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Preface

CMV is a prevalent viral pathogen that rarely causes recognisable symptoms in immu‐
nocompetent hosts. CMV is the strangest virus. It has 200 genes but needs only 30 to
replicate. It infects everyone but few people have heard of it. We carry it all our lives
but it can rarely be isolated from blood. Up to 23% of CD8 T-cells can be specific for
CMV in older healthy adults, despite undetectable viral load. CMV-specific T-cells have
a “worn out” phenotype, likely gained from lifelong surveillance of persistent CMV
which re-awakens in response to stresses or inflammation.

CMV causes distinct patterns of disease in different classes of immunodeficient pa‐
tients. This includes retinitis in HIV patients, pneumonitis after transplantation and
deafness in babies. This book includes chapters focussing on different groups of indi‐
viduals at risk.

CMV reactivation (in previously seropositive recipients) or primary infection (in any
recipient) is the most common infectious complication in renal transplantation. In the
1970’s one in three recipients experienced pathologies associated with CMV. In most
countries, prophylaxis (valganciclovir) is routinely administered for 12-26 weeks after
transplantation. However CMV remains a significant cause of graft loss and the opti‐
mal duration of prophylaxis is unclear. In the longer term, CMV reactivations are im‐
plicated in deterioration in renal function, cardiovascular disease and perhaps type II
diabetes.

CMV has also been anecdotally linked with cardiovascular disease and in vitro studies
show increased expression of adhesion molecules in endothelial tissues infected with
CMV. One study linked T-cell responses to CMV with cardiovascular symptoms (athe‐
rosclerosis) in HIV patients. CMV-DNA has been found in tissues removed during sur‐
gery for abdominal aortic aneurysm and CMV seropositivity is more frequent in
coronary artery disease requiring surgery. In HIV patients, stronger T-cell responses to
CMV (considered an indication of exposure to CMV rather protection) associate with
cardiovascular changes.

In this book we also consider CMV in the developing world where it has been compre‐
hensively ignored. However this must change as ART is rolled out for HIV patients
worldwide and transplantation becomes feasible in South America, Africa and Asia.
We need to understand the dynamic role of CMV in these populations.

Finally we need to understand how infection of so few cells with CMV has such dra‐
matic effects. Perhaps CMV has effects even broader than we realise. CMV is a highly
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evolved virus. The last chapter discusses the need for novel therapeutics to reduce the
impact of CMV infection in at risk groups.

Patricia Price
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XII Preface
Chapter 1

Hearing Loss in Children with Congenital
Cytomegalovirus Infection

Satoshi Iwasaki and Shin-ich Usami

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/56160

1. Introduction

Sensorineural hearing loss (SNHL) is a common birth defect. The genetic origins of SNHL can
be identified in half of the prelingual cases; in the others, SNHL is caused by environmental
or unidentified genetic factors. The most common environmental cause of SNHL is congenital
cytomegalovirus (CMV) infection. CMV is also the most common cause of intrauterine and
congenital viral infection, affecting 0.5% to 2.5% of all live neonates [1]. While 90% of CMV-
infected children are asymptomatic at birth, 10% of those exhibit clinically apparent sequelae
at birth, including SNHL, mental retardation, motor disability, and microcephaly [1-4]. Recent
studies have revealed that children with asymptomatic congenital CMV infection are at risk
of late-onset SNHL and/or deterioration of SNHL during early childhood. These developments
may not appear until months or even years following birth. The frequency of SNHL associated
with asymptomatic congenital CMV infection reportedly ranges from 13% to 24% [5-9].
Although asymptomatic CMV infection is associated with a lower incidence of SNHL than
symptomatic CMV infection, SNHL caused by congenital CMV often remains undiagnosed
because maternal screening for CMV infection is not routinely conducted and the detection of
SNHL during newborn hearing screening (NHS) tests is difficult [7, 10].

Hearing loss is  detected in approximately 50% of  children with symptomatic  congenital
CMV  infection.  In  66%  of  these  patients,  hearing  loss  will  deteriorate  [3,  11]. Children
with symptomatic congenital CMV infection are easily identified at birth. In children with
symptomatic infection, intrauterine growth retardation and petechiae have been associat‐
ed with the development of hearing loss [12]. SNHL is diagnosed in 7%–25% of children
with asymptomatic congenital CMV infection. Rates of delayed-onset SNHL, progressive
SNHL,  and  improvement of  SNHL are  reported  to  be  11%–18%,  23%–62%,  and 23% –
47%, respectively [5-9].

© 2013 Iwasaki and Usami; licensee InTech. This is an open access article distributed under the terms of the
Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

© 2013 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.
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Thus, the incidence of asymptomatic CMV infection and resulting SNHL may be higher,
making it the leading cause of SNHL in children. Treatment of children with congenital CMV
infection can prevent late-onset SNHL and/or deterioration of SNHL during early childhood.
Cochlear implantation is also effective for the development of speech perception and auditory
skills for deaf children with congenital CMV infection. Therefore, early identification of
congenital CMV infection is very important.

2. Epidemiology of hearing-impaired children with congenital CMV
infection

Of the 12,599 pregnant women included in a prospective study [13] conducted where from
June 1996 to December 2003, maternal ages were as follows: <20 years, 1.6%; 20–24 years, 14.7%;
25–29 years, 41.4%; 30–34 years, 28.6%; 35–39 years, 7.9%; and >40 years, 0.8%. The annual
seropositivity rate decreased over the 8-year study period, particularly during the last 4 years.
The seropositivity rate of CMV immunoglobulin G (IgG) antibody was 75.3% in the sample as
a whole. The seronegativity rate was 23.6%, and the percentage of cases borderline positive
for IgG antibody was 1%. The seronegativity rate of CMV IgM antibody was 94.8% in the
sample as a whole. The seropositivity rate was 2.2%, and 3% of cases were borderline positive
for CMV IgM antibody. During the study period, in the cases positive for IgM antibody (n =
146), borderline positive for IgM antibody (n = 73), and borderline positive for IgG antibody
(n = 14) and in cases with seroconversion of IgG antibody (n = 3), neonatal urine was analyzed
for CMV DNA. Seroconversion of CMV IgG antibody occurred in 0.32% of the 929 cases
negative for IgG antibody. Congenital CMV infection was identified in 18 infants by polymer‐
ase chain reaction (PCR) analysis of urine. Follow-up was conducted in these cases.

The symptoms at birth and sequelae observed during the first 6 months of life in the 18 children
with congenital CMV infection are shown in Table 1. Among these infants, 2 children (11.1%)
were symptomatic and the remaining 16 (88.9%) were asymptomatic. In this study, newborn
infants were considered symptomatic if central nervous system involvement such as micro‐
cephaly or ventricular dilatation was detected. SNHL was detected in 1 child (50%) with
symptomatic infection and in 4 children (25%) with asymptomatic infection. Profound
unilateral SNHL had developed in the child with symptomatic infection. In the 4 children with
asymptomatic infection, the severity of SNHL varied from mild unilateral loss to profound
bilateral loss. Of the 4 children, unilateral SNHL was identified in 3 (75%). Mild unilateral
SNHL occurred in 2 children (66.7%), and profound unilateral loss occurred in 1 child (33.3%).
Profound bilateral SNHL occurred in 1 child with asymptomatic infection. The unilateral
hearing loss in case 1 was detected by a neonatal automatic auditory brainstem response (ABR)
screener. SNHL in the other 3 children was detected by conventional ABR. Table 2 shows a
summary of the findings from longitudinal audiological evaluations in the 5 children with
asymptomatic congenital CMV infection. On subsequent audiological testing, delayed-onset
SNHL was detected in 2 children who had passed the newborn hearing screening (NHS) test
(1 bilateral and 1 unilateral). Two cases (40%) had progressive hearing loss and 2 (40%) had

Manifestations of Cytomegalovirus Infection2

improvement of hearing loss from the initial abnormal ABR (profound unilateral loss and

profound bilateral loss, respectively).

Symptoms Audiologic examinations

Case 1 Not found Automatic ABR: unilateral REFER

ABR: unilateral moderate hearing loss

Case 2 Not found ABR: unilateral moderate hearing loss

Case 3 Not found ABR: unilateral profound hearing loss

Case 4 Not found ABR: bilateral severe hearing loss

Case 5 Not found Automatic ABR: bilateral PASS

Case 6-16 Not found ABR: normal

Case 17 Microcephaly

Ventricular dilatation

ABR: unilateral profound hearing loss

Case 18 Microcephaly

Ventricular dilatation

Heart anomaly

ABR: normal

ABR: auditory brainstem response. This table is cited from reference [11].

Table 1. Initial symptoms and audiologic results during the first 6 months of life in 18 children with congenital CMV
infection.

Initial hearing loss Results of follow-up audiologic examination Outcome

Age Hearing loss Characteristic

Case 1 Unilateral moderate

(Unilateral REFER)

36 mo Bilateral

profound

Delayed-onset

Progressive

Cochlear implantation

(39 mo)

Case 2 Unilateral moderate 53 mo Unilateral

moderate

Fluctuating Normal speech development

Case 3 Unilateral profound 53 mo Unilateral

mild

Fluctuating

Improvement

Normal speech development

Case 4 Bilateral severe 17 mo Normal Fluctuating

Improvement

Normal speech development

Case 5 Normal

(Bilateral PASS)

26 mo Bilateral

profound

Delayed-onset

Progressive

Cochlear implantation

(29 mo)

SNHL: sensorineural hearing loss. This table is cited from reference [11].

Table 2. Results of longitudinal audiologic examinations in 5 children with SNHL caused by asymptomatic CMV
infection.

Hearing Loss in Children with Congenital Cytomegalovirus Infection
http://dx.doi.org/10.5772/56160
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In this prospective study, the rates of delayed-onset SNHL, progressive SNHL, and improve‐
ment of SNHL were 12%, 40%, and 40%, respectively. Although a low rate of fetal CMV
infection was observed, the results of the present study regarding the rate of SNHL are in
accordance with the findings of those previous studies. The prevalence of congenital CMV
infection is affected by the socioeconomic and geographic differences, but it seems to be no
differences on characteristics of hearing loss induced by congenital CMV infection.

Because they develop later, both delayed-onset and progressive hearing loss frequently remain
undiagnosed during universal newborn hearing screening (NHS) test [7, 10]. The 1994 Joint
Committee on Infant Hearing [14] pointed out that additional hearing evaluations after
universal NHS are required to detect delayed-onset hearing loss. Combined neonatal screening
for CMV infection and repeated auditory evaluation should be considered, particularly for
children with asymptomatic congenital CMV infection. Counseling of pregnant women on
prevention of CMV infection is also important.

2.1. Retrospective study of congenital CMV infection

Hearing loss in children with congenital CMV infection often presents at birth; however, in
many instances, it may develop after months or even years. One report stated that children
with normal hearing at 6 months of age develop hearing loss at a rate of approximately 1% per
year; the cumulative risk of late-onset hearing loss is substantial (6.9%) in a population of in‐
fants with asymptomatic congenital CMV infection [15]. Speech is often delayed in children
with bilateral hearing loss. For cases of severe bilateral SNHL, Ogawa et al. [16] reported that
congenital CMV infection could be diagnosed through the detection of CMV DNA in the dried
umbilical cord. In addition, genetic defects (particularly those related to GJB2) were identified
in 15% and 30% of the children, respectively. However, the etiology of pediatric SNHL, in‐
cluding mild to moderate and unilateral SNHL, remains uncertain. In a study of congenital
CMV infection retrospectively diagnosed by the detection of CMV DNA extracted from dried
umbilical cord specimens, the prevalence of CMV in children with unilateral or bilateral
SNHL was investigated. In many of these cases, SNHL developed several months or even
years after birth.

In total, 134 patients (70 males and 64 females) with bilateral (n = 46; 34.3%) or unilateral (n =
88; 65.7%) SNHL were evaluated. These cases were referred to the Department of Otolaryng‐
ology, Shinshu University School of Medicine from May 2008 to September 2009 (Table 3) [17].
The age of these children ranged from 1 month to 138 months (mean age: 37.7 ± 36.2 months).
In children with bilateral SNHL, both genetic testing for deafness and CMV DNA analysis
were performed. For children with unilateral SNHL, CMV DNA analysis and genetic testing
for gene mutations of GJB2, Mitochondrial1555 were performed. Objective audiometric
evaluation was performed for each patient using ABR and auditory steady-state evoked
response systems (MASTER 580-NAVPRO; NIHON KOHDEN Co., Ltd, Tokyo, Japan).
Behavioral audiological tests and/or pure-tone audiometry were also performed. Hearing
levels were classified into 2 categories on the basis of the severity of hearing loss in the worse
ear as severe (>70 dB) to profound (>90 dB) and mild (20–40 dB) to moderate (41–70 dB). Follow-
up hearing assessments were performed at intervals of 6–12 months. Progressive hearing loss
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was defined as a decrease in hearing of ≥10 dB at 1 or more frequencies. Fluctuating hearing
loss was defined as a decrease in hearing of >10 dB followed by an improvement of >10 dB at
1 or more frequencies. To analyze congenital CMV infection, CMV DNA quantitative PCR
(qPCR) analysis was performed. Prior to qPCR analysis, total DNA, including genomic DNA
and CMV DNA, was extracted from preserved dried umbilical cords. The results of this study
revealed that in 9.0% (12/134) of children, SNHL could be attributed to congenital CMV
infection. CMV DNA from preserved umbilical cords was detected in 8.7% (4/46) of children
with bilateral SNHL and 9.1% (8/88) of those with unilateral SNHL. Congenital CMV infection
caused bilateral severe-to-profound SNHL, bilateral mild-to-moderate SNHL, unilateral
severe-to-profound SNHL, and unilateral mild-to-moderate SNHL in 14.3% (4/28), 0% (0/18),
9.6% (7/73), and 6.7% (1/15) of hearing-impaired children, respectively. This study also
revealed that both congenital and late-onset SNHL could be caused by congenital CMV
infection.

Hearing loss Gender Hearing level Severe-profound HL Mild-moderate HL

(n) (dB) n Diagnostic age n Diagnostic age

Total

(N=134)

M: 70, F: 64 101

(75.4%)

34.4±34.7 mo 33

(24.6%)

48.8±38.7 mo

Bilateral HL

(N=46)

M: 31, F: 15 71.8 dB [R]

71.7 dB [L]

28

(20.9%)

16.6±19.9 mo 18

(13.4%)

11.1±39.1 mo

Unilateral HL

(N=88)

M: 39, F: 49 89.5 dB (W)

13.6 dB (B)

72

(54.5%)

41.2±36.6 mo 15

(11.2%)

40.3±36.8 mo

HL: hearing loss. Diagnostic age: age diagnosed as hearing loss.

M: male, F: female. R: right, L: left. B: better ear, W: worse ear. This table is cited from reference [16].

Table 3. Summary of characteristics of children with bilateral or unilateral hearing loss.

Table 4 shows the clinical characteristics of 12 children in whom CMV DNA was identified.
Of these 12 children, bilateral SNHL was detected in 4 and unilateral SNHL in 8. All 4 children
with bilateral SNHL had late-onset profound SNHL. Hearing fluctuation and PASS at the NHS
test were confirmed in 3 children (75%). Of the 8 children with unilateral SNHL, detectable
defects were confirmed in 2 children. Hearing fluctuation was detected in only 1 child (12.5%).
No inner ear anomaly was found in any of the 8 children with unilateral SNHL.

Retrospective diagnosis of congenital CMV infection is important to improve our understand‐
ing of the etiology of pediatric SNHL. In previous reports (Table 5), the frequency of congenital
CMV infection in children with bilateral SNHL has varied from 3% to 36% because of variations
in parameters (number of subjects, severity of SNHL) and methods [CMV IgM testing, DNA
urinalysis, DNA from dried blood spots (DBS) in Guthrie cards] [19-24]. In 2 Japanese studies
based on the retrospective diagnostic method of analysis of preserved dried umbilical cords,
congenital CMV infection was detected in 10%–12% of children with bilateral SNHL [25, 26];
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In this prospective study, the rates of delayed-onset SNHL, progressive SNHL, and improve‐
ment of SNHL were 12%, 40%, and 40%, respectively. Although a low rate of fetal CMV
infection was observed, the results of the present study regarding the rate of SNHL are in
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SNHL was investigated. In many of these cases, SNHL developed several months or even
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In total, 134 patients (70 males and 64 females) with bilateral (n = 46; 34.3%) or unilateral (n =
88; 65.7%) SNHL were evaluated. These cases were referred to the Department of Otolaryng‐
ology, Shinshu University School of Medicine from May 2008 to September 2009 (Table 3) [17].
The age of these children ranged from 1 month to 138 months (mean age: 37.7 ± 36.2 months).
In children with bilateral SNHL, both genetic testing for deafness and CMV DNA analysis
were performed. For children with unilateral SNHL, CMV DNA analysis and genetic testing
for gene mutations of GJB2, Mitochondrial1555 were performed. Objective audiometric
evaluation was performed for each patient using ABR and auditory steady-state evoked
response systems (MASTER 580-NAVPRO; NIHON KOHDEN Co., Ltd, Tokyo, Japan).
Behavioral audiological tests and/or pure-tone audiometry were also performed. Hearing
levels were classified into 2 categories on the basis of the severity of hearing loss in the worse
ear as severe (>70 dB) to profound (>90 dB) and mild (20–40 dB) to moderate (41–70 dB). Follow-
up hearing assessments were performed at intervals of 6–12 months. Progressive hearing loss
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was defined as a decrease in hearing of ≥10 dB at 1 or more frequencies. Fluctuating hearing
loss was defined as a decrease in hearing of >10 dB followed by an improvement of >10 dB at
1 or more frequencies. To analyze congenital CMV infection, CMV DNA quantitative PCR
(qPCR) analysis was performed. Prior to qPCR analysis, total DNA, including genomic DNA
and CMV DNA, was extracted from preserved dried umbilical cords. The results of this study
revealed that in 9.0% (12/134) of children, SNHL could be attributed to congenital CMV
infection. CMV DNA from preserved umbilical cords was detected in 8.7% (4/46) of children
with bilateral SNHL and 9.1% (8/88) of those with unilateral SNHL. Congenital CMV infection
caused bilateral severe-to-profound SNHL, bilateral mild-to-moderate SNHL, unilateral
severe-to-profound SNHL, and unilateral mild-to-moderate SNHL in 14.3% (4/28), 0% (0/18),
9.6% (7/73), and 6.7% (1/15) of hearing-impaired children, respectively. This study also
revealed that both congenital and late-onset SNHL could be caused by congenital CMV
infection.
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(75.4%)
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(24.6%)
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(N=46)

M: 31, F: 15 71.8 dB [R]

71.7 dB [L]

28

(20.9%)

16.6±19.9 mo 18

(13.4%)

11.1±39.1 mo
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(N=88)

M: 39, F: 49 89.5 dB (W)
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72

(54.5%)

41.2±36.6 mo 15

(11.2%)

40.3±36.8 mo

HL: hearing loss. Diagnostic age: age diagnosed as hearing loss.

M: male, F: female. R: right, L: left. B: better ear, W: worse ear. This table is cited from reference [16].

Table 3. Summary of characteristics of children with bilateral or unilateral hearing loss.

Table 4 shows the clinical characteristics of 12 children in whom CMV DNA was identified.
Of these 12 children, bilateral SNHL was detected in 4 and unilateral SNHL in 8. All 4 children
with bilateral SNHL had late-onset profound SNHL. Hearing fluctuation and PASS at the NHS
test were confirmed in 3 children (75%). Of the 8 children with unilateral SNHL, detectable
defects were confirmed in 2 children. Hearing fluctuation was detected in only 1 child (12.5%).
No inner ear anomaly was found in any of the 8 children with unilateral SNHL.

Retrospective diagnosis of congenital CMV infection is important to improve our understand‐
ing of the etiology of pediatric SNHL. In previous reports (Table 5), the frequency of congenital
CMV infection in children with bilateral SNHL has varied from 3% to 36% because of variations
in parameters (number of subjects, severity of SNHL) and methods [CMV IgM testing, DNA
urinalysis, DNA from dried blood spots (DBS) in Guthrie cards] [19-24]. In 2 Japanese studies
based on the retrospective diagnostic method of analysis of preserved dried umbilical cords,
congenital CMV infection was detected in 10%–12% of children with bilateral SNHL [25, 26];
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however, these studies included few subjects (10–26 cases). In children with unilateral SNHL,
CMV DNA from preserved umbilical cords was detected in 9.1% (8/88). The frequency of
congenital CMV infection was similar in children with unilateral and bilateral SNHL. It has
been speculated that approximately 10% of SNHL in children is caused by congenital CMV
infection. Few reports have examined the frequency of congenital CMV infection using
retrospective diagnostic methods in children with unilateral SNHL. However, using the CMV
DNA detection method, 25% (1/4) [16] and 19% (8/42) [19] of children with unilateral SNHL
were diagnosed with congenital CMV infection.

Case no. Sex Diagnostic age
Bilateral/

Unilateral
Severity

Average HL

(R/L: dB)
Onset NHS

1 F 60 mo Bilateral Profound 87.5/108.8 Late Pass

2 F 52 mo Bilateral Profound 87.5/110.0 Late Pass

3 M 50 mo Bilateral Profound 100.0/100.0 Late Pass

4 M 62 mo Bilateral Profound 110.0/46.3 Likely late −

5 M 6 mo Unilateral Profound 32.5/103.8 Congenital Refer (L)

6 M 65 mo Unilateral Profound 107.5/17.5 Unknown −

7 M 50 mo Unilateral Profound 6.3/100.0 Unknown −

8 F 98 mo Unilateral Profound 110.0/15.0 Unknown −

9 F 55 mo Unilateral Profound 15.0/92.5 Late Pass

10 F 2 mo Unilateral Profound 90.0/18.3 Congenital Refer (R)

11 M 80 mo Unilateral Severe 13.3/70.0 Unknown −

12 F 44 mo Unilateral Moderate 15.0/58.3 Late Pass

F: female, M: male. Mo: month. HL: hearing loss. R: right, L: left. NHS: newborn hearing screening.
Diagnostic age: age diagnosed as hearing loss. This table is cited from reference [16].

Table 4. Clinical data of CMV DNA-positive children

2.2. Genetic hearing loss and congenital CMV infection

Genetic testing for deafness has become valuable for precise diagnosis of hearing loss. The
most frequently implicated gene in nonsyndromic hearing loss is GJB2, the most prevalent
gene responsible for congenital hearing loss worldwide. GJB2, SLC26A4, CDH23, and mito‐
chondrial 12s ribosomal RNA (rRNA) are the other major genes that cause hearing loss in
Japan. One study stated that genetic mutations were responsible for deafness in 40%–45% of
children with congenital hearing loss [27]. In our study [17], 10 gene mutations associated with
deafness (GJB2, n = 7; SLC26A4, n = 3) were identified in 21.7% (10/46) of children with bilateral
SNHL. In children with bilateral severe-to-profound SNHL, gene mutations causing deafness
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and CMV DNA positivity were detected in 32.1% (9/28) and 14.3% (4/28) of patients, respec‐
tively [17]. The diagnostic rate has been concluded to be 46.4% (13/28). If analysis of CMV DNA
from preserved dried umbilical cords could be combined with genetic testing for deafness,
approximately 50% of cases of bilateral severe-to-profound hearing loss in children could be
detected.

Congenital CMV infection is also often diagnosed by detecting CMV DNA in urine within the
first 2 weeks of life and serological testing for CMV-specific IgM antibody from mother and
child [28]. In recent years, the detection of CMV DNA by retrospective methods has been more
valuable not only in diagnosing congenital CMV infection during later stages of life but also
in identifying children at highest risk of late-onset and progressive SNHL. Some reports have
stated that DBS stored on Guthrie cards has been used for the retrospective diagnosis of
congenital CMV infections [18, 29]. Similarly, preserved umbilical cords have been recently
used in Japan [25, 26, 30]. The sensitivity varies widely depending on the DNA extraction
method in the DBS case. Some investigators have reported sensitivities of 71%–100% and
specificities of 99%–100% [19, 29]. In this study, the qPCR method and preserved umbilical
cords were used because they were useful for more accurate detection of CMV DNA.

Reference Year Subjects

CMV positive rate Diagnostic

methods
Country

Total Bilateral Unilateral

Barbi et al. [19] 2003 > 40 dBHL 9/79 (11.4%) 1/37 (2.7%) 8/42 (19%) DBS, qPCR Italy

Ogawa et al. [16] 2007 > 20dB, nonsyndromic SNHL 10/67 (10.5%) 9/63 (14.3%) 1/4 (25%) US, PCR Japan

Samileh et al. [21] 2008 > 40 dBHL 33/95 (34.7%) NR/75 NR/20 Cerologic test Iran

Stehel et al. [22] 2008 NHS refer 16/256 (6%) 16/256 (6%) NR DNA from urine USA

Walter et al. [43] 2008 unexplained SNHL 8/35 (22.9%) NR NR DSS, qPCR UK

Mizuno et al. [44] 2008 only bilateral 3/45 (6.7%) 3/45 (6.7%) 0 UC, qPCR Japan

Jakubikova et al. [20] 2009 > 60 dBHL, NHS refer 4/71 (5.6%) 4/55 (7.3%) 0/16 (0%) Cerologic test Slovak Re.

Boudewyns et al. [45] 2009 NHS refer, > 20 dB 4/55 (7.3%) NR NR DBS, qPCR Belgium

Choi et al. [18] 2009 NHS refer 13/479 (2.7%) 13/479 (2.7%) NR DBS, qPCR USA

Tagawa et al. [26] 2009 > 70 dB, deaf school children 3/26 (11.5%) 3/26 (11.5%) 0 (0%) UC, qPCR Japan

Kimani et al. [46] 2010 NHS refer 11/109 (10.1%) 8/92 (8.8%) 3/17 (17.6%) DBS, qPCR USA

Adachi et al. [47] 2010 NHS refer, >35dB, bilateral 13/77 (17%) 13/77 (17%) 0 US, qPCR Japan

NR: not reported. NHS: newborn hearing screening. DBS: dried blood spot. UC: umbilical cord. qPCR: quantitative PCR.

HL: hearing level. SNHL: sensorineural hearing loss. Re.: republic. This table is cited from reference [16].

Table 5. List of previous reports on children with congenital CMV nfection.
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however, these studies included few subjects (10–26 cases). In children with unilateral SNHL,
CMV DNA from preserved umbilical cords was detected in 9.1% (8/88). The frequency of
congenital CMV infection was similar in children with unilateral and bilateral SNHL. It has
been speculated that approximately 10% of SNHL in children is caused by congenital CMV
infection. Few reports have examined the frequency of congenital CMV infection using
retrospective diagnostic methods in children with unilateral SNHL. However, using the CMV
DNA detection method, 25% (1/4) [16] and 19% (8/42) [19] of children with unilateral SNHL
were diagnosed with congenital CMV infection.

Case no. Sex Diagnostic age
Bilateral/

Unilateral
Severity

Average HL

(R/L: dB)
Onset NHS

1 F 60 mo Bilateral Profound 87.5/108.8 Late Pass

2 F 52 mo Bilateral Profound 87.5/110.0 Late Pass

3 M 50 mo Bilateral Profound 100.0/100.0 Late Pass

4 M 62 mo Bilateral Profound 110.0/46.3 Likely late −

5 M 6 mo Unilateral Profound 32.5/103.8 Congenital Refer (L)

6 M 65 mo Unilateral Profound 107.5/17.5 Unknown −

7 M 50 mo Unilateral Profound 6.3/100.0 Unknown −

8 F 98 mo Unilateral Profound 110.0/15.0 Unknown −

9 F 55 mo Unilateral Profound 15.0/92.5 Late Pass

10 F 2 mo Unilateral Profound 90.0/18.3 Congenital Refer (R)

11 M 80 mo Unilateral Severe 13.3/70.0 Unknown −

12 F 44 mo Unilateral Moderate 15.0/58.3 Late Pass

F: female, M: male. Mo: month. HL: hearing loss. R: right, L: left. NHS: newborn hearing screening.
Diagnostic age: age diagnosed as hearing loss. This table is cited from reference [16].

Table 4. Clinical data of CMV DNA-positive children

2.2. Genetic hearing loss and congenital CMV infection

Genetic testing for deafness has become valuable for precise diagnosis of hearing loss. The
most frequently implicated gene in nonsyndromic hearing loss is GJB2, the most prevalent
gene responsible for congenital hearing loss worldwide. GJB2, SLC26A4, CDH23, and mito‐
chondrial 12s ribosomal RNA (rRNA) are the other major genes that cause hearing loss in
Japan. One study stated that genetic mutations were responsible for deafness in 40%–45% of
children with congenital hearing loss [27]. In our study [17], 10 gene mutations associated with
deafness (GJB2, n = 7; SLC26A4, n = 3) were identified in 21.7% (10/46) of children with bilateral
SNHL. In children with bilateral severe-to-profound SNHL, gene mutations causing deafness
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and CMV DNA positivity were detected in 32.1% (9/28) and 14.3% (4/28) of patients, respec‐
tively [17]. The diagnostic rate has been concluded to be 46.4% (13/28). If analysis of CMV DNA
from preserved dried umbilical cords could be combined with genetic testing for deafness,
approximately 50% of cases of bilateral severe-to-profound hearing loss in children could be
detected.

Congenital CMV infection is also often diagnosed by detecting CMV DNA in urine within the
first 2 weeks of life and serological testing for CMV-specific IgM antibody from mother and
child [28]. In recent years, the detection of CMV DNA by retrospective methods has been more
valuable not only in diagnosing congenital CMV infection during later stages of life but also
in identifying children at highest risk of late-onset and progressive SNHL. Some reports have
stated that DBS stored on Guthrie cards has been used for the retrospective diagnosis of
congenital CMV infections [18, 29]. Similarly, preserved umbilical cords have been recently
used in Japan [25, 26, 30]. The sensitivity varies widely depending on the DNA extraction
method in the DBS case. Some investigators have reported sensitivities of 71%–100% and
specificities of 99%–100% [19, 29]. In this study, the qPCR method and preserved umbilical
cords were used because they were useful for more accurate detection of CMV DNA.

Reference Year Subjects

CMV positive rate Diagnostic

methods
Country

Total Bilateral Unilateral

Barbi et al. [19] 2003 > 40 dBHL 9/79 (11.4%) 1/37 (2.7%) 8/42 (19%) DBS, qPCR Italy

Ogawa et al. [16] 2007 > 20dB, nonsyndromic SNHL 10/67 (10.5%) 9/63 (14.3%) 1/4 (25%) US, PCR Japan

Samileh et al. [21] 2008 > 40 dBHL 33/95 (34.7%) NR/75 NR/20 Cerologic test Iran

Stehel et al. [22] 2008 NHS refer 16/256 (6%) 16/256 (6%) NR DNA from urine USA

Walter et al. [43] 2008 unexplained SNHL 8/35 (22.9%) NR NR DSS, qPCR UK

Mizuno et al. [44] 2008 only bilateral 3/45 (6.7%) 3/45 (6.7%) 0 UC, qPCR Japan

Jakubikova et al. [20] 2009 > 60 dBHL, NHS refer 4/71 (5.6%) 4/55 (7.3%) 0/16 (0%) Cerologic test Slovak Re.

Boudewyns et al. [45] 2009 NHS refer, > 20 dB 4/55 (7.3%) NR NR DBS, qPCR Belgium

Choi et al. [18] 2009 NHS refer 13/479 (2.7%) 13/479 (2.7%) NR DBS, qPCR USA

Tagawa et al. [26] 2009 > 70 dB, deaf school children 3/26 (11.5%) 3/26 (11.5%) 0 (0%) UC, qPCR Japan

Kimani et al. [46] 2010 NHS refer 11/109 (10.1%) 8/92 (8.8%) 3/17 (17.6%) DBS, qPCR USA

Adachi et al. [47] 2010 NHS refer, >35dB, bilateral 13/77 (17%) 13/77 (17%) 0 US, qPCR Japan

NR: not reported. NHS: newborn hearing screening. DBS: dried blood spot. UC: umbilical cord. qPCR: quantitative PCR.

HL: hearing level. SNHL: sensorineural hearing loss. Re.: republic. This table is cited from reference [16].
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3. Diagnosis of congenital CMV infection

3.1. Detection methods

The gold standard for diagnosis of congenital CMV infection is isolation of the virus from urine
or saliva in the first 2 weeks of life. However, asymptomatic congenital CMV infection in
children who develop SNHL after the first 2 weeks following birth cannot be diagnosed on the
basis of viral isolation from urine or saliva. Detection of CMV DNA in infant blood or the
umbilical cord using PCR assays is a more feasible method for identifying children with late-
onset SNHL. The method involves analysis of blood stored as DBS on Guthrie cards. In
Japanese culture, the dried umbilical cord is generally stored at home as a memento of the
birth. These specimens are suitable for retrospective diagnosis of congenital CMV infection.
The sensitivity varied widely depending on the DNA extraction method from DBS on Guthrie
cards. Some investigators reported sensitivities of 71-100% and specificities of 99-100% [19,
29]. The qPCR method and dried umbilical cord could be useful for more precise detection of
CMV DNA.

3.2. Serological method

Diagnosis of symptomatic CMV infection is easier in children who display cognitive or
neuromuscular abnormalities than in asymptomatic children with CMV infection. Without
neonatal viral screening, the prevalence of SNHL caused by asymptomatic CMV infection
remains undetermined. To diagnose primary CMV infection, a serological method has been
used [31]. Pregnant women who test positive for CMV IgG seroconversion or CMV IgM
antibody may transmit the virus to the fetus. Production of IgM antibody persists for 6–9
months [28]; therefore, a CMV IgM-positive result alone does not accurately predict the risk
of fetal infection.

3.3. Detection of CMV DNA from umbilical cord

For the detection of congenital CMV infection, CMV DNA qPCR analysis was performed.
Prior to qPCR analysis, total DNA, including genomic DNA and CMV DNA, was extract‐
ed from preserved dried umbilical cords. The procedure is as follows. Each 5-mm tissue
section was incubated in a lysis buffer containing proteinase K and incubated overnight
at  56°C.  Total  DNA  was  extracted  using  the  DNeasy®  Blood  &  Tissue  Kit  (Qiagen
GmbH, Hilden, Germany), according to the manufacturer’s instructions. The total amount
of DNA was measured using the Qubit® Fluorometer with Quant-iT™ dsDNA BR Assay
Kit (Life technologies-Invitrogen,  Carlsbad, CA, USA).  Total  DNA (10 pg) was analyzed
using the Step One Real-Time PCR System (Applied Biosystems,  Foster  City,  CA, USA)
and  TaqMan®  Universal  Master  Mix  II  (Applied  Biosystems).  The  qPCR  primers  and
TaqMan®  probe  used  for  CMV  DNA  qPCR  analysis  were  as  follows:  US14-1F:  5′-
ACGTCCACGTTAGGATGAGG-3′,  US14-1R:  5′-GTATGTGGCGCTTCTCTCGT-3′,  and
US14-1 TaqMan probe: 5′-FAM- AACCTGTGCACCACAGCGCC -TAMRA-3′. To quantify
the  input  DNA  amount  in  each  sample,  qPCR  of  each  genomic  region  was  also  per‐
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formed  using  the  following  primers  and  TaqMan®  probe:  GJB2-2F:  5′-ACGTCCACGT‐
TAGGATGAGG-3′,  GJB2-2:  5′-GTATGTGGCGCTTCTCTCGT-3′,  and  GJB2-2  TaqMan
probe: 5′-FAM- AACCTGTGCACCACAGCGCC -TAMRA-3′. The initial preheating steps
were performed for  2  min at  50°C and 10 min at  95°C.  Following this,  qPCR was per‐
formed for 43 cycles of 15 s at 95°C and 60 s at 60°C. After qPCR analysis, relative CMV
concentrations in each sample were evaluated as ΔCt (delta cycle threshold),  which was
calculated by determining the threshold cycle of  CMV qPCR minus that  of  GJB2  qPCR.
The invader assay described by Abe [32] was used for genetic testing for deafness.

4. Treatment for hearing loss induced by
congenital CMV infection

4.1. Cochlear implantation in children deafened by symptomatic CMV infection

Cochlear implantation for the correction of congenital deafness is an effective way to ensure
the development of speech recognition. Cochlear implantation in children deafened by
symptomatic CMV infection has been reported [33, 34]. The prognosis of children with
symptomatic CMV infection is worse than that of those with asymptomatic CMV infection
with regard to cognitive and neurological development. It has been suggested that cochlear
implantation should be contraindicated for infants with symptomatic CMV infection and
deafness because they are less likely to develop spoken language [35]. In contrast, other reports
[33, 34] have suggested that cochlear implantation may improve quality of life, even if progress
is slower or lesser than that expected in congenitally deaf children not infected with CMV.
Pyman et al. [35] suggested that the prognosis in terms of linguistic outcome after cochlear
implantation is poorer for CMV-infected deaf children than for other congenitally deaf
children because of coexisting central disorders. Wide variation in speech perception and
intelligibility after cochlear implantation has also been reported in children deafened by
symptomatic CMV infection [33]. In that report, poor development in these areas was observed
in 50% of children with symptomatic CMV infection, whereas development similar to that in
congenitally deaf children not infected with CMV was evident in 31% of children and devel‐
opment better than that in noninfected congenitally deaf children was evident in 19% of
children. In addition, a recent study has shown that deafness caused by symptomatic congen‐
ital CMV infection associated with motor and cognitive delays is not a contraindication for
cochlear implantation. Early diagnosis of hearing loss and subsequent cochlear implantation
is important for successful speech perception [34].

4.2. Cochlear implantation in children deafened by asymptomatic CMV infection

The effectiveness of cochlear implantation in children deafened as a result of symptomatic
congenital CMV infection has been evaluated by various groups, but there are only limited
outcome data for deaf children with asymptomatic CMV infection. Children with asympto‐
matic congenital CMV infection have a better prognosis than symptomatic children, but it is
difficult to evaluate the SNHL because children with asymptomatic congenital CMV infection
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3. Diagnosis of congenital CMV infection

3.1. Detection methods

The gold standard for diagnosis of congenital CMV infection is isolation of the virus from urine
or saliva in the first 2 weeks of life. However, asymptomatic congenital CMV infection in
children who develop SNHL after the first 2 weeks following birth cannot be diagnosed on the
basis of viral isolation from urine or saliva. Detection of CMV DNA in infant blood or the
umbilical cord using PCR assays is a more feasible method for identifying children with late-
onset SNHL. The method involves analysis of blood stored as DBS on Guthrie cards. In
Japanese culture, the dried umbilical cord is generally stored at home as a memento of the
birth. These specimens are suitable for retrospective diagnosis of congenital CMV infection.
The sensitivity varied widely depending on the DNA extraction method from DBS on Guthrie
cards. Some investigators reported sensitivities of 71-100% and specificities of 99-100% [19,
29]. The qPCR method and dried umbilical cord could be useful for more precise detection of
CMV DNA.

3.2. Serological method

Diagnosis of symptomatic CMV infection is easier in children who display cognitive or
neuromuscular abnormalities than in asymptomatic children with CMV infection. Without
neonatal viral screening, the prevalence of SNHL caused by asymptomatic CMV infection
remains undetermined. To diagnose primary CMV infection, a serological method has been
used [31]. Pregnant women who test positive for CMV IgG seroconversion or CMV IgM
antibody may transmit the virus to the fetus. Production of IgM antibody persists for 6–9
months [28]; therefore, a CMV IgM-positive result alone does not accurately predict the risk
of fetal infection.

3.3. Detection of CMV DNA from umbilical cord

For the detection of congenital CMV infection, CMV DNA qPCR analysis was performed.
Prior to qPCR analysis, total DNA, including genomic DNA and CMV DNA, was extract‐
ed from preserved dried umbilical cords. The procedure is as follows. Each 5-mm tissue
section was incubated in a lysis buffer containing proteinase K and incubated overnight
at  56°C.  Total  DNA  was  extracted  using  the  DNeasy®  Blood  &  Tissue  Kit  (Qiagen
GmbH, Hilden, Germany), according to the manufacturer’s instructions. The total amount
of DNA was measured using the Qubit® Fluorometer with Quant-iT™ dsDNA BR Assay
Kit (Life technologies-Invitrogen,  Carlsbad, CA, USA).  Total  DNA (10 pg) was analyzed
using the Step One Real-Time PCR System (Applied Biosystems,  Foster  City,  CA, USA)
and  TaqMan®  Universal  Master  Mix  II  (Applied  Biosystems).  The  qPCR  primers  and
TaqMan®  probe  used  for  CMV  DNA  qPCR  analysis  were  as  follows:  US14-1F:  5′-
ACGTCCACGTTAGGATGAGG-3′,  US14-1R:  5′-GTATGTGGCGCTTCTCTCGT-3′,  and
US14-1 TaqMan probe: 5′-FAM- AACCTGTGCACCACAGCGCC -TAMRA-3′. To quantify
the  input  DNA  amount  in  each  sample,  qPCR  of  each  genomic  region  was  also  per‐
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formed  using  the  following  primers  and  TaqMan®  probe:  GJB2-2F:  5′-ACGTCCACGT‐
TAGGATGAGG-3′,  GJB2-2:  5′-GTATGTGGCGCTTCTCTCGT-3′,  and  GJB2-2  TaqMan
probe: 5′-FAM- AACCTGTGCACCACAGCGCC -TAMRA-3′. The initial preheating steps
were performed for  2  min at  50°C and 10 min at  95°C.  Following this,  qPCR was per‐
formed for 43 cycles of 15 s at 95°C and 60 s at 60°C. After qPCR analysis, relative CMV
concentrations in each sample were evaluated as ΔCt (delta cycle threshold),  which was
calculated by determining the threshold cycle of  CMV qPCR minus that  of  GJB2  qPCR.
The invader assay described by Abe [32] was used for genetic testing for deafness.

4. Treatment for hearing loss induced by
congenital CMV infection

4.1. Cochlear implantation in children deafened by symptomatic CMV infection

Cochlear implantation for the correction of congenital deafness is an effective way to ensure
the development of speech recognition. Cochlear implantation in children deafened by
symptomatic CMV infection has been reported [33, 34]. The prognosis of children with
symptomatic CMV infection is worse than that of those with asymptomatic CMV infection
with regard to cognitive and neurological development. It has been suggested that cochlear
implantation should be contraindicated for infants with symptomatic CMV infection and
deafness because they are less likely to develop spoken language [35]. In contrast, other reports
[33, 34] have suggested that cochlear implantation may improve quality of life, even if progress
is slower or lesser than that expected in congenitally deaf children not infected with CMV.
Pyman et al. [35] suggested that the prognosis in terms of linguistic outcome after cochlear
implantation is poorer for CMV-infected deaf children than for other congenitally deaf
children because of coexisting central disorders. Wide variation in speech perception and
intelligibility after cochlear implantation has also been reported in children deafened by
symptomatic CMV infection [33]. In that report, poor development in these areas was observed
in 50% of children with symptomatic CMV infection, whereas development similar to that in
congenitally deaf children not infected with CMV was evident in 31% of children and devel‐
opment better than that in noninfected congenitally deaf children was evident in 19% of
children. In addition, a recent study has shown that deafness caused by symptomatic congen‐
ital CMV infection associated with motor and cognitive delays is not a contraindication for
cochlear implantation. Early diagnosis of hearing loss and subsequent cochlear implantation
is important for successful speech perception [34].

4.2. Cochlear implantation in children deafened by asymptomatic CMV infection

The effectiveness of cochlear implantation in children deafened as a result of symptomatic
congenital CMV infection has been evaluated by various groups, but there are only limited
outcome data for deaf children with asymptomatic CMV infection. Children with asympto‐
matic congenital CMV infection have a better prognosis than symptomatic children, but it is
difficult to evaluate the SNHL because children with asymptomatic congenital CMV infection
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are at risk of development of delayed onset SNHL and progressive SNHL. As a result, they
are also at risk of late-onset learning difficulties and/or progressive learning difficulties.

A prospective study was conducted on deaf children with asymptomatic CMV infection to
assess the development of speech perception and auditory skills. This study examined 2 deaf
infants before and after cochlear implantation using the Infant/Toddler Meaningful Auditory
Integration Scale (IT-MAIS) [36]. Vocalization behavior in case 1 was observed 6 months after
implementation and showed slow improvement but finally overtook after 36 months. After 3
months of cochlear implant use, the 2 children responded to speech and environmental sounds
in everyday situations and interpreted sounds in a meaningful way. They continued to
improve at 36 months postoperatively. IT-MAIS scores in these 2 children were similar to the
mean scores in the 5 congenitally deaf children without CMV infection. No difference was
observed in the effect of early cochlear implantation for deafness induced by CMV infection
between the groups of children. Another group reported that significant improvement in
auditory and language skills could be achieved in cochlear implanted children with asymp‐
tomatic CMV infection, but they did not achieve the same levels of outcome as congenitally
deaf children without CMV infection [37]. They found a wide variation in the outcome of
cochlear implantation in these children and speculated that the variation is related to the
degree of cognitive impairment. There are only a few studies available on outcomes of cochlear
implanted children with asymptomatic CMV infection. Therefore, more studies will be needed
to evaluate the effectiveness of cochlear implantation in these children.

4.3. Treatment for hearing-impaired children with congenital CMV infection

To prevent late-onset and/or deterioration of SNHL, treatment with intravenous ganciclovir
(GCV) and/or oral valganciclovir (VGCV) has been recommended in children with sympto‐
matic congenital CMV disease involving the central nervous system [38-41]. In previous
reports, treatment with intravenous GCV was initiated within the first 10–14 days of life for
2–6 weeks, and GCV doses ranged from 5 to 12 mg/kg twice daily. One report revealed that
in 5 of 9 children with congenital CMV infection and SNHL, treatment with intravenous GCV
induced improvement of SNHL in 2 children and prevented deterioration of SNHL in 5
children [38]. Another report revealed that in 4 of 6 children with congenital CMV infection
and SNHL, treatment with intravenous GCV induced improvement of SNHL in 2 children and
no deterioration of SNHL in 4 children during the 21-month observation period [39]. Im‐
provement of SNHL or maintenance of normal hearing was reported in 84% of children treated
with intravenous GCV and 59% of untreated children. Deterioration of SNHL was reported in
21% of treated children and 68% of untreated children [40]. According to these reports, good
results have been observed in the group of children treated with GCV. Treatment with
intravenous GCV and oral VGCV can prevent the development of SNHL during an 18-month
administration period [41]. Treatment with intravenous GCV has been investigated in hearing-
impaired children with asymptomatic congenital CMV infection. No SNHL was found for 4 –
11 years in 12 children with asymptomatic congenital CMV infection treated with intravenous
GCV, but SNHL developed in 2 of 11 untreated children [42]. Unfortunately there is no
evidence for the efficacy of longer treatment with oral VGCV.
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5. Conclusion

Congenital CMV infection is a major cause of bilateral and unilateral SNHL in children. In
total, 9.0% of SNHL cases of unknown causes (bilateral SNHL: 8.7%, unilateral SNHL: 9.1%)
are attributed to congenital CMV infection. Screening tests such as the detection of CMV DNA
from preserved dried umbilical cords and genetic testing are important for the detection of
SNHL in children. Using this combined methodology, detection of the cause of SNHL is
possible in approximately 50% of children with hearing loss.

Cochlear implantation is effective to ensure the development of speech perception and
auditory skills in deaf children with asymptomatic congenital CMV infection. No significant
difference in growth of meaningful auditory integration was observed between the overall
pediatric cochlear implant population not infected with CMV and that with asymptomatic
CMV infection. Implementation of CMV screening models is important to prevent late-onset
SNHL and deterioration of hearing loss.
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1. Introduction

1.1. HCMV epidemiology in Sub-Saharan Africa

1.1.1. HCMV seroprevalence

There have been over 25 published studies which present HCMV IgG seroprevalence data for
sub-Saharan Africa patient groups and cohorts of healthy blood donors (Table 1). Up to eight
different serology assays were used and older pre-ELISA methods might have slightly
underestimated prevalence [1]. Antibodies to HCMV are generally present in high titres in
seropositive individuals, so the use of different assays is unlikely to have had a major effect [2].
Hence, comparing these studies is primarily confounded by the diverse range of patient groups
tested. Few studies stratify by age, or they do so using different groupings. Most of the studies
use convenience samples, which do not provide accurate population-based estimates of
prevalence.

The most striking observation is that HCMV primary infection appears to be endemic in young
infants. A population-based study in Zambia of 460 healthy infants showed 83% HCMV
seroprevalence by 18 months of age [3](Table 1). This backs up much older studies from the
Gambia [4] and Nigeria [5]. This differs from the results of larger studies in the USA (n = 30,000)
where HCMV seroprevalence ranges from 36% in 6–11 year-olds to 91% in those over 80 years
old. The cumulative incidence of HCMV primary infection was ~1% per year from adolescence
[6]. In the USA, non-white ethnicity and lower socioeconomic status (SES) were linked with
10-30 percentage point increases in seroprevalence [7]. A study of over 20,000 women in the
U.K attending antenatal clinics found similar results, with increasing parity also being linked

© 2013 Bates et al.; licensee InTech. This is an open access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

© 2013 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons 
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, 
and reproduction in any medium, provided the original work is properly cited.
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with increased HCMV seroprevalence. This supports the notion that seronegative adult
women contract primary HCMV infection from children who are shedding virus [8]. Figure
1 presents a model for cumulative HCMV seroprevalence by age with respect to SES, showing
more rapid uptake in low SES communities, and delayed uptake in high SES communities.
Conversely an Israeli study found the effect of ethnicity persisted even when corrected for
gender, education and SES [9], and high HCMV seroprevalence has been described in
populations with high SES groups [10, 11].

Whilst lower SES may be the main driver for endemic infant HCMV primary infection in sub-
Saharan Africa, this is not the whole story. What factors, attributable to low SES, facilitate
earlier HCMV transmission? HCMV is primarily transmitted through body fluids, being shed
in urine, saliva [12, 13] and breast milk [14, 15]. In Nigeria, over-crowding was significantly
associated with being HCMV seropositive, but source of drinking water, place of abode and
type of toilet facility were not [16]. Some individuals remain seronegative into old age - even
in sub-Saharan Africa where most people are infected in infancy. Human genetic variations
may block or impair HCMV primary infection, as is seen with the CCR5 ∆32 mutation and
HIV [17]. HCMV seronegative individuals have increased longevity, possibly linked with
reduced clonal expansion of CD8 T cells and a larger reservoir of circulating naive T cells [18,
19] so early childhood primary infection with HCMV in sub-Saharan Africa may have
profound effects. There is evidence linking early HCMV infections in sub-Saharan Africa with
impaired physical and mental development [3], analogous to the known developmental CNS
defects (hearing loss, mental retardation, cerebral palsy, seizures, chorioretinitis) caused by
congenital HCMV infection [20, 21].

Figure 1. Model for the cumulative prevalence of primary HCMV seroconversion by age with respect to socioeconom‐
ic status (SES) groups.
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Table 1. Comparison of HCMV seroprevalence in different countries * Percentages in bold are the averages within
each group, weighted by study size.
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with increased HCMV seroprevalence. This supports the notion that seronegative adult
women contract primary HCMV infection from children who are shedding virus [8]. Figure
1 presents a model for cumulative HCMV seroprevalence by age with respect to SES, showing
more rapid uptake in low SES communities, and delayed uptake in high SES communities.
Conversely an Israeli study found the effect of ethnicity persisted even when corrected for
gender, education and SES [9], and high HCMV seroprevalence has been described in
populations with high SES groups [10, 11].

Whilst lower SES may be the main driver for endemic infant HCMV primary infection in sub-
Saharan Africa, this is not the whole story. What factors, attributable to low SES, facilitate
earlier HCMV transmission? HCMV is primarily transmitted through body fluids, being shed
in urine, saliva [12, 13] and breast milk [14, 15]. In Nigeria, over-crowding was significantly
associated with being HCMV seropositive, but source of drinking water, place of abode and
type of toilet facility were not [16]. Some individuals remain seronegative into old age - even
in sub-Saharan Africa where most people are infected in infancy. Human genetic variations
may block or impair HCMV primary infection, as is seen with the CCR5 ∆32 mutation and
HIV [17]. HCMV seronegative individuals have increased longevity, possibly linked with
reduced clonal expansion of CD8 T cells and a larger reservoir of circulating naive T cells [18,
19] so early childhood primary infection with HCMV in sub-Saharan Africa may have
profound effects. There is evidence linking early HCMV infections in sub-Saharan Africa with
impaired physical and mental development [3], analogous to the known developmental CNS
defects (hearing loss, mental retardation, cerebral palsy, seizures, chorioretinitis) caused by
congenital HCMV infection [20, 21].

Figure 1. Model for the cumulative prevalence of primary HCMV seroconversion by age with respect to socioeconom‐
ic status (SES) groups.
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Table 1. Comparison of HCMV seroprevalence in different countries * Percentages in bold are the averages within
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1.1.2. Molecular epidemiology

HCMV has a large genome, predicted to encode at least 165 proteins. This includes hyper‐
variable segments [38-41] containing genes which encode membrane-bound glycoproteins.
These are embedded in the virion envelope or presented on the surface of infected cells, making
them candidate targets for the host immune response. Most published studies of polymor‐
phisms in these glycoproteins have concentrated on possible associations with and clinical
disease or cellular tropism. No compelling connections have been reported in the literature to
date, but much of the sequence data is from isolates from Europe, North America and Japan.

There is little information regarding HCMV genotypes in Africa. In an early study investigat‐
ing geographic differences in the frequency of certain HCMV genotypes from immunocom‐
promised patients, they found that the distribution differed between Zimbabwe, Italy and
California [42]. This study was limited to UL55 (virion surface glycoprotein gB: involved in
cell entry and signaling)[43] which is relatively conserved between strains [40] and not linked
with more variable glycoproteins [44]. A study of HCMV strains from 19 Malawian Kaposi's
sarcoma (KS) patients and 58 of their first-degree relatives detected HCMV readily in mouth
rinse and urine specimens [45]. Two hypervariable glycoprotein genes were sequenced: gO
(UL74) and gN (UL73) involved in promoting focal spread [46, 47] and virion morphogenesis
and possible latency associated functions respectively [48, 49]. Studies from Zambia segregate
variants of these two glycoproteins into eight linked groups [50, 51]. These studies and others
from Africa have found evidence of co-infections with multiple HCMV strains [50, 52] and no
evidence for geographic separation. This data contrasts with other herpesviruses such as
HHV-6 [53] and KSHV [54]. The high prevalence of co-infections with multiple strains, in a
broad range of patients, complicates genotyping studies and attempts to identify disease links
with specific glycoprotein genotypes. New techniques combining PCR amplification with
RFLP digestion could improve analysis of multiple strains and recombinants in pathological
samples [55].

2. HCMV infections and HIV in Sub-Saharan Africa

2.1. General considerations

sub-Saharan Africa is at the epicentre of the HIV pandemic, with 1,900,000 new infections
(18.9% children ≤ 14yrs of age) in 2010, and a total of 23.2 million people (13.4% children ≤
14yrs of age) living with HIV. Progress is slow but new infections are down 16% on 2001, and
HIV prevalence has declined in some sub-Saharan African countries. With the roll out of
antiretroviral therapy (ART), the numbers of people dying from HIV is also down (30%
decrease between 2004 and 2010) [56]. HCMV is an apex opportunistic pathogen, linked with
HIV disease progression [57-59], so the HIV pandemic combined with over 80% of primary
HCMV infections occurring during infancy, creates a unique environment. Active HCMV
infections are common and present as complex co-infections with other viral, bacterial and
fungal infections [60, 61]. A broader awareness of the frequency of co-infections and the
complex interplay between different pathogens is needed.
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2.2. Disease presentations and co-morbidity

The most common presentation of HCMV infection in HIV-infected patients is HCMV
pneumonia, where co-infection with other respiratory pathogens such a tuberculosis and
Pneumocystis jirovecci, is almost ubiquitous [50, 60]. HCMV is an important HIV co-infection,
also linked with a range diseases including meningitis [62], encephalitis [63], psychological
disorders [64], malaria [65], various dermatological conditions [66, 67] and those affecting
mucosal epithelia [68, 69], hypoadrenalism [70], adrenalitis [71], gastritis [72, 73] and other
herpesvirus infections [74]. There has been a huge (possibly disproportionate) focus on HCMV
as a cause of HIV-associated retinitis. Globally it has been estimated that 5-25% of AIDS
patients will suffer from HCMV retinitis in their lifetime [75] leading to an ‘epidemic of
blindness’ [76]. Whilst the cohorts and diagnostic methods vary in different studies, HIV-
associated HCMV retinitis is less common in sub-Saharan Africa than elsewhere, seen in just
0-8.5% of adult AIDS patients with ophthalmic conditions [77-83].

2.3. HCMV as a cause of death

It is unclear how much active HCMV infection is contributing to mortality in HIV infected
people. One way to address this question is to measure mortality as a primary outcome. For
example: a large longitudinal study of HIV infected miners in South Africa associated HCMV
viraemia with a three-fold increase in mortality after just 11 months. The affect was weakened
when controlling for CD4 T-cell count, WHO stage and HIV viral load– all conditions predic‐
tive of mortality [84]. A study of HIV-infected and -exposed Kenyan children found a strong
correlation between HIV-1 and HCMV viral loads. Adjusting for maternal immunosuppres‐
sion and HIV-1 viral load, HCMV viraemia during pregnancy was linked with high risk of
death for mothers and infants in the 2 years following delivery [85]. It is difficult to prove that
HCMV viraemia is not simply a bystander and is actually involved in pathology. This requires
post mortem studies, which are difficult due to cultural factors [86]. Paediatric post mortem
studies from sub-Saharan Africa identify HCMV as a common cause of death [87, 88], espe‐
cially in HIV infected patients [89-91]. There is a need for new post-mortem data, from both
prospective studies and routine cases, to better inform on the prevalence of active HCMV as
a cause of death, and in particular, to calibrate HCMV viral loads pre-mortem with histopa‐
thological evidence of active HCMV infection post-mortem [92].

3. HCMV pneumonia in HIV infected children

Pneumonia is the most common cause of death in children <5 yrs of age globally, accounting
for 18% of all deaths [93]. In sub-Saharan Africa, pneumonia is the leading cause of death in
HIV-infected and -exposed children [94-97]. Across the region antibiotics are cheap and widely
available, yet pneumonia is still a major cause of paediatric mortality. This is likely in part due
to antibiotic resistance [98], but also several viral pathogens cause lower respiratory tract
infections and remain undiagnosed and untreated.
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1.1.2. Molecular epidemiology

HCMV has a large genome, predicted to encode at least 165 proteins. This includes hyper‐
variable segments [38-41] containing genes which encode membrane-bound glycoproteins.
These are embedded in the virion envelope or presented on the surface of infected cells, making
them candidate targets for the host immune response. Most published studies of polymor‐
phisms in these glycoproteins have concentrated on possible associations with and clinical
disease or cellular tropism. No compelling connections have been reported in the literature to
date, but much of the sequence data is from isolates from Europe, North America and Japan.

There is little information regarding HCMV genotypes in Africa. In an early study investigat‐
ing geographic differences in the frequency of certain HCMV genotypes from immunocom‐
promised patients, they found that the distribution differed between Zimbabwe, Italy and
California [42]. This study was limited to UL55 (virion surface glycoprotein gB: involved in
cell entry and signaling)[43] which is relatively conserved between strains [40] and not linked
with more variable glycoproteins [44]. A study of HCMV strains from 19 Malawian Kaposi's
sarcoma (KS) patients and 58 of their first-degree relatives detected HCMV readily in mouth
rinse and urine specimens [45]. Two hypervariable glycoprotein genes were sequenced: gO
(UL74) and gN (UL73) involved in promoting focal spread [46, 47] and virion morphogenesis
and possible latency associated functions respectively [48, 49]. Studies from Zambia segregate
variants of these two glycoproteins into eight linked groups [50, 51]. These studies and others
from Africa have found evidence of co-infections with multiple HCMV strains [50, 52] and no
evidence for geographic separation. This data contrasts with other herpesviruses such as
HHV-6 [53] and KSHV [54]. The high prevalence of co-infections with multiple strains, in a
broad range of patients, complicates genotyping studies and attempts to identify disease links
with specific glycoprotein genotypes. New techniques combining PCR amplification with
RFLP digestion could improve analysis of multiple strains and recombinants in pathological
samples [55].

2. HCMV infections and HIV in Sub-Saharan Africa

2.1. General considerations

sub-Saharan Africa is at the epicentre of the HIV pandemic, with 1,900,000 new infections
(18.9% children ≤ 14yrs of age) in 2010, and a total of 23.2 million people (13.4% children ≤
14yrs of age) living with HIV. Progress is slow but new infections are down 16% on 2001, and
HIV prevalence has declined in some sub-Saharan African countries. With the roll out of
antiretroviral therapy (ART), the numbers of people dying from HIV is also down (30%
decrease between 2004 and 2010) [56]. HCMV is an apex opportunistic pathogen, linked with
HIV disease progression [57-59], so the HIV pandemic combined with over 80% of primary
HCMV infections occurring during infancy, creates a unique environment. Active HCMV
infections are common and present as complex co-infections with other viral, bacterial and
fungal infections [60, 61]. A broader awareness of the frequency of co-infections and the
complex interplay between different pathogens is needed.
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2.2. Disease presentations and co-morbidity

The most common presentation of HCMV infection in HIV-infected patients is HCMV
pneumonia, where co-infection with other respiratory pathogens such a tuberculosis and
Pneumocystis jirovecci, is almost ubiquitous [50, 60]. HCMV is an important HIV co-infection,
also linked with a range diseases including meningitis [62], encephalitis [63], psychological
disorders [64], malaria [65], various dermatological conditions [66, 67] and those affecting
mucosal epithelia [68, 69], hypoadrenalism [70], adrenalitis [71], gastritis [72, 73] and other
herpesvirus infections [74]. There has been a huge (possibly disproportionate) focus on HCMV
as a cause of HIV-associated retinitis. Globally it has been estimated that 5-25% of AIDS
patients will suffer from HCMV retinitis in their lifetime [75] leading to an ‘epidemic of
blindness’ [76]. Whilst the cohorts and diagnostic methods vary in different studies, HIV-
associated HCMV retinitis is less common in sub-Saharan Africa than elsewhere, seen in just
0-8.5% of adult AIDS patients with ophthalmic conditions [77-83].

2.3. HCMV as a cause of death

It is unclear how much active HCMV infection is contributing to mortality in HIV infected
people. One way to address this question is to measure mortality as a primary outcome. For
example: a large longitudinal study of HIV infected miners in South Africa associated HCMV
viraemia with a three-fold increase in mortality after just 11 months. The affect was weakened
when controlling for CD4 T-cell count, WHO stage and HIV viral load– all conditions predic‐
tive of mortality [84]. A study of HIV-infected and -exposed Kenyan children found a strong
correlation between HIV-1 and HCMV viral loads. Adjusting for maternal immunosuppres‐
sion and HIV-1 viral load, HCMV viraemia during pregnancy was linked with high risk of
death for mothers and infants in the 2 years following delivery [85]. It is difficult to prove that
HCMV viraemia is not simply a bystander and is actually involved in pathology. This requires
post mortem studies, which are difficult due to cultural factors [86]. Paediatric post mortem
studies from sub-Saharan Africa identify HCMV as a common cause of death [87, 88], espe‐
cially in HIV infected patients [89-91]. There is a need for new post-mortem data, from both
prospective studies and routine cases, to better inform on the prevalence of active HCMV as
a cause of death, and in particular, to calibrate HCMV viral loads pre-mortem with histopa‐
thological evidence of active HCMV infection post-mortem [92].

3. HCMV pneumonia in HIV infected children

Pneumonia is the most common cause of death in children <5 yrs of age globally, accounting
for 18% of all deaths [93]. In sub-Saharan Africa, pneumonia is the leading cause of death in
HIV-infected and -exposed children [94-97]. Across the region antibiotics are cheap and widely
available, yet pneumonia is still a major cause of paediatric mortality. This is likely in part due
to antibiotic resistance [98], but also several viral pathogens cause lower respiratory tract
infections and remain undiagnosed and untreated.
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HCMV pneumonia is very common in HIV-infected and –exposed in sub-Saharan Africa [99,
100] and is associated with rapid progression of HIV disease [101] and death [102-104]. A
seminal post mortem study in 264 Zambian children who died of respiratory disease identified
classical HCMV inclusions in the lung tissue of up to 22% of HIV-infected cases [60], and then
follow-up molecular work found high loads of HCMV were virtually ubiquitous in the lung
tissue of HIV-infected paediatric respiratory deaths [50]. HCMV pneumonia is virtually
impossible to distinguish clinically from Pneumocystis jirovecci pneumonia and co-infections
with both Pneumocystis jirovecci and tuberculosis are common in HIV-infected and -exposed
infants [60, 61, 105]. In South Africa, HCMV pneumonia was more common than Pneumocystis
jirovecci pneumonia and other viral pneumonias in HIV-infected children [106], and was
histologically confirmed in 72% of HIV-infected and ventilated infant mortalities with severe
pneumonia. The authors recommend empiric use of ganciclovir or other anti-HCMV drugs in
HIV-infected children with severe pneumonia who are not responding to co-trimoxazole [107].

4. HCMV Congenital Infection in sub-Saharan Africa

Congenital HCMV is generally defined by the detection of viral DNA and/or IgM antibody in
infant sera within the first 3 weeks post-partum [108]. It is a damaging infection initiated by
either primary or reactivated infection in the mother during pregnancy, although congenital
HCMV infections transmitted from mothers with pre-existing immunity can be less severe
[109]. Congenital HCMV is the major viral cause of mental and physical disability in children,
infecting 0.2-2.2% of newborns [110, 111]. Around 7-11% of infected foetuses are then born
with symptoms [112, 113], with a neonatal mortality rate of 20-30% [114, 115]. Of those
congenitally infected (both symptomatic and asymptomatic), up to 28% will develop late
sequelae [116]. Symptoms include growth retardation, hepatosplenomegaly, jaundice,
pneumonia, gastrointestinal, and neurological disease such as sensorineural hearing loss,
mental retardation, chorioretinitis, seizures [117] and cerebral palsy [118].

Congenital HCMV infection was considered rare in populations with high adult seropreva‐
lence [33]. A study of 2032 newborn infants in the Ivory Coast cultured HCMV from urine and
showed congenital HCMV infection in 1.4% of all births [119]. In sub-Saharan Africa, congen‐
ital HCMV largely reflects maternal reactivations or re-infections, which may not result in
severe disease in the child [109]. However, a few studies from the region suggest congenital
HCMV maybe a significant cause of morbidity and mortality. A study from Zambia associated
HCMV antibody titres above 1:1024 with still births [120]. HCMV IgM antibodies were
detected in 24% of 99 newborn babies who were jaundiced, died within a few days of birth or
showed gross congenital abnormalities [121]. Cervical shedding of HCMV is very common in
HIV-infected women, and is readily detected in amniotic fluid collected at C-section [122,
123]. A Gambian study found the prevalence of congenital CMV among healthy neonates was
5.4%, at least 2-fold higher than reported in industrialized countries. Congenitally infected
children were more often first born babies, more frequently born in crowded compounds and
active placental malaria was more prevalent. During the first year of follow up, mothers of
congenitally infected children reported more health complaints for their child [124]. Recently
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a study from Zambia has shown that HCMV seroprevalence in 18 month old infants is linked
with impaired growth and mental development [3]. There is a need for more prospective
studies to investigate the clinical significance of congenital HCMV infections in sub-Saharan
Africa.

5. HCMV diagnosis and treatment
in Sub-Saharan Africa

One of the greatest challenges for HCMV diagnosis in this region is to differentiate clinically
active from sub-clinical infection. Serological tests for HCMV IgM are useful for diagnosing
primary infections in infants, particularly congenital infections in neonates, but the majority
of the disease burden is caused by re-activation or re-infections in immunocompromised
patients. Detection of the virus itself was traditionally achieved using culture-based methods.
These are time-consuming and require well-trained staff and a well-serviced diagnostic
laboratory. Moreover, HCMV culture is not very sensitive. For these reasons, quantitative
DNA-based molecular diagnostics are now commonly used to detect active HCMV infections.
The required infrastructure is becoming commonly available at tertiary and secondary referral
centres across sub-Saharan Africa, often donated by international research projects. However
low level HCMV reactivations are common in a wide range of patients, linked with reduced
immune surveillance due to other infections, illness or malnutrition.

Most studies of HCMV viral loads with respect to disease outcomes are in the transplant field,
where viral loads within the range of 104 to 106 copies/ml whole blood have been suggested to
be indicative of active disease, depending on the specific patient group [125]. An autopsy study
found that a cut off of 104 copies/ml whole blood, gave a specificity and positive predictive
value of 100% for HCMV disease, making the commercial assay used (COBAS AMPLICOR
CMV Monitor test - Roche) better for ‘ruling in’, than ‘ruling out’ [126]. There is a need for
prospective studies in sub-Saharan Africa to monitor HCMV viral loads in patients with HIV-
associated pneumonia, and infants with congenital HCMV infection, the two major HCMV
disease groups in the region – although there are also transplant recipients in sub-Saharan
Africa [127]. HCMV is shed in high loads in both urine and saliva (non-invasive specimens
ideal for low income settings) and detection of virus DNA in these specimens should be
evaluated versus viraemia, as potentially useful markers of active disease.

Several drugs are licensed for the treatment of HCMV infections, although they are expensive
and broadly unavailable in sub-Saharan Africa. At some tertiary referral centres in South
Africa, intravenous ganciclovir is used to treat HCMV pneumonia in HIV-infected and -
exposed children failing antibiotic or anti-mycobacterial therapy. Decisions are largely
consultant led but two descriptive studies have reported dramatic reductions in mortality due
to ganciclovir [106, 107]. Readers are advised to look up the latest guidelines on treatment of
HCMV and to check the correct doses, side effects and dosing schedules. In South African
centres, PCR or culture-proven HCMV disease is typically treated with 5mg/kg intravenously
every 12hrs for 14-21 days, and then daily maintenance therapy at 5mg/kg [94]. But there is an
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HCMV pneumonia is very common in HIV-infected and –exposed in sub-Saharan Africa [99,
100] and is associated with rapid progression of HIV disease [101] and death [102-104]. A
seminal post mortem study in 264 Zambian children who died of respiratory disease identified
classical HCMV inclusions in the lung tissue of up to 22% of HIV-infected cases [60], and then
follow-up molecular work found high loads of HCMV were virtually ubiquitous in the lung
tissue of HIV-infected paediatric respiratory deaths [50]. HCMV pneumonia is virtually
impossible to distinguish clinically from Pneumocystis jirovecci pneumonia and co-infections
with both Pneumocystis jirovecci and tuberculosis are common in HIV-infected and -exposed
infants [60, 61, 105]. In South Africa, HCMV pneumonia was more common than Pneumocystis
jirovecci pneumonia and other viral pneumonias in HIV-infected children [106], and was
histologically confirmed in 72% of HIV-infected and ventilated infant mortalities with severe
pneumonia. The authors recommend empiric use of ganciclovir or other anti-HCMV drugs in
HIV-infected children with severe pneumonia who are not responding to co-trimoxazole [107].

4. HCMV Congenital Infection in sub-Saharan Africa

Congenital HCMV is generally defined by the detection of viral DNA and/or IgM antibody in
infant sera within the first 3 weeks post-partum [108]. It is a damaging infection initiated by
either primary or reactivated infection in the mother during pregnancy, although congenital
HCMV infections transmitted from mothers with pre-existing immunity can be less severe
[109]. Congenital HCMV is the major viral cause of mental and physical disability in children,
infecting 0.2-2.2% of newborns [110, 111]. Around 7-11% of infected foetuses are then born
with symptoms [112, 113], with a neonatal mortality rate of 20-30% [114, 115]. Of those
congenitally infected (both symptomatic and asymptomatic), up to 28% will develop late
sequelae [116]. Symptoms include growth retardation, hepatosplenomegaly, jaundice,
pneumonia, gastrointestinal, and neurological disease such as sensorineural hearing loss,
mental retardation, chorioretinitis, seizures [117] and cerebral palsy [118].

Congenital HCMV infection was considered rare in populations with high adult seropreva‐
lence [33]. A study of 2032 newborn infants in the Ivory Coast cultured HCMV from urine and
showed congenital HCMV infection in 1.4% of all births [119]. In sub-Saharan Africa, congen‐
ital HCMV largely reflects maternal reactivations or re-infections, which may not result in
severe disease in the child [109]. However, a few studies from the region suggest congenital
HCMV maybe a significant cause of morbidity and mortality. A study from Zambia associated
HCMV antibody titres above 1:1024 with still births [120]. HCMV IgM antibodies were
detected in 24% of 99 newborn babies who were jaundiced, died within a few days of birth or
showed gross congenital abnormalities [121]. Cervical shedding of HCMV is very common in
HIV-infected women, and is readily detected in amniotic fluid collected at C-section [122,
123]. A Gambian study found the prevalence of congenital CMV among healthy neonates was
5.4%, at least 2-fold higher than reported in industrialized countries. Congenitally infected
children were more often first born babies, more frequently born in crowded compounds and
active placental malaria was more prevalent. During the first year of follow up, mothers of
congenitally infected children reported more health complaints for their child [124]. Recently
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a study from Zambia has shown that HCMV seroprevalence in 18 month old infants is linked
with impaired growth and mental development [3]. There is a need for more prospective
studies to investigate the clinical significance of congenital HCMV infections in sub-Saharan
Africa.

5. HCMV diagnosis and treatment
in Sub-Saharan Africa

One of the greatest challenges for HCMV diagnosis in this region is to differentiate clinically
active from sub-clinical infection. Serological tests for HCMV IgM are useful for diagnosing
primary infections in infants, particularly congenital infections in neonates, but the majority
of the disease burden is caused by re-activation or re-infections in immunocompromised
patients. Detection of the virus itself was traditionally achieved using culture-based methods.
These are time-consuming and require well-trained staff and a well-serviced diagnostic
laboratory. Moreover, HCMV culture is not very sensitive. For these reasons, quantitative
DNA-based molecular diagnostics are now commonly used to detect active HCMV infections.
The required infrastructure is becoming commonly available at tertiary and secondary referral
centres across sub-Saharan Africa, often donated by international research projects. However
low level HCMV reactivations are common in a wide range of patients, linked with reduced
immune surveillance due to other infections, illness or malnutrition.

Most studies of HCMV viral loads with respect to disease outcomes are in the transplant field,
where viral loads within the range of 104 to 106 copies/ml whole blood have been suggested to
be indicative of active disease, depending on the specific patient group [125]. An autopsy study
found that a cut off of 104 copies/ml whole blood, gave a specificity and positive predictive
value of 100% for HCMV disease, making the commercial assay used (COBAS AMPLICOR
CMV Monitor test - Roche) better for ‘ruling in’, than ‘ruling out’ [126]. There is a need for
prospective studies in sub-Saharan Africa to monitor HCMV viral loads in patients with HIV-
associated pneumonia, and infants with congenital HCMV infection, the two major HCMV
disease groups in the region – although there are also transplant recipients in sub-Saharan
Africa [127]. HCMV is shed in high loads in both urine and saliva (non-invasive specimens
ideal for low income settings) and detection of virus DNA in these specimens should be
evaluated versus viraemia, as potentially useful markers of active disease.

Several drugs are licensed for the treatment of HCMV infections, although they are expensive
and broadly unavailable in sub-Saharan Africa. At some tertiary referral centres in South
Africa, intravenous ganciclovir is used to treat HCMV pneumonia in HIV-infected and -
exposed children failing antibiotic or anti-mycobacterial therapy. Decisions are largely
consultant led but two descriptive studies have reported dramatic reductions in mortality due
to ganciclovir [106, 107]. Readers are advised to look up the latest guidelines on treatment of
HCMV and to check the correct doses, side effects and dosing schedules. In South African
centres, PCR or culture-proven HCMV disease is typically treated with 5mg/kg intravenously
every 12hrs for 14-21 days, and then daily maintenance therapy at 5mg/kg [94]. But there is an
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urgent need for further descriptive studies to identify patients for treatment. Randomized
controlled clinical trials are needed to evaluate safety and efficacy.

The introduction of expensive antiviral treatments in low income settings is always problem‐
atic; Ethics review boards may state that it is unethical to trial antiviral drugs which are
unaffordable and inaccessible to the majority of the affected patients. The path to new
treatments has to start somewhere, and as scientists we favour evidence as the basis for action.
The case of CD4 testing and antiretroviral therapy has proven that resources can be mobilized
from a range of stake holders, including governments, NGOs and private enterprise [128-130].
A second ethical dilemma is that if the drug is being used successfully in South Africa to treat
HIV-associated HCMV pneumonia, is it ethical for Ganciclovir trials to administer placebos?
When answering such ethical questions we should note that HCMV affects a broad range of
patient groups across sub-Saharan Africa, including congenitally infected neonates, HIV
infected infants, children and adults causing pneumonia, specific organ disease (eg. retinitis,
encephalitis, gastritis) and disseminated infection. Furthermore, malnutrition and co-infection
with other common pathogens (Malaria, Tuberculosis, Pneumocystis Jirovecci etc..) are preva‐
lent. For this diverse patient group, the evidence base for the optimal dose, duration and route
of administration is poor [131].

6. Effect of HCMV on vaccine efficacy and immune senescence in Sub-
Saharan Africa

Infant vaccination programmes are a central component of national paediatric disease
prevention strategies in sub-Saharan Africa [132], but they are less effective than equivalent
programmes in high income populations. For example: The efficacy of live attenuated measles
virus vaccine in Europe and North America is over 90% [133-135] whereas in West Africa it is
below 70% [136-138]. This could be partly due to the higher infectious disease burden in sub-
Saharan Africa, which may affect antibody [139, 140] and cytokine [141] responses to vacci‐
nation, and also reduced vaccine performance in HIV-infected children [132]. With 3.1 million
children living with HIV/AIDS across the region [56], vaccine safety and efficacy must be
independently assessed in this significant and vulnerable patient group. HIV-infected children
can generally seroconvert in response to both live-attenuated and inactivated/subunit vac‐
cines, but the immune response is generally weaker with lower antibody levels and seropro‐
tection rates in HIV-infected children [142-144]. The weaker immune response in HIV-infected
children could be due to defective antigen presentation, defective B-cell priming or impaired
differentiation into memory cells, impaired primary response due to low CD4, loss of protec‐
tive antibodies or loss of immunological memory of T and B cells after priming [143].

Most HIV-infected children in sub-Saharan Africa will also be infected with HCMV, which
encodes over thirty genes with potential immunomodulatory functions. These genes may
affect classical and non-classical major histocompatibility complex (MHC) protein function,
leukocyte migration and activation, cytokine responses and host cell susceptibility to apoptosis
[43]. HCMV can infect and initiate gene expression in an extraordinarily broad range of cell
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types, although IE gene transcripts have not been detected in T- or B-lymphocytes [145, 146].
Despite this, HCMV influences cell-mediated immunity. T-cell populations in HCMV-infected
infants in the Gambia showed higher levels of differentiation [147, 148] and similar HCMV-
induced differentiation in elderly non-African populations is associated with depleted naive
T-cell populations and impaired vaccine responses [149]. HCMV infection is also associated
with a decline in naive T cells and impaired T-cell reconstitution in HIV infected adults
initiating HAART [150]. But naive T-cell populations appear unaffected by HCMV infection
in African children, and infection was not linked with impaired T-cell responses to measles
virus vaccination [151], with HCMV activated T-helpers possibly improving measles antibody
response [152]. A study in older African children, found that HIV-negative Malawian teen‐
agers had a lower percentage of naïve T cells, higher memory T and higher CD28- memory T-
cells, compared to age-matched UK teenagers. Whilst all of the adolescents tested in Malawi
were seropositive for HCMV, seroprevalence was just 36% in the UK group, and was associated
with a reduced percentage of naïve T cells and an increased percentage of CD28- memory T
cells in the periphery [153].

Whilst more evidence is required, these studies suggest early infant infection with HCMV, and
maybe a general higher burden of infectious disease, contribute to a more rapid ageing of the
immune system in sub-Saharan Africa. Whilst access to anti-HCMV drugs would likely
significantly reduce morbidity and mortality in acute HCMV infections, such as congenitally
infected infants or HIV/AIDS patients with pneumonia or disseminated HCMV, the implica‐
tions of a successful HCMV vaccine have potentially far-reaching benefits across the region.
Future studies evaluating vaccine efficacy in sub-Saharan Africa should stratify by HCMV
serostatus, and where facilities permit, include work on HCMV genotypes and flow cytometric
analysis to further characterise the effect of infant HCMV infection on immunity.

7. Summary

In sub-Saharan Africa, HCMV infection is endemic in young infants where it is linked with
impaired physical and mental development [3], giving the infection a unique epidemiology
across the region, with a potentially broad-reaching impact on the health of southern African
populations. Studies conducted in sub-Saharan Africa and elsewhere, have shown that HCMV
is a serious cause or morbidity and mortality, in both immunocompromised groups and
congenitally infected children. In a region where 23.2 million people are living with HIV and
most of the population are infected with HCMV in infancy [124], more prospective studies are
required to better characterise the impact of HCMV in sub-Saharan Africa. This will lay the
foundations for future clinical trials of anti-HCMV drugs in patient sub-sets in whom there is
strong evidence that they might be effective. Drugs such as ganciclovir are already used in
South Africa as life-saving treatment for HIV-infected children with severe pneumonia that is
not responsive to antibiotic or anti-mycobacterial therapy. Furthermore, the clinical impact
and importance of HCMV infections in sub-Saharan Africa may increase over the next decade
for several reasons: Wider access to ART is resulting in increasing numbers of older HIV
infected patients; Cancer incidence is forecast to increase by 32% across sub-Saharan Africa
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urgent need for further descriptive studies to identify patients for treatment. Randomized
controlled clinical trials are needed to evaluate safety and efficacy.

The introduction of expensive antiviral treatments in low income settings is always problem‐
atic; Ethics review boards may state that it is unethical to trial antiviral drugs which are
unaffordable and inaccessible to the majority of the affected patients. The path to new
treatments has to start somewhere, and as scientists we favour evidence as the basis for action.
The case of CD4 testing and antiretroviral therapy has proven that resources can be mobilized
from a range of stake holders, including governments, NGOs and private enterprise [128-130].
A second ethical dilemma is that if the drug is being used successfully in South Africa to treat
HIV-associated HCMV pneumonia, is it ethical for Ganciclovir trials to administer placebos?
When answering such ethical questions we should note that HCMV affects a broad range of
patient groups across sub-Saharan Africa, including congenitally infected neonates, HIV
infected infants, children and adults causing pneumonia, specific organ disease (eg. retinitis,
encephalitis, gastritis) and disseminated infection. Furthermore, malnutrition and co-infection
with other common pathogens (Malaria, Tuberculosis, Pneumocystis Jirovecci etc..) are preva‐
lent. For this diverse patient group, the evidence base for the optimal dose, duration and route
of administration is poor [131].

6. Effect of HCMV on vaccine efficacy and immune senescence in Sub-
Saharan Africa

Infant vaccination programmes are a central component of national paediatric disease
prevention strategies in sub-Saharan Africa [132], but they are less effective than equivalent
programmes in high income populations. For example: The efficacy of live attenuated measles
virus vaccine in Europe and North America is over 90% [133-135] whereas in West Africa it is
below 70% [136-138]. This could be partly due to the higher infectious disease burden in sub-
Saharan Africa, which may affect antibody [139, 140] and cytokine [141] responses to vacci‐
nation, and also reduced vaccine performance in HIV-infected children [132]. With 3.1 million
children living with HIV/AIDS across the region [56], vaccine safety and efficacy must be
independently assessed in this significant and vulnerable patient group. HIV-infected children
can generally seroconvert in response to both live-attenuated and inactivated/subunit vac‐
cines, but the immune response is generally weaker with lower antibody levels and seropro‐
tection rates in HIV-infected children [142-144]. The weaker immune response in HIV-infected
children could be due to defective antigen presentation, defective B-cell priming or impaired
differentiation into memory cells, impaired primary response due to low CD4, loss of protec‐
tive antibodies or loss of immunological memory of T and B cells after priming [143].

Most HIV-infected children in sub-Saharan Africa will also be infected with HCMV, which
encodes over thirty genes with potential immunomodulatory functions. These genes may
affect classical and non-classical major histocompatibility complex (MHC) protein function,
leukocyte migration and activation, cytokine responses and host cell susceptibility to apoptosis
[43]. HCMV can infect and initiate gene expression in an extraordinarily broad range of cell
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types, although IE gene transcripts have not been detected in T- or B-lymphocytes [145, 146].
Despite this, HCMV influences cell-mediated immunity. T-cell populations in HCMV-infected
infants in the Gambia showed higher levels of differentiation [147, 148] and similar HCMV-
induced differentiation in elderly non-African populations is associated with depleted naive
T-cell populations and impaired vaccine responses [149]. HCMV infection is also associated
with a decline in naive T cells and impaired T-cell reconstitution in HIV infected adults
initiating HAART [150]. But naive T-cell populations appear unaffected by HCMV infection
in African children, and infection was not linked with impaired T-cell responses to measles
virus vaccination [151], with HCMV activated T-helpers possibly improving measles antibody
response [152]. A study in older African children, found that HIV-negative Malawian teen‐
agers had a lower percentage of naïve T cells, higher memory T and higher CD28- memory T-
cells, compared to age-matched UK teenagers. Whilst all of the adolescents tested in Malawi
were seropositive for HCMV, seroprevalence was just 36% in the UK group, and was associated
with a reduced percentage of naïve T cells and an increased percentage of CD28- memory T
cells in the periphery [153].

Whilst more evidence is required, these studies suggest early infant infection with HCMV, and
maybe a general higher burden of infectious disease, contribute to a more rapid ageing of the
immune system in sub-Saharan Africa. Whilst access to anti-HCMV drugs would likely
significantly reduce morbidity and mortality in acute HCMV infections, such as congenitally
infected infants or HIV/AIDS patients with pneumonia or disseminated HCMV, the implica‐
tions of a successful HCMV vaccine have potentially far-reaching benefits across the region.
Future studies evaluating vaccine efficacy in sub-Saharan Africa should stratify by HCMV
serostatus, and where facilities permit, include work on HCMV genotypes and flow cytometric
analysis to further characterise the effect of infant HCMV infection on immunity.

7. Summary

In sub-Saharan Africa, HCMV infection is endemic in young infants where it is linked with
impaired physical and mental development [3], giving the infection a unique epidemiology
across the region, with a potentially broad-reaching impact on the health of southern African
populations. Studies conducted in sub-Saharan Africa and elsewhere, have shown that HCMV
is a serious cause or morbidity and mortality, in both immunocompromised groups and
congenitally infected children. In a region where 23.2 million people are living with HIV and
most of the population are infected with HCMV in infancy [124], more prospective studies are
required to better characterise the impact of HCMV in sub-Saharan Africa. This will lay the
foundations for future clinical trials of anti-HCMV drugs in patient sub-sets in whom there is
strong evidence that they might be effective. Drugs such as ganciclovir are already used in
South Africa as life-saving treatment for HIV-infected children with severe pneumonia that is
not responsive to antibiotic or anti-mycobacterial therapy. Furthermore, the clinical impact
and importance of HCMV infections in sub-Saharan Africa may increase over the next decade
for several reasons: Wider access to ART is resulting in increasing numbers of older HIV
infected patients; Cancer incidence is forecast to increase by 32% across sub-Saharan Africa
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between 2010 and 2020 [154]; The number of transplant recipients is also set to increase, as the
capacity of tertiary care centres develops and improves.
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1. Introduction

Among the great advances that have been achieved in infectious diseases has been on the
management of cytomegalovirus (CMV) infection and disease.

This chapter describe an overview of the clinical manifestations of CMV diseases that are in
immunocompromised patients, including patients with human immunodeficiency virus
infection / Acquired Immunodeficiency Syndrome (HIV / AIDS), organ transplant recipients,
bone marrow transplant recipients, and individuals receiving immunosuppressive therapy or
chemotherapeutic agents. We also present the conditions for the development of CMV disease
in these patients.

In the overall population, the seroprevalence of CMV (IgG) is 30 to 100%. CMV disease is
a major cause of death in bone marrow and organ transplant recipients and persons with
AIDS. In adult patients with cancer and leukemia (except T cell leukemia) who have not
undergone transplantation, the frequency of CMV disease is lower than 3%, but mortality
can reach 82% [1-5].

The direct clinical effects of CMV are CMV viral syndrome and end-organ diseases. The
indirect effects include superinfections caused by bacteria (eg: Listeria or Pseudomonas), fungi
(eg: Aspergillus, Pneumocystis jiroveci, Cryptococcus) or other viruses (herpes zoster, Epstein Barr
virus) [6].
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2. Terminology

CMV Infection is defined as the detection of the CMV virus by antibodies in blood or the
detection of this virus by polymerase chain reaction (PCR), or antigens in any body fluid or
tissue specimen, but the infected patient not show any clinical symptoms caused by the virus
[2,4,7].

CMV Disease is the presence of CMV infection, evident as:

CMV Syndrome, a clinical condition characterized by fever ≥ 101 ºF (≥ 38.3ºC) at least twice
within 7 days, muscle pain, leukopenia ≤ 3500/μl, neutropenia ≤ 1,500/μl, atypical lymphocy‐
tosis ≥ 5% and/or thrombocytopenia < 100,000/μl [7] or…

CMV Disease with Organ and Tissue involvement. Clinical presentations [3,4,6] include
pneumonitis, gastrointestinal disease (e.g., gastritis, colitis, esophageal ulcers), hepatitis,
pancreatitis, nephritis, cystitis, myocarditis, retinitis, central nervous system disease (e.g.,
meningitis, polyradiculitis, encephalitis, transverse myelitis, Guillain-Barré Syndrome,
peripheral neuropathy), thrombocytopenia, hemolytic anemia, adrenalitis, disseminated
disease [2].

Primary infection is defined as the detection of CMV infection in an individual previously
found to be CMV seronegative. In the case transplanted patients, when the recipient with CMV
seronegative (IgG and IgM) receives blood products or a graft from a donor CMV seropositive
IgG (D+/R-). The appearance of de novo specific antibodies in a seronegative patient may also
be acceptable for the diagnosis of CMV [2,7].

Secondary (Reactivation) infection occurs with the reactivation of endogenous latent CMV, in
a CMV seropositive patient, who has (cancer, chronic lymphocytic leukemia, solid organ
transplantation, or bone marrow transplantation) with diminished immunity after immuno‐
suppressive therapy or a patient with HIV. The recipient before transplantation is seropositive
for CMV (IgG) and the donor is seronegative to CMV (IgG and IgM) (D-/R+) [2,4,8,9]. Reacti‐
vation or reinfection again initiates an IgM response. The IgG appears within a few weeks of
the IgM rise (4).

Superinfection can occur when the recipient receives a graft or blood products from a donor
who is CMV seropositive with different strain of CMV (D+/R+) [2].

Preemptive therapy consists on to monitor weekly by CMV blood PCR to immunocompro‐
mised patients and if the test becomes positive, they will be treated with antiviral, irrespective
of clinical symptoms. This type of therapy is used in patients with solid organ transplant
(specifically with serotypes D+/R +, D-/ R+ and D-/R-), hemopoietic stem cell transplantation,
and patient with chronic lymphocytic leukemia who received alemtuzumab, each group of
patients has specific guidelines for this type of therapy. Following a study in which CMV DNA
was found in 83% of liver transplant recipients at a mean of 13 days before the onset of
symptomatic CMV infection, it has become apparent that the preemptive therapy decreases
the morbidity and mortality of CMV infection [2].

Manifestations of Cytomegalovirus Infection42

Prophylactic therapy involves administration of oral valganciclovir or intravenous ganciclovir
at-risk patients, such as patients with CMV IgG serostatus negative (D+/R-) or when the
recipients need anti-rejection therapy, such as anti-thymocyte globulin (ATG) or anti-lym‐
phocyte globulins (ALGs) [2].

3. The role of immunosuppression

3.1. CMV disease in transplantation recipients

3.1.1. Hemopoietic Stem Cell Transplantation (HSCT)

CMV infections may be more frequently caused by reactivation of the virus in the recipient
rather than a primary infection. Approximately 30% of seronegative recipients with seropos‐
itive stem cell donors (D+/R-) develop primary CMV infection, whereas reactivation occurs in
about 80% who were seropositive before transplantation [8,10].

According the guidelines by Tomblyn et al 2009, HSCT recipients at risk for post transplant
CMV disease (all CMV-seropositive HSCT recipients, and all CMV-seronegative recipients
with a CMV seropositive donor) should have a CMV disease prevention program from the
time of transplantation until at least 100 days after HSCT, using prophylaxis or preemptive
treatment for allogeneic recipients.

A preemptive strategy against CMV replication (<100 days post-HSCT):

1. To all allogeneic HSCT recipients with evidence of CMV infection for CMV DNA, and
this strategy is preferred over prophylaxis therapy for D+/R-. Administer induction doses:
Valganciclovir 900 mg twice daily or ganciclovir I.V. 5mg/kg every 12 hours for 7-14 days.
Maintenance doses: for another 3-4 weeks until the test is negative or resolution of
symptoms.

2. CMV seropositive autologous HSCT recipients with high risk for CMV replication or
disease, for example patients who had total body irradiation, and patients who have
received alemtuzumab within 6 months prior to HSCT. Administer induction doses:
Valganciclovir 900 mg twice daily or ganciclovir I.V. 5mg/kg every 12 hours for 7
days.Maintenance doses: for another 3-4 weeks until the test is negative or resolution of
symptoms. Note: Continue screening for CMV reactivation and re-treat if screening tests
become positive after discontinuation of therapy [11].

Preemptive therapy > 100 days post-HSCT for:

1. Allogeneic HSCT recipients.

2. All patients receiving steroids for graft-versus-host disease (GVHD), steroid use, low CD4
counts <50/mm3, and use of grafts from CMV-seronegative donors in CMV-seropositive
recipients.
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Administer induction doses: Valganciclovir 900 mg twice daily or ganciclovir I.V. 5mg/kg
every 12 hours for 7-14 days.

Maintenance doses: for another 3-4 weeks until the test is negative or resolution of symp‐
toms [11].

Prophylactic therapy can be recommended for all allogeneic recipients (from engraftment to
100 days after HSCT), this therapy is not recommended for seropositive autologous recipients,
except the patient is at high risk as recipients unrelated, patient with human leucocyte antigen
(HLA) system-mismatched or in patients who used the alemtuzumab and are candidates for
HSCT. The induction: valganciclovir 450 mg twice daily for 5-7 days. Maintenance: Daily until
day 100 after HSCT [8,11,12].

Before the introduction of specific prophylaxis, the risk of CMV disease was reported to be up
to 58% in of the allogeneic stem cell transplant seropositive recipients, the clinical presentation
more likely was pneumonia with mortality to 94 % [2,7,8,13]. The incidence of CMV pneumonia
after autologous bone marrow transplantation and peripheral blood SCT ranges from 1% to
6% [8,14].

Gastrointestinal disease is the most common disease, after CMV pneumonia, which can escape
blood-based surveillance by PCR in approximately 25 % of patients. There is presently no
consensus on how to use molecular methods to diagnose CMV gastrointestinal and pneumonia
disease because there are no data on what level of CMV DNA in brochoalveolar lavage (BAL)
fluid or tissue that correlates best with CMV disease. The gastrointestinal disease is treated
with antiviral alone. The treatment of CMV pneumonia includes the antiviral and intravenous
immunoglobulin. CMV retinitis and encephalitis are rare complications [8,12].

3.1.2. Late CMV disease in HSCT patients

Late CMV disease (after 100 days) occurs in 15% to 20% of seropositive allograft recipients,
and it occurs between months 4 and 12 after HSCT, with a mortality rate of 46%. Risk factors
for late CMV disease include CMV infection during the first 3 months after transplantation,
chronic graft-versus-host disease (GVHD), CD4 counts less 50 per mm3, and undetectable
CMV-specific T-cell immunity [8,12].

3.1.3. Solid Organ Transplant (SOT)

CMV infection is most common during the first 3 to 12 weeks after transplantation, this is because
in this period is more intense immunosuppression to prevent rejection [2].

There is a high risk of CMV disease when a seronegative receptor receives an organ from a
seropositive individual [Donor+/Recipient- (D+/R-)]. Up to 85% of SOT recipients with CMV
D+/R- serologic status develop primary CMV disease, with the prophylactic therapy reducing
CMV disease to 22% [2].

Other high risk factors are biologic agents used for induction therapy or rejection treatment.
These include T lymphocyte (OKT3) monoclonal antibody, ATG, ALGs, or high doses of
corticosteroids [2,7].

Manifestations of Cytomegalovirus Infection44

There is an Intermediate risk of CMV disease with D+/R+ or D-/R+ combinations and a low
risk when the donor and recipient are CMV seronegative [2,7].

In kidney transplant patients, 8-18 % will have CMV infection. The clinical presentations may
be asymptomatic, fever or affect the transplanted organ, as a glomerulopathy or nephritis
[2,7,15].

Amongst liver transplant patients, 29% present CMV infection manifesting as CMV hepa‐
titis [2,6].

Amongst heart transplant patients, 25% present with CMV infection manifesting as myocar‐
ditis [2,7]. Of the patients transplanted kidney-pancreas, 50% will present CMV infection
usually affecting the transplanted pancreas [2,7].

22% of patients with transplanted small bowel will have CMV infection affecting the trans‐
planted bowel [2,7].

Around 39% of patients with heart-lung transplants can be expected to have CMV infection,
usually affecting the lung causing pneumonitis [2,7].

3.1.4. Late CMV disease in solid organ transplanted patients

Antiviral prophylaxis is highly effective in preventing CMV disease in transplanted recip‐
ients,  particularly  in  D+/R-  patients.  However,  late-onset  CMV disease  may  occur  after
100 days or several years after transplantation, coinciding with discontinuation of antivi‐
ral  prophylaxis.  Among  kidney  and  kidney-pancreas  transplant  recipients,  late-onset
CMV disease  was  documented in  47% of  D+/R-  patients,  12% of  D+/R+ patients,  7% of
D-/R+ patients, and 4% of D-/R- patients [16]. One study reported that up to 27% of high-
risk (CMV D+/R-) liver and kidney transplantation recipients who received oral ganciclo‐
vir  prophylaxis  for  3  months developed late-onset  CMV disease after  the completion of
antiviral  prophylaxis.  CMV retinitis  and  CMV colitis  tend  to  be  later  manifestations  of
disease or a clinical presentation atypical [2,16].

In a systematic review, CMV disease occurred in 2.6% and 9.9% of SOT recipients receiving
valganciclovir as preemptive therapy and prophylaxis, respectively. In patients receiving
valganciclovir prophylaxis, the incidence of early-onset (≤ 90 days posttransplant) CMV
disease was 0.8% and 1.2% in all patients (D+/R+, D-/R+) and D+/R- patients, respectively. In
the prophylactic group, the incidence of late-onset (>90 days posttransplant) CMV disease rose
up to 8.9 % and 17.7 % in all patients and D+/R-, respectively. Ninety-two percent of the patients
with CMV disease in the prophylactic group were late-onset disease. No patients developed
late-onset CMV disease in preemptive group. Late-onset CMV disease is a complication
observed uniquely with valganciclovir prophylaxis, particularly in D+/R- patients, but not with
preemptive therapy [17].

The rejection rate was 10.8% in SOT recipients who receiving preemptive therapy. The overall
rejection was 17.6% in the prophylactic studies. Fifteen patients (3.9%) of 380 patients in
preemptive group had graft loss. In prophylactic studies the graft loss rate was 2.5%. The
patients who receiving preemptive therapy, 28.5% developed opportunistic infections. In
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contrast, prophylactic studies reported the proportion of patients with opportunistic infections
was 7.8%. The mortality was 8.2% from four preemptive studies, and 4.4% in prophylactic
studies [17].

3.1.5. Recurrent CMV disease

Recurrent CMV disease may occur in up to 25% of SOTR (2). Predictive factors include the
type of organ transplant, CMV DNA in plasma at day 21, negative CMV IgG serostatus D+/R-
at start of treatment and therapy for acute rejection (18). The rate of recurrent CMV disease for
lung transplant recipients was 38.5%, for kidney 14.6%, for heart 11.8%, and for liver transplant
recipients was 0%. The yearly risk of recurrent CMV disease was 24.4% for patients with
persistent CMV DNAemia in plasma at day 21 versus 8.8% for those eradicated at day 21 [18].

CMV recurrence may be related to incomplete suppression of viral replication or the duration
of treatment (often 2-4 weeks) may have been insufficient. Some authors suggest treatment for
3 months for pneumonitis, retinitis and gastrointestinal CMV disease. Plasma levels of CMV
DNA should influence the therapy duration [2]. Weekly monitoring until eradication is
recommended [18].

3.2. CMV disease in patients with HIV/AIDS

CMV infection was one of the most important opportunistic infection in HIV-infected patients
before the introduction of the highly active antiretroviral therapy. Approximately 40% of HIV-
infected patients with advanced disease suffered from one of several manifestations of CMV
infection during their life. Colitis is the second most common presentation of CMV disease
after CMV retinitis (4). It is related to the degree of T-cell impairment, being most common in
patients with CD4+ T-cell counts bellow 50-100 cells/μl [3,19].

3.3. CMV disease in patients with rheumatic diseases

The incidence of CMV in rheumatic patients was 50% for systemic lupus erythematosus (SLE),
10% for dermatomyositis, 8.8% for microscopic polyangitis, and less than 5% for rheumatoid
arthritis, rheumatoid vasculitis, Behcet´s disease, Chung-Strauss syndrome. The mortality
rates CMV disease were 20-75% rheumatological disease depending on the type. The fever
was the most common symptom, respiratory symptoms were the second most common,
followed by gastrointestinal symptoms. Visual disturbance was observed in one patient [20].

CMV infection was most common among patients under strong immunosupressive thera‐
py (eg: 500-1000 mg pulsed methylprednisolone per day, 60-100 mg oral prednisolone, or
intravenous or oral cyclophosphamide within a year before CMV diagnosis [19]. The effect
of  corticosteroid  involves  derangement  of  T  lymphocyte  and  monocyte/macrophage
functions, and blockade of the production of cytokines such as TNF-α. Cyclophosphamide
suppresses  lymphocyte  proliferation  and  function  which  increasing  the  risk  of  CMV
reactivation and replication [1,20-22].
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3.4. CMV disease in patients with haematological malignancies and solid tumours

CMV disease is potentiated by drugs that cause profound cell-mediated immunosuppression,
such as fludarabine (which depresses CD4 T-lymphocytes), high-dose cyclophosphamide,
high-dose of steroids and granulocyte transfusions from donors who have CMV disease, and
with the use of metotrexate, cyclosporine, alemtuzumab (anti-CD52 MoAb) and rituximab
(anti-CD20 MoAb). The mortality rate among the patients with leukemia, myelodysplastic
syndrome or lymphoma was 82%, and the 63% of the fatal cases was due to, relapse of
leukemia, refractory leukemia, or that these patients were in accelerated or blast phase [1,23].

In 2001, serious CMV disease, (primarily pneumonia) was found at autopsy in 17%-75% of
patients dying with T cell leukemia. Mortality was higher among patients who had lympho‐
penia [1].

3.4.1. Guidelines on the management of CMV reactivation in patients with chronic lymphocytic
leukemia treated with alemtuzumab

Chronic lymphocytic leukemia (CLL) is a disease of progressive with an accumulation of clonal
B lymphocytes in peripheral blood, marrow, and lymphoid organs. This is generally incurable,
except the patients who receive an allogeneic cell transplant, and it is the most common form
of adult leukemia in Western countries. Patients with CLL have impaired humoral and cellular
immunity [24-26]. Current treatments for patients with CLL include monoclonal antibodies
(eg. rituximab and alemtuzumab) among others [9,27].

Alentuzumab is a recombinant humanized, anti-CD52 monoclonal antibody with significant
activity in CLL, including frudarabine-refractory disease. CD52 is a glycoprotein of unknown
function that is expressed on the surfaces of normal and malignant B and T lymphocytes.
Binding of alemtuzumab to CD52 on lymphocytes induces complement-dependent cytotox‐
icity, antibody-dependent cell-mediated cytotoxicity (which results in a rapid and profound
reduction of lymphocytes, and this produces viral replication and reactivation CMV) and
direct cytotoxicity (likely apoptotic cell death) [9,24,25,27-29].

Viral infections often are presented at the third week after the initiation of alemtuzumab, which
coincides with the nadir in T-cell numbers. The CMV reactivation is the most common
opportunistic infection observed in alemtuzumab-treated patients and it is observed at the
beginning of the 4 - 6 weeks of alemtuzumab [30]. O´Brien et al estimated the incidence of CMV
reactivation ranges from 4 to 30 %. This incidence typically refers to symptomatic CMV
infection [9,24,28,31,32]. CMV pneumonitis was reported 0.8 %, and CMV-related death 0.2 %.
CMV reactivation which frequently presents as fever of unknown origin or respiratory
symptoms [9,24,28,31,33].

Updated management guidelines for using alemtuzumab in CLL.

Among the recommendations on the use of alemtuzumab in the patient with CLL, is moni‐
toring for opportunistic infections, such as CMV reactivation, theses management guidelines
are referred by Osterborg A et al, 2009, and O'Brien et al 2006 for monitoring and treating of
CMV reactivation, such as:
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1. Baseline CMV serology prior to therapy of the patient

2. If the fever unresponsive to antibacterial agents and test not available should be presumed
to be CMV reactivation and the alemtuzumab should discontinue and antiviral therapy
should start [9,24,25,27,28,31]

3. Monitoring CMV reactivation by weekly PCR during therapy, and every 2 weeks for 6
weeks after alemtuzumab discontinuation [34-36].

If the CMV PCR two consecutive positive results obtained 1 week apart, it should start
preemptive therapy with intravenous ganciclovir or oral valganciclovir or when CMV
reactivation becomes symptomatic or viremia increase, alemtuzumab therapy should be
interrupted and anti-CMV therapy to be started (Figure 1) [9,24,25,28].

The antiviral is administrated 900 mg twice daily for 21 days, or continue with the maintenance
dose 900 mg twice daily until the CMV PCR is negative or until you have 2 consecutive negative
results [9,24,25,28].

The  pre-emptive  treatment  prevents  the  occurrence  of  potentially  life-threatening  infec‐
tious diseases, and the initiation of anti-CMV treatment avoids the interruption of alem‐
tuzumab [31].

Another modality is the anti-CMV prophylaxis in CLL patients receiving alemtuzumab, is with
valganciclovir 450 mg twice daily. The prophylaxis is administrated entire duration of
Alemtuzumab therapy and until 2 months after end the therapy and the frequency of CMV
PCR is every 2 weeks. The valganciclovir prophylaxis may be used in patients with elevated
risk for CMV reactivation [9, 28]. Patients on prophylactic valganciclovir had a lower rate of
CMV activation compared with valacyclovir (3% vs 24%) among patients being treated with
an alemtuzumab-based regimen [26,32]

3.5. CMV infection in patients with inflammatory bowel disease

CMV disease is seen in patients under treatment with azathioprine alone or with 5-aminosa‐
licylic acid, steroids, and/or infliximab, or 6-mercaptopurine, or leukocytapheresis. Crohn
disease (CD) was underlying disease in 77% of cases possibly because immunosuppression is
more common in CD compared to Ulcerative colitis (UC) [6].

4. Clinical presentations of CMV disease

4.1. CMV Pneumonia (CMVp)

“CMVp” is defined as the occurrence of clinical and radiographic evidence of pneumonia, in
association with the isolation of CMV in BAL, or lung-tissue specimens or with the identifi‐
cation of CMV in lung tissue by histopathology, immunohistochemistry or PCR [1].

CMVp represents a major cause of morbidity and mortality in highly immunosuppressed
patients, the clinical presentation resembles Pneumocystis jiroveci pneumonia (PCP), the
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presence of extrapulmonary CMV disease could suggest the diagnosis of CMV pneumonia
[37]. The symptoms are fever, nonproductive cough, dyspnea, or worsening dyspnea that
progresses to hypoxemia, and necessitates assisted mechanical ventilation [6]. It can include
extrapulmonary CMV disease (gastrointestinal or retinitis) [37]. The signs can include normal
breath sounds at auscultation or basal crepitations [6].

On chest radiograph the infiltrates are usually bilateral and may be interstitial and diffuse
(figure 2), or nodular, or alveolar and occasionally small pleural effusions [37]. The most
common manifestations of CMVp on conventional radiographs are parenchymal consolida‐
tion and multiple nodules measuring less 5 mm in diameter [38].

In patients having AIDS, the most frequent finding was dense consolidation and mass-like
opacities. The most frequent computed tomography (CT) pattern in immunocompromised
patients without AIDS was ground-glass opacities which were bilateral patchy, diffuse
distribution. Other findings included poorly-defined small nodules and consolidation.
Interlobular septal thickening and pleural effusion [38,39].

Coinfections were other potentially life-threatening infections that occurred within 90 days of
the episode of CMVp. These can contribute to death in patients with fatal CMVp [23].
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tuzumab [31].
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PCR is every 2 weeks. The valganciclovir prophylaxis may be used in patients with elevated
risk for CMV reactivation [9, 28]. Patients on prophylactic valganciclovir had a lower rate of
CMV activation compared with valacyclovir (3% vs 24%) among patients being treated with
an alemtuzumab-based regimen [26,32]

3.5. CMV infection in patients with inflammatory bowel disease

CMV disease is seen in patients under treatment with azathioprine alone or with 5-aminosa‐
licylic acid, steroids, and/or infliximab, or 6-mercaptopurine, or leukocytapheresis. Crohn
disease (CD) was underlying disease in 77% of cases possibly because immunosuppression is
more common in CD compared to Ulcerative colitis (UC) [6].

4. Clinical presentations of CMV disease

4.1. CMV Pneumonia (CMVp)

“CMVp” is defined as the occurrence of clinical and radiographic evidence of pneumonia, in
association with the isolation of CMV in BAL, or lung-tissue specimens or with the identifi‐
cation of CMV in lung tissue by histopathology, immunohistochemistry or PCR [1].

CMVp represents a major cause of morbidity and mortality in highly immunosuppressed
patients, the clinical presentation resembles Pneumocystis jiroveci pneumonia (PCP), the
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presence of extrapulmonary CMV disease could suggest the diagnosis of CMV pneumonia
[37]. The symptoms are fever, nonproductive cough, dyspnea, or worsening dyspnea that
progresses to hypoxemia, and necessitates assisted mechanical ventilation [6]. It can include
extrapulmonary CMV disease (gastrointestinal or retinitis) [37]. The signs can include normal
breath sounds at auscultation or basal crepitations [6].

On chest radiograph the infiltrates are usually bilateral and may be interstitial and diffuse
(figure 2), or nodular, or alveolar and occasionally small pleural effusions [37]. The most
common manifestations of CMVp on conventional radiographs are parenchymal consolida‐
tion and multiple nodules measuring less 5 mm in diameter [38].

In patients having AIDS, the most frequent finding was dense consolidation and mass-like
opacities. The most frequent computed tomography (CT) pattern in immunocompromised
patients without AIDS was ground-glass opacities which were bilateral patchy, diffuse
distribution. Other findings included poorly-defined small nodules and consolidation.
Interlobular septal thickening and pleural effusion [38,39].

Coinfections were other potentially life-threatening infections that occurred within 90 days of
the episode of CMVp. These can contribute to death in patients with fatal CMVp [23].
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HSCT and lung transplant recipients who develop CMVp or infection have an increased risk
for subsequent invasive aspergillosis [23].

In allogeneic bone marrow transplant recipients, the incidence of CMVp is 20-35% and the
mortality is up to 50% [40]. IV ganciclovir is given concurrently with immune serum globulin
or hyperimmune globulin. In autologous bone marrow transplant recipients, the incidence of
CMVp is 2% [9,23]. The mortality rate from CMVp in patients with HSCT was 100% [23].

Figure 2. Bilateral interstitial pneumonia caused by CMV in a renal transplant recipient

In solid organ transplantation, the incidence of CMVp is 17 to 90 % [23].

In adults with leukemia, the frequency of CMVp was 0.4%, 2.2%, 2.3%, and 2.5% in patients
with myelodysplastic syndrome, acute myelogenous leukemia (AML), chronic myelogenous
leukemia (CML), and acute lymphocytic leukemia (ALL) respectively and 8.8% and 11% in
patients with chronic lymphocytic leukemia (CLL) and lymphoblastic lymphoma. The median
duration of time from the diagnosis of leukemia to the occurrence of CMVp ranged from 6
months and 9 months in patients with AML and ALL, respectively, to 25 months and 54 months
in patients with CML, and CLL respectively [1,23].

The CMVp among patients with leukemia, lymphoma and myelodysplastic syndrome, the
mortality rate was 57%, and the death occurred 15 (2-36) days after onset of illness. Among
patients treated before the occurrence of respiratory failure, the mortality rate was 48%. When
therapy was initiated after the occurrence of respiratory failure that required mechanical
ventilation, the mortality rate was 57-100 % [1,23].

Chemaly et al. [23] observed that, the incidence of CMVp among adults with lymphoma was
0.6-1.2%. In the 92% of the patients, chemotherapy had been administered to the patients within
6 months before the onset of CMVp. Essentially, these patients with lymphoma were treated
with rituximab or alemtuzumab [23].
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A study of cancer patients receiving chemotherapy placed the incidence of CMVp below 3%,
in patients with head and neck cancers, nasopharyngeal cancer (NPC), hypopharyngeal cancer
(HPC), lung cancer, lymphoma and rectal cancer. The chemotherapy regimen used was
cisplatin, 5-FU, fluorouracil, leucovorin and etoposide. As the incidence is low, prophylactic
therapy was not recommended [5].

Cascio et al. [6] reported that the 85% of patients with inflammatory bowel disease who
developed CMVp were on treatment with thiopurines (azathioprine and 6-mercaptopurine)
when they developed CMVp. The mean length of treatment with azathioprine before the
appearance of respiratory symptoms was 19 months, with 6-mercaptopurine was 18 months,
infliximab was 10 days to 3 weeks, and cyclosporine was 3 days. These patients had hemato‐
logical findings such as pancytopenia, lymphopenia, neutropenia, leucopenia, severe anemia,
hemophagocytic lymphohistiocytosis or thrombocytopenia. Symptoms lasted from 2 days to
1 month [6,23].

4.2. CMV gastrointestinal (GI) diseases

Symptoms range from low-grade fever, weight loss, anorexia, abdominal pain, and bloody
diarrhea to a fulminant colitis. In HIV patients can have present esophageal ulcer, esophagitis,
gastritis, duodenitis, jejunal and ileal perforation, peritonitis secondary, odynophagia, and
bowel obstruction. GI CMV disease is estimated to affect about 20% of adults with AIDS, and
it can be involved all parts of the gastrointestinal tract, but the colon and esophagus are the
most common sites [4, 41]. CMV infection of the endothelial cells and ensuing vasculitis may
play a role in the development of thrombosis, local ischemia and ulceration of the gastroin‐
testinal mucosa [41].

4.2.1. CMV colitis

Refers to the presence of the virus in the colon in sites of inflamed tissue. Within patients with
severe ulcerative colitis (UC), CMV disease may occur more commonly in patients over age
55, and in patients treated with steroids. Steroids produce suppression of CMV-specific T-cell
function. Infliximab has not been associated with an increased risk of CMV in patients with
inflammatory bowel disease (IBD) [4].

The prevalence of CMV colitis in resected IBD specimens ranged from 0 to 22% [39], the prevalence
assessed using CMV DNA in colon biopsy was 81% in UC patients, and 66% prevalence in Crohn
´s disease patients [3]. Domenech et al, showed a prevalence of colonic CMV of 32% in patients
with steroid-refractory UC [10].

CMV colitis has occurred primarily in patients with pre-existing UC, with documented disease
for as long as 20-30 years [3]. Another theory was that CMV was an innocent bystander in IBD
colitis. This may reflect infection with nonpathogenic genotypes. The challenge is differenti‐
ating the innocent bystanders from the pathogenic strains, so most patients are treated with
antivirals, as the possible cost of delaying antiviral therapy is colectomy or even death.
Refractory IBD colitis have been associated with CMV inclusions bodies, and these patients
have a colectomy rate of 62% and a mortality rate of 44% [3].
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function. Infliximab has not been associated with an increased risk of CMV in patients with
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The prevalence of CMV colitis in resected IBD specimens ranged from 0 to 22% [39], the prevalence
assessed using CMV DNA in colon biopsy was 81% in UC patients, and 66% prevalence in Crohn
´s disease patients [3]. Domenech et al, showed a prevalence of colonic CMV of 32% in patients
with steroid-refractory UC [10].

CMV colitis has occurred primarily in patients with pre-existing UC, with documented disease
for as long as 20-30 years [3]. Another theory was that CMV was an innocent bystander in IBD
colitis. This may reflect infection with nonpathogenic genotypes. The challenge is differenti‐
ating the innocent bystanders from the pathogenic strains, so most patients are treated with
antivirals, as the possible cost of delaying antiviral therapy is colectomy or even death.
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have a colectomy rate of 62% and a mortality rate of 44% [3].
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CMV reactivation exacerbates disease severity in those with active intestinal inflammation.
Patients with IBD have impaired NK cell activity and defects in mucosal immunity, which may
enhance susceptibility to CMV reactivation). Patients described as “steroid-refractory” show
CMV detectable by immunohistochemistry (IHC) in 20%-40% of both endoscopic biopsies and
colectomy specimens. CMV DNA was detectable in the colon of up to 60% of patients in the
same study [4].

CMV colitis is rare in patients with Crohn´s disease or mild-moderate ulcerative colitis. In
patients with severe and/or steroid-refractory ulcerative colitis, the possibility of a concurrent
CMV infection causing or worsening the colitis is considered, especially when patients are on
immunosuppressive medications. Local reactivation of CMV can be detected in actively
inflamed colonic tissue in about 30% of cases [3].

CMV has tropism for dysplastic colonic tissue (adenomas and adenocarcinomas) and may play
a significant role in cancer progression. The association of CMV infection with dysplasia
progression in IBD patients increases the risk of developing colorectal cancer [3].

The diagnosis includes:

Endoscopic findings comprise patchy erythema, exudates, microerosions, edematous mu‐
cosa, or deep ulcers and pseudotumor [42]. These findings can be very difficult to distin‐
guish from severe IBD colitis  [39].  CMV colitis  may exclusively affect  the right colon in
up to 30% of cases [3].

CMV antigenemia is being supplanted by leukocyte CMV PCR. A “cut off” level of viremia
for distinguishing infection from disease is required for CMV colitis in patients with IBD [4].
Higher CMV viral loads correlate with symptomatic disease [3]. Most studies in patients with
IBD have reported a correlation between identification of CMV by PCR in blood, and colonic
detection in tissue by hematoxylin and eosin (H&E) or IHC [3,4]. IHC improves histological
sensitivity. It uses monoclonal antibodies, identifying infected cells in the colon. Sensibility
ranges 78%-93% [4]. PCR of colonic tissue can be used to detect viral DNA [5]. The GI disease
can occur even if there is no detection of CMV in the blood [10].

The European Crohn´s and Colitis Organization guidelines (2009) [4]: its authors recommend
the use of tissue PCR or IHC in investigating for CMV in cases of IBD.

Guidelines from the American College of Gastroenterology, and the European Crohn´s &
Colitis Organization (ECCO) recommend treatment with antivirals when CMV is detected by
blood PCR or IHC on colonic biopsies, which must be performed in all patients with severe
colitis refractory to immunosuppressive therapy. They do not recommend colonic PCR
because they give false positive results. Likewise, they recommend the discontinuation of
immunosuppressive agents only in cases of severe systemic CMV disease[4].

Treatment with antiviral therapy has allowed some patients with severe colitis to avoid
colectomy despite poor response to conventional IBD therapies. CMV colitis is usually treated
with ganciclovir, foscarnet, valganciclovir, or cidofovir. The recommended dosage is for at
least 3-6 weeks. The “response rate” in patients with steroid-refractory disease who have
reactivation of CMV is 72% (range 50%-100%) (figure 3) [3, 4].
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In patients having AIDS, relapse of CMV gastrointestinal disease in AIDS patients can occur
between 9 week and 1 year after initial antiviral [3].

4.2.2. CMV hepatitis

Is defined by findings such as fever, vomiting, with hepatomegaly with hepatalgia, and
atypical lymphocytosis may be approximately 50%, elevated bilirubin and/or enzyme levels,
and detection of CMV by histopathologic analysis within the liver tissue is needed [13,42].

4.2.3. CMV pancreatitis

Requires the detection of CMV infection by immunohistochemical analysis together with the
identification in a pancreatic biopsy. Detection of CMV by PCR alone is insufficient for
diagnosis of CMV pancreatitis because it can imply the presence of transient viremia [42].

4.3. CMV retinitis

Retinitis can appear more than 6 months after solid organ transplantation, mainly heart
transplant recipients. The patients can be asymptomatic, or they may experience blurring of
vision, scotomata, or decreased visual acuity. Fundoscopy often reveals the diagnosis [2]. In
HIV-infected patients, retinitis is the single most common manifestation of CMV disease,
accounting for 85% of all cases. In developing countries, CMV retinitis is still the most frequent
cause of visual loss in HIV-infected patients. Accordingly, the incidence of CMV retinitis,
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blood PCR or IHC on colonic biopsies, which must be performed in all patients with severe
colitis refractory to immunosuppressive therapy. They do not recommend colonic PCR
because they give false positive results. Likewise, they recommend the discontinuation of
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with ganciclovir, foscarnet, valganciclovir, or cidofovir. The recommended dosage is for at
least 3-6 weeks. The “response rate” in patients with steroid-refractory disease who have
reactivation of CMV is 72% (range 50%-100%) (figure 3) [3, 4].
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which is the most common CMV disease among HIV patients, decreased from 17.1 ⁄ 100 patient
years to 5.6 ⁄ 100 patient-years [2, 43].

Figure 4. Reference [43]

CMV retinitis in a patient with AIDS appears as an arcuate zone of retinitis with extensive
haemorrhages and optic disk swelling (figure 4) [43].

4.4. CMV neurological diseases

4.4.1. CMV Guillain–Barré Syndrome (GBS)

GBS has become the most frequent cause of acute flaccid paralysis in Western countries,
following the near-elimination of poliomyelitis. The current annual incidence is estimated to
be 0.75–2 cases ⁄ 100 000 population. Infectious agents have been suggested as possible triggers
of GBS, as some form of respiratory or gastrointestinal infection precedes nearly two-thirds of
GBS cases. Infection with CMV is the most common antecedent virus infection, as identified
by the presence of IgM antibodies in 10–15% of patients at the onset of GBS. However, antiviral
therapy is currently not recommended in cases of GBS, since the disease is considered to be
post infectious. Recently, the presence of CMV DNA has been demonstrated in almost one-
third of serum and cerebrospinal fluid samples from GBS patients who were positive for CMV-
specific antibodies at the onset of the neurological disease [43]
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4.4.2. CMV ventriculoencephalitis

This occurs rarely. It presents with changes in mental function. Multiple small, peri-ventricular
lesions of the brain are detected following brain magnetic resonance imaging (arrow) (figure
5) [2,43].

4.5. CMV genitourinary diseases

4.5.1. CMV Nephritis

It can be defined by the detection of CMV infection by immunohistochemical analysis together
with the identification of histological features of CMV infection in a kidney biopsy. Detection
of CMV by PCR alone is insufficient for this diagnosis [42].

4.5.2. CMV Cystitis

This CMV disease is defined by detection of CMV by immunohistochemical together with
identification of conventional histological features of CMV in a bladder biopsy obtained from
patient with symptoms of cystitis [42].

4.6. CMV myocarditis

This occurs most frequently in heart transplant recipients. This infection is defined by the
detection of CMV infection by immunohistochemical analysis together with the identification
of conventional histological features of CMV infection in a heart biopsy specimen and CMV
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PCR. Detection of CMV by PCR alone is insufficient for the diagnosis of CMV myocarditis [42].
There is an association between CMV and left ventricular dysfunction [2].

4.7. CMV vasculopathy

The CMV vasculopathy is considered to be an inflammatory disease. CMV and others
organisms such as Chlamydia pneumoniae, Epstein Barr virus, herpes simplex virus-1, Myco‐
plasma pneumoniae and Helicobacter pylori are implicated, but evidence is strongest with CMV
and Chlamydia pneumoniae. There is a correlation between CMV seropositivity and the presence
of atherosclerosis, restenosis following and coronary angioplasty and transplant vascular
sclerosis. CMV antigens and nucleic acids have been detected in atherosclerotic lesions in the
different layers of the human aorta. Patients suffering from acute myocardial infarction have
been found to develop CMV antigenaemia, reflecting either a primary infection or reactivation
of a latent infection [44].

CMV infects cells in vessels on endotelial cells, smooth muscle cells and macrophages
contribute to the slow progression and aggravation of atherosclerosis. The virus may also
contribute to coronary thrombosis [44].

4.8. CMV associated Hemophagocytic Syndrome (HPS)

CMV hemophagocytic syndrome, also referred as macrophage activation syndrome (MAS) or
haemophagocytic lymphohistiocytosis (HLH), is a reactive disorder, characterized by gener‐
alized histiocytic proliferation, with marked hemophagocytosis. This syndrome was first
described by Risdull et al in 1979 in transplant patients [45]. There are two forms of HPS,
familial erytrocytic lymphohistiocytosis and the secondary or reactive HPS [34,46,47].

Reactive or secondary HPS may develop during systemic infections, immunodeficiencies or
malignancies. Infection-associated hemophagocytic syndrome (IAHS) is observed with viral
infections (CMV, Epstein Barr virus, human herpes virus 8, human herpes virus 6, Parvovirus
B19 or BK polyoma virus), bacterial infections (Escherichia coli and Mycobacterium), fungal
infection (Histoplasma, Pneumocystis, and Penicillum marneffei), parasitic infections (toxoplas‐
mosis, leishmaniasis or babesiosis). HPS may also develop as a complication of malignancies
such as T-cell lymphomas and metastatic carcinomas. Secundary HPS to inflammatory/
autoimmune disorders, including systemic lupus erythematosus, rheumatoid arthritis and
Still´s disease, or due anticonvulsants such as phenytoin and carbamazepine [34,45,46].

Cytomegalovirus has been associated with haemophagocytic syndrome in healthy patients,
patients with inflammatory bowel diseases, rheumatological diseases, and transplant recipi‐
ents [45,47].

The pathophysiology of HPS is not completely understood there is an activation of lympho‐
histiocytic tissue secondary to hypercytokinemia derived from the activation of T lymphocytes
and activated macrophages, causing fever, shock, and organ dysfunction [48,4]).

The HLH (Henter, 2004), (Emmenegger, 2005) diagnostic criteria are shown in Table 1,
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The most typical signs of HPS are fever ≥ 38.3ºC) and splenomegaly associated with pancyto‐
penia (affecting ≥ 2 cell lineages in peripheral blood), hepatic enzyme abnormalities, hyper‐
triglyceridemia or hypofibrinogenemia are common features of HPS. The diagnostic
sensitivity of hypertriglyceridemia, hypofibrinogenemia and splenomegaly may be about
50%, but the diagnostic sensitivity of low NK cell activity and soluble CD25 levels approaches
100%. The histopathologic features are not pathognomonic. The most prominent feature is
proliferation of histiocytes and hemophagocytosis in bone marrow, spleen, or lymph nodes,
with no evidence of malignancy [34,45,48,49].

1. Fever: ≥ 101 ºF (≥ 38.3ºC) for more than a week

2. Splenomegaly: about 3 cm below the costal arch

3. Absence of malignancy

4. Cytopenia of ≥ 2 cell lines

Hemoglobin ≤ 9 g/dl, or platelets count < 100,000/μl, or neutrophil count < 1,000/μl

5. Hypertriglyceridemia: Fasting triglycerides ≥ 265 mg/dl (> 3 mmol/l)

6. Hypofibrinogenemia: < 1.5 g/l

7. Serum ferritin > 500 μg/l

8. Hemophagocytosis demonstrated in bone marrow, spleen, or lymph node

9. Low or absent NK cell activity) ≥ 2,400 U/ml

10. Soluble CD25 (soluble interleukin-2 receptor) ≥ 2,400 U/ml

Table 1. HLH-2004 Diagnostic criteria, References [48,49]

Therapy includes corticosteroids, cyclosporine, withdrawal of the immunosuppressant
treatment, intravenous immunoglobulins (0.4g/ kg /day for 5 days) and antiviral treatment.
The mortality rates are 30-40 % [45]. The hemophagocytic syndrome should be considered if
a patient has fever of unknown origin, pancytopenia and multiorgan dysfunction [45,48,49].
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1. Introduction

With the global evolution of organ transplantation in humans a new class of patients with
special problems related to opportunistic infections after transplantation has appeared [1,
2 ].Some of these challenges infections with members of the herpesvirus family. Among these
viruses, human cytomegalovirus (HCMV) often affects immunocompromised patients,
HCMV can be reactivated by immunosuppression and cause significant morbidity and
mortality [3,4]. In the postoperative period, HCMV infection can result in serious complica‐
tions in patients who received grafts by modulating the immune response [5]. However in
immunocompetent individuals cytomegalovirus infection can be asymptomatic or cause
symptoms similar to infectious mononucleosis syndrome, such as lymphadenopathy, fever,
rash, malaise, arthralgia, hepatomegaly and splenomegaly [6].

This chapter presents the main clinical and epidemiological aspects related to cytomegalovirus
infection and the importance of detection in liver transplant recipients.

2. Cytomegalovirus history

The discovery of HCMV began in 1881 when the histological effects of infection were observed
in the kidney of a newborn child. In 1904, Ribbert identified the causative agent of "cytomegalic
inclusion disease", whose name derives from the characteristic cytopathic effect, represented
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by increases in cell volume and intracellular cytoplasmic inclusions in infected tissues [7]. In
1881 and 1921 similar cell characteristics were reported by Goodpasture and Talbot in a fatal
case associated with this virus involving lung, liver and kidney from a newborn child [8].

The first experimental evidence of the likely etiologic agent of "cytomegalic inclusion disease"
was proposed by Cole and Kuttner in 1926, when they demonstrated the transmission of the
disease in guinea pigs and suggested that this agent possessed characteristics of viral infection
and was species-specific. Wolbach and Farber (1932) demonstrated the first evidence that the
salivary gland virus was commonly involved and showed typical cytomegalic cells were found
in 12% of children. In 1954, using the salivary infection mouse model, Smith isolated the virus
in tissue culture [9].

In 1970 study groups were organized to evaluate the impact of infection in immunocompro‐
mised people and through this to propose infection control strategies. In the 1980s the control
measures of CMV began with antiviral agents and immunological interventions [10].

3. Structure features and replication engine

CMV has an ultrastructure similar to other herpesviruses with four structural elements: an
electron-dense core, an icosahedral symmetry capsid, a tegument occupying space between
the capsid and an envelope steeped in glycoproteins and membrane proteins [11].

CMV carries a double-stranded DNA containing approximately 240 kb linear bases [12]
encoding 33 structural proteins and an indefinite number of non-structural proteins, some of
which are antigenic. The genome can be divided into two segments, designated as long
component (L) and short (S) defined by repetitive sequence terminals (RT). The CMV has a
complex genome due to the acquisitions of host genes and the duplication of viral genes [13].
It is a very thermolabile virus and its average life at 37 ° C is only 45 minutes, totally inactivated
at 56 º C for 30 minutes [14].

During natural infection, viral replication can occur in epithelial, endothelial and muscle
mesenchymal cells, hepatocytes, granulocytes and macrophages [15, 16]. In vivo studies with
cells from immunocompetent and immunosuppressed patients show that CMV can commonly
be isolated from polymorphonuclear leukocytes [17], which may represent an important
replication site [14,16]. Variants of CMV are found in mice, monkeys and guinea pigs, but these
strains are species-specific and do not infect humans [14].

The CMV replication mechanism occurs in three distinct stages, similar to other herpesviruses.
The early phase occurs when the virus adheres to the host cell membrane (with the envelope
loss and penetration into the cell), in the intermediate phase the gene expression and genome
replication occur, and in the late phase, there is the assembly and release of new viral particles
[16-18].

The “early” phase begins when surface proteins of the virion adhere to specific protein
receptors on the cell surface through non-covalent bonds. The viral particles penetrate by
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endocytosis, entering pinocytic vesicles in which the envelope loss process is started, favored
by a low pH. The rupture of the vesicles or fusion of the virus with the outer layer of the vesicle
membrane deposits the core of the virus in the cell cytoplasm [13].

The intermediate phase lasts 24 hours, characterized by transcription and replication of viral
DNA. The first step of viral gene expression is the synthesis of mRNA via host RNA poly‐
merase inside the core. The mRNA is translated by the host ribosomes into early and late viral
proteins. The early proteins are enzymes required for viral genome replication [19]. The late
proteins include a polymerase replicating the viral genome [13].

In the late phase, viral particles newly formed are grouped together within the capsid and
begin the process of budding, during which the nucleocapsid adheres to specific sites of the
membrane and interacts with the protein matrix. At this point, a process of evagination occurs
and an enveloped particle flows from the membrane surface [13].

4. Transmission and epidemiology

Infection is defined as seroconversion (an increase of 4 times or more in HCMV antibody titer
in seronegative or seropositive patients), virus circulation in any body fluid such as urine,
nasopharyngeal secretions or blood [7]. CMV infects only the human population and its
transmission occurs both horizontally and vertically and may include oropharyngeal secre‐
tions, vaginal tears, seminal fluid, breast milk, urine, feces and blood [19]. In adulthood the
CMV transmission may occur through heterosexual and homosexual contact, through blood
and blood products and through organ transplantation, the latter being an important route of
transmission [12,19, 20].

About 80% of the population between late childhood and early adolescence is already infected
with CMV [21, 22] and can harbor the virus in various body sites, especially in the salivary
glands and different types of leukocytes. With age the increased prevalence of antibodies is
common. This may not depend on the geographical area, but the socio-economic status may
be important [10, 23- 28]. The seroprevalence of CMV in populations at high socioeconomic
level varies from 40% to 60%, increases after infection of early childhood and approximately
10% to 20% of children have their first infection episode before puberty [10]. In lower socioe‐
conomic populations the seroprevalence level is higher, ranging from 80% to 100%. In Brazil,
seroprevalence of cytomegalovirus averages 90% in adult populations [28].

5. Clinical manifestations

The clinical course of CMV in immunocompetent individuals may be asymptomatic or may
resemble "Mononucleosis Syndrome" presented by persistent fever, myalgia, pharyngitis,
lymphadenopathy, sweating and hepatosplenomegaly [10,28-34].
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After primary infection, CMV persists in host tissues and may be reactivated to cause disease
– usually in children with congenital infection, organ transplant recipients, cancer patients
undergoing chemotherapy and patients with HIV disease [7,10,29,35].

Among the  complications  caused by  CMV in  transplanted  patients  increased  long-term
mortality and worsening graft survival are common [35-37]. Clinical disease caused by CMV
is  expressed  by  fever,  malaise,  myalgia,  leukopenia  (WBC  less  than  4.0000/mm3),  in‐
creased transaminases (hepatitis), pulmonary (pneumonitis) and/or gastrointestinal (colitis,
gastritis, esophagitis) and fever being the most common manifestation, which can also occur
with  neurological  symptomatology  compatible  with  encephalitis  but  these  are  rarer
[29,38,39].

Clinical disease may reflect

1. Primary infection, when it occurs in patients previously seronegative;

2. Secondary infection occurs when the reactivation of latent infection or superinfection;

3. Tertiary infection by reinfection by other strains of the virus [7].

The source of infection for both primary infection and superinfection is may include graft and
blood transfusions. Immunosuppression may cause reactivation of CMV [40]. About two
thirds of patients with primary infection are symptomatic, less than 20% in viral reactivation
have symptoms and about 40% of reinfected individuals have symptoms attributable to CMV
[10]. When primary infection occurs after transplantation the clinical impact is significant [41].
This is most common following allocation of grafts from donors with positive serology to
seronegative recipients [42]. Immunosuppressive drugs such as azathioprine and cyclosporine
have been implicated in the facilitation of CMV disease [7].

Diagnostic criteria include clinical signs known to be caused by this virus [43,44]. In liver
transplant patients with active CMV infection, about 80% will develop clinical manifesta‐
tions of the disease and the rate may be higher when the recipient is seronegative and a
donor is  seropositive [44].  CMV infection is  an independent risk factor for the develop‐
ment  with  opportunistic  infections,  as  well  as  graft  rejection  [7].  The  evidence  of  viral
replication and clinical symptoms in transplant occurs mainly during the 1st to 4th month
post-transplant.

The most common clinical manifestations are interstitial pneumonia, esophagitis, gastritis,
colitis, retinitis, fever and delayed engraftment in bone marrow transplants [29,45]. During
liver transplantation, primary infection tends to be more important as the CMV viremia may
be limited to when virus replication is detected in peripheral blood or significant increase of
specific antibodies without symptoms or viral syndrome presenting fever equal or greater than
38ºC, malaise, leukopenia, atypical lymphocytosis equal or less than 3-5% and thrombocyto‐
penia [14, 37, 42, 45,46].

Antiviral treatment controls the acute manifestation of the disease in most cases, but may not
eradicate the CMV with recurrence reported in 26-31% of solid organ transplant recipients..
[14, 36].

Manifestations of Cytomegalovirus Infection66

6. Diagnosis

The diagnosis of CMV infection can be done by serology, polymerase chain reaction (PCR),
culture and viral antigenemia research. Early diagnosis is important as early treatment of
asymptomatic active infection reduces morbidity [24, 31, 46, 47]. The first method of diagnosis
used to identify the CMV was exfoliative cytology. This technique revealed the presence of
large cells which had inclusions within the core, identified as cytomegalic inclusion. Later
methods are more sensitive and specific. These are grouped into seven categories: cytological,
histological, virus isolation, serological identification,, Immunofluorescence, detection of
viral antigens and molecular methods [49, 48]…

Cytopathological techniques: These methods can be performed on tissue and secretions
aspirated material [7,8], but have low sensitivity so they currently have little use in clinical
practice.

Histological Techniques: A method of detecting inclusions by visualization of typical tissue.
The finding of cells with typical inclusions allows often to correlate CMV lesion or dysfunction
of the organ studied. Although this method has low sensitivity, it reveals invasive tissue
disease [7]. The advantages are low cost, simplicity of use and availability of equipment.

Viral Isolation: CMV can be isolated from various biological materials, such as biological
fluids (urine, saliva, blood, cervical secretions, breast milk, tears, semen, feces and washed
aspirates organs) and tissue obtained from biopsies or autopsies [49, 50].

Serological methods: The modern serological methods detect the presence of IgM and IgG [51]
usually by ELISA. This technique does not detect the virus in early stages of infection, as
antibodies are produced by the host only after this phase.

Immunofluorescence (IF): A method that allows an early detection of the virus is immuno‐
fluorescence usually using commercially available antibodies.

Detection of Viral Antigens (antigenemia): Antigenemia offers high sensitivity and specific‐
ity. It is fast, direct and sensitive, and is considered a quantitative technique for viral load [54,
55]. CMV antigenemia is one of the earlier tests with positive results [17, 25, 51- 58] and becomes
positive on average 9-18 days before establishment of the disease. It has been widely used for
the early detection of active infection in organ transplant recipients [17, 24, 25, 36, 56].

The additional advantage of this method is that results can be expressed quantitatively,
allowing observation of the clinical response to treatment [17, 59]. The disadvantage of this
technique is the speed needed to process the collected material without loss of sensitivity - 6
to 8 hours [17]. In patients with neutropenia, this test cannot be performed due to low
granulocyte count. On this situation, molecular assays are used.

Molecular methods

Polymerase chain reaction-PCR: The qualitative PCR is often the first test to detect asympto‐
matic subclinical infection, but specific predictive value is low for the diagnosis of HCMV
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disease. It is not suitable for routine monitoring of patients on treatment [57]…why not???. It
is a quick (4-6 hours), specific and extremely sensitive test but false positives may result from
contamination during the test run. False negative results can also occur due to presence of
inhibitors in the sample [55,60]. The sample type and method of extracting DNA from these
samples must be carefully chosen to avoid this [31,61].

Nested PCR (Polymerase Chain Double): Nested PCR (N-PCR) has been used to increase the
sensitivity and specificity of simple PCR. Here the product of the first PCR, amplified with a
primer pair, is subjected to a new amplification reaction using another pair of primers internal
to the first, the product being then detected by agarose gel electrophoresis [62]. Nested PCR
technique to diagnose CMV infection produces results consistent with classical culture,
reaching 100% specificity and 93% sensitivity in a shorter time frame [63- 66].

Real-time PCR: Real Time PCR amplification (RT PCR) presents high sensitivity and precision.
It has been used for the detection and monitoring of viral load. Its sensitivity and specificity
are directly related to the choice of "primers" and probes, and the accuracy is determined by
the threshold cycle, which is calculated during the exponential phase of the reaction. Formation
of a fluorescently labeled product is monitored at each amplification cycle in a single instru‐
ment generating quantitative results. [58].

7. Treatment

Ganciclovir has been the “gold standard” for treatment of CMV disease although resistance
to this drug has been reported and should be considered in unresponsive patients. Some
studies have focused on genotyping of CMV that could indicate samples that were resistant
to conventional treatment. Inadequate dosing may reduce clinical efficacy and promote
resistance (44)

Antiviral administration is generally initiated in the immediate or early post-transplant period,
and continues for 3 to 6 months. Various antiviral drugs have been used, including acyclovir,
valaciclovir, intravenous ganciclovir, oral valganciclovir or intravenous (IV) ganciclovir, and
valganciclovir. In preventive therapy, laboratory monitoring detects asymptomatic viral
replication and antiviral therapy is initiated to prevent progression to clinical disease. For non
severe CMV disease, oral valganciclovir (900 mg orally every 12 hr) or IV ganciclovir (5
mg/kg every 12hr) are recommended as first-line treatment. Renal function should be moni‐
tored frequently during treatment, with estimated or measured glomerular filtration rate.
Optimal length of treatment should be achieved by monitoring weekly viral loads and treating
until one or two consecutive negative samples are obtained, but not shorter than 2 weeks.
Duration should reflect the likelihood of recurrent CMV infection. In cases of serious disease
and in tissue-invasive disease without viremia, longer treatment periods with clinical moni‐
toring of the specific disease manifestation are recommended. In cases of recurrent CMV
disease, prophylaxis after retreatment may need to be prolonged. [44].
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8. Transplantation

CMV seroprevalence is high in developing countries such as Brazil, so most of the patients
and/or donors is CMV IgG positive. The techniques chosen for the laboratorial monitoring in
our service after liver transplantation are antigenemia and Nested-PCR (N-PCR). These
techniques detect the active viral replication and minimize the damage of the disease caused
by CMV (see Section xy).

We diagnose active infection from one positive result by antigenemia, or two positive N-PCR
findings over an interval equal or smaller than 30 days. As antigenemia can detect CMV a few
days to one week before the appearance of the symptoms, the Ganciclovir is initiated after the
detection of a positive cell even without clinical symptoms if the patient presents IgG negative
and the donor presents IgG positive. Patients are monitored while in hospital and after
discharge following a protocol: weekly from the first to the second month, fortnightly in the
third-fourth months and monthly until six months. After this period the antigenemia or N-
PCR is performed only if there is a suggestive clinical diagnosis of CMV infection. The
assessment of antigenemia also provides an estimate of viral load that is useful in the differ‐
entiation of CMV disease from other complications. Thus we evaluate the efficacy of antiviral
therapy and have capacity to detect drug resistance.

CMV is frequently detected in our patients after liver transplantation [24,25,30,31]. Detection
of N-PCR and antigenemia are useful markers for active infection [30,31].The rates of CMV
found in our groups are similar to other services [24,25,30-32].

We also observed that symptomatic CMV infection occurs during the first three months after
transplantation. We consider that this high incidence of symptomatic CMV infection is due to
the high prevalence of the virus in Brazilian population. The mean time for initial detection
CMV is around 29 days following transplantation (range: 0-99 days) [30]..

In our service, CMV DNA diagnosed in pretransplantation graft biopsy specimens remained
positive posttransplantation on graft biopsies. This common complication negatively influen‐
ces liver transplantation outcomes and is a risk factor to develop acute cellular rejection
episodes [67].Ganciclovir prophylaxis for CMV is not performed at our institution unless the
patient is preoperative negative IgG and the donor is CMV positive. Prophylaxis is performed
only for herpes simplex type 1 with Acyclovir.

Another relevant issue at our service is opportunistic infections, which are often seen in
patients at risk for CMV and have been recognized by our staff as a significant risk factor for
graft failure and death [24]. Active CMV infection may increase the risk of bacterial, fungal,
viral, and others, as well as post-transplant lymphoproliferative disease. [31] This includes co-
infections by other viruses of the same family (HHV-6, HHV-7) [24,32].

The clinical impact of CMV-infected patients observed by our team [24] shows that it is
extremely important to follow up these patients. These data have helped the medical staff
making therapeutic strategies to minimize risks caused by this betaherpesvirus.
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Figure 1. Nuclei of neutrophils stained in brown indicating positive pp65-atigenemia (counterstained with Harris’s
hematoxylin). Mouse C10 and C11 monoclonal antibodies against pp65-matrix CMV antigen and rabbit anti-mouse Ig
horseradish peroxidase conjugate. The reaction was revealed by hydrogen peroxide and amino-ethyl-carbazole24

Virus Synonym Subfamily Abbreviation

Human Herpesvirus-1 Herpes simplex-1 || HSV-1/HHV-1

Human Herpesvirus -2 Herpes simplex-2 || HSV-2/HHV-2

Human Herpesvirus -3 Varicella-zoster || VZV/HHV-3

Human Herpesvirus -4 Epstein-Barr || EBV/HSV-4

Human Herpesvirus -5 Cytomegalovirus || HCMV/CMV/HHV-5

Human Herpesvirus -6 None || HHV-6

Human Herpesvirus -7 None || HHV-7

Human Herpesvirus -8 None || KSHV/HHV-8

Table 1. Complete list of human herpesvirus

9. Conclusion

Few patients remain free of betaherpesvirus after liver transplantation. Active CMV infection
is common especially in the first weeks after grafting. We believe it is important to continue
monitoring CMV infection after transplantation, especially when the prevalence in the general
population is high.
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1. Introduction

Cytomegalovirus (CMV) is a β-herpesvirus able to replicate in fibroblasts, endothelial cells
and monocytes [1]. CMV infection is usually asymptomatic, but causes a mononucleosis-like
illness in some individuals. CMV disease can manifest as a syndrome or as an acute infection
of an organ or tissue. CMV syndrome is characterized by fever, leukopenia, hepato-spleno‐
megaly, myalgias and occasionally pneumonitis. Sites of acute CMV infection include brain,
heart, kidneys, liver and eyes. CMV colitis and CMV enteritis are manifestations of CMV
disease in solid organ transplant recipients, bone marrow transplant recipients and HIV
patients [2]. CMV retinitis was a common AIDS-defining illness before antiretroviral therapy
(ART) became available, and remains a significant cause of blindness in HIV patients in the
developing world [3]

In considering the role of CMV in human health, many studies have overlooked the fact that
50-90% of all populations are seropositive. As the virus has the capacity of latency and is known
to be reactivated by “stress” (immunosuppression), it is likely that most people harbour latent
virus [2]. Much of literature related to CMV is derived from studies of laboratory mice infected
with a related virus Murine Cytomegalovirus (MCMV), which shares a similar genomic
organisation and some sequence homology with human CMV. It is promoted as a useful model
to study host-interaction because it shares similar in-vivo properties to human CMV after
infection. Differences in the susceptibility of inbred strains of laboratory mice to MCMV
infection has allowed several mechanisms of virological control to be characterised [4, 5], but
there are several areas where extrapolation to human CMV is problematic.

1. CMV has over 200 reading frames with potential to encode proteins [1].Of the proteins
characterised, many are redundant for viral replication in vitro. These include homologues
of host genes “picked up” since mice and humans diverged during mammalian evolution.
If we assume that such genes are retained because they confer a survival advantage, then
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1. Introduction

Cytomegalovirus (CMV) is a β-herpesvirus able to replicate in fibroblasts, endothelial cells
and monocytes [1]. CMV infection is usually asymptomatic, but causes a mononucleosis-like
illness in some individuals. CMV disease can manifest as a syndrome or as an acute infection
of an organ or tissue. CMV syndrome is characterized by fever, leukopenia, hepato-spleno‐
megaly, myalgias and occasionally pneumonitis. Sites of acute CMV infection include brain,
heart, kidneys, liver and eyes. CMV colitis and CMV enteritis are manifestations of CMV
disease in solid organ transplant recipients, bone marrow transplant recipients and HIV
patients [2]. CMV retinitis was a common AIDS-defining illness before antiretroviral therapy
(ART) became available, and remains a significant cause of blindness in HIV patients in the
developing world [3]

In considering the role of CMV in human health, many studies have overlooked the fact that
50-90% of all populations are seropositive. As the virus has the capacity of latency and is known
to be reactivated by “stress” (immunosuppression), it is likely that most people harbour latent
virus [2]. Much of literature related to CMV is derived from studies of laboratory mice infected
with a related virus Murine Cytomegalovirus (MCMV), which shares a similar genomic
organisation and some sequence homology with human CMV. It is promoted as a useful model
to study host-interaction because it shares similar in-vivo properties to human CMV after
infection. Differences in the susceptibility of inbred strains of laboratory mice to MCMV
infection has allowed several mechanisms of virological control to be characterised [4, 5], but
there are several areas where extrapolation to human CMV is problematic.

1. CMV has over 200 reading frames with potential to encode proteins [1].Of the proteins
characterised, many are redundant for viral replication in vitro. These include homologues
of host genes “picked up” since mice and humans diverged during mammalian evolution.
If we assume that such genes are retained because they confer a survival advantage, then
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the pathogenic pathways initiated by the murine and human viruses must be subtly
different. This has been demonstrated with CMV-encoded chemokines [6].

2. Susceptibility to murine CMV is MHC (murine H-2) dependent. This is evident in cultured
cells and immunodeficient hosts so it is not related to CD8+ T-cell responses. Rather some
H-2 Class I proteins appear to act as a cell surface receptor. There is no evidence that human
HLA proteins have this role [7].

3. Without external immunosuppression, adult laboratory mice of susceptible strains can
readily be infected with murine CMV at a dose that destroys their spleen and other organs,
and may cause death [4].This is not seen in people, but has been used in many studies to
examine immune responses to CMV.

4. In vitro infection of monocytes, macrophages and dendritic cells with murine CMV [8, 9]
creates cells which remain intact but selectively loose secondary functions. This is
interesting but not an important mode of immunoregulation, as only a small percentage
of cells of these lineages are infected in patients or more resistant mice.

To avoid translational issues between studies of MCMV in mice and HCMV in humans, we
need to look more closely at people infected with CMV. This must include primary disease
and the effects of long term asymptomatic CMV infection in immune competent hosts. A lesson
that we can take from MCMV is the effects on multiple cells and organs, including the adrenals,
pancreas and salivary glands [4, 5, 10, 11]. Sensitive PCR-based viral load assays are now
available, but these are only routinely applied to blood, urine or saliva of patients at risk of
acute disease. There is little probability of detecting latent CMV. Here we present a tool to
evaluate the lifetime effects of CMV on human health - the footprint of CMV. We also sum‐
marise evidence that natural killer (NK) cells may regulate the footprint of CMV. The likely
impact in HIV patients is presented as Figure 1.
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Figure 1. HIV<$%&?>disease<$%&?>has<$%&?>several<$%&?>avenues<$%&?>to<$%&?>enhance<$%&?>the<$%&?>footprint<$%&?>of<$%&?>C
MV<$%&?>and<$%&?>thereby<$%&?>promote<$%&?>cardiovascular<$%&?>disease. 
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cell<$%&?>responses<$%&?>to<$%&?>CMV<$%&?>can<$%&?>be<$%&?>assessed<$%&?>by<$%&?>IFNγ<$%&?>ELISpot<$%&?>
or<$%&?>using<$%&?>tetramers<$%&?>or<$%&?>pentamers<$%&?>that<$%&?>mark<$%&?>cells<$%&?>reacting<$%&?>with<$
%&?>a<$%&?>particular<$%&?>CMV<$%&?>peptide<$%&?>presented<$%&?>by<$%&?>a<$%&?>particular<$%&?>HLA<$%&?>
molecule<$%&?>(usually<$%&?>HLA-
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Figure 1. HIV disease has several avenues to enhance the footprint of CMV and thereby promote cardiovascular disease.
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2. Immune control of CMV

T-cell and antibody responses may reflect CMV replication rather than protect against it. CD8+
T-cell responses to CMV can be assessed by IFNγ ELISpot or using tetramers or pentamers
that mark cells reacting with a particular CMV peptide presented by a particular HLA molecule
(usually HLA-A2). Gamadia et al [12]reported that frequencies of CMV-specific CD8+ T-cells
were significantly higher in immunosuppressed transplant recipients than in healthy donors,
suggesting that these responses may reflect exposure rather than protection. This is consistent
with evidence that CMV encodes proteins that down regulate T-cell recognition of infected
cells, and thus evade immune detection. This includes the degradation of HLA class I and II
molecules by unique short (US) proteins and disruption of antigen processing by an infected
antigen-presenting cell [13].CMV-specific cells predominantly have an effector-memory or
senescent phenotype (CD45R0+CD27−CCR7− or CD45RA+CD27−CCR7−, resp.). Subsequent
studies suggest that a rapid CD4+ T-cell response was also essential to avoid symptomatic
primary CMV infection in renal transplant recipients [14], but the cells critical for the mainte‐
nance of latency have not been identified.

Extensive studies of MCMV infection in laboratory mice have mapped protective NK cell-
mediated responses to the Ly49 gene cluster [equivalent to human Killer Cell Immunoglobu‐
lin-like receptor (KIR) genes]. Mouse strains have distinct Ly49 gene repertoires, which
correlate with resistance to MCMV [15]. The activating receptor Ly49H is implicated in
protection, and several members of the Ly49 family interact with MCMV encoded proteins
[16]. In mice without a protective NK response (eg: through Ly49H), MCMV infections are
eventually controlled by T-cells. CD4+ T-cells are needed to control MCMV persistence in the
salivary gland [17]. CD8+ T-cells recognising immediate early (IE) epitopes are also implicated
in control of reactivated MCMV, where frequent boosting expands specific CD8+ T-cell clones.
MCMV encodes genes able to regulate MHC class I expression, demonstrating an evolutionary
impetus to avoid CD8+ T-cell responses. Critical epitopes and H-2 loci initiating protective
CD8+ T-cell responses have been identified, but it is a limitation that all studies use laboratory
strains of MCMV rather than primary isolates [18]. This highlights the need to study human
CMV disease.

Direct evidence that NK cells can control CMV in humans is available from a study of a
congenitally T-cell deficient child with acute CMV infection and a 10-fold expansion of NK
cells with restricted receptor diversity. Acute illness resolved and NK cells returned to normal
levels with clearance of plasma CMV DNA [19].This fits teleological and genetic evidence that
NK cells control CMV. Human and mouse CMV diverged with their host species and have
independently evolved proteins able to subvert protective NK responses [20]. This includes
homologues of HLA-G (UL18) and HLA-E signal peptide (UL40), which interact with NK
inhibitory receptors (LIR-1 and NKG2C, resp.) (Reviewed in[21] ) In support of a role for NK
cells in CMV and HIV disease, we showed that heterozygous carriage of allele 2 at LIR-1
(rs1061680; LILRB1 I142T) associated with CMV disease and nadir CD4+ T-cell counts [22].

A role for NK cells in the control of CMV is also consistent with evidence that carriage of more
genes for activating KIR receptors protects against CMV reactivation in immunosuppressed
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the pathogenic pathways initiated by the murine and human viruses must be subtly
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acute disease. There is little probability of detecting latent CMV. Here we present a tool to
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impact in HIV patients is presented as Figure 1.
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Figure 1. HIV disease has several avenues to enhance the footprint of CMV and thereby promote cardiovascular disease.

Manifestations of Cytomegalovirus Infection78

2. Immune control of CMV

T-cell and antibody responses may reflect CMV replication rather than protect against it. CD8+
T-cell responses to CMV can be assessed by IFNγ ELISpot or using tetramers or pentamers
that mark cells reacting with a particular CMV peptide presented by a particular HLA molecule
(usually HLA-A2). Gamadia et al [12]reported that frequencies of CMV-specific CD8+ T-cells
were significantly higher in immunosuppressed transplant recipients than in healthy donors,
suggesting that these responses may reflect exposure rather than protection. This is consistent
with evidence that CMV encodes proteins that down regulate T-cell recognition of infected
cells, and thus evade immune detection. This includes the degradation of HLA class I and II
molecules by unique short (US) proteins and disruption of antigen processing by an infected
antigen-presenting cell [13].CMV-specific cells predominantly have an effector-memory or
senescent phenotype (CD45R0+CD27−CCR7− or CD45RA+CD27−CCR7−, resp.). Subsequent
studies suggest that a rapid CD4+ T-cell response was also essential to avoid symptomatic
primary CMV infection in renal transplant recipients [14], but the cells critical for the mainte‐
nance of latency have not been identified.

Extensive studies of MCMV infection in laboratory mice have mapped protective NK cell-
mediated responses to the Ly49 gene cluster [equivalent to human Killer Cell Immunoglobu‐
lin-like receptor (KIR) genes]. Mouse strains have distinct Ly49 gene repertoires, which
correlate with resistance to MCMV [15]. The activating receptor Ly49H is implicated in
protection, and several members of the Ly49 family interact with MCMV encoded proteins
[16]. In mice without a protective NK response (eg: through Ly49H), MCMV infections are
eventually controlled by T-cells. CD4+ T-cells are needed to control MCMV persistence in the
salivary gland [17]. CD8+ T-cells recognising immediate early (IE) epitopes are also implicated
in control of reactivated MCMV, where frequent boosting expands specific CD8+ T-cell clones.
MCMV encodes genes able to regulate MHC class I expression, demonstrating an evolutionary
impetus to avoid CD8+ T-cell responses. Critical epitopes and H-2 loci initiating protective
CD8+ T-cell responses have been identified, but it is a limitation that all studies use laboratory
strains of MCMV rather than primary isolates [18]. This highlights the need to study human
CMV disease.

Direct evidence that NK cells can control CMV in humans is available from a study of a
congenitally T-cell deficient child with acute CMV infection and a 10-fold expansion of NK
cells with restricted receptor diversity. Acute illness resolved and NK cells returned to normal
levels with clearance of plasma CMV DNA [19].This fits teleological and genetic evidence that
NK cells control CMV. Human and mouse CMV diverged with their host species and have
independently evolved proteins able to subvert protective NK responses [20]. This includes
homologues of HLA-G (UL18) and HLA-E signal peptide (UL40), which interact with NK
inhibitory receptors (LIR-1 and NKG2C, resp.) (Reviewed in[21] ) In support of a role for NK
cells in CMV and HIV disease, we showed that heterozygous carriage of allele 2 at LIR-1
(rs1061680; LILRB1 I142T) associated with CMV disease and nadir CD4+ T-cell counts [22].

A role for NK cells in the control of CMV is also consistent with evidence that carriage of more
genes for activating KIR receptors protects against CMV reactivation in immunosuppressed
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renal [23, 24] and bone marrow [25, 26] transplant patients. KIR receptors in man comprise
both inhibitory and activating members (as do Ly49 genes in mice). The ligands for most
inhibitory KIR are allelic epitopes of the classical class I HLA proteins (reviewed in[27]). In
contrast, ligands for most of the activating KIR are unknown. An exception is KIR2DS1, which
interacts with HLA-C2. [28, 29]. Several groups have attempted to identify the CMV-protective
KIR gene, but this is complicated by linkage disequilibrium in the KIR gene complex. Inhibition
of NK killing of fibroblasts infected by CMV has been demonstrated by several groups [30].This
study implicated UL18 but this may depend on the NK donor’s genotype. Although the roles
of specific NK receptors in CMV disease are unclear, increased expression of LIR-1 [31, 32]
and/or NKG2C [33, 34] is a consequence (footprint) of CMV replication. This has potential as
a tool to assess a history of CMV reactivation.

3. CMV has a footprint in healthy aging and cardiovascular disease

Associations between CMV and vasculopathy have been described since 1987 [35] and
attributed to immunopathological events initiated by viral replication. Our studies of MCMV
in inbred mice showed that susceptible BALB/c mice develop myocarditis in which CD8+ T-
cells accumulate in the myocardium and persist for 12 months despite clearance of viral antigen
by day 3 [36]. In C57BL/6 mice have a protective NK response [5] and display only mild
resolving myocarditis. To evaluate the evidence available in patients requires consideration of
the underlying mechanisms.

Inflammation and activation of immune cells features throughout atherogenic plaque forma‐
tion, which is the principle condition of cardiovascular disease (CVD). Pathogenesis of
atherosclerotic plaques on vessel walls begins with acute inflammation resulting in endothe‐
lium dysfunction [37]. Many life-style risk factors can reduce the integrity of endothelium. The
accumulation of low density lipoproteins (LDL) in intimal space by diffusion and its oxidation
can cause endothelial cell injury and inflammation [38]. Secretion of vascular cell adhesion
molecule-1 (VCAM-1) and up-regulation of selectins and integrins facilitates leukocyte
adhesion to vessel walls. Inflammatory cytokines such as IL-1 and TNF-α induce expression
of chemokines (eg: CCL2, CXCL8, CX3CL1) by endothelial cells, recruiting T-cells and
monocytes and facilitating their transmigration into the intimal space. Monocytes internalize
LDL and differentiate into macrophages which promote inflammation and leukocyte migra‐
tion into developing plaques by secretion of CX3CL1/CX3CR1, interferon-γ (IFNγ) and CCL2
[39, 40] and generation of reactive oxygen species [41]. Hyperlipidemia, macrophage death
and consequential irregular surfaces of vessel endothelium promote growth of the athero‐
sclerotic lesion. Smooth muscle cells migrate from the media to intimal space aided by lytic
enzymes. This contributes to plaque instability [39]. Smooth muscle cells proliferate in intimal
space and also adhere to monocytes [42], thickening arterial walls and occluding the vessel.
Rupture of the plaque can result in infarction. Myocardial infarcts (MI) refer to rupture of
plaque in the coronary artery. The carotid artery is also a frequent site of plaque formation and
thickness of the intima at this site can indicate clinical and sub-clinical CVD [43].

Manifestations of Cytomegalovirus Infection80

Active CMV infection has been associated with the onset of autoimmune disorders in trans‐
plant patients and healthy donors. The development of autoimmune antibodies following re‐
activation of CMV in transplant patients has been linked to graft versus host disease and graft
rejection. Hypergammaglobulinemia and autoantibody production can also be a feature of
CMV-induced mononucleosis. There have been several case reports of healthy individuals de‐
veloping acute CMV infection preceding vasculitis or encephalitis. In a case of encephalitis,
treatment of active CMV with valganciclovir resolved symptoms, but CMV-specific CD4+ and
CD8+ T-cells remained 10 months after disease onset [44-]. The development of autoimmune
vasculitis, systemic lupus erythematosus, sclerodoma and necrotizing vasculitis have been as‐
sociated with CMV replication [46]. Anti-phospholipid antibodies have been shown to activate
endothelial cells and CMV transcription [47], suggesting a feedback amplification loop.

CMV seropositivity has been correlated with a greater risk of all-cause mortality in the elderly
[48-]. Although it is rare for CMV to be identified as the primary cause of death, CMV
prevalence in the older population can be as high as 100% [52]. An in-depth study following
Latinos aged 60-101 years for a period of 9 years (n=1,468) showed that those with high CMV
antibody titres were 1.43 times more likely to die and had 1.35 times greater risk of CVD-
associated mortality than those with low CMV antibody titres [51]. 96% of the participants
were CMV seropositive. Factors significantly (p<0.05) associated with mortality included age,
female gender, low education level and levels of inflammatory markers (TNF, IL-6, C-reactive
protein). Elderly CMV-seropositive patients respond less well to seasonal influenza vaccina‐
tion than those with low or negative CMV seropositivity [50, 53]. This suggests dysfunction of
the immune system and could account for the increased risk of all-cause mortality.

In older CMV-seropositive adults, up to 23% of the T-cell population can be CMV-specific. For
example, NLV peptide-specific CD8+ T-cells alone comprised a median 3% (range = 0.4-5.6%)
of CD8+ T-cells in donors aged 90 [89-96] years. CMV-specific T-cells are generally CD28-
negative(an immunosenescent phenotype also associated with expression of CD57 and
shortened telomeres) and have limited proliferative potential, but may produce IFNγ. Their
accumulation correlates with immunologic aging or ‘‘immunosenescence’’ evident in the
entire T-cell population assayed ex vivo [54-].The accumulation of senescent CMV-reactive T-
cells was greatest in frail and institutionalized elderly donors [58].Repeated sub-clinical CMV
infections may expand CMV-specific T-cells clones until they suppress homeostatic expansion
of other T-cells. Alternatively the expanded clones of CMV-reactive cells may bias the
population and dilute cells of other specificities - explaining why EBV-reactive T-cells do not
show a senescent phenotype [54].

However chronic CMV reactivation may have wider consequences than just an aging immune
system. CMV infects endothelial cells in acute stages of infection and it is proposed they could
also be a site of latent infection [59, 60]. Studies of murine CMV in mice have identified
endothelial cells as a site of viral latency [61], whilst several studies demonstrated human CMV
in arterial walls of atherosclerotic and non-atherosclerotic patients [62, 63]. A study of tissues
removed during surgery for abdominal aortic aneurysm associated the presence of CMV DNA
in smooth muscle cells with expression of inflammatory mediators and implicated CMV in the
pathology [64]. Accordingly higher CMV antibody titres are associated with increased diastolic
and systolic blood pressure in young men [65] and CMV seropositivity is more frequent in
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a tool to assess a history of CMV reactivation.
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in inbred mice showed that susceptible BALB/c mice develop myocarditis in which CD8+ T-
cells accumulate in the myocardium and persist for 12 months despite clearance of viral antigen
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resolving myocarditis. To evaluate the evidence available in patients requires consideration of
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can cause endothelial cell injury and inflammation [38]. Secretion of vascular cell adhesion
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example, NLV peptide-specific CD8+ T-cells alone comprised a median 3% (range = 0.4-5.6%)
of CD8+ T-cells in donors aged 90 [89-96] years. CMV-specific T-cells are generally CD28-
negative(an immunosenescent phenotype also associated with expression of CD57 and
shortened telomeres) and have limited proliferative potential, but may produce IFNγ. Their
accumulation correlates with immunologic aging or ‘‘immunosenescence’’ evident in the
entire T-cell population assayed ex vivo [54-].The accumulation of senescent CMV-reactive T-
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also be a site of latent infection [59, 60]. Studies of murine CMV in mice have identified
endothelial cells as a site of viral latency [61], whilst several studies demonstrated human CMV
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pathology [64]. Accordingly higher CMV antibody titres are associated with increased diastolic
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coronary artery disease requiring surgery[66]. Increased expression of LIR-1 on NK cells (a
footprint of CMV) is also associated with atherosclerosis [67].Stronger T-cell responses to CMV
also associate with severe cardiovascular changes seen in HIV patients [68].

The chemokine, fractalkine (CX3CL1) and its receptor CX3CR1 are membrane-bound proteins.
CX3CL1 can be cleaved from a cell surface through TNFα signal pathways to mediate attraction
and then firm adhesion of lymphocytes expressing CX3CR1 to endothelium. T-lymphocytes
and monocytes express CX3CR1, whilst monocytes, endothelial cells and smooth muscle cells
can be induced to express CX3CL1 by TNFα, IFNγ, IL-1 and LPS [37, 69, 70].CX3CR1 is found
in atherosclerotic plaques and its role in plaque formation and mediation by inflammation is
of interest in the management of CVD [69]. An in vitro system co-coculturing CMV infected
endothelial cells and peripheral blood mononuclear cells established the principle that CMV
specific CD4+ T-cells can induce CX3CL1 production in CMV infected endothelial cells.
CX3CL1 aids the ingress of monocytes and NK cells which are capable of killing the CMV
infected endothelial cell [71].

Monocytes in atherosclerotic plaques express higher levels of CX3CR1 and CX3CL1 promoting
chemotaxis of monocytes and T-lymphocytes to the plaque [72].CX3CL1 can be expressed by
epithelial cells, but vascular endothelial cells and smooth muscle cells do not normally express
CX3CL1. TNFα can induce expression of CX3CR1/L1 in these tissues [70], which corresponds
with detection of CX3CR1/L1 at a later stage of plaque formation. Sacre et al. reported that
CD4+CX3CR1+T-cells produced more TNFα and IFN γ in vitro than CD4+CX3CR1- T-cells. This
is consistent with a potential feedback mechanism in which CD4+CX3CR1+ T-cells exacerbate
plaque formation. Immuno-histochemical staining of coronary arterial wall samples from HIV
patients with atherosclerosis showed a presence of CX3CR1, CD4 and CD3 at early stages of
atherogenesis, so CD4+CX3CR1+ T-cells could initiate plaque formation [73].

4. HIV patients stable on ART have a stronger footprint of CMV

In HIV patients with suppressed HIV replication on ART, the recovery of CD4+ T-cell counts
is limited by replenishment from the thymus and the loss of T-cells through persistent chronic
immune activation [74, 75].Persistent CD4+ T-cell deficiency is most common in patients with
low nadir CD4+ T-cell counts (<100 cells/μl) even though some patients beginning ART with
severe T-cell depletion achieve effective immune reconstitution [76]. Patients with abundant
thymic tissue show a faster and higher return of naïve CD4+ T-cells after ART. However the
thymus is a site of HIV replication. Infected thymocytes may die (through necrosis or apop‐
tosis) or survive and carry the HIV provirus to their progenies (establishing latent infection).
As HIV disease progresses, the thymus becomes prematurely atrophic, with changes similar
to those seen in old age. For example, the thymus of a 30 year-old with late stage AIDS may
be morphologically similar to the normal atrophic thymus of a 60 year-old [77].

Thymic dysfunction and the consequent release of autoreactive T-cells into circulation are
implicated in the autoimmune and immunopathological conditions normally seen in old age
- conditions that are more common in HIV patients (including those with a virological response
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to ART) than in the general population. This includes cardiovascular disease – which is
influenced by the ART regime, life-style factors (smoking, exercise etc.) and other infections,
notably CMV. CMV infection is more prominent in HIV patients, so its role in immunological
aging and cardiovascular disease requires evaluation [78].

Over 50% of healthy individuals and 90% of individuals living with HIV are seropositive for
CMV. Retinitis is the most common manifestation of CMV disease in HIV-infected individuals,
affecting up to 40% of American AIDS patients, and many HIV patients in the developing
world [3, 79].Treatment of systemic CMV disease is expensive and protracted, so prophylaxis
is suspended once patients are stable on ART. As discussed earlier, CMV has the capacity for
latency with frequent reactivation triggered by inflammatory mediators, including TNF [80].
Immune activation in treated and untreated HIV disease increases levels of this cytokine in
circulation and tissues [81], so frequent subclinical reactivation of CMV is expected.

It appears likely that CMV and thymic insufficiency are synergistic in their effects on T-cell
profiles in HIV patients. This is supported by evidence that homeostatic expansion of existing
T-cells maintains T-cell numbers in the absence of thymic output, so age-related declines in
immune function are accentuated in patients thymectomised in early childhood. This was
clearest in individuals with strong T-cell responses to CMV IE and pp65 antigens [82].Accu‐
mulation of CMV –specific T-cells with an immunosenescent phenotype is greater in HIV
patients than in age-matched controls [83, 84]. The importance of CMV in immune activation
and immunosenesence in HIV patients is confirmed by evidence that immune activation was
reduced when patients were treated with valgancyclovir [85].

Our studies of HIV patients also suggest that elevated T-cell and humoral responses to CMV
reflect frequent reactivation. We investigated HIV patients who began antiretroviral therapy
(ART) with extreme immunodeficiency and maintained a virological response until they were
>50 years old. One can assume that they had a high burden of CMV pre-ART as many had
experienced CMV retinitis. These HIV patients retained high titres of antibody reactive with
CMV after 14 [13-16] years on ART and displayed elevated IFNγ responses to an immediate
early peptide of CMV(unpublished data).Such patients display accelerated cardiovascular
disease that correlates with responses to CMV [86].

CD4+CX3CR1+ T-cells may help explain the role of CMV-specific cells in development of
atherosclerosis in HIV patients, but the mechanisms requires further investigation. Interest in
CX3CR/L in atherosclerosis is focussed by three findings reported in several studies.

1. Atherosclerosis is an inflammatory disease that is more frequent in HIV patients and
cannot be attributed to ART cardiotoxicity alone [87, 88, 89, 90, 91].

2. HIV patients have a high proportion of CMV-specific T-cells [82, 83, 92]

3. CX3CR1 is found in atherosclerotic lesions and is expressed by T-cells [69,70]

A study of CX3CR1+ CD4+ T-cells and their implications in CVD was conducted in HIV-
infected (n=29) and uninfected (n=48) individuals. The frequency of CD4+CX3CR1+ T-cells
correlated with increasing carotid intima-media thickness (cIMT) in HIV-infected individuals.
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tosis) or survive and carry the HIV provirus to their progenies (establishing latent infection).
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These cells were antigen primed (CD45RA-, CD27-), activated (HLA-DR+) and immunosenes‐
cent (CD57+) [73].

It may also be important that NK function is deficient in HIV patients. HIV infection changes
the proportions of NK cell subsets, and expression of their activating and inhibitory receptors.
It also perturbs their cytotoxic functions and cytokine production [93].Our group has publish‐
ed two studies of previously immunodeficient Australian patients, stabilised for many years
on ART:

1. CD4+ T-cell IFNγ responses to CMV were inversely related to CD4+ T-cell counts before
ART in patients who began ART with <60 CD4+ T-cells/μL, but IFNγ responses of NK
cells to an unrestricted target (K562 cells) were directly proportional to nadir CD4+ T-cell
counts [94].This establishes that NK cells don’t follow the same trends as CD4+ T-cells on
ART and do keep the imprint of the pre-ART immune system for many years.

2. NK cell IFNγ responses and proportions of CD56loCD16+ NK cells were positively
correlated and lower in patients than controls (confirming persistent NK dysfunction).
Proportions of CD56hiCD16neg NK cells (a phenotype associated with cytokine production)
correlated inversely with CD4+ T-cell counts after ART and expression of perforin in this
NK subset was higher in HIV patients than healthy controls. So these NK cells may
compensate for T-cell deficiency [95].

5. CMV remains an important pathogen after renal transplantation

CMV reactivation (in previously seropositive recipients) or primary infection (in any recipient)
is the most common infectious complication in renal transplantation [96].In the 1970’s one in
three recipients experienced pathologies associated with CMV. In one study of 141 patients,
12 died with disseminated CMV infection [97, 98].

In Australia, prophylaxis (valganciclovir) is routinely administered for 12-26 weeks after
transplantation, according to a formula that considers donor and recipient CMV seropositivity
and clinical risk. Under an equivalent regime, CMV recurred in 14/43 (33%) seropositive
patients and in 4/19 (21%) patients after primary infection [99]. CMV remains a significant
cause of graft loss despite prophylaxis and in the longer term, CMV reactivations are impli‐
cated in deterioration in renal function [100, 101], exhaustion or senescence of T-cells and
cardiovascular disease.

Cardiovascular disease is recognised as a long term complication of renal transplantation, but
a recent review [102] attributed this to immunosuppression. CMV antigenaemia (pp65) in the
first year post-transplant did not predict cardiovascular disease over the next 2 years [102],
but the study did no assess the longer term footprint of CMV disease. It is notable that Gomez
et al [103] associated cardiovascular disease with CMV seropositivity over 1 year post-
transplant in patients given oral ganciclovir.
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6. Conclusions

The immune response to CMV has been studied extensively in mice and evidence is now
accumulating from studies in humans. It is clear that NK cell and T cell responses are both
important and that they influence each other. We propose a “footprint of CMV” as a tool to
investigate the short and long term effects of CMV infection.

The footprint may include

1. CMV DNA detected by a sensitive PCR assay of blood, saliva or urine.

2. CMV-peptide/HLA tetramer positive CD8 T cells: The number of these cells in the blood
is thought to reflect an accumulation of cells responding to CMV replication.

3. IFN-γ responses of CD4+ and CD8+ T-cells to CMV antigens enumerated by ELISPOT or
flow cytometry.

4. Anti-CMV antibody detected by ELISA

5. Expression of NKG2C and LIR-1 on NK cells and T cells: NKG2C is expressed on a very
small proportion of NK cells in CMV-seronegative subjects but expressed on a substantial
proportion of NK cells from CMV seropositive subjects [31,32,33]and is considered a
hallmark of CMV exposure. This probably reflects expansion of a small NK cell population
in response to CMV infection. LIR-1 expression is also increased in subjects with higher
titres of CMV antibody.

The resulting holistic view of the immune response in man will be a foundation for future
studies aimed at identifying phenotypes associated with protection and those individuals who
will benefit most from CMV prophylaxis.
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1. Introduction

The potential role of Human cytomegalovirus (hCM) infection in promoting neoplasia is an
active area of scientific research. [1] Although still controversial, there is a growing body of
evidence that links hCMV infection to a variety of malignancies, including those of the breast,
prostate, colon, lung and brain (gliomas). [2-7] hCMV induces alterations in regulatory
proteins and non-coding RNA that are associated with a malignant phenotype. These changes
promote tumour survival by effecting cellular proliferation, invasion, immune evasion, and
production of angiogenic factors [8] Constant immune surveillance governs the destruction of
the majority of cancer cells and precancerous conditions in the human body. However, the
most pathogenic of malignant tumors acquire immune evasion strategies which render them
less vulnerable to destruction by immune cells.

The characteristic hallmarks of a malignant cell include:

1. sustaining proliferative signaling and evading growth suppressors,

2. resisting cell death and enabling replicative immortality,

3. inducing angiogenesis, activating invasion and metastasis. [9]

In cancers which are not attributable to infectious agents, chronic inflammation may also play
a critical role in the transition from a precancerous condition to invasive malignancy. Inflam‐
mation is the seventh hallmark of neoplasia (Table 1). [10] During chronic inflammation,
certain “promoters,” such as hepatitis C virus and Epstein-Barr virus (EBV), may facilitate the
transformation of a pre-malignant condition to neoplasia. [11,12] Cancer “promoters” are
agents that, by themselves, may not have a significant oncogenic impact on normal cells but
can drive precancerous cells towards neoplasia.
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1. Sustaining proliferative signaling

2. Evading growth suppressors

3. Resisting cell death

4. Inducing angiogenesis

5. Activating invasion and metastasis

6. Enabling replicative immortality

7. Tumor-promoting inflammation

Table 1. The “seven” hallmarks of cancer

2. Chronic inflammation and oncogenesis

Associations linking chronic infection, chronic inflammation and malignancy have been well
chronicled. [13] As many as 25% of all cancers can be traced to chronic infection or other types
of chronic inflammation. [14] Infectious agents that cause chronic inflammation promote
oncogenesis by complex pathways, and are depicted in Figure 1. Key mediators of inflamma‐
tion-induced oncogenesis include generation of mutagenic chemical mediators such as
reactive oxygen and nitrogen species, genetic variations in inflammatory cytokines [15], and
creation of a micro-environment with features of chronic inflammation such as nuclear factor
kappa B (NF-κB). [16,17] In such conditions, tumor-associated macrophages (TAMs) play a
pivotal role in mediating inflammatory (M1) responses, as well as immunosuppressive and
growth (M2) responses. [18]

M2-polarized TAMs and the related myeloid-derived suppressor cells are key components of
smoldering inflammation that drives neoplastic progression. The M2 responses, while
important for wound healing, can promote neoplastic transformation. TAMs respond to
cytokines such as Interleukin (IL)-10 and Transforming Growth Factor (TGF)-β, acquiring M2
properties that promote immune suppression by blocking dendritic cell (DC) maturation and
attracting regulatory T-cells (T-regs). [19,20] T-regs are potent inhibitors of the T-cell anti-
tumor response. [21]

Activation of NF-κB pathway mediated by COX-2 and IL-6 via STAT-3 transcriptional
activation also promotes malignant transformation. [22] NF-κB is a transcription factor that
mediates an inflammatory cascade leading to generation of COX-2, an inducible isoform of
nitric oxide synthase (iNOS) and the inflammatory cytokines IL-1β, IL-6, and Tumor Necrosis
Factor (TNF) -α. These cytokines, in conjunction with nitric oxide produced by TAMs and
tumor cells, are present in high concentration in the tumor microenvironment and are
important promoters of inflammation-driven oncogenesis and immunosuppression. [23-25]
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3. Concept of oncomodulation

Tumor cells have aberrations in cell cycle signaling, RNA transcription and the production of
tumor-suppression proteins. The concept of “oncomodulation” suggests that a virus may
modulate cellular pathways [26] through changes to viral regulatory proteins and noncoding
RNA which eludes to tumor cell properties (cell proliferation, survival, invasion, production
of angiogenic factors, and immune evasion). hCMV not only promotes oncogenesis but also
contributes to a more malignant tumor cell phenotype (Figure 2). While investigators have
long postulated a role for hCMV in human neoplasia, many of the early studies were not
reproducible and lacked clear in situ histopathological correlations with the proposed diseases.
[27,28] The concept of “hit-and-run” oncogenesis holds that infection with hCMV takes place
during an earlier time frame to tumour development. hCMV infection sets into motion
processes resulting in malignancy, but the virus is no longer detectable by the time cancer
occurs. [29] Several of the more important cellular pathways that could lead to cancer and
which are modulated by hCMV are reviewed below.

3.1. Resistance to apoptosis

Resistance to apoptosis is a common feature of cancer cells. [9,30,31] Early research on hCMV
infection revealed that hCMV protects the fibroblasts it infects from apoptosis. hCMV
immediate early (IE) proteins (e.g., IE2-86 & IE2-72) [32] are able to prevent adenovirus E1A

Figure 1. Pathway linking chronic inflammation and oncogenesis. (Adapted from Schetter et. al. [13])

The Oncogenicity of Human Cytomegalovirus
http://dx.doi.org/10.5772/55051

97



1. Sustaining proliferative signaling

2. Evading growth suppressors

3. Resisting cell death

4. Inducing angiogenesis

5. Activating invasion and metastasis

6. Enabling replicative immortality

7. Tumor-promoting inflammation

Table 1. The “seven” hallmarks of cancer

2. Chronic inflammation and oncogenesis

Associations linking chronic infection, chronic inflammation and malignancy have been well
chronicled. [13] As many as 25% of all cancers can be traced to chronic infection or other types
of chronic inflammation. [14] Infectious agents that cause chronic inflammation promote
oncogenesis by complex pathways, and are depicted in Figure 1. Key mediators of inflamma‐
tion-induced oncogenesis include generation of mutagenic chemical mediators such as
reactive oxygen and nitrogen species, genetic variations in inflammatory cytokines [15], and
creation of a micro-environment with features of chronic inflammation such as nuclear factor
kappa B (NF-κB). [16,17] In such conditions, tumor-associated macrophages (TAMs) play a
pivotal role in mediating inflammatory (M1) responses, as well as immunosuppressive and
growth (M2) responses. [18]

M2-polarized TAMs and the related myeloid-derived suppressor cells are key components of
smoldering inflammation that drives neoplastic progression. The M2 responses, while
important for wound healing, can promote neoplastic transformation. TAMs respond to
cytokines such as Interleukin (IL)-10 and Transforming Growth Factor (TGF)-β, acquiring M2
properties that promote immune suppression by blocking dendritic cell (DC) maturation and
attracting regulatory T-cells (T-regs). [19,20] T-regs are potent inhibitors of the T-cell anti-
tumor response. [21]

Activation of NF-κB pathway mediated by COX-2 and IL-6 via STAT-3 transcriptional
activation also promotes malignant transformation. [22] NF-κB is a transcription factor that
mediates an inflammatory cascade leading to generation of COX-2, an inducible isoform of
nitric oxide synthase (iNOS) and the inflammatory cytokines IL-1β, IL-6, and Tumor Necrosis
Factor (TNF) -α. These cytokines, in conjunction with nitric oxide produced by TAMs and
tumor cells, are present in high concentration in the tumor microenvironment and are
important promoters of inflammation-driven oncogenesis and immunosuppression. [23-25]

Manifestations of Cytomegalovirus Infection96

3. Concept of oncomodulation

Tumor cells have aberrations in cell cycle signaling, RNA transcription and the production of
tumor-suppression proteins. The concept of “oncomodulation” suggests that a virus may
modulate cellular pathways [26] through changes to viral regulatory proteins and noncoding
RNA which eludes to tumor cell properties (cell proliferation, survival, invasion, production
of angiogenic factors, and immune evasion). hCMV not only promotes oncogenesis but also
contributes to a more malignant tumor cell phenotype (Figure 2). While investigators have
long postulated a role for hCMV in human neoplasia, many of the early studies were not
reproducible and lacked clear in situ histopathological correlations with the proposed diseases.
[27,28] The concept of “hit-and-run” oncogenesis holds that infection with hCMV takes place
during an earlier time frame to tumour development. hCMV infection sets into motion
processes resulting in malignancy, but the virus is no longer detectable by the time cancer
occurs. [29] Several of the more important cellular pathways that could lead to cancer and
which are modulated by hCMV are reviewed below.

3.1. Resistance to apoptosis

Resistance to apoptosis is a common feature of cancer cells. [9,30,31] Early research on hCMV
infection revealed that hCMV protects the fibroblasts it infects from apoptosis. hCMV
immediate early (IE) proteins (e.g., IE2-86 & IE2-72) [32] are able to prevent adenovirus E1A

Figure 1. Pathway linking chronic inflammation and oncogenesis. (Adapted from Schetter et. al. [13])

The Oncogenicity of Human Cytomegalovirus
http://dx.doi.org/10.5772/55051

97



protein-induced apoptosis-by both p53-dependent and independent mechanisms- of hCMV
infected fibroblasts. Direct anti-apoptotic activity of hCMV proteins is related to defined
transcripts encoded by the hCMV UL36-UL37 genes. [33,34] The product of the UL36 gene is
an inhibitor of caspase activation which binds to the pro-domain of caspase-8 and inhibits Fas-
mediated apoptosis. [35] Similarly, the UL37 gene product, UL37 exon 1, is a mitochondrial
inhibitor of apoptosis and inhibits the recruitment of the pro-apoptotic proteins Bax and Bak
to mitochondria, resulting in their functional inactivation. [36] hCMV further protects tumor
cells from apoptosis by the induction of cellular proteins, including AKT, Bcl-2, and ΔNp73α.
[37] Induction of the anti-apoptotic protein Bcl-2 by hCMV, results in acquired resistance to
cytotoxic drugs such as cisplatin and etoposide. This resistance can be reversed after treatment
with the anti-hCMV drug, ganciclovir. [37] Engagement of platelet derived growth factor
receptor (PDGFR) α or virus co-receptors (including integrins and Toll-like receptor-2) by
hCMV glycoproteins can also lead to activation of mitogen-activated protein kinase (MAPK)
and/or phosphatidyl-inositol 3-kinase (PI3-K) pathways that can alter apoptotic responses
(Figure 3). [38-40]

3.2. Cancer cell adhesion, migration and invasion

Adhesion of cancer cells to endothelium is critical in promoting metastases. [41-43] hCMV can
facilitate this process by promoting activation of integrins (e.g., β1α5 and B1) on the tumor cell
surface, and by increasing adhesion of tumor cells to the neighboring endothelium. Tumor cell
adhesion to endothelium is also facilitated by activation of integrin-linked kinases (e.g.,
phosphorylation of focal adhesion kinase Tyr397). [4,,44] Down regulation of adhesion
molecule receptors by hCMV (e.g., neural cell adhesion molecule, CD56), causes a focal
disruption of endothelial cells facilitating tumor cell transmigration. [1,45] The net effects of
hCMV on adhesion molecules account for decreased binding of cancer cells to each other and

Figure 2. Concept of Oncomodulation. (Adapted from Michaelis et. al. [99])
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increased binding to endothelium, which is an important early process in formation of
metastasis.

3.3. Angiogenesis

Angiogenesis is the growth of the new blood vessels and is essential for growth of malignant
tumors. [9,46] Through the technique of secretome analysis researchers have shown that
proteins secreted from hCMV-infected cells contain increased levels of pro-angiogenic
molecules, and increased pro-angiogenic activity in cell-free supernatants. [47] US28 is a hCMV
protein seen in high concentrations in the supernatant. This particular protein alters adhesion
properties of epithelial cells inducing a pro-angiogenic and transformed phenotype through
up-regulation of vascular endothelial growth factor (VEGF). [48] Additional supernatant
proteins, including IE1-72 and IE2-86, increase vascular smooth muscle cell migration,
proliferation, and expression of PDGF-β receptor. Furthermore, IE2-86 promotes endothelial
proliferation by binding and inactivating the tumor oncogene p53 in endothelial cells. [49,50]
Expression of IL-8, another well-recognized promoter of tumor angiogenesis, is increased by
hCMV via transactivation of IL-8 promoter through the cellular transcription factors NF-κB
and AP-1. [51] Binding of hCMV to and signaling through integrin β1, integrin β3, and
epidermal growth factor receptor can also promote angiogenesis. [47,52]

Figure 3. Major signaling pathways activated by hCMV that contribute to oncomodulation by hCMV. (Adapted from
from Michaelis et. al. [100])
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Expression of thrombospondin (TSP-1), a potent inhibitor of angiogenesis, is suppressed in
several hCMV-infected cancer cell lines, suggesting yet another mechanism by which hCMV
can promote increased angiogenesis and a more malignant phenotype. [53,54] hCMV -
mediated activation of COX-2 may also promote angiogenesis in tumor cells by inducing
expression of Fibroblast Growth Factor (FGF), VEGF, PDGF, iNOS, and TGF-α, and by
promoting capillary endothelial cell migration and tube formation (Figure 3). [55]

3.4. Impact of hCMV on cell cycle

In hCMV-infected host cells, viral regulatory proteins induce cell cycle arrest and prevent
cellular DNA replication, whilst replication of viral DNA remains enabled. [8,56] While some
hCMV regulatory proteins can induce cell cycle arrest, others can promote cell cycle progres‐
sion. [57,58] hCMV IE2-86 induces cell cycle arrest by activating ataxia telangiectasia mutated
(ATM) gene-dependent phosphorylation of p53, leading to p53- and p21-dependent inhibition
of cell cycle progression. [59] In contrast, the hCMV regulatory proteins IE1-72, IE2-86, and the
tegument proteins pp71 and UL97 interact with and deactivate proteins of the Rb family,
promoting entry into S-phase of the cell cycle. [60]

The cell cycle of neoplastic cells is inherently dysfunctional. [9,31] In precancerous or trans‐
formed cells, the function of virus regulatory proteins may depend on the replicative status of
the cell. [61,62] The hCMV protein US28 promotes cell cycle progression and cyclin D1
expression in cells with a neoplastic phenotype; whereas, it induces apoptosis in non-neo‐
plastic cells. [48] Persistent hCMV infection of tumor cells may lead to a selection of virus
variants with changes in virus regulatory proteins that have lost their ability to induce cell
cycle arrest. [63,64]

4. Escape of immune surveillance by cancer cells: Role of hCMV

Immunological tolerance is a process by which the immune system no longer recognizes an
aberrant antigen as “foreign.” [67] Through “natural” or “self-tolerance” the body does not
mount an immune response to self-antigens. “Induced tolerance” to external antigens can be
created by manipulating the immune system. Mechanisms of tolerance that exist to prevent
autoimmune disease may also preclude the development of an adequate antitumor response.
[65-67] This concept of “immune tolerance” may be particularly important in malignancies
whose etiology is associated with inflammation. [68] Expression of hCMV proteins by infected
tumor cells may induce ‘immune tolerance’ to tumor cells. Also, several tumor-derived factors
contribute to the emergence of complex local and regional immunosuppressive networks,
including VEGF, IL-10, TGF-β, and prostaglandin E-2 (PGE2). [66,69]

hCMV has evolved multiple strategies for immune evasion resulting in persistent viral
infection in the host [70-74] Several hCMV proteins, including those expressed with IE genes,
block the host cell MHC class I antigen expression, which is essential for activation of CD8+
T-lymphocyte anti-tumor cytotoxicity. hCMV UL83 protein (pp65) blocks antigen presentation
of hCMV epitopes to CD8+ T-cells, and expression of hCMV UL18, a MHC class I homologue,
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disrupts “natural killer” (NK) cell recognition of hCMV-infected cells. [75] Disruption of
hCMV antigen presentation by infected cells is mediated by hCMV protein US3, which
sequesters MHC class I complexes in the endoplasmic reticulum, and hCMV protein US11
which causes dislocation of the MHC class I heavy chain from the cytoplasm. [76-78] hCMV-
encoded IL-10 homologue impairs tumor antigen presentation by inhibiting maturation,
normal differentiation and cytokine production of dendritic cells and macrophages.. [79-81]
hCMV induces integrin αvβ6 expression in endothelial cells of blood vessels in different tissues,
causing activation of TGF-β1, resulting in interference of host immune responses against tumor
cells by blocking the activation of lymphocytes and monocyte derived phagocytes. [82] These
direct immune-modulatory effects of hCMV on myeloid cells within the tumor microenvir‐
onment, along with expression of immunosuppressive cytokines provide a virtually impass‐
able environment for the host anti-tumor immune system.

5. Influence of CMV on tumor microenvironment

Persistent hCMV infection of non-neoplastic cells in the tumor microenvironment leads to a
paracrine secretion of inflammatory molecules that promote malignancy. [83] The secretome
of hCMV-infected fibroblasts contains exceedingly high levels of growth factors, matrix
remodeling proteins such as matrix metalloproteinases (MMPs), and angiogenic factors that
signal through the TGF-β pathway. [47,84] These paracrine-secreted factors are also able to
activate latent growth factors. PDGFs acts as strong mitogens and their overexpression is
important in the pathogenesis of multiple malignancies. [85-87] In addition to growth factors,
high levels of many ECM modifiers such as MMPs, tissue inhibitors of metalloproteinases
(TIMPs) and urokinase receptor (uPAR) secreted by hCMV infected cells aiding, tumor
invasion and metastasis. [84]

6. DNA mutations, impaired DNA repair mechanisms and epigenetic
changes by hCMV that leads to genomic instability

hCMV infection can drive neoplastic transformation by causing chromosome damage and
genetic instability in infected cells, particularly in vulnerable adult stem cells. [88-90] hCMV
in combination with cytotoxic chemotherapy agents synergistically increases genotoxic effects.
[91,92] The virus can induce specific chromosome 1 strand breaks at positions 1q42 and 1q21
in a replication-independent fashion, both of which are associated with DNA repair and
replication genes. [89,93,94] hCMV IE1-72 and IE2-86 proteins when in conjunction with other
viral oncogenic proteins (e.g., adenovirus E1A protein) that disrupt cell cycle can induce
oncogenic transformation. [29]

hCMV can contribute to genomic instability through a variety of different pathways. In brief,
the virus may induce chromosomal aberrations (e.g., production of micronuclei, misaligned
chromosomes, chromosomal lagging and bridging) by hCMV UL76 protein. [95,96] The virus
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mediated activation of COX-2 may also promote angiogenesis in tumor cells by inducing
expression of Fibroblast Growth Factor (FGF), VEGF, PDGF, iNOS, and TGF-α, and by
promoting capillary endothelial cell migration and tube formation (Figure 3). [55]

3.4. Impact of hCMV on cell cycle

In hCMV-infected host cells, viral regulatory proteins induce cell cycle arrest and prevent
cellular DNA replication, whilst replication of viral DNA remains enabled. [8,56] While some
hCMV regulatory proteins can induce cell cycle arrest, others can promote cell cycle progres‐
sion. [57,58] hCMV IE2-86 induces cell cycle arrest by activating ataxia telangiectasia mutated
(ATM) gene-dependent phosphorylation of p53, leading to p53- and p21-dependent inhibition
of cell cycle progression. [59] In contrast, the hCMV regulatory proteins IE1-72, IE2-86, and the
tegument proteins pp71 and UL97 interact with and deactivate proteins of the Rb family,
promoting entry into S-phase of the cell cycle. [60]

The cell cycle of neoplastic cells is inherently dysfunctional. [9,31] In precancerous or trans‐
formed cells, the function of virus regulatory proteins may depend on the replicative status of
the cell. [61,62] The hCMV protein US28 promotes cell cycle progression and cyclin D1
expression in cells with a neoplastic phenotype; whereas, it induces apoptosis in non-neo‐
plastic cells. [48] Persistent hCMV infection of tumor cells may lead to a selection of virus
variants with changes in virus regulatory proteins that have lost their ability to induce cell
cycle arrest. [63,64]

4. Escape of immune surveillance by cancer cells: Role of hCMV

Immunological tolerance is a process by which the immune system no longer recognizes an
aberrant antigen as “foreign.” [67] Through “natural” or “self-tolerance” the body does not
mount an immune response to self-antigens. “Induced tolerance” to external antigens can be
created by manipulating the immune system. Mechanisms of tolerance that exist to prevent
autoimmune disease may also preclude the development of an adequate antitumor response.
[65-67] This concept of “immune tolerance” may be particularly important in malignancies
whose etiology is associated with inflammation. [68] Expression of hCMV proteins by infected
tumor cells may induce ‘immune tolerance’ to tumor cells. Also, several tumor-derived factors
contribute to the emergence of complex local and regional immunosuppressive networks,
including VEGF, IL-10, TGF-β, and prostaglandin E-2 (PGE2). [66,69]

hCMV has evolved multiple strategies for immune evasion resulting in persistent viral
infection in the host [70-74] Several hCMV proteins, including those expressed with IE genes,
block the host cell MHC class I antigen expression, which is essential for activation of CD8+
T-lymphocyte anti-tumor cytotoxicity. hCMV UL83 protein (pp65) blocks antigen presentation
of hCMV epitopes to CD8+ T-cells, and expression of hCMV UL18, a MHC class I homologue,
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disrupts “natural killer” (NK) cell recognition of hCMV-infected cells. [75] Disruption of
hCMV antigen presentation by infected cells is mediated by hCMV protein US3, which
sequesters MHC class I complexes in the endoplasmic reticulum, and hCMV protein US11
which causes dislocation of the MHC class I heavy chain from the cytoplasm. [76-78] hCMV-
encoded IL-10 homologue impairs tumor antigen presentation by inhibiting maturation,
normal differentiation and cytokine production of dendritic cells and macrophages.. [79-81]
hCMV induces integrin αvβ6 expression in endothelial cells of blood vessels in different tissues,
causing activation of TGF-β1, resulting in interference of host immune responses against tumor
cells by blocking the activation of lymphocytes and monocyte derived phagocytes. [82] These
direct immune-modulatory effects of hCMV on myeloid cells within the tumor microenvir‐
onment, along with expression of immunosuppressive cytokines provide a virtually impass‐
able environment for the host anti-tumor immune system.

5. Influence of CMV on tumor microenvironment

Persistent hCMV infection of non-neoplastic cells in the tumor microenvironment leads to a
paracrine secretion of inflammatory molecules that promote malignancy. [83] The secretome
of hCMV-infected fibroblasts contains exceedingly high levels of growth factors, matrix
remodeling proteins such as matrix metalloproteinases (MMPs), and angiogenic factors that
signal through the TGF-β pathway. [47,84] These paracrine-secreted factors are also able to
activate latent growth factors. PDGFs acts as strong mitogens and their overexpression is
important in the pathogenesis of multiple malignancies. [85-87] In addition to growth factors,
high levels of many ECM modifiers such as MMPs, tissue inhibitors of metalloproteinases
(TIMPs) and urokinase receptor (uPAR) secreted by hCMV infected cells aiding, tumor
invasion and metastasis. [84]

6. DNA mutations, impaired DNA repair mechanisms and epigenetic
changes by hCMV that leads to genomic instability

hCMV infection can drive neoplastic transformation by causing chromosome damage and
genetic instability in infected cells, particularly in vulnerable adult stem cells. [88-90] hCMV
in combination with cytotoxic chemotherapy agents synergistically increases genotoxic effects.
[91,92] The virus can induce specific chromosome 1 strand breaks at positions 1q42 and 1q21
in a replication-independent fashion, both of which are associated with DNA repair and
replication genes. [89,93,94] hCMV IE1-72 and IE2-86 proteins when in conjunction with other
viral oncogenic proteins (e.g., adenovirus E1A protein) that disrupt cell cycle can induce
oncogenic transformation. [29]

hCMV can contribute to genomic instability through a variety of different pathways. In brief,
the virus may induce chromosomal aberrations (e.g., production of micronuclei, misaligned
chromosomes, chromosomal lagging and bridging) by hCMV UL76 protein. [95,96] The virus
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can also disrupt DNA repair pathways, including the activity of ATM and ATM-Rad3 (ATR).
[97] More recently, hCMV has been shown to modulate oncogenesis through the telomerase
pathway by activating human telomerase reverse transcriptase (hTERT) in fibroblasts and
malignant cells. [98]

7. Conclusions

Significant advances have been made in understanding the roles of chronic inflammation,
tumor microenvironment, cancer stem cells, tumor immunology, and infectious agents in the
pathobiology of cancer. Several clinical and experimental findings suggest that hCMV may
play a role in promoting certain cancers. In cells that are persistently infected with hCMV, the
expression of viral proteins may prevent the immune system from identifying or removing
these cells, thereby offsetting immune detection of transformed cells. The effects of hCMV in
promoting tumor cell immune evasion may prove important in development of cancer
immunotherapies, particularly if the hCMV-infected cells are resistant to the action of cytolytic
peptides released by activated NK and cytotoxic T-cells. Also, if viral proteins that inhibit
apoptosis are expressed by hCMV infected tumour cells, the cancer cells may be less suscep‐
tible conventional chemotherapeutic agents. Whether hCMV is ultimately established as an
oncogenic virus will require additional research in the areas of virology, epidemiology and
molecular oncology, and systematic refinement of the concept of “oncomodulation.” Insights
into the role of hCMV in oncogenesis may increase understanding of cancer biology and
promote development of novel therapeutic strategies.
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1. Introduction

Cytomegalovirus (CMV) is a widespread pathogen that infects a majority of the world’s
population by early adulthood with approximately 50-85% of individuals over 40 being
seropositive [1,2]. CMV can establish a life-long infection with its host by becoming latent
during the lysogenic stage of the viral life cycle in which the virus becomes dormant and the
shedding and production of infectious virions ceases [3]. However, the virus can later re-enter
the lytic stage of the viral life cycle when presented with certain environmental cues, such as
stress, thereby triggering the production of viral progeny and resulting in an acute infection
of the host. Immunocompetent individuals generally display no symptoms of acute CMV
infection, but CMV can cause morbidity and mortality in those with weakened or not fully
developed immune systems [4]. The clinical manifestations of CMV infections in those with
weakened immune systems, include spiking fever, malaise, leucopenia, encephalitis, pneu‐
monitis, hepatitis, uveitis, retinitis, gastrointestinal disease and graft rejection [5,6]. If primary
infection or reactivation of CMV occurs during pregnancy in women, serious complications
will arise for the fetus or developing embryo. CMV is the leading cause of viral birth defects,
including microcephaly, mental retardation, spastic paralysis, hepatosplenomegaly, anemia,
thrombocytopenia, deafness, and optic nerve atrophy that subsequently leads to blindness [5,
7]. CMV is also responsible for 8% of infectious mononucleosis cases [8].

Although immunocompetent individuals generally display no symptoms of CMV infection,
CMV has been implicated in playing a role in several proliferative and inflammatory diseases
[9]. CMV has been linked with several forms of cancer, such as colon, breast, and prostate.
Previously, CMV was regarded as having an oncomodulatory role in cancers by infecting
tumor cells and modulating their malignant properties. It was hypothesized that tumor cells
provided a genetic environment that allowed CMV to exert its oncomodulatory effects. CMV
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of the host. Immunocompetent individuals generally display no symptoms of acute CMV
infection, but CMV can cause morbidity and mortality in those with weakened or not fully
developed immune systems [4]. The clinical manifestations of CMV infections in those with
weakened immune systems, include spiking fever, malaise, leucopenia, encephalitis, pneu‐
monitis, hepatitis, uveitis, retinitis, gastrointestinal disease and graft rejection [5,6]. If primary
infection or reactivation of CMV occurs during pregnancy in women, serious complications
will arise for the fetus or developing embryo. CMV is the leading cause of viral birth defects,
including microcephaly, mental retardation, spastic paralysis, hepatosplenomegaly, anemia,
thrombocytopenia, deafness, and optic nerve atrophy that subsequently leads to blindness [5,
7]. CMV is also responsible for 8% of infectious mononucleosis cases [8].

Although immunocompetent individuals generally display no symptoms of CMV infection,
CMV has been implicated in playing a role in several proliferative and inflammatory diseases
[9]. CMV has been linked with several forms of cancer, such as colon, breast, and prostate.
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was then identified as a potential therapeutic target in those tumors infected with CMV [10-12].
However, recent evidence supports oncogenic properties of CMV in certain cancers, such those
as in salivary gland [13]. Furthermore, epidemiological and pathological studies suggest a
strong link between CMV and atherosclerosis [9]. A potential mechanism for CMV in the
pathogenesis of atherosclerosis involves the reactivation of virus followed by virus-induced
enhancement of vascular inflammation and damage through smooth cell proliferation, uptake
of low-density lipoproteins, and narrowing of the vessel lumen [1].

Antiviral agents that inhibit CMV viral replication exist, including ganciclovir, valganciclovir
(the prodrug of ganciclovir), foscarnet, and cidofovir [1]. The primary mechanism of action of
ganciclovir/valganciclovir against CMV is through the inhibition of the replication of viral
DNA by ganciclovir-5′-triphosphate, which includes a selective and potent inhibition of the
viral DNA polymerase [14]. Foscarnet, by comparison, interferes with the exchange of
pyrophosphate from deoxynucleoside triphosphate during viral replication by binding to a
site on the CMV DNA polymerase [15]. Similarly, cidofovir inhibits CMV DNA synthesis by
DNA chain termination following incorporation of two consecutive cidofovir molecules at the
3'-end of the DNA chain [16]. Nonetheless, the antiviral agents commonly used to treat CMV
infections suffer from high hematologic, renal, and neutropenia toxicity, low bioavailability
and the development of drug-resistant virus strains [9,17]. Furthermore, there is no effective
vaccine available.

The lack of an effective treatment for CMV infections has increased interest in the identification
of targets for the development of novel CMV antiviral treatments. These include proteins
found within the tegument of CMV virions. These proteins are abundant and play pivotal roles
in the viral life cycle, including immune evasion, viral entry, gene expression, assembly of new
virus particles and egress through an envelopment-deenvelopment-reenvelopment process
[18]. The structure of the CMV tegument, the roles of some major tegument proteins in the
CMV life cycle, and the therapeutic potential of CMV tegument proteins will be reviewed.

2. Cytomegalovirus structure and function of the tegument

CMV is a member of the Betaherpesvirinae sub-family of the Herpesviridae family, (Figure 1).
The  virion  has  an  icosahedral  protein  nucleocapsid  that  contains  the  235-kb  double-
stranded DNA. The capsid is surrounded by a proteinaceous tegument and an outer lipid
envelope [1]. CMV virions gain entry into a host cell via a membrane fusion event involving
the outer membrane of the cell and the glycoproteins located on the lipid envelope of the
virion.  When  the  cell  membrane  and  lipid  envelope  fuse,  the  DNA-containing  protein
nucleocapsid and tegument proteins are released into the host cell. This initiates the lytic
stage of the viral life cycle [19].

The proteins in the tegument are excellent candidates for novel CMV antiviral treatments due
to their abundance and significant roles in all stages of the viral life cycle. The tegument, located
between the outer lipid membrane and the icosahedral protein nucleocapsid is largely
unstructured and amorphous although some structuring is seen with the binding of tegument
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proteins to the protein capsid [20]. The tegument proteins comprise more than half of the total
proteins found within infectious CMV virions [21]. Tegument proteins are phosphorylated
and undergo other posttranslational modifications, but the significance of these modifications
is unknown [19]. A common biochemical sequence to direct proteins into the tegument has
not been identified, and the process of assembling the viral tegument upon viral egress and
disassembly upon viral entry into cells is unclear [22]. Incorporation of proteins in the
tegument is likely facilitated by the phosphorylation of the tegument proteins, their subcellular
localization to the assembly site and their interaction with capsids or the cytoplasmic tails of
envelope proteins [18].

As mentioned, the tegument proteins gain entry into the host cell along with the DNA-
containing protein nucleocapsid upon fusion of the outer membrane of the host cell and the
outer glycoprotein riddled lipid membrane of the CMV virion [19]. Once the tegument proteins
are released into the cytoplasm, they become functionally active and participate in all stages
of the viral life cycle [1].

3. Cytomegalovirus tegument proteins

The CMV tegument proteins play pivotal roles illustrated in Figure 2. The known or inferred
functions of tegument proteins are presented in Table 1, compiled using a functional profiling
of the CMV genome from a global mutational analysis [18,62,63]. Gene expression classifica‐
tions are based on when expression occurs during the viral life cycle (Immediate-Early, Early,
Early-Late, and Late). Finally, the tegument proteins are categorized based on their role in lytic

Figure 1. A cartoon depicting the structure of the HCMV virion. (Image obtained from (http://www.virology.net/
big_virology/bvdnaherpes.html website) courtesy of Dr. Marko Reschke in Marburg, Germany).
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replication. Some proteins are essential for replication, while others are required for efficient
replication (augmentative), or dispensable for lytic replication. The roles of major tegument
proteins are presented in sections 3.1-3.4 in the context of the various stages of the CMV life
cycle, which includes viral entry, viral replication and gene expression, immune evasion of the
host, and assembly and egress of new infectious virions.

Figure 2. Illustration of the CMV life cycle from viral entry to egress of new infectious virions.

3.1. Viral entry

Mechanistically, the CMV virions enter host cells through a membrane fusion event involving
the host cell's outer membrane and the glycoproteins located on the lipid envelope of the CMV
virions [19]. The receptors on the viral envelope connect to complementary receptors on the
cell membrane of the host cell. This initial interaction makes the cell susceptible to further
interactions that allow the membranes to fuse, and the subsequent disassembly and release of
the viral genomic DNA and tegument into the host cell. It is believed that several tegument
proteins mediate delivery of the DNA-containing nucleocapsid to the nuclear pore complex
and the release of the viral DNA into the nucleus [18]. Comparisons with other herpesviruses
suggest that the UL47 and UL48 CMV tegument proteins, along with microtubule motor
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proteins, facilitate the delivery of the CMV nucleocapsids to the nuclear pore complex and the
release of the CMV genome into the nucleus [18,64]. Pp150 may also play a role in viral entry
due to its tight association with the CMV capsids [65].

3.2. Viral replication and gene expression

Once the viral genome enters the nucleus of the host cell, the viral immediate-early genes are
expressed through their activation by the pp71 tegument protein, which initiates the lytic stage
of the viral life cycle and the subsequent replication of the 235-kb double-stranded CMV DNA
genome [46]. It is important to note though that the expression of the immediate-early genes
can be repressed resulting in a latent infection that is characterized by the minimization of viral
gene expression and the inhibition of the assembly and egress of new viral progeny [1,66].
Although pp71 is known to play a pivotal role in the expression of the immediate-early genes
during the lytic stage of the CMV life cycle, the gene products of UL35 and UL69 have been
implicated in gene expression [18]. However, more research is necessary to identify the other
tegument proteins involved in viral gene expression.

3.3. Immune evasion

CMV evades the host cell immune system through the targeting of intrinsic, innate, and
adaptive immune responses by several different tegument proteins, including pp65, pp71, and
IRS1/TRS1. pp65 the major tegument protein involved in immune evasion of the host as well
as IRS1/TRS1 modulate the innate and adaptive immune responses. pp71 modulates the
intrinsic immune defense through its neutralization of the Daxx-mediated repression of
immediate-early gene expression. Without immune evasion, the lytic stage of the viral life cycle
is inhibited. The roles of pp65 and pp71 in modulating the host cell immune response is further
discussed below in sections 4.1 and 4.3 respectively [18].

3.4. Assembly and egress

After viral DNA replication, the immediate-early gene products, which include several
tegument proteins as seen in Table 1, turn on the expression of viral late genes [1]. The viral
late proteins are mainly structural components that assist in the assembly and egress of newly
formed infectious CMV virions [1]. The primary tegument proteins involved in assembly and
egress are pp150, pp28, and UL97. pp150 directs the movement of the cytoplasmic capsids to
the site for particle formation, while pp28 directs the enclosure of the tegument proteins and
DNA-containing nucleocapsids within an enveloped particle [18,26,52]. UL97 phosphorylates
the tegument proteins through its kinase activity, which may facilitate the incorporation of the
tegument proteins into new infectious virions [18,30]. Once the virions are packaged, they are
shed from the host cell through an exocytosis mechanism which uses the host cell's transport
system to enclose vacuoles containing the newly synthesized infectious virions for release into
the extracellular space.
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proteins, facilitate the delivery of the CMV nucleocapsids to the nuclear pore complex and the
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due to its tight association with the CMV capsids [65].

3.2. Viral replication and gene expression

Once the viral genome enters the nucleus of the host cell, the viral immediate-early genes are
expressed through their activation by the pp71 tegument protein, which initiates the lytic stage
of the viral life cycle and the subsequent replication of the 235-kb double-stranded CMV DNA
genome [46]. It is important to note though that the expression of the immediate-early genes
can be repressed resulting in a latent infection that is characterized by the minimization of viral
gene expression and the inhibition of the assembly and egress of new viral progeny [1,66].
Although pp71 is known to play a pivotal role in the expression of the immediate-early genes
during the lytic stage of the CMV life cycle, the gene products of UL35 and UL69 have been
implicated in gene expression [18]. However, more research is necessary to identify the other
tegument proteins involved in viral gene expression.

3.3. Immune evasion

CMV evades the host cell immune system through the targeting of intrinsic, innate, and
adaptive immune responses by several different tegument proteins, including pp65, pp71, and
IRS1/TRS1. pp65 the major tegument protein involved in immune evasion of the host as well
as IRS1/TRS1 modulate the innate and adaptive immune responses. pp71 modulates the
intrinsic immune defense through its neutralization of the Daxx-mediated repression of
immediate-early gene expression. Without immune evasion, the lytic stage of the viral life cycle
is inhibited. The roles of pp65 and pp71 in modulating the host cell immune response is further
discussed below in sections 4.1 and 4.3 respectively [18].

3.4. Assembly and egress

After viral DNA replication, the immediate-early gene products, which include several
tegument proteins as seen in Table 1, turn on the expression of viral late genes [1]. The viral
late proteins are mainly structural components that assist in the assembly and egress of newly
formed infectious CMV virions [1]. The primary tegument proteins involved in assembly and
egress are pp150, pp28, and UL97. pp150 directs the movement of the cytoplasmic capsids to
the site for particle formation, while pp28 directs the enclosure of the tegument proteins and
DNA-containing nucleocapsids within an enveloped particle [18,26,52]. UL97 phosphorylates
the tegument proteins through its kinase activity, which may facilitate the incorporation of the
tegument proteins into new infectious virions [18,30]. Once the virions are packaged, they are
shed from the host cell through an exocytosis mechanism which uses the host cell's transport
system to enclose vacuoles containing the newly synthesized infectious virions for release into
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Gene

(Protein)
Expression

Essential for Lytic

Replication
Known or Inferred Function Reference

UL23 Early-Late Dispensable
Involved in events immediately after virus

penetration
[23]

UL24 Early-Late Dispensable
Involved in events immediately after virus

penetration
[23]

UL25 Late Dispensable Structural protein [25]

UL26 Early-Late Augmentative Transcriptional activation [24]

UL32 (pp150) Late Essential
Virion egress (directs capsid to the site of final

envelopment)
[26]

UL35 Late Augmentative Viral replication and particle formation [27]

UL36 Immediate-Early Dispensable
Control of a caspase-independent cell death

pathway
[28]

UL38 Immediate-Early Augmentative Control of apoptosis [29]

UL43 Late Dispensable
Involved in events immediately after virus

penetration
[23]

UL44 Early Essential
CMV DNA polymerase processivity/transcription

factor
[31]

UL45 Late Augmentative
Influences virus growth at low multiplicities of

infection
[32]

UL47 Late Augmentative
Release of viral DNA from nucleocapsid

[33]
Disassembling of virus particles

UL48 Late Essential
Deubiquitinating protease

[34]
Release of viral DNA from capsid

UL50 Early Essential Egress of nucleocapsids [35]

UL53 Late Essential Egress of nucleocapsids [36]

UL54 Early Essential CMV DNA polymerase [37]

UL56 Early-Late Dispensable DNA packaging [38]

UL57 Early Essential Single-stranded DNA-binding protein [39]

UL69 Early-Late Augmentative
Nuclear export of unspliced mRNAs

[40]
Arrests cell cycle in G1 phase

UL71 Early-Late
Augmentative/

Essential
Late envelopment [41]

UL72 Late Dispensable Inactive [42]

UL76 Early
Augmentative/

Essential
Modulation of gene expression [43]
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Gene

(Protein)
Expression

Essential for Lytic

Replication
Known or Inferred Function Reference

UL77 Early Essential DNA packaging/cleavage [44]

UL79 Early-Late Essential Promotes the accumulation of late viral transcripts [45]

UL82 (pp71) Immediate-Early Augmentative
Degrades Daxx; facilitates Immediate-Early gene

expression
[46]

UL83 (pp65) Early-Late Dispensable

Endogenous kinase activity

[47,58,59]
Associated kinase activity

Evasion of adaptive immunity

Evasion of innate immunity

UL84 Early Essential CMV DNA replication [48]

UL88 Late Dispensable Unknown N/A

UL93 Late Essential Virion packaging [49]

UL94 Late
Augmentative/

Essential
Putative DNA-binding protein [50]

UL96 Early
Augmentative/

Essential

Preserves the integrity of the nucleocapsid during

translocation from the nucleus to the cytoplasm
[51]

UL97 Early-Late Augmentative

Kinase that phosphorylates UL44

[30,60,61]Stimulates DNA replication, assembly, and egress

Cyclin-dependent kinase-like functions

UL99 (pp28) Late Essential Directs the enclosure of enveloped virus particles [52]

UL103 Late Augmentative Regulates virus particle and dense body egress [53]

UL112 Early Augmentative CMV DNA replication [54]

IRS1/TRS1 Early-Late
Augmentative/

Essential

Inhibits PKR antiviral response
[55]

Virion assembly

US22 Early Dispensable
Involved in events immediately after virus

penetration
[23]

US23 Early Augmentative Colocalization with pp65 [57]

US24 Early Augmentative Activation of viral gene expression [56]

Table 1. CMV tegument proteins and their known or inferred function.

4. Cytomegalovirus tegument proteins as potential antiviral targets

Since the CMV tegument proteins play pivotal roles in all stages of the lytic stage of the viral
life cycle, they are candidates for novel antiviral treatments. An antiviral agent able to bind to
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Gene

(Protein)
Expression

Essential for Lytic

Replication
Known or Inferred Function Reference
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UL69 Early-Late Augmentative
Nuclear export of unspliced mRNAs
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UL71 Early-Late
Augmentative/

Essential
Late envelopment [41]

UL72 Late Dispensable Inactive [42]

UL76 Early
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Manifestations of Cytomegalovirus Infection116

Gene

(Protein)
Expression

Essential for Lytic

Replication
Known or Inferred Function Reference
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UL99 (pp28) Late Essential Directs the enclosure of enveloped virus particles [52]

UL103 Late Augmentative Regulates virus particle and dense body egress [53]

UL112 Early Augmentative CMV DNA replication [54]

IRS1/TRS1 Early-Late
Augmentative/

Essential

Inhibits PKR antiviral response
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US22 Early Dispensable
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a major tegument protein and inhibit its function would prevent CMV from replicating its viral
DNA genome and producing new infectious virions. This would have great therapeutic value.
Examples of how tegument proteins could be targeted therapeutically are presented below
(See Figure 3).

Figure 3. Current and developmental antiviral agents that target acute CMV infection.

4.1. pp65

A good tegument  protein to  target  would be pp65,  since it  is  the most  abundant  tegu‐
ment protein [67]. pp65 is implicated in counteracting both innate and adaptive immune
responses during CMV infections.  It  invokes humoral  and cellular  immunity and is  the
dominant  target  antigen  of  cytotoxic  T  lymphocytes  [67].  In  addition  to  pp65  being
antigenic, it can also be considered a good antiviral target due to its immunomodulatory
role. pp65 prevents immediate-early proteins from being recognized by components of the
immune  system  in  addition  to  inhibiting  the  synthesis  of  the  various  components  in‐
volved in the host cell’s immune response through its associated enzymatic kinase activity
[58,59]. Thus, if you can inhibit the function of pp65, the host cell immune response would
be able to inhibit the CMV viral life cycle.

Recent evidence in support of pp65 as a target for a novel antiviral treatment strategy concerns
its subcellular localization during the lytic stage of the viral life cycle. pp65 migrates to the
nucleoli at the early stages of infection, which suggests a functional relationship between its
localization and the lytic stage of the viral life cycle [68]. However, pp65 begins to migrate to
the cytoplasm 48 hours into the lytic cycle through cyclin-dependent kinase activity and a Crm
1 exporter mediated migration [69,70]. It is likely that pp65 does not migrate independently
to the nucleoli as it remains in the cytoplasm in the absence of other components of CMV [71,
72]. This is significant as the localization patterns of the tegument proteins are correlated with
their function [73]. Furthermore, pp65 has a bipartite nuclear localization signal, which implies
that the nuclear localization signal is in a region that is initially inaccessible to importin proteins

Manifestations of Cytomegalovirus Infection118

[74]. Another tegument protein may bind to pp65,, inducing a conformational change that
allows the inaccessible nuclear localization signal to be recognized by nuclear transport
molecules, triggering the characteristic nuclear localization of pp65 and the initiation of the
lytic cycle [71,72]. Importantly pp65 co-localizes with the tegument protein associated with the
CMV US23 gene product [57]. Thus, the US23 gene product could be the other tegument
protein necessary for pp65 to enter the nucleoli (also see section 4.2 UL97). Thus, two mono‐
clonal antibodies could be developed to target antigens present on the surfaces of pp65 and
the US23 gene product, which would prevent them from interacting and inhibit the develop‐
ment of the lytic stage of the CMV life cycle.

Additionally, pp65 can also be used to develop a vaccine to prevent or inhibit CMV infection.
An excellent example of pp65 being utilized to develop a novel vaccine to prevent CMV
infection concerns the two plasmid DNA vaccine, ASP0113. Currently, ASP0113 is in Phase I/
II clinical trials to prevent CMV infection in solid organ transplant recipients at high risk for
CMV infection. The vaccine is comprised of the highly immunogenic pp65 tegument protein
and the gB CMV surface protein, which utilizes the ability of pp65 to induce cell-mediated
response and gB to induce humoral immune system responses in those infected with CMV.
Results show a reduction in the number of CMV episodes and the time to initial viremia [75].

4.2. UL97

The UL97 gene product is also a tegument protein that could be targeted for the development
of a novel antiviral therapeutic. UL97 stimulates DNA replication, assembly, and egress in
addition to being a known kinase homologue [30,76]. UL97's kinase activity makes CMV
susceptible to the current CMV antiviral ganciclovir, a synthetic 2'-deoxy-guanosine analogue.
UL97 phosphorylates this synthetic analog to a deoxyguanosine triphosphate analogue, which
competitively inhibits the incorporation of it by viral DNA polymerase. This competitive
inhibition results in the termination of CMV DNA elongation [77].

Currently, a specific inhibitor of UL97 protein kinase activity, maribavir, inhibits viral
replication and is in clinical trials [78]. Maribavir is a benzimidazole riboside and inhibits CMV
DNA assembly as well as the egress of CMV nucleocapsids from infected host cells [78].
Maribavir was given fast track status by the Food and Drug Administration and is being
investigated in Phase 2 clinical trials using a high dose treatment option for clinically significant
CMV viremia.

The UL97 gene product also shows due to its association with pp65. UL97 and pp65 act directly
to form a complex during viral replication. When UL97 is genetically ablated or pharmaco‐
logically inhibited, pp65 localizes in unusual refractile bodies, which suggests that UL97 is
essential for the successful localization of pp65 to the nucleus of the host cell at the beginning
of the lytic stage of the viral life cycle [79]. Similarly to US23, UL97 may direct pp65 into the
nucleus to initiate the lytic stage of CMV replication [71,72]. Furthermore, a pp65 deletion
mutant exhibits modest resistance to maribavir [80]. pp65 may negatively regulate UL97 by
sequestering kinase that would be available to promote viral replication [81]. The interaction
between pp65 and UL97 could influence pp65-mediated immune evasion, because the
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a major tegument protein and inhibit its function would prevent CMV from replicating its viral
DNA genome and producing new infectious virions. This would have great therapeutic value.
Examples of how tegument proteins could be targeted therapeutically are presented below
(See Figure 3).

Figure 3. Current and developmental antiviral agents that target acute CMV infection.
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presentation of viral immediate-early proteins to T cells is blocked when the proteins are
phosphorylated by UL97 kinase [81,82].

4.3. pp71

pp71 is also a major target for CMV antiviral research as it influences the activation of
immediate-early gene expression at the start of the lytic cycle [83]. Mechanistically, pp71
activates viral gene expression through the neutralization of the effects of the cellular Daxx
protein, which is recruited to promoters by DNA-binding transcription factors, resulting in
the repression of viral transcription [84]. pp71 binds to two inherent domains on Daxx and
induces its proteasomal degradation [85]. pp71 is slows the intracellular transport of MHC
class I molecules, which limits the display of CMV antigens on the surface of infected cells to
cytotoxic T lymphocytes [86].

A UL82 gene deletion mutant may serve as a potential novel CMV vaccine candidate as it can
enter cells efficiently and activate the innate immune response through interactions with cell
surface receptors. However viral gene expression is disrupted during infection when cells are
infected at a low multiplicity of the UL82 gene deletion mutant. The expression of the imme‐
diate-early genes that are involved in the host anti-viral response is blocked. One of the genes
whose expression would be blocked is the immediate-early 2 (IE2) gene that can antagonize
the host innate immune response by attenuating the interferon β response and blocking
chemokine expression. If the expression of IE2 is blocked, the number of cytotoxic T lympho‐
cytes and natural killer cells recruited to the infected cell would increase. Furthermore, viral
replication is limited with low multiplicity of infection with the UL82 gene mutant as this
would promote a robust anti-viral immune response. Thus, a novel antiviral treatment could
target pp71 and its ability to control the activation of immediate-early gene expression [87].

4.4. Tegument structural proteins

The structural proteins of CMV with therapeutic potential include pp150, pp65 (above), pp28,
pp38, and the gene products of UL55 and UL75, as they play pivotal roles in the CMV life cycle
and are immunogenic. pp150, the second most abundant tegument protein behind pp65, plays
a role in the assembly and egress of new infectious virus particles. It is necessary to incorporate
nucleocapsids into these new infectious virus particles [21]. It is essential for maintaining the
stability of the cytoplasmic capsids and directing their movement [1,88]. It also plays a role in
the reorganization of the cytoplasmic assembly compartment during virion assembly [88].
pp28 is largely responsible for the cytoplasmic envelopment of tegument proteins and capsids
during assembly and egress [89].

pp38 is a mitogen-activated protein kinase and has a critical function in CMV viral DNA
replication. pp38 kinase activity is significantly increased after CMV infection, and inhibition
of this kinase activity inhibits CMV-induced hyperphosphorylation of pRb and the phosphor‐
ylation of heat shock protein 27. This suggests that pp38 activation is involved in virus-
mediated changes in host cell metabolism throughout the CMV infection [90].
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The gene products of UL55 and UL75 by comparison have been shown to be involved Sp1 and
NF-kappaB activation during the earliest stages of CMV infection via a cellular receptor-viral
ligand interaction. This is based on the observation that the cellular transcription factors Sp1
and NF-kappaB are upregulated shortly after the binding of purified live or UV-inactivated
CMV to the cell surface, which has also been seen in other systems where cellular factors are
induced following a receptor-ligand interaction [91].

All tegument proteins elicit a strong humoral immune response [92]. This is significant, since
the host immunological functions are clearly limit CMV-associated disease [93]. Novel
therapeutics could take advantage of the highly immunogenic nature of the CMV structural
proteins. Potentially, an antibody could be designed that recognizes the CMV antigens
expressed on these proteins and could be exploited to deliver an active drug compound that
can inhibit the lytic replication of the virus. This strategy is used to target certain cancers.
Additionally, a monoclonal antibody could simply be used to help the immune system locate
the CMV immunogenic structural proteins and end the CMV infection.

Additionally, structural phosphoproteins, such as pp65 and pp150, are good candidates for
subunit vaccine development, since they elicit cytotoxic T lymphocyte responses. A CMV
subunit vaccine would contain viral antigens without the CMV DNA genome. It would be less
likely to cause adverse reactions and would be clinically valuable in view of the high hema‐
tologic and renal toxicity and low bioavailability of current antiviral treatments targeting acute
CMV infection [94].

4.5. UL94

Although it is not critical for viral replication unlike the majority of potential CMV targets,
UL94 could also be targeted by a novel antiviral agent. Studies of UL94 stop mutants show
that UL94 plays a role in the secondary envelopment of viral particles. When the UL94 gene
is absent or not functioning, the UL99 (pp28) tegument protein responsible for the cytoplasmic
envelopment of tegument proteins during assembly and egress exhibits aberrant localization
and there is a complete block of secondary envelopment of virions. Thus, UL94 functions late
in the CMV lytic life cycle to direct pp28 to the assembly complex, facilitating the secondary
envelopment of CMV virions [95].

If a molecule is able to target UL94 and inhibit its function, the assembly and egress of virion
progeny will be blocked, since the secondary envelopment of CMV virions will not occur. A
therapeutic targeting UL94 could utilize the interaction between UL94 and the pp28 structural
protein. For example, a new antiviral could focus on the ability of pp28 to elicit a strong
humoral immune response through the release of antibodies targeting the CMV specific
immunoglobulin as mentioned above. Two monoclonal antibodies could also be developed to
target pp28 and UL94 that could inhibit UL94 from directing pp28 to the assembly complex
where new CMV virion progeny undergo secondary envelopment.
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4.6. UL56

Currently, all of the licensed drugs used for the systemic treatment of acute CMV infection act
through similar mechanisms as they target the viral DNA polymerase (UL54) [96]. With the
emergence of ganciclovir-resistant strains of CMV, as well as cross-resistance to second-line
agents (foscarnet and cidofovir), there is a need for new drugs [97].

A promising small molecule antiviral candidate, AIC246, is representative of the 3,4 dihydro-
quinazoline nonnucleoside CMV inhibitors [98]. AIC246 acts through a unique mechanism
distinct from that of the CMV DNA polymerase inhibitors. AIC246 blocks viral replication
without inhibiting the synthesis of progeny CMV genomic DNA or viral proteins. Three pieces
of evidence show AIC246 interferes with CMV DNA cleavage/packaging via a distinct
molecular mechanism from other compounds that target the CMV viral terminase [99]. First,
AIC246 does not affect CMV protein expression or CMV DNA replication, excluding the
possibility of AIC246 acting through interfering with viral genome replication [99]. Second,
genetic mapping of AIC246 resistance to the CMV open reading frame of UL56 shows that the
viral terminase complex is involved in the action of AIC246 [99]. Third, a terminase cleavage
assay showed potent inhibition of the formation of properly processed unit-length genomes
[99]. Thus, AIC246 is a promising therapeutic candidate for the treatment of acute CMV
infection through its unique mechanism of action involving the UL56 tegument protein
involved in DNA packaging.

4.7. Antisense oligonucleotides

The expression of viral genes encoding proteins essential for the production of infectious
virions can also be targeted. Fomivirsen, a 21-base phosphorothioate oligodeoxynucleotide
complementary to the messenger RNA (mRNA) of the major immediate-early region proteins
of CMV, can inhibit CMV gene expression through an antisense mechanism. Fomivirsen binds
to the target mRNA transcripts of the immediate-early region 2 (IE2) that encodes several
proteins responsible for the regulation of viral gene expression. This binding inhibits IE2
protein synthesis and the activation of immediate-early gene expression by pp71, which
subsequently inhibits viral replication [100]. Fomivirsen is licensed to treat acute CMV
infection and illustrates that CMV tegument proteins can targeted indirectly.

5. Conclusion

CMV infects most individuals by early adulthood and is associated with morbidity and
mortality, especially in those with poor immune systems. Furthermore, CMV has been
implicated in inflammatory and proliferative diseases, such as cardiovascular disease and
cancer. Antiviral agents able to inhibit the CMV replication cycle and the production of new
infectious virions exist, but suffer from high levels of toxicity and low levels of bioavailability.
CMV resistant and cross-resistant strains develop because all drugs target the viral DNA
polymerase UL54. There is also no vaccine available to prevent acute CMV infection. However,
several components of the CMV virion are promising targets for novel antiviral therapeutics
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that would inhibit the CMV lytic cycle and eradicate the virus from host cells. The most likely
targets within the CMV virion are those proteins found within the tegument, which is a unique
structure found in all members of the Herpesviridae family. Proteins that localize to the
tegument play pivotal roles in all stages of the CMV life cycle. Novel antiviral therapeutics
that target these proteins inhibit the CMV lytic cycle. Furthermore, the highly immunogenic
nature of several tegument proteins makes them excellent candidates for subunit vaccines. In
fact, several novel antiviral therapeutics and CMV vaccines based around the CMV tegument
proteins are under development. Nonetheless, more research needs to be done to fully identify
the function as well as the role in the lytic stage of the CMV life cycle.
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