal sleeping of the examinee because the examinee has to be put on a belt or 
attach an electrode on the thorax. In addition, it may be difficult to detect accurate breath 
because lots of noise components accompany it according to the surrounding environment. 
Therefore, recently, the EDR method, which extracts breath signals from the ECG measured 
during sleep by using the conductive textile electrode, is utilized more for detecting breath 
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with the minimum binding of the examinee (Park et al., 2008; Yi et al., 2006). The EDR 
method does not need additional hardware except the ECG measurement and in cases when 
there is no distortion in the QRS complex of the ECG even if noise by a power source or 
noise by external interference and motion (tossing) during sleep is generated, better breath 
signals than the existing indirect method can be extracted. 
In existing early research using the EDR method, research extracting breathing forms were 
carried out based on amplitude changes (amplitude modulation, AM) of the R wave of the 
ECG, which are modulated by breathing, were implemented. As the most representative 
methods, there is method extracting breathing information listed on ECG with amplitude 
changes of the R wave of ECG and a method extracting breath through changes of the axle 
of heart activity by using arctangent ratio of amplitude of QRS complex between the two 
leads which cross at right angles using multi-leads (Mazzant et al., 2003; Behbehani et al., 
2002; Travaglini et al., 1998; Correa et al., 2008). However, in cases when applying these 
methods actually during sleep, there are disadvantages that its characteristic can deteriorate 
compared to the EDR through a single lead because aspects for breathing to modulate this 
ECG are different according to the breathing method, the location of hearts and the level of 
the spinning of an axle of each individual examinee and lead I and lead III do not 
orthogonal actually (Park et al., 2008). 
However, breathing affects other cardiovascular functions as well as on the amplitude of the 
ECG with impedance changes within the thorax (Noh et al., 2007). The frequency 
modulation method of the ECG, which changed besides the amplitude of the ECG, also 
began to be studied because the EDR which extracted by the amplitude modulation due to 
breathing can include the wrong information under sensitive situations to motion like 
during sleep. The frequency modulation (FM) method was developed by using respiratory 
sinus arrhythmia (RSA) which causes the changes of heart activity due to breathing. RSA 
was first discovered in 1847 as Ludwig had observed breathing, the synchronized number of 
the heartbeat and the vibration of the artery blood pressure in dogs. The RSA, which is the 
physiological mutual interaction of respiratory quotient and circulatory system, is the 
change of breath and synchronized heart beat rate and interval of R peaks of the ECG 
becomes shortened during inhalation of the ECG and also becomes longer during exhalation 
(Eckberg, 1983; Hayano et al., 1996). The differences of the R-R intervals (RRIs) of these ECG 
can be considered to show respiratory sinus arrhythmia. RSA is generated by all of the 
reflective primary factors and centric primary factors and as reflective primary factors there 
are artery pressure reflection and lung and kidney reflection (Yi et al., 2006). 
The EDR methods by the ECG amplitude modulation method and frequency modulation 
method were used broadly in lots of research for confirming breathing status during sleeping 
or walking. However, there exists a limit in extracting breathing only with simple EDR. The 
accurate measurement of the ECG is prioritized because these methods induce basically 
breathing signals through amplitude and R peak detection of the ECG. The reliability of the 
breathing information by these methods can be degraded if the ECG is distorted because the 
R peak detection of ECG is difficult due to the motions of the examinee. In particular, the 
algorithm for the deployment of electrodes and the lead selection of the significant optimum 
ECG became necessary because the changes of postures such as tossing during sleep can 
become very big obstacles in the acquisition of a significant ECG. Therefore, research to 
classify a significant ECG by judging whether the measured ECG reflects breathing signals 
well or not was implemented and Park et al estimated instantaneous frequency based on the 
Hilbert Transform and had suggested a new algorithm which selects optimum lead in which 
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it possible to extract significant breathing signals by perceiving the point that the 
instantaneous frequency of the breathing signals with inappropriate lead show big 
frequency changes (Park et al., 2008). However, this method has a limit like selecting the 
wrong lead in cases when instantaneous frequency is changed by instantaneous motions or 
external noises, which can be generated during sleep because it selects optimum lead by 
judging with only the changed width of the instantaneous frequency. 
So, Noh et al attempted to verify that the correlation of the power spectrum in HF (high 
frequency) range, which is a breathing related frequency range in the frequency analysis of 
the breathing signals and heart rate variability (HRV) induced from the ECG and also tried 
to classify significant data by using this fact (Noh et al., 2006). However, these elements 
require high electricity consumption in the system because it must be measured in the high 
sampling rate of the ECG over 500Hz for obtaining HRV signals and also a re-sampling 
course is required for the analysis between interpolation and the frequency following the R 
peak detection. Therefore, Noh et al had attempted the classification of the ECG signals 
including significant breathing signals during sleep by introducing the heart instantaneous 
frequency (HIF) concept which can efficiently replace HRV in a ubiquitous healthcare 
environment (Noh et al., 2007). But, this study has disadvantages as it is impossible to 
acquire a significant ECG in cases when the ECG signals become distorted by the motions of 
the human body or external interference noises generated during sleep because only the 
measured ECG under one lead during sleep was evaluated. 
Therefore, in this study, we tried to automatically classify signals by evaluating respectively 
based on HIF signals whether the ECG measured in two ECG leads (I and III) possible to 
measure during sleep is a significant ECG which reflects sound breathing signals and 
consequently, we have selected a significant ECG lead. 
We first explain correlation between the autonomic nervous system and breathing and 
intend to introduce HIF which can effectively replace correlation between the HRV 
representing the autonomic nervous system and breathing and HRV. And we explain the 
signal processing method used in this study and finally, we introduce the ECG classification 
algorithm based on HIF. 

2. Autonomic nervous system and respiration 
2.1 Autonomic nervous system 
The human body is adjusted by the autonomic nervous system which maintains the balance 
of the internal environment with regards to changes of the internal and external 
environment. This is directly operated for enjoying healthy life by maintaining life 
preservation activity and homeostasis within the human body. The autonomic nervous 
system involves in functions which cannot be controlled consciously just like metabolism 
such as digestion, breathing and sweat. The autonomic nervous system is anatomically 
divided again into the two nervous systems of sympathetic nervous system and 
parasympathetic nervous system and these two are controlled through antagonism, which is 
a method that another one is suppressed if one becomes active. The sympathetic nervous 
system becomes active when physical or mental stress becomes immense while generating 
various reactions of physical constitutions for the homeostasis maintenance of the human 
body and in preparation for emergency situations. Reactions required for responding to 
these stresses due to the activation of the sympathetic nervous system and the supply of 
energy appears and consequently, blood pressure and the number of heartbeats increases, 
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the pupils expand and gooseflesh is generated. On the contrary to operations of this 
sympathetic nervous system, the parasympathetic nervous system becomes activated if 
one’s status is comfortable. The parasympathetic nerve is distributed within the internal 
organs of the human body and maintains a smooth function by adjusting the internal organ 
functions. If the parasympathetic nervous system is activated, the number of heartbeats and 
blood pressure decreases and the whole body is operated directionally to secure energy as 
the digestive enzyme secretion becomes active with lots of blood circulation in digestive 
organs. The parasympathetic nerve is very local and impacts rippling into the whole body 
are little compared to the influence of the sympathetic nerve but it plays a very important 
role in the homeostasis adjustment mechanism. However, these two do not always operate 
in the opposite direction and operate in cooperation according to some organs. 
A method, which judges the most accurate autonomic nervous system of the human body, is 
the way to evaluating by analyzing the nerve transmission material of the autonomic 
nervous system in blood, but it is difficult to evaluate realistically because the metabolism 
hours of the transmission materials of the autonomic nerve are very short and it must be 
measured in invasion. In addition, the electric physiological inspection regarding the 
autonomic nerve has a limit which is difficult to directly apply to the human body because it 
must be carried out by surgical operation such as severance of nerve, etc (Park et al., 2004). 
Therefore, recently, an indirect method, which observes the activity of the autonomic 
nervous system through the activity of the cardiopulmonary vascular system reflecting the 
best autonomic nervous system, is used broadly. Evaluating the autonomic nervous system 
by extracting activity information of the autonomic nerve from signals of the 
cardiopulmonary vascular system can be regarded as very significant because a method 
measuring activity of the cardiopulmonary vascular system is very convenient and used 
broadly compared to other methods. 

2.2 Relationship between breathing and the autonomic nervous system 
The operation of breathing is basically the operation of the somatic nervous system of the 
musculoskeletal system. Breathing can adjust coughing quickly and slowly if we want by 
using the somatic nervous system. We implement these adjustments by commanding orders 
to lower the motor neuron at the back of the cerebrum cortex. If we want to use the 
diaphragm quietly and deliberately when we breathe the axon signals are delivered to the 
diaphragm through the diaphragm nerve by commanding orders to lower the motor 
neuron. 
The autonomic nervous system has a mutual interaction relation with the somatic nervous 
system. Let's review from the viewpoint of breathing. When the human body is active in 
physical sports and exercises, the number of heartbeats increase due to the autonomic 
nervous system and the output quantity of the heartbeats also increases, and at this time, 
breathing is adjusted as the autonomic nervous system sends signals to the somatic nervous 
system for fulfilling the oxygen quantity required for the human body. The adjustment of 
breathing immediately provides impacts on the autonomic nervous system after the 
completion of sports and exercises and the parasympathetic nerve is activated to operate the 
human body to reach a stable status. This operates in the same method when people take 
sleep. The somatic nervous system induces the most stable breathing when taking sleep. At 
this time, induced breathing is deeply involved in the activity of the parasympathetic 
nervous system of the autonomic nervous system (Song and Lehrer, 2003). 
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2.3 Autonomic nervous system and heart rate variability 
The heartbeat change rate does not mean changes of the maximum or minimum number of 
heartbeat per minute appearing on the ECG recorder, but is to measure the variation from 
one heart cycle to the next heart cycle. That is, the HRV signals mean the level of the 
variation of the heartbeats and we can obtain information from a finer variation from one 
heart cycle to the next heart cycle. The heartbeat change rate represents the cardiovascular 
control mechanism, which changes endlessly, and quantifies the changing trend of 
heartbeats (Noh et al, 2008). 
The heartbeat change rate changes every moment by the homeostasis mechanism which is 
adjusted by the autonomic nervous system. We judge the status of the human body only 
with these changes and we judge that there is a problem in the adjustment mechanism of the 
autonomic nervous system if there is almost no change during the stable period and on the 
contrary, we can judge that it is in a healthy status if changes are active. 
The autonomic nervous system evaluation by the heartbeat change rate can be divided into a 
method using parameters in the time domain, a method using the parameters in the frequency 
domain and a method, which uses these in both domains. A method using parameters in the 
time domain evaluates the autonomic nervous system based on the hourly statistical data of 
the degree of the changes of heartbeats and also evaluates with the component size of the 
section by obtaining a power spectrum density (PSD) at signals of intervals between R 
 

 
 

 
Fig. 1. HRV PSD (upper) in normal daily life and HRV PSD during deep sleep (lower) 
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peaks within a fixed times (typically 5 min) in the the frequency domain. In particular, in 
the the frequency domain, activities of the sympathetic nervous system and 
parasympathetic nervous system can be directly evaluated by using PSD (Task Force of 
the ESC & NASPE, 1996). 
If we observe the the frequency domain of the HRV signals, we can observe through the 
activity of the parasympathetic nervous system range by breathing because breathing 
signals receive the impacts of the parasympathetic nervous system of the autonomic 
nervous system. Breathing provides impacts on the high frequency (HF) range in the the 
frequency domain of HRV signals and it appears, in general, in 0.15 ~ 0.4 Hz. However, in 
recent research, the necessity to observe in a lower frequency range was emphasized 
because there is almost no new volume activity and it is in a very stable status during sleep. 
As seen in Fig. 1, actual sleep breathing signals are much lower and stable than breathing 
frequency in normal daily life. So, in this study, the level of activation is evaluated through 
the PSD of 0.1 ~ 0.4 Hz section. If we compare the HF range section among the HF range of 
the HRV and the frequency range of the EDR extracted from the ECG, we can evaluate how 
a well measured ECG reflects breathing signals (Aysin and Aysin, 2006; Choi et al., 1999; 
Cammann and Michel, 2002). 
 

 
 

 
Fig. 2. HRV PSD(upper) in normal daily life and HRV PSD during deep sleep (lower) 
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2.4 Relationship between heart rate variability and heart instantaneous frequency 
HRV and HIF extracted from the ECG are the same signals basically. It is because the 
modulation frequency, which is generated while intervals between each R peak is changed 
due to heartbeats, forms a fundamental frequency owned by the ECG and the HIF is the 
expression by finding out at every moment the maximum value of the fundamental 
frequency band changing every moment. In particular, HIF extracts the instantaneous 
frequency response of heart activity and was reported to have close correlation with HRV 
signals (Barros and Ohnishi, 2001). The HIF signals acquired from the ECG have the same 
form of time series of HRV and HIF can also provide the autonomic nervous system 
information which HRV provides. In addition, it can become the efficient alternative plan of 
the HRV in a ubiquitous healthcare environment because it can be extracted in time-
frequency analysis base without a stage to detect R peak in ECG signals and has a much 
lower sampling rate and little signal processing courses than the HRV (Noh et al., 2008). 
Figure 2 and 3 are in comparison by obtaining each HRV and HIF regarding the ECG during 
the stable period. If we compare after normalizing the two signals, it is possible to confirm 
that they are almost the same signals and it can be noticed that there is almost no difference 
even in the PSD analysis. 
 
 

 
 

 
Fig. 3. PSD comparison (amplitude (upper), error (lower)) of HRV and HIF 
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3. Methodology 
3.1 ECG measurement system using textile electrode 
ECG lead I and lead III were measured by using the conductive textile electrode for measuring 
the ECG during sleep without consciousness and binding. The motions of the human body 
during sleep can be largely divided into lying left/right, lying supine and lying on one's front 
and the ECG lead, which can efficiently respond to these, was judged as I and III. Each ECG is 
measured continuously during sleep and the quality of breathing information is judged by 
calculating EDR and HIF with 5 minutes of data measured every 5 minutes. As seen in Fig. 4, 
electrodes (75cm × 41cm) of lead I are positioned on both shoulders for measurement and 
electrodes of lead III are measured through the neck electrode(103 cm × 50 cm) in the form of a 
pillow and the electrode (149 cm × 41 cm) of both legs. The conductive textile electrodes used 
in the test were coated with silver (Ag) and was selected in material property which does not 
aggravate users during sleep. And, the data was collected by additionally installing a thorax 
belt breath measurement device (AD instruments Powerlab, AUS) for comparison with actual 
breathing. The ECG signals are measured for 6 hours during a night and actually use 4 hours 
of data after subtracting one hour at the start and one at the end. This was carried out for using 
data during sufficiently deep sleep. ECG and breathing signals were acquired with the 
sampling rate of 500Hz and the ECG was acquired through self-developed module. The ECG 
module transmits data real-time to an automated ECG classification system to be suggested in 
this study by connecting with PC and wireless (bluetooth) or cable (RS232) communication. The 
examinees who have been selected and implemented are healthy and without sleep apnea or 
respiratory quotient pain disease. The average age of them was 23.5 years old  ± 2.59 (mean ± 
SD), height was 176.3 cm ± 5.75, body weight was 77.7 kg ± 10.55 and  Body Mass Index (BMI) 
was 24.94 ± 2.81. It was arranged that all examinees slept wearing running shirts and shorts. 
 

 
Fig. 4. Deployment map of conductive textile electrode 
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3.2 Extraction algorithm of ECG-derived respiration (EDR) 
We use the EDR as it provides impacts on ECG, and which changes of impedance within the 
thorax according to the inflow and outflow of air in the breathing cycle are measured in 
electrodes contacted with the skin. Short period changes of thorax impedance indicate the 
filling and the exhausting of lungs and this phenomenon becomes the base of change 
records of impedance volume. Physical impacts of these breaths are appearing in changes of 
the amplitude of vibration in the ECG. In inhaling breath, the thorax impedance is increased 
as the volume is increased due to the inflow of air. The amplitude of the ECG to be 
measured by an electrode becomes smaller due to the impacts of the increased thorax 
impedance. On the contrary to this, in exhaling breath, thorax impedance is reduced as the 
volume is reduced due to the outflow of air. The amplitude of the ECG to be measured by 
an electrode becomes bigger due to the reduced thorax impedance. 
However, as mentioned in the introduction, the breath generates RSA regarding heart activity 
in addition to size of the ECG. The number of heartbeats of a person is decided by the activity 
frequency of SA node with a cardiac pacemaker. This frequency is decided in balance of 
activities between the sympathetic nerve and the vagus nerve of the heart in SA node. In here, 
changes of breath are reflected in heart activity because the vagus nerve receives impacts with 
each breath. That is, during inhalation, R peak intervals of the ECG becomes short due to the 
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3. Methodology 
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Fig. 4. Deployment map of conductive textile electrode 
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3.2 Extraction algorithm of ECG-derived respiration (EDR) 
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measurement, a whole processing course removing baseline changes using median filtering, 
the ECG R peak detection and the QRS section area calculation, the movement average 
calculation of the obtained section area and cubic-spline interpolation, and the multi 
regression processing course to remove DC and low frequency components of finally 
induced signals. However, a method using the size of the amplitude of the vibration of the 
ECG can show a big error in the section area in cases when the ECG is distorted by motions, 
etc which can be generated during sleep. Therefore, in this study, a method obtaining 
amplitude or the QRS section area of the accurate R wave of the ECG was not used, but the 
frequency modulation based breath extraction method, which extracts EDR by using 
intervals between R peaks of the ECG receiving impacts by breathing, was used. If we  
can obtain only the R peak intervals in ECG to be measured in case of using this method,  
it has the possible advantage to extract breathing signals. Breathing signals were  
extracted through a baseline wandering removing course using the high pass filter, interval 
 

 
Fig. 6. Signal processing course extracting EDR. (a) ECG raw data, (b) The course of pre-
signal processing (power interference noise cancelling & baseline wandering elimination), 
(c) The course of R-peak detection (Marked as red circle at ECG raw data), (d) The course of 
cubic-spline interpolation, and (e) The extracted EDR signal. 
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calculation between R waves through R wave detection and of course the band pass filter 
(0.2 ~ 0.8 Hz). Figure 5 shows the signal processing course and Figure 6 shows the signal 
processing result of each course. 

3.3 Extraction algorithm of instantaneous heart frequency 
A model having the basic frequency, which changes according to times, is necessary because 
the heart does not beat in a fixed ratio. For example, it is to make the heartbeat or heart 
frequency by changes of breathing through classifying the RSA, which modulates the ECG 
frequency according to changes of the breath. Under the given signal, each instantaneous 
angle frequency w(t) is calculated by using the equation (1) and the equation (2). In here, 
H[s(t)] is the Hilbert Transform value of the signal. 

 ( )( ) d tw t
dt


  (1) 

 [ ( )]( ) arctan
( )

H s tt
s t

 
   

 
 (2) 

The HIF signal is extracted from the spectrum response of the ECG. The ECG signal z(t) 
must be effectively filtered from instantaneous frequency, which a new signal s(t) with a 
basic frequency that is extracted, because it has multiple harmonics. Therefore, the filter 
characteristic for the fundamental frequency, which changes according to the times, must be 
changed properly in compliance to situations. 
 

 
Fig. 7. Flow chart for HIF extraction 
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First, the extract course is an estimation of the spectrum graph. The spectrum graph of the 
ECG signal z(t) is defined in window function suggested in equation (3) according to the 
ECG signal z(t). 
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In second, we can be found the frequency values corresponding to the maximum values of 
P(t,f) of each point of time of frequency scope. When the founded value is considered δ(t), it 
can be expressed in equation (4). 
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As a frequency value limiting scope in equation (4) it can be defined as  and δ(t -) is defined 
as δ(t) at t -. In addition, equation (4) represents an algorithm finding the maximum value of 
P(t,f)  along the frequency axle with intervals of [δ(t -)+α, δ(t -)-α]. 
In third, instantaneous frequency can be calculated by using a band pass filter in the vicinity 
of the central frequency given at each point. In particular, the wavelet is used for the 
composition of filters. The basic wavelet is a little modification of the Gabor function, which 
is limited to all time and frequency domains. The equations are implemented according to 
the spectrum response movement of the filter at the central frequency. Therefore, the basic 
wavelet during short hour interval (Ω) is given like equation (5) and (6). The filtered signal 
in intervals Ω is given by equation (7).   
Finally, the HIF signal can be obtained if it is calculated by substituting equation (7) in equation 
(1) and equation (2) (Barros and Ohnishi, 2001). Figure 7 shows the signal processing course for 
extracting HIF signals and Figure 8 shows the signal processing result for each course. 
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4. Results and discussion 
4.1 EDR evaluation 
We have compared the EDR extracted from each lead with actual breathing. The purpose of 
this evaluation was to show that EDR extracted during sleeping is not always the same as 
actual breathing. EDR can show significant differences with actual breathing in case when the 
original ECG signals are not good as explained in the extraction course because it goes through 
the signal processing course between the R peak detection of the ECG and interpolation. In 
addition, as seen in Table 1, the actual respiratory quotient and the breathing of the EDR 
extracted from each lead appear in distribution of lead I and lead III without being 
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concentrated on one lead. This means that the ECG of other lead has been distorted due to the 
motions of examinee and the external interference noises during sleep and it provides 
meaning to the necessity of the classification of a significant ECG suggested in this study. 
 

 
Fig. 8. Signal processing course for extracting HIF. (a) ECG raw data, (b) The course of pre-
signal processing (power interference noise canceling), (c) The course of pre-signal 
processing (baseline wandering elimination), (d) The course of down sampling, (e) The 
course of Short time Fourier Transform (STFT) and (f) The extracted HIF signal. 

We have analyzed a section of 4 hours when the examinee took a deep sleep and did not 
limit the sleeping habits of the examinee during sleep. We have evaluated the relativity with 
actual breathing based on the respiratory quotient and have confirmed the correlation 
between actual breathing in lead I and lead III under the unit of 1 hour and extracted the 
EDR regarding data during the sleep of each examinee. 
Big differences of correlation coefficient between the leads per hour in the sleep information 
of several examinees (A, F, H, I and J) can be considered as they were basically the motions 
of the examinee during sleep. It mainly occurs when the conductive textile electrode 
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concentrated on one lead. This means that the ECG of other lead has been distorted due to the 
motions of examinee and the external interference noises during sleep and it provides 
meaning to the necessity of the classification of a significant ECG suggested in this study. 
 

 
Fig. 8. Signal processing course for extracting HIF. (a) ECG raw data, (b) The course of pre-
signal processing (power interference noise canceling), (c) The course of pre-signal 
processing (baseline wandering elimination), (d) The course of down sampling, (e) The 
course of Short time Fourier Transform (STFT) and (f) The extracted HIF signal. 
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actual breathing based on the respiratory quotient and have confirmed the correlation 
between actual breathing in lead I and lead III under the unit of 1 hour and extracted the 
EDR regarding data during the sleep of each examinee. 
Big differences of correlation coefficient between the leads per hour in the sleep information 
of several examinees (A, F, H, I and J) can be considered as they were basically the motions 
of the examinee during sleep. It mainly occurs when the conductive textile electrode 
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forming each lead does not contact well with the skin according to changes of sleeping 
postures. In particular, in the case of examinee C, from the second hour, it noticed that the 
signal processing for extracting the EDR was not operated properly because the quality of 
the ECG signal from the electrode deteriorated. 
 

Subjects 1st hour 2nd hour 3rd hour 4th hour 
lead I lead III lead I lead III lead I lead III lead I lead III 

A 0.78 0.82 0.35 0.82 0.21 0.77 0.83 0.76 
B 0.71 0.72 0.73 0.70 0.66 0.69 0.58 0.71 
C 0.75 0.69 0.34 0.26 0.39 0.11 0.20 0.18 
D 0.52 0.71 0.72 0.66 0.72 0.77 0.74 0.68 
E 0.69 0.61 0.65 0.74 0.57 0.62 0.61 0.73 
F 0.73 0.77 0.55 0.53 0.10 0.79 0.56 0.74 
G 0.62 0.62 0.58 0.55 0.59 0.63 0.49 0.51 
H 0.66 0.70 0.14 0.64 0.55 0.69 0.64 0.71 
I 0.49 0.42 0.57 0.59 0.47 0.41 0.27 0.76 
J 0.71 0.68 0.46 0.50 0.14 0.56 0.19 0.47 

Table 1. Correlation coefficient comparison between actual breathing and the EDR of each 
extracted lead 

4.2 Optimum ECG lead selection algorithm during sleep by using HIF 
ECG data during actual sleep receive lots of impacts from the motions of the examinee and 
external interference noises. In particular, because the conductive textile electrode used as 
an electrode is not attached to the body of an examinee so it is possible to measure the ECG 
without binding and the consciousness of the examinee, but it is easily exposed to impacts 
from surrounding noise. So, we have developed an algorithm which can automatically 
classify the ECG including significant breath signals by evaluating each of the two leads 
measured during sleep. 
The ECGs (lead I and lead III) measured during sleep apply the algorithm after an elapse of 
one hour from the start of sleeping. Each ECG data is divided into the unit of 5 minutes and 
classification work is implemented in real-time. 5 minutes unit ECG is measured in each 
ECG lead extracts EDR and HIF signals and transforms them again into a frequency range 
respectively. We select the optimum lead, which reflects breathing information well, by 
comparing the PSD of the two transformed signals and we classify and store them 
automatically. Figure 9 is the system screen which has realized the automatic selection 
algorithm of the ECG lead. The program was realized with LabVIEW 8.6 (National 
Instruments, USA). 
Judgment standard analyzes how much high relativity does the PSD of EDR extracted in 
each lead have by comparing it to the PSD of HIF signals. HIF signals are not largely 
distorted by the motions of the examinee or external interference noises because it is based 
on instantaneous frequency component according to each time of information of measured 
ECG signals and also because it can be obtained without various courses required for HRV 
analysis or extracting EDR. Therefore, more stable and high reliability information can be 
obtained. So, in this study, we judge whether EDR extracted based on the standard of 
frequency analysis obtained from HIF signals has meaning or not and can classify the 
corresponding ECG as significant information. Figure 10 is a flow map of the algorithm for 
the automatic classification of the ECG leads suggested in this study. 
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Fig. 9. Automatic classification system screen (LabVIEW) 

 
Fig. 10. Selection algorithm block diagram 
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In general HRV frequency analysis, shows the impacts of the parasympathetic nerve of the 
autonomic nervous system which includes breathing information appear mainly in the HF 
range of 0.15 ~ 0.4 Hz. However, as seen in Fig. 1, the intervals of breathing become larger 
and the quantity of one breath increases as a person becomes stabilized physically and 
mentally when the human body enters deep sleep. In reality, it can be activated in a much 
lower range than this one (Aysin and Aysin, 2006; Choi et al., 1999; Cammann and Michel, 
2002). Therefore, in this study, it was evaluated by expanding the HF range into 0.1 ~ 0.4 Hz. 
Figure 11 shows the evaluation with regard to 1 hour(3rd) of examinee D in the unit of 5 
minutes through the comparison of correlation between the PSD of HIF and the one of EDR. 
We have basically judged and selected that the ECG lead, which has a high correlation 
coefficient among the two leads, and includes actual breathing properly during sleep. However, 
even if it is a lead with relatively high correlation, if the correlation coefficient is below an 
absolute number (<0.5), the two leads are all judged as meaningless signals. Even though we 
store the ECG with relatively high correlation coefficient, we did not classify them as significant 
ECG signals. Figure 12 shows the signal processing status when the ECG was distorted due to 
the motions of the examinee during sleep and also when the ECG was measured stably. In this 
case, lead I was discarded and the ECG of lead III was classified and stored. 
 

 
Fig. 11. Evaluation with regard to 1 hour(3rd) of examinee D in the unit of 5 minutes 

5. Conclusion 
HIF can provide frequency information like HRV, which is a biometric signal representing 
the best autonomic nervous system. Based on this fact, we can classify significant ECG 
signals which include accurate actual breathing information during sleep. We have 
 

developed algorithm which can automatically select and classify the significant ECG signals 
successively through PSD correlation analysis between the HIF signal and EDR which are 
acquired in the leads by acquiring the ECG with two leads (Lead I and III) in preparation for 
cases when the signal processing of the ECG is difficult due to motions or external 
interference noise, which can be generated during sleep. The continuous classification of the 
significant ECG acquired during sleep has a very important meaning and through the result 
of this study, it is believed that the very accurate and useful information can be provided to 
the sleep apnea symptom patients who need the accurate diagnosis or people who need 
breathing monitoring. 
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Fig. 12. Significant ECG lead (Right), and a lead which is not significant (Left) 
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the sleep apnea symptom patients who need the accurate diagnosis or people who need 
breathing monitoring. 
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Fig. 12. Significant ECG lead (Right), and a lead which is not significant (Left) 
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1. Introduction  
 Cardiovascular disease (CVD) is the one of the biggest health problem in Indian and around 
the world as well. Electrocardiogram is a traditional method used for the diagnosis of heart 
diseases for about a century. Maintaining and retrieving patient history during a course of 
treatment is a essential but a laborious process. More particularly, over a decade ago 
thermal ECG records were stored physically, off late, due to advancement in technology; it 
has been stored as scanned ECG images. Storing the scanned ECG trace images requires 
considerable storage space. This necessitated the development of an automated solution 
capable of storing the ECG digitally, retrieving it quickly and detecting cardiac arrhythmia 
automatically.  
Majority of the ECG’s clinical information is said to be found in the intervals and amplitudes 
defined by its features (characteristic wave peaks and time durations).According to author’s 
knowledge, very few researchers [Lawson et al., 1995, Silva et al., Wang et al., 2009,  Chebil 
et.al., 2008, Kao et al.,2001] have approached the extraction of ECG digital time series signal 
from scanned ECG trace images.  Lawson et al., chose a scanning resolution of 200 dpi and 
used global thresholds to separate the ECG trace from the background grid lines. The low 
resolution results in loss of data accuracy and global thresholds results in missing pixels 
which are replenished by linear interpolation.  Fabio Badilini et al., 2005 developed an 
application for extraction of the ECG trace from the image. But the method requires the user 
to fix anchor points for missing peaks and thus the accuracy comes down. Shen et al., 
separated the ECG trace from the background grids using the histogram. The missing pixels 
are replenished by checking the value of the pixel in the original image. This is a tedious 
process. Kao et al., employed a color filter to remove the background gridlines in the color 
image. There was a problem of missing pixels in the process which was replenished by 
linear interpolation. Jalel Chebil et al., performed a comparative study of the extracted trace 
accuracy by scanning the image at various resolutions. Global thresholds and median 
filtering were employed to remove background grids. The threshold to separate the trace 
from the background should be selected based on the nature of the image to avoid any 
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missing pixels. All conventional techniques use morphological operations such as erosion, 
dilation, thinning etc [Rafael C. Gonzalez and Richard E.Woods 2008] to extract the ECG 
trace from the background. However, all the above work addresses the issue of one-
dimensional time series signal alone. 
In this work, we propose an improved methodology to extract the digitized ECG time series 
dignal from scanned ECG records. As a novelty, we are using the Radon transform for de-
skewing the scanned images. Even though the conventional morphological techniques are 
adapted, they are applied in an iterative fashion on the binarized de-skewed images. This 
results in more accurate extraction of the time series trace. Further, a simple and useful way 
of axis identification is proposed. In addition to ECG digitization, we have extended this 
work to ECG morphological extraction and report generation. As a novelty, we have applied 
slope method for morphological extraction that eliminates the pre-processing of noise and 
baseline wandering technique. This method reduces the retrieval and computational time 
and improves the accuracy of ECG image. 
This chapter is divided into three subtopics: Converting thermal ECG trace to Digital ECG 
signal, Report generation from ECG morphology and automated arrhythmia detection.  This 
chapter explains various techniques, adapted to extract the digital time series signal from 
scanned thermal ECG records. This process of digitally converting ECG trace reduces the 
storage space and retrieval time with increased viewing accuracy. The challenges here are as 
follows. Firstly, the analysis algorithms requires the ECG signal to be digital. Therefore, the 
conversion of scanned ECG records to digital time series is a pre requisite. The algorithms 
are also capable of handling data from the digital ECG device that provide a digital signal as 
an output. Secondly, the digital signal from scanned ECG requires standardization, i.e. 
based on the ECG records, the ECG digital signal must be re-sampled and voltage levels 
adjusted automatically. In addition to digital signal conversion, this chapter explains the 
technique used to interpret ECG morphology and generate reports based on the 
interpretation. A challenge in report generation is estimation of time and amplitude level 
from pixel information and ECG morphological interpretation techniques. After ECG 
morphology analysis, automatic cardiac arrhythmia classification is performed for 
diagnosis. In this automated cardiac arrhythmia detection we would discuss about various 
classification technique and there efficiency. 

2. Methodology 
The following sections explains in detail the various stages involved in capturing the ECG 
trace, its storage and retrieval, signal extraction and digital signal generation, report 
generation and finally abnormality classification.  

2.1 Data acquisition and image processing  
Figure 1 gives an overview of the image processing techniques involved in the signal 
extraction process. 
12 lead ECG signals were recorded at a paper speed of 25mm/sec and printed in thermal 
paper.  These stored paper ECG trace is scanned at resolution of 600 dpi (dots per inch) 
black and white images and stored in jpeg format. Radon transform is applied on these 
images to detect and correct the skewness, which is incurred during the scanning process. 
The de-skewed image is adaptively binarized by choosing local thresholds. To limit the area 
to be binarized, the image is iteratively filtered by morphological filters. Each time the 
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image retained is a cropped version of the original image. An envelope detection operation 
has been performed on the resultant binary ECG image to yield the upper and lower 
boundaries. The pixel values are then averaged to obtain the Digital ECG signal.  The digital 
signal is windowed and re-sampled in accordance with the ECG record as shown in Figure. 1. 
 

 
Fig. 1. Overview of the Digitization Process 

2.1.1 Scanning and standardization 
Table 1, lists out various scanning resolution and formats that that can be handled by the 
algorithm proposed. Based on the resolution of scanning and paper speed the pixel is 
defined in terms of time and amplitude units. For example, a resolution of 600 dpi implies 
600 pixels in an inch (25.4 mm). Thus the number of pixels per mm can be calculated. Paper 
speed of 25 mm/sec i.e. 1 sec = 25 mm and calibration mark of 1mV amplitude = 10 mm is 
used to evaluate the value of each pixel in the time scale and amplitude scale. Pixel value in 
time scale is found to be 1.693 ms and amplitude scale to be 4.233 mV. These values are used 
during the digital time series signal generation. 
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Scanning Resolution in dpi Type/Color Image Format 
200 True Color Jpeg/Tiff/Bmp/Png 
300 Gray Scale Jpeg/Tiff/Bmp/Png 
600 True Color/Gray Scale/B&W Jpeg/Tiff/Bmp/Png 

Table 1. Various scanning resolution 

2.1.2 Skew detection and correction using radon transform 
Scanning process of paper ECG may results in skewness in scanned images either due to 
human error or faulty scanners. In order to extract faithfully the ECG signal from images, 
the skewness has to be eliminated. To remove the skew we have applied Radon transform 
[Lins R. D. and Ávila B. T., 2004, Prashanth et al., 2010] to find the angle of skewness.  The 
skew angle has been selected, based on the maximum variance.  

2.1.3 Adaptive binarization and iterative morphological operations 
Our next objective is to binarize the image. Extracting the ECG signal from the image 
depends on the accuracy with which it is separated from the rest of the attributes present in 
the image like grid lines, textual characters etc. From elaborate experimentation, it is 
observed that, using various image processing filters and tweaking the thresholds, could not 
eliminate the noise completely from the ECG signal. 
In this work Otsu’s algorithm [Otsu N., 1979] has been performed for image adaptive 
binarization. Adaptive threshold technique for image binarization yields better results 
compared to global thresholds. This process of adaptive binarization ensures that the 
threshold is selected based on an active signal region using morphological operation and not 
on the entire image. Morphological operations include dilation and erosion as shown in the 
figure 2 (c). Erosion operation on the binary image results in the loss of ECG signal as shown 
in Figure 2c. However, during this process of erosion, we record the upper and lower limit in 
the Cartesian coordinate. The boundary limit values are assigned as threshold and the image 
clipping operation has been performed on the ECG trace. The clipped image is again fed back 
to the adaptive binarization algorithm and the whole process is repeated again. This 
methodology reduces the original image to the requisite binarized image containing the useful 
information. Further this has been achieved through reduced processing time.   
 

 
(a). Original Image

 
(b). Binary Image 

 

 
(c). Dilated Image

 
 

 
(d). Clipped Image 

Fig. 2. Iterative Morphological operations 
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2.2 Signal extraction and report generation 
Once the ECG waveform in the image is separated from the gridlines, it must be converted 
to a digital format. Data logged as X-Y coordinates represent the signal. The binarized 
imaged is subjected to envelope detection to obtain a complete digital signal.  

2.2.1 Envelope detection and axis identification 
The result as shown in figure 2 (b), contains only the binary ECG trace whose thickness is 
more than a single pixel. An envelope detector is applied in order to obtain a time series. In 
an envelope detector, the image is scanned column wise, at each column the uppermost and 
lowermost non zero values are recorded. Plotting all the upper and lower bound values, we 
obtain upper and lower envelopes of the ECG signal respectively.  Figure 3 (a) shows a 
original gray scale ECG trace. Figure 3 (b) shows its corresponding envelopes. 
The mean of ECG signal is represented as 

 X = [Xub +Xlb]/2 (1) 

Where, X is the mean ECG signal, Xub and Xlb is upper and lower envelope of ECG signal 
respectively 
 

 
(a) Binary Image of the scanned ECG 
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(b) Digital Signal 

Fig. 3. (a) shows original paper ECG image of size 3000x250 pixels and (b) shows its 
corresponding digital ECG signal. 

Axis identification plays a vital role in further diagnosis and automatic report generation of 
the ECG records. The test square pulse present in the starting of any ECG trace is used as 



 
Advances in Electrocardiograms – Methods and Analysis 

 

130 

Scanning Resolution in dpi Type/Color Image Format 
200 True Color Jpeg/Tiff/Bmp/Png 
300 Gray Scale Jpeg/Tiff/Bmp/Png 
600 True Color/Gray Scale/B&W Jpeg/Tiff/Bmp/Png 

Table 1. Various scanning resolution 

2.1.2 Skew detection and correction using radon transform 
Scanning process of paper ECG may results in skewness in scanned images either due to 
human error or faulty scanners. In order to extract faithfully the ECG signal from images, 
the skewness has to be eliminated. To remove the skew we have applied Radon transform 
[Lins R. D. and Ávila B. T., 2004, Prashanth et al., 2010] to find the angle of skewness.  The 
skew angle has been selected, based on the maximum variance.  

2.1.3 Adaptive binarization and iterative morphological operations 
Our next objective is to binarize the image. Extracting the ECG signal from the image 
depends on the accuracy with which it is separated from the rest of the attributes present in 
the image like grid lines, textual characters etc. From elaborate experimentation, it is 
observed that, using various image processing filters and tweaking the thresholds, could not 
eliminate the noise completely from the ECG signal. 
In this work Otsu’s algorithm [Otsu N., 1979] has been performed for image adaptive 
binarization. Adaptive threshold technique for image binarization yields better results 
compared to global thresholds. This process of adaptive binarization ensures that the 
threshold is selected based on an active signal region using morphological operation and not 
on the entire image. Morphological operations include dilation and erosion as shown in the 
figure 2 (c). Erosion operation on the binary image results in the loss of ECG signal as shown 
in Figure 2c. However, during this process of erosion, we record the upper and lower limit in 
the Cartesian coordinate. The boundary limit values are assigned as threshold and the image 
clipping operation has been performed on the ECG trace. The clipped image is again fed back 
to the adaptive binarization algorithm and the whole process is repeated again. This 
methodology reduces the original image to the requisite binarized image containing the useful 
information. Further this has been achieved through reduced processing time.   
 

 
(a). Original Image

 
(b). Binary Image 

 

 
(c). Dilated Image

 
 

 
(d). Clipped Image 

Fig. 2. Iterative Morphological operations 
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The mean of ECG signal is represented as 

 X = [Xub +Xlb]/2 (1) 

Where, X is the mean ECG signal, Xub and Xlb is upper and lower envelope of ECG signal 
respectively 
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(b) Digital Signal 

Fig. 3. (a) shows original paper ECG image of size 3000x250 pixels and (b) shows its 
corresponding digital ECG signal. 

Axis identification plays a vital role in further diagnosis and automatic report generation of 
the ECG records. The test square pulse present in the starting of any ECG trace is used as 
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reference for the axis. However, in most practical scanning procedures and data capture, 
square pulses are often absent due to the sheer length of the ECG paper. In order to 
overcome this, a novel and simple technique to identify the axis is proposed in this paper. 
The obtained signal X can be represented as X = [x1, x2, x3....xn,], where the values of each 
element in the vector correspond to an ECG signal pixel location. By observation, it was 
found that the most significant and recurring pixels usually represent the axis of the signal 
along the horizontal. As the signal obtained can be treated as a vector, the axis is obtained 
by calculating the mode of the vector. Hence, we can represent it as:  

 ECG Axis = Mode(X) (2) 

In most cases, the axis will be non-zero; therefore there is a need to offset the axis to the 
horizontal zero in order to standardize the signal. Equation 2 describes the offset process.  

 ECG  zero axis = Offset (Mode(X)) (3) 

 
 

 
(a) Original ECG image 

 

 

 
(b) Binary Image 

  

(c) Digital ECG signal (d) Digital Signal with reference axis 
 

 

 
(e) Original ECG image 

 

 

 
(f) Binary Image 

  

(g) Digital ECG signal (h) Digital Signal with reference axis 

Fig. 4. A typical ECG extraction process is as shown in figure 4 (a – c). (d) represents the 
signal with the reference axis plotted as a dotted horizontal line 
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2.2.2 Normalising and R-peak detection 
The R-peaks which have maximum amplitude in an ECG signal which is extracted by 
differentiating the ECG signal. Taking the first derivative of the ECG signal and discarding 
the negative values provides the location of the R-peaks. Subsequently, the number of peaks 
is used to calculate the heart rate. 
 

 
Fig. 5. Normalized ECG signal with reference axis and location of the corresponding R-
Peaks. Normalized signal with reference axis is used to extract the r-peaks. All peak 
locations are represented as 1’s in the x-axis ranging between – to 3000. 

2.3 ECG morphological feature extraction 
A database of 25 patients paper ECG were recorded from 12 lead ECG machine is created 
and the digital signals are generated. The obtained ECG signals are processed to extract 
morphological features. The morphological feature extraction is carried out by two methods: 
time based method and slope based method. The morphological features extracted are P 
wave duration, QRS complex duration, T duration, PR interval, QT interval and ST intervals 
and P, R and T amplitudes.  

2.3.1 Time based feature extraction 
In this method, the digital ECG was filtered using a bandpass filter designed for a frequency 
range of 0.05 to 30 Hz.  Obtained digital ECG signal is differentiated and the R peaks were 
identified.  Heart Rate is calculated by mean of calculating the distance between two peaks. 
Heart rate is calculated using the formula 

 60Heart Rate =
RR Interval

 (4) 

In this method, morphological features are extracted by traversing the windowing function 
on either side of the R peak, based on the ascending and descending nature of the waveform 
the various peaks and onset and offset of each peak is identified. The window size for Q and 
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S is 120 ms and for P and T is 150 ms. The Q and S peaks are found by traversing on the left 
and right side of the R peak within the specified window and locating the minimum or 
negative peak values. From the Q peak, by traversing on its left side, the maximum value is 
found to be the P peak. Similarly, by traversing to the right side of the S peak, the maximum 
value is found to be the T peak.  
The P_on and P_off points are identified by traversing the window function on either side of 
the P peak until they descend and reach the baseline. Similarly, T_on and T_off points are 
detected with respect to T peak. Using these data point various morphological features such 
as the duration of P, QRS and T waves, intervals such as PR, QT and ST and the amplitude 
of P, R and T waves were identified and marked on the digital signal plot as shown in 
Figure. 6.  
 

 
Fig. 6. Time based morphological feature extraction 

The accuracy of 94.9% had been obtained for this method for a database of 25 patient’s digial 
ECG records 

2.3.2 Slope based feature extraction 
In this method, slope of the ECG signal [Damodaran, et al., 2011]within a window size of ‘n’ 
number of samples is evaluated to extract the morphological details. The slope of the signal 
has both positive and negative values due to Increasing and decreasing peaks in an ECG 
waveform. Slope of the signal is calculated using Equation 5. 

       1tan /slopeS i S i n S i n    (5) 

where i =1, 2...N-n,  
S(t) = Extracted ECG Signal with samples 1 to N and n=Window size 
Sslope(t) = Slope signal 
The window size depends on the number of samples between the Q peak and R peak in the 
ECG signal.  For finding the window size, the R peak is found by differentiating the ECG 
signal and the Q wave is detected as the negative peak immediately prior to the detected R 
peak. The window is placed at the 1st sample and the slope between the 1st and the (n+1)th 
sample is found and stored. The window is then placed on the 2nd sample and the slope 
between the 2nd and (n+2)th is found. The window is placed at all samples till the (N-n)th 
sample and the slope values found is stored as the Sslope signal. 
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A standard range of values is defined for the inclination angle of the P wave, QRS complex 
and T wave for both normal and abnormal ECG. Thus from the defined range of slope 
values for the ECG waveform, the slope values between the minimum positive slope value 
and the maximum negative slope values are removed to eliminate any noise.  
For finding the window size, the R peak is found by differentiating the ECG signal and the 
Q wave is detected as the negative peak immediately prior to the detected R peak. The slope 
of the signal within this window is found for the entire signal is shown in Figure. 7. 
 
 

 
 

Fig. 7. Slope plot for the digital ECG extracted form the paper ECG. Plotting of the slope 
values result in three peaks, each one for P, QRS and T waves respectively 

The first positive peak is the P_on, the first negative peak is P and the following zero 
crossing is P_off. Similar procedure is followed to identify the Q, R and S peaks and T wave. 
The features extracted using slope method is marked on the signal plot as shown in Figure. 
8. Accuracy of 97.09% had been obtained for this method for a database of 25 patient’s 
digital ECG records 
 

 

 
 

Fig. 8. Slope based morphological feature extraction 

As an extension, we have also performed a comparitive study between the slope method 
and the time base method as shown in table 2.   
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As an extension, we have also performed a comparitive study between the slope method 
and the time base method as shown in table 2.   
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MORPHOLOGY MANUAL TIME BASED SLOPE BASED 
HR 66 65 66 
P Duration 0.12 0.13 0.1222 
QRS Duration 0.11 0.12 0.115 
T Duration 0.24 0.25 0.24 
PR Interval 0.16 0.15 0.16 
QT Interval 0.42 0.44 0.42 
ST Interval 0.3 0.31 0.3 
P Amplitude 0.1 0.09 0.11 
R Amplitude 0.86 0.82 0.85 
T Amplitude 0.3 0.33 0.3 

Table 1. Comparison of the time based method and slope method for a single patient ECG 
patient record 

2.4 Automated arrhythmia detection  
The morphological features extracted were used to detect the arrhythmias. In this study we 
have considered three different abnormalities, namely, Sinus Bradycardia, Sinus 
Tachycardia and PVC. Feature parameter chosen were P wave duration, QRS complex 
durations, T wave duration, PR intervals, QT intervals and ST intervals. Two classifiers are 
used to detect arrhythmias, namely Dynamic time warping (DTW) and Adaboost and their 
performance were compared.  

2.4.1 Dynamic Time Warping (DTW) 
The DTW classifier [Niranjan et.al., 2004, Venkatesh N and Srinivasan J.,2011] is based on 
the ranking of the prototypes by the distance to the query.  
Let, F = (f1…..fn) and G = (g1…..gm) be two time series of length n and m, respectively. To 
align the two sequences using DTW, we construct an n-by-m matrix whose (i,j)th element is 
the Euclidean distance d(i,j) between two points fi and gj. The (i,j)th matrix element 
corresponds to the alignment between the points fi and gj. A warping path, R is a 
contiguous sets of matrix elements that defines a mapping between F and G and is written 
as R={r1…..rS} where, max(m, n) < S < m + n – 1. To limit the warping path, several 
constraints such as boundary conditions, continuity, monotonicity, and windowing [Bishop, 
2006] are used. The DTW algorithm finds the point-to-point correspondence between the 
curves, which satisfies the above constraints and yields the minimum sum of the costs 
associated with the matching of the data points. There are exponentially many warping 
paths that satisfy the above conditions. The path that minimizes the warping cost is, 
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, min
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   (6) 

The warping path can be found efficiently using dynamic programming to evaluate a 
recurrence relation, which defines the cumulative distance  ,i j  up to the element (i, j) as 
the sum of d(i, j), the cost of dissimilarity between the ith and the jth points of the two 
sequences and the minimum of the cumulative distances up to the adjacent elements: 
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           , , min 1, , , 1 , 1, 1i j d i j i j i j i j           (7) 

The classification procedure based on DTW yielded the following results.  
 
Types Total No. Of Records Classified Misclassified 
Normal 25 24 1 
Sinus Tachycardia 8 8 0 
Sinus Bradycardia 7 7 0 
Pvc 5 5 0 

Table 2. DTW classification results 

2.4.2 Adaboost classifier 
In this study, multiclass adaboost has been used to identifying the arrhythmias detection.  
Adaboost classifier increases the accuracy of weak classifier by reinforcing training on 
misclassified samples and assigns appropriate weights to each weak classifier.  The final 
classification is given by 

 11,( )
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where, 1 indicates the sample has been correctly classified.  In this experiment, stumps are 
used as a weak classifier. For reassigning the weights to the weak classifier 5000 iterations 
were performed and this was experimentally found to yield better results.  
Because it may have potential advantages such as higher classification performance, more 
rapid recognition process time and extension of recognition features, Adaboost was applied 
for the detection of cardiac arrhythmia. Each class of ECG type i.e. normal or arrhythmic, a 
label +1 or -1 is assigned to it. A large number of weak classifiers around 5000 are chosen. 
Decision stumps are chosen for classification. Decision stumps make prediction based on the 
value of just a single input feature. The input value if greater than the prediction value then 
the feature vector belongs to one class else it belongs to another class. Initially a set of 
training vectors are fed for classification. Labels are assigned for each input.  A set of testing 
vectors are given as inputs for classification. Based on the labels assigned to each of the 
testing vector, the classification or misclassification is decided.   
 
Types Total No. Of Records Classified Misclassified 
Normal 25 24 1 
Sinus Tachycardia 8 8 0 
Sinus Bradycardia 7 7 0 
Pvc 5 5 0 

Table 3. Adaboost classification results 

The Adaboost classifier is implemented and the classification results are as shown in Table 
4. The sensitivity of the classifier is evaluated and the average sensitivity is found to be 99%. 
Table 5 presents the performance of the classification system for different arrhythmias.  The 
performance of an arrhythmias detection is measured based on the confusion matrix with 
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parameters false rejection (FR), false acceptance (FA), false acceptance rate (FAR) and false 
rejection rate (FRR) for different cases. In case-1, normal is made one class with PVC, Sinus 
Bradycardia and Sinus Tachycardia together is made into another class. Similarly in case-2, 
Sinus Bradycardia is one class, in case-3 Sinus Tachycardia is one class and in case-4 PVC is 
one class with the other three types together is the second class respectively. 
 
 Precision (%) Sensitivity (%) Specificity (%) Accuracy (%) 
Case1 100 96 100 97.78 
Case2 87.5 100 97.37 97.78 
Case3 88.89 100 97.29 97.78 
Case4 83.33 100 97.5 97.78 

Table 4. Classification of ECG for different arrhythmias, Case -1 is normal, Case-2 is sinus 
Bradycardia, Case –3 sinus Tachycardia, and Case –4 is PVC.   

2.5 Report generation 
Based on the various morphological features extracted using the proposed method and the 
arrhythmia detection using classifiers, a report is generated for each patient record. This 
ECG Report consists of Heart Rate, Morphological features duration and arrhythmias will 
be listed as a report. 

3. Conclusion  
The conversion of the scanned ECG record to a digital time series signal has been performed 
by an improved method of binarisation accurately. The digital time series data obtained is 
scaled in terms of amplitude and time.  The digital signal is further processed for ECG 
morphological extraction procedure, by two methods namely, time based and slope based 
methodology. The accuracy of both the methods is evaluated by comparing the obtained 
results with manually read data from the paper record.  Slope method is more accurate than 
other methods, in addition, this method eliminate the base line correction issues, noise 
removal issues with ECG signals. Further, this work has been extended to classification of ECG 
using DTW and Adaboost classifier for arrhythmia detection.  The paper ECG converted will 
be provided as report with consists of Heart Rate, Morphological features duration and 
arrhythmias. This could be an aid tool to physician and electronic medical record maintains. 
This can function as a second option tool for initial screening producer for ECG. 
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1. Introduction 

Sudden cardiac death (SCD) is among the most common types of mortality in developed 
countries. It for more deaths each year than the total number of deaths from AIDS, breast 
cancer, lung cancer and stroke together. SCD accounts for approximately 50% of all deaths 
from cardiovascular diseases and 20% of total mortality (1). In the general population, SCD 
mostly occurs in individuals who are unrecognized to be at risk (2,3). 
Although the causes of SCD are multiple, the majority (80–85%) of sudden cardiac deaths is 
caused by acute ventricular arrhythmias (4). Traditionally, the risk of ventricular 
arrhythmias has been evaluated based on the duration of QT interval on a standard surface 
ECG. 

2. QT interval 
QT interval is measured in milliseconds (ms) from the Q-top, the beginning of the QRS 
complex, until the end of the T wave and reflects the time between the initial fast 
depolarization of the left ventricle and its subsequent repolarization (5). Duration of the QT 
interval is highly dependent on T wave morphology, which is determined by the differences 
in the time course of repolarization of 3 predominant ventricular myocardial cell types 
(endocardial, epicardial, and M cells) (6). 
The start of the T wave is caused by the more rapid rate of decline of the plateau or phase 2 
of the epicardial action potential, creating a voltage gradient and electrotonic current flow 
across the wall. The gradient gradually increases as the epicardial action potential continues 
to repolarize, reaching a maximum with full repolarization of epicardium; this juncture 
marks the peak of the T wave. Divergence of the plateau of the endocardial AP from that of 
the M cell occurs soon after that of epicardium, causing a voltage gradient between 
endocardium and the M region and thus a current opposite to that generated by the voltage 
gradient that develops between epicardium and the M region. Under normal conditions, 
current flow between the M region and epicardium is greater than that between the M 
region and endocardium, resulting in the inscription of the ascending limb of the upright T 
wave. Once epicardium is fully repolarized, continued repolarization of endocardium leads 
to a progressively larger voltage gradient between endocardium and the M region, giving 
rise to the initial descending limb of the upright T wave. The last cells to repolarize are the 
M cells, contributing to the final segment of the T wave. Full repolarization of the M region 
marks the end of the T wave (7,8). 



 
Advances in Electrocardiograms – Methods and Analysis 

 

140 

Rafael C. Gonzalez and Richard E.Woods, “Digital Image Processing (3rd Edition)”, Prentice 
Hall, 2008. 

Sanroman-Lunquera, M., Mora-Jimenez, I., Everss, E., “Quality Evaluation and Effect of 
Time Synchronization on the Digital Recovery of Intracardiac Electrograms”, 
Computers in Cardiology, Vol. 36, pp. 801-804, 2009. 

Silva Gomes e A. R., H.M. de Oliveira, R.D. Lins., “Converting ECG and other paper 
legated biomedical maps into digital signals,” XXV Simpósio Brasileiro de 
Telecomunicações, Setembro 3-6, Recife –PE, Brasil. 

Shen, TW., and Laio, TF., “Image Processing on ECG Chart for ECG Recovery”, Computers 
in Cardiology, pp. 725-728, 2009. 

Tanveer Syeda-Mahmood, David Beymer and Fei Wang, “Shape-based matching of ECG 
Recordings”, IEEE Interational Conference on Engineering in Medice and Biology, 
2007. 

Vani Damodaran, J Srinivasan and S. Poonguzhali “A Novel Method to Extract ECG 
Morphology from Scanned ECG Records”, ICBPE, Singapore, 2011 

Venkatesh N and Srinivasan J., ‘Human Electrocardiogram for Biometrics using DTW and 
FLDA’, ICPR 2010 

Wang Fei, Tanveer Syeda-Mahmood And David Beymer, “Information Extraction from 
Multimodal ECG Documents”, 10th International Conference on Document 
Analysis and Recognition, 2009. 

7 

QT Interval and QT Variability 
Bojan Vrtovec and Gregor Poglajen 

Department of Cardiology, University Medical Center Ljubljana, 
Slovenia 

1. Introduction 

Sudden cardiac death (SCD) is among the most common types of mortality in developed 
countries. It for more deaths each year than the total number of deaths from AIDS, breast 
cancer, lung cancer and stroke together. SCD accounts for approximately 50% of all deaths 
from cardiovascular diseases and 20% of total mortality (1). In the general population, SCD 
mostly occurs in individuals who are unrecognized to be at risk (2,3). 
Although the causes of SCD are multiple, the majority (80–85%) of sudden cardiac deaths is 
caused by acute ventricular arrhythmias (4). Traditionally, the risk of ventricular 
arrhythmias has been evaluated based on the duration of QT interval on a standard surface 
ECG. 

2. QT interval 
QT interval is measured in milliseconds (ms) from the Q-top, the beginning of the QRS 
complex, until the end of the T wave and reflects the time between the initial fast 
depolarization of the left ventricle and its subsequent repolarization (5). Duration of the QT 
interval is highly dependent on T wave morphology, which is determined by the differences 
in the time course of repolarization of 3 predominant ventricular myocardial cell types 
(endocardial, epicardial, and M cells) (6). 
The start of the T wave is caused by the more rapid rate of decline of the plateau or phase 2 
of the epicardial action potential, creating a voltage gradient and electrotonic current flow 
across the wall. The gradient gradually increases as the epicardial action potential continues 
to repolarize, reaching a maximum with full repolarization of epicardium; this juncture 
marks the peak of the T wave. Divergence of the plateau of the endocardial AP from that of 
the M cell occurs soon after that of epicardium, causing a voltage gradient between 
endocardium and the M region and thus a current opposite to that generated by the voltage 
gradient that develops between epicardium and the M region. Under normal conditions, 
current flow between the M region and epicardium is greater than that between the M 
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In the presence of cardiac disease, ventricular repolarization heterogeneity is increased, 
leading to QT interval prolongation (9). However, QT interval duration is also affected by 
various noncardiac factors, such as age, gender, inflammation, changes in autonomic 
nervous tone, and electrolyte disturbances (10), thereby limiting its use in the analysis of the 
electrophysiological properties of ventricular myocardium. Furthermore, QT interval 
duration is highly dependent on heart rate. Despite a variety of methods that have been 
proposed to derive a rate-corrected (QTc interval), which would allow the comparison of QT 
values obtained at different heart rates, no consensus has been reached so far (11). Since 
there is growing evidence that QT interval prolongation by itself cannot accurately predict 
the pro-arrhythmic potential, other ECG parameters are considered more reliable and have 
been investigated in pre-clinical and clinical studies. 

3. Long QT syndrome 
The long QT syndrome (LQTS) is characterized by the appearance of long QT intervals in 
the electrocardiogram, an atypical polymorphic ventricular tachycardia displaying features 
of torsade de pointes, and a high risk for sudden cardiac death (12). Congenital LQTS can be 
further subdivided into six genotypes distinguished by mutations in at least five different 
ion channel genes located on chromosomes 3, 7, 11, and 21 (13,14). These mutations result in 
defects in the sodium channel (SCN5A, LQT3), the rapidly activating delayed rectifier 
channel (I Kr ) (HERG, LQT2 or KCNE2, LQT6), and the slowly activating delayed rectifier 
channel (I Ks ) (KvLQT1, LQT1 or KCNE1, LQT5), respectively. Acquired LQTS is a term 
long reserved for a syndrome similar to that encountered in the congenital forms but caused 
by exposure to drugs that prolong the duration of the ventricular action potential (15) or to 
QT prolongation secondary to bradycardia, electrolyte imbalance or remodeling of the 
ventricular myocardium that accompanies dilated and hypertrophic cardiomyopathies 
(16,17).  
Management of patients with long QT syndrome is strongly dependent of the genetic basis 
of the disease. The trigger for most of the episodes of life-threatening arrhythmias of long 
QT syndrome is represented by a sudden severe increase in sympathetic activity, which is 
largely mediated through left cardiac sympathetic nerves. (12) Therefore B-adrenergic 
blockade represents the first line of treatment in symptomatic patients with long QT 
syndrome. It has been shown that in LQT1 patients B-blockers significantly reduce life-
threatening events and these patients seldom need more than antiadrenergic therapy. 
Compared to LQT1 patients, LQT2 and LQT 3 patients have more life-threatening events 
despite treatment with B-blockers. (18) In these patients additional therapies are needed. In 
patients who remain symptomatic despite treatment with B-blockers (minority of LQT1 and 
the majority of LQT2 and LQT3 patients) left cardiac sympathetic denervation (LCSD) is to 
be considered. Although moderately invasive (it requires surgical removal of first four 
thoracic ganglia) it has proven effective since it was shown that with LCSD we can achieve 
about 90% reduction in cardiac events and with this a dramatic improvement in patients’ 
quality of life. (19). Regarding ICD therapy it is uniformly agreed that in case of documented 
cardiac arrest ICD should be implanted immediately. However, there are significant 
differences in opinion regarding the use of ICDs in patients without cardiac arrest. It should 
not be forgotten that ICD do not prevent the occurrence of malignant arrhythmias and that 
most of arrhythmias in patients with long QT syndrome are self terminated. Furthermore 
pain associated with shocks can in turn perpetuate malignant rhythm disturbances through 

 
QT Interval and QT Variability 

 

143 

massive catecholamine release. It is therefore of paramount importance to implant only to 
symptomatic patients since there to date no clear benefit of ICDs in asymptomatic patients 
with long QT syndrome has been demonstrated. (20) 

4. Short QT syndrome 
Short QT syndrome (SQTS) is an inheritable primary electrical disease of the heart, 
discovered in 1999. It is characterized by an abnormally short QT interval (<300 ms) and a 
propensity to atrial fibrillation and SCD (21). Like in the case of long QT syndrome there is 
more than one genetic mutation that can lead to a short QT interval in the ECG and so far 
gain-of-function mutations in KCNH2, KCNQ1, KCNJ2, encoding potassium channels and 
loss-of-function mutations in CACNA1C and CACNB2b, encoding L-type calcium channel 
subunits have been identified (22). Shortening of the effective refractory period combined 
with increased dispersion of repolarization is the likely substrate for re-entry and life 
threatening tachyarrhythmias (23). ICD is the therapy of choice in patients with a short QT 
syndrome. However, antiarrhythmic drug therapy may constitute a potential adjunct or 
even an alternative therapy in children and newborns, where ICD implantation is very 
challenging. To date several antiarrhythmic agents were tested in this patient population. 
Flecainide, sotalol and ibutilide (acting through blocking of the rapidly activating delayed 
rectifier potassium current) all failed to prolong the QT interval in patients with short QT 
syndrome.(24) In vitro electrophysiological studies showed that the mutation of the IKr 
channel led to a reduced ability of these antiarrhythmic agents to block the channel.(25) It 
was recently shown that quinidine, in contrast to flecainide, ibutilide and sotalol, can 
normalise the QT interval at resting heart rates. Additionally, quinidine also restored the 
heart rate dependence of QT interval towards an adaptation range of normal subjects.(26) 
Although studied extensively, the exact mechanism of its action for now remains 
incompletely understood. We have to keep in mind, however, that short QT interval can be 
a consequence of several gain- and loss-of-function mutations. Therefore for this patient 
population a uniform medical management currently cannot be recommended. 

5. QT variability 
Repolarization of the ventricular myocardium is a complex process that varies in duration 
from site to site and from beat to beat. The mechanisms that govern spatial heterogeneity in 
ventricular repolarization are well studied, and are largely related to variation in ion 
channel function and density from one myocardial region to another (27). Ventricular wall 
comprises of 3 cell types: epicardial, M and endocardial cells. Epicardial and M cell action 
potentials differ from endocardial cells with respect to the morphology of phase 1. These 
cells possess a prominent transient outward current mediated notch responsible for the 
'spike and dome' morphology of the epicardial and M cell response. M cells are 
distinguished from the other cell types in that they display a smaller slowly activating 
delayed rectifier current, but a larger late sodium current and sodium-calcium exchange 
current. Because of these differences spatial heterogeneity in ventricular repolarization 
occurs.  
The mechanisms responsible for temporal fluctuations in repolarization, however, are 
poorly understood. Several clinical studies over the past decade have examined beat-to-beat 
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variability in QT interval of the surface electrocardiogram (ECG) as a means for quantifying 
temporal repolarization lability (28).  
Recently, a PC-based electrocardiogram software program has been developed that in real 
time, acquires, analyzes, and displays QT variability in each of the 8 independent channels 
that constitute the 12-lead conventional electrocardiogram (29). The system also analyzes 
and displays the QT variability from QT-interval signals that are derived from multiple 
channels and from singular value decomposition such that the effect of noise and other 
artifacts on the QTV results are substantially reduced compared with existing single-channel 
methods. 
When analysis begins, templates for the overall ECG signal in each channel are first formed. 
To construct the initial templates, the first 20 beats are collected into a single averaging bin. 
Then, the mode of the probability function of the R-R interval is created for those beats and 
its maximum determined. Finally, those 10 beats that are closest to the determined 
maximum are selected, and a template ECG wave for the same beats is then obtained by 
averaging the superimposed ECG signals based on the fiducial point of the QRS wave. 
After the initial global templates have been constructed, breaking points called PQbreak 
(between the P wave and the QRS complex), QTbreak (between the QRS complex and the T 
wave), Tend (the final point of the T wave), and Pini (the initial point of the P wave) are 
used to construct individual templates for the 3 principal waveforms QRS, T, and P.  
The principal steps of the algorithm used in analyzing QT variability are described in detail, 
as follows: 
1. The template beat φ(n), where n is the sample number, is constructed from the selected 

beats using a signal averaging technique. Only those beats with shape similar to the 
template are selected for averaging. Because the program automatically determines the 
borders of each wave component (P, QRS, and T templates, as described previously) 
and therefore the time window for matching of waves, its remaining task is to shift the 
particular incoming wave component with respect to the template until obtaining an 
acceptable match. The matching algorithm is based on the least square deviation of the 
incoming wave vs the template. 

2. The matching of waves is performed in 2 substeps. First, a broader time interval 
containing the complete wave component is used to reach the best fit. Second, each 
wave of any incoming beat is shifted to or from the trigger point to achieve the best 
alignment with the template in the appropriate time window. For this purpose, an error 
function of time shifting is defined as the sum of the squared differences between the 
template wave (P, QRS, or T) and the appropriate shifted version of the incoming beat. 

3. The program uses the QT variability algorithm to generate, in real time, the time series 
of the QT interval along with that of the R-R interval. Time series are analyzed 
according to the recommendations of the Task Force of the European Society of 
Cardiology and the North American Society of Pacing and Clinical Electrophysiology 
(30) using specific indices such as the SD of normal-to-normal (NN) R-R and QT 
intervals (SDNN R-R and SDNN QT, respectively), the root mean square (RMS) of the 
successive interval difference (RMSSD R-R and RMSSD QT), and so on.  

6. Clinical application 
Although QT interval prolongation has been proposed as a risk factor for death in an 
apparently healthy population in patients after myocardial infarction in diabetic patients, 
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and patients with advanced heart failure, its direct relation to pro-arrhythmic risk remains 
questionable (1,17). 
While measuring subtle variation in QT interval duration is technically challenging, new 
methodology (28,29) has enabled investigators to study the effect of disease states on 
ventricular repolarization variability, and the prognostic value of the QT interval variability 
measurement. QT variability has been shown to be elevated in congestive heart failure 
(CHF) (28), ischemia (31), and some types of hypertrophic cardiomyopathy (26). Increased 
QT variability was also found to predict appropriate implantable cardioverter-defibrillator 
shocks in the MADIT-II (Multicenter Automatic Defibrillator Implantation Trial-II) study 
(33), as well as total mortality and sudden death in post-myocardial infarction patients 
without implantable cardioverter-defibrillators (34). 
Based on the current clinical evidence it appears that although currently considered ‘the 
golden standard’ QT interval measurement will in the future be replaced by novel, more 
reproducible automated methods that will allow for better prediction of arrhythmic events 
in various clinical settings. 

7. Pharmaceutical application 
Pro-arrhythmic drug effects have been one of the most common reasons for withdrawal of 
drugs from the market in many therapeutic areas. Currently, the potential pro-arrrhytmic 
effects of drugs are addressed in accordance with The ‘International Conference on 
Harmonization of Technical Requirements for Registration of Pharmaceuticals for Human 
Use’ (ICH) E14 clinical guidance issued in May 2005. The centre-piece of the guidance is the 
‘thorough QT/QTc study’ (TQT), which is a dedicated study with the primary objective to 
quantify the effect of a new molecular entity on the QT interval (35).  
Although considered the ‘golden standard’, use of QT interval duration as a surrogate 
marker for the prediction of drug-induced arrhythmias has several pitfalls (36,37): 
- Many drugs affect both QT interval duration and heart rate. Since all current heart rate 

correction methods are imperfect, it is difficult to distinguish the drug-related changes 
in QT interval from those caused by heart rate alterations. 

- Since QT interval duration is dependent on several non-cardiac factors (e.g. 
inflammation, autonomic nervous system), the therapeutic effect of drugs on the 
underlying disease may mask the potential adverse drug effects on cardiac 
repolarization and QT interval. 

- QT interval is used as a surrogate marker of arrhythmias; however, its relationship to 
the arrhythmic events has been seriously questioned in the recent clinical studies. 

- It is assumed, but has not been proved, that even a small drug-induced increase in QT 
interval indicates some risk of arrhythmias. 

Given these limitations it is clear that in order to adequately address pro-arrhythmic risk of 
drugs it is necessary to look beyond the drug-induced changes of QT interval. Other drug-
induced ECG changes, associated pro-arrhythmic risks, and threshold of magnitude of 
changes should be considered as a cause for concern. Therefore, novel advanced ECG 
technologies should be develop do better define drug-induced arrhythmogenesis. 
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variability in QT interval of the surface electrocardiogram (ECG) as a means for quantifying 
temporal repolarization lability (28).  
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averaging the superimposed ECG signals based on the fiducial point of the QRS wave. 
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borders of each wave component (P, QRS, and T templates, as described previously) 
and therefore the time window for matching of waves, its remaining task is to shift the 
particular incoming wave component with respect to the template until obtaining an 
acceptable match. The matching algorithm is based on the least square deviation of the 
incoming wave vs the template. 

2. The matching of waves is performed in 2 substeps. First, a broader time interval 
containing the complete wave component is used to reach the best fit. Second, each 
wave of any incoming beat is shifted to or from the trigger point to achieve the best 
alignment with the template in the appropriate time window. For this purpose, an error 
function of time shifting is defined as the sum of the squared differences between the 
template wave (P, QRS, or T) and the appropriate shifted version of the incoming beat. 

3. The program uses the QT variability algorithm to generate, in real time, the time series 
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(30) using specific indices such as the SD of normal-to-normal (NN) R-R and QT 
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correction methods are imperfect, it is difficult to distinguish the drug-related changes 
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- Since QT interval duration is dependent on several non-cardiac factors (e.g. 
inflammation, autonomic nervous system), the therapeutic effect of drugs on the 
underlying disease may mask the potential adverse drug effects on cardiac 
repolarization and QT interval. 

- QT interval is used as a surrogate marker of arrhythmias; however, its relationship to 
the arrhythmic events has been seriously questioned in the recent clinical studies. 

- It is assumed, but has not been proved, that even a small drug-induced increase in QT 
interval indicates some risk of arrhythmias. 

Given these limitations it is clear that in order to adequately address pro-arrhythmic risk of 
drugs it is necessary to look beyond the drug-induced changes of QT interval. Other drug-
induced ECG changes, associated pro-arrhythmic risks, and threshold of magnitude of 
changes should be considered as a cause for concern. Therefore, novel advanced ECG 
technologies should be develop do better define drug-induced arrhythmogenesis. 
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The Electrocardiogram – Waves and Intervals 

James E. Skinner, Daniel N. Weiss and Edward F. Lundy 
Vicor Technologies, Inc, 

USA 

1. Introduction 

To understand the Electrocardiogram, one must understand both the origin of the waves 
(PQRST) and intervals between them (PQRST to PQRST or R-R). The waves are intrinsically 
generated within the heart, with some regulation by the cardiac nerves, but the intervals are 
extrinsically controlled primarily by the brain, through projections to both the auricular 
pacemakers and the ventricular tissues. That is, the intervals are regulated by the brain, as 
mediated through the autonomic effectors. To understand the R-R interval variations, one 
must understand the neural mechanism(s) that underlie changes in the T to P segments, 
which are lengthened and shortened in time to create the R-R variation. 
The Society for Neuroscience does not pay substantive attention to Cardiology, and the 
various societies of Cardiology do not pay much attention to Neuroscience. This two-way 
neglect has forced the formation of a new society devoted to both fields of inquiry. The 
Society for Heart-Brain Medicine was formed in 2007, and the plenary talks that established 
the field on its own foundation included two by the current authors (Skinner, 2007a; 2007b).  
A paradigm is a way of thinking, and a new one is a way of “thinking outside the box.” Two 
new paradigms were presented by us at the first SHBM Meeting and each was based on 
pivotal new discoveries. First, we showed that only nonlinear algorithms are appropriate for 
analysis of physiological data, because the data themselves are nonlinear--- a nonlinear 
algorithm is thus a more sensitive measure of the heartbeat dynamics (e.g., of R-R 
variability) than all previous stochastic measures, such as the, mean, standard deviation, 
power spectrum, and so on. Secondly, small proteins and peptides are known to regulate 
physiology in parallel with the nervous system--- that is, the “state” (behavioral / neural) 
determines the outputs of these two types of physiological effectors. Hibernation, for 
example, in which the cold eventually shuts off the nervous system, continues to be 
regulated by neuroendocrine molecules, some of which were indicated in a similar state 
(REM sleep) to have salutary effects on the ischemic heart (suppression of arrhythmogenesis 
in the electrocardiogram). This analogy between the similar states enabled conventional 
proteomics to be used in the other state (e.g., in hibernation) and thus formed the basis for a 
new way to discover drugs, “state-dependent proteomics.” With the method a new (anti-
infarction) drug candidate was actually discovered (Skinner, 2007a).  
The realization that the heartbeat intervals in the electrocardiogram are primarily regulated by 
the brain provides us with an entirely new way to look at the electrocardiogram – the intervals 
are not intrinsically regulated by currents and pacemakers within the heart, as are the waves, 
but rather are under extrinsic control by the brain, mediated of course through the autonomic 
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1. Introduction 

To understand the Electrocardiogram, one must understand both the origin of the waves 
(PQRST) and intervals between them (PQRST to PQRST or R-R). The waves are intrinsically 
generated within the heart, with some regulation by the cardiac nerves, but the intervals are 
extrinsically controlled primarily by the brain, through projections to both the auricular 
pacemakers and the ventricular tissues. That is, the intervals are regulated by the brain, as 
mediated through the autonomic effectors. To understand the R-R interval variations, one 
must understand the neural mechanism(s) that underlie changes in the T to P segments, 
which are lengthened and shortened in time to create the R-R variation. 
The Society for Neuroscience does not pay substantive attention to Cardiology, and the 
various societies of Cardiology do not pay much attention to Neuroscience. This two-way 
neglect has forced the formation of a new society devoted to both fields of inquiry. The 
Society for Heart-Brain Medicine was formed in 2007, and the plenary talks that established 
the field on its own foundation included two by the current authors (Skinner, 2007a; 2007b).  
A paradigm is a way of thinking, and a new one is a way of “thinking outside the box.” Two 
new paradigms were presented by us at the first SHBM Meeting and each was based on 
pivotal new discoveries. First, we showed that only nonlinear algorithms are appropriate for 
analysis of physiological data, because the data themselves are nonlinear--- a nonlinear 
algorithm is thus a more sensitive measure of the heartbeat dynamics (e.g., of R-R 
variability) than all previous stochastic measures, such as the, mean, standard deviation, 
power spectrum, and so on. Secondly, small proteins and peptides are known to regulate 
physiology in parallel with the nervous system--- that is, the “state” (behavioral / neural) 
determines the outputs of these two types of physiological effectors. Hibernation, for 
example, in which the cold eventually shuts off the nervous system, continues to be 
regulated by neuroendocrine molecules, some of which were indicated in a similar state 
(REM sleep) to have salutary effects on the ischemic heart (suppression of arrhythmogenesis 
in the electrocardiogram). This analogy between the similar states enabled conventional 
proteomics to be used in the other state (e.g., in hibernation) and thus formed the basis for a 
new way to discover drugs, “state-dependent proteomics.” With the method a new (anti-
infarction) drug candidate was actually discovered (Skinner, 2007a).  
The realization that the heartbeat intervals in the electrocardiogram are primarily regulated by 
the brain provides us with an entirely new way to look at the electrocardiogram – the intervals 
are not intrinsically regulated by currents and pacemakers within the heart, as are the waves, 
but rather are under extrinsic control by the brain, mediated of course through the autonomic 
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nervous system. The time between P-waves, which, in turn, affects the time between QRS’s, is 
mediated by the slow inward pacemaker current present in the sinus node and other atrial and 
ventricular tissues, called If or the “funny current”, a mixed Na and K slowly depolarizing 
inward current. In order for the cardiac-projecting nerves to alter the RR-interval it must be via 
this current. Also, the intra-QRS complex intervals (PR, QRS, QT) are certainly regulated by all 
of the currents, which are under external and intrinsic cardiac nervous system influences. 
Since the brain is so highly involved in regulating the RR-intervals, the initial studies of the 
electrocardiogram, mostly carried out in the anesthetized dog, must be carried out anew, 
but in the unanesthetized animal in a controlled behavioral state. The pig is the animal of 
choice, as it has endocardial distributions of the arteries and nerves that are homologous to 
humans, and furthermore the animal is born and raised in a standardize manner and has 
not been a pet or a mongrel, either of which would of course make their behavioral control 
less certain. The neurophysiology of the brain (electrophysiology and neurochemistry) of 
defined behavioral states and their impact on the electrocardiogram of the ischemic heart (in 
both animals and humans) are the topics of this manuscript.  

2. Background - Role of the brain in the regulation of the waves and intervals 
in the electrocardiogram 
As background we now present important results, mostly from our own previous studies in 
a conscious pig-model of myocardial ischemia / heart attack, out of which emerged the 
nonlinear and state-dependent paradigms. The rationale for the nonlinear regulation of the 
heartbeats came naturally out of our previous studies of the brain regulatory centers, which 
were found to have nonlinear activities. We also present here the physiological data in this 
conscious pig-model that led to the rationale for the discovery of the state-dependent 
proteomics (i.e., that specific molecules are released during a specific state or its equivalent, 
such as for example hibernation and its physiological equivalent REM sleep). The individual 
results from the pig-model are summarized in Figure 1, and the two in red were pivotal for 
our later development of the two new paradigms.  
 

 
Fig. 1. What we learned from the conscious pig-model of heart attack. These composite 
results are from several papers and are reviewed in Skinner (2007b). 
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At the beginning of the conscious animal studies, we were guided by Walter Cannon’s 
theory of a “Cerebral Defense System.” He postulated in his 1932 book, “The Wisdom of the 
Body,” that the focus for natural selection that led to the higher evolution of the brain was a 
cerebral “orchestrator” that simultaneously regulated the sensory input channels (e.g., of 
attended objects) and the autonomic output channels (e.g., for increasing the heart rate) in a 
moment of crisis. We already knew from our previous neurophysiological studies that the 
frontal cortex was the likely site of this hypothesized orchestrator, for we had found that it 
regulated the sensory input by a mechanism of selective neural inhibition at the thalamic 
level (Skinner, 1982). We then later stereotaxically implanted cryoneedles along a pathway 
that extends from the frontal cortex, through the hypothalamus, through the Fields of Forel, 
through the medulla, and then onward to the motor neurons that give rise to the cardiac 
nerves. Collateral branches are given off to the various nuclei all along this descending 
pathway. We found that cryoblockade anywhere within this anatomically interconnected 
system would prevent the lethal consequence of total occlusion of the left anterior 
descending (LAD) coronary artery (Skinner and Reed, 1981). A similar effect was reported 
after surgically cutting the cardiac nerves (Ebert et al, 1970). 
 

 
Fig. 2. Reversible cryoblockade in the brain of a conscious animal. From Skinner & Lindsley, 
1968. See Skinner (1970) for a simple method. 

The cryogenic method illustrated in Figure 2 is actually very easy to master (Skinner & 
Lindsley, 1968; Skinner, 1970) and enables the conscious animal to serve as its own control. 
Specific blockades in the brain (i.e., stereotaxic implantation followed by postmortem 
reconstruction) were found to prevent lethal arrhythmogenesis up to the maximum 25-min 
period of reversible myocardial ischemia. After recovery from the cryoblockade and reversal 
of the ischemia, the same animal (pig) could then be used again for the control procedure. 
The results of this within-subjects as well as between-subjects experimental design is 
demonstrated in Figure 3 (Skinner & Reed, 1981). 
Figure 3 shows the composite results of the various cryoblockades made in the conscious 
pig-model of heart attack. The cryoprobe tips (always implanted bilaterally) are shown 
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reconstructed on four coronal sections of the pig brain. The locations shown in red are for 
the 2x4 mm cryoprobe tips that, when cooled (but not when at brain temperature), 
prevented VF after LAD coronary artery occlusion (i.e., in unadapted or laboratory 
“stressed” subjects). Also shown (blue) are the locations of control tip-sites that, when 
cooled bilaterally, had no effect on VF after coronary occlusion. The collected red loci mark 
the trajectory along a pathway that interconnects the known cardiac regulatory nuclei each 
of which receive and send information between one another.  
 

 
Fig. 3. Composite cryoblockade loci that either prevented VF after LAD occlusion (red) or 
did not (blue). From Skinner & Reed, 1981; Skinner, 1985. 

This neurocardiac system is located between the frontomesial (Figure 3, red with white dots) 
and orbital cortex at one end and the motor nuclei that project to the heart on the other. 
Electric stimulations were done in the frontomesial cortex (Figure 4) by our laboratory and 
these produced cardiac arrhythmias, proving their participation in the system that regulates 
cardiac vulnerability to arrhythmias. The arrhythmogenic effect of the electric stimulation of 
each of the other structures in this neuro-cardiac system has been reported by others 
(reviewed in Skinner, 1985). Thus, a single brain system composed of hierarchically-
interconnected telencephalic-, diencephalic-, mesencephalic-, and myelencephalic-loci 
terminates in the autonomic effectors already shown to control the vulnerability of the heart 
to lethal VF during an experimental heart attack (i.e., in the mildly-stressed pig).  
Once having a conscious animal model, we turned to study the behavioral regulation of this 
newly discovered neurophysiological system. We found that gradual systematic reduction 
of laboratory “stress,” through learned adaptation to the unfamiliar surroundings, 
ultimately had the same salutary effect as denervation--- i.e., no VF after LAD occlusion 
(Skinner, Lie, Entman, 1975). We then showed that the same systematic reduction of stress 
linearly decreased sympathetic drive on the myocardium, i.e., as measured precisely by 
phosphorylase activation, using yield-independent cryosamples obtained through a throacic 
window (Skinner, et al, 1983). This sympathetic effect must have been accompanied by a 
simultaneous reduction in parasympathetic tone, because the resting heart rate and blood 
pressure remained the same. The point to be underscored is that behavioral stress-reduction 
leads to a loss of autonomic drive. 
We next studied the neuronal responses in the frontal cortex to defined stressors (e.g., novel 
stimuli, aversive conditioned stimuli, mild noxious stimuli) and found that they all 
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produced the same electrochemical effects: norepinephrine was released from presynaptic 
terminals, postsynaptic cyclic AMP was activated (as the second messenger) that then 
controlled a slow outward potassium current, leading to increased excitability in the 
dendrites of the neurons and the generation of an extracellular event-related slow potential. 
Each of these data types is learning-dependent and, therefore, is nonlinear in time. So the 
Cannon-controller of the heartbeats is itself nonlinear. This feature is also supported 
independently by noting that the biophysics of the neuronal action potentials is nonlinear, 
as modeled by the Hodgkin-Huxley (nonlinear) equations.  
These collected cellular responses of the cerebral neurons to transient stressor-events 
suggested to us that an intracerebral beta-blocker may dampen these mediating neurons 
and thus have an anti-VF effect in the conscious pig-model similar to that of the 
cryoblockades. We showed that, indeed, this noradrenergic cerebral system was the site of 
action for the anti-mortality effect of the beta-blocker drugs, and not the noradrenergic 
cardiac receptors. Intracerebral injections of levo-propranolol prevented VF after LAD 
occlusion, whereas intravenous injections did not (Skinner, 1985; Parker et al, 1993). This 
interpretation of a cerebral anti-mortality mechanism is supported by clinical studies 
reported by Aoke Hjalmarson (2000), who showed that the anti-mortality efficacy of the 
various beta-blocker drugs was related to their lipophilicity. The lipophilic drugs get into 
the brain at a higher level and thus may explain their greater efficacy in preventing 
arrhythmic death in post-MI patients.  
As shown In Figure 4, electric stimulation (2 sec, 30 Hz) of the mesial frontal cortex (inset, 
filled, but not unfilled sites) will increase heart rate, reverse the R-waves (as occurs in 
ischemia), and result in premature beats (arrhythmias) that eventually end in VF if the 
stimulus is strong and long enough. In contrast to the cryoblockade, the direct electrical 
stimulation of the frontocortical-brainstem system will evoke malignant cardiac arrhythmias 
in a normal heart. The same effects seen for the mesofrontal cortical stimulation have been 
shown for stimulation of the other subcortical loci of the structured system indicated in 
Figure 3 by the red sites (Skinner, 1985). The blockade and stimulation studies together 
suggest a necessary and sufficient (i.e., causal) role for this cerebral system to play in VF 
occurrence. The same cannot be said of the heart as the system, for after cardiac denervation 
LAD occlusion will not lead to VF (Ebert et al, 1970).  
Natural regulation of the brain by REM sleep (Figure 4, lower traces) has a salutary effect on 
ectopic arrhythmias that result from a previous myocardial infarction. The seconds-long 
latency between REM onset and the salutary effect (double-headed arrow) suggests 
mediation by a neurohumoral molecule. Hibernation appears to be a good steady-state 
model for REM sleep, as both states have the same uncommon features: 1) complete muscle 
atonia, 2) complete turn-off of both sympathetic and parasympathetic tone (Baust and 
Bonnert, 1969; Skinner et al, 1975), and 3) multiple endocrine secretions. Using the state of 
hibernation in which it is easier to collect molecules from fluids, we were able to isolate, 
identify, synthesize and then inject (IV) a molecule that would prevent tissue damage after 
45 minutes of coronary artery occlusion (heart attack) or 1 hour of cerebral artery occlusion 
(stroke). This anti-infarction effect is illustrated for the stroke model in Figure 5. More 
details of the state-dependent proteomics methods are provided in Skinner (2007a). 
Where the salutary molecule is released is not yet known, but it appears to be from the brain 
because of the seconds-long latency between the time it is released and the time it is 
effective in the heart (Figure 4, two-way arrow). A neuroendocrine system is all that is left to 
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Fig. 4. Effect on the heartbeats produced by a brief electric stimulus to the mesofrontal 
cortex (upper trace and inset), and an effect of REM sleep on the suppression of arrhythmias 
in an infarcted heart. From Skinner (1985; 2007a,b). 

operate the life-support physiologies during hibernation, because the nervous system is 
gradually turned off by the cold. Such dual regulation between neuroendocrine and 
neurophysiological systems is also apparent during other behavioral states, such as the 
cerebral defensive state (e.g., neural increase in heart rate followed by adrenal gland 
secretions to increase heart rate). This same dual parallel regulation may also apply to the 
state of “learned adaptation to stressors,” in which state lethal arrhythmogenesis is 
prevented--- that is, the newly discovered anti-infarction molecule released during REM 
sleep may be involved in equivalent waking states as well. 
 Figure 5 shows the mouse model of middle cerebral artery occlusion followed by reflow. 
The middle cerebral artery is completely occluded, as documented by laser-Doppler flow in 
the parietal cortex. After 1-hr, the occlusion is then reversed (i.e., a model of thrombolysis in 
a modern hospital procedure). Immediately after reflow is established, either the control 
molecule (Figure 5, left) or the synthesized anti-infarction molecule based on a naturally 
occurring neuropeptide (Figure 5, right) is injected in the tail vein. 24-hrs later the animal’s 
behavior is observed for limb paralysis and its brain is extracted, sliced, and incubated with 
Tri-Tetrazolium Chloride (TTC), a stain for viable tissue (it binds to functioning 
mitochorndria). The anti-infarction molecule was found to result in 100% tissue savings in 
many of the model cases, with no tissue saving effect ever occurring in the controls. The 
controls manifested hemiplegia associated with the usual lack of TTC staining in the 
infarcted tissue (Figure 5, left, white). It was concluded from this study that the parallel 
physiological actions by the neurons and the neuroendocrine secretions exerted during the 
natural state of REM sleep would then be found to be the same as those exerted during an 
equivalent model state (hibernation). The important technical discovery was that the 
neurosecretory molecules collected more easily during the hibernation model could then be 
found to operate in the more natural state with the same effect--that is, the salutary action 
on the ischemic heart that occurs during REM sleep (Skinner, 2007a). Who knew that the 
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new “state-dependent proteomics” paradigm would lead to such a powerful molecule as the 
anti-infarction drug candidate so compellingly presented in Figure 5? 
 

 
Fig. 5. Mouse model of 1-hr occlusion of the middle cerebral artery, followed by 
recirculation and IV injection of control (left) or synthesized anti-infarction molecules 
(right). From Skinner 2007a. 

3. Some leading questions about heart rate variability  
The following five questions and their simple answers will be further explained by the text, 
tables, and figures in the sections below. These particular Q & A’s are intended to cover 
some of the common ones raised by physicians and researchers concerning the medical 
assessment of the heart by studying its rate variability (HRV). 
1. Q. Why should brain physiology tell you anything about cardiac vulnerability to VF, as 

assessed by HRV? A. Both HRV and VF-initiation involve the exact same brain structures; 
that is, the frontocortical-brainstem system simultaneously controls heart rate and 
vulnerability to VF. 

2. Q. The use of measures of HRV is an old warn-out area in cardiology--- they sort of 
work, but have a lot of false negative and false positive predictions; so, why should a 
new measure be expected to be any better? A. The PD2i uses nonlinear analysis of the 
heartbeats and is, therefore, better able to extract information from the signal, with the 
result that it accurately predicts arrhythmic death in chest-pain patients with 
unprecedented Sensitivity and Specificity compared to the other algorithms. 

3. Q. What is the nonlinear PD2i algorithm and how is it calculated? A. This computerized 
algorithm uses simple pair-wise comparisons of multi-dimensional vectors made from 
brief RR-intervals sampled throughout the data, and it reveals how many independent 
variables (degrees of freedom) are responsible for the heartbeat regulation at that one 
moment in time; when PD2i indicates reduced degrees of freedom (as measured in 
dimensions), it means a lot of physiological cooperation is going on among the 
independent brain regulators (neural centers) that control the heartbeats and VF-
vulnerability.  
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new “state-dependent proteomics” paradigm would lead to such a powerful molecule as the 
anti-infarction drug candidate so compellingly presented in Figure 5? 
 

 
Fig. 5. Mouse model of 1-hr occlusion of the middle cerebral artery, followed by 
recirculation and IV injection of control (left) or synthesized anti-infarction molecules 
(right). From Skinner 2007a. 

3. Some leading questions about heart rate variability  
The following five questions and their simple answers will be further explained by the text, 
tables, and figures in the sections below. These particular Q & A’s are intended to cover 
some of the common ones raised by physicians and researchers concerning the medical 
assessment of the heart by studying its rate variability (HRV). 
1. Q. Why should brain physiology tell you anything about cardiac vulnerability to VF, as 

assessed by HRV? A. Both HRV and VF-initiation involve the exact same brain structures; 
that is, the frontocortical-brainstem system simultaneously controls heart rate and 
vulnerability to VF. 

2. Q. The use of measures of HRV is an old warn-out area in cardiology--- they sort of 
work, but have a lot of false negative and false positive predictions; so, why should a 
new measure be expected to be any better? A. The PD2i uses nonlinear analysis of the 
heartbeats and is, therefore, better able to extract information from the signal, with the 
result that it accurately predicts arrhythmic death in chest-pain patients with 
unprecedented Sensitivity and Specificity compared to the other algorithms. 

3. Q. What is the nonlinear PD2i algorithm and how is it calculated? A. This computerized 
algorithm uses simple pair-wise comparisons of multi-dimensional vectors made from 
brief RR-intervals sampled throughout the data, and it reveals how many independent 
variables (degrees of freedom) are responsible for the heartbeat regulation at that one 
moment in time; when PD2i indicates reduced degrees of freedom (as measured in 
dimensions), it means a lot of physiological cooperation is going on among the 
independent brain regulators (neural centers) that control the heartbeats and VF-
vulnerability.  
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4. Q. How does PD2i compare to all of the other HRV algorithms out there? A. It is 
superior in both its discriminability between experimental and control groups (p<0.0006) 
and its ability to analyze noisy, non-stationary data (see Figure 11 below) 

5. Q. T-wave Alternans (TWA) was once the hot new heartbeat technology in cardiology 
that recently fell from grace (Cleland et al, 2008); why would PD2i be any different? A. 
The PD2i measures what is going on in the brain (i.e., neural regulation of the heartbeat 
intervals) and TWA measures what is going on in the heart (i.e., recovery from 
refractoriness, which tends to oscillate if the myocardium is ischemic), and as the new 
field of heart-brain medicine attests, Sudden Cardiac Death is now considered a brain 
physiological problem, not an intrinsic heart problem. Although TWA is responsive to 
neural signals (e.g., the heart reacts to cerebreal defensive neural input), its etiology is 
derived from the physiology of the heart--- i.e., the refractory cycle of the cardiac cells. 

4. The degrees of freedom in the heartbeat intervals  
The diagram of the Brain-Heart system in Figure 6 indicates the lower (1) to higher (6) 
cerebral hierarchy of the structures that regulate the heartbeats. The sensory and motor 
neurons of the lowest component (1) actually lie within the heart itself, and are capable of 
performing the same chemo- and stretch- reflexes characteristic of the higher centers above 
it. The fronto-cortical to brainstem system that controls vulnerability to VF (Figure 3) is 
isomorphic with these well known sensory-motor loops that control the heartbeats, 
including the intrinsic afferent-interneuron-efferent loop (Skinner et al, 1996) and the vago-
frontocortical-brainstem loop (Chase et al, 1966). This isomorphism led to the rationale for 
examination of the various measures of heartbeat dynamics in the conscious pig-model that 
might predict vulnerability to VF. The heartbeats are well known to be regulated by the six 
afferent-efferent neural loops shown in Figure 6, each of which competes with the others to 
 

 
Fig. 6. Brain – heart system thought to simultaneously regulate heart rate and vulnerability 
to VF. From Skinner (2007b). 
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control the heartbeat intervals. The close examination of the anatomical structure of each 
loop shows them all to be highly interconnected, either by sensory collateral branches, 
bifurcating interneurons, or descending efferent fibers.  
There really are six independent regulators of the heartbeats during the resting state. A way 
was discovered to count them using a nonlinear measure of the degrees of freedom in the 
heartbeat series. During quiet wakefulness, each of the loops in Figure 6 makes an 
independent contribution to the regulation of the RR-intervals and this results in a rather 
“jittery” RR-interval series from which the degrees of freedom can then be calculated. This 
concept of degrees of freedom and its variation is simply illustrated in Figure 7. 
 

 
Fig. 7. Illustration of degrees of freedom in a data time series. 

Figure 7 illustrates an example of persons turning the crank of an AC generator to light a 
bulb. A single person turning the crank makes a smooth sinusoid at the output, as shown in 
the upper trace. In this case the measured degrees of freedom are 1. When three persons 
attempt to turn the crank, they make a more “jittery” sinusoid (middle trace). The nonlinear 
measure correctly shows that his output trace has precisely 3 degrees of freedom. If, 
however, an orchestrator comes by and instructs the crankers to cooperate with his baton, 
then they can, momentarily, make a smooth sinusoid with the degrees of freedom dropping 
back to 1 (bottom trace; still 3 crankers, but they are cooperating). So the “degree of 
cooperation” as well as the maximum “number” of independent generators together 
determine the amount of time-dependent “jitter” in the data series. The next figure shows 
how this nonlinear algorithm actually works. 
In Figure 8, part A., a “jittery” data series is shown. Part B. illustrates a step in making the 
calculation of the degrees of freedom for the Point Correlation Dimension (PD2i), by 
gathering two “i” and “j” samples of the data (e.g., R to R heartbeat intervals) and then 
comparing them by their multi-dimensional vectors (in the illustrated case, m = 3) and then 
finding the vector difference lengths (VDLs) for all VDLij. The “i” and “j” represent values 
that are incremented throughout the data series and the VDLs are repetitively calculated 
 



 
Advances in Electrocardiograms – Methods and Analysis 

 

156 

4. Q. How does PD2i compare to all of the other HRV algorithms out there? A. It is 
superior in both its discriminability between experimental and control groups (p<0.0006) 
and its ability to analyze noisy, non-stationary data (see Figure 11 below) 

5. Q. T-wave Alternans (TWA) was once the hot new heartbeat technology in cardiology 
that recently fell from grace (Cleland et al, 2008); why would PD2i be any different? A. 
The PD2i measures what is going on in the brain (i.e., neural regulation of the heartbeat 
intervals) and TWA measures what is going on in the heart (i.e., recovery from 
refractoriness, which tends to oscillate if the myocardium is ischemic), and as the new 
field of heart-brain medicine attests, Sudden Cardiac Death is now considered a brain 
physiological problem, not an intrinsic heart problem. Although TWA is responsive to 
neural signals (e.g., the heart reacts to cerebreal defensive neural input), its etiology is 
derived from the physiology of the heart--- i.e., the refractory cycle of the cardiac cells. 

4. The degrees of freedom in the heartbeat intervals  
The diagram of the Brain-Heart system in Figure 6 indicates the lower (1) to higher (6) 
cerebral hierarchy of the structures that regulate the heartbeats. The sensory and motor 
neurons of the lowest component (1) actually lie within the heart itself, and are capable of 
performing the same chemo- and stretch- reflexes characteristic of the higher centers above 
it. The fronto-cortical to brainstem system that controls vulnerability to VF (Figure 3) is 
isomorphic with these well known sensory-motor loops that control the heartbeats, 
including the intrinsic afferent-interneuron-efferent loop (Skinner et al, 1996) and the vago-
frontocortical-brainstem loop (Chase et al, 1966). This isomorphism led to the rationale for 
examination of the various measures of heartbeat dynamics in the conscious pig-model that 
might predict vulnerability to VF. The heartbeats are well known to be regulated by the six 
afferent-efferent neural loops shown in Figure 6, each of which competes with the others to 
 

 
Fig. 6. Brain – heart system thought to simultaneously regulate heart rate and vulnerability 
to VF. From Skinner (2007b). 

 
The Electrocardiogram – Waves and Intervals 

 

157 

control the heartbeat intervals. The close examination of the anatomical structure of each 
loop shows them all to be highly interconnected, either by sensory collateral branches, 
bifurcating interneurons, or descending efferent fibers.  
There really are six independent regulators of the heartbeats during the resting state. A way 
was discovered to count them using a nonlinear measure of the degrees of freedom in the 
heartbeat series. During quiet wakefulness, each of the loops in Figure 6 makes an 
independent contribution to the regulation of the RR-intervals and this results in a rather 
“jittery” RR-interval series from which the degrees of freedom can then be calculated. This 
concept of degrees of freedom and its variation is simply illustrated in Figure 7. 
 

 
Fig. 7. Illustration of degrees of freedom in a data time series. 

Figure 7 illustrates an example of persons turning the crank of an AC generator to light a 
bulb. A single person turning the crank makes a smooth sinusoid at the output, as shown in 
the upper trace. In this case the measured degrees of freedom are 1. When three persons 
attempt to turn the crank, they make a more “jittery” sinusoid (middle trace). The nonlinear 
measure correctly shows that his output trace has precisely 3 degrees of freedom. If, 
however, an orchestrator comes by and instructs the crankers to cooperate with his baton, 
then they can, momentarily, make a smooth sinusoid with the degrees of freedom dropping 
back to 1 (bottom trace; still 3 crankers, but they are cooperating). So the “degree of 
cooperation” as well as the maximum “number” of independent generators together 
determine the amount of time-dependent “jitter” in the data series. The next figure shows 
how this nonlinear algorithm actually works. 
In Figure 8, part A., a “jittery” data series is shown. Part B. illustrates a step in making the 
calculation of the degrees of freedom for the Point Correlation Dimension (PD2i), by 
gathering two “i” and “j” samples of the data (e.g., R to R heartbeat intervals) and then 
comparing them by their multi-dimensional vectors (in the illustrated case, m = 3) and then 
finding the vector difference lengths (VDLs) for all VDLij. The “i” and “j” represent values 
that are incremented throughout the data series and the VDLs are repetitively calculated 
 



 
Advances in Electrocardiograms – Methods and Analysis 

 

158 

 
Fig. 8. Making the vector difference lengths to calculate the Point Correlation Dimension 
(PD2i). 

until the end of the data stream is reached for both i and j. Values where i = j are omitted, as 
they will always be equal to zero; the end of the data stream is not N (number of data 
points), but N minus the number of data points needed to make the last of the vectors, 
where m is the number of dimensions of the vectors (m is called the “embedding 
dimension”). Part C. shows that once the VDLij values are made and collected together for 
each fixed value of i compared and all j, they are then rank ordered. Imagine that all of the 
ranked VDLij for a fixed value of i are soldiers ranked by height, with those of the same 
height being placed behind the one at the front. Now a general takes a series of small to 
large steps, R1 through R6, with each step starting at the same place just before the small 
soldier column. With each first step, small to large, the general counts the total number of 
soldiers in all of the rank columns that are crossed in that step. That is, the general counts 
(C) the VDL’s that increase in number as he systematically increases the range (R) of his step 
size, and steps across all ranks. Shown in Part D., there will be a new exponent value for 
each point (“P”) in the data series; the “i” in “PD2i” is added to emphasize that PD2i is time-
dependent, and the “D2” means that the PD2 approaches the correlation dimension (D2) as 
N goes to infinity.  
As shown at the top of Figure 9, PD2i is the slope of the log-log plot of C vs R. For large data 
length (Ni approaches infinity) there will be a first long linear scaling region (1) followed by 
a shorter one (2) that eventually disappears as Ni gets very large. For Ni = 10PD2i there will 
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Fig. 9. Log-log plot of C vs R (also called the correlation integral) for each value of m. 

be more scaling regions (1-3) because of the finite data length. The minimum Ni-value is 
experimentally determined according to Kostilich and Swinney (1989), and is required to 
capture all of the lobes of a physical attractor. This criterion for Ni should be adopted for 
physiological data, too, as with this data-length there is clear convergence of slope vs m by 
the 9th embedding dimension (bar above lower right curve for m = 9 to m = 12). 
In summary, PD2i is measured as a function of its location in the data series (i), which 
means that for each i-sample of data it is compared to all possible j-samples. Then position-i 
is incremented and again compared to all j-samples for the next PD2i. In the left panels of 
Figure 9 are shown for a given i-sample the log-log plots for embedding dimensions m = 1 
(top most data points) through m = 12 (bottom); remember, the embedding dimension is 
related to the number of selected data points (e.g., RR-intervals) used as coordinates to make 
the pairwise vectors. Note that slope increases with m, as shown in the upper right plot of 
Figure 9. After 9 embedding dimensions, the slope (PD2i) is no longer increased with each 
new embedding dimension and stays the same value; this is the point at which the slope 
“converges” with embedding dimension. After convergence, m does not have to be 
increased any more.  
The first part of this slope, or scaling region, will contain very few contributions of VDL’s 
made from j-vectors located in non-stationary data with respect to that of the i-vector (i.e., 
the VDLs will be large), and that is why the scaling region for the PD2i algorithm is 
restricted--- it makes the PD2i calculation insensitive to the data non-stationarities. In data of 
smaller total length (Figure 9, bottom two panels), but following the rule that Ni must be 
greater than 10 to the PD2i power, a “floppy tail” (FT, left) appears. The FT is caused by the 
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finite digitization rate for the data. The use of a “linearity” criterion in conjunction with the 
“plot length” criterion results in the detection of a stable slope just above the FT.  
Figure 10 (middle trace) shows empirically that the running mean PD2i stays within 4% of 
its known value (D2) when used to analyze non-stationary data made from linking sub-
epochs with known degrees of freedom (red). The D2i algorithm, the only other time-
dependent algorithm that measures degrees of freedom, shows spurious values, mainly 
because it requires data stationarity. Its slope length is NOT restricted to lie between the FT 
and up to 15% of the total plot length. Other investigators are only now just beginning to 
realize the problem of non-stationary data in the nonlinear analysis of heartbeats. Their 
methods, however, eliminate data, whereas the PD2i algorithm does not--- it tracks the 
dimension of the data non-stationarities! 
 

 
Fig. 10. PD2i of non-stationary data (sine, Lorenz, Henon, random) of known degrees of 
freedom. From Skinner, Molnar & Tomberg, 1994. 

Note that the D2i, which is also known as the “Pointwise Correlation Dimension” according 
to the nomenclature presented in our 1994 paper in Physiological Reviews (Elbert et al, 
1994), is not insensitive to the data non-stationarities. This is because the D2i slope (i.e., 
linear scaling slope, logC/logR) is not selected the same way. It does not define a “floppy 
tail” and then find the restricted slope length that lies just above, for a convergent 
embedding dimension.  

5. Early results showing how a PD2i-reduction is related to cardiac events 
PD2i tracks changes over time in noisy non-stationary data. The upper left panel of Figure 
11 shows the RR-intervals and the lower left panel shows the corresponding accepted PD2i 
(i.e., accepted for linearity of scaling and for convergence of slope vs m) calculated over the 
course of blunt chest trauma followed by hemorrhagic shock (i.e., to mimic a traumatic 
explosion or crash). The experiment was carried out in a lightly anesthetized and ventilated 
pig and passed Institutional Review Board criteria. Artifacts are produced during anesthesia 
and intubation and then finally VT and lethal ventricular fibrillation (VF) occur. In the 
published study in the same pig preparation (Batchinsky et al., 2010), MSE3 (Multiscale 
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Entropy) and PD2i were compared along with other algorithms. Continuous 200-beat 
samples of clean and relatively stationary data were used, as MSE3 requires such selection 
of clean data to be accurate in short files. It is impossible to have such clean noise-free data 
when recording ECGs in the field, for they resemble the artifact-riddled ECGs observed 
during intubation. Note that accepted PD2i could be recorded during this intubation period.  
 

 
Fig. 11. Effects of trauma (chest thumper) and blood-loss on the RR-intervals (upper left) 
and corresponding accepted PD2i (lower left) in the anesthized pig. RRi vs PD2i is shown at 
the upper right and the PD2i histogram is shown at the lower right, along with the accepted 
PD2i statistics. 

 

 
Fig. 12. The PD2i of the RR intervals of two Emergency Department patients presenting with 
chest pain. The patient with the PD2i between 0 and 3 (right) died of VF within a few days, 
and the other (left), with similar SDNN and power spectra, lived for at least one year of 
follow up. The RR interval scale is 600 to 1000 msec. 
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Figure 12 shows RRi and PD2i data for two typical patients presenting in the Emergency 
Room with chest pain. Figures 13 and 14 show the same RRi and PD2i results for larger 
numbers of patients. Table 1 shows the comparison of various HRV algorithms used on the 
same RRi intervals to predict risk of arrhythmic death. Only the PD2i algorithm is 
statistically significant for all patient subgroups. These multi-centered studies (Skinner et al, 
2008; 2009) were carried out in a total of 918 Emergency Department patients and the results 
were highly statistically significant for all subgroups, unlike the results for the other 
comparison algorithms. 
 

 
Fig. 13. The PD2i of the RR intervals of 18 consecutive Emergency Department patients 
presenting with chest pain, who manifested VF within the 1-year of follow-up. The red line 
is the criterion cut-point of 1.4 indicated by previous studies (Skinner et al,1991; 1993; 
Vybiral & Skinner, 1993) to separate subjects that would later manifest VF from those that 
would not. From Skinner et al, 2008a. 

T-wave alternans (TWA or Microvolt TWA) was once a popular algorithm for predicting 
risk of sudden death. Medicare’s CMS Committee even approved its use to stratify risk in 
patients who would receive an ICD (implantable cardiac defibrillator). Unfortunately the 
MASTER Trial did not show microvolt TWA to identify patients at increased risk of life-
threatening ventricular arrhythmias (Cleland et al, 2008). Shown in Figure 15, panels A-C , 
are the heartbeat intervals (RRi), degrees of freedom (PD2i) and T-wave lability (L; very 
similar to TWA) for three patients who manifested AD at different times after their ECG was 
recorded. The T-wave lability is indicated by the range of variation of the T-waves when 5 
successive heartbeats are superimposed by alignment of the PQ-intervals. The ECG samples 
were obtained at the three different times indicated by the numbers above the PD2i trace (1-
3). There is an apparent lability (L) in the T-waves in those patients who manifested AD, 
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Fig. 14. The PD2i of the RR intervals of 18 Emergency Department patients presenting with 
chest pain, who were matched to the clinical data of the 18 patients in the previous figure, 
who did not manifest VF within the 1-year of follow-up. From Skinner et al, 2008a. 

either immediately or within a few days (A. and B.). In the patient in B., the lability of the T-
waves did not begin until the PD2i temporally descended to the vicinity of 1.4 (horizontal 
line), a finding which indicates some relationship between PD2i and the lability of 
refractoriness in this subject. In part C. the patient showed no T-wave lability, yet there still 
was a minimum PD2i (min PD2i) ≤ 1.4 that predicted the later AD.  
 

 
The Relative Risk statistic is shown in all cells for the same ED patients (** means p ≤ 0.01; * means p ≤ 
0.05). Subgroups: AMI = acute myocardial infarction; non-AMI = no acute MI; post-MI is greater than 6 
months post MI; non-post-MI = no post MI. Algorithms: PD2i = Point D2; DFA = detrended fluctuation 
analysis; 1/f Slope = 1/f power spectrum; ApEn = Approximate Entropy; SDNN = standard deviation 
of normal to normal R-R intervals; MNN = mean of normal to normal R-R intervals; LF/HF = low 
frequency/high frequency power spectra; LF (ln) = normalized by natural log of low frequency data. 
From Skinner et al, 2007a; 2009. 

Table 1. Comparison of PD2i with other HRV algorithms in various sub-groups 
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same RRi intervals to predict risk of arrhythmic death. Only the PD2i algorithm is 
statistically significant for all patient subgroups. These multi-centered studies (Skinner et al, 
2008; 2009) were carried out in a total of 918 Emergency Department patients and the results 
were highly statistically significant for all subgroups, unlike the results for the other 
comparison algorithms. 
 

 
Fig. 13. The PD2i of the RR intervals of 18 consecutive Emergency Department patients 
presenting with chest pain, who manifested VF within the 1-year of follow-up. The red line 
is the criterion cut-point of 1.4 indicated by previous studies (Skinner et al,1991; 1993; 
Vybiral & Skinner, 1993) to separate subjects that would later manifest VF from those that 
would not. From Skinner et al, 2008a. 
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patients who would receive an ICD (implantable cardiac defibrillator). Unfortunately the 
MASTER Trial did not show microvolt TWA to identify patients at increased risk of life-
threatening ventricular arrhythmias (Cleland et al, 2008). Shown in Figure 15, panels A-C , 
are the heartbeat intervals (RRi), degrees of freedom (PD2i) and T-wave lability (L; very 
similar to TWA) for three patients who manifested AD at different times after their ECG was 
recorded. The T-wave lability is indicated by the range of variation of the T-waves when 5 
successive heartbeats are superimposed by alignment of the PQ-intervals. The ECG samples 
were obtained at the three different times indicated by the numbers above the PD2i trace (1-
3). There is an apparent lability (L) in the T-waves in those patients who manifested AD, 
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Fig. 14. The PD2i of the RR intervals of 18 Emergency Department patients presenting with 
chest pain, who were matched to the clinical data of the 18 patients in the previous figure, 
who did not manifest VF within the 1-year of follow-up. From Skinner et al, 2008a. 

either immediately or within a few days (A. and B.). In the patient in B., the lability of the T-
waves did not begin until the PD2i temporally descended to the vicinity of 1.4 (horizontal 
line), a finding which indicates some relationship between PD2i and the lability of 
refractoriness in this subject. In part C. the patient showed no T-wave lability, yet there still 
was a minimum PD2i (min PD2i) ≤ 1.4 that predicted the later AD.  
 

 
The Relative Risk statistic is shown in all cells for the same ED patients (** means p ≤ 0.01; * means p ≤ 
0.05). Subgroups: AMI = acute myocardial infarction; non-AMI = no acute MI; post-MI is greater than 6 
months post MI; non-post-MI = no post MI. Algorithms: PD2i = Point D2; DFA = detrended fluctuation 
analysis; 1/f Slope = 1/f power spectrum; ApEn = Approximate Entropy; SDNN = standard deviation 
of normal to normal R-R intervals; MNN = mean of normal to normal R-R intervals; LF/HF = low 
frequency/high frequency power spectra; LF (ln) = normalized by natural log of low frequency data. 
From Skinner et al, 2007a; 2009. 
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Fig. 15. Comparison of TWL (T-wave lability, similar to TWA) with PD2i of RRi in chest 
pain patients who manifested arrhythmic death (AD) at different times after the ECG 
recording. Five successive QRST complexes, sampled at the times shown in the left panels, 
were superimposed after alignment of the P to Q intervals; the lability of the T-wave is seen 
as the range of the trace ends at the right. From Skinner (2007a). 

It would seem, however, that PD2i predicts AD at a time when TWA does not (Figure 15, part C). 
This might be because TWA is a measure of a “bad heart” (i.e., lability of refractoriness due to 
myocardial ischemia) and PD2i is a measure of a “bad brain” (i.e., autonomic cooperativity). 
As we have seen in the pig-model of heart attack, any T-wave lability produced by myocardial 
ischemia (complete coronary artery occlusion) is not sufficient to lead to a VF outcome. It takes 
a “bad brain,” i.e., the cooperativity projected out of the autonomic nervous system, to 
generate the physiological dynamics suitable to underlie the initiation of VF--- ischemia alone 
will not do it! From the studies listed in Figure 1, it would appear that this cooperation among 
the heartbeat controllers occurs at a time when sympathetic (and reflexive parasympathetic) 
tone is high. As will be seen in the next section on the electrogenesis of the waves in the 
electrocardiogram, these cerebral effects must somehow cause alterations in the wavefront and 
refractory period and bend the wavefront until it forms a rotating spiral wave (rotor), the 
immediate cause of VF. The rotor is self-sustaining, splits into other rotating spiral waves and 
thus becomes VF. The rotor itself seems to result, in nearly all physiological cases of VF ever 
observed, from a sequellae of arrhythmic events: first a premature beat, followed by 
ventricular tachycardia and then by VF. 
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6. Electrogenesis of the waves and intervals in the electrocardiogram  
In the previous section we showed that reduction in the degrees of freedom in the 
variations of the brain-controlled heartbeat intervals is associated with later lethal 
arrhythmogenesis in Emergency Room patients presenting with chest pain. The rather flat 
part of the electrocardiogram is where the RR-interval is lengthened or shortened by the 
brain projections to the heart. The “funny” current (If, Brown et al, 1979) controls sodium 
and potassium channels during the diastolic depolarization phase of each heartbeat, 
shortening it to increase heart rate and lengthening it to decrease heart rate. The intrinsic 
pacemaker potential is generally thought to initiate the heartbeat, but If determines when 
that will occur.  
Nerve fibers project not only to the pacemaker and Purkinje cells to evoke If, and thus 
control heart rate, but there are also projections to the cardiac arteries and to large interstitial 
spaces in the ventricular tissues. These latter fibers have terminals that release molecules 
that can evoke severe vasoconstriction (ischemia) and alter local conduction, propagation 
and refractoriness so as to produce the various types of ECG anomalies and arrhythmias 
seen in Figure 4 that result from direct electrical stimulation of the brain. The neural effects 
of the nerves can no longer be considered to be simple cholinergic and noradrenergic effects 
that speed up or slow down the oscillatory pacemaker cells.  
The P-wave (Figure 16B) is produced during the contractions of the atria that load blood 
into the ventricles. The contractions of the ventricles force blood through the lungs (right 
ventricle) and then into the aorta (left ventricle) to pressurize the circulation of the blood. 
The atrial contractions are initiated at the atrial pacemaker sites. Propagation leads to the 
spread of excitation to the ventricular surface via the sub-surface and high-speed conduction 
medium of the Purkinje fibers. The Purkinje fibers end in and first activate the apex (point) 
of the heart. This initial point of ventricular excitation and contraction then further spreads 
throughout the heart causing an efficient squeeze that forces blood to move smoothly 
through the lungs and out into the aorta. The initial apical surface wavefront and its spread 
throughout the heart produces the QRST-waves.  
The electrical properties of the cellular membrane potentials that underlie the excitation, 
propagation and refractoriness mechanisms were each worked out in the 1950’s, in the giant 
squid axon, by the classical papers of Hodgkin & Huxley (1952). These propagation 
properties interact with the “funny” current (If, Brown et al, 1979), injected primarily into 
the atrial pacemaker cells to regulate heart rate. But other nerve terminals project directly 
into the ventricular tissues and release broadly various molecules that can control 
propagation velocity and direction in the excitable medium. The overall neural effects not 
only control heart rate at the pacemakers, but also the propagation of wavefronts in the 
ventricles. These latter controls can bend the wavefronts into curves, that can ultimately lead 
to rotating waves that can catch their own tails and become self-sustaining “rotors.”  
Figure 16 shows how the complex of waves is generated during the propagation of an 
electric wavefront through excitable tissue, such as the wall of a cardiac atrium, cardiac 
ventricle, cardiac Purkinje-fiber, or a giant squid axon. The atrial tissues containing the 
sinoatrial and atrioventricular nodes (pacemaker tissues) are innervated by the autonomic 
nerves and through a complex mechanism cause the P-wave. The wavefront of 
depolarization of the nerve cells causes a similar action on the atrial pacemaker tissue. A few 
milliseconds later the R-wave is initiated at the point of the heart (apex) by the Purkinje 
fibers that rapidly conduct excitation from the AV node to the apex, but in a subsurface 
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Fig. 15. Comparison of TWL (T-wave lability, similar to TWA) with PD2i of RRi in chest 
pain patients who manifested arrhythmic death (AD) at different times after the ECG 
recording. Five successive QRST complexes, sampled at the times shown in the left panels, 
were superimposed after alignment of the P to Q intervals; the lability of the T-wave is seen 
as the range of the trace ends at the right. From Skinner (2007a). 
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refractory period and bend the wavefront until it forms a rotating spiral wave (rotor), the 
immediate cause of VF. The rotor is self-sustaining, splits into other rotating spiral waves and 
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properties interact with the “funny” current (If, Brown et al, 1979), injected primarily into 
the atrial pacemaker cells to regulate heart rate. But other nerve terminals project directly 
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route so they do not show in the ECG. The excitation from the apex then spreads throughout 
the rest of the ventricular tissues until it reaches the base, a line just under the ventricles, 
and then the excitation stops, the whole heart becomes momentarily refractory and waits for 
the next heartbeat to begin at the apex. This waiting period is determined by the output of 
the nerves and If and is where the heart beat variation in time is determined. It is the control 
of the heartbeat rhythm by the brain and its nerves that has been the important subject 
matter to this point, but its waiting interval (T to P) also should be considered an integral 
part of the PQRSTP complex of waves known as the electrocardiogram. Nerves project 
directly into the ventricular tissues and can vary the waiting period independently of the 
pacemaker initiators.  
 

 
Fig. 16. Electrogenesis of the ECG waves. A. Propagation in a three dimensional slab of 
excitable tissue, showing source currents (So), and sink currents (Si), direction of 
propagation (Pr arrow) and a band of refractoriness (shaded, Ref) following behind the 
propagated wavefront. B. Electrical schematics of Hodgkin-Huxley model showing how 
propagation and refractoriness produce the PQRST complex. C. Effect of ischemia in 
slowing segment of propagated wavefront. D. Re-entry and Rotor formation. 

Propagation of electric activity (Figure 16 A) is akin to that of a fire-front in a prairie grass 
fire--- the burning grass in the fire-front (excitation) causes the unburned grass next to it to 
catch on fire (propagation). It can only burn new grass on one side, as it has just burned the 
grass on the other and it is refractory (i.e., until new grass grows). Thus, the front spreads in 
a straight line, as does the wavefront in cardiac tissue. The wavefront in the heart is an 
electric current caused by the depolarization of the cells underneath it. In the schematic 
diagram in Figure 16B, it is the current flowing through the switch in one membrane 
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compartment (where one sodium channel is switched on, left Na+) that then turns on the 
switch in the next compartment (adjacent Na+ at right). This cascade of switching is due to 
the voltage-gated conductances of the sodium channels that are packed closely together 
throughout the cellular membrane (and throughout the whole excitable tissue, by a 
syncytium of electrically interconnected cells).  
Refractoriness is produced by exhaustion of energy (burnt grass), but also is produced more 
rapidly by another set of batteries (potassium channels, K+) connected across the membrane 
in the opposite polarity to the sodium channels; these are also voltage-gated, but stay on 
longer and reduce the effective voltage produced by the Na+ battery; the K+ channel being 
on makes the cell refractory. The K+ channels being on also causes the long interval out to 
the T-wave; the interval starts just after the R-wave and lasts until the potassium-switch is 
off (T-end). Both the Na+ and K+ switches automatically turn themselves off, but the K+ 
switch stays on longer to create the refractoriness required for propagation in a straight line 
(i.e., the metaphorical “fire” cannot be started when the K+ battery is on, so the propagation 
goes only into the “fresh” grass). There are other channels and batteries in the cardiac 
membrane, but the main two required for propagation are the sodium and potassium 
channels. 
The sink-current (Si) is at the location of the excitation of the wavefront itself, and draws the 
source-currents (So) to complete the circuit shown in Figure 16B. As it draws the So it first 
causes the small Q-wave, and then as the wavefront propagates throughout the heart the R-
wave is generated. The S-waves is generated as the R-wave ends. The T-wave is generated 
by the K+ battery being turned on and off. The large R-wave produces a large upward 
deflection in the ECG trace only if it is propagated (travelling) toward the recording 
electrode (filled electrode in 16A) with respect to the indifferent electrode (unfilled, placed 
far away so that the source currents at this point are very small). The magnitude of the R-
wave deflection is proportional to the current that travels between the electrodes in the 
resistance of the extracellular spaces (Ro); that is, the recorded potential is the voltage-drop 
across the resistance of the exracellular space where the source currents flow. The source 
currents are driven by the plus to minus poles of the batteries, batteries that lie across the 
membrane and are only on when the membrane compartment switches are on; but these 
currents travel through the electrically coupled cell’s cytoplasm, then back across the high 
resistance of the membrane and through the low resistance of the extracellular spaces to 
return to the other pole of the battery located on the outside of the membrane. 
Notice that the density of the source currents observed at right angles to the wavefront 
(16A) are smaller the farther they are away from the battery (i.e., the density of current lines 
is smaller). But because the membrane resistance is 100 times larger than that of Ro, the 
extracellular currents produced are by a constant-current generator that pushes the So 
current density farther away from the battery poles; that is why the currents flow out into, 
say, the patient’s arms. But still, if you want to maximize the size of the R-wave deflection, 
you want the recording electrode (filled electrode) to be as close to the heart as possible. In 
the precordial recordings of a 12-lead ECG, some electrodes will be below the apex and 
some above the base, so to maximize the deflection of the R-wave you want to record a 
bipolar lead between an electrode toward which the wavefront is traveling (lead-1 or -2) and 
one from which the wavefront is traveling away (lead-4 or -5). This bipolar recording will 
eliminate the in-phase 60-cycle artifacts while maximizing the amplitude of the PQRSTP 
waves. 
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As shown in Figure 16 C., time T2, myocardial ischemia will slow down the propagation of 
the wavefront; this delay is caused by many tortuous pathways of conduction through the 
ischemic zone and/or by the circulatory loss of high energy phosphates which energize the 
polarization process (i.e., make the batteries work). The delay may have other causes (e.g., 
neurally-induced ischemia and conduction losses), and the refractory period in and around 
the ischemic zone can become quite complex. In part D, T3, the delay causes the next 
wavefront to occur in the excitable tissue just behind the refractory period; thus a beat is 
created that is either shorter or longer than that of the previous beat depending on exactally 
where it occurs. A shorter beat leads to a reflexive compensatory pause in its next beat (i.e., 
seen in the ECG as a two-beat, premature, ventricular complex, PVC). The ischemic zone 
may cause more severe delays (Figure 16, D., T4), and can lead to the severe bending of the 
wavefront and the development of a rotating spiral wave (rotor) spinning around a pivot 
point in which the rotating wavefront constantly re-enters marginally recovered tissue; this 
spinning rotor is observed in the standard-lead electrocardiogram as ventricular tachycardia 
(VT). The pivot point meanders randomly, like that of a spinning top, and the rotor will 
eventually enter an area with a non-conductive piece of tissue, such as a coronary artery or 
infarcted tissue, and then split into two rotors; these rotors split, and so on, until the 
electrocardiogram manifests ventricular fibrillation (VF). A sequellae of waveforms in the 
ECG occurs in most cases of VF--- first PVCs, then VT, then VF.  
Arthur Winfree (1987) has seen these rotors in a three dimensional computer model that 
uses the Hodgkin-Huxley (nonlinear) equations. Instead of a delay in conduction that leads 
to a re-entrant beat, he simply injects the re-entrant wavefront current near the T-wave. But 
injection of current on top of a T-wave, or its equivalent through an ischemia-caused delay 
in propagation, are not the only ways to cause VF, for as was shown in Figure 4 (top ECG), 
electric stimulation in the brain can also cause VF in a normal heart. How this happens is not 
known, but the same sequellae of arrhythmias occur--- PVCs, VT and VF, so the underlying 
patterns of excitation and refractoriness must be equivalent to those associated with 
ischemia. Note that in Figure 6, the diagrammed efferent nerve fibers project not only to the 
pacemaker sites, but also directly into the ventricles where they can influence excitation, 
propagation, and refractoriness in the cardiac tissue. 
If one is interested in saving the life of a patient, then the rhythm of the heart should be the 
focus. That is not to say that the PQRST waves of the electrocardiogram are not important, 
but they are more directly related to the intrinsic properties of excitation, propagation and 
refractoriness dictated by the heart cells, properties which cannot explain the onset of lethal 
arrhythmias. We will now show that the consideration of the extrinsic properties of the 
nonlinear rhythm of the heartbeats imposed on the heart by the brain is best able to 
accurately predict risk of VF onset in a variety of clinical patient groups.  

7. Clinical results of PD2i tests  
Table 2 presents results of 3 independent studies of the heartbeat intervals (Skinner et al, 
1993; 2008a; 2008b) showing that one or more PD2i ≤ 1.4 is a statistically significant (p ≤ 
0.001) predictor of lethal arrhythmias (VF) in hospitalized patients: 1) in patients admitted 
to the Cardiology floor having episodes of non-sustained ventricular tachycardia; 2) in 
patients presenting in the Emergency Room with chest pain; 3) in patients with various 
types of arrhythmias placed in the public Physiobank website. The Sensitivity and 
Specificity of prediction in each study were about the same, and the few cases of rejection-
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from-study were mostly due to high arrhythmia rates (>10% of beats), of either sinus or 
ventricular origin. High arrhythmia rates tend to randomize the remainder of RR-
intervals and make their PD2i infinite. These 3 studies listed below are confirmed by an 
independent one in 24 patients with anterior wall infarctions compared to normal controls 
(Nashishoni et al, 2004a) 
In Table 2 Sensitivity = TP/(TP+FN), Specificity = TN/(TN+FP); Negative Predictive Value 
= TN/(TN+FN); Positive Predictive Value = TP/(TP+FP); Relative Risk = TP/FN x 
(TP+FN)/(FN+FP). Relative Risk is the more important contingency table statistic, as it is 
most sensitive to the highly undesireable FNs (i.e., cases where the physician tells the 
patient “you are OK” and then the patient goes home from the hospital and dies). Each of 
the statistics in Table 2 is highly statistically significant (p < 0.001) by the Fisher Exact Test 
for contingency tables. Relative Risk may be even higher because the number of FN’s 
approaches zero.  
 
 

 
 

Table 2. Sensitivity and Specificity of PD2i prediction of VF in cardiac patients with non-
sustained ventricular tachycardia (1), presentation with chest pain (2), or having various 
types of arrhythmias (3). 

The majority of deaths in patients with diabetes mellitus (DM) is arrhythmic death. The 
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As shown in Figure 16 C., time T2, myocardial ischemia will slow down the propagation of 
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from-study were mostly due to high arrhythmia rates (>10% of beats), of either sinus or 
ventricular origin. High arrhythmia rates tend to randomize the remainder of RR-
intervals and make their PD2i infinite. These 3 studies listed below are confirmed by an 
independent one in 24 patients with anterior wall infarctions compared to normal controls 
(Nashishoni et al, 2004a) 
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most sensitive to the highly undesireable FNs (i.e., cases where the physician tells the 
patient “you are OK” and then the patient goes home from the hospital and dies). Each of 
the statistics in Table 2 is highly statistically significant (p < 0.001) by the Fisher Exact Test 
for contingency tables. Relative Risk may be even higher because the number of FN’s 
approaches zero.  
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Table 3. PD2i < 2.0 identifies type-1 Diabetes Mellitus (DM) patients without signs of 
neuropathy mixed together with age-matched normal controls (From Skinner et al, 2011). 
 

 
Table 4. Min PD2i of Heartbeats in type-1 diabetic patients (DM) and Controls after recovery 
from exercise. 

It is well known that immediately after recovery from exercise, the remaining increase in HR 
due to sympathetic drive is strongly countered by a rise in vagal (parasympathetic) tone to 
restore the HR to pre-exercise levels. This fast recovery effect can be blocked by atropine, 
leaving HR increased well into recovery. This same atropine effect is observed in the type-1 
DM patients with respect to minimum PD2i, and suggests an association with sympathetic 
drive. Sympathetic stimulation or parasympathetic blockade lowers PD2i, whereas 
parasympathetic stimulation or sympathetic blockade raises PD2i. This study (Vicor, in 
progress) already has around 50 subjects, so the alpha-statistics shown in the lower panel of 
Table 3 also have high beta-power. 
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Hemorrhage causes an immediate reduction in PD2i from baseline in the lightly 
anesthetized animal (Skinner, Nester, Dalsey, 2000). When bleeding is started after blunt 
chest trauma, to mimic an explosion, it immediately causes a larger and more extreme 
reduction in PD2i (Figure 11; Batchinsky et al, 2010).  
Table 5 shows that a small loss of blood (1 pint), after voluntary donation at a blood bank, 
causes a significant PD2i reduction (p = 0.0011; Jett et al, 2010). It is noted that more than 
half of the subjects, however, may have had a low resting min PD2i score; that is, they were 
all lower than the mean of the normal controls seen in Table 4 or of most of the values seen 
for the hospitalized controls in Figure 14.  
 

 
Table 5. Reduction of the min PD2i in normal subjects after donation of 1 pint of blood. 

 

 
Table 6. Comparison of Baseline Hemodynamic Variables to Predict Postspinal Hypotension. 
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It would appear then that the rather novel environment of “hypodermic needles and 
hanging bags of blood” may have had a sympathomimetic effect on the heart similar to that 
of, say, the “unfamiliar laboratory” in the pig, in which case the sympathetic tone was 
measured quantitatively (Skinner, Lie, Entman, 1975; Skinner, Beder, Entman, 1983). In 
normal humans performing simple psychological “stress” tasks, Shubert et al (2009) showed 
that the heartbeat PD2i is statistically significantly reduced from baseline. They also found 
the same stress-related reduction in PD2i for chronic-stress subjects compared to non-
stressed subjects, where stress was assessed by a chronic stress scale.  
Spinal anesthesia often results in a hypotensive crisis ended clinically by injection of 
catecholamines. In women about to give birth at term, it is desirable to know in advance 
whether or not they are likely to manifest the hypotensive crisis so that prophylactic 
measures can be taken to prevent any untoward affects on the mother or fetus. It seems that 
the peak PD2i of the heartbeats observed prior to the spinal injection is able to predict the 
hypotensive crisis (Chamchad et al, 2004). Table 6 shows that if peak PD2i (pPD2i) at rest lies 
below 3.90, then the manifestation of a hypotensive crisis is highly likely following the 
spinal injection. Neither blood pressure nor heart rate has any predictive value, whereas the 
sensitivity and specificity of peak PD2i < 3.9 are both 100% (p = 0.001). Again a “novel 
environment” stress-effect may be differentially causing the reduction of the baseline PD2i 
scores in the women at risk. But in this case, it is the maximum value of the resting range 
that is lower, not the minimum value. 
 

 
Table 7. Comparison of algorithms used on the heartbeats of wounded soldiers (N=70) to 
predict a prehospital life-saving intervention (LSI). (Vicor, unpublished data). (Cancio & 
Skinner, unpublished). 

Comparison of PD2i with other nonlinear “complexity” algorithms has recently been done 
by the Army in a cohort of wounded soldiers, as shown in Table 7. Several measures 
reached statistical significance. Notable, though, was the fact that the data set of 70 patients 
was culled from a larger set of 132 patients. Whereas all 132 could be analyzed by PD2i, only 
these current 70 could be analyzed by the other methods, due to their more restrictive ECG 
length requirements and their intolerance of extrasystoles and noise. The performance of 
PD2i when applied to the entire 132 patient data set was similar to that shown here, while 
the other measures tended to lose their predictability (Cancio and Skinner, 2011). 
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For Multi Scale Entropy (MSE), the scale of 1 to 4 is selected after the analyses to determine 
which one is the most discriminating. This type of post hoc selection is not really allowed 
when making a statistical inference. Computationally this selection of scale is like selecting 
the embedding dimension (m = 1 to 4) for the PD2i. MSE with a scale of 1 is the same as 
Sample Entropy (SampEn), which is not a statistically significant discriminator. 
Very recently, PD2i analysis has been used in a large cohort of 651 chronic heart failure 
(CHF) patients (Zareba et al., 2011). The study population was observed for 44 months on 
average with total mortality as primary endpoint and cardiac mortality, sudden cardiac 
death, and heart failure death as secondary endpoints. The PD2i was computed based on 20-
minute supine high-resolution Holter recording and was categorized as positive (PD2i≤1.4) 
or negative (PD2i>1.4) based on prespecified criteria. Among the 651 chronic heart failure 
patients, 537 had successful PD2i analyses resulting in 144 (27%) patients showing positive 
results and 393 (73%) negative results. The multivariate results are shown below. 
 

 
Table 8. Prognostic significance of PD2i for predicting total mortality in heart failure 
patients. 

Table 8 shows that after adjustment for clinical covariates (Zareba et al, 2011) PD2i, was 
found predictive for total mortality by the Hazards Ratio (HR=1.55; p=0.026). Predictive 
value of PD2i was observed in heart failure patients with left ventricular ejection fraction 
≤35% (HR=1.95; p=0.004), whereas not in patients with >35% (HR=0.87; p=0.716). Further 
analyses revealed that among patients with ejection fraction ≤35%, PD2i was also predictive 
for cardiac death and for heart failure death. The conclusion was that the PD2i is predictive 
for total mortality, cardiac death and heart failure death in heart failure patients with left 
ventricular ejection fraction ≤35%. 
PD2i has also recently been applied to all patients presenting to the intensive care unit 
(ICU) to stratify the risk of mortality at 30 days (Vicor, ongoing study). A min PD2i ≤ 1.4 
was found to have a relative risk of death of 8.9 (p = 0.003) at ICU discharge and 11.1 at 30 
days (p < 0.001). Thus the PD2i of the heartbeats has been found useful in another defined 
cohort.  
A low PD2i of the heartbeats has also been shown to detect cardiac allograft transplant 
rejection (Izrailtyn et al., 2000). The partially intact nervous system apparently can continue 
to distinguish between a new muscular pump that is good and one that is failing.  
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Interestingly, a low PD2i of the heartbeats has also been found in major depression in 
human subjects (Nahshoni, Aravot, et al., 2004b). These same authors showed in an animal 
model that the neuronal spike-intervals thought to give rise to depressive behavior also 
show a reduction in PD2i compared to controls (Dremencov, Nahshoni et al, 2004; 
Friedman, Deri et al, 2007). The fact that there is an elevated rate of adverse cardiac events in 
patients with major depression (Glassman, Bigger, Gafney, 2009) leads to the intriguing 
speculation that it is due to autonomic derangements, which are detected by the low PD2i of 
the heartbeats. The PD2i of the heartbeats may provide psychiatrists with a physiological 
end-point for use in evaluating therapies. 

8. Discussion  
It has long been known that mostly the hyper “type A” personalities are the ones who die 
from heart attacks (Friedman and Rosenman, 1974). Death of a spouse dramatically 
increases the risk of death of the surviving partner (Rees and Lutkins, 1967). We have all 
heard the statement that he/she died of a broken heart or of marital strife or job insecurity 
(Rahe et al, 1973). A salient characteristic of people who live to 100 years of age is a positive 
and optimistic view of life (Rozanski and Kubzansky, 2005). Despite the examples being all 
around us, this obvious connection between the conscious mind and the heart/body has 
been underappreciated and poorly studied by the medical community. One of the major 
reasons for scientific based western medicine’s failure to understand, study and appreciated 
this connection is that, up until now, it has been difficult to objectively identify and quantify 
the underlying physiology. The PD2i has changed all that by giving physicians and scientists 
an easily administered, reproducible, quantifiable, and sensitive test of how this conscious 
state exerts it influence on the body.   
The connection of the conscious mind to the body is primarily mediated through the 
autonomic nervous system. It is becoming apparent that the status of and the relative balance 
of the sympathetic and parasympathetic nervous systems’ input to all of the organs has a 
profound impact on outcomes in a multitude of diseases and pathological conditions. Heart 
rate variability has served for almost 40 years as a window to the autonomic nervous system, 
but no real advances were made because the measurements were too inaccurate. Heart rate 
variability is determined not only by the balance of the sympathetic and parasympathetic 
components of the autonomic nervous system, which may be caused by unconscious 
compensatory actions, but also by the nonlinear phase relationships between and within the 
two types of effectors (i.e., the “cooperativity” among the brain centers that controls the 
degrees of freedom in the autonomic output). Using an advanced algorithm (PD2i) that detects 
the nonlinear information lost by the conventional measures used over the past decades, 
biologists can now accurately quantify the autonomic output in a more meaningful way. The 
influence of the attentive and conscious Cerebral Defense System combined with the 
unconscious respiratory, blood-pressure, and temperature controllers is now subject to a 
composite integrated measure of the output of the nerves to one of its target organs.   
Trauma, blood loss and heart failure are states in which the sympathetic nervous system 
increases its activity in an attempt to maintain homeostasis. But there is something more 
than sympathetic tone that needs to be considered. For example, in the two patients shown 
in Figure 12, the heart rates are about the same (same sympathetic drive), but the PD2i is 
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much lower in the one who later died (more autonomic “cooperation” occurring). As would 
be expected, it has been found in trauma patients, critically ill ICU patients, patients who 
have lost blood, and heart failure patients, that a low PD2i score--- indicating a higher level 
of compensatory output--- identifies the “more stressed patient,” the one who is sicker, 
losing more blood, or is more traumatized and trying harder to compensate and, thus, more 
likely to die or require a life saving intervention.  
 In certain chronic disease processes, such as diabetes, it is not the reaction of the autonomic 
nervous system to the acute or chronic disease that affects the heart rate variability signal 
but, rather, damage to the autonomic nervous system itself, which may, in turn, prove to be 
a major cause of the end-organ damage. A multitude of studies have found that if 
autonomic dysfunction is present the outcomes of patients with diabetes and renal disease 
are far worse; for example, the adverse cardiac event rate is doubled in diabetic patients 
with autonomic dysfunction (Vinjk et al, 2003). The contribution of autonomic nervous 
dysfunction to metabolic syndrome and sleep apnea are only now being considered, but the 
driving hypotheses are quite rational in view of recent discoveries.  
The clinical and research implications of being able to easily measure and quantify the 
nonlinear status of the autonomic nervous system are far reaching and profound. To be able 
to identify patients with “high sympathetic tone” and/or high autonomic “cooperativity,” 
which correlate with a “more stressed and sicker patient,” would obviously be very helpful 
in anesthesia monitoring during surgery, monitoring of critically ill patients in the ICU, and 
in the triage and monitoring of trauma patients. At present, identifying occult class I blood 
loss (<15%) is a diagnostic dilemma. The PD2i’s ability to noninvasively identify such low 
level blood loss would thus be helpful in a multitude of medical situations. Being able to 
predict and identify which patient will have a more malignant course from their chronic 
illnesses of heart failure, diabetes and renal disease would clearly also be very helpful to the 
physicians, the health care providers, and the health care systems who care for them. Finally 
having a more sensitive and specific “test” of the autonomic nervous system will facilitate 
research on the contributions of the underlying systems to a wide range of medical 
conditions. In the years to come the PD2i will help expand our understanding of the 
autonomic nervous system and its profound contribution to a variety of disease processes 
and medical conditions.  

9. Summary and conclusions 
The same loci of cerebral centers that control vulnerability of the ischemic heart to lethal 
arrhythmogenesis overlaps precisely with the quantified six loci of cerebral centers known 
to control resting heart rate, thus providing the rational for the hypothesis that patterns in 
the heartbeat series may be related to the physiological conditions that enable ventricular 
fibrillation to occur. This hypothesis has been tested and shown to be true in a number of 
studies in animals and in human patients. The PD2i is a nonlinear measure well suited to 
extracting signals from any physiological data series (RRi, ECG, EEG, etc.), because all such 
physiological data are themselves nonlinear. With this new metric it is possible to extract 
information, even in non-stationary data, that has been hidden to measurement by 
conventional algorithms that are based on a linear stochastic model—e.g., the mean, 
standard deviation, power spectra, and so on.  
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nervous system to the acute or chronic disease that affects the heart rate variability signal 
but, rather, damage to the autonomic nervous system itself, which may, in turn, prove to be 
a major cause of the end-organ damage. A multitude of studies have found that if 
autonomic dysfunction is present the outcomes of patients with diabetes and renal disease 
are far worse; for example, the adverse cardiac event rate is doubled in diabetic patients 
with autonomic dysfunction (Vinjk et al, 2003). The contribution of autonomic nervous 
dysfunction to metabolic syndrome and sleep apnea are only now being considered, but the 
driving hypotheses are quite rational in view of recent discoveries.  
The clinical and research implications of being able to easily measure and quantify the 
nonlinear status of the autonomic nervous system are far reaching and profound. To be able 
to identify patients with “high sympathetic tone” and/or high autonomic “cooperativity,” 
which correlate with a “more stressed and sicker patient,” would obviously be very helpful 
in anesthesia monitoring during surgery, monitoring of critically ill patients in the ICU, and 
in the triage and monitoring of trauma patients. At present, identifying occult class I blood 
loss (<15%) is a diagnostic dilemma. The PD2i’s ability to noninvasively identify such low 
level blood loss would thus be helpful in a multitude of medical situations. Being able to 
predict and identify which patient will have a more malignant course from their chronic 
illnesses of heart failure, diabetes and renal disease would clearly also be very helpful to the 
physicians, the health care providers, and the health care systems who care for them. Finally 
having a more sensitive and specific “test” of the autonomic nervous system will facilitate 
research on the contributions of the underlying systems to a wide range of medical 
conditions. In the years to come the PD2i will help expand our understanding of the 
autonomic nervous system and its profound contribution to a variety of disease processes 
and medical conditions.  

9. Summary and conclusions 
The same loci of cerebral centers that control vulnerability of the ischemic heart to lethal 
arrhythmogenesis overlaps precisely with the quantified six loci of cerebral centers known 
to control resting heart rate, thus providing the rational for the hypothesis that patterns in 
the heartbeat series may be related to the physiological conditions that enable ventricular 
fibrillation to occur. This hypothesis has been tested and shown to be true in a number of 
studies in animals and in human patients. The PD2i is a nonlinear measure well suited to 
extracting signals from any physiological data series (RRi, ECG, EEG, etc.), because all such 
physiological data are themselves nonlinear. With this new metric it is possible to extract 
information, even in non-stationary data, that has been hidden to measurement by 
conventional algorithms that are based on a linear stochastic model—e.g., the mean, 
standard deviation, power spectra, and so on.  
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With rather spectacular sensitivity, the PD2i, compared to the other linear and nonlinear 
algorithms, has been shown to outperform them all in the prediction of future risk of lethal 
arrhythmias (Table 1). The prediction comes with sufficient sensitivity, specificity, relative 
risk and low p-values so as to be medically useful in a variety of medical situations. Peer-
reviewed and recently published studies illustrating this medical utility are presented in 
Tables 1 to 8 for various well-defined cohorts with various medical disorders: multiple 
hospitalized cardiac cohorts (ER-, Cardiology-floor, Physiobank- archive, and ICU); young 
diabetics without neuropathy; blood-donors and bleeders with or without chest trauma; 
pre-hospital wounded-soldiers requiring life-saving intervention; patients with chronic 
(congestive) heart failure.  
In cerebral states of short-term stress (public speaking), long-term stress (anxiety scales), or 
major depressive disorder, the PD2i of the heartbeats is significantly reduced compared to 
controls, and these negative affective states are also known to be related to an increased 
incidence of death in both animal models and patients. In contrast, salutary brains states, 
such as occur in animals during REM sleep, or after adaptation to an unfamiliar 
environment, appear to be related to neuroendocrine secretions operating in parallel with 
neural activations. Through the new paradigm of equivalent state-dependent proteomics, 
new drugs candidates can be isolated, identified, synthesized and tested in biological 
models. One such candidate is a neuroendocrine molecule that has a potent anti-infarction 
effect in a model of stroke or heart attack (Figure 5).  
The neglected part of the electrocardiogram, the flat and uninteresting T to P interval, 
appears to be controlled in time by the brain. Modern cardiologists and physicians must 
take notice of the new extrinsic underpinnings of the electrocardiogram, for there is a wealth 
of new medical utility and discovery to be unfolded. 
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1. Introduction 
Digital processing of electrocardiographic records was one of the first applications of signal 
processing on medicine (Taback et al., 1959). There are many ways to analyze and study 
electrical cardiac activity using the surface electrocardiogram (ECG) and nowadays a good 
clinical diagnostic and prevention of cardiac risk are the principal goal to be achieved 
(Sörnmo & Laguna, 2005).   
One aim of digital processing of ECG signals has been quantification of ventricular 
repolarization dispersion (VRD), phenomenon which is mainly determined by 
heterogeneity of action potential durations (APD) in different myocardial regions (Amlie, 
2000). The APD differs not only between myocytes of apex and the base of both ventricles, 
but those of endocardial and epicardial surfaces (transmural dispersion) and between both 
ventricles. Also, it was demonstrated the existence of several electrophysiologically and 
functionally different myocardial cells, like epicardial, endocardial and mid-myocardial M 
cells (Antzelevitch et al., 1999). The APD inequalities develop global and/or local voltage 
gradients that play an important role in the inscription of ECG T-wave morphology. In this 
way, we can assume that T-wave is a direct expression of ventricular repolarization (VR) 
inhomogeneities on surface ECG. 
Experimental and clinical studies have demonstrated a relationship between VRD and severe 
ventricular arrhythmias (Kuo et al., 1983) (Surawicz, 1997). In addition, patients having 
increased VRD values have a higher risk of developing reentrant arrhythmias (Shimizu & 
Antzelevitch, 1998). Frequently the cardiac answer to several pathological states produces an 
increase of VRD; this phenomenon may develop into malignant ventricular arrhythmia (MVA) 
and/or sudden cardiac death (SCD). Moreover, it has been shown that the underlying 
mechanisms in MVA and/or SCD are cardiac re-entry, increased automation, influence of 
autonomic nervous system and arrhythmogenic substrates linked with cardiac pathologies. 
These cardiac alterations could be present in ischemia (Janse et al., 1985), hypothermia (Eagle, 
1994), electrolyte imbalance (Weinberg et al., 1995), long QT syndrome (LQTS) (Priori et al., 
1994), autonomic system effects (Shusterman et al., 1998) and others. 
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Digital processing of ECG has been proved to be useful for cardiac risk assessment, with 
additional advantages like its non invasive nature and direct applicability to the general 
population (Sörnmo & Laguna, 2005). Also, with the aim to identify high cardiac risk 
patients, the researchers have tried to quantify the VRD with different parameters obtained 
from mathematic-computational processing of the surface ECG. These parameters are based 
on detecting changes of T-wave intervals and T-wave morphology during cardiac 
pathologies, linking these changes with VRD. 
Figure 1 illustrates a temporal segment of an ECG acquired in a healthy subject, which 
includes the representation of different waves, intervals and segments of the cardiac signal. 
The P-wave reflects the sequential depolarization of the right and left atria, the QRS complex 
(consisting of Q, R and S waves) reveals the depolarization of both ventricles, and the T-wave 
displays the VR. The RR interval represents the duration of a cardiac cycle. The QT interval 
corresponds to the time from the onset of ventricular depolarization to the offset of VR.  
 

 
Fig. 1. Schematic representation of ECG waves, intervals and segments for a healthy subject.  

In this chapter, we present a review of VRD indexes based on digital processing of ECG 
signals to quantify cardiac risk. The chapter is organized as follows: Section 2 explains ECG 
preprocessing and delineation of fiducial points. In Section 3, indexes of VRD quantification, 
such as: QT interval dispersion, QT interval variability and T-wave duration, are described. 
In Section 4, different repolarization indexes related to T-wave morphology and energy are 
examined, including complexity of repolarization, T-wave residuum, angle between the 
depolarization and repolarization dominant vectors, T-wave morphology dispersion, micro 
T-wave alternans, T-wave area and amplitude and T-wave spectral variability. Finally, in 
Section 5 conclusions are presented. 

1.1 Most used abbreviations 
APD (action potential duration), CD (Dipolar Components), CND (non-dipolar components), 
CR (complexity of repolarization), DWT (dyadic wavelet transform), ECG (electrocardiogram), 
EMG (electromyogram), HR (heart rate), HRV (heart rate variability), HS (healthy subject), IL 
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(isoelectric line) MAPs (monophasic action potentials), PVS (premature ventricular 
stimulation), QTC (QT interval corrected), QTD (QT interval dispersion), QTV (QT interval 
variability), SCD (sudden cardiac death), SVD (singular value decomposition), TCRT (total 
cosine R-to-T), TL (T-wave loop), TMD (T-wave morphology dispersion), TPE (T-wave peak-to-
end), TW (T-wave width), TWR (T-wave residuum), TWRa (absolute T-wave residuum), TWRr 

(relative T-wave residuum), TWSV (T-wave spectral variance), µTWA (micro T-wave alternans), 
VF (ventricular fibrillation), VR (ventricular repolarization) and VRD (ventricular 
repolarization dispersion). 

2. ECG preprocessing  
The objectives of ECG preprocessing consist on the application of several digital signal 
processing techniques in order to: a) attenuate the noise components present in the ECG 
signal, b) detect all heartbeats in the recording and, c) identify characteristics points of the 
ECG waves. In order to accomplish these objectives the following signal processing 
algorithms are used: ECG filtering, QRS complex detection and ECG delineation. 

2.1 ECG filtering  
Unfortunately, all ECG recordings are contaminated by different types of noise and artifacts 
sources (Sörnmo & Laguna, 2006) as it is illustrated in Figure 2. These noise sources are: 
 

 
Fig. 2. Common types of noise in ECG recordings. (a) Baseline wander, (b) 50 Hz power line 
interference, and (c) Electromyographic noise.  
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a) Baseline wander is a low-frequency component in the ECG (see Fig. 2.a) caused by a variety 
of noise sources including respiration, body movements, and poor electrode contact. Its 
spectral content is usually confined to frequencies below 0.5 Hz. The magnitude of the 
baseline wander may exceed the amplitude of QRS complex by several times and it can 
significantly affect ECG analysis algorithms.  
Different filtering techniques are employed for the removal of this low frequency noise, 
mainly, linear filters and polynomial fitting (Sörnmo & Laguna, 2005). In the first category, 
linear, time-invariant, highpass filters are used. The cut-off frequency (fc) and phase 
response characteristic should be chosen to preserve the morphology of ECG signal. The 
value of fc must be lower than the minimum frequency of the ECG; a choice of fc = 0.5 Hz 
provides generally good results. A linear filter with time-variable cut-off frequency has been 
proposed for these ECG acquired during stress test (Sörnmo, 1993). Also, linear phase filters 
are recommended to prevent phase distortions in the ECG signal and avoid possible errors 
in the estimation of the wave durations and cardiac intervals. The second approach is to fit a 
polynomial to representative samples (“knots”) of the ECG followed by the subtraction of 
the resultant polynomial curve. One knot must be defined for each beat, usually in the 
isoelectric line (IL) of PQ interval. In contrast to linear filtering, this approach requires that 
QRS complexes first be detected and PQ intervals are determined. After knots are located in 
the ECG signal, a third-order polynomial is fitted to these points (Sörnmo & Laguna, 2005).   
b) Powerline interference is a common noise source in ECG recordings caused by 
electromagnetic fields of devices coupled to electric power system. It is characterized by a 50 
or 60 Hz sinusoidal interference (see Fig. 2.b), which can be accompanied by its harmonics. 
Such narrowband noise makes difficult the further analysis of ECG record, and may affect 
the performance of the ECG delineation algorithms (Huhta & Webster, 1973). Various 
precautions may be taken during the acquisition of the ECG recording in order to minimize 
the level of the interference, such as shielding the leads, grounding property of the ECG 
system and lowering the skin-electrode impedance (Webster, 1992). 
However, it may be still necessary to apply some signal processing to remove the residual 
powerline interference on the ECG recordings. For this purpose, simple techniques can be 
used such as straightforward linear bandstop or nonlinear filtering (Sörnmo & Laguna, 
2005). A more advanced technique includes the amplitude and phase estimation of the 
interfering sinusoid in an isoelectric segment, followed by substraction of the estimated 
sinusoid within the entire heartbeat (Ider & Köymnen, 1995). This last technique requires a 
correct delineation of PQ interval.  
c) Electromyographic noise is due to the electrical activity of skeletal muscles during periods of 
contraction. It is particularly important in ECGs recorders during ambulatory monitoring or 
stress tests. It can be either intermittent, e.g. due to a sudden body movement (see Fig. 2.c), or 
have more stationary noise properties, e.g during relaxation or sleep. The frequency 
components of electromyogram (EMG) noise considerably overlap those of the QRS 
complexes, making difficult their detection (Sörnmo & Laguna, 2005).  
Due to the overlap spectra of both signals, EMG noise filtering is a complicated task which 
in several cases introduces considerable distortion in the ECG. Since the ECG is a repetitive 
signal, ensemble averaging is a commonly technique used for EMG noise reduction. 
However this technique is restricted to signal-averaged ECG analysis and can require much 
beats to be averaged particularly in ECG records corrupted with high levels of EMG noise 
(Laciar & Jané, 2001). Other different approach consists on the use of adaptive Gaussian 
filtering. This technique produces a time-varying lowpass filter with a variable frequency 

Quantification of Ventricular Repolarization 
Dispersion Using Digital Processing of the Surface ECG 

 

185 

response so that smooth segments on the ECG are subjected to considerable lowpass 
filtering whereas the QRS interval remains unfiltered (Talmon et al., 1986). The adaptation 
of the fc of a linear lowpass filter with the slopes of the ECG has been proposed by Pinto 
(Pinto, 1991). Although others techniques have been proposed for EMG noise reduction, no 
single method has gained wide acceptance for use in clinical routine, so the muscle noise 
problem remains unsolved in ECG signal processing (Sörnmo & Laguna, 2005). 

2.2 QRS complex detection  
The following step in the ECG signal processing consists on the detection of all heartbeats in 
the ECG recording. Due to the QRS complex has generally greater amplitude and higher 
signal to noise ratio than P and T waves (see Fig. 1), the heartbeats identification is usually 
carried out with a QRS detector. Moreover, the QRS complex has a higher frequency content 
which can be distinguish from low frequency of P and T waves (Thakor et al., 1984). The 
QRS detector must be able to detect a large number of different QRS morphologies in order 
to be clinically useful and able to follow sudden or gradual changes of the cardiac rhythm. 
Consequently, the performance of any ECG automatic analysis system depends on a correct 
detection of all QRS complexes in the ECG record. 
In the literature, it has been proposed several QRS detectors. Köhler et al., produced a rather 
comprehensive review of the main QRS detecting algorithms (Köhler et al., 2002). One of 
them, widely used, was proposed by Pan & Tompkins (Pan & Tompkins, 1985). Its 
implementation is simple reaching high levels of sensitivity and predictivity (both > 99.5%). 
Bandwidth, slope and pulse duration are the three criteria used by the algorithm. A 
bandpass filter keeps the spectral portion where most of the QRS energy concentrates, 
attenuating the P and T waves low frequency components, removing baseline slow changes 
or drifts and reducing 50/60 Hz line interference and EMG high frequency noise. A 
differentiator picks out the steep QRS edges, obviously much different that the other 
components smoother edges. Thereafter, the mean quadratic value of each signal sample is 
computed by a non-linear unit to obtain only positive values and to emphasize the QRS high 
frequency components. A moving window integrator adds up the areas under the quadratic 
signal to produce pulses and to remove short duration artifacts. Such output goes to the 
decision unit where each pulse is compared to the preestablished threshold singling it out or 
not and locating it in its proper relative temporal place. The overall output is composed of 
the temporal marks or spikes, each corresponding to the detected QRS complex. 

2.3 ECG delineation  
Since important diagnostic information is contained in the wave amplitudes and time 
durations of a heartbeat (see Fig. 1), wave delineation represents an important step in ECG 
processing (Sörnmo & Laguna, 2005). Basically, ECG delineation consist on the automatic 
determination of peaks and time limits of the cardiac waves (QRS complex, P and T-waves). 
Delineation algorithms usually depart from a previous QRS location and define temporal 
search windows before and after the QRS fiducial point to seek for the other waves. Once 
the search window is defined, some technique is applied to enhance the characteristic 
features of each wave (e.g., its frequency band) in order to find the wave peaks.  
The localization of ECG wave onsets and offset is a more difficult task, as the signal 
amplitude is low at the wave boundaries and the noise level can be higher than the signal 
itself (Martinez et al., 2004). The classical definition of a wave boundary is the time instant at 
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which the wave crosses a certain amplitude threshold. Unfortunately, this definition is not 
adequate for cardiac waves delineation, particularly in ECG records corrupted with baseline 
wander, so it is not used in practice (Sörnmo & Laguna, 2005).  
In order to solve this problem, many delineation algorithms examine the change in the slope 
of ECG signal to detect the wave limits. Hence, the first derivate of the signal is computed 
and analyzed with respect to zero crossing and extreme values. This delineation scheme is 
particularly appropriate to find QRS onset and offset points, due to the steep changes in the 
slopes of these waves (de Chazal & Celler, 1996, Daskalov & Christov, 1999). 
ECG delineation is especially problematic with the estimation of T-wave end boundary, 
which is often characterized by a very gradual transition to the IL. The delineation of T-
wave end is problematic even among cardiologists, which can exhibits differences up to 100  
ms (Sörnmo & Laguna, 2005). A correct determination of this endpoint is extremely 
important for an accurate estimation of QT interval (see Fig. 1). Different algorithms have 
been proposed for the automatic detection of T-wave end. Xue & Reddy in 1998 compare the 
performance of five T-wave delineation algorithms based on: (a) the point at which the T- 
wave intersects the IL plus a threshold, (b) the point at which the first derivate of T-wave 
intersects a threshold above IL, (c) the intersection of the maximum slope of T-wave and IL, 
(d) the intersection of the line fitted by least squares to the maximum slope of T-wave and IL 
(LSI), and (e) the point at which the T-wave area reaches 90% of its total value. They 
conclude that LSI method has the best reproducibility (Xue & Reddy, 1998). Other ECG 
delineation algorithm, based on a multiresolution analysis of ECG signal using dyadic 
wavelet transform (DWT), has proven to be particularly adequate for a correct estimation of 
T-wave boundaries (Li et al., 1995, Martínez et al., 2004). This wavelet approach can be 
viewed as a filter bank of lowpass differentiators with varying cut-off frequencies. The wave 
boundaries are then found through the different decomposition levels of DWT. 

3. Indexes of repolarization dispersion based on ECG durations  
In this section, we present different VRD indexes obtained from ECG durations. Some of 
them can measure spatial heterogeneity of repolarization, such as QT dispersion, T-wave 
width and T-wave peak-to-end duration. Other index, like QT variability can be used to 
evaluate the dynamic heterogeneity of VR. Also, other spatial heterogeneity indexes, such 
as, T-wave amplitude, T-wave symmetry and the relationship between T-wave areas, are 
shortly commented.  

3.1 QT interval dispersion  
QT dispersion (QTD) is defined as the arithmetic difference between the maximum and the 
minimum QT interval (see Fig. 1) or as QT interval standard deviation between all ECG-
leads. QTD was first defined on multilead recordings system (Sylven et al., 1984) and then on 
the standard 12-lead ECG (Cowan et al., 1988), intended to reflect the duration of the 
monophasic action potentials (MAPs). Thus, the QTD measured on the 12-lead ECG aims to 
be a non-invasive index of VRD. The main concept proposed by Day et al., which supports 
the QTD as a VRD marker, is the fact that every ECG lead picks up local activity from 
different heart areas and therefore differences among them directly translate into differences 
in APD (Day et al., 1990). In consequence QTD quickly became popular for its non-invasive 
nature and calculus simplicity. 
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In the repolarization analysis, many studies focussed on finding a universal formula that 
corrected QT (QTc) for heart rate (HR) in every patient (Hodges, 1997). However, Malik et 
al. showed that the QTc must not be universally applied but individually (Malik, 2002). In 
this way, animal studies have shown that VRD does not change with HR and need not be 
corrected for it (Zabel et al., 1997). Also, QTD correction in humans can be misleading since 
changes in this index at different HR may shows or reflects modifications in cycle length 
and not changes in VRD (Subramanian et al., 1999).  
Later on, QTD was studied by Day et al. in 1992 (see Table 1) under sinus rhythm and 
controlled ectopic stimulus  leading to the conclusion that QTD reflected regional variations 
of the cellular recovery time (Day et al., 1992).  
Higham et al. (Higham et al., 1992), found a high correlation between VRD measured on 
MAPs basis and QTD on both sinus rhythm and ventricular pacing. Also Zabel et al., 
observed that QTD was highly correlated to ventricular recovery times and duration of 
MAPs in isolated rabbit hearts (Zabel et al., 1995). Later on, results were confirmed in 
humans, comparing QTD from ECG 24 hs after MAPs recording, increasing accordingly QTD 
and endocardic MAPs (Zabel et al., 1998b). 
Zabel et al., in 32-months follow-up a prospective study including myocardial infarction 
(MI) patients, failed to find in QTD a predictive value of mortality (Zabel et al., 1998a). On 
the other hand, Mänttäri et al., with a 6.5 years follow-up study, did find QTD measured to 
T-wave peak as a predictor of SCD but not of fatal MI (Mänttäri et al., 1997).  
Using a modified Langendorff-perfused rabbit heart model, Arini et al. compared QTD 
measure from multilead system against the values found when the 12 standard ECG-leads 
were used. The obtained results supported the importance of multiple recording systems for 
the evaluation of QTD and helped to understand the discrepancies found in clinical 
applications (Arini et al., 2000). Later, Arini et al., using an animal heart model with 
multiple electrode recording system, showed a differential behavior in the modulation of 
VRD depending on whether premature ventricular stimulation (PVS) were elicited at the 
right or left ventricle. They concluded that different ventricles anisotropic properties, 
dissimilar wall thickness and fiber orientation partially contribute to the explanation of 
results (Arini et al., 2001). 
More controversial issues came up with Lee et al. (see Table 1), and Macfarlane et al. who 
simultaneously showed that QTD calculated from 12-ECG leads derived from the orthogonal 
XYZ leads (without any regional information) was similar to that obtained from the 
standard ECG. Also, Kors et al. (see Table 1), found a high correlation between QTD and the 
parameters of the T-wave loop (TL) in the vectocardiogram, concluding that the QTD would 
be more a feature of the TL in 3D more than a local VRD phenomenon. If all the 
repolarization information is contained in the TL, then the QTD would be a result from the 
projection effect (Lee et al., 1998; Macfarlane et al. 1998; Kors et al., 1999). 
Many technical limitations make QTD not reliable. Great efforts have been addressed to 
define different ways of measurement (Hnatkova et al., 1994a) as well as to analyze their 
reproducibility (Macfarlane et al., 1998). Kautzner et al. tested that the greater QT intervals 
in leads displaying greater T-wave amplitudes. They also found a 27-33% interobserver 
variability for QTD whilst a much smaller interobserver variability (2-4%) was found for QT 
intervals (Kautzner et al., 1994). Lead selection also affects QTD. Hnatkova et al. analyzed in 
a systematic way the measurement errors derived from imperfect sets of leads. Due to the 
great variability found, they concluded that QTD should be compared with a constant and 
standard set of leads basis (Hnatkova et al., 1994b). On the other hand, Kors & Van Herpen, 
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which the wave crosses a certain amplitude threshold. Unfortunately, this definition is not 
adequate for cardiac waves delineation, particularly in ECG records corrupted with baseline 
wander, so it is not used in practice (Sörnmo & Laguna, 2005).  
In order to solve this problem, many delineation algorithms examine the change in the slope 
of ECG signal to detect the wave limits. Hence, the first derivate of the signal is computed 
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3. Indexes of repolarization dispersion based on ECG durations  
In this section, we present different VRD indexes obtained from ECG durations. Some of 
them can measure spatial heterogeneity of repolarization, such as QT dispersion, T-wave 
width and T-wave peak-to-end duration. Other index, like QT variability can be used to 
evaluate the dynamic heterogeneity of VR. Also, other spatial heterogeneity indexes, such 
as, T-wave amplitude, T-wave symmetry and the relationship between T-wave areas, are 
shortly commented.  

3.1 QT interval dispersion  
QT dispersion (QTD) is defined as the arithmetic difference between the maximum and the 
minimum QT interval (see Fig. 1) or as QT interval standard deviation between all ECG-
leads. QTD was first defined on multilead recordings system (Sylven et al., 1984) and then on 
the standard 12-lead ECG (Cowan et al., 1988), intended to reflect the duration of the 
monophasic action potentials (MAPs). Thus, the QTD measured on the 12-lead ECG aims to 
be a non-invasive index of VRD. The main concept proposed by Day et al., which supports 
the QTD as a VRD marker, is the fact that every ECG lead picks up local activity from 
different heart areas and therefore differences among them directly translate into differences 
in APD (Day et al., 1990). In consequence QTD quickly became popular for its non-invasive 
nature and calculus simplicity. 
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In the repolarization analysis, many studies focussed on finding a universal formula that 
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al. showed that the QTc must not be universally applied but individually (Malik, 2002). In 
this way, animal studies have shown that VRD does not change with HR and need not be 
corrected for it (Zabel et al., 1997). Also, QTD correction in humans can be misleading since 
changes in this index at different HR may shows or reflects modifications in cycle length 
and not changes in VRD (Subramanian et al., 1999).  
Later on, QTD was studied by Day et al. in 1992 (see Table 1) under sinus rhythm and 
controlled ectopic stimulus  leading to the conclusion that QTD reflected regional variations 
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Zabel et al., in 32-months follow-up a prospective study including myocardial infarction 
(MI) patients, failed to find in QTD a predictive value of mortality (Zabel et al., 1998a). On 
the other hand, Mänttäri et al., with a 6.5 years follow-up study, did find QTD measured to 
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measure from multilead system against the values found when the 12 standard ECG-leads 
were used. The obtained results supported the importance of multiple recording systems for 
the evaluation of QTD and helped to understand the discrepancies found in clinical 
applications (Arini et al., 2000). Later, Arini et al., using an animal heart model with 
multiple electrode recording system, showed a differential behavior in the modulation of 
VRD depending on whether premature ventricular stimulation (PVS) were elicited at the 
right or left ventricle. They concluded that different ventricles anisotropic properties, 
dissimilar wall thickness and fiber orientation partially contribute to the explanation of 
results (Arini et al., 2001). 
More controversial issues came up with Lee et al. (see Table 1), and Macfarlane et al. who 
simultaneously showed that QTD calculated from 12-ECG leads derived from the orthogonal 
XYZ leads (without any regional information) was similar to that obtained from the 
standard ECG. Also, Kors et al. (see Table 1), found a high correlation between QTD and the 
parameters of the T-wave loop (TL) in the vectocardiogram, concluding that the QTD would 
be more a feature of the TL in 3D more than a local VRD phenomenon. If all the 
repolarization information is contained in the TL, then the QTD would be a result from the 
projection effect (Lee et al., 1998; Macfarlane et al. 1998; Kors et al., 1999). 
Many technical limitations make QTD not reliable. Great efforts have been addressed to 
define different ways of measurement (Hnatkova et al., 1994a) as well as to analyze their 
reproducibility (Macfarlane et al., 1998). Kautzner et al. tested that the greater QT intervals 
in leads displaying greater T-wave amplitudes. They also found a 27-33% interobserver 
variability for QTD whilst a much smaller interobserver variability (2-4%) was found for QT 
intervals (Kautzner et al., 1994). Lead selection also affects QTD. Hnatkova et al. analyzed in 
a systematic way the measurement errors derived from imperfect sets of leads. Due to the 
great variability found, they concluded that QTD should be compared with a constant and 
standard set of leads basis (Hnatkova et al., 1994b). On the other hand, Kors & Van Herpen, 
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postulated a valuable criterion for lead selection based on the frontal leads dependence 
(Kors & var Herpen, 1998). Another technical problem concerning QTD measurement is T-
wave end delineation which was before mentioned in Section 2.3. Figure 3 shows QTD 
calculated between two hypothetical ECG leads where it can be seen the difficultities to 
distinguish between the dispersion generated by estimation error and the real dispersion. 
 

 
Fig. 3. Both T-waves of the same amplitude have different ends, this results in ‘real 
dispersion’ of QT intervals (vertical dashdot lines). Also, from below the threshold level 
(horizontal dashed lines) defined by an automatic algorithm, there are different proportions 
of T-waves end (vertical dot lines), this results are called ‘Dispersion affected by estimation 
error’ which is different from the ‘Real dispersion’.   

In spite of the technical limitations and controversies, QTD is used in a growing number of 
medical applications. Examples of this are the assessment of cardiac toxicity in anesthesia 
(Cafiero et al., 2010) or the search of cardiac indexes in malnourished adults (Hanci et al., 
2010). 

3.2 QT interval variability 
In order to separate the heart rate variability (HRV) from the QT variability (QTV), the QTV 

index is redefined as: QTVI=QTV/HRV, being this ratio related to arrhythmic events, SCD and 
heart failure (Berger et al., 1997, Yeragani et al., 2004). QTVI reflects beat-to-beat changes of the 
recovery times and such variations in the refractory times can lead to reentrant arrhythmias.  
In a prospective study recruiting patients referred to electrophysiological studies, the 
greater QTV belonged to those who presented SCD or ventricular fibrillation (VF) (Atiga et 
al., 1998). Healthy subjects presented low QTVI and considerable HRV, with a low average 
HR and a high average QT, while patients with dilated cardiopathy presented a high QTVI 

with low QT average and low HRV with an high HR average.  
In 1999, trying to get rid of the T-wave end detection, Courdec analyzed the QT abnormal 
components in the time-space domain by means of wavelet transform (Couderc et al., 1999) 
where they found LQTS patients with higher QTV than the control patients. Burattini and  
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Author and 
year of 

publication 
Short description Indexes Conditions for the evaluation of 

methodologies 

Day et al. 
(1992) 9 patients under 

electrophysiological 
study of palpitation

 
CI= 300 (ms) CI= 500 (ms) 

PSC VE FSC PSC VES FSC 

AQTD (ms) 22 ±2 80±4 23±6 18±2 87±6 18±2 

Lee et al. 
(1998) 

Conventional and 
derived ECGs 

obtain from 129 HS
QTD  (ms) 40 ±20 

(12 leads from XYZ) 
41±18 

( from 12 leads) 

Kors et al.  
(1999) 

1220 standard 
simultaneous 12 

ECG leads. 
QTD (ms) 

54.2±27.1 for narrow and large T-wave loop 

69.5±33.5 for wide and small T-wave loop 

Fuller et al. 
(2000) 

Correlation 
coefficients of VRD 

versus T-wave 
width (TW) and QTD 

for each lead set 

 Ep BS Pc Op 

TW 0.91 0.84 0.72 0.81 

QTD 0.46 0.47 0.17 0.11 

Arini et al. 
(2001) Dispersion 

Variables (DV) was 
evaluated as a 

function of CI and 
site of stimulation in 

12 in vitro rabbit 
hearts. *p<0.05 vs. 

400ms 

 

CI for Stimulus RV 
(ms) 

CI for Stimulus LV 
(ms) 

400 250 ERP
+5 400 250 ERP 

+5 

DV 
(ms)

SDJTp 9.6± 
0.88 

10.2±
0.84 

14.9±
0.73* 

7.7± 
0.55 

6.2± 
0.55* 

11± 
1.16* 

SDJTe 7.6± 
0.55 

8.1± 
0.7 

11± 
0.83* 

7.1± 
0.52 

4.6± 
0.72* 

11± 
0.86* 

AQTD (Adjusted QTD)= (maxQTD – minQTD)/√ nº of leads; CI (Coupling interval);  PSC (Preceding Sinus 
Complex); VE (Ventricular Extrasystole); FSC (Following Sinus Complex); Ep (Epicardial); BS (Body 
Surface); Pc (Precordial); Op (optimal); SD (Standard Deviation); JTp (J point to T-wave peak); JTe (J 
point to T-wave end) RV (Right Ventricle); LV (Left Ventricle); ERP (Effective Refractory Period). HS 
(healthy subjects) 

Table 1. Some of the principal results of ECG duration indexes explained in Section 3. 

Zareba, on the other hand, proposed a temporal method to measure beat-to-beat QTV 
consisting on correlating T-waves with a pattern (Burattini & Zareba, 1999). This index was 
validated with ischemic myocardiopathy who presented a higher index than control 
patients. Nevertheless, no correlation with left ventricular ejection fraction (LVEF), HR, 
HRV and QTc were found.  
Almeida et al. in 2006 postulated a parametric linear model to explore interactions between 
QTV and HRV. The method was applied to simulated series and artificial ECG signals, but 
validated on real ECG data from healthy subjects, where it was found a 40% of QT fraction 
not correlated with HRV, suggesting that an important part of QTV is not linearly driven by 
HRV and may contain complementary information (Almeida et al., 2006).  
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postulated a valuable criterion for lead selection based on the frontal leads dependence 
(Kors & var Herpen, 1998). Another technical problem concerning QTD measurement is T-
wave end delineation which was before mentioned in Section 2.3. Figure 3 shows QTD 
calculated between two hypothetical ECG leads where it can be seen the difficultities to 
distinguish between the dispersion generated by estimation error and the real dispersion. 
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of T-waves end (vertical dot lines), this results are called ‘Dispersion affected by estimation 
error’ which is different from the ‘Real dispersion’.   

In spite of the technical limitations and controversies, QTD is used in a growing number of 
medical applications. Examples of this are the assessment of cardiac toxicity in anesthesia 
(Cafiero et al., 2010) or the search of cardiac indexes in malnourished adults (Hanci et al., 
2010). 

3.2 QT interval variability 
In order to separate the heart rate variability (HRV) from the QT variability (QTV), the QTV 

index is redefined as: QTVI=QTV/HRV, being this ratio related to arrhythmic events, SCD and 
heart failure (Berger et al., 1997, Yeragani et al., 2004). QTVI reflects beat-to-beat changes of the 
recovery times and such variations in the refractory times can lead to reentrant arrhythmias.  
In a prospective study recruiting patients referred to electrophysiological studies, the 
greater QTV belonged to those who presented SCD or ventricular fibrillation (VF) (Atiga et 
al., 1998). Healthy subjects presented low QTVI and considerable HRV, with a low average 
HR and a high average QT, while patients with dilated cardiopathy presented a high QTVI 

with low QT average and low HRV with an high HR average.  
In 1999, trying to get rid of the T-wave end detection, Courdec analyzed the QT abnormal 
components in the time-space domain by means of wavelet transform (Couderc et al., 1999) 
where they found LQTS patients with higher QTV than the control patients. Burattini and  
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Correlation 
coefficients of VRD 
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for each lead set 
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Table 1. Some of the principal results of ECG duration indexes explained in Section 3. 

Zareba, on the other hand, proposed a temporal method to measure beat-to-beat QTV 
consisting on correlating T-waves with a pattern (Burattini & Zareba, 1999). This index was 
validated with ischemic myocardiopathy who presented a higher index than control 
patients. Nevertheless, no correlation with left ventricular ejection fraction (LVEF), HR, 
HRV and QTc were found.  
Almeida et al. in 2006 postulated a parametric linear model to explore interactions between 
QTV and HRV. The method was applied to simulated series and artificial ECG signals, but 
validated on real ECG data from healthy subjects, where it was found a 40% of QT fraction 
not correlated with HRV, suggesting that an important part of QTV is not linearly driven by 
HRV and may contain complementary information (Almeida et al., 2006).  
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Recently, it was shown the relationship between QTVI and cardiac sympathetic activity in 
hypertensive patients (Baumert et al., 2011).  

3.3 T-wave duration  
Fuller et al., in 2000 used isolated-perfuse canine hearts (see Table 1) to measure QTD and T-
wave width (TW) from the root-mean-square (RMS) curve obtained from: the available 
epicardial electrograms, ECG body surface leads, standard precordial ECG leads, and 
optimal lead set. They induced myocardial VRD by three different ways: changing 
temperature, modifying the cycle length and changing activation sequence. The VRD, which 
was measured directly using epicardium recovery times, was compared to TW and QTD. 
VRD was strongly correlated with TW computed from the RMS series, but not with QTD 
(Fuller et al., 2000). 
Arini et al., proposed that T-wave widening can result from a result of combined dispersion 
between apex-base and transmural APD heterogeneities. They used the addition of 
anthyarritmic drugs and PVS to induce increase VRD in an In Vitro rabbit heart model (see 
Table 1), concluding that VR is reflected in the ECG as a TW widening, while index QTD 
failed as risk stratification (Arini et al., 2008a). 
Other studies have shown T-wave peak-to-end (TPE) interval as a measure of transmural 
dispersion (Zareba et al., 2000), although it is difficult to associate this concept with the ECG 
standard, since the concept of TPE is mainly associated to the ECG derived from the Wedge 
preparation (Antzelevitch et al., 1999). In addition, the TPE can replace the TW to measure 
dispersion during ischemia, since the measurement of T-wave onset is very unstable during 
ST-segment modifications (Arini et al., 2008b).  

4. Indexes of repolarization dispersion associated to ECG-morphology  
In this section, we present VRD indexes obtained from ECG morphology changes.  These 
indexes are based on the hypothesis that morphological changes on the T-wave will appear 
when VRD is increased. The indexes complexity of repolarization, T-wave residuum, the 
total cosine R-to-T, the T-wave morphology dispersion, T-wave area and T-wave amplitude, 
can measure spatial heterogeneity of repolarization. Other indexes from beat-to-beat, such 
as micro T-wave alternans and T-wave spectral variance can measure dynamic 
heterogeneity of VR. 

4.1 Evaluation of T-Wave morphology employing Singular Value Decomposition  
The main technique used to evaluate morphological or energy changes of T-wave during 
increased VRD is the Singular Value Decomposition (SVD). SVD is a mathematical 
transformation based on the correlation between signals. In this case, SVD is applied to the 
eight mutually independent leads (I, II, V1-V6) and then the information is reconstructed in 
an optimal orthogonal space of eight pseudo-leads (S1-S8) (see Fig. 4). In the new space, S1 
will have the maximal energy or eigenvalue (λ1) in this direction, S2 will contain the 
maximal energy (λ2) perpendicular to S1, S3 will have the maximal λ3 perpendicular to the 
two first pseudo-leads and so on. S1, S2 and S3 have the 98% of total ECG energy 
approximately, and are named dipolar components (CD) (λ1, λ2, λ3), whereas S4-S8 have the 
2% residual and are called non-dipolar components (CND). The CD is the ECG energy 
represented in 3D, and shows the normal activity, but for CD are not enough to represent 
pathological activity adequately, being necessaries the CND. 
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The Complexity of Repolarization (CR) index is represented by the ratios between 
eigenvalues (Priori et al. 1997). In normality conditions, the TL can be represented like a 3D 
vector with eigenvalues λ1 λ2 λ3 relative to the principal axes S1 S2 S3. In general, TL is 
concentrated in the λ1 and λ2 values denominated preferential plane and it can be 
quantified by CR like a narrow or a rounded loop in this plane. Furthermore, the planarity 
can be calculated, because in a loop totally plane λ3 is equal to zero.  
The ventricular gradient is the resulting vector of all the instantaneous vectors of 
depolarization and repolarization. Expanding this concept, it can be estimated the 
wavefront direction descriptor, named Total cosine R-to-R (TCRT). This index was defined 
like the cosine of the angle formed between the dominant vectors of the VR and 
depolarization, measured in a 3D loop of SVD space (Acar et al., 1999). Also, the T-wave 
morphology dispersion (TMD) index measures dissimilarities of the T-wave shapes between 
different leads and reconstruction vectors of the individual ECG leads and it is calculated as 
the average of angles among pairs of reconstruction vectors (Zabel & Malik, 2004). Finally, 
the T-wave residuum (TWR) index was proposed by Malik et al., and estimates the non-
dipolar components relative energy. The TWR can be absolute (TWRa) defined like CND and 
relative (TWRr), the TWRa normalized by total energy (Malik et al, 2000).  
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Fig. 4. Standard ECG (left panel) and pseudo-leads obtained from ECG SVD (right panel). 

Badilini et al. applied the relationship between 3D TL morphology and scalar QTD. This 
analysis was applied to the XYZ ECG obtaining the normalized eigenvalues with the aim to 
estimate one loop narrowness parameter and two planarity parameters. They evaluated the 
parameters in healthy subjects (HS) and post MI and LQTS patients. The scalar 
measurements were significantly larger in patients with MI and LQTS than in HS but only 
in 3D analysis was observed a loss of planarity and an increased roundness of the TL, 
differentiating MI from LQTS patients. They concluded that the spatial nature of TL was 
associated to scalar interlead variability (Badilini et al., 1997).  
Almost simultaneously, Priori et al. applied eigenvalues relationship to 12-lead Holter 
recordings (see Table 2.) to estimate the CR, and compared their results against other methods 
that characterize QT interval. They found that the ratio of the λ2 to λ1 was more 
representative of CR, being CR24h the average of CR in 24 hs. They observed that CR24h was 
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Recently, it was shown the relationship between QTVI and cardiac sympathetic activity in 
hypertensive patients (Baumert et al., 2011).  

3.3 T-wave duration  
Fuller et al., in 2000 used isolated-perfuse canine hearts (see Table 1) to measure QTD and T-
wave width (TW) from the root-mean-square (RMS) curve obtained from: the available 
epicardial electrograms, ECG body surface leads, standard precordial ECG leads, and 
optimal lead set. They induced myocardial VRD by three different ways: changing 
temperature, modifying the cycle length and changing activation sequence. The VRD, which 
was measured directly using epicardium recovery times, was compared to TW and QTD. 
VRD was strongly correlated with TW computed from the RMS series, but not with QTD 
(Fuller et al., 2000). 
Arini et al., proposed that T-wave widening can result from a result of combined dispersion 
between apex-base and transmural APD heterogeneities. They used the addition of 
anthyarritmic drugs and PVS to induce increase VRD in an In Vitro rabbit heart model (see 
Table 1), concluding that VR is reflected in the ECG as a TW widening, while index QTD 
failed as risk stratification (Arini et al., 2008a). 
Other studies have shown T-wave peak-to-end (TPE) interval as a measure of transmural 
dispersion (Zareba et al., 2000), although it is difficult to associate this concept with the ECG 
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The Complexity of Repolarization (CR) index is represented by the ratios between 
eigenvalues (Priori et al. 1997). In normality conditions, the TL can be represented like a 3D 
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can be calculated, because in a loop totally plane λ3 is equal to zero.  
The ventricular gradient is the resulting vector of all the instantaneous vectors of 
depolarization and repolarization. Expanding this concept, it can be estimated the 
wavefront direction descriptor, named Total cosine R-to-R (TCRT). This index was defined 
like the cosine of the angle formed between the dominant vectors of the VR and 
depolarization, measured in a 3D loop of SVD space (Acar et al., 1999). Also, the T-wave 
morphology dispersion (TMD) index measures dissimilarities of the T-wave shapes between 
different leads and reconstruction vectors of the individual ECG leads and it is calculated as 
the average of angles among pairs of reconstruction vectors (Zabel & Malik, 2004). Finally, 
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Fig. 4. Standard ECG (left panel) and pseudo-leads obtained from ECG SVD (right panel). 

Badilini et al. applied the relationship between 3D TL morphology and scalar QTD. This 
analysis was applied to the XYZ ECG obtaining the normalized eigenvalues with the aim to 
estimate one loop narrowness parameter and two planarity parameters. They evaluated the 
parameters in healthy subjects (HS) and post MI and LQTS patients. The scalar 
measurements were significantly larger in patients with MI and LQTS than in HS but only 
in 3D analysis was observed a loss of planarity and an increased roundness of the TL, 
differentiating MI from LQTS patients. They concluded that the spatial nature of TL was 
associated to scalar interlead variability (Badilini et al., 1997).  
Almost simultaneously, Priori et al. applied eigenvalues relationship to 12-lead Holter 
recordings (see Table 2.) to estimate the CR, and compared their results against other methods 
that characterize QT interval. They found that the ratio of the λ2 to λ1 was more 
representative of CR, being CR24h the average of CR in 24 hs. They observed that CR24h was 
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significantly higher in LQTS than in HS. They concluded that eigenvalues relationship can 
be used to quantify the CR in a non invasive way (Priori et al., 1997).  
In addition to those indexes previously described, Acar et al. developed another indexes 
linked to TL. They employed ECG records with HS and hypertrophic cardiomyopathy 
(HCM) (see Table 2) to calculate the conventional measures of VR and the ratios among 
eigenvalues. They concluded that new descriptors were more reproducible than the 
conventional QT interval descriptors and TMD and TCRT indexes were the best indexes for 
discrimination between groups (Acar et al., 1999).  
 

Author and 
year of 

publication 
Short description Indexes Conditions for the evaluations of 

methodologies 

Priori et al., 
(1997) Were studied 36 

LQTS patients and 
40 control subjects.

 Normal LQTS Sen % 

QTc (ms) 414±18 514±59 88 

QTDC (ms) 38±9 82±37 69 

CR24h 13±3 34±12 88 

Acar et al., 
(1999) 

Were employed 76 
normal subjects 
and 63 patients 

with HCM. p-value 
of separation 

between normal 
and HCM for each 

index evaluated 

 Normal HCM p- value 

TMD 10.72±4.784 41.1±26.85 2.818x10-18 

TCRT 0.522±0.274 -0.351±0.522 3.548x10-19 

λ2/λ1 15.56±6.162 23.56±10.85 9.886x10-7 

λ3/λ1 4.826±2.373 7.765±4.235 6.603x10-9 

Malik et al., 
(2000) 

The study was 
realized with a 

group of 78 HS, 68 
HCM, 72 DCM and 

81 acute MI 
patients. 

 Normals HCM DCM acute MI 

QTD (ms) 
33.6±18.3 47±19.3 37.8±21.2 57.5±25.3 

Normals vs DCM: NS, other p<0.009 

TWR (%) 
0.029 

±0.031 
0.067 

±0.067 
0.112 

±0.154 
0.186 

±0.308 
HCM vs DCM: NS, other p<0.006 

QTD and TWRr 

correlation 
-0.0446 0.2805 -0.1531 0.0771 

p=0.03 for HCM , other NS 

Arini et al., 
(2008a) The experiments 

were carried out in 
20 isolated rabbit 
hearts during PE 

and after DS 

 Control PVS Control DS 

TW (ms) 78±10.3 118.5 
±15.7 78±10.3 95.2±7.9 

SDQT (ms) 7.6±2.2 13±3.4 6.5±1.4 11.6±1.9 

θPT (º) 137±65 129±61 35±51 117±49 

NS (non significant); QTDC (QT dispersion corrected);  SD (Standard Deviation). 

Table 2. Some relevant results from ECG SVD and the comparison with another indexes 
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A research in which QTD and TWRr was calculated in 12-lead resting supine ECGs records 
corresponding to HS, HCM patients, dilated cardiomyopathy patients (DCM) and survivors 
of acute MI (see Table 2.) was carried out by Malik et al. They concluded that CND differ in 
clinically well-defined groups, and that QTD is unrelated to them, so, QTD is not a direct 
measure of local VRD (Malik et al., 2000). 
Zabel et al., during a prospective study for risk stratification in post-MI patients evaluated 
CR, TL dispersion (TLD), TL area, TCRT and TMD, and where correlated with QTD and clinical 
data. Zabel et al. found that TCRT and TLD is suitable for risk discrimination. They realized a 
multivariate analysis including other predictive risk stratifiers. They concluded that T-wave 
morphology analysis can be used in the post-MI risk estimation and in combination with 
other risk markers enhanced the final results (Zabel et al., 2000). Later, Zabel et al. presented 
a study to assess the prognostic value of the same parameters evaluated in 2000, adding the 
TWRa, TWRr and QT interval in long term survivals in US veterans with cardiovascular 
disease and the patients were follow up 10.4 ± 3.8 years. They showed that TWR presents a 
significant long-term prognostic power in the population studied (Zabel et al., 2001).  
The CD and CND were analyzed by Biagetti et al., in isolated rabbit hearts model. The aim 
was to analyze the role of both components in the determination of TWR observing that both 
increased significantly during PVS and after D-sotalol (DS) exposure. Despite the increase of 
TWRa, the TWRr decreased during PVS and did not change after DS. They concluded that due 
to the fact that CD and CND can change simultaneously, TWRr may not reflect regional 
heterogeneity of VR with accuracy and that CND of the 2nd half of the T-wave can be related 
to transmural VRD (Biagetti et al., 2004).  
A study that analyzed Principal Component Analysis (PCA) parameters in relation to 
conduction disturbances in patients with chest pain and ECG nondiagnostic of acute MI was 
developed by Kesek et al. in 2004. They calculated CR, TWRa and TWRr which were assessed 
against clinical and ECG parameters, discharge diagnosis and total mortality during 35-
months follow up. They found that a TWRr increased with conduction disturbances, which 
were associated with augmented VR inhomogeneity (Kesek et al., 2004).   
Malik et al. in 2004 carried out a research in which stratified risk of arrhythmic events by 
mean of LVEF and HR, HRV, the slope of HR turbulence and TCRT in patients who might 
benefit from prophylactic antiarrhytmic intervention. It was evaluated individual risk 
characteristics and the combinations of them. They concluded that TCRT was a strongest risk 
stratifier that compared very favorably to LVEF and was also strongest in combination with 
other stratifiers like LVEF (Malik et al., 2004). 
Arini et al., evaluated indexes that quantify the VRD for cardiac risk. The study was carried 
out in multilead ECG records from animal heart model (see Table 2); employing DS and PVS 
achieved to increment VRD. They calculated indexes from the absolute ECG summation 
signal (T-wave amplitude, area and width) and from the SVD of the ECG: θPT (angle 
between the 1st SVD axis and the VR axis), TWR, TMD, unnormalized TMD, and TCRT. They 
compared the results with the classical indexes based on QT and concluded that the globally 
increased VRD  can be reflected by TW (Arini et al., 2008a). 
T-wave morphology parameters were studied in LQTS patients by Anttonen et al. in 2009. 
They wanted to determine if these parameters presented abnormal value in these patients 
and whether can be used to diagnose LQTS. They measured TCRT, TLD among others and 
concluded that patients with short QT interval and with a history of arrhythmic events 
presented abnormal values of T-wave morphology parameters (Anttonen et al., 2009). 
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significantly higher in LQTS than in HS. They concluded that eigenvalues relationship can 
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developed by Kesek et al. in 2004. They calculated CR, TWRa and TWRr which were assessed 
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concluded that patients with short QT interval and with a history of arrhythmic events 
presented abnormal values of T-wave morphology parameters (Anttonen et al., 2009). 
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4.2 Other T-wave morphology indexes  
T-wave amplitude, T-wave symmetry and the relationship between T-wave areas were 
proposed as markers of cardiac arrhythmogenic. In ischemia, symmetry and amplitude of T-
wave changes (Hartikainen, 2004) agreed with a computer model (Di Bernardo et al., 2001) 
in which this disease was simulated. Studies have found differences in amplitude, area and 
symmetry of the T-wave stress test (Langley et al., 2002), antiarrhythmic and PVS with 
respect to control (Arini et al., 2005). 
The beat-to-beat variability of VR using QT interval (Section 3.2) approach is largely 
influenced by criteria used to detect T-wave end point, as was mentioned in Section 2.3. In 
order to solve this problem, Steinbigler et al. developed the technique of T-wave Spectral 
Variance (TWSV) using the two dimensional Fast Fourier transform. This technique can detect 
dynamic changes in VR pattern either in amplitude or duration independently of the exact 
delineation of T-wave end (see Fig. 3). Steinbigler et al. tested TWSV capacities to detect 
inhomogeneities of VR in retrospective way of post-MI patients with and without a history 
of arrhythmias (Steinbigler et al., 1998). Later on, Valverde et al., using an animal model of 
myocardial infarction, verified the presence of dynamic VR heterogeneity associated with 
chronic MI and further contributes to identify the infarcted animals (Valverde et al., 2002). 

4.3 Micro T-wave alternans  
The electrical T-wave alternans is defined as a variation in VR morphology on an alternate 
beat basis (Murda’H et al., 1997) and can be distinguished in macro and micro alternans.  
Macro T-wave alternans refers to a systematic or beat to beat alteration in amplitude, width, 
and/or shape which can be visualized easily in surface ECG. Micro T-wave alternans (µTWA) 
is a microscopic alteration of ST-T complex or T-wave, which are revealed through the 
digital processing of ECG signal (Lux & Brockmeir, 2004) showing dynamic heterogeneity of 
VR. Experimental and clinical evidence shows that µTWA are linked to abnormal 
electrophysiological functions and are cardiac risk markers in patient with coronary artery 
disease (Ikeda et al., 2002; Nearing et al., 1991; Pires 2002; Rosenbaum et al., 1996 as cited in 
Lux & Brockmeir, 2004) dilated cardiomyopathy (Adachi et al., 1999 as cited in Lux & 
Brockmeir, 2004), myocardial hypertrophy (Kon-No et al., 2001, as cited in Lux & Brockmeir, 
2004) and hypertension (Hennersdorf et al., 2001, as cited in Lux & Brockmeir, 2004). Pastore 
et al. measured cellular APD employing optical mapping techniques in the epicardial 
surfaces of guinea pigs revealing more details about µTWA mechanism. They demonstrated 
that when HR is incremented to critical values, spatial gradients of VR can be developed by 
neighboring cells membrane repolarization alternating with the opposite phase. This 
behavior can be detected in surface ECG at microvolt levels and the heterogeneities 
produced are the cause of regional VRD. Also, these gradients have enough magnitude to 
induce unidirectional block and reentrant VF (Pastore et al., 1999).  
The principal technique used to detect µTWA is spectral analysis and their presence is 
defined by a magnitude of 1.9 μV or greater, the relationship between µTWA and HR and 
alternans ratio (Bloomfield et al., 2002).  
The spectrum depicts the frequencies at which beat-to-beat fluctuations in the amplitude of 
the T-wave occur. The µTWA is present with a periods generally of two beats (2:1 
relationship) and this appears in the spectrum at a frequency of 0.5 cycles per beat (cpb), 
hence, the magnitude of the peak at this frequency is a direct measure of electrical alternans 
allowing differentiate it from another signals occurring at other frequencies like noise or the 
breathing signal (Murda’H et al., 1997).  
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The measurement of µTWA is highly dependent on HR, appearing when the HR increases 
above 90 beats per minutes (Bloomfield et al., 2002). The µTWA measurement can be done in 
a non invasive way during exercise stress testing or in an invasive way during atrial 
stimulation with the final objective of keeping HR invariant (Constantini, 2004). 
Another important feature of spectral analysis is the alternans ratio (AR), whose value 
represents the number of standard deviation for which the alternans magnitude exceeded 
the noise level (Bloomfield et al., 2002). 
The significant finding was done by Adam et al. between 1981 and 1984 quantifying from a 
non-invasive way in dogs (see Table 3) µTWA to determine the existence of relation between 
temporal variability of VR and susceptibility to VF, measured with an index called VF 
Threshold (VFT). The VFT was reduced inducing hypothermia, tachycardia and by coronary 
artery ligation (CAL). They found that when VFT was reduced, a µTWA pattern was 
developed. They made an index, T-wave Alternans Index (TWAI), defined as the square 
root of the amplitude of the power spectrum minus the noise (Adam et al., 1984) and it was 
called spectral method (SM). 
Smith et al., in 1988 quantified the degree and statistical significance of waveform 
alternation present in the magnitude of the three orthogonal-lead ECG. Smith et al. reported 
the relationship between electrical alternans and electrical stability that was found in 
experimental models with dogs and clinical studies (see Table 3). The electrical alternans was 
measured with an index called Alternating Electrocardiographic Morphology Index (AEMI) 
and electrical stability in dog preparations was assessed via VFT measurement and in the 
clinical studies via programmed stimulation (Smith et al., 1988). 
Nearing  et al. in 1991 implemented the Complex Demodulation Method (CDM) which 
detected the oscillatory nature of ECG signal during µTWA, modeling it like a sinusoidal 
signal of 0.5 cpb with phase and amplitude variable. The amplitude was estimated 
demodulating the 0.5 cpb signal components. They revealed that µTWA is concentrated 
during the first half of the T-wave coinciding with the vulnerable period of cardiac cycle, 
linking µTWA with vulnerability of VF (Nearing & Verrier, 1991).  
Rosembaum et al. in 1994 tested the Smith et al. hypothesis in humans by mean of 
electrophysiologic studies (see table 3). The µTWA was expressed by two indexes Cumulative 
Alternans Voltage (CAV) defined as the square root of the alternans peak minus the noise 
mean and the alternants ratio is defined like the ratio between the alternans peak minus the 
noise mean and the noise standard deviation. The electrophysiologic test was considered 
positive if sustained Ventricular Tachycardia (VT) or VF was induced after applied extra 
stimuli. They concluded that µTWA was a significant predictor of inducible arrhythmias on 
electrophysiologic testing (Rosembaum et al., 1994). 
The method proposed by Laguna et al. consists on applying the Karhunen-Loeve Transform 
(KLT) to each element of an ST-T vector. Then they calculated the Power Spectral Density 
(PSD) of the KLi series by the FFT during fixed periods of time. Finally the power band is 
estimated in those bands around the frequency where alternans appear (0.5 and 0.25cpb). 
The µTWA is detected when a threshold is exceed. This robust method was validated using 
simulated and real ECG recordings (Laguna et al., 1996). 
Burattini et al. in 1997 performed a time domain Correlation Method (CM) for µTWA 
detection and compared it with the SM using simulation data. They analyzed the ability of 
these methods to detect non-stationary µTWA and µTWA under different factors which affect 
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The measurement of µTWA is highly dependent on HR, appearing when the HR increases 
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Author and 

year of 
publication 

Short description
Index or 

indication of 
µTWA 

Conditions for the evaluations of 
methodologies  

Adam et al. 
(1984) 

The experiments 
were performed in 

20 dogs 
TWAI 

Hypothermia Tachycardia CAL 

(7e.) 
7/7  VFT↓ 

p<0.03 
6/7 TWAI↑

p< 0.03 

Epicardial 
ECG (6 e.) 

6/6  TWAI↑
p< 0.02 

Epicardial 
ECG (11 e.) 

11/11 TWAI↑ 
p< 0.001 

Surface ECG 
(10 e.) 

07/10 TWAI↑ 
p< 0.09 

Surface ECG 
(10 e.) 

07/10 TWAI↑ 
p< 0.08 

Smith et al. 
(1988) The experiments 

were performed in 
10 dogs 

AEMI 
(ST-T) 

Hypothermia 
 

Transient occlusion 
of the LAD  

(10 e.)
10/10 AEMI↑ 

p<0.0001 

(10 e.,  24 m) 
17/24 AEMI↑ 

p<0.002 

23 studies  to 
predict 

inducibility of VT 
or VF  

Presence or 
absence of 
alternation  

Alternation identify the inducible 
population with Sen.: 92 % and Spec.: 

50% 
p< 0.05 

Rosembaum  
(1994) 

83 patients 
examined to 

evaluate if levels 
of µTWA predicted 

vulnerability to 
arrhytmia. 66 
patients were 

follows up for 20 
months 

 General analysis Patients follow up 

AR>2.5 

Sen.: 81 %, Spec.: 
84% 

p< 0.001 
 

µTWA and 
inducibility of 

ventricular 
arrhythmias, 

significant 
predictors of 

survival without 
arrhythmia p<0.001 

CAV>10 (µV)
Sen: 80 %, Spec: 79%

p< 0.003 

Nearing & 
Verrier 
(2002) 

Simulated ECG 
and studies in 13 
dogs with CAL to 

assess 
vulnerability to VF

Not specified

Simulation Studies Experimental Studies 

The tests present a  
ρ= 0,999 indicating 
precision in µTWA 

detection 

Revealed 
vulnerability to MI- 

induced VF Sen.: 
100 %,Spec.:100 % 

The expression x/z means x experiments (e) or measures (m) achieve a result from z experiments or 
measures made in total. Abbreviations employed in the table: Sen( Sensibility), Spec (Specificity), ρ 
(correlation coefficient), isch. (ischemic), CAL (Coronary Artery Ligation), LAD (left anterior descendent) 
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real ECG records. The study proved that SM is not adequate for detecting non- stationary 
µTWA, and while both methods are suitable to detect µTWA in noise presence, with CM were 
obtained better results (Burattini et al., 1997). In 1999 CM was applied to ECG Holter records 
from LQTS patients and healthy subjects (Burattini et al., 1999). 
Martínez et al. in 2000 evaluated the CDM and CM before mentioned and proposed two 
alternative methods, one of them was a variation of CDM called Capon Filtering Method 
(CFM) and the other one based on the KLT. CFM consisted on the replacement of the 
deterministic filter by a data dependent Capon filter. In addition, Martinez et al. proposed 
transform the ST- T complex by means of KLT and then apply the CFM. The evaluation of the 
different detectors was carried out using simulated and real data. This study concluded that 
CM performed worse than the other methods, which showed a similar performance, having 
the method that employ KLT and CFM higher computational complexity (Martinez et al., 
2000). 
In 2002 was proposed a new method to analyze µTWA called Modified Moving Average 
(MMA) (see Table 3). This one consists on dividing the beats in even beats (A) and odd beats 
(B) and making  a moving average for A and another for B. The µTWA is determined like the 
maximum absolute difference between A and B MMA within the ST segment and T-wave 
region. They concluded that MMA is better than CDM because the MMA signal processing 
features are superior to CDM which can be affected by artifacts (Nearing &Verrier, 2002).  
A work published in 2002 by Martínez & Olmos showed that the SM and CDM can be 
interpreted like a Generalized Likelihood Ratio Test (GLRT) for detection of µTWA and tried 
to prove that Laplacian distribution is more appropriate to model the noise in µTWA than 
Gaussian. For this they developed a Laplacian Likelihood Ratio (LLR) method which looked 
for estimate µTWA with the maximum likelihood estimator (MLE) and detect them 
employing a GLRT. LLR for Laplacian noise was tested with simulated data and founding 
that LLR is more robust than SM and CDM but the results obtained were not as significant 
as was expected (Martínez & Olmos, 2002). In 2003 they employed this model with 
nonstationary noise obtaining similar results (Martínez & Olmos, 2003). 
Monasterio & Martínez in 2009 developed a multilead scheme (MS) in which combined LLR 
with PCA comparing it with a single- lead (SLS) approach in which detected µTWA lead by 
lead using Laplacian GLRT and alternans estimation is achieved with MLE (Martínez & 
Olmos, 2002). The MS consists on finding the eigenvectors matrix applying PCA to the output 
of a detrending filter which input was a data matrix, obtaining the transform leads and µTWA 
detection is achieved applying Laplacian GLRT to them. The MS was tested with simulated 
data and showing better results with a lower SNR than the SLS. Moreover both methods were 
applied on stress ECG records in healthy and ischemic patients. With MS better results were 
obtained (Monasterio et al., 2009). In 2010 they presented a MS based on periodic component 
analysis (πCA) concluding that the new πCA MS detect most efficiently than the MS detector 
based on PCA, and the SLS approach (Monasterio & Martinez, 2010) 

5. Conclusions 
It has been proposed in the literature several indexes to quantify hetereogeneity of VR  
using surface ECG. These indexes could be divided into two groups: those based on ECG 
duration and those founded on ECG morphology. Also, in general, these indexes can be 
used to evaluate: a) In an individual beat simultaneously recorded leads (spatial 
heterogeneity) which can be calculated as: QTD, TW, TPE, CR, TCRT, TMD, TWR, T-wave area and 
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real ECG records. The study proved that SM is not adequate for detecting non- stationary 
µTWA, and while both methods are suitable to detect µTWA in noise presence, with CM were 
obtained better results (Burattini et al., 1997). In 1999 CM was applied to ECG Holter records 
from LQTS patients and healthy subjects (Burattini et al., 1999). 
Martínez et al. in 2000 evaluated the CDM and CM before mentioned and proposed two 
alternative methods, one of them was a variation of CDM called Capon Filtering Method 
(CFM) and the other one based on the KLT. CFM consisted on the replacement of the 
deterministic filter by a data dependent Capon filter. In addition, Martinez et al. proposed 
transform the ST- T complex by means of KLT and then apply the CFM. The evaluation of the 
different detectors was carried out using simulated and real data. This study concluded that 
CM performed worse than the other methods, which showed a similar performance, having 
the method that employ KLT and CFM higher computational complexity (Martinez et al., 
2000). 
In 2002 was proposed a new method to analyze µTWA called Modified Moving Average 
(MMA) (see Table 3). This one consists on dividing the beats in even beats (A) and odd beats 
(B) and making  a moving average for A and another for B. The µTWA is determined like the 
maximum absolute difference between A and B MMA within the ST segment and T-wave 
region. They concluded that MMA is better than CDM because the MMA signal processing 
features are superior to CDM which can be affected by artifacts (Nearing &Verrier, 2002).  
A work published in 2002 by Martínez & Olmos showed that the SM and CDM can be 
interpreted like a Generalized Likelihood Ratio Test (GLRT) for detection of µTWA and tried 
to prove that Laplacian distribution is more appropriate to model the noise in µTWA than 
Gaussian. For this they developed a Laplacian Likelihood Ratio (LLR) method which looked 
for estimate µTWA with the maximum likelihood estimator (MLE) and detect them 
employing a GLRT. LLR for Laplacian noise was tested with simulated data and founding 
that LLR is more robust than SM and CDM but the results obtained were not as significant 
as was expected (Martínez & Olmos, 2002). In 2003 they employed this model with 
nonstationary noise obtaining similar results (Martínez & Olmos, 2003). 
Monasterio & Martínez in 2009 developed a multilead scheme (MS) in which combined LLR 
with PCA comparing it with a single- lead (SLS) approach in which detected µTWA lead by 
lead using Laplacian GLRT and alternans estimation is achieved with MLE (Martínez & 
Olmos, 2002). The MS consists on finding the eigenvectors matrix applying PCA to the output 
of a detrending filter which input was a data matrix, obtaining the transform leads and µTWA 
detection is achieved applying Laplacian GLRT to them. The MS was tested with simulated 
data and showing better results with a lower SNR than the SLS. Moreover both methods were 
applied on stress ECG records in healthy and ischemic patients. With MS better results were 
obtained (Monasterio et al., 2009). In 2010 they presented a MS based on periodic component 
analysis (πCA) concluding that the new πCA MS detect most efficiently than the MS detector 
based on PCA, and the SLS approach (Monasterio & Martinez, 2010) 

5. Conclusions 
It has been proposed in the literature several indexes to quantify hetereogeneity of VR  
using surface ECG. These indexes could be divided into two groups: those based on ECG 
duration and those founded on ECG morphology. Also, in general, these indexes can be 
used to evaluate: a) In an individual beat simultaneously recorded leads (spatial 
heterogeneity) which can be calculated as: QTD, TW, TPE, CR, TCRT, TMD, TWR, T-wave area and 
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T-wave amplitude or b) in a sequence of beats (dynamic heterogeneity) which can be 
calculated as: QTV, TWSV, and µTWA. 
The nature of the relationship between QTD and VRD is controversial, as was showed in Fig. 
3. First, due to technical issues, involving the determination of the T-wave end, the existence 
of U-wave and notched T-waves, as was showed in Fig. 3. Second, the problems with 
determining increased heterogeneity of VR using QTD are the effects generated by the 
projections of TL that have different shapes and different angles onto the axis of each ECG 
lead, which results in T-waves that have different amplitudes and morphologies. That is 
how to emerge the necessity to find indexes that allow study another aspects of VR and 
caracterize their anormalities, solving at the same time the problems with measures in the 
time-domain transforming the ECG signals to another domain obtained by SVD (see Fig. 4).  
CR has been evaluated in different cardiac pathologies. This index was employed using 12 
standard ECG-lead and, although certain commercial equipment include it, its role in 
diagnostic is not well defined. In general, the T-wave morphology indexes, such as, TCRT, 
TMD, TWR, TWSV, have detected medium and high cardiac risk, however, the association 
between pathological mechanisms and these indexes still need further study.  
In another sense,  the TW evaluated from RMS curve or absolute ECG summation signal, 
could measure apex-base or transmural VRD or both simultaneously, but it is necessary to 
study these parameters in different cardiac conditions. Although, TPE was measured in a few 
clinical studies, the results are controversial. While T-wave symmetry and the relationship 
between T-wave areas has been proposed like cardiac risk markers (Zareba et al., 2000), its 
use is not widespread.  
The µTWA index have shown as a promising risk stratification index of SCD in some clinical 
populations, and as an important marker of cardiac electrical instability linking µTWA with 
VRD and ventricular arrhythmias. Despite this, there are still technical limitations in the 
determination of µTWA and controversy about its clinical validity under certain 
circumstances. On the other hand, there are a lot of techniques which detect and measure 
µTWA, but have not been standardized the optimal times, conditions and methods for the 
measurement of µTWA. Also , µTWA has not been evaluated in combination with other 
markers of SCD risk. All these aspects not covered yet, can be explored in future studies. 
In conclusion, some indexes presented and evaluated in this chapter have restricted capacity 
to predict cardiac risk, and others have shown potential but still need to validate in medical 
practice. Also most of them have been evaluated in small patient populations and some of 
them only in animal models. Hence, in general, it should be carried out more tests for their 
implementation in the clinical practices. Finally,  it would be important an expert consensus 
to unify criteria for assessment of the parameters to evaluate VRD in the same way that was 
done for another ECG computational techniques like late potentials in high-resolution ECG 
(Breithardt  et al., 1991) or heart rate variability, (Heart rate variability-Standard, 1996) for 
which have been developed several standard documents by specialized committees. 
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1. Introduction 
Significant QT interval prolongation may induce severe polymorphic ventricular tachycardia 
called Torsade de Pointes (TdP). TdP is a type of ventricular tachycardia (VT) characterized by 
a twist of the QRS wave around the baseline. In some cases this leads to fatal ventricular 
fibrillation (VF), which is why it is of particular importance among cases of arrhythmia.  
QT prolongation causes TdP which may then induce fatal VF. Common causes of QT 
prolongation include idiosyncratic causes such as gene deficiency, drugs, and drug-drug 
interactions. There are many cases of QT prolongation caused by drugs used to treat non-
cardiac related conditions; these cases involve unintended, adverse ‘collateral’ effects. 
Consequently, most of the drug-related cases fall outside the scope of the doctor's area of 
speciality and/or expectations, which makes it difficult to take preventive and therapeutic 
measures. It is for this reason that it is important to identify drugs that are likely to cause QT 
prolongation. Here, we outline drug that may cause QT prolongation and drug-drug 
interaction induced QT prolongation that could cause serious arrhythmia. 

2. What is QT prolongation? 
QT interval defines the start of the Q wave and the end of the T wave in an 
electrocardiogram, representing the time between depolarization and repolarization of the 
ventricles. Its value is a measurement from phase 0 (upstroke), through phase 1 (spike) and 
phase 2 (plateau) to phase 3 (rapid repolarization) (Fig. 1). Phase 4 is a phase between action 
potentials. QRS represents the depolarization of the ventricle, reflecting the membrane 
potential range as the ventricular depolarization wave propagates from subendocardial to 
subepicardial. The T wave represents the potential differences of ventricular repolarization. 
Factors that cause QT interval prolongation include the prolongation of cardiac ventricular 
action potential duration (APD), and an increase in nonuniformity of repolarization.  
The QT interval shortens in tachycardia but prolongs in bradycardia. There is no significant 
difference based on gender, while there is a weak tendency for the QT interval to prolong in 
females as they age. It is necessary to distinguish between two types of bradycardia: the PP 
interval prolongation on the one hand, and the QT interval prolongation on the other. When 
comparing QT intervals under different pulse rates, it is standard practice to use the 
corrected QT interval using Bazett’s formula (QTc = QT/ RR ). Other formulae include 
Fredericia’s (QTc = QT/ 3 RR ) and Van de Water’s (QTc = QT−0.087×(RR-1000)) (Kato et al., 
2009). The Bazett QTc values are smaller than actual QT measurements as the RR 
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Fig. 1. The relation between electrocardiogram and monophasic action potential from 
ventricular muscle. 

interval prolongs in bradycardia, while in tachycardia they are larger. Here, we adopt the 
formula among those mentioned above that shows the lowest correlation between the QTc 
and the RR interval. Normally, QTc values remain constant during both rest and exercise. 
QT prolongation occurs when QTc values fluctuate to greater than 0.44 sec. When the QTc 
values are normal (constant), the QT interval should be shortened under exercise compared 
with resting. QT prolongation occurs when this balance was disrupted. Significant QT 
interval prolongation may induce a severe polymorphic ventricular tachycardia called 
Torsade de Pointes (TdP). TdP is a type of ventricular tachycardia (VT) characterized by a 
twist of the QRS wave around the baseline. The pulse rate can reach 150-300 beats per 
minute, leading to severe symptoms such as fainting. In some cases this leads to fatal 
ventricular fibrillation (VF), which is why it is of particular importance amongst cases of 
arrhythmia. QT prolongation causes TdP that may induce fatal VF, which is why it is 
important to distinguish PP interval prolongation from QT interval prolongation.  

3. What causes QT prolongation? 
Long QT syndrome (LQTS) is roughly classified into two types, namely hereditary and 
acquired LQTS. The former is known to be caused by a disparity between the left and right 
sympathetic nerve systems stemming from some genetic defect, or by defect in SCN5A (the 
Na+ channel encoding gene) (Lehnart et al., 2007) or hERG (the K+ channel encoding gene) 
(Lehnart et al., 2007). Risk factors for the latter include: 1. An electrolyte abnormality such as 
hypokalemia (outward K+ current decreases, with APD prolonging) and magnesium 
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deficiency (diuretics can also be a significant cause); 2. Bradycardia; 3. Hypothyroidism; 4. 
Myocardial infarction with abnormality of K+ channel; 5. Drugs, and interactions between 
them.  
Next, let us turn now to the electrophysiological mechanism of LQTS. There are a number of 
different kinds of membrane currents on myocardial cells that are involved with resting 
potential and action potential formation. Extracellular Na+ and Ca2+ concentration levels are 
higher than intracellular levels, and the Na+ current that moves inward (from outside to 
inside of the cell) forms the depolarization phase (fast channel) while the Ca2+ current forms 
the plateau phase (slow channel). On the other hand, K+ concentration levels outside the 
cell are lower than levels inside, and the repolarization phase involves the delayed outward 
rectifying K+ current as well as the time-independent inward-rectifying K+ current. When 
factors such as drugs are introduced and suppress these K+ currents, the QT interval 
prolongs as the prolongation of action potential duration. In the case of TdP accompanying 
the acquired LQTS, the triggered activity by early afterdepolarization (EAD) or delayed 
afterdepolarization (DAD) is presumed to play an important role with a possible re-entry 
involvement.  
EAD is an oscillatory potential that occurs in the vulnerable period at the end of the plateau 
phase when APD prolonged. Triggered activity is generated when EAD reaches the 
threshold potential and triggers a new action potential. Proposed causes of EAD include: 1. 
K+ conductance reduction (K+ channel blocking); 2. Na+ conductance increases (aconite 
poisoning, familial LQTS); 3. Ca2+ conductance increases (sympathetic nervous system 
excitation, catecholamine administered). DAD, on the other hand, is an oscillation in the 
membrane potential immediately after the myocardinal action potential, or oscillatory after 
potential. The DAD oscillation can get big enough to constitute triggered activity. One way 
to grasp the effects on EAD and DAD is to measure the monophasic action potential (MAP) 
of the myocardium. The MAP measurement makes it possible to examine the Na+, Ca2+ and 
K+ currents. MAP30 (MAP duration at 30% of repolarization) indicates the Ca2+-ion inward 
current. MAP90 (MAP duration at 90% of repolarization) indicates the K+-ion outward 
current. MAP triangulation (MAP90–30) indicates if Ca2+ channels or IKr channels are 
involved (Kato et al., 2009).  
In the case of arrhythmia from digitalis, Na+/ K+-ATPase inhibition increases intracellular 
Na+ which activates the Na+/ Ca2+ exchange mechanism. This in turn increases the 
intracellular Ca2+ concentration level, generating an inward current which makes the 
sarcoplasmic reticulum unstable. Ca2+ may then be released from the sarcoplasmic 
reticulum during phase 4 in the action potential, again causing depolarization leading to 
DAD. However, DAD from digitalis should follow a relatively mild development, as it is 
caused by the pumping function of Na+/K+-ATPase; it is unlikely to induce TdP that leads 
to VF. 

4. TdP’s clinical manifestations, outcome and treatment 
While a number of TdP cases go unnoticed with no recognizable clinical symptoms, there 
are also cases with clear manifestations. Initial symptoms include increased dizziness, 
palpitation, pain in the chest, and discomfort in the epigastric region and in the chest. These 
are attributable to the elimination of the P wave by VT; blood ejection from the heart is 
suspended and no palpable pulse is detected, although the heart is still beating. At this 
stage, it is possible to manage the situation by discontinuing or reducing medication if there 
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Fig. 1. The relation between electrocardiogram and monophasic action potential from 
ventricular muscle. 
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is any suspected drugs. Symptoms may worsen to include anacatesthesia, fainting, and 
convulsion before proceeding to VF that causes sudden death. It is necessary at this stage to 
discontinue medication immediately (if any) and arrange for an AED as well as for an 
ambulance. The patient needs to be admitted to an ICU or CCU for treatments such as 
electrolyte correction, defibrillation, lidocaine administration, and temporary pacing. 

5. Drugs that may cause QT prolongation 
Drugs that may cause QT prolongation include anti-arrhythmics, psychotropics, and anti-
biotics among others (Table 1).  

5.1 Anti-arrhythmic drugs 
The drugs that fall under Ia in the Vaughan Williams classification reduce action potential 
slew rate (dP/dt max), and prolong APD by Na+ channel inhibition (depolarization phase). 
It follows then that reducing dP/dt max prolongs APD, but there is a limitation on the 
overloading of Ca2+ from sustained depolarization. Abnormal Na+ channel activities are 
unlikely to cause TdP unless there is a deficiency of SCN5A. TdP tends to occur in K+ 
currents where the K+ channel is inhibited, which delays repolarization time, with the result 
that APD is prolonged; K+ channel inhibition can prolong ADP indefinitely. Under Ic, 
propafenone is also thought to be a factor because of its β-blockade function that causes 
bradycardia.  
Under III, amiodarone, sotalol and bretyrium can prolong APD mainly by inhibiting 
outward K+ current (depolarization phase). They also share β-blocking properties that lead 
to bradycardia and hence to TdP.  
Under IV, bepridil, which is classified as Ca antagonist, is thought to inhibit Na+ channel 
and outward K+ current, which causes APD prolongation and TdP.  

5.2 Psychotropic drugs 
QT prolongation and TdP can be caused by antipsychotic drugs (chlorpromazine, 
phenothiazine; haloperidol, butyrophenone), tricyclic antidepressants (amitriptyline) and 
tetracyclic antidepressants (maprotiline). The mechanism appears to involve a quinidine-
like effect, while a range of factors are also cited such as electrolyte imbalance, myocardial 
membrane enzyme disorder, myocardial tissue degeneration, and effects on autonomic 
nervous system, among others (Hunt et al., 1995). 

5.3 Peripheral anti-histamine drugs 
Antiallergic drugs with antihistaminic properties such as terfenadine and astemizole fall 
under this group. Terfenadine and astemizole are prodrugs whose metabolites have 
antihistaminic properties. Their parent compounds significantly inhibit K+ currents. There 
have been fatal cases involving astemizole overdose as well as terfenadine administration 
where ventricular arrhythmia accompanied QT prolongation. In the five years after going 
on sale, seven severe side-effect cases of arrhythmia involving terfenadine were recognized. 
In 1995, a ‘warning’ section was added and the instructions for use were revised. However, 
in the two years following that, ten potentially fatal side-effect cases surfaced that involved 
QT prolongation and ventricular arrhythmia. In 1997, ‘Urgent Safety Information’ was 
submitted to call for extra care for the use of the drug before its sale was suspended in 2001. 

 
Medicines and QT Prolongation 

 

211 

The sale of astemizole was suspended in 1999. The mechanism of QT prolongation by 
terfenadine is thought to involve prolongation of myocardial repolarization time via 
delayed outward K+ current inhibition; it appears that antihistaminic metabolites do not 
significantly inhibit the K+ channel (Valenzuela et al., 1997). QT prolongation or TdP caused 
by these drugs is due not to antihistaminic properties but to K+ current inhibition. At 
present, there have been no reports of QT prolongation involving ebastine though it has 
been known to block delayed rectifier K+ current, albeit to a significantly lesser degree when 
compared to terfenadine (Valenzuela et al., 1997; Ko et al., 1997). It is in this context that 
fexofenadine, a metabolite of terfenadine, was developed. Fexofenadine is presumed to be 
safe, but its structural similarity to terfenadine suggests a possible parallel effect. Ebastine 
and fexofenadine need further careful study. 

5.4 Gastrointestinal prokinetic agents 
Cisapride was withdrawn from the market after the claim was made that it caused diabetic 
QT prolongation. Cisapride causes APD prolongation in extracted myocardial cells of 
laboratory animals, and dose-dependent prolongation of monophasic action potential 
duration (MAPD) in anesthetized animals, leading to QT prolongation and TdP (Carlsson et 
al., 2007). Mosapride is another gastrointestinal prokinetic agent with a similar chemical 
structure to that of cisapride. Animal testing has shown that it does not affect APD or 
MAPD, and it does not induce abnormal ECG such as QT prolongation or TdP (Carlsson et 
al., 2007).  
It appears then that QT prolongation caused by this group of drugs is based not on the 
serotonin agonist property, which is the drug’s main effect, but rather on its inhibition of the 
K+ channel.  

5.5 Macrolide anti-biotics 
Erythromycin causes QT prolongation by inhibiting the delayed rectifier K+ current (Rubart 
et al., 1993; Daleau et al., 1995). When combined with terfenadine or cisapride (discussed 
above), erythromycin enhances QT prolongation by blocking drug-metabolizing enzymes.  

5.6 Anthracycline anti-cancer drugs 
Among anthracycline anti-cancer drugs, doxorubicin is known to cause myocardial damage. 
It appears to enhance the sensitivity of depolarization in phase 4 (Mitrius et al., 1990).  

5.7 Azole anti-fungal drugs 
Azole anti-fungal drugs such as fluconazole and voriconazole are also known to cause QT 
prolongation. They are metabolized by the drug-metabolizing enzyme CYP3A4 while 
simultaneously inhibiting it. QT prolongation is caused either by the increasing serum 
concentration of the drug itself, or by increasing the serum concentration of some other drug 
that would otherwise be metabolized by CYP3A4; the latter case may involve a drug such as 
erythromycin. This calls for extra care for combinatory use of these drugs. 

5.8 Sulfonylureas (SUs) and Glinides as Oral Anti-diabetic Drugs 
SU and glinide agents are known to inhibit ATP-dependent K+ channels. The similarity in 
mechanism is also increasingly evident between Class Ia anti-arrhythmic drugs and the 
hypoglycemic function of SUs and glinides (Kakei et al., 1993; Hayashi et al., 2004). SUs and 
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glinides can potentially induce QT prolongation when they affect the heart’s ATP-
dependent K+ channels.  

5.9 Sulfa drugs 
Like SUs, a pentamidine and ST mixture may cause QT prolongation and hypoglycemia. 
Considering that SUs are modified sulfa drugs, they belong to the same strain that may 
affect ATP-dependent K+ channels. 

5.10 New quinolones 
There have been cases of TdP from QT prolongation caused by sparfloxacin and 
moxifloxacin, both new quinolones. The mechanism appears to involve K+ channel 
inhibition. 

5.11 Molecular targeted cancer drugs 
There have been cases of QT prolongation or myocardial damage from sunitinib, 
bortezomib, sorafenib, lapatinib, and nilotinib, among others.  

5.12 Others 
A study has been done on probucol induced QT prolongation as a result of a change in 
catecholamine sensitivity, as well as K+ current inhibition (Hayashi et al., 2004). Further 
study and consideration is needed. Meanwhile, QT prolongation is also known to be caused 
by diuretics that cause hypokalemia and magnesium deficiency, by cimetidine the histamine 
H2 receptor antagonist, or even by contrast media. 
 

 
Table 1. Drugs that may cause QT prolongation. 
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6. Drug-drug interaction induced QT prolongation 
Drug interaction is an important factor for QT prolongation. Drug-drug interaction is 
divided into pharmacodynamic interaction and pharmacokinetic interaction.  

6.1 Pharmacodynamic Interaction 
Drugs that are likely to cause QT prolongation are shown in Table 1. Combining two or 
more reinforces medicinal action additively; doses should be reduced or avoided altogether.  

6.2 Pharmacokinetic Interaction 
This involves cases where drug metabolism inhibition increases serum concentration, 
resulting in QT prolongation. Erythromycin, azole anti-fungal drugs, and molecular 
targeted cancer drugs are metabolized by CYP3A4, a microsomic drug metabolizing enzyme 
(that does exist outside the liver). When the above mentioned drugs were combined with a 
drug metabolized by enzymes of the same molecular kind or with a CYP3A4 blocking drug, 
the serum concentration to increase compared with a single dose of the drug (Table 2). The 
former is known as competitive antagonism, the latter as non-competitive antagonism; it is 
the latter that causes a sharper increase in serum concentration.  
An abnormal terfenadine-induced ECG is thought to be the result of increasing serum 
concentrations of an parent compound, produced by the combined use of terfenadine and a 
CYP3A4-blocking drug from Table 2. Drug-drug interactions like that just described are 
why the drugs shown under Table 2 were contraindicated for combined use. An active 
carboxylic acid metabolite of terfenadine called fexofenadine went on the market. It is 
claimed that fexofenadine does not have the same cardiac related side effects that tefenadine 
has, however the structural similarity between the two is enough to warrant some caution. 
Ebastine metabolism is thought to involve CYP3A4, a microsomic enzyme, as well a another 
metabolizing enzyme. In theory, ebastine should be less likely to lead to TdP than 
terfenadine, though extra care must be taken when extrapolating data from clinical and non-
clinical testing. 
Grapefruit juice is known to inhibit CYP3A4, which means it can cause QT prolongation by 
increasing the serum concentration of erythromycin, azole anti-fungal drugs, and molecular 
targeted cancer drugs.  
 

 
Table 2. Drugs that are likely to cause QT prolongation by CYP3A4-blocking. 
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7. QT prolongation - what measures to take 
In the case of drug-induced QT prolongation, the crucial clinical concern is not the QT 
prolongation itself, but TdP or VF that may follow. It is important then to determine 
whether QT prolongation is just a simple case of bradycardia (PP interval prolongation), or 
bradycardia caused by the QT prolongation. The main and intended effect of anti-
arrhythmic drugs classified under Ia is QT prolongation. However, drugs intended for other 
parts of the body can also cause the same QT prolongation in the heart; this is their collateral 
effect. Under these circumstances it has been extremely difficult for doctors to recognize 
early symptoms, largely because it falls outside the physician’s area of specialty when the 
case involves drugs other than those described under section 5-1 (‘Anti-arrhythmic Drugs’). 
There was a case of antipruritic (anti-histamine agent) that caused a totally unexpected fatal 
arrhythmia. Cisapride disappeared from the market, leaving the new term ‘Diabetic QT 
Prolongation’. Furthermore, it is intriguing to note the similarity in mechanism between SUs 
and cibenzoline, an anti-arrhythmic drug classified under Ia of the Vaughan-Williams 
classification. Far too many QT prolongation cases that could have been predicted have 
gone unnoticed. The intended effect of the drug was the focus of attention, while the 
obvious ‘collateral effect’ was unobserved. 
In order to detect early symptoms of the collateral effect, attention must be paid to: 1. What 
drugs can cause a collateral effect; 2. Factors on the part of the patient (e.g. certain conditions 
obtained when sick); 3. Drug-drug interaction. When encountered with early symptoms of 
TdP such as increased dizziness, palpitation, pain in the chest, and discomfort in the 
epigastric region and in the chest, medication should be discontinued and immediate 
medical attention should be sought.  

8. Conclusion 
Side effects are classified into toxic (dose-dependent) and allergic. The former is a simple 
extension of the main effect: serum concentration increases dose-dependently in a 
predictable fashion. The latter is hard to predict because it increases dose-independently in 
an idiosyncratic fashion. The QT prolongation under discussion belongs to the former and is 
indeed predictable. When QT prolongation is an extension of the main drug effect (anti-
arrhythmic effect) and is confirmed by a specialist as such, preventive or therapeutic 
measures can be taken before it is too late. However, when QT prolongation is caused by 
the drugs discussed under sections 5-2 through 5-12 (psychotropics, anti-histamines, 
gastrointestinal prokinetic agents, anti-biotics, anti-cancer agents, etc.), it is difficult to take 
preventive or therapeutic measures against these ‘collateral’ effects because most of these 
cases are simply beyond the scope of the doctor in charge. This has indeed resulted in a 
number of cases where QT prolongation was not diagnosed, with unfortunate results. It is 
essential to learn from these past experiences and develop proactive treatments. 
A new guideline (ICH S7B) providing provisions for a QT prolongation screening test for 
new drug development was issued by ICH, the International conference on Harmonization 
of Technical Requirements for Registration of Pharmaceuticals for Human Use 
(http://www.ich.org/products/guidelines/safety/article/safety-guidelines.html). Aside 
from the provided guidelines, it is important to look for substances that do not block K+ 
channels when developing drugs; one can make use of hERG or a screening method using 
MAP (Kato et al., 2009) . 
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7. QT prolongation - what measures to take 
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gone unnoticed. The intended effect of the drug was the focus of attention, while the 
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8. Conclusion 
Side effects are classified into toxic (dose-dependent) and allergic. The former is a simple 
extension of the main effect: serum concentration increases dose-dependently in a 
predictable fashion. The latter is hard to predict because it increases dose-independently in 
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measures can be taken before it is too late. However, when QT prolongation is caused by 
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number of cases where QT prolongation was not diagnosed, with unfortunate results. It is 
essential to learn from these past experiences and develop proactive treatments. 
A new guideline (ICH S7B) providing provisions for a QT prolongation screening test for 
new drug development was issued by ICH, the International conference on Harmonization 
of Technical Requirements for Registration of Pharmaceuticals for Human Use 
(http://www.ich.org/products/guidelines/safety/article/safety-guidelines.html). Aside 
from the provided guidelines, it is important to look for substances that do not block K+ 
channels when developing drugs; one can make use of hERG or a screening method using 
MAP (Kato et al., 2009) . 
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1. Introduction 
Concealed conduction is a phenomenon which could be rarely seen on the surface of 
electrocardiography (ECG). The surface ECG  must be evaluated carefully for  determination 
of concealed conduction. Because concealed conduction manifests itself in different shape 
and level. This evaluation could prevent  misdiagnosis and unappropriate treatment. In this 
chapter we want to contribute to understanding this phenomenon. 

2. Historical perspective 
Concealed conduction of sinus impulse at the level of the AV node was documented in 
animal models in 1925 (1).  Nearly 20 years after the animal models, concealed conduction 
was shown in human heart by Langendorf et al (2). Initial animal and human models 
showed that concealed conduction occurred in the sinus node, around the sinus node, 
atrium, AV node and Hiss-Purkinje system (3-5). Following years many studies was 
published about the effect and electrophysiological mechanism of concealed conduction.  

3. Concealed conduction mechanism  
A number of investigators had since observed similar phenomena but it was not until the 
studies of Langendorf and Pick that the concept of concealed conduction was firmly 
established in electrocardiology (6,7). A wide variety of phenomenology has been described 
as consequences of penetration of impulses that do not emerge from the AV node (8). Some 
of these: delay of conduction of a succeeding propagated response, block of a succeeding 
atrial impulse that occurs at a time when the AV node should have been excitable, delay of 
the expected discharge of an AV nodal pacemaker. When an impulse penetrates the AV 
node but it does not traverse completely, at one point it becomes subthreshold for cells 
located distal to the site of block. This subthreshold event may be manifested in the distal 
cells as an electrotonic depolarization at a distance that depends on the membrane resistance 
and the degree of electrical coupling among cells. 
It was demonstrated initially by Antzelevitch and Liu (9,10) many of the phenomena 
described in terms of concealed conduction may be a consequence of the inhibitory action of 
subthreshold electrotonic potentials on subsequent responses in the Purkinje fiber and 
numerical experiments in models of AV nodal cells. Thus, electrotonic inhibition explain the 
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clinically observed phenomenon of concealed AV conduction. Subthreshold potentials in the 
AV node may result in delay of excitation or even failure of responses occurring later in 
time, that at least some variants of concealed AV conduction may be explained by 
electrotonically mediated reduction of ICa.T (10). 
Electrotonic inhibition and concealed conduction are widespread in cardiac tissues. 
However, we have very little knowladge about ionic mechanisms of electrotonic inhibition 
and concealed conduction. Electrotonic inhibition of excitability has been demonstrated in 
ventricular myocytes. Indeed, repetitive stimulation in myocytes, with depolarizing current 
pulses of threshold amplitude may elicit action potentials in a one-to-one manner. 
Furthermore, subthreshold pulse during a single diastolic interval may lead to a transient 
decay in excitability and even to complete failure of subsequent excitation. 
Liu et al, demonstrated that the specific role of ICa.T in the dynamic modulation of AV nodal 
excitability by premature inputs and suggest a plausible ionic mechanism for the regulation 
of action potential propagation through the AV nodal conducting system (10). Premature 
depolarization can modulate the amplitude of the transient calcium current,  the time course 
of such modulation is compatible with the diastolic time window during which electrotonic 
inhibition is permissible.  The modulation is directly associated with a decrease in ICa.T (10). 
IF may be responsible for electrotonic inhibition in Purkinje fibers (9). Previous experiments 
in pig ventricular myocytes have shown that diastolic excitability is modulated by the long 
time course of deactivation of IK (11). If conditioning pulse intervals were much longer than 
expected intervals for complete deactivation of IK , electrotonic inhibition occurred. Under 
such conditions, the basis of changes in the kinetics of ICa.T may easily explain this 
phenomenon. 

4. Concealed conduction  
The concealed conduction, is an extra impulse from the heart which penetrate the electrical 
system of heart on refractory period, regardless the impulse change characteristics of 
conduction system, it does not cause any contraction. The effect on subsequent events is an 
important part of the definition of concealed conduction because it differentiates the concept 
of concealed conduction from other forms of incomplete conduction, such as conduction 
blocks. It should be recalled that although the ECG reflects the electrophsiological properties 
of the myocardium, alterations of conduction more often reflect electrophysiological 
changes in the specialized tissues, the activity of which is not recorded on the surface ECG. 
The concept of concealed conduction, was introduced before (6,7), an explanation for the 
effects of incomplete penetration of an impulse into a portion of the A-V conduction system. 
The phenomena could observe on the surface ECG, but that was incompletely penetrating 
impulse and not directly reflected on the surface ECG; hence the term concealed.  
The manifestations of concealed conduction are numerous, because of variations of the site 
of impulse formation, the different effects of the anatomical site, the direction of the 
concealment (e.g., the heart rate, automatic tone, drugs, or electrolyte balance). 
The manifestations of concealed conduction include; 
a. prolongation of conduction,  
b. failure of propagation of an impulse,  
c. facilitation of conduction by “peeling back” refractoriness, directly altering 

refractoriness, and/or summation (12,13), and  
d. pauses in the discharge of a spontaneous pacemaker. 
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The concealed conduction usually occur in AV node and/or His-purkinje system. The 
conduction of AV node is silent, so that does not occur any deflexion on surface ECG. The 
conduction of AV node can be determined by measuring duration of PR. Sometimes, an 
extra impulse is originated from atria or ventricle which incompletly penetrate in AV node 
because of refractoriness of the AV node. The incomplete penetration of extra impulse to AV 
node cause prolongation of the PR interval or blockage of AV conduction (figure 1,2,3,4).  
A common example may be interpolated premature ventricular contraction (PVC) during 
normal sinus rhythm; the PVC does not cause an atrial contraction, because the retrograde 
impulse form the PVC does not completely penetrate the AV node. However this AV node 
stimulation can cause a delay in subsequent AV conduction by modifying the AV node´s 
subsequent conduction characteristic. Hence, the PR interval after the PVC is longer than the 
baseline PR interval. (figure 1,3).  
 

 
Fig. 1. Sinus rhythm and bigeminal PVC. P waves which follow PVC are blocked, Lewis 
diagram: A: Atrium, AV: Atrio ventricular, V: Ventricle.  
 

 
Fig. 2. First and second narrow QRSs are followed by PVCs with progressive prolongation 
of the PR interval and the blockage of the third sinus beat (Mobitz type I AV block). The 
third sinus beat is obscured by the T wave. The third and fourth narrow QRSs are also 
followed by PVCs and PR interval shows progressive prolongation. Since the fifth narrow 
QRS is not followed by a PVC, this prolongation does not end with the blockage of the next 
(7th) P wave, which is conducted with a normal PR interval. First, third, fourth, and fifth 
PVCs are interpolated, Lewis diagram: A: Atrium, AV: Atrio ventricular, V: Ventricle.    
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Fig. 3. Because of retrograde concealed conduction by a fascicular extrasystole (second beat) 
the next sinus impulse A-H interval is longer than before. 

 

 
Fig. 4. Concealed conduction by PVC (third beat) the subsequent sinus complex is a block in 
the A-V node (third atrial beat). 

Another example on concealed conduction concept is seen in atrial flutter and fibrillation. 
Some of the atrial activity fails to get through the AV node in an anterograde direction as a 
result of the rapid atrial rate. A long RR interval after repeated concealments is usually 
followed by an AV junctional escape impulse. If the RR is longer than the expected 
junctional escape interval, a concealed impulse of the junctional pacemaker could be 
suspected.    
In some cases, concealed conduction (extra impulse is orginated from atria or ventricle 
which has incompletly penetrated in AV node) repair the AV node refractory period and 
subsequent impulse conduct with normal or short duration of PR. This phenomen is called 
‘’peeling’’ or peeling back of the refractory period (figure 5).  
Concelaed conduction may be seen in bundle branch system. Functional bundle branch 
block may be seen as a result of rapid increase of ventricular rate and bundle branch block  
could continue until ventricular rate return to baseline heart rate. The functional bundle 
branch block may be explained by transseptal concealed conduction (figure 6).  Atrial 
impulse is conducted to the ventricle via a branch which is in non refractory period and  the 
other branch of conduction system is stimulated via transseptal concealed conduction which 
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is in refractory period during atrioventricular conduction. The next atrial impulse is 
conducted by the same branch because  of ongoing refractory period of the other branch. 
This stituation causes vicious cycle. This vicious cycle has been continued until heart rate 
decreases to critical ventriculer rate which elicits refractory period of all branches of cardiac 
conducting system. 
 
 

 
Fig. 5. During atrial pacing at a cycle length of 400 msec, 2:1 block below the His bundle 
occurs. After a PVC (arrow, the fifth complex), the P wave that block in the 2:1 sequence 
conducts to ventricle as other conducted complexes. The PVC repair the AV node refractory 
period and subsequent impulse conduct with normal duration. (S: stimulation, A: atrium, H: 
His, V: Ventricle). 

 

 

 
Fig. 6. Functional bundle branch because of increased heart rate and concealed transseptal 
conduction from LBB to RBB, resulting RBBB. Lewis diagram: A: Atrium, AV: Atrio 
ventricular, V: Ventricle, LBB: left bundle branch, RBB: right bundle brunch.      
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conducting system. 
 
 

 
Fig. 5. During atrial pacing at a cycle length of 400 msec, 2:1 block below the His bundle 
occurs. After a PVC (arrow, the fifth complex), the P wave that block in the 2:1 sequence 
conducts to ventricle as other conducted complexes. The PVC repair the AV node refractory 
period and subsequent impulse conduct with normal duration. (S: stimulation, A: atrium, H: 
His, V: Ventricle). 

 

 

 
Fig. 6. Functional bundle branch because of increased heart rate and concealed transseptal 
conduction from LBB to RBB, resulting RBBB. Lewis diagram: A: Atrium, AV: Atrio 
ventricular, V: Ventricle, LBB: left bundle branch, RBB: right bundle brunch.      



 
Advances in Electrocardiograms – Methods and Analysis 

 

222 

 
Fig. 7. Right ventricular extrastimulus with 350 msec coupling interval showing retrograde 
conduction over a left-sided accesory pathway (arrow) (because of short coupling interval 
the concealed conduction can not arrive to accesory pathway and accesory pathway  can be 
suitable for retrograde conduction).  
 

 
Fig. 8. Right ventricular extrastimulus with 380 msec coupling interval showing no 
retrograde conduction (the concealed conduction to accesory pathway prevents the 
retrograde conduction which cause resiprocating tachycardia).  
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One of circumstance related with concealed conduction is WPW sendrome. Atrial 
stimulation is conducted to the ventricle by passing AV node and  lead to resiprocating 
tachycardia result of recycling retrograde conduction via accesory pathway (figure 7). 
However,  concealed conduction to accesory pathway causes refractory period of accesory 
pathway and inhibition of retrograde conduction of accesory pathway, so the concealed 
conduction to accesory pathway prevents resiprocating tachycardia (figure 8).  
The concealed conduction to the sinus node because of an extra atrial impulse (the impulse 
changes sinus node pacemaker function) lead to delay in the next stimulus of the sinus 
node. As a result, this event represents itself with a longer duration of PP than the previous 
duration of PP on surface ECG (figure 9).   
 

 

 
Fig. 9. Lewis diagram: Concealed conduction to sinus node. A: Atrium, AV: Atrio 
ventricular, V: Ventricle.    

5. Summary  
Heart conduction system sites and mechanisms of concealed conduction. 
 Sinüs node:  

Changing the sinüs node pacemaker function by concealment of    an     extra atrial 
impulse; lead to delay the next stimulus. 

 AV node:  
1-Anterograde AV node concealment manifest with; 
a. Delay of AV conduction 
b. Block of AV conduction 
c. Block of retrograde VA conduction  
d. Slowing of ventricular rate due to concealment of atrial fibrillatory waves 
e. Peeling back of the AV node refractory period and subsequent impulse conduct 

with normal or short duration of PR. 
2-Retrograde VA concealment manifest with; 
a. Delay of AV conduction 
b. Block of AV conduction 
c. Peeling back of the AV node refractory period and subsequent impulse conduct 

with normal or short duration of PR. 
 Bundle branch system:  
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Functional bundle branch block because of rapid ventricular rate and the other branch 
of conduction system is stimulated via transseptal concealed conduction.  

 Accesory pathway: 
Concealed conduction to accesory pathway inhibition the retrograde conduction of 
accesory pathway. The concealed conduction prevents tachycardia which is related 
with accesorf pathway. 
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1. Introduction

The development of bio-signal analysis systems, mostly, has become a major research field due
to technological progress in signal processing. Electrocardiography (ECG) had been amongst
the most studied type of bio-signals for several decades. Research on this type of signals has
become an important tool for the diagnosis of cardiac disorders. Because of its simplicity, low
cost and a non-invasive nature it is still widely used despite newer available techniques.
This chapter deal with the problem of long-term recording analysis corresponding to
ECG signals of Holter recordings. The motivation for studying this issue focuses on
the development of methods for cardiac arrhythmia analysis to identify particular events
occurring at specific periods of time. Such events are associated to cardiac disorders that
may become potentially harmful to the patient. The developed methods are aimed at further
building up of specialized equipment that will provide clinical monitoring for both the patient
and the specialist, as well as the support for real time diagnosis.The above mentioned will
decrease mortality rates regarding heart problems specially for people living in rural areas.
This technology will benefit them to have access to a quicker and efficient specialized medical
diagnostics.
This chapter focuses on analyzing two major aspects of Holter recordings: The first one
corresponds to the large amount of data stored in such recordings, reaching up to 100.000
heartbeats for its evaluation, which becomes a hard task for the specialist to assess the
information and to decide what heartbeats are important for a determined analysis. There
are cases where only a few beats allow to identify a certain pathology or to prevent deadly
diseases. Therefore, a detailed analysis of the complete record is needed. The second
aspect corresponds to the intrinsic characteristics of the signal, such as heart rate variability,
morphological variety, among others. They may result from problems in the cardiac system
or the patient’s physical and physiological characteristics. In addition, the electrical nature of
ECG signals and its transmission to electronical devices increase the noise sensitivity, which
can completely alter the diagnostic information contained in the signal, changing the training
processes in the identification of cardiac pathologies.
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2 Will-be-set-by-IN-TECH

Consequently, both aspects have been strongly considered in the automatic ECG processing
and analysis procedures to detect, classify, and cluster heartbeats. Thus, several methods
have been reported in the scientific literature to carry out those classification–related
tasks, using either supervised Ceylan & Özbay (2007); De-Chazal et al. (2004); Wen et al.
(2007); Özbay et al. (2006) or unsupervised Cuesta et al. (2007); Lagerholm et al. (2000);
Rodríguez-Sotelo et al. (2009) approaches. Due to a large variability in ECG heartbeat
morphology; the former methods tuned for a specific ECG dataset may decrease performances
in other datasets. In addition, these techniques require a considerable amount of known and
labeled heartbeats which are not feasible when having long–term ECG monitoring.
Regarding unsupervised methods, even though their performance does not usually over-
perform supervised training, they can be applied to a broader set of ECG recordings because
they can dynamically adapt to new signal features. However, additional factors must be taken
into account in the unsupervised analysis, such as highly unbalanced classes, uncertainty of
the number of classes, signal variability, artifacts, etc. This type of analysis is more convenient
for Holter monitoring.
There are still some open issues when implementing unsupervised analyses, such as
computational cost, unbalanced clusters, unknown number of clusters and initial partition.
They are also described in this chapter ending up in an unsupervised analysis methodology
that can be implemented in oriented devices for analysis in real time. The considered
methodology does not require prior training or heartbeat labeling by the specialist and can
be applied to ECG signals that have great variability in time and morphology, identifying the
main arrhythmias set by the AAMI standard.

Objective

To describe a non-supervised methodology for analysing ECG signals of Holter recordings
including preprocessing, feature estimation, relevance analysis and clustering stages, in order
to identify cardiac arrhythmias, according to ANSI/AAMI EC57:1998 standards, and to
provide a proper trade-off between computational cost and performance.

Abbreviations and operators

ECG Electrocardiogram
QRS Complex of three graphical deflections seen on a typical ECG
AAMI Association for the Advancement of Medical Instrumentation
HRV Heart Rate Variability
PCA Principal Component Analysis
WPCA Weighted Principal Componente Analysis
MSE Mean Square Error
GEMC Gaussian Expectation Max-minimization-based Clustering
MSSC Minimum Sum of Squares-based Clustering
DTW ( dtw(·, ·)) Dynamic Time Warping
�·, ·� Inner product
�·, ·�A M-inner product regarding matrix A
E {·} Expectation operator

226 Advances in Electrocardiograms – Methods and Analysis Recognition of Cardiac Arrhythmia by Means of Beat Clustering on ECG-Holter Recordings 3

2. Cardiac arrhythmias

In general, the pathologies observed using the ECG are divided into three categories:

1. Heart rhythm disturbances, or arrhythmias.

2. Dysfunctions of blood perfusion in the myocardium or cardiac ischemia.

3. Chronic disorders of mechanical structure of the heart, such as left ventricular hypertrophy.

We will describe the characterization and identification of the first type of pathologies above
mentioned. The methods are developed over the entire QRS complexes that are associated
with ventricular electrical activity. They contain clinic important information, for example
their morphology has significant changes in abnormal ventricular heartbeats. QRS complexes
are also present in most of the heartbeats and their signal to noise ratio is the highest among
all waves present in the signal.

2.1 Not imminently life-threatening cardiac arrhythmias
Broadly speaking, arrhythmias can be divided into two groups: The first group includes
ventricular fibrillation and tachycardia, which are life-threatening disorders and require
immediate therapy with a defibrillator. Identification of these arrhythmias and successful
detectors have been developed with high sensitivity and specificity degree. However, this
study just analyzes the second group, which includes arrhythmias that are not imminently
life-threatening but may require therapy to prevent further problems.
According to the AAMI standard (ANSI/AAMI EC57:1998/(R)2003) as is described in
De-Chazal et al. (2004), the following arrhythmia groups shown in Table 1 are of interest to
be examined: Normal–labeled heartbeat recordings (termed N), Supraventricular ectopic beat
(Sv), Ventricular ectopic beat (V), Fusion beat (F), as well as unknown beat class (Q) are taken
into consideration. One or more classes of such arrhythmias can be present during Holter
analysis.
The MIT/BIH arrhythmia database Moody & Mark (1982) is one of the most representatives,
at a scientific level, to evaluate the design of algorithms regarding the analysis of cardiac
arrythmias. The database contains several types of beats within each group of arrhythmias
recommended by the AAMI, for example, in the Normal group we can find the following
arrhythmia types: Left bundle Branch Block (LBBB), Right Bundle Branch Block (RBBB),
Atrial Escape (AE) and junctional Nodal Escape (NE). The Table 1 shows a classification of
arrhythmias previously mentioned.

2.1.1 Group of arrhythmias N
It corresponds to any beat that does not belong to Sv, V, F or Q classes (Table 1), as shown in
Figure 1. Bundle Branch Block (BBB) is a disorder in the conduction of electrical impulses
to the ventricles Braunwald (1993). The electrical impulse conduction to the ventricles is
carried out via the His bundle and its divisions: right and left bundle branch. When one
of these branches is altered, the electrical impulse spreads throughout the ventricular muscle
itself rather than spreading in the Purkinje system. This reduces the conduction velocity. In
case there is blockage in one of the branches, the complex will take more time than normal
Guyton & Hall (n.d.). Branch blocks also originate morphological changes (R-prime) within
the QRS complex.
In the LBBB, cardiac depolarization spreads much faster in the right ventricle compared to the
left ventricle. Therefore, the left ventricle remains polarized longer than the right one. This is
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AAMI heartbeat Description MIT/BIH heartbeat types

N Any beat not in the Sv,V,F Normal (N), Left Bundle Branch Block (LBBB),
or Q classes Right Bundle Branch Block (RBBB),

Atrial Escape (AE),
Nodal (junctional) escape beat(NE)

Sv Supraventricular ectopic beat Atrial Premature (AP),
Aberrated Atrial Premature (aAP),
Nodal (junctional) Premature (NP),
Supraventricular Premature (SP),

V Ventricular ectopic beat Premature Ventricular Contraction (PVC),
Ventricular escape (VE)

F Fusion beat Fusion of ventricular and normal (fVN),
Fusion of paced and normal beat (fPN)

Q Unknown beat Paced (P), Unclassified (Q)

Table 1. Set of analyzed arrhythmias according to the AAMI standard.

observed in left precordial leads (V5 and V6) through an extension and a morphological change
(RR’) of the QRS. Besides, in the RBBB, the impulse conduction through the right ventricle is
delayed regarding the left one, in this way, the QRS is prolonged and generates a morphology
known as rsR observed in the right precordial leads (V1 and V2).
The BBB does not necessarily mean heart disease, since it can occur also in healthy patients.
It may have a good prognosis and may not progress to a higher degree block Micó & Ibor
(2004). However, in some studies Brugada et al. (1998); ginsburg et al. (2006); Pabón (2001) it
was found that the presence of RBBB is correlated with arterial hypertension, heart failure,
coronary disease, pulmonary embolism, and increased mortality and the presence of LBBB
increases the risk of coronary heart disease, mortality and ventricular myocardial infarction
Balaguer (n.d.), Li et al. (n.d.). Thus, it is necessary to detect such arrhythmias because of the
prognostic value they have.
The AE are characterized by occasionally appearing and interrupt the pace of the rate base.
The most common are those identified ahead of that cadence or extrasistoles and those
delayed or escape heartbeats. Depending on the morphology of the waves,it will be possible
to know the origin of the heartbeats (atrial, nodal or ventricular) and the type of the existing
AtrioVentricular (AV) conduction.

2.1.2 Group of arrhythmias type Sv
It includes both, atrial and supraventricular premature beats as well as their variants. An
example is illustrated in Figure 2. An Atrial Premature Beat (APB) is also called Atrial Ectopic
Beat (AEB) or Premature Atrial Contraction (PAC). It is an extra heartbeat caused by electrical
activation of the atrium from an abnormal site before a normal heartbeat happens. Generally,
APBs occur in healthy people that rarely have symptoms. It is common among people who
have lung problems, specially in adults instead of young people. Recent studies on risk
factors for stroke have shown that frequent APB heartbeats are an independent risk factor
for suffering a stroke Rodríguez-Sotelo et al. (2009).
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Fig. 1. Heartbeats of N group, extracted from MIT/BIH database.

Although, APBs are often considered a benign disorder, it has been shown in clinical practice
that frequent APBs could be an early symptom of heart failure and may precede atrial
fibrillation.
Frequent APBs can be an indicator for other risk factors, such as severe hypertension,
asymptomatic atherosclerosis, structural abnormalities causing stroke, calcified mitral valve
or enlargement of the left atrium. These risk factors might increase in the formation of
thromboembolism Engström et al. (2000).
Experts have usually analysed Holter recordings for detecting APB beats due to their
frequency and they have found that detecting them is troublesome because of their nature.
They have shown similar morphological characteristics in contrast to normal heartbeats which
accounts for the majority. Particularly, ventricular depolarization and repolarization have
displayed similar morphology between QRS complexes and T waves. Atrial depolarization
has also been used for identifying such beats, it means analysing PR intervals and P waves.
Nevertheless, there may exist beats that do not have P waves, since beats overlap with a
previous T wave which results in a slight increase of its amplitude. Heart rate variability
(HRV) is another more effective technique used to detect APB heartbeats.
From a physiological point of view, before there is a completion of ventricular repolarization,
there is a premature excitement in the atrial area different from the sinus node. This fact results
in a premature beat. Besides, there will be a delay in the activation of the sinus node for the
next cardiac cycle, triggering both an increase and a later decrease of the heart rate. The HRV’s
drawback is that if there is continuous premature beats, the pattern just described disappears.
In some cases this is interpreted as normal pace beats reducing possibilities to succeed in the
detection of APB beats through this technique.
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AAMI heartbeat Description MIT/BIH heartbeat types

N Any beat not in the Sv,V,F Normal (N), Left Bundle Branch Block (LBBB),
or Q classes Right Bundle Branch Block (RBBB),

Atrial Escape (AE),
Nodal (junctional) escape beat(NE)

Sv Supraventricular ectopic beat Atrial Premature (AP),
Aberrated Atrial Premature (aAP),
Nodal (junctional) Premature (NP),
Supraventricular Premature (SP),

V Ventricular ectopic beat Premature Ventricular Contraction (PVC),
Ventricular escape (VE)

F Fusion beat Fusion of ventricular and normal (fVN),
Fusion of paced and normal beat (fPN)

Q Unknown beat Paced (P), Unclassified (Q)

Table 1. Set of analyzed arrhythmias according to the AAMI standard.
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They have shown similar morphological characteristics in contrast to normal heartbeats which
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has also been used for identifying such beats, it means analysing PR intervals and P waves.
Nevertheless, there may exist beats that do not have P waves, since beats overlap with a
previous T wave which results in a slight increase of its amplitude. Heart rate variability
(HRV) is another more effective technique used to detect APB heartbeats.
From a physiological point of view, before there is a completion of ventricular repolarization,
there is a premature excitement in the atrial area different from the sinus node. This fact results
in a premature beat. Besides, there will be a delay in the activation of the sinus node for the
next cardiac cycle, triggering both an increase and a later decrease of the heart rate. The HRV’s
drawback is that if there is continuous premature beats, the pattern just described disappears.
In some cases this is interpreted as normal pace beats reducing possibilities to succeed in the
detection of APB beats through this technique.
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Fig. 2. Heartbeats of Sv group, extracted from MIT/BIH database.

2.1.3 Group of arrhythmias type V
A ventricular premature beat (ventricular ectopic beat, premature ventricular contraction) is
an extra heartbeat resulting from abnormal electrical activation originated in the ventricles
before a normal heartbeat occurs. See Figure 3. The main symptom is a perception of a skipped
heartbeat. ECG is used to diagnose such condition. In some avoiding stress, caffeine, and
alcohol may be usually enough to treat this condition. Ventricular premature beats are more
common in adults. This arrhythmia may also be caused by physical or emotional stress, intake
of caffeine (in beverages and foods) or alcohol, or use of cold or fever remedies containing
drugs that stimulate the heart, like pseudoephedrine. Other causes include coronary artery
disease (especially during or shortly after a heart attack) and disorders that cause ventricles
to enlarge, like heart failure and heart valve disorders.
VE beats are hardly found in ECG of 12-leads, therefore Holter recordings are used for their
detection Holter (n.d.). VEs can be identified following certain criteria of morphological
features of the ECG Dave et al. (2005); Friedman (1989):

• QRS duration: It is higher than the average QRS dominant. It is due to an abnormal
activation of the ventricle.

• Different morphologies in the QRS complexes are present: There are not preceding P waves
prematurely. T wave is often found in the opposite direction of R wave. If heartbeats
originated from a single focus, all the VPC would have the same morphology, although
different from the normal one.

• RR intervals: They are shorter than RR average and later a complete compensatory pause
can be observed in the heartbeat.
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• VEs originated from the left ventricle normally produce heartbeat patterns of RBBB and the
ones originated from the right ventricle normally produce heartbeat patterns associated
with LBBB.

A ventricular escape beat is another type of ventricular extrasystole. It is a self-generated
electrical discharge initiated by the ventricles that causes their contraction. It has been stated
that the heart rhythm begins in the atria of the heart and is subsequently transmitted to the
ventricles. The ventricular escape beat is followed after a long pause in ventricular rhythm to
prevent from a possible cardiac arrest. It indicates a failure of the electrical conduction system
of the heart to stimulate the ventricles (This would lead to the absence of heartbeats, unless
ventricular escape beats occur).
Ventricular escape beats happen when the rate of electrical discharge reaches the ventricles
and they in turn alter the base rate. An escape beat usually occurs around 23s after an electrical
impulse has failed to reach the ventricles.
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Fig. 3. Heartbeats of V group, extracted from MIT/BIH database.

2.1.4 Group of arrhythmias type F
Fusion heartbeats develop when either the atria or the ventricles are activated by two
simultaneously invading impulses and they can be assessed in P wave or QRS complex of the
ECG. An atrial fusion beat results when: the sinus beat coincides with an atrial ectopic beat,
two atrial ectopic beats coincide, or an atrial or sinus beat coincide with retrograde conduction
from a junctional focus. A ventricular fusion beat results when: a ventricular beat coincides
with either a sinus beat, a ventricular ectopic beat, or a junctional beat. A couple of examples
are shown in Figure 4.

2.1.5 Group of arrhythmias type Q
Unclassified heartbeats (heartbeats Q) correspond to heartbeats that do not contain relevant
medical information, mainly due to some external conditions as artifacts, electrode
disconnection, saturation of acquisition system, or heartbeats by pacemakers. In some
systems, it is necessary to isolate this kind of heartbeats from the training space in order to
give an adequate diagnosis. Normally, These heartbeats are considered as outliers because of
their low importance in the diagnosis. Figure 5 shows two types of Q heartbeats: Paced beat
and Unclassified beat.
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common in adults. This arrhythmia may also be caused by physical or emotional stress, intake
of caffeine (in beverages and foods) or alcohol, or use of cold or fever remedies containing
drugs that stimulate the heart, like pseudoephedrine. Other causes include coronary artery
disease (especially during or shortly after a heart attack) and disorders that cause ventricles
to enlarge, like heart failure and heart valve disorders.
VE beats are hardly found in ECG of 12-leads, therefore Holter recordings are used for their
detection Holter (n.d.). VEs can be identified following certain criteria of morphological
features of the ECG Dave et al. (2005); Friedman (1989):

• QRS duration: It is higher than the average QRS dominant. It is due to an abnormal
activation of the ventricle.

• Different morphologies in the QRS complexes are present: There are not preceding P waves
prematurely. T wave is often found in the opposite direction of R wave. If heartbeats
originated from a single focus, all the VPC would have the same morphology, although
different from the normal one.

• RR intervals: They are shorter than RR average and later a complete compensatory pause
can be observed in the heartbeat.

230 Advances in Electrocardiograms – Methods and Analysis Recognition of Cardiac Arrhythmia by Means of Beat Clustering on ECG-Holter Recordings 7

• VEs originated from the left ventricle normally produce heartbeat patterns of RBBB and the
ones originated from the right ventricle normally produce heartbeat patterns associated
with LBBB.

A ventricular escape beat is another type of ventricular extrasystole. It is a self-generated
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that the heart rhythm begins in the atria of the heart and is subsequently transmitted to the
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prevent from a possible cardiac arrest. It indicates a failure of the electrical conduction system
of the heart to stimulate the ventricles (This would lead to the absence of heartbeats, unless
ventricular escape beats occur).
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and they in turn alter the base rate. An escape beat usually occurs around 23s after an electrical
impulse has failed to reach the ventricles.
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Fusion heartbeats develop when either the atria or the ventricles are activated by two
simultaneously invading impulses and they can be assessed in P wave or QRS complex of the
ECG. An atrial fusion beat results when: the sinus beat coincides with an atrial ectopic beat,
two atrial ectopic beats coincide, or an atrial or sinus beat coincide with retrograde conduction
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are shown in Figure 4.
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Unclassified heartbeats (heartbeats Q) correspond to heartbeats that do not contain relevant
medical information, mainly due to some external conditions as artifacts, electrode
disconnection, saturation of acquisition system, or heartbeats by pacemakers. In some
systems, it is necessary to isolate this kind of heartbeats from the training space in order to
give an adequate diagnosis. Normally, These heartbeats are considered as outliers because of
their low importance in the diagnosis. Figure 5 shows two types of Q heartbeats: Paced beat
and Unclassified beat.
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3. Ambulatory electrocardiography

During the last two decades, acquisition systems for physiological signals have been
developed and improved. It has been stated that they are lighter, smaller and capable of
recording multiple signals up to 48 hours. These systems also called ambulatory record
systems are used in ECG analysis to detect infrequent arrhythmias or transient abnormalities
in heart function often associated to everyday life stress, besides transient ischemic events
or silent myocardial ischemia. This type of disorders cannot be detected in short-time
ECG or 12 leads ECG recordings. Holter recorders have been used to detect this type of
abnormalities. Nowdays, signals are recorded in flash-type semiconductor memories, which
can be transferred to a workstation for further analysis J. Segura-Juárez et al. (2004).
On the other hand, the increase of health costs makes an urgent need to develop ambulatory
systems to reduce the number of patients going to hospitals. Therefore, it is necessary the
design of a portable, low cost, high performance and simple system that allows an automated
analysis and diagnosis. Such system has to fulfill certain requirements such as integrate
various data analysis techniques, for instance: signal processing, pattern recognition, decision
making and human-machine interaction. The existing portable devices have improved in
size and performance due to technological reasons, the need to record the signal over a
specific period of time, which is constrained by the storage capacity of the devices. For
example, a typical signal of 24 hours consists of approximately 100.000 heartbeats that can be
morphologically grouped (clustered) into a much smaller number of classes. Most of the classes
where the heartbeats have a typical pattern, it is enough to know the number of heartbeats and
a representative template of the morphology for grouping them, but in the time span where
cardiac activity presents anomalies or symptoms of illness, the whole recording is needed.
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This is only possible if the portable device for analysis is able to do both record the signal, and
process it.
Some technical issues with regard to the ECG processing have been discussed, such as the
problem of the wide variability into signal morphology, not only among patients, but also
due to patients movements, electrical conduction changes, body characteristics, among others.
In addition, the ECG signal is contaminated by several noise sources, both external sources
(interference of the power line, movement of the electrodes) and biological sources (muscle
movement causing high-frequency interference and breathing causing baseline displacement).
Because of this, it is not possible to have a general training set that takes into account all
cases of interest. That is the reason why, this kind of analysis requires special care to choose
appropriate techniques for signal conditioning (pre-processing), since the quality of input
signal for further classification has a direct impact on its performance.

4. A novel methodology for analysis of cardiac arrhythmias

Figure 6 depicts the methodology proposed for Holter arrhythmia analysis that considers
the following stages: a) Preprocessing, b) Feature extraction, c) Analysis of relevance, and
c) Clustering. As input data, Holter recordings are initially preprocessed to reduce the
influence of interferences and artifacts. Next, recordings are segmented based on estimation of
fiducial point of QRS complexes. Heartbeat features extracted using variability, prematurity,
morphology and representation measurements of the heart rate variability, are calculated by
weighted linear projection. After that, projected data is grouped by soft clustering algorithm.
The restrictions for reducing computational load lead to framing along the time axis the input
data into a equal number (Ns in Figure 6) of successive divisions of the Holter recordings,
where each frame is separately processed. Therefore, according to the assumed criterium of
homogeneity between two given consecutive frame divisions, resulting clusters can be either
merged or split. Finally, such clusters, which represent different types of arrhythmia present
in the recording, are analyzed by the specialists, and serve them as a supporting tool for the
medical diagnosis.

4.1 Preprocessing and segmentation
The heartbeat set from recorded Holter ECG signals is to be processed. Let s(t), that is subject
to discrete time transformation, s = {sk}; where sk � s[kTs], being k ∈ N, and Ts the
sampling period. At the beginning, recordings are normalized by the z–scores approach to
prevent biasing, i.e., s0 = (s− E {s})/(|max{s}|), where the notation E {·} stands for the
expectance operator. Then, unbiased vector s0 is filtered to reduce signal disturbances and
artifacts. Specifically, power line interference is reduced using an algorithm based on adaptive
sinusoidal interference canceller that provides significant signal–to–noise ratio improvement
Martens et al. (2006). Also, the baseline wandering is cancelled out by the method described
in Roddy (1991) that is based on a two–pole, phase–compensated filter, developed for real–
time processing of long ECG segments. Although, the signal is also partially filtered, this
preprocessing is supposed not to affect the separability among the underlying heartbeat
groups.
R–peak locations are previously estimated accordingly to the procedure given in
Laguna & Sörnmo (2005), since the analysis of arrhythmias under consideration is
supported on fixed changes of both QRS complex, as well as the HRV. The following
sequential procedures are included: band–pass filtering, R peak enhancement and adaptive
thresholding. Furthermore, their segmentation is carried out for a fixed window length
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specific period of time, which is constrained by the storage capacity of the devices. For
example, a typical signal of 24 hours consists of approximately 100.000 heartbeats that can be
morphologically grouped (clustered) into a much smaller number of classes. Most of the classes
where the heartbeats have a typical pattern, it is enough to know the number of heartbeats and
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Martens et al. (2006). Also, the baseline wandering is cancelled out by the method described
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time processing of long ECG segments. Although, the signal is also partially filtered, this
preprocessing is supposed not to affect the separability among the underlying heartbeat
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R–peak locations are previously estimated accordingly to the procedure given in
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supported on fixed changes of both QRS complex, as well as the HRV. The following
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cardiac arrhythmias.

to avoid analysis over QRS complexes of different length, that is, each j–th complex dj is
accomplished as follows: dj = {s0

k}; ∀k ∈ [lj − aFs, lj + bFs], where lj is the R–peak time
location of the j-th heartbeat and Fs = 1/Ts is the sampling frequency. Nonetheless, it must
be quoted that some morphologies such as VE, might exhibit S–waves lasting exceptionally
more than usual, and therefore, they can be missed if using such a short processing window.
QRS width is fixed to be of 200 ms length, i.e., a = b = 0.1.

4.2 Feature extraction
Heartbeat characterization is achieved by taking into consideration the wide set of features
previously proposed for arrhythmia analysis over Holter ECG recordings Cuesta et al. (2007);
Cvetkovic et al. (2008); Lagerholm et al. (2000); Rodríguez-Sotelo et al. (2009). The whole set
of studied features can be divided into the following groups, as shown in table 2:

4.2.1 Prematurity and variability based features
When considering Sv labelled arrhythmias, their morphology is highly similar to the normal
heartbeat shape. Therefore, the following set of features, which are extracted from variability
of cardiac rhythm, are mainly considered Rodríguez-Sotelo et al. (2009):

– HRV–derived features (x1, x2, x3): Interval parameters providing information about
sequences of heartbeats with unusual timing, namely De-Chazal et al. (2004):

x1 = lj − lj−1, (RR interval)
x2 = lj−1 − lj−2, (pre − RR interval)
x3 = lj+1 − lj, (post − RR interval)
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Index Type Description
x1 HRV and

Prematurity
• RR interval

x2 • pre-RR interval
x3 • post-RR interval
x4 • Difference between RR and pre–RR intervals, x4 = x1 − x2
x5 • Difference between post–RR and RR intervals, x5 = x3 − x1
x6 • Continuous APB∗ heartbeat type, (eq. 1)
x7 Morphology • QRS matching by Dynamic time warping
x8 and representation • Polarity of QRS complex
x9 • Energy of QRS complex

x10, . . . , x19 • First 10 Hermite–based coefficients
x20, . . . , x90 • Db2 (A4: 20 − 25, D4: 26 − 31, D3: 32 − 41, D2: 43 − 58, D1:

59 − 90)
x91, . . . , x100 • var{A4, D4, D3, D2, D1}, max {A4, D4, D3, D2, D1}
The notation APB∗ stands for Atrial Premature Beat, being a sort of S heartbeats.

Table 2. Feature set considered for Holter monitoring of cardiac arrhythmias.

It should be noted that atrial (S) and ventricular (V) ectopic beats manifest abrupt changes
on fiducial point intervals, which in turn, affect the respective values of heartbeat interval
features.

– Prematurity features (x4, x5, x6): Defined parameters, x4 = x1 − x2 and x5 = x3 − x1, are
assumed to be relevant, since they make possible the identification of S type arrhythmia,
when reflecting the increase or decrease of heart rate. Besides, if any heartbeat occurs after
another S–labeled event, it is regarded as normal, and the above mentioned features will
change of sign. Feature x6 accounts for the number of consecutive S that is also sensitive
to an increase of the heart rate, exceeding the normal range set for x4. The parameter x6 is
expressed as follows:

x6 =

(
x3

x1

)2
+

(
x2

x1

)2
−

(
1
3

3

∑
i=1

x2
i log(xi)

2

)
. (1)

The first and second squared terms in Eq. (1) are sensitive to abrupt changes of heart rate,
whereas, the last addend is inferred as unnormalized Shannon entropy, which increases
the value of x6 whenever heart rate is steadily increasing.

4.2.2 Morphological and spectral features (x7, . . . , x100).
Since most analyzed arrhythmias change the shape of QRS complexes, their characterization
can be achieved by commonly used time and spectral–based techniques Cuesta et al. (2003).
Therefore, regarding the former techniques, the following features are worth to be considered:
A couple of features that are sensitive to abnormal QRS complexes: x7, It computes a
morphological dissimilarity by means of Dynamic Time Warping (DTW) approach between
current QRS complex and linearly averaged QRS complex of the last n heartbeats Cuesta et al.
(2003).
x8 =

∣∣∣max{dj}/min{dj}
∣∣∣ , being dj the current QRS complex. This feature is sensitive

to ventricular arrhythmias that exhibit abnormal QRS complexes such as ventricular
extrasystoles or branch blocks Cuesta et al. (2007). Because of the noticeable morphological
characteristic of branch block heartbeats, the QRS energy, which is a straightforward feature
to detect previously described type of heartbeats, is estimated as x9 = ∑Ld

i=1 dj[i]2, where Ld is
the processing length of the j-th QRS complex.
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to avoid analysis over QRS complexes of different length, that is, each j–th complex dj is
accomplished as follows: dj = {s0

k}; ∀k ∈ [lj − aFs, lj + bFs], where lj is the R–peak time
location of the j-th heartbeat and Fs = 1/Ts is the sampling frequency. Nonetheless, it must
be quoted that some morphologies such as VE, might exhibit S–waves lasting exceptionally
more than usual, and therefore, they can be missed if using such a short processing window.
QRS width is fixed to be of 200 ms length, i.e., a = b = 0.1.

4.2 Feature extraction
Heartbeat characterization is achieved by taking into consideration the wide set of features
previously proposed for arrhythmia analysis over Holter ECG recordings Cuesta et al. (2007);
Cvetkovic et al. (2008); Lagerholm et al. (2000); Rodríguez-Sotelo et al. (2009). The whole set
of studied features can be divided into the following groups, as shown in table 2:

4.2.1 Prematurity and variability based features
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heartbeat shape. Therefore, the following set of features, which are extracted from variability
of cardiac rhythm, are mainly considered Rodríguez-Sotelo et al. (2009):

– HRV–derived features (x1, x2, x3): Interval parameters providing information about
sequences of heartbeats with unusual timing, namely De-Chazal et al. (2004):

x1 = lj − lj−1, (RR interval)
x2 = lj−1 − lj−2, (pre − RR interval)
x3 = lj+1 − lj, (post − RR interval)
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Index Type Description
x1 HRV and

Prematurity
• RR interval

x2 • pre-RR interval
x3 • post-RR interval
x4 • Difference between RR and pre–RR intervals, x4 = x1 − x2
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x6 • Continuous APB∗ heartbeat type, (eq. 1)
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x91, . . . , x100 • var{A4, D4, D3, D2, D1}, max {A4, D4, D3, D2, D1}
The notation APB∗ stands for Atrial Premature Beat, being a sort of S heartbeats.

Table 2. Feature set considered for Holter monitoring of cardiac arrhythmias.

It should be noted that atrial (S) and ventricular (V) ectopic beats manifest abrupt changes
on fiducial point intervals, which in turn, affect the respective values of heartbeat interval
features.

– Prematurity features (x4, x5, x6): Defined parameters, x4 = x1 − x2 and x5 = x3 − x1, are
assumed to be relevant, since they make possible the identification of S type arrhythmia,
when reflecting the increase or decrease of heart rate. Besides, if any heartbeat occurs after
another S–labeled event, it is regarded as normal, and the above mentioned features will
change of sign. Feature x6 accounts for the number of consecutive S that is also sensitive
to an increase of the heart rate, exceeding the normal range set for x4. The parameter x6 is
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The first and second squared terms in Eq. (1) are sensitive to abrupt changes of heart rate,
whereas, the last addend is inferred as unnormalized Shannon entropy, which increases
the value of x6 whenever heart rate is steadily increasing.

4.2.2 Morphological and spectral features (x7, . . . , x100).
Since most analyzed arrhythmias change the shape of QRS complexes, their characterization
can be achieved by commonly used time and spectral–based techniques Cuesta et al. (2003).
Therefore, regarding the former techniques, the following features are worth to be considered:
A couple of features that are sensitive to abnormal QRS complexes: x7, It computes a
morphological dissimilarity by means of Dynamic Time Warping (DTW) approach between
current QRS complex and linearly averaged QRS complex of the last n heartbeats Cuesta et al.
(2003).
x8 =

∣∣∣max{dj}/min{dj}
∣∣∣ , being dj the current QRS complex. This feature is sensitive

to ventricular arrhythmias that exhibit abnormal QRS complexes such as ventricular
extrasystoles or branch blocks Cuesta et al. (2007). Because of the noticeable morphological
characteristic of branch block heartbeats, the QRS energy, which is a straightforward feature
to detect previously described type of heartbeats, is estimated as x9 = ∑Ld

i=1 dj[i]2, where Ld is
the processing length of the j-th QRS complex.
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On the other hand, spectral–based representation features used in the field of signal
compression are also taken into account, since only a few coefficients are needed to reconstruct
the signal Lagerholm et al. (2000). In this line of analysis, the Hermite coefficient hi related to
i-th order base is used and calculated as follows:

hi =
1
Fs
�dj, φσ

i �, φσ
i (t) =

e−t2/2σ2

√
2ii!

√
π

Hi(t/σ) (2)

where �·, ·� is the inner product, Hi is a Hermite polynomial of degree i and σ a parameter
determining the window length.
Wavelet decomposition coefficients are also studied. Specifically, 4–level coefficients of
Daubechies–2 class (dB2) are computed. They have been proved to describe properly
different heartbeat morphologies, as discussed in Cvetkovic et al. (2008). The following
statistical descriptors are extracted from decomposition coefficients: mean value, variance,
and maximum values are estimated.
As a result, given an i-th observation heartbeat, the respective feature vector {xi ∈ Rp : i =
1, . . . , n}, p = 100, is assumed to be the input training space toward arrhythmia classification
stage.

4.3 Analysis of relevance
Since there is a huge amount of information stored during Holter monitoring, classification of
heartbeats usually becomes quite time–consuming; that is the reason why any automated
processing of the recording would be of benefit; particularly, the dimensional reduction
procedure can be considered. In this sense, and based on multivariate representation
of input data, a direct approach is the use of linear decomposition methods to decrease
the dimensionality of the resulting feature space from heartbeat characterization. Among
linear decomposition methods, the PCA and its variations have shown to be a good
alternative for this aim Perlibakas (2004). Moreover, the non–parametric nature, feasibility
of implementation and versatility are some advantages of PCA. Nonetheless, Holter
monitoring of cardiac arrhythmias is an application where the conventional PCA might not be
recommended because it gives the same importance to all observations, being sensitive to the
presence of outliers and noise in the data. In fact, strong asymmetry among class observations
requires a properly selection of heartbeat features to provide convenient separability among
heartbeat types Cuesta et al. (2007); Sotelo, Frau, Ordónez, Domínguez & Novak (2009). To
that end, a weighted version of PCA (termed WPCA) is used, where introduced weights are
given depending on variable–wise relevance criteria; this in turn makes possible to assess the
relative importance of each feature (variable) immersed on the original data representation by
using a kind of weighting factor. The following two linear projection methods to estimate the
feature–wise weighting factor, namely, Minimum Square Error (MSE) and M–inner product
are described in the next paragraphs.
Given a set of p-dimensional vector data, {xi}, being centered, i.e., E {xi} = 0, ∀i, where all
n observations can be aligned in the input matrix X = [x1 | · · · | xn]T ∈ Rn×p, then the
respective linear projection is Y = XV , Y ∈ Rn×p. Generally, the ortonormal projection is
performed to a q–dimensional space (q < p), being V ∈ Rp×p an orthogonal matrix, where
the representation quality of X is measured by using a given error function ε between the
original data and the truncated orthonormal projection V̂ ∈ Rp×q. This can be expressed as
a distance measure: ε = d(X , X̂), where X̂ = Ŷ V̂ T, being X̂ ∈ Rn×p the truncated input
matrix. There exist several alternatives for calculating this distance, such as, the Minkowski
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distance (Lp metrics), square Euclidean distance, angle–based distance, Mahalanobis, among
others, as discussed in Perlibakas (2004). Commonly, analysis of relevance methods aim to
minimize ε.
Denoting �X = XW as the weighted data matrix, we can estimate a set of their q most relevant
eigenvalues. The weighted relevance (weighting covariance) matrix is introduced as follows
Yue & Tomoyasu (2004):

�ΣX = �XT �X = W TXTXW , �ΣX ∈ Rp×p (3)

where W ∈ Rp×p is a diagonal weighting matrix.

4.3.1 MSE–based approach
The main goal of conventional PCA is to find out the optimum fitting for a given data in
terms of least squares. This technique has been considered as the simplest eigenvector–
based multivariate analysis, where the linear decomposition of matrix X by singular value
decomposition takes place, X = UΛXV T = ∑

p
i=1 μiuiv

T
i . Matrix ΛX = diag(μ) is

the singular values matrix, U ∈ Rn×n corresponds to eigenvectors of XXT, and V holds
eigenvectors of �ΣX when W = diag(1p) and 1p is a p-dimensional all–ones vector.
Therefore, the minimum square error (MSE) distance is achieved to assess the representation
quality, which yields to the following minimization problem:

min
�V T

{ε} = E
�

min{(X − �Y �V T)T(X − �Y �V T)}
�

(4)

Let, x(l) ∈ Rn×1, l = 1, . . . , p, the l-th feature of the input matrix, X that can be
approximated by its truncated version in a q-dimensional ortonormal space by the following
linear combination:

�x(l) =
q

∑
i=1

c(l)
i ui (5)

then, the MSE value between the original and the reconstructed features is estimated as,

e2 = E
�
(x(l) − �x(l))T(x(l) − �x(l))

�
= E

⎧⎨
⎩(

p

∑
i=q+1

c(l)
i ui)

T(
p

∑
i=q+1

c(l)
i ui)

⎫⎬
⎭ (6)

that can be minimized if maximizing its complement, and therefore the following expression
takes place:

E
�
(

q

∑
i=1

c(l)
i ui)

T(
q

∑
i=1

c(l)
i ui)

�
= E

�
q

∑
i=1

(c(l)
i )

2
�

(7)

The coefficients of the linear combination in Eq. (5) are given by c(l)
i = μiv

(l)
i where v(l)

i ,

estimated for the matrix V , is the i-th element of the respective l feature. Replacing c(l)
i , the

expression (7) is rewritten as follows:

E
�

q

∑
i=1

(c(l)
i )

2
�

= E
�

q

∑
i=1

(μi)
2(v(l)

i )2

�
= E

�
q

∑
i=1

λi(v
(l)
i )2

�
(8)
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where �·, ·� is the inner product, Hi is a Hermite polynomial of degree i and σ a parameter
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Wavelet decomposition coefficients are also studied. Specifically, 4–level coefficients of
Daubechies–2 class (dB2) are computed. They have been proved to describe properly
different heartbeat morphologies, as discussed in Cvetkovic et al. (2008). The following
statistical descriptors are extracted from decomposition coefficients: mean value, variance,
and maximum values are estimated.
As a result, given an i-th observation heartbeat, the respective feature vector {xi ∈ Rp : i =
1, . . . , n}, p = 100, is assumed to be the input training space toward arrhythmia classification
stage.

4.3 Analysis of relevance
Since there is a huge amount of information stored during Holter monitoring, classification of
heartbeats usually becomes quite time–consuming; that is the reason why any automated
processing of the recording would be of benefit; particularly, the dimensional reduction
procedure can be considered. In this sense, and based on multivariate representation
of input data, a direct approach is the use of linear decomposition methods to decrease
the dimensionality of the resulting feature space from heartbeat characterization. Among
linear decomposition methods, the PCA and its variations have shown to be a good
alternative for this aim Perlibakas (2004). Moreover, the non–parametric nature, feasibility
of implementation and versatility are some advantages of PCA. Nonetheless, Holter
monitoring of cardiac arrhythmias is an application where the conventional PCA might not be
recommended because it gives the same importance to all observations, being sensitive to the
presence of outliers and noise in the data. In fact, strong asymmetry among class observations
requires a properly selection of heartbeat features to provide convenient separability among
heartbeat types Cuesta et al. (2007); Sotelo, Frau, Ordónez, Domínguez & Novak (2009). To
that end, a weighted version of PCA (termed WPCA) is used, where introduced weights are
given depending on variable–wise relevance criteria; this in turn makes possible to assess the
relative importance of each feature (variable) immersed on the original data representation by
using a kind of weighting factor. The following two linear projection methods to estimate the
feature–wise weighting factor, namely, Minimum Square Error (MSE) and M–inner product
are described in the next paragraphs.
Given a set of p-dimensional vector data, {xi}, being centered, i.e., E {xi} = 0, ∀i, where all
n observations can be aligned in the input matrix X = [x1 | · · · | xn]T ∈ Rn×p, then the
respective linear projection is Y = XV , Y ∈ Rn×p. Generally, the ortonormal projection is
performed to a q–dimensional space (q < p), being V ∈ Rp×p an orthogonal matrix, where
the representation quality of X is measured by using a given error function ε between the
original data and the truncated orthonormal projection V̂ ∈ Rp×q. This can be expressed as
a distance measure: ε = d(X , X̂), where X̂ = Ŷ V̂ T, being X̂ ∈ Rn×p the truncated input
matrix. There exist several alternatives for calculating this distance, such as, the Minkowski
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distance (Lp metrics), square Euclidean distance, angle–based distance, Mahalanobis, among
others, as discussed in Perlibakas (2004). Commonly, analysis of relevance methods aim to
minimize ε.
Denoting �X = XW as the weighted data matrix, we can estimate a set of their q most relevant
eigenvalues. The weighted relevance (weighting covariance) matrix is introduced as follows
Yue & Tomoyasu (2004):

�ΣX = �XT �X = W TXTXW , �ΣX ∈ Rp×p (3)

where W ∈ Rp×p is a diagonal weighting matrix.

4.3.1 MSE–based approach
The main goal of conventional PCA is to find out the optimum fitting for a given data in
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p
i=1 μiuiv

T
i . Matrix ΛX = diag(μ) is
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where λ = [λ1, . . . , λp] is the vector of the eigenvalues of �ΣX . As a result, generalizing the last
expression for the p features, and having the simple average as an estimation of expectance
operator, then the relevance measure is assumed as follows:

ρ =
1
q

q

∑
i=1

λiνννi, (9)

where νννi is a vector composed by the square of each of vi elements. It should be remarked that
vector ρ yields a relevance index, which measures the accumulated variance of eigenvalues
and eigenvectors, and such vector is used as a weighting factor. Then, accordingly to the
quadratic form of the generalized covariance matrix (see Eq. (3)), the weighting matrix
can be obtained as W = diag(

√
ρ). Lastly, the commonly known criterion of variance

explained is used to find q, which rejects the elements that do not significantly contribute
to the accumulated variance of data set. In addition, since the first principal component holds
most of explained variance, the particular case q = 1 is also analyzed throughout this section.

4.3.2 M-inner product approach
This case considers the M-inner product as an error measure between the original variable
and its orthonormal projection. Let Up ∈ Rp×p be an arbitrary orthonormal matrix, and

�x(l) = u
(l)T

p X the linear combination to estimate the l-th feature. Then, the error measure for
each feature is given by:

dA(x(l), �x(l)) = �x(l), �x(l)�A = x(l)TA�x(l) (10)

where �·, ·�A is the M-inner product regarding a symmetric positive definite matrix A ∈
Rn×n, which is related to the inner product between observations, i.e., A = ∑

p
i=1 xix

T
i . If

definition for the l-th estimated feature x(l), given by Eq. (5), is replaced in Eq. (10), the
following expression holds:

(x(l) − �x(l))TA(x(l) − �x(l)) =

⎛
⎝

p

∑
i=q+1

c(l)
i ui

⎞
⎠

T

A

⎛
⎝

p

∑
i=q+1

c(l)
i ui

⎞
⎠ (11)

that can be minimized if maximizing its complement, i.e, �x(l)TA�x(l). Thus, replacing A and
�x(l) given in Eq. (5), and generalizing for all variables, the following expression yields the
value:

tr(XTAX) = tr(XTXXTX) =
q

∑
i=1

λ2
i (12)

where λ are the eigenvalues of XXT.
Furthermore, the eigenvalues of �XT �X matrix are the first p eigenvalues of �X�XT, then,
maximizing Eq. (12) is equivalent to maximizing the expression:

tr(XXTXXT) = tr(AA) =
q

∑
i=1

λ2
i (13)

Next, establishing a weighted relevance matrix, Aα = XWWXT, where W = diag(
√
α)

and α ∈ Rp×1 is a weighting vector, and assuming the orthonormal invariance criterion
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Algorithm 1 Power-embedded Q − α method Wolf & Shashua (2005)

1. Initialize: M = XT, chose at random k × n matrix Q(0) (Q(0)TQ(0) = In), mi ← (mi −
μ(mi))/�mi�.
2. Make G : gij = (mT

i mj)m
T
i QQTmj

3. Compute α as the eigenvector associated with the major eigenvalue of G.

4. Compute auxiliar matrix Cα = MTdiag(α)M

5. Compute the orthonormal transformation: Z[r] = Cα[r]U [r − 1]

6. Compute QR decomposition: [Q[r],R] = qr (Z[r])

7. Make r ← r + 1 and return to the step 2

Yu & Shi (2003), the optimization problem can be rewritten as:

max
α

tr(QTAαAαQ) =
q
∑

i=1
λ2

i (14)

s.t. αTα = 1, QTQ = I

being matrix Q ∈ Rn×n an arbitrary orthonormal matrix that will be explained in detail
further. Besides, the weighting vector is adjusted to be

√
α to make the optimization problem

in hand to be bilinear regarding α, thus, X̃ = Xdiag(
√
α). The weighting vector α and

the orthonormal matrix Q are determined at the maximal point of the optimization problem.
Finally, the objective function can be rewriting as the following quadratic form:

max
α

αTGα (15)

s.t. αTα = 1

where G ∈ Rp×p is a matrix with gij = (mT
i mj)m

T
i QQTmj, i, j = 1, . . . , p, elements and

M = XT. As a consequence, the previous equation becomes the objective function to be used
in the unsupervised Q − α algorithm, as described in Wolf & Shashua (2005).
It must be quoted that the matrix G is obtained from an arbitrary orthonormal transformation,
it is necessary to apply an iterative method to tune the matrix Q and the weighting vector
α. From the optimization problem, described by Eq. (15), it can be observed that vector α
points out to the direction of most relevant features, whereas matrix Q means its rotation.
Therefore, the adjustment of these parameters should be mutually dependent and must be
achieved on an alternating way, as shown in algorithm 1. In steps 5 and 6, it introduces an
auxiliar orthonormal projection of Cα and QR decomposition, respectively, to refine matrix
Q at each iteration. Then, the q most relevant features are those elements of M that satisfy
∑

q
i=1 α2

i ≈ σe/100, for a given percentage fraction σe of explained variance.
Convergence of the algorithm 1 is discussed in detail in Wolf & Shashua (2005) (with r < 5
iterations). However, an indicator of the algorithm convergence could be the change of the
vector α, i.e, the difference between the current and preceding vector: �α[r]−α[r − 1]� < δ,
where δ ≥ 0 stands for any needed accurate amount, being χ[r] the achieved value of χ at the
r-th iteration.
The procedure for computing the weighting vector, α, is refined iteratively, and the whole
data set is to be used, where the orthonormal matrix is updated per iteration to get the
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where λ = [λ1, . . . , λp] is the vector of the eigenvalues of �ΣX . As a result, generalizing the last
expression for the p features, and having the simple average as an estimation of expectance
operator, then the relevance measure is assumed as follows:
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where νννi is a vector composed by the square of each of vi elements. It should be remarked that
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and eigenvectors, and such vector is used as a weighting factor. Then, accordingly to the
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can be obtained as W = diag(

√
ρ). Lastly, the commonly known criterion of variance
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to the accumulated variance of data set. In addition, since the first principal component holds
most of explained variance, the particular case q = 1 is also analyzed throughout this section.

4.3.2 M-inner product approach
This case considers the M-inner product as an error measure between the original variable
and its orthonormal projection. Let Up ∈ Rp×p be an arbitrary orthonormal matrix, and

�x(l) = u
(l)T

p X the linear combination to estimate the l-th feature. Then, the error measure for
each feature is given by:

dA(x(l), �x(l)) = �x(l), �x(l)�A = x(l)TA�x(l) (10)

where �·, ·�A is the M-inner product regarding a symmetric positive definite matrix A ∈
Rn×n, which is related to the inner product between observations, i.e., A = ∑

p
i=1 xix

T
i . If

definition for the l-th estimated feature x(l), given by Eq. (5), is replaced in Eq. (10), the
following expression holds:

(x(l) − �x(l))TA(x(l) − �x(l)) =

⎛
⎝

p

∑
i=q+1

c(l)
i ui

⎞
⎠

T

A

⎛
⎝

p

∑
i=q+1

c(l)
i ui

⎞
⎠ (11)

that can be minimized if maximizing its complement, i.e, �x(l)TA�x(l). Thus, replacing A and
�x(l) given in Eq. (5), and generalizing for all variables, the following expression yields the
value:

tr(XTAX) = tr(XTXXTX) =
q

∑
i=1

λ2
i (12)

where λ are the eigenvalues of XXT.
Furthermore, the eigenvalues of �XT �X matrix are the first p eigenvalues of �X�XT, then,
maximizing Eq. (12) is equivalent to maximizing the expression:

tr(XXTXXT) = tr(AA) =
q

∑
i=1

λ2
i (13)

Next, establishing a weighted relevance matrix, Aα = XWWXT, where W = diag(
√
α)

and α ∈ Rp×1 is a weighting vector, and assuming the orthonormal invariance criterion
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Algorithm 1 Power-embedded Q − α method Wolf & Shashua (2005)

1. Initialize: M = XT, chose at random k × n matrix Q(0) (Q(0)TQ(0) = In), mi ← (mi −
μ(mi))/�mi�.
2. Make G : gij = (mT

i mj)m
T
i QQTmj

3. Compute α as the eigenvector associated with the major eigenvalue of G.

4. Compute auxiliar matrix Cα = MTdiag(α)M

5. Compute the orthonormal transformation: Z[r] = Cα[r]U [r − 1]

6. Compute QR decomposition: [Q[r],R] = qr (Z[r])

7. Make r ← r + 1 and return to the step 2

Yu & Shi (2003), the optimization problem can be rewritten as:

max
α

tr(QTAαAαQ) =
q
∑

i=1
λ2

i (14)

s.t. αTα = 1, QTQ = I

being matrix Q ∈ Rn×n an arbitrary orthonormal matrix that will be explained in detail
further. Besides, the weighting vector is adjusted to be

√
α to make the optimization problem

in hand to be bilinear regarding α, thus, X̃ = Xdiag(
√
α). The weighting vector α and

the orthonormal matrix Q are determined at the maximal point of the optimization problem.
Finally, the objective function can be rewriting as the following quadratic form:

max
α

αTGα (15)

s.t. αTα = 1

where G ∈ Rp×p is a matrix with gij = (mT
i mj)m

T
i QQTmj, i, j = 1, . . . , p, elements and

M = XT. As a consequence, the previous equation becomes the objective function to be used
in the unsupervised Q − α algorithm, as described in Wolf & Shashua (2005).
It must be quoted that the matrix G is obtained from an arbitrary orthonormal transformation,
it is necessary to apply an iterative method to tune the matrix Q and the weighting vector
α. From the optimization problem, described by Eq. (15), it can be observed that vector α
points out to the direction of most relevant features, whereas matrix Q means its rotation.
Therefore, the adjustment of these parameters should be mutually dependent and must be
achieved on an alternating way, as shown in algorithm 1. In steps 5 and 6, it introduces an
auxiliar orthonormal projection of Cα and QR decomposition, respectively, to refine matrix
Q at each iteration. Then, the q most relevant features are those elements of M that satisfy
∑

q
i=1 α2

i ≈ σe/100, for a given percentage fraction σe of explained variance.
Convergence of the algorithm 1 is discussed in detail in Wolf & Shashua (2005) (with r < 5
iterations). However, an indicator of the algorithm convergence could be the change of the
vector α, i.e, the difference between the current and preceding vector: �α[r]−α[r − 1]� < δ,
where δ ≥ 0 stands for any needed accurate amount, being χ[r] the achieved value of χ at the
r-th iteration.
The procedure for computing the weighting vector, α, is refined iteratively, and the whole
data set is to be used, where the orthonormal matrix is updated per iteration to get the
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Algorithm 2 Projection of weighted data.

1. (Initialization): Normalize X , μ(xi) = 0, �xi� = 1, 1 ≤ i ≤ p

2. Choose a method to find the weighting vector w

(a) w ← √
α, Eigenvector corresponding to the largest eigenvalue of G (algorithm 1, r ←

last iteration)

(b) w ← √
α̂, Eigenvector corresponding to the largest eigenvalue of (XTX) ·2 .

(c) w ← √
ρ, see Eq. (9), removing eigenvectors [q + 1, . . . , p] that do not significantly

contribute to variance.

(d) w ← √
ρ̂, see Eq. (9), q = 1.

3. Weight original data X̃ = Xdiag(w)

4. Compute principal components Ṽ of X̃
5. Project data Y = X̃Ṽ

subset of relevant features. As a result, the computational load may increase. Nonetheless,
based on variance criterion, it can be inferred that the first q components of x̂(l) hold the
most informative directions of weighting data. Thus, the l (q + 1 ≤ l ≤ p) directions do
not contribute significantly to the explained variance. Time calculation when computing
the vector α can be diminished just to one iteration with no significant decrease of accuracy
Wolf & Shashua (2005). With this in mind, the feature relevance may be preserved optimizing
the p original variables or the first q variables. Indeed, maximizing tr(QTAαAαQ)
is equivalent to maximize tr(AαAα) = tr(Xdiag(α)XTXdiag(α)XT). Since, this
expression is bilinear regarding α, the objective function can be re-written as αTHα, where
Hij = tr(xT

i xix
T
j xj) = xix

T
j tr(xT

i xj) = (xix
T
j )

2. Accordingly, it can be inferred that the
approximate vector of relevance α̂ is the eigenvector corresponding to the largest eigenvalue
of (XTX)·2 (where notation (χ)·2 stands for the square of each one of the elements of the
involved matrix χ).
In conclusion, the weighting factor is related to either vectors: α (complete case) and α̂

(approximate case). The weighting matrices become Wα = diag(
√

α) and Wα̂ = diag(
√

α̂),
respectively.

4.3.3 Projection of weighted data
As described above, the data are weighted by the diagonal matrix W = diag(w), where
w is the weighting vector calculated using either the MSE or the M inner-product-based
approaches previously explained. Therefore, weighting data X̃ = XW is linearly projected,
so: Y = X̃Ṽ , where Ṽ are the principal components of X̃, Ṽ = V , if W = diag(1p). The
achieved procedure for relevance analysis and rotation of weighted data based on described
methods is described in algorithm 2.

4.4 Clustering of cardiac arrhythmias
The projected weighted data Y are clustered in three stages. Firstly, the estimation of number
of groups is carried out by means of spectral analysis of affinity measure, as described
in Ng et al. (2001). Secondly, center initialization is achieved based on the J–H–means
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clustering algorithm Hansen & Mladenovic (2001), where objective function corresponds to
the Minimum Sum–of–Squares (MSS), as suggested in Rodríguez-Sotelo et al. (2009). To carry
out the above process, a random initialization is developed where every point yi out of a
sphere of radius � has a center at ζj, j = 1 : k (ζj is the j-th of the k centers)and is considered
a center candidate. yi replaces a current center ζj. Once updating and computing the MSS,
the process is repeated as long as MSS reaches the optimal value. The process stops whenever
there is no further MSS optimization. This initialization is aimed to avoid local minima. Lastly,
the third clustering stage computes the final partition based on the Gaussian Expectation
Maximization Clustering (GEMC) algorithm Cvetkovic et al. (2008), having as an objective
function a linear combination of centered gaussian distributions over each centroid:

θ(Y , ζ) = −
n

∑
i=1

log

⎛
⎝ k

∑
j=1

p(yi | ζj)p(ζj)

⎞
⎠ , (16)

where p(yi | ζj), assumed as gaussian distribution centered at ζj, is the probability of yi , and
p(ζj) is the a priori probability of the j-th cluster. For sake of simplicity, the log function is
used, while the minus sign accounts for minimization. Besides, the GEMC employs a soft
member function, fm(·), assigning a membership level to yi for every cluster, as described in
Hamerly & Elkan (2002).
Further decreasing of computational load can be reached if sectioning the whole input
recording into divisions for localized processing. At the beginning, a proper length of
frame division to be clustered is estimated. It is assumed that its validity measures provide
an equivalent performance compared to the full length processing of input recordings.
Selecting proper number of localized clustering segments is constrained by the following
restrictions: twice of number of features must exceed the amount of heartbeats per segment,
and the minimum computational cost should be reached. At the end of the grouping step,
combination of clustered segments is developed based on estimation of the proximities
between each chosen cluster and the remaining clusters.
In this regard, DTW algorithm, noted as dtw(·, ·), is used as a dissimilarity measure among
heartbeats related to the set of centroids of a given cluster, as detailed in Cuesta et al. (2007).
Thus, considering P i = {J i

1, . . . ,J i
ki} as the partition estimated for i–th segment, where J i

ji

is the j-th cluster associated to i-th segment and ki is the number of assumed groups for the
same partition, {ζ i

1, . . . , ζi
ki} are the centroids of i–cluster, and Y (ζ) stands for the projected

data related to ζ centroid, then, a combination of clusters follows next rule:

υ(ji, ji−1) = dtw
�
y(ζ i

ji ),y(ζi−1
ji−1 )

�
(17)

that is, if an estimated measure υ(ji, ji−1) lies within assumed proximity interval, then
both chosen clusters are to be combined. Otherwise, following comparison of cluster is
accomplished. Nonetheless, if there is any cluster not fulfilling the proximity measure
during the current i-th iteration, it is no discarded but considered later during the coming
next iterations. Therefore, incorrect clustering of minority classes is avoided whereas
computational load is decreased.

4.5 Performance measures
clustering index, as a validity measure, is expressed as the relationship between the expected
value of the GEMC objective function, given in Eq. (16), and assessed if considering an
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Algorithm 2 Projection of weighted data.

1. (Initialization): Normalize X , μ(xi) = 0, �xi� = 1, 1 ≤ i ≤ p

2. Choose a method to find the weighting vector w

(a) w ← √
α, Eigenvector corresponding to the largest eigenvalue of G (algorithm 1, r ←

last iteration)

(b) w ← √
α̂, Eigenvector corresponding to the largest eigenvalue of (XTX) ·2 .

(c) w ← √
ρ, see Eq. (9), removing eigenvectors [q + 1, . . . , p] that do not significantly

contribute to variance.

(d) w ← √
ρ̂, see Eq. (9), q = 1.

3. Weight original data X̃ = Xdiag(w)

4. Compute principal components Ṽ of X̃
5. Project data Y = X̃Ṽ

subset of relevant features. As a result, the computational load may increase. Nonetheless,
based on variance criterion, it can be inferred that the first q components of x̂(l) hold the
most informative directions of weighting data. Thus, the l (q + 1 ≤ l ≤ p) directions do
not contribute significantly to the explained variance. Time calculation when computing
the vector α can be diminished just to one iteration with no significant decrease of accuracy
Wolf & Shashua (2005). With this in mind, the feature relevance may be preserved optimizing
the p original variables or the first q variables. Indeed, maximizing tr(QTAαAαQ)
is equivalent to maximize tr(AαAα) = tr(Xdiag(α)XTXdiag(α)XT). Since, this
expression is bilinear regarding α, the objective function can be re-written as αTHα, where
Hij = tr(xT

i xix
T
j xj) = xix

T
j tr(xT

i xj) = (xix
T
j )

2. Accordingly, it can be inferred that the
approximate vector of relevance α̂ is the eigenvector corresponding to the largest eigenvalue
of (XTX)·2 (where notation (χ)·2 stands for the square of each one of the elements of the
involved matrix χ).
In conclusion, the weighting factor is related to either vectors: α (complete case) and α̂

(approximate case). The weighting matrices become Wα = diag(
√

α) and Wα̂ = diag(
√

α̂),
respectively.

4.3.3 Projection of weighted data
As described above, the data are weighted by the diagonal matrix W = diag(w), where
w is the weighting vector calculated using either the MSE or the M inner-product-based
approaches previously explained. Therefore, weighting data X̃ = XW is linearly projected,
so: Y = X̃Ṽ , where Ṽ are the principal components of X̃, Ṽ = V , if W = diag(1p). The
achieved procedure for relevance analysis and rotation of weighted data based on described
methods is described in algorithm 2.

4.4 Clustering of cardiac arrhythmias
The projected weighted data Y are clustered in three stages. Firstly, the estimation of number
of groups is carried out by means of spectral analysis of affinity measure, as described
in Ng et al. (2001). Secondly, center initialization is achieved based on the J–H–means
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clustering algorithm Hansen & Mladenovic (2001), where objective function corresponds to
the Minimum Sum–of–Squares (MSS), as suggested in Rodríguez-Sotelo et al. (2009). To carry
out the above process, a random initialization is developed where every point yi out of a
sphere of radius � has a center at ζj, j = 1 : k (ζj is the j-th of the k centers)and is considered
a center candidate. yi replaces a current center ζj. Once updating and computing the MSS,
the process is repeated as long as MSS reaches the optimal value. The process stops whenever
there is no further MSS optimization. This initialization is aimed to avoid local minima. Lastly,
the third clustering stage computes the final partition based on the Gaussian Expectation
Maximization Clustering (GEMC) algorithm Cvetkovic et al. (2008), having as an objective
function a linear combination of centered gaussian distributions over each centroid:

θ(Y , ζ) = −
n

∑
i=1

log

⎛
⎝ k

∑
j=1

p(yi | ζj)p(ζj)

⎞
⎠ , (16)

where p(yi | ζj), assumed as gaussian distribution centered at ζj, is the probability of yi , and
p(ζj) is the a priori probability of the j-th cluster. For sake of simplicity, the log function is
used, while the minus sign accounts for minimization. Besides, the GEMC employs a soft
member function, fm(·), assigning a membership level to yi for every cluster, as described in
Hamerly & Elkan (2002).
Further decreasing of computational load can be reached if sectioning the whole input
recording into divisions for localized processing. At the beginning, a proper length of
frame division to be clustered is estimated. It is assumed that its validity measures provide
an equivalent performance compared to the full length processing of input recordings.
Selecting proper number of localized clustering segments is constrained by the following
restrictions: twice of number of features must exceed the amount of heartbeats per segment,
and the minimum computational cost should be reached. At the end of the grouping step,
combination of clustered segments is developed based on estimation of the proximities
between each chosen cluster and the remaining clusters.
In this regard, DTW algorithm, noted as dtw(·, ·), is used as a dissimilarity measure among
heartbeats related to the set of centroids of a given cluster, as detailed in Cuesta et al. (2007).
Thus, considering P i = {J i

1, . . . ,J i
ki} as the partition estimated for i–th segment, where J i

ji

is the j-th cluster associated to i-th segment and ki is the number of assumed groups for the
same partition, {ζ i

1, . . . , ζi
ki} are the centroids of i–cluster, and Y (ζ) stands for the projected

data related to ζ centroid, then, a combination of clusters follows next rule:

υ(ji, ji−1) = dtw
�
y(ζ i

ji ),y(ζi−1
ji−1 )

�
(17)

that is, if an estimated measure υ(ji, ji−1) lies within assumed proximity interval, then
both chosen clusters are to be combined. Otherwise, following comparison of cluster is
accomplished. Nonetheless, if there is any cluster not fulfilling the proximity measure
during the current i-th iteration, it is no discarded but considered later during the coming
next iterations. Therefore, incorrect clustering of minority classes is avoided whereas
computational load is decreased.

4.5 Performance measures
clustering index, as a validity measure, is expressed as the relationship between the expected
value of the GEMC objective function, given in Eq. (16), and assessed if considering an
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ideal partition (θ2), and the current value estimated for the final partition (θ1), i.e θ1/θ2, as
introduced in Sotelo, Peluffo, Frau, Ordónez & Domínguez (2009). Since θ2 ≥ θ1, one might
infer that index is regarded to a proper clustering if its value lies closer to 1. It must be quoted
that the proposed above measure is not sensitive to the assumed number of clusters.
Another cluster validity measure that can be considered is the clustering quality developed
by spectral graph partitioning Yu & Shi (2003), when a proper clustering means that tight
connection is reached within partitions, there is a loose connection between partitions. Thus,
the cluster coherence is computed as follows:

�B =
1
k

k

∑
l=1

BT
l ABl

BT
l DBl

(18)

where B = [B1, . . . ,Bk], B ∈ Rn×k is a binary matrix comprised by the membership values
of all elements to each cluster: bij = �max argj fm(yi/ζj)�, j = 1, . . . , k, where �·� is 1 if its
argument is true and 0 otherwise. A is the affinity matrix and D ∈ Rn×n is the degree of
matrix A.
Due to normalization with respect to the affinity matrix, the maximum value of �B is 1,
resulting in evidencing a good clustering if its value is closer to 1. Clustering is penalized
when there is a large set of groups. In addition, supervised measures are accomplished
to contrast with another similar references, taking advantage of recording labels, as further
described. Particularly, each assembled cluster can be split into two clases: one holding the
majority heartbeats regarding to the class of interest (MC), and another having the minority
beatings being of different classes (OC). The following quantitative measures are defined:
True Positive (TP), heartbeats MC classified correctly, True negative (TN), heartbeats OC,
classified correctly, False positive (FP), heartbeats OC classified as MC and False negative (FN),
heartbeats MC classified as OC.
After computing the above described measures, the following values of sensitivity (Se),
specificity (Sp), and clustering performance (CP) are estimated:

Se =
TN

TN + FP

Sp =
TP

TP + FN

CP =
TN + TP

TN + FP + TP + FN

Since there is no ideal partition, there are more clusters than classes expected. Therefore, the
partition might be penalized when holding a relatively large number of clusters, for instance,
by means of a factor as eηkr/ka , where kr is the number of groups resulting from the clustering,
ka is the admissibility value of groups, and η, 0 < η ≤ 1, is an adjusting value. In this way,
the measure ϕ that can be Se, Sp or CP is weighted as follows:

ϕ =

{
ϕeηkr/ka kr > ka

ϕ, kr ≤ ka
(19)
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Fig. 7. First 3 principal components after weighting the data matrix for recording 217 with
different w (algorithm 2)

5. Relevant experiments and discussion

Training is carried out over a set of ECG MIT-BIH database, which holds different types of
arrhythmia, as previously discussed 1. The analysis is carried out over the whole data set
for the MIT/BIH arrhythmia database that holds 48 recordings each one being of about 30
minutes long. It is important to note that the recording analysis is performed one by one, and
some recordings exhibit strong unbalanced number of observation per class. Namely, it can
be found some recordings holding just one–two heartbeats of class F, a few of S (less than 10),
whereas its number of normal heartbeats may be very huge (more than 3000!).

5.1 Analysis of relevance results
Figure 7 shows an example for relevance analysis stage using the proposed scheme, taking
into account the last 5 minutes of recording numbered as 217. It can be observed that there is a
short separation of first 3 principal components. Remaining subfigures show the transformed
data using the methods studied, where a better separability can be noted when using w =

√
ρ̂

and w =
√
α. Particulary, in case of ρ̂, the ignored eigenvectors (see Eq. (9)) for computing

the relevance generate an homogeneous weighting of the analyzed features set, resulting in a
lower selectivity, i.e., w =

√
ρ, having similar separability to w = 1p (i.e. Conventional PCA).

The variable weighting using the analyzed methods is shown in Fig. 8. It exhibits a similarity
between w =

√
α and w =

√
ρ̂. The weighting obtained from iterative Q − α algorithm

stands out mainly due to the quadratic nature of the objective function to be maximized, which
employs M-inner product as distance measure. Although, it is not possible to generalize the
results to all recordings because of ECG signal variability, this behavior is observed in most
cases.
Figure 9 shows the dynamic of the calculated relevance of variables according to morphology
type of each recording. Three segments of 207-th recording are analyzed. The first segment
corresponds to the first 5 minutes of recording, which contains type L, R and V beats. The
second one corresponds to a period between 20 minutes and 25 minutes, that only has type L
and V beats. The last one contains type A and E beats corresponding to the last 5 minutes of
recording.
It can be seen that in the first segment, the relevant variables correspond to the WT features
(table 2) while in the second one, the Hermite coefficients had higher weight since these
coefficients characterize appropriately to the morphology of type L and V beats. Finally, in
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ideal partition (θ2), and the current value estimated for the final partition (θ1), i.e θ1/θ2, as
introduced in Sotelo, Peluffo, Frau, Ordónez & Domínguez (2009). Since θ2 ≥ θ1, one might
infer that index is regarded to a proper clustering if its value lies closer to 1. It must be quoted
that the proposed above measure is not sensitive to the assumed number of clusters.
Another cluster validity measure that can be considered is the clustering quality developed
by spectral graph partitioning Yu & Shi (2003), when a proper clustering means that tight
connection is reached within partitions, there is a loose connection between partitions. Thus,
the cluster coherence is computed as follows:

�B =
1
k

k

∑
l=1

BT
l ABl

BT
l DBl

(18)

where B = [B1, . . . ,Bk], B ∈ Rn×k is a binary matrix comprised by the membership values
of all elements to each cluster: bij = �max argj fm(yi/ζj)�, j = 1, . . . , k, where �·� is 1 if its
argument is true and 0 otherwise. A is the affinity matrix and D ∈ Rn×n is the degree of
matrix A.
Due to normalization with respect to the affinity matrix, the maximum value of �B is 1,
resulting in evidencing a good clustering if its value is closer to 1. Clustering is penalized
when there is a large set of groups. In addition, supervised measures are accomplished
to contrast with another similar references, taking advantage of recording labels, as further
described. Particularly, each assembled cluster can be split into two clases: one holding the
majority heartbeats regarding to the class of interest (MC), and another having the minority
beatings being of different classes (OC). The following quantitative measures are defined:
True Positive (TP), heartbeats MC classified correctly, True negative (TN), heartbeats OC,
classified correctly, False positive (FP), heartbeats OC classified as MC and False negative (FN),
heartbeats MC classified as OC.
After computing the above described measures, the following values of sensitivity (Se),
specificity (Sp), and clustering performance (CP) are estimated:

Se =
TN

TN + FP

Sp =
TP

TP + FN

CP =
TN + TP

TN + FP + TP + FN

Since there is no ideal partition, there are more clusters than classes expected. Therefore, the
partition might be penalized when holding a relatively large number of clusters, for instance,
by means of a factor as eηkr/ka , where kr is the number of groups resulting from the clustering,
ka is the admissibility value of groups, and η, 0 < η ≤ 1, is an adjusting value. In this way,
the measure ϕ that can be Se, Sp or CP is weighted as follows:

ϕ =

{
ϕeηkr/ka kr > ka

ϕ, kr ≤ ka
(19)
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5. Relevant experiments and discussion

Training is carried out over a set of ECG MIT-BIH database, which holds different types of
arrhythmia, as previously discussed 1. The analysis is carried out over the whole data set
for the MIT/BIH arrhythmia database that holds 48 recordings each one being of about 30
minutes long. It is important to note that the recording analysis is performed one by one, and
some recordings exhibit strong unbalanced number of observation per class. Namely, it can
be found some recordings holding just one–two heartbeats of class F, a few of S (less than 10),
whereas its number of normal heartbeats may be very huge (more than 3000!).

5.1 Analysis of relevance results
Figure 7 shows an example for relevance analysis stage using the proposed scheme, taking
into account the last 5 minutes of recording numbered as 217. It can be observed that there is a
short separation of first 3 principal components. Remaining subfigures show the transformed
data using the methods studied, where a better separability can be noted when using w =

√
ρ̂

and w =
√
α. Particulary, in case of ρ̂, the ignored eigenvectors (see Eq. (9)) for computing

the relevance generate an homogeneous weighting of the analyzed features set, resulting in a
lower selectivity, i.e., w =

√
ρ, having similar separability to w = 1p (i.e. Conventional PCA).

The variable weighting using the analyzed methods is shown in Fig. 8. It exhibits a similarity
between w =

√
α and w =

√
ρ̂. The weighting obtained from iterative Q − α algorithm

stands out mainly due to the quadratic nature of the objective function to be maximized, which
employs M-inner product as distance measure. Although, it is not possible to generalize the
results to all recordings because of ECG signal variability, this behavior is observed in most
cases.
Figure 9 shows the dynamic of the calculated relevance of variables according to morphology
type of each recording. Three segments of 207-th recording are analyzed. The first segment
corresponds to the first 5 minutes of recording, which contains type L, R and V beats. The
second one corresponds to a period between 20 minutes and 25 minutes, that only has type L
and V beats. The last one contains type A and E beats corresponding to the last 5 minutes of
recording.
It can be seen that in the first segment, the relevant variables correspond to the WT features
(table 2) while in the second one, the Hermite coefficients had higher weight since these
coefficients characterize appropriately to the morphology of type L and V beats. Finally, in
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Fig. 9. Results of the relevance of the features with Q-α method, for 3 segments of the
recording 207. Si, corresponds to the i-th segment of the recording 207, which holds 5
minutes of length.

the last analyzed segment the weight for each one of the first 3 variables (HRV features)
is increased. According to this, it can be concluded that segment analysis allows a local
analysis of relevance and achieves good performance after the final partition, as discussed
in the following section.
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θ1/θ2 �B kend q Time [s]
μ − σ2

α 0.95 - 0.08 0.86 - 0.12 9 - 2.43 6 - 0.86 37.20 - 7.65
ρ 0.94 - 0.10 0.82 - 0.14 11 - 2.67 10 - 1.78 38.52 - 7.52
ρ̂ 0.94 - 0.10 0.83 - 0.14 11 - 2.66 9 - 1.77 37.47 - 7.66
α̂ 0.95 - 0.08 0.84 - 0.12 9 - 2.44 6 - 1.16 36.20 - 7.54

Table 3. Clustering performance using non–supervised indices (θ1/θ2, �B), number of
resultant groups (kend), number of relevant features (q) and processing time [s].

It can be highlighted the fact that the variability features (HRV, table 2) are essential to
discriminate between normal heartbeats and supraventricular ectopic beats, both of them
having similar morphology. Most important morphological features correspond to those
based on WT, which discriminate between type V and Q heartbeats.

5.2 Computing clustering performance
The results of clustering are accomplished by framing each recording into 6 divisions and the
resulting clusters are merged as described in section 4.4. The number of segments is achieved
experimentally, improving the trade–off among the number of segments, computational cost
and quality of partition. Thus, the segment analysis enhances the performance if compared
to the whole data clustering. In fact, it reduces the probability that a minority class heartbeat
might be clustered wrongly. Furthermore, in most cases, the sum of processing times over all
segments turns out to be considerably shorter than the time of analysis of the whole recording
data for one iteration. As a result, the introduced framing approach significantly reduces the
computational cost.
Table 3 depicts the whole system performance using the non–supervised indices, as discussed
in section 4.4, and parameters for computational cost and the number of resulting groups are
displayed, as well. The first column refers to the index θ1/θ2, the second one to �B , the third
one corresponds to the resulting clusters (kend) after processing all segments of each recording,
the fourth one is the number of selected features before projecting the data, and the last one is
the time fixed from filtering to clustering stages. The rows show the methods considered for
weighting of variables.
Evaluation of the quality of partition is provided by the index θ1/θ2 that has been introduced
in Sotelo, Peluffo, Frau, Ordónez & Domínguez (2009), where a maximum index value of
θ1/θ2 = 0.98 was achieved over only 14 recordings of the entire MIT/BIH database. In this
chapter, the maximum index achieved is close to (∼ 0.96), over the whole recording set if
providing framed division analysis; pointing out to have a better generalization ability. If
increasing the number of groups k, then index θ1/θ2 tends to 1. Nonetheless, a very high
number of k leads to a more difficult evaluation by specialists. Specifically, in Lagerholm et al.
(2000), the total number of groups representing the entire MIT/BIH database is assumed to
be 25, while in Rodríguez-Sotelo et al. (2009), when considering only some recordings from
MIT/BIH database, the average number of groups diminishes to 15. In this chapter, for the
entire MIT/BIH database the value k ranges within 9 ≤ k ≤ 11, still showing a better
performance.
As discussed above, the non–supervised measure �B penalizes the number of groups after
the final partition. In fact, if the clustering procedure is carried out for a value less than or
equal to the proper value of k, then �B tends to 1. Otherwise, this value becomes far from 1, as
the amount of k is increased, due to the upper bound monotonicity theorem Yu & Shi (2003).
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the last analyzed segment the weight for each one of the first 3 variables (HRV features)
is increased. According to this, it can be concluded that segment analysis allows a local
analysis of relevance and achieves good performance after the final partition, as discussed
in the following section.
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It can be highlighted the fact that the variability features (HRV, table 2) are essential to
discriminate between normal heartbeats and supraventricular ectopic beats, both of them
having similar morphology. Most important morphological features correspond to those
based on WT, which discriminate between type V and Q heartbeats.

5.2 Computing clustering performance
The results of clustering are accomplished by framing each recording into 6 divisions and the
resulting clusters are merged as described in section 4.4. The number of segments is achieved
experimentally, improving the trade–off among the number of segments, computational cost
and quality of partition. Thus, the segment analysis enhances the performance if compared
to the whole data clustering. In fact, it reduces the probability that a minority class heartbeat
might be clustered wrongly. Furthermore, in most cases, the sum of processing times over all
segments turns out to be considerably shorter than the time of analysis of the whole recording
data for one iteration. As a result, the introduced framing approach significantly reduces the
computational cost.
Table 3 depicts the whole system performance using the non–supervised indices, as discussed
in section 4.4, and parameters for computational cost and the number of resulting groups are
displayed, as well. The first column refers to the index θ1/θ2, the second one to �B , the third
one corresponds to the resulting clusters (kend) after processing all segments of each recording,
the fourth one is the number of selected features before projecting the data, and the last one is
the time fixed from filtering to clustering stages. The rows show the methods considered for
weighting of variables.
Evaluation of the quality of partition is provided by the index θ1/θ2 that has been introduced
in Sotelo, Peluffo, Frau, Ordónez & Domínguez (2009), where a maximum index value of
θ1/θ2 = 0.98 was achieved over only 14 recordings of the entire MIT/BIH database. In this
chapter, the maximum index achieved is close to (∼ 0.96), over the whole recording set if
providing framed division analysis; pointing out to have a better generalization ability. If
increasing the number of groups k, then index θ1/θ2 tends to 1. Nonetheless, a very high
number of k leads to a more difficult evaluation by specialists. Specifically, in Lagerholm et al.
(2000), the total number of groups representing the entire MIT/BIH database is assumed to
be 25, while in Rodríguez-Sotelo et al. (2009), when considering only some recordings from
MIT/BIH database, the average number of groups diminishes to 15. In this chapter, for the
entire MIT/BIH database the value k ranges within 9 ≤ k ≤ 11, still showing a better
performance.
As discussed above, the non–supervised measure �B penalizes the number of groups after
the final partition. In fact, if the clustering procedure is carried out for a value less than or
equal to the proper value of k, then �B tends to 1. Otherwise, this value becomes far from 1, as
the amount of k is increased, due to the upper bound monotonicity theorem Yu & Shi (2003).
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N S V F Q
μ − σ2 μ − σ2 μ − σ2 μ − σ2 μ − σ2

α
Se 99.25− 2.48 91.11−15.66 96.11− 8.24 70.73−32.05 91.9 −17.83
Sp 95.77− 9.12 99.36− 2.19 99.87− 0.24 99.59− 0.77 99.79− 0.47
CP 99.16− 2.5 96.18− 6.15 98.29− 3.37 93.29−10.62 99.91− 0.21

α̂
Se 99.06− 3.5 90.52−16.54 96.31− 7.03 50.59−35.33 87.88−26.77
Sp 95.32− 9.49 99.49− 1.62 99.84− 0.31 99.51− 0.99 99.6 − 0.73
CP 99.25− 2.01 96.24− 6.67 98.13− 3.86 81.64−32.51 99.96− 0.06

ρ̂
Se 99.27− 2.55 91.26−15.26 91.5 −21.52 50.57−34.63 79.91−44.67
Sp 92.19−19.06 99.5 − 1.51 99.86− 0.26 99.6 − 0.76 99.85− 0.34
CP 99.14− 2.46 95.68− 7.47 93.71−20.77 81.05−33.04 79.93−44.68

ρ
Se 99.24− 2.79 90.08−18.57 91.62−21.61 42.44−39.57 87.86−26.75
Sp 92.17−19.37 99.58− 1.22 99.85− 0.28 99.53− 0.92 99.79− 0.47
CP 99.12− 2.58 96.16− 6.07 93.77−20.79 68.87−41.56 99.91− 0.21

Table 4. Clustering results by using supervised measures for all groups of arrhythmias

Concretely, a value of k less than 6 can be taken as an admisible number of groups because 5
classes are considered in the present arrhythmia analysis.
Table 3 shows that the achieved values for �B are ranging within interval 0.82 ≤ �M ≤ 0.86,
which can be considered as a realistic outcome to quantify the resultant partition. Still, this
measure does not reach the value 1, as if grouping were absolutely correct, because of the
effect of penalization regarding the number of groups and also the sensitivity to the affinity
matrix. Besides, the average number is shown for the relevant features q before the WPCA
projection (see section 4.3) that most of them contribute to the clustering process. As seen, the
range of values of q is 6 ≤ q ≤ 10, showing admisible values with respect to the total number
of features. Additionally, the average computing time needed to process the whole recording
is 37 s, being a reasonable time for each considered recording.
Table 4 shows the arithmetic mean (μ) and variance (σ2) of supervised measures, discussed
in section 4.4, over the entire database for each group of arrhythmias, using the proposed
weighting methods (see algorithm 2). In Rodríguez-Sotelo et al. (2009), the clustering
performance is evaluated only considering three arrhythmia groups, namely, N, S and V (see
table 1). Nonetheless, the performance measures are calculated by couples of arrhythmias
and, as a consequence, the value of measures tends to increase. The reported results are
SeS = 93.3% and SpS = 99.5%, which can be compared with the second column of table
4, where the maximum values are SeS = 91.3% and SpS = 99.5%. Although, sensitivity is
less than the reported in Rodríguez-Sotelo et al. (2009), it should be noted that among results
of this work, all recordings from the database with S-type arrhythmias (the class of interest)
and the remaining groups as another class are analyzed. Thus, the proposed method provides
more robustness when considering other types of arrhythmias.
For some considered arrhythmia groups, the performance results in table 4 became
remarkable, e.g. SeN = 99.25%, SeV = 96.5%. In other cases, e.g. F group, the performance
values decreases, SeF = 70.7%, due to the low number of representative heartbeats of some
classes. Still, one can infer that the best performance is provided when the data are weighted
by using α.
Finally, in Figure 10, an example of clustered heartbeats is presented by using the recording
217 of the MIT/BIH arrhythmia database which contains heartbeats of type: N, V, f and P (in
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Figure, the symbol P is represented as /, which corresponds to the original tag for paced beats
in the MIT/BIH database).
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Fig. 10. General methodology applied over recording 217.
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projection (see section 4.3) that most of them contribute to the clustering process. As seen, the
range of values of q is 6 ≤ q ≤ 10, showing admisible values with respect to the total number
of features. Additionally, the average computing time needed to process the whole recording
is 37 s, being a reasonable time for each considered recording.
Table 4 shows the arithmetic mean (μ) and variance (σ2) of supervised measures, discussed
in section 4.4, over the entire database for each group of arrhythmias, using the proposed
weighting methods (see algorithm 2). In Rodríguez-Sotelo et al. (2009), the clustering
performance is evaluated only considering three arrhythmia groups, namely, N, S and V (see
table 1). Nonetheless, the performance measures are calculated by couples of arrhythmias
and, as a consequence, the value of measures tends to increase. The reported results are
SeS = 93.3% and SpS = 99.5%, which can be compared with the second column of table
4, where the maximum values are SeS = 91.3% and SpS = 99.5%. Although, sensitivity is
less than the reported in Rodríguez-Sotelo et al. (2009), it should be noted that among results
of this work, all recordings from the database with S-type arrhythmias (the class of interest)
and the remaining groups as another class are analyzed. Thus, the proposed method provides
more robustness when considering other types of arrhythmias.
For some considered arrhythmia groups, the performance results in table 4 became
remarkable, e.g. SeN = 99.25%, SeV = 96.5%. In other cases, e.g. F group, the performance
values decreases, SeF = 70.7%, due to the low number of representative heartbeats of some
classes. Still, one can infer that the best performance is provided when the data are weighted
by using α.
Finally, in Figure 10, an example of clustered heartbeats is presented by using the recording
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6. Conclusions

The proposed methodology for unsupervised Holter monitoring of cardiac arrhythmias
that is based on variable–wise relevance analysis leads to an improvement of clustering
of those heartbeat types recommended by AAMI. Because of strong asymmetry among
class observations, the heartbeat–derived features should be properly selected by their
weighting projection. This makes possible to assess the relative importance of each feature
immersed on the original data representation. In addition, because of restrictions for reducing
computational load, proposed methodology is carried out by successive division analysis
along the time, where each recording is separately processed, and thus significantly reduces
the processing time.
It must be noted that the relevance analysis provides enough generalization capability, mainly,
because of most informative features are weighted and projected. In general, in this work,
the M-inner product-based approach showed better performance than MSE-based approach,
and although its iterative nature leads to high computational cost, the segment analysis
compensates for this effect. This it is possible its implementation for real time applications.
Besides, the assuming grouping that includes initial parameters estimation (estimation of
number of groups and center initialization), which is based on spectral techniques and soft
partitional clustering, generates a proper final partition.
The methodology provides an useful tool to analyze cardiac arrhythmias with suitable quality
since it is based on non-supervised training. That is, there is no need for labelling of
recordings, which mostly is not feasible for Holter monitoring.
Testing of considered methodology by using introduced cluster validity measures shows
a comparable performance in comparison to another referenced works based on either
supervised or unsupervised training and carried out for the MIT/BIH database.
As future work, additional spectral clustering stages should be explored with the possibility
of unifying the stages of feature selection and clustering, in order to improve accuracy and
computational load for the system.
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6. Conclusions

The proposed methodology for unsupervised Holter monitoring of cardiac arrhythmias
that is based on variable–wise relevance analysis leads to an improvement of clustering
of those heartbeat types recommended by AAMI. Because of strong asymmetry among
class observations, the heartbeat–derived features should be properly selected by their
weighting projection. This makes possible to assess the relative importance of each feature
immersed on the original data representation. In addition, because of restrictions for reducing
computational load, proposed methodology is carried out by successive division analysis
along the time, where each recording is separately processed, and thus significantly reduces
the processing time.
It must be noted that the relevance analysis provides enough generalization capability, mainly,
because of most informative features are weighted and projected. In general, in this work,
the M-inner product-based approach showed better performance than MSE-based approach,
and although its iterative nature leads to high computational cost, the segment analysis
compensates for this effect. This it is possible its implementation for real time applications.
Besides, the assuming grouping that includes initial parameters estimation (estimation of
number of groups and center initialization), which is based on spectral techniques and soft
partitional clustering, generates a proper final partition.
The methodology provides an useful tool to analyze cardiac arrhythmias with suitable quality
since it is based on non-supervised training. That is, there is no need for labelling of
recordings, which mostly is not feasible for Holter monitoring.
Testing of considered methodology by using introduced cluster validity measures shows
a comparable performance in comparison to another referenced works based on either
supervised or unsupervised training and carried out for the MIT/BIH database.
As future work, additional spectral clustering stages should be explored with the possibility
of unifying the stages of feature selection and clustering, in order to improve accuracy and
computational load for the system.
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1. Introduction  
Heart rate variability (HRV) is a non-invasive and quantitative marker of cardiac autonomic 
function that reflects the regulation of the sinoatrial node by the sympathetic and 
parasympathetic branches of the autonomic system (Task Force of the European Society of 
Cardiology and the North American Society of Pacing and Electrophysiology, 1996). 
The clinical importance of autonomic function became evident when HRV was confirmed to 
be strong and independent predictor of mortality after acute myocardial infarction (Kleiger 
RE et al., 1987; Bigger JT et al., 1993; Huikuri HV, 1995; Bigger JT et al., 1997).  Recently, in 
addition to the well-accepted application in cardiology, heart rate variability has also drawn 
attention in other important application fields as geriatric medicine.  
Aim of the chapter is to illustrate the usefulness of electrocardiographic analysis of heart 
rate variability, focusing on senescent heart. The number of elderly people in western 
developed countries is rapidly growing-up.  
Currently, 31 million people are older than 65 years in the United States, representing 12% of 
the global population. By 2025 a percentage of 20% of the population will be older than 65 
years. The prognostic significance of conventional risk factors applicable to younger ages tends 
to disappear in old age (Anderson KM et al., 1987; Harris T et al., 1988). So it is important to 
find prognostic and diagnostic markers to define the risk of death among elderly subjects. 
HRV analysis is able to give prognostic information beyond that obtained by traditional risk 
markers in populations of elderly subjects (Heikki V et al., 1998). Assessment of heart rate 
variability in older subjects is, however, complicated by changes in the autonomic nervous 
system that occur with advancing age (O’Brien IAD & O’Hare P, 1986).  

2. Measurement of heart rate variability 
The employ of high frequency 24-h electrocardiographic Holter recorders for analysis of 
HRV has provided helpful insight into physiological and pathological conditions and risk 
stratification in different cardiac diseases.  
There are many commercial accessible automated HRV measurement devices utilizing 
variety of methods, providing cardiologists, internists and geriatricians with a seemingly 
simple tool for both research and clinical studies.  
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In 1996, time and frequency domain parameters for the assessment of the autonomic 
regulation was established (Task Force of the European Society of Cardiology and the North 
American Society of Pacing and Electrophysiology, 1996). Variations in heart rate may be 
evaluated by a number of methods including: 
- time-domain analysis,  
- frequency domain analysis  
- non linear analysis 

2.1 Time-domain analysis  
When heart rate variability is assessed by time-domain indices (Table 1), in a continuous 
electrocardiographic record, each QRS complex is detected, and the so-called normal-to-
normal (NN) intervals (that is all intervals between adjacent QRS complexes resulting from 
sinus node depolarizations), or the instantaneous heart rate is calculated (Figure 1, Figure 2).  
Simple time–domain variables that can be obtained include the mean NN interval, the mean 
heart rate, the difference between the longest and shortest NN interval, the difference 
between night and day heart rate, etc.  
Other time–domain measurements that can be used are: variations in instantaneous heart 
rate secondary to respiration, tilt, Valsalva manoeuvre, or secondary to phenylephrine 
infusion. These differences can be described as either differences in heart rate or cycle 
length. Time-domain analysis of HRV can be performed using both statistical and 
 

 
Table 1. Time-Domain measures of HRV 
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geometrical methods. From a series of instantaneous heart rates or cycle intervals, 
particularly those recorded over longer periods, traditionally 24 h, complex statistical time-
domain measures can be calculated. Few studies have fully used the main 4 statistical time 
domain measures of heart rate variability (HRV):  
- the root mean square of the successive normal sinus RR interval difference (rMSSD)  
- percentage of successive normal sinus RR intervals >50 ms (pNN50) 
- standard deviation of all normal sinus RR intervals during a 24-hour period (SDNN)  
- standard deviation of the averaged normal sinus RR intervals for all 5-minute segments 

(SDANN) 
The series of NN intervals can also be converted into a geometric pattern (Figure 3, Figure 4) 
such as the sample density distribution of NN interval durations, sample density 
distribution of differences between adjacent NN intervals, Lorenz plot of NN or RR 
intervals, etc.  
 

 

Fig. 1. NN sequences tachogram in a young healthy subject 

 

 

Fig. 2. NN sequences tachogram in an old healthy subject 

2.2 Frequency domain analysis 
Frequency domain measures of HRV (Table 2) provide information about the frequency 
distribution of the components of HRV using Power Spectral Density analysis (PSD) (Malliani 
A et al., 1994). PSD analysis provides the basic information of how power (i.e. variance) 
distributes as a function of frequency (Figure 5) (Akselrod S et al. 1981). Independent of the 
method employed, only an estimate of the true PSD of the signals can be obtained by proper 
mathematical algorithms. Fast Fourier transform, point process, and autoregressive procedures 
quantify components of HRV that are expressed in 2 main frequency regions or bands (Hz):  
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Fig. 3. Scattergram representation of HRV: on X axis the duration of RR sequence, on Y axis 
the duration of the precedent RR sequence 

 

 
Fig. 4. Histogram representation of HRV: graphic shows the distribution of duration of RR 
sequences  
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high-frequency (HF) and low-frequency (LF) power. HF power primarily reflects respiratory-
modulated parasympathetic outflow, whereas LF power is subject to both substantial 
sympathetic influence and varying amounts of parasympathetic contribution. The LF/HF ratio 
has been proposed, by some investigators, as an index of relative balance of sympathovagal 
influences on the heart, with higher LF/HF ratios reflecting increased sympathetic activity 
and/or decreased parasympathetic tone. The origin of very low frequency (VLF) oscillations in 
the power spectra of HRV is controversial with possible mechanisms involving 
thermoregulation and/or renin-angiotensin-aldosterone system. When spectral analysis is 
used to analyse the sequence of NN intervals in the entire 24-h period the result include an 
ultra-low frequency component (ULF), in addition to VLF, LF and HF components. Methods 
for the calculation of PSD are generally classified as non-parametric and parametric.  
 

 
Table 2. Frequency-Domain measures of HRV 
 

 
Fig. 5. Power spectral density analysis (A) in an old and (B) in a young subject 
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2.3 Non linear analysis 
Cardiovascular signals have been largely analyzed using traditional time and frequency 
domain measures. However, such measures fail to account for important properties related 
to multi-scale organization and nonequilibrium dynamics. 
In recent years there has been increasing evidence that HRV may reflect a much more 
complex phenomenon representing the nonlinear fluctuations of cardiac-autonomic 
outflows in a fractal or entropic, perhaps chaotic way (Perkiomaki JS et al., 2005). The 
chaotic vs. fractal/entropic/stochastic descriptions of HRV present a dilemma in 
interpreting its power spectrum (Watanabe MA, 2003). Definitive testing of these divergent 
characterizations is key to unrevealing the physiologic mechanisms underlying HRV, which 
is critical to its proper use as a noninvasive marker for cardiac mortality risk assessment and 
stratification in chronic heart failure  and other cardiac diseases (Mäkikallio TH et al., 2002). 
Non-linear phenomena are determined by complex interactions of haemodynamic, 
electrophysiological and humoral variables, as well as by autonomic and central nervous 
regulations. It has been speculated that analysis of HRV based on the methods of non-linear 
dynamics might elicit valuable information for the physiological interpretation of HRV and 
for the assessment of the risk of sudden death (Mansier P et al., 1996).  

3. Heart rate turbolence 
In 1999, the analysis of the heart rate turbulence (HRT) was introduced. Heart rate 
turbolence describes the fluctuations of the RR interval after ventricular premature beats 
expressing the residual ability of the sympathetic nervous system to adapt itself to 
instantaneous pressure variations and to adjust cardiac frequency to sudden and 
unexpected flow reductions (Francis J et al., 2005; Klingenheben T et al., 2008). Ventricular 
extrasystole induces a modification of the ventricular contraction axis, causing a reduction 
of the cardiac flow which is proportional to the previous beat and to its point of origin. 
A reduction of the cardiac flow brings about an immediate decrease of the cerebral flow, 
followed in a few seconds by a stimulation of the aortic baroreceptors and a subsequent 
neurovegetative cardiac stimulation according with a frequency reduction. However, this 
reflex occurs in patients with a normal sympathetic-vagal balance. 
HRT is usually expressed by two parameters, the turbulence onset and the turbulence slope. 
The turbulence onset describes the difference between the mean of the two sinus RR 
intervals before and the first two sinus RR intervals after the ventricular premature 
depolarization divided by the mean of the last two sinus RR intervals before the ventricular 
premature depolarization. The turbulence slope is defined as the highest slope of the 
regression line over any of the five successive sinus beat RR intervals during first 20 sinus 
beat RR intervals after a ventricular premature depolarization. 

4. Autonomic regulation in senescent heart 
It is well known that the anatomy, histology and physiology of the heart changes with age 
(Klausner SC & Schwartz AB, 1995). Together, age-related structural and functional changes 
reduce the complexity of physiologic heart rate control, impairing the individual's ability to 
adapt to stresses such as hypotension. 
Aging heart is characterised by peculiar biophysical properties such as increased deposition 
of collagen and fat. On the electrophysiological level in senescent heart several alterations 
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have been described such as a progressive prolongation of the action potential (explained by 
a decreasing density of the transient outward potassium current, and a prolongation of the 
decay time of the L-type calcium current) (Salameh A et al., 2010). Interestingly beat-to-beat 
fluctuation of heart rate, commonly known as heart rate variability declines steadily with 
age (Colosimo A et al., 1997). Reduced intrinsic heart rate were also observed in older 
individuals (Fleg JL & Kennedy HL, 1982). Furthermore it has been described an age-related 
decline in parasympathetic regulation and greater sympathetic modulation (De Meersman 
RE & Stein  PK, 2007). Studies have demonstrated a decline in sino-atrial node 
parasympathetic activity and an increase in sympathetic activity in the heart with aging 
(Eckberg DL et al., 1971). The impairment of cardiac-vagal neurons appears to be the major 
determinant of changes in the control of heart rate that come with aging, since aging reduces 
the tachycardia that may be induced by atropine in humans and animals (Ferrari AU et al., 
1991). The age-related increases in sympathetic nervous system activity under resting 
conditions seem to be related mainly to a primary increase in central sympathetic nerve 
discharge (Esler M et al., 2002). 
Functional changes in elderly populations include a gradual increase in basal and 
stimulated plasma noradrenaline concentrations, altered adrenoceptor function and 
diminished responsiveness to adrenergic agonists and antagonists (Rubin PC et al., 1982; 
Xiao RP et al., 1998).  

5. Frailty and heart rate variability  
The age-related changes in the "complexity" of cardiovascular dynamics reflect the 
breakdown and decoupling of integrated physiologic regulatory systems occurring with 
senescence (Goldberger AL, 1996) .  
Results from the Cardiovascular Health Study (CHS), confirmed an impairment in 
cardiovascular ability to adapt to external and internal perturbations with advancing age. 
The Cardiovascular Health Study (CHS) was a population based study of risk factors for 
cardiovascular disease (CVD) and stroke, enrolling 5,888 community-dwelling subjects aged 
≥65 years. Authors found that cardiac autonomic function, assessed by frequency-domain 
HRV, declines most at 65–70 and levels off at age >75. The decline was  independent of CVD 
risk or change in CVD risk (Stein PK et al., 2009). 
Frailty is a biological syndrome typical of old persons, characterized by low reserve and 
resistance to stressors. It has been suggested that frailty may result from cumulative declines 
across multiple physiological systems that cause vulnerability to adverse outcomes. Fried et 
al. proposed a phenotype of frailty involving at least three of five components:  
unintentional weight loss, self-reported low energy level, weak grip strength, slow walking 
speed and low level of physical energy (Fried LP et al., 2001). Using a frailty index based on 
this phenotype, researchers have reported its association with falls, hospitalization, 
disability and death (Bandeen-Roche K et al., 2006; Boyd CM et al., 2005; Cawthon PM et al., 
2007; Ensrud KE, et al., 2008). Recently a study showed that in old women, decreased HRV 
indices were associated with an increased risk of frailty (Varadhan et al., 2009). Similarly in 
Women’s Health and Aging Study I, a community-based observational study that enrolled 
389 community-dwelling women aged 65 years and older with moderate to severe 
disability, frailty was consistently associated with lower HRV as assessed using time and 
frequency-domain indices  (Chaves PHM et al., 2008).  
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2.3 Non linear analysis 
Cardiovascular signals have been largely analyzed using traditional time and frequency 
domain measures. However, such measures fail to account for important properties related 
to multi-scale organization and nonequilibrium dynamics. 
In recent years there has been increasing evidence that HRV may reflect a much more 
complex phenomenon representing the nonlinear fluctuations of cardiac-autonomic 
outflows in a fractal or entropic, perhaps chaotic way (Perkiomaki JS et al., 2005). The 
chaotic vs. fractal/entropic/stochastic descriptions of HRV present a dilemma in 
interpreting its power spectrum (Watanabe MA, 2003). Definitive testing of these divergent 
characterizations is key to unrevealing the physiologic mechanisms underlying HRV, which 
is critical to its proper use as a noninvasive marker for cardiac mortality risk assessment and 
stratification in chronic heart failure  and other cardiac diseases (Mäkikallio TH et al., 2002). 
Non-linear phenomena are determined by complex interactions of haemodynamic, 
electrophysiological and humoral variables, as well as by autonomic and central nervous 
regulations. It has been speculated that analysis of HRV based on the methods of non-linear 
dynamics might elicit valuable information for the physiological interpretation of HRV and 
for the assessment of the risk of sudden death (Mansier P et al., 1996).  

3. Heart rate turbolence 
In 1999, the analysis of the heart rate turbulence (HRT) was introduced. Heart rate 
turbolence describes the fluctuations of the RR interval after ventricular premature beats 
expressing the residual ability of the sympathetic nervous system to adapt itself to 
instantaneous pressure variations and to adjust cardiac frequency to sudden and 
unexpected flow reductions (Francis J et al., 2005; Klingenheben T et al., 2008). Ventricular 
extrasystole induces a modification of the ventricular contraction axis, causing a reduction 
of the cardiac flow which is proportional to the previous beat and to its point of origin. 
A reduction of the cardiac flow brings about an immediate decrease of the cerebral flow, 
followed in a few seconds by a stimulation of the aortic baroreceptors and a subsequent 
neurovegetative cardiac stimulation according with a frequency reduction. However, this 
reflex occurs in patients with a normal sympathetic-vagal balance. 
HRT is usually expressed by two parameters, the turbulence onset and the turbulence slope. 
The turbulence onset describes the difference between the mean of the two sinus RR 
intervals before and the first two sinus RR intervals after the ventricular premature 
depolarization divided by the mean of the last two sinus RR intervals before the ventricular 
premature depolarization. The turbulence slope is defined as the highest slope of the 
regression line over any of the five successive sinus beat RR intervals during first 20 sinus 
beat RR intervals after a ventricular premature depolarization. 

4. Autonomic regulation in senescent heart 
It is well known that the anatomy, histology and physiology of the heart changes with age 
(Klausner SC & Schwartz AB, 1995). Together, age-related structural and functional changes 
reduce the complexity of physiologic heart rate control, impairing the individual's ability to 
adapt to stresses such as hypotension. 
Aging heart is characterised by peculiar biophysical properties such as increased deposition 
of collagen and fat. On the electrophysiological level in senescent heart several alterations 
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have been described such as a progressive prolongation of the action potential (explained by 
a decreasing density of the transient outward potassium current, and a prolongation of the 
decay time of the L-type calcium current) (Salameh A et al., 2010). Interestingly beat-to-beat 
fluctuation of heart rate, commonly known as heart rate variability declines steadily with 
age (Colosimo A et al., 1997). Reduced intrinsic heart rate were also observed in older 
individuals (Fleg JL & Kennedy HL, 1982). Furthermore it has been described an age-related 
decline in parasympathetic regulation and greater sympathetic modulation (De Meersman 
RE & Stein  PK, 2007). Studies have demonstrated a decline in sino-atrial node 
parasympathetic activity and an increase in sympathetic activity in the heart with aging 
(Eckberg DL et al., 1971). The impairment of cardiac-vagal neurons appears to be the major 
determinant of changes in the control of heart rate that come with aging, since aging reduces 
the tachycardia that may be induced by atropine in humans and animals (Ferrari AU et al., 
1991). The age-related increases in sympathetic nervous system activity under resting 
conditions seem to be related mainly to a primary increase in central sympathetic nerve 
discharge (Esler M et al., 2002). 
Functional changes in elderly populations include a gradual increase in basal and 
stimulated plasma noradrenaline concentrations, altered adrenoceptor function and 
diminished responsiveness to adrenergic agonists and antagonists (Rubin PC et al., 1982; 
Xiao RP et al., 1998).  

5. Frailty and heart rate variability  
The age-related changes in the "complexity" of cardiovascular dynamics reflect the 
breakdown and decoupling of integrated physiologic regulatory systems occurring with 
senescence (Goldberger AL, 1996) .  
Results from the Cardiovascular Health Study (CHS), confirmed an impairment in 
cardiovascular ability to adapt to external and internal perturbations with advancing age. 
The Cardiovascular Health Study (CHS) was a population based study of risk factors for 
cardiovascular disease (CVD) and stroke, enrolling 5,888 community-dwelling subjects aged 
≥65 years. Authors found that cardiac autonomic function, assessed by frequency-domain 
HRV, declines most at 65–70 and levels off at age >75. The decline was  independent of CVD 
risk or change in CVD risk (Stein PK et al., 2009). 
Frailty is a biological syndrome typical of old persons, characterized by low reserve and 
resistance to stressors. It has been suggested that frailty may result from cumulative declines 
across multiple physiological systems that cause vulnerability to adverse outcomes. Fried et 
al. proposed a phenotype of frailty involving at least three of five components:  
unintentional weight loss, self-reported low energy level, weak grip strength, slow walking 
speed and low level of physical energy (Fried LP et al., 2001). Using a frailty index based on 
this phenotype, researchers have reported its association with falls, hospitalization, 
disability and death (Bandeen-Roche K et al., 2006; Boyd CM et al., 2005; Cawthon PM et al., 
2007; Ensrud KE, et al., 2008). Recently a study showed that in old women, decreased HRV 
indices were associated with an increased risk of frailty (Varadhan et al., 2009). Similarly in 
Women’s Health and Aging Study I, a community-based observational study that enrolled 
389 community-dwelling women aged 65 years and older with moderate to severe 
disability, frailty was consistently associated with lower HRV as assessed using time and 
frequency-domain indices  (Chaves PHM et al., 2008).  
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Both studies supports the notion that less physiological complexity marks frailty and 
provides an empirical basis to the concept of frailty as a syndrome of homeostatic 
impairment.  
Congruent with this theory are the results of a cross-sectional study of HRV of 344 healthy 
subjects, (10 to 99 years old) which assessed the relation between autonomic function and 
longevity. Authors evidenced that a persistently high HRV in the elderly represents a 
marker predictive of longevity (Zulfiqar U et al., 2010). Another study (Chiang JK et al., 
2011) evaluated the association between frequency domain heart rate variability and the risk 
of unplanned readmission in hospital in total of 78 geriatric patients. Frequency domain 
heart rate variability indices measured on admission were significantly associated with 
increased risk of unplanned readmission that was significantly higher in patients with lower 
levels of total power, LF power and HF power. 
All these evidences suggest that healthy longevity could depend on preservation of 
autonomic function, in particular, HRV parasympathetic function, despite the early age-
related decrease. 

6. Heart rate variability and mortality in elderlies 
Reduced HRV variability is commonly found in older people (Colosimo A et al., 1997) and 
has been linked to increased risk for morbid and fatal outcomes (Tsuji H et al., 1996). 
Framingham Heart Study participants, in a closely monitored community-based study, 
underwent a routine biennial examination including 2-hour ambulatory ECG recordings to 
evaluate the prognostic implications of heart rate variability. Results, based on 2-hour 
monitoring, demonstrated that reduced heart rate variability predicts mortality in a 
population based sample of elderly subjects (Tsuji H et al., 1994). 
UK-HEART, a prospective study powered for mortality, examined the value of heart rate 
variability measures as independent predictors of death in old patients with heart failure. In 
UK-HEART study were recruited 433 outpatients 62±9.6 years old with heart failure. 
Concordant to the above, a reduced HRV identified patients at high risk of death. Interestingly 
reduced HRV was a better predictor of death due to progressive heart failure than other 
conventional clinical measurements (Nolan J et al., 1998).  
In another study of 347 subjects of ≥65 years of age (mean, 73± 6 years) HRV gave 
prognostic information beyond that obtained by traditional risk markers (Heikki V et al., 
1998). In particular, after a 10-year follow-up, among all analyzed variables, a steep slope of 
the power-law regression line of HRV was the best predictor of all-cause mortality. 
Interestingly in the Rotterdam Study, a population-based cohort study of 2,088 men and 
3,184 women aged ≥55 years (mean follow-up: 4 years), increased heart rate variability 
resulted an even stronger indicator of cardiac mortality than decreased heart rate variability 
(de Bruyne MC et al., 1999). The authors examined the association between heart rate 
variability on a standard 10-second electrocardiogram and cardiac and all-cause mortality. 
In subjects in the highest quartile of SDNN (a time-domain measure of HRV), a more 
pronounced risk for cardiac mortality was present. In the Zutphen Study an association of 
increased HRV with all-cause mortality was observed only in elderly men (Dekker JM et al., 
1997). Similarly, in the Bronx Aging Study (Bernstein JM et al., 1997), among men and women 
aged 75-85 years, no association was found between decreased HRV and cardiac or all-cause 
mortality, but an association of increased HRV with cardiac events was present in women.  
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It has been suggested that, increased HRV, unlike decreased HRV, is hardly influenced by 
the autonomic nervous system. The risk  of mortality  presumably associated with increased 
HRV has been reported to sinus node dysfunction. 
More recently LILAC study examined 298 people older than 75 years (average age: 79.6 
years). One hour of ambulatory ECG recording was obtained during routine medical 
examination conducted each year in July (mean follow-up time of 1152 days). Authors 
evidenced that an intermediate-term fractal-like scaling exponent of RR intervals is a better 
predictor of death than the traditional measures of HRV in elderly community-dwelling 
people (Hotta N et al., 2005).  
Taken together the above data indicate that analysis of heart rate variability can be used to 
identify older men and women with an increased risk for cardiac mortality.  

7. Influences on heart rate variability 
Biologically, the physiological outputs of the human body, including heart rate variability,  
emerge from interactions among a variety of factors, ranging from genes to organs to the 
environment. 
Heart rate variability analysis in elderlies, is influenced by various physiological factors 
including gender, postural changes, ventilation and time of day. Pathological conditions 
such as congestive heart failure and diabetic diabetic neuropathy are associated with 
alterations in heart rate variability.  

7.1 Genetic influences on heart rate variability 
Recent evidence suggests that genetic factors may contribute to the beat-to-beat variability 
in heart rate (Singh JP et al., 1999).  
Analysis from Framingham study suggested there may be influential genetic regions 
contributing to HRV on chromosome 15 at 62 cM and on chromosome 2 at 153 cM  (Singh JP 
et al., 2002).  
Another study in an Asian population showed genes located on 216 cM region at 
chromosomes 5 and on 77 cM region at chromosome 18 may be involved in the regulation of 
heart rate (Gombojav  B et al., 2008). 
The apolipoprotein-E (APOE) gene has been studied extensively in regard to its relationship 
to aging-associated medical illness including cardiovascular disease, geriatric cognitive  
decline and late-onset Alzheimer’s disease. 
It has been hypothesized that diminished physiological complexity, as measured by heart 
rate variability, is influenced by polymorphisms in the APOE allele among elderly 
individuals. In a study, multi-scale entropy (MSE), an analysis used in quantifying 
complexity for nonlinear time series, was employed to analyze heart-rate dynamics. 
Reduced physiological complexity, as measured by MSE, was significantly associated with 
the presence of the APOE ε4 allele in healthy elderly subjects, as compared to APOE ε4 allele 
non-carriers (Cheng D et al., 2009). This finding suggests a role for the APOE gene in the 
diminished physiological complexity seen in elderly populations. 
Variants in transcription factor 7-like 2 (TCF7L2) gene have been found strongly associated 
with an increased risk of type 2 diabetes, as well as with an impairment of glucagon-like 
peptide-1 (GLP-1) signalling chain. It has been shown that TT genotype of rs12255372 and 
rs7903146 TCF7L2 gene variants are associated with lower insulin secretion and higher 
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Both studies supports the notion that less physiological complexity marks frailty and 
provides an empirical basis to the concept of frailty as a syndrome of homeostatic 
impairment.  
Congruent with this theory are the results of a cross-sectional study of HRV of 344 healthy 
subjects, (10 to 99 years old) which assessed the relation between autonomic function and 
longevity. Authors evidenced that a persistently high HRV in the elderly represents a 
marker predictive of longevity (Zulfiqar U et al., 2010). Another study (Chiang JK et al., 
2011) evaluated the association between frequency domain heart rate variability and the risk 
of unplanned readmission in hospital in total of 78 geriatric patients. Frequency domain 
heart rate variability indices measured on admission were significantly associated with 
increased risk of unplanned readmission that was significantly higher in patients with lower 
levels of total power, LF power and HF power. 
All these evidences suggest that healthy longevity could depend on preservation of 
autonomic function, in particular, HRV parasympathetic function, despite the early age-
related decrease. 

6. Heart rate variability and mortality in elderlies 
Reduced HRV variability is commonly found in older people (Colosimo A et al., 1997) and 
has been linked to increased risk for morbid and fatal outcomes (Tsuji H et al., 1996). 
Framingham Heart Study participants, in a closely monitored community-based study, 
underwent a routine biennial examination including 2-hour ambulatory ECG recordings to 
evaluate the prognostic implications of heart rate variability. Results, based on 2-hour 
monitoring, demonstrated that reduced heart rate variability predicts mortality in a 
population based sample of elderly subjects (Tsuji H et al., 1994). 
UK-HEART, a prospective study powered for mortality, examined the value of heart rate 
variability measures as independent predictors of death in old patients with heart failure. In 
UK-HEART study were recruited 433 outpatients 62±9.6 years old with heart failure. 
Concordant to the above, a reduced HRV identified patients at high risk of death. Interestingly 
reduced HRV was a better predictor of death due to progressive heart failure than other 
conventional clinical measurements (Nolan J et al., 1998).  
In another study of 347 subjects of ≥65 years of age (mean, 73± 6 years) HRV gave 
prognostic information beyond that obtained by traditional risk markers (Heikki V et al., 
1998). In particular, after a 10-year follow-up, among all analyzed variables, a steep slope of 
the power-law regression line of HRV was the best predictor of all-cause mortality. 
Interestingly in the Rotterdam Study, a population-based cohort study of 2,088 men and 
3,184 women aged ≥55 years (mean follow-up: 4 years), increased heart rate variability 
resulted an even stronger indicator of cardiac mortality than decreased heart rate variability 
(de Bruyne MC et al., 1999). The authors examined the association between heart rate 
variability on a standard 10-second electrocardiogram and cardiac and all-cause mortality. 
In subjects in the highest quartile of SDNN (a time-domain measure of HRV), a more 
pronounced risk for cardiac mortality was present. In the Zutphen Study an association of 
increased HRV with all-cause mortality was observed only in elderly men (Dekker JM et al., 
1997). Similarly, in the Bronx Aging Study (Bernstein JM et al., 1997), among men and women 
aged 75-85 years, no association was found between decreased HRV and cardiac or all-cause 
mortality, but an association of increased HRV with cardiac events was present in women.  
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It has been suggested that, increased HRV, unlike decreased HRV, is hardly influenced by 
the autonomic nervous system. The risk  of mortality  presumably associated with increased 
HRV has been reported to sinus node dysfunction. 
More recently LILAC study examined 298 people older than 75 years (average age: 79.6 
years). One hour of ambulatory ECG recording was obtained during routine medical 
examination conducted each year in July (mean follow-up time of 1152 days). Authors 
evidenced that an intermediate-term fractal-like scaling exponent of RR intervals is a better 
predictor of death than the traditional measures of HRV in elderly community-dwelling 
people (Hotta N et al., 2005).  
Taken together the above data indicate that analysis of heart rate variability can be used to 
identify older men and women with an increased risk for cardiac mortality.  

7. Influences on heart rate variability 
Biologically, the physiological outputs of the human body, including heart rate variability,  
emerge from interactions among a variety of factors, ranging from genes to organs to the 
environment. 
Heart rate variability analysis in elderlies, is influenced by various physiological factors 
including gender, postural changes, ventilation and time of day. Pathological conditions 
such as congestive heart failure and diabetic diabetic neuropathy are associated with 
alterations in heart rate variability.  

7.1 Genetic influences on heart rate variability 
Recent evidence suggests that genetic factors may contribute to the beat-to-beat variability 
in heart rate (Singh JP et al., 1999).  
Analysis from Framingham study suggested there may be influential genetic regions 
contributing to HRV on chromosome 15 at 62 cM and on chromosome 2 at 153 cM  (Singh JP 
et al., 2002).  
Another study in an Asian population showed genes located on 216 cM region at 
chromosomes 5 and on 77 cM region at chromosome 18 may be involved in the regulation of 
heart rate (Gombojav  B et al., 2008). 
The apolipoprotein-E (APOE) gene has been studied extensively in regard to its relationship 
to aging-associated medical illness including cardiovascular disease, geriatric cognitive  
decline and late-onset Alzheimer’s disease. 
It has been hypothesized that diminished physiological complexity, as measured by heart 
rate variability, is influenced by polymorphisms in the APOE allele among elderly 
individuals. In a study, multi-scale entropy (MSE), an analysis used in quantifying 
complexity for nonlinear time series, was employed to analyze heart-rate dynamics. 
Reduced physiological complexity, as measured by MSE, was significantly associated with 
the presence of the APOE ε4 allele in healthy elderly subjects, as compared to APOE ε4 allele 
non-carriers (Cheng D et al., 2009). This finding suggests a role for the APOE gene in the 
diminished physiological complexity seen in elderly populations. 
Variants in transcription factor 7-like 2 (TCF7L2) gene have been found strongly associated 
with an increased risk of type 2 diabetes, as well as with an impairment of glucagon-like 
peptide-1 (GLP-1) signalling chain. It has been shown that TT genotype of rs12255372 and 
rs7903146 TCF7L2 gene variants are associated with lower insulin secretion and higher 
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cardiosympathetic activity (Boccardi V et al., 2010). Moreover, such effect is independent of 
GLP-1 and insulin plasma concentrations suggesting a potential role of such gene variants in 
increasing cardiovascular risk through enhanced sympathetic nervous system activity.  
It has been demonstrated that AKAP10 Val allele,  the dual-specific A kinase-anchoring 
protein 2,  predicted greater resting heart rate and diminished HRV suggesting that this 
variant may modulate the sensitivity of cardiac pacemaker cells to autonomic inputs, 
possibly conferring risk for arrhythmias and sudden cardiac death (Neumann SA et. al., 
2009). 
Other evidences support that variation in the choline transporter gene (CHT1), which 
encodes the choline transporter, may conceivably also account for some portion of 
interindividual variability in cholinergic transmission, as reflected in HRV phenotypes 
(Neumann SA et al., 2005). These findings show that polymorphic variation in the CHT1 
gene is associated significantly with interindividual variability in HRV indices related to 
parasympathetic (cholinergic) activity. 
All these studies strongly indicate that heart rate is controlled by genes mapped to several loci. 

7.2 Environmental and behavioural influences on heart rate variability 
Results of several studies support a potential benefit of increasing or maintaining fitness in 
order to slow the decline of parasympathetic control of heart rate with normal aging. 
In a meta-analysis of 13 studies exercise training results in significant increases in RR 
interval and HF power. These changes are influenced by study population age (Sandercock 
GR et al., 2005). Other studies have provided inconclusive results regarding the effects of 
aerobic training on HRV in elderly subjects. The different results from these studies may be 
due to the different exercise loads (Wichi RB et al., 2009). It is well known that exercise 
training has direct and reflex sympathoinhibitory beneficial effects in chronic heart failure. 
The mechanism by which exercise training normalizes autonomic derangement and 
neurohumoral activation is to elucidate for further development of chronic heart failure-
related training programs aimed at maximizing efficacy while minimizing workload.  
Animal data support the hypothesis of the alteration of the autonomic nervous system by air 
pollution. Clinical exposure studies also support these findings (Schneider A et al., 2010). It 
has been reported that elderly subjects experienced significant decreases in HRV 
immediately following exposure to concentrated air pollution particles persisting at least 24 
hours after exposure for some HRV parameters (Devlin RB et al., 2003). 
Various studies with different recording lengths of ECG and different populations evidenced a 
negative association of smoking with measures of HRV, although significant effects were not 
always observed for all HRV measures determined or for both sexes, or were not confirmed in 
multivariable analyses (Hayano J et al., 1990; Kobayashi F et al., 2005). 
A recent report from the Whitehall Study (Chandola T et al., 2008) has shown that work 
stress is associated with decreased heart rate variability. Dietary pattern also could influence 
HRV. 
It has been suggested that higher intake of green leafy vegetables may reduce the risk of 
cardiovascular disease through favorable changes in cardiac autonomic function in aging 
heart (Park SK et al., 2009).  
Moderate alcohol assumption and intake of omega-3 fatty acids and vitamin D through fish 
or nut consumption seem also effective approaches for which there is some suggestive 
evidence linking them to increased HRV (Mozaffarian D et al., 2008). 
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7.3 Physiologic influences on heart rate variability 
Gender is one of the factors that influence HRV (Kuo TB et al., 1999; Ryan SM et al. 1994). 
Studies involving models of linear analysis showed that women presented higher HRV in 
the supine position than men of a similar age, indicating that the female population has a 
higher cardiac vagal modulation and a lower cardiac sympathetic modulation. 
Women demonstrate a more appropriate response to a postural change than the men even 
though women are postmenopausal, suggesting that autonomic heart rate modulation is 
better preserved in the women’s group (Perseguini NM et al., 2011). 
Several studies have described a circadian pattern of cardiac autonomic modulation (Malpas 
SC & Purdie GL, 1990), which can be quantified with a cosine periodic regression model 
consisting of three cosine function parameters: mean (M), amplitude (Â), and acrophase (θ) 
(Rodríguez-Colón SM et al., 2010). The cosine function parameter M measures the overall 
average of a HRV index, the Â measures the amplitude of the oscillation of a HRV index, 
and the θ measures the clock time when the highest oscillation (amplitude) is reached. Lack 
of circadian variation of HRV is associated with increased vulnerability to cardiovascular 
events. 
Aging is commonly associated with decreased sleep quality and increased periodic 
breathing that can influence heart rate variability (Brandenberger G. et al. 2003). Two 
distinct features depending on respiratory pattern characterize HRV in the elderly during 
sleep: (1) during periods of normal breathing, there is a large fall in absolute values of HRV 
indices without any significant sleepstage dependent variation, and a relative increase in 
sympathetic activity associated with decreased sleep quality, and (2) periodic breathing, that 
often interrupts normal respiratory patterns in most of the elderly, induces substantial 
modification in HRV by triggering important oscillations in the VLF range via autonomic 
efferents. So it is clear that respiration must be considered to correctly interpret HRV in the 
elderly (Schäfer C et al., 1998).  
It is likely that several mechanisms are contributing at some level to the HRV that is 
observed with respiration (Shields RW, 2009). 
Recent studies have shown that ormonal factors such as sex steroid levels, may also 
influence autonomic functions (Moss AJ, 2004). While physiological levels of androgens 
seem to be positively related with parasympathetic activity, estrogens appear positively 
related with sympathetic activity in men. In contrast, decreased androgen levels in aging 
males have controversial effects on autonomic function (Tolga Doĝru M et al., 2010). 
Adrenal androgens seem to be more important for cardiac autonomic control. 

7.4 Pathologic influences on heart rate variability 
Many studies have shown decreased HRV in patients with congestive heart failure. Several 
reports suggested that the withdrawal of parasympathetic activity and the concomitant 
increase of sympathetic activity lead to decreased HRV in heart failure patients (Mark AL, 
1995; Chattipakorn N et al., 2007). Measures of heart rate variability have been shown to 
provide independent prognostic information in congestive heart failure patients (Galinier M 
et al., 2000; La Rovere MT et al., 2003; Sandercock GR & Brodie DA, 2006). 
Findings from large, epidemiological studies provide strong evidence that vagal tone, as 
measured by HRV, is lower in persons with hypertension than in normotensives even after 
adjustment for a range of covariates. Importantly, these studies suggest that decreases in 
vagal tone may precede the development of this critical risk factor for cardiovascular disease 
(Singh JP et al. 1998; Schroeder EB et al. 2003).  
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cardiosympathetic activity (Boccardi V et al., 2010). Moreover, such effect is independent of 
GLP-1 and insulin plasma concentrations suggesting a potential role of such gene variants in 
increasing cardiovascular risk through enhanced sympathetic nervous system activity.  
It has been demonstrated that AKAP10 Val allele,  the dual-specific A kinase-anchoring 
protein 2,  predicted greater resting heart rate and diminished HRV suggesting that this 
variant may modulate the sensitivity of cardiac pacemaker cells to autonomic inputs, 
possibly conferring risk for arrhythmias and sudden cardiac death (Neumann SA et. al., 
2009). 
Other evidences support that variation in the choline transporter gene (CHT1), which 
encodes the choline transporter, may conceivably also account for some portion of 
interindividual variability in cholinergic transmission, as reflected in HRV phenotypes 
(Neumann SA et al., 2005). These findings show that polymorphic variation in the CHT1 
gene is associated significantly with interindividual variability in HRV indices related to 
parasympathetic (cholinergic) activity. 
All these studies strongly indicate that heart rate is controlled by genes mapped to several loci. 

7.2 Environmental and behavioural influences on heart rate variability 
Results of several studies support a potential benefit of increasing or maintaining fitness in 
order to slow the decline of parasympathetic control of heart rate with normal aging. 
In a meta-analysis of 13 studies exercise training results in significant increases in RR 
interval and HF power. These changes are influenced by study population age (Sandercock 
GR et al., 2005). Other studies have provided inconclusive results regarding the effects of 
aerobic training on HRV in elderly subjects. The different results from these studies may be 
due to the different exercise loads (Wichi RB et al., 2009). It is well known that exercise 
training has direct and reflex sympathoinhibitory beneficial effects in chronic heart failure. 
The mechanism by which exercise training normalizes autonomic derangement and 
neurohumoral activation is to elucidate for further development of chronic heart failure-
related training programs aimed at maximizing efficacy while minimizing workload.  
Animal data support the hypothesis of the alteration of the autonomic nervous system by air 
pollution. Clinical exposure studies also support these findings (Schneider A et al., 2010). It 
has been reported that elderly subjects experienced significant decreases in HRV 
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7.3 Physiologic influences on heart rate variability 
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events. 
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distinct features depending on respiratory pattern characterize HRV in the elderly during 
sleep: (1) during periods of normal breathing, there is a large fall in absolute values of HRV 
indices without any significant sleepstage dependent variation, and a relative increase in 
sympathetic activity associated with decreased sleep quality, and (2) periodic breathing, that 
often interrupts normal respiratory patterns in most of the elderly, induces substantial 
modification in HRV by triggering important oscillations in the VLF range via autonomic 
efferents. So it is clear that respiration must be considered to correctly interpret HRV in the 
elderly (Schäfer C et al., 1998).  
It is likely that several mechanisms are contributing at some level to the HRV that is 
observed with respiration (Shields RW, 2009). 
Recent studies have shown that ormonal factors such as sex steroid levels, may also 
influence autonomic functions (Moss AJ, 2004). While physiological levels of androgens 
seem to be positively related with parasympathetic activity, estrogens appear positively 
related with sympathetic activity in men. In contrast, decreased androgen levels in aging 
males have controversial effects on autonomic function (Tolga Doĝru M et al., 2010). 
Adrenal androgens seem to be more important for cardiac autonomic control. 

7.4 Pathologic influences on heart rate variability 
Many studies have shown decreased HRV in patients with congestive heart failure. Several 
reports suggested that the withdrawal of parasympathetic activity and the concomitant 
increase of sympathetic activity lead to decreased HRV in heart failure patients (Mark AL, 
1995; Chattipakorn N et al., 2007). Measures of heart rate variability have been shown to 
provide independent prognostic information in congestive heart failure patients (Galinier M 
et al., 2000; La Rovere MT et al., 2003; Sandercock GR & Brodie DA, 2006). 
Findings from large, epidemiological studies provide strong evidence that vagal tone, as 
measured by HRV, is lower in persons with hypertension than in normotensives even after 
adjustment for a range of covariates. Importantly, these studies suggest that decreases in 
vagal tone may precede the development of this critical risk factor for cardiovascular disease 
(Singh JP et al. 1998; Schroeder EB et al. 2003).  
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The association between diabetes and autonomic nervous system dysfunction is well known 
to clinicians caring for patients with clinically manifest autonomic neuropathy (Lefrandt JD 
et al., 2010). Recently it has been documented that even minor degrees of glucose intolerance 
are associated with abnormalities of autonomic balance. Homeostasis model assessment of 
insuline-resistance (HOMA-IR) has been applied to quantify insuline-resistance in people 
with or without glucose intolerance, and it has been a reliable tool in the evaluation of 
insuline-resistance, especially before the clinical diagnosis of type 2 diabetes. Several 
epidemiological studies have shown that individuals with insuline-resistance, 
hyperinsulinemia or increased fasting glucose have increased heart rate and reduced HRV 
(Galinier M et al., 1999).  
In communities study, a consistent association between, metabolic syndrome and impaired 
cardiac autonomic modulation has been reported (Liao D et al., 1998; Park SK et al., 2006). 
People with metabolic syndrome tend to have a greater percentage of adipose, atherogenic 
dyslipidemia, hypertension, and a higher proinflammatory and prothrombotic state, all of 
which are associated with decreased parasympathetic and increased sympathetic tone. 
In chronic obstructive pulmonary disease (COPD) patients, functional and structural 
changes of the respiratory system deeply influence cardiovascular function. Cardiac 
autonomic dysfunction, in COPD patients, is important in the development of arrhythmias. 
It has been suggested that  in COPD patients, combination of HRV and HRT analysis may 
improve risk stratification leading to a more accurate identification of high risk patients, 
more aggressive treatment toward preventing sudden death and/or preventing progression 
of disease to mortality (Gunduz  H et al., 2009). 
A study in COPD patients (Antonelli-Incalzi R et al., 2009) found that autonomic control 
deteriorates as COPD worsens. It would be plausible that the diffuse cerebral metabolic 
impairment well documented in COPD patients, might induce, among others, lesions to 
functional connection of the insular cortex. The right anterior insula has a role in modulation 
of sympathetic tone and is implicated in the sympathetic arousal associated with mental 
tasks. 
Major depression and depressive symptoms are associated with decreased HRV, both in 
patients with coronary heart disease (Carney et al., 2001; Vigo et al., 2004) and in community 
subjects (Udupa et al., 2007; van der Kooy et al., 2006). Depression has been associated with 
increased risk of morbidity and mortality in patients with coronary artery disease (Lett et al., 
2004). Dysregulation of the autonomic nervous system has been proposed as a plausible 
explanation (Carney et al., 2005). Results from a recent study (Kop WJ et al., 2010) confirmed 
that the long-term adverse cardiovascular consequences of depression may be partially 
explained by autonomic nervous system dysfunction and inflammation. In particular 
depression was associated with selected indices of autonomic nervous system dysfunction 
and inflammation markers (white blood cell count and fibrinogen) in individuals >65 years 
of age free of clinical cardiovascular diseases. 
Recently authors have suggested that association between depressive symptoms with 
decreased HRV is due, in large part, to a shared genetic effect (Su S et al., 2010).  
Autonomic dysfunction can occur in all common dementias in older people, but is a 
particularly common feature of Lewy body dementia and Parkinson disease dementia 
(Allan LM et al., 2007). Cholinergic dysfunction has been discussed as a potential cause of 
autonomic failure in patients with dementia, and may be particularly important in Lewy 
body dementia and Parkinson disease dementia, where cholinergic deficits are especially 
pronounced, and where the disease pathology involves the dorsal vagal nucleus. 
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8. Conclusions 
Since reduced HRV is associated with higher cardiovascular morbidity and mortality rates, 
it has an important clinical impact on the elderly. The age-related changes in HRV and their 
implications for mortality suggest that periodic HRV monitoring of the elderly could help 
predict and promote longevity. Further studies are needed to clarify what different HRV 
measures reflect physiologically and which measure of HRV is more useful. Identifying 
HRV abnormalities in subjects free from clinically evident mechanical and arrhythmic 
problems might be a clue to detect timely patients at risk of such diseases. Recognition of the 
genetic determinants of HRV may provide additional insights into the pathophysiology of 
the autonomic nervous system and offer clues to its modulation. 
The intensified research about correlations between heart rate variability and pathologies 
with a variety of methods (in particular from nonlinear dynamics) will not only increase our 
knowledge about the complex autonomic regulation but will lead us to an enhanced 
diagnostics and therapy for older patients. Future research will determine whether 
noninvasive measures of physiological complexity underlying heart rate dynamics might be 
useful for screening and monitoring of clinical vulnerability in older adults. Research will be 
needed also to identify behavioural strategies of favorably modulating autonomic function 
that improve outcomes in the clinic and among large populations. 
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1. Introduction   
Gastroparesis, a gastric motility disorder characterized by delayed gastric emptying without 
evidence of mechanical obstruction (Nilsson, 1996), clinically presents as nausea, vomiting, 
abdominal pain, with a compromised nutritional state. Gastroparesis has multiple etiologies 
but the dominant ones are diabetes (DM), idiopathic (ID) and post-surgical (P-S). Frequent 
hospital admissions, and severe symptoms make gastroparesis patients socially restricted 
(Soykan et al., 1998). Approximately one third of gastroparesis cases are caused by diabetes 
mellitus. Diabetic gastroparesis may be attributed to impaired motor activity involving 
gastric hypomotility and unpropagated contractions (lack of peristalsis) and/or impaired 
myoelectrical activity explained by abnormal frequency of the gastric slow wave 
(dysrhythmia), low amplitude and/or uncoupling of slow waves (You et al., 1980; Telander 
et al.,1978; Geldof et al.,1986; Chen et al., 1992). 
The most common treatment for gastroparesis is the use of prokinetic agents, such as 
metoclopramide, erythromycin and domperidone. However, only two agents are currently 
available in the USA, metoclopramide and erythromycin. Side effects from these agents 
result in up to 40% of patients being unable to tolerate chronic use (Sturm et al., 1999). Those 
who are refractory or intolerant to prokinetic agents often undergo abdominal surgery for 
the placement of a feeding jejunostomy tube which is only for nutritional support and does 
not improve gastric motility (Reardon et al., 1989; Ejskjaer et al., 1999). 
Gastric electrical stimulation (GES) is an emerging therapy for refractory gastroparesis. 
Currently two types of GES have been investigated for treatment of gastroparesis: (i) long-
pulse or high energy with low frequency stimulation and (ii) short-pulse or low energy with 
high frequency stimulation.  Gastric electrical stimulation (GES) with short pulses and low 
energy (Enterra Device) was FDA approved in 2000 as a therapeutic option in the 
management of refractory gastroparesis (Familoni et al., 1997; Forster et al., 2001; Abell et 
al., 2002, 2003). Long-pulse and high energy stimulation, another approach to GES, achieves 
gastric pacing and represents a promising new treatment for gastric motility disorders 
(Hocking et al., 1992; McCallum et al., 1998; Lin et al., 1998). In this method, the electrical 
stimulus is composed of repetitive single pulses with a pulse width in the order of 



 
Advances in Electrocardiograms – Methods and Analysis 

 

270 

Varadhan R, Chaves PHM et al. (2009). Frailty and Impaired Cardiac Autonomic Control: 
New Insights From Principal Components Aggregation of Traditional Heart Rate 
Variability Indices. J Gerontol A Biol Sci Med Sci. Vol. 64A, No. 6, 682–687. 

Vigo DE, Nicola Siri L et al. (2004). Relation of depression to heart rate nonlinear dynamics 
in patients ≥60 years of age with recent unstable angina pectoris or acute 
myocardial infarction. Am J Cardiol;93:756–776. 

Watanabe MA. (2003). Heart rate turbulence: a review. Indian Pacing Electrophysiol J; 3(1): 10–
22. 

Wichi RB, De Angelis K et al. (2009). A brief review of chronic exercise intervention to 
prevent autonomic nervous system changes during the aging process. Clinics.;64 
(3):253-8. 

Xiao RP, Tomhave ED et al. (1998). Age-associated reductions in cardiac β1 and β2-
adrenoceptor responses without changes in inhibitory G proteins or receptor 
kinases. J Clin Invest  15; 101(6): 1273–1282. 

Zulfiqar U, Jurivich DA et al. (2010). Relation of High Heart Rate Variability to Healthy 
Longevity. Am J Cardiol; 105: 1181–1185. 

14 

Changes of Sympathovagal Balance 
Measured by Heart Rate Variability in 

Gastroparetic Patients Treated with 
Gastric Electrical Stimulation 

Zhiyue Lin and Richard W. McCallum 
Northwestern University and Texas Tech University 

USA 

1. Introduction   
Gastroparesis, a gastric motility disorder characterized by delayed gastric emptying without 
evidence of mechanical obstruction (Nilsson, 1996), clinically presents as nausea, vomiting, 
abdominal pain, with a compromised nutritional state. Gastroparesis has multiple etiologies 
but the dominant ones are diabetes (DM), idiopathic (ID) and post-surgical (P-S). Frequent 
hospital admissions, and severe symptoms make gastroparesis patients socially restricted 
(Soykan et al., 1998). Approximately one third of gastroparesis cases are caused by diabetes 
mellitus. Diabetic gastroparesis may be attributed to impaired motor activity involving 
gastric hypomotility and unpropagated contractions (lack of peristalsis) and/or impaired 
myoelectrical activity explained by abnormal frequency of the gastric slow wave 
(dysrhythmia), low amplitude and/or uncoupling of slow waves (You et al., 1980; Telander 
et al.,1978; Geldof et al.,1986; Chen et al., 1992). 
The most common treatment for gastroparesis is the use of prokinetic agents, such as 
metoclopramide, erythromycin and domperidone. However, only two agents are currently 
available in the USA, metoclopramide and erythromycin. Side effects from these agents 
result in up to 40% of patients being unable to tolerate chronic use (Sturm et al., 1999). Those 
who are refractory or intolerant to prokinetic agents often undergo abdominal surgery for 
the placement of a feeding jejunostomy tube which is only for nutritional support and does 
not improve gastric motility (Reardon et al., 1989; Ejskjaer et al., 1999). 
Gastric electrical stimulation (GES) is an emerging therapy for refractory gastroparesis. 
Currently two types of GES have been investigated for treatment of gastroparesis: (i) long-
pulse or high energy with low frequency stimulation and (ii) short-pulse or low energy with 
high frequency stimulation.  Gastric electrical stimulation (GES) with short pulses and low 
energy (Enterra Device) was FDA approved in 2000 as a therapeutic option in the 
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milliseconds (10-600 ms), and a stimulation frequency in the vicinity of the physiological 
frequency of the gastric slow wave. Single-channel GES with a pair of electrodes located in the 
mid-body of the stomach and using long pulses is able to normalize gastric dysryhthmia 
(Hocking et al., 1992; McCallum et al., 1998; Lin et al., 1998; Qian et al., 1999) and improve 
gastric emptying in both patients with gastroparesis and animal models of gastroparesis 
(McCallum et al., 1998; Bellahsene et al., 1992). Recently, two or four-channel GES with long 
pulses has been investigated and the preliminary results from several studies in both healthy 
and diseased canine models are promising (Song et al., 2005; Chen et al., 2005; Xu et al., 2008). 
Compared with single-channel GES, multi-channel GES is substantially more effective in 
entraining gastric slow waves and accelerating gastric emptying. However, the mechanisms 
underlying symptomatic improvement by GES remain unclear. Animal studies have shown 
that GES with high frequency and low energy parameters affects autonomic function. The 
aims of this chapter were to evaluate the effect of GES on autonomic function in patients with 
gastroparesis and identify possible mechanisms that could help explain how GES is effective in 
treating nausea and vomiting associated with refractory gastroparesis.  

2. Methods  
2.1 Subjects  
Twenty nine gastroparetic patients were enrolled in two studies. Study I was performed in 
10 gastroparetic patients (2 men and 8 women; mean age, 44 years; range, 20-58 years) with 
severe gastroparesis (7 diabetic, 3 idiopathic) refractory to standard medical therapies 
treated with short-pulse GES using an implantable neurostimulator (ENTERRATM Therapy 
System, Medtronic, Minneapolis, MN). Nineteen diabetic gastroparetic patients (8M, 11F, 
mean age: 41 years, range: 26-60) refractory to standard medical therapy were included in 
Study II and they were treated with long-pulse GES using an external multi-channel pulse 
stimulator (GI Stimulation Inc., Charlottesville, VA).  
The entry criteria included 1) delayed gastric emptying of a solid meal (>60% gastric retention 
at 2 hours and >10% at four hours after eating) using a standardized 4-hour scintigraphic 
method (Tougas et al., 2000); 2) more than 7 episodes of vomiting and/or nausea per week; 3) 
symptoms of gastroparesis for longer than one year; 4) refractoriness or intolerance to 2 of 3 
classes of prokinetic drugs (cholinergic agonists, motilin receptor agonists, and dopamine 
receptor antagonists) and 2 of 3 classes of antimetics (anticholinergics/antihistamines, 
serotonin receptor antagonists, and dopamine receptor antagonists). Patients with 
documented organic or intestinal pseudo-obstruction, primary eating or swallowing disorders, 
chemical dependency, a diagnosis of active malignancy, positive pregnancy test or 
psychogenic vomiting were excluded. The study protocol was approved by the Human 
Subjects Committee at University of Kansas Medical Center, Kansas City, Kansas and written 
consent forms were obtained from all subjects before the study. 

2.2 Study design  
Each study consisted of a baseline, within two weeks before surgery for implantation of GES 
system, and follow-up sessions 6 weeks after GES therapy was initiated. In each session, a 
total symptom score (TSS) derived from 7 upper GI symptom sub-scores using a 5-point 
scale was assessed and electrocardiogram (ECG) were measured for 30 min in the fasting 
state and for 60 min after a caloric liquid meal (240 kcal). Autonomic activity was assessed 
by spectral analysis of the heart rate variability.  
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2.3 Surgical and GES techniques  
The GES system for Enterra therapy used in study I consisted of 3 components: a battery-
powered implantable pulse generator (Medtronic Model 3116, Medtronic), 2 intramuscular 
electrodes (Model 4300, Medtronic) (Figure 1) and an external programmer (Medtronic 
N’Vision clinician programmer 8840) to adjust the output parameters of the pulse generator. 
One pair of permanent electrodes (about 1 cm apart) was inserted during laparotomy into 
the muscularis propria layer on the greater curvature at 9.5 and 10.5 cm proximal to the 
pylorus. The electrodes were secured to the serosa of the stomach using 5-0 silk sutures and 
plastic disks.  The other end of each electrode was connected to the pulse generator which 
was positioned in a subcutaneous pocket in the abdominal wall to the right of the umbilicus. 
The load impedance of the circuit was checked both before and after the GES device was 
placed in the pocket using the external programmer. The pulse generator was usually 
activated in the operating room or within 48 hours after surgery and initially programmed 
to standardized parameters: pulse width, 330 s; (current) amplitude, 5 mA; frequency, 14 
Hz; cycle ON: 0.1 seconds; cycle OFF, 5.0 seconds.  At various intervals of follow-up after 
the implant, those parameters can be adjusted based on patient’s symptomatic status or 
changes in impedance reading.  
 

Location of Gastric Electrodes

For recording

For stimulation

11-12 cm for recording

1
2

34

7-8 cm for stimulation

 
Fig. 1. The location of permanent electrodes for implantable Enterra device and temporary 
electrodes for external stimulation by a multi-channel gastric pulse generator (MGP). During 
laparotomy to place a permanent gastric neurostimulator, a pair of intramuscular electrodes 
were implanted into the gastric muscle at 9 and 10 cm from the pylorus on the greater 
curvature of the stomach and connected to the Enterra device. Then 4 pairs of serosal 
electrodes for gastric pacing were sewed on the serosa of the greater curvature of the 
stomach. The electrodes utilized for stimulation where at 15-16 and 7-8 cm from the pylorus 
whereas the electrodes for recordings the signal were located at 11-12 and 3-4 cm from the 
pylorus.  
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milliseconds (10-600 ms), and a stimulation frequency in the vicinity of the physiological 
frequency of the gastric slow wave. Single-channel GES with a pair of electrodes located in the 
mid-body of the stomach and using long pulses is able to normalize gastric dysryhthmia 
(Hocking et al., 1992; McCallum et al., 1998; Lin et al., 1998; Qian et al., 1999) and improve 
gastric emptying in both patients with gastroparesis and animal models of gastroparesis 
(McCallum et al., 1998; Bellahsene et al., 1992). Recently, two or four-channel GES with long 
pulses has been investigated and the preliminary results from several studies in both healthy 
and diseased canine models are promising (Song et al., 2005; Chen et al., 2005; Xu et al., 2008). 
Compared with single-channel GES, multi-channel GES is substantially more effective in 
entraining gastric slow waves and accelerating gastric emptying. However, the mechanisms 
underlying symptomatic improvement by GES remain unclear. Animal studies have shown 
that GES with high frequency and low energy parameters affects autonomic function. The 
aims of this chapter were to evaluate the effect of GES on autonomic function in patients with 
gastroparesis and identify possible mechanisms that could help explain how GES is effective in 
treating nausea and vomiting associated with refractory gastroparesis.  

2. Methods  
2.1 Subjects  
Twenty nine gastroparetic patients were enrolled in two studies. Study I was performed in 
10 gastroparetic patients (2 men and 8 women; mean age, 44 years; range, 20-58 years) with 
severe gastroparesis (7 diabetic, 3 idiopathic) refractory to standard medical therapies 
treated with short-pulse GES using an implantable neurostimulator (ENTERRATM Therapy 
System, Medtronic, Minneapolis, MN). Nineteen diabetic gastroparetic patients (8M, 11F, 
mean age: 41 years, range: 26-60) refractory to standard medical therapy were included in 
Study II and they were treated with long-pulse GES using an external multi-channel pulse 
stimulator (GI Stimulation Inc., Charlottesville, VA).  
The entry criteria included 1) delayed gastric emptying of a solid meal (>60% gastric retention 
at 2 hours and >10% at four hours after eating) using a standardized 4-hour scintigraphic 
method (Tougas et al., 2000); 2) more than 7 episodes of vomiting and/or nausea per week; 3) 
symptoms of gastroparesis for longer than one year; 4) refractoriness or intolerance to 2 of 3 
classes of prokinetic drugs (cholinergic agonists, motilin receptor agonists, and dopamine 
receptor antagonists) and 2 of 3 classes of antimetics (anticholinergics/antihistamines, 
serotonin receptor antagonists, and dopamine receptor antagonists). Patients with 
documented organic or intestinal pseudo-obstruction, primary eating or swallowing disorders, 
chemical dependency, a diagnosis of active malignancy, positive pregnancy test or 
psychogenic vomiting were excluded. The study protocol was approved by the Human 
Subjects Committee at University of Kansas Medical Center, Kansas City, Kansas and written 
consent forms were obtained from all subjects before the study. 

2.2 Study design  
Each study consisted of a baseline, within two weeks before surgery for implantation of GES 
system, and follow-up sessions 6 weeks after GES therapy was initiated. In each session, a 
total symptom score (TSS) derived from 7 upper GI symptom sub-scores using a 5-point 
scale was assessed and electrocardiogram (ECG) were measured for 30 min in the fasting 
state and for 60 min after a caloric liquid meal (240 kcal). Autonomic activity was assessed 
by spectral analysis of the heart rate variability.  
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2.3 Surgical and GES techniques  
The GES system for Enterra therapy used in study I consisted of 3 components: a battery-
powered implantable pulse generator (Medtronic Model 3116, Medtronic), 2 intramuscular 
electrodes (Model 4300, Medtronic) (Figure 1) and an external programmer (Medtronic 
N’Vision clinician programmer 8840) to adjust the output parameters of the pulse generator. 
One pair of permanent electrodes (about 1 cm apart) was inserted during laparotomy into 
the muscularis propria layer on the greater curvature at 9.5 and 10.5 cm proximal to the 
pylorus. The electrodes were secured to the serosa of the stomach using 5-0 silk sutures and 
plastic disks.  The other end of each electrode was connected to the pulse generator which 
was positioned in a subcutaneous pocket in the abdominal wall to the right of the umbilicus. 
The load impedance of the circuit was checked both before and after the GES device was 
placed in the pocket using the external programmer. The pulse generator was usually 
activated in the operating room or within 48 hours after surgery and initially programmed 
to standardized parameters: pulse width, 330 s; (current) amplitude, 5 mA; frequency, 14 
Hz; cycle ON: 0.1 seconds; cycle OFF, 5.0 seconds.  At various intervals of follow-up after 
the implant, those parameters can be adjusted based on patient’s symptomatic status or 
changes in impedance reading.  
 

Location of Gastric Electrodes
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Fig. 1. The location of permanent electrodes for implantable Enterra device and temporary 
electrodes for external stimulation by a multi-channel gastric pulse generator (MGP). During 
laparotomy to place a permanent gastric neurostimulator, a pair of intramuscular electrodes 
were implanted into the gastric muscle at 9 and 10 cm from the pylorus on the greater 
curvature of the stomach and connected to the Enterra device. Then 4 pairs of serosal 
electrodes for gastric pacing were sewed on the serosa of the greater curvature of the 
stomach. The electrodes utilized for stimulation where at 15-16 and 7-8 cm from the pylorus 
whereas the electrodes for recordings the signal were located at 11-12 and 3-4 cm from the 
pylorus.  
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After laparotomy for implantation of permanent electrodes and pulse generator for the 
Enterra Therapy, four pairs of bipolar temporary electrodes used for gastric pacing in Study 
II were sewed on the serosa of the greater curvature of the stomach with an inter-electrode 
distance of 1 cm using a previously published method (McCallum et al., 1998; Lin et al., 
1998). These four pairs of electrodes were TPW62 multifilament surgical steel temporary 
cardiac pacing wires (Ethicon, Inc, Somerville, NJ, USA). The most distal pair of electrodes 
was positioned 3-4 cm above the pylorus and the most proximal one, 15-16 cm above. The 
interval between two pairs of electrodes was 4 cm (Figure 1). The first pair (the most 
proximal pair) and the third pair of electrodes at 7 to 8 cm proximal to the pylorus were for 
electrical stimulation. The second and the fourth pairs at 11 to 12 cm and at 3 to 4 cm 
proximal to the pylorus respectively were for recording of gastric electrical activity. Wires 
from the electrodes were brought out through the abdominal wall percutaneously and 
placed under a sterile dressing to be connected to an external pulse generator for the study. 
Four to five days after surgery the function of the electrodes was validated by 4 channel-
serosal recordings and the optimal pacing parameters for entrainment of gastric slow waves 
in each patient were identified using a newly developed external multi-channel pulse 
generator (GI Stimulation Inc., Charlottesville, VA) (see Figure 1).  Before being sent home 
with a portable multi-channel pulse generator, the patient was trained on how to connect 
the electrodes to the external pulse generator, activate and care for the device. The patients 
were asked to place the device in a fanny pack for protection during the day and to self-
administer GES 30 minutes before each meal, during the meal and 4 hours after each meal 
and to disconnect the pulse generator from the electrodes and charge the battery at night. 
The parameters utilized were determined by optimization session outlined above: two-
channel pacing at 1.1 times the intrinsic frequency ranging from 3 to 3.5 cpm, a pulse width 
of 10 to 300 ms and the amplitude of 0.5 to 3 mA. The phase shift of electrical stimuli 
between the first and third stimulation channels was adjusted to be the same as the intrinsic 
phase shift calculated from the baseline slow wave recording and varied from 8 to 10 
seconds. Enterra device was turned OFF and kept inactivated for the duration of the study 
II.  

2.4 Recording and analysis of Heart Rate Variability (HRV)  
After the patient fasted for at least 12 hours, one-channel ECG was measured for at least 30 
minutes using the UFI Bio-Amplifier (UFI, Morro Bay, CA). Prior to the attachment of 
electrodes (BioTac, Graphic Controls Corporation, Buffalo, NY), the chest where the electrodes 
were to be positioned was shaved if applicable (in males) and cleaned with sandy skin-prep 
paste to reduce the impedance. Three electrodes were placed on the chest for recording ECG. 
To avoid motion artifact, the patients were asked to lie quietly in supine position on the bed 
and try to be as still as possible during the recording period. Analysis of autonomic function 
was accomplished through power spectral analysis of heart rate variability (HRV) (Figure 2). 
The following parameters were computed from the ECG recordings using a validated 
program (Wang & Chen, 2000; Oppenheim, A.V. & Schafer, 1975): (a) average and standard 
deviation of the heart rate, (b) spectral components of HRV in low frequency band (PL: 0.04 – 
0.15 Hz) and in high frequency band (PH: 0.15 – 0.4 Hz), (c) the percentage of power in low 
frequency band, P1= (PL/(PL+PH) %) and the percentage of power in high frequency band, 
P2= (PH/(PL+PH) %) and (d) PL/PH, which measures sympathovagal balance, with higher 
values indicating greater overall sympathetic dominance.  
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2.5 Assessment of upper GI symptoms 
Each patient completed a self assessment Symptom Interview Form at baseline and after 6 
weeks of active GES. This form assessed the symptoms of gastroparesis occurring during the 
2 weeks before the interview and the two last weeks of a total  6 weeks of GES  therapy for 
severity of vomiting, nausea, early satiety, bloating, postprandial fullness, epigastric pain, 
and epigastric burning. The severity of each symptom was graded by the patients as 0 = 
absent, 1 = mild (not influencing the usual activities), 2= moderate (diverting from, but not 
urging modifications, of usual activities), 3 = severe (influencing usual activities, severely 
enough to urge modifications) and 4 = extremely severe (requiring bed-rest). The sum of the 
severity ratings of the 7 symptom sub-scores comprised the overall total symptom score 
(TSS) for severity.   
 

 
(a) 

 
(b) 

Fig. 2. Examples of (a) electrocardiogram recording, (b) time-domain signal of heart rate 
variability (HRV) (upper panel) and spectral analysis of heart rate variability signal (lower 
panel). PL: power in low frequency band; PH: power in high frequency band; PVL: power in 
very-low frequency band; PTOTAL: total power. 
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After laparotomy for implantation of permanent electrodes and pulse generator for the 
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1998). These four pairs of electrodes were TPW62 multifilament surgical steel temporary 
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electrical stimulation. The second and the fourth pairs at 11 to 12 cm and at 3 to 4 cm 
proximal to the pylorus respectively were for recording of gastric electrical activity. Wires 
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placed under a sterile dressing to be connected to an external pulse generator for the study. 
Four to five days after surgery the function of the electrodes was validated by 4 channel-
serosal recordings and the optimal pacing parameters for entrainment of gastric slow waves 
in each patient were identified using a newly developed external multi-channel pulse 
generator (GI Stimulation Inc., Charlottesville, VA) (see Figure 1).  Before being sent home 
with a portable multi-channel pulse generator, the patient was trained on how to connect 
the electrodes to the external pulse generator, activate and care for the device. The patients 
were asked to place the device in a fanny pack for protection during the day and to self-
administer GES 30 minutes before each meal, during the meal and 4 hours after each meal 
and to disconnect the pulse generator from the electrodes and charge the battery at night. 
The parameters utilized were determined by optimization session outlined above: two-
channel pacing at 1.1 times the intrinsic frequency ranging from 3 to 3.5 cpm, a pulse width 
of 10 to 300 ms and the amplitude of 0.5 to 3 mA. The phase shift of electrical stimuli 
between the first and third stimulation channels was adjusted to be the same as the intrinsic 
phase shift calculated from the baseline slow wave recording and varied from 8 to 10 
seconds. Enterra device was turned OFF and kept inactivated for the duration of the study 
II.  

2.4 Recording and analysis of Heart Rate Variability (HRV)  
After the patient fasted for at least 12 hours, one-channel ECG was measured for at least 30 
minutes using the UFI Bio-Amplifier (UFI, Morro Bay, CA). Prior to the attachment of 
electrodes (BioTac, Graphic Controls Corporation, Buffalo, NY), the chest where the electrodes 
were to be positioned was shaved if applicable (in males) and cleaned with sandy skin-prep 
paste to reduce the impedance. Three electrodes were placed on the chest for recording ECG. 
To avoid motion artifact, the patients were asked to lie quietly in supine position on the bed 
and try to be as still as possible during the recording period. Analysis of autonomic function 
was accomplished through power spectral analysis of heart rate variability (HRV) (Figure 2). 
The following parameters were computed from the ECG recordings using a validated 
program (Wang & Chen, 2000; Oppenheim, A.V. & Schafer, 1975): (a) average and standard 
deviation of the heart rate, (b) spectral components of HRV in low frequency band (PL: 0.04 – 
0.15 Hz) and in high frequency band (PH: 0.15 – 0.4 Hz), (c) the percentage of power in low 
frequency band, P1= (PL/(PL+PH) %) and the percentage of power in high frequency band, 
P2= (PH/(PL+PH) %) and (d) PL/PH, which measures sympathovagal balance, with higher 
values indicating greater overall sympathetic dominance.  
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2.5 Assessment of upper GI symptoms 
Each patient completed a self assessment Symptom Interview Form at baseline and after 6 
weeks of active GES. This form assessed the symptoms of gastroparesis occurring during the 
2 weeks before the interview and the two last weeks of a total  6 weeks of GES  therapy for 
severity of vomiting, nausea, early satiety, bloating, postprandial fullness, epigastric pain, 
and epigastric burning. The severity of each symptom was graded by the patients as 0 = 
absent, 1 = mild (not influencing the usual activities), 2= moderate (diverting from, but not 
urging modifications, of usual activities), 3 = severe (influencing usual activities, severely 
enough to urge modifications) and 4 = extremely severe (requiring bed-rest). The sum of the 
severity ratings of the 7 symptom sub-scores comprised the overall total symptom score 
(TSS) for severity.   
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Fig. 2. Examples of (a) electrocardiogram recording, (b) time-domain signal of heart rate 
variability (HRV) (upper panel) and spectral analysis of heart rate variability signal (lower 
panel). PL: power in low frequency band; PH: power in high frequency band; PVL: power in 
very-low frequency band; PTOTAL: total power. 
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2.6 Statistical analysis 
All data are expressed as mean ± SD. Analysis of variance (ANOVA) and paired t-test were 
used to determine significant difference between baseline and follow-up visit (Microsoft 
Excel, Redmond, WA). Statistical significance was assigned for P<0.05.  

3. Results  
Similar results were observed in these two studies.  
In study I, the results of heart rate (HR), power in the low frequency band (0.04-0.15 Hz), 
power in the high frequency band (0.15-0.4 Hz) and power ratio (PL/PH) are summarized in 
Table 1. Figure 3 shows (a) individual percentages of power in the low-frequency band and 
(b) in high-frequency band derived from heart rate variability before and after Enterra GES.  
The sympathovagal balance (PL/PH) was significantly decreased after Enterra GES therapy 
with low energy and high frequency parameters (2.2±0.6 vs. 0.5±0.2), indicating a significant 
increase in vagal activity during Enterra GES. Severity of nausea and vomiting and TSS was 
significantly reduces after GES therapy (see table 2). The mean symptom reduction in TSS 
was substantially greater in 7 patients who had a decrease in the sympathovagal balance 
than that in 3 patients who had an increase in the sympathovagal balance (59% vs. 26%).  
 
 Mean HR (beats/min) SD P1 (%) P2 (%) PL/PH 
Before GES 98.7 60.1 69 31 2.2 
During GES 88.2 40.0 34 66 0.5 
P values (t-test) NS NS NS 0.04 0.04 

Table 1. Comparison of heart rate variability (HRV) before and during gastric electrical 
stimulation (GES). Note: HR, heart rate; SD, standard deviation; P1, the percentage of power 
in low frequency band; P2, the percentage of power in high frequency band; PL, power in 
high frequency band; PH, power in high frequency band. NS, not significant. 

 

 

                                            (a)                                                                     (b) 

Fig. 3. (a) Individual percentages of power in the low-frequency band and (b) in high-
frequency band derived from heart rate variability before and during gastric electrical 
stimulation (GES) (Mean data also included for comparison). 
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 Before GES During  GES P value (t-test) 
Nausea score (0-4) 3.80.1 1.70.4 <0.05 
Vomiting score (0-4) 2.20.4 1.80.5 <0.05 
TSS  in severity (0-28) 23.10.8 11.5±2.6 <0.01 

Table 2. Results of gastroparetic symptom responses in Study I. Note: TSS (Total Symptom 
Score) derived from 7 upper GI symptom sub-scores (vomiting, nausea, early satiety, 
bloating, postprandial fullness, epigastric pain and burning) using a 5-point scale (0=none, 
4=extremely severe) before and after initiation of GES (Gastric Electrical Stimulation). 

In study II, the PL/PH was significantly decreased from 0.45±0.05 at baseline to 0.28±0.04 after 6 
weeks of two-channel GES with high energy and low-frequency parameters. Figure 4 shows 
the effect of the two-channel gastric pacing on the spectral components of HRV. Severity for 
each GP symptom (nausea, vomiting, early satiety, bloating, postprandial fullness, epigastric 
pain, and epigastric burning) was significantly reduced after 6 weeks of two-channel gastric 
pacing (P<0.01, Figure 5). Therefore, the significant reduction of TSS from 21.3±1.1 at baseline 
to 7.0±1.5 after 6 weeks of two-channel gastric pacing was observed. 
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Fig. 4. Effect of two-channel gastric pacing on the spectral components of the HRV. 
Comparing to baseline, the high frequency component of the HRV increased significantly 
during two-channel gastric pacing. P1, the percentage of power in low frequency band; P2, 
the percentage of power in high frequency band. 

4. Discussion and conclusion  
This study identifies significantly enhanced vagal activity during chronic GES with both 
Enterra therapy and two-channel gastric pacing while significantly improving upper GI 
symptoms. These observations augment previous reports on the purported mechanisms of 
high-frequency GES therapy (Tougas & Huizinga, 1998; Tack et al., 1999; Al-Jubiri et al., 2001; 
Wang et al., 2001; Liu et al., 2004; Luo et al., 2005; Lin et al., 2004, 2008; McCallum et al., 2010). 



 
Advances in Electrocardiograms – Methods and Analysis 276 

2.6 Statistical analysis 
All data are expressed as mean ± SD. Analysis of variance (ANOVA) and paired t-test were 
used to determine significant difference between baseline and follow-up visit (Microsoft 
Excel, Redmond, WA). Statistical significance was assigned for P<0.05.  

3. Results  
Similar results were observed in these two studies.  
In study I, the results of heart rate (HR), power in the low frequency band (0.04-0.15 Hz), 
power in the high frequency band (0.15-0.4 Hz) and power ratio (PL/PH) are summarized in 
Table 1. Figure 3 shows (a) individual percentages of power in the low-frequency band and 
(b) in high-frequency band derived from heart rate variability before and after Enterra GES.  
The sympathovagal balance (PL/PH) was significantly decreased after Enterra GES therapy 
with low energy and high frequency parameters (2.2±0.6 vs. 0.5±0.2), indicating a significant 
increase in vagal activity during Enterra GES. Severity of nausea and vomiting and TSS was 
significantly reduces after GES therapy (see table 2). The mean symptom reduction in TSS 
was substantially greater in 7 patients who had a decrease in the sympathovagal balance 
than that in 3 patients who had an increase in the sympathovagal balance (59% vs. 26%).  
 
 Mean HR (beats/min) SD P1 (%) P2 (%) PL/PH 
Before GES 98.7 60.1 69 31 2.2 
During GES 88.2 40.0 34 66 0.5 
P values (t-test) NS NS NS 0.04 0.04 

Table 1. Comparison of heart rate variability (HRV) before and during gastric electrical 
stimulation (GES). Note: HR, heart rate; SD, standard deviation; P1, the percentage of power 
in low frequency band; P2, the percentage of power in high frequency band; PL, power in 
high frequency band; PH, power in high frequency band. NS, not significant. 

 

 

                                            (a)                                                                     (b) 

Fig. 3. (a) Individual percentages of power in the low-frequency band and (b) in high-
frequency band derived from heart rate variability before and during gastric electrical 
stimulation (GES) (Mean data also included for comparison). 
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 Before GES During  GES P value (t-test) 
Nausea score (0-4) 3.80.1 1.70.4 <0.05 
Vomiting score (0-4) 2.20.4 1.80.5 <0.05 
TSS  in severity (0-28) 23.10.8 11.5±2.6 <0.01 

Table 2. Results of gastroparetic symptom responses in Study I. Note: TSS (Total Symptom 
Score) derived from 7 upper GI symptom sub-scores (vomiting, nausea, early satiety, 
bloating, postprandial fullness, epigastric pain and burning) using a 5-point scale (0=none, 
4=extremely severe) before and after initiation of GES (Gastric Electrical Stimulation). 

In study II, the PL/PH was significantly decreased from 0.45±0.05 at baseline to 0.28±0.04 after 6 
weeks of two-channel GES with high energy and low-frequency parameters. Figure 4 shows 
the effect of the two-channel gastric pacing on the spectral components of HRV. Severity for 
each GP symptom (nausea, vomiting, early satiety, bloating, postprandial fullness, epigastric 
pain, and epigastric burning) was significantly reduced after 6 weeks of two-channel gastric 
pacing (P<0.01, Figure 5). Therefore, the significant reduction of TSS from 21.3±1.1 at baseline 
to 7.0±1.5 after 6 weeks of two-channel gastric pacing was observed. 
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Fig. 4. Effect of two-channel gastric pacing on the spectral components of the HRV. 
Comparing to baseline, the high frequency component of the HRV increased significantly 
during two-channel gastric pacing. P1, the percentage of power in low frequency band; P2, 
the percentage of power in high frequency band. 

4. Discussion and conclusion  
This study identifies significantly enhanced vagal activity during chronic GES with both 
Enterra therapy and two-channel gastric pacing while significantly improving upper GI 
symptoms. These observations augment previous reports on the purported mechanisms of 
high-frequency GES therapy (Tougas & Huizinga, 1998; Tack et al., 1999; Al-Jubiri et al., 2001; 
Wang et al., 2001; Liu et al., 2004; Luo et al., 2005; Lin et al., 2004, 2008; McCallum et al., 2010). 
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Fig. 5. Comparison of individual upper gastrointestinal symptoms (vomiting, nausea, early 
satiety, bloating, postprandial fullness, epigastric pain and epigastric burning) using a 
severity grading scale of 0 to 4 with a maximum of 28 points between baseline and after 6 
weeks of Multi-channel Pulse Generator (MPG) gastric pacing. There was a significant 
reduction in all symptoms (P<0.01) after 6 weeks of GES. 

The most common symptoms of gastroparesis patients are vomiting and nausea. In our 
study, we proved that GES with both Enterra device and two-channel gastric pacing 
significantly reduced voniting and nausea of gastroparesis patients. This would be a reliable 
evidence to demonstrate significant benefits for GES in the treatment of refractory 
gastroparesis. A certain number of studies investigated the mechanism of high-frequency 
GES to improve symptoms of gastroparesis, which included adrenergic and cholinergic 
functions  (Luo et al., 2005), fundic relaxation  (Tack et al., 1999), GI hormones  (Al-Jubiri et 
al., 2001) and afferent brain stem pathways  (Tougas & Huizinga, 1998), improvement of 
gastric emptying (Lin et al., 2008), activation of vagal afferent pathways to influence CNS 
control mechanisms for nausea and vomiting, and decreasing gastric sensitivity to volume 
distention which enhanced postprandial gastric accommodation  (McCallum et al., 2010). 
The autonomic nervous system (ANS) is involved in the modulation of normal 
gastrointestinal function. It consists of extrinsic control exerted by the parasympathetic and 
sympathetic nervous system (Thumshirn & Camilleri, 2004). A number of methods have 
been developed to assess specific aspects of autonomic nervous function. In recent years the 
development of techniques based on the autonomic modulation of heart rate function have 
largely replaced other methods because of their simplicity and validity as markers of vagal 
as well as sympathetic function (Tougas et al., 1997; Tougas, 2000). The power spectral 
analysis of the heart rate variability (HRV) derived from the electrocardiogram now 
provides a simple and accurate measure of the respective outflow of the vagal and 
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sympathetic branches of the ANS (Kamath & Fallen, 1993). Preliminary studies in animals 
using spectral analysis of HRV have shown that short-pulse GES significantly increased 
vagal activity at a frequency four times the intrinsic slow-wave frequency and is mediated 
via the vagal efferent pathway (Liu et al., 2004; Wang et al., 2001). These short-pulse and 
high-frequency stimulation parameters have been used in previous clinical trials (Familoni 
et al., 1997; Forster et al., 2001; Abell et al., 2002, 2003) and in clinical practice. In this current 
study, we used power spectral analysis of heart rate variability derived from raw ECG 
recordings to assess the effect of GES on autonomic function and found that the 
sympathovagal balance (power in the low frequency band/power in high frequency band) 
was significantly decreased during GES therapy with both Enterra therapy and two-channel 
gastric pacing, attributing to an increase in vagal activity. To our knowledge, this is the first 
study to demonstrate that these stimulation parameters would evoke a similar change in 
vagal activity in humans as previously observed in the dog (Liu et al., 2004; Wang et al., 
2001). 
In conclusion, GES with Enterra therapy and two-channel gastric pacing in patients with 
severe gastroparesis results in a decrease in the sympathovagal balance (power in the low 
frequency band/power in high frequency band), indicating a significant increase in vagal 
activity while significantly improving upper GI symptoms. These findings are one 
explanation for the significant symptomatic improvement induced by GES in these patients 
with refractory gastroparesis.  
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activity while significantly improving upper GI symptoms. These findings are one 
explanation for the significant symptomatic improvement induced by GES in these patients 
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1. Introduction 
Although obesity affects African-Americans disproportionately to their representation in the 
U.S. population, few studies have been performed to elucidate the mechanisms of 
maintaining body fat stores in healthy adolescent or young adult African-Americans with 
low and high percentages of body fat, before they have developed obesity-related diseases. 
Research has suggested some explanations, such as distrust and hesitancy about invasive 
procedures, to account for the sparse representation of African-Americans as subjects in 
research (Hamilton et al., 2006; Farmer et al., 2007; Braunstein et al., 2008). Indeed, advances 
in our knowledge of the obese phenotype have been impeded by the lack of noninvasive 
technologies for measuring the impact of body fat on physiological regulatory mechanisms. 
However, this impediment has effectively been overcome by the advent of heart rate 
variability analyses for elucidating autonomic mechanisms (Lucini et al., 2002). Such 
analyses make it possible to differentiate a wide variety of conditions with common 
autonomic etiologies (Vanninen et al., 1996; Narkiewicz et al., 1998; Salo et al., 2000; 
Gutierrez et al., 2002; Pichon et al., 2004). 
Previous studies have shown correlations between increments in vagal signaling and high 
frequency heart rate variability spectral power during controlled (paced) breathing (De 
Meersman et al., 1995; Sanderson et al., 1996; Badra, 2001). Although the percentage of body 
fat may be a determinant of heart rate variability spectral power measured at rest (Nagai et 
al., 2003; Chen et al., 2008), the influence of body fat on heart rate variability measurements 
was found to be nil when performed at rest and significant only during an autonomic 
challenge (Matsumoto et al., 1999). We have demonstrated positive correlations of the low 
frequency/high frequency heart rate variability spectral power ratio with the respiratory 
quotient before and after feeding (Millis et al., 2009) and negative correlations with the 
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percentage of body fat in healthy young adult/adolescent African-American males after 
overnight fasting; and the latter only during periods of uncontrolled, and not during periods 
of paced, breathing (Millis et al., 2010). Other researchers have reported that changes in the 
percentage of body fat may be correlated with changes in the very low frequency spectral 
power, a measure of sympathetic thermoregulatory and metabolic energy signaling 
(Fujibayashi et al., 2009). However, the significances of very low frequency spectral power to 
measures of body fat stores during trials of uncontrolled and paced breathing associated 
with different physiological states such as fasting or feeding remain unclear. Therefore, we 
designed this study to determine the role of sympathetic thermoregulatory and metabolic 
energy signaling in the same healthy adolescent/young adult African-American male 
population as previously reported (Millis et al., 2010) during trials of uncontrolled and 
paced breathing, associated with states of overnight fasting and 3 h post-feeding, the latter 
associated with the metabolism of foods. We tested the hypothesis that, in healthy resting 
subjects, the percentage of very low frequency power of heart rate variability, an indicator of 
sympathetic thermoregulatory and metabolic energy signaling, is significantly correlated 
with percent body fat, body temperature and energy expenditure. 

2. Materials and methods 
2.1 Study participants and design 
This experimental protocol was approved by the Howard University Human Participants 
Institutional Review Board, and each subject provided informed consent. The study 
population of 10 healthy 18-20 year-old African-American male university students was 
recruited and 8 subjects were included in the experiment. Each subject was studied twice, on 
separate days at which time they ingested isocaloric (900 Cal) high-carbohydrate and high-
fat beverages after overnight fasting. An unsupervised, self reported period of overnight 
fasting (mean ± SD 12 ± 2 h) was used to limit the potentially confounding effects of diet 
related differences in autonomic responsiveness that we have described in a previous report 
(Millis et al., 2009; Millis et al., 2010). Two subjects were excluded because of inadequate 
fasting as determined by respiratory quotient measurements >0.85. Other criteria for 
inclusion in the experiment were non-smoking status, absence of alcohol abuse (less than 
two standard alcohol drinks a day), absence of use of medication that could interfere with 
autonomic modulation, resting systolic/diastolic blood pressure < 140/90 mm Hg. Table 1 
summarizes the relevant characteristics of this study group determined with the subjects at 
rest after overnight fasting. The respiratory quotient indicates utilization of fatty acids as the 
main energy substrate and the low frequency/high frequency ratio shows a predominance 
of vagal modulation of the heart rate. 

2.2 Uncontrolled and paced breathing 
The subjects were instrumented and instructed as to the experimental procedures. Subjects 
were instructed to breathe normally while lying recumbent at 45 degrees in a bed of the 
General Clinical Research Center (GCRC) at Howard University Hospital. Following the 
normal uncontrolled breathing protocol, subjects were instructed to perform 5 min of paced 
breathing by following a visual tracking image on a computer monitor for periodic 
durations of inspirations and expirations set to 12 breaths·min-1 (0.2 Hz). Each subject 
practiced paced breathing for a period of 1-3 min and was then instructed to perform the 
paced breathing for the 5 min paced breathing trial during which time the 
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electrocardiogram signal was recorded using a Biopac MP100 data acquisition system 
(Biopac Systems, Santa Barbara, CA).  The electrocardiogram electrodes were placed on the 
subject’s chest in a standard three-lead position with recordings obtained from standard 
lead II.  
 

Age (years) 19 ± 1 
Weight (kg) 82 ± 25 
Height (cm) 174 ± 20 
Body mass index (kg· m-2) 27 ± 8 
Systolic blood pressure (mm Hg) 130 ± 13 
Diastolic blood pressure (mm Hg) 70 ± 10 
Heart rate (beats· min-1) 65 ± 12 
Respiratory quotient 0.75 ± 0.05 
Energy expenditure (Cal· d-1) 1980 ± 369 
Body temperature (ºF) 97 ± 1 

Values in mean ± standard deviation, n = 8 

Table 1. Characteristics of study participants 

2.3 Heart rate variability analyses 
Heart rate was measured in beats· min-1. Fast Fourier transform analysis of the 
electrocardiogram RR intervals was used to spectrally decompose heart rate variability in 
the frequency domain. For the frequency domain analysis, vagal modulation was 
represented by the area under the high frequency power spectrum (HF: 0.15-0.4 Hz), 
sympathetic cardiovascular modulation by the area under the low frequency power 
spectrum (LF: 0.04-0.14) and cardiac sympathovagal balance by the ratio LF/HF has been 
previously reported in this population (Millis et al. 2010). In this study, we analyzed the area 
under the very low frequency power spectrum (VLF: 0.001-0.04 Hz) expressed as the power 
in raw ms2 and in normalized units using specialized autonomic neural software 
(Nevrokard, Version 6.3, Ljubljana, Slovenia). All time and frequency domain analyses were 
carried out in accordance with the guidelines put forth by the Task Force of the European 
Society of Cardiology and the North American Society of Pacing and Electrophysiology (1996). The 
very low frequency band (0.001-0.04 Hz) has been considered by the Task Force of the 
European Society of Cardiology and the North American Society of Pacing and Electrophysiology 
(1996) guidelines to be too small to be a reliable indicator during short-term recordings. 
However, recent investigations have challenged this assertion (Nagai et al., 2005; Nagai et 
al., 2006; Fujibayashi et al., 2009) and we have found that 5-min recordings produced VLF 
measurements that represented a significant proportion (23%-52%) of the total heart rate 
spectral power expressed in normalized units. The present study was designed, partly, to 
test the physiological significance of the very low frequency band as an indicator of 
sympathetic thermoregulatory and metabolic energy signaling.  

2.4 Anthropomorphic, cardiovascular and metabolic measurements  
Axillary body temperature was measured after overnight fasting and 3 h after ingesting a 
900 Cal beverage. Body weight and height were also measured (Detecto scale) and these 
values were used to compute body mass index as the quotient kg body weight/m2 height. 
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percentage of body fat in healthy young adult/adolescent African-American males after 
overnight fasting; and the latter only during periods of uncontrolled, and not during periods 
of paced, breathing (Millis et al., 2010). Other researchers have reported that changes in the 
percentage of body fat may be correlated with changes in the very low frequency spectral 
power, a measure of sympathetic thermoregulatory and metabolic energy signaling 
(Fujibayashi et al., 2009). However, the significances of very low frequency spectral power to 
measures of body fat stores during trials of uncontrolled and paced breathing associated 
with different physiological states such as fasting or feeding remain unclear. Therefore, we 
designed this study to determine the role of sympathetic thermoregulatory and metabolic 
energy signaling in the same healthy adolescent/young adult African-American male 
population as previously reported (Millis et al., 2010) during trials of uncontrolled and 
paced breathing, associated with states of overnight fasting and 3 h post-feeding, the latter 
associated with the metabolism of foods. We tested the hypothesis that, in healthy resting 
subjects, the percentage of very low frequency power of heart rate variability, an indicator of 
sympathetic thermoregulatory and metabolic energy signaling, is significantly correlated 
with percent body fat, body temperature and energy expenditure. 

2. Materials and methods 
2.1 Study participants and design 
This experimental protocol was approved by the Howard University Human Participants 
Institutional Review Board, and each subject provided informed consent. The study 
population of 10 healthy 18-20 year-old African-American male university students was 
recruited and 8 subjects were included in the experiment. Each subject was studied twice, on 
separate days at which time they ingested isocaloric (900 Cal) high-carbohydrate and high-
fat beverages after overnight fasting. An unsupervised, self reported period of overnight 
fasting (mean ± SD 12 ± 2 h) was used to limit the potentially confounding effects of diet 
related differences in autonomic responsiveness that we have described in a previous report 
(Millis et al., 2009; Millis et al., 2010). Two subjects were excluded because of inadequate 
fasting as determined by respiratory quotient measurements >0.85. Other criteria for 
inclusion in the experiment were non-smoking status, absence of alcohol abuse (less than 
two standard alcohol drinks a day), absence of use of medication that could interfere with 
autonomic modulation, resting systolic/diastolic blood pressure < 140/90 mm Hg. Table 1 
summarizes the relevant characteristics of this study group determined with the subjects at 
rest after overnight fasting. The respiratory quotient indicates utilization of fatty acids as the 
main energy substrate and the low frequency/high frequency ratio shows a predominance 
of vagal modulation of the heart rate. 

2.2 Uncontrolled and paced breathing 
The subjects were instrumented and instructed as to the experimental procedures. Subjects 
were instructed to breathe normally while lying recumbent at 45 degrees in a bed of the 
General Clinical Research Center (GCRC) at Howard University Hospital. Following the 
normal uncontrolled breathing protocol, subjects were instructed to perform 5 min of paced 
breathing by following a visual tracking image on a computer monitor for periodic 
durations of inspirations and expirations set to 12 breaths·min-1 (0.2 Hz). Each subject 
practiced paced breathing for a period of 1-3 min and was then instructed to perform the 
paced breathing for the 5 min paced breathing trial during which time the 
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electrocardiogram signal was recorded using a Biopac MP100 data acquisition system 
(Biopac Systems, Santa Barbara, CA).  The electrocardiogram electrodes were placed on the 
subject’s chest in a standard three-lead position with recordings obtained from standard 
lead II.  
 

Age (years) 19 ± 1 
Weight (kg) 82 ± 25 
Height (cm) 174 ± 20 
Body mass index (kg· m-2) 27 ± 8 
Systolic blood pressure (mm Hg) 130 ± 13 
Diastolic blood pressure (mm Hg) 70 ± 10 
Heart rate (beats· min-1) 65 ± 12 
Respiratory quotient 0.75 ± 0.05 
Energy expenditure (Cal· d-1) 1980 ± 369 
Body temperature (ºF) 97 ± 1 

Values in mean ± standard deviation, n = 8 

Table 1. Characteristics of study participants 

2.3 Heart rate variability analyses 
Heart rate was measured in beats· min-1. Fast Fourier transform analysis of the 
electrocardiogram RR intervals was used to spectrally decompose heart rate variability in 
the frequency domain. For the frequency domain analysis, vagal modulation was 
represented by the area under the high frequency power spectrum (HF: 0.15-0.4 Hz), 
sympathetic cardiovascular modulation by the area under the low frequency power 
spectrum (LF: 0.04-0.14) and cardiac sympathovagal balance by the ratio LF/HF has been 
previously reported in this population (Millis et al. 2010). In this study, we analyzed the area 
under the very low frequency power spectrum (VLF: 0.001-0.04 Hz) expressed as the power 
in raw ms2 and in normalized units using specialized autonomic neural software 
(Nevrokard, Version 6.3, Ljubljana, Slovenia). All time and frequency domain analyses were 
carried out in accordance with the guidelines put forth by the Task Force of the European 
Society of Cardiology and the North American Society of Pacing and Electrophysiology (1996). The 
very low frequency band (0.001-0.04 Hz) has been considered by the Task Force of the 
European Society of Cardiology and the North American Society of Pacing and Electrophysiology 
(1996) guidelines to be too small to be a reliable indicator during short-term recordings. 
However, recent investigations have challenged this assertion (Nagai et al., 2005; Nagai et 
al., 2006; Fujibayashi et al., 2009) and we have found that 5-min recordings produced VLF 
measurements that represented a significant proportion (23%-52%) of the total heart rate 
spectral power expressed in normalized units. The present study was designed, partly, to 
test the physiological significance of the very low frequency band as an indicator of 
sympathetic thermoregulatory and metabolic energy signaling.  

2.4 Anthropomorphic, cardiovascular and metabolic measurements  
Axillary body temperature was measured after overnight fasting and 3 h after ingesting a 
900 Cal beverage. Body weight and height were also measured (Detecto scale) and these 
values were used to compute body mass index as the quotient kg body weight/m2 height. 
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Blood pressure was determined using an automated sphygmomanometer (Criticare Systems 
Model 506DXNT, Waukesha, WI).  To validate the effectiveness of overnight fasting, 
respiratory quotient and resting energy expenditure were measured by indirect calorimetry 
using an isolated flow-directed breathing chamber (Deltatrac, SensorMedics, Yorba Linda, 
CA). The participants were taken to the Howard University Exercise Science Laboratory for 
an assessment of the body fat percentage measured by dual energy x-ray absorptiometric 
(DEXA) whole body scanning (LUNAR Model DPX-L DEXA, Madison, WI). 

2.5 Statistical analyses 
The study design consisted of a comparison and correlation analysis of measurements of 
body temperature and the area under the very low frequency power spectrum of heart rate 
variability measured at rest after overnight fasting and 3 h after ingesting a 900 Cal 
beverage, during trials of uncontrolled and paced breathing with the measurement of body 
fat percentage (n = 8, 18-20 year-olds). The significance of differences between the post-
fasting and post-feeding states and between the uncontrolled and paced breathing trials was 
evaluated by analysis of variance using a multivariate general linear model with 
significance set at P < 0.05. A correlation analysis between the normalized and percentage 
units of the very low frequency band of heart rate variability, the low frequency/high 
frequency power ratio, body temperature, resting energy expenditure and body fat 
percentage measurements after overnight fasting and 3 h after ingesting a 900 Cal beverage 
(feeding state) was based on linear regression and Pearson’s correlation coefficient during 
uncontrolled and paced breathing trials with significance at P < 0.05. A statistical software 
package was used for the computations and analyses (SPSS, Chicago, IL). 

3. Results 
Table 2 compares the body temperature, resting energy expenditure and heart rate 
variability very low frequency spectral power for the uncontrolled and paced breathing 
trials after fasting and feeding. Normalized and percentage units of very low frequency 
spectral power (VLFnu, VLF%) and body temperature for the uncontrolled breathing trials 
were increased 3 h after feeding; changes for the paced breathing trials were not significant.  
 
Heart rate variability Fasting 

spontaneous 
breathing 
condition 

Fasting paced 
breathing 
condition 

Feeding  
spontaneous 
breathing 
condition 

Feeding 
paced 
breathing 
condition 

Total power (nu) 122 ± 5 140 ± 19 202 ± 22* 141 ± 7** 
Very low frequency (nu) 28 ± 5 43 ± 19 105 ± 22* 45 ± 7** 
Very low frequency (%) 23 ± 3 31 ± 5 52 ± 4* 32 ± 3** 
LF/HF 0.6 ± .09 0.8 ± .3 1.1 ± 0.2 1.2 ± 0.4 

Values in mean ± standard error, nu = normalized units, n = 16 
 LF/HF = low frequency/high frequency 
*Difference between fasting and feeding significant at P<0.01. 
**Difference between spontaneous and paced breathing significant at P<0.01. 

Table 2. Heart rate variability measurements after fasting and feeding 
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Table 3 shows that percent body fat was significantly correlated with body temperature 
during fasting (r=0.78, P<0.01) but not during feeding (r=0.13, P>0.1). Percent body fat was 
also significantly correlated with VLFnu and VLF% for the fasting uncontrolled breathing 
(r=-0.57 and -0.63, P<0.01) but not for the fasting or feeding paced breathing condition or for 
the feeding uncontrolled breathing condition (P>0.1). Body temperature was correlated with 
VLFnu and VLF% (r=-0.39, P<0.05 and r=-0.47, respectively, P<0.01) for the uncontrolled 
breathing trials after fasting but not for the uncontrolled or paced breathing trials after 
feeding (P>0.1). 
Resting energy expenditure, before correction for inter-individual differences in body mass 
index and percent body fat, was not significantly correlated with VLF% (r=0.04, P>0.1). 
After correction, the resting energy expenditure/BMI and resting energy 
expenditure/percent body fat ratios were significantly correlated with VLF% (r=0.50, P<0.01 
and r=0.82, P<0.001) for the uncontrolled breathing trials after fasting. The significant 
correlations between resting energy expenditure and VLFnu were the same as those for 
VLF%. 
 

Correlate of very low frequency 
spectral power percentage  

Fasting, spontaneous 
breathing 

Fasting, paced 
breathing 

Body fat (%)  -0.63** -0.31 
Body temperature (ºF) 0.47** 0.19 
Energy expenditure (Cal· d-1)  0.04 -0.13 
Energy expenditure/body mass index 0.50** 0.18 
Energy expenditure/percent body fat 0.82*** 0.23 

Values in Pearson’s correlation coefficient, n = 16 
*Significant at P<.05 
**Significant at P<.01 
***Significant at P<.001 

Table 3. Correlations of  very low frequency percentage of total spectral power with 
percentage of body fat, body temperature and resting energy expenditure after overnight 
fasting 

 
Correlate of very low frequency spectral 
power of heart rate variability 

Feeding, spontaneous 
breathing 

Feeding, paced 
breathing 

Body fat (%)  -0.41* -0.15 
Body temperature (ºF) 0.41* 0.14 
Energy expenditure (Cal· d-1)  0.53** 0.19 
Energy expenditure/body mass index 0.54** -0.35 
Energy expenditure/percent body fat 0.35 -0.56** 

Values in Pearson’s correlation coefficient, n = 16 
*Significant at P<.05 
**Significant at P<.01 
***Significant at P<.001 

Table 4. Correlations of percentage of very low frequency spectral power with percentage of 
body fat, body temperature and resting energy expenditure after feeding 
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Blood pressure was determined using an automated sphygmomanometer (Criticare Systems 
Model 506DXNT, Waukesha, WI).  To validate the effectiveness of overnight fasting, 
respiratory quotient and resting energy expenditure were measured by indirect calorimetry 
using an isolated flow-directed breathing chamber (Deltatrac, SensorMedics, Yorba Linda, 
CA). The participants were taken to the Howard University Exercise Science Laboratory for 
an assessment of the body fat percentage measured by dual energy x-ray absorptiometric 
(DEXA) whole body scanning (LUNAR Model DPX-L DEXA, Madison, WI). 

2.5 Statistical analyses 
The study design consisted of a comparison and correlation analysis of measurements of 
body temperature and the area under the very low frequency power spectrum of heart rate 
variability measured at rest after overnight fasting and 3 h after ingesting a 900 Cal 
beverage, during trials of uncontrolled and paced breathing with the measurement of body 
fat percentage (n = 8, 18-20 year-olds). The significance of differences between the post-
fasting and post-feeding states and between the uncontrolled and paced breathing trials was 
evaluated by analysis of variance using a multivariate general linear model with 
significance set at P < 0.05. A correlation analysis between the normalized and percentage 
units of the very low frequency band of heart rate variability, the low frequency/high 
frequency power ratio, body temperature, resting energy expenditure and body fat 
percentage measurements after overnight fasting and 3 h after ingesting a 900 Cal beverage 
(feeding state) was based on linear regression and Pearson’s correlation coefficient during 
uncontrolled and paced breathing trials with significance at P < 0.05. A statistical software 
package was used for the computations and analyses (SPSS, Chicago, IL). 

3. Results 
Table 2 compares the body temperature, resting energy expenditure and heart rate 
variability very low frequency spectral power for the uncontrolled and paced breathing 
trials after fasting and feeding. Normalized and percentage units of very low frequency 
spectral power (VLFnu, VLF%) and body temperature for the uncontrolled breathing trials 
were increased 3 h after feeding; changes for the paced breathing trials were not significant.  
 
Heart rate variability Fasting 

spontaneous 
breathing 
condition 

Fasting paced 
breathing 
condition 

Feeding  
spontaneous 
breathing 
condition 

Feeding 
paced 
breathing 
condition 

Total power (nu) 122 ± 5 140 ± 19 202 ± 22* 141 ± 7** 
Very low frequency (nu) 28 ± 5 43 ± 19 105 ± 22* 45 ± 7** 
Very low frequency (%) 23 ± 3 31 ± 5 52 ± 4* 32 ± 3** 
LF/HF 0.6 ± .09 0.8 ± .3 1.1 ± 0.2 1.2 ± 0.4 

Values in mean ± standard error, nu = normalized units, n = 16 
 LF/HF = low frequency/high frequency 
*Difference between fasting and feeding significant at P<0.01. 
**Difference between spontaneous and paced breathing significant at P<0.01. 

Table 2. Heart rate variability measurements after fasting and feeding 
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Table 3 shows that percent body fat was significantly correlated with body temperature 
during fasting (r=0.78, P<0.01) but not during feeding (r=0.13, P>0.1). Percent body fat was 
also significantly correlated with VLFnu and VLF% for the fasting uncontrolled breathing 
(r=-0.57 and -0.63, P<0.01) but not for the fasting or feeding paced breathing condition or for 
the feeding uncontrolled breathing condition (P>0.1). Body temperature was correlated with 
VLFnu and VLF% (r=-0.39, P<0.05 and r=-0.47, respectively, P<0.01) for the uncontrolled 
breathing trials after fasting but not for the uncontrolled or paced breathing trials after 
feeding (P>0.1). 
Resting energy expenditure, before correction for inter-individual differences in body mass 
index and percent body fat, was not significantly correlated with VLF% (r=0.04, P>0.1). 
After correction, the resting energy expenditure/BMI and resting energy 
expenditure/percent body fat ratios were significantly correlated with VLF% (r=0.50, P<0.01 
and r=0.82, P<0.001) for the uncontrolled breathing trials after fasting. The significant 
correlations between resting energy expenditure and VLFnu were the same as those for 
VLF%. 
 

Correlate of very low frequency 
spectral power percentage  

Fasting, spontaneous 
breathing 

Fasting, paced 
breathing 

Body fat (%)  -0.63** -0.31 
Body temperature (ºF) 0.47** 0.19 
Energy expenditure (Cal· d-1)  0.04 -0.13 
Energy expenditure/body mass index 0.50** 0.18 
Energy expenditure/percent body fat 0.82*** 0.23 

Values in Pearson’s correlation coefficient, n = 16 
*Significant at P<.05 
**Significant at P<.01 
***Significant at P<.001 

Table 3. Correlations of  very low frequency percentage of total spectral power with 
percentage of body fat, body temperature and resting energy expenditure after overnight 
fasting 

 
Correlate of very low frequency spectral 
power of heart rate variability 

Feeding, spontaneous 
breathing 

Feeding, paced 
breathing 

Body fat (%)  -0.41* -0.15 
Body temperature (ºF) 0.41* 0.14 
Energy expenditure (Cal· d-1)  0.53** 0.19 
Energy expenditure/body mass index 0.54** -0.35 
Energy expenditure/percent body fat 0.35 -0.56** 

Values in Pearson’s correlation coefficient, n = 16 
*Significant at P<.05 
**Significant at P<.01 
***Significant at P<.001 

Table 4. Correlations of percentage of very low frequency spectral power with percentage of 
body fat, body temperature and resting energy expenditure after feeding 
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Table 4 shows that, after feeding, the direct correlation between VLF% and resting energy 
expenditure, uncorrected for body mass/fat, was significant for the paced breathing trials. The 
correlation between VLF% and energy expenditure/percent body fat was also significant for 
the paced breathing trials; however, the correlation was inverse (negative correlation) to that of 
the similarly corrected energy expenditure for the uncontrolled breathing trials. The significant 
correlations between resting energy expenditure and VLFnu were the same as those for VLF%. 
Figure 1 depicts the results of linear regression analyses showing that physiological state 
was a determinant of the significant negative correlation between VLF% and percent body 
fat for the uncontrolled breathing trials after overnight fasting (r=-0.63, P<0.01) which was 
not significant for the uncontrolled breathing trials after feeding (r=-0.31, P>0.1). 
Figure 2 shows the linear regression analyses demonstrating that respiration was a 
determinant of the significant correlation between VLF% and LF/HF for the uncontrolled 
breathing trials after fasting (r=0.61, P<0.01) which was not significant for the paced 
breathing trials after fasting (r=0.34,  P>0.1). The correlation of VLF% and LF/HF was also 
significant for the uncontrolled breathing trials after feeding (r=0.58, P<0.01) and was not 
significant for the paced breathing trials after feeding (r=0.14, P>0.1). 
Interference of paced breathing with the correlations between VLF% and body temperature 
after fasting and feeding are shown in Table 3. 

4. Discussion 
The main findings of this study are significant positive correlations between the very low 
frequency spectral power of heart rate variability and body temperature and significant 
negative correlations between percentage of body fat and both body temperature and the 
very low frequency power. These correlations were significant during trials of uncontrolled 
breathing after fasting but not during trials of paced breathing or after feeding. These 
findings suggest that, under steady-state conditions such as overnight fasting and 
uncontrolled breathing at rest, the very low frequency spectral power may be indicative of 
autonomic adaptations for maintaining metabolic energy stores which could contribute to 
the development of obesity-related diseases. The guidelines for standardizing heart rate 
variability measurements state that the very low frequency spectral power may represent 
too small a proportion of the total spectral power to be worthy of analysis during short 
intervals of electrocardiographic recordings (Task Force of the European Society of Cardiology 
and the North American Society of Pacing and Electrophysiology 1996). More recent studies have 
suggested that the very low frequency power could, under appropriate conditions, be an 
indicator of sympathetic thermoregulatory and metabolic energy signaling (Nagai et al., 
2005; Nagai et al., 2006; Fujibayashi et al., 2009). The significant positive correlation between 
body temperature and very low frequency power that we found during fasting, but not 
during paced breathing, corroborates the previous reports of a thermoregulatory and 
metabolic energy signaling function of the very low frequency band. 
In a previous study, we reported the association of a low percentage of body fat with a shift 
in heart rate variability spectral power toward greater sympathetic modulation and the 
association of a high percentage of body fat with a shift in spectral power toward greater 
vagal modulation after overnight fasting (Millis et al., 2010). A shift in sympathovagal 
balance toward greater vagal modulation is reported during the ingestion of water 
(Routledge et al., 2002) and, thereby, implies that healthy individuals with high percentages 
of body fat may exhibit less sympathetic signaling activity during night-time hours than 
their leaner counterparts. 
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Fig. 1. Correlation of very low frequency spectral power of heart rate variability with 
percentage of body fat. Linear regression for heart rate variability percentage of very low 
frequency power (VLF) computed from fast Fourier transform analysis of the 
electrocardiogram RR intervals with percentage of body fat (TBF) measured by dual x-ray 
absorptiometric, DEXA whole body scanning for eight healthy 18-20 year-old African-
American males during uncontrolled (spontaneous) breathing. Top: After overnight fasting, 
Pearson’s correlation coefficient r=-0.63, P<0.01. Bottom: 3 h after feeding a 900 Cal 
beverage, Pearson’s correlation coefficient r=-0.31, P>0.1.  
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Table 4 shows that, after feeding, the direct correlation between VLF% and resting energy 
expenditure, uncorrected for body mass/fat, was significant for the paced breathing trials. The 
correlation between VLF% and energy expenditure/percent body fat was also significant for 
the paced breathing trials; however, the correlation was inverse (negative correlation) to that of 
the similarly corrected energy expenditure for the uncontrolled breathing trials. The significant 
correlations between resting energy expenditure and VLFnu were the same as those for VLF%. 
Figure 1 depicts the results of linear regression analyses showing that physiological state 
was a determinant of the significant negative correlation between VLF% and percent body 
fat for the uncontrolled breathing trials after overnight fasting (r=-0.63, P<0.01) which was 
not significant for the uncontrolled breathing trials after feeding (r=-0.31, P>0.1). 
Figure 2 shows the linear regression analyses demonstrating that respiration was a 
determinant of the significant correlation between VLF% and LF/HF for the uncontrolled 
breathing trials after fasting (r=0.61, P<0.01) which was not significant for the paced 
breathing trials after fasting (r=0.34,  P>0.1). The correlation of VLF% and LF/HF was also 
significant for the uncontrolled breathing trials after feeding (r=0.58, P<0.01) and was not 
significant for the paced breathing trials after feeding (r=0.14, P>0.1). 
Interference of paced breathing with the correlations between VLF% and body temperature 
after fasting and feeding are shown in Table 3. 

4. Discussion 
The main findings of this study are significant positive correlations between the very low 
frequency spectral power of heart rate variability and body temperature and significant 
negative correlations between percentage of body fat and both body temperature and the 
very low frequency power. These correlations were significant during trials of uncontrolled 
breathing after fasting but not during trials of paced breathing or after feeding. These 
findings suggest that, under steady-state conditions such as overnight fasting and 
uncontrolled breathing at rest, the very low frequency spectral power may be indicative of 
autonomic adaptations for maintaining metabolic energy stores which could contribute to 
the development of obesity-related diseases. The guidelines for standardizing heart rate 
variability measurements state that the very low frequency spectral power may represent 
too small a proportion of the total spectral power to be worthy of analysis during short 
intervals of electrocardiographic recordings (Task Force of the European Society of Cardiology 
and the North American Society of Pacing and Electrophysiology 1996). More recent studies have 
suggested that the very low frequency power could, under appropriate conditions, be an 
indicator of sympathetic thermoregulatory and metabolic energy signaling (Nagai et al., 
2005; Nagai et al., 2006; Fujibayashi et al., 2009). The significant positive correlation between 
body temperature and very low frequency power that we found during fasting, but not 
during paced breathing, corroborates the previous reports of a thermoregulatory and 
metabolic energy signaling function of the very low frequency band. 
In a previous study, we reported the association of a low percentage of body fat with a shift 
in heart rate variability spectral power toward greater sympathetic modulation and the 
association of a high percentage of body fat with a shift in spectral power toward greater 
vagal modulation after overnight fasting (Millis et al., 2010). A shift in sympathovagal 
balance toward greater vagal modulation is reported during the ingestion of water 
(Routledge et al., 2002) and, thereby, implies that healthy individuals with high percentages 
of body fat may exhibit less sympathetic signaling activity during night-time hours than 
their leaner counterparts. 
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Fig. 1. Correlation of very low frequency spectral power of heart rate variability with 
percentage of body fat. Linear regression for heart rate variability percentage of very low 
frequency power (VLF) computed from fast Fourier transform analysis of the 
electrocardiogram RR intervals with percentage of body fat (TBF) measured by dual x-ray 
absorptiometric, DEXA whole body scanning for eight healthy 18-20 year-old African-
American males during uncontrolled (spontaneous) breathing. Top: After overnight fasting, 
Pearson’s correlation coefficient r=-0.63, P<0.01. Bottom: 3 h after feeding a 900 Cal 
beverage, Pearson’s correlation coefficient r=-0.31, P>0.1.  
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Fig. 2. Correlation of very low frequency spectral power with low frequency/high 
frequency spectral power ratio of heart rate variability. Linear regression for percentage of 
very low frequency power (VLF) with low frequency/high frequency (LF/HF) power ratio 
computed from fast Fourier transform analysis of the electrocardiogram RR intervals for 
eight healthy 18-20 year-old African-American males after overnight fasting. Top: During 
uncontrolled (spontaneous) breathing, Pearson’s correlation coefficient r=0.61, P<0.01. 
Bottom: During controlled (paced) breathing at 0.2 Hz, Pearson’s correlation coefficient 
r=0.34, P>0.1.  

The metabolism of food produces a shift in sympathovagal balance toward greater 
sympathetic modulation, similar to that associated with postural changes (Piccirillo et al. 1998; 
Paolisso et al. 2000; Martini et al., 2001; Rabbia et al., 2003; Guizar et al., 2005; Kaufman et al., 
2007a; Kaufman et al., 2007b; Nagai and Moritani, 2004). Higher body mass index is associated 
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with greater sympathetic responsiveness to postural changes, higher plasma leptin levels 
(Paolisso et al., 2000) and greater lipolytic activity of adipocytes (Berlan et al., 2002; Tentolouris 
et al., 2008). These findings suggest that inferences based on heart rate variability 
measurements of autonomic modulation vary with the physiological state. In the present 
study, we found significant correlations after overnight fasting but not after feeding. 
Moreover, we found that the aforementioned correlations were significant only during 
uncontrolled, and were obscured by paced, breathing. We previously reported that the 
correlations between percentage of body fat and the low frequency/high frequency spectral 
power ratio, a measure of cardiorespiratory sympathovagal balance, were masked by paced 
breathing and were observed only during trials of uncontrolled breathing (Millis et al., 2010). 
The requirement for controlling respiratory frequency during measurements of heart rate 
variability is controversial. Paced breathing is thought, by some researchers, to be necessary 
for controlling the respiration-related variability (respiratory sinus arrhythmia) of the 
electrocardiogram inter-beat (RR) intervals on which heart rate variability measurements are 
based (De Meersman et al., 1995; Sanderson et al., 1996; Badra et al., 2001). Several 
mechanisms have been attributed to this requirement; e.g., respiratory sinus arrhythmia 
might be amplified by increased tidal volume (De Meersman et al., 1995). We previously 
reported no significant difference in low frequency/high frequency ratio during 
uncontrolled versus paced breathing at 0.2 Hz, (Millis et al., 2010). Respiratory frequency 
controlled at 0.17 Hz, 0.25 Hz and 0.33 Hz is reported to have no effect on low frequency 
power and to modulate high frequency power only (Sanderson et al., 1996). Increase in tidal 
volume is reported to increase high frequency power (Grossman et al., 2004; Pöyhönen et al., 
2004) and paced breathing at 0.2 Hz, the respiratory frequency that we used, to increase 
tidal volume (Pinna et al., 2006). We also previously reported an increase in the low 
frequency spectral power, a measure of cardiovascular sympathetic modulation, associated 
with paced breathing at 0.2 Hz (Millis et al., 2010). The subjects were lying recumbent 
during both the paced and uncontrolled breathing conditions; thereby, ruling out changes in 
sympathetic modulation associated with changes in posture. However, increased low 
frequency power has been shown to occur in association with an increased respiratory rate 
during conditions of mental stress (Bernardi et al. 2000) and could have occurred in the 
present study because of experimental stress, differences in tidal volumes associated with 
paced breathing, or differences in respiratory frequency during the uncontrolled breathing 
trials. The mechanisms responsible for the interferences of paced breathing at 0.2 Hz with 
the correlation between percent body fat, body temperature and the very low frequency 
spectral power of heart rate variability are unknown. However, we found the correlations 
between very low frequency power and low frequency/high frequency power ratio were 
significant for the uncontrolled, but not for the paced, breathing trials. These findings 
suggest the possibility that the aforementioned interferences of paced breathing with the 
correlates of very low frequency power, are likely related to significant interactions between 
sympathetic thermoregulatory/metabolic signaling indicated by the very low frequency 
band and the cardiorespiratory sympathovagal signaling indicated by the low 
frequency/high frequency ratio, which need to be further elucidated. Similar interactions 
might also be responsible for our findings that, after feeding, the direct correlation between 
very low frequency power and resting energy expenditure, uncorrected for body mass/fat 
and the correlation between very low frequency power and the energy expenditure/percent 
body fat ratio were significant only for the paced breathing trials; however, the latter 
correlation was inverse (positive changed to negative correlation) to that of the similarly 
corrected energy expenditure for the uncontrolled breathing trials. 
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with greater sympathetic responsiveness to postural changes, higher plasma leptin levels 
(Paolisso et al., 2000) and greater lipolytic activity of adipocytes (Berlan et al., 2002; Tentolouris 
et al., 2008). These findings suggest that inferences based on heart rate variability 
measurements of autonomic modulation vary with the physiological state. In the present 
study, we found significant correlations after overnight fasting but not after feeding. 
Moreover, we found that the aforementioned correlations were significant only during 
uncontrolled, and were obscured by paced, breathing. We previously reported that the 
correlations between percentage of body fat and the low frequency/high frequency spectral 
power ratio, a measure of cardiorespiratory sympathovagal balance, were masked by paced 
breathing and were observed only during trials of uncontrolled breathing (Millis et al., 2010). 
The requirement for controlling respiratory frequency during measurements of heart rate 
variability is controversial. Paced breathing is thought, by some researchers, to be necessary 
for controlling the respiration-related variability (respiratory sinus arrhythmia) of the 
electrocardiogram inter-beat (RR) intervals on which heart rate variability measurements are 
based (De Meersman et al., 1995; Sanderson et al., 1996; Badra et al., 2001). Several 
mechanisms have been attributed to this requirement; e.g., respiratory sinus arrhythmia 
might be amplified by increased tidal volume (De Meersman et al., 1995). We previously 
reported no significant difference in low frequency/high frequency ratio during 
uncontrolled versus paced breathing at 0.2 Hz, (Millis et al., 2010). Respiratory frequency 
controlled at 0.17 Hz, 0.25 Hz and 0.33 Hz is reported to have no effect on low frequency 
power and to modulate high frequency power only (Sanderson et al., 1996). Increase in tidal 
volume is reported to increase high frequency power (Grossman et al., 2004; Pöyhönen et al., 
2004) and paced breathing at 0.2 Hz, the respiratory frequency that we used, to increase 
tidal volume (Pinna et al., 2006). We also previously reported an increase in the low 
frequency spectral power, a measure of cardiovascular sympathetic modulation, associated 
with paced breathing at 0.2 Hz (Millis et al., 2010). The subjects were lying recumbent 
during both the paced and uncontrolled breathing conditions; thereby, ruling out changes in 
sympathetic modulation associated with changes in posture. However, increased low 
frequency power has been shown to occur in association with an increased respiratory rate 
during conditions of mental stress (Bernardi et al. 2000) and could have occurred in the 
present study because of experimental stress, differences in tidal volumes associated with 
paced breathing, or differences in respiratory frequency during the uncontrolled breathing 
trials. The mechanisms responsible for the interferences of paced breathing at 0.2 Hz with 
the correlation between percent body fat, body temperature and the very low frequency 
spectral power of heart rate variability are unknown. However, we found the correlations 
between very low frequency power and low frequency/high frequency power ratio were 
significant for the uncontrolled, but not for the paced, breathing trials. These findings 
suggest the possibility that the aforementioned interferences of paced breathing with the 
correlates of very low frequency power, are likely related to significant interactions between 
sympathetic thermoregulatory/metabolic signaling indicated by the very low frequency 
band and the cardiorespiratory sympathovagal signaling indicated by the low 
frequency/high frequency ratio, which need to be further elucidated. Similar interactions 
might also be responsible for our findings that, after feeding, the direct correlation between 
very low frequency power and resting energy expenditure, uncorrected for body mass/fat 
and the correlation between very low frequency power and the energy expenditure/percent 
body fat ratio were significant only for the paced breathing trials; however, the latter 
correlation was inverse (positive changed to negative correlation) to that of the similarly 
corrected energy expenditure for the uncontrolled breathing trials. 
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5. Conclusion 
In this study, we showed that the very low frequency spectral power of heart rate variability 
was an autonomic signaling correlate of body temperature, resting energy expenditure and 
percentage of body fat in healthy adolescent/young adult African-American males. The 
correlations were significant after fasting and during uncontrolled breathing but not after 
feeding or paced breathing. We found associations of high body temperature, low resting 
energy expenditure and low percentage of very low frequency spectral power in individuals 
with high percentage of body fat during trials of uncontrolled breathing. These findings 
suggest that the very low frequency band of heart rate variability may be correlated with 
sympathetic thermoregulation and related to an autonomic adaptation for maintaining 
metabolic energy stores. A comparison between the healthy young adult/adolescent 
population that we studied and a young population affected by diabetes mellitus or the 
metabolic syndrome should further elucidate the role of the very low frequency band of 
heart rate variability for sympathetic metabolic signaling in populations at high risk for 
developing an obese phenotype. 
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1. Introduction 
Medical diagnostic instruments can be made into portable devices for the purpose of home 
care, such as the diagnosis of heart disease. These assisting devices are not only used to 
monitor patients but are also beneficial as handy and convenient medical instruments. 
Hence, for reasons of both portability and durability, designers should reduce the power 
consumption of assistant devices as much as possible to extend their battery lifetime. 
However, achieving the low power requirement of the ECG sensing and the processing 
board for the ECG with commercial discrete components (A21-0003) is difficult because the 
low power consumer electronics for ECG acquisition systems are not yet available. With the 
help of the integrated circuit technology, the power-saving requirement of portable and 
durable equipment gives circuit designers the impetus to reduce the power consumption of 
analogue front-end circuits in ECG acquisition systems. In addition, the analogue front-end 
circuits, which are the interface between physical signals and the digital processor, must be 
operated at a low-supply voltage to be integrated into the low-voltage system-on-a-chip 
(SOC) system (Eshraghian, 2006). Therefore, the chapter will present two design examples of 
low-voltage (1 V) and low-power (<1 W) on-chip circuits including a low-pass filter (LPF) 
and an analogue-to-digital converter (ADC) to demonstrate the possibility of developing the 
low-voltage low-power ECG acquisition SOC.  
 

 
Fig. 1. An analog front-end system for portable ECG detection devices 
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In clinical electrocardiogram (ECG) acquisition, several leads combined with signals from 
different body parts (i.e., from the right wrist and the left ankle) are utilised to trace the electric 
activity of the heart. In this system, as shown in Fig. 1, the ECG acquisition board translates the 
body signal to six leads and processes the signal using a low-pass filter (LPF) and a successive-
approximation analogue-to-digital converter (SAADC). The acquisition board is composed of 
some discrete components including an instrumentation amplifier, a high-pass filter, a 60-Hz 
notch filter, and a common-level adjuster. The main function of the acquisition board is to pre-
amplify the weak ECG signal whose amplitude is between 100 μV and 4 mV (Webster, 1995). 
The range of the ECG signal means that this system requires a signal-to-noise and distortion-
ratio (SNDR) of at least 32 dB (that is, 6 bits) to detect heart activities precisely. There is more 
than one sensing channel on the board, and thus this system suffers from some problems such 
as crosstalk, settling time, and dispensable switch-induced noise (Olsson et al., 2005). The 
frequency range of the ECG signal is between 0.1 Hz to 250 Hz. Therefore, an on-chip low-
power LPF behind the acquisition board provides a low cut-off frequency (250 Hz) to decrease 
the out-of-band high-frequency noise. On the other hand, the noise under 0.1 Hz will be 
eliminated by a high-pass filter on the acquisition board. To compensate for the in-band signal 
attenuation in the LPF, an adjustable compensation amplifier located between the filter and the 
SAADC was designed. It can decrease the influence of the switch-induced noise caused by the 
sampling behaviour of the SAADC. Because the total power of the ECG acquisition board will 
be dominated by the high-order LPF and ADC integrated by off-chip components, in this 
chapter, low-power integrated-circuit design techniques are proposed and adopted to 
implement these two chips under the 0.18-μm TSMC CMOS process. It reveals that the low-
power miniature ECG acquisition system is realisable, and it can be integrated into wearable 
devices for ECG signal acquisition. 
The whole analogue front-end system will be introduced in detail. First, a multi-function 
acquisition board for the ECG signal and a low-power anti-aliasing operational 
transconductance amplifier-C (OTA-C) filter without the off-chip capacitors under low-
frequency operation are described in Section 2. Furthermore, the design and utilisation of 
the low-power SAADC are also presented in Section 2. Finally, the practical human-body 
measurement results of the whole system and the conclusions are presented in Sections 3 
and 4, respectively. 

2. Design 
2.1 ECG signal acquisition board 
Human-body signals are too complex to be directly fed into on-chip analogue circuits 
including a LPF and a SAADC, and hence the Wilson circuit on board is used to transfer 
human-body signals to six leads. In addition to the Wilson circuit, other elements including 
an instrumentation amplifier, an isolator, a high-pass filter, and a 60-Hz notch filter on the 
acquisition board are required to capture the ECG signal, as shown in Fig. 2. They will be 
introduced in the next subsections. 

2.1.1 Wilson circuit 
In normal ECG signal detection, the Wilson circuit is commonly used. As shown in the left 
part of Fig. 1, the electrodes are stuck on the right wrist, left wrist, and left ankle, and each 
node connects with a resistor to a common node called the Wilson central terminal. The 
three main leads (Lead I, II, and III) and three minor leads (aVR, aVF, and aVL) are formed by 
these terminals and some nodes in the circuit. 
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Fig. 2. Analogue blocks on the ECG signal acquisition board and analogue filters 
implemented by discrete components. 

2.1.2 Instrumentation amplifier and isolation circuit 
To obtain a high common-mode rejection ratio (CMRR), an instrumentation amplifier is 
adopted as the preamplifier in the analogue front-end system. In this case, an 
instrumentation amplifier with chip INA-128 is used. It not only provides a high CMRR (at 
least 120 dB) but also high precision, low power consumption, and low quiescent current. 
Aside from these, the gain of this amplifier can be adjusted to an appropriate level to fit the 
operation condition of the chip. Because the experimentation in this chapter is done on an 
actual human body, for safety considerations, a high linear isolator with an ISO122 chip is 
utilised to prevent electric shock. 
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Fig. 3. Ladder type fifth-order passive Butterworth filter 

2.1.3 High pass and 60-Hz notch filters 
Behind the isolator, a high-pass filter with a cut-off frequency of 0.1 Hz is implemented by 
an active RC circuit to reject the low-frequency noise. The last stage is a notch filter with a 
twin-T structure; it protects the circuits against the 60-Hz noise produced by the AC-110V 
power supply. The realisations of the high-pass filter and notch filter are shown in Fig. 2, 
respectively. 
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2.2 Anti-aliasing OTA-C filter 
For the long-term physical signal detection and monitor system, the use of a switched 
capacitor (SC) is a popular technique (Lasanen & Kostamovaara, 2005). However, the low 
sampling frequency in the kilohertz range will result in leakage, and the power consumption 
will be increased by the operational amplifiers in the SC circuits. Hence, continuous-time 
operational transconductance amplifier (OTA)-based filters are preferred in low-frequency 
applications, and the transistors inside a filter can be operated in the sub-threshold region to 
save power and to achieve ultra-low transconductance (a Gm of the order of a few nano-
amperes per volt to save the capacitive area) (Salthouse & Sarpeshkar, 2003). The performance 
of the OTA-based filter is dominated by OTA, and the time constant of the OTA-C integrators 
is determined by the ratio of the capacitor value to the small transconductance. 
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Fig. 4. Fully-differential operational transconductance amplifier (OTA) 

2.2.1 Filter selection for ECG detection 
The detection circuits must attenuate the out-of-band interference before the ADC to avoid 
aliasing and to diagnose the disease precisely. For these reasons, a fifth-order ladder-type 
Butterworth filter, as shown in Fig. 3, with a maximum flat response and a cut-off frequency of 
250 Hz, is selected for this design. Adopting the ladder-type filter makes the transfer function 
more robust and more insensitive in terms of component variations. In addition, to implement 
the filter with the integrated circuits (ICs), the filter synthesis using the signal flow graph (SFG) 
mapping method should be applicably used (Schaumann & Valkenburg, 2001). 

2.2.2 Nonlinearity and input referred noise of the OTA 
An ultra-low-Gm OTA can be implemented as the low-frequency filter with an on-chip 
capacitor (Bustos et al., 2000). Fig. 4 shows an OTA circuit that uses two techniques to 
reduce the transconductance, including current cancellation and current division. 
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Furthermore, the fully differential structure provides a higher capability in terms of 
common-mode rejection and an increase of 3 dB in the dynamic range rather than the single-
end structure. In addition, all transistors in the OTA are operated in sub-threshold region to 
save the power consumption. 
According to the analysis of the nonlinearity and input referred noise of this filter (Lee & 
Cheng, 2009), the dominated third harmonic distortion (HD3) caused by the device MR can 
be expressed as 

 3
2

2
3

96( )(2 )
SD

SG th F SB

vHD
v V v







 
                                 (1) 

where  F represents the Fermi potential. In this design, HD3 is to be suppressed below -50 
dB with a differential input level of 100 mV. Second harmonic distortion (HD2) is almost 
cancelled by using a fully differential structure. As previously mentioned, the system 
detecting the ECG signal should possess an SNDR greater than 32 dB. Because the distortion 
is below 50 dB (that is, it is sufficient), the other issues in terms of equivalent input noise 
should be considered in the filter design. 
By selecting the PMOS as the input stage of Fig. 4, the flicker noise should be low. Given 
this, the required input referred noise of the filter can be expressed as 
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According to the description, with an SNR of 42 dB (7 bits), the input referred noise must be 
less than 560 Vrms for an input voltage of 100 mVrms. 
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Fig. 5. Active circuit realization of the fifth-order Butterworth filter 

2.2.3 Fifth-order OTA-C low-pass filter 
The realisations of the fifth-order OTA-C filter with common-mode feedback (CMFB) 
circuits are illustrated in Fig. 5. To contrast with the ladder type, the overall circuit is 
composed of two grounded resistors Gm0 and Gm6, two gyrators A and B, which implement 
the equivalent inductors L2 and L4, respectively, and five capacitors C1~C5. To reduce the 
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power consumption, five common-mode feedback circuits are shared by the eleven OTAs of 
the filter. The common-mode feedback circuits provide sensing of the common output 
voltages on nodes a~e to control the bias voltage vb3 of the OTA. 

2.3 Low-power successive approximation ADC 
For the required performance of ECG signals with an amplitude between 100 μV and 4 mV 
(Webster, 1995), the resolution of the ADC with analogue filter in this ECG signal processing 
system usually only has to be between 6 to 8 bits. In this chapter, a low-power SAADC with 
8-bit resolution and 10-KHz sampling frequency is designed. It is not only applied to the 
ECG signal, but also used for other physical signals, such as Electroneurography (ENG). The 
basic architecture of a SAADC is illustrated in Fig. 6. The converter consists of a 
sample/hold (S/H) circuit, a comparator, a successive approximation register (SAR) 
controller, and an 8-bit digital-to-analogue converter (DAC). Using a binary searching 
algorithm, the input sample voltage can be successively approximated by the DAC output 
voltage. For a N-bit SAADC, N cycles are required to convert the analogue signals into 
digital codes. Obviously, the DAC dominates the accuracy and the speed of the SAADC. To 
conform to the system specifications, a low-power, opamp-free, capacitor-based DAC with 
an 80-kHz sampling rate is implemented. The sub-circuit design of the SAADC will be 
described in the following subsections in detail. 
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Fig. 6. Block diagram of a successive approximation ADC. 
 

 
Fig. 7. (a) Passive S/H circuit with dummy switch, and (b) Comparator circuit 
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2.3.1 Sample/hold circuit 
To decrease the power consumption of the SAADC, a passive S/H circuit illustrated in Fig. 7(a) 
is adopted. It consists of the NMOS switch S1 and the sampling capacitor CH. A dummy switch 
S2 is adopted to circumvent the problem of the charge injection and the clock feedthrough and 
to compensate for the charge error. It will meet the requirements of 8-bit resolution. 

2.3.2 Comparator circuit 
The comparator used in the SAADC is illustrated in Fig. 7(b); it is a track-and-latch stage. 
Because the accuracy of the comparator plays a critical role in the SAADC, the transistors 
Ms1 and Ms2 are included to avoid hysteresis or delayed response when resetting the phase. 
The operational principle is as follows. When the clock is high, the comparator is operated in 
the resetting mode, and both outputs (VOUT+ and VOUT-) are pulled to VDD (high). On the 
other hand, when the clock is low, the circuit will execute the comparison of differential 
input, and the outputs level (VOUT+ or VOUT-) of the comparator will depend on the 
difference between VIN+ and VIN-. 
The design of the bias current Ib is critical for the performance of the comparator, including 
speed, noise, and power consumption. For speed considerations, the frequency response of 
the comparator depending on the dominant pole should be analysed. The dominated pole of 
the comparator is located at node P and can be described as follows: 

 1
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Fig. 6. Block diagram of a successive approximation ADC. 
 

 
Fig. 7. (a) Passive S/H circuit with dummy switch, and (b) Comparator circuit 
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2.3.1 Sample/hold circuit 
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Lee, 2007). Therefore, in this chapter, an opamp-free, capacitor-based approach, as shown in 
Fig. 8, is used to implement the DAC. Based on the binary-weighted capacitor array, the 
output voltage of the DAC can be described as follows: 
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where Ctotal is the total capacitance of the DAC, and the value of i is from 0 to 7. 
The power source of the above mentioned passive capacitor array is dominated by the 
reference voltage, Vref. It can be analysed by calculating the required charge of all the 
capacitors during charging and discharging periods (Hong & Lee, 2007). A relative equation 
described below can be used to estimate the power: 
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where fclk is the operational frequency of the DAC, Vin is the sampling voltage of the S/H 
circuit, and C0 is the unity capacitor. According to (5), a smaller capacitor, C0, can reduce 
power consumption. However, it will also contribute to an increase in thermal noise 
(KT/C), which degrades the resolution of the DAC. In this chapter, a metal-insulator-metal 
(MIM) capacitor of 24 fF is implemented in a TSMC 0.18-μm 1P6M CMOS process to trade 
off between power consumption and the noise contribution. 
 

 
Fig. 9. N-bit SAR controller based on the non-redundant structure. 

Moreover, the matching and noise in the capacitor array will dominate the accuracy of the 
DAC. However, the process variation resulting in matching error commonly plays a more 
important role compared with the thermal noise. Hence, the layout of the capacitor array 
based on the common-centroid structure is adopted to protect against the matching error. 

2.3.4 SAR Controller 
For a N-bit SAR, two sets of registers are required in the binary search algorithm. One is 
used for storing the conversion results, and the other is used for estimating the results. A 
non-redundant structure, as illustrated in Fig. 9, is adopted to reduce the usage of the 
registers; the result is to reduce power consumption (Rossi & Fucili, 1996). In this structure, 
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a finite state machine (FSM) is used to generate the control signal. At the beginning of 
conversion, the most significant bit (MSB) is set to one, whereas the remaining bits are set to 
zero. The initial value of the DAC output is then set to 0.5 V (1/2 full scale). If the 
comparator output is low, the MSB will be set to 0 and saved in the output of the SAR. If the 
output is high, the MSB will remain 1. The residue bits will be processed in the same 
operations until the least significant bit (LSB) is determined. 

3. Experimental results 
The three main elements introduced above were integrated to a low-power analogue front-
end system on a detection board; the measured analogue front-end system was set up as 
shown in Fig. 10. The picture also shows the practical measurement conditions: the 
electrodes are stuck on both wrists and both ankles. The circuits of the OTA-C filter and 
SAADC were fabricated in a 0.18-μm TSMC process with metal-insulator-metal (MIM) 
capacitors. The die area of the OTA-C filter and SAADC are 0.135 mm2 and 0.12 mm2, 
respectively. Figure 10 also shows the microphotographs of the two chips. 
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Fig. 10. Chip-microphotographs of an OTA-C filter and SAADC, respectively, and the 
measurement setup of an analog front-end ECG detection system 

3.1 Filter measurement 
A differential sinusoidal wave with a magnitude of 100 mVPP is fed into the chip to measure 
the frequency response and the power spectrum with an input frequency of 50 Hz. Referring 
to Fig. 11(a), the -3 dB frequency is around 240 Hz, where the inband gain degradation (from 
-6 dB to -10 dB) arises from the finite-gain effect of the OTA. The measured third harmonic 
distortion (HD3) in Fig. 11(b) is well below -49 dB, which is close to the simulation 
estimation. In addition, the integrated input referred noise from 1 - 250 Hz is 340 µVrms. The 
power consumption is 453 nW at a supply voltage of 1 V. 



 
Advances in Electrocardiograms – Methods and Analysis 

 

304 

Lee, 2007). Therefore, in this chapter, an opamp-free, capacitor-based approach, as shown in 
Fig. 8, is used to implement the DAC. Based on the binary-weighted capacitor array, the 
output voltage of the DAC can be described as follows: 

 

8

1
i j j

j i
out ref

total

C D C
V V

C
 






  (4) 

where Ctotal is the total capacitance of the DAC, and the value of i is from 0 to 7. 
The power source of the above mentioned passive capacitor array is dominated by the 
reference voltage, Vref. It can be analysed by calculating the required charge of all the 
capacitors during charging and discharging periods (Hong & Lee, 2007). A relative equation 
described below can be used to estimate the power: 

 8 2 2
0

5 12  
9 6 2
clk

Vref DD in
fP C V V   

 
 (5) 

where fclk is the operational frequency of the DAC, Vin is the sampling voltage of the S/H 
circuit, and C0 is the unity capacitor. According to (5), a smaller capacitor, C0, can reduce 
power consumption. However, it will also contribute to an increase in thermal noise 
(KT/C), which degrades the resolution of the DAC. In this chapter, a metal-insulator-metal 
(MIM) capacitor of 24 fF is implemented in a TSMC 0.18-μm 1P6M CMOS process to trade 
off between power consumption and the noise contribution. 
 

 
Fig. 9. N-bit SAR controller based on the non-redundant structure. 

Moreover, the matching and noise in the capacitor array will dominate the accuracy of the 
DAC. However, the process variation resulting in matching error commonly plays a more 
important role compared with the thermal noise. Hence, the layout of the capacitor array 
based on the common-centroid structure is adopted to protect against the matching error. 

2.3.4 SAR Controller 
For a N-bit SAR, two sets of registers are required in the binary search algorithm. One is 
used for storing the conversion results, and the other is used for estimating the results. A 
non-redundant structure, as illustrated in Fig. 9, is adopted to reduce the usage of the 
registers; the result is to reduce power consumption (Rossi & Fucili, 1996). In this structure, 

An Analogue Front-End System With a 
Low-Power On-Chip Filter and ADC for Portable ECG Detection Devices 

 

305 
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Fig. 11. Measurement of the OTA-C filter. (a) Frequency response. (b) Output power 
spectrum density. 

3.2 SAADC measurement 
The 1-kHz input signal with a 500-mVpp full-swing magnitude sinusoidal wave is fed into 
the SAADC to measure integral nonlinearity (INL) and differential nonlinearity (DNL). 
Moreover, the sampling rate is 10 kHz. Fig. 12 shows the maximum DNL is +0.38/-0.41 LSB, 
whereas the maximum INL is +0.6/-0.89 LSB. Moreover, a full-scale 100-Hz sine-wave 
spectrum measured at a 1-kHz sampling rate is illustrated in Fig. 13 to demonstrate the low-
frequency performance. The signal-to-noise distortion ratio (SNDR) in the ECG bandwidth 
(250 Hz) is 48.46 dB, and the spurious free dynamic range (SFDR) is 57 dB. Meanwhile, the 
effective number of bits (ENOB) defined as follows is 7.76 bits: 

 1.76
6.02

SNDRENOB 
  (6) 

 

 
Fig. 12. Measured DNL and INL of the SAADC 
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Fig. 13. Measured output spectrum at 100Hz input frequency and 1 kHz sampling rate. 
 

 
Fig. 14. Measurement results of the ECG analog front-end system 

3.3 Real ECG signal testing 
Corresponding to the system shown in Fig. 1, the measurement results are also illustrated in 
Fig. 14. They are measured from each output node of the three main partitions on the system, 
including (a) the ECG acquisition board, (b) the OTA-C filter, and (c) the SAADC. We can 
observe the relations and functions between each output. Channel 1 in Fig. 14 is the initial pre-
amplified ECG signal with obvious high-frequency noise generated by the human body. 
Because some tiny physical waves are covered, this kind of ECG signal is inconvenient for the 
diagnosis of heart disease. With the help of the low-pass OTA-C filter, the high frequency 
noise can be significantly attenuated, and the tracing signal with a clear baseline is shown in 
channel 2. To demonstrate the operation of the SAADC, the waveform view showing in the 
logic analyser is adopted to present the conversion result. Channel 3 in Fig. 14 shows the real-
time human-body digital ECG waveform reconstructed by the 8-bit decimal codes of the 
SAADC. Similarly, a clear baseline is observed in this graph, and the 8-bit digital codes can be 
accepted by the post digital processor to diagnose the abnormal heart activities precisely. 
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4. Conclusions 
A low-power analogue front-end system for ECG detection consisting of an acquisition 
board and two low-power on-chip components is presented. The design issues including an 
off-chip ECG signal acquisition board, an on-chip analogue filter, and an on-chip ADC are 
introduced in this chapter. The result reveals that developing an ultra low-power ECG 
acquisition SOC is possible. In the future, the entire elements of these three partitions will be 
integrated into a single chip to save area and achieve a fully low-voltage and low-power 
ECG acquisition SOC for wearable applications. 
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1. Introduction  
Magnetic Resonance Imaging (MRI) has been listed as the single most important medical 
innovation, on par with CT scanning (Fuchs & Sox 2001). In current clinical MRI ECG is 
being using for three major purposes. Firstly, heart motion, blood flow and blood 
pulsation are commonly dealt with using electrocardiogram (ECG) for synchronization of 
MR data acquisition with the cardiac cycle (Lanzer et.al. 1984) to address or compensate 
for cardiac activity related motion artifacts which is of paramount importance for an ever 
growing portfolio of cardiovascular MR (CMR) and neurovascular MR (NVMR) 
applications (Assomull et.al. 2007, Kelle et.al. 2008, Kramer et.al. 2008, Kwong & 
Korlakunta 2008, Niendorf et.al. 2006, Niendorf & Sodickson 2008, Niendorf & Sodickson 
2006, Niendorf et.al. 2010, Pennell et.al. 2004, Schwitter 2008). Secondly, ECG is widely 
used to simultaneously register cardiac activity with MRI; for example to eliminate 
physiological fluctuations from brain activation maps derived from functional MRI 
studies (Purdon & Weisskoff 1998). Thirdly, there are an increasing number of clinical 
applications that require ECG monitoring prior to/after the MR examination while the 
patient is still  in the MR environment but outside of the MR scanners bore using ECG 
devices as a patient emergency indicator. 
ECG waveform acquisitions, ECG co-registration and ECG monitoring during MRI pose 
technical challenges and requires safety measures that will not be familiar to users of other 
conventional ECG technologies. For all those reasons, the basic principles of using ECG in 
an MRI environment and their implications for clinical MRI and MRI research are provided 
in this chapter. Key concepts, technical solutions, practical considerations and safety 
implications for cardiac gated MRI using electrocardiograms are outlined. Unsolved 
technical problems and unmet clinical needs are also considered carefully, in an attempt to 
stimulate the community to throw further weight behind the solutions of remaining issues. 
Driven by the limitations and motivated by the challenges of ECG, the need for novel 
cardiac gating/triggering technology is discussed. Current trends, such as the trend towards 
wireless techniques and the move to acoustic cardiac gating techniques, and their 
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4. Conclusions 
A low-power analogue front-end system for ECG detection consisting of an acquisition 
board and two low-power on-chip components is presented. The design issues including an 
off-chip ECG signal acquisition board, an on-chip analogue filter, and an on-chip ADC are 
introduced in this chapter. The result reveals that developing an ultra low-power ECG 
acquisition SOC is possible. In the future, the entire elements of these three partitions will be 
integrated into a single chip to save area and achieve a fully low-voltage and low-power 
ECG acquisition SOC for wearable applications. 
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1. Introduction  
Magnetic Resonance Imaging (MRI) has been listed as the single most important medical 
innovation, on par with CT scanning (Fuchs & Sox 2001). In current clinical MRI ECG is 
being using for three major purposes. Firstly, heart motion, blood flow and blood 
pulsation are commonly dealt with using electrocardiogram (ECG) for synchronization of 
MR data acquisition with the cardiac cycle (Lanzer et.al. 1984) to address or compensate 
for cardiac activity related motion artifacts which is of paramount importance for an ever 
growing portfolio of cardiovascular MR (CMR) and neurovascular MR (NVMR) 
applications (Assomull et.al. 2007, Kelle et.al. 2008, Kramer et.al. 2008, Kwong & 
Korlakunta 2008, Niendorf et.al. 2006, Niendorf & Sodickson 2008, Niendorf & Sodickson 
2006, Niendorf et.al. 2010, Pennell et.al. 2004, Schwitter 2008). Secondly, ECG is widely 
used to simultaneously register cardiac activity with MRI; for example to eliminate 
physiological fluctuations from brain activation maps derived from functional MRI 
studies (Purdon & Weisskoff 1998). Thirdly, there are an increasing number of clinical 
applications that require ECG monitoring prior to/after the MR examination while the 
patient is still  in the MR environment but outside of the MR scanners bore using ECG 
devices as a patient emergency indicator. 
ECG waveform acquisitions, ECG co-registration and ECG monitoring during MRI pose 
technical challenges and requires safety measures that will not be familiar to users of other 
conventional ECG technologies. For all those reasons, the basic principles of using ECG in 
an MRI environment and their implications for clinical MRI and MRI research are provided 
in this chapter. Key concepts, technical solutions, practical considerations and safety 
implications for cardiac gated MRI using electrocardiograms are outlined. Unsolved 
technical problems and unmet clinical needs are also considered carefully, in an attempt to 
stimulate the community to throw further weight behind the solutions of remaining issues. 
Driven by the limitations and motivated by the challenges of ECG, the need for novel 
cardiac gating/triggering technology is discussed. Current trends, such as the trend towards 
wireless techniques and the move to acoustic cardiac gating techniques, and their 
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implications for daily routine MR applications are surveyed. Demonstrable progress in 
gating/triggering technology and methodology is shown to provide further encouragement 
for the imaging community to tackle solutions of the outstanding issues. A concluding 
section of the presentation explores future directions fueled by a set of alternative 
gating/triggering techniques.  

2. Clinical needs for ECG in MRI 
MRI is not a real time imaging modality. In day-to-day clinical routine MRI data acquisition 
is commonly propagated over a series of cardiac cycles. Consequently, cardiac activity can 
degrade image quality, particularly when motion suppression techniques are unavailable, 
unsuccessful or not utilized. The challenge of synchronization of data acquisition with the 
cardiac cycle constitutes a practical impediment of MRI so that MRI of the heart, large 
vessels and other organs experiencing motion related to cardiac activity requires speed and 
efficiency due to cardiac motion and flow constraints, which dictate the viable window for 
data acquisition.  
The need for speed and efficiency prompted the development of various cardiac motion 
compensation and cardiac motion synchronization techniques. Cardiac motion has been 
addressed by synchronization strategies exploiting (i) finger plethysmography (Lanzer et.al. 
1984), (ii) cardiac activity related esophageal wall motion (Brau et.al. 2002), (iii) invasive left 
ventricular blood pressure gating (Pattynama et.al. 1994), (iv) Doppler ultrasound (Rubin 
et.al. 2000), (v) motion induced changes in the impedance match of RF-coils (Buikman et.al. 
1988), (vi) self gating techniques (Buehrer et.al. 2008, Crowe et.al. 2004, Larson et.al. 2005, 
Larson et.al. 2004, Nijm et.al. 2008), (vii) finger pulse oximetry (POX) triggering/gating 
techniques and optic acoustic methods (Rengle et.al. 2007) including human and animal 
studies.  
In current clinical MR practice, cardiac motion is commonly dealt with using 
electrocardiographic (ECG) gating/triggering techniques (Chia et.al. 2000, Fischer et.al. 
1999, Lanzer et.al. 1985) to synchronize data acquisition with the cardiac cycle. For this 
purpose, prospective triggering and retrospective gating regimes have been established as 
summarized in Figure 1. Both triggering/gating regimes share the principle, that only 
portions of the data needed to form the final image are acquired per cardiac cycle. This data 
acquisition approach is called segmentation, with the full MR data set being acquired 
segment by segment over a series of consecutive R-R intervals.  
Prospective triggering is used to position the data acquisition window into a specific cardiac 
phase as demonstrated in Figure 1. Commonly, prospectively triggered MR data acquisition 
is conducted during the cardiac rest period at mid-diastole to avoid cardiac motion artifacts 
as illustrated in Figure 1. For this purpose acquisition windows ranging from 50 ms to 
200 ms duration are usually applied. If data acquisition is performed during cardiac phases 
other than the cardiac rest period image quality can be heavily diminished due to cardiac 
motion effects. For example, Figure 1 shows images of the right coronary artery (RCA) 
derived from MR angiography (MRA) using acquisition windows placed around systole. 
For acquisition windows placed at 265 ms and 432 ms in the cardiac cycle, MRAs of the RCA 
show severe degradation in image quality due to cardiac and coronary artery motion 
throughout the course of the acquisitions window.  

Electrocardiogram in an MRI Environment: Clinical Needs, 
Practical Considerations, Safety Implications, Technical Solutions and Future Directions 311 

 
Fig. 1. Basic scheme of prospective triggering and retrospective gating in cardiac MRI using 
the electrocardiogram. 

For retrospective gating data acquisition windows - each covering a specific cardiac phase of 
limited duration - are spread equidistantly across the entire R-R interval. This approach 
affords retrospective reconstruction of a series of images of the heart, which form a CINE 
movie. These movies are used to track myocardial contraction and relaxation for the goal of 
myocardial (dys)function assessment or cardiac chamber quantification. If the acquisition 
windows are kept short (20 ms to 50 ms) image quality is free of motion artifacts while long 
acquisition windows (larger than 50 ms) may hamper image quality due to cardiac motion 
effects; in particular at systole as illustrated in Figure 2. 
To summarize, prospective triggering and retrospective gating regimes require a reliable 
tracking and monitoring of the cardiac cycle. The quality and stability of the QRS complex 
detection throughout the exam will dictate the efficiency of scanning and the overall image 
quality of scans. Mis-detection or mis-registration of the ECG's R-wave can corrupt image 
quality severely.  
 

 

Fig. 2. Short axis views of the heart derived from CINE MRI illustrating the impact of 
cardiac motion on image quality. Two different durations for the acquisition window were 
used: (left) short acquisition window (50 ms, marked in red), (right) long acquisition 
window (200 ms, marked in red). 
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3. Practical considerations  
In current clinical MR practice, MR scanners are equipped with extra hardware for ECG 
signal detection and processing. The basic setup for ECG monitoring in a clinical MRI 
environment is shown in Figure 3. This includes (i) ECG electrodes, leads and short high 
impedance cables, (ii) signal preamplifier and converter box, (iii) optical-fiber or wireless 
connections used for ECG signal transfer, (iv) physiological monitoring unit for signal 
processing and trigger generation. The signal flow in Figure 3 is from the left (signal 
collection using ECG-electrodes), through the middle (signal processing), to the right (input 
to the MR-systems internal ECG circuitry).  
 

 
Fig. 3. Basic setup for ECG monitoring in a clinical MRI environment. 

Patient preparation such as skin preparation, electrode and lead positioning are of profound 
importance for any successful ECG monitoring in an MRI environment. Careful skin 
preparation includes (i) removal of chest hair by shaving, if applicable, (ii) cleaning of the 
skin with special abrasive skin prepping gel and (iii) the use of a clean gauze pad to 
thoroughly dry the skin area where the surface electrodes will be positioned. Typical 
placement of ECG surface electrodes in an MRI environment might differ from ECG 
electrode positioning commonly used in conventional ECG monitoring. Admittedly, a 
stronger signal can be achieved from widely spaced electrodes. However, this approach can 
induce artifacts in the ECG trace in an MRI environment. Consequently, in an MRI 
environment ECG electrodes are placed relatively close to each other on the left hand side of 
the upper torso as illustrated in Figure 4. Obtaining a good ECG signal requires the lead 
alignment with the strongest ECG vector and a good adhesion between the ECG electrode 
and the patient's skin. It is highly recommended to use electrodes before their expiration 
date only since old electrodes can be dried out, which will result in bad electrical contact. 
The ECG signal transferred into the scanners internal circuitry interfaces is used for gating 
and triggering of MR acquisitions. For this purpose different parameters can be modified on 
the scanners user interface to time MR imaging. Those parameters include a trigger delay to 
place the data acquisition at any phase in the cardiac cycle, the number of cardiac phases to 
be imaged and a trigger window to allow changes in the heart rate of 10%-20% during the 
course of segmented MR acquisitions. If changes in the heart rate exceed the duration of the 
trigger window, arrhythmia rejection will be applied. This means that MR data acquired 
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during cardiac cycles with a duration shorter or longer than the predefined range will be 
discarded and re-acquired. Of course, this approach increases the scan time. Hence a very 
limited number of arrhythmia rejections are accepted for breath-held scans. 
 

 
Fig. 4. Typical placement of ECG surface electrodes in an MRI environment. (left) placement 
in a parallel order which is beneficial for ultra high magnetic fields and (right) the 
traditional placement of ECG electrodes at field strengths of 1.5 T, which is used by the 
majority of clinical MR scanner. 

4. Safety implications and safety measures 
Conventional ECG electrodes are not classified as being MR-safe due to the use of low 
impedance conductors or ferromagnetic components. ECG, being an inherently electrical 
measurement with electrically active components (Lanzer et.al. 1985), does carry a risk of 
surface heating of patients’ skin and even of skin burns resulting from induction of high 
voltages in ECG electrodes or ECG cables due to interactions with RF fields used in MRI 
(Health 2010, Kugel et.al. 2003, Lange & Nguyen 2006, Shellock & Crues 2004, Shellock & 
Kanal 1996). The use of non MR safe ECG hardware has even caused an incident in the MR 
bore, where high-voltage induction in ECG wiring caused a fire (Kugel et.al. 2003). 
Various safety measures and technologies have been implemented on clinical MR scanners 
to safeguard patients with the ultimate goal of avoiding disasters and injuries due to ECG 
hardware and it's interaction with electromagnetic fields. If electrical ECG leads are used 
they should not be allowed to form loops which otherwise bear the potential to serve as an 
RF antenna which might result in burning hazards. Safety measures also involve the use of 
ECG electrodes being classified as MR-safe. Consequently, user manuals of clinical scanners 
outline explicitly that MR-safe electrodes which are made available through the MR 
vendor's accessories catalogue must be used.  
Safety measures also recommend the use of high impedance leads instead of conventional 
low impedance leads.  Figure 5 demonstrates how a low impedance wire increases the Rf 
power deposition inside the human body. Keeping ECG leads as short as possible is 
essential. In the ideal case ECG leads shorter than the radio-frequency (RF) wave length 
need to be employed. For this reason the user manuals of clinical MR systems emphasize or 
even dictate that only ECG cables and ECG equipment provided by the MR vendor must be 
used. To keep ECG leads short, fiber optic leads or wireless connections are used in modern 
systems for signal transfer between the battery powered ECG converter box and the MRI 
system.  
The clinical need of ECG monitoring prior/after MRI examinations bears the risk of leading 
to RF induced skin burns since patients might undergo an MRI scan without removing 
conventional ECG electrodes commonly used in the telemetry unit. The FDA's MAUDE data 
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base reports several skin burns in for the period 2005-2010 due to induction of high voltages 
in ECG hardware due to interaction with RF fields (Health 2010), the main cause being that 
conventional ECG leads used for patient monitoring were not removed or replaced prior to 
the MR scan.  
 

 
Fig. 5. Signal absorption rate (SAR) simulations which demonstrate the impact of low 
impedance ECG leads in a human voxel model (left). For this purpose a 4 channel 
transmit/receive  cardiac RF coil was used. The lead positioning mimics the clinical 
situation where ECG leads are positioned between the coil and the surface of the anterior 
chest. Point SAR simulations of the cardiac coil at 7T without the lead (middle) and with the 
lead (right) are shown. RF power deposition is pronounced in the presence of the leads. 

 

 
Fig. 6. Axial and coronal views of the upper torso derived from signal absorption rate 
(SAR10g) simulations. The simulations demonstrate the impact of extra padding for the 
purpose of  keeping RF coils in a safe distance from ECG electrodes. For padding an extra 
layer with a thickness of 1cm was inserted between the anterior and posterior section of the 
coil  and the anterior and posterior upper chest. For the simulations a 4 channel 
transmit/receive RF cardiac coil was used together with an accepted power of 30 W without 
padding (left) and with padding (right). With padding a maximum local SAR10g value of 
18.1 W/kg is reached. Without padding the maximum local SAR10g value increased to  
21.2 W/kg. This value would exceed the IEC safety guidelines of 20 W/kg.  

The manufacturer's user manuals for RF coils advice the use of extra padding for keeping RF 
coils in a safe distance from ECG electrodes being mounted to the chest. This measure has 
been implemented to avoid ECG electrodes being positioned in areas of high local 
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electromagnetic (EM) fields caused by the RF coil's. The influence of extra padding on the 
SAR distribution can be seen in Figure 6. 

5. Interference of ECG with magnetic fields 
Electrocardiograms acquired in the MR environment are not a patient emergency condition 
indicator due to ECG waveform distortions. If brought into a magnetic field ECG being an 
electrical measurement is corrupted by interference with electromagnetic fields and by 
magneto-hydrodynamic (MHD) effects (Frauenrath et.al. 2009, Stuber et.al. 2002, Togawa 
et.al. 1967). MHD potential is induced when a conductive fluid travels through a magnetic 
field. The interference between the magnetic field and the conductive fluid generates a 
voltage perpendicular to the magnetic field lines and the direction of the fluid flow (Togawa 
et.al. 1967). The MHD voltage (V) can be described by: 

V= u × B  dL
L

0
 (1)

where B is the magnetic flux density (T) , u is the velocity of the fluid (m/s) , and dL is the 
distance vector between electrodes (Togawa et.al. 1967).  
In the clinical setting the MHD effect creates voltages related to blood flow which are 
superimposed to the ECG potential as surveyed in Figure 7. The MHD effect is pronounced 
during cardiac phases of systolic aortic flow, which results in a severe distortion of the 
ECG's S-T segment. The susceptibility to electromagnetic field (EMF) interference manifests 
itself in ECG waveform distortions already apparent in ECG traces acquired in clinical 1.5 T 
MR scanners (Becker et.al. 2009). As high and ultrahigh field MR becomes more widespread, 
the propensity of ECG recordings to MHD effects is further pronounced (Brandts et.al. 2010, 
Frauenrath et.al. 2009, Snyder et.al. 2009) as demonstrated in Figure 7. Figure 7 shows ECG 
traces obtained at magnetic field strengths of 1.5 T, 3.0 T and 7.0 T which were acquired 
simultaneously to prospectively cardiac gated 3D phase contrast MR angiography 
acquisitions. At 3.0 T severe distortions were detected for cardiac phases around the S-T 
segment. At 7.0 T the MHD contributions gain amplitudes which are in the order of 
magnitude of or even larger than the amplitude of the ECG's R-wave.  
 

 
Fig. 7. Unfiltered electrocardiograms (ECG) obtained at magnetic field strengths of 1.5 T 
(left), 3.0 T (middle) and 7.0 T (right). ECG waveforms were susceptible to T-wave elevation 
and other waveform distortions shaded in red which increased with field strengths and 
were pronounced at 7.0 T.  

Artifacts in the ECG trace and severe T-wave elevation might be mis-interpreted as R-waves 
resulting in misdetection of cardiac activity or erroneous cardiac gating together with 
motion corrupted image quality. These artifacts render MHD effects detrimental for a 
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Artifacts in the ECG trace and severe T-wave elevation might be mis-interpreted as R-waves 
resulting in misdetection of cardiac activity or erroneous cardiac gating together with 
motion corrupted image quality. These artifacts render MHD effects detrimental for a 
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reliable synchronization of MRI or registration of MRI data with the cardiac cycle and 
constitute a practical impediment as outlined in Figure 8. Figure 8 shows mid-ventricular, 
short axis views of the heart together with whole R-R interval time series of one-dimensional 
projections along the profile (dotted line) marked in the short axis view (top), trigger detection 
tickmarks used for synchronization of MR imaging with the cardiac cycle which were obtained 
from a single subject over 18 cardiac cycles after temporal realignment using cross correlation 
and reassignment (middle) and ECG signal waveforms obtained from the same single subject 
over 18 cardiac cycles (bottom). In spite of ECG’s severe signal distortion faultless ECG 
triggering was observed for the example shown on the left hand side of Figure 8. In this 
example of correct recognition of the onset of cardiac activity, ECG gated 2D CINE MRI was 
found to be immune to the effects of cardiac motion as demonstrated by the sharp delineation 
between blood and myocardium throughout the entire cardiac cycle. An example of 
 

 
Fig. 8. Top) Mid-ventricular, short axis views of the heart together with whole R-R interval 
time series of one-dimensional projections along the profile (dotted line) marked in the short 
axis view. (Middle) Trigger recognition tick marks. Bottom) ECG waveforms obtained from 
a single subject over 18  cardiac cycles. (Left) Faultless Gating: Clinically acceptable image 
quality because of the absence of  cardiac motion induced blurring; (Right) Erroneous ECG 
Gating, which diminished the image quality due to cardiac motion induced image blurring.  
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erroneous ECG trigger detection is shown on the right hand side of Figure 8. Here ECG 
gated 2D CINE MRI was prone to severe cardiac motion artifacts due to R-wave mis-
registration which induced reduction in myocardium/blood contrast and image sharpness. 
To this end, R-wave mis-registration has been consistently reported for ECG triggered CMR 
at 7.0 T (Brandts et.al. 2010, Maderwald et.al. 2010). In one report 20% of the healthy subjects 
needed to be excluded from left ventricular function assessment (Brandts et.al. 2010). In 
another study 80% of the acquisitions were gated using pulse oximetry due to MHD artifact 
induced ECG-triggering problems (Maderwald et.al. 2010).  

6. Patient monitoring in the fringe field of a MR scanner 
Although ECG is known to be non-diagnostic within the bore of any clinical MR system due to 
magneto-hydrodynamic (MHD) effects, there are an increasing number of clinical indications 
that require ECG monitoring prior to/after the MR scan or in the MR scanner room using 
conventional 12 leads ECG devices as a patient emergency indicator (Cheng et.al. 2003, 
Lubbers et.al. 2011, Paetsch et.al. 2004, Wahl et.al. 2004). For example, in addition to 
continuous monitoring during stress testing which is commonly used in cardiovascular MRI, 
ECG monitoring should resume as quickly as possible after post stress MR imaging - ideally 
while the patient is still on the MRI table or in the fringe magnetic field of the MR scanner as 
outlined by Jekic et.al. (Jekic et.al. 2010). This monitoring approach requires the ECG signal to 
stay within the accuracy limits defined by the guidelines of the American Heart Association 
(AHA) for automated electrocardiography (Bailey et.al. 1990). These guidelines outline that 
deviation of the real ECG trace due to magneto-hydrodynamic effects from the true, 
uncompromised waveform taken outside of the MR environment may not exceed 0.025 mV or 
5%, whichever is greater. A recent publication reported that this threshold can be achieved in 
the fringe field of an MRI system for stray magnetic field strengths lower than 70 mT (Jekic 
et.al. 2010). Also, the clinical need of ECG monitoring prior/after MRI bears the risk of leading 
to RF induced skin burns since patients might undergo an MRI scan without removing 
conventional ECG electrodes commonly used in the telemetry unit.  

7. ECG alternatives for cardiac gated/triggered MRI 
Various approaches have been proposed to cancel, correct for, bypass or extract MHD blood 
flow potential induced artifacts from the surface electrocardiogram. These efforts include 
optimization of ECG electrode placement (Dimick et.al. 1987), R-wave detection algorithm 
based on the vector cardiogram (Fischer et.al. 1999), and sophisticated ECG signal 
processing (Nijm et.al. 2008).  
Realizing the constraints of conventional ECG, a MR-stethoscope has been proposed for the 
pursuit of robust and safe clinical cardiac gated/triggered MRI (Frauenrath et.al. 2008, 
Niendorf et.al. 2010). In contrast to ECG-triggering the MR-stethoscope employs acoustic 
instead of electrical signals. For cardiac gating/triggering, the first heart tone of the 
phonocardiogram, which marks the onset of the acoustic cardiac cycle, is selected. The 
acoustic gating device  meets the following criteria: 
 free of interference with electromagnetic fields 
 immunity to magneto-hydrodynamic effects at 1.5 T, 3.0 T and 7.0 T 
 compliance with the safety regulations on medical devices defined by the CE and FDA  
 support of prospective- and retrospective cardiac gating/triggering regimes 
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As shown by the block diagram in Figure 9, the acoustic gating device comprises three main 
components: (i) an acoustic sensor, (ii) a signal processing unit and (iii) a coupler unit to the 
MRI system (Frauenrath et.al. 2008). Like the chest piece of a common stethoscope, the acoustic 
sensor, located on the patient’s chest, registers the heart sounds. The signal processing unit 
detects the first heart sound and transforms it into a trigger signal, which mimics the basic 
waveform of the ECG. The MR-Stethoscope is compatible with common MRI scanners and 
does not require any hardware or software changes. It should be noted that the R-wave which 
marks the electrophysiological onset of the cardiac cycle and the 1st heart tone which 
represents the onset of the acoustic cardiac cycle are separated by a physiological delay of 
Δt=30 ms (Rangayyan & Lehner 1987). However, it was found that the delay between ECG 
and the phonocardiogram is heart rate independent (Frauenrath et.al. 2008).  
 

 
Fig. 9. Block diagram of acoustic cardiac triggering (ACT). ACT is free of interferences from 
electromagnetic fields and magneto-hydrodynamic effects, and provides a reliable trigger 
signal free of jitter even in the presence of free breathing.  
 

 
Fig. 10. ECG (top) and acoustic trigger signal (bottom) traces acquired at three different field 
strengths using the MRI scanners internal physiological signal processing unit. Severe signal 
distortion occurred in the ECG signal obtained at the magnet’s isocenter, whereas the trigger 
signal derived from ACT remains undistorted  
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The use of the MR stethoscope substantially reduces the complexity of patient preparation 
for an MR examination by obviating the need to set up ECG-electrodes and position ECG-
leads. Even more, the acoustic triggering (ACT) approach offers suitability for all magnetic 
field strengths (Frauenrath et.al. 2009, Frauenrath et.al. 2010) as indicated in Figure 10. ACT 
presents immunity to electromagnetic interference and magneto-hydrodynamic effects as 
demonstrated in Figure 10 (Frauenrath et.al. 2009, Frauenrath et.al. 2010) which helps to 
reduce - if not to eliminate - the effect of R-wave mis-registration which is frequently 
encountered in ECG-triggered acquisitions, in particular at high and ultrahigh magnetic 
field strengths (Brandts et.al. 2010, Brants et.al. 2010, Maderwald et.al. 2010).  
Examples of cardiac images derived from ECG and ACT gated/triggered MR imaging are 
shown in Figure 11 including retrospective gating and prospective triggering regimes. For 
retrospective gating Figure 11 shows four chamber views of the heart derived from cardiac 
gated 2D CINE MRI. ECG gated 2D CINE MRI was prone to severe cardiac motion artifacts 
if R-wave mis-registration occurred, which resulted in cardiac motion induced blurring. 
Unlike ECG, ACT gating produced images free of cardiac motion artefacts as illustrated in 
Figure 11. For prospective triggering examples derived from free breathing coronary artery 
MR imaging, an application which exhibits pronounced sensitivity to cardiac motion are 
depicted in Figure 11. For example, the displacement of the right coronary artery (RCA) is in 
the order of 3 cm to 4 cm throughout the course of cardiac cycle. Mis-triggering due to 
distortions in the ECG-trace resulted in image blurring embodied by reduced RCA vessel 
sharpness and diminished RCA vessel delineation. Robust and reliable triggering using 
ACT revealed excellent image quality for CAI, which is free of motion artifacts. 
 

 
Fig. 11. Top: Four chamber views of the heart derived from ECG (left) and ACT (right) gated 
2D CINE MRI at 7.0 T. Unlike ECG which caused mis-triggering ACT gated acquisitions 
provided a reliable trigger signal together with sharp images. Bottom: Maximum intensity 
projections (MIP) obtained from free breathing, cardiac gated CAI using ECG triggering (left) 
and ACT triggering (right) at 1.5 T. Mis-triggering due to distortions in the ECG-trace resulted 
in image blurring embodied by reduced vessel sharpness and diminished vessel delineation. 
The DC-offset seen in the centre line of the ECG-gated images is due to RF interferences with 
the electronics of the ECG-device’s A/D converter, which is battery powered and usually 
positioned on the anterior chest of the volunteer. Robust and reliable triggering using ACT 
revealed excellent image quality for CAI, which is free of motion artifacts. 
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The acoustic approach also appears to be an excellent candidate for gating acquisitions in 
areas located distant from the heart. In clinical practice, areas of interest are usually 
positioned at the magnet’s isocenter. Consequently, the position of the heart together with 
the position of the ECG electrodes in non-cardiac studies is off-center, closer to the rear or 
front end bell of the MR scanner gradient coils, which amplifies changes in dB/dt during 
gradient coil switching which is used for spatial encoding. This geometrical constraint 
increases the interference between the electrophysiological signals and electro-magnetic 
fields generated by the gradients, leading to pronounced distortion of the ECG signal. The 
capability of local acoustic gating can in principal serve to alleviate substantially the 
fundamental problem of erroneous ECG-gating for off-center positions of the heart. Fetal 
cardiovascular MRI is another emerging application (Saleem 2008) which suffers from 
synchronization problems and hence is a driving force for further advancement of the MR-
stethoscope towards capturing fetal phonocardiograms at (ultra)high magnetic fields. 

8. Future directions 
Demonstrable progress in ECG technology and methodology used in the MRI environment 
is providing encouragement for the imaging community to tackle the solution of the 
outstanding issues. This includes the refinement and redesign of ECG hardware and devices 
used in a MR environment but also the broad move towards alternative cardiac 
gating/triggering approaches. One important development on the hardware horizon is the 
advent of acoustic triggering techniques using pressure transducers or optical microphones 
for signal detections. Future development also involve the development of even more 
sophisticated ECG signal processing algorithms to compensate for MHD contributions to 
the ECG signal. Even more, contrary to the common notion that considers MHD being 
adverse concomitants or detrimental artifacts of traditional ECG acquired in a magnetic field 
environment it is conceptually appealing to explore the merits of MHD effects for the 
pursuit of cardiac gated MRI. It has been recently proposed that the MHD effect being 
inherently sensitive to magnetic flux density, flow, orientation of flow with respect to the 
magnetic field lines and velocity of an electrical charge carrier such as blood in a magnetic 
field (Togawa et.al. 1967). These characteristics can be put to use as an alternative approach 
for registration of cardiac activity and for cardiac gating/triggering (Frauenrath et.al. 2011). 
Early applications include acquisition of MHD waveforms in surface areas close to the heart 
and the aortic arch but also in peripheral regions including surface areas close to the right 
common carotid artery, close to the forearm's ulnar artery and close to the lower leg's 
posterior tibial artery (Frauenrath et.al. 2011). 
In any case, the unmet clinical needs and (un)solved problems of cardiovascular MRI are 
likely to motivate novel approaches used for the assessment of cardiac activity and for the 
tracking of cardiac contraction and relaxation. One intriguing development on the 
methodology horizon is the non-contact detection of myocardium's mechanical activity by 
ultrawideband RF-radar and its interpretation applying electrocardiography (Thiel et.al. 
2009, Thiel et.al. 2009). To drive this approach into a clinical application an understanding of 
how the myocardiums mechanic is rendered by reflected and post processed UWB radar 
signals is essential (Thiel et.al. 2009, Thiel et.al. 2009). To this end, pioneering research is 
moved forward to correlate the UWB signal with the ECG through simultaneous acquisition 
and evaluation of radar signals with signals from a high-resolution electrocardiogram (Thiel 
et.al. 2009, Thiel et.al. 2009). 
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9. Conclusion  
In short, while today’s development of ECG techniques remain in a state of creative flux, 
productive engagement in this area continues to drive further developments with the 
ultimate goal of enhancing the capabilities of ECG in a modern high and ultrahigh field MR 
environment for synchronization of MR data acquisition with the cardiac cycle or for co-
registration of functional MR mapping techniques with cardiac activity. Such improvements 
would benefit an ever growing set of indications for cardiovascular and neurovascular MR 
applications; in particular those which aim for high spatial resolution which can be easily 
compromised by physiological motion. If practical challenges can be overcome with 
appropriate hardware and post-processing design, an optimistically-inclined practitioner 
might envisage ECG technology tailored for MR which might even open the door to patient 
monitoring in an MR environment. While this is, for the moment, merely a vision, it 
continues to motivate new basic and clinical research. 
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1. Introduction 
1.1 Sudden cardiac death of drivers 
The annual number of sudden cardiac deaths is increasing in Japan, and is estimated to be 
more than 50,000 on the basis of findings from the multicenter research group (Toyoshima et 
al., 1996). In the United States, sudden cardiac death is the greatest cause of natural death, 
causing more than 400,000 adult fatalities each year (Zipes & Wellens, 1998) and it is the 
most common lethal manifestation of heart disease (Bauer et al., 2006). The high incidence 
makes sudden cardiac death a major challenge in public health. In most cases, the 
mechanism is abrupt occurrence of ventricular tachyarrhythmia, rapidly progressing to 
ventricular fibrillation and causing cardiac pump failure with unconsciousness. It is 
supposed that sudden cardiac death sometimes occurs while the subject is driving an 
automobile. A Japanese newspaper (March 29, 2010) reported, “While a bus driver (65 years 
old) was driving a bus, he suffered severe chest pain and gave up steering so that the bus 
ran in a zigzag and crashed into a wall to be on fire. ” Although such cases can easily be 
found on web sites, there has been little reported study. Lam and Lam reported that among 
older drivers aged 60 or above in New South Wales, Australia from 1996 to 2000, 409 (1.1%) 
of 36,595 were recognized as having suffered a sudden illness immediately prior to a crash, 
and that 254 (0.7%) of those episodes resulted in the driver’s death and injury in the crash 
(Lam & Lam, 2005). According to “Suicide and Natural Deaths in Road Traffic — Review” 
from Accident Research Centre of Monash University, the percentages of natural driver 
deaths out of all vehicle deaths were reported to vary from 0.2% to 19% in 10 studies 
(Routely et al., 2003). The Review listed 19 studies in total in the Appendix. It was reported 
that the percentages of cardiovascular disease in drivers who met natural deaths were from 
68% to 97%. We speculated, on examination of a summary of those studies, that the total 
number of natural driver deaths and the number of natural driver deaths due to cardiac 
events were, respectively, 5 -10% and about 5% as percentages of all vehicle deaths. There 
may also be cases in which a patient receives a warning from his own heart of imminent 
sudden cardiac death, and is able to survive, or at least to prevent injury to others. 
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1.2 Is there any precursor of sudden cardiac death? 
Is it possible to predict sudden cardiac death a few hours in advance of its occurrence? The 
mechanism is abrupt occurrence of ventricular tachyarrhythmia or complete atrioventricular 
block. It was noted on analyses of ambulatory 24-hour electrocardiogram recordings (Holter 
recordings) that some measures of heart rate variability may change about 1 hour before the 
onset of sustained or nonsustained ventricular tachycardia (Huikuri et al., 1993). No reliable 
precursor of sudden cardiac death, however, had yet been discovered. 
Muller et al. reported that there were two peaks of the frequency of circadian variation of 
sudden cardiac death at 11 am and 6 pm (Muller et al., 1987). Particularly, the highest peak 
was about 3 hours after awakening. These results suggested that there might be the 
relationship between the occurrence of sudden cardiac death and the intrinsic circadian 
rhythm of autonomic nervous system and/or endocrine system. We analyzed ambulatory 
24-hour electrocardiogram (ECG) recordings of 24 patients who were hospitalized due to leg 
fracture. We calculated the low-frequency component (LF: 0.04-0.15Hz), the high-frequency 
component (HF: 0.15-0.4Hz) of RR intervals (ms), and the ratio LF/HF, which are 
recognized as measures of combined sympathetic and parasympathetic activity, 
 

 
Fig. 1. Circadian variation of autonomic activity. LF (unit, ms2), the low-frequency 
component of RR intervals (ms); HF (unit, ms2), the high frequency component; LF/HF (no 
unit), the ratio of LF to HF. 
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parasympathetic activity, and sympathetic activity, respectively (Berger et al., 1989; Osaka et 
al., 1993; Task Force of the European Society of Cardiology and the North American Society 
of Pacing and Electrophysiology, 1996). Since those patients were lying still on bed during 
the recordings, the variations of HF and LF/HF represents intrinsic circadian rhythm of 
parasympathetic and sympathetic activity, respectively. Figure 1 shows that the peak of 
LF/HF and the nadir of HF are around noon, and that the increase of LF/HF and the 
decrease of HF begin around awakening. Thus, these findings suggest that the 
predominance of sympathetic activity over parasympathetic activity may trigger the cardiac 
event about 3 hours after awakening. 
Experimentally, Schwartz et al. demonstrated that autonomic stress could trigger lethal 
ventricular arrhythmias in dogs with myocardial infarction (Schwartz et al., 1988). Their 
observation was made in an animal model for sudden cardiac death. According to their 
article, dogs with healed anterior myocardial infarctions perform an exercise stress test, 
toward the end of which a 2-minute myocardial ischemia is created by occluding the left 
circumflex coronary artery. This clinically relevant combination of transient myocardial 
ischemia at the time of physiologically elevated sympathetic activity results in ventricular 
fibrillation in almost 60 per cent of the animals. The outcome during the exercise and 
ischemia test identifies and defines two groups of animals according to the occurrence of 
ventricular fibrillation or survival –“susceptible” and “resistant”, respectively. Although the 
former group tends to show a further increase in the already elevated heart rate, the latter 
group tends to show a decrease. This heart rate reduction is prevented by atropine and 
clearly reveals the presence of powerful vagal reflexes. Such a behavior of heart rate could 
be taken to suggest the presence of a relative sympathetic dominance among susceptible 
animals and of a relative parasympasthetic dominance among resistant animals. 
Clinically, analysis of Holter recordings was the basis for our previous report that heart rate 
and LF/HF increase steadily with the decrease of HF from 45 minutes before the onset of 
nonsustained ventricular tachycardia until the actual onset (Osaka et al., 1996). This 
suggested that increased sympathetic activity and decreased parasympathetic activity may 
trigger nonsustained ventricular tachycardia, and also indicated that trends in autonomic 
activity may be useful for detecting any precursor of a cardiac event that is triggered or 
worsened by autonomic imbalance. 
It has been known for some time that the power spectra of heart rate from healthy 
individuals exhibit a 1/f-like pattern (Power = C f b, where b  –1 and C is a proportionality 
constant) in the low-frequency range (f < 0.1Hz) (Kobayashi & Musha, 1982; Peng et al., 
1993). This is reflected in the fractal nature of HR. Loss of multifractality is closely correlated 
with prognosis and severity of heart disease (Ivanov et al., 1999). Hence, we presumed that 
the low-frequency component would be strongly correlated with prognosis. Experimentally, 
we showed that sympathetic activity strongly correlates with heart rate and blood pressure 
at both 0.05Hz and 0.80Hz in conscious rats and that this correlation is baroreflex-
independent (Sakata et al., 2002). This was consistent with the finding that that the low-
frequency component (<0.1Hz) of the transfer function between blood pressure and heart 
rate is baroreflex-independent in normotensive humans (Taylor & Eckberg, 1996). Hence, 
we presumed that the low-frequency component of sympathetic activity may play a key role 
in triggering lethal tachyarrhythmias, and that characteristic changes in sympathetic activity 
might occur before a cardiac event. 
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was about 3 hours after awakening. These results suggested that there might be the 
relationship between the occurrence of sudden cardiac death and the intrinsic circadian 
rhythm of autonomic nervous system and/or endocrine system. We analyzed ambulatory 
24-hour electrocardiogram (ECG) recordings of 24 patients who were hospitalized due to leg 
fracture. We calculated the low-frequency component (LF: 0.04-0.15Hz), the high-frequency 
component (HF: 0.15-0.4Hz) of RR intervals (ms), and the ratio LF/HF, which are 
recognized as measures of combined sympathetic and parasympathetic activity, 
 

 
Fig. 1. Circadian variation of autonomic activity. LF (unit, ms2), the low-frequency 
component of RR intervals (ms); HF (unit, ms2), the high frequency component; LF/HF (no 
unit), the ratio of LF to HF. 
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parasympathetic activity, and sympathetic activity, respectively (Berger et al., 1989; Osaka et 
al., 1993; Task Force of the European Society of Cardiology and the North American Society 
of Pacing and Electrophysiology, 1996). Since those patients were lying still on bed during 
the recordings, the variations of HF and LF/HF represents intrinsic circadian rhythm of 
parasympathetic and sympathetic activity, respectively. Figure 1 shows that the peak of 
LF/HF and the nadir of HF are around noon, and that the increase of LF/HF and the 
decrease of HF begin around awakening. Thus, these findings suggest that the 
predominance of sympathetic activity over parasympathetic activity may trigger the cardiac 
event about 3 hours after awakening. 
Experimentally, Schwartz et al. demonstrated that autonomic stress could trigger lethal 
ventricular arrhythmias in dogs with myocardial infarction (Schwartz et al., 1988). Their 
observation was made in an animal model for sudden cardiac death. According to their 
article, dogs with healed anterior myocardial infarctions perform an exercise stress test, 
toward the end of which a 2-minute myocardial ischemia is created by occluding the left 
circumflex coronary artery. This clinically relevant combination of transient myocardial 
ischemia at the time of physiologically elevated sympathetic activity results in ventricular 
fibrillation in almost 60 per cent of the animals. The outcome during the exercise and 
ischemia test identifies and defines two groups of animals according to the occurrence of 
ventricular fibrillation or survival –“susceptible” and “resistant”, respectively. Although the 
former group tends to show a further increase in the already elevated heart rate, the latter 
group tends to show a decrease. This heart rate reduction is prevented by atropine and 
clearly reveals the presence of powerful vagal reflexes. Such a behavior of heart rate could 
be taken to suggest the presence of a relative sympathetic dominance among susceptible 
animals and of a relative parasympasthetic dominance among resistant animals. 
Clinically, analysis of Holter recordings was the basis for our previous report that heart rate 
and LF/HF increase steadily with the decrease of HF from 45 minutes before the onset of 
nonsustained ventricular tachycardia until the actual onset (Osaka et al., 1996). This 
suggested that increased sympathetic activity and decreased parasympathetic activity may 
trigger nonsustained ventricular tachycardia, and also indicated that trends in autonomic 
activity may be useful for detecting any precursor of a cardiac event that is triggered or 
worsened by autonomic imbalance. 
It has been known for some time that the power spectra of heart rate from healthy 
individuals exhibit a 1/f-like pattern (Power = C f b, where b  –1 and C is a proportionality 
constant) in the low-frequency range (f < 0.1Hz) (Kobayashi & Musha, 1982; Peng et al., 
1993). This is reflected in the fractal nature of HR. Loss of multifractality is closely correlated 
with prognosis and severity of heart disease (Ivanov et al., 1999). Hence, we presumed that 
the low-frequency component would be strongly correlated with prognosis. Experimentally, 
we showed that sympathetic activity strongly correlates with heart rate and blood pressure 
at both 0.05Hz and 0.80Hz in conscious rats and that this correlation is baroreflex-
independent (Sakata et al., 2002). This was consistent with the finding that that the low-
frequency component (<0.1Hz) of the transfer function between blood pressure and heart 
rate is baroreflex-independent in normotensive humans (Taylor & Eckberg, 1996). Hence, 
we presumed that the low-frequency component of sympathetic activity may play a key role 
in triggering lethal tachyarrhythmias, and that characteristic changes in sympathetic activity 
might occur before a cardiac event. 
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1.3 V-shaped trough in autonomic activity as a possible precursor 
We aimed at finding a consistent precursor of a lethal cardiac event by examining Holter 
recordings in which such a spontaneous event was recorded. Holter recordings of 34 
patients experiencing a cardiac event (Event-group, 20 deaths) were compared with 191 
controls (NoEvent-group) (Osaka et al., 2010). The Event-group included 25 patients with 
ventricular fibrillation or acute myocardial infarction, and 9 with cardiac arrest due to 
complete atrioventricular block. We calculated logarithms of the moving average of 5 
successive values for the low-frequency component (LF), the high-frequency component 
(HF), and the ratio LF/HF of heart rate variability: ln(LF), ln(HF) and ln(LF/HF). A V-
shaped trough appeared in the curve of ln(LF/HF) [sV-trough] or ln(HF) [pV-trough] before 
such an event in 31 patients of the Event-group. The V-trough was marked by a small 
variation lasting 2 hours, an abrupt descent lasting 30 minutes, and a sharp ascent for 40 
minutes. Figure 2a-e shows a representative case in the Event-group. The patient (male, 72 
years old) suffered from acute myocardial infarction and died of ventricular fibrillation 
during the recording. Figure 2a shows progression from regular sinus rhythm to ventricular 
fibrillation with sporadic short runs of ventricular tachycardia. In Figure 2b sustained ST 
elevation appears at 21:50, indicating the occurrence of acute myocardial infarction. It is 
noted that thereafter slow oscillations of HR seem to disappear with their variability 
depressed (Figure 2c). The variation of ln(LF/HF) decreases from 20:00 to 22:00, and lies 
approximately within the meanSD which was calculated as described below (Figure 2d). 
This decrease appears before ST elevation. Next, ln(LF/HF) falls steeply and then rises 
sharply. Figure 2d shows a V-shaped trough in sympathetic activity, which is referred to 
subsequently in the manuscript simply as “V-trough.” Although such a sharp rise of 
ln(LF/HF) and a simultaneous decrease of ln(HF) (Figure 2e) would normally be expected 
to accompany an increase of HR, there is instead a decrease in heart rate which is 
accompanied by a reduction in variability (Figure 2c). Slow ventricular tachycardia 
appeared at 0:30 and ceased at 0:50, then ventricular fibrillation appeared at 1:27 terminating 
in cardiac standstill at 1:55 (data not shown). 
Figure 3a-d shows another representative case in the Event-group. The patient (male, 74 
years old) suffered from complete atrioventricular block and died during the recording. ST 
elevation appeared at 10:56, indicating the occurrence of acute myocardial infarction. Figure 
3a shows that complete atrioventricular block, which was induced by acute myocardial 
infarction, causes a compensatory atrioventricular rhythm at 11:00 and finally, cardiac arrest 
at 11:10. Heart rate decreases during sleep from 23:00 to 6:00 (Figure 3b). The variation of 
ln(HF) decreases from 2:00 to 4:00, which is approximately within the meanSD (Figure 3c). 
Then ln(HF) declines quickly, but suddenly reverses direction and shows a striking increase, 
although it might normally be expected to fall after rising so abruptly. These changes are 
characteristic of a V-trough in parasympathetic activity. In spite of the predominance of 
changes in ln(HF) as compared with ln(LF/HF), heart rate increases abruptly at 7:20, and 
fails to react normally to the predominance of parasympathetic activity vs. sympathetic 
activity. 
From the finding that a V-shaped trough was observed preceding the event in almost all 
patients of the Event-group, we defined the criteria for a V-trough in sympathetic activity 
(sV-trough) as indicated in Figure 4. To characterize the time series of ln(LF/HF), we 
calculated the meanSD of consecutive values of ln(LF/HF), which corresponded to a 
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a. Holter recording before the occurrence of ventricular fibrillation (starting from the red arrow). b. ST 
level up to the time of onset of slow ventricular tachycardia (0:30). c. Tachogram of heart rate (HR). d. 
Tachogram of the logarithm of the ratio of the low-frequency component to the high-frequency 
component, ln(LF/HF). The two red horizontal lines represent meanSD for 120 minutes. e. Tachogram 
of the logarithm of the high-frequency component, ln(HF). From (Osaka et al., 2010). 

Fig. 2. V-trough of sympathetic activity in a representative case from the Event-group. 
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ln(LF/HF) and a simultaneous decrease of ln(HF) (Figure 2e) would normally be expected 
to accompany an increase of HR, there is instead a decrease in heart rate which is 
accompanied by a reduction in variability (Figure 2c). Slow ventricular tachycardia 
appeared at 0:30 and ceased at 0:50, then ventricular fibrillation appeared at 1:27 terminating 
in cardiac standstill at 1:55 (data not shown). 
Figure 3a-d shows another representative case in the Event-group. The patient (male, 74 
years old) suffered from complete atrioventricular block and died during the recording. ST 
elevation appeared at 10:56, indicating the occurrence of acute myocardial infarction. Figure 
3a shows that complete atrioventricular block, which was induced by acute myocardial 
infarction, causes a compensatory atrioventricular rhythm at 11:00 and finally, cardiac arrest 
at 11:10. Heart rate decreases during sleep from 23:00 to 6:00 (Figure 3b). The variation of 
ln(HF) decreases from 2:00 to 4:00, which is approximately within the meanSD (Figure 3c). 
Then ln(HF) declines quickly, but suddenly reverses direction and shows a striking increase, 
although it might normally be expected to fall after rising so abruptly. These changes are 
characteristic of a V-trough in parasympathetic activity. In spite of the predominance of 
changes in ln(HF) as compared with ln(LF/HF), heart rate increases abruptly at 7:20, and 
fails to react normally to the predominance of parasympathetic activity vs. sympathetic 
activity. 
From the finding that a V-shaped trough was observed preceding the event in almost all 
patients of the Event-group, we defined the criteria for a V-trough in sympathetic activity 
(sV-trough) as indicated in Figure 4. To characterize the time series of ln(LF/HF), we 
calculated the meanSD of consecutive values of ln(LF/HF), which corresponded to a 
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a. Holter recording before the occurrence of ventricular fibrillation (starting from the red arrow). b. ST 
level up to the time of onset of slow ventricular tachycardia (0:30). c. Tachogram of heart rate (HR). d. 
Tachogram of the logarithm of the ratio of the low-frequency component to the high-frequency 
component, ln(LF/HF). The two red horizontal lines represent meanSD for 120 minutes. e. Tachogram 
of the logarithm of the high-frequency component, ln(HF). From (Osaka et al., 2010). 

Fig. 2. V-trough of sympathetic activity in a representative case from the Event-group. 
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a. Holter recording displaying a compensatory atrioventricular rhythm which is induced by complete 
atrioventricular block at 11:00, followed by cardiac arrest. b. Tachogram of heart rate (HR). c. 
Tachogram of ln(HF). d. Tachogram of ln(LF/HF). From (Osaka et al., 2010). 

Fig. 3. V-trough of parasympathetic activity in a representative case from the Event-group. 

baseline period of 120 min. The criteria included four necessary conditions, the first that 
ln(LF/HF) fluctuate approximately within a narrow range between meanSD for 120 
minutes, and the second that ln(LF/HF) must increase sharply for a period of 40 minutes 
(ascent period) after an abrupt descent lasting 30 minutes (descent period). These necessary 
conditions were as follows: 
R is defined as (mean + SD) of ln(LF/HF) in each of the consecutive baseline periods (Figure 
4). Slope 1 is defined as a slope of 3SD of ln(LF/HF) per the baseline period of BL minutes 
(BL = 120). Slope 2 is defined as a slope of a straight line fitted into values of ln(LF/HF) 
during the ascent period. 
T is defined as total time, in which mean – SD  ln(LF/HF)  mean + SD. 
Figure 4 shows such an example that T = T1 + T2 + T3. 
Necessary condition 1: If R  1.5, T  BL(3/4) min, and if not, T  BL(2/3) min. 
Necessary condition 2: Slope 2 > Slope 1. 
Necessary condition 3: The lower end of Slope 2 < mean – 3SD. 
Necessary condition 4: HR decreases, while ln(LF/HF) increases sharply for a period of 40 
minutes. 
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It may be noted that larger values of mean and SD for ln(LF/HF) are associated with stricter 
conditions (Figure 4). V-troughs of ln(HF) were used in place of ln(LF/HF) as an index of 
parasympathetic activity (pV-trough). The necessary condition 4 was also replaced with that 
HR increases, while ln(HF) increases sharply for a period of 40 minutes. We examined all 
the recordings automatically using this algorithm. An sV-trough was observed in 22 patients 
before the onset of ventricular fibrillation or acute myocardial infarction. A pV-trough was 
observed in all 9 patients before the onset of complete atrioventricular block. In the 
NoEvent-group, an sV-trough and a pV-trough were observed in 10 (5%) and 20 (10%) 
subjects, respectively. The positive predictive accuracy of an sV-trough for ventricular 
fibrillation or acute myocardial infarction and that of a pV-trough for complete 
atrioventricular block was 88% and 100%, respectively. We reported that the hemodynamics 
consisting of heart rate, sympathetic activity and blood pressure is modeled excellently by 
modification of a known chaotic electrical circuit, Chua circuit (Osaka & Watanabe, 2004). A 
V-trough of sympathetic activity appears by increasing the resistive element between 
sympathetic activity and blood pressure in the circuit, which corresponds to the impaired 
regulation of blood pressure by sympathetic activity (Osaka, in press). This finding is 
consistent with an acknowledged finding that the depressed baroreflex (reflex of blood 
pressure by sympathetic activity) may trigger a lethal arrhythmia (Schwartz et al., 1988). 
 

 
Fig. 4. Criteria for V-trough of ln(LF/HF). From (Osaka et al., 2010). 

2. Recording of ECG outside the driver’s awareness 

2.1 Inevitable noise of ECG 
Although there were some trials monitoring the ECG of drivers (Jeong et al., 2007), no 
automobile equipped with such a system has never been marketed, as a result of the fact that 
the ECG was largely contaminated by noise. Therefore, we developed new electrodes for 
installation on a steering wheel, through which an ECG limb lead could be recorded with 
suppression of noise (Osaka et al., 2008). However, some artifacts were still present as a result 
of the physical movements accompanying the handling of a steering wheel and as a result of 
jolts due to road conditions. Such artifacts are inevitable, because drivers sitting in the driver’s 
seat do not remain still, as they might during the recording of a standard ECG. At the present 
time we have not yet succeeded in recording the entire PQRST pattern of waves in ECG from a 
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a. Holter recording displaying a compensatory atrioventricular rhythm which is induced by complete 
atrioventricular block at 11:00, followed by cardiac arrest. b. Tachogram of heart rate (HR). c. 
Tachogram of ln(HF). d. Tachogram of ln(LF/HF). From (Osaka et al., 2010). 

Fig. 3. V-trough of parasympathetic activity in a representative case from the Event-group. 

baseline period of 120 min. The criteria included four necessary conditions, the first that 
ln(LF/HF) fluctuate approximately within a narrow range between meanSD for 120 
minutes, and the second that ln(LF/HF) must increase sharply for a period of 40 minutes 
(ascent period) after an abrupt descent lasting 30 minutes (descent period). These necessary 
conditions were as follows: 
R is defined as (mean + SD) of ln(LF/HF) in each of the consecutive baseline periods (Figure 
4). Slope 1 is defined as a slope of 3SD of ln(LF/HF) per the baseline period of BL minutes 
(BL = 120). Slope 2 is defined as a slope of a straight line fitted into values of ln(LF/HF) 
during the ascent period. 
T is defined as total time, in which mean – SD  ln(LF/HF)  mean + SD. 
Figure 4 shows such an example that T = T1 + T2 + T3. 
Necessary condition 1: If R  1.5, T  BL(3/4) min, and if not, T  BL(2/3) min. 
Necessary condition 2: Slope 2 > Slope 1. 
Necessary condition 3: The lower end of Slope 2 < mean – 3SD. 
Necessary condition 4: HR decreases, while ln(LF/HF) increases sharply for a period of 40 
minutes. 
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steering wheel (steering-ECG), because of contamination of the baseline by noise. Therefore, 
the first half of our goals for recording the steering-ECG were in the following: i) confirmation 
of correctness of steering-ECG, ii) confirmation of correctness of RR intervals of steering-ECG, 
iii) confirmation of correctness of heart rate variability analysis of steering-ECG, when a driver 
remains still with gripping a steering wheel by both hands. However, noise unavoidably 
contaminates the steering-ECG, because the driver is not lying on the bed calmly but is 
handling the steering wheel. Although an ECG from a chest lead (chest-ECG) was recorded 
simultaneously as a reference in order to examine the correctness of the steering-ECG, the 
chest-ECG was also unavoidably contaminated. Hence, it was impossible to continuously find 
a one-to-one correspondence between the R waves of a steering-ECG and those of a chest-
ECG. However, it was possible to observe fluctuations of heart rate variability by neglecting 
those inevitable artifacts. The second half of our goals was thus to evaluate the fluctuation of 
autonomic nervous activity from the heart rate variability analysis of steering-ECG in spite of 
noise. We examined whether fluctuations of sympathetic and parasympathetic nervous 
activities measured from steering-ECG were consistent with those from chest-ECG. 

2.2 Methods for steering-ECG 
2.2.1 Subjects 
We simultaneously recorded the ECG from a chest lead and, separately, from a steering 
wheel in each of 10 normal subjects driving an automobile for 90 minutes. Then, the subjects 
sitting in the driver’s seat remained still with gripping a steering wheel by both hands 
during the first minute of the recording. 

2.2.2 Steering wheel 
We refurbished the steering wheel of an automobile that was on sale by installing a pair of 
electrodes around the grip site on each side (Figure 5). One electrode of the right pair was a 
(-) electrode, and the other, an indifferent electrode. One electrode of the left pair was a (+) 
electrode, and the other, an indifferent electrode. From these electrodes we made ECG 
recordings which corresponded to the standard ECG of lead I. The electric wires from the 
installed electrodes were connected to a signal amplifier set up in the front portion of the 
automobile through a spiral cable within the steering wheel. We carefully kept the horn and 
an air bag intact for safety purposes. The recorded signals were 1~5mV. These signals were 
amplified 1,700 times. A bandpass-filter of 0.2~35Hz was used to remove noise. With an AD 
converter, the signals from the steering wheel lead were sampled at 200Hz. We 
consecutively searched the R waves of the steering-ECG and chest-ECG visually on a screen. 
We examined whether the R waves of the steering-ECG corresponded in a regular one-to-
one fashion with the R waves of the chest-ECG. The R waves that did correspond to each 
other in this way were represented as {steering-Rk} and {chest-Rk}. Intervals of {steering-Rk} 
and {chest-Rk} ({steering-RRk} and {chest-RRk}) were measured as the intervals of the QRS 
waves at a threshold level. The threshold level was manually determined for each record. 
{steering-RRk} were compared with {chest-RRk} to identify errors due to the filtering of 
steering-ECG. Since each element of {steering-Rk} corresponded to each one of {chest-Rk} in a 
regular one-to-one fashion, these time series of {steering-Rk} and {chest-Rk} were used to 
examine the reliability of heart rate variability of steering-ECG. There were 3 chest 
electrodes served by a (+) electrode on V5 of the left chest, a (-) electrode below the right 
clavicle, and an indifferent electrode below the left clavicle. This corresponded to lead II of a 
standard ECG. These electrodes were connected with an electrocardiograph (DPA-250S; Dia 
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Medical System Co., Tokyo; time constant = 1.5sec, low-pass filter of 0.7 – 30Hz). The signals 
were transferred to an AD converter and were sampled at 200Hz. 
 

 
Fig. 5. A steering wheel. One pair of electrodes is installed around the grip site on each side. 
One of the two electrodes of each side is an indifferent electrode. The installed electrodes are 
arc-like (length 535mm, width 7mm, thickness 0.5mm) so that a driver can to some degree 
select a preferred grip site. From (Osaka et al., 2008). 

2.2.3 Automated detection of QRS waves and measurement of RR intervals 
The QRS waves were detected according to a flow chart, which we proposed newly (Figure 
6). In a preliminary study, we examined the reliability of the algorithm by applying it to the 
electrocardiograms of the PhysioBank (Goldberger et al., 2000), which are freely available 
and downloadable digitized data (sampling rate 250Hz). Our algorithm could detect not 
only normal QRS waves but also abnormal QRS waves shown in Figure 7. After detecting 
QRS waves, the RR intervals, {In}, were measured as the intervals of peaks of two successive 
QRS waves. As the subjects sitting in the driver’s seat did not remain still, outliers of RR 
intervals were always observed. Outliers were excluded as follows: 1) calculation of the MI 
and SDI (the mean value and standard deviation of {In}); 2) exclusion of outliers as In > MI + 
2SDI or < MI - 2SDI, and representation of those intervals remaining after exclusion of the 
outliers as {Jn}; 3) calculation of the standard deviation of {Jn}(expressed as the SDJ ); 4) 
calculation of the median, MedJn, of a set consisting of eleven consecutive intervals, {Jn-5, Jn-4, 
…, Jn, Jn+1, …, Jn+5} for each interval (indexed as Jn); 5) consecutive search of outliers as Jn > 
MedJn + SDJ or < MedJn – SDJ; and 6) replacement of each of the outliers by MedJn so that 
the intervals after the replacement could be regarded as RR intervals, {RRIn}. 
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steering wheel (steering-ECG), because of contamination of the baseline by noise. Therefore, 
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iii) confirmation of correctness of heart rate variability analysis of steering-ECG, when a driver 
remains still with gripping a steering wheel by both hands. However, noise unavoidably 
contaminates the steering-ECG, because the driver is not lying on the bed calmly but is 
handling the steering wheel. Although an ECG from a chest lead (chest-ECG) was recorded 
simultaneously as a reference in order to examine the correctness of the steering-ECG, the 
chest-ECG was also unavoidably contaminated. Hence, it was impossible to continuously find 
a one-to-one correspondence between the R waves of a steering-ECG and those of a chest-
ECG. However, it was possible to observe fluctuations of heart rate variability by neglecting 
those inevitable artifacts. The second half of our goals was thus to evaluate the fluctuation of 
autonomic nervous activity from the heart rate variability analysis of steering-ECG in spite of 
noise. We examined whether fluctuations of sympathetic and parasympathetic nervous 
activities measured from steering-ECG were consistent with those from chest-ECG. 
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wheel in each of 10 normal subjects driving an automobile for 90 minutes. Then, the subjects 
sitting in the driver’s seat remained still with gripping a steering wheel by both hands 
during the first minute of the recording. 
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We refurbished the steering wheel of an automobile that was on sale by installing a pair of 
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(-) electrode, and the other, an indifferent electrode. One electrode of the left pair was a (+) 
electrode, and the other, an indifferent electrode. From these electrodes we made ECG 
recordings which corresponded to the standard ECG of lead I. The electric wires from the 
installed electrodes were connected to a signal amplifier set up in the front portion of the 
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an air bag intact for safety purposes. The recorded signals were 1~5mV. These signals were 
amplified 1,700 times. A bandpass-filter of 0.2~35Hz was used to remove noise. With an AD 
converter, the signals from the steering wheel lead were sampled at 200Hz. We 
consecutively searched the R waves of the steering-ECG and chest-ECG visually on a screen. 
We examined whether the R waves of the steering-ECG corresponded in a regular one-to-
one fashion with the R waves of the chest-ECG. The R waves that did correspond to each 
other in this way were represented as {steering-Rk} and {chest-Rk}. Intervals of {steering-Rk} 
and {chest-Rk} ({steering-RRk} and {chest-RRk}) were measured as the intervals of the QRS 
waves at a threshold level. The threshold level was manually determined for each record. 
{steering-RRk} were compared with {chest-RRk} to identify errors due to the filtering of 
steering-ECG. Since each element of {steering-Rk} corresponded to each one of {chest-Rk} in a 
regular one-to-one fashion, these time series of {steering-Rk} and {chest-Rk} were used to 
examine the reliability of heart rate variability of steering-ECG. There were 3 chest 
electrodes served by a (+) electrode on V5 of the left chest, a (-) electrode below the right 
clavicle, and an indifferent electrode below the left clavicle. This corresponded to lead II of a 
standard ECG. These electrodes were connected with an electrocardiograph (DPA-250S; Dia 
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Medical System Co., Tokyo; time constant = 1.5sec, low-pass filter of 0.7 – 30Hz). The signals 
were transferred to an AD converter and were sampled at 200Hz. 
 

 
Fig. 5. A steering wheel. One pair of electrodes is installed around the grip site on each side. 
One of the two electrodes of each side is an indifferent electrode. The installed electrodes are 
arc-like (length 535mm, width 7mm, thickness 0.5mm) so that a driver can to some degree 
select a preferred grip site. From (Osaka et al., 2008). 

2.2.3 Automated detection of QRS waves and measurement of RR intervals 
The QRS waves were detected according to a flow chart, which we proposed newly (Figure 
6). In a preliminary study, we examined the reliability of the algorithm by applying it to the 
electrocardiograms of the PhysioBank (Goldberger et al., 2000), which are freely available 
and downloadable digitized data (sampling rate 250Hz). Our algorithm could detect not 
only normal QRS waves but also abnormal QRS waves shown in Figure 7. After detecting 
QRS waves, the RR intervals, {In}, were measured as the intervals of peaks of two successive 
QRS waves. As the subjects sitting in the driver’s seat did not remain still, outliers of RR 
intervals were always observed. Outliers were excluded as follows: 1) calculation of the MI 
and SDI (the mean value and standard deviation of {In}); 2) exclusion of outliers as In > MI + 
2SDI or < MI - 2SDI, and representation of those intervals remaining after exclusion of the 
outliers as {Jn}; 3) calculation of the standard deviation of {Jn}(expressed as the SDJ ); 4) 
calculation of the median, MedJn, of a set consisting of eleven consecutive intervals, {Jn-5, Jn-4, 
…, Jn, Jn+1, …, Jn+5} for each interval (indexed as Jn); 5) consecutive search of outliers as Jn > 
MedJn + SDJ or < MedJn – SDJ; and 6) replacement of each of the outliers by MedJn so that 
the intervals after the replacement could be regarded as RR intervals, {RRIn}. 
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Fig. 6. A flow chart to detect QRS waves. From (Osaka et al., 2008). 
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Fig. 7. Samples from the ECG database of PhysioBank.  a, rS type.  b, QS  type. 

2.2.4 Frequency analysis 
A smoothed instantaneous heart rate time series was constructed from the RR-intervals and 
sampled at 8 Hz, according to Berger’s method (Berger et al., 1986). The data length of an 
epoch was 64 sec. The confidence in spectral estimates could be enhanced by dividing the 
data into 5 epochs and by ensemble averaging of Welch’s method (Bendat & Piersol, 1986). 
To reduce the loss of stability, the data were divided using a 50% overlap. Linear trends 
were removed from the data, and the data were tapered by use of a Hanning window. Then, 
a fast Fourier algorithm was used. We calculated the low-frequency component (LF: 0.04 - 
0.15Hz) as a parameter of combined sympathetic and parasympathetic activity, the high-
frequency component (HF: 0.15 - 0.40Hz) as that of parasympathetic activity, the ratio 
LF/HF as that of sympathetic activity, for each epoch. The natural logarithms of LF, HF, 
LF/HF, namely, ln(LF), ln(HF), and ln(LF/HF), were used to make these distributions 
approximate to normal distribution (Berger et al., 1989). The entire length of one record of 
ECG was 90 min, the data length of one epoch was 64 sec, and 2 consecutive epochs were 
overlapped by 50%. Hence, the total number of epochs was at most 168 (≈ 90min/32sec). 
Since the subjects sitting in the driver’s seat did not remain still and sometimes gripped a 
steering-wheel by only a single hand, more artifacts appeared in the steering-ECG than in 
the chest-ECG so that normal QRS waves were not recorded frequently. Hence, we took two 
steps to examine the reliability of heart rate variability of steering-ECG. Firstly, we 
compared ln(LF), ln(HF), and ln(LF/HF) of {steering-RRk} with those parameters of {chest-
RRk}, because {steering-Rk} corresponded in a regular one-to-one fashion with {chest-Rk}. 
Each pair of Rk of {chest-Rk} and {steering-Rk} was consecutively searched visually on a 
screen. We would able to examine the reliability of the hardware system by the first step. 
The correlation coefficients between chest-ECG and steering-ECG for each parameter were 
calculated. The correlation coefficients were considered significant at P<0.05. Secondly, it 
was necessary to examine the reliability of the automated detection of QRS waves and 
measurement of RR intervals for practical use of our present system. According to the 
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Fig. 7. Samples from the ECG database of PhysioBank.  a, rS type.  b, QS  type. 

2.2.4 Frequency analysis 
A smoothed instantaneous heart rate time series was constructed from the RR-intervals and 
sampled at 8 Hz, according to Berger’s method (Berger et al., 1986). The data length of an 
epoch was 64 sec. The confidence in spectral estimates could be enhanced by dividing the 
data into 5 epochs and by ensemble averaging of Welch’s method (Bendat & Piersol, 1986). 
To reduce the loss of stability, the data were divided using a 50% overlap. Linear trends 
were removed from the data, and the data were tapered by use of a Hanning window. Then, 
a fast Fourier algorithm was used. We calculated the low-frequency component (LF: 0.04 - 
0.15Hz) as a parameter of combined sympathetic and parasympathetic activity, the high-
frequency component (HF: 0.15 - 0.40Hz) as that of parasympathetic activity, the ratio 
LF/HF as that of sympathetic activity, for each epoch. The natural logarithms of LF, HF, 
LF/HF, namely, ln(LF), ln(HF), and ln(LF/HF), were used to make these distributions 
approximate to normal distribution (Berger et al., 1989). The entire length of one record of 
ECG was 90 min, the data length of one epoch was 64 sec, and 2 consecutive epochs were 
overlapped by 50%. Hence, the total number of epochs was at most 168 (≈ 90min/32sec). 
Since the subjects sitting in the driver’s seat did not remain still and sometimes gripped a 
steering-wheel by only a single hand, more artifacts appeared in the steering-ECG than in 
the chest-ECG so that normal QRS waves were not recorded frequently. Hence, we took two 
steps to examine the reliability of heart rate variability of steering-ECG. Firstly, we 
compared ln(LF), ln(HF), and ln(LF/HF) of {steering-RRk} with those parameters of {chest-
RRk}, because {steering-Rk} corresponded in a regular one-to-one fashion with {chest-Rk}. 
Each pair of Rk of {chest-Rk} and {steering-Rk} was consecutively searched visually on a 
screen. We would able to examine the reliability of the hardware system by the first step. 
The correlation coefficients between chest-ECG and steering-ECG for each parameter were 
calculated. The correlation coefficients were considered significant at P<0.05. Secondly, it 
was necessary to examine the reliability of the automated detection of QRS waves and 
measurement of RR intervals for practical use of our present system. According to the 
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algorithm, the outliers in {In} of steering-ECG were more frequently replaced by MedJn than 
those in {In} of chest-ECG. We examined whether ln(LF), ln(HF), and ln(LF/HF) of steering-
ECG were reliable in spite of such a disadvantage. We calculated the moving average of 
subsequent 5 epochs for ln(LF), ln(HF), and ln(LF/HF), and instantaneous heart rate (HR): 
m-ln(LF), m-ln(HF), m-ln(LF/HF), and m-HR. We constructed a time series of 4 parameters 
for chest-ECG and steering-ECG. 

2.2.5 Mutual information 
We drew graphs of fluctuations of m-ln(LF), m-ln(HF), m-ln(LF/HF), and m-HR for chest-
ECG and steering-ECG. In order to compare the fluctuation of each parameter of steering-
ECG with that of chest-ECG, we calculated the mutual information between them. This 
mutual information method was used to gauge the likeness between them. We calculated 
mutual information values, according to an algorithm proposed by Fraser and Swinney 

(Fraser & Swinney, 1986) and our previous study (Osaka et al., 1998). For a couple of time 
series, {x(t)} and {y(t)}, we measured how dependent the values of y(t) were on the values of 
x(t). We made the assignment [s,q] = [x(t), y(t)] to consider a general coupled system (S,Q). 
For example, {x(t)} was the time series of moving averages of m-ln(LF) for chest-ECG and 
{y(t)} was the time series of moving averages of m-ln(LF) for steering-ECG. Mutual 
information is defined as the answer to the question, “Given a measurement of s, how many 
bits on the average can be predicted about q?”: 

I(S,Q) =  Psq(s,q) log[Psq(s,q)/(Ps(s)Pq(q))]dsdq, 

where i) S and Q denote the systems, ii) Ps(s) and Pq(q) are the probability densities at s and 
q, respectively, and iii) Psq(s, q) is the joint probability density at s and q. The data length is 
2n. The algorithm is as follows: 1) an x-y plot is normalized into a square: each value Wi ( = 
x(t) or y(t)) was replaced by an integer Ni; 1 Ni  2n; if Wi < Wj, Ni < Nj; if Wi = Wj and i < j, 
Ni < Nj , so that each of the values of {x(t)} and {y(t)} is one to one replaced by an integer 
from 1 to 2n, 2) it is successively divided into smaller squares, 3) a value for the dependence 
of y(t) on x(t) is calculated in each square, and 4) mutual information is the average of those 
values weighted by respective areas. Even if there is no significant correlation in the entire 
square, any significant correlation in smaller squares is taken into the final correlation by 
weighting by the respective areas. Therefore, mutual information is considered to be 
applicable more generally than a correlation coefficient of regression analysis. The larger is 
the value of mutual information for (S,Q), the stronger is the mutual dependence between S 
and Q. The data length was 27 (= 128). If S = Q, the correlation between them should be 
perfect. Then, I(S,Q) = n, where the data length is 2n, because the algorithm is developed to 
the discrete case (Fraser & Swinney, 1986). The mutual information value between the same 
two time series is n. Hence, mutual information values were normalized by n, that is, these 
values were divided by n, resulting in values between 0 and 1. If the mutual information 
value was larger than or equal to 0.047, the correlation was taken to be strongly correlated 
on the basis of our previous report (Osaka et al., 1998). 

2.3 Results 
2.3.1 Results on the hardware system 
Although small high-frequency noise still contaminated the baseline, the reproduced signals 
demonstrated the characteristics of P, R, and T waves well (Figure 8)). Each steering-ECG R 
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Fig. 8. Comparison of the electrocardiogram recorded from a steering wheel (steering-ECG) 
with that from a chest lead (chest-ECG). From (Osaka et al., 2008). 
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Fig. 9. A regression graph of steering-RRk to chest-RRk in the same subject as in Figure 8. 
Each element of {steering-Rk} corresponds to each one of {chest-Rk} in a regular one-to-one 
fashion by consecutively searching the R waves of the steering-ECG and chest-ECG visually 
on a screen. From (Osaka et al., 2008). 
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algorithm, the outliers in {In} of steering-ECG were more frequently replaced by MedJn than 
those in {In} of chest-ECG. We examined whether ln(LF), ln(HF), and ln(LF/HF) of steering-
ECG were reliable in spite of such a disadvantage. We calculated the moving average of 
subsequent 5 epochs for ln(LF), ln(HF), and ln(LF/HF), and instantaneous heart rate (HR): 
m-ln(LF), m-ln(HF), m-ln(LF/HF), and m-HR. We constructed a time series of 4 parameters 
for chest-ECG and steering-ECG. 

2.2.5 Mutual information 
We drew graphs of fluctuations of m-ln(LF), m-ln(HF), m-ln(LF/HF), and m-HR for chest-
ECG and steering-ECG. In order to compare the fluctuation of each parameter of steering-
ECG with that of chest-ECG, we calculated the mutual information between them. This 
mutual information method was used to gauge the likeness between them. We calculated 
mutual information values, according to an algorithm proposed by Fraser and Swinney 

(Fraser & Swinney, 1986) and our previous study (Osaka et al., 1998). For a couple of time 
series, {x(t)} and {y(t)}, we measured how dependent the values of y(t) were on the values of 
x(t). We made the assignment [s,q] = [x(t), y(t)] to consider a general coupled system (S,Q). 
For example, {x(t)} was the time series of moving averages of m-ln(LF) for chest-ECG and 
{y(t)} was the time series of moving averages of m-ln(LF) for steering-ECG. Mutual 
information is defined as the answer to the question, “Given a measurement of s, how many 
bits on the average can be predicted about q?”: 

I(S,Q) =  Psq(s,q) log[Psq(s,q)/(Ps(s)Pq(q))]dsdq, 

where i) S and Q denote the systems, ii) Ps(s) and Pq(q) are the probability densities at s and 
q, respectively, and iii) Psq(s, q) is the joint probability density at s and q. The data length is 
2n. The algorithm is as follows: 1) an x-y plot is normalized into a square: each value Wi ( = 
x(t) or y(t)) was replaced by an integer Ni; 1 Ni  2n; if Wi < Wj, Ni < Nj; if Wi = Wj and i < j, 
Ni < Nj , so that each of the values of {x(t)} and {y(t)} is one to one replaced by an integer 
from 1 to 2n, 2) it is successively divided into smaller squares, 3) a value for the dependence 
of y(t) on x(t) is calculated in each square, and 4) mutual information is the average of those 
values weighted by respective areas. Even if there is no significant correlation in the entire 
square, any significant correlation in smaller squares is taken into the final correlation by 
weighting by the respective areas. Therefore, mutual information is considered to be 
applicable more generally than a correlation coefficient of regression analysis. The larger is 
the value of mutual information for (S,Q), the stronger is the mutual dependence between S 
and Q. The data length was 27 (= 128). If S = Q, the correlation between them should be 
perfect. Then, I(S,Q) = n, where the data length is 2n, because the algorithm is developed to 
the discrete case (Fraser & Swinney, 1986). The mutual information value between the same 
two time series is n. Hence, mutual information values were normalized by n, that is, these 
values were divided by n, resulting in values between 0 and 1. If the mutual information 
value was larger than or equal to 0.047, the correlation was taken to be strongly correlated 
on the basis of our previous report (Osaka et al., 1998). 

2.3 Results 
2.3.1 Results on the hardware system 
Although small high-frequency noise still contaminated the baseline, the reproduced signals 
demonstrated the characteristics of P, R, and T waves well (Figure 8)). Each steering-ECG R 
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Fig. 8. Comparison of the electrocardiogram recorded from a steering wheel (steering-ECG) 
with that from a chest lead (chest-ECG). From (Osaka et al., 2008). 
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Fig. 9. A regression graph of steering-RRk to chest-RRk in the same subject as in Figure 8. 
Each element of {steering-Rk} corresponds to each one of {chest-Rk} in a regular one-to-one 
fashion by consecutively searching the R waves of the steering-ECG and chest-ECG visually 
on a screen. From (Osaka et al., 2008). 
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wave showed time-consistency with the respective R wave of the chest-ECG during the 
handling of a steering wheel as well as during the sitting still in the driver’s seat. Figure 9 
shows a regression graph of steering-RRk to chest-RRk in one of the subjects: steering-RRk = 
1.04 + 0.999×chest-RRk (r = 0.997, P<0.0001). Hence, {steering-RRk} was almost perfectly 
consistent with {chest-RRk}. Similarly, the other subjects showed such a perfect consistency. 
For each parameter of ln(LF), ln(HF), and ln(LF/HF), a regression graph of steering-ECG (Y) 
to chest-ECG (X) was in the following: Y = a + b×X (-0.012≦a≦0.043, 0.997≦r≦1.000, 
P<0.0001) in all the subjects. ln(LF), ln(HF), and ln(LF/HF) of steering-ECG were almost 
perfectly consistent with those of chest-ECG. 

2.3.2 Results on the software system 
Figure 10 shows RR intervals from steering-ECG and from chest-ECG for the same subject as 
in Figure 8. When the driver moved his (her) upper body abruptly, the baseline of the chest-
ECG fluctuated so that, intermittently, the R waves could not be detected. Hence, rather 
long erroneous RR intervals sometimes appeared in the tachogram of the chest-ECG as well 
as the steering-ECG. Longer RR intervals were observed more frequently in the tachogram 
of steering-ECG. This occurred because the driver sometimes gripped only one side of the 
steering wheel with a single hand. Since more long erroneous RR intervals were deleted in 
 

 
Fig. 10. RR intervals from steering-ECG and from chest-ECG for the same subject as in Fig. 8. 
{In}: intervals of peaks of two successive QRS waves. {RRIn}: intervals regarded as RR 
intervals after the processing of outliers from {In} by the algorithm. From (Osaka et al., 2008). 
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the steering-ECG than in the chest-ECG, the last index number of processed In of steering-
ECG, {steering-RRIn}, was smaller than that of processed In of chest-ECG, {chest-RRIn} 
(Figure 10). Hence, each element of {steering-RRIn} did not correspond in a regular one-to-
one fashion with that of {chest-RRIn} so that {steering-RRIn} and {chest-RRIn} could not be 
compared by the regression analysis. Figure 11 shows that the fluctuation from the steering-
ECG resembled that from the chest-ECG for each parameter of the same subject as in Figure 
8. Particularly, most of upslopes and downslopes of each parameter of steering-ECG 
corresponded one to one with those of chest-ECG. These findings were seen in the other 
subjects, when mutual information values were larger than 0.047. Figure 12 shows that 
mutual information of each parameter was larger than 0.047 with 95% confidence. Hence, it 
indicated that the fluctuation of each parameter of steering-ECG significantly resembled that 
of chest-ECG. However, the mutual information of m-ln(HF) in one subject and that of m-
ln(LF/HF) in another were both 0. Mutual information values were all larger than 0.047 
except for these 2 values. 

 
 

 
Fig. 11. Comparison of a fluctuation from steering-ECG with that from chest-ECG for each 
parameter of the same subject as in Figure 8. Red lines show the moving averages of blue 
lines. Mutual information values are 0.225, 0.223, 0.209, and 0.184 for m-HR, m-ln(LF), m-
ln(HF), and m-ln(LF/HF). HR, heart rate; LF, low-frequency component (0.04 - 0.15Hz); HF, 
high-frequency component (0.15 - 0.40Hz); LF/HF, the ratio of LF to HF. ln(LF), ln(HF), and 
ln(LF/HF): natural logarithms of LF, HF, and LF/HF. m-HR, m-ln(LF), m-ln(HF), and m-
ln(LF/HF): moving averages of HR, ln(LF), ln(HF), and ln(LF/HF). From (Osaka et al., 
2008). 
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wave showed time-consistency with the respective R wave of the chest-ECG during the 
handling of a steering wheel as well as during the sitting still in the driver’s seat. Figure 9 
shows a regression graph of steering-RRk to chest-RRk in one of the subjects: steering-RRk = 
1.04 + 0.999×chest-RRk (r = 0.997, P<0.0001). Hence, {steering-RRk} was almost perfectly 
consistent with {chest-RRk}. Similarly, the other subjects showed such a perfect consistency. 
For each parameter of ln(LF), ln(HF), and ln(LF/HF), a regression graph of steering-ECG (Y) 
to chest-ECG (X) was in the following: Y = a + b×X (-0.012≦a≦0.043, 0.997≦r≦1.000, 
P<0.0001) in all the subjects. ln(LF), ln(HF), and ln(LF/HF) of steering-ECG were almost 
perfectly consistent with those of chest-ECG. 

2.3.2 Results on the software system 
Figure 10 shows RR intervals from steering-ECG and from chest-ECG for the same subject as 
in Figure 8. When the driver moved his (her) upper body abruptly, the baseline of the chest-
ECG fluctuated so that, intermittently, the R waves could not be detected. Hence, rather 
long erroneous RR intervals sometimes appeared in the tachogram of the chest-ECG as well 
as the steering-ECG. Longer RR intervals were observed more frequently in the tachogram 
of steering-ECG. This occurred because the driver sometimes gripped only one side of the 
steering wheel with a single hand. Since more long erroneous RR intervals were deleted in 
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the steering-ECG than in the chest-ECG, the last index number of processed In of steering-
ECG, {steering-RRIn}, was smaller than that of processed In of chest-ECG, {chest-RRIn} 
(Figure 10). Hence, each element of {steering-RRIn} did not correspond in a regular one-to-
one fashion with that of {chest-RRIn} so that {steering-RRIn} and {chest-RRIn} could not be 
compared by the regression analysis. Figure 11 shows that the fluctuation from the steering-
ECG resembled that from the chest-ECG for each parameter of the same subject as in Figure 
8. Particularly, most of upslopes and downslopes of each parameter of steering-ECG 
corresponded one to one with those of chest-ECG. These findings were seen in the other 
subjects, when mutual information values were larger than 0.047. Figure 12 shows that 
mutual information of each parameter was larger than 0.047 with 95% confidence. Hence, it 
indicated that the fluctuation of each parameter of steering-ECG significantly resembled that 
of chest-ECG. However, the mutual information of m-ln(HF) in one subject and that of m-
ln(LF/HF) in another were both 0. Mutual information values were all larger than 0.047 
except for these 2 values. 

 
 

 
Fig. 11. Comparison of a fluctuation from steering-ECG with that from chest-ECG for each 
parameter of the same subject as in Figure 8. Red lines show the moving averages of blue 
lines. Mutual information values are 0.225, 0.223, 0.209, and 0.184 for m-HR, m-ln(LF), m-
ln(HF), and m-ln(LF/HF). HR, heart rate; LF, low-frequency component (0.04 - 0.15Hz); HF, 
high-frequency component (0.15 - 0.40Hz); LF/HF, the ratio of LF to HF. ln(LF), ln(HF), and 
ln(LF/HF): natural logarithms of LF, HF, and LF/HF. m-HR, m-ln(LF), m-ln(HF), and m-
ln(LF/HF): moving averages of HR, ln(LF), ln(HF), and ln(LF/HF). From (Osaka et al., 
2008). 
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Fig. 12. Mean and 95%-confidence error bar of mutual information of m-HR, m-ln(LF), m-
ln(HF), and m-ln(LF/HF). Threshold of significance: 0.047. HR, heart rate; LF, low-
frequency component (0.04 - 0.15Hz); HF, high-frequency component (0.15 - 0.40Hz); 
LF/HF, the ratio of LF to HF. ln(LF), ln(HF), and ln(LF/HF): natural logarithms of LF, HF, 
and LF/HF. m-HR, m-ln(LF), m-ln(HF), and m-ln(LF/HF): moving averages of HR, ln(LF), 
ln(HF), and ln(LF/HF). From (Osaka et al., 2008). 

2.4 Confirmation of correctness of steering ECG 
The waves of P, Q, R, S, and T are generally visible clearly in a standard ECG, while a 
subject lies on the supine position. In the present study, the waves of P, R, and T could be 
recorded clearly in steering-ECG (Figure 8). {steering-RRk} was almost perfectly consistent 
with {chest-RRk} in all the subjects. Similarly, ln(LF), ln(HF), and ln(LF/HF) of steering-ECG 
were almost perfectly consistent with those of chest-ECG. Hence, the first half of our goals 
was achieved, using the following technical measures. The long indifferent electrodes were 
installed into both sides of the steering wheel so as to work without fail even if the driver’s 
hands should move on the steering wheel. The electrodes installed into the steering wheel 
were made of plating to increase electrical conductivity. A bandpass filter of 0.2 35Hz was 
used for steering-ECG. It may be compared with the generally used bandpass filter of an 
electrocardiograph. Hence, the waves P, R, and T of the steering-ECG rather resembled 
those of chest-ECG. Small high-frequency noise contaminated not only the baseline of the 
steering-ECG but also that of the chest-ECG (Figure 8), indicating that it is difficult to record 
noise-free ECG in an automobile. This contaminating noise resulted from alternating 
current, making the ST-segment of the ECG unclear. Generally, small P waves, flat T waves, 
and small inverted T waves may be invisible by the contaminating noise. In order to detect 
ischemic attacks, namely, angina pectoris and acute myocardial infarction, it is necessary to 
eliminate that noise. We will endeavor to reduce noise in a further study. 
After detecting QRS waves by our algorithm shown in Figure 6, we measured RR-intervals 
by using a peak-detection algorithm. In the preliminary study, we examined the reliability 
of this algorithm by applying to the ECG database of PhysioBank. It was applicable to the 
ECG of patients with abnormal Q waves in lead I, usually observed in broad anterior 
myocardial infarction or dilated cardiomyopathy (Figure 7) as well as the ECG of normal 

Customized Heart Check System by Using Integrated Information of Electrocardiogram 
and Plethysmogram Outside the Driver’s Awareness from an Automobile Steering Wheel 

 

341 

subjects. When a driver moved his or her upper body abruptly and/or gripped only one 
side of the steering wheel with a single hand, normal R waves could intermittently not be 
detected, and long erroneous RR intervals appeared. Heart rate variability mainly results 
from the pacemaker sinus node rhythm, which is under the control of the autonomic 
nervous system. Therefore, a time series including frequent noisy RR intervals, for example, 
in subjects at high risk of lethal arrhythmia who have frequently premature beats, atrial 
tachyarrhythmia such as atrial fibrillation, or pace maker implantation is unsuitable for 
heart rate variability analysis. Practically, arrhythmias such as premature beats sometimes 
appear in even normal subjects, which cause erroneous RR intervals. Although the Task 
Force of the European Society of Cardiology and the North American Society of Pacing and 
Electrophysiology published a report about standards of measurement for heart rate 
variability in 1996, no standard for how to deal with such noisy RR intervals was included 
in the report. In subjects with frequent premature beats, the values of LF, HF, and LF/HF 
are rather inaccurate for data epochs including more premature beats. Thus, we presume 
that a method of dividing the data into 5 epochs with a 50% overlap and ensemble 
averaging is useful to enhance the confidence of those values, according to Welch’s method 
(Bendat & Piersol, 1986). 
Rather long or short RR intervals were excluded as outliers: In > MI + 2SDI or < MI - 2SDI. 
Consequently, about 5% of all the intervals In were excluded. These outliers resulted from 
artifacts due to abrupt body movement and/or gripping only one side of the steering wheel. 
More long erroneous RR intervals appeared in steering-ECG than in chest-ECG, and more 
outliers were excluded in steering-ECG. The number of RR intervals was less in steering-
ECG than in chest-ECG (Figure 10). Each element of {steering-RRIn} did not correspond in a 
regular one-to-one fashion with that of {chest-RRIn} so that {steering-RRIn} and {chest-RRIn} 
could not be compared by the regression analysis. Hence, we needed the mutual 
information method as an alternative one in order to compare heart rate variability of 
{steering-RRIn} and {chest-RRIn}. 
We aimed at drawing a reliable graph following a fluctuation of autonomic nervous activity. 
Mutual information of each parameter was larger than 0.047 with 95% confidence. This 
indicated statistically that the fluctuation of each parameter of steering-ECG significantly 
resembled that of chest-ECG. In detail, all but 2 mutual information values were larger than 
0.047: mutual information of ln(HF) in one subject and that of ln(LF/HF) in another were 0. 
When these values of mutual information were 0, the fluctuations of steering-ECG did not 
seem to resemble the respective fluctuations of chest-ECG, since the steering-ECG was noisy 
due to the frequent gripping of a steering wheel by a single hand. We succeeded in 
demonstrating a fluctuation in autonomic nervous activity from steering-ECG, which was 
statistically consistent with that of chest-ECG. It is possible for a driver to observe a 
fluctuation of sympathetic nervous activity by ln(LF/HF) and a fluctuation of 
parasympathetic nervous activity by ln(HF). Hence, drivers can detect their own autonomic 
stress continuously. Atrial or ventricular premature beats can be detected by the present 
algorithm. 

3. Addition of information from plethysmogram 
Although the chest-ECG was recorded simultaneously as a reference in order to examine the 
correctness of the steering-ECG, the chest-ECG was also unavoidably contaminated. Hence, it 
was impossible to continuously find a one-to-one correspondence between the R waves of a 
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Fig. 12. Mean and 95%-confidence error bar of mutual information of m-HR, m-ln(LF), m-
ln(HF), and m-ln(LF/HF). Threshold of significance: 0.047. HR, heart rate; LF, low-
frequency component (0.04 - 0.15Hz); HF, high-frequency component (0.15 - 0.40Hz); 
LF/HF, the ratio of LF to HF. ln(LF), ln(HF), and ln(LF/HF): natural logarithms of LF, HF, 
and LF/HF. m-HR, m-ln(LF), m-ln(HF), and m-ln(LF/HF): moving averages of HR, ln(LF), 
ln(HF), and ln(LF/HF). From (Osaka et al., 2008). 
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nervous system. Therefore, a time series including frequent noisy RR intervals, for example, 
in subjects at high risk of lethal arrhythmia who have frequently premature beats, atrial 
tachyarrhythmia such as atrial fibrillation, or pace maker implantation is unsuitable for 
heart rate variability analysis. Practically, arrhythmias such as premature beats sometimes 
appear in even normal subjects, which cause erroneous RR intervals. Although the Task 
Force of the European Society of Cardiology and the North American Society of Pacing and 
Electrophysiology published a report about standards of measurement for heart rate 
variability in 1996, no standard for how to deal with such noisy RR intervals was included 
in the report. In subjects with frequent premature beats, the values of LF, HF, and LF/HF 
are rather inaccurate for data epochs including more premature beats. Thus, we presume 
that a method of dividing the data into 5 epochs with a 50% overlap and ensemble 
averaging is useful to enhance the confidence of those values, according to Welch’s method 
(Bendat & Piersol, 1986). 
Rather long or short RR intervals were excluded as outliers: In > MI + 2SDI or < MI - 2SDI. 
Consequently, about 5% of all the intervals In were excluded. These outliers resulted from 
artifacts due to abrupt body movement and/or gripping only one side of the steering wheel. 
More long erroneous RR intervals appeared in steering-ECG than in chest-ECG, and more 
outliers were excluded in steering-ECG. The number of RR intervals was less in steering-
ECG than in chest-ECG (Figure 10). Each element of {steering-RRIn} did not correspond in a 
regular one-to-one fashion with that of {chest-RRIn} so that {steering-RRIn} and {chest-RRIn} 
could not be compared by the regression analysis. Hence, we needed the mutual 
information method as an alternative one in order to compare heart rate variability of 
{steering-RRIn} and {chest-RRIn}. 
We aimed at drawing a reliable graph following a fluctuation of autonomic nervous activity. 
Mutual information of each parameter was larger than 0.047 with 95% confidence. This 
indicated statistically that the fluctuation of each parameter of steering-ECG significantly 
resembled that of chest-ECG. In detail, all but 2 mutual information values were larger than 
0.047: mutual information of ln(HF) in one subject and that of ln(LF/HF) in another were 0. 
When these values of mutual information were 0, the fluctuations of steering-ECG did not 
seem to resemble the respective fluctuations of chest-ECG, since the steering-ECG was noisy 
due to the frequent gripping of a steering wheel by a single hand. We succeeded in 
demonstrating a fluctuation in autonomic nervous activity from steering-ECG, which was 
statistically consistent with that of chest-ECG. It is possible for a driver to observe a 
fluctuation of sympathetic nervous activity by ln(LF/HF) and a fluctuation of 
parasympathetic nervous activity by ln(HF). Hence, drivers can detect their own autonomic 
stress continuously. Atrial or ventricular premature beats can be detected by the present 
algorithm. 

3. Addition of information from plethysmogram 
Although the chest-ECG was recorded simultaneously as a reference in order to examine the 
correctness of the steering-ECG, the chest-ECG was also unavoidably contaminated. Hence, it 
was impossible to continuously find a one-to-one correspondence between the R waves of a 
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steering-ECG and those of a chest-ECG. We recorded plethysmogram as well as ECG from the 
steering wheel in order to compromise such missing recordings of ECG. Blood pressure is also 
very important information on physiological conditions. We examined whether various 
cardiac abnormalities could be detected reliably by ECG and plethysmogram recorded from 
the steering wheel. We aimed at making a robust system for monitoring a driver’s physical 
conditions against noise and providing reliable information to the driver by integrating 
information from the steering-ECG and that from the plethysmogram for safety driving. 

3.1 Subjects & methods 
Forty-six subjects were evaluated: 9 normal volunteers and 37 patients (hypertension (N = 
7), cardiomyopathy (N = 7), atrial fibrillation (N = 7), myocardial infarction (N = 6), valvular 
disease (N = 6), angina pectoris (N = 4)). Of these subjects, 8 showed ST depression, 4 left 
bundle block, 4 right bundle block, 4 low voltage, and 2 pacing rhythm of a implanted 
pacemaker. 
We installed a sensor of a transmitted green photoelectric plethysmogram to detect the 
variation of arterial concentration of hemoglobin by reflection (bandpass-filter 0.2 ~ 5 Hz 
with reduction of 3 dB, sampling rate 1 kHz) into the steering wheel. Since the absorption 
rate of green by hemoglobin was higher than that of infra-red, which is used generally, the 
signal-to-noise ratio (S/N ratio) of the former was better than the latter so that 
plethysmogram could be recorded at the palm near the right thumb. The sensor was set up 
to touch the palm near the right thumb naturally, while the driver grips the steering wheel 
into which the electrodes for ECG were installed. To compare with those recordings from 
the steering wheel, we recorded ECG from a chest lead and plethysmogram directly from a 
finger simultaneously while they were sitting on the driving seat of the simulator for 10 
minutes (Figure 13). We calculated the second derivative of plethysmogram as the 
 

 
Fig. 13. Electrodes for electrocardiogram & a sensor for photo-plethysmogram. 
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acceleration of pulse wave. The positive component (a-wave) and the following negative 
component (b-wave) represent the forward component of systolic blood pressure (Figure 14) 
(Chua et al., 2010). Therefore, we presumed that the total amplitude of a-wave and b-wave 
reflects the strength of ejection in systole. The data of ECG and plethysmogram recorded 
from the steering wheel were stored in a hard disk, which were analyzed to obtain RR 
intervals and the second derivative of plethysmogram. 
 

 
Fig. 14. An example of steering-electrocardiogram and plethysmogram. 

3.2 Results 
Figure 14 shows an example of steering-ECG, steering-plethysmogram and steering-second 
derivative of plethysmogram, comparing with the reference recordings. Each of QRS wave 
of the steering-ECG was consistent with that of the reference. Each of pulse wave of the 
steering-plethythmogram was consistent with that of the reference. Similarly, each pair of a-
wave and b-wave of the steering-second derivative of plethysmogram was consistent with 
that of the reference. We could discriminate sinus bradycardia, sinus tachycardia, and atrial 
fibrillation by measuring RR-intervals. We could also discriminate premature ventricular 
beats and premature atrial beats by measuring the timing and width of QRS and by 
plethysmogram, which was particularly useful because premature ventricular beats caused 
only a minute pulse wave (Figure 14c, d) and premature atrial beats caused almost normal 
pulse waves. Since only a minute blood volume is outputted by premature ventricular beats, 
a-wave and b-wave did not appear (Figure 14e, f). When a subject did not grip the steering 
wheel normally, the recordings of ECG were sometimes contaminated by noise, such as a 
fluctuation of the baseline. Figure 15 shows that beat-to-beat intervals can be calculated from 
the steering-plethysmogram and/or the steering-second derivative of it, in case a large 
fluctuation of the baseline hinders the calculation of RR intervals. If plethysmogram was 
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wheel normally, the recordings of ECG were sometimes contaminated by noise, such as a 
fluctuation of the baseline. Figure 15 shows that beat-to-beat intervals can be calculated from 
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recorded normally, such missing RR intervals of the steering-ECG could be replaced by 
peak intervals of plethysmogram. Figure 14 shows that ST depression can be observed in the 
steering-ECG like the reference. Thus, ST changes could be detected without such a large 
fluctuation of the baseline. 
 
 
 
 

 
 

Fig. 15. An example of fluctuaion of the baseline of steering-electrocardiogram. 

 
 
 
 

 
 

Fig. 16. Flow chart to detect abnormal physiological conditions. HR, heart rate; bpm, beats 
per minute; BP, blood pressure; VT, ventricular tachycardia; VF, ventricular fibrillation; af, 
atrial fibrillation; aF, atrial flutter; PSVT, paroxysmal supraventricular tachycardia; PAT, 
paroxysmal atrial tachycardia; CAVB, complete atrioventricular block; AMI, acute 
myocardial infarction; AP, angina pectoris; LF, low-frequency component of heart rate 
variability; HF, high-frequency component. 
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4. Conclusion 
In order to improve the reliability of the system to detect abnormal physiological conditions 
while driving and make it more applicable, we installed the sensor of photo-plethysmogram 
besides the electrodes of ECG into the steering wheel. We demonstrated that RR intervals 
calculated from the steering-ECG and the graph following a fluctuation of autonomic 
activity were consistent with those obtained from the reference-ECG. It is possible for a 
driver to observe a trend of heart rate, a fluctuation of sympathetic activity by ln(LF/HF), 
and a fluctuation of parasympathetic activity by ln(HF) on a monitor of navigation. Hence, 
drivers can check whether arrhythmia appears or not, and their own autonomic stress 
continuously and easily. Similarly, we showed that the plethysmogram of the steering wheel 
and the second derivative of it were consistent with those from the reference. In a stable 
condition such as sitting on a driving seat, HR > 120 beats/min (bpm) and HR < 30 bpm are 
considered to be abnormal so that the driver is possibly at risk from causing a traffic 
accident (Figure 16). When the height of a-wave plus b-wave of the second derivative of 
plethysmogram is >2 times larger than the mean value of it for the previous 30 minutes or 
<0.5 times smaller, blood pressure is considered to increase or decrease abruptly. When 
LF/HF or HF is increasing steadily for >30 minutes, it will indicate that sympathetic activity 
may predominate over parasympathetic activity excessively or vise versa (Figure 16). If 
these abnormalities are detected, a message of inquiring of the driver, “Are you all right?” 
will be delivered in our system. If the driver needs any help, some of the nearest hospitals 
will be displayed on the screen of the navigation system. This hospital-referring system has 
already installed into automobiles of a high grade of TOYOTA MOTOR CORPORATION. A 
network system by which the data is continuously transferred to a center and monitored by 
medical doctors will be made in the near future. We will call it the human-machine talking 
system. We propose such a new system by which it is monitored whether physiological 
conditions are within a normal state of the driver or not. To decide it, the present data of 
heart rate, the height of a-wave plus b-wave, LF/HF and HF are continuously compared 
with those parameters from the past data of the driver. Hence, we call it a customized heart 
check system. Feedback of information to the driver on autonomic stress and the appearance 
of premature beats will improve safety. Our system will open doors to new strategies to 
minimize driver’s risk by making available the relevant data during the actual process of 
driving. We reported that a V-shaped trough in autonomic activity is a possible precursor of 
life-threatening cardiac events (Osaka et al., 2010). The V-trough including the small 
variations that precede it spans approximately 190 minutes. Hence, a necessary condition 
for the detection of the precursor with our algorithm is that the time from the start of 
recording to an event must exceed 190 minutes.  Thus the somewhat lengthy recording time 
required is a potential shortcoming of the system. Therefore, the detection of the V-shaped 
trough is considered to be useful for subjects who drive for long hours, especially 
professional drivers of bus, taxi, and truck. This system will be also useful to monitor 
physiological conditions of a man or woman at home as well as an inpatient, for example if 
the system is installed into the bed. If it is installed into a toilet stool, physiological 
conditions will be easily checked up daily. 
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1. Introduction 
Electrocardiogram (ECG) signal processing aims basically 1) at artifact reduction to make 
the ECG signals cleaner and better interpretable by human or machine observers, 2) at 
revealing aspects not immediately observable in plain measured ECG signals even after 
artifact reduction, or 3) at diagnostics decision support and automated ECG signal 
interpretation, including classification of ECG signals into different classes associated with 
normal or pathological heart function. Thus, sports related applications aside, body surface 
ECG signal processing aims at enhancing ECG based diagnostics. In this Chapter, we review 
and demonstrate a statistical signal processing approach, independent component analysis 
(ICA), which is inherently very suitable for ECG signal processing regarding the aims 1) and 
2) above, and also equally applicable as a component in systems aimed at accomplishing the 
aim 3). For more on general ECG signal processing, the reader is directed to the textbook 
written by Sörnmo & Laguna (2005), and for a thorough treatment of ICA to the Hyvärinen’s 
book (Hyvärinen et al., 2001). A concise review on ICA in ECG signal processing has been 
presented by Castells et al. (2007a). In this Chapter, we describe and illustrate several widely 
adopted applications of ICA in ECG signal processing, and discuss associated practical 
aspects, some of which are not generally found in the literature. The treatment of the matter is 
aimed at conceptual and practical understanding, leaving the mathematical derivations and 
proofs far mostly for the interested reader to find in the references. 
ICA (Castells et al., 2007a; Comon, 1994; Hyvärinen et al., 2001; Hyvärinen & Oja, 2000; Naik 
& Kumar, 2011) is a statistical signal processing method for decomposing a set of signals 
into a set of mutually independent component signals. In general, in the applications of ICA, 
including in ECG signal processing, the objective is that the resulting independent 
component signals are the original source signals. Since ICA operates purely based on the 
input signals and a few assumptions, ICA belongs to the class of methods called blind 
source separation methods. For ICA, a source signal is called an independent component 
(IC). The terms ‘IC’ and ‘source signal’ are here used interchangeably. For ECG, the source 
signals are the bioelectrical signals generated by the heart, and all the possible artifact 
signals.  
Generally, ICA input signals are the observed signals, which may be measurement time 
series, such as sampled voltage values in time as in the case of ECGs, image pixel values, or 
basically any sets of values fulfilling the assumptions of ICA. In the sequel, the term 
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‘measured signals’ refers to a set of simultaneously measured digital discrete-time signals 
with constant interval between the measured signal samples. All signals are assumed to be 
sampled at the same time instances. 
ICA is realized by an iterative numerical algorithm, several of which exist. In Section 2 of 
this Chapter, we first introduce the basics of ICA, review ICA estimation principles and note 
a few commonly used available ICA methods. Thereafter, the specific applications of ICA in 
ECG signal processing are described and illustrative examples are given. Internet addresses 
of a few ICA related web sites and ICA program packages are given in the Appendix. 
For simplicity of presentation and the ease of reproducibility of the results shown in this 
Chapter, all the ICA calculations have been performed using FastICA (Aalto University 
[Aalto], 2005; Hyvärinen, 1999) with the default parameters. Note that for this kind of 
statistical signal processing software the results will differ from one run to another, but the 
conclusions should remain unaltered. Also, as usual with signals of biological origin, an ICA 
algorithm may or may not converge, and if not, further ICA input signal preprocessing may 
be necessary. For some ECG signals ICA just might not succeed. In the examples given in 
this Chapter only minor preprocessing has been applied, if any (possible preprocessing has 
been described in conjunction with the examples).  
In Section 2.1, we introduce the basic concepts of ICA and illustrate its functioning with a 
toy example. ICA estimation principles and the ICA package employed in the examples in 
this Chapter, FastICA (Aalto, 2005), and a few other popular ICA methods are mentioned in 
Section 2.2. In Section 2.3, practical aspects and reliability of the ICA results are discussed. 
The conceptual differences between ICA and principal component analysis (PCA) are 
outlined in Section 2.4, and common ICA related misconceptions in the literature are 
discussed in Section 2.5. Common ECG artifacts are shortly reviewed in Section 3.1 before 
proceeding to describe the applications of ICA in ECG signal processing in Sections 3.2 
through 3.5. In Section 3, also illustrative examples are presented. In Section 4, usage of ICA 
as a part of diagnostic systems is discussed, and finally, concise conclusions on ICA in ECG 
signal processing are given in Section 5. 

2. Basics of ICA 
2.1 The basic concepts of ICA 
ICA requires the fulfillment of two assumptions: 1) the measured signals are linear 
combinations of independent source signals, and 2) the independent source signals are 
nongaussian. Fulfillment of the first assumption can usually be assessed based on the 
knowledge of the signal sources and the measurement setup with respect to the sources. 
Naturally, should there exist no source signals which were independent of each others, ICA 
would make no sense. To an approximation, the assumption of linear combinations of sources 
can be taken to be valid for ECG signals and most artifacts. The nature of the different artifacts 
is discussed in Section 3.1. The fulfillment of the second assumption cannot in general be 
known, unless an appropriate source signal model exists or the properties of the source signals 
can be otherwise assessed. For example, Rieta et al. (2004) conclude that during atrial 
arrhythmia episodes, atrial activity and ventricular activity are generated by independent 
generators, whose amplitude distributions are nongaussian. Shkurovich et al. (1998) show also 
nongaussian amplitude distributions of sinus rhythm and atrial fibrillation measured during 
defibrillator implantation. The first assumption would be clearly fulfilled if we considered the 
heart as one or several point sources and the possible electromyogram (EMG) and other 
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artifacts as other point sources. Even though such a model might not exactly describe reality, 
ICA has been demonstrated to be feasible and useful in several ECG applications. Also, even if 
there is no knowledge on the fulfillment of the second assumption, ICA may be attempted. 
Please, see also Section 2.3 on practical considerations and ICA reliability. 
In the context of ECG signal processing, ICA assumes that the measured possibly artifact 
containing ECG signals are linear combinations of source signals. This is indicated by the 
mixing model 

� � ��, (1)

where the voltage signal samples measured over a limited period of time are in the rows of 
the measurement matrix Y, the source signals are in the rows of X, and A is the mixing 
matrix. For ICA of ECGs, signal samples measured during a short period of time via one 
ECG lead form one row of Y (1). For a standard 12-lead ECG measurement, Y is thus a 
matrix of L = 12 rows and N columns, with N being the number of signal samples taken to 
be processed by ICA at one time from each ECG lead signal. N may in general be decided 
according to the ECG sampling rate and the phenomena of interest, e.g., to span one or 
several cardiac cycles. Let us denote one measured ECG signal sample by y(l,n), where n = 1, 
..., N is the discrete time index, and l = 1, ..., L is the ECG lead index. ICA can naturally be 
performed in a running window, but here we always consider running ICA once for one 
measured ECG signal segment. Writing (1) out with signal samples, we get 

 �
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For performing the matrix multiplication (2), see (5). After successful ICA, the rows of the 
matrix X contain the ICs. In general, the aim of applying ICA is that each IC carried a signal 
generated by a single physiological or physical source, such as a signal generated by the heart 
or its individual structure, possible additive noise, or other artifact, such as EMG artifact. The 
mixing matrix A describes how the source signals are weighted as they are conducted from the 
respective generators to the electrode sites and summed at each ECG electrode on the body 
surface, i.e., how the measurements are linear combinations of the sources. 
ICA can find at maximum as many ICs are there are ICA input signals. In (1) and (2), we 
have assumed that there are equally many ICs in X than there are input signals in Y. In the 
case that there are more measurements than actual sources, the resulting X has fewer ICs 
than there are measured signals in Y, and correspondingly the mixing matrix A is not a 
square matrix. Given L measured signals and L’ true sources, and L > L’, upon successful 
ICA, X will be of size L’-by-N, and A of size L-by-L’. On the other hand, in the case of more 
actual sources than measurements, L < L’, the sizes of the matrixes are as shown in (2), but 
the system is underdetermined, and the true ICs appear mixed in unknown fashion in ICs in 
X, if the ICA algorithm converges. These cases are illustrated with a toy example in Fig. 1. 
From (1) and (2), we also see a common application of ICA: measurement reconstruction 
with only the ICs carrying desired information. First, calculating ICA on Y, if successful, 
yields both A and X. Thereafter, the ICs in X can be analyzed to determine which ICs carry 
noise or artifacts and which carry contributions from the actual ECG. To reconstruct the 
ECG without the noise and artifacts, the corresponding rows of X are set to zero in (2), and Y 
is calculated according to (2) without altering A. This completely removes the contributions 
of the zeroed ICs. This is the basis of several ECG applications of ICA. 
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nongaussian. Fulfillment of the first assumption can usually be assessed based on the 
knowledge of the signal sources and the measurement setup with respect to the sources. 
Naturally, should there exist no source signals which were independent of each others, ICA 
would make no sense. To an approximation, the assumption of linear combinations of sources 
can be taken to be valid for ECG signals and most artifacts. The nature of the different artifacts 
is discussed in Section 3.1. The fulfillment of the second assumption cannot in general be 
known, unless an appropriate source signal model exists or the properties of the source signals 
can be otherwise assessed. For example, Rieta et al. (2004) conclude that during atrial 
arrhythmia episodes, atrial activity and ventricular activity are generated by independent 
generators, whose amplitude distributions are nongaussian. Shkurovich et al. (1998) show also 
nongaussian amplitude distributions of sinus rhythm and atrial fibrillation measured during 
defibrillator implantation. The first assumption would be clearly fulfilled if we considered the 
heart as one or several point sources and the possible electromyogram (EMG) and other 
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artifacts as other point sources. Even though such a model might not exactly describe reality, 
ICA has been demonstrated to be feasible and useful in several ECG applications. Also, even if 
there is no knowledge on the fulfillment of the second assumption, ICA may be attempted. 
Please, see also Section 2.3 on practical considerations and ICA reliability. 
In the context of ECG signal processing, ICA assumes that the measured possibly artifact 
containing ECG signals are linear combinations of source signals. This is indicated by the 
mixing model 
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where the voltage signal samples measured over a limited period of time are in the rows of 
the measurement matrix Y, the source signals are in the rows of X, and A is the mixing 
matrix. For ICA of ECGs, signal samples measured during a short period of time via one 
ECG lead form one row of Y (1). For a standard 12-lead ECG measurement, Y is thus a 
matrix of L = 12 rows and N columns, with N being the number of signal samples taken to 
be processed by ICA at one time from each ECG lead signal. N may in general be decided 
according to the ECG sampling rate and the phenomena of interest, e.g., to span one or 
several cardiac cycles. Let us denote one measured ECG signal sample by y(l,n), where n = 1, 
..., N is the discrete time index, and l = 1, ..., L is the ECG lead index. ICA can naturally be 
performed in a running window, but here we always consider running ICA once for one 
measured ECG signal segment. Writing (1) out with signal samples, we get 
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For performing the matrix multiplication (2), see (5). After successful ICA, the rows of the 
matrix X contain the ICs. In general, the aim of applying ICA is that each IC carried a signal 
generated by a single physiological or physical source, such as a signal generated by the heart 
or its individual structure, possible additive noise, or other artifact, such as EMG artifact. The 
mixing matrix A describes how the source signals are weighted as they are conducted from the 
respective generators to the electrode sites and summed at each ECG electrode on the body 
surface, i.e., how the measurements are linear combinations of the sources. 
ICA can find at maximum as many ICs are there are ICA input signals. In (1) and (2), we 
have assumed that there are equally many ICs in X than there are input signals in Y. In the 
case that there are more measurements than actual sources, the resulting X has fewer ICs 
than there are measured signals in Y, and correspondingly the mixing matrix A is not a 
square matrix. Given L measured signals and L’ true sources, and L > L’, upon successful 
ICA, X will be of size L’-by-N, and A of size L-by-L’. On the other hand, in the case of more 
actual sources than measurements, L < L’, the sizes of the matrixes are as shown in (2), but 
the system is underdetermined, and the true ICs appear mixed in unknown fashion in ICs in 
X, if the ICA algorithm converges. These cases are illustrated with a toy example in Fig. 1. 
From (1) and (2), we also see a common application of ICA: measurement reconstruction 
with only the ICs carrying desired information. First, calculating ICA on Y, if successful, 
yields both A and X. Thereafter, the ICs in X can be analyzed to determine which ICs carry 
noise or artifacts and which carry contributions from the actual ECG. To reconstruct the 
ECG without the noise and artifacts, the corresponding rows of X are set to zero in (2), and Y 
is calculated according to (2) without altering A. This completely removes the contributions 
of the zeroed ICs. This is the basis of several ECG applications of ICA. 
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Due to the nature of the mixing model (1), ICA has three ambiguities: 1) signs of the ICs are 
arbitrary, 2) energies of the ICs are arbitrary, and 3) the order in which the ICs appear in X 
(1) is arbitrary. The ambiguities of X are facilitated by the corresponding changes in the 
mixing matrix A in (1). With an arbitrary nonzero real constant c, (1) can be written as 
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(3)

which means that for the same set of measured signals Y (3), the signs and amplitudes of the 
ICs are arbitrary, as accommodated by the corresponding changes in A (3). Similarly, the 
indeterminate order of ICs in X is seen from (4). 
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Let us present a toy example to illustrate the workings of ICA, alike it can be expected to 
operate with biomedical signals. The same example will be used also to illustrate the 
difference between ICA and PCA in Section 2.4. Denote a measured ECG lead signal by 
yl = [y(l,1) … y(l,N)], l = 1, …, L, and a source signal by xl analogously. Note that the 
independence of the sources in this example has not been confirmed, alike usually is the 
case in the analysis of biomedical signals. Let us consider L = 4 simulated measured signals, 
and denote ICA calculated with input signals y1 and y2 by ICA(y1,y2), and the ICA of other 
input signal combinations analogously. In Fig. 1A are shown L’ = 3 simulated source signals 
x1, x2, and x3, which are linearly combined to form the simulated measured signals 
according to y1 = 0.7x1 + 0.2x2, y2 = 0.6x1 + 0.7x2, y3 = 0.9x1 + 0.2x2 + 0.4x3, and 
y4 = 0.5x2 + 0.2x3. In ECG measurements, this would correspond to the weighted summation 
of the source signals at the ECG electrodes. In reality the weights are dictated by the 
electrical conduction paths from the sources to the electrodes, including the electrode-skin 
contacts. The four simulated measured signals are seen in Fig. 1B. In Fig. 1C, the results of 
ICA on all the subsets of at least two simulated measurements are shown, displaying the ICs 
from one ICA calculation in each column. 
In the results of ICA(y1,y2), IC11 and IC12 in the first column of the subfigures in Fig. 1C, 
correspond quite well to the source signals x1 and x2, as expected, since the simulated 
measurements y1 and y2 are composed only of these two sources. The results of ICA(y1,y3), 
ICA(y2,y3), and ICA(y3,y4), in Fig. 1C, illustrate one type of possible cases encountered in 
biomedical signal processing, including in ECG signal processing: the simulated 
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measurements are composed of a larger number of sources than there are measured signals 
as ICA input. In these cases, the ICs are inhabited by the sources in an arbitrary manner, as 
clearly illustrated by the ICs resulting from ICA(y2,y3) and ICA(y3,y4). The results of 
ICA(y1,y3) may seem to display fairly clean source signals, but the contribution of the source  
 

 
 

 
Fig. 1. (A) The three simulated original sources, i.e., the desired results of ICA. (B) The four 
simulated measured signals, constructed as linear combinations of the sources as 
y1 = 0.7x1 + 0.2x2, y2 = 0.6x1 + 0.7x2, y3 = 0.9x1 + 0.2x2 + 0.4x3, and y4 = 0.5x2 + 0.2x3. (C) The 
results of ICAs, with the results from one ICA calculation presented in each column. Note 
the arbitrary sign of the ICs, e.g., comparing IC53 and IC63. Units of amplitude are arbitrary 
in all (A), (B), and (C), and the time span is equal in all subfigures. Adapted from 
(Tanskanen et al., 2005). 
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Due to the nature of the mixing model (1), ICA has three ambiguities: 1) signs of the ICs are 
arbitrary, 2) energies of the ICs are arbitrary, and 3) the order in which the ICs appear in X 
(1) is arbitrary. The ambiguities of X are facilitated by the corresponding changes in the 
mixing matrix A in (1). With an arbitrary nonzero real constant c, (1) can be written as 
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which means that for the same set of measured signals Y (3), the signs and amplitudes of the 
ICs are arbitrary, as accommodated by the corresponding changes in A (3). Similarly, the 
indeterminate order of ICs in X is seen from (4). 
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Let us present a toy example to illustrate the workings of ICA, alike it can be expected to 
operate with biomedical signals. The same example will be used also to illustrate the 
difference between ICA and PCA in Section 2.4. Denote a measured ECG lead signal by 
yl = [y(l,1) … y(l,N)], l = 1, …, L, and a source signal by xl analogously. Note that the 
independence of the sources in this example has not been confirmed, alike usually is the 
case in the analysis of biomedical signals. Let us consider L = 4 simulated measured signals, 
and denote ICA calculated with input signals y1 and y2 by ICA(y1,y2), and the ICA of other 
input signal combinations analogously. In Fig. 1A are shown L’ = 3 simulated source signals 
x1, x2, and x3, which are linearly combined to form the simulated measured signals 
according to y1 = 0.7x1 + 0.2x2, y2 = 0.6x1 + 0.7x2, y3 = 0.9x1 + 0.2x2 + 0.4x3, and 
y4 = 0.5x2 + 0.2x3. In ECG measurements, this would correspond to the weighted summation 
of the source signals at the ECG electrodes. In reality the weights are dictated by the 
electrical conduction paths from the sources to the electrodes, including the electrode-skin 
contacts. The four simulated measured signals are seen in Fig. 1B. In Fig. 1C, the results of 
ICA on all the subsets of at least two simulated measurements are shown, displaying the ICs 
from one ICA calculation in each column. 
In the results of ICA(y1,y2), IC11 and IC12 in the first column of the subfigures in Fig. 1C, 
correspond quite well to the source signals x1 and x2, as expected, since the simulated 
measurements y1 and y2 are composed only of these two sources. The results of ICA(y1,y3), 
ICA(y2,y3), and ICA(y3,y4), in Fig. 1C, illustrate one type of possible cases encountered in 
biomedical signal processing, including in ECG signal processing: the simulated 
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measurements are composed of a larger number of sources than there are measured signals 
as ICA input. In these cases, the ICs are inhabited by the sources in an arbitrary manner, as 
clearly illustrated by the ICs resulting from ICA(y2,y3) and ICA(y3,y4). The results of 
ICA(y1,y3) may seem to display fairly clean source signals, but the contribution of the source  
 

 
 

 
Fig. 1. (A) The three simulated original sources, i.e., the desired results of ICA. (B) The four 
simulated measured signals, constructed as linear combinations of the sources as 
y1 = 0.7x1 + 0.2x2, y2 = 0.6x1 + 0.7x2, y3 = 0.9x1 + 0.2x2 + 0.4x3, and y4 = 0.5x2 + 0.2x3. (C) The 
results of ICAs, with the results from one ICA calculation presented in each column. Note 
the arbitrary sign of the ICs, e.g., comparing IC53 and IC63. Units of amplitude are arbitrary 
in all (A), (B), and (C), and the time span is equal in all subfigures. Adapted from 
(Tanskanen et al., 2005). 
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x2 is still buried in an unknown manner in the ICs. For ICA(y2,y3,y4), there are equally many 
ICA input signals as there are original sources and ICA succeeds well in separating the 
sources, as expected. Due to the numerical nature of ICA calculations, and the fact that we 
did not ensure independence of the original sources, the ICs may not be exactly clear of the 
contributions from the other sources. The same holds for ICA(y1,y2,y3,y4) (Fig. 1C) where we 
also see the inherent property of ICA to determine the true number of ICs in an 
overdetermined case: even though there are four simulated measurements as ICA inputs, 
ICA correctly produces only three ICs. Such an observation is highly desirable also in 
practice in biomedical signal processing, since is it allows us to determine the true number 
of the sources (down to a numerical approximation). Note that in the examples shown in 
Figs. 3 and 6, there are eight measured ECG leads and one calculated lead, and thus ICA can 
find at maximum eight ICs since the calculated lead does not contribute new independent 
information. Such dimension reduction does therefore not indicate that the true number of 
sources would be indicated by the number of ICs. 
Let us note that in ECG measurements, artifacts quickly increase the number of the true 
sources. Given too few measured ECG leads as ICA input signals, this may render the 
results of ICA useless, since the artifacts may populate most of the ICs, thus possibly 
causing the separation of the desired sources fail. This may be alleviated by increasing the 
number of ICA input ECG leads, and by general preprocessing of the ECG signals such as 
noise alleviation filtering, line interference alleviation, and baseline wander reduction. On 
the other hand, if the artifacts are well separated by ICA in the ICs of their own, they may be 
easily removed, as illustrated in Section 3. For example, the fist clenching artifact seen in Fig. 
3A was removed easily with ICA (Fig. 3C). 

2.2 ICA estimation principles and algorithms 
In this Section, we bring into attention the multiplicity of ICA approaches without going 
into details or mathematics. The general ICA estimation principles (Hyvärinen et al., 2001) 
are: 1) Nonlinear decorrelation: the components are independent if they are uncorrelated 
and their appropriately chosen nonlinear transformations are uncorrelated. The appropriate 
nonlinear functions can be found using estimation and information theories. 2) 
Maximization of component nongaussianity. Intuitively, since central limit theorem states 
that summing nongaussian random signals yields signals that are closer to gaussian than the 
original signals, decomposing such sums of signals into the components maximizing the 
nongaussianity of the components results in ICs. 
ICA has been realized by numerous methods including nongaussianity maximization, 
maximum likelihood estimation (Pham & Garat, 1997), mutual information minimization, 
tensorial methods, nonlinear decorrelation, and nonlinear PCA (Stamkopoulos et al., 1998). 
One practical difference between the methods is that several methods estimate all the ICs 
simultaneously, whereas, for example, nongaussianity maximization can be used to estimate 
a single IC at a time or all the ICs simultaneously. All the mentioned methods have been 
discussed by Hyvärinen et al. (2001), and several comparisons of ICA algorithms have been 
published, including a more general comparison by Giannakopoulos et al. (1999), 
comparison of different ICA methods for arrhythmia analysis (Llinares & Igual, 2009), atrial 
fibrillation analysis (Vayá et al., 2007), fetal ECG extraction in (Hild et al., 2007; Parmar 
Sargam & Sahambi, 2004), and movement artifact removal (Milanesi et al., 2008).  
There exist numerous ICA software packages implementing different ICA algorithms. Web 
addresses of several ICA web sites and program packages are listed in the Appendix at the 
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end of the Chapter. In the examples presented in this Chapter, we have applied FastICA 
(Aalto, 2005; Hyvärinen, 1999; Hyvärinen et al., 2001) version 2.5 using its default 
parameters. FastICA is an iterative numerical algorithm, which has been developed by 
Hyvärinen (1999), giving also instructions for parameter selection. FastICA runs in Matlab 
(The MathWorks, Inc., Natick, MA, USA) and is available also for a few other environments. 
FastICA package includes both a command line function and a graphical user interface. The 
program also automatically performs signal preprocessing in order to greatly ease the ICA 
calculations. The preprocessing steps are mean removal and PCA, or more exactly, whitening 
(Hyvärinen et al., 2001). Whitening the data makes the ICA input signals uncorrelated and of 
unit variance. PCA also provides for possible dimension reduction prior to ICA. 
Since the ICA algorithms are necessarily numerical and generally iterative, the independence 
can be achieved only down to an error. According to our experience, the FastICA default 
parameters are usually appropriate. By default, FastICA strives to estimates all true ICs and 
possible further dimension reduction can be set by the user. For example, leaving out the most 
insignificant PCs in the preprocessing phase results in fewer ICA input signals. For this, the 
eigenvalues of the PCs can be observed also graphically. Furthermore, the nonlinear function 
to be used in the ICA can be selected from the given choices, with general selection criteria 
stated in (Hyvärinen, 1999). That said, according to our experience, the default parameters are 
a very good starting point for most experimentations with ICA. Should FastICA fail to 
converge, one can resort to the parameter settings, to the practical considerations described in 
the next Section, or finally to another ICA algorithm. Finally, for some specific ECG signals 
ICA just might not succeed. 

2.3 Practical considerations and reliability of ICA results 
In general, biomedical signals are stochastic random signals by nature, and the fulfillment of 
the ICA assumptions, especially regarding nongaussianity cannot be guaranteed. An 
appropriate model or measurement analysis may naturally shed light on the matter. In any 
case, ICA may be attempted. On the other hand, failing ICA with the specific input signals 
and using one algorithm with certain parameters, may not mean that the data at hand was 
unfit for ICA in general.  Specifically in the case in which we can assume that the ICA 
assumptions should be sufficiently fulfilled, but ICA algorithm tends to fail, achieving 
convergence can attempted by changing number of ICA input samples, i.e., the length of the 
ECG signal segment used as input to ICA at one time, or by changing the number of ICA 
input ECG lead signals, input signal bandwidth and sampling rate, or ICA parameters. Also 
different ICA algorithms may yield different performances. 
Due to the stochastic nature of the ECG measurements and the properties of ICA estimation 
algorithms, the ICA results can vary from one run to another. This raises the question of ICA 
reliability, which should be assessed at least in critical applications. At simplest, ICA 
reliability assessment can be approached by running ICA several times on the same data, 
and for example also on slightly time shifted data. First and foremost, the ICA results 
should naturally result in the same final conclusions regarding the original hypothesis. 
Secondly, the ICA results should greatly resemble each other from run to run. Note that the 
signs, amplitudes, and the order of appearance of the ICs may vary from one run to another; 
this does not constitute a reliability issue but is expected behavior, which is to taken into 
consideration by the biomedical algorithm developer. Another approach is to resample the 
same data in a few different ways, calculate ICA on the differently sampled data, and use 
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x2 is still buried in an unknown manner in the ICs. For ICA(y2,y3,y4), there are equally many 
ICA input signals as there are original sources and ICA succeeds well in separating the 
sources, as expected. Due to the numerical nature of ICA calculations, and the fact that we 
did not ensure independence of the original sources, the ICs may not be exactly clear of the 
contributions from the other sources. The same holds for ICA(y1,y2,y3,y4) (Fig. 1C) where we 
also see the inherent property of ICA to determine the true number of ICs in an 
overdetermined case: even though there are four simulated measurements as ICA inputs, 
ICA correctly produces only three ICs. Such an observation is highly desirable also in 
practice in biomedical signal processing, since is it allows us to determine the true number 
of the sources (down to a numerical approximation). Note that in the examples shown in 
Figs. 3 and 6, there are eight measured ECG leads and one calculated lead, and thus ICA can 
find at maximum eight ICs since the calculated lead does not contribute new independent 
information. Such dimension reduction does therefore not indicate that the true number of 
sources would be indicated by the number of ICs. 
Let us note that in ECG measurements, artifacts quickly increase the number of the true 
sources. Given too few measured ECG leads as ICA input signals, this may render the 
results of ICA useless, since the artifacts may populate most of the ICs, thus possibly 
causing the separation of the desired sources fail. This may be alleviated by increasing the 
number of ICA input ECG leads, and by general preprocessing of the ECG signals such as 
noise alleviation filtering, line interference alleviation, and baseline wander reduction. On 
the other hand, if the artifacts are well separated by ICA in the ICs of their own, they may be 
easily removed, as illustrated in Section 3. For example, the fist clenching artifact seen in Fig. 
3A was removed easily with ICA (Fig. 3C). 

2.2 ICA estimation principles and algorithms 
In this Section, we bring into attention the multiplicity of ICA approaches without going 
into details or mathematics. The general ICA estimation principles (Hyvärinen et al., 2001) 
are: 1) Nonlinear decorrelation: the components are independent if they are uncorrelated 
and their appropriately chosen nonlinear transformations are uncorrelated. The appropriate 
nonlinear functions can be found using estimation and information theories. 2) 
Maximization of component nongaussianity. Intuitively, since central limit theorem states 
that summing nongaussian random signals yields signals that are closer to gaussian than the 
original signals, decomposing such sums of signals into the components maximizing the 
nongaussianity of the components results in ICs. 
ICA has been realized by numerous methods including nongaussianity maximization, 
maximum likelihood estimation (Pham & Garat, 1997), mutual information minimization, 
tensorial methods, nonlinear decorrelation, and nonlinear PCA (Stamkopoulos et al., 1998). 
One practical difference between the methods is that several methods estimate all the ICs 
simultaneously, whereas, for example, nongaussianity maximization can be used to estimate 
a single IC at a time or all the ICs simultaneously. All the mentioned methods have been 
discussed by Hyvärinen et al. (2001), and several comparisons of ICA algorithms have been 
published, including a more general comparison by Giannakopoulos et al. (1999), 
comparison of different ICA methods for arrhythmia analysis (Llinares & Igual, 2009), atrial 
fibrillation analysis (Vayá et al., 2007), fetal ECG extraction in (Hild et al., 2007; Parmar 
Sargam & Sahambi, 2004), and movement artifact removal (Milanesi et al., 2008).  
There exist numerous ICA software packages implementing different ICA algorithms. Web 
addresses of several ICA web sites and program packages are listed in the Appendix at the 
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end of the Chapter. In the examples presented in this Chapter, we have applied FastICA 
(Aalto, 2005; Hyvärinen, 1999; Hyvärinen et al., 2001) version 2.5 using its default 
parameters. FastICA is an iterative numerical algorithm, which has been developed by 
Hyvärinen (1999), giving also instructions for parameter selection. FastICA runs in Matlab 
(The MathWorks, Inc., Natick, MA, USA) and is available also for a few other environments. 
FastICA package includes both a command line function and a graphical user interface. The 
program also automatically performs signal preprocessing in order to greatly ease the ICA 
calculations. The preprocessing steps are mean removal and PCA, or more exactly, whitening 
(Hyvärinen et al., 2001). Whitening the data makes the ICA input signals uncorrelated and of 
unit variance. PCA also provides for possible dimension reduction prior to ICA. 
Since the ICA algorithms are necessarily numerical and generally iterative, the independence 
can be achieved only down to an error. According to our experience, the FastICA default 
parameters are usually appropriate. By default, FastICA strives to estimates all true ICs and 
possible further dimension reduction can be set by the user. For example, leaving out the most 
insignificant PCs in the preprocessing phase results in fewer ICA input signals. For this, the 
eigenvalues of the PCs can be observed also graphically. Furthermore, the nonlinear function 
to be used in the ICA can be selected from the given choices, with general selection criteria 
stated in (Hyvärinen, 1999). That said, according to our experience, the default parameters are 
a very good starting point for most experimentations with ICA. Should FastICA fail to 
converge, one can resort to the parameter settings, to the practical considerations described in 
the next Section, or finally to another ICA algorithm. Finally, for some specific ECG signals 
ICA just might not succeed. 

2.3 Practical considerations and reliability of ICA results 
In general, biomedical signals are stochastic random signals by nature, and the fulfillment of 
the ICA assumptions, especially regarding nongaussianity cannot be guaranteed. An 
appropriate model or measurement analysis may naturally shed light on the matter. In any 
case, ICA may be attempted. On the other hand, failing ICA with the specific input signals 
and using one algorithm with certain parameters, may not mean that the data at hand was 
unfit for ICA in general.  Specifically in the case in which we can assume that the ICA 
assumptions should be sufficiently fulfilled, but ICA algorithm tends to fail, achieving 
convergence can attempted by changing number of ICA input samples, i.e., the length of the 
ECG signal segment used as input to ICA at one time, or by changing the number of ICA 
input ECG lead signals, input signal bandwidth and sampling rate, or ICA parameters. Also 
different ICA algorithms may yield different performances. 
Due to the stochastic nature of the ECG measurements and the properties of ICA estimation 
algorithms, the ICA results can vary from one run to another. This raises the question of ICA 
reliability, which should be assessed at least in critical applications. At simplest, ICA 
reliability assessment can be approached by running ICA several times on the same data, 
and for example also on slightly time shifted data. First and foremost, the ICA results 
should naturally result in the same final conclusions regarding the original hypothesis. 
Secondly, the ICA results should greatly resemble each other from run to run. Note that the 
signs, amplitudes, and the order of appearance of the ICs may vary from one run to another; 
this does not constitute a reliability issue but is expected behavior, which is to taken into 
consideration by the biomedical algorithm developer. Another approach is to resample the 
same data in a few different ways, calculate ICA on the differently sampled data, and use 
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the average of the resulting ICs as ICA results. Further methods for reliability assessment 
have been devised, for example, by Meinecke et al. (2002), and Icasso: software for 
investigating the reliability of ICA estimates by clustering and visualization developed by 
Himberg et al. (2004) (c.f. the Appendix for the Internet address). 

2.4 ICA vs. PCA 
PCA (Hyvärinen et al., 2001; Jolliffe, 2002) employs the same mixing model (1) as ICA, but the 
resulting components are fundamentally different. Whereas ICA yields components, which 
are mutually statistically independent, PCA yields principal components (PCs), which are 
mutually statistically uncorrelated. Uncorrelatedness is a much weaker requirement than 
independence; independent signals are also uncorrelated, but uncorrelatedness does not imply 
independence. Thus, also the aims of applying PCA and ICA are partially different. One of the 
applications in which both PCA and ICA have been successfully applied is noise reduction by 
excluding noise carrying components from the reconstruction. However, due to the different 
nature of the components resulting from PCA and ICA, the basis of noise reduction is 
different. For PCA in ECG signal processing see, e.g., (Castells et al., 2007b). 
The PC found first by a PCA algorithm explains the greatest amount of variance in the 
measured signals and the last found PC the least. Thus, in practice the last found one or a 
few PCs may consist of mostly noise, thus PCA has been successfully applied in noise and 
dimensionality reduction. As the PCs are only statistically uncorrelated, they are in general 
not directly related to the actual independent physical or physiological sources. Therefore, 
in contrast with ICA, PCA cannot in general recover the actual source signals. Furthermore, 
strictly speaking, even if the last found PC may resemble a noise only signal, it may still 
contain contributions of the actual source signals. Even though such contributions were 
most probably minor, the ECG information they carry would be lost in noise reduction by 
PCA. Nevertheless, PCA is a powerful tool for noise reduction if applied appropriately. 
Also, as noted in Section 2.2, PCA is often used as preprocessing for ICA. 
Functioning of PCA is illustrated in Fig. 2. The PCs produced by PCA of the simulated toy 
measurements shown in Fig. 1B are seen in Fig. 2A. In the toy example, comparing the ICs 
produced by ICA(y2,y3,y4) or  ICA(y1,y2,y3,y4) in Fig. 1C with the PCs shown in Fig. 2A, it is 
seen that ICA was able to separate the sources whereas PCA was clearly not. In Fig. 2B are 
shown the results of PCA applied on the eight-lead ECG measured on the abdominal region 
of a pregnant mother. The corresponding original measured signals are shown in Fig. 4A. 
Maternal ECG contributions are seen in PC7 and PC8 in Fig. 2B and fetal ECG is evident at 
least in PC2 and PC3. Results of ICA calculated on the same data are shown in Fig. 4B. 
Comparing Figs. 2B and 4B, the inability of PCA to separate the different sources is not 
obvious to the eye, but the effects of PCA vs. the effects of ICA are expected to be similar to 
those seen in the toy example. The PCs in Fig. 2 were produced with FastICA using the 
command line option which yields only PCs, or more precisely, components which are zero-
mean and white, meaning that in addition to being uncorrelated they are of unit variance. 

2.5 Common misconceptions in the biomedical ICA literature 
The main misconception appearing in the biomedical ICA and PCA literature is that of ICA 
vs. PCA, especially regarding their capabilities to separate sources. As already noted, ICA 
yields independent components, whereas PCA yields merely uncorrelated components. 
Thus, PCA is incapable of separating the independent sources. 
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the average of the resulting ICs as ICA results. Further methods for reliability assessment 
have been devised, for example, by Meinecke et al. (2002), and Icasso: software for 
investigating the reliability of ICA estimates by clustering and visualization developed by 
Himberg et al. (2004) (c.f. the Appendix for the Internet address). 
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independence; independent signals are also uncorrelated, but uncorrelatedness does not imply 
independence. Thus, also the aims of applying PCA and ICA are partially different. One of the 
applications in which both PCA and ICA have been successfully applied is noise reduction by 
excluding noise carrying components from the reconstruction. However, due to the different 
nature of the components resulting from PCA and ICA, the basis of noise reduction is 
different. For PCA in ECG signal processing see, e.g., (Castells et al., 2007b). 
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measured signals and the last found PC the least. Thus, in practice the last found one or a 
few PCs may consist of mostly noise, thus PCA has been successfully applied in noise and 
dimensionality reduction. As the PCs are only statistically uncorrelated, they are in general 
not directly related to the actual independent physical or physiological sources. Therefore, 
in contrast with ICA, PCA cannot in general recover the actual source signals. Furthermore, 
strictly speaking, even if the last found PC may resemble a noise only signal, it may still 
contain contributions of the actual source signals. Even though such contributions were 
most probably minor, the ECG information they carry would be lost in noise reduction by 
PCA. Nevertheless, PCA is a powerful tool for noise reduction if applied appropriately. 
Also, as noted in Section 2.2, PCA is often used as preprocessing for ICA. 
Functioning of PCA is illustrated in Fig. 2. The PCs produced by PCA of the simulated toy 
measurements shown in Fig. 1B are seen in Fig. 2A. In the toy example, comparing the ICs 
produced by ICA(y2,y3,y4) or  ICA(y1,y2,y3,y4) in Fig. 1C with the PCs shown in Fig. 2A, it is 
seen that ICA was able to separate the sources whereas PCA was clearly not. In Fig. 2B are 
shown the results of PCA applied on the eight-lead ECG measured on the abdominal region 
of a pregnant mother. The corresponding original measured signals are shown in Fig. 4A. 
Maternal ECG contributions are seen in PC7 and PC8 in Fig. 2B and fetal ECG is evident at 
least in PC2 and PC3. Results of ICA calculated on the same data are shown in Fig. 4B. 
Comparing Figs. 2B and 4B, the inability of PCA to separate the different sources is not 
obvious to the eye, but the effects of PCA vs. the effects of ICA are expected to be similar to 
those seen in the toy example. The PCs in Fig. 2 were produced with FastICA using the 
command line option which yields only PCs, or more precisely, components which are zero-
mean and white, meaning that in addition to being uncorrelated they are of unit variance. 

2.5 Common misconceptions in the biomedical ICA literature 
The main misconception appearing in the biomedical ICA and PCA literature is that of ICA 
vs. PCA, especially regarding their capabilities to separate sources. As already noted, ICA 
yields independent components, whereas PCA yields merely uncorrelated components. 
Thus, PCA is incapable of separating the independent sources. 
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3. ICA in ECG signal processing 
Basically, many ICA based ECG processing techniques work similarly: After ICA, the 
unwanted ICs in (2) are identified and set to zero, and the measured signals are 
reconstructed using (2), thus yielding reconstructed signals clean from the artifacts 
contained in the zeroed ICs. The other common application is ECG beat classification, in 
which the ICA results are used as features based on which the beats are classified. 
Classification may be desired, for example, to indentify pathological beats and subsequently 
determine the pathology. 
Whereas ICA is usually applied to a set of a few concurrently measured ECG signals, such 
as 12-lead ECG, ICA based methods for single-channel ECG signals have also been 
proposed, e.g., by de Chazal et al. (2003) and Mijovic ́ (2010). The other extreme is 
represented by ICA of high-density ECG measurements with tens (Zhu et al., 2008) or even 
hundreds of ECG lead signals used as ICA input to achieve enhanced level of source 
separation. 

3.1 ECG artifacts 
In this Section, the artifacts generally encountered in ECG signals (Sörnmo & Laguna, 2005) 
are shortly reviewed and discussed in the view of the ICA assumptions. In all cases in which 
ICA can be expected to work, a sufficient number of measured ECG leads must be provided 
for efficient artifact signal separation and removal. 
In most environments, electrical devices and wiring can be found in the vicinity of the ECG 
measurement equipment and wiring, and 50/60 Hz power line frequency artifact can be 
easily introduced to the measured ECG signals. Power line frequency artifact is clearly 
independent from the ECG signals and often well-separable and removable by ICA. 
EMG artifacts generated by muscles other than the heart muscle are generally independent 
of ECG signals. However, in principle, EMG represents a distributed source and cannot be 
immediately assumed to originate from a single or a small number of discrete sources 
comparative to the number of ECG leads. Nevertheless, separating EMG artifacts may well 
be attempted and can be successful in practice (c.f., the fist clenching example in Fig. 3). A 
usual application of ICA is also the removal of ECG artifacts from EMG or 
electroencephalogram (EEG) signals, as e.g., proposed in (Jung et al., 2000). 
Baseline wander is a usual artifact seen in ECG signals. It is clearly an independent effect, 
which may be seen in only one or a few ECG lead signals. It may also appear totally 
different in different leads and can easily be generated by applying slowly changing 
pressure to an ECG electrode, among other reasons. In general, the effect is well separable 
and removable. ECG baseline wander removal by ICA has been proposed by Barati & 
Ayatollahi (2007), for example. 
Limb movement, couching, and general restlessness among other similar activities represent 
a more complex class of artifacts, which may include EMG artifacts and other artifacts due 
to the movement of wires and stresses on ECG electrode contacts, and maybe other artifacts 
as well. Removal of such complex artifacts may be attempted but in general the success 
cannot be predicted a priori. Shoulder movement artifact removal was successfully 
performed in (Milanesi et al., 2008). 
Holding hands together or grasping hospital bed metal side railings with both hands may 
effectively bring the two wrist electrodes to a nearly equal potential, thus making the signals 
of the standard ECG leads II and III almost equal, and lead III signal may nearly disappear. 
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Such an effect is not caused by an independent source of interference, and cannot be 
expected to be removable by ICA. 

3.2 ICA for noise and artifact removal 
As described earlier, the basic approach to noise and artifact removal is to perform ICA 
followed by ECG reconstruction using (2) with the noise and artifact carrying ICs set to zero. 
Here, a crucial step is the recognition of the ICs carrying the artifacts. This may be achieved, 
e.g., by different statistical or waveform classification methods in time domain or in 
frequency domain, or by more advanced methods as described, e.g., by He et al. (2006) who 
also give several illustrative examples. Note that in the examples in (He et al., 2006) the 
artifacts and noise to be removed are contained in ICs which seemingly do not carry ECG 
contributions, thus yielding correct ECG reconstruction which does not alter the actual ECG 
waveforms. In this Chapter, recognition of the ICs carrying atrial fibrillation is considered in 
the example shown in Fig. 6, whereas otherwise IC classification has been performed by 
visual observation only. ICA can also be successfully applied, for example, to ECG baseline 
wander (Barati & Ayatollahi, 2007) and motion artifact removal (Milanesi et al., 2008). 
In Fig. 3A, a standard ECG is shown with an artifact caused by the subject clenching his left 
fist. The artifact is evident in all leads except in the lead II. The measurements were 
performed with NeuroScan (SynAmp  by  Compumedics  NeuroScan,  El  Paso  Texas, USA) 
with the reference on the left ankle. The standard chest ECG leads in Fig. 3A have been 
determined using Wilson’s central terminal. 
In Fig. 3B, ICs resulting from ICA calculated on the ECG signals seen in Fig. 3A, are shown. 
Since the lead III in Fig. 3A has been calculated from the leads I and II, there are only eight 
actual measurements in the nine ICA input signals. Accordingly, ICA found only eight ICs 
(Fig. 3B), as it could at maximum. In Fig. 3B, the left fist clenching artifact is nicely contained 
in IC4, although here the artifact has been detected by visual assessment only, and it is hard 
to exclude the possibility of artifact contributions in the other ICs. At least IC1, IC2, IC3, IC5, 
IC6, and IC7, can be seen to carry ECG information. IC7 might be taken to display 
contributions from T wave in addition to some other ECG contributions during QRS 
complex, but this is only speculative. IC8 may be noise and carry also minor ECG 
information (noise is comparative to the possible ECG information). In Fig. 3C, the ECG 
reconstructed without IC4 is shown. In visual inspection, the fist clenching artifact has been 
removed, and for the second heart beat shown, the T wave morphology in the lead I’ and 
the details of the QRS complex morphology in the lead II’, both of which are unobservable 
in Fig. 3A, have been recovered in Fig. 3C. A reconstructed lead is denoted with a prime in 
the lead name, also in the sequel. 

3.3 ICA for ECG feature extraction 
ECG feature extraction using ICA (Huang et al., 2010; Hyvärinen et al., 2001; Jiang et al., 
2006) generally includes preprocessing the ECG signals by mean removal and dimension 
reduction. In dimension reduction, the original large data set is reduced to a smaller number 
of signals, also decreasing noise. The resulting data set is input to ICA, whose output is the 
set of features, or basis functions. Thereafter, ECG data to be classified, e.g., according to 
pathology, is then classified based on the basis functions. For example, Jiang et al. (2006) 
classified heart beats into 14 classes of arrhythmia types, including normal beats. Heart beat 
classification using ICA has also been considered in several other publications, e.g., in (Chou 
& Yu, 2007; Herrero et al., 2005; Ye et al., 2010). 
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Such an effect is not caused by an independent source of interference, and cannot be 
expected to be removable by ICA. 
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As described earlier, the basic approach to noise and artifact removal is to perform ICA 
followed by ECG reconstruction using (2) with the noise and artifact carrying ICs set to zero. 
Here, a crucial step is the recognition of the ICs carrying the artifacts. This may be achieved, 
e.g., by different statistical or waveform classification methods in time domain or in 
frequency domain, or by more advanced methods as described, e.g., by He et al. (2006) who 
also give several illustrative examples. Note that in the examples in (He et al., 2006) the 
artifacts and noise to be removed are contained in ICs which seemingly do not carry ECG 
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with the reference on the left ankle. The standard chest ECG leads in Fig. 3A have been 
determined using Wilson’s central terminal. 
In Fig. 3B, ICs resulting from ICA calculated on the ECG signals seen in Fig. 3A, are shown. 
Since the lead III in Fig. 3A has been calculated from the leads I and II, there are only eight 
actual measurements in the nine ICA input signals. Accordingly, ICA found only eight ICs 
(Fig. 3B), as it could at maximum. In Fig. 3B, the left fist clenching artifact is nicely contained 
in IC4, although here the artifact has been detected by visual assessment only, and it is hard 
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reconstructed without IC4 is shown. In visual inspection, the fist clenching artifact has been 
removed, and for the second heart beat shown, the T wave morphology in the lead I’ and 
the details of the QRS complex morphology in the lead II’, both of which are unobservable 
in Fig. 3A, have been recovered in Fig. 3C. A reconstructed lead is denoted with a prime in 
the lead name, also in the sequel. 
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Fig. 3. (A) ECG with left fist clenching artifact visible in all leads but II. (B) Results of 
calculating ICA on the signals in (A). Fist clenching artifact has been separated into IC4. (C) 
ECG signals reconstructed using all the ICs except IC4. 
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Fig. 4. (A) Eight-lead ECG measured on the abdominal region (leads Ab1 though Ab8) of a 
pregnant mother1. Maternal heart beats are clearly recognizable but fetal ECG cannot be 
visually observed. (B) Results of ICA on the data seen in (A). It can be clearly seen that IC1 
exhibits fetal ECG, whereas IC2 and IC3 carry maternal ECG. 
                                                                 
1The data used in this example was obtained from The Open-Source Electrophysiological Toolbox, 
http://www.oset.ir/, Shiraz University, Shiraz, Iran, to where the data was provided by Dr. A. 
Tokarev, Biomedical Signal Processing Laboratory, National Aerospace University, Kharkov, Ukraine. 
The data was offered for download and usage under the GNU General Public License. 
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Fig. 3. (A) ECG with left fist clenching artifact visible in all leads but II. (B) Results of 
calculating ICA on the signals in (A). Fist clenching artifact has been separated into IC4. (C) 
ECG signals reconstructed using all the ICs except IC4. 
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Fig. 4. (A) Eight-lead ECG measured on the abdominal region (leads Ab1 though Ab8) of a 
pregnant mother1. Maternal heart beats are clearly recognizable but fetal ECG cannot be 
visually observed. (B) Results of ICA on the data seen in (A). It can be clearly seen that IC1 
exhibits fetal ECG, whereas IC2 and IC3 carry maternal ECG. 
                                                                 
1The data used in this example was obtained from The Open-Source Electrophysiological Toolbox, 
http://www.oset.ir/, Shiraz University, Shiraz, Iran, to where the data was provided by Dr. A. 
Tokarev, Biomedical Signal Processing Laboratory, National Aerospace University, Kharkov, Ukraine. 
The data was offered for download and usage under the GNU General Public License. 
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3.4 ICA for fetal ECG extraction 
ECG signals originating from the hearts of the mother and the fetus are clearly independent 
of each other and they can be efficiently separated using ICA, thus providing for extraction 
of fetal ECG (Lee et al., 2005; Martín-Clemente et al., 2011; Sameni et al., 2006; Zarzoso & 
Nandi, 2001). The approach is to perform ICA on a set of ECG leads, which includes leads 
measured on the abdominal region of the mother and possibly also other leads, such as 
chest ECG leads. The abdominal lead signals are expected to carry both fetal and maternal 
ECGs. Upon successful ICA, recognizing the ICs containing fetal ECG is generally straight 
forward based on the different heart rates. Thereafter, fetal ECG can be reconstructed from 
the recognized ICs carrying fetal ECG information, if desired. A simple method to 
determine which ICs carry fetal or maternal ECG, is to perform beat detection, e.g., by 
highpass filtering followed by peak detection by thresholding, and subsequently calculating 
the heart rates for every IC carrying ECG information. If the ICA source separation is 
successful, ICs with two distinct heart rates can be recognized, with the ICs with the faster 
heart rate belonging to the fetal ECG. An eight-lead ECG measured from the abdominal 
region of a 25-year old mother in the 33rd week of pregnancy is shown in Fig. 4A. In Fig. 4B, 
are shown the ICs resulting from ICA on the signals shown in Fig. 4A. Fetal heart rate can be 
easily assessed from IC1 in Fig. 4B, where as fetal ECG is not directly observable in the 
original measured ECG signals (Fig. 4A). In Fig. 5 are shown the fetal ECG signals 
reconstructed for all the abdominal leads using only IC1 (Fig. 4B). Comparing Figs. 4A and 
5, it is seen that even though no fetal ECG is visually observable in the original abdominal 
measurements (Fig. 4A), every abdominal lead carried fetal ECG information and even some 
fetal heart beat morphology can be observed from the reconstructions (Fig. 5). 
 

 
Fig. 5. Fetal ECG reconstructed for all the abdominal leads shown in Fig. 4A using only IC1 
seen in Fig. 4B. 
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Before ICA, baseline wander was removed from the measured signals by highpass filtering 
with an equiripple FIR filter of length 916, satisfying passband cutoff frequency of 5 Hz 
at -3 dB, stopband attenuation of at least -80 dB below 2 Hz, and passband ripple less than 
1 dB. Note that this filter was not optimized to maximally remove baseline wander, but only 
to provide for the convergence of ICA. With original unfiltered measured signals FastICA 
did not converge. Note that ICA of maternal and fetal ECG does not always succeed. This 
may be due to either the general facts regarding ICA of biomedical signals discussed in 
Section 2.3, or due to too few ECG lead signals available. Considering that abdominal ECG 
leads also record the mother’s abdominal EMG and the EMG of the fetus, the ECG lead 
count must be sufficiently high for the separation to succeed. 

3.5 ICA of amplitude parameterized ECG 
Diagnostics based on amplitude parameterized ECG is common practice. By ECG amplitude 
parameterization, we mean construction of a new set of signals from the signal amplitudes 
at some defined fiducial points of the ECG, such as R peak or ST60 amplitudes (amplitudes 
60 ms after the start of the ST segments), or from time averages of delineated ECG segments. 
ICA of parameterized ECG has been proposed, e.g., by Chawla (2007) and Tanskanen et al. 
(2006a, 2006b). In this Section, we explicitly show that such ECG signal parameterizations in 
fact fulfill the assumption of linearly combined components. Related to parameterized ECG 
and more generally to the ECG wave delineation problem (Sörnmo & Laguna, 2005), an ICA 
based method for locating R peaks have been proposed by Chawla et al. (2008).  
From (2) it can be seen that the mixing matrix A remains unchanged for a new set of ICA 
input signals formed by picking individual columns from X (samples measured at the same 
time instances from all the measured signals). This means that we may freely choose the 
ICA input samples in time as long as all the ECG leads are sampled at the same time.  
One ECG sample (2) measured at time n via the lead l is given by 

���, �� = � ���, �����, ��
�

���
, (5)

where L is the number of ECG leads. Time average of M samples of the lth measured lead, 
starting from the sample number n0, is given by 

�����, ��� = 1
� � ���, ��

������

����
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Inserting (5) into (6) we get 
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which means that time averaging measured signals does not invalidate the assumption of 
the linearly combined ICs. From (7) we see that time averaged measured signals are linear 
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3.4 ICA for fetal ECG extraction 
ECG signals originating from the hearts of the mother and the fetus are clearly independent 
of each other and they can be efficiently separated using ICA, thus providing for extraction 
of fetal ECG (Lee et al., 2005; Martín-Clemente et al., 2011; Sameni et al., 2006; Zarzoso & 
Nandi, 2001). The approach is to perform ICA on a set of ECG leads, which includes leads 
measured on the abdominal region of the mother and possibly also other leads, such as 
chest ECG leads. The abdominal lead signals are expected to carry both fetal and maternal 
ECGs. Upon successful ICA, recognizing the ICs containing fetal ECG is generally straight 
forward based on the different heart rates. Thereafter, fetal ECG can be reconstructed from 
the recognized ICs carrying fetal ECG information, if desired. A simple method to 
determine which ICs carry fetal or maternal ECG, is to perform beat detection, e.g., by 
highpass filtering followed by peak detection by thresholding, and subsequently calculating 
the heart rates for every IC carrying ECG information. If the ICA source separation is 
successful, ICs with two distinct heart rates can be recognized, with the ICs with the faster 
heart rate belonging to the fetal ECG. An eight-lead ECG measured from the abdominal 
region of a 25-year old mother in the 33rd week of pregnancy is shown in Fig. 4A. In Fig. 4B, 
are shown the ICs resulting from ICA on the signals shown in Fig. 4A. Fetal heart rate can be 
easily assessed from IC1 in Fig. 4B, where as fetal ECG is not directly observable in the 
original measured ECG signals (Fig. 4A). In Fig. 5 are shown the fetal ECG signals 
reconstructed for all the abdominal leads using only IC1 (Fig. 4B). Comparing Figs. 4A and 
5, it is seen that even though no fetal ECG is visually observable in the original abdominal 
measurements (Fig. 4A), every abdominal lead carried fetal ECG information and even some 
fetal heart beat morphology can be observed from the reconstructions (Fig. 5). 
 

 
Fig. 5. Fetal ECG reconstructed for all the abdominal leads shown in Fig. 4A using only IC1 
seen in Fig. 4B. 
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Before ICA, baseline wander was removed from the measured signals by highpass filtering 
with an equiripple FIR filter of length 916, satisfying passband cutoff frequency of 5 Hz 
at -3 dB, stopband attenuation of at least -80 dB below 2 Hz, and passband ripple less than 
1 dB. Note that this filter was not optimized to maximally remove baseline wander, but only 
to provide for the convergence of ICA. With original unfiltered measured signals FastICA 
did not converge. Note that ICA of maternal and fetal ECG does not always succeed. This 
may be due to either the general facts regarding ICA of biomedical signals discussed in 
Section 2.3, or due to too few ECG lead signals available. Considering that abdominal ECG 
leads also record the mother’s abdominal EMG and the EMG of the fetus, the ECG lead 
count must be sufficiently high for the separation to succeed. 

3.5 ICA of amplitude parameterized ECG 
Diagnostics based on amplitude parameterized ECG is common practice. By ECG amplitude 
parameterization, we mean construction of a new set of signals from the signal amplitudes 
at some defined fiducial points of the ECG, such as R peak or ST60 amplitudes (amplitudes 
60 ms after the start of the ST segments), or from time averages of delineated ECG segments. 
ICA of parameterized ECG has been proposed, e.g., by Chawla (2007) and Tanskanen et al. 
(2006a, 2006b). In this Section, we explicitly show that such ECG signal parameterizations in 
fact fulfill the assumption of linearly combined components. Related to parameterized ECG 
and more generally to the ECG wave delineation problem (Sörnmo & Laguna, 2005), an ICA 
based method for locating R peaks have been proposed by Chawla et al. (2008).  
From (2) it can be seen that the mixing matrix A remains unchanged for a new set of ICA 
input signals formed by picking individual columns from X (samples measured at the same 
time instances from all the measured signals). This means that we may freely choose the 
ICA input samples in time as long as all the ECG leads are sampled at the same time.  
One ECG sample (2) measured at time n via the lead l is given by 
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which means that time averaging measured signals does not invalidate the assumption of 
the linearly combined ICs. From (7) we see that time averaged measured signals are linear 
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combinations of correspondingly time averaged source signals, and that the separation 
matrix remains unaltered.  
A word of warning is in place regarding time averaging. An assumption of ICA is that the 
ICs are nongaussian. According to the central limit theorem, a sum of nongaussian random 
signals is closer to gaussian than the original signals. Here, it means that time averaged ICs 
might be theoretically forbidden. Nevertheless, running ICA on averaged measurements 
may be attempted with due consideration given to the reliability of the results, as discussed 
earlier. Amplitude parameterization without averaging is naturally free of such concerns. 
 
 

 
 
 

 
Fig. 6. (A) ECG measured from a patient with atrial fibrillation during exercise stress test. (B) 
Results of ICA on the signals in (A). Atrial fibrillation is detectable in IC7 and IC8. 
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4. ICA in ECG based diagnostics 
ICA has found several applications in signal processing systems aimed at aiding in 
diagnostics. ECG based diagnostics applications in which ICA has been utilized include, 
e.g., classification of ECG beats (Chou & Yu, 2007; Huang, et al., 2010), analysis of 
parameterized ECG signals (Chawla, 2007; Tanskanen et al., 2006a, 2006b), heart rate 
variability analysis (Zhangyong et al., 2005), arrhythmia estimation (Castells et al., 2005; 
Jiang et al., 2006; Llinares & Igual, 2009), and atrial fibrillation extraction and analysis (Rieta 
et al., 2004; Stridh & Sörnmo, 2001; Zarzoso & Comon, 2010). A nice diagram of an atrial 
source separation system has been presented by Castells et al. (2005). Analyzing sub-signals 
in heart rate variability, Zhangyong et al. (2005) proposed to approach analysis of the effects 
of the autonomic nervous system. For a general description of the effects of blood pressures 
and respiration, see the book by Sörnmo & Laguna (2005). As mentioned, several proposed 
ECG analysis systems employ ICA as one system component, e.g., as in the heart beat 
classification system by Herrero et al. (2005), in which ICA based feature extraction is 
employed in combination with preprocessing, time-frequency feature extraction, and neural 
network based classifiers. 
As mentioned earlier, 12-lead ECG may sometimes be insufficient for efficient ICA based 
analysis of the phenomenon of interest. For example, Zhu et al. (2008) analyzed 72-lead and 
98-lead ECG measurements using ICA and were able to separate the P wave, QRS complex, 
and T wave. Thus, with high-density ECG measurements and ICA based analysis more 
detailed diagnostics applications might be realizable. 
In Fig. 6A, ECG measured from a patient with atrial fibrillation during exercise stress test 
is shown. In Fig. 6B, the results of ICA on the signals in Fig. 6A are shown. In Fig. 6B, 
atrial fibrillation can be identified in IC7 and IC8. For both IC7 and IC8, power spectrum 
estimation using Welch method (Sörnmo & Laguna, 2008) reveals a clear peak around 6–7 
Hz, which translates to the fibrillation rate of 360–420 beats per minute. Corresponding 
power spectral peaks are not found for the other ICs seen in Fig. 6B. Thus, in this case 
power spectral peak detection can also be used to recognize the ICs carrying atrial 
fibrillation information. 

5. Conclusions 
The numerous features making up the measured ECG signals originate largely from 
independent sources, whose contributions are linearly combined at the ECG electrodes. 
These sources are artifacts, such as muscle generated electric signals, and actual ECG 
generator signals originating from the operation of the heart itself. Also within the heart, a 
few independent signal generators can be identified. Due to the inherent independent 
component nature of the measured ECG signals, they lend themselves to be effectively 
processed with ICA, given the proper precautions outlined in this Chapter. Thus, ICA has 
been widely applied to enhance the ECG signals or their specific features to provide for 
enhanced diagnostic value. ICA has also been employed as a component in several 
proposed signal processing system aimed at diagnostics decision support. In this Chapter, 
several of these aspects were reviewed and practical illustrations were provided. To get the 
reader started on ICA of ECG signals, notes on popular available ICA program packages 
were made and the list of references was designed to widely cover the associated fields. We 
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combinations of correspondingly time averaged source signals, and that the separation 
matrix remains unaltered.  
A word of warning is in place regarding time averaging. An assumption of ICA is that the 
ICs are nongaussian. According to the central limit theorem, a sum of nongaussian random 
signals is closer to gaussian than the original signals. Here, it means that time averaged ICs 
might be theoretically forbidden. Nevertheless, running ICA on averaged measurements 
may be attempted with due consideration given to the reliability of the results, as discussed 
earlier. Amplitude parameterization without averaging is naturally free of such concerns. 
 
 

 
 
 

 
Fig. 6. (A) ECG measured from a patient with atrial fibrillation during exercise stress test. (B) 
Results of ICA on the signals in (A). Atrial fibrillation is detectable in IC7 and IC8. 
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4. ICA in ECG based diagnostics 
ICA has found several applications in signal processing systems aimed at aiding in 
diagnostics. ECG based diagnostics applications in which ICA has been utilized include, 
e.g., classification of ECG beats (Chou & Yu, 2007; Huang, et al., 2010), analysis of 
parameterized ECG signals (Chawla, 2007; Tanskanen et al., 2006a, 2006b), heart rate 
variability analysis (Zhangyong et al., 2005), arrhythmia estimation (Castells et al., 2005; 
Jiang et al., 2006; Llinares & Igual, 2009), and atrial fibrillation extraction and analysis (Rieta 
et al., 2004; Stridh & Sörnmo, 2001; Zarzoso & Comon, 2010). A nice diagram of an atrial 
source separation system has been presented by Castells et al. (2005). Analyzing sub-signals 
in heart rate variability, Zhangyong et al. (2005) proposed to approach analysis of the effects 
of the autonomic nervous system. For a general description of the effects of blood pressures 
and respiration, see the book by Sörnmo & Laguna (2005). As mentioned, several proposed 
ECG analysis systems employ ICA as one system component, e.g., as in the heart beat 
classification system by Herrero et al. (2005), in which ICA based feature extraction is 
employed in combination with preprocessing, time-frequency feature extraction, and neural 
network based classifiers. 
As mentioned earlier, 12-lead ECG may sometimes be insufficient for efficient ICA based 
analysis of the phenomenon of interest. For example, Zhu et al. (2008) analyzed 72-lead and 
98-lead ECG measurements using ICA and were able to separate the P wave, QRS complex, 
and T wave. Thus, with high-density ECG measurements and ICA based analysis more 
detailed diagnostics applications might be realizable. 
In Fig. 6A, ECG measured from a patient with atrial fibrillation during exercise stress test 
is shown. In Fig. 6B, the results of ICA on the signals in Fig. 6A are shown. In Fig. 6B, 
atrial fibrillation can be identified in IC7 and IC8. For both IC7 and IC8, power spectrum 
estimation using Welch method (Sörnmo & Laguna, 2008) reveals a clear peak around 6–7 
Hz, which translates to the fibrillation rate of 360–420 beats per minute. Corresponding 
power spectral peaks are not found for the other ICs seen in Fig. 6B. Thus, in this case 
power spectral peak detection can also be used to recognize the ICs carrying atrial 
fibrillation information. 

5. Conclusions 
The numerous features making up the measured ECG signals originate largely from 
independent sources, whose contributions are linearly combined at the ECG electrodes. 
These sources are artifacts, such as muscle generated electric signals, and actual ECG 
generator signals originating from the operation of the heart itself. Also within the heart, a 
few independent signal generators can be identified. Due to the inherent independent 
component nature of the measured ECG signals, they lend themselves to be effectively 
processed with ICA, given the proper precautions outlined in this Chapter. Thus, ICA has 
been widely applied to enhance the ECG signals or their specific features to provide for 
enhanced diagnostic value. ICA has also been employed as a component in several 
proposed signal processing system aimed at diagnostics decision support. In this Chapter, 
several of these aspects were reviewed and practical illustrations were provided. To get the 
reader started on ICA of ECG signals, notes on popular available ICA program packages 
were made and the list of references was designed to widely cover the associated fields. We 
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sincerely hope that this Chapter provides valuable practical insight into ICA and to the 
nature of the ECG signals with regard to processing them using ICA, and promotes novel 
ideas for enhancing ECG based diagnosis with the aid of this powerful statistical signal 
processing method. 
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7. Appendix 
In this Appendix, Internet addresses of some ICA related web sites and program packages 
are given. There exist numerous ICA related sites and ICA software packages and scripts 
available in the Internet, and the list provided here is far from exhaustive. The list is 
intended to serve as a starting point for research using ICA. Although some of the listed 
web sites and ICA program packages are concerned with EEG processing, they are 
nevertheless excellent sources of ICA related information and programs. 
 
ICA Central 

Signal and Image Processing Department, Télécom ParisTech, France 
http://www.tsi.enst.fr/icacentral/ 

Independent Component Analysis (ICA) and Blind Source Separation (BSS) 

Including: 
 FastICA 
 Icasso (software for investigating the reliability of ICA estimates by clustering and 

visualization) 
Department of Information and Computer Science, Aalto University, Finland 
http://research.ics.tkk.fi/ica/ 

ICA - CNL Overview 

The Computational Neurobiology Laboratory, Salk Institute for Biological Studies, CA, 
USA 
http://cnl.salk.edu/~tewon/ica_cnl.html 

RobustICA 

Laboratoire d'Informatique, University of Nice - Sophia Antipolis, France 
http://www.i3s.unice.fr/~zarzoso/robustica.html 

EEGLAB 

Swartz Center for Computational Neuroscience, University of California San Diego, CA, 
USA 
http://sccn.ucsd.edu/eeglab/ 
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ICALAB Toolboxes 

Laboratory for Advanced Brain Signal Processing, RIKEN Brain Science Institute, Japan 
http://www.bsp.brain.riken.jp/ICALAB/ 

Mutual Information Least-dependent Component Analysis 

UCL Institute of Neurology, UK 
http://www.klab.caltech.edu/~kraskov/MILCA/ 
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sincerely hope that this Chapter provides valuable practical insight into ICA and to the 
nature of the ECG signals with regard to processing them using ICA, and promotes novel 
ideas for enhancing ECG based diagnosis with the aid of this powerful statistical signal 
processing method. 
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7. Appendix 
In this Appendix, Internet addresses of some ICA related web sites and program packages 
are given. There exist numerous ICA related sites and ICA software packages and scripts 
available in the Internet, and the list provided here is far from exhaustive. The list is 
intended to serve as a starting point for research using ICA. Although some of the listed 
web sites and ICA program packages are concerned with EEG processing, they are 
nevertheless excellent sources of ICA related information and programs. 
 
ICA Central 

Signal and Image Processing Department, Télécom ParisTech, France 
http://www.tsi.enst.fr/icacentral/ 

Independent Component Analysis (ICA) and Blind Source Separation (BSS) 

Including: 
 FastICA 
 Icasso (software for investigating the reliability of ICA estimates by clustering and 

visualization) 
Department of Information and Computer Science, Aalto University, Finland 
http://research.ics.tkk.fi/ica/ 

ICA - CNL Overview 

The Computational Neurobiology Laboratory, Salk Institute for Biological Studies, CA, 
USA 
http://cnl.salk.edu/~tewon/ica_cnl.html 

RobustICA 

Laboratoire d'Informatique, University of Nice - Sophia Antipolis, France 
http://www.i3s.unice.fr/~zarzoso/robustica.html 

EEGLAB 

Swartz Center for Computational Neuroscience, University of California San Diego, CA, 
USA 
http://sccn.ucsd.edu/eeglab/ 
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ICALAB Toolboxes 

Laboratory for Advanced Brain Signal Processing, RIKEN Brain Science Institute, Japan 
http://www.bsp.brain.riken.jp/ICALAB/ 

Mutual Information Least-dependent Component Analysis 

UCL Institute of Neurology, UK 
http://www.klab.caltech.edu/~kraskov/MILCA/ 
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1. Introduction 
An electrocardiogram (ECG) is a commonly used clinical tool to diagnose cardiac diseases. 
In most clinical practice, to improve ECG diagnosis accuracy, cardiologists not only 
determine the abnormal conditions of the current ECG, but also examine the serial changes 
in reference to the previous ECGs. Expert cardiologists strongly believe that ECG diagnosis 
is incomplete without a comparison to previous ECGs (Ariet et al., 2005). Obviously, a 
prerequisite for the clinical practice using serial ECG comparison is the availability of 
previous ECGs. 
For the reason above, it has been a growing interest in medical informatics to improve ease 
of access to ECG data using information technology. Initially, the computer systems, now 
referred to as ECG management systems (EMSs), were invented to serve a valuable function 
for ECG data management (Crevasse & Ariet, 1987). They consisted of a central 
minicomputer that collected the ECG signals from peripheral electrocardiographs over serial 
cables, telephone lines or local area network, and provided the power to store and retrieve 
the collected ECG data. Storage and retrieval of ECG data were organized in the perspective 
of their future use, particularly for serial comparison, but also for different managerial and 
research purposes, such as over-reading by physicians, re-analysis by different ECG 
programs, and statistics for management (Fayn & Rubel, 1991). The EMS solution allows a 
patient’s ECG data accessible throughout the hospital and anywhere outside the hospital 
through a Web interface. 
A major issue in the employment of EMS is the interoperability between electrocardiographs 
and EMSs, and the interoperability among EMSs. In a major hospital, there are usually a 
number of electrocardiographs that are from different vendors. These electrocardiographs 
may use different vendor-proprietary standards for ECG data storage and transmission, but 
an EMS is developed conformably to only a few vendor-proprietary standards. In order to 
facilitate the use of electrocardiographs from different vendor, several EMSs that are 
conformable to different vendor-proprietary standards may coexist in a hospital. As for the 
issue of the interoperability among the EMSs, some possible solutions have been reported. 
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Firstly, de Wijs et al. developed the Unified ECG Framework to enable the use of a single 
viewer for different resting ECG formats (de Wijs et al., 2005). The main part of the Unified 
ECG Framework is an ECG Toolkit, which provides applications for ECG conversion and 
viewing (van Ettinger et al., 2008). By using the ECG toolkit all the resting ECGs recorded at 
the Thoraxcenter can be provided in three open standards: the Standard Communications 
Protocol for Computer-Assisted Electrocardiography (SCP-ECG) (Association for the 
Advancement of Medical Instrumentation, 1999), Digital Imaging and Communications in 
Medicine-Waveform Standard Supplement (DICOM 3.0) (DICOM Standards Committee, 
2000), and the HL7 FDA annotated ECG standard (Brown & Badilini, 2005). This solution 
enables a hospital to be partially or completely manufacturer-independent for resting ECGs. 
Secondly, the EMS developed by Cho et al. provides the functionality to convert non-
DICOM ECG data into DICOM waveform data and act as a DICOM waveform Storage 
Service Class User (SCU) to send the DICOM waveform data to the Picture Archiving and 
Communication System (PACS) (Cho et al., 2003). This solution makes the ECG data 
managed by such EMSs accessible on DICOM workstations. Thirdly, the Retrieve ECG for 
Display profile proposed by the Integrating Healthcare Enterprise initiative (IHE-ECG 
profile) (Integrating the Healthcare Enterprise [IHE], 2006) provides a means of ECG data 
exchange between EMSs. The IHE-ECG profile specifies the Web service interfaces to an 
EMS for retrieving a list of ECG documents pertaining to a certain patient and retrieving a 
particular ECG document. The ECG data to be retrieved are converted into the documents 
in the Adobe Portable Document Format (PDF) or the images in the Adobe Scalable Vector 
Graphics (SVG) format. Although the ECG data in the PDF format or in the SVG format are 
not usable any more for further computation, this solution is widely accepted and adopted 
(Marcheschi et al., 2006). 
In addition to the methods and software for the interoperability of an EMS with other EMSs, 
HL7 interface software have been developed for EMSs to forward their ECG data to hospital 
information systems for historical record keeping and billing notification. 
These facilities mentioned above for intra-hospital exchange of ECG data have significantly 
improved the ease of access to a patient’s ECG data distributed in a hospital. However, the 
care and treatment of a patient doesn’t often take place in a single hospital, and thus a 
patient’s ECG data may distribute across multiple hospitals. This highlights the need for the 
inter-hospital exchange of a patient’s ECG data. Ideally, a patient’s historical ECG data 
should be available anywhere and whenever required. 
In this chapter, we report our Web-based system for inter-hospital exchange of ECG data. 
This system provides a common Web portal for the discovery and retrieval of a particular 
patient’s ECG data distributed across multiple hospitals. We present a metadata model for 
ECG data discovery and retrieval, and the ECG registry that provides ebXML-based Web 
services (OASIS, 2005b) for publishing and discovering ECG data using the metadata model. 
The system also empolyes a Web service framework invented for publishing the ECG data 
with the ECG registry from a hospital. The framework can interoperate with the disparate 
ECG data sources in a hospital, and has an access control mechanism to address the privacy 
and security issues related to the access to the ECG sources.  
The chapter is organized as follows. First the system architecture is defined in Section 2 
while Section 3 and 4 describe in detail the ECG registry and the Web service framework for 
the ECG data dissemination from a hospital. Then the performance evaluation results of the 
system are shown in Section 5. Finally the conclusions are given in Section 6. 
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2. System architecture 
For the ease of access to a patient’s ECG data across multiple hospitals, an efficient data 
discovery mechanism is necessary. Now, a couple of network models can be followed to 
design such a mechanism. One is the centralized model, which calls for a centralized storage 
of ECG data from all hospitals involved. Primarily due to the requirement of massive 
storage to contain all the ECG data and unnecessary bandwidth to upload ECG data from 
every hospital involved, this model does not scale well. The second model is the distributed 
model, which leaves the ECG data at their local hospitals and creates an index by collecting 
and correlating the information about each patient’s ECG data from all the ECG data 
sources involved. The most evident advantages of this model are its performance and 
scalability. On one hand, all ECG data pertaining to a particular patient is somehow 
referenced as one of the individual entries in the index. Thus, the discovery process is just a 
single database query. On the other hand, the only data that needs to be distributed through 
the network is the indexing data, whose size is very small. 
Our system architecture follows the distributed model. As shown in Fig. 1, it has a triangle-
like configuration, including the ECG registry, the ECG providers and the ECG querist. The 
ECG registry is deployed in the Internet and populated with the information about the ECG 
data from all of the hospitals involved. The ECG providers are deployed in every hospital to 
populate the ECG registry with the information about the ECG data hold by the hospitals. 
Then through the ECG querists, which are Web applications, medical and healthcare 
professionals can search the ECG registry for a patient’s ECG data and retrieve the ECG 
documents from the ECG providers deployed in the hospitals that hold them. 
 
 

 
Fig. 1. System architecture for sharing ECG data among multiple hospitals 
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The key component of this architecture is the ECG registry. It should collect and correlate 
the information about patients’ ECG data in an appropriate way so that patients’ ECG data 
can be indexed for efficient searching. However, ECG data sources in the hospitals involved 
are mostly autonomous and heterogeneous. The standards they use for ECG storage and 
interchange may be different. Moreover, over time not only new ECG data sources may be 
involved, but also existing data sources may request submission of newly-acquired ECG 
data.  
One potential solution to the above problems is to use metadata for enabling 
interoperability with heterogeneous ECG data sources and indexing ECG data for efficient 
and effective retrieval. Metadata are usually defined as data about data (Miller, 1996). It is 
most commonly used to describe an information resource, and consists of a set of attributes 
or elements necessary to describe that resource (Hillmann, 2000). It has been shown that 
metadata are not only an effective means for describing schemas in the database community 
and cataloguing the resources available in the library community, but also a realistic and 
scalable solution to two main issues pertaining to a resource discovery system: resource 
discovery and interoperability (Baptista et al., n.d.). Our goal here is to propose a metadata 
model for facilitating transparent discovery and retrieval of a patient’s ECG data across all 
of the ECG data sources involved.  
Fig. 2 presents the metadata model, named MetaEDR. It comprises two types of entities: 
ECG document that describes an ECG data resource and ECG provider that owns an ECG 
document. An ECG document must have one and only one ECG provider, and an ECG 
provider may have many ECG documents. 
 

 
Fig. 2. MetaEDR conceptual schema 

The metadata about an ECG document include the properties to enable resource discovery. 
They consist of three parts: a patient’s demographic information such as identifier, name, 
date of birth, and gender; ECG attribute information such as acquisition date, type of ECG 
(standard 12-lead ECG, long-term ECG, or stress ECG), and data format (SCP-ECG, HL7 
aECG, DICOM, or MFER); and information about technical access method and location 
URL. 
The ECG providers are described using a set of metadata elements to provide the following 
information: a user-friendly name, an optional description, a global unique identifier, and 
Web service interfaces for harvesting ECG metadata and retrieving ECG data. 
Every MetaEDR entity also has an associated set of administrative metadata, which include 
information about access control policy and privacy preservation policy. 

3. Registry for ECG data discovery 
The ECG registry is a Web-services-based platform shared for disseminating and 
discovering ECG data by means of MetaEDR. It is responsible for the storage of metadata 
and processing of queries on the metadata. We constructed the ECG registry based on the 
architecture of the ebXML (Electronic Business that uses eXtensible Markup Language) 
Registry (OASIS, 2005b). 
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3.1 Information model 
An ebXML Registry is an information system that securely manages any content type and 
the standardized metadata that describes it. In order to support a wide variety of content, 
the ebXML Registry is designed with a well-defined information model. The information 
model of the ebXML Registry provides information on the type of metadata that is stored in 
the registry as well as the relationships among metadata classes (OASIS, 2005e). The 
RegistryObject class is an abstract base class used by most classes in the model. It provides 
minimal metadata for registry objects. Slot instances provide a dynamic way to add 
arbitrary attributes to RegistryObject instances. An Association class is a RegistryObject 
instance that is used to associate any two RegistryObject instances. An ExtrinsicObject 
instance provides metadata that describes submitted content whose type is not intrinsically 
known to the registry and therefore is described by additional attributes. 
We use ExtrinsicObject class to include the MetaEDR information model. Fig. 3 illustrates 
the MetaEDR information model in the context of the ebXML Registry. ECG Document and 
ECG Provider in the MetaEDR are mapped into two subclasses of the ebXML 
ExtrinsicObject, named ECGEntry and ProviderEntry respectively. The association between 
ECGEntry and ProviderEntry is mapped into the ebXML Association. 
 

 
Fig. 3. The MetaEDR information model in the context of the ebXML 

3.2 Service protocols 
The ebXML Registry architecture is defined in terms of the registry service and the registry 
client. The registry service has two main interfaces for managing objects in the information 
model: lifecycle and query management. The lifecycle management interface has abstract 
methods such as submitObjects, updateObjects, removeObjects, and deprecatedObjects, 
which are used to submit objects or classifications to the information model. Similarly, the 
query management interface has interfaces such as submitAdhocQuery, getRegistryObject, 
and getRepositoryItem, which are used to query the registry itself. 
The ECG registry provides two main services that enable the sharing of ECG data in a 
community of collaborative hospitals: 
1. Register 
It allows an ECG provider to register ECG data with the ECG registry, by supplying 
metadata about ECG data to be registered. Each of the ECG metadata will be used to create 
an instance of ECGEntry in the registry. 
2. Query 
It allows an ECG querist to query the registry for a particular patient’s ECG. In response to 
this query, the registry returns all the metadata matching the query criteria. 
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information: a user-friendly name, an optional description, a global unique identifier, and 
Web service interfaces for harvesting ECG metadata and retrieving ECG data. 
Every MetaEDR entity also has an associated set of administrative metadata, which include 
information about access control policy and privacy preservation policy. 

3. Registry for ECG data discovery 
The ECG registry is a Web-services-based platform shared for disseminating and 
discovering ECG data by means of MetaEDR. It is responsible for the storage of metadata 
and processing of queries on the metadata. We constructed the ECG registry based on the 
architecture of the ebXML (Electronic Business that uses eXtensible Markup Language) 
Registry (OASIS, 2005b). 
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3.1 Information model 
An ebXML Registry is an information system that securely manages any content type and 
the standardized metadata that describes it. In order to support a wide variety of content, 
the ebXML Registry is designed with a well-defined information model. The information 
model of the ebXML Registry provides information on the type of metadata that is stored in 
the registry as well as the relationships among metadata classes (OASIS, 2005e). The 
RegistryObject class is an abstract base class used by most classes in the model. It provides 
minimal metadata for registry objects. Slot instances provide a dynamic way to add 
arbitrary attributes to RegistryObject instances. An Association class is a RegistryObject 
instance that is used to associate any two RegistryObject instances. An ExtrinsicObject 
instance provides metadata that describes submitted content whose type is not intrinsically 
known to the registry and therefore is described by additional attributes. 
We use ExtrinsicObject class to include the MetaEDR information model. Fig. 3 illustrates 
the MetaEDR information model in the context of the ebXML Registry. ECG Document and 
ECG Provider in the MetaEDR are mapped into two subclasses of the ebXML 
ExtrinsicObject, named ECGEntry and ProviderEntry respectively. The association between 
ECGEntry and ProviderEntry is mapped into the ebXML Association. 
 

 
Fig. 3. The MetaEDR information model in the context of the ebXML 

3.2 Service protocols 
The ebXML Registry architecture is defined in terms of the registry service and the registry 
client. The registry service has two main interfaces for managing objects in the information 
model: lifecycle and query management. The lifecycle management interface has abstract 
methods such as submitObjects, updateObjects, removeObjects, and deprecatedObjects, 
which are used to submit objects or classifications to the information model. Similarly, the 
query management interface has interfaces such as submitAdhocQuery, getRegistryObject, 
and getRepositoryItem, which are used to query the registry itself. 
The ECG registry provides two main services that enable the sharing of ECG data in a 
community of collaborative hospitals: 
1. Register 
It allows an ECG provider to register ECG data with the ECG registry, by supplying 
metadata about ECG data to be registered. Each of the ECG metadata will be used to create 
an instance of ECGEntry in the registry. 
2. Query 
It allows an ECG querist to query the registry for a particular patient’s ECG. In response to 
this query, the registry returns all the metadata matching the query criteria. 
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An ECG provider submits a request message to call the “Register” service to register the 
metadata about ECGs, and the registry issues a response message to report the result status 
of metadata validation process or the success in creating the instances of ECGEntry for each 
submitted metadata. In our study, the request message and the response message use the 
messaging framework of the ebXML service protocol, which is SOAP message with MIME 
attachments. For the request message, the attachment is the SubmitObjectsRequest message, 
and for the response message, the attachment is the SubmitObjectsReponse message. The 
SubmitObjectsRequest message contains the metadata to be submitted, that is, an instance of 
ECGEntry.  
Similarly, the request message submitted by an ECG querist to invoke the “Query” service is 
the SOAP message, the attachment of which is a standard ebXML AdhocQueryRequest 
message. In response, the registry returns the SOAP message with an ebXML 
AdhocQueryResponse message as its attachment. Within the AdhocQueryResponse message 
there is a list of instances of ECGEntry that contains metadata found to meet the query criteria. 
Fig. 4 depicts the messaging among the ECG registry, an ECG provider, and an ECG querist. 
 

 
Fig. 4. Messaging between the ECG registry, an ECG provider, and an ECG querist 

4. Web service framework for ECG data publishing 
In our system, ECG providers are deployed in all the participating hospitals to publish the 
ECG data resources in every hospital with the ECG registry, and to serve the requests for the 
retrieval of the published ECG data. An ECG provider is required to be able to register all 
the ECG data in the ECG sources in a hospital including electrocardiographs, EMSs, and 
PACSs. However, there exist differences in ECG file formats and information exchange 
protocols between ECG sources, which conform to different standards. These differences 
pose the issue of interoperability with various ECG sources. In addition, an ECG provider 
has an obligation to apply privacy and security control to ECG data access when providing 
services to ECG retrieval requests. 
In this section, we present a framework for ECG data publishing by an ECG provider. The 
framework specifies a set of functional components for an ECG provider, with the issues, 
such as the interoperability with various ECG sources, and privacy and security control, 
taken into account. 

4.1 Framework for ECG data publishing 
The framework for publishing ECG data is aimed at providing the functionalities of an ECG 
provider: ECG registration and ECG delivery. The former harvests the metadata about the 
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latest ECG data from the ECG sources, such as an electrocardiograph, an EMS, and a PACS. 
The letter supports peer-to-peer retrieval of ECG data. When performing these 
functionalities, an ECG provider has to interact with several different actors for different 
purposes. One is the ECG registry, with which the ECG provider registers metadata about 
ECG data to be shared, and one is an ECG querist, to which the ECG provider renders ECG 
retrieval service. Others can be generalized into an ECG source actor that is simply an 
electrocardiograph, an EMS, or a PACS, from which the ECG provider acquires ECG data to 
be published for sharing. Fig. 5 depicts a set of components that accomplish the 
functionalities which an ECG provider should provide to these actors: 
 

 
Fig. 5. Functional components of an ECG provider 

1. ECG Access 
This functionality supports the definition of a set of ECG sources and provides the capability 
to access ECG data from these ECG sources. It is accomplished by the Source Definition 
component and the Source Access component. The former aids a system administrator to 
define a collection of electrocardiographs, EMSs, and PACSs as the ECG sources with the 
result that each ECG source has an entry in the ECG Source List to record its configuration 
information, such as source type (electrocardiograph, EMS or PACS), source name, IP 
address and so on. The later has the capability to access ECGs from a specified ECG source. 
2. ECG Registration 
This functionality acquires the latest ECG data from the ECG sources, extracts the metadata 
about these ECG data and registers the metadata with the ECG registry. It is performed by 
the Metadata Registration component, with each registered ECG data appended to the 
Catalogue along with its source information required when the ECG data are retrieved. 
3. ECG Retrieval Service 
This functionality provides a Web service for ECG data retrieval to end users who are 
authenticated with the corresponding privilege. It is accomplished mainly by the Retrieval 
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An ECG provider submits a request message to call the “Register” service to register the 
metadata about ECGs, and the registry issues a response message to report the result status 
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messaging framework of the ebXML service protocol, which is SOAP message with MIME 
attachments. For the request message, the attachment is the SubmitObjectsRequest message, 
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SubmitObjectsRequest message contains the metadata to be submitted, that is, an instance of 
ECGEntry.  
Similarly, the request message submitted by an ECG querist to invoke the “Query” service is 
the SOAP message, the attachment of which is a standard ebXML AdhocQueryRequest 
message. In response, the registry returns the SOAP message with an ebXML 
AdhocQueryResponse message as its attachment. Within the AdhocQueryResponse message 
there is a list of instances of ECGEntry that contains metadata found to meet the query criteria. 
Fig. 4 depicts the messaging among the ECG registry, an ECG provider, and an ECG querist. 
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latest ECG data from the ECG sources, such as an electrocardiograph, an EMS, and a PACS. 
The letter supports peer-to-peer retrieval of ECG data. When performing these 
functionalities, an ECG provider has to interact with several different actors for different 
purposes. One is the ECG registry, with which the ECG provider registers metadata about 
ECG data to be shared, and one is an ECG querist, to which the ECG provider renders ECG 
retrieval service. Others can be generalized into an ECG source actor that is simply an 
electrocardiograph, an EMS, or a PACS, from which the ECG provider acquires ECG data to 
be published for sharing. Fig. 5 depicts a set of components that accomplish the 
functionalities which an ECG provider should provide to these actors: 
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Catalogue along with its source information required when the ECG data are retrieved. 
3. ECG Retrieval Service 
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authenticated with the corresponding privilege. It is accomplished mainly by the Retrieval 
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Service component, which transmits the requested ECG data from its source to an end user. 
The Security Administration component, the Authentication component, the Authorization 
component, and the Logging component are for the purpose of privacy and access control of 
ECG resources. 

4.2 Interoperability with ECG sources 
The processing procedures of the Source Access component and the Metadata Registration 
component depend on the information exchange protocols and the ECG file formats that the 
ECG sources adopt. But there are differences in ECG file formats and information exchange 
protocols between ECG sources which conform to different standards like DICOM and 
MFER. These differences therefore pose the issue of interoperability with ECG sources. We 
addressed this interoperability issue through the introduction of Generic ECG Source Layer 
(GESL) between the two components and ECG sources, as shown in Fig. 6. The GESL is 
further divided into the Abstract ECG Source (AES) sub-layer and the ECG Source Adaption 
(ESA) sub-layer. The AES sub-layer provides the two components with ECG source-
independent function interface to access ECG files and ECG metadata, and the ESA sub-
layer comprises a set of ECG Source Adaptors, such as DICOM-Adaptor, MFER-Adapter 
and so on, each of which provides an ECG source-specific implementation of the ECG 
source-independent function interface. 
 

 
Fig. 6. Generic ECG Source Layer (GESL) 

We use Web service technology to build GESL that makes disparate ECG data sources 
accessible in a uniform manner. Specifically, GESL is a Web service interface that provides 
operations for extracting metadata about ECG data and retrieving a particular patient’s ECG 
data, and each ECG data source is wrapped with an adaptor that implements GESL by using 
the data access mechanism specific to the ECG data source. 

4.3 Privacy preservation and access control 
A patient’s ECG data contain his/her sensitive clinical data, so an effective access control 
mechanism to protect them from disclosure to unauthorized persons is crucial to the 
successful realization of inter-hospital exchange of ECG data. 
The design and implementation of such an access control mechanism can be challenging. On 
one hand, a user may request access to ECG data in hospitals other than his/her home 
hospital. The user relevant attributes need to be transferred from his/her home hospital to 
these hospitals for making a decision about the access request. On the other hand, hospitals 
may have different authorization policies controlling access to protected health information, 
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so what user relevant attributes are required for a hospital to evaluate authorization policies 
in making an access decision may be different among hospitals and unknown to other 
hospitals. Therefore, the access control mechanism should support authorization policy 
exchange and authorization determination among hospitals in an interoperable manner. 
XACML (OASIS, 2005c), an OASIS standard, defines generic authorization architecture and 
the constructs for expressing and exchanging access control policy information using XML. 
SAML (OASIS, 2005a) (OASIS, 2005d), another OASIS standard, is an XML-based 
framework for communicating user authentication, entitlement, and attribute information 
among hospitals. XACML complements SAML so that not only policy decisions, as well as 
the policies themselves, can be exchanged in a standard fashion. Here we present an access 
control architecture based on XACML and SAML for inter-hospital access to ECG data. 

4.3.1 Privacy and security requirements 
A patient’s ECG data are a kind of protected health information. ECG privacy deals with 
controlling who is authorized to access a patient’s ECG data. It involves two aspects. On one 
hand, the access to a patient’s ECG data is restricted to the individuals who need to access in 
order to perform their jobs. On the other hand, patients have the rights to create their 
privacy consent, which defines the rules for sharing and use of their ECG data. 
In order to maintain the privacy of a patient’s ECG data, the access control to be 
implemented has to protect a patient’s ECG data from accidental or intentional disclosure to 
both individuals who have no job-related need to access them and individuals who have 
been denied the privilege to access them by a patient’s privacy consent. 

4.3.2 Two types of access polices based on the RBAC model 
To restrict ECG data accessible to only individuals who have job-related need to access, the 
Role-Based Access Control (RBAC) model (Sandhu et al., 1996) is adopted. An administrator 
can create roles representing the job functions in their hospital, such as those defined in 
(IHE, 2008): Administrative Staff, Dietary Staff, General Care Provider, Direct Care Provider, 
Emergency Care Provider, and Researcher, Patient or Legal Representative. Each role is 
associated with an access rule, termed role privilege rule, which grants or denies the role 
permission to access to patients’ ECG data. Individuals in the hospital may be assigned one 
or more roles representing the job functions they perform. 
Patient privacy consent is also based on the RBAC mode. Each patient’s ECG data is 
associated with an access rule, termed privacy consent rule, which defines which roles or 
which specific individuals may access the ECG data for specific purposes. 
So there are two types of access policies in a hospital. One is a set of role privilege rules, which 
we named role privilege policy. The other is a set of privacy consent rules, which we named 
privacy consent policy. When an individual from Hospital A requests access to a patient’s 
ECG data in Hospital B, the role privilege policy of Hospital A is first applied to making 
decision about whether the individual has the privilege to access patients’ ECG data. If the 
access is affirmative, the privacy consent policy of Hospital B is applied to making decision 
about whether the user is given the permission to access the requested ECG data. 

4.3.3 Access control architecture 
1. Policy Enforcement 
According to the access control framework proposed by XACML (OASIS, 2005c), there 
should be Policy Enforcement Point (PEP) and Policy Decision Point (PDP) applied along 
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Service component, which transmits the requested ECG data from its source to an end user. 
The Security Administration component, the Authentication component, the Authorization 
component, and the Logging component are for the purpose of privacy and access control of 
ECG resources. 

4.2 Interoperability with ECG sources 
The processing procedures of the Source Access component and the Metadata Registration 
component depend on the information exchange protocols and the ECG file formats that the 
ECG sources adopt. But there are differences in ECG file formats and information exchange 
protocols between ECG sources which conform to different standards like DICOM and 
MFER. These differences therefore pose the issue of interoperability with ECG sources. We 
addressed this interoperability issue through the introduction of Generic ECG Source Layer 
(GESL) between the two components and ECG sources, as shown in Fig. 6. The GESL is 
further divided into the Abstract ECG Source (AES) sub-layer and the ECG Source Adaption 
(ESA) sub-layer. The AES sub-layer provides the two components with ECG source-
independent function interface to access ECG files and ECG metadata, and the ESA sub-
layer comprises a set of ECG Source Adaptors, such as DICOM-Adaptor, MFER-Adapter 
and so on, each of which provides an ECG source-specific implementation of the ECG 
source-independent function interface. 
 

 
Fig. 6. Generic ECG Source Layer (GESL) 
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one hand, a user may request access to ECG data in hospitals other than his/her home 
hospital. The user relevant attributes need to be transferred from his/her home hospital to 
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so what user relevant attributes are required for a hospital to evaluate authorization policies 
in making an access decision may be different among hospitals and unknown to other 
hospitals. Therefore, the access control mechanism should support authorization policy 
exchange and authorization determination among hospitals in an interoperable manner. 
XACML (OASIS, 2005c), an OASIS standard, defines generic authorization architecture and 
the constructs for expressing and exchanging access control policy information using XML. 
SAML (OASIS, 2005a) (OASIS, 2005d), another OASIS standard, is an XML-based 
framework for communicating user authentication, entitlement, and attribute information 
among hospitals. XACML complements SAML so that not only policy decisions, as well as 
the policies themselves, can be exchanged in a standard fashion. Here we present an access 
control architecture based on XACML and SAML for inter-hospital access to ECG data. 

4.3.1 Privacy and security requirements 
A patient’s ECG data are a kind of protected health information. ECG privacy deals with 
controlling who is authorized to access a patient’s ECG data. It involves two aspects. On one 
hand, the access to a patient’s ECG data is restricted to the individuals who need to access in 
order to perform their jobs. On the other hand, patients have the rights to create their 
privacy consent, which defines the rules for sharing and use of their ECG data. 
In order to maintain the privacy of a patient’s ECG data, the access control to be 
implemented has to protect a patient’s ECG data from accidental or intentional disclosure to 
both individuals who have no job-related need to access them and individuals who have 
been denied the privilege to access them by a patient’s privacy consent. 

4.3.2 Two types of access polices based on the RBAC model 
To restrict ECG data accessible to only individuals who have job-related need to access, the 
Role-Based Access Control (RBAC) model (Sandhu et al., 1996) is adopted. An administrator 
can create roles representing the job functions in their hospital, such as those defined in 
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Emergency Care Provider, and Researcher, Patient or Legal Representative. Each role is 
associated with an access rule, termed role privilege rule, which grants or denies the role 
permission to access to patients’ ECG data. Individuals in the hospital may be assigned one 
or more roles representing the job functions they perform. 
Patient privacy consent is also based on the RBAC mode. Each patient’s ECG data is 
associated with an access rule, termed privacy consent rule, which defines which roles or 
which specific individuals may access the ECG data for specific purposes. 
So there are two types of access policies in a hospital. One is a set of role privilege rules, which 
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privacy consent policy. When an individual from Hospital A requests access to a patient’s 
ECG data in Hospital B, the role privilege policy of Hospital A is first applied to making 
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the way from a user to protected resources. PEP is the entry point for an access control 
mechanism. It receives an access request from a user and inquires of the PDP the access 
decision about the received request. Then, it permits or denies access to the resource 
according to the decision rendered by the PDP. 
 

 
Fig. 7. Proposed access control architecture 

As Fig. 7 depicts, our access control architecture employs two PEPs and two PDPs in every 
participating hospital. The two PEPs are the role privilege policy enforcement point 
(RP_PEP) and privacy consent policy enforcement point (PC_PEP), and the two PDPs are 
the role privilege policy decision point (RP_PDP) and privacy consent policy decision point 
(PC_PDP). Suppose the Hospital A deploys a RP_PEP, named RP_PEPA, and a PC_PEP, 
named PC_PEPA, and also provides an ECG Querist, named ECG QueristA. The RP_PEPA 
receives a request from a user of Hospital A, who requests the invocation of the ECG 
QueristA to query for a patient’s ECG data. The RP_PEPA sends a decision request to the 
RP_PDPA. The RP_PDPA checks whether the user is allowed to invoke the ECG QueristA 
according to the role privilege policy and returns a response of permit or deny. In case of a 
permit response, the RP_PEPA invokes the ECG QueristA for the user. The ECG QueristA 
queries the ECG registry and presents the query result on behalf of the user. When the user 
requests the retrieval of an ECG document in the query result, the ECG QueristA will 
forward the retrieval request along with the user relevant attributes required for making a 
decision about the request to the PC_PEPB. The PC_PEPB sends a decision request to the 
PC_PDPB. The PC_PDPB checks whether the user is permitted to access the requested ECG 
document according to the privacy consent policy and returns a response of permit or deny.  
In case of a permit response, the PC_PEPB invokes the ECG ProviderB, which is the ECG 
Provider of Hospital B, to transmit the requested ECG document to the user. 
2. User Attributes Transfer for Privacy Consent Policy Decision 
The hospital where a user requests the retrieval of an ECG document, like the Hospital A in 
Fig. 7, and the hospital that holds the ECG to be retrieved, like the Hospital B in Fig. 7, may 
be different. When the PC_PDP in an hospital makes a decision about a user’s request for 
the retrieval of an ECG document of this hospital, it requires the user relevant attributes to 
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query for a set of applicable privacy consent policies of this ECG document. Because privacy 
consent policies of different hospitals may be different, the required user relevant attributes 
may be different. So when the ECG Querist in an hospital forwards a retrieval request from 
its user to the PC_PEP of the hospital that holds the ECG document to be retrieved, the ECG 
Querist has to know what user relevant attributes should be passed along with the user 
request. Our solution to this problem is as follows: 
 While the ECG Provider in an hospital registers an ECG document for sharing, the 

information of what user attributes are required for the privacy consent policy decision 
on the ECG document is submitted to the ECG registry along with the metadata about 
the ECG document. 

 While the ECG Querist in an hospital queries the ECG registry for a patient’s ECG data, 
the query result from the ECG registry contains not only the metadata about the ECG 
data which matches the query criteria and the URLs of these ECG data, but also the 
information of what user attributes are required for making a decision about accessing 
each ECG document. 

 While the ECG Querist in an hospital forwards a user’s request for retrieval of an ECG 
document given in the query result, it inquires the user attributes of the authentication 
authority and attribute authority of this hospital and passes the user attributes to the 
PC_PEP of the hospital that holds the ECG document to be retrieved. 

5. Experimental evaluation 
In this section, we analyze the performance of our system by conducting an experimental 
evaluation. To evaluate the performance of the ECG registry and the performance of the 
framework for ECG data dissemination, we constructed an experimental scenario of ECG 
data sharing across two ECG data sources. One of the two ECG data sources is a collection 
of recordings of 12-lead ECGs managed using QB-905D ECG Viewer (NIHON KODEN, 
n.d.), the commercial ECG management software of NIHON KOHDEN Corp. in Japan. The 
other is a collection of DICOM 12-lead ECGs managed using PACSOne (RainbowFish 
Software, n.d.), a DICOM-compliant PACS freeware. The data resident in these two ECG 
data sources were disseminated through the ECG registry and made accessible for the 
retrieval of an individual’s ECG data via a common Web portal. 
The experimental scenario is instantiated through deploying the ECG registry, the ECG 
provider for QB-905D, the ECG provider for PACSOne, and the Web portal on four different 
machines which all have an Intel Dual-core 2.83GHz CPU and 2G memory, and are 
accessible to the Internet. 

5.1 ECG data publishing 
We would like to find the effect of the number of the ECG data published at a time from an 
ECG data source on the time of publishing the ECG data from its data source to the ECG 
registry. The publishing-related time types include: 1) the Extracting Time (Textract), which is 
equal to the time to read the newly generated ECG data from an ECG data source and to 
extract the metadata about all the new ECG data, 2) the Registering Time (Tregister), which is 
equal to the time to request registration of the metadata, validate the metadata and store the 
metadata in the database, and 3) the Total Time (Ttotal), which is equal to the time starting 
from reading the newly generated ECG data from an ECG data source to storing the 
metadata in the database of the ECG registry, i.e. Ttotal = Textract + Tregister. 
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query for a set of applicable privacy consent policies of this ECG document. Because privacy 
consent policies of different hospitals may be different, the required user relevant attributes 
may be different. So when the ECG Querist in an hospital forwards a retrieval request from 
its user to the PC_PEP of the hospital that holds the ECG document to be retrieved, the ECG 
Querist has to know what user relevant attributes should be passed along with the user 
request. Our solution to this problem is as follows: 
 While the ECG Provider in an hospital registers an ECG document for sharing, the 

information of what user attributes are required for the privacy consent policy decision 
on the ECG document is submitted to the ECG registry along with the metadata about 
the ECG document. 

 While the ECG Querist in an hospital queries the ECG registry for a patient’s ECG data, 
the query result from the ECG registry contains not only the metadata about the ECG 
data which matches the query criteria and the URLs of these ECG data, but also the 
information of what user attributes are required for making a decision about accessing 
each ECG document. 

 While the ECG Querist in an hospital forwards a user’s request for retrieval of an ECG 
document given in the query result, it inquires the user attributes of the authentication 
authority and attribute authority of this hospital and passes the user attributes to the 
PC_PEP of the hospital that holds the ECG document to be retrieved. 

5. Experimental evaluation 
In this section, we analyze the performance of our system by conducting an experimental 
evaluation. To evaluate the performance of the ECG registry and the performance of the 
framework for ECG data dissemination, we constructed an experimental scenario of ECG 
data sharing across two ECG data sources. One of the two ECG data sources is a collection 
of recordings of 12-lead ECGs managed using QB-905D ECG Viewer (NIHON KODEN, 
n.d.), the commercial ECG management software of NIHON KOHDEN Corp. in Japan. The 
other is a collection of DICOM 12-lead ECGs managed using PACSOne (RainbowFish 
Software, n.d.), a DICOM-compliant PACS freeware. The data resident in these two ECG 
data sources were disseminated through the ECG registry and made accessible for the 
retrieval of an individual’s ECG data via a common Web portal. 
The experimental scenario is instantiated through deploying the ECG registry, the ECG 
provider for QB-905D, the ECG provider for PACSOne, and the Web portal on four different 
machines which all have an Intel Dual-core 2.83GHz CPU and 2G memory, and are 
accessible to the Internet. 

5.1 ECG data publishing 
We would like to find the effect of the number of the ECG data published at a time from an 
ECG data source on the time of publishing the ECG data from its data source to the ECG 
registry. The publishing-related time types include: 1) the Extracting Time (Textract), which is 
equal to the time to read the newly generated ECG data from an ECG data source and to 
extract the metadata about all the new ECG data, 2) the Registering Time (Tregister), which is 
equal to the time to request registration of the metadata, validate the metadata and store the 
metadata in the database, and 3) the Total Time (Ttotal), which is equal to the time starting 
from reading the newly generated ECG data from an ECG data source to storing the 
metadata in the database of the ECG registry, i.e. Ttotal = Textract + Tregister. 
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c. Total time 

Fig. 8. Publishing time for the different numbers of ECG data published at a time 
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We measured the time to publish the ECG documents hold in the QB-905D and the time to 
publish the ECG documents hold in the PACSOne. Table 1 shows the time taken to publish 
the different numbers (1, 4, and 16) of ECG documents at a time from each of the two ECG 
data sources. The measurements of publishing time revealed that 1) the extracting time, 
registering time and total time were larger with increase of the number of ECG data 
published at a time (Fig. 8), but their ratios of increase were less than that of the number of 
ECG data published at a time (i.e. 4), 2) the extracting time for different ECG data sources 
were different due to the different data accessing mechanisms of the ECG data sources, and 
3) the registering time for the different ECG data sources were the same, because they only 
depend on the performance of the ECG registry. 
 

 

Number of ECG data  
published at a time from

QB-905D 

Number of ECG data  
published at a time from

PACSOne 
1 4 16 1 4 16 

Ttotal 1.29 3.99 12.21 1.54 4.72 14.30 

Textract 0.58 1.97 6.42 0.83 2.69 8.47 

Tregister 0.71 2.02 5.79 0.71 2.03 5.83 

Table 1. Publishing time (measured in seconds) for the different numbers of ECG documents 
published at a time from an ECG data source 

5.2 The ECG registry 
We would like to find the effect of some factors such as the size of the ECG registry and the 
distribution of the ECG data that match the query criterion on the time taken to query the 
ECG registry for a patient’s ECG data. The querying time includes the time to request the 
“Query” service of the ECG registry, the time to validate the query criterion, the time to 
query the database of the ECG registry, and the time to return the query result. 
We collected the time results of performing the queries for patients’ ECG data on the 
different ECG registry sizes. The queries were aimed at the three kinds of patients: 1) whose 
ECG data that match some query criterion are distributed only in the QB-905D, 2) whose 
ECG data that match some query criterion are distributed only in the PACSOne, and 3) 
whose ECG data that match some query criterion are distributed in the QB-905D and in the 
PACSOne. Table 2 records the time taken to query for those patients’s ECG data. As the 
chart in Fig. 9 shows, the querying time increased as the size of the ECG registry increased, 
but it was not affected by the distribution of the ECG data that match the query criterion. 
 

Distribution of the ECG data 
that match the query criteria 

Registry size in number of entries 
1 4 16 64 256 

QB-905D only 0.043 0.049 0.059 0.082 0.164 
PACSOne only - 0.048 0.059 0.083 0.167 

QB-908D and th PACSOne - 0.048 0.059 0.082 0.166 

Table 2. Querying time (measured in seconds) for patients’ ECG data 
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Fig. 9. Querying Time for the different sizes of the ECG registry 

6. Conclusions 
To broaden the exchange of ECG data from intra-hospital to inter-hospital can improve the 
ease of access to a patient’s previous ECG data, and thus better facilitate serial ECG analysis 
in clinical practice. We report here a significant effort to provide a platform for inter-hospital 
exchange of ECG data, i.e., the Web-based system for the search and retrieval of a patient’s 
ECG data across multiple hospitals. We evaluated the performance of the system in an 
experimental scenario. The experimental results suggest desirable effectiveness and 
efficiency of the system. 
The contributions of this study are: 1) the metadata-based approach to facilitate the ECG 
data discovery and retrieval, including the metadata conceptual model for ECG data 
resources, and the ECG registry for disseminating and discovering ECG data based on the 
metadata conceptual model, 2) the access control mechanism to protect the ECG data in a 
hospital from disclosure to both the individuals who have no job-related need to access and 
the individuals who have been denied the privilege to access by a patient’s privacy consent. 
Future research will focus on the using of the information that has been exchanged across 
hospitals, and some issues, such as shared data types, terminologies, and coding schemes, 
will be studied. 
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