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Preface

After 1987 Yablonovitch's milestone paper, photonic crystals have been the topic of a huge num‐
ber of papers. For many years, photonic crystals have been investigated both theoretically and ex‐
perimentally because of their peculiar and intriguing properties for nanophotonic applications,
such as laser generation, optical sensing, beam filtering, anisotropic property control, high field
confinement, and so on. In particular, after the first demonstration of two-dimensional photonic
crystal at optical wavelengths, planar slabs have been investigated to efficiently fabricate two-di‐
mensional photonic crystals by etching the hosting slab or by forming pillars over the slab. To this
aim, several technologies have been applied to derive photonic crystal properties in hosting mate‐
rials, such as semiconductor slabs (III/V alloy compounds, silicon and compounds), metamateri‐
als and others, as well as in photonic crystal fibers. Nowadays, many international research
groups are still very active in this topic, since many theoretical aspects in modeling and design of
photonic crystals, as well as in fabrication aspects, are not yet well standardized.

This book presents some advances of the international research in the field, collecting many chap‐
ters relevant to different theoretical and experimental aspects of photonic crystals, mainly two-
dimensional, for Nanophotonics applications. Chapters are written by some important
international research groups. The book is divided in two parts, a theoretical section followed by
a section devoted to experiments and applications. First part includes chapters developing several
numerical methods for analysis and design of photonic crystal devices, such as 2D ring resonators
for filters, single and coupled nanobeam cavities, birefringence in photonic crystal cavities, propa‐
gation in anisotropic photonic crystals, threshold analysis in photonic crystal lasers, gap solitons
in photonic crystals, novel photonic atolls, dynamic characteristics of linear and non linear pho‐
tonic crystal filters. Second part includes four chapters focusing on many aspects of photonic crys‐
tals fabrication and applications, such as nitrogen defect technology in diamond, silicon nitride
free standing membranes, silicon photonic crystals structures, applications of photonic crystals
for optical sensing.

I would like to acknowledge the efforts of all the contributing authors for the best quality of the
chapters collected in this book. Moreover, I would like to thank Ms. Mirna Cvijic, Ms. Sandra Bak‐
ic and Ms. Ana Pantar, who have subsequently followed the book publishing process, for their
great help in the preparation of this book, in particular the tasks of chapter proposal collection
and manuscript editing and correction.

Vittorio M. N. Passaro
Associate Professor

Politecnico di Bari
Bari, Italy
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Chapter 1

Photonic Crystal Ring Resonator Based Optical Filters

S. Robinson and R. Nakkeeran

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/54533

1. Introduction

Photonic Crystals are periodic nanostructures that are designed to affect the motion of photons
in the same way as the periodic potential in a semiconductor crystal affects the electron motion
by defining allowed and forbidden electronic energy bands [1, 2]. Generally, PCs are composed
of periodic dielectric, metello-dielectric nanostructures, which have alternative lower and
higher dielectric constant materials in one, two and/or three dimensions to affect the propa‐
gation of electromagnetic waves inside the structure. As a result of this periodicity, the
transmission of light is absolutely zero in certain frequency ranges which is called as Photonic
Band Gap (PBG).

By introducing the defects (point defects or line defects or both) in these periodic structures,
the periodicity and thus the completeness of the PBG are entirely broken which allows to
control and manipulate the light [1, 2]. It ensures the localization of light in the PBG region
which leads to the design of the PC based optical devices.

2. History of photonic crystals

Electromagnetic wave propagation in periodic media is first studied by Lord Rayleigh in 1888.
These structures are One Dimensional (1D) Photonic Crystals (1DPCs) which have a PBG that
prohibits the light propagation through the planes. Although PCs have been studied in one
form or another since 1887, the term “Photonic Crystal” is first used over 100 years later, after
Yablonovitch and John published two milestone papers on PCs in 1988. Before that Lord Ray‐
leigh started his study in 1888, by showing that such systems have a 1D PBG, a spectral range of
large reflectivity, known as a stop-band. Further, 1DPCs in the form of periodic multi-layers di‐
electric stacks (such as the Bragg mirror) are studied extensively. Today, such structures are

© 2013 Robinson and Nakkeeran; licensee InTech. This is an open access article distributed under the terms of
the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

© 2013 Robinson and Nakkeeran; licensee InTech. This is a paper distributed under the terms of the Creative 
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.
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used in a diverse range of applications such as reflective coatings for enhancing the efficiency of
Light Emitting Diodes (LEDs) and highly reflective mirrors in certain laser cavities.

In 1987, Yablonovitch and John have proposed 2DPCs and 3DPCs, which have a periodic
dielectric structure in two dimensions and three dimensions, respectively. The periodic
dielectric structures exhibit a PBG. Both of their proposals are concerned with higher dimen‐
sional (2D or 3D) periodic optical structures. Yablonovitch’s main motivation is to engineer
the photonic density of states, in order to control the spontaneous emission of materials that
are embedded within the PC. In the similar way, John’s idea is to affect the localization and
control of light inside the periodic PC structure. Both of these works addresses the engineering
of a structured material exhibiting ranges of frequencies at which the propagation of electro‐
magnetic waves is not allowed, so called PBGs - a range of frequencies at which light cannot
propagate through the structure in any direction.

After 1987, the number of research papers concerning PCs has begun to grow exponentially.
However, owing to the fabrication difficulties of these structures at optical scales, early studies
are either theoretical or in the microwave and optical regime, where PCs can be built on the
far more readily accessible nanometer scale. By 1991, Yablonovitch has demonstrated the first
3D PBG in the microwave regime.

In 1996, Thomas Krauss made the first demonstration of a 2DPC at optical wavelengths. This
opened up the modern way of fabricating PCs in semiconductor materials by the methods
used in the semiconductor industry. Although such techniques are still to mature into
commercial applications, 2DPCs have found commercial use in the form of Photonic Crystal
Fibers (PCFs) and optical components. Since 1998, the 2DPCs based optical components such
as optical filters [3,4], multiplexers [5], demultiplexers [6], switches [7], directional couplers [8],
power dividers/splitters [9], sensors [10,11] etc., are designed for commercial applications.

3. Types of photonic cyrstals

PCs are classified mainly into three categories according to its nature of structure periodicity,
that is, One Dimensional (1D), Two Dimensional (2D), and Three Dimensional (3D) PCs. The
geometrical shape of 1DPCs, 2DPCs and 3DPCs are shown in Figure 1 where the different
colors represent material with different dielectric constants. The defining structure of a PC is
the periodicity of dielectric material along one or more axis. The schematic illustrations of
1DPCs, 2DPCs and 3DPCs are depicted in Figures 2(a), 2(b) and 2(c), respectively.

3.1. One dimensional PCs

In 1DPCs, the periodic modulation of the refractive index occurs in one direction only, while
the refractive index variations are uniform for other two directions of the structure. The PBG
appears in the direction of periodicity for any value of refractive index contrast i.e., difference
between the dielectric constant of the materials. In other words, there is no threshold for
dielectric contrast for the appearance of a PBG. For smaller values of index contrast, the width
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of the PBG appears very small and vice versa. However, the PBGs open up as soon as the
refractive index contrast is greater than one (n1/n2 > 1), where n1 and n2 are the refractive index
of the dielectric materials. A defect can be introduced in a 1DPCs, by making one of the layers
to have a slightly different refractive index or width than the rest. The defect mode is then
localized in one direction however it is extended into other two directions. An example for
such a 1DPC is the well known dielectric Bragg mirror consisting of alternating layers with
low and high refractive indices, as shown in Figure 2(a).

Figure 1. Geometrical shapes of photonic crystals (a) 1D (b) 2D and (c) 3D

Figure 2. Schematic illustrations of photonic crystals (a) 1D (b) 2D and (c) 3D

The wavelength selection and reflection properties in 1DPCs are used in a wide range of
applications including high efficiency mirrors [12,13], optical filters [14,15, 16], waveguides
[17], and lasers [18]. Also, such structures are widely used as anti-reflecting coatings which
dramatically decrease the reflectance from the surface and used to improve the quality of the
lenses, prisms and other optical components.

Photonic Crystal Ring Resonator Based Optical Filters
http://dx.doi.org/10.5772/54533
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3.2. Two dimensional PCs

PC structure(s) that are periodic in two different directions and homogeneous in third direction
are called 2DPC which is shown in Figure 1.(b) and 2(b). In most of the 2DPCs, the PBG occurs
when the lattice has sufficiently larger index contrast. If the refractive index contrast between
the cylinders (rods) and the background (air) is sufficiently large, 2D PBG can occur for
propagation in the plane of periodicity perpendicular to the rod axis.

Generally, 2DPCs consist of dielectric rods in air host (high dielectric pillars embedded in a
low dielectric medium) or air holes in a dielectric region (low dielectric rods in a connected
higher dielectric lattice) as shown in Figures 3(a) and 3(b). The dielectric rods in air host give
PBG for the Transverse Magnetic (TM) mode where the E field is polarized perpendicular to
the plane of periodicity. The air holes in a dielectric region give (Transverse Electric) TE modes
where H field is polarized perpendicular to the plane of periodicity.

(a) (b

Figure 3. Structure of (a) dielectric rods in air and (b) air holes in dielectric region

Based on the value of vertical index contrast the structures can have, they are categories into
the following four geometries:

• Membrane Holes : Hole type PCs with a high vertical index contrast

• Membrane Pillars : Pillar based PCs with a high vertical index contrast

• Deeply etched Holes : Hole type PCs with a low vertical index contrast

• Deeply etched Pillars : Pillar based PCs with a low vertical index contrast

Above all, the membrane holes and pillars with high vertical index contrast received a crucial
role for device realization.

3.3. Three Dimensional PCs

A 3DPCs is a dielectric structure which has periodic permittivity modulation along three
different axes, provided that the conditions of sufficiently high dielectric contrast and suitable
periodicity are met, a PBG appears in all directions. Such 3D PBGs, unlike the 1D and 2D ones,

Advances in Photonic Crystals6

can reflect light incident from any direction. In other words, a 3D PBG material behaves as an
omnidirectional high reflector. As an example, Figure 4 depicts the 3D woodpile structure.

Figure 4. Structure of 3D woodpile photonic crystals

Due to the challenges involved in fabricating high-quality structures for the scale of optical
wavelengths, early PCs are performed at microwave and mid-infrared frequencies [19, 20].
With the improvement of fabrication and materials processing methods, smaller structures
have become feasible, and in 1999 the first 3DPC with a PBG at telecommunications frequencies
is reported [21, 22]. Since then, various lattice geometries have been reported for operation at
similar frequencies [23, 24]. Waveguide and the introduction of intentional defects in 3DPCs
has not progressed as rapidly as in 2DPCs, due to the fabrication difficulties and the more
complex geometry required to achieve 3D PBGs.

4. Numerical analysis

There are many methods available to analyze the dispersion behavior and transmission spectra
of PCs such as Transfer Matrix Method (TMM) [25], FDTD method [26], PWE method [27],
Finite Element Method [28] (FEM) etc.,. Each method has its own pros and cons. Among these,
PWE and FDTD methods are dominating with respect to their performance and also meeting
the demand required to analyze the PC based optical devices.
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the cylinders (rods) and the background (air) is sufficiently large, 2D PBG can occur for
propagation in the plane of periodicity perpendicular to the rod axis.

Generally, 2DPCs consist of dielectric rods in air host (high dielectric pillars embedded in a
low dielectric medium) or air holes in a dielectric region (low dielectric rods in a connected
higher dielectric lattice) as shown in Figures 3(a) and 3(b). The dielectric rods in air host give
PBG for the Transverse Magnetic (TM) mode where the E field is polarized perpendicular to
the plane of periodicity. The air holes in a dielectric region give (Transverse Electric) TE modes
where H field is polarized perpendicular to the plane of periodicity.
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Figure 3. Structure of (a) dielectric rods in air and (b) air holes in dielectric region

Based on the value of vertical index contrast the structures can have, they are categories into
the following four geometries:

• Membrane Holes : Hole type PCs with a high vertical index contrast

• Membrane Pillars : Pillar based PCs with a high vertical index contrast

• Deeply etched Holes : Hole type PCs with a low vertical index contrast

• Deeply etched Pillars : Pillar based PCs with a low vertical index contrast

Above all, the membrane holes and pillars with high vertical index contrast received a crucial
role for device realization.

3.3. Three Dimensional PCs

A 3DPCs is a dielectric structure which has periodic permittivity modulation along three
different axes, provided that the conditions of sufficiently high dielectric contrast and suitable
periodicity are met, a PBG appears in all directions. Such 3D PBGs, unlike the 1D and 2D ones,
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can reflect light incident from any direction. In other words, a 3D PBG material behaves as an
omnidirectional high reflector. As an example, Figure 4 depicts the 3D woodpile structure.

Figure 4. Structure of 3D woodpile photonic crystals

Due to the challenges involved in fabricating high-quality structures for the scale of optical
wavelengths, early PCs are performed at microwave and mid-infrared frequencies [19, 20].
With the improvement of fabrication and materials processing methods, smaller structures
have become feasible, and in 1999 the first 3DPC with a PBG at telecommunications frequencies
is reported [21, 22]. Since then, various lattice geometries have been reported for operation at
similar frequencies [23, 24]. Waveguide and the introduction of intentional defects in 3DPCs
has not progressed as rapidly as in 2DPCs, due to the fabrication difficulties and the more
complex geometry required to achieve 3D PBGs.

4. Numerical analysis

There are many methods available to analyze the dispersion behavior and transmission spectra
of PCs such as Transfer Matrix Method (TMM) [25], FDTD method [26], PWE method [27],
Finite Element Method [28] (FEM) etc.,. Each method has its own pros and cons. Among these,
PWE and FDTD methods are dominating with respect to their performance and also meeting
the demand required to analyze the PC based optical devices.
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The PWE method is initially used for theoretical analysis of PC structures, which makes use
of the fact that Eigen modes in periodic structures can be expressed as a superposition of a set
of plane waves. Although this method can obtain an accurate solution for the dispersion
properties (propagation modes and PBG) of a PC structure, it has still some limitations. i.e.,
transmission spectra, field distribution and back reflections cannot be extracted as it considers
only propagating modes. An alternative approach which has been widely adopted to calculate
both transmission spectra and field distribution is based on numerical solutions of Maxwell’s
equations using FDTD method. Typically, the PWE method is used to calculate the PBG and
propagation modes of the PC structure and FDTD is used to calculate the spectrum of the
power transmission.

5. Applications of 2DPCs

The ability to control and manipulate the spontaneous emission by introducing defects in PCs,
and related formation of defect state within PBG has been used for designing the optical
devices for different applications that are directed towards the integration of photonic devices.
2DPCs is the choice of great interest for both fundamental and applied research, and also it is
beginning to find commercial applications. K. Inoue et al 2004 have summarized the use PCs
in various applications as shown in Figure 5.

Figure 5. Applications of photonic crystals
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The majority of PC applications utilize the phenomenon of PBG that opens the new road to
design optical components in micrometer (μm) range. Waveguides that confine light via PBGs
are a new development. Generally, the waveguide is intended to transport waves of a
particular frequency from one place to another place through a curved path. Using this
waveguide many optical components are reported in the literature such as power splitter/
power divider [29] which divides the power in an input waveguide equally between output
waveguides, Y splitter [30], and directional couplers [31] and so on.

It is also possible to design a cavity, formed by the absence of a single rod or group of rods
(point defects), which is positioned between two waveguides each of which is formed by the
absence of a row of rods (line defects). Various geometries of the micro cavities have been
explored over the years with a goal of increasing the Q factor of a cavity, while reducing the
cavity size. Two main cavity geometries can be distinguished as those are based on point defect
based cavity [32] and line/point defect (PCRR) based cavities [33]. Such a cavity is useful for
optical filters [34], lasers [35], multiplexers and demultiplexers [36] etc,.

6. Optical ring resonator

An optical ring resonator is positioned between two optical waveguides to provide an ideal
structure of the ring resonator based ADF. At resonant condition, the light (signal) is drop‐
ped from the bus (top) waveguide and it is sent to the dropping (bottom) waveguide
through ring resonator. The schematic structure of the ring resonator based ADF is shown in
Figure 6, which consists of a bus waveguide and dropping waveguide, and ring resonator.
The ring resonator acts as a coupling element between the waveguides. Also, it has four
ports, ports 1 and 2 are the input terminal and transmission output terminals whereas ports
3 and 4 are forward and backward dropping terminals, respectively.

Figure 6. Schematic structure of the ring resonator based ADF
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In PC structures, there are two ways to design optical resonator as follows,

i. Line defect or point defect based resonators - changing the size or dielectric constant
of rods in the structure

ii. Ring Resonators (RRs) - removing some rods in order to have a ring shape

In RR based devices, the choice of the ring size is determined by the desired resonant wave‐
length and the tradeoff between the cavity Q and the modal volume V [34]. Compared to point
defect or line defect PC cavities, Photonic Crystal Ring Resonators (PCRRs) offer scalability in
size, flexibility in mode design due to their multi mode nature [37], easy integration with other
devices and adaptability in structure design.

6.1. Operating principle

If the ring resonator supports only one resonant mode, it will decay through both wave‐
guides along the forward and backward directions which introduces the reflection. Hence,
in order for complete transfer to happen, at least two modes are needed for the decaying
amplitudes  to  cancel  either  the  backward direction  or  the  forward direction  of  the  bus
waveguide (Fan et al 1998).

Two mirror planes can be considered for this structure, one is perpendicular to the waveguides
and another is parallel to the waveguides. In order to cancel the reflected signal, a structure
with a mirror plane symmetry perpendicular to both waveguides is considered. Assume that
there exist two localized modes that have different symmetries with respect to the mirror plane:
one has even symmetry and another has odd symmetry. The even mode decays with the same
phase into the forward and backward directions as shown in Figure 7(a), however the odd
mode decays into the forward direction, out of phase with the decaying amplitude along the
backward direction as shown in Figure 7(b). When the two tunneling processes come together,
the decaying amplitudes into the backward direction of both waveguides are canceled, which
clearly depicts in Figure 7(c). It should be noted that, in order for cancellation to occur, the line
shapes of the two resonances should overlap. It means both resonances must have significantly
the same resonant wavelength and the same bandwidth [32].

Also, due to the occurrence of degeneracy, the incoming wave interferes destructively with
the decaying amplitude into the forward direction of the bus waveguides, causing all the
power traveling in the bus waveguide to be cancelled. The symmetry of the resonant modes
with respect to the mirror plane parallel to the waveguides determines the direction of the
transfer wave in the ADF. For instance, as it apparent from Figures 8(a), 8(b) and 8(c), when
both of the modes are even with regard to the parallel mirror plane, the decaying amplitudes
along the backward direction of the drop waveguide would be canceled, letting all the power
be transferred into the forward direction of the drop waveguide. On the other hand, the even
mode could be odd with respect to the mirror plane parallel to the waveguides. When the
accidental degeneracy between the states occurs, the decaying amplitudes cancel in the
forward direction of the drop waveguide (Figures 8(a), 8(b) and 8(c)). Entire power is trans‐
ferred into the backward direction of the drop waveguide [32].
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Figure 7. Channel drop tunneling process for a resonator system that supports forward transfer of signal

(a) (b) (c) 

Figure 8. Channel drop tunneling process for a resonator system that supports backward transfer of signal

The PCRR resonant coupling occurs due to the frequency and phase matching between the
propagating waveguide mode and the PCRR resonant cavity mode. The coupling direction is
mainly determined by the modal symmetry and the relative coupling between the PCRRs. The
direction is the same for the propagating wave in the waveguide and the coupled wave inside
PCRR. However, the direction may be the same or reverse for the coupling between PCRRs,
depending upon the coupling strength and the modal symmetry [32]. Both forward dropping
and backward dropping can be obtained depending upon the mode symmetry properties with
respect to the coupling configurations.

6.2. Requirements of the ADF

The filter performance is determined by the transfer efficiency between the two waveguides.
Perfect efficiency corresponds to complete transfer of the selected channel in either forward
or backward direction in the dropping waveguide without forward transmission or backward
reflection in the bus waveguide. All other channels remain unaffected by the presence of optical
resonators.

To achieve complete transfer of the signal at resonance, the PCRR based ADF must satisfy the
following three conditions:

i. The resonator must possess at least two resonant modes, each of them must be even
and odd, with respect to the mirror plane of symmetry perpendicular to the wave‐
guides

ii. The modes must degenerate

iii. The modes must have equal Q
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All three conditions are necessary to achieve complete transfer of the signal from the bus
waveguide to PCRR and PCRR to drop waveguides.

7. Photonic crystal ring resonator based ADF

The PCRR based ADF is designed using two dimensional pillar type PC with circular rods and
consists of an array of rods in square lattice, as shown in Figure 9(a). The number of rods in
‘X’ and ‘Z’ directions is 21. The distance between the two adjacent rods is 540 nm, which is
termed as lattice constant, ‘a’. The Si rod with refractive index 3.47 is embedded in the air. The
radius of the rods is 0.1 μm and the overall size of the device comes around 11.4 μm × 11.4 μm.
The band diagram in Figure 9(b) gives the propagation modes and PBG of the PC structure,
which has TM PBG ranging from 0.295 a/λ to 0.435 a/λ whose corresponding wavelength lies
between 1241 nm and 1830 nm. It covers the entire wavelength range of third optical commu‐
nication window. The guided modes (even and odd) inside PBG region resulting due to line
and point defects (21×21 PC) are shown in Figure 9(c) which supports the complete channel
transfer in turn higher output efficiency at resonance. The structure is surrounded by Perfect
Matched Layer (PML) as absorbing boundary conditions to truncate the computational regions
and to avoid the back reflections from the boundary [38].

Figure 9. a) Schematic structure of circular PCRR based ADF (b) band diagram of 1 × 1 PC (unit cell) and (c) band dia‐
gram of 21 ×2 1 PC (super cell) structure after the introduction of line and point defects

The normalized transmission spectra of the circular PCRR based ADF is obtained using 2D
Finite Difference Time Domain (FDTD) method. Although the real SOI structure, would, in
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practice, require 3D analysis, our 2D approach gives a general indication of the expected 3D
behavior. 2D analysis carried out here allows us to identify qualitatively many of the issues
in the cavity design (e.g. mode control, cavity Q and the placement of the scatterers in our
quasi-square ring cavity) and the coupling scheme design. This can offer us the design
trade-offs and guidelines before the real structure design based on a completely 3D FDTD
technique, which is typically computational time and memory consuming.

The circular PCRR based ADF (in Figure 9 (a)) consists of two waveguides in horizontal (г-x)
direction and a circular PCRR is positioned between them. The top waveguide is called as bus
waveguide whereas the bottom waveguide is known as dropping waveguide. The input signal
port is marked ‘A’ with an arrow on the left side of bus waveguide. The ports ‘C’ and ‘D’ of
drop waveguide is the drop terminals and denoted as forward dropping and backward
dropping, respectively, while the port ‘B’ on the right side of bus waveguide is designated as
forward transmission terminal.

The bus and the dropping waveguides are formed by introducing line defects whereas the
circular PCRR is shaped by creating point defects (i.e. by removing the columns of rods to
make a circular shape). The circular PCRR is constructed by varying the position of inner rods
and outer rods from their original position towards the center of the origin (г). The inner rods
are built by varying the position of adjacent rods on the four sides, from their center, by 25%,
on the other hand the outer rods are constructed by varying the position of the second rod on
the four sides, from their center, by 25% in both ‘X’ and ‘Z’ directions. The number of rings
that are formed by the ring is three. In order to improve the coupling efficiency, dropping
efficiency and spectral selectivity by suppressing the counter propagation modes, the scatterer
rods (labeled as ‘s’) are placed at each corner of the four sides with half lattice constant. The
material properties and dimension of the scatterer rods are similar to the other rods. The rods
which are located inside the circular PCRR are called inner rods whereas the coupling rods
are placed between circular PCRR and waveguides. At resonance, the wavelength is coupled
from the bus waveguide into the dropping waveguide and exits through one of the output
ports. The coupling and dropping efficiencies are detected by monitoring the power at ports
‘B’ and, ‘C’ and ‘D’, respectively.

A Gaussian input signal is launched into the input port. The normalized transmission spectra
at ports ‘B’, ‘C’ & ‘D’ are obtained by conducting Fast Fourier Transform (FFT) of the fields
that are calculated by 2D-FDTD method. The input and output signal power is recorded
through power monitors by placing them at appropriate ports. The normalized transmission
is calculated through the following formula:

T ( f )=
1 / 2∫real ( p( f )monitor )dS

Source Powe

where T(f) is normalized transmission which is a function of frequency, p(f) is poynting vector
and dS is the surface normal. The normalization at the output side does not affect the result
because of source power normalization. Finally, the T(f) is converted as a function of wave‐
length.
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Figure 10. Normalized transmission spectra of circular PCRR based ADF

Figure 10 shows the normalized transmission spectra of circular PCRR based ADF. The
resonant wavelength of the ADF is observed at 1491 nm. The simulation shows 100% coupling
and dropping efficiencies and its passband width is 13 nm. The Q factor, which is calculated
as λ/∆λ (resonant wavelength/full width half maximum), equals to almost 114.69. The obtained
results meet the requirements of ITU-T G 694.2 CWDM systems. The inset in Figure 10 depicts
the electric field pattern of pass and stop regions at 1491 nm and 1515 nm, respectively. At a
resonant wavelength, λ=1491 nm the electric field of the bus waveguide is fully coupled with
the ring and reached into its output port D. In this condition there is no signal flow in port B.
Similarly, at off resonance, λ=1515 nm the signal directly reaches the transmission terminal
(the signal is not coupled into the ring). Figure 11 clearly illustrates the three dimensional view
of PCRR based ADF. It shows the arrangement of Si rods in the structure and the overall
dimensions of the device would come around 11.4 μm (length) × 11.4 μm (width). The effect
of point to point network after incorporating the PCRR based ADF is discussed in the following
sections.
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Figure 11. Three dimensional view of circular PCRR based ADF

7.1. Tuning of Resonant Wavelength

Although the PCRR based ADFs have a fixed operating wavelength, the application area will
become much broader if the operating wavelength can be tuned dynamically and externally.
This would greatly improve the utilization of PC based optical devices for real time and on
demand applications. Generally, the resonant wavelength tuning of PCRR based ADF can be
done by altering the structural parameters such as refractive index (dielectric constant), lattice
constant and radius of the rods in the structure. Among these, the most efficient way to tune
the resonant (operating) wavelength of the ADF is changing the refractive index of the material
since it is not resulting in degradation of filter performance. Recent year, the exploration of
tunablity for 2D PC based optical devices is mainly being carried out with respect to the
refractive index [39, 40], lattice constant [41] and radius of the rod [42]. There are several tuning
mechanisms such as thermal tuning [39], mechanical tuning [42, 43], MEMS actuator [44] etc.,
are reported to change the structural parameters. Here, the changes in refractive index, the
radius of the rod and lattice constant are considered to examine the possibility of resonant
wavelength tuning.

The normalized transmission spectra with respect to the refractive index difference, radius of
the rod and lattice constant are shown in Figures 12 (a), (b) and (c), respectively. All the three
cases, while varying the structural parameters the coupling and dropping efficiencies are not
changing however there is a trivial change in passband width in turn Q factor.

It is observed that, while increasing (decreasing) the value of refractive index, lattice constant
and radius of the rod, the resonant wavelength of the filter shifts into the longer wavelength
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Figure 10. Normalized transmission spectra of circular PCRR based ADF
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of PCRR based ADF. It shows the arrangement of Si rods in the structure and the overall
dimensions of the device would come around 11.4 μm (length) × 11.4 μm (width). The effect
of point to point network after incorporating the PCRR based ADF is discussed in the following
sections.
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Figure 11. Three dimensional view of circular PCRR based ADF

7.1. Tuning of Resonant Wavelength

Although the PCRR based ADFs have a fixed operating wavelength, the application area will
become much broader if the operating wavelength can be tuned dynamically and externally.
This would greatly improve the utilization of PC based optical devices for real time and on
demand applications. Generally, the resonant wavelength tuning of PCRR based ADF can be
done by altering the structural parameters such as refractive index (dielectric constant), lattice
constant and radius of the rods in the structure. Among these, the most efficient way to tune
the resonant (operating) wavelength of the ADF is changing the refractive index of the material
since it is not resulting in degradation of filter performance. Recent year, the exploration of
tunablity for 2D PC based optical devices is mainly being carried out with respect to the
refractive index [39, 40], lattice constant [41] and radius of the rod [42]. There are several tuning
mechanisms such as thermal tuning [39], mechanical tuning [42, 43], MEMS actuator [44] etc.,
are reported to change the structural parameters. Here, the changes in refractive index, the
radius of the rod and lattice constant are considered to examine the possibility of resonant
wavelength tuning.

The normalized transmission spectra with respect to the refractive index difference, radius of
the rod and lattice constant are shown in Figures 12 (a), (b) and (c), respectively. All the three
cases, while varying the structural parameters the coupling and dropping efficiencies are not
changing however there is a trivial change in passband width in turn Q factor.

It is observed that, while increasing (decreasing) the value of refractive index, lattice constant
and radius of the rod, the resonant wavelength of the filter shifts into the longer wavelength
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(shorter wavelength). However, the other filter parameters such as coupling efficiency,
dropping efficiency and Q factor are not affected while changing the refractive index and
radius of the rod. There is a significant change is observed while varying the lattice constant.

(a) (b) 

) 

(c) 

Figure 12. The effect of normalized transmission spectra of the circular PCRR based ADF for varying : (a) refractive
index difference (b) radius of the rod and (c) lattice constant

Further, to investigate the impact of resonance for small variation in structural parameters, the
simulation is carried out with very small step value. The accounted step value for refractive
index difference, radius of the rod and lattice constant is 0.01, 0.001 μm and 1 nm, respectively
whose corresponding resonant wavelength shift is shown in Figure 13(a). While considering
the change in refractive index, other two parameters are kept constant and vice versa. The shift
in resonant wavelength for an infinitesimal change in the refractive index, radius of the rods
and lattice constant is given below:

∆λ / ∆n = 1 nm / 0.01 (for refractive index difference)

∆λ / ∆r = 2 nm / 0.001 μm (for radius of the rods)

∆λ / ∆a = 2.2 nm / 1 nm (for lattice constant)

where ∆λ is the shift in resonant wavelength, ∆n is the change in refractive index difference,
∆r is the change in radius of the rod and ∆a is the change in lattice constant. It means that there
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is 1 nm shift in resonant wavelength for every change in 0.01 values of the refractive index
difference.

(a) (b) 

Figure 13. Effect of resonant wavelength shift with respect to refractive index difference, radius of the rod and lattice
constant (a) individually and (b) combinedly

The wide tuning range (1471 nm to 1611 nm) is possible by altering any one of the structural
parameters. If we considered only one parameter to arrive wide tuning range, the required
change in parameter is large which affects the filter parameters. It can be figured out by varying
all the structural parameters simultaneously instead of changing any one of the parameters.
As expected, there is 5.2 nm resonance shift observed while simultaneously changing the
refractive index difference, radius of the rod and lattice constant by 0.01, 0.001 μm and 1 nm,
respectively, from the reference value. As discussed earlier, for every change in 0.01 refractive
index, 0.001μm radius of the rod and 1 nm lattice constant, there is 1 nm, 2 nm and 2.2 nm
resonant wavelength shift is observed. If there is a uniform step change in all the parameters,
the cumulative individual resonance shift of (1nm+2nm+2.2nm) 5.2 nm is noted, which is
shown in Figure 13(b).

8. BPF using quasi-waveguides

In Wavelength Division Multiplexing (WDM) systems, the number of incoming channels are
departed into an optical fiber with designated wavelengths. Hence, optical filters are necessary
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to select a required channel(s) at any destination. The BPF is a right device to select either a
single or multiple channels from the multiplexed signals. In the literature, PC based BPF has
been designed by introducing point defects and/or line defects [44, 45], using bi-periodic
structures [46] and using liquid crystal photonic bandgap fibers [47]. Moreover, no other
methods are reported to design PC based BPF. The circular PCRR based BPF is designed by
exploiting the coupling between the quasi-waveguides and circular PCRR and its simulation
results are presented.

8.1. Design of the structure

The structural parameters such as radius of the rod (0.1μm), lattice constant (540 nm), and
refractive index (3.46) are chosen to be similar to the previous one. However, the total number
of rods in the structure in ‘X’ and ‘Z’ directions is 21 and 19, respectively. As the basic structure
(rods in air) and its parameters are similar to previous one, therefore, the PBG ranges are also
similar.

Figure 14 sketches the schematic structure of the circular PCRR based BPF. The BPF consists
of two quasi waveguides in horizontal (г-x) direction and a circular PCRR between them. The
Gaussian signal is applied to the port marked ‘A’ (arrow in the left side of top quasi waveguide)
and the output is detected using power monitor which is positioned at the output port marked
‘B’ (arrow left side of the bottom quasi waveguide). The coupling rod is placed between circular
PCRR and quasi waveguides, marked as ‘c’. The reflectors, demarcated in a rectangular box,
placed above and below the right side of circular PCRR are shown in Figure 14, which are used
to improve the output efficiency of the BPF by reducing the counter propagation modes. In
order to enhance the output efficiency and maintain the structure in symmetric nature, the
number of periods (Si rods) in the reflector is kept constant, 9.

The structural parameters such as radius of the rod (0.1μm), lattice constant (540 nm), and
refractive index (3.46) are chosen to be similar to the previous one. However, the total number
of rods in the structure in ‘X’ and ‘Z’ directions is 21 and 19, respectively. As the basic structure
(rods in air) and its parameters are similar to previous one, therefore, the PBG ranges are also
similar.

Figure 14 sketches the schematic structure of the circular PCRR based BPF. The BPF consists of
two quasi waveguides in horizontal (г-x) direction and a circular PCRR between them. The
Gaussian signal is applied to the port marked ‘A’ (arrow in the left side of top quasi wave‐
guide) and the output is detected using power monitor which is positioned at the output port
marked ‘B’ (arrow left side of the bottom quasi waveguide). The coupling rod is placed be‐
tween circular PCRR and quasi waveguides, marked as ‘c’. The reflectors, demarcated in rec‐
tangular box, placed above and below the right side of circular PCRR are shown in Figure 14,
which are used to improve the output efficiency of the BPF by reducing the counter propaga‐
tion modes. In order to enhance the output efficiency and maintain the structure in symmetric
nature, the number of periods (Si rods) in the reflector is kept constant, 9.

Advances in Photonic Crystals18

8.2. Simulation results and discussion

The normalized transmission spectra of PCRR based BPF are shown in Figure 15(a). The
observed output efficiency is approximately 85% at 1420 nm and close to 100% over the
range  of  wavelengths  1504  nm to  1521  nm whose  corresponding bands  are  denoted as
Band I and Band II, respectively. The center wavelength and FWHM bandwidth of these
bands are 1420 nm and 1512.5 nm, and 20 nm and 35 nm, respectively. Also, the calculat‐
ed Q factor  of  Band I  and Band II  is  71 and 50.41,  respectively.  As it  is  witnessed,  the
number of passbands depends on the number of inner rings that are formed by the inner
rods. Here, the two inner rings considered results in two passbands. The size and shape
of  the  ring  resonator  determines  the  resonant  wavelength.  The  bandwidth  and channel
spacing are decided by the other structural parameters namely, radius of the rod, period
and dielectric constant (refractive index) of the material.

The Figure 15(b) illustrates the relation between the output efficiency and wavelength shift for
different dielectric constant of the structure. It can be seen clearly that the center wavelength
of the bands shifts into the lower wavelength region when the dielectric constant of structure
is decreased, and similarly the center wavelength of the bands shifts into the higher wavelength
region when the dielectric constant of the structure is increased. It is also noticed that the output
efficiency is not significantly changed while varying the dielectric constant of the structure.
The magnitude of the wavelength shift is around 9 nm for every 0.5 change in dielectric
constant value of the structure. However, the bandwidth is almost not affected by the variation
of dielectric constant.

Figure 15. Normalized transmission spectra of (a) circular PCRR based BPF and (b) for different values of dielectric con‐
stant
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9. PCRR based BSF

Essentially, BSF is one of the prominent components to suppress (remove) either single or
multiple unwanted channels from the multiplexed output channels, or also it passes most of
the frequency range unaltered, however it attenuates/stops a specific range. In literature, the
PC based BSF have been designed by introducing point and line defects [49], and using square
and rectangular resonant cavity [50]. As the cavity size is small in the defects based BSFs, it
does not provide the wide stopband width even it has higher stopband efficiency. Though, the
square and rectangular cavities based BSFs offers a wide stopband width, it reduces the
stopband efficiency owing to scattering at corners in resonance condition as it has proper
corner. The proposed circular PCRR has gradual changes at corner and subtle in nature which
is considered here for designing BSF.

9.1. Design of the structure

The proposed BSF is designed using 2D square lattice PCs with circular PCRR, which is shown
in Figure 16. The number of rods in ‘X’ and ‘Z’ directions (21), lattice constant (540 nm), radius
of the rod (0.1 μm) and refractive index of the rods (3.46) are similar as the filters discussed in
the previous chapters. The PCRR based BSF, consists of a waveguide in horizontal (г-x)
direction and a circular PCRR below the waveguide. The waveguide is called as bus waveguide
and the ring resonator has 4 rings of Si rods in the inner rods (cavity). The bus waveguide is
formed by introducing line defects and the circular PCRR is shaped by point defects.

The circular PCRR consists of four rings in the inner cavity, which is constructed by varying
the position of both inner and outer rods from their original position towards center of the
origin (г). In the four rings inner cavities, the center rod in the structure is considered as the
first ring and the second ring is placed around the first ring and then third ring followed by
the fourth ring. The inner rods are built by varying the position of adjacent rods in the four
sides, from their center, by 25%, whereas the outer rods are constructed by varying the position
of the second rod on four sides, from its center, by 25% both in ‘X’ and ‘Z’ directions where ‘X’
is the horizontal direction and ‘Z’ is the vertical direction. The position of the rods is varied by
varying the lattice constant.

At resonance, the signal is coupled into the PCRR from bus waveguide and reflected back to
the input port, hence the signal is not reached into the output at that resonant condition. This
behavior is used to stop single or multiple channels from the multiplexed input/output
channels. The stopband efficiency is obtained by monitoring the power at port ‘B’ at resonant
condition.

Figure 17 shows the normalized transmission spectra of PCRR based BSF. The stopband
efficiency of the BSF is approximately 98% and the width of the stopband is 11 nm. Here, the
stopband width is calculated at FWHM point and the stopband efficiency is computed by
subtracting the detected output power from the normalized transmission value and multiply‐
ing by 100.
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Figure 16. Schematic structure of circular PCRR based BSF

Figure 17. Normalized transmission spectra of circular PCRR based BSF

The Figures 18(a) and 18(b) depict the typical electric field pattern for pass and stop bands at

1550 nm and 1570 nm, respectively. At resonant wavelength, λ=1550 nm the electric field of
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the bus waveguide is fully transferred to the output port (OFF resonance), and hence, the
maximum transfer efficiency is obtained, whereas at ‘ON’ resonance, λ=1570 nm the signal is
coupled into the resonant cavity from the bus waveguide and reflected back to the input.
Hence, the signal does not reach the output port which reduces the output power.

Figure 18. Electric field pattern of the circular PCRR based BSF at: (a) 1550 nm and (b) 1570nm

10. Conclusion

In this Chapter, we have reviewed the progress of photonic crystal ring resonators and ring
resonator devices. Emphasis has been on the principles and applications of ultra-compact
photonic crystal ring resonators. We proved that circular PCRR based optical filters provide
better performance than others. These findings make the PCRRs an alternative to current
microring resonators for ultra-compact WDM components and applications in high-density
photonic integration.
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1. Introduction

In the coming decade in physics great effort will probably be devoted, among other things,
to improving quantum storage and the development of quantum computer. To make use
of quantum processes one should avoid decoherence influence of surroundings, or use
specifically designed environment to modify the process considered. This is the case when
an atom or a quantum dot — nanosized emitter in an active material — is located inside
a medium exhibiting modified density of electromagnetic states, e.g., a photonic crystal.
In fact, prospects to modify the density of states gave the major motivation to investigate
photonic crystals back in the years of their inception. Still they generate large interest from
the fundamental cavity quantum electrodynamics perspectives [1–3]. Photonic crystals based
structures — beam splitters, cavities, slow light and logic devices — allow for a lot of diverse
operations with light. Main advantages of dielectric photonic crystal components over, for
instance, their plasmonic analogues are low-loss operation and low-cost production.

Photonic crystals (PhC’s) are currently considered as a perspective platform to host low
mode volume cavities with high quality factors. A defect can be formed in the photonic
crystal lattice by breaking a perfect symmetry of the structure either by removing or shifting
basic constitutive units or by local modification of the refractive index. For a quantum dot
placed inside a defect in a photonic crystal, the radiation rate is directly connected with the
ratio Q/V, where Q is the quality factor of the microresonator and V is the mode volume.

Basically, for a photonic crystal featuring a full three-dimensional (3D) band gap, a defect in
it should give the highest possible Q-factor. However, fabrication of photonic crystals with
full 3D band gaps, e.g., inverted opals or woodpile structures and defects in them is quite
complicated. That is why a standard way to create a cavity is to use a 2D photonic crystal
platform, mostly silicon or GaAs slabs with perforation. Position of holes in such slab is
manually defined, giving thus flexibility in the design and optimization of cavities and other
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1. Introduction

In the coming decade in physics great effort will probably be devoted, among other things,
to improving quantum storage and the development of quantum computer. To make use
of quantum processes one should avoid decoherence influence of surroundings, or use
specifically designed environment to modify the process considered. This is the case when
an atom or a quantum dot — nanosized emitter in an active material — is located inside
a medium exhibiting modified density of electromagnetic states, e.g., a photonic crystal.
In fact, prospects to modify the density of states gave the major motivation to investigate
photonic crystals back in the years of their inception. Still they generate large interest from
the fundamental cavity quantum electrodynamics perspectives [1–3]. Photonic crystals based
structures — beam splitters, cavities, slow light and logic devices — allow for a lot of diverse
operations with light. Main advantages of dielectric photonic crystal components over, for
instance, their plasmonic analogues are low-loss operation and low-cost production.

Photonic crystals (PhC’s) are currently considered as a perspective platform to host low
mode volume cavities with high quality factors. A defect can be formed in the photonic
crystal lattice by breaking a perfect symmetry of the structure either by removing or shifting
basic constitutive units or by local modification of the refractive index. For a quantum dot
placed inside a defect in a photonic crystal, the radiation rate is directly connected with the
ratio Q/V, where Q is the quality factor of the microresonator and V is the mode volume.

Basically, for a photonic crystal featuring a full three-dimensional (3D) band gap, a defect in
it should give the highest possible Q-factor. However, fabrication of photonic crystals with
full 3D band gaps, e.g., inverted opals or woodpile structures and defects in them is quite
complicated. That is why a standard way to create a cavity is to use a 2D photonic crystal
platform, mostly silicon or GaAs slabs with perforation. Position of holes in such slab is
manually defined, giving thus flexibility in the design and optimization of cavities and other
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2 Photonic Crystals

Figure 1. (a) The geometry of nanobeam cavity. (b) Magnetic field in resonance.

photonic components. A variety of high-Q, low-V cavity designs were proposed based on
structural modifications in photonic crystal matrices [4–9].

The main channel for loosing energy from a free-standing membrane cavity is through the
coupling to radiative leaky modes. In the plane of the slab the 2D photonic crystal acts as
a distributed Bragg mirror, thus in-plane (||) leakage of radiation from the photonic crystal
cavity is typically small. In the out-of-plane (⊥) direction light is primarily confined by total
internal reflection, thus the magnitude of k⊥ vector should be as small as possible to reduce
losses. There exists connection between in-plane and out-of-plane wave vector components
stipulated by coupling to radiation modes. Increase in k⊥ originate from k||-vectors lying
close to the light cone and the usual approach employed for optimization of cavities is
through some guess for the design that would give k|| lying far enough from the light cone.
Also in-plane mirror imperfections can lead to parasitic coupling to vacuum modes for some
structures.

If some design is to be optimized to achieve high Q – mode, this should be done gently
without abrupt changes in the structure geometry or refractive index, because otherwise
undesirable leakage of radiation can appear. In this sense the best designs for optimization
are waveguide-like ones [10] and nanobeam cavities [11, 12], Fig. 1, having simple
arrangement of field maxima and minima along the straight line. Such 1D arrangement
allows for application of the mode-matching rule [13], when the hole sizes and PhC pattern
change gradually going from the cavity center towards the mirror part [14, 15]. For modes
with more complicated symmetries, for instance, a hexapole mode in a one-hole-missing
membrane [16], this approach is not readily applicable since the mode by itself can easily
vanish due to a moderate geometry modification.

A photonic crystal nanobeam cavity created by perforating a photonic wire waveguide
(nanoridge waveguide) with a row of holes, Fig. 1, reaches a Q-factor comparable to that
of a photonic crystal membrane resonator while being much more compact and easy in
fabrication. Even for a nanobeam cavity in a low refractive index material like SiO2, fairly
high Q-factors of several thousands were measured experimentally [17]. Besides a high
Q-factor, a nanobeam cavity exhibits a set of other desirable characteristics: low mode volume
V (less than the cubic wavelength of light) and the smallest footprint size among other high-Q
cavities. This stimulates intensive investigations of nanobeam-related acousto-optic and
optomechanic interactions [18, 19]. Recently all-optical logical switching [20] and quantum
dot laser [11] have been demonstrated in nanobeam cavities. Tiny size of nanobeam cavities
makes them also very promising for densely integrated photonic circuits.
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Of particular interest are ensembles of cavities [21] with quantum dots placed inside. Full
three-dimensional description of such systems is not yet a routine task, but it is very
important for fundamental investigations of light-matter interactions [22–24]. Side-coupled
nanobeams [14, 25, 26] offer new possibilities for shaping optical fields at nanoscale, which
is potentially beneficial for various applications including trapping and manipulation of
particles [27], sensing and optical switching through optomechanical interactions with
suspended nanobeams [18, 19].

Strong and controllable coupling [28] is also required to create low-threshold lasers [29],
observe Fano line shapes [30], design field concentrators for detection of molecules [26],
create flat slow light passbands [31, 32], holographic storage [33], and enhance
nonlinearities [34]. Formally, consideration of coupled cavities can be made in direct
analogue with the molecular mode hybridization, that is why coupled resonators are often
called ‘photonic molecules’ [35, 36].

On the other hand, for some applications reduction of coupling strength between the
resonators is the key. Indeed, interaction between optical components can shift operation
wavelength of the device. Avoiding of parasitic coupling of components is crucial for
photonic integrated circuits and in optic network design. Realization of flexible control over
the modes in arrays of nanocavities by their rearrangement contributes to the development
of on-chip quantum-optical interferometers [23] and quantum computers [24].

2. The finite-difference frequency-domain method

Optics and photonics are rapidly developing fields building their success largely on use
of more and more elaborated artificially nanostructured materials. To further advance our
understanding of light-matter interactions in these complicated artificial media, numerical
modeling is often indispensable.

One of the most challenging computational tasks is evaluation of the Q-factor of a resonator.
The traditional way here is to use the finite-difference frequency-domain (FDTD) method to
simulate these spatially extended structures with the subsequent extraction of Q by analyzing
the ring-down of electromagnetic field components. Such time-domain simulations can take
considerable time up to several days per single run for a high-Q 3D resonator.

If several modes are traced in the time domain within a single run, the accuracy of the
Q-factor determination may degrade. The extraction of the separate mode field profiles
requires the Fourier transformation of field evolution stored for some space volume and
time interval. If two modes are degenerate, separating them with the FDTD method is even
less trivial, especially if at the degeneracy point the coupled structure does not have a plane
of symmetry allowing to split the modes by the appropriate domain reduction.

On the contrary, the frequency domain techniques grant an opportunity to get
straightforwardly in one run maps of several modes, their eigenvalues and quality factors.
When modes in the coupled cavities are degenerate, we can get an idea how they may look
like — though the picture becomes now ambiguous.

As an competitive alternative to the time domain modeling we employ here the 3D
finite-difference frequency-domain (FDFD) method. Details of the method are published
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Figure 1. (a) The geometry of nanobeam cavity. (b) Magnetic field in resonance.
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elsewhere [37]. The eigenmode equation in the FDFD method is obtained through combining
Maxwell’s equations into the second-order differential equation for H̃ ≡

√
µ H:

√
µ−1 ∇× ǫ

−1∇×
√

µ−1 H̃ = ω
2H̃. (1)

Then, Q-factor is straightforwardly found as Q = Re(ω)/2Im(ω) after solution of the
eigenproblem for complex ω. No other elaborated post-processing is needed. Thus transition
to the frequency domain for cavity eigenmode analysis is very natural as it greatly reduces
the computation time.

To impose boundary conditions we use perfectly matched layers (PMLs). The PMLs were
originally designed to absorb propagating electromagnetic waves while evanescent fields can
be even intensified in them. High-Q cavities have extremely intensive fields around them.
To keep the domain size reasonably small and at the same moment to avoid evanescent tales
to fall into the PMLs we use the free space squeezing procedure to set a buffer layer. For
all simulations in this chapter we use one-lattice-constant-thick buffer layers. Two squeezing
functions are applied to project infinite open space to this buffer layer: inverse hyperbolic
tangent (arctanh) function and steeper x/(1 − x) function. To make our simulations efficient
we also use the solution-adapted continuous grid density variation of lower resolution
in the extended photonic crystal mirror part. If a smooth analytic function is used to
create a non-equidistant mesh, it assures the impedance matched transformation leading
to the absence of reflection in the transition region to the finer mesh. The symmetries of
resonators are exploited to reduce the computational domain. For further insight in the
FDFD simulations and free space squeezing we refer to [37].

3. Single nanobeam

3.1. Modeling in 2D: High-Q design

At the beginning we tailor the nanobeam cavity design in 2D to get a high-Q TE-mode
(electric field in the x − y plane). Fig. 2 shows a basic nanobeam sketch used to consider
various cavity designs: a nanowire of refractive index 3.4 is suspended in air and has 20 holes
in its half. Perforation consists of two regions: the chirped mode matched defect region and
long periodic part acting as a Bragg reflector. In the reflecting part the lattice constant is a,
hole diameter is d and total width of a nanobeam t = 1.0a. In the defect region the modified
hole diameters and lattice constants are dn and an, respectively, where n numbers a segment
in the defect part of the cavity. For 2D simulations we put ∆x = ∆y. Along y-direction
1a-wide buffer layers are squeezed with the hyperbolic arctangent function covered by PMLs
on 1/3. No air buffer is used along x-direction, just PMLs comprising 3 grid cells.

Intuitive variation of the defect region parameters – holes radii dn and lattice constant an –
in order to maximize the Q-factor led us to the following conclusions. First of all, when both
parameters are constant (an=const, dn=const) but differ from those in the reflecting part, the
Q-factor can approach 105. Second, if one of the parameters slowly decreases in the defect
region towards the center (for example, an=const and dn is varied, or vice versa), Q rises to
106 ÷ 107. Third, only if both an and bn are gradually decreased from the periphery to the
center of the cavity, Q reaches the highest value around 108 ÷ 109 in 2D. In 3D it is usually
one to two orders of magnitude less.
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Figure 2. Nanobeam quarter, x-direction is pointing along the nanobeam perforation, y-direction is along the nanobeam
width, s shows the buffer around the nanobeam.
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Table 1. Different designs of the nanobeam cavity sketched in Fig. 2.
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Figure 3. 2D (a) Q and (b) λ convergence for the third design from Table 1. ∆x=∆y, y-buffer is 1a-wide (arctanh squeezed)
with 1/3 covered by the y-PMLs, x-PMLs comprise 3 grid cells.
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(electric field in the x − y plane). Fig. 2 shows a basic nanobeam sketch used to consider
various cavity designs: a nanowire of refractive index 3.4 is suspended in air and has 20 holes
in its half. Perforation consists of two regions: the chirped mode matched defect region and
long periodic part acting as a Bragg reflector. In the reflecting part the lattice constant is a,
hole diameter is d and total width of a nanobeam t = 1.0a. In the defect region the modified
hole diameters and lattice constants are dn and an, respectively, where n numbers a segment
in the defect part of the cavity. For 2D simulations we put ∆x = ∆y. Along y-direction
1a-wide buffer layers are squeezed with the hyperbolic arctangent function covered by PMLs
on 1/3. No air buffer is used along x-direction, just PMLs comprising 3 grid cells.

Intuitive variation of the defect region parameters – holes radii dn and lattice constant an –
in order to maximize the Q-factor led us to the following conclusions. First of all, when both
parameters are constant (an=const, dn=const) but differ from those in the reflecting part, the
Q-factor can approach 105. Second, if one of the parameters slowly decreases in the defect
region towards the center (for example, an=const and dn is varied, or vice versa), Q rises to
106 ÷ 107. Third, only if both an and bn are gradually decreased from the periphery to the
center of the cavity, Q reaches the highest value around 108 ÷ 109 in 2D. In 3D it is usually
one to two orders of magnitude less.
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Figure 4. (a) Q-factor and (b)-(d) λ convergence for the three designs in the region of fine resolutions with estimation of

spread δ shown in the legend. 2D simulations with ∆x = ∆y, 1a-wide buffer layers (arctanh squeezed) along the y-direction
are covered on 1/3 by y-PMLs, x-PMLs – 3 grid cells.

Having established that an and dn should vary we investigated ways to do that. Several laws
to tailor the nanobeam design have been compared. Among them are 1/ 10

√
n multiplier to

decrease both an and dn (design 1); cavity formation similar to [12] when the hole diameter
and lattice constant vary linearly in the reciprocal space (design 2); and linear decrement of
an and dn towards the middle of the nanobeam (design 3) [15]. With all mentioned designs
we were able to rise the Q-factor to the order of 108 simply by playing with parameters.
Table 1 summarize details of different nanobeam cavity designs. For the first and third
designs we start by defining modified hole diameter dn, and modified segment size an is
calculated afterwards. For the design 2 calculation of modified lattice constant an precedes
evaluation of the defect hole diameters.

In Fig. 3 an example of the Q and λ convergence curves for the design three is plotted starting
from a quite coarse resolution, while Fig. 4a–d allows to do more detailed comparison
between different designs in the region of fine resolutions. All of the designs from Table 1
have similar Q-factor values, Fig. 4a, the design three revealing faster convergence than
others. In Fig. 4b–d the eigenwavelength convergence is plotted for the three designs in
the same ∆x range as in Fig. 4a. To estimate the convergence rate, relative spread ∆λ of

convergence curves around a central wavelength λ0 can be introduced: δ = ∆λ

λ0
100%. The

design three has δ one order less than the designs one and two even at rougher resolutions.
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Figure 5. (a) Field patterns of the TE mode in the nanobeam cavity of the height 0.7a. Only the quatre of the nanobeam is
shown. (b) Resonance wavelength λ and Q-factor dependence on the nanobeam height h. 3D simulation is made with cubic
grid cell of 0.07a − 0.1a size, 1a-buffer along both y and z-directions is arctanh-squeezed, a/3 distance goes for PMLs, x-PMLs
are 3 cells wide.

Thus, we ended with the sizes modification according to a linear law as better converging
numerically. Design 3 is used in all further nanobeam cavity simulations. We think that the
better numerical stability can lead also to the better stability with respect to the fabrication
imperfections.

We pay special attention to this analysis, because the Q-convergence curve for the nanobeam
cavity is worst than that for the PhC membrane resonator, compare with the results in [37].
A one-dimensional PhC basis for the nanobeam cavity is somewhat less reflecting than a
2D stop band utilized in the membrane resonators. Thus, if a small imperfection in a 1D
mirror is present (due to either some perturbations during fabrication or inaccuracy due to
finite difference description), radiation can easily escape through sidewalls of the 1D mirror,
while in the case of a membrane leaking radiation can be captured in all in-plane directions
in the surrounding 2D-PhC mirror. As discussed in Introduction, undesirable coupling to
vacuum modes is directly connected to kx (in 1D k|| = kx) distribution around the light cone,
and thus even a tiny variation in kx might lead to the strong variation in the Q-factor, while
the total wave vector is changed only slightly by perturbations and λ-curve preserves good
convergence.

3.2. Modeling in 3D

In the 3D modeling a defect region in the nanobeam cavity is perforated according to design
3 (see Table 1). In 3D again 1a-wide buffer layers along y and z-direction are covered by
PMLs on 1/3. No air buffer is used along x-direction, just PMLs comprising 3 grid cells. We
use either equidistant or non-equidistant meshes, but always set ∆x = ∆y = ∆z in the center
of the nanobeam (the defect region). Then for non-equidistant meshes ∆x can be stretched
up to three times towards the periphery of the nanobeam.

Fig. 5 shows dropping of the resonance wavelength of the TE-mode in the nanobeam cavity
with the reduction of its height h along the z-direction. Decreasing of the nanobeam height
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Having established that an and dn should vary we investigated ways to do that. Several laws
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decrease both an and dn (design 1); cavity formation similar to [12] when the hole diameter
and lattice constant vary linearly in the reciprocal space (design 2); and linear decrement of
an and dn towards the middle of the nanobeam (design 3) [15]. With all mentioned designs
we were able to rise the Q-factor to the order of 108 simply by playing with parameters.
Table 1 summarize details of different nanobeam cavity designs. For the first and third
designs we start by defining modified hole diameter dn, and modified segment size an is
calculated afterwards. For the design 2 calculation of modified lattice constant an precedes
evaluation of the defect hole diameters.

In Fig. 3 an example of the Q and λ convergence curves for the design three is plotted starting
from a quite coarse resolution, while Fig. 4a–d allows to do more detailed comparison
between different designs in the region of fine resolutions. All of the designs from Table 1
have similar Q-factor values, Fig. 4a, the design three revealing faster convergence than
others. In Fig. 4b–d the eigenwavelength convergence is plotted for the three designs in
the same ∆x range as in Fig. 4a. To estimate the convergence rate, relative spread ∆λ of
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Thus, we ended with the sizes modification according to a linear law as better converging
numerically. Design 3 is used in all further nanobeam cavity simulations. We think that the
better numerical stability can lead also to the better stability with respect to the fabrication
imperfections.

We pay special attention to this analysis, because the Q-convergence curve for the nanobeam
cavity is worst than that for the PhC membrane resonator, compare with the results in [37].
A one-dimensional PhC basis for the nanobeam cavity is somewhat less reflecting than a
2D stop band utilized in the membrane resonators. Thus, if a small imperfection in a 1D
mirror is present (due to either some perturbations during fabrication or inaccuracy due to
finite difference description), radiation can easily escape through sidewalls of the 1D mirror,
while in the case of a membrane leaking radiation can be captured in all in-plane directions
in the surrounding 2D-PhC mirror. As discussed in Introduction, undesirable coupling to
vacuum modes is directly connected to kx (in 1D k|| = kx) distribution around the light cone,
and thus even a tiny variation in kx might lead to the strong variation in the Q-factor, while
the total wave vector is changed only slightly by perturbations and λ-curve preserves good
convergence.

3.2. Modeling in 3D

In the 3D modeling a defect region in the nanobeam cavity is perforated according to design
3 (see Table 1). In 3D again 1a-wide buffer layers along y and z-direction are covered by
PMLs on 1/3. No air buffer is used along x-direction, just PMLs comprising 3 grid cells. We
use either equidistant or non-equidistant meshes, but always set ∆x = ∆y = ∆z in the center
of the nanobeam (the defect region). Then for non-equidistant meshes ∆x can be stretched
up to three times towards the periphery of the nanobeam.

Fig. 5 shows dropping of the resonance wavelength of the TE-mode in the nanobeam cavity
with the reduction of its height h along the z-direction. Decreasing of the nanobeam height
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Figure 6. (a) The resonance wavelength and (b) Q-factor versus grid step for uniform (∆x=∆y=∆z) and nonuniform x-mesh
with three times stretching in the mirror part (∆x=∆y=∆z in the center of the nanobeam). Buffer size along the y and z
directions is 1a (x/(1 − x) squeezed) with 1/3 occupied by the PMLs, the PMLs width in the x-direction being 3 grid cells.

also greatly minimizes the mode volume, for example, for height h = 0.5a it is equal to 0.86
(λ/n)3. We keep this nanobeam height for the modeling of the coupled cavity structures.

Figure 6 demonstrates the Q- and λ-convergence for this height. The λ calculation has
uncertainty less than 1% at sufficient resolutions while the convergence of Q is more
unstable than in 2D. We can remind here that low accuracy of the Q-factor evaluation
reflects high sensitivity of the Q-factors of 1D PhC-based structures to imperfections in their
finite-difference description. And in 3D model we have an additional channel (z-direction)
for coupling of a genuine cavity mode to leaky modes compared to the 2D case, what causes
degradation of convergence. It is interesting to note that instabilities do not show up in Fig. 5.
With variation of the height we do not change the resolution along the 1D mirror and thus
kx distribution is completely the same for all height values.

4. Coupled nanobeams

4.1. Two coupled nanobeams

When two identical cavities are positioned parallel to each other, their modes undergo
hybridization. Supermodes possess symmetric or anti-symmetric profiles [25] and shift
in frequency up and down from the former level. We will refer to this splitting as
frequency detuning. The frequency detuning between the supermodes normally increases
as the cavities are brought closer, and such sensitivity to the separation can lead to
pronounced optomechanical phenomena. This may have various applications including
the mechanically-induced frequency conversion for optical waves [38]. Analogous effects
of modes splitting occur in coupled periodic waveguides, where several channels can enrich
the band structure of a single mode waveguide in a controllable way, e.g. in slow light modes
positioning at the band edge on demand [39].

4.1.1. Analysis of field profiles in 2D

First, we analyze two side-coupled nanobeam cavities as in Fig. 7a, where the right half of
the structure is shown (the left half is symmetric). The individual identical nanobeams have
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Figure 7. (a) Two nanobeams, each of width t = a, refractive index n = 3.4 and drilled with 20 holes in each half, separated
one from another by p and shifted longitudinally by s. (b) 2D field profiles for modes (labeled mode 1 and 2) in coupled cavities
with zero, s = 0.3a and s = 0.4a longitudinal shifts when separation p = 1.5a, for each shift mode one being positioned at the
top while mode two takes the bottom position.

design 3 from Table 1. This gives a linearly chirped array of elements (holes), while other
designs are also possible; the general mode properties are usually similar for different chirp
functions. The resonance wavelength of a single nanobeam in 2D is λ = 3.9964a, Q = 1.5·108,
Fig 3. Two parameters describe the position of the second nanobeam cavity relative to the
first one: transverse separation p and longitudinal shift s, Fig. 7a.

To make the computational work efficient all modeling is done at the beginning for 2D
nanobeam geometries with the main emphasis on the field patterns redistribution as the
coupled resonators are rearranged. As we are interested in coupling effects between two
nanobeam resonators when they are shifted longitudinally and transversally with respect
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also greatly minimizes the mode volume, for example, for height h = 0.5a it is equal to 0.86
(λ/n)3. We keep this nanobeam height for the modeling of the coupled cavity structures.

Figure 6 demonstrates the Q- and λ-convergence for this height. The λ calculation has
uncertainty less than 1% at sufficient resolutions while the convergence of Q is more
unstable than in 2D. We can remind here that low accuracy of the Q-factor evaluation
reflects high sensitivity of the Q-factors of 1D PhC-based structures to imperfections in their
finite-difference description. And in 3D model we have an additional channel (z-direction)
for coupling of a genuine cavity mode to leaky modes compared to the 2D case, what causes
degradation of convergence. It is interesting to note that instabilities do not show up in Fig. 5.
With variation of the height we do not change the resolution along the 1D mirror and thus
kx distribution is completely the same for all height values.

4. Coupled nanobeams

4.1. Two coupled nanobeams

When two identical cavities are positioned parallel to each other, their modes undergo
hybridization. Supermodes possess symmetric or anti-symmetric profiles [25] and shift
in frequency up and down from the former level. We will refer to this splitting as
frequency detuning. The frequency detuning between the supermodes normally increases
as the cavities are brought closer, and such sensitivity to the separation can lead to
pronounced optomechanical phenomena. This may have various applications including
the mechanically-induced frequency conversion for optical waves [38]. Analogous effects
of modes splitting occur in coupled periodic waveguides, where several channels can enrich
the band structure of a single mode waveguide in a controllable way, e.g. in slow light modes
positioning at the band edge on demand [39].

4.1.1. Analysis of field profiles in 2D

First, we analyze two side-coupled nanobeam cavities as in Fig. 7a, where the right half of
the structure is shown (the left half is symmetric). The individual identical nanobeams have
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design 3 from Table 1. This gives a linearly chirped array of elements (holes), while other
designs are also possible; the general mode properties are usually similar for different chirp
functions. The resonance wavelength of a single nanobeam in 2D is λ = 3.9964a, Q = 1.5·108,
Fig 3. Two parameters describe the position of the second nanobeam cavity relative to the
first one: transverse separation p and longitudinal shift s, Fig. 7a.

To make the computational work efficient all modeling is done at the beginning for 2D
nanobeam geometries with the main emphasis on the field patterns redistribution as the
coupled resonators are rearranged. As we are interested in coupling effects between two
nanobeam resonators when they are shifted longitudinally and transversally with respect
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Figure 8. (a) Detuning of the mode one and mode two vs the longitudinal shift. Transverse separation between nanobeam axes

is p = 1.5a. (b)-(f) Resonance wavelengths and Q-factors of eigenmodes in side-coupled nanobeam cavities vs. their transverse
separation p. Results are presented for four different shifts: (b) s = 0.0a; (c) 0.3a; (d) 0.4a; (e) 0.5a, (f) 0.6a as indicated by
labels. Separation of 1.0a and less corresponds to a single dielectric beam with two rows of holes. 2D simulations are made
with ∆x = ∆y ≃ 0.004a. 1a-wide y-buffer is arctanh squeezed with half of it covered by PMLs. x-PMLs comprise 3 grid cells.
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to each other, we need to perform a new computational cycle each time the structure is
modified by a small displacement. In the 2D case the execution time is several minutes even
for the huge resolution such as ntot = 6 · 105 grid nodes available with a 8Gb station. For 2D
simulations we put ∆x = ∆y ≃ 0.004a. Along y-direction 1a-wide buffer layers are squeezed
with the inverse hyperbolic tangent function and covered by PMLs on 1/2. No air buffer is
used along x-direction, just PMLs comprising 3 grid cells.

Mode profiles in Fig. 7b show formation of the symmetric and antisymmetric cavity modes
when two nanobeam resonators are brought together without shifting, s = 0. Magnetic field
hot spots coincide with the location of the holes. With separation p = 1.5a we see only electric
field in the air gap between the nanobeams. When one of the nanobeams is subjected to a
longitudinal shift the system loses its symmetry and modes cannot be specified anymore
as symmetric and antisymmetric. We will refer to notation ‘mode 1’ and ‘mode 2’ to call
transformations of even and odd modes respectively with gradual shift starting from zero.

At zero longitudinal shift s = 0 Ex component of mode 1 and Ey component of mode 2
have a node plane passing through the middle of the air gap between the nanobeams (y =
0). For applications requiring high field intensities it would be preferable to avoid these
zero-valued fields. It turns out that as the nanobeams are gradually shifted from s = 0 the
node planes for both of these modes components are substituted by a plane with high field
intensities, see Fig. 7b for s = 0.3a. At the same moment other electric field components
(Ey for mode 1 and Ex for mode 2) still preserve quite high field values. Thus, a small
longitudinal shift helps in removing areas of zero fields in the air gap and makes the electric
field intensity more uniform across the gap between the two nanobeams. The field uniformity
in the shifted nanobeams can be further improved by moving the nanobeams closer in the
transverse direction.

From Fig. 8a it is evident that the modes experience degeneracy at around 0.4a shift. With
larger shifts the eigenwavelength difference grows up again forming a periodic dependence
of the frequency detuning on shift s. We also trace the effect of transverse cavity separation
p on the resonant wavelengths and Q-factors for different longitudinal shifts s. Results are
presented in Figs. 8b–f. Almost exact degeneracy is observed at s = 0.4a for all transverse
separations, Fig. 8d. The two principle eigenmodes are resolved in the FDFD numerical
simulations with their frequency detuning being much smaller than for the other shifts.

Away from the degeneracy point each mode profile should support the 180◦ symmetry of the
photonic structure around the central point (x = y = 0) between two cavities, for example
for a magnetic field component it might be written: Hz(x; y; z) = m Hz(−x;−y; z), where
m = +1 or m = −1 for the two fundamental modes of the couple cavities [40]. These
symmetries are visible for mode profiles shown in Fig. 7b and Fig. 9c,d. However, we note
that exactly at the degeneracy point, the field profiles of the eigenmodes are defined with the
certain ambiguity and must not satisfy the rotational symmetry, since any linear combination
of eigenmodes is an eigenmode as well. As shift starts approaching 0.4a we see that field
intensity in one of the nanobeams falls down, Fig. 7b for s = 0.4a. The connection between the
modes weakens. As the result the modes settle mostly in one or another nanobeam, Fig. 11b,
bottom panel. In more complicated structures, where cavities are tuned by infiltration,
similar effects of anticrossing were registered experimentally [35] (there is always some
perturbation present, which, strictly speaking, removes the degeneracy, thus in fact both
terms — mode degeneracy and anticrossing — can mean the same here). In Fig. 9a the
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Figure 8. (a) Detuning of the mode one and mode two vs the longitudinal shift. Transverse separation between nanobeam axes

is p = 1.5a. (b)-(f) Resonance wavelengths and Q-factors of eigenmodes in side-coupled nanobeam cavities vs. their transverse
separation p. Results are presented for four different shifts: (b) s = 0.0a; (c) 0.3a; (d) 0.4a; (e) 0.5a, (f) 0.6a as indicated by
labels. Separation of 1.0a and less corresponds to a single dielectric beam with two rows of holes. 2D simulations are made
with ∆x = ∆y ≃ 0.004a. 1a-wide y-buffer is arctanh squeezed with half of it covered by PMLs. x-PMLs comprise 3 grid cells.
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to each other, we need to perform a new computational cycle each time the structure is
modified by a small displacement. In the 2D case the execution time is several minutes even
for the huge resolution such as ntot = 6 · 105 grid nodes available with a 8Gb station. For 2D
simulations we put ∆x = ∆y ≃ 0.004a. Along y-direction 1a-wide buffer layers are squeezed
with the inverse hyperbolic tangent function and covered by PMLs on 1/2. No air buffer is
used along x-direction, just PMLs comprising 3 grid cells.

Mode profiles in Fig. 7b show formation of the symmetric and antisymmetric cavity modes
when two nanobeam resonators are brought together without shifting, s = 0. Magnetic field
hot spots coincide with the location of the holes. With separation p = 1.5a we see only electric
field in the air gap between the nanobeams. When one of the nanobeams is subjected to a
longitudinal shift the system loses its symmetry and modes cannot be specified anymore
as symmetric and antisymmetric. We will refer to notation ‘mode 1’ and ‘mode 2’ to call
transformations of even and odd modes respectively with gradual shift starting from zero.

At zero longitudinal shift s = 0 Ex component of mode 1 and Ey component of mode 2
have a node plane passing through the middle of the air gap between the nanobeams (y =
0). For applications requiring high field intensities it would be preferable to avoid these
zero-valued fields. It turns out that as the nanobeams are gradually shifted from s = 0 the
node planes for both of these modes components are substituted by a plane with high field
intensities, see Fig. 7b for s = 0.3a. At the same moment other electric field components
(Ey for mode 1 and Ex for mode 2) still preserve quite high field values. Thus, a small
longitudinal shift helps in removing areas of zero fields in the air gap and makes the electric
field intensity more uniform across the gap between the two nanobeams. The field uniformity
in the shifted nanobeams can be further improved by moving the nanobeams closer in the
transverse direction.

From Fig. 8a it is evident that the modes experience degeneracy at around 0.4a shift. With
larger shifts the eigenwavelength difference grows up again forming a periodic dependence
of the frequency detuning on shift s. We also trace the effect of transverse cavity separation
p on the resonant wavelengths and Q-factors for different longitudinal shifts s. Results are
presented in Figs. 8b–f. Almost exact degeneracy is observed at s = 0.4a for all transverse
separations, Fig. 8d. The two principle eigenmodes are resolved in the FDFD numerical
simulations with their frequency detuning being much smaller than for the other shifts.

Away from the degeneracy point each mode profile should support the 180◦ symmetry of the
photonic structure around the central point (x = y = 0) between two cavities, for example
for a magnetic field component it might be written: Hz(x; y; z) = m Hz(−x;−y; z), where
m = +1 or m = −1 for the two fundamental modes of the couple cavities [40]. These
symmetries are visible for mode profiles shown in Fig. 7b and Fig. 9c,d. However, we note
that exactly at the degeneracy point, the field profiles of the eigenmodes are defined with the
certain ambiguity and must not satisfy the rotational symmetry, since any linear combination
of eigenmodes is an eigenmode as well. As shift starts approaching 0.4a we see that field
intensity in one of the nanobeams falls down, Fig. 7b for s = 0.4a. The connection between the
modes weakens. As the result the modes settle mostly in one or another nanobeam, Fig. 11b,
bottom panel. In more complicated structures, where cavities are tuned by infiltration,
similar effects of anticrossing were registered experimentally [35] (there is always some
perturbation present, which, strictly speaking, removes the degeneracy, thus in fact both
terms — mode degeneracy and anticrossing — can mean the same here). In Fig. 9a the
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Figure 9. (a) Increase of eigenwavelength difference with shortening of transversal separation p between the nanobeams,
different shifts are printed in the legend. (b) |∆λ| in logarithmic scale for non-shifted nanobeams. (c) Evolution of magnetic
field Hz in two slightly shifted nanobeams (s=0.1a) when closing the air gap between them, i.e. separation p is reduced from
1.1a to 1.05a. (d) Hz field distribution in two connected nanobeams with p = 0.9a at s = 0, s = 0.3a and s = 0.4a shifts. 2D
simulation is made with ∆x = ∆y ≃ 0.004a. 1a-wide y-buffer (arctanh squeezed) is covered by PMLs on half, 3 grid cells come
for x-PMLs.

eigenwavelength difference is plotted showing the highest values for non-shifted resonators
and significantly smaller |∆λ| for non-zero shifts. Due to the symmetric positioning of 0.3a
and 0.5a shift values around the degeneracy point, the wavelength differences given by these
shifts are equal to each other for the nanobeams separated by p > 1.1a. When the nanobeams
are far enough transversally and the coupling strength is small, |∆λ| depends on s by the
order law seen in Fig. 9b. In Fig. 9b for the illustration purpose the spectral splitting for
non-shifted nanobeams is plotted in a logarithmic y-scale. Other nonzero shifts, except for
the degeneracy point, also give similar straight lines in the |∆λ|-log scale if separation p is
big enough to correspond to the weak coupling regime.

When the resonators are moved closer so that the interaction between the nanobeams
intensifies, all fields, including magnetic one, spread through the air gap. The picture of
the mode profiles alters compared to p = 1.5a, see Fig. 9c,d. Eigenmode fields extend over
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the whole cavity even when the hole positions in the upper and lower cavities are effectively
shifted in the out-of-phase configuration, i.e. s = 0.4a. In Fig. 9c the evolution of mode 1 at
small shift 0.1a is shown when closing the air gap. Drastic changes occur with the mode 1
profile when the nanobeams are approaching each other: yet very intensive field at p = 1.11a
is pushed out from the cavity center at p = 1.05a. Thus for nonlinear applications special
care should be paid to the extremely thin slots between the nanobeams. Fig. 9d collects field
patterns for both modes at different shifts when air-dielectric interfaces are absent and we
actually have one cavity consisting of two chirped arrays. Note that although field maps in
stitched nanobeams are really complex they are all 180◦ rotation symmetric relative to the
center point. In the degeneracy point s = 0.4a field is sitting in two nanobeams here. So
from the numerical experiment we see that mode picture can look two different ways at the
degeneracy: with field concentrated in one of the nanobeams or spreading through both of
cavities.

4.1.2. Q and λ dependence on the longitudinal shift in 3D

In 3D we consider the same nanobeam design from Fig. 7a and discuss more Q and λ curves
with the rearrangement of the nanobeams. The 3D Q-factor of a single nanobeam cavity is
around 4 · 106 and the operating wavelength λ = 3.21a for the TE mode, Fig. 6. To achieve
fine sampling in 3D problems the symmetry domain reduction is applied were it is possible
to satisfy memory requirements. The system of two nanobeam resonators with a longitudinal
shift loses plane-reflection symmetry, and the whole domain should be considered so benefits
of stretched meshes are fully used here. Discretization in the cavity center is set to 0.07a− 0.1a
with a sparser mesh in the rest of the structure (up to 3 times stretching along x-coordinate).
In 3D again 1a-wide buffer layers along y and z-direction are covered by PMLs on 1/3,
the squeezing function is x/(1 − x). No air buffer is used along x-direction, just PMLs
comprising 3 grid cells. 3D Q-factor computations are done on a 48 Gb station with the
maximum execution time approaching 2 hours per single run. Correct averaging of refractive
index at boundaries is an important issue in 3D simulations, where the fine resolution as in
the 2D case cannot be achieved. It is important to note that as p → 1 a unit Yee cell between
two nanobeams might contain two boundaries and then the averaging should be done taking
into account both frontiers simultaneously.

Moving nanobeams closer to each other leads to stronger coupling and pronounced increase
of the eigenwavelength difference between the doublet of supermodes, see Fig. 10a. At p = a
the system is changed abruptly as the gap between the two nanobeams disappears, so the
structure consists now of a single high-dielectric bar with two parallel rows of holes in it. That
explains a characteristic peak in the wavelength dependence of the mode eigenfrequency
plotted in Fig. 10a. Mode 1 (even) has higher wavelength than mode 2 (odd) for the whole
range of separations p as can be easily seen from a simple perturbation theory [41]. When
the gap between nanobeams is closed and the y-dimension is further reduced, the effective
refractive index of the system and hence the eigenwavelengths are also decreased [42].
Remarkably, when varying the separation no significant variation in the Q-factor is seen.
The Q-factor value is close to 106 for both even and odd modes, see Fig. 10a.

Now we analyze the effect of longitudinal shift s. In Fig. 10b the wavelengths and Q-factors
of the fundamental eigenmodes vs. shift s for separations p = 1.2a and p = 1.5a are plotted.
As the shift grows from zero, mode detuning is reduced and, independently on separation
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p, the modes become degenerate at around s ≃ 0.4a. It is different with resonators with
unmodified lattice constant [43], where the degeneracy shift was exactly 0.5a independently
on the rod radii variation. Thus, this is primarily variation of the lattice constant that is
responsible for the specific value of the degeneracy shift. Note that 0.4a ≃ 0.5a6, i.e. the shift
at the degeneracy point is approximately equal to a half of the average lattice constant in the
cavity region.

In Fig. 11b for s = 0.4a we plot another picture at the degeneracy point compared to Fig. 7b
with the magnetic field nodes in one nanobeam opposing field lobes in another. These
degenerate modes can be schematically sketched with diagrams in Fig. 11b. Standing wave
profiles with slow spatial decay from the center of the cavity towards the periphery allow
neglecting low-intensity outer regions and then central parts of the patterns are identical
upon reflection, making the occurrence of the degeneracy point (geometrically, the central
parts of the defect regions for two modes also satisfy reflection symmetry if chirped hole
diameters approximated to be the same in the middle). Had mode profiles less gradual
changes in the succession of field minima and maxima along the nanobeams (as shown by
bold circles and squares in the diagrams), the formation of the degeneracy would be hardly
possible.

For the shifts larger than s = 0.4a the mode detuning is increased, reaching a maximum at
around s ≃ 0.8a where eigenwavelength difference approaches the same value as at s = 0.
The revival of coupling at s ≃ 0.8a is again due to the gradually chirped nanobeam design
and field profiles extended along the nanobeams. Thus mode detuning depends on the
shift almost periodically, and the cavity modes 1 and 2 are adiabatically transformed as the
parameter s is varied from 0 to a, see Fig. 11d, where it is shown that modes 1 and 2 exchange
their parity going from s = 0 to s = 0.8. Most important, the Q-factor values remain of the
same order of magnitude as for a single cavity.

In Fig. 12 we compare the eigenmodes wavelength dependencies on separation p for three
longitudinal shifts s = 0.2a, 0.4a, 0.6a. The upper panel shows the reduced spectral detuning
of the modes for the intermediate shift s = 0.2a. The plot in Fig. 12b shows that for
non-overlapping nanobeams the modes are almost exactly degenerate at s = 0.4a for any
transverse separation p. After the degeneracy point, at s = 0.6a modes 1 and 2 swap their
wavelengths.

By comparing Fig. 8 against Figs. 10 and 12 we see that 2D and 3D simulations give
essentially similar dependencies for λ and Q on the longitudinal shift s and transversal
separation p of the cavities, indicating the possibility to successfully design coupled
nanobeam cavity systems in 2D. This is because the physics of side-coupling of dielectric
nanobeam cavities is relatively simpler than, for example, the coupling of metallic split-ring
resonators where essentially the three-dimensional interplay of magnetic and electric
excitations is important.

4.2. Three coupled nanobeams

In multiple side-coupled nanobeam cavities modes can also be tuned by longitudinal shift.
Degeneration of modes in structures containing many elements amounts to the absence
of parasitic coupling between the neighboring units. Instead of increasing the distance
between optical components usually employed to minimize the cross-talk, the longitudinal
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shift can be proposed to create a dense photonic integrated circuit. Moreover, by taking
large enough transversal separation the degeneracy wavelength of coupled nanobeams (up
to three resonators in our tests) can be tuned to a single nanobeam resonance wavelength.
This potentially allows adjacent waveguiding components, all together, and each separately,
to operate at the same wavelength. For example, a compact single-wavelength switch matrix
can be created on the basis of a nanobeam-switcher with nonlinearity [20]. Another field
of application is building an array of nanobeam cavities to form a quantum optical network
where many identical resonators should be placed closely one to another on a chip [44].
Additionally, by controlling the mode coupling it becomes possible to tailor the optical
field across an array of multiple nanocavities for applications in particle trapping [27] and
optomechanical interactions [18, 19].

4.2.1. Weak coupling regime

We did 2D simulations (letting the nanocavities be infinitely high) to catch basic features of
the mode tunability. As usually, ∆x = ∆y ≃ 0.004a, 1a-wide buffer layers along y-direction
are squeezed with the x/(1 − x) function covered by PMLs on 1/2. No air buffer is used
along x-direction, PMLs comprise 3 grid cells. For three side-coupled nanobeam cavities their
relative alignment can be characterized by separations p2, p3 and longitudinal shifts s2, s3 of
the second and third cavities. As an example we consider equally spaced (p2 = p3 = p)
nanobeam cavities, only the middle one being shifted: s2 = s, s3 = 0. Dependence of the
modes wavelength detuning (relative to a single cavity) on shift s is given in Fig. 13a for
p = 2.3a. We observe behavior similar to the case of two nanobeams. Specifically, all three
modes become degenerate at s ≃ 0.4a; by varying p we can control the wavelength of the
degenerate modes, and it coincides with the wavelength of a single cavity, Fig. 13a. Mode
profiles for the non-shifted system (s = 0) are shown in Fig. 13b. Note that mode 3 is
localized at the outer cavities, so its wavelength is not sensitive to the middle cavity shift as
observed in Fig. 13a. There is nice mechanical analogy with modes of three weakly coupled
pendulums: in mode 1, all three pendulums are swinging in phase; in mode 2, two outward
pendulums move forward while the middle one moves backward; in mode 3, the central
pendulum is at rest and two others are moving oppositely.

At the degeneracy point (s ≃ 0.4a) the eigenmode profiles are primarily localized at
individual cavities, see Fig. 13c. In Fig. 13c the mode profiles at s = 0.41a reveal complete
vanishing of field in neighboring nanobeams whereas for two coupled nanobeams s = 0.4a
shift was more likeable to be called the exact degeneracy shift value. In fact, it is quite
difficult to detect the precise value of the degeneracy shift as it requires extremely fine
steps in s and long simulation times; besides, accuracy of computation is also limited by
the finite-difference description. However, small deviations from the exact degeneracy do
not change field mapping significantly as solutions to Maxwell’s equations are all smooth
functions.

Wavelength detuning is much less pronounced at p = 2.3a than at smaller separation. The
reason to choose the separation p = 2.3a is that coupling between the nanobeams is already
weak and the energy splitting becomes symmetric relative to the initial energy level as follows
from the standard perturbation approach. And the degeneracy wavelength of an array of
nanobeams is the same as the isolated nanobeam eigenwavelength (note, that this is not true
for the case of strong coupling at p = 1.5a).
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Figure 13. Modes in the three side-coupled nanobeam cavities with transversal displacement between the neighboring

nanobeams being equal to 2.3a. The middle nanowire is longitudinally shifted, the other two being kept stationary. (a) Spectral

detuning of the three modes from the single nanobeam cavity wavelength λ = 3.9965a. Right y-axis—the Q-factor of the

three coupled modes (for an isolated nanobeam cavity, Q = 1.5 · 108). Hz profiles for the modes in the three (b) unshifted and

shifted (c) by 0.41a nanobeams. For 2D calculation ∆x = ∆y ≃ 0.004a, 1a-wide y-buffer is x/(1 − x) squeezed with half of
the buffer covered by PMLs, x-PMLs are 3 grid cells thick.

Although we are in the weak coupling regime, the spectral splitting corresponding to
p = 2.3a is about 0.2%, which for telecom wavelength 1.5µm amounts to 3 nm spread in
wavelengths. A comparable shift in the resonance wavelength is induced by inclusion of
the nonlinear material in the nanobeam. This allows cavity operation as a switcher totally
transmitting or suppressing the signal depending on turning on/off the nonlinearity [20].
Thus 0.2% energy difference for multiple nanobeams placed at p = 2.3a on a photonic
integrated chip introduces parasitic coupling hindering the single-wavelength operation.
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Figure 14. Modes in the three side-coupled nanobeam cavities. The middle nanobeam is longitudinally shifted, the other two

being kept stationary. Transverse separation between the neighboring nanobeams is p = 1.2a. (a) λ and Q of the three modes.

(b) Hz profiles for the modes in the three non-shifted nanobeams. (c) Hz profiles of the degenerate modes at s = 0.4a. For

3D simulation 1a-buffer (x/(1 − x) squeezed) along y and z-direction is covered by PMLs on 1/3, x-PMLs are 3 cells thick.

∆x = ∆y = ∆z ≃ 0.09a in the center of the nanobeam, ∆x is stretched 3 times in the mirror part.

If we further suppose the nonlinear core of a nanobeam cavity, e.g. taking into account
the refractive index changing due to nonlinearity, then the degenerate modes in the array
of nonlinear cavities can be also tuned to a single resonator wavelength by p variation. A
single-wavelength operating switching array can be build on the basis of such nanobeam
cavities that will work equally well for applied single- or multiple-channel excitation. For
instance, in the case of the single-cavity nonlinear operation based on 0.03% change in
refractive index, the frequency shift due to presence of neighboring ‘passive’ nanobeams
is estimated to be around a negligible 2 · 10−4%.
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Figure 13. Modes in the three side-coupled nanobeam cavities with transversal displacement between the neighboring

nanobeams being equal to 2.3a. The middle nanowire is longitudinally shifted, the other two being kept stationary. (a) Spectral

detuning of the three modes from the single nanobeam cavity wavelength λ = 3.9965a. Right y-axis—the Q-factor of the

three coupled modes (for an isolated nanobeam cavity, Q = 1.5 · 108). Hz profiles for the modes in the three (b) unshifted and

shifted (c) by 0.41a nanobeams. For 2D calculation ∆x = ∆y ≃ 0.004a, 1a-wide y-buffer is x/(1 − x) squeezed with half of
the buffer covered by PMLs, x-PMLs are 3 grid cells thick.

Although we are in the weak coupling regime, the spectral splitting corresponding to
p = 2.3a is about 0.2%, which for telecom wavelength 1.5µm amounts to 3 nm spread in
wavelengths. A comparable shift in the resonance wavelength is induced by inclusion of
the nonlinear material in the nanobeam. This allows cavity operation as a switcher totally
transmitting or suppressing the signal depending on turning on/off the nonlinearity [20].
Thus 0.2% energy difference for multiple nanobeams placed at p = 2.3a on a photonic
integrated chip introduces parasitic coupling hindering the single-wavelength operation.
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Figure 14. Modes in the three side-coupled nanobeam cavities. The middle nanobeam is longitudinally shifted, the other two

being kept stationary. Transverse separation between the neighboring nanobeams is p = 1.2a. (a) λ and Q of the three modes.

(b) Hz profiles for the modes in the three non-shifted nanobeams. (c) Hz profiles of the degenerate modes at s = 0.4a. For

3D simulation 1a-buffer (x/(1 − x) squeezed) along y and z-direction is covered by PMLs on 1/3, x-PMLs are 3 cells thick.

∆x = ∆y = ∆z ≃ 0.09a in the center of the nanobeam, ∆x is stretched 3 times in the mirror part.

If we further suppose the nonlinear core of a nanobeam cavity, e.g. taking into account
the refractive index changing due to nonlinearity, then the degenerate modes in the array
of nonlinear cavities can be also tuned to a single resonator wavelength by p variation. A
single-wavelength operating switching array can be build on the basis of such nanobeam
cavities that will work equally well for applied single- or multiple-channel excitation. For
instance, in the case of the single-cavity nonlinear operation based on 0.03% change in
refractive index, the frequency shift due to presence of neighboring ‘passive’ nanobeams
is estimated to be around a negligible 2 · 10−4%.
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We have verified that mode degeneracy also occurs in four side-to-side coupled nanobeam

cavities. Thus we expect mode degeneracy happening in multiple side-coupled cavities

when they have staggered longitudinal shifts, such that neighboring nanowires are shifted

longitudinally by s ≃ 0.4a. We also foresee that the Q-factor in a multi-cavity structure

should remain of the same order of magnitude as that of a single nanocavity.

4.2.2. Strong coupling regime

The strong coupling regime is investigated by doing 3D simulations with symmetry planes

enforced through the domain reduction. For three nanobeams dependence of mode detuning

on shift s of the middle nanobeam is given in Fig. 14a for p = 1.2a. Here three modes become

degenerate at s ≃ 0.4a with wavelength λ ≃ 3.235a bigger than the single 3D nanobeam

eigenwavelength 3.21a. 3D Q-factors for three coupled cavities are found to remain of the

same order as the longitudinal shift is varied, see Fig. 14a. Mode profiles for the non-shifted

system (s = 0) are shown in Fig. 14b. When symmetry planes are enforced the eigenmode

profiles at the degeneracy point (s ≃ 0.4a) look as in Fig. 14c.

In general, in the degeneracy point we presented the results of our numerical calculations

based on the direct solution of Maxwell’s equations and without taking linear combinations

with data obtained. Our calculations for systems with two and three nanobeams gave

two variants of field maps at the degeneracy point: 180◦ rotational (2 resonators) or

reflection (3 resonators) symmetrical pictures with mode profiles exhibiting field localization

in individual resonators. Simulations with enforced PEC/PMC perfect conducting planes for

the three nanobeams give degenerate modes strictly reflection-symmetrical. However, we can

guess that these pictures do not help in understanding physical reality better than do profiles

with field localization in individual nanobeams implying complete vanishing of interaction

between the cavities. Therefore, the characteristic degeneracy profile with field extinction in

one of the cavities that is clearly predominant in all 2D and 3D simulations for all range of

separations should be more expectable in the experiments than other linear combinations of

the degenerate mode profiles.

5. Conclusions

We have suggested and showed numerically that a longitudinal shift in nanobeam cavities

significantly alters coupling efficiency between multiple closely packed resonators. Whereas

the concept of the longitudinal offset between cavities was previously developed for

dielectric rod arrays at microwave frequencies [43] and micro-scale ring resonators at optical

wavelengths [32], we have demonstrated here new possibilities for light control at nanoscale.

Frequency detuning of coupled modes depends nontrivially on the longitudinal shift of the

cavities, in particular, the modes become degenerate for a certain shift, a feature impossible in

non-shifted resonators. At this shift of about a half the averaged lattice constant in the defect

region, the magnetic field nodes in one nanobeam oppose the field lobes in the other. The

degeneracy occurs for a broad range of separations between two or multiple side-coupled

cavities. The quality factor of coupled nanobeam cavities stays close to that of a single cavity,

indicating good practical prospects for such structures.
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The strong coupling regime is investigated by doing 3D simulations with symmetry planes
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eigenwavelength 3.21a. 3D Q-factors for three coupled cavities are found to remain of the

same order as the longitudinal shift is varied, see Fig. 14a. Mode profiles for the non-shifted
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the degenerate mode profiles.

5. Conclusions

We have suggested and showed numerically that a longitudinal shift in nanobeam cavities
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the concept of the longitudinal offset between cavities was previously developed for

dielectric rod arrays at microwave frequencies [43] and micro-scale ring resonators at optical

wavelengths [32], we have demonstrated here new possibilities for light control at nanoscale.

Frequency detuning of coupled modes depends nontrivially on the longitudinal shift of the

cavities, in particular, the modes become degenerate for a certain shift, a feature impossible in

non-shifted resonators. At this shift of about a half the averaged lattice constant in the defect

region, the magnetic field nodes in one nanobeam oppose the field lobes in the other. The

degeneracy occurs for a broad range of separations between two or multiple side-coupled

cavities. The quality factor of coupled nanobeam cavities stays close to that of a single cavity,

indicating good practical prospects for such structures.
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1. Introduction

Birefringence is an important optical effect of materials that having different refractive indices
for different polarizations of light. Birefringence and related optical effects play an important
role in quantum and nonlinear processes and also have been widely used in modern optical
devices, such as optical sensors, light modulators, liquid crystal displays, crystal filters,
medical diagnostics, and wave plates (WPs). Among these, WP is one of the most essential
elements in many optical modules and equipment, and will certainly have many applications
in future photonic integrated circuits (PICs).

According to the difference of generation mechanism, birefringence could be divided into two
types: natural birefringence and artificial birefringence, which are microscopic and macro‐
scopic anisotropy induced, respectively [1]. Generally, artificial birefringence is larger than
natural birefringence and has designable characteristics. Many artificial structures with high
birefringence have been proposed and studied recently. Table 1 gives the comparison of
birefringence, dispersion and loss of different structures containing multilayer film (MF) [2],
nanowires (NW) [3], metamaterials (MM) [4], plasmonic nanoslits array (PNA) [1], multi-
slotted dielectric waveguides (MSDW) [5], bulk photonic crystal (PhC) [6-8], two dimensional
(2D) PhC waveguide (PhCW) [9, 10], and periodic dielectric waveguide (PDW) which also
named as one dimensional (1D) PhCW [11, 12]. Among these artificial materials, the PhC
related structures are more important not only for the excellent birefringence properties but
also the great importance of PhC in PICs.

PhCs are structures with periodic arrangement of dielectrics or metals, which provide the
ability of molding the flow of light in it [13-15]. Due to the unique guiding properties of PhC
structure, such as the photonic band gap guidance, it is foreseen as one of the key artificial
materials for next generation PICs. This chapter gives a thorough review of the birefringence
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role in quantum and nonlinear processes and also have been widely used in modern optical
devices, such as optical sensors, light modulators, liquid crystal displays, crystal filters,
medical diagnostics, and wave plates (WPs). Among these, WP is one of the most essential
elements in many optical modules and equipment, and will certainly have many applications
in future photonic integrated circuits (PICs).

According to the difference of generation mechanism, birefringence could be divided into two
types: natural birefringence and artificial birefringence, which are microscopic and macro‐
scopic anisotropy induced, respectively [1]. Generally, artificial birefringence is larger than
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slotted dielectric waveguides (MSDW) [5], bulk photonic crystal (PhC) [6-8], two dimensional
(2D) PhC waveguide (PhCW) [9, 10], and periodic dielectric waveguide (PDW) which also
named as one dimensional (1D) PhCW [11, 12]. Among these artificial materials, the PhC
related structures are more important not only for the excellent birefringence properties but
also the great importance of PhC in PICs.

PhCs are structures with periodic arrangement of dielectrics or metals, which provide the
ability of molding the flow of light in it [13-15]. Due to the unique guiding properties of PhC
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materials for next generation PICs. This chapter gives a thorough review of the birefringence

© 2013 Zhang and Zhao; licensee InTech. This is an open access article distributed under the terms of the
Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

© 2013 Zhang and Zhao; licensee InTech. This is a paper distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



properties of PhC structures containing 1D PhCW (PDW), 2D PhCW and bulk PhC. The
applications of the giant birefringence of PhC structures in both low-order WPs and high-order
WPs are studied in details. This chapter is organized as follow. In Sec. 2, an overview of
numerical algorithms used in this chapter is given. In Sec. 3, the birefringence properties are
studied taking 2D PhCWs, 2D bulk PhCs, and 1D PhCWs as examples. High performance WPs
are designed based on different PhC structures in Sec. 4. Discussions and conclusions are given
in Sec. 5.

MF NW MM PNA MSDW PhCW Bulk PhC PDW

Δn ~0.3 ~0.8 ~3.2 2.7 1.0 0.111 0.938 1.5

Achromatic - - No No - Yes Yes Yes

Loss Low - High High Low Low High Low

* This table is from reference [12]

Table 1. Birefringence of different artificial structures

2. Numerical algorithms

Many numerical algorithms which solve the partial differential equations can be used in
computational photonics. For PhCs, two categories of problems are most important [15]: one
is frequency-domain eigenvalue problem which refers to find the band structure ω(k) and
associated electromagnetic fields; the other one is time-domain calculation which is related to
obtain the fields E(x, t) and H(x, t) propagating in time. For the frequency-domain eigenpro‐
blems, plane wave expansion method (PWE) is the most popular method to get the dispersion
relation (band structure) of specific PhC geometries [15, 16]. Correspondingly, Finite-differ‐
ence time-domain method (FDTD) [17, 18] is the most important time-domain simulation
approach for PhCs to get the propagating fields and transmission/reflection spectrum.

2.1. Plane Wave Expansion method (PWE)

PWE is used to solve the Maxwell equations by formulating an eigenvalue problem. The master
equation for PhCs can be deduced from Maxwell equations as follow:
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where ω is angular frequency, c is the vacuum speed of light, r is the position vector, and H(r)
is the macroscopic magnetic field. Θ̂ is a linear Hermitian operator and Θ̂H (r) is written as [15]
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where ε(r) is the relative permittivity of dielectric materials. By using the plane wave basis,
the Bloch eigenmodes and band structures of the perfect periodic structures could be easily
obtained by solving the master equation. However, for the non-periodic or quasi-periodic
structures, such as line defect PhCWs, and the structures without periodically in all dimen‐
sions, the supercell technique must be used by choosing a large computational cell as the
periodic element which helps to get the isolated electromagnetic modes. By using the supercell
method, both point and line defect modes of PhCs can be solved. Taking a PhCW as example,
the structure is square lattice dielectric rods in air. The radius of the dielectric rods is r=0.2a,
where a is the lattice constant, and the permittivity is ε=8.9. The line defect is introduced by
removing one row of dielectric rods in the ΓX direction. Fig. 1 gives the dispersion curves
calculated by supercell method. The square lattice PhCW has single transverse-magnetic (TM)
guided mode in the normalized frequency range of 0.32-0.446 a/λ, which locates in the photonic
band gap (PBG) range of TM polarization mode. This reveals that the PhCW has PBG guided
TM mode but no guided mode for TE polarization.

Figure 1. Dispersion curves of line defect square lattice PhCW. The inset is the 1×9a supercell used in PWE calculations.
The parameters of the PhCW are chosen as follow: permittivity of high and low index materials are εH=8.9 and εL=1,
respectively and the radius of dielectric rods is r=0.2a.

The PWE is suitable to calculate the band structure of PhC, but not conventional to get the
transmission spectra of PhC. When the loss and transmitting properties of PhC are required,
FDTD method is often used for the advantages of that broadband response can be accurately
obtained in only one simulation run.
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where ε(r) is the relative permittivity of dielectric materials. By using the plane wave basis,
the Bloch eigenmodes and band structures of the perfect periodic structures could be easily
obtained by solving the master equation. However, for the non-periodic or quasi-periodic
structures, such as line defect PhCWs, and the structures without periodically in all dimen‐
sions, the supercell technique must be used by choosing a large computational cell as the
periodic element which helps to get the isolated electromagnetic modes. By using the supercell
method, both point and line defect modes of PhCs can be solved. Taking a PhCW as example,
the structure is square lattice dielectric rods in air. The radius of the dielectric rods is r=0.2a,
where a is the lattice constant, and the permittivity is ε=8.9. The line defect is introduced by
removing one row of dielectric rods in the ΓX direction. Fig. 1 gives the dispersion curves
calculated by supercell method. The square lattice PhCW has single transverse-magnetic (TM)
guided mode in the normalized frequency range of 0.32-0.446 a/λ, which locates in the photonic
band gap (PBG) range of TM polarization mode. This reveals that the PhCW has PBG guided
TM mode but no guided mode for TE polarization.

Figure 1. Dispersion curves of line defect square lattice PhCW. The inset is the 1×9a supercell used in PWE calculations.
The parameters of the PhCW are chosen as follow: permittivity of high and low index materials are εH=8.9 and εL=1,
respectively and the radius of dielectric rods is r=0.2a.

The PWE is suitable to calculate the band structure of PhC, but not conventional to get the
transmission spectra of PhC. When the loss and transmitting properties of PhC are required,
FDTD method is often used for the advantages of that broadband response can be accurately
obtained in only one simulation run.
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2.2. Finite-Difference Time-Domain method (FDTD)

The FDTD method is one of the grid-based differential time-domain numerical modeling
methods. The time-derivative parts of Maxwell equations in partial differential form are written:
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= -Ñ´ -
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= -Ñ´ -
¶

B E J

D H J
(3)

where B is the electric displacement, D is the magnetic induction fields, J is the electric-charge
current density, and JB is an imaginary magnetic-charge current density for calculation
convenience. By central-difference approximations, e.g. standard Yee grid [19], the electric and
magnetic fields governed by Eq. (3) are discretized both in time and space. By properly
selecting of initial excitation current J or JB, the resulting finite-difference equations are solved
in a leapfrog manner: the electric field vector components in a volume of space are solved at
a given instant of time; then the magnetic field vector components in the same spatial volume
are solved at the next instant of time; and the process is repeated over and over again until the
desired transient or steady-state electromagnetic field behavior is fully evolved.

Although a lot of FDTD solver packages are available in literature, we use the free software
MEEP [18] which is developed by MIT’s researchers in this chapter. The transmission spectrum
of PhC structures can be easily obtained by the FDTD solver. Still take the square lattice PhCW
studied in Fig. 1 as example, the transmission spectrum for the TM polarization of the PhCW
with length of 27a is shown in Fig. 2. From the figure, the PhCW is low loss in the frequency
range of 0.32-0.446 a/λ which is consistent with the simulation results taken by PWE method.

Figure 2. Transmission spectrum for the TM mode of the line defect square lattice PhCW. The inset is the PhCW struc‐
ture used in FDTD simulation and the parameters of PhCW are as same as that in Fig. 1.
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2.3. Spatial Fourier Transform method (SFT)

Except for the low loss of the PhC structures, large birefringence is essential for realizing the
ultracompact WPs. The frequency-dependent effective mode indices for both TE and TM
modes of PhC structure should be calculated to obtain the birefringence of the structures. When
the PhC structure has single mode in the operating frequency range, such as PBG guided TM
mode, in the PhCW shown in Fig. 1, the mode indices can be obtained from the dispersion
curves calculated by PWE method. But, for the PhC structures with quasi-periodic and non-
periodic structures or some special PhCW without PBG guided modes but total internal
reflection (TIR) modes, the dispersion curves of the guided modes are difficultly obtained by
the conventional PWE method. In this chapter, the SFT method [20] is used when the birefrin‐
gence of this category of structure needs to be calculated.

The SFT method is based on the spatial Fourier transform spectrum of the electromagnetic
field distributions of the waveguide mode along the propagating direction. Assuming uω(x,
y0) is the field distribution of waveguide mode at the given plane y=y0 along the propagating
direction x, where u is E or H, ω is the angular frequency of the mode, x is the propagation
direction, and y is the direction perpendicular to x in the plane. The field can be expanded by
the plane wave basis as uω(x, y0) = ∑nun,ωexp(jβn,ωx), where un,ω and βn,ω are the field component
and the propagation constant of the nth mode at frequency ω, respectively. The propagation
constant βn,ω can be extracted from the peaks of the SFT spectrum of uω(x, y0). For the Bloch
mode of the periodic structure, the wavevector β still can be obtained from the SFT analysis
for that the peaks of SFT spectrum always located at β+m(2π/a), where m is an integer [20].

To verify the SFT method, the field distribution of TM mode in the PhCW studied in Fig. 1 and
Fig.2 are calculated by FDTD method and the snapshot of Ez fields at the frequency of 0.40
a/λ is shown in Fig. 3 (a). The peak of the SFT spectrum (as shown in Fig. 3 (b)) is located at
0.292 a/2π which is as same as the Bloch wave vector obtained by PWE methods. The dispersion
diagrams obtained by PWE and SFT method in frequency range of 0.34-0.42 a/λ are almost
same as shown in Fig. 3 (c), which shows the validity of the SFT technique in the mode
calculation for the PhCW structures.

3. Birefringence of PhC structures

Birefringence is related to the effective index difference of two orthogonal polarization modes
and can be expressed as Δn=np-ns, where p and s are TE (TM) and TM (TE), respectively, in
this chapter. It is the basis on which the ultracompact WP is realized. Fortunately, most of the
PhC structures have large birefringence for the large index difference of the composed
materials of PhCs. Researching results show that the 2D PhCW having birefringence of ~0.07
and ~0.1 for square and triangular lattice air holes in high index materials, respectively [10].
For the 2D bulk PhCs, experimental results reveal that the birefringence is as high as 0.2 [8],
and the theoretical analysis results are higher. The 1D PhCWs give giant birefringence which
is higher than 1 [12]. In this section, the birefringence properties of different PhC structures,
containing 2D PhCW, 2D bulk PhC and 1D PhCW, will be reviewed in details.
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2.2. Finite-Difference Time-Domain method (FDTD)
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Figure 2. Transmission spectrum for the TM mode of the line defect square lattice PhCW. The inset is the PhCW struc‐
ture used in FDTD simulation and the parameters of PhCW are as same as that in Fig. 1.
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2.3. Spatial Fourier Transform method (SFT)
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reflection (TIR) modes, the dispersion curves of the guided modes are difficultly obtained by
the conventional PWE method. In this chapter, the SFT method [20] is used when the birefrin‐
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The SFT method is based on the spatial Fourier transform spectrum of the electromagnetic
field distributions of the waveguide mode along the propagating direction. Assuming uω(x,
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direction x, where u is E or H, ω is the angular frequency of the mode, x is the propagation
direction, and y is the direction perpendicular to x in the plane. The field can be expanded by
the plane wave basis as uω(x, y0) = ∑nun,ωexp(jβn,ωx), where un,ω and βn,ω are the field component
and the propagation constant of the nth mode at frequency ω, respectively. The propagation
constant βn,ω can be extracted from the peaks of the SFT spectrum of uω(x, y0). For the Bloch
mode of the periodic structure, the wavevector β still can be obtained from the SFT analysis
for that the peaks of SFT spectrum always located at β+m(2π/a), where m is an integer [20].

To verify the SFT method, the field distribution of TM mode in the PhCW studied in Fig. 1 and
Fig.2 are calculated by FDTD method and the snapshot of Ez fields at the frequency of 0.40
a/λ is shown in Fig. 3 (a). The peak of the SFT spectrum (as shown in Fig. 3 (b)) is located at
0.292 a/2π which is as same as the Bloch wave vector obtained by PWE methods. The dispersion
diagrams obtained by PWE and SFT method in frequency range of 0.34-0.42 a/λ are almost
same as shown in Fig. 3 (c), which shows the validity of the SFT technique in the mode
calculation for the PhCW structures.

3. Birefringence of PhC structures

Birefringence is related to the effective index difference of two orthogonal polarization modes
and can be expressed as Δn=np-ns, where p and s are TE (TM) and TM (TE), respectively, in
this chapter. It is the basis on which the ultracompact WP is realized. Fortunately, most of the
PhC structures have large birefringence for the large index difference of the composed
materials of PhCs. Researching results show that the 2D PhCW having birefringence of ~0.07
and ~0.1 for square and triangular lattice air holes in high index materials, respectively [10].
For the 2D bulk PhCs, experimental results reveal that the birefringence is as high as 0.2 [8],
and the theoretical analysis results are higher. The 1D PhCWs give giant birefringence which
is higher than 1 [12]. In this section, the birefringence properties of different PhC structures,
containing 2D PhCW, 2D bulk PhC and 1D PhCW, will be reviewed in details.
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3.1. Birefringence of 2D PhCW

For birefringence related applications, both TE and TM polarized light must propagate with
low loss in the 2D PhCW which is formed by introducing of line defect in the perfect bulk PhC
at a given direction. Different guided mechanisms could be used to confine light in the 2D
PhCWs [21]. The widely studied mechanism in the literature is the PBG guiding as that shown
in Fig. 1. It is difficult to realize 2D PhCW supporting both TE and TM PBG guided modes,
only if carefully choosing the materials and geometry structures. Studied results show that the
2D PhCW can also guide the light as that in the conventional dielectric slab waveguide by total
internal refection (TIR) guiding mechanism. Compound of PBG and TIR effects could also
make low loss guiding for both TE and TM mode in the 2D PhCW [21-23].

3.1.1. Birefringence of 2D PhCW with PBG guided modes

The PhCW with hybrid triangular and honeycomb lattices can support both TE and TM modes
[24, 25]. The structure is shown in Fig. 4 and has been optimized as follow: The permittivity
of the background high index material is 11.56, and the radii of the large and small air holes
are r1=0.27a and r2=0.15a, respectively. The waveguide is formed by a line defect of elliptical air
holes with major and minor axes of da=0.4a and db=0.2a, respectively. Two lines of small air holes
with radius of r2 are added to get single TE and TM propagation.

Figure 3. The snapshot of Ez field distribution for the TM guided mode of the square lattice PhCW at frequency of 0.40
a/λ; (b) SFT spectrum of the Ez field shown in (a); (c) Dispersion curves (also shown in Fig. 1) of the TM polarization, the
solid lines are obtained by PWE method and the stars represent the results calculated by the SFT method.
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Figure 4. The structure of PhCW with hybrid triangular and honeycomb lattices, which supports PBG guided TE and
TM modes. [24, 25]

The band structure of PhCW shown in Fig. 4 is calculated by PWE method with 1×4 3a
supercell as shown in Fig.5 (a) [24]. The single TE and TM mode region is 0.558-0.569 a/λ, which
located in the absolute band gap of the bulk PhC. The effective indices of the TE and TM modes
are obtained from the dispersion curves and the birefringence Δn in the single mode region
are calculated and shown in Fig. 5 (b). The birefringence can be larger than 0.5, which is much
higher than the natural birefringence in the birefrigenct crystals. However, the structure has
large dispersion for that the birefringence varies from 0.2 to 0.56 in the operating frequency
region.

Figure 5. (a) Dispersion curves of PhCW shown in Fig. 4. The inset is the supercell used in PWE calculations. (b) Birefrin‐
gence (Δn) of PhCW in the single mode region.
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3.1. Birefringence of 2D PhCW

For birefringence related applications, both TE and TM polarized light must propagate with
low loss in the 2D PhCW which is formed by introducing of line defect in the perfect bulk PhC
at a given direction. Different guided mechanisms could be used to confine light in the 2D
PhCWs [21]. The widely studied mechanism in the literature is the PBG guiding as that shown
in Fig. 1. It is difficult to realize 2D PhCW supporting both TE and TM PBG guided modes,
only if carefully choosing the materials and geometry structures. Studied results show that the
2D PhCW can also guide the light as that in the conventional dielectric slab waveguide by total
internal refection (TIR) guiding mechanism. Compound of PBG and TIR effects could also
make low loss guiding for both TE and TM mode in the 2D PhCW [21-23].

3.1.1. Birefringence of 2D PhCW with PBG guided modes

The PhCW with hybrid triangular and honeycomb lattices can support both TE and TM modes
[24, 25]. The structure is shown in Fig. 4 and has been optimized as follow: The permittivity
of the background high index material is 11.56, and the radii of the large and small air holes
are r1=0.27a and r2=0.15a, respectively. The waveguide is formed by a line defect of elliptical air
holes with major and minor axes of da=0.4a and db=0.2a, respectively. Two lines of small air holes
with radius of r2 are added to get single TE and TM propagation.

Figure 3. The snapshot of Ez field distribution for the TM guided mode of the square lattice PhCW at frequency of 0.40
a/λ; (b) SFT spectrum of the Ez field shown in (a); (c) Dispersion curves (also shown in Fig. 1) of the TM polarization, the
solid lines are obtained by PWE method and the stars represent the results calculated by the SFT method.
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Figure 4. The structure of PhCW with hybrid triangular and honeycomb lattices, which supports PBG guided TE and
TM modes. [24, 25]

The band structure of PhCW shown in Fig. 4 is calculated by PWE method with 1×4 3a
supercell as shown in Fig.5 (a) [24]. The single TE and TM mode region is 0.558-0.569 a/λ, which
located in the absolute band gap of the bulk PhC. The effective indices of the TE and TM modes
are obtained from the dispersion curves and the birefringence Δn in the single mode region
are calculated and shown in Fig. 5 (b). The birefringence can be larger than 0.5, which is much
higher than the natural birefringence in the birefrigenct crystals. However, the structure has
large dispersion for that the birefringence varies from 0.2 to 0.56 in the operating frequency
region.

Figure 5. (a) Dispersion curves of PhCW shown in Fig. 4. The inset is the supercell used in PWE calculations. (b) Birefrin‐
gence (Δn) of PhCW in the single mode region.
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3.1.2. Birefringence of 2D PhCW with hybrid PBG and TIR guided modes

The PhCWs with both square and triangular lattice air holes in high index materials can
support low loss transmitting of TE and TM polarizations with the help of TIR guided
mechanism [21-23]. Taking a square lattice PhCW as example, the waveguide is formed by
introducing of a line defect in ΓX direction in the perfect PhC which has square lattice air holes
in high index material with permittivity of 12.96. Calculated dispersion curves of the PhCW
are shown in Fig. 6 for both TE and TM polarizations. The PhCW has single TE guided mode
in the normalized frequency range of 0.248-0.272a/λ, which locates in the PBG region of TE
polarization mode. This reveals that the PhCW has PBG guided TE mode. However, there are
no PBG guided modes in this frequency range for TM polarization as shown in Fig. 6 (b). To
fully understand the guiding properties of the PhCW, the transmission spectra for both TE
and TM polarization of the PhCW with length of 21a are calculated by FDTD method and
shown in Fig. 7 (a). New information could be obtained from the figure: 1) Wider frequency
range for low-loss guiding TE mode is achieved which reveals that the guiding mechanisms
of the TE mode are not only PBG but also TIR; 2) Although there is no band-gap for TM mode
in the frequency range of 0.24-0.30 a/λ, the TM polarization also can propagate with low-loss
in this frequency range by the TIR mechanism. From the insets of Fig. 7 (a), EM fields are
confined well in the line defect waveguide region for both TE and TM polarizations. For the
effective indices of TM guided modes can’t be obtained directly from the dispersion curves
calculated by the PWE method, the SFT method is used to study the birefringence properties
of the PhCW with hybrid PBG and TIR guided modes. By launching the continuous wave (CW)
source with single frequency in the low loss frequency range of 0.255-0.268 a/λ, the EM field
distributions for the guided mode of both TE and TM polarization are calculated by FDTD
method. The propagation constants of guided modes, which are used to the calculating of
effective indices, are found by seeking the peaks of the SFT spectra of the EM fields. Fig. 7
(b) shows the birefringence property of the 2D square lattice PhCW with hybrid PBG and TIR
guided modes. The birefringence of the 2D square lattice PhCW is much lower than that shown
in Fig. 5 (b), however, the PhCW has advantages of easily design and high tolerance of
distortion in fabrication. Except for the square lattice structure, the PhCW with triangular
lattice air holes in high index material is also can be used as birefringent waveguide for the
WP applications. Previously studied results shows that the birefringence in the triangular
lattice PhCW is a little higher than that in the square lattice structures [10].

3.2. Birefringence of 2D bulk PhCs

Actually, the typical bulk PhC itself is strongly anisotropic artificial material which provides
large birefringence. Different from the PhCW, the PhC as birefringent media must work
outside the PBG for that the PhC are highly reflection material for the EM wave located in the
PBG frequency range. The birefringence of bulk PhC is measured for the hexagonal lattice
structure in microwave band and the experimental measurement birefringence is below 0.20
[8]. By increasing the index difference of the materials, the birefringence of the bulk PhC could
be much stronger. Taking a bulk 2D structure as example, the PhC is composed by parallel
cylinder dielectric rods in air, in which the dielectric rods have radius of r=0.37a and permit‐
tivity of ε=8.9 [26]. Choosing frequency range of 0.1-0.2 a/λ as the operating band which is
below the first forbidden band (0.2495-0.2778 a/λ) of the TM polarization, the EM fields
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propagate in the bulk PhC are shown in Fig. 8 (a). By using the SFT method, the birefringence
of the studied bulk PhC are calculated and shown in Fig. 8 (b). The largest birefringence of the
bulk PhC is about 0.8, which is much larger than that of the PhCW for the transmission path
is almost homogeneous in the line defect of the PhCW but periodic in the bulk PhC.

For the birefringence related applications, the bulk PhC is a good candidate for the large
birefringence in it, however, there are still some disadvantages [27]: 1) Lacking of effective
light confining in the propagating plane makes beam divergence, as shown in Fig. 8 (a), which
will spread the EM fields into the adjacent devices and cause crosstalk if there are many
components packaged compactly, such as in PIC, to fulfill complicated functions. 2) The
attenuation of light in the bulk PhC is high for the high scattering loss in it. These two problems
should be solved in the practical applications such as WPs.

Figure 6. Dispersion curves of line defect square lattice PhCW. The inset is the 1×9a supercell used in PWE calculations.
The parameters of the PhCW are chosen as follow: permittivity of high and low index materials are 12.96 and 1, re‐
spectively and the radius of air holes is r=0.40a.

Figure 7. (a) Transmission spectra of the line defect square lattice PhCW. The insets are the EM field distributions for
TE (Hz) and TM (Ez) polarization, respectively, at the frequency of 0.263 a/λ. (b) Birefringence (Δn) of the PhCW calcu‐
lated by SFT method. Structure used in FDTD and SFT simulation and the parameters of PhCW are as same as that in
Fig. 6
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3.1.2. Birefringence of 2D PhCW with hybrid PBG and TIR guided modes

The PhCWs with both square and triangular lattice air holes in high index materials can
support low loss transmitting of TE and TM polarizations with the help of TIR guided
mechanism [21-23]. Taking a square lattice PhCW as example, the waveguide is formed by
introducing of a line defect in ΓX direction in the perfect PhC which has square lattice air holes
in high index material with permittivity of 12.96. Calculated dispersion curves of the PhCW
are shown in Fig. 6 for both TE and TM polarizations. The PhCW has single TE guided mode
in the normalized frequency range of 0.248-0.272a/λ, which locates in the PBG region of TE
polarization mode. This reveals that the PhCW has PBG guided TE mode. However, there are
no PBG guided modes in this frequency range for TM polarization as shown in Fig. 6 (b). To
fully understand the guiding properties of the PhCW, the transmission spectra for both TE
and TM polarization of the PhCW with length of 21a are calculated by FDTD method and
shown in Fig. 7 (a). New information could be obtained from the figure: 1) Wider frequency
range for low-loss guiding TE mode is achieved which reveals that the guiding mechanisms
of the TE mode are not only PBG but also TIR; 2) Although there is no band-gap for TM mode
in the frequency range of 0.24-0.30 a/λ, the TM polarization also can propagate with low-loss
in this frequency range by the TIR mechanism. From the insets of Fig. 7 (a), EM fields are
confined well in the line defect waveguide region for both TE and TM polarizations. For the
effective indices of TM guided modes can’t be obtained directly from the dispersion curves
calculated by the PWE method, the SFT method is used to study the birefringence properties
of the PhCW with hybrid PBG and TIR guided modes. By launching the continuous wave (CW)
source with single frequency in the low loss frequency range of 0.255-0.268 a/λ, the EM field
distributions for the guided mode of both TE and TM polarization are calculated by FDTD
method. The propagation constants of guided modes, which are used to the calculating of
effective indices, are found by seeking the peaks of the SFT spectra of the EM fields. Fig. 7
(b) shows the birefringence property of the 2D square lattice PhCW with hybrid PBG and TIR
guided modes. The birefringence of the 2D square lattice PhCW is much lower than that shown
in Fig. 5 (b), however, the PhCW has advantages of easily design and high tolerance of
distortion in fabrication. Except for the square lattice structure, the PhCW with triangular
lattice air holes in high index material is also can be used as birefringent waveguide for the
WP applications. Previously studied results shows that the birefringence in the triangular
lattice PhCW is a little higher than that in the square lattice structures [10].

3.2. Birefringence of 2D bulk PhCs

Actually, the typical bulk PhC itself is strongly anisotropic artificial material which provides
large birefringence. Different from the PhCW, the PhC as birefringent media must work
outside the PBG for that the PhC are highly reflection material for the EM wave located in the
PBG frequency range. The birefringence of bulk PhC is measured for the hexagonal lattice
structure in microwave band and the experimental measurement birefringence is below 0.20
[8]. By increasing the index difference of the materials, the birefringence of the bulk PhC could
be much stronger. Taking a bulk 2D structure as example, the PhC is composed by parallel
cylinder dielectric rods in air, in which the dielectric rods have radius of r=0.37a and permit‐
tivity of ε=8.9 [26]. Choosing frequency range of 0.1-0.2 a/λ as the operating band which is
below the first forbidden band (0.2495-0.2778 a/λ) of the TM polarization, the EM fields
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propagate in the bulk PhC are shown in Fig. 8 (a). By using the SFT method, the birefringence
of the studied bulk PhC are calculated and shown in Fig. 8 (b). The largest birefringence of the
bulk PhC is about 0.8, which is much larger than that of the PhCW for the transmission path
is almost homogeneous in the line defect of the PhCW but periodic in the bulk PhC.

For the birefringence related applications, the bulk PhC is a good candidate for the large
birefringence in it, however, there are still some disadvantages [27]: 1) Lacking of effective
light confining in the propagating plane makes beam divergence, as shown in Fig. 8 (a), which
will spread the EM fields into the adjacent devices and cause crosstalk if there are many
components packaged compactly, such as in PIC, to fulfill complicated functions. 2) The
attenuation of light in the bulk PhC is high for the high scattering loss in it. These two problems
should be solved in the practical applications such as WPs.

Figure 6. Dispersion curves of line defect square lattice PhCW. The inset is the 1×9a supercell used in PWE calculations.
The parameters of the PhCW are chosen as follow: permittivity of high and low index materials are 12.96 and 1, re‐
spectively and the radius of air holes is r=0.40a.

Figure 7. (a) Transmission spectra of the line defect square lattice PhCW. The insets are the EM field distributions for
TE (Hz) and TM (Ez) polarization, respectively, at the frequency of 0.263 a/λ. (b) Birefringence (Δn) of the PhCW calcu‐
lated by SFT method. Structure used in FDTD and SFT simulation and the parameters of PhCW are as same as that in
Fig. 6
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3.3. Birefringence of 1D PhCW

As shown in Fig. 9 (a), the 1D PhCW here refers in particular to the PDW [28-30], also known
as nanopillar periodic waveguide [31-35] or coupled periodic waveguide [36], which has
periodicity only in the light propagating direction. The 1D PhCW has attracted a lot of research
interests for the simpler structure comparing with the 2D PhCW, and can be used in slow light
[37], laser [35], low-loss waveguide [28-30, 38, 39], micro-resonator cavities [40], splitters for
polarization and frequency [41-44], etc. The dispersion curves of the 1D PhCW could be
examined by PWE method as what shown in Fig. 9 (b). There are guided modes under the light
line and only single TE and TM modes are supported by the structure when the frequency is
under 0.2065 a/λ. In the single mode frequency region, the TE and TM guided modes at the
same frequency have different propagation constants which reveal the 1D PhCW is a birefrin‐
gent media [12].

The birefringence properties of the 1D PhCW with cylinder dielectric rods in air are shown in
Fig. 10, and all birefringence values are calculated in the single mode frequency band. The 1D
PhCW has giant birefringence, which is larger than 1.5, when the permittivity of dielectric rods
is 12.96. The higher the permittivity of dielectric rods is, the larger the birefringence is. The
birefringence varies rapidly in the frequency band nearby the upper edge (slow light region)
of the first TM guided mode when the 1D PhCW having relatively small dielectric rods (e.g.
r=0.45a and r=0.50a). The largest birefringence appears at the edge of the slow light band. For
the frequency outside the slow light band, the largest values of birefringence are almost equal
for the 1D PhCW with different size of dielectric rods if the values of permittivity are same.
There are flat sections in which the birefringence varies slowly (dΔn/dω~0) for the radius of 1D
PhCW is be equal or greater than 0.50a, especially for r=0.50a as shown in the zoom-in curves
in Fig. 10 (d). This reveals that the 1D PhCW has broadband achromatic birefringence. For
example, the birefringence is between 1.1505 and 1.1530 in the frequency band of 0.167-0.188a/

Figure 8. (a) EM fields propagate in the bulk PhC for TE (Hz) and TM (Ez) polarization, respectively, at the frequency of
0.10 a/λ. The CW source is excited in the conventional planar waveguide adjacent to the bulk PhC. (b) Birefringence
(Δn) of the PhC calculated by SFT method. The calculated structure is a 2D bulk PhC with square lattice dielectric rods
in air and the permittivity and the radius of dielectric rods are ε=8.9 and r=0.37a, respectively.
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λ when the dielectric rods have permittivity of ε=9.6, and for ε=10.5, the achromatic band is
0.165-0.178 a/λ in which the birefringence is 1.264-1.265 [12].

Other types of 1D PhCW have large birefringence too. Taking the 1D PhCW with square air
holes in dielectric waveguide as example, the birefringence is around 1 when the length of side
of the square is w=0.5a, and the permittivity and width of the dielectric waveguide are ε=12.96
and a, respectively [11]. Generally speaking, the 1D PhCW is better for birefringence related
applications than the 2D PhCWs and bulk PhC for it has simple structure, low-loss and most
important higher birefringence.

Figure 9. (a) Top view of the structures of different type of 1D PhCWs: cylinder and square dielectric rods in air, and
square and cylinder air holes in dielectric waveguide, respectively, from top to bottom. (b) Dispersion curves of 1D
PhCW with dielectric rods in air for both TE and TM polarizations. The inset is the 1×9a supercell used in PWE calcula‐
tion, and the permittivity and the radius of dielectric rods are ε=8.9 and r=0.45a, respectively

Figure 10. Birefringence of 1D PhCW with different parameters of (a) ε=9.6, (b) ε=10.5, and (c) ε=12.96, respectively.
The blue, red, black, green and magenta lines represent the radius of dielectric rod equals 0.45a, 0.50a, 0.55a, 0.60a,
and 0.65a, respectively. (d) Zoon-in picture of birefringence of 1D PhCW with radius of r=0.50a. [12]
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3.3. Birefringence of 1D PhCW

As shown in Fig. 9 (a), the 1D PhCW here refers in particular to the PDW [28-30], also known
as nanopillar periodic waveguide [31-35] or coupled periodic waveguide [36], which has
periodicity only in the light propagating direction. The 1D PhCW has attracted a lot of research
interests for the simpler structure comparing with the 2D PhCW, and can be used in slow light
[37], laser [35], low-loss waveguide [28-30, 38, 39], micro-resonator cavities [40], splitters for
polarization and frequency [41-44], etc. The dispersion curves of the 1D PhCW could be
examined by PWE method as what shown in Fig. 9 (b). There are guided modes under the light
line and only single TE and TM modes are supported by the structure when the frequency is
under 0.2065 a/λ. In the single mode frequency region, the TE and TM guided modes at the
same frequency have different propagation constants which reveal the 1D PhCW is a birefrin‐
gent media [12].

The birefringence properties of the 1D PhCW with cylinder dielectric rods in air are shown in
Fig. 10, and all birefringence values are calculated in the single mode frequency band. The 1D
PhCW has giant birefringence, which is larger than 1.5, when the permittivity of dielectric rods
is 12.96. The higher the permittivity of dielectric rods is, the larger the birefringence is. The
birefringence varies rapidly in the frequency band nearby the upper edge (slow light region)
of the first TM guided mode when the 1D PhCW having relatively small dielectric rods (e.g.
r=0.45a and r=0.50a). The largest birefringence appears at the edge of the slow light band. For
the frequency outside the slow light band, the largest values of birefringence are almost equal
for the 1D PhCW with different size of dielectric rods if the values of permittivity are same.
There are flat sections in which the birefringence varies slowly (dΔn/dω~0) for the radius of 1D
PhCW is be equal or greater than 0.50a, especially for r=0.50a as shown in the zoom-in curves
in Fig. 10 (d). This reveals that the 1D PhCW has broadband achromatic birefringence. For
example, the birefringence is between 1.1505 and 1.1530 in the frequency band of 0.167-0.188a/

Figure 8. (a) EM fields propagate in the bulk PhC for TE (Hz) and TM (Ez) polarization, respectively, at the frequency of
0.10 a/λ. The CW source is excited in the conventional planar waveguide adjacent to the bulk PhC. (b) Birefringence
(Δn) of the PhC calculated by SFT method. The calculated structure is a 2D bulk PhC with square lattice dielectric rods
in air and the permittivity and the radius of dielectric rods are ε=8.9 and r=0.37a, respectively.
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λ when the dielectric rods have permittivity of ε=9.6, and for ε=10.5, the achromatic band is
0.165-0.178 a/λ in which the birefringence is 1.264-1.265 [12].

Other types of 1D PhCW have large birefringence too. Taking the 1D PhCW with square air
holes in dielectric waveguide as example, the birefringence is around 1 when the length of side
of the square is w=0.5a, and the permittivity and width of the dielectric waveguide are ε=12.96
and a, respectively [11]. Generally speaking, the 1D PhCW is better for birefringence related
applications than the 2D PhCWs and bulk PhC for it has simple structure, low-loss and most
important higher birefringence.

Figure 9. (a) Top view of the structures of different type of 1D PhCWs: cylinder and square dielectric rods in air, and
square and cylinder air holes in dielectric waveguide, respectively, from top to bottom. (b) Dispersion curves of 1D
PhCW with dielectric rods in air for both TE and TM polarizations. The inset is the 1×9a supercell used in PWE calcula‐
tion, and the permittivity and the radius of dielectric rods are ε=8.9 and r=0.45a, respectively

Figure 10. Birefringence of 1D PhCW with different parameters of (a) ε=9.6, (b) ε=10.5, and (c) ε=12.96, respectively.
The blue, red, black, green and magenta lines represent the radius of dielectric rod equals 0.45a, 0.50a, 0.55a, 0.60a,
and 0.65a, respectively. (d) Zoon-in picture of birefringence of 1D PhCW with radius of r=0.50a. [12]
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4. Ultracompact WPs based on PhC structures

One of the most important devices for birefringence related applications is WP which is worked
as phase retarder. The phase difference (Δφ) between TE and TM polarization after propagat‐
ing a distance of L can be expressed as Δφ=2πΔnL/λ, where Δn and λ are birefringence and
wavelength, respectively. When the phase difference has relationship of Δφ=mπ/2 and Δφ=mπ,
where m is an integer, the phase retarder is names as quarter-wave plate (QWP), and half-wave
plate (HWP), respectively. Low-order (m is a small value) QWPs and HWPs have been
investigated both theoretically and experimentally by different PhC structures. Although there
are works to achieve π/2 and π phase retarding by reflecting EM wave at the stop band of
perfect bulk PhC [45], most of the WPs are realized by the birefringence effect of the PhC
structures. Compact transmissive QWPs and HWPs have been firstly analyzed theoretically
by prof. Li [26] using bulk 2D PhC and soon after experimentally realized by Dr. Soli in micro-
wave frequency [8, 46-49]. The WPs based on the birefringence effect of slab and bulk 2D PhCW
are studied by numerical calculating in 2007 [9] and 2009 [10]. The ultracompact WPs with
ultra-broadband achromatic phase difference are investigated by air-holes and dielectric rods
1D PhCW, recently [11, 12].

WPs with broadband achromatic phase difference are widely used in practice for the most of
polarization-phase controlling devices require frequency independent phase retarding.
Beyond that, compact in size is essential for that the original intention is realizing phase
retarding in PICs for PhC structures based WPs. From the expression of the phase difference,
the value of Δn is determinant of the size of WPs and the higher Δn is, the more compact the
WP is, this gives the reason of the requirement of giant birefringence. It is a little complicated
to achieve broadband achromatic phase difference for that Δφ depends not only on Δn, but
L, and λ as well. Slow-varying or constant maintaining of Δφ relies on the envelope of Δn/λ,
and the value of L. So, it is quite necessary for achromatic WPs that Δn should grows in a slow
and linear fashion with wavelength in broadband. Meanwhile, choose L as small as possible,
under the premise of that the requisite phase retarding could be realized, to avoid the en‐
hancement of the non-uniformity of Δn/λ at different wavelength. This is the cause of the low-
order WPs are preferred in practical broadband applications. However, there are still some
cases requiring Δφ changing rapidly with frequency, i.e. high dispersion, in some particular
applications such as polarization scrambling and depolarization. High-order WPs with large
value of L is preferred to implement these functions. Except for operating band, dispersion,
and size discussed above, the loss and compatibility should also be take into consideration in
practically to evaluate the performance of WPs.

For the large and designable of birefringence in PhC structures, high performance WPs can be
realized, such as low-order broad-band achromatic and high-order compact QWPs and HWPs.
This section will focus on the low-order WPs based on 2D PhCW, 2D bulk PhC and 1D PhCW,
respectively, and the compact high-order WPs based on the so called formed birefringence are
discussed, too.

4.1. Low-order WPs based on 2D PhCW

For the simplicity of the 2D PhCW with hybrid PBG and TIR modes, the square lattice air holes
type of PhCW studied in Fig. 6 and Fig. 7 is used to design the low-order WPs. The structure
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used in the FDTD simulation is shown in Fig. 11 (a). A waveguide broadband Gaussian pulse
source with width of a is excited at x=-6.5a, and point detectors located at different positions
record the electric fields by which the phase shift (Φ) of TE and TM polarizations are obtained.
Fig. 11 (b) and (c) give the phase shifts at x=13.1a and x=27.1a, respectively, on the initial phase
which obtained at x=-0.5a where the phase differences (Δφ) between TE and TM modes are
zero at the operating frequency band. The unwrapping Δφ are shown in Fig. 11 (d) and (e),
correspondingly. The values of Δφ are about π/2 (QWP) and π (HWP) at x=13.1a and x=27.1a,
respectively, with high phase accuracy of ±0.005π in the frequency range of 0.2632-0.2642
a/λ for both QWP and HWP. The relative achromatic bandwidth is about 0.38%. The length of
2D PhCW that introduce π/2 phase difference between TE and TM polarization is about Lπ/

2=27.1a-13.1a =14a, which is in good agreement with that obtained by SFT method, e.g. the
length is about 13.9a when ω=0.264 a/λ for the birefringence at this wavelength is about Δn=
0.0682 as shown in Fig. 7 (b). So, the length of the zero-order QWP and HWP is about 3.7λ and
7.4λ, respectively. Although not shown here, the phase characteristics can also be verified in
separate frequency by launching CW source in the waveguide and recording the EM field
variation in time. The size of WPs can be reduced, although not too much, by the triangular

Figure 11. (a) Structure used in simulations. The parameters of the 2D PhCW are as same as that in Fig. 6 and Fig. 7.
[(b), (c)] The phase (Φ) at (b) x= 13.1a and (c) x=27.1a, respectively. [(d), (e)] Unwrapping phase difference (Δφ) at (d)
x= 13.1a and (e) x=27.1a, respectively. [10]
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4. Ultracompact WPs based on PhC structures

One of the most important devices for birefringence related applications is WP which is worked
as phase retarder. The phase difference (Δφ) between TE and TM polarization after propagat‐
ing a distance of L can be expressed as Δφ=2πΔnL/λ, where Δn and λ are birefringence and
wavelength, respectively. When the phase difference has relationship of Δφ=mπ/2 and Δφ=mπ,
where m is an integer, the phase retarder is names as quarter-wave plate (QWP), and half-wave
plate (HWP), respectively. Low-order (m is a small value) QWPs and HWPs have been
investigated both theoretically and experimentally by different PhC structures. Although there
are works to achieve π/2 and π phase retarding by reflecting EM wave at the stop band of
perfect bulk PhC [45], most of the WPs are realized by the birefringence effect of the PhC
structures. Compact transmissive QWPs and HWPs have been firstly analyzed theoretically
by prof. Li [26] using bulk 2D PhC and soon after experimentally realized by Dr. Soli in micro-
wave frequency [8, 46-49]. The WPs based on the birefringence effect of slab and bulk 2D PhCW
are studied by numerical calculating in 2007 [9] and 2009 [10]. The ultracompact WPs with
ultra-broadband achromatic phase difference are investigated by air-holes and dielectric rods
1D PhCW, recently [11, 12].

WPs with broadband achromatic phase difference are widely used in practice for the most of
polarization-phase controlling devices require frequency independent phase retarding.
Beyond that, compact in size is essential for that the original intention is realizing phase
retarding in PICs for PhC structures based WPs. From the expression of the phase difference,
the value of Δn is determinant of the size of WPs and the higher Δn is, the more compact the
WP is, this gives the reason of the requirement of giant birefringence. It is a little complicated
to achieve broadband achromatic phase difference for that Δφ depends not only on Δn, but
L, and λ as well. Slow-varying or constant maintaining of Δφ relies on the envelope of Δn/λ,
and the value of L. So, it is quite necessary for achromatic WPs that Δn should grows in a slow
and linear fashion with wavelength in broadband. Meanwhile, choose L as small as possible,
under the premise of that the requisite phase retarding could be realized, to avoid the en‐
hancement of the non-uniformity of Δn/λ at different wavelength. This is the cause of the low-
order WPs are preferred in practical broadband applications. However, there are still some
cases requiring Δφ changing rapidly with frequency, i.e. high dispersion, in some particular
applications such as polarization scrambling and depolarization. High-order WPs with large
value of L is preferred to implement these functions. Except for operating band, dispersion,
and size discussed above, the loss and compatibility should also be take into consideration in
practically to evaluate the performance of WPs.

For the large and designable of birefringence in PhC structures, high performance WPs can be
realized, such as low-order broad-band achromatic and high-order compact QWPs and HWPs.
This section will focus on the low-order WPs based on 2D PhCW, 2D bulk PhC and 1D PhCW,
respectively, and the compact high-order WPs based on the so called formed birefringence are
discussed, too.

4.1. Low-order WPs based on 2D PhCW

For the simplicity of the 2D PhCW with hybrid PBG and TIR modes, the square lattice air holes
type of PhCW studied in Fig. 6 and Fig. 7 is used to design the low-order WPs. The structure
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used in the FDTD simulation is shown in Fig. 11 (a). A waveguide broadband Gaussian pulse
source with width of a is excited at x=-6.5a, and point detectors located at different positions
record the electric fields by which the phase shift (Φ) of TE and TM polarizations are obtained.
Fig. 11 (b) and (c) give the phase shifts at x=13.1a and x=27.1a, respectively, on the initial phase
which obtained at x=-0.5a where the phase differences (Δφ) between TE and TM modes are
zero at the operating frequency band. The unwrapping Δφ are shown in Fig. 11 (d) and (e),
correspondingly. The values of Δφ are about π/2 (QWP) and π (HWP) at x=13.1a and x=27.1a,
respectively, with high phase accuracy of ±0.005π in the frequency range of 0.2632-0.2642
a/λ for both QWP and HWP. The relative achromatic bandwidth is about 0.38%. The length of
2D PhCW that introduce π/2 phase difference between TE and TM polarization is about Lπ/

2=27.1a-13.1a =14a, which is in good agreement with that obtained by SFT method, e.g. the
length is about 13.9a when ω=0.264 a/λ for the birefringence at this wavelength is about Δn=
0.0682 as shown in Fig. 7 (b). So, the length of the zero-order QWP and HWP is about 3.7λ and
7.4λ, respectively. Although not shown here, the phase characteristics can also be verified in
separate frequency by launching CW source in the waveguide and recording the EM field
variation in time. The size of WPs can be reduced, although not too much, by the triangular

Figure 11. (a) Structure used in simulations. The parameters of the 2D PhCW are as same as that in Fig. 6 and Fig. 7.
[(b), (c)] The phase (Φ) at (b) x= 13.1a and (c) x=27.1a, respectively. [(d), (e)] Unwrapping phase difference (Δφ) at (d)
x= 13.1a and (e) x=27.1a, respectively. [10]
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lattice 2D PhCW for the birefringence in it is larger than the square lattice one. However, it
must be admitted that the PhCW has no advantages comparing with the other PhC structure
in size and achromatic bandwidth, the only merit may be the guiding and confining of light
is perfect in 2D PhCW.

4.2. Low-order WPs based on bulk 2D PhCs

The bulk 2D PhC has larger birefringence than the 2D PhCW, therefore, the WPs realized by
bulk PhC has smaller size. However, the beam divergence is severe in the perfect PhC structure
as discussed before and the divergent beam in nonwaveguiding structure will interfere with
other components for large number of devices integrated in ultrasmall space in practical PICs
[27]. Interference and scattering loss caused by beam divergence can be solved by the so called
self-collimating (SC) effect under which light beam can propagate with no diffraction in perfect
PhCs [50-52].

Polarization independent SC propagation is need in PhC for the WP applications. As shown
in the inset of Fig.12 (a), the designed PhC is square lattice air holes in dielectric materials, and
the permittivity of host material and radius of air holes are ε=11.0224 and r=0.315a, respectively
[27]. The band structure is calculated by PWE method and shown in Fig. 12 (a). The equal
frequency contours near the frequency band marked as green shallow region in Fig. 12 (a) are
plotted in Fig. 12 (b) and (c) for TM and TE polarization, respectively. From the figures, both
TE and TM have ultra-flat equifrequency surface in the frequency band of 0.273-0.281 a/λ. As

Figure 12. (a) Band structure of the square lattice PhC with polarization independent SC effect. [(b), (c)] Equal fre‐
quency contours for TM (b) and TE (c) polarizations. (d) Snapshots of the EM fields distributions at the frequency of
0.274 a/λ for TE (Hz) and TM (Ez) polarizations.

Advances in Photonic Crystals64

the direction of light propagation is always normal to the equifrequency surface, the light will
propagate in the PhC without divergence along the <0 1> direction for both TE and TM
polarizations, which can be seen clearly in Fig. 12 (d).

By launching broadband Gaussian pulse source in the coupling waveguide (refer Fig. 12
(d)), the transmission behaviors of the SC beam in the PhC are quantified and the spectra are
shown in Fig. 13 (a) and (b) for TE and TM polarization, respectively. In the polarization
independent SC band, the transmission efficiencies are above 75% for both TE and TM
polarizations when the length is shorter than 70a. This is a significant improvement over the
conventional PhC without SC guiding effect. Same as what have done in the section 4.1, the
phase shift for TE and TM polarizations are calculated by using the recorded EM fields. Fig.
13 (c) and (d) show the phase shifts (Φ) and unwrapping phase difference (Δφ) at positions of
10a and 12a, respectively. During the simulation, the initial phases are obtained at −4a. In a
wide band region of 0.273-0.281 a/λ, the values of Δφ are almost constants of π/2 (QWP) and
π (HWP) when the lengths of the PhC are 10a and 12a, respectively. For both QWP and HWP,
the phase accuracy is about ±0.01π, and the transmission efficiencies are above 96%. The
relative spectral bandwidth of the designed WP is about 3%, which is about the half of that of
dense wavelength division multiplexing (DWDM) optical communication systems. Although
the bandwidth of the WPs is not wide enough to cover all the frequency range of DWDM
systems, it is as wide as 45 nm and is wide enough for many applications. The fact that should
be indicated is that the 10a and 12a length WPs are not the zero-order ones. The lower-order
WPs may have broader achromatic frequency band.

Figure 13. [(a), (b)] Transmission spectra for TE (a) and TM (b) polarizations. [c, d] Phase (Φ) and phase difference (Δφ)
at x=10a and x=12a, respectively. [27]
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lattice 2D PhCW for the birefringence in it is larger than the square lattice one. However, it
must be admitted that the PhCW has no advantages comparing with the other PhC structure
in size and achromatic bandwidth, the only merit may be the guiding and confining of light
is perfect in 2D PhCW.

4.2. Low-order WPs based on bulk 2D PhCs

The bulk 2D PhC has larger birefringence than the 2D PhCW, therefore, the WPs realized by
bulk PhC has smaller size. However, the beam divergence is severe in the perfect PhC structure
as discussed before and the divergent beam in nonwaveguiding structure will interfere with
other components for large number of devices integrated in ultrasmall space in practical PICs
[27]. Interference and scattering loss caused by beam divergence can be solved by the so called
self-collimating (SC) effect under which light beam can propagate with no diffraction in perfect
PhCs [50-52].

Polarization independent SC propagation is need in PhC for the WP applications. As shown
in the inset of Fig.12 (a), the designed PhC is square lattice air holes in dielectric materials, and
the permittivity of host material and radius of air holes are ε=11.0224 and r=0.315a, respectively
[27]. The band structure is calculated by PWE method and shown in Fig. 12 (a). The equal
frequency contours near the frequency band marked as green shallow region in Fig. 12 (a) are
plotted in Fig. 12 (b) and (c) for TM and TE polarization, respectively. From the figures, both
TE and TM have ultra-flat equifrequency surface in the frequency band of 0.273-0.281 a/λ. As

Figure 12. (a) Band structure of the square lattice PhC with polarization independent SC effect. [(b), (c)] Equal fre‐
quency contours for TM (b) and TE (c) polarizations. (d) Snapshots of the EM fields distributions at the frequency of
0.274 a/λ for TE (Hz) and TM (Ez) polarizations.
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the direction of light propagation is always normal to the equifrequency surface, the light will
propagate in the PhC without divergence along the <0 1> direction for both TE and TM
polarizations, which can be seen clearly in Fig. 12 (d).

By launching broadband Gaussian pulse source in the coupling waveguide (refer Fig. 12
(d)), the transmission behaviors of the SC beam in the PhC are quantified and the spectra are
shown in Fig. 13 (a) and (b) for TE and TM polarization, respectively. In the polarization
independent SC band, the transmission efficiencies are above 75% for both TE and TM
polarizations when the length is shorter than 70a. This is a significant improvement over the
conventional PhC without SC guiding effect. Same as what have done in the section 4.1, the
phase shift for TE and TM polarizations are calculated by using the recorded EM fields. Fig.
13 (c) and (d) show the phase shifts (Φ) and unwrapping phase difference (Δφ) at positions of
10a and 12a, respectively. During the simulation, the initial phases are obtained at −4a. In a
wide band region of 0.273-0.281 a/λ, the values of Δφ are almost constants of π/2 (QWP) and
π (HWP) when the lengths of the PhC are 10a and 12a, respectively. For both QWP and HWP,
the phase accuracy is about ±0.01π, and the transmission efficiencies are above 96%. The
relative spectral bandwidth of the designed WP is about 3%, which is about the half of that of
dense wavelength division multiplexing (DWDM) optical communication systems. Although
the bandwidth of the WPs is not wide enough to cover all the frequency range of DWDM
systems, it is as wide as 45 nm and is wide enough for many applications. The fact that should
be indicated is that the 10a and 12a length WPs are not the zero-order ones. The lower-order
WPs may have broader achromatic frequency band.

Figure 13. [(a), (b)] Transmission spectra for TE (a) and TM (b) polarizations. [c, d] Phase (Φ) and phase difference (Δφ)
at x=10a and x=12a, respectively. [27]
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Figure 14. Normalized EM fields variations with time for TE and TM polarizations at different space locations and EM
wave frequencies. [(a)-(e)] With the same frequency of 0.275 a/λ and at different positions of x=-4a (a), 10a (b), 12a
(c), 50.4a (d) and 50.7a (e), respectively. [(f)-(j)]. At the same location of x=10a, but with different frequency of
ω=0.273 a/λ (f), 0.274 a/λ (g), 0.276 a/λ (h), 0.278 a/λ (i), and 0.280 a/λ (j), respectively. [27]

To verify the phase characteristics of the WPs designed above, a CW source is launched in the
dielectric waveguide, and a set of point monitors are inserted along the x direction in the center
of the light beam in y direction to detect the electric fields (Ey for TE and Ez for TM) at different
times. The phases of TE and TM at the reference position x=−4a are identical at the frequency
0.275 a/λ [see Fig. 14 (a)], which reveals zero phase difference between TE and TM polariza‐
tions. After propagating to 10a, as shown in Fig. 14 (b), the phase difference between TE and
TM is about π/2. Furthermore, at 12a, TE and TM reverse in phase [see Fig. 14 (c)]. These results
certify that the WPs work effectively at the frequency 0.275 a/λ. Higher-order QWP and HWP
also can be realized (as shown in Fig. 14 (d) and (e)) for the light can propagate a relatively
long way in PhC with the help of SC effect. To verify the broadband characteristic of the WPs,
one monitor is set at 10a, and the frequency of source is changed. Fig. 14 (f)–(j) show that the
10a length QWPs have an almost fixed phase difference of π/2 (accuracy of ±0.01π) in a wide
frequency range. Although not shown in the figures, similar broadband characteristics have
been obtained for 12a length HWPs with the same simulation method.

4.3. Low-order WPs based on 1D PhCW

Comparing with the 2D PhCW, 1D PhCW has larger birefringence, so that it is very suitable
for the ultracompact low-order WP applications. Both 1D PhCW with dielectric rods in air and
air holes in dielectric waveguides have been used to design high performance WPs.

4.3.1. Low-order WPs based on 1D PhCW with dielectric rods in air

The birefringence properties of 1D PhCW with dielectric rods in air have been studied
thoroughly in section 3.3. Although there is broadband achromatic birefringence, it is not
enough to achieve wide band achromatic phase difference for Δφ is also determined by L and
λ. Actually, the structure supporting achromatic Δφ is r≥ 0.55a which is different from the
critical value of 0.50a for achromatic birefringence.
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For the ultrahigh birefringence, 2π phase difference (Δφ=2π) can be introduced by 1D PhCW
with short length even smaller than the operating wavelength λ if Δn is large enough. Taking
the 1D PhCW with ε=12.96 and r=0.55a as an example, if the operating frequency is ω=0.145
a/λ, 2π phase difference is introduced by the structure with length of L=4.63a, which is smaller
than the wavelength of λ=6.9a, for the birefringence at the frequency is Δn=1.488 from Fig. 10.
By using the FDTD simulation scheme, the characteristics of this 1D PhCW based WPs are
verified. The normalized EM fields for TE (Ey) and TM (Ez) polarizations are shown in Fig. 15
(a)-(j). The phases of TE and TM are identical at location of x=3.4a as shown in Fig. 15 (a). After
propagating to 4.5a, as shown in Fig. 15(b), the phase difference between TE and TM is π/2.
Furthermore, the phase differences are π [see Fig. 15(c)], 3π/2 [see Fig. 5(d)], and 2π [see Fig.
5(e)] at the positions of 5.55a, 6.55a, and 8.0a, respectively. These results certify that the 1D
PhCW with length of 4.5a and 5.55a (the real lengths are about 0.6525λ and 0.80475λ, respec‐
tively) can be served as the first-order QWP and HWP at frequency of 0.145 a/λ, respectively.
The phase difference of 2π is introduced by the length of L2π=8.0a-3.4a=4.6a, and this is in good
agreement with the theoretical value of 4.63a calculated above. To verify the broadband
achromatic properties of the phase difference, CW sources with different frequencies are
launched into the PDW, and the detector is located at x=4.5a unchanged. Fig. 15(f)–(j) show
that the phase differences are fixed at π/2 in frequency range of 0.140–0.150a/λ. The relative
bandwidth is about 28% which is much wider than that of the 2D PhCW and bulk PhC. If
taking the central frequency 0.145 a/λ as λ=1550 nm (a=224.8 nm), the real frequency bands are
from 1498nm to 1605 nm, which almost covers the whole telecommunication band containing
C, L and S. [12].

Figure 15. [Left] Snapshots of the EM fields for TE (Ey) and TM (Ez) polarizations. The simulation structure is shown in
the figure as background. [Right] Normalized EM fields variations with time for TE and TM polarizations at different
space locations and EM wave frequencies. The left column is ω=0.145 a/λ at different locations of 3.4a (a), 4.5a (b),
5.55a (c), 6.55a (d), and 8.0a (e), respectively. The right column is x=4.5a with different frequency of 0.140 a/λ (f),
0.142 a/λ (g), 0.145 a/λ (h), 0.148 a/λ (i), and 0.150 a/λ (j), respectively. [12]
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Figure 14. Normalized EM fields variations with time for TE and TM polarizations at different space locations and EM
wave frequencies. [(a)-(e)] With the same frequency of 0.275 a/λ and at different positions of x=-4a (a), 10a (b), 12a
(c), 50.4a (d) and 50.7a (e), respectively. [(f)-(j)]. At the same location of x=10a, but with different frequency of
ω=0.273 a/λ (f), 0.274 a/λ (g), 0.276 a/λ (h), 0.278 a/λ (i), and 0.280 a/λ (j), respectively. [27]

To verify the phase characteristics of the WPs designed above, a CW source is launched in the
dielectric waveguide, and a set of point monitors are inserted along the x direction in the center
of the light beam in y direction to detect the electric fields (Ey for TE and Ez for TM) at different
times. The phases of TE and TM at the reference position x=−4a are identical at the frequency
0.275 a/λ [see Fig. 14 (a)], which reveals zero phase difference between TE and TM polariza‐
tions. After propagating to 10a, as shown in Fig. 14 (b), the phase difference between TE and
TM is about π/2. Furthermore, at 12a, TE and TM reverse in phase [see Fig. 14 (c)]. These results
certify that the WPs work effectively at the frequency 0.275 a/λ. Higher-order QWP and HWP
also can be realized (as shown in Fig. 14 (d) and (e)) for the light can propagate a relatively
long way in PhC with the help of SC effect. To verify the broadband characteristic of the WPs,
one monitor is set at 10a, and the frequency of source is changed. Fig. 14 (f)–(j) show that the
10a length QWPs have an almost fixed phase difference of π/2 (accuracy of ±0.01π) in a wide
frequency range. Although not shown in the figures, similar broadband characteristics have
been obtained for 12a length HWPs with the same simulation method.

4.3. Low-order WPs based on 1D PhCW

Comparing with the 2D PhCW, 1D PhCW has larger birefringence, so that it is very suitable
for the ultracompact low-order WP applications. Both 1D PhCW with dielectric rods in air and
air holes in dielectric waveguides have been used to design high performance WPs.

4.3.1. Low-order WPs based on 1D PhCW with dielectric rods in air

The birefringence properties of 1D PhCW with dielectric rods in air have been studied
thoroughly in section 3.3. Although there is broadband achromatic birefringence, it is not
enough to achieve wide band achromatic phase difference for Δφ is also determined by L and
λ. Actually, the structure supporting achromatic Δφ is r≥ 0.55a which is different from the
critical value of 0.50a for achromatic birefringence.
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For the ultrahigh birefringence, 2π phase difference (Δφ=2π) can be introduced by 1D PhCW
with short length even smaller than the operating wavelength λ if Δn is large enough. Taking
the 1D PhCW with ε=12.96 and r=0.55a as an example, if the operating frequency is ω=0.145
a/λ, 2π phase difference is introduced by the structure with length of L=4.63a, which is smaller
than the wavelength of λ=6.9a, for the birefringence at the frequency is Δn=1.488 from Fig. 10.
By using the FDTD simulation scheme, the characteristics of this 1D PhCW based WPs are
verified. The normalized EM fields for TE (Ey) and TM (Ez) polarizations are shown in Fig. 15
(a)-(j). The phases of TE and TM are identical at location of x=3.4a as shown in Fig. 15 (a). After
propagating to 4.5a, as shown in Fig. 15(b), the phase difference between TE and TM is π/2.
Furthermore, the phase differences are π [see Fig. 15(c)], 3π/2 [see Fig. 5(d)], and 2π [see Fig.
5(e)] at the positions of 5.55a, 6.55a, and 8.0a, respectively. These results certify that the 1D
PhCW with length of 4.5a and 5.55a (the real lengths are about 0.6525λ and 0.80475λ, respec‐
tively) can be served as the first-order QWP and HWP at frequency of 0.145 a/λ, respectively.
The phase difference of 2π is introduced by the length of L2π=8.0a-3.4a=4.6a, and this is in good
agreement with the theoretical value of 4.63a calculated above. To verify the broadband
achromatic properties of the phase difference, CW sources with different frequencies are
launched into the PDW, and the detector is located at x=4.5a unchanged. Fig. 15(f)–(j) show
that the phase differences are fixed at π/2 in frequency range of 0.140–0.150a/λ. The relative
bandwidth is about 28% which is much wider than that of the 2D PhCW and bulk PhC. If
taking the central frequency 0.145 a/λ as λ=1550 nm (a=224.8 nm), the real frequency bands are
from 1498nm to 1605 nm, which almost covers the whole telecommunication band containing
C, L and S. [12].

Figure 15. [Left] Snapshots of the EM fields for TE (Ey) and TM (Ez) polarizations. The simulation structure is shown in
the figure as background. [Right] Normalized EM fields variations with time for TE and TM polarizations at different
space locations and EM wave frequencies. The left column is ω=0.145 a/λ at different locations of 3.4a (a), 4.5a (b),
5.55a (c), 6.55a (d), and 8.0a (e), respectively. The right column is x=4.5a with different frequency of 0.140 a/λ (f),
0.142 a/λ (g), 0.145 a/λ (h), 0.148 a/λ (i), and 0.150 a/λ (j), respectively. [12]
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Except for the waveguide dispersion, the material dispersion also can affect the effective
indices of the waveguide modes, and then affect the birefringence. To study the phase
difference of 1D PhCW with dispersive material, Silicon (Si) is chosen as the material of
dielectric rods for the permittivity of Si can be obtained by Sellmeier formula:

2 2
0.939816 0.000993358ε 11.6858

λ λ 1.22567
= + +

-
(4)

where the wavelength λ is in μm. The radius of the Si rods is 0.55a. The phase difference (Δφ)
of Si 1D PhCW with length of L=4a and L=6a are shown in Fig. 16. Although the material
dispersion affects the birefringence of 1D PhCW, there is broadband achromatic phase
difference for the Si 1D PhCW. The achromatic bandwidth is larger than 100nm with excellent
phase accuracy of ±1°. The achromatic band can be tuned by changing the lattice constant a,
and it is red shift by increasing the value of a. The bandwidth is affected by the length of 1D
PhCW. Taking a=240nm as example, with the same accuracy of ±1°, the bandwidth is about
125nm (1495-1620nm, 301±1°) when L=4a, and about 100nm (1506-1606nm, 452±1°) when L=6a.
Just as discussed before, the achromatic band is narrower when the length of 1D PhCW is
longer. For the Si 1D PhCW, the material dispersion does affect the phase difference of TE and
TM modes propagate in it, but does not restrict the realization of broadband achromatic WPs.

Figure 16. Phase difference of Si 1D PhCW with L=4a (a) and L=6a (b), respectively. The radius of Si rods is r=0.55a,
and the indices of Si are calculated by Eq. (4). [12]

4.3.2. Low-order WPs based on 1D PhCW with air holes in dielectric waveguide

Another type of 1D PhCW is the periodic air holes in dielectric waveguide as shown in Fig. 9
(c) and (d). This type of structure is easier integrated with other components for the most of
devices in PIC are constructed and interconnected by waveguide. Here, the 1D PhCW with
square air holes is used to design high performance low-order WPs. The width of the wave‐
guide is as same as lattice constant a, the length of square’s side is w=0.5a, and the permittivity
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of the high index material is 13. Although not shown, the birefringence of this 1D PhCW is
larger than 1 in the single mode frequency range of 0.1-0.15 a/λ.

Figure 17. [Left] Snapshots of EM fields at frequency of 0.14 a/λ for TE (Hz) and TM (Ez) polarizations.[Right] Normal‐
ized EM field variations with time for TE and TM modes with same frequency of 0.14 a/λ but at different space loca‐
tions of 2.9a (a), 4.45a (b), 6.4a (c), 7.9a (d), and 89.6a (e), respectively. [11]

The phase differences between TE and TM polarizations are directly studied by FDTD
simulation method. A CW source with frequency of ω=0.14 a/λ is excited in the waveguide at
position of x=-a, and several point monitors are placed at different positions along x direction
at the center of the propagation beam in y direction. The snapshots of the EM fields in the 1D
PhCW are shown in Fig. 17 (left) and the recorded electric fields at different positions are shown
in Fig. 17 (a)-(e). From the figures, the phase differences (Δφ) at x=2.9a, x=4.45a, x=6.4a, x=7.9a,
and x=9.6a are π, 3π/2, 2π, 5π/2, and 3π, respectively. As a result, the structures with length,
which contains length of adjacent coupling waveguide and 1D PhCW, of 3.9a, 5.45a, 8.9a, and
10.6a can serve as HWP, QWP, QWP, and HWP, correspond real length of 0.546λ, 0.763λ,
1.246λ, and 1.484λ, respectively. The phase difference of 2π is introduced by the distance of
6.7a and this is in good agreement with the value of 6.5a calculated by PWE method.

The shortage of the structure studied above, referring to nontaper structure, is that the
transmission loss is relatively high as shown in Fig. 18 (a) and (b).To reduce the loss, a taper
structure is used to design high performance WP and the structure is shown at the top of Fig.
18.The transmission efficiencies are effectively improved by the taper 1D PhCW with
w1=0.35a, and w2=0.5a, especially for TM polarization. The transmission efficiency is more than
90% in the frequency range of 0.139-0.148 a/λ for both TE and TM polarizations. The efficiency
can be improved further by optimizing the taper structure. The phase differences are around
π/2 for different frequencies from 0.139 a/λ to 0.148 a/λ as shown in Fig. 18 (c)-(f). The taper
with total length of 5a can serve as broadband QWP, although the phase accuracy is not very
high (±0.02π). The phase accuracy also can be improved by carefully tuning the parameters of
the taper.
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Except for the waveguide dispersion, the material dispersion also can affect the effective
indices of the waveguide modes, and then affect the birefringence. To study the phase
difference of 1D PhCW with dispersive material, Silicon (Si) is chosen as the material of
dielectric rods for the permittivity of Si can be obtained by Sellmeier formula:

2 2
0.939816 0.000993358ε 11.6858

λ λ 1.22567
= + +

-
(4)

where the wavelength λ is in μm. The radius of the Si rods is 0.55a. The phase difference (Δφ)
of Si 1D PhCW with length of L=4a and L=6a are shown in Fig. 16. Although the material
dispersion affects the birefringence of 1D PhCW, there is broadband achromatic phase
difference for the Si 1D PhCW. The achromatic bandwidth is larger than 100nm with excellent
phase accuracy of ±1°. The achromatic band can be tuned by changing the lattice constant a,
and it is red shift by increasing the value of a. The bandwidth is affected by the length of 1D
PhCW. Taking a=240nm as example, with the same accuracy of ±1°, the bandwidth is about
125nm (1495-1620nm, 301±1°) when L=4a, and about 100nm (1506-1606nm, 452±1°) when L=6a.
Just as discussed before, the achromatic band is narrower when the length of 1D PhCW is
longer. For the Si 1D PhCW, the material dispersion does affect the phase difference of TE and
TM modes propagate in it, but does not restrict the realization of broadband achromatic WPs.

Figure 16. Phase difference of Si 1D PhCW with L=4a (a) and L=6a (b), respectively. The radius of Si rods is r=0.55a,
and the indices of Si are calculated by Eq. (4). [12]

4.3.2. Low-order WPs based on 1D PhCW with air holes in dielectric waveguide

Another type of 1D PhCW is the periodic air holes in dielectric waveguide as shown in Fig. 9
(c) and (d). This type of structure is easier integrated with other components for the most of
devices in PIC are constructed and interconnected by waveguide. Here, the 1D PhCW with
square air holes is used to design high performance low-order WPs. The width of the wave‐
guide is as same as lattice constant a, the length of square’s side is w=0.5a, and the permittivity
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of the high index material is 13. Although not shown, the birefringence of this 1D PhCW is
larger than 1 in the single mode frequency range of 0.1-0.15 a/λ.

Figure 17. [Left] Snapshots of EM fields at frequency of 0.14 a/λ for TE (Hz) and TM (Ez) polarizations.[Right] Normal‐
ized EM field variations with time for TE and TM modes with same frequency of 0.14 a/λ but at different space loca‐
tions of 2.9a (a), 4.45a (b), 6.4a (c), 7.9a (d), and 89.6a (e), respectively. [11]

The phase differences between TE and TM polarizations are directly studied by FDTD
simulation method. A CW source with frequency of ω=0.14 a/λ is excited in the waveguide at
position of x=-a, and several point monitors are placed at different positions along x direction
at the center of the propagation beam in y direction. The snapshots of the EM fields in the 1D
PhCW are shown in Fig. 17 (left) and the recorded electric fields at different positions are shown
in Fig. 17 (a)-(e). From the figures, the phase differences (Δφ) at x=2.9a, x=4.45a, x=6.4a, x=7.9a,
and x=9.6a are π, 3π/2, 2π, 5π/2, and 3π, respectively. As a result, the structures with length,
which contains length of adjacent coupling waveguide and 1D PhCW, of 3.9a, 5.45a, 8.9a, and
10.6a can serve as HWP, QWP, QWP, and HWP, correspond real length of 0.546λ, 0.763λ,
1.246λ, and 1.484λ, respectively. The phase difference of 2π is introduced by the distance of
6.7a and this is in good agreement with the value of 6.5a calculated by PWE method.

The shortage of the structure studied above, referring to nontaper structure, is that the
transmission loss is relatively high as shown in Fig. 18 (a) and (b).To reduce the loss, a taper
structure is used to design high performance WP and the structure is shown at the top of Fig.
18.The transmission efficiencies are effectively improved by the taper 1D PhCW with
w1=0.35a, and w2=0.5a, especially for TM polarization. The transmission efficiency is more than
90% in the frequency range of 0.139-0.148 a/λ for both TE and TM polarizations. The efficiency
can be improved further by optimizing the taper structure. The phase differences are around
π/2 for different frequencies from 0.139 a/λ to 0.148 a/λ as shown in Fig. 18 (c)-(f). The taper
with total length of 5a can serve as broadband QWP, although the phase accuracy is not very
high (±0.02π). The phase accuracy also can be improved by carefully tuning the parameters of
the taper.
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Figure 18. [a-b] Transmission spectra for square air hole 1D PhCW with conventional structure and taper structure for
both TE (a) and TM (b) polarizations. The insets in (a) and (b) are snapshots of the EM fields propagating in the taper
structure at frequency of 0.14 a/λ for TE and TM polarizations, respectively. The structure of the taper is shown at the
top and the wave source is excited at x=-0.5a.[c-f] Normalized electric fields of Ey (TE) and Ez (TM) in the taper structure
at positions of x=4a with frequency of 0.139 a/λ (c), 0.142 a/λ (d), 0.145 a/λ (e), and 0.148 a/λ (f), respectively. [11]

4.4. High-order WPs based on formed birefringence effect

Except for the low-order achromatic WPs, high-order WPs are also useful in some special
applications. By increasing the length of the PhC structures, high-order WPs can be realized,
but it is not inadvisable when the birefringence is not large enough and the loss increases
rapidly with the increasing of length. Another method to realize high-order WPs proposed
before is so-called formed birefringence which takes full advantage of birefringence and optical
path difference between TE and TM polarizations [27, 10, 12].The schematic diagram is shown
in Fig. 19 (a). The key point of the formed birefringence is bringing path difference of two
orthogonal polarizations into use to enhance the phase difference between them. As that shown
in Fig. 19 (a), the lengths of path for polarization 1 (TE or TM) and polarization 2 (TM or TE)
are denoted as L1 and L2, respectively. The effective indices are n1 and n2, correspondingly, and
supposing that n2>n1. The total phase difference between two polarizations after propagating
through two paths can be expressed as:

( )tol 2 2 1 1 0
2Δ = - +πφ n L n L φ
λ

(5)

where φ0 is the total phase difference caused by other factor such as reflection in the interfaces.
Eq. (5) can be further written as
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+tol 1 2 0
2 2Δ = Δ Δ +π πφ nL n L φ
λ λ

(6)

where Δn=n2-n1 is the birefringence and ΔL=L2-L1 is the length difference of paths. The three items
of the phase difference in Eq. (6) are caused by birefringence, path difference and other factors,
respectively.In most case, the effective index is larger than the birefringence (n2>Δn), so, the total
phase difference will be enormously enhance if using the path difference effectively.

Figure 19. (a) The schematic diagram of formed birefringence (b) Structure of the direct coupler used as PBS and PBC
and the supercell used in PWE calculations. (c) Band structure of the direct coupler. [(d),(e)] Snapshots of the EM fields
at frequency of 0.185 a/λ for (d) TE (Hz) and (e) TM (Ez) polarizations. [12]

The high-order WP by formed birefringence effect is designed based on dielectric rod type of
1D PhCW with ε=9.6 and r=0.5a. The structure is composed by two coupling waveguides,
which serve as input and output ports, and two direct couplers, which are used for polarization
beam splitting and combining. As shown in Fig. 19 (b), the direct coupler is constituted by two
parallel 1D PhCW placed closely with distance of d=2.8a. The dispersion curves of the two
parallel rows of dilectric rods are calculated by PWE method with 1×9a supercell (shown in
Fig. 19 (b)) and are shown in Fig. 19 (c). From the figure, the first and second TM modes are
superposed but two lowest TE modes are separate with each other at the frequency of 0.185
a/λ. According to the direction coupling length equation, Lc=π/Δk, the coupling length is an
infinitely large number for TM polarization for the wave vector difference (Δk) of first and
second modes are zero. For the TE modes, the first and second modes can coupled to each
other completely after propagating a length of Lc which is determined by Δk. The length of the
direct coupler is optimized to Lc=21a to couple the mode from one waveguide to another in
broadband. From the dispersion curve of the 1D PhCW, the effective index of TM mode (nTM)
is larger than that of the TE mode (nTE), so, the propagation route of the TM mode is chosen as
a zigzag path to make the TM mode having larger propagating length, which is shown in the
background of Fig. 19 (d) and (e). To reduce the loss of the bend, the bend diameter is chosen
as a relatively large value of 11.48a. The other parameters of the whole structure of designed
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but it is not inadvisable when the birefringence is not large enough and the loss increases
rapidly with the increasing of length. Another method to realize high-order WPs proposed
before is so-called formed birefringence which takes full advantage of birefringence and optical
path difference between TE and TM polarizations [27, 10, 12].The schematic diagram is shown
in Fig. 19 (a). The key point of the formed birefringence is bringing path difference of two
orthogonal polarizations into use to enhance the phase difference between them. As that shown
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through two paths can be expressed as:

( )tol 2 2 1 1 0
2Δ = - +πφ n L n L φ
λ

(5)

where φ0 is the total phase difference caused by other factor such as reflection in the interfaces.
Eq. (5) can be further written as

Advances in Photonic Crystals70

+tol 1 2 0
2 2Δ = Δ Δ +π πφ nL n L φ
λ λ

(6)

where Δn=n2-n1 is the birefringence and ΔL=L2-L1 is the length difference of paths. The three items
of the phase difference in Eq. (6) are caused by birefringence, path difference and other factors,
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The high-order WP by formed birefringence effect is designed based on dielectric rod type of
1D PhCW with ε=9.6 and r=0.5a. The structure is composed by two coupling waveguides,
which serve as input and output ports, and two direct couplers, which are used for polarization
beam splitting and combining. As shown in Fig. 19 (b), the direct coupler is constituted by two
parallel 1D PhCW placed closely with distance of d=2.8a. The dispersion curves of the two
parallel rows of dilectric rods are calculated by PWE method with 1×9a supercell (shown in
Fig. 19 (b)) and are shown in Fig. 19 (c). From the figure, the first and second TM modes are
superposed but two lowest TE modes are separate with each other at the frequency of 0.185
a/λ. According to the direction coupling length equation, Lc=π/Δk, the coupling length is an
infinitely large number for TM polarization for the wave vector difference (Δk) of first and
second modes are zero. For the TE modes, the first and second modes can coupled to each
other completely after propagating a length of Lc which is determined by Δk. The length of the
direct coupler is optimized to Lc=21a to couple the mode from one waveguide to another in
broadband. From the dispersion curve of the 1D PhCW, the effective index of TM mode (nTM)
is larger than that of the TE mode (nTE), so, the propagation route of the TM mode is chosen as
a zigzag path to make the TM mode having larger propagating length, which is shown in the
background of Fig. 19 (d) and (e). To reduce the loss of the bend, the bend diameter is chosen
as a relatively large value of 11.48a. The other parameters of the whole structure of designed
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high-order WP can also be found in Fig. 19. The whole size of the simulation is about
240×120a.The snapshots of the EM fields at the frequency of 0.185 a/λ for TE (Hz) and TM (Ez)
polarization are shown in Fig. 19 (d) and (e), respectively. According to Eq. (6) and by using
the parameters of Δn=1.1505, L1=240a, ΔL=980a, n2=nTM =2.4427, and ω=0.185 a/λ, the phase
difference caused by birefringence and formed birefringence are about 102π and 886π,
respectively. Neglecting φ0 (generally, it is a small value), the total phase difference is about
Δφtol=1000π, and it can serve as a 500th-order WP. It can depolarize a laser with full width at
half maximum that is wider than 3.1 nm [53] and can be used in the depolarization of a Raman
pump laser diode and super-luminescence LED used in the fiber gyro. Taking λ=1550nm as
an example, the lattice constant a is about 287nm. Therefore, the whole size of the 500th-order
WP based on formed birefringence is about 69×34.5 μm.

Except for the 1D PhCW, the bulk PhC with polarization independent SC effect and the 2D
PhCW are also can be used to design high-order WPs based on formed birefringence effect.
The polarization beam splitter and combiner can be realized by direct coupler in 2D PhCW
structure, and by reflecting and transmitting mirror in bulk PhC structure. Actually, the 80th

order WP has been designed by the 2D PhCW with triangular lattice air holes in high index
dielectric material [10].

5. Conclusion

In this chapter, the birefringence properties of three types of PhC structures, containing 2D
PhCW, 2D bulk PhC, and 1D PhCW, have been studied thoroughly. High performance WPs
based on the birefringence of these three types of PhC structures have been proposed. The
comprehensive remarks about the three PhC structures are shown in Table 2.

For the 2D PhCW, the birefringence is not very high, so that the size of the WPs based on it is
in wavelength magnitude. Although the achromatic bandwidth is not very large, 2D the PhCW
provide perfect guiding for the light in it.

For the 2D bulk PhC, the birefringence in it is much larger than that in 2D PhCW. The
disadvantage of the bulk PhC is the beam divergence which will cause scattering loss and
signal crosstalk. This problem has been improved by the SC effect in this chapter. The WPs
based on the 2D PhC with polarization independent SC effect have compact size and broad
achromatic bandwidth (about 45nm).

For the 1D PhCW, giant birefringence, which is even larger than 1.5, can be realized in special
structures. The 1D PhCW is very suitable for WP applications for its giant birefringence, low
loss and compact in size. The achromatic bandwidth of the WPs based on 1D PhCW can be
larger than 100nm with excellent phase accuracy of ±1°. Meanwhile, the size of the WP is in
sub-wavelength magnitude.

Besides, the high-order WPs based on so called formed birefringence is proposed too. Addi‐
tional phase differences are introduced by the path difference of different polarizations. The
500th order WP is designed based on the formed birefringence by using the 1D PhCW.
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Birefringence
Achromatic phase

bandwidth

High

orders

Length

(Δφ=2π)
Loss

2D PhCW ~0.1 ~6nm (±0.005π) 80 3.7λ Low

Bulk PhC ~0.8 ~45nm (±0.01π) - - Relatively high

1D PhCW ~1.5 "/>100nm (±1°) 500 0.67λ Low

Table 2. Comparing of the properties of three types of PhC structures

The WP is one of the basic elements in optical devices. The proposed PhC structure based WPs
have a lot potential applications in future PICs for sensing, optical communications and
measurements.
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Propagation of Electromagnetic Waves in Anisotropic
Photonic Structures
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Additional information is available at the end of the chapter
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1. Introduction

In this chapter we discuss plane-wave propagation in a layered arbitrarily anisotropic
media.One-dimensional (1D) arbitrary layered structure is usually formed by stacking
together layers of several different materials with some specific thickness dj and refractive
index nj as depicted on Fig.1.

Figure 1. Arbitrary layered structure

Nowadays layered photonic structures (LPSs) are key of optoelectronic and microwave
devices such as, phased-array antennas, microcavities and mirrors [1,2], filters of xWDM
systems [3], waveguide structures, photodetectors, sensors and others. In case of active devices
the layered structures are usually used in form of superlattices [4-6], multiple quantum wells
[7,8] and asymmetric multiple quantum wells [9].

Different kinds of materials are used today for design LPSs, such as linear and nonlinear [3,10]
dielectric materials, anisotropic or bi-anisotropic materials [11], chiral media [12], metamate‐
rials [13], etc. If one use these materials one can effectively control emission, propagation and
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detection of the electromagnetic waves, and develop new designs of the photonic devices and
those one for other parts of the electromagnetic spectrum. For instance, very active research
worldwide is concentrated currently on the THz range, attempting to overcome the so called
problem of the terahertz gap [14].

The analysis of propagation of the electromagnetic waves in periodic [3,11,13,15], quasiperi‐
odic [12,16,17] and random [18] layered media is a problem which extends over the all fields
in the modern physics. Optics is the area where it is crucial to calculate spectral characteristics,
absorbance coefficients, polarization properties and other features of the multilayer structures
in a wide spectral range and at various thicknesses or material properties of constituents. Even
in the fiber optics, where usually propagation characteristics of the optical pulses [19, 20] are
considered, the spectral characteristics become of the principal interest when optical channel
incorporates such inhomogeneities as fiber Bragg gratings and fiber knots, and microresona‐
tors based on them.

In addition the use of the optical control techniques for phased-array antennas [21-22] promises
to alleviate many of the problems associated with traditional electronic steering systems. The
unique properties of layered anisotropic photonic structures (for example see [11]) are suitable
for this application.

Here we discuss the optical properties of one-dimensional arbitrarily anisotropic photonic
multilayers. The main objective of the chapter is the obtaining of a solution to the numerical
problem of the electromagnetic plane wave interaction with arbitrarily anisotropic and
arbitrarily inhomogeneous one-dimensional photonic structures. It is well known that many
of novel technological designs have resulted from analysis of the properties of materials and
creation of new structural configurations for them. In order to develop a new structural
configuration with unique properties, one needs to thoroughly understand the characteristics
of the structure. This can be accomplished by applying an advanced computational engine.

Today several numerical techniques are commonly used to compute the spectral characteristics
of the layered photonic structures and electromagnetic field distribution in the interiors
[3,12-15,23-31]. The most known and, probably, most usable are the finite element method
(FEM) [3,24], the transfer matrix method (TMM) [25,26], the finite difference time-domain
method (FDTD) [15,27] and the beam propagation method (BPM) [28]. Unfortunately, some
methods are entirely disregarding the anisotropy and the inhomogeneity of the constituent
materials. The most of methods which do account for material anisotropy require that the
permittivity tensor be diagonal. Others allow for nondiagonal tensors, but require that the off-
diagonal elements be small in comparison to the diagonal terms [28]. Although these techni‐
ques are adequate for many layered structures, they cannot be easily applied to multilayers in
which the anisotropy is arbitrary oriented along an oblique axis on the random layers. In
contrast to these numerical methods the method discussed here makes it possible the analyzing
of inhomogeneousone-dimensional anisotropic multilayers with an arbitrary permittivity
tensor and the optical axis arbitrarily oriented on any layer of LPS.

A general theory of electromagnetic propagation in periodic anisotropic layered media has
been treated by a number of authors [26, 29-31]. The present chapter describes the efficient
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physico-mathematical model pertinent to one-dimensional optical-range microstructures
based upon anisotropic materials. The electromagnetic field scalarization procedure [29-30] is
used after the initial vector electromagnetic diffraction problem is reduced to the boundary
problem for two scalar potentials. As a result, a set of linear algebraic equations are obtained.By
solving them we find the unknown transmission and reflection spectra for the structure under
study. The major advantage of the proposed method is that homogeneous, piecewise homo‐
geneous and continuously inhomogeneous flat-layered anisotropic media can be analyzed on
the same footing.

The chapter is organized as follows: in Section 2 we present the method of calculation em‐
ployed in the chapter, which is based on electromagnetic field scalarization procedure in
conjunction with the finite-difference method; Section 3 is devoted to the presentation of the
numerical results, together with the discussion of their main features; we summarize our study
and conclude the chapter in Section 4.

2. Theoretical model

In this section we present the mathematical background for calculation spectral characteristics
of anisotropic layered media. The presented theory is applicable to any anisotropic layers with
arbitrary orientation of the optical axes on each layer and for arbitrary angle of incidence.

The structure under consideration is schematically depicted in Fig. 2. Let’s introduce the
Cartesian coordinate system x, y, z such that the z axis is directed vertically upward. In this
coordinate system, an inhomogeneous anisotropic layered medium is represented by the
single layer that occupies the domain −b < z <0, −∞ < x, y < + ∞. The upper free half-space z >0
and substrate z < −b are homogeneous and isotropic and have permittivities ε0, μ0 and εc, μc,
respectively. In general case, all layers in this geometry are lossy media.

Figure 2. The benchmark photonic structure

The layered character of the media consists in next conditions or combination of them:
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arbitrary orientation of the optical axes on each layer and for arbitrary angle of incidence.

The structure under consideration is schematically depicted in Fig. 2. Let’s introduce the
Cartesian coordinate system x, y, z such that the z axis is directed vertically upward. In this
coordinate system, an inhomogeneous anisotropic layered medium is represented by the
single layer that occupies the domain −b < z <0, −∞ < x, y < + ∞. The upper free half-space z >0
and substrate z < −b are homogeneous and isotropic and have permittivities ε0, μ0 and εc, μc,
respectively. In general case, all layers in this geometry are lossy media.

Figure 2. The benchmark photonic structure

The layered character of the media consists in next conditions or combination of them:

Propagation of Electromagnetic Waves in Anisotropic Photonic Structures
http://dx.doi.org/10.5772/54847

81



• permeability μ̂ and permittivity ε̂ are continuous functions of the variable z. These complex-
valued tensors η̂ = ε̂, μ̂ can be expressed in Cartesian coordinates as:

ˆ ;
xx xy xy

yx yy yz

zx zy zz

h h h

h h h h

h h h

é ù
ê ú
ê ú=
ê ú
ê úë û

(1)

• the media are piecewise continuous, i.e. there are boundary surfaces
z = zj =const , (const >0), where properties of anisotropic media are varying stepwise;

• in the points z =0 and z = −b, (b >0) the medium is bounded by homogeneous conducting
planes or the planes permeable for the electromagnetic field. In our case the layered medium
is confined by the impedance planes. These planes are characterized by impedance dyads
L̂ (a) and L̂ (u):

( )
( ) ( )

( ) ( )

, ,
,

, ,

ˆ ˆ
ˆ .

ˆ ˆ

a u a u
xx xya u
a u a u
yx yy

L L
L

L L

é ù
ê ú= ê ú
ê úë û

(2)

Here indices a (above) and u (under) correspond to upper (z =0) and lower (z = −b) boundaries,
respectively.

We will start with Maxwell’s equations, for complex field vectors E
→

(R
→

) and H
→

(R
→

), in the form:

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

0

0

ˆ( ) 4 ,

ˆ( ) 4 ,

E R ik z H R c M R

H R ik z E R c J R

m p

e p

Ñ´ - = -

Ñ´ + =

r r r r r r

r r r r r r (3)

where k0 is the wave number in free space; c is the velocity of light; J
→ (R
→ ) and M

→ (R
→ ) are electric

and magnetic volume current densities, respectively; R
→

=(x, y, z) is the radius vector. Here we
assume the harmonic time dependence exp(− iωt) of the fields. Equations (3) are satisfied
everywhere within the medium except the interfaces.

The electric and magnetic fields must satisfy the suitable boundary condition at the interfaces
of the layered media:

• at the first, the tangential components of the electromagnetic field must be continuous at
the all boundaries of the layered media:

{ } { } ( )0 00, 0, , 1,2,..., .jz E z H z z j N^ ^´ = ´ = = =
r r

(4)
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where z→ 0 is unit vector along z axis; E
→
⊥≡E

→
⊥(R

→ ), H
→
⊥≡H

→
⊥(R

→ ) are electric and magnetic field
components that are orthogonal to z→ 0. Throughout the chapter we use braces {} for next
operator designation { f (z)}≡ f (z + 0)− f (z −0);

• at the second, we introduce impedance boundary conditions that are desired on the above
and the bottom boundaries of the inhomogeneous anisotropic structure:

( ) ( )
( ) ( )

0

0

ˆ 0, 0 ;
ˆ 0, .

a

u

E L z H z

E L z H z b
^ ^

^ ^

+ ´ = =

- ´ = = -

r rr

r rr (5)

The next one, in what follows we assumed that external sources and electromagnetic field
components are represented by spatial harmonics with wave vector κ→ =(κx, κy, 0)

( ) ( ) ( )
( ) ( ) ( )

, exp ,

, exp ;

J R J z i r

M R M z i r

k k

k k

º ×

º ×

r r r r r

r r r r r (6)

( ) ( ) ( )
( ) ( ) ( )

, exp ,

, exp .

E R E z i r

H R H z i r

k k

k k

º ×

º ×

r r r r r

r r r r r (7)

In expressions (6) – (7) κx ,y are the arbitrary complex constants, J
→ (κ→ , z), M

→ (κ→ , z) and E
→ (κ→ , z),

H
→ (κ→ , z) are the vector amplitudes of the sources and the fields, respectively.

Now let’s try to obtain general expressions for the transmittance and reflectance of a layered
medium.

2.1. Reduction of the electromagnetic field diffraction problem to a boundary value problem
for scalar potentials

Now let’s consider in details the solving of the initial electromagnetic field diffraction problem.
At first we should to introduce right-hand basis of vectors a→ z, a→ l , a→ t :

0

0

,
,

.

z

l

t

a z
a n
a z n

=
=
= ´

r v
r r
r rv

(8)

In writing eq (8) we have assumed that: n→ =κ→ /κ is the unit vector, that is situated in the plane

z =0; κ = κx
2 + κy

2 is the branch of the square root, which is chosen such that condition

0≤arg (⋅ )≤π shall be satisfied. These unit vectors obey the orthogonality relations:
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• permeability μ̂ and permittivity ε̂ are continuous functions of the variable z. These complex-
valued tensors η̂ = ε̂, μ̂ can be expressed in Cartesian coordinates as:
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• the media are piecewise continuous, i.e. there are boundary surfaces
z = zj =const , (const >0), where properties of anisotropic media are varying stepwise;

• in the points z =0 and z = −b, (b >0) the medium is bounded by homogeneous conducting
planes or the planes permeable for the electromagnetic field. In our case the layered medium
is confined by the impedance planes. These planes are characterized by impedance dyads
L̂ (a) and L̂ (u):
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Here indices a (above) and u (under) correspond to upper (z =0) and lower (z = −b) boundaries,
respectively.

We will start with Maxwell’s equations, for complex field vectors E
→

(R
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) and H
→

(R
→

), in the form:
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where k0 is the wave number in free space; c is the velocity of light; J
→ (R
→ ) and M

→ (R
→ ) are electric

and magnetic volume current densities, respectively; R
→

=(x, y, z) is the radius vector. Here we
assume the harmonic time dependence exp(− iωt) of the fields. Equations (3) are satisfied
everywhere within the medium except the interfaces.

The electric and magnetic fields must satisfy the suitable boundary condition at the interfaces
of the layered media:

• at the first, the tangential components of the electromagnetic field must be continuous at
the all boundaries of the layered media:

{ } { } ( )0 00, 0, , 1,2,..., .jz E z H z z j N^ ^´ = ´ = = =
r r

(4)
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where z→ 0 is unit vector along z axis; E
→
⊥≡E

→
⊥(R

→ ), H
→
⊥≡H

→
⊥(R

→ ) are electric and magnetic field
components that are orthogonal to z→ 0. Throughout the chapter we use braces {} for next
operator designation { f (z)}≡ f (z + 0)− f (z −0);

• at the second, we introduce impedance boundary conditions that are desired on the above
and the bottom boundaries of the inhomogeneous anisotropic structure:
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^ ^

^ ^
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The next one, in what follows we assumed that external sources and electromagnetic field
components are represented by spatial harmonics with wave vector κ→ =(κx, κy, 0)

( ) ( ) ( )
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In expressions (6) – (7) κx ,y are the arbitrary complex constants, J
→ (κ→ , z), M

→ (κ→ , z) and E
→ (κ→ , z),

H
→ (κ→ , z) are the vector amplitudes of the sources and the fields, respectively.

Now let’s try to obtain general expressions for the transmittance and reflectance of a layered
medium.

2.1. Reduction of the electromagnetic field diffraction problem to a boundary value problem
for scalar potentials

Now let’s consider in details the solving of the initial electromagnetic field diffraction problem.
At first we should to introduce right-hand basis of vectors a→ z, a→ l , a→ t :

0

0

,
,

.

z

l

t

a z
a n
a z n

=
=
= ´

r v
r r
r rv

(8)

In writing eq (8) we have assumed that: n→ =κ→ /κ is the unit vector, that is situated in the plane

z =0; κ = κx
2 + κy

2 is the branch of the square root, which is chosen such that condition

0≤arg (⋅ )≤π shall be satisfied. These unit vectors obey the orthogonality relations:
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( )0, .a as t s t× = ¹
r r

(9)

Then after scalar multiplication of the Maxwell’s equations (3) by unit vectors a→ z, a→ l  and using
simple conversion of vector algebra we obtain Ez ,l =a→ z ,l ⋅E

→ (k
→
, z), H z ,l =a→ z ,l ⋅H

→ (k
→
, z) in terms

of scalar potentials:

( ) ( )
( ) ( )

, , ,
, , .

t

t

e z a E z
h z a H z
k k

k k

= ×

= ×

rr r r
rr r r (10)

In the basis of orthogonal vectors (8), vector amplitudes E
→ (κ→ , z), H

→ (κ→ , z) can be written down as:

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

0

0

ˆ, , , , 4 , , ,
ˆ, , , , 4 , , .

E z V n z e z W h z i k c n z J z

H z V n z h z W e z i k c n z M z
e e e

m m m

k k k k p a k

k k k k p a k

= - + ×

= - + ×

rr r rr r r r r r r
rr r rr r r r r r r (11)

The following symbols are used in (11): V
→
η(n

→ , z) and α̂η(n
→ , z), (η =ε, μ) are the vector functions

and the dyad functions, respectively; W
→

η(κ
→ )– vector differential operator:

( ) ( ) ( ) ( )0 0, 1 , , , ,V n z z n a n z b n z n c n z zh h h hé ù= ´ + +ë û
r r r r r r r r r

(12)

( ) ( ) ( ) ( ) ( )0 0 0ˆ, , ,t t lz ll zl zza n z a n z a z a n z z z n ne e e e e e eº ´ ´ = - + -
r r r r r r r r

(13)

( ) ( )( ) ( ) ( )0 0 0 01 , ,zz zl z zl zzW a n z k n z i z n ke hk e e e eé ù= ´ - ¶ + -ë û
r r r r r r r

(14)

( )ˆ ˆˆ ˆ, , , .a a a a W We m e m e m e m® ® ® ® (15)

In expressions (12) – (15), scalars εστ ≡εστ(n
→ , z), μστ ≡μστ(n

→ , z), (σ, τ = z, l , t) are components
of the relevant dyads ε̑, μ̑ (1):

( ) ( )
( ) ( )

, z ,
, z .

n z a a
n z a a

st s t

st s t

e e

m m

= × ×

= × ×

r r r

r r r (16)

The scalar functions aη(n
→ , z), bη(n

→ , z), cη(n
→ , z), (η =ε, μ) that are used in (12) – (14) have the

form:
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,
,
,

zz ll zl lz

zt lz zz lt

lt zl ll zt

a
b
c

e

e

e

e e e e
e e e e
e e e e

= -
= -
= -

(17)

aε→aμ, bε→bμ, cε→ cμ, (ε→μ).

On the next step after scalar multiplication of the Maxwell’s equations (3) by the unit vector
a→ t , and using the expressions (11) we obtain:

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

, , 4 , ,

, , 4 , .
ss sp s

pp ps p

D h z D e z c q z

D e z D h z c q z

k k k k p k

k k k k p k

+ =

+ =

r r r r r

r r r r r (18)

Expressions (18) represent the system of coupled ordinary differential equations for two scalar
potentials e(κ→ , z) and h (κ→ , z) within the interval -b <z<0; the external sources are entered into
the quantities qv(κ→ , z); Dvξ(κ

→ ) are the scalar operators that depend on κ→  (v, ξ = s, p). These
operators in explicit form are written as follows:

( ) ( ) ( ) ( )

( ) ( ) ( )
( )

( )

0 0 0

0

1, ,
,

,
,

,

, , ;

s

z lz ll z zz zl

s p

q z ik z n e z d n M z
a n z
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i z i n
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q q J M M J

m m
m

e

k k

k
e ke e ke

e m

é ù
= - ´ + + × +ê ú

ê úë û

é ù+ ¶ + - ¶ + ×ë û

® « ® ® -

rr r r r r r
r

r r
r r

r
r r r r

(19)

( ) ( ) ( ) ( )
( )

( ) ( )
2 2
0

ˆ
;

, , , , ,
zz lz zl ll

ss
z

D i k
z z z za n z a n z a n z a n z a n ze e e m e

me e e e
k k k

é ù¶ ¶ ¶ ¶
= + + + -ê ú
¶ ¶ ¶ ¶ê úë û

r
r r r r r (20)

( ) ( )
( )

( )
( )

( )
( )

( )
( )

1
0

, ,, ,
;

, , , ,sp
e n z e n zc n z b n z

ik D i
z za n z a n z a n z a n z

m me e

e m e m
k k-

é ù ¶ ¶
= + - -ê ú

¶ ¶ê úë û

r rr r
r

r r r r (21)

( ), ,ss pp sp psD D D D e m® ® « (22)

where:

( )

,
,

, ,

zz tl zl tz

ll tz lz tl

d
e
d d e e

e

e

e m e m

e e e e
e e e e

e m

= -
= -

® ® ®
(23)
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Then after scalar multiplication of the Maxwell’s equations (3) by unit vectors a→ z, a→ l  and using
simple conversion of vector algebra we obtain Ez ,l =a→ z ,l ⋅E

→ (k
→
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of scalar potentials:
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→ , z), (σ, τ = z, l , t) are components
of the relevant dyads ε̑, μ̑ (1):
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aε→aμ, bε→bμ, cε→ cμ, (ε→μ).

On the next step after scalar multiplication of the Maxwell’s equations (3) by the unit vector
a→ t , and using the expressions (11) we obtain:
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Expressions (18) represent the system of coupled ordinary differential equations for two scalar
potentials e(κ→ , z) and h (κ→ , z) within the interval -b <z<0; the external sources are entered into
the quantities qv(κ→ , z); Dvξ(κ

→ ) are the scalar operators that depend on κ→  (v, ξ = s, p). These
operators in explicit form are written as follows:
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After the substituting expressions (11) into condition (4) we obtain boundary conditions for
scalar potentials e(κ→ , z), h (κ→ , z) that satisfied on all boundaries z = zj:

( ){ } ( ){ }
( ) ( ) ( ) ( ) ( ){ }
( ) ( ) ( ) ( ) ( ){ }

0

0

, 0, , 0,

1 , , , , 0,

1 , , , , 0.

zz z lz

zz z lz

e z h z

a n z i e z ik b n z h z

a n z i h z ik b n z e z

m m

e e

k k

m km k k

e ke k k

= =

é ù´ ¶ - - =ë û
é ù´ ¶ - - =ë û

r r

r r r r r

r r r r r
(24)

Substituting expressions (11), for vector amplitudes E
→ (κ→ , z), H

→ (κ→ , z), into impedance boun‐
dary conditions (5) we obtain two pair of equations for scalar potentials and their derivates.
The first pair of equations for lower boundary z = −b + 0 has the form:

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

0 0

0 0
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k k k k k

k k k k k k

é ù+ ¶ + =ê úë û
é ù é ù+ ¶ + + ¶ =ê ú ê úë û ë û

r r r r r

r r r r r r (25)

where:
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=

= +

=

=
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r
( )
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.
,

u u
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a n zm
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r
r r

r

(26)

In expressions (26) the equality is used L στ
(u)(κ→ )=a→ σ ⋅ L̂ (u) ⋅a→ τ, (σ, τ = z, l , t).
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The boundary conditions for top plane (z = −0) are similar to (25). They are resulting from the
following replacements in (25) – (26): bpp

(u)(κ→)→ −bpp
(a)(κ→ ),  aps

(u)(κ→)→ −aps
(a)(κ→),  bsp

(u)(κ→)→ −bsp
(a)(κ→ ),

bss
(u)(κ→)→ −bss

(a)(κ→ ); in formulas for app
(u)(κ→), asp

(u)(κ→ ), ass
(u)(κ→ ) upper index u → a and κ→ −κ.

2.2. Numerical solutions by finite-difference method

Now let’s build a numerical solution of the problem of monochromatic plane wave diffraction
on the inhomogeneous anisotropic layered structure. We will assume that the structure is
piecewise homogeneous along the axis z and within each homogeneous layer the anisotropic
material is gyrotropic one, or, particularly, an uniaxial material with arbitrary orientation of
the optical axes.

The electromagnetic properties of the benchmark structure in a fixed point of the space are
defined by permeability and permittivity dyads:
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Here, ε⊥(z), ε| |(z), f (z) and μ⊥(z), μ| |(z), g(z) are twice differentiable functions of the
variable z; Î  is the identity dyad; a→  and b

→
 are the unit vectors in the direction of the optical axes

which have the following components in the Cartesian coordinate system:
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For the sake of clarity, the sloping angles θa, θb and the azimuthal angles φa, φb, which
determine the optical axes direction, are shown in Fig. 3 and therewith we have:

2 , 2 ,
0 , 2 .

a b

a b

p q q p
j j p

- £ £
£ £

(29)

Figure 3. The optical axis orientation in the arbitrary layer
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After the substituting expressions (11) into condition (4) we obtain boundary conditions for
scalar potentials e(κ→ , z), h (κ→ , z) that satisfied on all boundaries z = zj:
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Substituting expressions (11), for vector amplitudes E
→ (κ→ , z), H

→ (κ→ , z), into impedance boun‐
dary conditions (5) we obtain two pair of equations for scalar potentials and their derivates.
The first pair of equations for lower boundary z = −b + 0 has the form:
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where:
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In expressions (26) the equality is used L στ
(u)(κ→ )=a→ σ ⋅ L̂ (u) ⋅a→ τ, (σ, τ = z, l , t).
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The boundary conditions for top plane (z = −0) are similar to (25). They are resulting from the
following replacements in (25) – (26): bpp

(u)(κ→)→ −bpp
(a)(κ→ ),  aps

(u)(κ→)→ −aps
(a)(κ→),  bsp

(u)(κ→)→ −bsp
(a)(κ→ ),

bss
(u)(κ→)→ −bss

(a)(κ→ ); in formulas for app
(u)(κ→), asp

(u)(κ→ ), ass
(u)(κ→ ) upper index u → a and κ→ −κ.

2.2. Numerical solutions by finite-difference method

Now let’s build a numerical solution of the problem of monochromatic plane wave diffraction
on the inhomogeneous anisotropic layered structure. We will assume that the structure is
piecewise homogeneous along the axis z and within each homogeneous layer the anisotropic
material is gyrotropic one, or, particularly, an uniaxial material with arbitrary orientation of
the optical axes.

The electromagnetic properties of the benchmark structure in a fixed point of the space are
defined by permeability and permittivity dyads:
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Here, ε⊥(z), ε| |(z), f (z) and μ⊥(z), μ| |(z), g(z) are twice differentiable functions of the
variable z; Î  is the identity dyad; a→  and b

→
 are the unit vectors in the direction of the optical axes

which have the following components in the Cartesian coordinate system:
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For the sake of clarity, the sloping angles θa, θb and the azimuthal angles φa, φb, which
determine the optical axes direction, are shown in Fig. 3 and therewith we have:
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Figure 3. The optical axis orientation in the arbitrary layer
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At the same time we consider that an incident (s- or p-polarized) plane wave arrives from the
free half-space (z >0) in the direction of the unit vector l→ in which is determined by the sloping
angle θ and the azimuthal angle φ, as depicted in Fig.2. Its components in the Cartesian
coordinate system are as follows:

( )cos cos , cos sin , sin ,inl q j q j q= -
r

(30)

2 2 ,
0 2 .
p q p

j p
- £ £

£ £
(31)

Let us assume the inhomogeneous anisotropic structures under consideration with thickness
b are placed on isotropic (or anisotropic) homogeneous substrate with permittivity and
permeability εc, μc. In general case, εc and μc are complex values. We assume also that
anisotropic layer is bounded above (z >0) by free half-spice with ε0 and μ0. In the case presented
here, the anisotropic layer is inhomogeneous in the thickness; it means, that structure’s
parameters are depended on the coordinate z, but they are invariable along the axes x and y.
Generally these parameters are piecewise continuous functions of z.

Then scalar potentials e(κ→ , z), h (κ→ , z) beyond the anisotropic layer will be presented by the
following expressions:

• in the free half-spice (0< z < + ∞):
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( ) ( )
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r
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• in the substrate (−∞ < z < −b):
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é ù= +ë û
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r

r (33)

Here γ0 =k0sinθ; nc = εcμc −cosθ, (0≤argnc ≤π); complex values Ap and As characterize
electromagnetic (s or p –polarized) wave’s components. The s- (p-) polarized light corresponds
to an electric (magnetic) field be parallel to the layers.

In the expressions (32) – (33) we have introduced the complex reflection Rvξ(v, ξ = p, s) and
transmission Tvξ coefficients, which depend on: wave number in the free space k0; angles θ, φ
and other geometrical and electrodynamical parameters of the problem. The coefficients with
similar lower indices (v =ξ) describe conversion of the incident wave into the wave with the
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same polarization. By analogy, reflection and transmission coefficients with dissimilar lower
indexes (v ≠ξ) describe conversion of the incident wave into the wave with the orthogonal
polarization. In that notation, the left lower index ν corresponds to the polarization of the
reflected/transmitted wave; the right lower index ξ corresponds to the polarization of the
incident wave.

Notice, that the presence of the “crossed” reflection (Rsp, Rps) and transmission coefficients
(Tsp, T ps), which are responsible for incident plane wave depolarization, is the specific
properties of anisotropic media (see, for example [31]).

As it follows from the expressions (32) – (33):

• for the case of s – polarized incident plane wave (As =1, Ap =0):

( )
( )
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( )
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(34)

• for the case of p – polarized incident plane wave (As =0, Ap =1):
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The impedance boundary conditions (25) for the scalar potentials can be rewritten in the
following form:
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(37)
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At the same time we consider that an incident (s- or p-polarized) plane wave arrives from the
free half-space (z >0) in the direction of the unit vector l→ in which is determined by the sloping
angle θ and the azimuthal angle φ, as depicted in Fig.2. Its components in the Cartesian
coordinate system are as follows:
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Let us assume the inhomogeneous anisotropic structures under consideration with thickness
b are placed on isotropic (or anisotropic) homogeneous substrate with permittivity and
permeability εc, μc. In general case, εc and μc are complex values. We assume also that
anisotropic layer is bounded above (z >0) by free half-spice with ε0 and μ0. In the case presented
here, the anisotropic layer is inhomogeneous in the thickness; it means, that structure’s
parameters are depended on the coordinate z, but they are invariable along the axes x and y.
Generally these parameters are piecewise continuous functions of z.

Then scalar potentials e(κ→ , z), h (κ→ , z) beyond the anisotropic layer will be presented by the
following expressions:

• in the free half-spice (0< z < + ∞):
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• in the substrate (−∞ < z < −b):
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Here γ0 =k0sinθ; nc = εcμc −cosθ, (0≤argnc ≤π); complex values Ap and As characterize
electromagnetic (s or p –polarized) wave’s components. The s- (p-) polarized light corresponds
to an electric (magnetic) field be parallel to the layers.

In the expressions (32) – (33) we have introduced the complex reflection Rvξ(v, ξ = p, s) and
transmission Tvξ coefficients, which depend on: wave number in the free space k0; angles θ, φ
and other geometrical and electrodynamical parameters of the problem. The coefficients with
similar lower indices (v =ξ) describe conversion of the incident wave into the wave with the
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same polarization. By analogy, reflection and transmission coefficients with dissimilar lower
indexes (v ≠ξ) describe conversion of the incident wave into the wave with the orthogonal
polarization. In that notation, the left lower index ν corresponds to the polarization of the
reflected/transmitted wave; the right lower index ξ corresponds to the polarization of the
incident wave.

Notice, that the presence of the “crossed” reflection (Rsp, Rps) and transmission coefficients
(Tsp, T ps), which are responsible for incident plane wave depolarization, is the specific
properties of anisotropic media (see, for example [31]).

As it follows from the expressions (32) – (33):

• for the case of s – polarized incident plane wave (As =1, Ap =0):
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• for the case of p – polarized incident plane wave (As =0, Ap =1):
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The impedance boundary conditions (25) for the scalar potentials can be rewritten in the
following form:
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The values λvξ
(a,u), f v are depending on the angles θ and φ and have the form:
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Let us build the finite-difference procedure that approximately describes the system of coupled
differential equations (18) and the boundary conditions (36) – (37). Taking into account the
fact, that the external sources are absent inside the anisotropic layer, the substitutions qp =qs ≡0
are required in formulas (18).

At first, we divide the segment −b < z <0 on the N equal parts. After that the grid step is
immediately obtained as Δb =b / N , and then the grid’s knot set z0, z1, ..., zN  is defined by
formula zj = jΔb −b, ( j =0, 1, ..., N ). Notice, that this knot set includes boundary points
z0 = −b and zN =0 as well. The partial derivatives in the differential equations (18) are approxi‐
mated by the central difference; in the boundary conditions (36) – (37), they are approximated
by the left-hand difference and the right-hand difference, correspondingly. Then, we obtain
the system of linear algebraic equations with dimension 2N + 2 for the unknown complex
variables xk ≡h (κ→ , zk ), yk ≡ e(κ→ , zk ), (k =0, 1, ..., N ). For the case of s-polarized wave this
system has the form:
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Here, the first equation set (41) is corresponding to the finite-difference approximation of the
boundary conditions (36) imposed at z =0, As =1, Ap =0. The next equation set (42) is the finite-
difference approximation of the differential equations (18) and the next one equation set (43)
is the finite-difference approximation of the boundary conditions (37) imposed
z = −b; f ss =Δb f s.

The coefficients Aj, ..., Mj that enter the equations (42) are given by the expressions:
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(44)

The system of equations for the p-polarized incident plane wave, can be received from (41) –
(43) by the substitutions f ss→0 and 0→ f pp =Δb f p in the systems (41), (43). For the case, when
anisotropic layer is uniaxial media: f (z)= g(z)≡0.
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The values λvξ
(a,u), f v are depending on the angles θ and φ and have the form:
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Let us build the finite-difference procedure that approximately describes the system of coupled
differential equations (18) and the boundary conditions (36) – (37). Taking into account the
fact, that the external sources are absent inside the anisotropic layer, the substitutions qp =qs ≡0
are required in formulas (18).

At first, we divide the segment −b < z <0 on the N equal parts. After that the grid step is
immediately obtained as Δb =b / N , and then the grid’s knot set z0, z1, ..., zN  is defined by
formula zj = jΔb −b, ( j =0, 1, ..., N ). Notice, that this knot set includes boundary points
z0 = −b and zN =0 as well. The partial derivatives in the differential equations (18) are approxi‐
mated by the central difference; in the boundary conditions (36) – (37), they are approximated
by the left-hand difference and the right-hand difference, correspondingly. Then, we obtain
the system of linear algebraic equations with dimension 2N + 2 for the unknown complex
variables xk ≡h (κ→ , zk ), yk ≡ e(κ→ , zk ), (k =0, 1, ..., N ). For the case of s-polarized wave this
system has the form:

Advances in Photonic Crystals90

( )( ) ( )

( ) ( )( )
0 1 0

0 0 1

1 ,

1 0;

a a
N ss N sp N ss

a a
ps N N pp N

x ik b x ik b y f

ik b x y ik b y

l l

l l

-

-

ì - - - =ï
í
ï- + - - =
î

(41)

( )

1 1 1 1

1 1 1 1

0,
0,

1, 2, ..., 1 ;

j j j j j j j j j j j j

j j j j j j j j j j j j

A x B x C x D y F y G y
P x Q x R x K y L y M y

j N

+ - + -

+ - + -

ì + + + + + =ï
í + + - - - =ïî

= -

(42)

( )( ) ( )

( )( ) ( )

1 0 0 0 0

1 0 0 0 0

1 ,

1 0.

u u
ss sp ss

u u
pp ps

x x ik b ik b y f

y y ik b ik b y

l l

l l

ì - + - =ï
í
ï - + - =
î

(43)

Here, the first equation set (41) is corresponding to the finite-difference approximation of the
boundary conditions (36) imposed at z =0, As =1, Ap =0. The next equation set (42) is the finite-
difference approximation of the differential equations (18) and the next one equation set (43)
is the finite-difference approximation of the boundary conditions (37) imposed
z = −b; f ss =Δb f s.

The coefficients Aj, ..., Mj that enter the equations (42) are given by the expressions:
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(44)

The system of equations for the p-polarized incident plane wave, can be received from (41) –
(43) by the substitutions f ss→0 and 0→ f pp =Δb f p in the systems (41), (43). For the case, when
anisotropic layer is uniaxial media: f (z)= g(z)≡0.
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As a result, a set of linear algebraic equations (41) – (43) with dimension 2N + 2 is derived.
Obtained linear system of equations can be solved by standard techniques such as Gauss
method. By solving it we find the unknown transmission and reflection factors for the structure
under study.

3. Results and discussion

In this section we present the results of numerical simulations that illustrate the influence of
anisotropy and inhomogeneities of the materials composed of layers in the structure being
studied upon the mechanisms of diffraction of the incident plane electromagnetic wave.

All structures presented here are based on the porous silicon (PSi). Today, PSi plays an
important role in a number of applications. These include microcavities [11,32], photonic
crystals [33], waveguide structures [34], photodetectors [35], sensors [36], etc. Besides, PSi has
the potential to be an optically active material in the case when an acceptable electro- or thermo-
optic media is infiltrated into the pores [32]. Therefore, porous silicon is an excellent candidate
for tunable optical interconnects and optical switches. For all these applications a strict control
over the reflectance and transmission properties of PSi layers is required.

Today porous silicon attracts a great deal of attention because it’s a material with great
technological promise. The main advantages of PSi may be summarized as follows:

• PSi is a simple and low cost dielectric material that can be easy prepared;

• PSi is a promising material for photonic applications due to its excellent thermal and
mechanical properties, obvious compatibility with standard Si-based technologies;

• PSi is a suitable material for the formation of arbitrary multilayers. PSi multilayers are almost
arbitrary combination of layers with different thickness and porosity (refractive index),
because these two parameters can be relatively easily controlled during the formation
process of porous silicon.

It is well known that the PSi films can be produced by anode electrochemical etching of the
monocrystalline silicon plates [37]. The nanometer-size pores tend to grow in the direction of
electrochemical etching and, accordingly, nanocrystal formation sets in. The porosity P and
the effective refractive index neff = εeff  of PSi are controlled by the current density under
electrochemical etching, because the effective refractive index of PSi is determined by the
porosity and refractive index of the medium inside the pores. Thus, by periodically varying
the magnitude of current density we are able to obtain the structure with alternating layers of
different porosity and, consequently, with different refractive indices.

The bulk silicon crystal is not birefringent due to its cubic crystal symmetry. However, porous
modification of silicon can exhibit strong in-plane anisotropy of the refractive index [37,38].
The observed birefringence depends on the porosity, the size of Si nanocrystals, the spacing
between them and the dielectric properties of surrounding medium. As was demonstrated in
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[39], PSi layers, with dimension of the pore about 10-30 nm, have properties of the negative
uniaxial crystal with diagonal permittivity tensor
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whose birefringence magnitude Δn =no −ne is up to 0.24. In expression (45) n0 is the index of
refraction for the waves polarized perpendicularly to the optical axis, which are called
“ordinary” or “o – waves”; ne is the index of refraction for the waves polarized parallel to the
optical axis, which are called “extraordinary” or “e – waves”. It is important to note that if
ne >n0 the crystal is said to be positively uniaxial, in opposite case if ne <n0 the crystal is said to
be negatively uniaxial. When a linearly polarized wave of arbitrary polarization direction
enters an anisotropic medium, it will be split into two components polarized along the two
allowed polarization directions which are determined by the direction of the wave vector
relative to the axes of the indicatrix. As a result, each s- or p- polarized plane wave incident on
such an anisotropic photonic structure will generate two reflected and two transmitted plane
waves containing both s- and p- polarized planewaves. For the special cases when the principal
axes of the layers are parallel or perpendicular to the fixed axes, the s-and p-polarized waves
remain uncoupled [26].

Two types of PBG structures are investigated, namely, a distributed Bragg reflector (DBR) in
other words photonic crystal (PhC) and a microcavity.

Figure 4. Schematic presentation of PSi-based PhC: the dark layers have high porosity (low refractive index) and the
bright layers are of low porosity (high refractive index)
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As a result, a set of linear algebraic equations (41) – (43) with dimension 2N + 2 is derived.
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method. By solving it we find the unknown transmission and reflection factors for the structure
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3. Results and discussion

In this section we present the results of numerical simulations that illustrate the influence of
anisotropy and inhomogeneities of the materials composed of layers in the structure being
studied upon the mechanisms of diffraction of the incident plane electromagnetic wave.

All structures presented here are based on the porous silicon (PSi). Today, PSi plays an
important role in a number of applications. These include microcavities [11,32], photonic
crystals [33], waveguide structures [34], photodetectors [35], sensors [36], etc. Besides, PSi has
the potential to be an optically active material in the case when an acceptable electro- or thermo-
optic media is infiltrated into the pores [32]. Therefore, porous silicon is an excellent candidate
for tunable optical interconnects and optical switches. For all these applications a strict control
over the reflectance and transmission properties of PSi layers is required.

Today porous silicon attracts a great deal of attention because it’s a material with great
technological promise. The main advantages of PSi may be summarized as follows:

• PSi is a simple and low cost dielectric material that can be easy prepared;

• PSi is a promising material for photonic applications due to its excellent thermal and
mechanical properties, obvious compatibility with standard Si-based technologies;

• PSi is a suitable material for the formation of arbitrary multilayers. PSi multilayers are almost
arbitrary combination of layers with different thickness and porosity (refractive index),
because these two parameters can be relatively easily controlled during the formation
process of porous silicon.

It is well known that the PSi films can be produced by anode electrochemical etching of the
monocrystalline silicon plates [37]. The nanometer-size pores tend to grow in the direction of
electrochemical etching and, accordingly, nanocrystal formation sets in. The porosity P and
the effective refractive index neff = εeff  of PSi are controlled by the current density under
electrochemical etching, because the effective refractive index of PSi is determined by the
porosity and refractive index of the medium inside the pores. Thus, by periodically varying
the magnitude of current density we are able to obtain the structure with alternating layers of
different porosity and, consequently, with different refractive indices.

The bulk silicon crystal is not birefringent due to its cubic crystal symmetry. However, porous
modification of silicon can exhibit strong in-plane anisotropy of the refractive index [37,38].
The observed birefringence depends on the porosity, the size of Si nanocrystals, the spacing
between them and the dielectric properties of surrounding medium. As was demonstrated in
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[39], PSi layers, with dimension of the pore about 10-30 nm, have properties of the negative
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whose birefringence magnitude Δn =no −ne is up to 0.24. In expression (45) n0 is the index of
refraction for the waves polarized perpendicularly to the optical axis, which are called
“ordinary” or “o – waves”; ne is the index of refraction for the waves polarized parallel to the
optical axis, which are called “extraordinary” or “e – waves”. It is important to note that if
ne >n0 the crystal is said to be positively uniaxial, in opposite case if ne <n0 the crystal is said to
be negatively uniaxial. When a linearly polarized wave of arbitrary polarization direction
enters an anisotropic medium, it will be split into two components polarized along the two
allowed polarization directions which are determined by the direction of the wave vector
relative to the axes of the indicatrix. As a result, each s- or p- polarized plane wave incident on
such an anisotropic photonic structure will generate two reflected and two transmitted plane
waves containing both s- and p- polarized planewaves. For the special cases when the principal
axes of the layers are parallel or perpendicular to the fixed axes, the s-and p-polarized waves
remain uncoupled [26].

Two types of PBG structures are investigated, namely, a distributed Bragg reflector (DBR) in
other words photonic crystal (PhC) and a microcavity.

Figure 4. Schematic presentation of PSi-based PhC: the dark layers have high porosity (low refractive index) and the
bright layers are of low porosity (high refractive index)
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Figure 5. Reflectance spectra Rss of the PhC: solid line – numerical simulation; scatter – experimental results [39]. The

calculations involved the value of sloping and azimutal angles: θ= 700, θa = 450 and φ=φa = 00

Figure 6. Reflectance spectra Rss as function of incident sloping angle θ. In this case θa = 450, λc = 800 nm

The simplest multilayered PBG structure is one-dimensional photonic crystal as depicted on
Fig. 4. It’s well known that PhCs are class of optical media represented by the natural or
artificial structures with periodic modulation of the refractive index. Such optical media have
some peculiar properties which gives an oportunity for a number of applications to be
implemented on their basis. The most important property which determines practical signif‐
icance of the PhC is the presence of the omnidirectional photonic band gap. The PBG refers to
the energy or frequency range where the light propagation is prohibited inside the PhC. As an
example of such a PhC one can give a Bragg grating which is widely used as a distributed
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reflector in vertical cavity surface emitting lasers. Besides, such structures are widely used as
antireflecting coatings which allow dramatically decrease the reflectance from the surface and
are used to improve the quality of lenses, prisms and other optical components.

Figure 7. Reflectance spectra Rss as function of the incident azimuthal angle φ

Figure 8. Reflectance spectra Rps as function of the incident azimuthal angle φ

First, we study light propagation in a one-dimensional photonic crystal, which was identical
to PhC that was experimental investigated by Aktsipetrov et al. [39]. It consists of 25 pairs
(building blocks) of lossy anisotropic layers with refractive indices: no1 =1.39 + 0.008i,
ne1 =1.32 + 0.008i, no2 =1.58 + 0.008i, ne2 =1.5 + 0.008i. The materials are assumed to be nonmag‐
netic so that μ =1 throughout the whole layered medium. The physical thickness of the layers
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Figure 6. Reflectance spectra Rss as function of incident sloping angle θ. In this case θa = 450, λc = 800 nm

The simplest multilayered PBG structure is one-dimensional photonic crystal as depicted on
Fig. 4. It’s well known that PhCs are class of optical media represented by the natural or
artificial structures with periodic modulation of the refractive index. Such optical media have
some peculiar properties which gives an oportunity for a number of applications to be
implemented on their basis. The most important property which determines practical signif‐
icance of the PhC is the presence of the omnidirectional photonic band gap. The PBG refers to
the energy or frequency range where the light propagation is prohibited inside the PhC. As an
example of such a PhC one can give a Bragg grating which is widely used as a distributed

Advances in Photonic Crystals94

reflector in vertical cavity surface emitting lasers. Besides, such structures are widely used as
antireflecting coatings which allow dramatically decrease the reflectance from the surface and
are used to improve the quality of lenses, prisms and other optical components.

Figure 7. Reflectance spectra Rss as function of the incident azimuthal angle φ

Figure 8. Reflectance spectra Rps as function of the incident azimuthal angle φ

First, we study light propagation in a one-dimensional photonic crystal, which was identical
to PhC that was experimental investigated by Aktsipetrov et al. [39]. It consists of 25 pairs
(building blocks) of lossy anisotropic layers with refractive indices: no1 =1.39 + 0.008i,
ne1 =1.32 + 0.008i, no2 =1.58 + 0.008i, ne2 =1.5 + 0.008i. The materials are assumed to be nonmag‐
netic so that μ =1 throughout the whole layered medium. The physical thickness of the layers

Propagation of Electromagnetic Waves in Anisotropic Photonic Structures
http://dx.doi.org/10.5772/54847

95



was chosen such that the optical thickness of layers was equal to λc / 4, where λc =800 nm is the
Bragg wavelength corresponding to the photonic band gap (PBG) centre at the normal
incidence (θ =90 ). The numerical modeling were made for the case where the optical axes of
all structure layers were oriented in one and the same direction.

The comparison of the results of the proposed numerical scheme with results of the cited
experimental work [39] is presented on Fig. 5. The reflectance spectra demonstrate existence
of a PBG with a reflectance of about 0.9 in the wavelength region of 770–860 nm. As we see
theoretical result is in very good agreement with the experimental one. So proposed method
can be successfully used for computation of the spectral characteristics of 1D anisotropic
layered structures.

For all the structures discussed here, the reflection/transmission spectrum is strongly depend‐
ent on the incident sloping θ and azimuthal φ angles. The dependences of the reflection spectra
of PSi-based distributed Bragg reflectors from variation of the sloping angle θ and the
azimuthal angle φ of the incident s-polarized plane wave are shown in Fig. 6. – Fig. 8. In all
cases we take λc =800 nm.

It may be seen from the Fig. 6 that in agreement with the theory the width of the high reflectance
region (width of the photonic band gap) is decreased with decreasing the sloping angle θ, and
the central wavelength of PBG is shifted to the short wavelength region. In this case we assume
that φ =φa =00 in result the conversion incident wave to wave with orthogonal polarization is
absent.

The influence of the azimuthal angle φ on the conversion of the incident plane wave is show
in Fig.7-8. The curves presented are calculated at θ =800, θa =450 and φa =00. Note that in a
uniaxial crystal the maximum angular separation of the “o” and “e” waves, in other words the
maximum conversion of the incident linearly s- or p- polarized plane wave into the cross-
polarized wave, occurs when the wave vector has the angle φmax ≈450 with the optic axis [31].
Also we should note that the value of φmax is proportional to |no −ne | . Analyzing the figures
7-8, we can see that when the incident azimuthal angle φ varies:

• the reflectance spectra demonstrate conversion of the incident s-polarized plane wave into
the wave with same (Fig. 7) and orthogonal (Fig. 8) polarization. It occurs within the wide
range of the incident azimuthal angles;

• the spectra also show a shift in the PBG spectral position when the azimuthal angle is
changed. The largest shift, about 20 nm, is observed under variation of the incident azimu‐
thal angle φ from 00 to 900. This results are in agreement with [39];

• the maximum conversion of the incident s-polarized wave into the wave with orthogonal
polarization occurs at the incident azimuthal angle φ ≈450 (see Fig. 8(b)), that is in conformity
with [31]. In this case two reflection peaks with magnitude about 0.3 are clearly observed
in the reflectance spectra Rps.The first reflection peak with the central wavelength 780 nm
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is corresponding to the short-wavelength PBG edge for case φ =900. The second one with
the central wavelength 835 nm – to the long-wavelength PBG edge for case φ =00

The influence of the sloping and the azimuthal angles θa, φa (which determine direction of the
optical axes) on the conversion incident s-polarized plane wave into wave with orthogonal
polarization at the Bragg wavelength (λc =800 nm) is shown in Fig. 9(a,b). Reflection coefficients

Rps is calculated at incident angles θ =800 and φ =00. It is clear from this graph that:

• the maximum value of Rps is around 0.4 (see Fig. 9(b)) and corresponds to the sloping angle

θa =00 and the azimuthal angles φa =m ⋅π / 4, (m =1, 3, 5, 7) that is in accordance with [31];

• in the case φa =m ⋅π / 2, (m =0, 1, 2, 3, 4)the conversion of the incident wave into the wave
with orthogonal polarizations is virtually absent Rps ≈0.

Finally, we can conclude that reflection coefficients of the investigated structures are very
sensitive to the azimuthal angle φa and the incidence angles θ and φ. When the angles of

incidence θ =900 φ =00 and the azimuthal angle φa possesses values 0° or 90°, the s- and p-modes
are almost uncoupled, and the value of the Rps remains very small. The situation is similar to
that one in the case of isotropic materials. With the exception of these particular values of φa,
there is a great mixing between s-and p-modes that gives rise to the emergence of a large
reflection coefficient Rps.

(a) (b) 

Figure 9. Reflection coefficient Rps as function of the sloping and the azimuthal angles

The PSi-based mirrors studied above are periodic structures, but one important property of
PhC is the presence of narrow resonance (localized defect modes) in the PBG region when a
disorder is introduced in their periodic structure. Usually “defect” is a layer with half-
wavelength optical thickness that inserted in the middle of the dielectric stack. Fig. 10 shows
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a scheme of a typical PSi-based microcavity structure consisting in an active layer sandwiched
between two distributed Bragg reflectors (PSi mirrors). At that, the reflectance spectrum of the
whole structure is changed. As a rule, when the parameters of defect layer are properly
selected, sharp transmittance peak appears within the main reflectance band. The wavelength
of the transmittance peak corresponds to the resonant wavelength of the defect. For instance,
if the thickness of the defect layer is twice larger than it was in defectless structure, the
transmittance peak appears at the Bragg wavelength of the corresponding defectless structure.
Thus, if the radiation with wavelength equal to Bragg wavelength of defectless reflector falls
at this structure it will pass the structure almost without the reflectance. If the defect thickness
will be slightly different, the wavelength of the transmittance peak will be different as well.

Figure 10. Schematic presentation of PSi-based microcavity

The advantage of using PSi microcavities is that the position of the transmittance peak is
completely tunable by changing the properties of the central layer (i.e. porosity and thickness)
during the electrochemical etching condition and by the infiltration of organic molecules (for
example liquid crystals [32]).

Now, let’s discuss the influence of anisotropy of layers on the optical properties of the
microcavitiy. In cited case the PSi-based microcavity consist of two mirrors (each of them
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consists of 12 building blocks) separated by active layer with optical thickness λc / 2 and low
porosity.

The Fig. 11 shows the reflectance spectra of the microcavity for both s- (solid curve) and p-
(dashed curve) polarized incident plane waves. It should be noted that spectra reveal the
presence of photonic band gap with a reflectance of about 0.85-0.9 and microcavity mode
within the PBG for both polarizations. Analyzing both spectra together, we can observe a
spectral shift of the microcavity mode when the incident polarization is changed. This
particular effect is also the manifests an attribute of birefringence and can be used in dividing
the incident radiation polarization. In our case, the central wavelengths of resonance peaks are
λsc =796 nm and λpc =817 nmfor s- and p- polarization, respectively. Taking into account this
result, we can consider that the variation in the incident radiation polarization brings about
the shift Δλ = |λpc −λsc |of the microcavity mode, and this shift may be as high as 21 nm for
presented case.

Figure 11. s - and p- polarized reflectance spectra of microcavity. In this case λc = 800 nm, θ= 800, φ=φa = 00, θa = 450

Figure 12 plots the spectral shift of the microcavity mode for p-and s-polarized light, as a
function of the of azimuthal angle φa. From this figure, some particular effects can be high‐
lighted:

• the orientation of the optical axes of the layers with respect to incidence plane of s- or p-
polarized waves influences on the quantity of resonant peaks within PBG area and its
location on the wavelength scale. Particularly, with the increasing of azimuthal angle, the
“additional” well recognized resonant peak is appeared in the stopbands for both polari‐
zations of the incident plane waves. It correlates with results of the paper [40];
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a scheme of a typical PSi-based microcavity structure consisting in an active layer sandwiched
between two distributed Bragg reflectors (PSi mirrors). At that, the reflectance spectrum of the
whole structure is changed. As a rule, when the parameters of defect layer are properly
selected, sharp transmittance peak appears within the main reflectance band. The wavelength
of the transmittance peak corresponds to the resonant wavelength of the defect. For instance,
if the thickness of the defect layer is twice larger than it was in defectless structure, the
transmittance peak appears at the Bragg wavelength of the corresponding defectless structure.
Thus, if the radiation with wavelength equal to Bragg wavelength of defectless reflector falls
at this structure it will pass the structure almost without the reflectance. If the defect thickness
will be slightly different, the wavelength of the transmittance peak will be different as well.

Figure 10. Schematic presentation of PSi-based microcavity

The advantage of using PSi microcavities is that the position of the transmittance peak is
completely tunable by changing the properties of the central layer (i.e. porosity and thickness)
during the electrochemical etching condition and by the infiltration of organic molecules (for
example liquid crystals [32]).

Now, let’s discuss the influence of anisotropy of layers on the optical properties of the
microcavitiy. In cited case the PSi-based microcavity consist of two mirrors (each of them
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consists of 12 building blocks) separated by active layer with optical thickness λc / 2 and low
porosity.
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(dashed curve) polarized incident plane waves. It should be noted that spectra reveal the
presence of photonic band gap with a reflectance of about 0.85-0.9 and microcavity mode
within the PBG for both polarizations. Analyzing both spectra together, we can observe a
spectral shift of the microcavity mode when the incident polarization is changed. This
particular effect is also the manifests an attribute of birefringence and can be used in dividing
the incident radiation polarization. In our case, the central wavelengths of resonance peaks are
λsc =796 nm and λpc =817 nmfor s- and p- polarization, respectively. Taking into account this
result, we can consider that the variation in the incident radiation polarization brings about
the shift Δλ = |λpc −λsc |of the microcavity mode, and this shift may be as high as 21 nm for
presented case.
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• as a general trend, the value of the “main” resonant peak is decreasing with increasing the
azimuthal angle φa and it completely disappears when φa =900. There against, the magnitude
of the “additional” resonance peak is increasing with increasing φa and it has maximum
value in the mentioned above case;

• both transmission peaks have identical magnitudes when azimuthal angle φa≈480 for both
s- and p- polarization;

• the extreme cases, namely φa =00 and φa =900, correspond to presence of single-defect mode
within PBG region, while in the other cases this mode splits into two defect modes. The
comparison of the results presented in Fig. 12(a) and 12(b) shows that λs0 =λp90 =796 nm and
λs90 =λp0 =817 nm. Here we used next definition for central wavelengths – λxy. In this
notation, the left subscript index x = s, p is corresponding to polarization of incident wave;
the right subscript index y =0, 90 is corresponding to quantity of azimuthal angle φa;

• also, in the extreme cases, we observed the shift of the resonance peaks
Δλ = |λp0−λp90 | = |λs0−λs90 |  about 21 nm to the short-wavelength and long-wavelength
regions for p- and s-polarization, respectively. This result is in good agreement with the
experimental results [39].

(a) (b) 

Figure 12. Microcavity resonance shift based on the azimuthal angle φa change. Reflectance spectra for p- and s- po‐
larized incident plane wave are depicted on Fig. 12(a) and Fig. 12(b), respectively.

The Fig. 13 shows characteristics similar to those one presented on Fig.12, but for cross-
polarized components Rsp and Rps. In these figures we can see that within the PBGs areas the
reflection coefficients Rsp and Rps have local minimum that occur around the wavelength
λ ≈ (λp0 + λp90) / 2≈ (λs0 + λs90) / 2.

Advances in Photonic Crystals100

Figure 13. Reflectance spectra Rsp (a) and Rps (b) as function of the azimuthal angle φa. In this case λc = 800 nm, θ= 800,

φ= 00, θa = 450.

4. Conclusions

In conclusion, the present chapter describes the mathematical background for calculation of
spectral characteristics of the birefringent layered media. On the basis of the presented
theoretical description and its numerical approximation the influence of material anisotropy
of PSi-based layered photonic structures on their optical properties has been theoretically
investigated. All these multilayer PBG structures have been designed for 0.8 μm applications.

The reflectance spectra of some photonic structures for both polarization of the incident plane
wave are calculated. The agreement between the numerical calculations and the experiments
[39] are obtained. It was shown numerically that anisotropy of layered media reduces to
polarization transformation of the incident plane wave. Notably, the maximum conversion of
incident plane wave into the wave with orthogonal polarization occurs when the optical axis
of the structure have angles φa =m ⋅π / 4, (m =1, 3, 5, 7) with respect to the incidence plane of
s- or p-polarization incident plane. In contrast to this, the conversion of the incident wave into
the wave with orthogonal polarizations is absent when φa =m ⋅π / 2, (m =0, 1, 2, 3, 4).

Also from our numerical calculations, we conclude that the location of the PBG edges and
location of microcavity modes within PBG region are different for s- and p- polarized waves
and their spectral positions change under rotation of the optical axis of the structure with
respect to the wave vector of the incident electromagnetic wave. The variation of polarization
of the incident radiation brings about the shift of the microcavity mode, and this shift may be
as high as 21 nm for discussed case. This particular effect can be used in the devices that divide
the incident radiation according to polarization.

In addition the obtained results can be used in the designing of PSi-based photonic devices:
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Figure 13. Reflectance spectra Rsp (a) and Rps (b) as function of the azimuthal angle φa. In this case λc = 800 nm, θ= 800,

φ= 00, θa = 450.

4. Conclusions

In conclusion, the present chapter describes the mathematical background for calculation of
spectral characteristics of the birefringent layered media. On the basis of the presented
theoretical description and its numerical approximation the influence of material anisotropy
of PSi-based layered photonic structures on their optical properties has been theoretically
investigated. All these multilayer PBG structures have been designed for 0.8 μm applications.

The reflectance spectra of some photonic structures for both polarization of the incident plane
wave are calculated. The agreement between the numerical calculations and the experiments
[39] are obtained. It was shown numerically that anisotropy of layered media reduces to
polarization transformation of the incident plane wave. Notably, the maximum conversion of
incident plane wave into the wave with orthogonal polarization occurs when the optical axis
of the structure have angles φa =m ⋅π / 4, (m =1, 3, 5, 7) with respect to the incidence plane of
s- or p-polarization incident plane. In contrast to this, the conversion of the incident wave into
the wave with orthogonal polarizations is absent when φa =m ⋅π / 2, (m =0, 1, 2, 3, 4).

Also from our numerical calculations, we conclude that the location of the PBG edges and
location of microcavity modes within PBG region are different for s- and p- polarized waves
and their spectral positions change under rotation of the optical axis of the structure with
respect to the wave vector of the incident electromagnetic wave. The variation of polarization
of the incident radiation brings about the shift of the microcavity mode, and this shift may be
as high as 21 nm for discussed case. This particular effect can be used in the devices that divide
the incident radiation according to polarization.

In addition the obtained results can be used in the designing of PSi-based photonic devices:

Propagation of Electromagnetic Waves in Anisotropic Photonic Structures
http://dx.doi.org/10.5772/54847

101



• spectral- and polarization-selective elements (filters);

• electrically tunable filters and optical switches. In this instance it is required that the pore
be filled with liquid crystals;

• polarization converters;

• time-delay elements for optically controlled phased-array antenna system.
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• spectral- and polarization-selective elements (filters);

• electrically tunable filters and optical switches. In this instance it is required that the pore
be filled with liquid crystals;

• polarization converters;

• time-delay elements for optically controlled phased-array antenna system.
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1. Introduction

Photonic crystals (PC) are periodic structures with variation of the refractive index in one, two
or three spatial dimensions. The dynamic development of experimental and theoretical works
on photonic crystals has been launched by Yablonovitch [1],[2] and John [3] publications,
although the idea of periodic structures had been known since Rayleigh [4].

The main properties of photonic crystals stem from the existence of frequency ranges for which
the propagation of electromagnetic waves in the medium is not permitted. These frequency
ranges are commonly known as photonic band gaps and give the ability to modify the structure
parameters, e.g., group velocity, coherence length, gain, and spontaneous emission. Photonic
crystals’ properties are beneficial for both passive and active devices. This Chapter is devoted
especially to the latter.

1.1. Two-dimensional photonic crystal lasers

Photonic structures are becoming more and more important component of light generating
devices. They are used in lasers as mirrors [5],[6], active waveguides [7], coupled cavities [8],
defect microcavities [9],[10], and the laser active region [11].

Lasers with defects within two-dimensional photonic crystals are known for their high finesse
[12] and very low threshold [13].

Photonic crystal band-edge lasers allow to obtain edge [11] and surface emission [14],[15] of
coherent light from large cavity area. These devices are able to emit single mode, high-power
electromagnetic radiation by utilizing the presence of band-edge in the photonic band
structure [16],[17]. They also allow to control the output beam pattern by manipulation of the
structure geometry [18],[19], provide low threshold [20], and beams which have small
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divergence angle and can be focused to a size less than the wavelength [21]. Recently, the
operation of PC lasers as an on-chip dynamical control of the emitted beam direction have
been demonstrated [19],[22].

The photonic crystal structures lasing wavelengths span from terahertz [23]-[25], through
infrared [26],[27] to visible [21],[28],[29].

1.2. Modeling of photonic crystal lasers

Laser action in photonic crystal structures has been theoretically studied and centered on the
estimation of the output parameters e.g., [30],[31], and models describing light generation
processes e.g.,[32]-[34]. The most general semi-classical model of light generation in photonic
structures is presented in [34], where the description of one-, two-, and three-dimensional
structures is given.

Theoretical analysis of photonic crystal lasers based on two-dimensional plane wave expan‐
sion method (PWEM) [15],[35]-[37] and finite difference time domain method (FDTD) [35],[38]-
[40] confirm experimental results. Nevertheless these methods suffer from important
disadvantages, i.e., plane wave method gives a good approximation for infinite structures,
whereas finite difference time domain method is suited for structures with only a few periods
and consumes huge computer resources for the analysis of real photonic structures. Therefore
these methods are not very convenient for design and optimization of actual photonic crystal
lasers. Hence, different, less complicated methods of analysis of two-dimensional photonic
crystal lasers are being developed. These methods are meant to effectively support the design
process of such lasers. They are based on a coupled-wave theory (CWT) [15],[41] and focused
on square and triangular lattice photonic crystals e.g., [32],[33],[42]-[48]. Most of the works
e.g., [32],[42]-[46] contain a mathematical description and numerical results of the threshold
analysis of two-dimensional (2-D) square and triangular lattice photonic crystal laser with TM
and TE polarization. They introduce general coupled mode relations for a threshold gain, a
Bragg frequency deviation and field distributions, and give calculation results for some specific
values of coupling coefficients. Further, in [42] the effect of boundary reflections has been
investigated, and it has been shown that the mode properties can be adjusted by changing
refractive index or boundary conditions. In, [46], the achievements of these works were
summarized and supplemented with the analysis for the wide range of coupling coefficient.
These studies concerned structures which were infinite in the direction normal to the 2D PC
plane. This approach was improved and presented in [47], where a three-dimensional (3D)
couple wave model was shown. This theory addressed some key issues in a modeling of
threshold operation of surface-emitting-type PC lasers, i.e. the surface emission and the in-
plane higher-order coupling effects. It has also been further developed to incorporate finite-
size effects, and presented in [48]. Some other works such as for example [33],[44],[45],[49]
present an above threshold analysis of 2D PC lasers. They illustrate gain saturation effect and
describe the impact of structure parameters on the system efficiency.

In all of the cited works non have given much attention to simultaneous index and gain
coupling. Thus in addition to the works already mentioned, this Chapter aims to remind crucial
points of CMT and to show 2D coupled-wave analysis for structures with gain and index
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coupling. The study includes square and triangular lattice structures with TE and TM polari‐
zation of light.

The subsequent parts of this chapter include structure definition (Section 2), threshold analysis
(Section 3), where 2D coupled-wave theory is reminded (Section 3.1), coupled-wave equations
are shown (Section 3.2), and numerical analysis is performed (Section 3.3). The perspectives
are sketched in Section 4, and finally conclusions are given in Section 5.

2. Structure definition

The Chapter describes two-dimensional photonic crystals which are characterized by the
relative permittivity ε and gain α. Both parameters depend on the two-dimensional spatial
structure of the medium. The cross-sections of discussed structures are schematically shown
in Figure 1.

(b) (a) 

Figure 1. a) Square and b) triangular lattice photonic structures cross sections. (pairs εa, αa and εb, αb are relative per‐
mittivity and gain of rods and background material, respectively, a - lattice constant, L - cavity length).

From this point on, since photonic structures resemble the microscopic nature of crystals, a
crystallography terminology will be used, see e.g., [49]. Throughout this Chapter only 2-D
photonic crystals with a square, and hexagonal (also referred to as triangular) symmetry will
be discussed, as it is depicted in Figure 1. The periodic pattern is created by cylinders called
rods or holes. The structures in Figure 1 a) and b) are constrained in the xy plane by the square
region of length L, and are assumed to be uniform and much larger than the wavelength in
the z direction. The permittivity and gain of the rods and background material are represented
by εa, αa and εb, αb, respectively. The number of periods in the xy plane is finite, but large enough
to be expanded in Fourier series with small error. Schemes in Fig. 1 a) and 1 b) illustrate two
spatial distributions of rods for two-dimensional photonic crystal, respectively, with square
and triangular lattice.
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Schemes in Figure 2 a) and Figure 3 a) show a view of photonic crystal cross sections in xy
plane with cylinders arranged in square or triangular lattice with period a, and with depicted
primitive vectors a1 and a2.

(a) (b) 

Figure 2. A schematic view of a) a square lattice photonic crystal with primitive vectors; and b) its representation in
reciprocal space with reciprocal primitive vectors.

(a) (b) 

Figure 3. A schematic view of a) a triangular lattice photonic crystal with primitive vectors; and b) its representation in
reciprocal space with reciprocal primitive vectors.

Figure 2 b) andFigure 3 b) show the reciprocal lattices corresponding, respectively, to the real
square and triangular lattices. In the described case, the nodes of a two-dimensional structure
can be expressed by (e.g., see [50])

Advances in Photonic Crystals110

x∥(l)= l1a1 + l2a2,  (1)

where a1 and a2 are primitive vectors, l1 and l2 are arbitrary integers, x∥ specifies the placement
on the plane, x∥= x̂x + ŷ y, where x̂ and ŷ are unit vectors along x and y axis, respectively.
Primitive vectors for square lattice are described by the expressions:a1 = (a, 0), a2 = (0, a) and for

the triangular lattice: a1 = ( 3a / 2, a / 2), a2 = (0, a).

In general, the reciprocal vectors can be written in the following form:

G(h )=h 1b1 + h 2b2 (2)

where h1 and h2 are arbitrary integers, b1 and b2 are the primitive vectors of the two-dimensional
reciprocal space, which are expressed by the following equations:

b1 = 2π
ac

(ay
2, - ax

2),  b2 = 2π
ac

(-ay
1, ax

1) (3)

where a j
(i) is the j-th Cartesian component (x or y) of the ai vector (i = 1 or 2) (e.g., see [32]).

The areas of primitive cells are ac =|a1 ×a2|=a 2 and ac =|a1 ×a2|= 3a 2 / 2 in case of square and
triangular lattices, respectively.

Using Equations (3) and the expressions for square and triangular lattice primitive vectors and
primitive cell areas the reciprocal primitive vectors are described by the following formulas:

b1 = (2π / a, 0),  b2 = (0,2π / a) –  square lattice,  (4)

and

b1 = (4π / 3a, 0),  b2 = (-2π / 3a, 2π / a) - triangular lattice. (5)

The spatial arrangement of periodic rods for the infinite two-dimensional square or triangular
lattice can be expressed by the function:

ε(x∥)=εb + (εa - εb)∑l S(x∥ - x∥(l)),    (6)

in terms of relative permittivity, and by

α(x∥)=αb + (αa - αb)∑l S (x∥ - x∥(l)),  (7)

in terms of gain. In Equations (6) and (7), function S
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S (x∥)= {1   for x∥∈O
0   for x∥∉O

specifies the location of rods in the structure, O is the area of the xy plane defined by the cross
section of the rod, which symmetry axis intersects the plane at the point x∥=0.

In the next section an analysis based on the coupled mode theory is shown. It is conducted in
the frequency domain, thus the relative permittivity as well as gain have to be Fourier
transformed to fit reciprocal space [37],[51]. Functions (6) and (7) are now, respectively, written
in the following form

ε(G)= {εa f + εb(1 - f ),         G∥=0 

(εa - εb) f
2J 1(G∥R)

G∥R ,    G∥≠0
(8)

and

α(G)= {αa f + αb(1 - f ),         G∥=0 

(αa - αb) f
2J 1(G∥R)

G∥R ,    G∥≠0
(9)

where

f =πr 2 / a 2- square lattice filling factor, f =(2π / 3)r 2 / a 2 - triangular lattice filling factor, r -
rod radius, J1 - Bessel function of the first kind.

In next parts of this Chapter four different cases are analyzed. Two of them are dedicated to
the square lattice cavities with TE and TM polarization, and two remaining to the triangular
lattice structures also with TE and TM polarization. For the purpose of this work, it is assumed
that there is no gain in the background material, i.e., αb =0, but there is a gain in the rods
αa≠  0. The structure where αa =αb will be referred to as Index Coupled, and where αa≠αb as
Index and Gain Coupled.

The threshold analysis of the photonic crystal laser operation for the defined structures is
shown in the next section.

3. A threshold analysis

3.1. 2D Coupled-wave model for 2D PC cavity

The electromagnetic wave behavior in the two-dimensional periodic system can be described
by the set of scalar wave equations. Depending on the polarization of light it is easier to choose
one specific field component, since then the set of equations may be reduced to a single one.
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Thus, the scalar wave equations for the electric and magnetic fields Ez and Hz, respectively, are
written in the following forms [37],[51]:

∂2 Ez

∂ x 2 +
∂2 Ez

∂ y 2 + k 2Ez =0,  (10)

for TM polarization, and

∂
∂ x { 1

k 2
∂
∂ x H z} + ∂

∂ y { 1
k 2

∂
∂ y H z} + H z =0,  (11)

for TE polarization.

In Equations (10) and (11) the constant k is given, correspondingly by [42]

k 2 =β 2 + 2iαβ + 2β∑G≠0κ(G)exp (i(G⋅ r)),    (12)

and [32]

1
k 2 = 1

β 4 (β 2 - i2αβ + 2β∑G≠0κ(G)exp (i(G⋅ r))). (13)

In the expressions for k 2 and k -2, β equals to 2πε0
1/2 /λ, where ε0 =ε(G=0) is the averaged

dielectric permittivity (ε0
1/2 corresponds to averaged refractive index n), α is an averaged gain

in the medium, κ(G) is the coupling constant, λ is the Bragg wavelength. Here, the reciprocal
lattice vector (Equation (2)) is expressed by G=(mb1, nb2), where m and n are arbitrary integers,

b1 and b2 depend on the structure symmetry and are written in the following forms b1 = (β0
s, 0)

and b2 = (0, β0
s) for square lattice, and b1 = (β0

t , 0) and b2 = (-β0
t / 2,  3β0

t / 2) for triangular lattice

structure, β0
2 =2π / a and β0

t =4π / 3a. In the derivation of Equations (12) and (13) the following

assumptions were set: α≪β ≡2πε0
1/2 /λ, εG≠0≪ε0, and εG≪β, e.g., see [42].

The periodic variation in the refractive index and gain is included as a small perturbation and
appears in as the coupling constant κ(G) of the form:

κ(G)= - π
λε0

1/2 ε(G) ± i α
(G)
2 .  (14)

In the above equation, plus sign refers to TM polarization (Equation (12)), while minus sign
refers to TE polarization (Equation (13)). For the simplicity, it is set that η(G)= - πε(G) /λε0

1/2

and α(G)=α(G) / 2, and Equation (14) is rewritten in the following form:

κ(G)=η(G) ± iα(G). (15)
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∂
∂ x { 1

k 2
∂
∂ x H z} + ∂

∂ y { 1
k 2

∂
∂ y H z} + H z =0,  (11)

for TE polarization.

In Equations (10) and (11) the constant k is given, correspondingly by [42]

k 2 =β 2 + 2iαβ + 2β∑G≠0κ(G)exp (i(G⋅ r)),    (12)

and [32]

1
k 2 = 1

β 4 (β 2 - i2αβ + 2β∑G≠0κ(G)exp (i(G⋅ r))). (13)

In the expressions for k 2 and k -2, β equals to 2πε0
1/2 /λ, where ε0 =ε(G=0) is the averaged

dielectric permittivity (ε0
1/2 corresponds to averaged refractive index n), α is an averaged gain

in the medium, κ(G) is the coupling constant, λ is the Bragg wavelength. Here, the reciprocal
lattice vector (Equation (2)) is expressed by G=(mb1, nb2), where m and n are arbitrary integers,

b1 and b2 depend on the structure symmetry and are written in the following forms b1 = (β0
s, 0)

and b2 = (0, β0
s) for square lattice, and b1 = (β0

t , 0) and b2 = (-β0
t / 2,  3β0

t / 2) for triangular lattice

structure, β0
2 =2π / a and β0

t =4π / 3a. In the derivation of Equations (12) and (13) the following

assumptions were set: α≪β ≡2πε0
1/2 /λ, εG≠0≪ε0, and εG≪β, e.g., see [42].

The periodic variation in the refractive index and gain is included as a small perturbation and
appears in as the coupling constant κ(G) of the form:

κ(G)= - π
λε0

1/2 ε(G) ± i α
(G)
2 .  (14)

In the above equation, plus sign refers to TM polarization (Equation (12)), while minus sign
refers to TE polarization (Equation (13)). For the simplicity, it is set that η(G)= - πε(G) /λε0

1/2

and α(G)=α(G) / 2, and Equation (14) is rewritten in the following form:

κ(G)=η(G) ± iα(G). (15)
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In the two-dimensional system which is not confined in the third direction, in the vicinity of
the Bragg wavelength only some of the diffraction orders contribute in a significant way. In
general, a periodic perturbation produces an infinite set of diffraction orders. Keeping this in
mind, the Bragg frequency orders have to be cautiously chosen. The Bragg frequency corre‐
sponding to the Γ (e.g., see [42]) is chosen for the purpose of this work, and the most signifi‐
cantly contributing coupling constants are expressed as follows:

κ1 =η(G) ± α(G)│|G|=β0
s ,t

κ2 =η(G) ± α(G)│|G|= 3β0
s ,t

κ3 =η(G) ± α(G)│|G|=2β0
s ,t

(16)

In Equations (10) and (11) electric and magnetic fields for the infinite periodic structure are
given by the Bloch modes, [15],[37]:

Ez(r)=∑G e(G)exp (i(k + G)⋅ r),  (17)

and

H z(r)=∑G h (G)exp (i(k + G)⋅ r),  (18)

where the functions e(G) and h (G) correspond to plane wave amplitudes, and the wave
vector is denoted by k. In the first Brillouin zone at the Γ point the wave vector vanish‐
es k=0, see e.g., [41].

In a finite two-dimensional structure, the amplitude of each plane wave is not constant, so e(G)
and h (G) become functions of space. At the Γ point, only the amplitudes (e(G), h (G)) which
are meant to be significant are considered, i.e., in most cases with |G|=β0

s ,t , except for square

lattice with TE polarization where additional h (G) amplitudes with |G|= 2β0
s have to be

included [41]. The contributions of other waves of higher order in the Bloch mode are consid‐
ered to be negligible. In general, where for example there is a three-dimensional confinement,
this assumption have to be reconsidered.

3.2. Coupled-wave equations

3.2.1. Square lattice – TM polarization

For square lattice photonic crystal cavity in the case of TM polarization, it is assumed that at
the center point of the Brillouin zone the most significant contribution to coupling is given by
the electric waves which fulfill the condition |G|=β0

s. Therefore in the following derivation

all higher order electric wave expansion coefficients (|G|≥ 2β0
s) are neglected. Four basic

waves most significantly contributing to coupling are depicted in Figure 4.
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Figure 4. Schematic cross section of square lattice photonic crystal laser active region with the four basic waves in‐
volved in coupling for TM polarization.

Equation (17) in general describes infinite structures. It is possible to take into account the fact
that the structure is finite by using the space dependent amplitudes, e.g., [42]. Thus, the electric
field given by Equation (17) in the finite periodic structure can be expressed in the following
way:

Ez = E1
s(x, y)e -iβ0

s x + E3
s(x, y)e iβ0

s x + E2
s(x, y)e -iβ0

s y + E4
s(x, y)e iβ0

s y. (19)

In Equation (19) Ei
s, i=1..4 are the four basic electric field amplitudes propagating in four

directions +x, -x, +y, -y. These amplitudes correspond to e(G) (Equation (17)) satisfying the

condition: |G|=β0
s. In further analysis, the space dependence is omitted for the simplicity of

notation.

Using derived earlier reciprocal lattice vectors and Fourier expansions of spatial dependences
of the square lattice PC with circular rods, the coupling coefficients κ(G) (Equation (16)) can
be written as:

κ1 = (- π(εa - εb)
a(εa f + εb(1 - f )) + i

αa

2 ) 2 f J 1
(2 πf )

2 πf
=η1 + iα1,  (20)
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3.2. Coupled-wave equations
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For square lattice photonic crystal cavity in the case of TM polarization, it is assumed that at
the center point of the Brillouin zone the most significant contribution to coupling is given by
the electric waves which fulfill the condition |G|=β0

s. Therefore in the following derivation

all higher order electric wave expansion coefficients (|G|≥ 2β0
s) are neglected. Four basic

waves most significantly contributing to coupling are depicted in Figure 4.
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Figure 4. Schematic cross section of square lattice photonic crystal laser active region with the four basic waves in‐
volved in coupling for TM polarization.

Equation (17) in general describes infinite structures. It is possible to take into account the fact
that the structure is finite by using the space dependent amplitudes, e.g., [42]. Thus, the electric
field given by Equation (17) in the finite periodic structure can be expressed in the following
way:

Ez = E1
s(x, y)e -iβ0

s x + E3
s(x, y)e iβ0

s x + E2
s(x, y)e -iβ0

s y + E4
s(x, y)e iβ0

s y. (19)

In Equation (19) Ei
s, i=1..4 are the four basic electric field amplitudes propagating in four

directions +x, -x, +y, -y. These amplitudes correspond to e(G) (Equation (17)) satisfying the

condition: |G|=β0
s. In further analysis, the space dependence is omitted for the simplicity of

notation.

Using derived earlier reciprocal lattice vectors and Fourier expansions of spatial dependences
of the square lattice PC with circular rods, the coupling coefficients κ(G) (Equation (16)) can
be written as:

κ1 = (- π(εa - εb)
a(εa f + εb(1 - f )) + i

αa

2 ) 2 f J 1
(2 πf )

2 πf
=η1 + iα1,  (20)

Threshold Mode Structure of Square and Triangular Lattice Gain and Index Coupled Photonic Crystal Lasers
http://dx.doi.org/10.5772/53712

115



κ2 = (- π(εa - εb)
a(εa f + εb(1 - f )) + i

αa

2 ) 2 f J 1
(2 2πf )

2 2πf
=η2 + iα2,  (21)

κ3 = (- π(εa - εb)
a(εa f + εb(1 - f )) + i

αa

2 ) 2 f J 1
(4 πf )

4 πf
=η3 + iα3. (22)

Combining Equations (12) and (19) with Equation (10), and assuming the slow varying
electromagnetic field, one can get the set of coupled mode equations [42]:

- ∂
∂ x E1

s + (α - iδ)E1
s =(iη3 - α3)E3

s + (iη2 - α2)(E2
s + E4

2),  (23)

∂
∂ x E3

s + (α - iδ)E3
s =(iη3 - α3)E1

s + (iη2 - α2)(E2
s + E4

s),  (24)

- ∂
∂ y E2

s + (α - iδ)E2
s =(iη3 - α3)E4

s + (iη2 - α2)(E1
s + E3

s),  (25)

∂
∂ y E4

s + (α - iδ)E4
s =(iη3 - α3)E2

s + (iη2 - α2)(E1
s + E3

s),  (26)

where

δ =(β 2 - β0
s2) / 2β ≈β - β0

s,   (27)

is the Bragg frequency deviation. Coupling coefficients κ2 and κ3 are expressed by Equations

(21) and (22). The κ2 coefficient is responsible for orthogonal coupling (e.g., the coupling of E1
s

to E2
s and E4

s), and κ2 corresponds to backward coupling (e.g., the coupling of E1
s to E3

s).
Solution of Equations (23)-(26) for the following boundary conditions:

E1
s(- L

2 , y)= E3
s( L

2 , y)=0,   E2
s(x, - L

2 )= E4
s(x, L

2 )=0,  (28)

defines  eigenmodes  of  the  photonic  structure.  The  analysis  of  this  solution  is  given  in
Section 3.3.

3.2.2. Square lattice – TE polarization

In the 2D square lattice PC-like resonator with TE polarization the coupling process in the most
significant way involves magnetic waves satisfying following conditions: |G|=β0 and

|G|= 2β0, [32]. In the presented analysis the higher order Bloch modes are neglected. Eight
basic waves fulfilling the specified conditions are depicted in Figure 5.
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Figure 5. Schematic cross section of square lattice photonic crystal laser active region with the eight basic waves in‐
volved in coupling for TE polarization.

Similarly as it was stated in the case of TM polarization, the equation for magnetic field (18)
describes modes for infinite structure, and the finite dimensions of the structure are introduced
by spatial dependence of magnetic field amplitudes [32]. Thus, the magnetic field (18) is written
in the following form:

( ) ( ) ( ) ( )
( ) ( ) ( )

0 0 0 0

0 0 0 0 0 0

0 0

1 5 3 7

2 4 6
( )

8

 , , , ,

, , ,

( , ) .

s s s s

s s s s s s

s s

i x i x i y i ys s s s
z

i x i y i x i y i x i ys s s

i x i ys

H H x y e H x y e H x y e H x y e

H x y e H x y e H x y e

H x y e

b b b b

b b b b b b

b b

- -

- - - +

- +

= + + +

+ + +

+

(29)

In Equation (29) Hi
s, i=1..8 are the basic magnetic field amplitudes of waves propagating in

directions schematically shown in Figure 5. These amplitudes correspond to h (G) in Equation
(18), where |G|=β0 and |G|= 2β0. Joining Equations (13), (29), and (11), and assuming slowly
varying amplitudes, the coupled wave equations for TE modes in square lattice PC are
obtained [32]:

- ∂
∂ x H1

s + (α - iδ)H1
s =(iη3 + α3)H5

s + i
2(η1 - iα1)2

β0
s (2H1

s + H3
s + H7

s),  (30)
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κ2 = (- π(εa - εb)
a(εa f + εb(1 - f )) + i

αa

2 ) 2 f J 1
(2 2πf )

2 2πf
=η2 + iα2,  (21)

κ3 = (- π(εa - εb)
a(εa f + εb(1 - f )) + i

αa

2 ) 2 f J 1
(4 πf )

4 πf
=η3 + iα3. (22)

Combining Equations (12) and (19) with Equation (10), and assuming the slow varying
electromagnetic field, one can get the set of coupled mode equations [42]:

- ∂
∂ x E1

s + (α - iδ)E1
s =(iη3 - α3)E3

s + (iη2 - α2)(E2
s + E4

2),  (23)

∂
∂ x E3

s + (α - iδ)E3
s =(iη3 - α3)E1

s + (iη2 - α2)(E2
s + E4

s),  (24)

- ∂
∂ y E2

s + (α - iδ)E2
s =(iη3 - α3)E4

s + (iη2 - α2)(E1
s + E3

s),  (25)

∂
∂ y E4

s + (α - iδ)E4
s =(iη3 - α3)E2

s + (iη2 - α2)(E1
s + E3

s),  (26)

where

δ =(β 2 - β0
s2) / 2β ≈β - β0

s,   (27)

is the Bragg frequency deviation. Coupling coefficients κ2 and κ3 are expressed by Equations

(21) and (22). The κ2 coefficient is responsible for orthogonal coupling (e.g., the coupling of E1
s

to E2
s and E4

s), and κ2 corresponds to backward coupling (e.g., the coupling of E1
s to E3

s).
Solution of Equations (23)-(26) for the following boundary conditions:
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2 , y)= E3
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2 , y)=0,   E2
s(x, - L

2 )= E4
s(x, L

2 )=0,  (28)

defines  eigenmodes  of  the  photonic  structure.  The  analysis  of  this  solution  is  given  in
Section 3.3.

3.2.2. Square lattice – TE polarization

In the 2D square lattice PC-like resonator with TE polarization the coupling process in the most
significant way involves magnetic waves satisfying following conditions: |G|=β0 and

|G|= 2β0, [32]. In the presented analysis the higher order Bloch modes are neglected. Eight
basic waves fulfilling the specified conditions are depicted in Figure 5.
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Figure 5. Schematic cross section of square lattice photonic crystal laser active region with the eight basic waves in‐
volved in coupling for TE polarization.

Similarly as it was stated in the case of TM polarization, the equation for magnetic field (18)
describes modes for infinite structure, and the finite dimensions of the structure are introduced
by spatial dependence of magnetic field amplitudes [32]. Thus, the magnetic field (18) is written
in the following form:
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(29)

In Equation (29) Hi
s, i=1..8 are the basic magnetic field amplitudes of waves propagating in

directions schematically shown in Figure 5. These amplitudes correspond to h (G) in Equation
(18), where |G|=β0 and |G|= 2β0. Joining Equations (13), (29), and (11), and assuming slowly
varying amplitudes, the coupled wave equations for TE modes in square lattice PC are
obtained [32]:

- ∂
∂ x H1

s + (α - iδ)H1
s =(iη3 + α3)H5

s + i
2(η1 - iα1)2

β0
s (2H1

s + H3
s + H7

s),  (30)
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∂
∂ x H5

s + (α - iδ)H5
s =(iη3 + α3)H1

s + i
2(η1 - iα1)2

β0
s (2H5

s + H3
s + H7

s),  (31)

- ∂
∂ x H3

s + (α - iδ)H3
s =(iη3 + α3)H7

s + i
2(η1 - iα1)2

β0
s (2H3

s + H1
s + H5

s),  (32)

∂
∂ x H7

s + (α - iδ)H7
s =(iη3 + α3)H3

s + i
2(η1 - iα1)2

β0
s (2H7

s + H1
s + H5

s). (33)

In Equations (30)-(33), the spatial dependence of four magnetic field components Hi
s, i=2,4,6,8

was neglected, and it was assumed that α≪δ. These steps let to formulate not eight but four
partial differential equations (for details see [32] or [46]). The Bragg frequency deviation δ is
given by (27). The coupling coefficients κ1, κ2, and κ3 defined by Equations (16) are expressed
by [32],[43]:

κ1 = (- π(εa - εb)
a(εa f + εb(1 - f )) - i

αa

2 ) 2 f J 1
(2 πf )

2 πf
=η1 - iα1,  (34)

κ2 = (- π(εa - εb)
a(εa f + εb(1 - f )) - i

αa

2 ) 2 f J 1
(2 2πf )

2 2πf
=η2 - iα2,  (35)

κ3 = (- π(εa - εb)
a(εa f + εb(1 - f )) - i

αa

2 ) 2 f J 1
(4 πf )

4 πf
=η3 - iα3.  (36)

In contrast to TM polarization, in Equations (30)-(33), the coupling coefficient responsible for
coupling in perpendicular direction κ2 vanishes. The coupling coefficient κ3 has the same
meaning as described in the previous (TM) case, whereas the coupling coefficient κ1 describes

the coupling of e.g., waves H1
s, H2

s, and H8
s. Solution of Equations (30)-(33) for the following

boundary conditions:

H1
s(- L

2 , y)= H5
s( L

2 , y)=0,   H3
s(x, - L

2 )= H7
s(x, L

2 )=0, (37)

defines structure eigenmodes at lasing threshold i.e. in the linear case.

3.2.3. Triangular lattice - TM polarization

In the simple approximation scenario the coupling process in the triangular lattice photonic
crystal cavity with TM polarization involves waves satisfying following condition: |G|=β0,
and  neglects  higher  order  Bloch  modes  [43],[44].  There  are  six  waves  satisfying  this
condition and simultaneously most significantly contributing to coupling, they are depicted
in Figure 6.
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Figure 6. A schematic cross section of a triangular lattice photonic crystal laser active region with the six basic waves
involved in the coupling for TM polarization.

The space dependent amplitudes for electric field e(G) in triangular lattice PC cavity are written
in the following form [44]:

( ) ( ) ( )

( ) ( ) ( )

0 0 0 0
0

0 0 0 0
0

3 3
2 2 2 2

1 2 3
3 3

2 2 2 2
4 5 6

, , ,

, , ,

t t t t
t

t t t t
t

i x i y i x i yi xt t t
z

i x i y i x i yi xt t t

E E x y e E x y e E x y e

E x y e E x y e E x y e

b b b b
b

b b b b
b

- - --

+ - +

= + +

+ + +

(38)

In Equation (38), Ei
t , i=1..6, are the six electric field amplitudes propagating in the symmetry

directions, Figure 6. Combining Equations (12), (38) with Equation (10), and assuming slowly
varying amplitudes, the coupled wave equations for TM modes in triangular lattice PC are
obtained:

- ∂
∂ x E1

t + (α - iδ)E1
t =(iη1 - α1)(E2

t + E6
t) + (iη2 - α2)(E3

t + E5
t) + (iη3 - α3)E4

t ,  (39)

- 1
2
∂
∂ x E2

t - 3
2

∂
∂ y E2

t + (α - iδ)E2
t =(iη1 - α1)(E1

t + E3
t) + (iη2 - α2)(E4

t + E6
t) + (iη3 - α3)E5

t ,  (40)
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∂
∂ x H5

s + (α - iδ)H5
s =(iη3 + α3)H1

s + i
2(η1 - iα1)2

β0
s (2H5

s + H3
s + H7

s),  (31)

- ∂
∂ x H3

s + (α - iδ)H3
s =(iη3 + α3)H7

s + i
2(η1 - iα1)2

β0
s (2H3

s + H1
s + H5

s),  (32)

∂
∂ x H7

s + (α - iδ)H7
s =(iη3 + α3)H3

s + i
2(η1 - iα1)2

β0
s (2H7

s + H1
s + H5

s). (33)

In Equations (30)-(33), the spatial dependence of four magnetic field components Hi
s, i=2,4,6,8

was neglected, and it was assumed that α≪δ. These steps let to formulate not eight but four
partial differential equations (for details see [32] or [46]). The Bragg frequency deviation δ is
given by (27). The coupling coefficients κ1, κ2, and κ3 defined by Equations (16) are expressed
by [32],[43]:
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2 ) 2 f J 1
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2 πf
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κ2 = (- π(εa - εb)
a(εa f + εb(1 - f )) - i
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2 ) 2 f J 1
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2 2πf
=η2 - iα2,  (35)
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2 ) 2 f J 1
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In contrast to TM polarization, in Equations (30)-(33), the coupling coefficient responsible for
coupling in perpendicular direction κ2 vanishes. The coupling coefficient κ3 has the same
meaning as described in the previous (TM) case, whereas the coupling coefficient κ1 describes

the coupling of e.g., waves H1
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s, and H8
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boundary conditions:
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s(- L
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s( L

2 , y)=0,   H3
s(x, - L

2 )= H7
s(x, L

2 )=0, (37)

defines structure eigenmodes at lasing threshold i.e. in the linear case.

3.2.3. Triangular lattice - TM polarization

In the simple approximation scenario the coupling process in the triangular lattice photonic
crystal cavity with TM polarization involves waves satisfying following condition: |G|=β0,
and  neglects  higher  order  Bloch  modes  [43],[44].  There  are  six  waves  satisfying  this
condition and simultaneously most significantly contributing to coupling, they are depicted
in Figure 6.
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Figure 6. A schematic cross section of a triangular lattice photonic crystal laser active region with the six basic waves
involved in the coupling for TM polarization.

The space dependent amplitudes for electric field e(G) in triangular lattice PC cavity are written
in the following form [44]:
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In Equation (38), Ei
t , i=1..6, are the six electric field amplitudes propagating in the symmetry

directions, Figure 6. Combining Equations (12), (38) with Equation (10), and assuming slowly
varying amplitudes, the coupled wave equations for TM modes in triangular lattice PC are
obtained:
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In Equations (39)-(44), like in the case of square lattice, δ is the Bragg frequency deviation (17),
while κ1, κ2, and κ3 are the coupling coefficients, which are defined by the following relations
[44]:
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These coefficients describe strength and direction of the coupling of the waves, e.g., the
coupling of E1

t  and E4
t  is described by κ3, the coupling of E1

t , E2
t , and E6

t  by κ1, and the coupling

of E1
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t , and E5
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defines structure eigenmodes at lasing threshold.

3.2.4. Triangular lattice – TE polarization

The simple approximation of coupling process in 2D triangular lattice PC with TE polarization
includes waves satisfying the same condition as it was shown for TM polarization, i.e.,
|G|=β0, [43]. Six waves satisfying this condition are depicted in Figure 7.
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Figure 7. A schematic cross section of a triangular lattice photonic crystal laser active region with the six basic waves
involved in the coupling for TE polarization are shown.

The magnetic field amplitudes h (G) in the triangular lattice PC cavity are written as follows [43]:
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In Equation (49), Hi
t , i=1..6, are the six magnetic field amplitudes propagating in the symmetry

directions, Figure 7. Combining Equations (13), (49) and (11), and assuming slowly varying
magnetic field amplitudes, the coupled wave equations for TE modes in triangular lattice PC
are obtained:
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defines structure eigenmodes at lasing threshold.

3.2.4. Triangular lattice – TE polarization

The simple approximation of coupling process in 2D triangular lattice PC with TE polarization
includes waves satisfying the same condition as it was shown for TM polarization, i.e.,
|G|=β0, [43]. Six waves satisfying this condition are depicted in Figure 7.
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Figure 7. A schematic cross section of a triangular lattice photonic crystal laser active region with the six basic waves
involved in the coupling for TE polarization are shown.

The magnetic field amplitudes h (G) in the triangular lattice PC cavity are written as follows [43]:
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In Equation (49), Hi
t , i=1..6, are the six magnetic field amplitudes propagating in the symmetry

directions, Figure 7. Combining Equations (13), (49) and (11), and assuming slowly varying
magnetic field amplitudes, the coupled wave equations for TE modes in triangular lattice PC
are obtained:
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where the coupling coefficients κ1, κ2, and κ3 are described by
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a(εa f + εb(1 - f )) - i
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and have the same physical meaning like it was described in the TM polarization case. The
boundary conditions for the square region of PC with triangular symmetry are written as:
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3.3. Numerical analysis of the PC laser threshold operation

3.3.1. Square lattice – TM and TE polarization

Figure 8 shows enlarged areas of square lattice photonic crystal dispersion characteristics for
the first four modes (A,B,C,D) in the vicinity of Γpoint (where the cavity finesse increases, and
the active medium is used more efficiently). The dispersion curves are plotted for a) TM
polarization and b) TE polarization. They have been obtained by using Plane Wave Method
(PWM) [52], and they describe the infinite two-dimensional PC structures with circular holes
εb =9.8 arranged in square lattice with background material permittivity: εa =12.0. The rods
radius to lattice constant ratio amounts to 0.24.
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In each plot, i.e., Figure 8 a) and Figure 8 b), the pairs of degenerate modes: B,C for TM
polarization and C,D for TE polarization are marked. These modes have the same frequency
at the Γpoint. Modes marked as A have the lowest frequency.

(a) (b) 

Figure 8. An enlarged area of a square lattice photonic crystal dispersion curves for the first four modes in the vicinity
of Γ point. Square lattice, a) TM polarization, and b) TE polarization.

In Figure 8 each of the marked points (A,B,C,D) represents a mode, which is characterized by:
Bragg frequency deviationδ, threshold gainα, and threshold field distribution. These charac‐
teristic quantities were calculated by the numerical solution of Equations (23)-(26) for TM
polarization and Equations (30)-(33) for TE polarization. The similar description of modes,
shown in Figure 8, where no gain coupling is considered has already been presented in [46]
or [49].

In order to assign appropriate points A,B,C,D to the obtained numerical values, it was
necessary to use the analytic expressions for the Bragg frequency deviation. These expressions
are not affected by the gain modulation, and have the following form:

δA = - 2κ2 - κ3,   δB,C =κ3,   δD =2κ2 - κ3 (60)

in case of TM polarization, and

δA = - 8κ1
2 / β0 - κ3,   δB = - κ3,   δC ,D = - 4κ1

2 / β0 + κ3 (61)

in case of TE polarization.

The  numerical  solution  of  Equations  (23)-(26)  and  (30)-(33)  for  the  wide  range  of  cou‐
pling coefficient is  divided into two stages.  In the first  phase the gain expansion coeffi‐
cients α1,  α2,  and α3 are neglected, and the equations and their solutions are reduced to
known forms, e.g., see [46]. The second step uses the solutions obtained in first stage and
iteratively  solves  Equations  (23)-(26)  and  (30)-(33)  for  α1 ≠0,  α2 ≠0,  and  α3 ≠0,  using  the
relations (20)-(22) and (34)-(36).
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boundary conditions for the square region of PC with triangular symmetry are written as:
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3.3. Numerical analysis of the PC laser threshold operation

3.3.1. Square lattice – TM and TE polarization

Figure 8 shows enlarged areas of square lattice photonic crystal dispersion characteristics for
the first four modes (A,B,C,D) in the vicinity of Γpoint (where the cavity finesse increases, and
the active medium is used more efficiently). The dispersion curves are plotted for a) TM
polarization and b) TE polarization. They have been obtained by using Plane Wave Method
(PWM) [52], and they describe the infinite two-dimensional PC structures with circular holes
εb =9.8 arranged in square lattice with background material permittivity: εa =12.0. The rods
radius to lattice constant ratio amounts to 0.24.
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In each plot, i.e., Figure 8 a) and Figure 8 b), the pairs of degenerate modes: B,C for TM
polarization and C,D for TE polarization are marked. These modes have the same frequency
at the Γpoint. Modes marked as A have the lowest frequency.
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Figure 8. An enlarged area of a square lattice photonic crystal dispersion curves for the first four modes in the vicinity
of Γ point. Square lattice, a) TM polarization, and b) TE polarization.

In Figure 8 each of the marked points (A,B,C,D) represents a mode, which is characterized by:
Bragg frequency deviationδ, threshold gainα, and threshold field distribution. These charac‐
teristic quantities were calculated by the numerical solution of Equations (23)-(26) for TM
polarization and Equations (30)-(33) for TE polarization. The similar description of modes,
shown in Figure 8, where no gain coupling is considered has already been presented in [46]
or [49].

In order to assign appropriate points A,B,C,D to the obtained numerical values, it was
necessary to use the analytic expressions for the Bragg frequency deviation. These expressions
are not affected by the gain modulation, and have the following form:

δA = - 2κ2 - κ3,   δB,C =κ3,   δD =2κ2 - κ3 (60)

in case of TM polarization, and

δA = - 8κ1
2 / β0 - κ3,   δB = - κ3,   δC ,D = - 4κ1

2 / β0 + κ3 (61)

in case of TE polarization.

The  numerical  solution  of  Equations  (23)-(26)  and  (30)-(33)  for  the  wide  range  of  cou‐
pling coefficient is  divided into two stages.  In the first  phase the gain expansion coeffi‐
cients α1,  α2,  and α3 are neglected, and the equations and their solutions are reduced to
known forms, e.g., see [46]. The second step uses the solutions obtained in first stage and
iteratively  solves  Equations  (23)-(26)  and  (30)-(33)  for  α1 ≠0,  α2 ≠0,  and  α3 ≠0,  using  the
relations (20)-(22) and (34)-(36).
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The obtained solutions were grouped: ((δ, α, Em
s) j)κ3i

 or ((δ, α, Hm
s) j)κ3i

, where κ3i corresponds
to subsequent values of coupling coefficient for different modes j=A,B,C,D; m=1..4; s - denotes
square lattice symmetry (here: square); δ and α are values of simultaneously index and gain
coupled structure. Assigning numerical values of δ j to analytical solutions (60) and (61), the
mode structure of 2-D square lattice index and gain coupled PC laser with TM and TE
polarization was obtained.

(a) (b) 

) 

(c) (d) 

Figure 9. Electromagnetic field distributions corresponding to a)A, b)D, c)B, and d) C points from Figure 8 a), respec‐
tively. Square lattice, TM polarization.

Figure 9 and Figure 10 show the field distributions ∑m |Em
s|2 and ∑m |Hm

s|2, respectively. They
correspond to the modes: A - Figure 9 a), D - Figure 9 b), B,C - Figure 9 c), d) for TM polarization,
and A - Figure 10 a), B - Figure 10 b), C, D - Figure 10 c), d) for TE polarization. The plots were
made for the normalized coupling coefficients |κ1L| = 5.5, |κ2L| = 4.1, |κ3L| = 2, and filling
factor f = 0.16.

In each case (TM and TE polarization), the doubly degenerate modes are orthogonal and show
saddle-shaped patterns. The slight discrepancies arise from numerical inaccuracy. All non-
degenerate modes are similar and exhibit Gaussian-like pattern, and this suggests that these
modes should more efficiently use the photonic cavity. These modes (A) also have lower
threshold, Figure 11.
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(a) (b) 

Figure 11. The dependence of threshold gain versus Bragg frequency deviation. Square lattice, a) TM polarization and
b) TE polarization.

In Figure 11 a) and Figure 11 b), the normalized threshold gain αL was plotted as a function
of Bragg frequency deviation δL, for various values of the normalized coupling coefficient
|κ3L| (which takes values from 0.5 to 40). The characteristics in the figures show that by

(a) (b) 

) 

(c) (d) 

Figure 10. Electromagnetic field distributions corresponding to a) A, b) B, c) C, and d) D points from Figure 8 b), re‐
spectively. Square lattice, TE polarization.
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square lattice symmetry (here: square); δ and α are values of simultaneously index and gain
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Figure 9. Electromagnetic field distributions corresponding to a)A, b)D, c)B, and d) C points from Figure 8 a), respec‐
tively. Square lattice, TM polarization.

Figure 9 and Figure 10 show the field distributions ∑m |Em
s|2 and ∑m |Hm

s|2, respectively. They
correspond to the modes: A - Figure 9 a), D - Figure 9 b), B,C - Figure 9 c), d) for TM polarization,
and A - Figure 10 a), B - Figure 10 b), C, D - Figure 10 c), d) for TE polarization. The plots were
made for the normalized coupling coefficients |κ1L| = 5.5, |κ2L| = 4.1, |κ3L| = 2, and filling
factor f = 0.16.

In each case (TM and TE polarization), the doubly degenerate modes are orthogonal and show
saddle-shaped patterns. The slight discrepancies arise from numerical inaccuracy. All non-
degenerate modes are similar and exhibit Gaussian-like pattern, and this suggests that these
modes should more efficiently use the photonic cavity. These modes (A) also have lower
threshold, Figure 11.
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Figure 11. The dependence of threshold gain versus Bragg frequency deviation. Square lattice, a) TM polarization and
b) TE polarization.

In Figure 11 a) and Figure 11 b), the normalized threshold gain αL was plotted as a function
of Bragg frequency deviation δL, for various values of the normalized coupling coefficient
|κ3L| (which takes values from 0.5 to 40). The characteristics in the figures show that by
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Figure 10. Electromagnetic field distributions corresponding to a) A, b) B, c) C, and d) D points from Figure 8 b), re‐
spectively. Square lattice, TE polarization.
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increasing the value of coupling coefficient the Bragg frequency deviation increases and the
threshold gain decreases. Simultaneously, the value of threshold gain saturates for all modes
and eventually tends to similar values. This tendency is a consequence of growing field
confinement in the cavity (for high index contrast all modes become Gaussian-like). For this
reason the mode designation for higher values of coupling coefficients is difficult and only
possible by the careful comparison of frequency deviation δ, and threshold gain α values. It is
also worth noting that the threshold gain values for mode A are the lowest in wide range of
coupling coefficient.

(a) (b) 

Figure 12. The dependence of normalized threshold gain versus normalized coupling coefficient for mode A for Index
and Gain Coupled (solid line) and Index Coupled (dashed line) structures. Square lattice, a) TM polarization and b) TE
polarization.

The impact of simultaneous gain and index coupling is depicted in Figure 12, where threshold
gain for mode A is plotted as a function of coupling coefficient |κ3L|∈ (0.01;50). The charac‐
teristics compare the structure with gain (solid line) and without gain coupling (dashed line).
It can be easily observed that the nonuniformity of the gain in the low index contrast structures
has a strong impact on the threshold gain and cannot be disregarded. Therefore, by inducing
gain coupling in the index coupled structure it is possible to lower threshold gain particularly
for low index contrast photonic crystals.

3.3.2. Triangular lattice — TM and TE polarization

By repeating all the calculations shown for square lattice structures, threshold characteristics
for triangular lattice structures are obtained. In Figure 13 enlarged areas of triangular lattice
photonic crystals dispersion curves for the first six modes (A,B,C,D,E,F) in the vicinity of Γ
point are shown. Figure 13 a) corresponds to TM polarization, and Figure 13 b) refers to TE
polarization. For the calculations the circular holes εb = 9.8 arranged in triangular lattice with
background material εa = 12.0 were assumed. The rods radius to lattice constant ratio was set
to 0.24. In each plot, i.e., Figure 13 a) and Figure 13 b), there are two pairs of doubly degenerate
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modes (i.e., they have the same frequency at the Γ point): B,C and D,E for TM polarization,
and B,C and E,F for TE polarization. Modes A have the lowest frequency.

(a) (b) 

Figure 13. An enlarged area of dispersion curves of photonic crystal for the first four modes in the vicinity of Γ point.
Triangular lattice, a) TM polarization, and b) TE polarization.

Bragg frequency deviation (for points marked as A,B,C,D,E,F in Figure 13) depending on
coupling coefficient is analytically expressed in the following form for the TM polarization:

δA = - 2κ1 - 2κ2 - κ3,   δB,C = - κ1 + κ2 + κ3,   δD,E =κ1 + κ2 - κ3,   δF =2κ1 - 2κ2 + κ3,  (62)

and for TE polarization:

δA = - κ1 - κ2 + κ3,   δB,C = -
κ1

2 +
κ2

2 - κ3,   δD,E =κ1 - κ2 - κ3,   δF =
κ1

2 +
κ2

2 + κ3. . (63)

Figure 14 shows the field distributions ∑m |Em
t |2, m=1..6 corresponding to the modes: A - Figure

14 a), F - Figure 14 b), B,C - Figure 14 c), d), D,E - Figure 14 e), f).

Figure 15 shows the field distributions ∑m |Hm
t |2, m=1..6 corresponding to the modes: A -

Figure 15 a), D - Figure 15 b), B,C - Figure 15 c), d), E,F - Figure 15 e), f).

The values of the normalized coupling coefficients for TM and TE polarization are set as
follows: |κ1L| = 7.0, |κ2L| = 3.3, |κ3L| = 2, and the value of the filling factor f=0.16.

In both discussed cases, all degenerate modes are orthogonal and show similar patterns. For
TM polarization, Figure 14, modes B,C are very similar to the non-degenerate mode A. This
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and B,C and E,F for TE polarization. Modes A have the lowest frequency.
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The values of the normalized coupling coefficients for TM and TE polarization are set as
follows: |κ1L| = 7.0, |κ2L| = 3.3, |κ3L| = 2, and the value of the filling factor f=0.16.

In both discussed cases, all degenerate modes are orthogonal and show similar patterns. For
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means that the coupling coefficients, for which they are plotted, have high enough values to
achieve strong field confinement. Similar situation is shown for TE polarization, Figure 15,
where two pairs of doubly-degenerate modes are comparable to non-degenerate mode.
Likewise, it is due to relatively high values of coupling coefficients and mode confinement.

In Figure 16 a), and Figure 16 b) the normalized threshold gain αL was plotted as a function
of Bragg frequency deviation δL, for various values of the normalized coupling coefficient
|κ3L|∈ (1;40).

Figure 16 shows similar tendency as in earlier examples of square lattice, i.e., by increasing the
values of coupling coefficient the Bragg frequency deviation increases and the threshold gain

(a) (b) 

) 

(c) (d) 

(e) (f) 

Figure 14. Electromagnetic field distributions corresponding to a)A, b)F, c)B, d)C, e)D, and f)E points from Figure 13 a),
respectively. Triangular lattice, TM polarization.
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decreases. Simultaneously, for larger values of coupling coefficient the threshold gain tends
to alike values. This fact is due to the growing field confinement in the cavity (all modes become
Gaussian-like, e.g., Figure 14 and Figure 15. The difference in the threshold gain values of
degenerate modes stems from numerical inaccuracy, and the degenerate modes’ threshold
gain values should be averaged.

Figure 17 depicts the impact of simultaneous gain and index coupling. Here, the threshold
gain for mode A is plotted as a function of coupling coefficient |κ3L|∈ (0.01;50). The charac‐
teristics compare the structure with gain and without gain coupling. Similarly as it is shown
for square lattice structures, it is clearly seen that the incorporation of gain modulation in the

(a) (b) 

) 

(c) (d) 

(e) (f) 

Figure 15. Electromagnetic field distributions corresponding to a)A, b)D, c)B, d)C, e)E, and f)F points from Figure 13 b),
respectively. Triangular lattice, TE polarization.
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structure has a significant effect on the threshold gain characteristics. They are substantially
changed in the lower range of coupling coefficient values and slightly lower the threshold gain
in the entire range. This shows that the index and gain coupled structures can lower the
threshold gain, especially in low index contrast photonic crystals.

Now, as an example of the model utilization let us consider the square lattice PC structure,
which schematic cross-section is shown in Figure 1 a). For this structure following parameters
are assumed: cavity length L = 50 nm, lattice constant a = 290 nm, and filling factor f = 0.16. The
background material has higher permittivity than the rods εa <εb, and the active material is
situated in the rods αa≠0, αb =0. As schematically shown in Figure 12 a) for lower values of the
coupling coefficient, i.e., a low refractive index difference, (e.g., κ3L∈ (0.01,  0.1)) this structure
has lower lasing threshold than it would have if the gain was uniformly distributed in the

(a) (b) 

Figure 16. The dependence of threshold gain versus Bragg frequency deviation. Triangular lattice, a) TM polarization,
and b) TE polarization.

(a) (b) 

Figure 17. The dependence of normalized threshold gain versus normalized coupling coefficient for mode A for Index
and Gain Coupled (solid line) and Index Coupled (dashed line) structures. Triangle lattice, a) TM polarization and b) TE
polarization.
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medium, i.e., αa =αb. Thus for example: εb =12.00 and εa =11.94, then κ3L=0.09 and the threshold
gain drops by a factor of ~1.5. The supported lasing wavelength in such a cavity amounts to
λ =aε0

1/2, where ε0
1/2 = εa f + εb(1 - f ), that is λ∼1μm.

4. Perspectives

This Chapter discusses only some problems in threshold operation of 2D PC lasers. Thus,
future work should be devoted to further investigation of gain coupling in photonic crystal
cavities, e.g., such as comparison of solely index and solely gain coupled structures. Moreover,
an above threshold analysis for gain coupled PC laser may apply as well as it did to index
coupled structures, e.g., see [44],[45]. Finally, since more and more works on three-dimensional
structures are published, it seems interesting to develop coupled wave models for threshold
analysis of different symmetries incorporating gain and index modulation.

5. Conclusions

This work presents the systematic studies on the threshold operation of two-dimensional
photonic crystal laser. It gives the comprehensive coupled mode description of gain and index
coupled photonic crystal laser threshold operation. The calculations are conducted in the wide
range of coupling coefficient for all four cases (square and triangular lattice with TM and TE
polarization). It has been shown that the nonuniformity of the gain in the low index contrast
structures has a strong impact on the threshold gain, by lowering it. Consequently, by inducing
gain coupling in the index coupled structure it is possible to lower threshold gain particularly
for low index contrast photonic crystals. This outcome helps understand the principles of PC
band-edge laser operation and it may be useful in supporting the design process of PC laser
structures.
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1. Introduction

Studies of solitons in spatially periodic (lattice) potentials have grown into a vast area of
research, with profoundly important applications to nonlinear optics, plasmonics, and matter
waves in quantum gases, as outlined in recent reviews [1]-[4]. In ultracold bosonic and
fermionic gases, periodic potentials can be created, in the form of optical lattices (OLs),
by coherent laser beams illuminating the gas in opposite directions [5]-[7]. Effective lattice
potentials for optical waves are induced by photonic crystals (PhCs), which are built as
permanent structures by means of various techniques [2, 8, 9], or as laser-induced virtual
structures in photorefractive crystals [10]. Reconfigurable PhCs can be also based on liquid
crystals [11]. Parallel to the progress in the experiments, the study of the interplay between
the nonlinearity and periodic potentials has been an incentive for the rapid developments of
theoretical methods [12, 13]. Both the experimental and theoretical results reveal that solitons
can be created in lattice potentials, if they do not exist in the uniform space [this is the case of
gap solitons (GSs) supported by the self-defocusing nonlinearity, see original works [14]-[17]
and reviews [7, 18]], and solitons may be stabilized, if they are unstable without the lattice
(multidimensional solitons in the case of self-focusing, as shown in Refs. [17], [19]-[25], see
also reviews [1, 3, 4]). The stability of GSs has been studied in detail too—chiefly, close to
edges of the corresponding bandgaps—in one [27]-[29] and two [30] dimensions alike.

In fundamental and applied optics, PhCs provide ways to tailor the effective dispersion
and diffraction of the medium, and control the transmission and routing of electromagnetic
waves [8]. Fundamental characteristics of the PhCs are the band diagrams, which reveal
gaps where linear (Bloch) waves cannot propagate. In PhCs made of nonlinear materials,
GSs may self-trap as a result of the interplay of the Kerr-type nonlinearity and bandgap
structures [18, 31–33]. Unlike ordinary bright solitons supported by the balance between
the self-focusing nonlinearity and diffraction in uniform media [34], the dispersion relation
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2 Photonic Crystals

induced by the PhC makes it possible to create GSs in focusing and defocusing materials
alike. Combining assets of PhCs and regular solitons, GSs offer a considerable potential for
applications to nonlinear photonics. On the other hand, the use of GSs is limited by the
modulational [27] and oscillatory instabilities [35, 36]. One of solutions of this problem is
the enhancement of the stability (and also mobility of the GSs) in nonlocal nonlinear media
[37–41].

In addition to optics, GSs of matter waves have also been theoretically studied [42] and
experimentally created [43] in Bose-Einstein condensates formed by atoms with repulsive
interactions, loaded into OL potentials. In fact, the OLs controling the dynamics of matter
waves may be considered as counterparts of PhCs for coherent atomic wave.

An essential extension of the theme is the study of two-component solitons in lattice
potentials. In particular, if both the self-phase-modulation and cross-phase-modulation (SPM
and XPM) nonlinearities, i.e., intra- and inter-species interactions, are repulsive, one can
construct two-component GSs of intra-gap and inter-gap types, with chemical potentials of
the components (or propagation constants, in terms of optical media) falling, respectively,
into the same or different bandgaps of the underlying linear spectrum [44, 45]. In the case
of the attractive SPM, a family of stable semi-gap solitons was found too, with one component
residing in the infinite gap, while the other stays in a finite bandgap [45]. The GSs supported
by the XPM repulsion dominating over the intrinsic (SPM-mediated) attraction may be
regarded as an example of symbiotic solitons. In the free space (without the lattice potential),
symbiotic solitons are supported by the XPM attraction between their two components,
despite the action of the repulsive SPM in each one [46]-[48]. This mechanism may be
additionally enhanced by the linear coupling (interconversion) between the components [49].
Another case of the “symbiosis" was reported in Ref. [50], where the action of the lattice
potential on a single component was sufficient for the stabilization of two-dimensional (2D)
two-component solitons against the collapse, the stabilizing effect of the lattice on the second
component being mediated by the XPM interaction. In addition, the attraction between the
components, competing with the intrinsic repulsion, may cause spatial splitting between two
components of the GS, as for these components, whose effective masses are negative [16], the
attractive interaction potential gives rise to a repulsion force [45, 51].

The ultimate form of the model which gives rise to two-component GSs of the symbiotic
type is the one with no intra-species nonlinearity, the formation of the GSs being accounted
for by the interplay of the repulsion between the components and the lattice potential acting
on both of them. In optics, the setting with the XPM-only interactions is known in the
form of the “holographic nonlinearity", which can be induced in photorefractive crystals
for a pair of coherent beams with a small angle between their wave vectors, giving rise
to single- [52, 53] and double-peak [54] solitons. Both beams are made by splitting a
single laser signal, hence the power ratio between them (which is essential for the analysis
reported below) can be varied by changing the splitting conditions. The creation of 2D
spatial “holographic solitons" in a photorefractive-photovoltaic crystal with the self-focusing
nonlinearity was demonstrated in Ref. [55] (such solitons are stable, as the collapse is arrested
by the saturation of the self-focusing). To implement the situation considered here, the sign
of the nonlinearity may be switched to self-defocusing by the reversal of the bias voltage,
and the effective lattice potential may be induced by implanting appropriate dopants, with
the concentration periodically modulated in one direction, which will render the setting
quasi-one-dimensional.

In binary bosonic gases, a similar setting may be realized by switching off the SPM
nonlinearity with the help of the Feshbach resonance, although one may need to apply
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two different spatially uniform control fields (one magnetic and one optical) to do it
simultaneously in both components. On the other hand, the same setting is natural for a
mixture of two fermionic components with the repulsive interaction between them, which
may represent two states of the same atomic species, with different values of the total atomic
spin (F). If spins of both components are polarized by an external magnetic field, the SPM
nonlinearity will be completely suppressed by the Pauli blockade while the inter-component
interaction remains active [6], hence the setting may be described by a pair of Schrödinger
equations for the two wave functions, coupled by XPM terms.

The objective of this work is to present basic families of one-dimensional symbiotic
GSs, supported solely by the repulsive XPM nonlinearity in the combination with the
lattice potential, and analyze their stability, via the computation of eigenvalues for small
perturbations and direct simulations of the perturbed evolution. The difference from the
previously studied models of symbiotic solitons [44, 45] is that the solitons where created
there by the SPM nonlinearity separately in each component, while the XPM interaction
determined the interaction between them and a possibility of creating two-component bound
states. Here, the two-component GSs may exist solely due to the repulsive XPM interactions
between the components.

We conclude that the symmetric solitons, built of equal components, are destabilized by
symmetry-breaking perturbations above a certain critical value of the soliton’s power. The
analysis is chiefly focused on asymmetric symbiotic GSs, and on breathers into which
unstable solitons are transformed. The model is introduced in Section II, which is followed
by the analytical approximation presented in Section III. It is an extended version of the
Thomas-Fermi approximation, TFA, which may be applied to other models too. In Section
IV, we report systematic numerical results obtained for fundamental solitons of both the
intra- and inter-gap types, hosted by the first two finite bandgaps of the system’s spectrum.
The most essential findings are summarized in the form of plots showing the change of the
GS stability region with the variation of the degree of asymmetry of the two-component
symbiotic solitons, which is a new feature exhibited by the present system. In particular, the
stability area of intra-gap solitons shrinks with the increase of the asymmetry, while inter-gap
solitons may be stable only if the asymmetry is large enough, in favor of the first-bandgap
component, and intra-gap solitons in the second bandgap are completely unstable. The paper
is concluded by Section V.

2. The model

The model outlined above is represented by the system of XPM-coupled Schrödinger
equations for local amplitudes of co-propagating electromagnetic waves in the planar optical
waveguide, u(x, z) and v(x, z), where x and z are the transverse coordinate and propagation
distance, without the SPM terms, and with the lattice potential of depth 2ε > 0 acting on
both components:

i
∂u

∂z
+

1

2

∂2u

∂x2
− |v|2u + ε cos(2x)u = 0, (1)

i
∂v

∂z
+

1

2

∂2v

∂x2
− |u|2v + ε cos(2x)v = 0. (2)
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The ultimate form of the model which gives rise to two-component GSs of the symbiotic
type is the one with no intra-species nonlinearity, the formation of the GSs being accounted
for by the interplay of the repulsion between the components and the lattice potential acting
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In binary bosonic gases, a similar setting may be realized by switching off the SPM
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two different spatially uniform control fields (one magnetic and one optical) to do it
simultaneously in both components. On the other hand, the same setting is natural for a
mixture of two fermionic components with the repulsive interaction between them, which
may represent two states of the same atomic species, with different values of the total atomic
spin (F). If spins of both components are polarized by an external magnetic field, the SPM
nonlinearity will be completely suppressed by the Pauli blockade while the inter-component
interaction remains active [6], hence the setting may be described by a pair of Schrödinger
equations for the two wave functions, coupled by XPM terms.

The objective of this work is to present basic families of one-dimensional symbiotic
GSs, supported solely by the repulsive XPM nonlinearity in the combination with the
lattice potential, and analyze their stability, via the computation of eigenvalues for small
perturbations and direct simulations of the perturbed evolution. The difference from the
previously studied models of symbiotic solitons [44, 45] is that the solitons where created
there by the SPM nonlinearity separately in each component, while the XPM interaction
determined the interaction between them and a possibility of creating two-component bound
states. Here, the two-component GSs may exist solely due to the repulsive XPM interactions
between the components.

We conclude that the symmetric solitons, built of equal components, are destabilized by
symmetry-breaking perturbations above a certain critical value of the soliton’s power. The
analysis is chiefly focused on asymmetric symbiotic GSs, and on breathers into which
unstable solitons are transformed. The model is introduced in Section II, which is followed
by the analytical approximation presented in Section III. It is an extended version of the
Thomas-Fermi approximation, TFA, which may be applied to other models too. In Section
IV, we report systematic numerical results obtained for fundamental solitons of both the
intra- and inter-gap types, hosted by the first two finite bandgaps of the system’s spectrum.
The most essential findings are summarized in the form of plots showing the change of the
GS stability region with the variation of the degree of asymmetry of the two-component
symbiotic solitons, which is a new feature exhibited by the present system. In particular, the
stability area of intra-gap solitons shrinks with the increase of the asymmetry, while inter-gap
solitons may be stable only if the asymmetry is large enough, in favor of the first-bandgap
component, and intra-gap solitons in the second bandgap are completely unstable. The paper
is concluded by Section V.

2. The model

The model outlined above is represented by the system of XPM-coupled Schrödinger
equations for local amplitudes of co-propagating electromagnetic waves in the planar optical
waveguide, u(x, z) and v(x, z), where x and z are the transverse coordinate and propagation
distance, without the SPM terms, and with the lattice potential of depth 2ε > 0 acting on
both components:

i
∂u

∂z
+

1

2

∂2u

∂x2
− |v|2u + ε cos(2x)u = 0, (1)

i
∂v

∂z
+

1

2

∂2v

∂x2
− |u|2v + ε cos(2x)v = 0. (2)
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The variables are scaled so as to make the lattice period equal to π, and the coefficients in
front of the diffraction and XPM terms equal to 1. In the case of matter waves, u and v are
wave functions of the two components, and z is replaced by time t. Direct simulations of Eqs.
(1) and (2) were performed with the help of the split-step Fourier-transform technique.

Stationary solutions to Eqs. (1), (2) are looked as

u (x, z) = eikzU(x), v (x, z) = eiqzV(x), (3)

where the real propagation constants, k and q, are different, in the general case, and real
functions U(x) and V(x) obey equations

− kU +
1

2
U′′ − V2U + ε cos(2x)U = 0, (4)

−qV +
1

2
V′′ − U2V + ε cos(2x)V = 0, (5)

with the prime standing for d/dx. Numerical solutions to Eqs. (4) and (5) were obtained by
means of the Newton’s method.

Solitons are characterized by the total power,

P =
∫ +∞

−∞

(|U|2 + |V|2)dx ≡ Pu + Pv, (6)

with both Pu and Pv being dynamical invariants of Eqs. (1), (2), and by the asymmetry ratio,

R = (Pu − Pv) / (Pu + Pv) . (7)

The total power and asymmetry may be naturally considered as functions of the propagation
constants, k and q.

The well-known bandgap spectrum of the linearized version of Eqs. (4), (5) (see, e.g., book
[12]) is displayed in Fig. 1, the right edge of the first finite bandgap being

kmax (ε = 6) ≈ 3.75. (8)

The location of GSs is identified with respect to bandgaps of the spectrum. In this work,
results are reported for composite GSs whose two components belong to the first and second
finite bandgaps.

Stability of the stationary solutions can be investigated by means of the linearization against
small perturbations [26]-[28]. To this end, perturbed solutions of Eqs. (1) and (2) are looked
for as

u (x, z) = eikz
[
U(x) + u1(x)e−iλz + u∗

2(x)eiλ∗z
]

,

v (x, z) = eiqz
[
V(x) + v1(x)e−iλz + v∗2(x)eiλ∗z

]
, (9)
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Figure 1. (Color online) The identical bandgap structures produced by the linearization of Eqs. (4) and (5) for ε = 6. Shaded
areas are occupied by the Bloch bands, where gap solitons do not exist.

where u1,2 and v1,2 are wave functions of infinitesimal perturbations, and λ is the respective
instability growth rate, which may be complex (the asterisk stands for the complex
conjugate). The instability takes place if there is at least one eigenvalue with Im(λ) > 0.
The substitution of ansatz (9) into Eqs. (1), (2) and the linearization with respect to the small
perturbations leads to the eigenvalue problem based on the following equations:

qv1 −
1

2
v′′1 + U2(x)v1 + U(x)V(x) (u1 + u2)− ε cos(2x)v1 = λv1, (10)

−qv2 +
1

2
v′′2 − U2(x)v2 − U(x)V(x) (u1 + u2) + ε cos(2x)v2 = λv2, (11)

ku1 −
1

2
u′′

1 + V2(x)u1 + U(x)V(x) (v1 + v2)− ε cos(2x)u1 = λu1, (12)

−ku2 +
1

2
u′′

2 − V2(x)u2 − U(x)V(x) (v1 + v2) + ε cos(2x)u2 = λu2. (13)

These equations were solved by means of the fourth-order center-difference numerical
scheme.

Results for the shape and stability of GSs of different types are presented below for lattice
strength ε = 6, which adequately represents the generic case. Note, in particular, that Fig. 1
was plotted for this value of the lattice-potential’s strength.

3. The extended Thomas-Fermi approximation

It is well known that, close to edges of the bandgap, GSs feature an undulating shape, which
may be approximated by a Bloch wave function modulated by a slowly varying envelope
[14, 16]. On the other hand, deeper inside the bandgap, the GSs are strongly localized (see,
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means of the Newton’s method.
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with both Pu and Pv being dynamical invariants of Eqs. (1), (2), and by the asymmetry ratio,

R = (Pu − Pv) / (Pu + Pv) . (7)

The total power and asymmetry may be naturally considered as functions of the propagation
constants, k and q.

The well-known bandgap spectrum of the linearized version of Eqs. (4), (5) (see, e.g., book
[12]) is displayed in Fig. 1, the right edge of the first finite bandgap being

kmax (ε = 6) ≈ 3.75. (8)

The location of GSs is identified with respect to bandgaps of the spectrum. In this work,
results are reported for composite GSs whose two components belong to the first and second
finite bandgaps.

Stability of the stationary solutions can be investigated by means of the linearization against
small perturbations [26]-[28]. To this end, perturbed solutions of Eqs. (1) and (2) are looked
for as
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,

v (x, z) = eiqz
[
V(x) + v1(x)e−iλz + v∗2(x)eiλ∗z

]
, (9)

Advances in Photonic Crystals140
Two-Component Gap Solitons in Self-Defocusing Photonic Crystals 5

−8 −6 −4 −2 0 2 4 6
0

1

2

3

4

5

6

7

8

ε

(k,q)

Figure 1. (Color online) The identical bandgap structures produced by the linearization of Eqs. (4) and (5) for ε = 6. Shaded
areas are occupied by the Bloch bands, where gap solitons do not exist.

where u1,2 and v1,2 are wave functions of infinitesimal perturbations, and λ is the respective
instability growth rate, which may be complex (the asterisk stands for the complex
conjugate). The instability takes place if there is at least one eigenvalue with Im(λ) > 0.
The substitution of ansatz (9) into Eqs. (1), (2) and the linearization with respect to the small
perturbations leads to the eigenvalue problem based on the following equations:

qv1 −
1

2
v′′1 + U2(x)v1 + U(x)V(x) (u1 + u2)− ε cos(2x)v1 = λv1, (10)
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−ku2 +
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u′′

2 − V2(x)u2 − U(x)V(x) (v1 + v2) + ε cos(2x)u2 = λu2. (13)

These equations were solved by means of the fourth-order center-difference numerical
scheme.

Results for the shape and stability of GSs of different types are presented below for lattice
strength ε = 6, which adequately represents the generic case. Note, in particular, that Fig. 1
was plotted for this value of the lattice-potential’s strength.

3. The extended Thomas-Fermi approximation

It is well known that, close to edges of the bandgap, GSs feature an undulating shape, which
may be approximated by a Bloch wave function modulated by a slowly varying envelope
[14, 16]. On the other hand, deeper inside the bandgap, the GSs are strongly localized (see,
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e.g., Figs. 4 and 7 below), which suggests to approximate them by means of the variational
method based on the Gaussian ansatz [45, 56]. This approximation was quite efficient for
the description of GSs in single-component models [56], while for two-component systems
it becomes cumbersome [44, 45]. Explicit analytical results for well-localized patterns can be
obtained by means of the TFA [5], which, in the simplest case, neglects the kinetic-energy
terms, U′′ and V′′, in Eqs. (4), (5). Assuming, for the sake of the definiteness, q < k and also
|k| < ε (the TFA is irrelevant for |k| > ε), the approximation yields the fields inside the inner
layer of the solution:

�
U2(x)
V2(x)

�

inner

=

�
ε cos (2x)− q
ε cos (2x)− k

�
, at |x| < x0 ≡

1

2
cos−1

�
k

ε

�
. (14)

Thus, the TFA predicts the core part of the solution in the form of peaks in the two
components with the same width, 2x0, but different heights,

�
U2, V2

�
max = {ε − q, ε − k}.

This structure complies with numerically generated examples of asymmetric solitons
displayed in Figs. 7(a,b).

Further, the expansion of expressions (14) around the soliton’s center (x = 0), yields

�
U(x)
V(x)

�
≈

� √
ε − q − (ε/

√
ε − q) x2,

√
ε − k −

�
ε/
√

ε − k
�

x2.

�
(15)

The substitution of the second derivatives of the fields at x = 0, calculated as per Eq. (15),
into Eqs. (4), (5) yields a corrected expression for the soliton’s amplitudes:

�
U(x = 0)
V(x = 0)

�
≈





√
ε − q − ε [2 (ε − k)

√
ε − q]−1 ,

√
ε − k − ε

�
2 (ε − q)

√
ε − k

�−1
,



 (16)

along with the condition for the applicability of the TFA:

ε ≪ (ε − k) (ε − q) . (17)

For the symmetric-GS families in the two first finite bandgaps, the amplitude predicted by
the improved TFA in the form of Eq. (16) is displayed, as a function of k = q, in Fig. 2(a)
and compared to its numerically found counterpart. It is worthy to note that the correction
terms in Eq. (16) essentially improve the agreement of the TFA prediction with the numerical
findings.

At |x| > x0, the TFA gives V(x) = 0, which is a continuous extension of the respective
expression (14) in the V component, while the continuity of fields U(x) and U′(x)
makes it necessary to match the respective expression (14) to “tails", which, in the lowest
approximation, satisfy equation U′′ = 0. The continuity is provided by the following tail
solution:
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Figure 2. (Color online) (a) The continuous (blue) curves show the numerically found amplitude of the fundamental symmetric

gap solitons (with equal components), versus propagation constant k = q, in the first and second bandgaps at ε = 6.0. The
chain of symbols is the analytical approximation for the same dependence, as produced by the improved TFA in the form of Eq.

(16). The dashed curve is the result of the usual TFA, which corresponds to Eq. (16) without the correction (second) terms. (b)

Total power P for the same soliton families, whose stable and unstable portions are designated by the bold dotted and dashed
lines, respectively. The latter one is destabilized by symmetry-breaking perturbations, while the entire family is stable in the

framework of the single-component model. Coordinates of the stability/instability border are given by Eq. (21). The chain of

squares shows the analytical dependence produced by the TFA, see Eq. (20).

�
U2(x)

�
outer

=





��
k − q −

�
(ε2 − k2) / (k − q) (|x| − x0)

�2
,

at 0 < |x| − x0 < (k − q) /
√

ε2 − k2;

0, at |x| − x0 > (k − q) /
√

ε2 − k2.





(18)

The integration of expressions (14) and (18) yields the following approximation for the
powers of the two components:

�
Pu

Pv

�

TFA

=





√
ε2 − k2 − q cos−1 (k/ε)

+(2/3) (k − q)2 /
√

ε2 − k2;√
ε2 − k2 − k cos−1 (k/ε) .





(19)

The substitution of approximation (19) into definitions (6) and (7) of the total power and
asymmetry demonstrates an agreement with numerical results. For instance, the slope of the
curve R(q) for the intra-gap GSs at fixed k (see Fig. 8 below) at the symmetry point (k = q),
as predicted by Eq. (19) for ε = 6 and k = 1, is (∂R/∂q) |q=k ≈ −0.155, while its numerically
found counterpart is ≈ −0.160. Further, the analysis of Eq. (19) readily demonstrates that
the strongly asymmetric solitons may exist up to the limit of R → 1, which is corroborated
by the existence area for the intra-gap solitons shown below in Fig. 11(b).

Another corollary of Eqs. (19) is the prediction for the total power for the symmetric solitons,

P(k = q) = 2
��

ε2 − k2 − k cos−1 (k/ε)
�

, (20)
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method based on the Gaussian ansatz [45, 56]. This approximation was quite efficient for
the description of GSs in single-component models [56], while for two-component systems
it becomes cumbersome [44, 45]. Explicit analytical results for well-localized patterns can be
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terms, U′′ and V′′, in Eqs. (4), (5). Assuming, for the sake of the definiteness, q < k and also
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components with the same width, 2x0, but different heights,
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along with the condition for the applicability of the TFA:

ε ≪ (ε − k) (ε − q) . (17)

For the symmetric-GS families in the two first finite bandgaps, the amplitude predicted by
the improved TFA in the form of Eq. (16) is displayed, as a function of k = q, in Fig. 2(a)
and compared to its numerically found counterpart. It is worthy to note that the correction
terms in Eq. (16) essentially improve the agreement of the TFA prediction with the numerical
findings.

At |x| > x0, the TFA gives V(x) = 0, which is a continuous extension of the respective
expression (14) in the V component, while the continuity of fields U(x) and U′(x)
makes it necessary to match the respective expression (14) to “tails", which, in the lowest
approximation, satisfy equation U′′ = 0. The continuity is provided by the following tail
solution:
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The substitution of approximation (19) into definitions (6) and (7) of the total power and
asymmetry demonstrates an agreement with numerical results. For instance, the slope of the
curve R(q) for the intra-gap GSs at fixed k (see Fig. 8 below) at the symmetry point (k = q),
as predicted by Eq. (19) for ε = 6 and k = 1, is (∂R/∂q) |q=k ≈ −0.155, while its numerically
found counterpart is ≈ −0.160. Further, the analysis of Eq. (19) readily demonstrates that
the strongly asymmetric solitons may exist up to the limit of R → 1, which is corroborated
by the existence area for the intra-gap solitons shown below in Fig. 11(b).

Another corollary of Eqs. (19) is the prediction for the total power for the symmetric solitons,

P(k = q) = 2
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ε2 − k2 − k cos−1 (k/ε)
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which is plotted in Fig. 2(b), along with its numerically found counterpart. Although the
TFA does not predict edges of the bandgaps, the overall analytical prediction for P(k), as
well as the soliton’s amplitude shown in Fig. 2(a), run quite close to the numerical curves,
except for near the right edge, where, indeed, condition (17) does not hold for ε = 6 and
k = 3.75, see Eq. (8). Note that these simple analytical approximations were not derived
before in numerous works dealing with single-component GSs.

4. Results of the numerical analysis

4.1. Symmetric solitons

Obviously, the shape of symmetric solitons, built of two equal components [with k = q
and U(x) = V(x), see Eq. (3)], is identical to that of GSs in the single-component model.
However, there is a drastic difference in the stability of the symmetric GSs between the
single- and two-component systems. Almost the entire symmetric family is stable against
symmetric perturbations, i.e., it is stable in the framework of the single-component equation
(in agreement with previously known results [12]), except for a weak oscillatory instability,
accounted for by quartets of complex-conjugate eigenvalues, in the form of λ = ±iIm (λ)±
Re (λ) (with two mutually independent signs ±), which appears near the left edge of the
second bandgap—namely, at k < kmin ≈ −3.45. An example of the development of the latter
instability is displayed in Fig. 3.
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Figure 3. (Color online) The evolution of a weakly unstable single-component fundamental soliton at k = −3.7.

On the other hand, Fig. 2 demonstrates that a considerable part of the family in the
first finite bandgap, and the entire family in the second bandgap are unstable against
symmetry-breaking perturbations in the two-component system. The boundary separating
the stable and unstable subfamilies of the fundamental symmetric GSs in the first finite
bandgap corresponds to the power and propagation constants is found at

Pcr ≈ 7.19, kcr ≈ 1.05, (21)

the symmetric solitons being stable in the intervals of 0 < P < 7.19, 1.05 < k < kmax ≈ 3.75
[see Eq. (8)]. These results were produced by a numerical solution of Eqs. (10)-(13) (the
instability is oscillatory, characterized by complex eigenvalues).
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only the one corresponding to k = q = 2.0 remains stable in the two-component system, while its counterpart pertaining to
k = q = −2 is destabilized by symmetry-breaking perturbations.

Typical examples of stable and unstable fundamental symmetric GSs, found in the first and
second bandgaps (not too close to their edges), are displayed in Fig. 4. Further, direct
simulations demonstrate that the evolution transforms the unstable symmetric solitons into
persistent localized breathers, as shown in Figs. 5 and 6, in accordance with the fact that the
corresponding instability eigenvalues are complex. Although the emerging breather keeps
the value of R = 0, see Eq. (7), the u- and v- components of the breather generated by the
symmetry-breaking instability are no longer mutually identical. This manifestation of the
symmetry-breaking instability is illustrated by Fig. 5(c), which displays the evolution of the
difference between the peak powers of the two components, and the separation between their
centers. The latter is defined as

Xu − Xv ≡
1

Pu

∫ +∞

−∞

|u (x, z) |2xdx −
1

Pv

∫ +∞

−∞

|v (x, z) |2xdx. (22)

It is relevant to mention that the second finite bandgap also contains a branch of the so-called
subfundamental solitons, whose power is smaller than that of the fundamental GSs [29], [57],
[58]. These are odd modes, squeezed, essentially, into a single cell of the underlying lattice
potential. The subfundamental solitons are unstable, tending to rearrange themselves into
fundamental ones belonging to the first finite bandgap, therefore they are not considered
below.

4.2. Asymmetric solitons of the intra-gap type

As said above, two-component asymmetric fundamental GSs, with different propagation
constants, k �= q, may be naturally classified as solitons of the intra- and inter-gap types if k
and q belong to the same or different finite bandgaps [44]. In this subsection, we report results
for asymmetric intra-gap solitons with both k and q falling into the first finite bandgap, as
well as for asymmetric breathers developing from such solitons when they are unstable.

Examples of stable asymmetric GSs of the intra-gap type are displayed in Fig. 7, for a
fixed asymmetry ratio, R = −0.5, defined as per Eq. (7). The GS family, along with the
family of persistent breathers into which unstable solitons are spontaneously transformed, is
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However, there is a drastic difference in the stability of the symmetric GSs between the
single- and two-component systems. Almost the entire symmetric family is stable against
symmetric perturbations, i.e., it is stable in the framework of the single-component equation
(in agreement with previously known results [12]), except for a weak oscillatory instability,
accounted for by quartets of complex-conjugate eigenvalues, in the form of λ = ±iIm (λ)±
Re (λ) (with two mutually independent signs ±), which appears near the left edge of the
second bandgap—namely, at k < kmin ≈ −3.45. An example of the development of the latter
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On the other hand, Fig. 2 demonstrates that a considerable part of the family in the
first finite bandgap, and the entire family in the second bandgap are unstable against
symmetry-breaking perturbations in the two-component system. The boundary separating
the stable and unstable subfamilies of the fundamental symmetric GSs in the first finite
bandgap corresponds to the power and propagation constants is found at

Pcr ≈ 7.19, kcr ≈ 1.05, (21)

the symmetric solitons being stable in the intervals of 0 < P < 7.19, 1.05 < k < kmax ≈ 3.75
[see Eq. (8)]. These results were produced by a numerical solution of Eqs. (10)-(13) (the
instability is oscillatory, characterized by complex eigenvalues).
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Typical examples of stable and unstable fundamental symmetric GSs, found in the first and
second bandgaps (not too close to their edges), are displayed in Fig. 4. Further, direct
simulations demonstrate that the evolution transforms the unstable symmetric solitons into
persistent localized breathers, as shown in Figs. 5 and 6, in accordance with the fact that the
corresponding instability eigenvalues are complex. Although the emerging breather keeps
the value of R = 0, see Eq. (7), the u- and v- components of the breather generated by the
symmetry-breaking instability are no longer mutually identical. This manifestation of the
symmetry-breaking instability is illustrated by Fig. 5(c), which displays the evolution of the
difference between the peak powers of the two components, and the separation between their
centers. The latter is defined as
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It is relevant to mention that the second finite bandgap also contains a branch of the so-called
subfundamental solitons, whose power is smaller than that of the fundamental GSs [29], [57],
[58]. These are odd modes, squeezed, essentially, into a single cell of the underlying lattice
potential. The subfundamental solitons are unstable, tending to rearrange themselves into
fundamental ones belonging to the first finite bandgap, therefore they are not considered
below.

4.2. Asymmetric solitons of the intra-gap type

As said above, two-component asymmetric fundamental GSs, with different propagation
constants, k �= q, may be naturally classified as solitons of the intra- and inter-gap types if k
and q belong to the same or different finite bandgaps [44]. In this subsection, we report results
for asymmetric intra-gap solitons with both k and q falling into the first finite bandgap, as
well as for asymmetric breathers developing from such solitons when they are unstable.

Examples of stable asymmetric GSs of the intra-gap type are displayed in Fig. 7, for a
fixed asymmetry ratio, R = −0.5, defined as per Eq. (7). The GS family, along with the
family of persistent breathers into which unstable solitons are spontaneously transformed, is
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Figure 5. (Color online) (a) and (b) The spontaneous transformation of an unstable symmetric fundamental soliton for u- and
v-component, in the first bandgap, with k = q = 0, into a stable asymmetric breather. (c) The top and bottom plots display,

respectively, the evolution of the peak-power difference, max(|u (x, z)|2) − max(|u (x, z)|2), and the separation between
centers of the two components, Xu and Xv, which is defined as per Eq. (22).
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Figure 6. (Color online) (a,b) The same as in Fig. 5(a,b), but for an unstable soliton in the second bandgap, with k = q = −3.5.
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Figure 7. (Color online) Examples of stable solitons of the intra-gap type found in the first finite bandgap, with fixed asymmetry

R = −0.5: (a) k = 3 and q = 3.4601; (b) k = 1 and q = 2.843; (c) k = −0.5 and q = 2.5116. Fields U(x) and V(x), which
pertain to propagation constants k and q, are shown, respectively, by the magenta (lower) and blue (higher) profiles.

represented in Fig. 8 by dependences R(q) at different fixed values of the other propagation
constant, k.

It is possible to explain the fact that all the R(q) curves converge to R = −1, as q approaches
the right edge of the bandgap in Fig. 8. In this case, the V component turns into the
delocalized Bloch wave function with a diverging power, Pv, that corresponds to Pu/Pv → 0
[it is tantamount to R → −1, as per Eq. (7)]. An example of a stable GS, close to this limit,
with k = −0.5, q = 3.65 and R = −0.9811, is shown in Fig. 9. The central core of the
V-component is described by the TFA, based on Eq. (14), as the corresponding necessary
condition (17) holds in this case, while the TFA does not apply to the U-component. The
presence of undulating tails, which are close to the Bloch functions, rather than the simple
approximation (18), which is valid far from the edge of the bandgap, is also visible in Fig. 8.

Those asymmetric intra-gap GSs which form unstable subfamilies in Fig. 8 are destabilized
by oscillatory perturbations. The instability transform the solitons into breathers, see a typical
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v-component, in the first bandgap, with k = q = 0, into a stable asymmetric breather. (c) The top and bottom plots display,

respectively, the evolution of the peak-power difference, max(|u (x, z)|2) − max(|u (x, z)|2), and the separation between
centers of the two components, Xu and Xv, which is defined as per Eq. (22).
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Figure 6. (Color online) (a,b) The same as in Fig. 5(a,b), but for an unstable soliton in the second bandgap, with k = q = −3.5.
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R = −0.5: (a) k = 3 and q = 3.4601; (b) k = 1 and q = 2.843; (c) k = −0.5 and q = 2.5116. Fields U(x) and V(x), which
pertain to propagation constants k and q, are shown, respectively, by the magenta (lower) and blue (higher) profiles.

represented in Fig. 8 by dependences R(q) at different fixed values of the other propagation
constant, k.

It is possible to explain the fact that all the R(q) curves converge to R = −1, as q approaches
the right edge of the bandgap in Fig. 8. In this case, the V component turns into the
delocalized Bloch wave function with a diverging power, Pv, that corresponds to Pu/Pv → 0
[it is tantamount to R → −1, as per Eq. (7)]. An example of a stable GS, close to this limit,
with k = −0.5, q = 3.65 and R = −0.9811, is shown in Fig. 9. The central core of the
V-component is described by the TFA, based on Eq. (14), as the corresponding necessary
condition (17) holds in this case, while the TFA does not apply to the U-component. The
presence of undulating tails, which are close to the Bloch functions, rather than the simple
approximation (18), which is valid far from the edge of the bandgap, is also visible in Fig. 8.

Those asymmetric intra-gap GSs which form unstable subfamilies in Fig. 8 are destabilized
by oscillatory perturbations. The instability transform the solitons into breathers, see a typical
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Figure 8. (Color online) The asymmetry ratio, R [defined as per Eq. (7)], versus propagation constant q, at fixed values of
k = 3.0, 1.0, and k = −0.5 (the top, middle, and bottom curves, respectively), for asymmetric fundamental solitons of the
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Figure 9. (Color online) An example of a stable strongly asymmetric soliton with k = −0.5 and q = 3.65. Fields U(x) and
V(x), which pertain to propagation constants k and q, are shown, respectively, by the magenta (lower) and blue (taller) profiles.

example in Fig. 10 [cf. the examples of the destabilization of the symmetric GSs shown in
Fig. 5(b,c)]. The emerging breathers keep values of the asymmetry ratio (7) almost identical
to those of their parent GSs; for instance, in the case displayed in Fig. 10, the unstable soliton
with Rinitial = −0.3617 evolves into the breather with Rfinal = −0.3623.

It is relevant to stress that the transformation of unstable stationary GSs into the breathers
gives rise to little radiation loss of the total power, P. On the other hand, in the general case
a given unstable gap soliton does not have a stable counterpart with a close value of P, hence
this unstable soliton cannot transform itself into a slightly excited state of another stable GS.
Thus, the breathers represent a distinct species of localized modes.

The most essential results of the stability analysis for the asymmetric solitons of the intra-gap
type, and for breathers replacing unstable solitons, are summarized by diagrams in the planes
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Figure 10. (Color online) A typical example of the transformation of the unstable asymmetric gap solitons into a breather, for

k = −0.5 and q = 2.0.
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Figure 11. (Color online) (a) The stability border in the plane of the propagation constants, (k, q), for asymmetric solitons of
the intra-gap type. Only half of the plane is shown, delineated by the dotted triangle, within which wavenumbers k and q
belong to the first finite bandgap, as the other half is a mirror image of the displayed one. (b) The same in the plane of the total

power and asymmetry ratio, (P, R), defined as per Eqs. (6) and (7). Localized modes do not exist above the right boundary of
the stability regions in panel (b). The diagram at R < 0 is a mirror image of the one displayed here for R > 0.

of (k, q) and (P, R), which are displayed in Fig. 11. The predictions of the analysis based on
the computation of the stability eigenvalues for the stationary solitons, as per Eqs. (10)-(13),
always comply with stability tests provided by direct simulations of Eqs. (1) and (2).

As mentioned above, the instability of a part of the branch of the symmetric solitons along the
line of R = 0 in Fig. 11(b) implies that the symmetry-breaking perturbations destabilize the
symmetric solitons in the first finite bandgap at P > Pcr, see Eq. (21), while their counterparts
are stable in the single-component system. Another clear conclusion is that the stability
region gradually shrinks with the increase of the asymmetry.
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example in Fig. 10 [cf. the examples of the destabilization of the symmetric GSs shown in
Fig. 5(b,c)]. The emerging breathers keep values of the asymmetry ratio (7) almost identical
to those of their parent GSs; for instance, in the case displayed in Fig. 10, the unstable soliton
with Rinitial = −0.3617 evolves into the breather with Rfinal = −0.3623.

It is relevant to stress that the transformation of unstable stationary GSs into the breathers
gives rise to little radiation loss of the total power, P. On the other hand, in the general case
a given unstable gap soliton does not have a stable counterpart with a close value of P, hence
this unstable soliton cannot transform itself into a slightly excited state of another stable GS.
Thus, the breathers represent a distinct species of localized modes.

The most essential results of the stability analysis for the asymmetric solitons of the intra-gap
type, and for breathers replacing unstable solitons, are summarized by diagrams in the planes
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of (k, q) and (P, R), which are displayed in Fig. 11. The predictions of the analysis based on
the computation of the stability eigenvalues for the stationary solitons, as per Eqs. (10)-(13),
always comply with stability tests provided by direct simulations of Eqs. (1) and (2).

As mentioned above, the instability of a part of the branch of the symmetric solitons along the
line of R = 0 in Fig. 11(b) implies that the symmetry-breaking perturbations destabilize the
symmetric solitons in the first finite bandgap at P > Pcr, see Eq. (21), while their counterparts
are stable in the single-component system. Another clear conclusion is that the stability
region gradually shrinks with the increase of the asymmetry.
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Figure 12. (Color online) An example of a stable inter-gap soliton, for k = 3 and q = −1.65. The single-peak and split-peak
profiles, U(x) and V(x), represent, respectively, the components in the first and second finite bandgaps.

4.3. Solitons of the inter-gap type

All the GSs of the inter-gap type, with two propagation constants belonging to the two
different finite bandgaps, are naturally asymmetric, even if their components have equal
powers. Examples of stable and unstable inter-gap solitons are displayed in Figs. 12 and 13,
respectively. A noteworthy feature exhibited by these examples is a split-peak structure of
the component belonging to the second finite bandgap.

The asymmetry measure, R(q), for families of the inter-gap solitons is plotted in Fig. 14(a)
versus the propagation constant q in the second bandgap, at fixed values of k (the propagation
constant in the first bandgap). The stability of the respective GS families is also shown in Fig.
14.

The (in)stability of the inter-gap solitons is summarized by the diagrams in the planes of
(k, q) and (P, R) presented in Fig. 15, cf. similar diagrams for intra-gap solitons shown above
in Fig. 11. As well as in that case, unstable inter-gap solitons are spontaneously replaced
by robust localized breathers. The spontaneous transformation increases the initial degree of
the asymmetry: For instance, an unstable inter-gap soliton with R = 0.019 is converted into
a breather with R = 0.028.

In the present case too, the existence region of stable modes shrinks with the increase of the
asymmetry; note also that the stationary inter-gap solitons may be stable solely at sufficiently
large values of the asymmetry, R ≥ Rmin ≈ 0.5. The asymmetric shape of the stability
diagram in Fig. 15(b) with respect to R > 0 and R < 0 [unlike the symmetry of the diagram
for the intra-gap solitons implied in Fig. 11(b)] is explained by the fact that, in definition (7),
R > 0 implies that the dominant component resides in the first finite bandgap, where it is
more robust than in the second bandgap.

Finally, out additional analysis has demonstrated that all the stationary GSs—not only the
symmetric ones [see Fig. 2], but also all the asymmetric solitons of the intra-gap type—are
completely unstable in the second finite bandgap. They too tend to spontaneously rearrange
themselves into breathers, which is not shown here in detail.
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Figure 13. (Color online) A typical example of the transformation of an unstable intergap soliton into a stable breather, at

k = 0 and q = −2. (a,b) The evolution of |u|2 and |v|2. (c) The initial profiles of U(x) and V(x) (single-peak and split-peak
shapes, respectively).
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Figure 14. (Color online) Asymmetry ratio R for the inter-gap solitons versus propagation constant q in the second finite
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profiles, U(x) and V(x), represent, respectively, the components in the first and second finite bandgaps.

4.3. Solitons of the inter-gap type

All the GSs of the inter-gap type, with two propagation constants belonging to the two
different finite bandgaps, are naturally asymmetric, even if their components have equal
powers. Examples of stable and unstable inter-gap solitons are displayed in Figs. 12 and 13,
respectively. A noteworthy feature exhibited by these examples is a split-peak structure of
the component belonging to the second finite bandgap.

The asymmetry measure, R(q), for families of the inter-gap solitons is plotted in Fig. 14(a)
versus the propagation constant q in the second bandgap, at fixed values of k (the propagation
constant in the first bandgap). The stability of the respective GS families is also shown in Fig.
14.

The (in)stability of the inter-gap solitons is summarized by the diagrams in the planes of
(k, q) and (P, R) presented in Fig. 15, cf. similar diagrams for intra-gap solitons shown above
in Fig. 11. As well as in that case, unstable inter-gap solitons are spontaneously replaced
by robust localized breathers. The spontaneous transformation increases the initial degree of
the asymmetry: For instance, an unstable inter-gap soliton with R = 0.019 is converted into
a breather with R = 0.028.

In the present case too, the existence region of stable modes shrinks with the increase of the
asymmetry; note also that the stationary inter-gap solitons may be stable solely at sufficiently
large values of the asymmetry, R ≥ Rmin ≈ 0.5. The asymmetric shape of the stability
diagram in Fig. 15(b) with respect to R > 0 and R < 0 [unlike the symmetry of the diagram
for the intra-gap solitons implied in Fig. 11(b)] is explained by the fact that, in definition (7),
R > 0 implies that the dominant component resides in the first finite bandgap, where it is
more robust than in the second bandgap.

Finally, out additional analysis has demonstrated that all the stationary GSs—not only the
symmetric ones [see Fig. 2], but also all the asymmetric solitons of the intra-gap type—are
completely unstable in the second finite bandgap. They too tend to spontaneously rearrange
themselves into breathers, which is not shown here in detail.
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5. Conclusion

We have introduced the model of symbiotic two-component GSs (gap solitons), based on
two nonlinear Schrödinger equations coupled by the repulsive XPM terms and including the
lattice potential acting on both components, in the absence of the SPM nonlinearity. The
model has a realization in optics, in terms of “holographic solitons" in photonic crystals,
and as a model of binary quantum gases (in particular, a fully polarized fermionic one)
loaded into the optical-lattice potential. Families of fundamental asymmetric GSs have been
constructed in the two lowest finite bandgaps, including the modes of both the intra-gap and
inter-gap types, i.e., those with the propagation constants of the two components belonging
to the same or different bandgaps, respectively. The existence and stability regions of
the symbiotic GSs and breathers, into which unstable solitons are transformed, have been
identified. A noteworthy finding is that symmetry-breaking perturbations destabilize the
symmetric GSs in the first finite bandgap, if their total power exceeds the critical value
given by Eq. (21), along with all the symmetric solitons in the second bandgaps. It was
demonstrated too that the stability area for the intra-gap GSs shrinks with the increase of the
asymmetry ratio, R. On the other hand, inter-gap GSs may be stable only for sufficiently large
ratio, R > 0.5. The intra-gap solitons are completely unstable in the second bandgap. Some
features of the GS families were explained by means of the extended TFA (Thomas-Fermi
approximation), augmented by the tails attached to the taller component, in the case of
asymmetric solitons.

A natural extension of the analysis may deal with 2D symbiotic gap solitons, supported
by the square- or radial-lattice potentials. In that case, it may be interesting to consider
two-component solitary vortices too.
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two nonlinear Schrödinger equations coupled by the repulsive XPM terms and including the
lattice potential acting on both components, in the absence of the SPM nonlinearity. The
model has a realization in optics, in terms of “holographic solitons" in photonic crystals,
and as a model of binary quantum gases (in particular, a fully polarized fermionic one)
loaded into the optical-lattice potential. Families of fundamental asymmetric GSs have been
constructed in the two lowest finite bandgaps, including the modes of both the intra-gap and
inter-gap types, i.e., those with the propagation constants of the two components belonging
to the same or different bandgaps, respectively. The existence and stability regions of
the symbiotic GSs and breathers, into which unstable solitons are transformed, have been
identified. A noteworthy finding is that symmetry-breaking perturbations destabilize the
symmetric GSs in the first finite bandgap, if their total power exceeds the critical value
given by Eq. (21), along with all the symmetric solitons in the second bandgaps. It was
demonstrated too that the stability area for the intra-gap GSs shrinks with the increase of the
asymmetry ratio, R. On the other hand, inter-gap GSs may be stable only for sufficiently large
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features of the GS families were explained by means of the extended TFA (Thomas-Fermi
approximation), augmented by the tails attached to the taller component, in the case of
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1. Introduction

It is one of the primary interests in recent nano- and micro-photonics to achieve a strong
confinement of light in a small region, because it finds a variety of applications in optical
physics and engineering where it is exploited in low-threshold lasers [1], nonlinear optical
devices [2], and cavity quantum electrodynamics devices [3]. Extensive efforts have there‐
fore been devoted to developing a cavity that can confine light efficiently—a high-quality
optical resonator. The quality of resonators is described here by the photon lifetime τ which
is the time that elapses before a photon trapped in the resonator escapes from it, or by the
quality factor defined by Q =ωτ where ω is the angular frequency of light [4].

In order to achieve high-quality optical resonators, the two directions seem to have been ex‐
plored so far: one is the use of the extended waves and another is the use of the localized
waves. The photonic crystals (PCs) may be the first candidate high-quality resonators, the Q
factors for which have been found to be increased by the slowed-down light (the extended
waves, or the Bloch waves in this case) near the photonic band edge [5-7]. The typical exam‐
ple for the exploitation of the localized waves can be found in the defect mode that is local‐
ized around a disorder in the PC [8-13], which provides more pronounced light-confinement
than the band edge modes in the PCs. Although the defect itself generally occupies a very
small region, this confinement requires the presence of a large periodic medium around it in
order for the defect mode to be sufficiently isolated from its environment. Light can also be
localized in the central part of a three-dimensional (3D) fractal structure (Menger sponge)
made up of cubes that need not have high Q factors [14]. A single microstructure with a va‐
riety of forms [15-19] also creates high-Q modes called whispering gallery modes (WGMs)
that occur when the light waves circulate within the microstructure because they undergo
total internal reflection at its boundaries. This could be regarded as intermediate between
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made up of cubes that need not have high Q factors [14]. A single microstructure with a va‐
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the two directions mentioned before, since the waves for WGMs are propagating extended
waves but confined within the microstructure.

In the context mentioned above, we describe in Sec. 3 an entirely different type of resonator:
a closed chain array made up of dielectric microstructures arranged periodically in the back‐
ground material (e.g., the air). We call it a photonic atoll (PA) resonator because it resembles
an atoll in the ocean. This PA resonator is thought to have a prominent function to confine
light very strongly for the following reasons: (1) the multiple scattering of light by the peri‐
odic quasi-one-dimensional (q1D) array causes a slowing down of extended light-waves and
(2) the closed optical path forces a photon once trapped in the array to keep circulating in
the loop, both of which would undoubtedly increase the photon lifetime. Factor (1) is the
same as the factor responsible for the lifetime enhancement at the band edge of the PCs (see
the preceding paragraph) while factor (2) reminds us of the analogy to the ring accelerator
for elementary particles. Because of the features mentioned above, this PA structure could
also be called a distributed feedback ring-resonator. The above concept was previously [20]
applied to the PA resonator of the two-dimensional (2D) circular array consisting of the fifty
rods. This resonator was actually found to create an extremely high radiative Q factor of the
order of 1015 and the resultant very long lifetime of the order of one second for visible light
at the modes near the photonic band edges created in this q1D closed PC. The idea of PA
was conceived during the investigation of circulating modes in a two-dimensional PC [6, 21]
and a microdisk [22], so we believe that the investigation of it and its structure effects will
also help us understand the behavior of light in those structures.

Since we have confirmed that the PA structure has a potential to achieve very long lifetimes,
our next step of research is to investigate what kind of PA shapes would provide the most
efficient optical resonator (Sec. 4). This is because the PA has the degree of freedom that per‐
mits it to have an arbitrary loop form: note that the first work (Sec. 3) has focused on a circu‐
lar PA. In the process of investigations to pursue the optimum PA structure that maximizes
the Q value, we observed the remarkable metamorphoses of eigen modes whose degeneracy
has been lifted in the modified PAs. This kind of phenomena has so far not been observed in
the PA, but it could be considered in the context of the phenomena such as the Stark effect
[23] and the Zeeman effect [23] for the electronic energy and the Sagnac effect [22, 24] for the
optical energy. This is because the mode splittings in all of these phenomena are caused by
some perturbations applied to the system: the Stark effect is caused by the modification of
the electronic potential by the electric field, the Zeeman effect by the magnetic field, the Sa‐
gnac effect by the mechanical rotation, and our case by the modification of the optical poten‐
tial by the rearrangement of rods.

Finally, we describe in Sec. 5 the laser actions in the PA resonators with extremely high Q
values as an example of their application to a practical optical device. The threshold ampli‐
tude gain for laser oscillation is calculated together with the lifetimes. We find that these
values are well correlated, in particular that the threshold gain is inversely proportional to
the lifetime obtained for the same PA resonators. Although other possible losses of light re‐
main to be considered before this structure is put to practical use, the results obtained here
suggest that it would be an excellent structure for confining light. In particular, the fact that
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it does not require a large size to achieve a strong light confinement will prove a great ad‐
vantage over other ways of light confinement when it is incorporated into optical integrated
circuits.

2. Theory

2.1. Multiple scattering of light

The analytic multiple-scattering theory is used here to evaluate the light confinement effects.
Since the general theory is described in the reports [6, 7], here we briefly outline the frame‐
work of the calculation. We consider a 2D array consisting of a finite number N  of cylindri‐
cal rods (made of material A) with radius d  placed at arbitrary points in the background
material (material B, usually air). Here we focus on the polarization for which the electric
field is parallel to the rod axis (E-polarization). By considering the scattering of the incident
plane-wave with the unit amplitude by these rods, we obtain the electric field of the total
scattered wave E s(r):
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where r  is the generic coordinate, (rn, θn) is the polar coordinates of the center of the nth
rod, and K =ω / c is the wave number of light in the air. Here, the second equality in Eq. (1)
implies the inner product of vectors b =(bnl) and φ(r)= (Hl

(1)(K rn)e ilθn) where Hl
(1)(x) is the

Hankel function [25] of the first kind. Vector b is calculated from the relation T b =q, where q
is a vector, the size of which is proportional to the amplitude of the incident wave, and T  is
a matrix:
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where δ is Kronecker's delta, Rnn ′ is the distance between the centers of the nth and n ′th

rods, and ϕn ′n is the angle that indicates the direction of the n ′th rod center as viewed from
the nth rod center. Here, sl  is a parameter related to the boundary conditions at the rod sur‐
face: see the previous report [6] for its details.

2.2. Modes and lifetimes

To determine the photon lifetime in the photonic atoll, we assume real dielectric constants
(i.e., no optical gain) and a complex photon frequency ω =ω ′ − iω ″. Since the frequency de‐
pendence of the amplitude of the resonance scattered-wave follows the Breit-Wigner formu‐
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la [23], the first-order pole of the scattered-wave amplitude gives the complex frequency
ωm =ω ′

m − iω ″
m of the resonance mode. Hereafter, we use the subscript m to indicate the spe‐

cific mode obtained. Since the electric-field amplitude has to diverge at ω =ωm irrespective of
position r  in φ(r), this divergence must occur in vector b. This implies that the condition
det(T )=0 determines the complex frequency ωm. The photon lifetime of the relevant mode is

given by τm =1 / 2ω ″
m and the Q factor is given by ω ′

mτm.

Here, we refer to the physical meaning of the above method for determining the photon life‐
times. The imaginary part ω ″

m of the complex frequency thus determined must be positive
since the lifetime is positive. The positive ω ″

m means that k ″
m is positive due to the relation

ωm = ckm in the air, i.e., ω ′
m − iω ″

m =c(k ′
m − ik ″

m), where km =k ′
m − ik ″

m is the complex wave
number and c is the light velocity (the positive value). Since the 2D scattered wave behaves
like exp(ikmr) / r =exp(ik ′

mr)⋅exp(k ″
mr) / r  at large r , we find that it diverges at the limit of

r →∞ because k ″
m >0. This may appear to be unusual, because it is as if light be amplified

despite the absence of optical gain in the present physical system. Note, however, that this is
true. This actually occurs because the resonance state decays exactly at this resonance fre‐
quency to magnify the light intensity outside the PC (not due to gain). In this consideration,
the temporal variation of the field should be taken into account at the same time: the light
field decreases with the factor |exp(− iωmt)| =exp(−ω ″

mt) since ω ″
m >0. The overall behav‐

ior of the light field is described by the product of the two factors: the increasing spatial part
and the decreasing temporal part. The total light field is thus known to remain unchanged at
the simultaneous limits of r →∞ and t →∞. We find that the light field energy is conserved
during the whole decaying process of the resonance states. This is in marked contrast to the
case where the PC has optical gain and therefore the light field energy in the total system is
amplified.

2.3. Threshold amplitude-gain for laser oscillation

In the calculation of lasing thresholds [6] in the photonic atoll, we assume that every rod has
the same optical amplitude gain Ka

" that is the negative imaginary part of the complex wave‐

number (Ka ≡ Ka
' − iKa

") of light propagating in material A. We introduce the complex dielec‐
tric function in order to describe the light amplification in the rod:

( ) "
0 02 ,a a a ai c Ke w e e w= - (3)

where the photon frequency ω is a real value. Here, εa0 is the dielectric constant of material
A in the absence of gain. Taking this complex dielectric function into account in the calcula‐
tion of the scattered waves, the expansion coefficients b in Eq. (1) can be uniquely deter‐
mined as b =T −1q when the inverse matrix T −1 exists. When there is no incident light wave,
we know that q =0, hence b =0, and so we obtain no scattered wave: E s(r)=0. Note, however,
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that there is an exception: if the inverse matrix of T  (i.e., T −1) does not exist, we can observe
a finite intensity of light even for no light-wave incidence. This is nothing other than a laser
oscillation, if it exists. The condition for the nonexistence of T −1, i.e., det(T )=0 can therefore
be regarded as the laser oscillation condition. Since matrix T  is a complex function of both
the photon frequency ω and the amplitude gain Ka

", we can obtain the mode frequency ωm

as well as the threshold amplitude gain Kam
"  for laser oscillation by searching for the pair of

variables (ω, Ka
") at which the determinant for T  vanishes. The mode frequency values ωm

thus determined must coincide with those obtained in Sec. 2.2. The easily-oscillating modes
have relatively low Kam

"  values, while those which do not oscillate have higher Kam
"  values.

Therefore, we call the modes the unlasing modes, which do not laser-oscillate even under
very high Ka

" values that exceed 1.0 (in the units of 2π / L , where L  is the period of the rod
array: see the first paragraph in Sec. 5 for this normalization).

3. Modes and lifetimes in photonic atolls

The schematic photonic-atoll structure is shown by the inset in Fig. 1. It consists of periodi‐
cally arranged 50 GaAs rods (with the dielectric constant εa =13.18) in the background mate‐
rial air (εb =1.0). The typical atoll shape is a perfect circle with the filling factor f =d / L  (d :
rod radius, L : array period) of 0.45. The expansion up to | l | ≤ lmax =12 was used in Eq. (1)
on the basis of the detailed study of its convergence. By numerically solving the equation
det(T )=0, we obtain the root ωm with a sufficient accuracy even for very high Q. Because of
the scaling rule that holds in our calculation in a similar manner to in the PCs, the ω and τ
values normalized in the units of 2πc / L  and L / c respectively are determined by f  (nei‐
ther d  nor L ). Hence, the Q factor obtained is independent of the choice of L . Here, we sim‐
ply use ω instead of ω ′, the real part of the complex angular frequency, to represent the
mode frequency in the description of the results.

3.1. Mode distributions

Figure 1 shows the distribution of optical modes and Q factors for a circular photonic atoll
with the filling factor f =0.45. These modes seem to be grouped into several bundles sepa‐
rated by regions with no optical modes. As will be made clearer (see Figs. 2 and 3), the mode
bundles and hiatuses seen in Fig. 1 are respectively thought to be photonic bands and band
gaps created by the periodic loop array of microstructures, i.e., by the q1D PC.

Let us call these bands #1, #2… etc. from lower to higher frequencies. The #2 and #4 bands
are very narrow, but the others are so wide they can be regarded as real bands. These nar‐
row bands are not localized modes, however, because this structure does not contain disor‐
ders causing light localization. Actually, these modes have extended (unlocalized)
distributions of the light intensity [see Fig. 3(b)]. Although these Q factors have been calcu‐
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la [23], the first-order pole of the scattered-wave amplitude gives the complex frequency
ωm =ω ′

m − iω ″
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m − ik ″
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r →∞ because k ″
m >0. This may appear to be unusual, because it is as if light be amplified

despite the absence of optical gain in the present physical system. Note, however, that this is
true. This actually occurs because the resonance state decays exactly at this resonance fre‐
quency to magnify the light intensity outside the PC (not due to gain). In this consideration,
the temporal variation of the field should be taken into account at the same time: the light
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' − iKa
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( ) "
0 02 ,a a a ai c Ke w e e w= - (3)
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that there is an exception: if the inverse matrix of T  (i.e., T −1) does not exist, we can observe
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as well as the threshold amplitude gain Kam
"  for laser oscillation by searching for the pair of

variables (ω, Ka
") at which the determinant for T  vanishes. The mode frequency values ωm

thus determined must coincide with those obtained in Sec. 2.2. The easily-oscillating modes
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"  values, while those which do not oscillate have higher Kam
"  values.
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array: see the first paragraph in Sec. 5 for this normalization).
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values normalized in the units of 2πc / L  and L / c respectively are determined by f  (nei‐
ther d  nor L ). Hence, the Q factor obtained is independent of the choice of L . Here, we sim‐
ply use ω instead of ω ′, the real part of the complex angular frequency, to represent the
mode frequency in the description of the results.

3.1. Mode distributions

Figure 1 shows the distribution of optical modes and Q factors for a circular photonic atoll
with the filling factor f =0.45. These modes seem to be grouped into several bundles sepa‐
rated by regions with no optical modes. As will be made clearer (see Figs. 2 and 3), the mode
bundles and hiatuses seen in Fig. 1 are respectively thought to be photonic bands and band
gaps created by the periodic loop array of microstructures, i.e., by the q1D PC.

Let us call these bands #1, #2… etc. from lower to higher frequencies. The #2 and #4 bands
are very narrow, but the others are so wide they can be regarded as real bands. These nar‐
row bands are not localized modes, however, because this structure does not contain disor‐
ders causing light localization. Actually, these modes have extended (unlocalized)
distributions of the light intensity [see Fig. 3(b)]. Although these Q factors have been calcu‐
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lated assuming no optical gain, another examination assuming optical gain in every rod re‐
vealed that these modes can be classified into two types depending on whether they did lase
(solid lines) or did not lase even by giving very high optical gains (dotted lines, see also
§2.3). As shown in Fig. 1, the Q factors (i.e., those obtained assuming no gain) for the lasing
modes are very high whereas those for unlasing modes are relatively low (10 to 100). What
causes this difference will be clarified later (see Sec. 3.3). In the first band #1, the Q factor for
lasing modes increases rapidly toward the band edge and reaches a maximum near it. Al‐
though the Q-factor variation for lasing modes in other bands is more complicated, the Q
factor there also tends to become higher at the band edges. At the top edge of band #3
(ωm =0.3097), the Q factor reaches the extremely high value of 0.8×1015. This high Q would
allow light to stay in the photonic atoll for about 1 second, a surprisingly long time for the
visible light, if we assume ideal circumstances that let us neglect other losses. Although one
may think that these high-Q modes have been created fortuitously, we have confirmed that
they are always observed at the same band edges in this kind of structure. These results in‐
dicate that the atoll structure has a potential to confine light very strongly: its geometry in‐
herently involves the high-Q effect.

The significance of the above results can be better understood by comparing them with the
results obtained with other resonators. The Q factors of modes at the band edge of a 2D PC
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Figure 1. Distribution of optical modes on the frequency axis for a closed circular array of 50 GaAsmicrorods (see the
inset). The heights of the columns indicate the values of the Q factors for the modes, ω is normalized in the units of
2πc / L , and the filling factor f = d / L  (d: rod radius, L: array period) is 0.45. Here, no optical gain is considered in the
calculation of the Q factors (see Sec. 2.2). Modes shown by solid and dotted lines respectively indicate those which
lase and unlase (see Sec. 2.3 for the definition of unlase). See also Fig. 3 for the modes denoted by arrows.
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with 53 rods are ∼100 [7]. The Q factors for modes in a photonic atoll, in contrast, are more
than 12 orders of magnitude larger (∼1015) despite the fact that both stem from the extend‐
ed modes in similar-sized resonators. The high-Q localization also occurs in a defect mode
in the PC with lateral Q factors of the order of 104 [8, 9], which are still lower than the
present Q. This localization occurs around a defect that is sufficiently separated from the
outer environment so that the coupling between them is cut off. This implies that the defect
has to be surrounded by a considerable volume of the periodic medium (PC). It is actually
reported that nearly 400 rods are needed to isolate the defect mode in a PC [8]. The presence
of so many rods despite the smallness of the defect would be disadvantageous with regard
to incorporating an optical cavity in the PC. The present photonic atoll permits us to obtain
much higher Q factors by using a small number of rods with little deterioration of them by
the presence of dielectric materials near it. This demonstrates the advantage of this resona‐
tor over the defect mode localized in a regular PC. These Q factors are also found to be high‐
er than those for the WGMs in a rod (∼1010) [17]. Although the present model does not
consider the vertical Q that comes to play a certain role in the slab, we find that the photonic
atoll greatly strengthens the confinement of light propagating in the 2D space.

3.2. Filling-factor effects

The finding of bands and band gaps has given impetus to the study of filling-factor ef‐
fects, as is often carried out in the ordinary PCs [26]. Figure 2 shows the variation of the
positions of bands (shaded areas) and band gaps (blank areas) as a function of the f val‐
ue.  Here,  we focused on bands  and band gaps  created by  lasing  modes  (solid  lines  in
Fig.  1),  because  they  are  verified  later  to  be  generated  along  the  rod  loop (see  Fig.  3).
The vertical  broken line corresponds to Fig.  1.  Let us scan the results from low to high
f  values.  Since f =0 implies  uniform air  (no rods),  the mode distribution is  continuous
(i.e.,  without bands and band gaps).  With increasing f ,  the closed periodic array struc‐
ture comes into existence and as a result the continuous free-space dispersion gradually
splits  into  several  bands:  this  occurs  at  f <0.1  (not  explicitly  shown in  Fig.  2).  We  see
that a large band gap is produced between bands #1 and #3. Further increase in f  splits
band #3 to create a new narrow band #2. This new band remains narrow until f  reaches
its  maximum  value.  A  similar  phenomenon  occurs  in  band  #5,  which  splits  to  form  a
narrow  band  #4  around  f =0.4.  The  first  band  gap  formed  between  bands  #1  and  #3
( f <0.35) appears to be maximized at a certain filling factor that is intermediate between
0 and 0.25,  because the band gap vanishing at  f =0 undoubtedly increases for  f >0 but
decreases for f >0.25.  The existence of an optimum filling factor for the large-gap gener‐
ation is similar to what is seen in the ordinary PCs [26]. The formation of narrow bands
for f >0.35 is not well understood, but some modes with nodes produced in the loop-ra‐
dial direction may be involved in their formation because of the increased rod radius for
higher  f  values.  These  results  substantiates  for  the  first  time  the  creation  of  photonic
bands  and band gaps  in  a  q1D looped array  structure  like  the  photonic-atoll  resonator
proposed here.
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lated assuming no optical gain, another examination assuming optical gain in every rod re‐
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with 53 rods are ∼100 [7]. The Q factors for modes in a photonic atoll, in contrast, are more
than 12 orders of magnitude larger (∼1015) despite the fact that both stem from the extend‐
ed modes in similar-sized resonators. The high-Q localization also occurs in a defect mode
in the PC with lateral Q factors of the order of 104 [8, 9], which are still lower than the
present Q. This localization occurs around a defect that is sufficiently separated from the
outer environment so that the coupling between them is cut off. This implies that the defect
has to be surrounded by a considerable volume of the periodic medium (PC). It is actually
reported that nearly 400 rods are needed to isolate the defect mode in a PC [8]. The presence
of so many rods despite the smallness of the defect would be disadvantageous with regard
to incorporating an optical cavity in the PC. The present photonic atoll permits us to obtain
much higher Q factors by using a small number of rods with little deterioration of them by
the presence of dielectric materials near it. This demonstrates the advantage of this resona‐
tor over the defect mode localized in a regular PC. These Q factors are also found to be high‐
er than those for the WGMs in a rod (∼1010) [17]. Although the present model does not
consider the vertical Q that comes to play a certain role in the slab, we find that the photonic
atoll greatly strengthens the confinement of light propagating in the 2D space.

3.2. Filling-factor effects

The finding of bands and band gaps has given impetus to the study of filling-factor ef‐
fects, as is often carried out in the ordinary PCs [26]. Figure 2 shows the variation of the
positions of bands (shaded areas) and band gaps (blank areas) as a function of the f val‐
ue.  Here,  we focused on bands  and band gaps  created by  lasing  modes  (solid  lines  in
Fig.  1),  because  they  are  verified  later  to  be  generated  along  the  rod  loop (see  Fig.  3).
The vertical  broken line corresponds to Fig.  1.  Let us scan the results from low to high
f  values.  Since f =0 implies  uniform air  (no rods),  the mode distribution is  continuous
(i.e.,  without bands and band gaps).  With increasing f ,  the closed periodic array struc‐
ture comes into existence and as a result the continuous free-space dispersion gradually
splits  into  several  bands:  this  occurs  at  f <0.1  (not  explicitly  shown in  Fig.  2).  We  see
that a large band gap is produced between bands #1 and #3. Further increase in f  splits
band #3 to create a new narrow band #2. This new band remains narrow until f  reaches
its  maximum  value.  A  similar  phenomenon  occurs  in  band  #5,  which  splits  to  form  a
narrow  band  #4  around  f =0.4.  The  first  band  gap  formed  between  bands  #1  and  #3
( f <0.35) appears to be maximized at a certain filling factor that is intermediate between
0 and 0.25,  because the band gap vanishing at  f =0 undoubtedly increases for  f >0 but
decreases for f >0.25.  The existence of an optimum filling factor for the large-gap gener‐
ation is similar to what is seen in the ordinary PCs [26]. The formation of narrow bands
for f >0.35 is not well understood, but some modes with nodes produced in the loop-ra‐
dial direction may be involved in their formation because of the increased rod radius for
higher  f  values.  These  results  substantiates  for  the  first  time  the  creation  of  photonic
bands  and band gaps  in  a  q1D looped array  structure  like  the  photonic-atoll  resonator
proposed here.
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Figure 2. Variation of the bands (shaded areas) and band gaps (blank areas) formed by lasing modes (solid lines in Fig.
1) as a function of rod filling factor f. f = 0 corresponds to only air (no rods), and f = 0.5 corresponds to the configura‐
tion in which neighboring rods touch one another.

3.3. Light intensity distributions

In order to clarify what occurs for these modes, we next investigate the field intensity distri‐
butions in the photonic atoll. Note again that no gain is assumed for this calculation. We
first select several lasing modes from band #1, because the modes in the first band with rela‐
tively long wavelengths are expected to provide a variety of clues to the understanding of
the fundamental processes of light localization. Figure 3(a) shows the light-intensity distri‐
butions for the four lower lasing modes in band #1 (indicated by arrows in Fig. 1). In the
colored figures, the intensity increases in the order blue, white, yellow, red, and black. The
numerals in the figure are the mode frequency values and from left to right in Fig. 3(a), they
respectively correspond to Q factors of 1.7, 9, 150, and 6.6×105. Although the light confine‐
ment is not very strong for these modes, we can clearly recognize the process in which light
comes to be localized along the loop as Q increases. We also find a noticeable variation of
the field distributions. First, the lowest-frequency mode (ωm =0.0216) appears to have two
loops and nodes of light waves along the array loop. This implies that the wavelength λ is
comparable to the circumference D of the circular loop. If we assume the light propagation
along the array loop with a wavenumber vector K = K e (e is the unit vector along it) and a
light velocity v =c / neff , this mode gives an effective refractive index neff  of about 0.93. This
value is close to the neff  of 1 for air, which is reasonable since most light is leaked into the air
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because of the small Q of this mode. The second mode (ωm =0.0421) appears to have six
loops and nodes giving λ∼ D / 3, which leads to neff ∼1.4. Further increase in the mode fre‐
quency enables us to observe distinct light localizations toward the rod array. The modes
ωm =0.0678 and ωm =0.1086 respectively give wavelengths of λ∼ D / 6 and ∼ D / 12. The simi‐
lar estimation of neff  leads to respective neff  values of 1.8 and 2.2 for these modes. The gradu‐

al increase in the estimated neff  toward εa =3.6 for the rods reconfirms the increased light
confinement in the rod array loop. The light confinement along the rod chain may also be
construed by the coupling between a WGM mode in a rod and the one in its neighboring
rod via their Fano resonances with the outer region [27].
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Figure 3. Color) Light intensity distributions for (a) lasing modes in the first band #1, (b) lasing modes with very high
Q-factors, and (c) unlasing modes (see §2.3 for the definition of unlasing modes). Here, note that no optical gain is
assumed for the calculation of these intensity distributions. The numeral shown under each figure is the normalized‐
mode frequency: see Fig. 1, where different symbols of arrows are used to distinguish the modes in Figs. 3(a), (b) and
(c). The intensity increases in the following order: blue < white < yellow < red < black. Rod positions are indicated in
Figs. 3(a) and 3(c) by black circles but for clarity they are not indicated in Fig. 3(b).
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3.3. Light intensity distributions

In order to clarify what occurs for these modes, we next investigate the field intensity distri‐
butions in the photonic atoll. Note again that no gain is assumed for this calculation. We
first select several lasing modes from band #1, because the modes in the first band with rela‐
tively long wavelengths are expected to provide a variety of clues to the understanding of
the fundamental processes of light localization. Figure 3(a) shows the light-intensity distri‐
butions for the four lower lasing modes in band #1 (indicated by arrows in Fig. 1). In the
colored figures, the intensity increases in the order blue, white, yellow, red, and black. The
numerals in the figure are the mode frequency values and from left to right in Fig. 3(a), they
respectively correspond to Q factors of 1.7, 9, 150, and 6.6×105. Although the light confine‐
ment is not very strong for these modes, we can clearly recognize the process in which light
comes to be localized along the loop as Q increases. We also find a noticeable variation of
the field distributions. First, the lowest-frequency mode (ωm =0.0216) appears to have two
loops and nodes of light waves along the array loop. This implies that the wavelength λ is
comparable to the circumference D of the circular loop. If we assume the light propagation
along the array loop with a wavenumber vector K = K e (e is the unit vector along it) and a
light velocity v =c / neff , this mode gives an effective refractive index neff  of about 0.93. This
value is close to the neff  of 1 for air, which is reasonable since most light is leaked into the air
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because of the small Q of this mode. The second mode (ωm =0.0421) appears to have six
loops and nodes giving λ∼ D / 3, which leads to neff ∼1.4. Further increase in the mode fre‐
quency enables us to observe distinct light localizations toward the rod array. The modes
ωm =0.0678 and ωm =0.1086 respectively give wavelengths of λ∼ D / 6 and ∼ D / 12. The simi‐
lar estimation of neff  leads to respective neff  values of 1.8 and 2.2 for these modes. The gradu‐

al increase in the estimated neff  toward εa =3.6 for the rods reconfirms the increased light
confinement in the rod array loop. The light confinement along the rod chain may also be
construed by the coupling between a WGM mode in a rod and the one in its neighboring
rod via their Fano resonances with the outer region [27].
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Several examples for the modes with very high Q-factors are shown in Fig. 3(b). These modes
are selected as those having the maximum Q factor values in each band from #1 to #4 (see the
arrows in Fig. 1). The strong light-confinement for these modes is confirmed by comparing the
intensity (i.e., unity) of the incident plane-wave and the maximum light intensity in the rod ar‐
ray: the first three modes (ωm =0.1666, 0.2056, and 0.3097) all have intensity of the order of 1011

and the last one (ωm =0.3366) the order of 105. Note that this intense light is obtained in the ar‐
ray with no optical gain (no gain is assumed here!). It is entirely due to the extremely long pho‐
ton lifetimes attained by the use of photonic-atoll resonators. Although light is focused on the
rod array, its intensity distributions are not easy to construe. Let us focus on the bright re‐
gions, which are the loops of light waves. While the contour of bright regions for the mode in
band #1  (ωm =0.1666)  is  simple,  the  contour  of  bright  regions  for  the  mode  in  band #2
(ωm =0.2056) contains two brightest points (not clearly seen for a small drawing). The mode in
band #3 (ωm =0.3097) has many bright regions (100, or twice the rod number of 50) though its
contour  is  simple.  The  most  extraordinary  results  are  found  in  the  mode  in  band  #4
(ωm =0.3366), for which the bright region consists of two small units separated in the radial di‐
rection of the loop and each small unit has two brightest points. The modes in higher-index
bands thus tend to become complicated. This evidently stems from the higher-order Bragg re‐
flections to create these bands, which occur in the q1D closed array.

Shown in Fig. 3(c) are for the modes that never lase even if they have very high gains (the
modes shown by dotted lines in Fig. 1). Light for these modes is clearly confined in the inner re‐
gion of the atoll but not along the rod array. We see an increase in the number of loops and no‐
des as the mode frequency increases, indicating that they are formed by light trapped in the
inner region and reflected at the rod array of the atoll. The observed Q  factors (10–100) are
small despite the expectations for the WGMs to produce strong light confinement. The above
results are reasonable, however, because both inner and outer regions are made from the air
and hence the thin array loop does not serve as a solidly made pool for light. We also under‐
stand that these modes do not lase because light stays in the region with no gain.

4. Shape effects of photonic atolls

In this section, we assume the PA that consists of 20 GaAs rods (with the dielectric constant
εa =13.18) in the air (εb =1.0). We consider a variety of elliptical PAs created by changing its
eccentricity e from 0 to 0.968. For all the PAs studied here, however, the filling factor
f =a / L  (d: rod radius, L : period) is fixed at 0.45 and the period of the rod chain is assumed
to be the same. Moreover, we modify the PA form keeping its circumference fixed in order
to facilitate the comparison between the PAs with different eccentricities. The angular fre‐
quency ω and the lifetime τ are expressed in the units of 2πc / L  and L / c, respectively.
Here, we again simply use ω instead of ω ′, the real part of the complex angular frequency,
to represent the mode frequency in the description of the results.

4.1. Splitting of degenerate modes

Prior to showing the detailed properties of the PAs, we first present the basic results for the
optical modes created in the PA. Figure 4 shows the angular frequency ω positions for the
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optical modes (denoted as n=0, 1, 2, …, 10 for low to high ω modes), where the height of the
columns indicates the lifetime τ of these modes. The thin lines are the results for the circular
PA (e =0) shown in the inset. In the limit of the infinite number of rods, these modes get ac‐
cumulated densely to form the first photonic band of the q1D closed photonic crystal [20]
and hence the shaded region in Fig. 4 can be regarded as the first photonic band gap. As
shown in Fig. 4, the lifetime becomes longer with the mode frequency that is increasing and
approaching the first band edge. Here, let us examine the specific numerical values. We take
mode 10 as an example with the dimensionless values ω =0.1691 and τ =6.30×106, and
L =0.1μm for the periodicity. These values give the actual frequency ω / 2π =510 THz (the
visible light with wavelength λ =0.59 μm) and the actual lifetime τ =2.1 ns. The above results
demonstrate the presence of the enhanced confinement of light near the band edge [6, 7].
The thick lines indicate the results for an extremely deformed PA (e =0.866), the form of
which is also shown in the inset. We see the lifetime remarkably decreased by the use of the
elliptical PA, which occurs more pronouncedly for higher modes. The examination of a vari‐
ety of elliptical PAs showed that any PA modifications caused the decrease in the lifetime.
We have to admit that these results for the deformed PAs are discouraging from the view‐
point of the achievement of longer lifetimes. Here, we observe some notable phenomena,
however: twin modes are isolated in the vicinity of the circular-PA modes with n=1, 2, …, 9.
Note that no twin modes are created for n=0 and 10.
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Figure 4. Optical modes distributed on the frequency axis, where the height of the columns indicates the lifetime of
these modes. The thin and thick lines are the results for the PAs as shown in the insets: a perfect circle (e = 0) and an
ellipse (e = 0.866), respectively, where e is the eccentricity of the elliptic PA. Here, several thin lines are hidden behind
thick lines since the latter are superimposed onto the former. In this paper, the angular frequency ωand the lifetime τ
are normalized in the units of 2πc / L  and L / c, respectively, where L  is the period of the PA chain.
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results are reasonable, however, because both inner and outer regions are made from the air
and hence the thin array loop does not serve as a solidly made pool for light. We also under‐
stand that these modes do not lase because light stays in the region with no gain.
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In this section, we assume the PA that consists of 20 GaAs rods (with the dielectric constant
εa =13.18) in the air (εb =1.0). We consider a variety of elliptical PAs created by changing its
eccentricity e from 0 to 0.968. For all the PAs studied here, however, the filling factor
f =a / L  (d: rod radius, L : period) is fixed at 0.45 and the period of the rod chain is assumed
to be the same. Moreover, we modify the PA form keeping its circumference fixed in order
to facilitate the comparison between the PAs with different eccentricities. The angular fre‐
quency ω and the lifetime τ are expressed in the units of 2πc / L  and L / c, respectively.
Here, we again simply use ω instead of ω ′, the real part of the complex angular frequency,
to represent the mode frequency in the description of the results.

4.1. Splitting of degenerate modes

Prior to showing the detailed properties of the PAs, we first present the basic results for the
optical modes created in the PA. Figure 4 shows the angular frequency ω positions for the
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optical modes (denoted as n=0, 1, 2, …, 10 for low to high ω modes), where the height of the
columns indicates the lifetime τ of these modes. The thin lines are the results for the circular
PA (e =0) shown in the inset. In the limit of the infinite number of rods, these modes get ac‐
cumulated densely to form the first photonic band of the q1D closed photonic crystal [20]
and hence the shaded region in Fig. 4 can be regarded as the first photonic band gap. As
shown in Fig. 4, the lifetime becomes longer with the mode frequency that is increasing and
approaching the first band edge. Here, let us examine the specific numerical values. We take
mode 10 as an example with the dimensionless values ω =0.1691 and τ =6.30×106, and
L =0.1μm for the periodicity. These values give the actual frequency ω / 2π =510 THz (the
visible light with wavelength λ =0.59 μm) and the actual lifetime τ =2.1 ns. The above results
demonstrate the presence of the enhanced confinement of light near the band edge [6, 7].
The thick lines indicate the results for an extremely deformed PA (e =0.866), the form of
which is also shown in the inset. We see the lifetime remarkably decreased by the use of the
elliptical PA, which occurs more pronouncedly for higher modes. The examination of a vari‐
ety of elliptical PAs showed that any PA modifications caused the decrease in the lifetime.
We have to admit that these results for the deformed PAs are discouraging from the view‐
point of the achievement of longer lifetimes. Here, we observe some notable phenomena,
however: twin modes are isolated in the vicinity of the circular-PA modes with n=1, 2, …, 9.
Note that no twin modes are created for n=0 and 10.
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Figure 4. Optical modes distributed on the frequency axis, where the height of the columns indicates the lifetime of
these modes. The thin and thick lines are the results for the PAs as shown in the insets: a perfect circle (e = 0) and an
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The similar studies have been carried out for elliptical PAs with a variety of eccentricities.
The results are summarized in Fig. 5, which shows the variation of the mode frequency as a
function of the eccentricity e (from 0 to 0.968). As clearly shown in Fig. 5, each of modes 1-9
is found to split into two with the increasing eccentricity. Those modes that are increasing
and decreasing, respectively, with the growing eccentricity are denoted by open and close
circles. While we succeeded in locating almost all split-modes very precisely, we failed in
isolating several higher modes (open circles) split for mode 1 at e>0.954. Here, we can read
in Fig. 5 what follows. First, the splitting width strongly depends upon the optical mode as
well as the PA form. In fact, modes 1, 2, and 9 already exhibit slight but clear splittings even
at relatively low e values (e<0.5), while modes 4, 5, and 6 do not split until it reaches a value
higher than 0.8. These results will be more clearly displayed later in Fig. 6. Second, we also
recognize a strong mode-dependence of the frequency deviation from the original one (e =0).
Let us denote the deviations by ΔωH ≡ωH −ω and ΔωL ≡ω −ωL  for the modes shifted in the
higher and lower directions, respectively. We can paraphrase the above facts as follows:
ΔωH >ΔωL  for modes 1, 2, 3, and 4, ΔωH ≃ΔωL  for modes 5 and 6, and ΔωH <ΔωL  for
modes 7, 8, and 9, when they are compared at a fixed eccentricity. These facts suggest the
presence of different mode-splitting mechanisms between the modes near the Γ point, the
modes in the middle of the band, and the modes near the band edge. Finally, let us briefly
refer to modes 0 and 10. These modes did not split for all the e values studied here. Howev‐
er, noteworthy here is that mode 0 slightly increases while mode 10 decreases to a certain
extent, according as the eccentricity grows. This fact again suggests the difference in the be‐
havior between the near-Γ-point modes and the near-band-edge modes.
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Figure 5. Frequency positions of all modes in the first band as a function of the eccentricity e for the elliptical PA. Here,
the upper and lower modes split by the PA modification are denoted by open and closed circles, respectively (except
for modes 0 and 10).
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Figure  6  shows the  mode  separation  Δω ≡ωH −ωL  as  a  function  of  the  frequency  posi‐
tion  of  the  mode,  which  is  evaluated  at  a  variety  of  the  PA  eccentricity  values.  The  e
value for each curve is given in the caption of Fig. 6. As mentioned before, modes 0 and
10 have no split modes. What is intriguing here is that the separation Δω  is not a mono‐
tonic function of the mode frequency:  it  becomes more prominent as they approach the
bottom or  the  top of  the  band and moreover  exhibits  a  minimum at  the  middle  of  the
band. When we look at Fig. 6 precisely, the above phenomena are found to occur more
pronouncedly for a slightly deformed PA: see, e.g.,  the results for e =0.243, in which the
ratio of Δω  between mode 1 and mode 5 reaches as high as 1.7×105. On the other hand,
in  the  extremely  deformed  structures,  we  find  no  significant  mode  dependence  of  Δω
though  these  modes  have  larger  frequency  splittings.  This  kind  of  phenomena  has  not
been observed in  the  finite-sized optical  resonators  and even in  the  similar  mode-split‐
ting phenomena [22-24] referred to in Sec. 1 either.
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Figure 6. Relations between the split-modes separation Δω and the mode frequency position for several eccentricity
values. Here, the e value ranges from 0, 0.243, 0.436, 0.558, 0.661, 0.714, 0.777, 0.866, 0.916, 0.954, and 0.968, for the
curves displayed from bottom to top, respectively.

4.2. Light intensity distributions

The results mentioned in Sec. 4.1 have prompted us to investigate the light field distribu‐
tions for these modes. Hereafter, we focus on the PA with e =0.866 and modes 2, 5, and 9,
which have been selected as the optical modes located near the Γ point, in the middle of the
band, and near the band edge, respectively. We denote, in what follows, the higher and low‐
er modes split as nH and nL, respectively, for mode n.
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er, noteworthy here is that mode 0 slightly increases while mode 10 decreases to a certain
extent, according as the eccentricity grows. This fact again suggests the difference in the be‐
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Figure  6  shows the  mode  separation  Δω ≡ωH −ωL  as  a  function  of  the  frequency  posi‐
tion  of  the  mode,  which  is  evaluated  at  a  variety  of  the  PA  eccentricity  values.  The  e
value for each curve is given in the caption of Fig. 6. As mentioned before, modes 0 and
10 have no split modes. What is intriguing here is that the separation Δω  is not a mono‐
tonic function of the mode frequency:  it  becomes more prominent as they approach the
bottom or  the  top of  the  band and moreover  exhibits  a  minimum at  the  middle  of  the
band. When we look at Fig. 6 precisely, the above phenomena are found to occur more
pronouncedly for a slightly deformed PA: see, e.g.,  the results for e =0.243, in which the
ratio of Δω  between mode 1 and mode 5 reaches as high as 1.7×105. On the other hand,
in  the  extremely  deformed  structures,  we  find  no  significant  mode  dependence  of  Δω
though  these  modes  have  larger  frequency  splittings.  This  kind  of  phenomena  has  not
been observed in  the  finite-sized optical  resonators  and even in  the  similar  mode-split‐
ting phenomena [22-24] referred to in Sec. 1 either.
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4.2. Light intensity distributions

The results mentioned in Sec. 4.1 have prompted us to investigate the light field distribu‐
tions for these modes. Hereafter, we focus on the PA with e =0.866 and modes 2, 5, and 9,
which have been selected as the optical modes located near the Γ point, in the middle of the
band, and near the band edge, respectively. We denote, in what follows, the higher and low‐
er modes split as nH and nL, respectively, for mode n.
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Figure 7 shows the light intensity distributions for (a) mode 2L with θi =0 , (b) mode 2L

with θi =90 , (c) mode 2H with θi =0 , and (d) mode 2H with θi =90 . Here, θi  is the inci‐
dent angle of the plane wave of light. The rod array of the PA is also displayed together
with  the  distributions  in  Fig.  7.  Here,  the  light  intensity  increases  in  the  order  blue,
white,  yellow,  red,  and  black.  Since  our  calculation  is  based  on  the  scattering-theoretic
method  [6],  the  incident  plane  wave  is  included  in  the  distributions  as  a  matter  of
course. As shown in Fig. 7, these modes have four nodes and loops along the rod chain
of  the  PA and show the  weak light  confinement  because  of  their  shorter  lifetimes  (see
Fig. 4). We find these modes to be excited by the irradiation of light from any directions
including 0 and 90  shown in Fig. 7, although the maximum intensity of light excited in
the  PA somewhat  differs  depending  on  the  directions  of  incidence.  Since  its  difference
reaches only a few times,  however,  we may conclude that  there is  no preference in the
irradiation direction for their excitation in this case. This fact presents a great contrast to
the band-edge modes as shown later (Fig. 8). Although modes 2H and 2L are thus excit‐
ed by light with any incidence directions, their light distributions depend entirely on the
irradiation  direction,  as  shown  in  Fig.  7.  In  addition,  the  oblique  incidence  with,  e.g.,
θi =45  creates  light  distributions  like  those  obtained by rotating Figs.  7  (a)  and 7(c)  by

45 .  In  other  words,  their  wave  functions  remain  uncertain  for  the  unirradiated  PAs.
This fact is  suggestive of the similarity to the electronic mode in an atom. Once the PA
is irradiated by a plane wave of light, however, their wave functions are uniquely deter‐
mined as follows:  the incident wave selects  their  wave functions in such a manner that
it  can excite the eigen modes based on the symmetry matching between them. The irra‐
diation direction thus works  as  the  quantization axis  in  the  quantum theory.  When we
look at Fig. 7 in more detail,  we find that most light is focused around the downstream
side of the PA chain for mode 2L. For mode 2H, on the other hand, we recognize light
staying around the upstream side of the PA chain though some light is still  around the
downstream side.  The  massive  flow of  the  incident  beam  generally  tends  to  cause  the
light distribution to be more highlighted at the downstream side [20], which could corre‐
spond  to  an  energetically  more  stable  state.  Taking  this  circumstance  into  account,  we
may come to a reasonable conclusion that modes 2L and 2H, respectively—energetically
stable and unstable states—concentrate around the downstream and upstream sides. This
is true for all incident angles and all other modes near the Γ  point. We thus have made
clear  the  difference  between the  light  fields  for  the  modes—located near  the  bottom of
the band—that are split by the modification of the PA structure.

Next, we display the results for the modes near the band edge as a matter of convenience for
explanation. Figure 8 shows the light intensity distributions for (a) mode 9L with θi =0 , (b)

mode 9L with θi =90 , (c) mode 9H with θi =0 , and (d) mode 9H with θi =90 . As can be seen
in Figs. 8(a) and 8(d), these modes have 18 nodes and loops along the rod chain of the PA
and exhibit somewhat strong light confinement because of their relatively long lifetimes (see
Fig. 4). The most striking feature for these modes is found in the pronounced θi-dependence
of their excitation. In fact, as clearly shown in Fig. 8, mode 9L is excited by the irradiation
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with the incident angle 0  whereas it is not by the 90  irradiation. In the similar manner,
mode 9H is excited by the irradiation with the incident angle 90  whereas it is not by the 0
irradiation. A very high value of several hundreds is reached for the ratio of the maximum
intensity of light confined around the rod array between the incident directions causing
(e.g., 90  for mode 9H) and not causing (e.g., 0  for mode 9H) its excitation. These results,
when viewed from another point, demonstrate that mode 9H is excited efficiently by the ir‐
radiation of light that excites mode 9L less efficiently, and vice versa. The same phenomena
are confirmed to occur for all other modes near the band edge for the irradiation from any
directions and even in the slightly modified PA (e =0.243). From these results, we speculate
that these modes are orthogonal to each other since optical mode can be excited only by the
light beam with the same symmetricity as the relevant mode. This fact provides a striking
contrast to the modes near Γ point (see Fig. 7), which are excited by the irradiation with any
incident directions.
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Figure 7. Light intensity distributions for (a) mode 2L with θi = 0∘, (b) mode 2L with θi = 90∘, (c) mode 2H with θi = 0∘,

and (d) mode 2H with θi = 90∘. Here, θi is the incident angle of the plane wave of light. The rod array of the PA is also
displayed together with the distributions. Here, the light intensity increases in the order blue, white, yellow, red, and
black.
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in Figs. 8(a) and 8(d), these modes have 18 nodes and loops along the rod chain of the PA
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Fig. 4). The most striking feature for these modes is found in the pronounced θi-dependence
of their excitation. In fact, as clearly shown in Fig. 8, mode 9L is excited by the irradiation
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with the incident angle 0  whereas it is not by the 90  irradiation. In the similar manner,
mode 9H is excited by the irradiation with the incident angle 90  whereas it is not by the 0
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are confirmed to occur for all other modes near the band edge for the irradiation from any
directions and even in the slightly modified PA (e =0.243). From these results, we speculate
that these modes are orthogonal to each other since optical mode can be excited only by the
light beam with the same symmetricity as the relevant mode. This fact provides a striking
contrast to the modes near Γ point (see Fig. 7), which are excited by the irradiation with any
incident directions.
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Finally, we briefly mention the behavior of the modes in the middle of the band. Figure 9
shows the light intensity distributions for (a) mode 5L with θi =0 , (b) mode 5L with θi =90 ,

(c) mode 5H with θi =0 , and (d) mode 5H with θi =90 . These modes have 10 nodes and
loops along the rod chain of the PA. In contrast to modes 2L and 2H mentioned before, these
modes have no pronounced concentration of the intensity distribution on the upstream or
downstream sides of the PA. Moreover, they exhibit no irradiation-direction dependence of
the excitation, which has been detected for modes 9L and 9H. These modes are thus known
to have the characteristics that are intermediate between the near-Γ-point modes and the
near band-edge modes.

4.3. Discussion

Let us discuss the creation of eigen modes and their splitting by the structural modification
of the PA resonator. For this purpose, we simplify the discussion by regarding the closed
q1D chain as a closed pure-1D system with the position variable x along the circumference.
The periodic boundary condition can be applied to this system exactly for its closed struc‐
ture, and the Bloch theorem for the L-periodicity of the PA. We thus obtain the optical
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modes specified by the wave number kn = g(n / 20) for the wave propagating along the chain
with 20 rods, where g =2π / L  is the fundamental vector in the reciprocal space. Here, n
ranges over –9,…, –1, 0, +1,…, +9, and +10, creating 20 modes. Note that n= –10 is excluded
since it is identical to n= +10 in the reciprocal space. The modes with n are thus known to be
degenerate with those with –n for n=1, 2,…, 9 and their wave functions are the complex con‐
jugate of each other, which propagate in the opposite directions with the wave numbers +kn

and −kn, respectively. Moreover, we understand that the lowest mode 0 and the band-edge
mode 10 are not degenerate: here, we note in passing that the band-edge mode is doubly
degenerate for the PA with the odd-numbered rods, e.g., 21 rods.

When we look at Figs. 4-6 together with the above considerations, it is not unusual for
modes 0 and 10 to remain single under any perturbations given to the structure because of
their nondegeneracy. As for the other modes (n=1, 2,…, 9), it is reasonable to consider that
their degeneracy is lifted by the modification of the PA structure. If we apply the group
theory to this phenomenon straightforwardly, it may be said that the degeneracy lifting is
caused by the reduction of the rotational symmetry in the whole PA structure. Although this
is an elementary but important interpretation for these degeneracy-lifting phenomena, we
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of the PA resonator. For this purpose, we simplify the discussion by regarding the closed
q1D chain as a closed pure-1D system with the position variable x along the circumference.
The periodic boundary condition can be applied to this system exactly for its closed struc‐
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modes specified by the wave number kn = g(n / 20) for the wave propagating along the chain
with 20 rods, where g =2π / L  is the fundamental vector in the reciprocal space. Here, n
ranges over –9,…, –1, 0, +1,…, +9, and +10, creating 20 modes. Note that n= –10 is excluded
since it is identical to n= +10 in the reciprocal space. The modes with n are thus known to be
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jugate of each other, which propagate in the opposite directions with the wave numbers +kn
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their nondegeneracy. As for the other modes (n=1, 2,…, 9), it is reasonable to consider that
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here refer to another perspective. Under the assumption to regard the PA as a very long
closed 1D structure—it is actually possible as mentioned before, the waves propagating in
the opposite directions (+kn and −kn) ought to split their frequency only in the presence of
some one-way (asymmetric) perturbation along the chain. According to this perspective,
these modes should not split by any complicated deformation of the PA structure. This ten‐
dency will be magnified in the PA with a larger number of rods, because such a PA—when
we focus on its local part—is equivalent to an isolated string of 1D array: no mode-splittings
would occur particularly in the extremely large PA (with the infinite number of rods). The
PA with a smaller number of rods, on the other hand, will lift the mode degeneracy more
easily by the shape modification, since such a PA can no more be regarded as an isolated
string of 1D array for the smallness of the whole PA. Actually, we confirmed that the mode
splitting Δω is a rapidly decreasing function of the rod number N: we obtained 0.0097,
0.0060, and 0.0036 for N=10, 20, and 50, respectively, for, e.g., mode 1 at e =0.776. We thus
recognize that it is important to take into account the q1D feature of the closed PA structure
as well as to consider it from the group-theoretic standpoint. This presents a great contrast
to the similar phenomena for the modes in the 2D or 3D structures, for which the group-
theoretic considerations would suffice. Next, we would like to refer to the unusual Δω −n
relation in Fig. 4. It is interesting to note that this n-dependence of Δω is very different from
the Stark effect [23] of the Hydrogen atom for which the splitting width varies simply like
Δω∝n 2. For the modes of smaller n, light is loosely bound around the PA because of their
shorter lifetime, which ought to render its intensity distributions more sensitive to the PA
modification. The modes near the band edge, on the other hand, have the lifetime that is
barely retained very long in a fixed (symmetric) PA structure. This implies that their life is
vulnerable even to a slight perturbation to the structure and hence its abrupt reduction may
cause marked splittings of degenerate modes.

As mentioned on the light field distributions in Sec. 4.2, the structurally deformed PAs have
a variety of optical responses. In particular, the band-edge modes (e.g., modes 9H and 9L)
exhibit a strong anisotropy of excitation. Moreover, it should be emphasized that this aniso‐
tropy is very sensitive to the modification of the structure, i.e., it occurs even under a slight
modification of the structure. This implies that optical excitations can be controlled by the
mechanical deformation of the structure, which could have a potential to be exploited as
high-function devices such as opto-mechanical devices [28]. We therefore believe that the
present results will find a number of valuable applications as very high-Q resonators in the
state-of-the-art technologies for the optical information systems, which combine the me‐
chanical forces, the electronic phenomena, and the optical processes.

5. Laser oscillations

Because of the scaling rule that holds in our calculation in a similar manner to in the PCs, ω,
τ and Ka

" values normalized in the units of 2πc / L , L / c and 2π / L  respectively are deter‐

mined by f  (neither d nor L). We here use the ω, τ and Ka
" values thus normalized.
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Figure 10. Relation between the threshold amplitude gain K ″
am and the inverse photon-lifetime τm

−1 for lasing modes.

K ″
am and τm are normalized in the units of 2π / L  and L / c, respectively. The closed circles show the results for the

band-edge modes near the top of the first band of the 2D PC resonator with 53 rods made of the same material as the
rods in the present atoll structure (GaAs). See also Sections 2.2 and 2.3.

We studied the characteristics of a photonic atoll as a laser oscillator by assuming that every
rod has the same optical amplitude gain Ka

". The method mentioned in Sec. 2.3 determines

the threshold amplitude gain Kam
"  for laser oscillation. In this calculation, we did not take

into account absorption and other possible losses in order to isolate the effects inherent to
the resonator’s geometry. Some modes did not laser-oscillate even when Ka

" was very high
(they were shown in Fig. 1 by dotted lines, see also Sec. 2.3). Here, we therefore consider
only lasing modes (solid lines in Fig. 1). Figure 10 shows the relation between the threshold
amplitude gain Kam

"  thus obtained and the inverse lifetime τm
−1 for lasing modes. These

points are seen to line up with a slope of 45  on a log-log plot. The inverse proportionality
between Kam

"  and τm values is reasonable since the increased photon lifetime makes light
stay in the resonator for a longer time and drives the laser to oscillate at lower optical gain.
Figure 10 may be the first numerical verification of this kind of relation for the photonic-
atoll resonator made of closed array of rods, though this kind of relation was also shown for
a simple 1D resonator comprising a uniform medium sandwiched between two clear-cut
mirrors [4]. The closed circles in this figure also show the results for the band-edge modes
near the top of the first band of a 2D PC made of 53 GaAs rods [6]. When we compare the
results from the two structures, the threshold gain values obtained for the PC are pessimisti‐
cally higher than those for the atoll. In other words, laser oscillations with extremely low
thresholds can be obtained by using our atoll structures. Noteworthy here is that the two
resonators lead to very different results despite the fact that they contain a similar number
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of rods and that extended modes are responsible for laser oscillations in both resonators.
These results again confirm the superiority of the present structure over other PC-based
structures.

6. Conclusion

We have theoretically demonstrated that very high Q factors and resultant very long photon
lifetimes can be achieved by using the closed periodic array of microstructures, which we
call a photonic-atoll (PA) resonator. Although other possible losses of light remain to be con‐
sidered before this structure is put to practical use, the results we obtained suggest that it
would be an excellent structure for confining light. In particular, the fact that it does not re‐
quire a large size to achieve a strong light confinement will prove a great advantage over
other ways of light confinement when it is incorporated into optical integrated circuits.
Through the investigation for the PAs with a variety of elliptical forms, we found that the
photon lifetime is maximized for the symmetric (or circular) form of the resonator. This
structure deformation was also shown to give rise to the degeneracy lifting for eigen modes:
even a slight deformation created pronounced splitting widths especially for the near-Γ-
point modes and the near-band-edge modes whereas it did not for the modes in the middle
of the band. Moreover, the band-edge modes split were found to exhibit a striking anisotro‐
py of excitations, while other modes did not show any pronounced anisotropy. These mode
splittings should be discussed taking into account the q1D-dimensionality of the structure as
well as considering it from the group-theoretic standpoint. We have thus clarified the meta‐
morphoses of the eigen modes split by the modification of the PA structures. Finally, we
demonstrated the PA-laser oscillations with very low thresholds, which are much lower
than those for the PC band edge lasers. These results would provide much information to
understand the relevant resonators more deeply, which we believe will also be possibly ex‐
ploited as a very high-Q resonator in the future optical information processing systems.
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1. Introduction

In the chapter, we give results of investigation of dynamics of linear and nonlinear photonic
crystals (PhC).

It is well-known fact that modern semiconductor electronic data processing systems are
experiencing fundamental problems with further improvement of the microprocessors
productivity. One of the alternative ways is to use hybrid or all-optical circuits on the basis
of PhCs.

The heart of such all-optical circuit is nonlinear PhC which may provide the basis for logic,
memory cells, switching, local routing, power limiters, isolators, etc. Therefore, it is of crucial
importance to understand the processes taking place in such components and optimize their
characteristics. One of the most important points of view to the PhCs is their interaction with
short and ultra-short pulses which may limit the productivity of an optical circuit. Recently,
there have been proposed a great number of PhC components bases on different operating
principles. However, being resonant-transmitting structures, PhCs themselves reduce the
possibility to work with ultra-short pulses.

In the papers of the authors, it have been proposed to use wideband PhC filters instead
of high-Q ones [9], [6]. Lower resonant properties as compared to high-Q filters, allow to
reduce distortion of the signal passing through such filters. In this chapter we present the
investigation results and analysis of the temporal response of different kinds of wideband
PhC filters. Namely, we consider filters made of linear optical materials which can be used
for local multiplexing and routing and the ones made of nonlinear optical materials which
properties strictly depend on the radiation intensity.
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2 Photonic Crystals

We explain the computation process of such characteristics of the PhC filters as transmission

spectra, eye-diagrams and the band structure.

The chapter is organized as follows:

In the first section of the chapter, we briefly explain theoretical background under the

computation of dynamic characteristics of micro-devices. Then, in the second section, we

give the results of investigation of linear wideband PhC filters. We concentrate attention on

transmission spectra and an eye-diagram of such filters. Finally, we demonstrate application

of the PhC filters to the wavelength division multiplexing and analyze their limitations. The

third section of the chapter is dedicated to nonlinear PhC filters and their characterization.

We first present one of the methods of the band structure computation of nonlinar PhCs.

After this, we investigate such important application of the nonlinear PhC filters as all-optical

flip-flop which may become the basis of optical data processing systems.

Although we do not provide here the detailed description of the physical processes below the

presented characteristics, the reader can find them in the book “Photonic Crystals: Physics

and practical modeling” [8]

2. Computing the temporal response of the PhC filter

The term PhC is usually used to define infinite periodic structure. However, such structures

do not have many practical applications since they only possess artificial reflecting and

refracting properties and cannot control effectively the radiation flow. To implement effective

radiation flow control, we have to create at least one defect of the periodic structure to be

able to localize the radiation. However, in real devices, we should be able to provide light

guiding, localization and dynamic routing.

Therefore, speaking of PhC devices we are usually assume their complex structure which

cannot be represented by strictly periodic variation of the refractive index. In this situation,

the only way to find the field distribution inside the PhC device is to apply numerical

methods. Due to recent advance in computing technologies, there have been appeared a wide

variety of numerical methods giving time-dependent field distribution in complex nonlinear

media. Most of them are highly time- and resource-consumable. However, the most easy

to implement and, yet, quite effective is the finite difference time-domain (FDTD) method

which allows computing field distribution in nonlinear complex media such as PhC devices.

In general, there have to be considered complete system of Maxwell’s equations which, in

linear case represents six (or even twelve [1]) equations. One simplification can be made

though. Namely, most of the models are based on 2D PhC of different configuration since

they possess wide photonic band gap and, on the other hand, provide enough flexibility to

design wide variety of the components.

The system of Maxwell’s equations can be reduced to 2D case considering certain

polarization. Namely, in case of TM polarization (as referred to in [7]), we have the following

system of equations [11]:
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where �J is an electric current density which, properly defined, determines nonlinearity of the
material.

Particularly, in case of non-saturable Kerr nonlinearity polarization current density is given
in following form [4]:
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(3)|�E|2�E (3)

where χ(1) and χ(3) are the terms of linear and nonlinear susceptibility.

However, materials usually possess non-saturable Kerr properties only within low radiation
intensity range and, therefore, we consider Kerr-saturable nonlinear materials and nonlinear

susceptibility terms. Assuming slowly varying amplitude of the field

(
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)
, we can

present nonlinear polarization term, by the analogy with [2], in following form:
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where nonlinearity term is now presented in form of saturable function.
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4 Photonic Crystals

Applying the FDTD technique expanded with auxiliary differential equation for the
nonlinear medium [4] with polarization current given in form of (5) and assuming
perfectly-matched layer [1] at the boundary of computation region, we can compute
time-dependent electromagnetic field distribution in nonlinear saturable media.

3. Passive wideband PhC filters

Modern trends in data processing and transmission systems require new compact and
high-speed solutions for all-optical circuits. Particularly, this concerns precise spectral
filtering which can be implemented on the basis of PhCs. Recently, two wide categories
of the PhC filters have been investigated, namely, high-Q and wideband ones. The first
kind of filters possesses incredible spectral characteristics and suppose to be used in
telecommunication for dense WDM demultiplexing. However, such filters have several
disadvantages which make them hardly implemented in the nearest future. Particularly,
recently designed high-Q filters require technology precision which is only possible in
laboratory conditions. Moreover, due to their resonant nature, such filters cannot be used in
the systems utilizing ultra-short pulses.

On the other hand, wideband filters which Q-factor is much lower than the one of the
high-Q filter, possess comparatively low resonant properties which makes them suitable for
ultra-short pulses application. Moreover, their characteristics are not affected too much by
slight variation of the geometric parameters.

3.1. PhC filters spectrum

When designing wideband PhC filters, first thing we need to know is their spectral
properties. Various numerical methods can be applied to compute such characteristics.

Particularly, when using the FDTD method, there are two different ways to find transmission
or reflection spectrum of the PhC device. The first one is based on analysis of the response
to continuous wave (CW) radiation. The second method uses Fourier analysis of the pulsed
signal.

Analysis of the pulsed response is fast and accurate way to compute the spectrum. Basically,
it is computed as a Fourier transform of the temporal response of the structure taken in
certain spatial point.

However, this technique is only suitable when dealing with transversally-confined radiation
(i.e. in case of the PhC waveguides as shown in Figure 1a). When it is necessary to find the
spectrum in case of scattered radiation distribution (as presented if Figure 1b), the spectrum
should be computed for each spatial point of interest.

3.1.1. Analysis of the CW response of the structure

CW signal usually possesses very narrow spectra and, therefore, computing the structure
response to the CW we find its transmission of reflection at a specific wavelength. To compute
the whole spectrum of the structure the response should be obtained at several wavelengths
according to required spectrum.

To provide high accuracy of the method, several criteria should be satisfied:
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Figure 1. Confined or concentrated (a) and scattered (b) field distribution

• Every moment of time the radiation should be integrated along all the area of interest.

• Computation time should be long enough to achieve constant radiation intensity at the
output (i.e. to pass all the transition processes).

• Spectral points should be selected close enough to avoid discontinuities of the final
spectrum.

In case of PhC devices, the main application of such technique is computing the transmission
spectra of bulk PhCs where the radiation is scattered.

3.1.2. Analysis of the pulse response of the structure

Unlike the CW radiation, pulsed one possesses wide spectrum which can be easily found
from its Fourier transform.

To find the transmission spectrum of the PhC filter, it is first necessary to find temporal
response of the filter to the launched Gaussian pulse (or any other wide-spectrum pulse).
The temporal response is taken at a single spatial point. After a certain time, the Fourier
transform of the temporal response can be taken. However, the spectrum obtained in such
a way depends on the spectrum of the pulse launched to the system. Therefore, to find the
final spectrum of the structure it is necessary to divide it by the spectrum of the initial pulse.

In general, to implement the method, certain steps should be made:

1. Set up the structure (i.e. define the refractive index distribution)

2. Set up the launch field before the structure

3. Run the simulation for a time much longer than the pulse lasts. The longer the simulation
lasts, the higher the resolution of the spectrum will be.

4. Save the temporal distribution of one the field components after the structure

5. Find the Fourier transform of this temporal distribution.

6. Normalize the frequency.
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6 Photonic Crystals

3.2. Building an eye-diagram

In the electronic devices design and testing, it is usually used an eye-diagram to determine
the quality of the transition characteristics. In fact, an eye diagram is represented by the
series of the device work cycles drawn one over another. During this cycles the device is
randomly turned on and off. Resulting characteristic resembles a human eye. If an “eye” is
“closed” this points to poor quality of the device. In its “open” state, an eye’s dimensions
define parameters of the device such as bit error rate (BER).

In case of active and passive PhC wideband filters, an eye diagram can be used as well
to define the quality of the device. Since a PhC possesses resonant transmission (i.e. the
radiation is propagated from one element to another) after the device working cycle a
fraction of an optical radiation is still remaining in the PhC elements. If this fraction is
large enough, it will interfere with the next pulse resulting in radiation accumulation from
pulse to pulse. After several pulses, the remaining radiation level can be large enough to
affect the functioning of the nonlinear device or produce an error bit.

To detect such effects and also to find the pulse shape variation at the output of the PhC
filter, an eye-diagram of the device can be built and analyzed.

Let us consider the process of building an eye-diagram of a simple nonlinear PhC wideband
filter working at the edge of the photonic band gap. The filter is confined with linear
PhC waveguide. We will now investigate its response to the sequence of Gaussian signals
of different periods. In the first case, the period is large enough to release the radiation
completely. The second pulses series possesses higher frequency.

The response of the filter in both cases is given in top of the Figure 2. To build an eye-diagram,
it is important to know the period of the pulses (which in most cases is not obvious from
the response). Since we know the repetition rate of the input pulses, we will use it. Now
we only need to skip the transition time of the filter and split the response characteristic into
equal pieces. Here we present the Matlab program which builds an eye-diagram from the
response to the random pulses series. The response should be saved into a separate file in
form of sequence “Time E(Time)”.

%The program is intended to represent computed
%temporal response of an optical structure to
% a series of pulses, as an eye diagram. The
%response should be given in form of amplitute vs
%time

%Number of pulses in the response
num_pulses=30;
%Number of time points within one pulse
%It should be determined from a computation method
period=1280;
%Initial point of the series (non zero due to
%finite value of the speed of light)
t0=period;
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%Loading the data with stored temporal response
data=load(’response.dat’);

%Creating a figure
figure;
subplot(2,1,1);
%Plotting the response
plot(data(:,1), data(:,2));
ylabel(’|E|ˆ2’);

ax=subplot(2,1,2);

hold on;
%The data for the X axis (time within the period)
time=data(1:period+1,1);
%Plotting every period in the same figure
for i=0:num_pulses 1

plot(time, data(t0+(i∗period:(i+1)∗period),2), ’o’)
end

set(ax, ’XGrid’, ’on’);
set(ax, ’YGrid’, ’on’);
xlabel(’Time, s’);
ylabel(’|E|ˆ2’);

(a) (b)

Figure 2. Examples of generated eye-diagrams. a) With weak pulse perturbation and b) with strong pulse perturbation

Dynamic Characteristics of Linear and Nonlinear Wideband Photonic Crystal Filters
http://dx.doi.org/10.5772/54118

185



6 Photonic Crystals

3.2. Building an eye-diagram

In the electronic devices design and testing, it is usually used an eye-diagram to determine
the quality of the transition characteristics. In fact, an eye diagram is represented by the
series of the device work cycles drawn one over another. During this cycles the device is
randomly turned on and off. Resulting characteristic resembles a human eye. If an “eye” is
“closed” this points to poor quality of the device. In its “open” state, an eye’s dimensions
define parameters of the device such as bit error rate (BER).

In case of active and passive PhC wideband filters, an eye diagram can be used as well
to define the quality of the device. Since a PhC possesses resonant transmission (i.e. the
radiation is propagated from one element to another) after the device working cycle a
fraction of an optical radiation is still remaining in the PhC elements. If this fraction is
large enough, it will interfere with the next pulse resulting in radiation accumulation from
pulse to pulse. After several pulses, the remaining radiation level can be large enough to
affect the functioning of the nonlinear device or produce an error bit.

To detect such effects and also to find the pulse shape variation at the output of the PhC
filter, an eye-diagram of the device can be built and analyzed.

Let us consider the process of building an eye-diagram of a simple nonlinear PhC wideband
filter working at the edge of the photonic band gap. The filter is confined with linear
PhC waveguide. We will now investigate its response to the sequence of Gaussian signals
of different periods. In the first case, the period is large enough to release the radiation
completely. The second pulses series possesses higher frequency.

The response of the filter in both cases is given in top of the Figure 2. To build an eye-diagram,
it is important to know the period of the pulses (which in most cases is not obvious from
the response). Since we know the repetition rate of the input pulses, we will use it. Now
we only need to skip the transition time of the filter and split the response characteristic into
equal pieces. Here we present the Matlab program which builds an eye-diagram from the
response to the random pulses series. The response should be saved into a separate file in
form of sequence “Time E(Time)”.

%The program is intended to represent computed
%temporal response of an optical structure to
% a series of pulses, as an eye diagram. The
%response should be given in form of amplitute vs
%time

%Number of pulses in the response
num_pulses=30;
%Number of time points within one pulse
%It should be determined from a computation method
period=1280;
%Initial point of the series (non zero due to
%finite value of the speed of light)
t0=period;
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%Loading the data with stored temporal response
data=load(’response.dat’);

%Creating a figure
figure;
subplot(2,1,1);
%Plotting the response
plot(data(:,1), data(:,2));
ylabel(’|E|ˆ2’);

ax=subplot(2,1,2);

hold on;
%The data for the X axis (time within the period)
time=data(1:period+1,1);
%Plotting every period in the same figure
for i=0:num_pulses 1

plot(time, data(t0+(i∗period:(i+1)∗period),2), ’o’)
end

set(ax, ’XGrid’, ’on’);
set(ax, ’YGrid’, ’on’);
xlabel(’Time, s’);
ylabel(’|E|ˆ2’);
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Figure 2. Examples of generated eye-diagrams. a) With weak pulse perturbation and b) with strong pulse perturbation
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In the bottom parts of the Figure 2 we give two cases of an eye-diagram computed for a
single PhC filter at different pulse duration. In the first case, an “eye” is clearly opened which
tells us that the radiation is not accumulated in the filter. On the other hand, when pulse
repetition rate is too high, the radiation is accumulated within the PhC which is reflected in
the diagram (an “eye” is closed in Figure 2b). Investigating the shape of the pulse, we can
also make a conclusion about how much does filter distort the pulse shape. For instance,
even in the Figure 2a, the output pulse shape is obviously non-Gaussian due to distortions
introduced by the filter.

3.3. PhC wavelength division demultiplexer

One of the most basic and, on the other hand, important applications of a passive PhC
is a wavelength division demultiplexer. In multi-wavelength systems it provides spatial
separation of the wavelength-mixed signal.

One of possible structures providing two-channel demultiplexing is presented in the
Figure 3a. A signal containing two wavelengths enters through the bottom part of the device,
travels to the coupler where it is separated by the wideband filters.
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Figure 3. Structure of the PhC demultiplexer (a) and the spectra of the output channels (b)

Resulting spectra found by analyzing temporal response of the filters is presented in
Figure 3b.

However, knowing spectral properties is not enough to characterize the demultiplexer
completely. Since each PhC device possesses resonant properties, it is necessary to investigate
distortions introduced to the signal when passing this device. This can be done by computing
an eye-diagram of each wavelength channel (see Figure 4). Here we presented the diagrams
computed for the pulses sequence with period T = 160 f s and pulse width of about τ = 80 f s

Presented eye-diagrams demonstrate that the demultiplexer can be used to process the
ultra-short pulses. However, in case of λ = 1.55 µm the filter introduces more distortion
into a pulse shape (i.e. pulse shape is not Gaussian at the output of the filter). This fact does
not affect too much if a single device is used. However, when implementing an integrated
optical circuit including series of linear and nonlinear filters, such distortions should be
minimized to prevent data losses in the circuit.
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(a) (b)

Figure 4. Eye diagrams of the PhC demultiplexer at 1.31 µm (a) and 1.55 µm (b)

4. Temporal characteristics of active PhC filters

4.1. Nonlinear PhC band structure

The band structure of the PhC can be computed by means of different methods. Among
them, the most fast is the plane wave expansion (PWE) method. However, PWE has
drawbacks which do not allow it to be applied to active PhCs. Namely, it is impossible
to take into consideration the chromatic dispersion, absorption and gain as well as nonlinear
material properties when refractive index depends on the radiation intensity.

One of possible ways to overcome the problem is to apply the FDTD technique. In contrast
to the PWE method, the FDTD allows to take into account the refractive index variation
during the computation process [11] and, therefore, to compute the light propagation in the
nonlinear materials.

Here, we consider basic principles underlying the band structure computation by means of
FDTD technique which are briefly discussed, for example, in [12].

In general, PBG computation using FDTD should be carried out as follows:

1. Determine the computation area.

2. Set up periodic boundary conditions.

3. Define the radiation excitation function. The radiation spectrum should be wide enough
to cover whole investigated frequency range.

4. Carry out the spectral analysis of the time-dependent response of the structure on the
probe pulse by searching all of local maxima and plotting them over frequency axis.

5. Repeat steps from 2 to 4 at different values of the phase shift in periodic boundary
conditions corresponding to all selected points within the PhC Brillouin zone the band
structure is computed for.
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In the bottom parts of the Figure 2 we give two cases of an eye-diagram computed for a
single PhC filter at different pulse duration. In the first case, an “eye” is clearly opened which
tells us that the radiation is not accumulated in the filter. On the other hand, when pulse
repetition rate is too high, the radiation is accumulated within the PhC which is reflected in
the diagram (an “eye” is closed in Figure 2b). Investigating the shape of the pulse, we can
also make a conclusion about how much does filter distort the pulse shape. For instance,
even in the Figure 2a, the output pulse shape is obviously non-Gaussian due to distortions
introduced by the filter.

3.3. PhC wavelength division demultiplexer

One of the most basic and, on the other hand, important applications of a passive PhC
is a wavelength division demultiplexer. In multi-wavelength systems it provides spatial
separation of the wavelength-mixed signal.

One of possible structures providing two-channel demultiplexing is presented in the
Figure 3a. A signal containing two wavelengths enters through the bottom part of the device,
travels to the coupler where it is separated by the wideband filters.
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Figure 3. Structure of the PhC demultiplexer (a) and the spectra of the output channels (b)

Resulting spectra found by analyzing temporal response of the filters is presented in
Figure 3b.

However, knowing spectral properties is not enough to characterize the demultiplexer
completely. Since each PhC device possesses resonant properties, it is necessary to investigate
distortions introduced to the signal when passing this device. This can be done by computing
an eye-diagram of each wavelength channel (see Figure 4). Here we presented the diagrams
computed for the pulses sequence with period T = 160 f s and pulse width of about τ = 80 f s

Presented eye-diagrams demonstrate that the demultiplexer can be used to process the
ultra-short pulses. However, in case of λ = 1.55 µm the filter introduces more distortion
into a pulse shape (i.e. pulse shape is not Gaussian at the output of the filter). This fact does
not affect too much if a single device is used. However, when implementing an integrated
optical circuit including series of linear and nonlinear filters, such distortions should be
minimized to prevent data losses in the circuit.
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Figure 4. Eye diagrams of the PhC demultiplexer at 1.31 µm (a) and 1.55 µm (b)

4. Temporal characteristics of active PhC filters

4.1. Nonlinear PhC band structure

The band structure of the PhC can be computed by means of different methods. Among
them, the most fast is the plane wave expansion (PWE) method. However, PWE has
drawbacks which do not allow it to be applied to active PhCs. Namely, it is impossible
to take into consideration the chromatic dispersion, absorption and gain as well as nonlinear
material properties when refractive index depends on the radiation intensity.

One of possible ways to overcome the problem is to apply the FDTD technique. In contrast
to the PWE method, the FDTD allows to take into account the refractive index variation
during the computation process [11] and, therefore, to compute the light propagation in the
nonlinear materials.

Here, we consider basic principles underlying the band structure computation by means of
FDTD technique which are briefly discussed, for example, in [12].

In general, PBG computation using FDTD should be carried out as follows:

1. Determine the computation area.

2. Set up periodic boundary conditions.

3. Define the radiation excitation function. The radiation spectrum should be wide enough
to cover whole investigated frequency range.

4. Carry out the spectral analysis of the time-dependent response of the structure on the
probe pulse by searching all of local maxima and plotting them over frequency axis.

5. Repeat steps from 2 to 4 at different values of the phase shift in periodic boundary
conditions corresponding to all selected points within the PhC Brillouin zone the band
structure is computed for.
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10 Photonic Crystals

Figure 5. Computation domain for 2D PhC with square lattice

Let us now consider in details each step.

To perform any FDTD simulation, it is first necessary to determine the computation domain.
However, since the PhC is considered as an infinite structure and computation over an infinite
structure takes infinite time, the response of such a structure is impossible to find. Solution
in this case is considering a single unit cell since it carries the information about whole
structure. The computation domain in case of 2D PhC with square lattice is presented in
figure 5.

The periodicity of the structure is achieved by setting up periodic boundary conditions at the
edges of the computation domain.

Besides the translation emulation the periodic boundary conditions should provide
simulation of electro-magnetic field propagation with certain wave vectors. Such kind of
periodic boundary conditions are referred to as Bloch periodic boundary conditions [10].
The expressions of Bloch’s periodic boundary conditions for electric and magnetic field
components take following form:

�E (x + a, y + b, z + c) = �E (x, y, z) · e−
�i·kx ·a−�j·ky ·b−�k·kz ·c,

�H (x + a, y + b, z + c) = �H (x, y, z) · e
�i·kx ·a+�j·ky ·b+�k·kz ·c.

(6)

where a, b, c are linear dimensions of the unit cell along X, Y and Z axes respectively; kx, ky,
kz are wave vector components.

When applying simple periodic boundary conditions, the electric or magnetic field intensity
is taken from one boundary of the computation region and is added to the corresponding
field component at the opposite boundary. However, in contrast to simple periodic
conditions, the Bloch ones include phase shift achieved by multiplying the field intensity
by the exponential function which argument contains radiation wave vector.

Therefore, setting up the Bloch periodic boundary conditions provides the possibility to
investigate propagation of radiation possessing different wave vectors to compute the band
structure.

The next important moment is an input signal parameters.
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Figure 6. Temporal response (a) and its spectrum obtained by FFT (b)

The radiation can be introduced to the structure in various ways. However, we will consider
excitation from a single point of the computation region. Since we are going to search for
the resonant frequencies of the PhC within wide spectrum range, an input pulse should
possess wide spectrum. The simplest signals used in this case are delta-pulse and Gaussian
pulse. The delta-pulse in introduced in a single moment of time while the modulated
Gaussian signal should be excited continuously during all simulation. It is obvious that
using delta-pulse is the most simple case which we will use in our example:

δ (t − t0, x − x0, y − y0, z − z0) = 1. (7)

It is widely known that the spectrum of the delta-pulse is infinitely wide so it gives structure
responses at any frequency. After the delta-pulse is introduced, the excitation is turned off,
however, due to periodic boundary conditions, radiation exists infinitely long time in the
structure without absorption.

After the pulse response of the structure is obtained, it should be properly analyzed. This
analysis gives eigen-states of the PhC.

The spectral analysis of the time dependent pulse response can be carried out by Fourier
transform. The accuracy of the method achieves its maximum when computation time is
infinite. However, since we have finite computer resources, the computation time is taken
long enough just to prevent spurious solutions.

Fast Fourier transform (FFT) [3] is usually used within this technique since the response
function is discrete one and in this case the FFT performance is much faster then general
Fourier transform. As a result of the FFT, we have the discrete spectrum as well. The
example of the FFT of the structure response to the delta-pulse excitation is shown in figure
6

The eigen-states of the structure are searched for as local maxima at the response spectrum.
Detailed analysis should be made to avoid spurious solutions. Such spurious solutions are
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Figure 5. Computation domain for 2D PhC with square lattice

Let us now consider in details each step.

To perform any FDTD simulation, it is first necessary to determine the computation domain.
However, since the PhC is considered as an infinite structure and computation over an infinite
structure takes infinite time, the response of such a structure is impossible to find. Solution
in this case is considering a single unit cell since it carries the information about whole
structure. The computation domain in case of 2D PhC with square lattice is presented in
figure 5.

The periodicity of the structure is achieved by setting up periodic boundary conditions at the
edges of the computation domain.

Besides the translation emulation the periodic boundary conditions should provide
simulation of electro-magnetic field propagation with certain wave vectors. Such kind of
periodic boundary conditions are referred to as Bloch periodic boundary conditions [10].
The expressions of Bloch’s periodic boundary conditions for electric and magnetic field
components take following form:

�E (x + a, y + b, z + c) = �E (x, y, z) · e−
�i·kx ·a−�j·ky ·b−�k·kz ·c,

�H (x + a, y + b, z + c) = �H (x, y, z) · e
�i·kx ·a+�j·ky ·b+�k·kz ·c.

(6)

where a, b, c are linear dimensions of the unit cell along X, Y and Z axes respectively; kx, ky,
kz are wave vector components.

When applying simple periodic boundary conditions, the electric or magnetic field intensity
is taken from one boundary of the computation region and is added to the corresponding
field component at the opposite boundary. However, in contrast to simple periodic
conditions, the Bloch ones include phase shift achieved by multiplying the field intensity
by the exponential function which argument contains radiation wave vector.

Therefore, setting up the Bloch periodic boundary conditions provides the possibility to
investigate propagation of radiation possessing different wave vectors to compute the band
structure.

The next important moment is an input signal parameters.
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Figure 6. Temporal response (a) and its spectrum obtained by FFT (b)

The radiation can be introduced to the structure in various ways. However, we will consider
excitation from a single point of the computation region. Since we are going to search for
the resonant frequencies of the PhC within wide spectrum range, an input pulse should
possess wide spectrum. The simplest signals used in this case are delta-pulse and Gaussian
pulse. The delta-pulse in introduced in a single moment of time while the modulated
Gaussian signal should be excited continuously during all simulation. It is obvious that
using delta-pulse is the most simple case which we will use in our example:

δ (t − t0, x − x0, y − y0, z − z0) = 1. (7)

It is widely known that the spectrum of the delta-pulse is infinitely wide so it gives structure
responses at any frequency. After the delta-pulse is introduced, the excitation is turned off,
however, due to periodic boundary conditions, radiation exists infinitely long time in the
structure without absorption.

After the pulse response of the structure is obtained, it should be properly analyzed. This
analysis gives eigen-states of the PhC.

The spectral analysis of the time dependent pulse response can be carried out by Fourier
transform. The accuracy of the method achieves its maximum when computation time is
infinite. However, since we have finite computer resources, the computation time is taken
long enough just to prevent spurious solutions.

Fast Fourier transform (FFT) [3] is usually used within this technique since the response
function is discrete one and in this case the FFT performance is much faster then general
Fourier transform. As a result of the FFT, we have the discrete spectrum as well. The
example of the FFT of the structure response to the delta-pulse excitation is shown in figure
6

The eigen-states of the structure are searched for as local maxima at the response spectrum.
Detailed analysis should be made to avoid spurious solutions. Such spurious solutions are
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usually appear as inessential peaks at the spectrum. Therefore, the local maximum does not
always correspond to the eigen-state. The maxima corresponding to spurious solutions are
just a little bit higher than neighbor spectrum points while valid solutions values give peaks
with magnitudes several times larger than the one of neighbor points.

Here, we present the Matlab program for computation of the band structure of 2D PhC with
square lattice. For simplicity, we consider a PhC made of linear material. To obtain the band
structure of a nonlinear PhC, an auxiliary differential equation technique should be added
in the FDTD part.

%The program is intended to compute
%the band structure of 2D PhC by means of
%the FDTD method.

%Cleaning up previous workspace
clear all;

%Setting up parameters of the PhC
%PhC period in each direction
maxX=1e 6;
maxY=1e 6;
%Radius of the cilinder
r=maxX∗0.3;
%Refractive index of the cilinder
eps1=9;
%Background refractive index
eps2=1;
%Permeability (is always 1 for non magnetic materials)
mu=1;

%Speed of light
c=3e8;

%Setting up FDTD parameters
%Computation time
maxT=2ˆ13;

%Number of spatial points in the grid in each direction
accuracyX=16;
accuracyY=16;
%Number of k points between high symmetry points
accuracyK=5;

%Defining statial and temporal steps
Dx=maxX/accuracyX;
Dy=maxY/accuracyY;
Dt=Dx/2/c;
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%Defining the unit cell permittivity distribution
%Central coordinates
x0=maxX/2;
y0=maxY/2;

%For smooth permittivity profile, defining the width of
%transition zone
dd=sqrt(Dxˆ2+Dyˆ2);
%Correcting the radius according to transition zone
r=r dd/2;
%Generating the permittivity profile
eps=ones(accuracyX, accuracyY)∗eps2;
for i=1:accuracyX

for j=1:accuracyY
if sqrt((i∗Dx x0)ˆ2+(j∗Dy y0)ˆ2)<r

eps(i,j)=eps1;
elseif sqrt((i∗Dx x0)ˆ2+(j∗Dy y0)ˆ2) r<dd

if(eps1>eps2)
eps(i,j)=eps1 abs(eps1 eps2)/dd∗(sqrt((i∗Dx x0)ˆ2+...

(j∗Dy y0)ˆ2) r);
else

eps(i,j)=eps1+abs(eps1 eps2)/dd∗(sqrt((i∗Dx x0)ˆ2+...
(j∗Dy y0)ˆ2) r);

end

end

end

end

%For faster FDTD computation we find the coefficients
%in the FD equations
eps_x=c∗Dt/Dx./eps;
eps_y=c∗Dt/Dy./eps;

%Defining k path
kx(1:accuracyK+1)=0:pi/maxX/accuracyK:pi/maxX;
ky(1:accuracyK+1)=zeros(1,accuracyK+1);

kx(accuracyK+2:accuracyK+accuracyK+1)=pi/maxX;
ky(accuracyK+2:accuracyK+accuracyK+1)=...

pi/maxY/accuracyK:pi/maxY/accuracyK:pi/maxY;

kx(accuracyK+2+accuracyK:accuracyK+accuracyK+1+accuracyK)=...
pi/maxX pi/maxX/accuracyK: pi/maxX/accuracyK:0;

ky(accuracyK+2+accuracyK:accuracyK+accuracyK+1+accuracyK)=...
pi/maxY pi/maxY/accuracyK: pi/maxY/accuracyK:0;
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usually appear as inessential peaks at the spectrum. Therefore, the local maximum does not
always correspond to the eigen-state. The maxima corresponding to spurious solutions are
just a little bit higher than neighbor spectrum points while valid solutions values give peaks
with magnitudes several times larger than the one of neighbor points.

Here, we present the Matlab program for computation of the band structure of 2D PhC with
square lattice. For simplicity, we consider a PhC made of linear material. To obtain the band
structure of a nonlinear PhC, an auxiliary differential equation technique should be added
in the FDTD part.

%The program is intended to compute
%the band structure of 2D PhC by means of
%the FDTD method.

%Cleaning up previous workspace
clear all;

%Setting up parameters of the PhC
%PhC period in each direction
maxX=1e 6;
maxY=1e 6;
%Radius of the cilinder
r=maxX∗0.3;
%Refractive index of the cilinder
eps1=9;
%Background refractive index
eps2=1;
%Permeability (is always 1 for non magnetic materials)
mu=1;

%Speed of light
c=3e8;

%Setting up FDTD parameters
%Computation time
maxT=2ˆ13;

%Number of spatial points in the grid in each direction
accuracyX=16;
accuracyY=16;
%Number of k points between high symmetry points
accuracyK=5;

%Defining statial and temporal steps
Dx=maxX/accuracyX;
Dy=maxY/accuracyY;
Dt=Dx/2/c;
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%Defining the unit cell permittivity distribution
%Central coordinates
x0=maxX/2;
y0=maxY/2;

%For smooth permittivity profile, defining the width of
%transition zone
dd=sqrt(Dxˆ2+Dyˆ2);
%Correcting the radius according to transition zone
r=r dd/2;
%Generating the permittivity profile
eps=ones(accuracyX, accuracyY)∗eps2;
for i=1:accuracyX

for j=1:accuracyY
if sqrt((i∗Dx x0)ˆ2+(j∗Dy y0)ˆ2)<r

eps(i,j)=eps1;
elseif sqrt((i∗Dx x0)ˆ2+(j∗Dy y0)ˆ2) r<dd

if(eps1>eps2)
eps(i,j)=eps1 abs(eps1 eps2)/dd∗(sqrt((i∗Dx x0)ˆ2+...

(j∗Dy y0)ˆ2) r);
else

eps(i,j)=eps1+abs(eps1 eps2)/dd∗(sqrt((i∗Dx x0)ˆ2+...
(j∗Dy y0)ˆ2) r);

end

end

end

end

%For faster FDTD computation we find the coefficients
%in the FD equations
eps_x=c∗Dt/Dx./eps;
eps_y=c∗Dt/Dy./eps;

%Defining k path
kx(1:accuracyK+1)=0:pi/maxX/accuracyK:pi/maxX;
ky(1:accuracyK+1)=zeros(1,accuracyK+1);

kx(accuracyK+2:accuracyK+accuracyK+1)=pi/maxX;
ky(accuracyK+2:accuracyK+accuracyK+1)=...

pi/maxY/accuracyK:pi/maxY/accuracyK:pi/maxY;

kx(accuracyK+2+accuracyK:accuracyK+accuracyK+1+accuracyK)=...
pi/maxX pi/maxX/accuracyK: pi/maxX/accuracyK:0;

ky(accuracyK+2+accuracyK:accuracyK+accuracyK+1+accuracyK)=...
pi/maxY pi/maxY/accuracyK: pi/maxY/accuracyK:0;
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%Crating the figure
figure;
ax1=axes;
hold on;

%Counter of the wave vector points
curr_vector=0;

%% The cycle for all the points in k path
for phase=1:length(kx)

curr_vector=curr_vector+1;
%Computing phase shift for a specific wave vector
rotatex=(exp( 1i∗(kx(phase)∗maxX)));
rotatey=(exp( 1i∗(ky(phase)∗maxY)));

%Cleaning the computation region
Ez=zeros(accuracyX,accuracyY);
Hx=zeros(accuracyX,accuracyY);
Hy=zeros(accuracyX,accuracyY);

%Ecxitation is defined as Delta function in a single point
Ez(round(accuracyX/3),round(accuracyY/4))=100;

%% Cycle for time
for t=0:Dt:maxT∗Dt

%% Computing H field

%Defining periodic boundary conditions for H field

for x=1:accuracyX
Hx(x,1)=Hx(x,1) c∗Dt/mu/Dy∗(Ez(x,1) rotatey∗...

Ez(x,accuracyY));
end

for y=2:accuracyY
Hx(1,y)=Hx(1,y) c∗Dt/mu/Dy∗(Ez(1,y) Ez(1,y 1));

end

for x=2:accuracyX
Hy(x,1)=Hy(x,1)+c∗Dt/mu/Dx∗(Ez(x,1) Ez(x 1,1));

end

for y=1:accuracyY
Hy(1,y)=Hy(1,y)+c∗Dt/mu/Dx∗(Ez(1,y) rotatex∗...

Ez(accuracyX,y));
end
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%% Computing the H field distribution

for y=2:accuracyY
for x=2:accuracyX

Hx(x,y)=Hx(x,y) c∗Dt/mu/Dy∗(Ez(x,y) Ez(x,y 1));
Hy(x,y)=Hy(x,y)+c∗Dt/mu/Dx∗(Ez(x,y) Ez(x 1,y));

end

end

%% Computing E field

for y=1:accuracyY 1
for x=1:accuracyX 1

Ez(x,y)=Ez(x,y)+eps_x(x,y)∗(Hy(x+1,y) Hy(x,y)) ...
eps_y(x,y)∗(Hx(x,y+1) Hx(x,y));

end

end

%% Defining periodic boundary conditions for E

for x=1:accuracyX 1
Ez(x,accuracyY)=Ez(x,accuracyY)+...

eps_x(x,accuracyY)∗(Hy(x+1,accuracyY) Hy(x,accuracyY)) ...
eps_y(x,accuracyY)∗(Hx(x,1)/rotatey Hx(x,accuracyY));

end

for y=1:accuracyY 1
Ez(accuracyX,y)=Ez(accuracyX,y)+...

eps_x(accuracyX,y)∗(Hy(1,y)/rotatex Hy(accuracyX,y)) ...
eps_y(accuracyX,y)∗(Hx(accuracyX,y+1) Hx(accuracyX,y));

end

Ez(accuracyX,accuracyY)=Ez(accuracyX,accuracyY)+...
eps_x(accuracyX,accuracyY)∗...
(Hy(1,accuracyY)/rotatex Hy(accuracyX,accuracyY)) ...
eps_y(accuracyX,accuracyY)∗...
(Hx(accuracyX,1)/rotatey Hx(accuracyX,accuracyY));

Eres(round(t/Dt)+1)=Ez(round(accuracyX/3),round(accuracyY/7));
Time(round(t/Dt)+1)=t;

end

%% Analyzing the temporal response
%Computing the Fourier transform of the response
fourier=abs(fft(Eres));

%Normalizing frequency
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%% Computing E field
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eps_y(x,y)∗(Hx(x,y+1) Hx(x,y));

end

end
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%Computing the Fourier transform of the response
fourier=abs(fft(Eres));

%Normalizing frequency
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f=1/Dt∗(0:length(fourier) 1)/length(Eres);

%eigen frequencies counter
wcount=1;

%Analyzing the first point of the spectrum
if(fourier(1)/(max(fourier(2:4)))>1.1)

weigen(curr_vector, wcount)=f(1);
wcount=wcount+1;

end

%Analyzing the rest of the spectrum
for u=3:length(fourier) 3

if(fourier(u)/(max(fourier(u+1:u+2)))>1.01)&&...
(fourier(u)/max(fourier(u 2:u 1))>1.01)

weigen(curr_vector, wcount)=f(u);
wcount=wcount+1;

end

end

%Plotting 5 solutions maximum
if(wcount 1>=5)
plot(curr_vector,abs(weigen(curr_vector,1:5))∗maxX/c,’ob’);

else

plot(curr_vector,abs(weigen(curr_vector,1:wcount 1))∗maxX/c,’ob’);

end

%Decoraring the plot
set(ax1,’xtick’,[1 accuracyK+1 2∗accuracyK+1 3∗accuracyK+1]);
set(ax1,’xticklabel’,[’G’;’X’;’M’;’G’]);
ylabel(’Frequency \omegaa/2\pic’,’FontSize’,14);
xlabel(’Wavevector’,’FontSize’,14);
set(ax1,’XGrid’,’on’);

drawnow;

end

The results computed by the presented code are given in figure 7 . The parameters in the
program are selected to eliminate the spurious solutions. However, if an input power is
changed, one should change the accuracy in the spectrum analysis part.

4.2. Bistable nonlinear PhCs

Nonlinear PhC filters with properly selected parameters, possess bistability and can be used
as logical gates in all-optical data processing systems. In this section, we give an example of
such filters on the basis of 2D PhC [5].
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Figure 7. Band structure of 2D PhC computed by the FDTD method

(a) (b)

Figure 8. The structure of the investigated nonlinear PhC confined by the PhC waveguide on the basis of hexagonal (a) and

square (b) lattice

The schematic of investigated nonlinear PhC filter confined by the PhC waveguide is shown
in the figure 8.

In both cases, the PhC filter is presented by three PhC elements with parameters similar to
the confined PhC. The photonic bandgap (PBG) of the filters are shifted as respect to the
background PhC. As it has been demonstrated for the linear PhCs, such filters almost do not
disturb an ultra-short pulses shape.

Initially, the operating wavelength λ = 1.05 µm is selected to fall at the PBG of both
background PhC and filter. However, due to optical nonlinearity the spectral characteristic
of the filter appears to be shifted when increasing the radiation intensity.
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in the figure 8.

In both cases, the PhC filter is presented by three PhC elements with parameters similar to
the confined PhC. The photonic bandgap (PBG) of the filters are shifted as respect to the
background PhC. As it has been demonstrated for the linear PhCs, such filters almost do not
disturb an ultra-short pulses shape.

Initially, the operating wavelength λ = 1.05 µm is selected to fall at the PBG of both
background PhC and filter. However, due to optical nonlinearity the spectral characteristic
of the filter appears to be shifted when increasing the radiation intensity.
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Figure 9. Transmission of the filter as a function of the input intensity in case of hexagonal PhC (a) and square PhC (b)

The reaction of the structure to increasing radiation intensity is presented in figure 9. The
figure represents filter transmission as a function of the intensity of the CW monochromatic
radiation. The insertions demonstrate the field behavior inside the waveguide with nonlinear
PhC filter in case of low and high radiation intensity.

The results in the figure 9 allow to conclude that starting at certain value of the intensity, the
radiation wavelength appears outside the PBG which increases transmission of such a filter
dramatically. The further growth of the nonlinearity no longer increases the transmission as
is seen from the figure 9. Therefore, in our investigation we have selected operating intensity
slightly below the switching-on intensity.

Since the PhCs and, particularly, PhC-based filters possess resonant radiation transmission
(the radiation is propagating from one element to another), the nonlinear spectrum shift
require certain time which does not rely on response time of the nonlinear material. In order
to investigate such a phenomena, we carried out the study of temporal response of such a
filter to Gaussian pulses of different durations. Each of the pulses in serie possesses the same
magnitude but different duration. The photorefractive properties of the materials remain the
same for all pulses. This allows investigating only the contribution of the resonant processes
inside the PhC into the bistability.

After the temporal response is obtained, it is represented in form of the dependence of output
intensity on the input one as presented in figure 10. The intensity growth corresponds to the
lowest branch of the hysteresis loop and lowering of the intensity stands for highest branch.
Both in case of hexagonal and square lattices such characteristics look almost the same and,
therefore, we provide here only the ones for the hexagonal PhC.

In case of linear optical materials, the branches are coincide since no processes affect the
properties of the PhC. However, in case of nonlinear materials the light trapped inside the
filter due to resonances holds the refractive index of the nonlinear material and, consequently,
the transmission of the filter, high, thus, providing the difference in propagation of the
leading and trailing edges of the pulse.
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Figure 10. Hysteresis loops at different durations of the Gaussian pulse: a) τ = 50 f s, b) τ = 200 f s, c) τ = 400 f s, d)

τ = 800 f s

Due to finite saturation time of the resonances in the PhC, the minimum allowed pulse
duration exists for a specific PhC filter. Normally, during the front edge of Gaussian pulse,
the intensity inside the filter grows which causes refractive index changes and, consequently,
the changes in the filter characteristic. However, if the pulse duration is lower than the
time required to excite the eigen-state in the filter, the significant nonlinear effects such as
transmission growth appear after the input pulse maximum (see figure 10(a)). On the other
hand, when the pulse duration is large, it is enough to excite the filter and, therefore, the
maximum intensity of the input and output pulses are coincide.

Thus, the study of the temporal responses carried out in the work demonstrates the
possibility of all-optical switching of the filter by the pulses which increase of reduce the
intensity temporarily and, consequently, change the filter state.

After this we have studied its nonlinear switching dynamics. For this reason the continuous
wave pump signal is launched into the waveguide. Then, with certain delays, the Gaussian
control signals are launched which turn on and turn off the transmission of the filter. The
power of the pump signal corresponds to the maximum magnitude of the hysteresis loop.
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radiation. The insertions demonstrate the field behavior inside the waveguide with nonlinear
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The results in the figure 9 allow to conclude that starting at certain value of the intensity, the
radiation wavelength appears outside the PBG which increases transmission of such a filter
dramatically. The further growth of the nonlinearity no longer increases the transmission as
is seen from the figure 9. Therefore, in our investigation we have selected operating intensity
slightly below the switching-on intensity.

Since the PhCs and, particularly, PhC-based filters possess resonant radiation transmission
(the radiation is propagating from one element to another), the nonlinear spectrum shift
require certain time which does not rely on response time of the nonlinear material. In order
to investigate such a phenomena, we carried out the study of temporal response of such a
filter to Gaussian pulses of different durations. Each of the pulses in serie possesses the same
magnitude but different duration. The photorefractive properties of the materials remain the
same for all pulses. This allows investigating only the contribution of the resonant processes
inside the PhC into the bistability.

After the temporal response is obtained, it is represented in form of the dependence of output
intensity on the input one as presented in figure 10. The intensity growth corresponds to the
lowest branch of the hysteresis loop and lowering of the intensity stands for highest branch.
Both in case of hexagonal and square lattices such characteristics look almost the same and,
therefore, we provide here only the ones for the hexagonal PhC.

In case of linear optical materials, the branches are coincide since no processes affect the
properties of the PhC. However, in case of nonlinear materials the light trapped inside the
filter due to resonances holds the refractive index of the nonlinear material and, consequently,
the transmission of the filter, high, thus, providing the difference in propagation of the
leading and trailing edges of the pulse.

Advances in Photonic Crystals196
Dynamic Characteristics of Linear and Nonlinear Wideband Photonic Crystal Filters 19

0 5 10 15

x 10
14

0

2

4

6

8

10
x 10

14

Input Intensity, W/m
2

O
u

tp
u

t 
In

te
n

s
it
y
, 

W
/m

2

I
max

(a)

0 5 10 15

x 10
14

0

2

4

6

8

10
x 10

14

Input Intensity, W/m
2

O
u

tp
u

t 
In

te
n

s
it
y
, 

W
/m

2

I
max

(b)

0 5 10 15

x 10
14

0

2

4

6

8

10
x 10

14

Input Intensity, W/m
2

O
u

tp
u

t 
In

te
n

s
it
y
, 

W
/m

2

I
max

(c)

0 5 10 15

x 10
14

0

2

4

6

8

10
x 10

14

Input Intensity, W/m
2

O
u

tp
u

t 
In

te
n

s
it
y
, 

W
/m

2

I
max

(d)

Figure 10. Hysteresis loops at different durations of the Gaussian pulse: a) τ = 50 f s, b) τ = 200 f s, c) τ = 400 f s, d)

τ = 800 f s

Due to finite saturation time of the resonances in the PhC, the minimum allowed pulse
duration exists for a specific PhC filter. Normally, during the front edge of Gaussian pulse,
the intensity inside the filter grows which causes refractive index changes and, consequently,
the changes in the filter characteristic. However, if the pulse duration is lower than the
time required to excite the eigen-state in the filter, the significant nonlinear effects such as
transmission growth appear after the input pulse maximum (see figure 10(a)). On the other
hand, when the pulse duration is large, it is enough to excite the filter and, therefore, the
maximum intensity of the input and output pulses are coincide.

Thus, the study of the temporal responses carried out in the work demonstrates the
possibility of all-optical switching of the filter by the pulses which increase of reduce the
intensity temporarily and, consequently, change the filter state.

After this we have studied its nonlinear switching dynamics. For this reason the continuous
wave pump signal is launched into the waveguide. Then, with certain delays, the Gaussian
control signals are launched which turn on and turn off the transmission of the filter. The
power of the pump signal corresponds to the maximum magnitude of the hysteresis loop.
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Figure 11. The CW pump (a), ON (b), OFF (c) and resulting signal in hexagonal (d) and square (e) PhC

Switching ON occurs when the Gaussian signal is launched with the same phase as the pump
one. If the signal possesses opposite phase, switching OFF occurs.

The temporal response of the investigated filter is demonstrated in the figure 11. The topmost
figure shows the intensity of the pump signal. The figures 11(b) and 11(c) demonstrate turn
on and turn off pulses sequences. In two lowest figures, the resulting output signals are
shown in case of hexagonal and square PhC lattices.

The pump signal intensity is slightly below the nonlinearity threshold. Therefore, switching
ON requires low intensity Gaussian pulse. On the other hand, when switching OFF, the
signal intensity should be reduced down to 2 · 1014 W/m2 as follows from the figure 10(d).
Therefore, the switching OFF signal maximum intensity is taken the same as that of the
pump signal.
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Comparing two nonlinear wideband filters we can mention their efficiency as bistable
devices. However, at the same conditions transition time is larger in case of hexagonal PhC.
On the other hand, in square PhC the lower radiation level is not as stable as the higher one
and the output intensity in this case grows raising the probability of bit error.

Nevertheless, both these filters can be used as a basic logic in all-optical data processing
circuits and the choice will be determined only by the technological factors.

4.3. Conclusions

In the chapter, we have demonstrated several applications of temporal characteristics as well
as their computation method for both linear and nonlinear PhC wideband filters. Such
micro-devices as wideband filters, wavelength division multiplexers and bistable elements
may become a basis for future all-optical integrated circuits.

Presented Matlab codes for building an eye-diagram and for computing the band structure of
2D PhC by means of the FDTD methods will be useful for master and PhD students working
on design and optimization of PhC-based micro-devices.
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signal intensity should be reduced down to 2 · 1014 W/m2 as follows from the figure 10(d).
Therefore, the switching OFF signal maximum intensity is taken the same as that of the
pump signal.
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Comparing two nonlinear wideband filters we can mention their efficiency as bistable
devices. However, at the same conditions transition time is larger in case of hexagonal PhC.
On the other hand, in square PhC the lower radiation level is not as stable as the higher one
and the output intensity in this case grows raising the probability of bit error.

Nevertheless, both these filters can be used as a basic logic in all-optical data processing
circuits and the choice will be determined only by the technological factors.

4.3. Conclusions

In the chapter, we have demonstrated several applications of temporal characteristics as well
as their computation method for both linear and nonlinear PhC wideband filters. Such
micro-devices as wideband filters, wavelength division multiplexers and bistable elements
may become a basis for future all-optical integrated circuits.

Presented Matlab codes for building an eye-diagram and for computing the band structure of
2D PhC by means of the FDTD methods will be useful for master and PhD students working
on design and optimization of PhC-based micro-devices.
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1. Introduction

In this work we aim to exploit one of the most studied defect color centers in diamond
, the negatively charged nitrogen vacancy (NV−) color center, a three level system which
emits a single photon at a wavelength of 637nm providing a possible deterministic single
photon emitter very useful for quantum computing applications. Moreover the possibility of
placing a NV−in a photonic crystal cavity will enhance the coupling between photons and
NV−center. This could also allow us to address the ground state of the NV−center, whose
spin, could be used as qubit. It is also remarkable to notice that for quantum computing
purposes it is very useful to increase the light collection from the NV−centers, and in order to
do that we performed a study of another structure, the solid immersion lens, which consists
of an hemisphere whose center is at the position of an emitter, in this case the NV−center,
increasing the collection of the light from it. In order to create these structures we used a
method called focused ion beam which allowed us to etch directly into the diamond many
different kinds of structures. In order to allow an interaction between these structures and
the NV−centers we need to have a method to locate the NV−center precisely under the
etched structures. We developed a new technique ([1]) where we show how to mark a single
NV−center and how to etch a desired structure over it on demand. This technique gave very
good results allowing us to etch a solid immersion lens onto a NV−previously located and
characterized, increasing the light collection from the NV−of a factor of 8×.

2. Introduction to nitrogen vacancy center in diamond

Diamond has emerged in recent years as a promising platform for quantum communication
and spin qubit operations as shown by [2], as well as for “quantum imaging" based on single
spin magnetic resonance or nanoscopy. Impressive demonstrations in all these areas have
mostly been based on the negatively-charged nitrogen vacancy center, NV−, which consists
of a substitutional nitrogen atom adjacent to a carbon vacancy. Due to its useful optical
and magnetic spin selection properties, the NV−center has been used by [3] to demonstrate
a stable single photon source and single spin manipulations ([4]) at room temperature. A
single-photon source based on NV−in nano-diamond is already commercially available, and
a ground state spin coherence time of 15ms has been observed in ultra-pure diamond at

©2012 Marseglia, licensee InTech. This is an open access chapter distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.© 2013 Marseglia; licensee InTech. This is an open access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.
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Figure 1. a)Atomic structure of NV−center in diamond(N=nitrogen V=Vacancy, C=Carbon) b) Energy level scheme of

NV−center. c) Fluorescence spectrum of a single NV−defect center. The wavelength of the zero phonon line ( ZPL) is 637nm

(1.945eV ). Excitation was at 514nm [6]

room temperature. At present, one of the biggest issues preventing diamond from taking
the lead among competing technologies is the difficulty in fabricating photonic devices to
couple and guide light. For the realization of large-scale quantum information processing
protocols (e.g. via photonic module approaches) or for quantum repeater systems, it will be
necessary to connect NV−centers through “flying" qubits such as photons. To achieve this,
micro-cavities and waveguides are needed to enable the transfer of quantum information
between the electron spin of the NV−center and a photon. In this work I will show some
applications of diamond useful for quantum computing. Synthetic diamonds can be doped
in order to create implanted NV−center which interacts with light, as described further. From
its discovery, it has not been very clear if the NV−were a proper two level system. Recently it
has been shown that it has properties more typical of a three level system with a metastable
level. In its ground state it has spin s = 1 and different emission rates for transitions to the
ground states, so NV−center can be also exploited in order to achieve spin readout.

3. Interaction of N-V center with light

The NV−center in diamond occurs naturally or is produced after radiation damage and
annealing in vacuum. As described earlier is made by substitutional nitrogen atom adjacent
to a vacancy in carbon lattice in the diamond as depicted in Fig.1a. The NV−center has
attracted a lot of interest because it can be optically addressed as a single quantum system
as discussed by [5]. The NV−center behaves as a two level system with a transition from the
excited state to the ground state providing a single photon of 637nm, as shown in Fig.1b.
This is a very useful characteristic for quantum information purposes because it can be
used as single photon source. Let us remember that a characteristic of the NV−center is
a zero-phonon line (ZPL), in the spectrum at room temperature, at 637nm as shown in Fig.1c,
the zero-phonon line constitutes the line shape of individual light absorbing and emitting
molecules embedded into the crystal lattice. The state of NV−center ground state spin
strongly modulates the rate of spontaneous emission from the 3E ↔3 A sub-levels providing
a mechanism for spin read out as discussed by [4]. We have recently shown theoretically
([7]) that spin readout with a small number of photons could be achieved by placing the
NV−centre in a subwavelength scale micro-cavity with a moderate Q-factor(Q ∼ 3000).
So one of our aims is to optimize the output coupling of photons from diamond color
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Figure 2. Energy level scheme of the nitrogen vacancy defect center in diamond. The greyed out lines correspond to the

ms = ±1 sublevels [10]

centers into waveguides and free space to increase the efficiency of single photon sources
and to enable faster single spin read-out. In order to do that we want to study resonant
structures. These structures confine the light close to the emitter allowing cavity-QED
effects to be exploited to direct an emitted photon into a particular spatial mode and will
allow us to enhance the ZPL. An improvement of the photon emission rate and photon
indistinguishability for NV−can be achieved due to the (coherent) interaction with the highly
localized photon field of the cavity. In principle a high-Q micro-cavity can be realized
directly in diamond but the first experimental demonstrations with micro-disk resonators
and photonic crystal cavities, made for example by [8], suffered from large scattering losses
due to the poly-crystalline nature of the diamond material used. The fabrication of high-Q
cavities in single crystal diamond is very challenging because vertical optical confinement
within diamond requires either a 3D etching process or a method for fabricating thin
single crystal diamond films. We want analyze photonic crystal structures in diamond
and fabrication methods to achieve efficient spin read-out in low-Q cavities. Electronic spin
resonance (ESR) experiments performed by [9] has shown that the electronic ground state of
NV−center (3 A) is paramagnetic. Indeed the electronic ground state of the NV−center is a
spin triplet that exhibits a 2.87GHz zero-field splitting defining the z axis of the electron
spin. An application of a small magnetic field splits the magnetic sublevel ms = ±1
energy level structure of the NV−center, as we can see in Fig.2. Electron spin relaxation
times (T1) of defect centers in diamond range from millisecond at room temperature to
seconds at low temperature. Several experiments have shown the manipulation of the
ground state spin of a NV−center using optically detected magnetic resonance (ODMR)
techniques, the main problem in using ODMR is that detection step involves observing
fluorescence cycles from the NV−center which has a probability of destroying the spin.
Another characteristic of NV−center useful for quantum information storage is the capability
of transferring its electronic spin state to nuclear spins. Experiments performed by [5]
have shown the possibility of manipulating nuclear spins of NV−. Nuclear spins are of
fundamental importance for storage and processing of quantum information, their excellent
coherence properties make them a superior qubit candidate even at room temperature.

4. Beyond the two level system model

In order to study the dynamics of the NV−center, remembering that me << mC where me

is the value of the mass of the electrons and mC is the value of the mass of carbon atom,
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Figure 3. Experimentally measured energy level diagram of the NV center in diamond showing the experimentally determined

ground and excited state splitting [17, 18]. The defect has zero phonon line at 637 nm, with width of order MHz at low

temperatures [19](image taken from [7]).

we make the so called Born-Oppenheimer approximation, in which we consider the nuclei
fixed in a crystal geometry and the coordinates of the electrons are considered with respect
to them. When a defect is present it breaks down the crystal symmetry and, regarding the
NV−center, we have a contribution of one electron from each carbon atom, the nitrogen
contributes two electrons, and an extra electron comes from the environment as described
by [11], possibly given by substitutional nitrogen, so ending with a total number of six
electrons. The excited level of the NV−is not yet very well understood explicitly but there are
many theoretical descriptions using group theory and partially confirmed by experimental
results. The joint use of group theory and numerical calculations has led to predictions of the
ordering of the levels of the ground state and excited states of the NV−. Taking account the
coulomb interaction, spin-orbit effect and spin-spin coupling it explains the splitting of the
levels initially degenerate giving rise to different transition between them. Without entering
in to detailed group theory calculations we can summarize by stating that the hamiltonian
of the system is composed of three elements, the coulomb interaction HC, the spin orbit
interaction HSO and the spin-spin interaction HSS.

H = HC + HSO + HSS (1)

The dynamics of the system is resolved by solving the hamiltonian in free space with coulomb
interaction as potential and the spin-orbit and spin-spin interaction were eventually added
as perturbations. We show the detailed energy level structure of the NV−center in Fig.3. The
overall effect can be summarized as follows, the coulomb interaction, splits the degeneracy
between singlet and triplets of the ground state and the first excited state, the spin orbit
interaction splits the states which have Ms=0 and Ms=±1 and finally the spin-spin splits the A
levels. The end result is that the optical transitions between ground and excited states (1− 3)
occur at different energies. In the absence of external fields the ground state is a spin triplet
split by 2.88 GHz due to spin−spin interactions. [12] showed that the excited state is a triplet
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split by spin-spin interactions, but with the further addition of spin-orbit coupling . Recent
experimental evidence performed by [13], has uncovered this excited state structure (Fig.3).
The net effect of spin-spin and spin-orbit interactions is to create a detuning ≈ 1.4 GHz
(6µeV) between the transitions 3 A(m=0) →3E(m=0) (transitions 1)and 3 A(m=+1) →3E(m=+1)

(transition 3). A similar detuning of ≈ 2.5 GHz (10µeV) exists for the 3 A(m=−1) →
3E(m=−1)

(transition 2), the rates for these three transition is k1 = k2 = k3 = 77MHz which gives
a spontaneous emission (SE) lifetime τ ≈ 13ns. The energy level structure is not simply a
ground and excited triplet state, there also exists an intermediate singlet state 1 A arising from
Coulomb interactions. There is a probability of the transition 3E →1 A, with different rates
depending on the spin. For the 3Em=±1 states (transitions 6, 7) both theoretical predictions
and experimental results suggest that the decay rate is around k6 = k7 = 30MHz giving a
spontaneous emission (SE) lifetime τ ≈ 30ns. For the 3Em=0 state (transition 5) theoretically
the rate of decay to the singlet should be zero, however, experimental observations made by
[14] have shown the rate to be ≈ 10−4 × 1/τ . Since the 1 A singlet state decays preferentially
to the 3Em=0 state (transition 8), then it is clear from the rates above that broadband excitation
leads to spin polarization in the spin zero ground state. Since transition 8 is non-radiative
then there will be a dark period in the fluorescence when 1 A becomes populated, and as the
decay rate from 3Em=±1, k8 = 3.3MHz, to the singlet state is much larger than from 3Em=0, the
change in intensity measures the spin state. Clearly using fluorescence intensity to detect the
spin state has a probability to flip the spin, therefore it would seem necessary for a scheme
to suppress this. However, spin-flip transitions are essential to initialize the system. Thus a
compromise is required between the perfectly cyclic spin preserving transitions required for
readout and the spin flip transitions needed for reset.

5. Photonic crystals

To take advantage of atom-photon coupling using NV−, as required by many quantum
protocols, cavity structures are required. Again, concentrating on monolithic diamond
solutions, photonic crystal cavities are the most natural structures to explore. A photonic
crystal structure modulates the propagation of light in a way that is analogous to the way a
semiconductor crystal modulates the motion of electrons. In both cases a periodic structure
gives rise to ‘band-gap’ behavior, with a photon (electron) being allowed or not allowed to
propagate depending on its wave vector. In photonic crystals the periodicity is comprised
of regions of higher and lower dielectric constants. The basic physical phenomenon is based
on diffraction, the period needs to be of the order of a half-wavelength of the light to be
confined. For visible light the wavelength goes from 200nm (blue) to 650nm (red), leading
to a real challenge in order to make the fabrication of optical photonic crystals because of
the small dimensions. Breaking the periodicity in a controlled way creates nanocavities that
confine light to extremely small volumes in which the lightmatter interaction is dominated
by cavity quantum electrodynamic. We have previously described the characteristics of the
NV−center, a three level system which is promising as an efficient room temperature source
of single photons at a wavelength of 637nm. We pointed out that the NV−center looks
very promising for performing quantum spin readout, which is also useful for quantum
computing purposes. Zero-phonon emission, at 637nm, accounts for only a small fraction
(∼ 4%) of NV−fluorescence, with the majority of emitted photons falling in the very broad
(∼ 200nm) phonon-assisted sideband. By coupling the NV−center to a photonic crystal
cavity, spontaneous emission in the phonon sideband can be suppressed and emission in
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split by spin-spin interactions, but with the further addition of spin-orbit coupling . Recent
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5. Photonic crystals

To take advantage of atom-photon coupling using NV−, as required by many quantum
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of regions of higher and lower dielectric constants. The basic physical phenomenon is based
on diffraction, the period needs to be of the order of a half-wavelength of the light to be
confined. For visible light the wavelength goes from 200nm (blue) to 650nm (red), leading
to a real challenge in order to make the fabrication of optical photonic crystals because of
the small dimensions. Breaking the periodicity in a controlled way creates nanocavities that
confine light to extremely small volumes in which the lightmatter interaction is dominated
by cavity quantum electrodynamic. We have previously described the characteristics of the
NV−center, a three level system which is promising as an efficient room temperature source
of single photons at a wavelength of 637nm. We pointed out that the NV−center looks
very promising for performing quantum spin readout, which is also useful for quantum
computing purposes. Zero-phonon emission, at 637nm, accounts for only a small fraction
(∼ 4%) of NV−fluorescence, with the majority of emitted photons falling in the very broad
(∼ 200nm) phonon-assisted sideband. By coupling the NV−center to a photonic crystal
cavity, spontaneous emission in the phonon sideband can be suppressed and emission in
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the zero-phonon line can be enhanced ([15]) so the photonic crystals offers a controllable
electromagnetic environment, ideal for the compact integration and isolation of the fragile
quantum system. The challenges of engineering the parameters of the photonic crystal in
diamond at this scale are not trivial, as described further where we will show how to tune
a cavity to increase the efficiency of light collection from an emitter placed in it. Indeed, a
single photon emitted by a NV−could then interact with another NV−allowing entanglement
between both qubits represented by the spin of the NV−centers ase described by [16].
High-Q resonators of different kinds have been fabricated in non-diamond materials and
coupled to NV−emission from nano-diamonds. Since we are concerned here with developing
monolithic photonics, it is necessary to fabricate cavities in the diamond itself. It should be
noted that photonic crystal cavities have been fabricated in diamond films and an un-coupled
Q-factor as high as 585 at 637nm has been measured by [8]. The polycrystal nature of the
material used in those demonstrations makes it unsuitable for our purposes due to enhanced
scattering and background fluorescence. We aim to fabricate photonic crystal cavities in
ultra-high-purity type I Ia single-crystal diamond (Element Six) grown by chemical vapor
deposition. This material has extremely low levels of nitrogen (less than 1ppb), and very
few native NV−centers, making it the ideal material for creating NV−centers in a controlled
fashion by implantation and annealing. In order to have strong coupling we need to have
a cavity with high Q factor and small modal volume, but a cavity with a more moderate Q
would still be useful. In particular, a scheme for reading out the ground state spin of an
NV−center has been described by our group ([7]), that requires a Q (before coupling) of only
∼ 3000. This scheme exploits the zero-field splitting in the NV−center ground state and uses
narrow band resonant excitation to achieve high-fidelity read-out of the ground state spin
with just a few excitation cycles.

6. Two-dimensional hexagonal photonic crystal structure

Our aim is to fabricate a structure which will behave as resonant cavity for the single photon
emission of the NV−center. The best choice to pursue this goal would have been a 3D
photonic crystal structure with a NV−placed in its center, but unfortunately the fabrication
of this kind of structure is challenging. So we decide to follow a different path using a
quasi−3D structure. In fact combining the photonic crystal feature and the total internal
reflection (TIR), we obtain a structure which confines the light in the three directions XYZ.
Indeed the light is confined by distributed Bragg reflection in the plane of periodicity (XY)
and by total internal reflection in the perpendicular plane (Z), so we aim to fabricate a
photonic crystal in a thin membrane. Recently [17]we have described in detail the study of
a photonic cristal cavity, here we report just the results obtained for the L3 structure which
consist of a mebrane of 185nm with two-dimensional hexagonal photonic crystal structure
which has a bandgap centered to wavelength of 637nm, namely a PC structure resonant
with the NV−center emission, as shown in is shown in Fig.4a with its calculated resonance
frequency shown in Fig.4b.

7. Focussed ion beam milling

The system we used to etch structures into the diamond is a well-studied and developed
technology known as focussed ion beam milling (FIB)[18]. It was initially developed during
the late 1970s and the early 1980s, and the first commercial instruments were introduced
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Figure 4. a)L3 photonic crystal cavity structure modified with smaller radius and nearest holes shifted. b) Fourier Transform of
the Ex plot with Lorentzian Fit leading to an estimation of Q = 32000

more than a decade ago [19]. The technology enables localised milling and deposition of
conductors and insulators. A schematic diagram of a FIB column is shown in Fig. 5.
The structure of the column is similar to that of a scanning electron microscope, with the
difference that the FIB machine uses Ga+ ions instead of electrons. Inside the column a
vacuum of about 1 × 10−7mbar is maintained. In the FIB system a highly focussed ion beam
(diameter ∼ 10nm) is aimed at a target area on the sample, the ion beam is generated from a
liquid-metal ion source (LMIS) by the application of a strong electric field.

Figure 5. : Schematic diagram of a FIB column (image taken from [20]).

This electric field causes the emission of positively charged ions from a liquid gallium cone,
which is formed on the tip of a tungsten needle. After being focused with the first collimating
lenses, the ion beam is tuned with a variable aperture, generating a beam current which is
typically in a range from 1pA to 1nA, leading to the possibility of performing very fine high
resolution imaging or beam milling. When the focused gallium ion beam is raster scanned
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Figure 6. Confocal microscope image (pump 532nm filter 637 ± 67nm) of the silver coated zone with a line etched on and

next to it. (inset) secondary electron image.

over a substrate it causes electron emission which is collected on a biased high gain detector,
called, a microchannel plate (MCP). The detector bias is a positive or a negative voltage,
respectively, for collecting secondary electrons or secondary ions. Detection can then be
used to build up an image of the sample as the beam is scanned across it. The imaging
taken in this way has resolution limited only by the focal spot size (∼ 10nm). Moreover if the
current of the beam is high, another effect also occurs; physical sputtering or milling of the
sample material. By scanning the beam over the substrate, arbitrary shapes can be etched.
The FIB offers the ability to perform nanopatterning, allowing design and prototyping of
new micro or nanostructures. The ion beam itself could also be used to perform spatially
confined Ga-doping.

8. Fabrication of structures near N-V centers, preliminary studies

In [1] we have introduced the new procedure we used to create structures on demand
coupled to NV−centres , this new technique but before relies on some promising preliminary
results we are going to show here. These results indicate that etching with FIB next to the
NV−centres (∼ 1µm) does not affect their emission. In order to be sure that the FIB has
not damaged the implanted NV−centres like for example in [21], we first cover the surface
of the diamond with silver in the zone where the NV−centres were located. The silver cover
zone acted as a shield for the gallium implantation and allowed us to check the difference
in light emission from the NV−centres exposed to the Ion beam. Then we etched, with FIB,
a deep long line next to the silver cover zone as shown in Fig. 6. After that we removed
the silver coating, and analysed the possible damage to the NV−array. Fig. 7 shows the
behaviour of count rate from single NV−centres taken at two different points, one in the
region exposed to gallium and the other in the region covered by the silver after cleaning.
Once we were assured that there is no damage to the array, we etched another line closer
to the NV−array which was used as a reference in future procedures, and we repeated the
procedure, confirming again that the FIB etching does not affect the NV−centre emission
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Figure 7. Count rate as function of laser power, measured after cleaning (section 10) the surface

because there were no changes in the count rates from the NV−. This procedures proves that
etching next to the NV−centres (within 5µm) does not create any damage to them.

8.1. Platinum deposition

Another important feature of the FIB machine is represented by the possibility of performing
metal deposition onto the sample. The way it works is similar to chemical vapour
deposition(CVD) and the occurring reactions are comparable to, for example, laser induced
CVD. The main difference is the better resolution but lower deposition rate of FIB. The
metals that can be deposited on commercially available machines are platinum(Pt) and
tungsten(W). We mainly used platinum deposition in our etching sessions. By coating in
Platinum we produce a conducting surface on the diamond which decreases the build up of
charge due to deposition of Ga+. This then reduces the beam shift due to accumulation
of the gallium ion charge during the milling process. The deposition process works as
follows: a platinum-bearing organometallic precursor gas is sprayed on the surface by a
fine needle (nozzle), where it adsorbs. In a second step, the ion beam decomposes the
adsorbed precursor gases. Then the volatile reaction products desorb from the surface and
are removed through the vacuum system leaving mostly platinum and small amount of
organic solid at the surface. Auger electron observations have shown that this Platinum (27%)
is highly contaminated with Carbon (65%) originated during the metal organic precursor
decomposition and Gallium (8%) coming form the ion beam. The deposition result is
illustrated in Fig. 8 where we can see the platinum coated zone and the mouth of the injector
needle. We used the platinum deposition in order to perform precise etching of desired
pattern as we will see in the next section.

9. Fabricating photonic crystals using focus ion beam etching

Having simulated photonic crystal structure cavities we began fabrication via focused ion
beam etching (FIB) [22, 23] our aim being to create a suspended membrane with the "Noda"
cavity described previously. Other groups have performed fabrication with FIB in diamond
of different kind of photonic crystal structures, some group performed also a measure of a
Q factor of Q = 535 [24]. Here we try different approach in order to fabricate the "Noda"
Cavity. In the first fabrication step, the diamond crystal is undercut by turning side-on and
etching to obtain a 200nm thick slab attached to the bulk (a suspended slab). In this stage
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Figure 8. Secondary electron image of the sample with a square of Platinum coated zone made with gas deposition technique,

the gas needle is also visible on the right hand of the picture.

the use of platinum deposition, as described before, is crucial in order to obtain precise
structures. We needed to etch the membrane first, because if we had made the photonic
crystal structure first, at the stage in which we etch the membrane some sputtering could
have filled the holes. In order to etch the membrane we mounted the sample on a stage,
and then tilted it to 90◦. After we covered the NV−centre array zone with silver, in order to
protect the implanted NV−swe etched a thin membrane of 200nm according to the results of
the simulation shown previously. In Fig.9(a) we can see a top view of the membrane and in
9(b) we can see an image of the same membrane tilted by 45◦. After we made the membrane
we repositioned the sample horizontally and finally we etched the hexagonal air hole array
with cavity formed from three filled holes. Fig. 10 shows two views, tilted 45◦ at different
magnifications, of the resulting structure. Both were secondary electron images taken with
FIB after the etching. In Fig. 10(a), we can see the photonic crystal cavity etched in the
membrane. This is more evident in Fig. 10(b) where we have a scan over a larger area which
shows the size of the cavities compared to the suspended membrane. In the top view, shown
in Fig. 11(a), we can observe the cavity and notice some imperfections in it due to the FIB

technique which creates deposits of etched material during the scanning. In Fig. 11(b) we can
see an image taken with a confocal microscope, in which blue colour means low intensity
and red colour means high intensity. Fig. 11(b) is remarkable because we can clearly see
reduced fluorescence in the unetched zone, forming the cavity. Because there is no (or less)
etch damage in these regions. This is an encouraging because it means that if there were
an NV−centre in the cavity we might be able to see it. We performed some measurement
of the spectrum of the light emitted from the cavity region. Unfortunately we were not able
to see any enhancement of the signal as we might expect from a cavity resonance, but just
a broad emission as shown in Fig. 12. At this stage we decided to take a step back and to
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Figure 9. secondary electron image of a etched membrane in the diamond sample. a) a top view of the etched membrane b)

45◦ Tilted view of the etched membrane

Figure 10. Secondary electron image of a etched photonic crystal structure in the diamond sample: a) Tilted view of the L3
cavity taken with FIB at different tilt and magnitude. b) larger image of the membrane and the cavities.

perform a preliminary study about the real possibility of coupling a single NV−centre to a
larger structure etched in the diamond with FIB. This motivated our studies of the solid
immersion lens as will be discussed in the next section.

10. Fabricating solid immersion lenses using focused ion beam etching

In this chapter we have studied how to fabricate the photonic crystal structure in order to
create a cavity to enhance the coupling of NV−centres in diamond. As already discussed,
NV−photon collection efficiency is severely reduced by losses due to the high refractive
index of diamond. This is a problem regardless of the application, or the particular defect
centre of interest. A possible solution we presented [25], is represented by the fabrication
of hemispherical integrated solid immersion lenses (SILs) etched directly into the diamond
surface. In order to avoid any scattering and absorption of the light emitted at high angles we
need to have a SIL surrounded just by air. Hence we etch a SIL surrounded by a ring trench.
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Figure 11. Photonic crystal structure in the diamond sample: a) Secondary electron emission image of the top view of the L3
cavity (inset:zoom of the cavity). b) Fluorescence image taken with the confocal microscope (colour red: high intensity, colour

blue:low intensity).

Figure 12. Image of the emission spectrum taken at the centre of the photonic crystal cavity, taken with a pass-band

filter(semrock FF01 − 675/67 − 25) tilted a little bit in order to avoid raman scattering from the diamond. No narrow peaks
are seen as would be expected from cavity resonance effects.

In order to do this, we have split the whole procedure into two different steps, etching a ring
trench the depth of the SIL and then etching the SIL inside the ring. We etched a ring of
a depth of 4µm with a current of 6.6nA. This part of the procedure is a routine etch with
FIB. The challenge is represented by etching a hemispherical SIL in the centre of the ring.
In order to do that we milled a series of concentric rings of increasing depth and diameter
at the current of 1nA. We etched the material in a way different from the usual one: instead
of etching from the top to bottom of the structure we milled from the centre moving the ion
beam in a spiral way (trepanning), and then we repeated this for many concentric rings. The
spiral technique allowed us to avoid a possible shift due to the etching process, giving us a
SIL placed in the ring etched previously. Fig. 13(a) shows images of the SILs taken using
secondary electron emission in the FIB system. We can see a a SIL in the centre of the image,
just below the square, and a SIL inside a ring in the lower right/hand corner of the image.
Fig. 13b shows a 45◦ tilted view of a SIL. Recently [1] we have shown how to fabricate a SIL
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Figure 13. secondary electron emission images showing: a) top view of the SIL etched in the diamond b) 45◦ tilted view of the

SIL etched in the diamond

Figure 14. a)Photoluminescence image of the SIL with the enhanced emission from the NV−center taken at temperature

T = 4.2K, b)Comparison of the different photoluminescence count rates as function of the laser intensity (image taken from

[1]).

located over a previously identified NV−centre, without entering in detail, we just report the
increasing of the collection of the light of 8×, as shown in Fig.14b, from a Single NV−centre
coupled to the SIL fabricated on demand on it as shown in Fig.14a

10.1. Chemical cleaning of the diamond

After each etching procedure it was essential to thoroughly clean the diamond surface. This
dramatically reduced the background fluorescence intensity by removing all sputter deposits
of gallium, platinum and other organic contaminants. We firstly rinsed the sample in a
hydro-sonic bath three different times, each with a different component: the first time with
acetone in order to remove the main dust, the second time with isopropanol to remove the
acetone and finally with distilled water in order to remove the isopropanol. After we cleaned
the most visible impurities, we put the diamond in a bath of 100ml of Sulphuric Acid (H2SO4)
and then heated it till it reached the temperature of 200◦C. Once the right temperature was
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achieved we added 5mg of potassium nitrate (KNO3) leaving it for 20 minutes. The resulting
reaction, is shown in Eq. 2. It is very aggressive and fast and creates a mixture of sulphuric
acid and nitric acid at high temperature which removes all remaining contaminants leaving
a very clean sample.

H2SO4 + NO−
3 → HSO−

4 + HNO3 (2)

11. Conclusion

In this work we discussed about the feasibility of NV−centers as single photon emitters
and how to use its spin as qubit for quantum computing applications, remarking the many
advantages that the use of NV−center in diamond would produce. One of the key challenges
in order to perform a real implementation of a quantum computer concerns the possibility of
handling the qubit. The spin of the ground state of the NV−center shows some characteristics
we have described earlier in this work, which looks very promising for this purposes. One
of the crucial step in order to perform spin readout and non demolition measurement of the
spin of the NV−center is represented by increasing the coupling between the light and the
solid state system. We showed a way to increase the coupling between the NV−and the light
by placing the NV−center in a photonic crystal cavity. We characterized the photonic crystal
cavity tuning it to be resonant with the NV−center emission, having had encouraging results
in the simulation and fabrication of the cavity, in that we reached a reasonable high value
of quality factor and small modal volume. Another very important aspect in order to build
a quantum computer is represented by the possibility of handling a single photon source.
In order to use NV−as single photon emitter, one of the challenges is represented by the
light collection. We discussed in this work a solution we developed in order to increase the
light collection from the NV−center by etching a solid immersion lens around it, proposing a
technique ([1]) in order to locate NV−centers with accuracy of 10nm, and fabricate structure
around them. In future works we will use the technique we have recently developed, in order
to create a photonic crystal around a single NV−center. Another important path we want to
follow consist in exploiting another useful color center in the diamond, the chromium center.
This center acts as a single photon emitter as well but with a narrower spectrum. It has a
resonant wavelength of 755nm which is in the wavelength range for the Si photon counting
detector, allowing us to detect them with high efficiency. We are very interested in using
the technique we have developed in order to etch photonic crystal around single chromium
center and coupling with it, this would allow us to increase the light collection from the
chromium center permitting it to be used as an ultra bright single photon emitter. As it emits
at 755nm it is compatible with integrated photonic circuits being developed in our group by
[26]. Similarly the nickel-nitrogen complex (NE8) center in diamonds, studied by [27, 28],
has narrow emission bandwidth of 1.2nm at room temperature with emission wavelength
around 800nm, again suitable for Si detectors and quantum photonic circuits. In addition,
in this spectral region little background light from the diamond bulk material is detected,
which made it an interesting possible candidate for single photon source. Once we are
able to locate an NE8 (or other suitable narrowband) center we will extend the registration
procedure developed to allow fabrication of photonic crystal structure around individual
defects, ending in the measurement of Q-factors and Purcell enhanced emission. In order
to handle and guide the light emitted from the source a detailed study of parameters of a
photonic crystal waveguide in the diamond will be required as demonstarted by [29]. We
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will simulate the behavior of the electromagnetic field inside the cavity and how it will
couple with the waveguide. A good response will lead us to fabricate and then measure
the effective coupling. We will also explore different etching techniques such as Reactive-Ion
Etching (RIE) which will allow us to create membranes and very thin structures in diamond
with a high precision. This will be useful in order to create different structures around
registered NV−centers, for instance with photonic crystal nanobeam cavities studied by [30].
This kind of structures as the remarkable advantage to be very easy to fabricate offering a
huge quality factor and a very small modal volume.
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Chapter 10

Silicon Nitride Photonic Crystal Free-Standing
Membranes: A Flexible Platform for Visible Spectral
Range Devices
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Additional information is available at the end of the chapter
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1. Introduction

Two-dimensional (2D) photonic crystal (PhC) technology is well established at telecommuni‐
cation bands, and materials such as Silicon (Si), Gallium Arsenide (GaAs) or Indium Phospide
(InP) represent a common solution for applications at these wavelengths [1-5]. However, the
interest of scientific community on structures operating in other spectral regions, such as the
visible one, is growing up for both linear and non- linear applications [6-8]. Indeed, 2D-PhC
resonant cavities in the visible spectral range are considered a promising tool to boost photonic
devices performance in several fields, such as biosensing, integrated optics, quantum com‐
munications, solar energy, etc. As a consequence of this wide area of interest, a photonic
platform able to answer to the needs of all these fields would be attractive for scientific and
technical communities.

Trying to develop such technological platform, the first problem one should face is the material
choice. In principle it should be transparent in the whole visible spectral range with a relatively
high refractive index (n), economical, compatible with silicon based technologies, robust,
biocompatible and suited for easy functionalization with several biological species.

In past years several materials have been proposed with this purpose; among them, of
remarkable interest are Gallium Nitride (GaN) [9], Gallium Phospide (GaP) [10], polymers [11]
and Silicon Dioxide (SiO2) [12, 13]. Another appealing material is Silicon Nitride (Si3N4), which
answers to most of the above-mentioned requirements. Indeed, stoichiometric silicon nitride
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Chemical Vapor Deposition (PECVD) [14], it is compatible with Si based electronics (it is used
as insulator in MOSFET gates [15,16]), it is biocompatible and can be functionalized with
several kinds of proteins [17–19].

Several Si3N4 2D-PhC cavities have been already proposed in past years [6,20,21], showing a
maximum experimental quality factor (Q) of ∼ 5000 in the case of a double heterostructure
nanocavity [21]. Moreover, recent advances in the development of nanobeam cavities have led
to extremely high quality factors also in the visible range, with a maximum Q of ∼ 55000 [22–24].

This chapter is devoted to the use of Si3N4 PhC resonators as a flexible platform to realize
photonic devices based on the engineering of nanoemitters spontaneous emission in the visible
spectral range. First of all, the nanocavity design based on the closed band-gap principle will
be presented and discussed. The chapter will then be focused on the nanotechnological
procedures developed in recent years to realize high quality Si3N4 PhC cavities and the
coupling of these structures with organic and inorganic nanoemitters. The versatility of the
examined approaches will be also reviewed, showing how it is possible to couple several types
of quantum light emitters to the two photonic states allowed in a closed band-gap single point
defect nanocavity [25,26]. At the end of the chapter, a case of study on PhC-based biosensors
[27] will be used to make the reader conscious of the possibility to realize advanced photonic
devices in the visible spectral range exploiting the Si3N4 PhC technology. In the conclusions,
we will discuss how improvements in modeling and processing of PhC structures in Silicon
Nitride, which are highly compatible with both biological materials and inorganic quantum
emitters, can further boost device performance, envisioning a broader application of two-
dimensional PhC nanocavities in the visible spectral range.

2. Microcavity design: The closing band-gap and the modal selective tuning

2.1. The closing band-gap for low refractive index materials

A system composed by a quantum light emitter coupled to a resonant optical mode can be
modeled as two interacting oscillators. The strength of this interaction can lead to two different
coupling regimes known as strong and weak coupling. In weak coupling regime, the free-space
spontaneous emission rate (Γ0) is modified by the so-called Purcell effect: the coupled system
emits with a rate ΓC=FΓ0, where F = 3/(4π2)Q/V (λ/n)3 is called Purcell Factor (Q and V are the
quality factor and the modal volume of the photonic mode, respectively). When the system is
instead in the strong coupling regime, the confined excitons and photons coherently exchange
energy with a coupling strength, g, inversely proportional to V, i.e. g ∝ 1/ √ V. Thus the
properties of the photonic mode and, in particular, the electromagnetic field confinement in
both time and spatial domains strongly affect the dynamic of the coupled system.

At visible wavelengths, these phenomena have been observed by means of several optically
confined systems [28,29], but 2D-PhCs represent the most promising structures, since they give
the best control on the optical properties of the resonators. To date, PhC cavities for visible
spectral range are based on various geometries [6,11,21] and on higher-order modes of the
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widely studied H1 defect [30] (sketched in Fig. 1(a), inset). This resonator consists of a missed
hole in a triangular PhC lattice, and it allows two orthogonally polarized resonant modes in
the photonic band gap (hereafter referred to as x- and z-pole modes, on the base of the
orientation of the wave vector).

The cross polarization of x- and z-pole modes and the absence of higher-order states represent
non-negligible advances for applications in quantum optics [31,34]. Moreover, the H1 cavity
presents the lowest V among PhC point defects, thus enhancing quantum electrodynamic
(QED) phenomena in both strongly and weakly coupled systems. However, obtaining small
V at visible wavelengths is a challenging goal, because of the low refractive index of transparent
materials in this spectral range, which reduces the effectiveness in localizing the optical modes.
Nevertheless, the aforementioned advantages, together with the increasing interest toward
the realization of efficient emitting devices in the visible spectral range, foster theoretical and
experimental studies to find alternative routes to improve light confinement in low-index H1
systems.

In the following, we consider a resonator consisting of a point defect H1 in a triangular lattice
of air holes (period a, radius r) realized in a silicon nitride slab having refractive index n=1.93
and a thickness t. Plane-Wave Expansion (PWE) and 3D Finite Difference Time Domain
(FDTD) algorithms [32] were used to investigate the electromagnetic response of such
structure. All the calculations were restricted to modes with non-negligible components of the
electric field along x and z and a non-negligible component of the magnetic field along y
(hereafter referred to as TE- like modes).

Figure 1. (a) Dependence of modal volume and Q factor on the thickness of the slab t. Inset, photonic crystal H1 cavi‐
ty. (b), (c) Photonic band structure of the structure for t = 0.7a and t = 1.55a, respectively. (d) Dependence of the Pur‐
cell factor on t (for S = 0). (e) Modification of the resonant frequencies and of the Q factor of the degenerated modes
when two cavity neighboring holes are moved, as shown in the inset. The holes are moved closer to (farther from) the
center for S < 0 (S > 0). (f) Ez for the x-pole mode in an unmodified H1 cavity. (g) Ex for the z-pole mode in an unmodi‐
fied H1 cavity. (h) Ez for the x-pole mode in a H1 cavity with S=0.2a. (i) Ex for the z-pole mode in a H1 cavity with S =
0.2a. (l) Definition of S.

One way to realize ultrasmall-volume PhC cavities while keeping high Q- factors in the
visible  range and preserving the dipole-like shape of  the modes is  the so-called closing
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At visible wavelengths, these phenomena have been observed by means of several optically
confined systems [28,29], but 2D-PhCs represent the most promising structures, since they give
the best control on the optical properties of the resonators. To date, PhC cavities for visible
spectral range are based on various geometries [6,11,21] and on higher-order modes of the

Advances in Photonic Crystals222

widely studied H1 defect [30] (sketched in Fig. 1(a), inset). This resonator consists of a missed
hole in a triangular PhC lattice, and it allows two orthogonally polarized resonant modes in
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Nevertheless, the aforementioned advantages, together with the increasing interest toward
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structure. All the calculations were restricted to modes with non-negligible components of the
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(hereafter referred to as TE- like modes).
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band-gap technique [33], involving PhC slab thickness (t) optimization. As shown in Fig.
1(a),  the x-pole mode Q-factor has a maximum for t  =  1.55a,  while it  is  almost constant
for t  < 1.2a.  The Photonic Band-Gap (PBG) existing for t  = 0.7a  disappears when t  is  in‐
creased to 1.55a  (see Figs. 1(b) and 1(c)).  In agreement with the closing band-gap princi‐
ple [33], this effect is assigned to a new nature of the electromagnetic confinement in the
xz plane: it is not still due to the PBG, but it has to be assigned to the momentum space
mismatch between the  cavity  mode and the  second guided mode in  the  PhC slab.  The
increased thickness of the slab leads to slight variations of the x- and z-pole modal pro‐
files  along  y,  thus  leading  to  a  wider  modal  volume,  as  shown in  Fig.  1(a).  However,
these variations of V are negligible with respect to the increase in Q, since the modal ex‐
tension in the xz plane is preserved. Indeed the Purcell  factor [Fig.  1(d)]  follows the Q-
factor  behavior:  for  t  =  1.55a,  F  is  maximized to  F ∼ 78 with V ∼ 0.68 (λ/n)3  and Q ∼
700. A similar trend has been found for the z-pole mode.

2.2. Modal selective tuning

The x- and z-pole modes engineering would foster many applications based on H1 nanocav‐
ities operating at visible wavelengths. For instance, the degeneracy of x- and z-pole modes
may be useful for entangled photon generation [34]. Other applications, such as single-photon
sources or PhC-based optical read out of lab-on-chip devices [27], require well-defined and
linearly polarized non-degenerate resonances. Several solutions have been reported in past
years to break the energy degeneracy of the optical modes or to recover it [30,35-37]. A
promising strategy to obtain a control on x- and z-pole modes is displayed in Fig. 1(e): by acting
on two cavity neighboring holes, the resonant frequency of the x-pole mode (fx) can be
significantly modified while keeping constant the z-pole mode one. This finding can be
ascribed to the selective modification of the wavevector k = (kx, ky, kz) along a specific axis.
Indeed x- and z-pole modes have the strongest component of k oriented along the x and z axes,
respectively. If two holes are moved one toward each other along the x axis (S<0, see Fig. 1(l)
for definition), kx is modified without affecting kz. As a consequence, fx increases while fz does
not change. In the same way fx decreases for S > 0, while keeping fz constant. Figures 1(f-i)
display x- and z-pole modal profiles for S = 0 and S = 0.2a: the electric field component along
x (Ex) of the z-pole mode profile remains unchanged when the holes are moved far from the
center [Figs.1(g) and 1(i)]. The shift instead results in the elongation of the x-pole modal
function along x [Figs. 1(f) and 1(h)], thus modifying its resonant frequency.

It is important to notice that such alterations of field distributions modify the modal Q factors
[Fig. 1(e)]: when S < 0, abrupt changes are introduced near the electric field maximum of the
z-pole mode function, resulting in an increase in radiation losses and in a smaller Q factor (Q
∼ 557 for S = −0.057a) [38]. In contrast, if S > 0 these abrupt variations are avoided, the radiative
energy in the light-cone minimized, and the Q-factor of the z-pole mode enhanced together
with almost preserved V and fz. The optimized Q-factor turns out to be Q ∼ 810 for S = 0.075a,
and the Purcell factor is assessed as F ∼ 90.

These findings are confirmed by the analysis in the z-pole momentum space, obtained by using a
2D Fourier Transform (2DFT), reported in Figs 2(a) and (b) for S = −0.1a and S = 0.2a, respectively.
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The white circle of Figs 2 (a) and (b) delimits the leaky region, defined by the light cone [38-40]:
the stronger the components within this area, the higher the radiation losses along y. For S = −0.1a
(Figs. 2(a) and (e)) a sharp peak is present at the center of the leaky region, affecting the value of Q;
instead if S = 0.2a (Figs. 2(b) and (f)), the 2DFT is almost constant inside the light cone.

Figure 2. Ex field-distribution in momentum space for the z-pole mode. The white circle represents the light-cone. (a) |
2DFT(Ex)| for S = −0.1a. (b) |2DFT(Ex)| for a S = 0.2a. (c) Zoom to a specific area of (a). (d) Zoom to a specific area of (b).
(e) Momentum function extracted from (a) for kz = 0. (f) Momentum function extracted from (b) for kz = 0. (g) Cross
section of the lobe for S = −0.1a shown in Fig. 2(c) (black circles) and of the lobe S = 0.2a displayed in Fig. 2(d) (green
squares). Red continuous line represents a gaussian fit of the case S = 0.2a

As demonstrated in [38], the Q-factor depends also on the shape of the two peaks outside the light
cone. A Gaussian shape typically leads to higher Q-factor, giving a direct measure of the energy
not coupled with the radiation mode. Figs. 2(c) and (d) show a zoom of Figs. 2(a) and (b), respec‐
tively: the behavior for S = −0.1a is far from a 2D Gaussian function. For S = 0.2a (Fig. 2(d)), it is in‐
stead clear that by moving two holes far from the center, a 2D Gaussian function for these peaks is
obtained, as also confirmed by the 1D gaussian fitting of the cross section of these lobes reported
in Fig. 2(g). Therefore, by increasing the z-pole Q-factor, a positive S does not substantially affect
the position, modal volume and resonant frequency of the z-pole electric field main lobe, leading
to a straightforward increase of the Purcell factor of microresonators.

This therefore verifies that momentum space engineering, a strategy exploited to improve the
confinement of defect states localized within the PBG [11,38,42], can also be efficient for cavity
resonances without PBG.
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∼ 557 for S = −0.057a) [38]. In contrast, if S > 0 these abrupt variations are avoided, the radiative
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stead clear that by moving two holes far from the center, a 2D Gaussian function for these peaks is
obtained, as also confirmed by the 1D gaussian fitting of the cross section of these lobes reported
in Fig. 2(g). Therefore, by increasing the z-pole Q-factor, a positive S does not substantially affect
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3. Fabrication of Si3N4 PhC nanocavities

The 2D-PhC nanocavities were fabricated into a 400-nm-thick Si3N4 layer deposited on a silicon
substrate by means of Plasma Enhanced Chemical Vapor Deposition (PECVD) technique.
Si3N4 refractive index was measured through spectrophotometric methods (performed with a
Varian Cary 5000 spectrophotometer), giving a value of nSiN = 1.93@λ = 600 nm.

The PhC geometry was defined using a Raith150 e-beam lithography tool (equipped with a
Gemini Column) operating at 30 kV. A thickness of 400 nm of ZEP520-A resist was chosen to
ensure sufficient durability as a mask for pattern transfer into the underlying Si3N4 and, at the
same time, to ensure a good resolution of the e-beam writing. The key issue in the fabrication
process is to achieve PhC devices with well-controlled patterns size.

A preliminary dose-test was performed to define the optimum layout since the actual size of
the pattern is influenced by the electron dose. A proximity error correction (PEC) was also
applied to accomplish this target and the final dose was determined through Scanning Electron
Microscope (SEM) inspections at 10 kV. Moreover, in order to achieve smoother and circular
holes and faster exposure, the EBL system was used in “circular mode”. In this mode, every
circular hole is exposed by the deflection of the beam along concentric circles.

The patterns defined in the ZEP were then transferred into the Si3N4 layer using inductive
coupled plasma reactive ion etching (ICP-RIE) in fluorine chemistry until the silicon substrate
surface was reached. The membrane structure was released by wet etching of the underlying
Si substrate in a TetraMethylAmmonium Hydroxide (TMAH) solution. Each sample consisted
of an array of H1 nanocavities, whose dimensions were scaled according to the lattice period
a (in the range a = 257 nm – 277 nm) thus allowing spectral shifting of the resonant wavelength.
Fig. 3(a) shows a Scanning Electron Microscope (SEM) image of the realized resonators.

Figure 3. a) Top and bird’s eyes view of the realized nanocavities acquired by SEM. (b) Resonances obtained by drop
casting colloidal nanocrystals on the structure for three different values of a and r = 0.308a. The inset shows the Lor‐
entzian fitting of the resonant peak for a = 265 nm. (c)-(f) Resonance of x- and z-pole modes for different values of the
hole shift and a = 270 nm. (g) Resonant frequencies of x- and z-pole modes as a function of the hole shift.
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4. Coupling of H1 nanocavity with organics and inorganics emitters

The theoretical findings described in section 2 have been experimentally demonstrated by
coupling to the nanocavities both cyanine 3 (Cy3) fluorophore and core/shell CdSe/CdS
colloidal dot-in-rod (DR) nanocrystals. Room temperature microphotoluminescence (μPL)
characterization was therefore performed to investigate the properties of the coupled system.

4.1. Nanoemitters deposited on top of the cavity

A micromolar solution (10−6mol/l) of DRs in toluene was prepared by using the synthesis
procedure described in [43] by L. Carbone and co-workers and drop-casted on the realized
microcavities. Figure 3(b) displays three resonances for three different values of a. The resonant
peaks are well fitted by a Lorentzian function [Fig. 3(b), inset] and result in a maximum Q ∼
620 for an unmodified H1 cavity (a ∼ 265 nm).

To explore the mode shifting over a wide spectral range, an organic fluorophore (Cy3) with
broad emission spectrum was immobilized on the device. The μPL spectra for different values
of S reported in Figures 3(c-f) show that the z-pole mode is almost unaffected by holes shifting,
while x-pole resonant wavelength can be broadly tuned by means of S. Polarization-resolved
measurements were carried out to identify the two modes, and their resonant wavelengths
(λx and λz) as a function of S are displayed in Fig. 3(g). In agreement with the theoretical results
of Fig. 3(e), the x-pole mode is tunable over a range ∆λx ∼ 40 nm. Small discrepancies between
experimental results and theoretical calculations have been observed in terms of slight
variations of λz and weak nonlinearity of λx; since these variations do not show a clear
dependence on S, they could be reasonably attributed to unavoidable fabrication imperfec‐
tions. The theoretical findings about the influence of the holes position on the z-pole Q-factor
have been confirmed by the experiments. For S = 15 nm Q ∼ 750 has been measured, while for
S = −20 nm the z-pole Q-factor falls down to a value of ∼ 200.

4.2. Colloidal nanocrystals localized in the maximum of the electric field distribution

It is well known that in 2D-PhC slabs the in-plane confinement (xz) is due to the photonic band
gap produced by the PhC periodicity, while in the out-of-plane direction (y) the confinement
is due to the total internal reflection. As already mentioned, in the xz plane the electromagnetic
field is localized in the center of the cavity (see figures 1(f-i)); FDTD simulations show also that
along y the main lobe of the confined radiation is in the center of the slab (see Fig. 4).

The coupling reported in section 4.1 is thus not optimized, as the nanocrystals and the organic
molecules are deposited on top of the cavities.

A  viable  strategy  to  approach  the  maximum  allowed  Purcell  factor  is  to  localize  the
nanoemitters in the center of the slab. This has been done with colloidal dot-in-rod nano‐
crystals  using  the  same  fabrication  process  described  in  section  3  and  splitting  the
growth procedure of the Si3N4  slab in two steps. Figure 5(a) shows a sketch of the fabri‐
cation procedure.  First  of all,  a 200 nm thick Si3N4 slab was grown on a Si substrate.  A
thin layer of colloidal DRs, with a molar concentration of ∼ 10−6mol/l was then spin-coat‐
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3. Fabrication of Si3N4 PhC nanocavities
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substrate by means of Plasma Enhanced Chemical Vapor Deposition (PECVD) technique.
Si3N4 refractive index was measured through spectrophotometric methods (performed with a
Varian Cary 5000 spectrophotometer), giving a value of nSiN = 1.93@λ = 600 nm.

The PhC geometry was defined using a Raith150 e-beam lithography tool (equipped with a
Gemini Column) operating at 30 kV. A thickness of 400 nm of ZEP520-A resist was chosen to
ensure sufficient durability as a mask for pattern transfer into the underlying Si3N4 and, at the
same time, to ensure a good resolution of the e-beam writing. The key issue in the fabrication
process is to achieve PhC devices with well-controlled patterns size.
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the pattern is influenced by the electron dose. A proximity error correction (PEC) was also
applied to accomplish this target and the final dose was determined through Scanning Electron
Microscope (SEM) inspections at 10 kV. Moreover, in order to achieve smoother and circular
holes and faster exposure, the EBL system was used in “circular mode”. In this mode, every
circular hole is exposed by the deflection of the beam along concentric circles.

The patterns defined in the ZEP were then transferred into the Si3N4 layer using inductive
coupled plasma reactive ion etching (ICP-RIE) in fluorine chemistry until the silicon substrate
surface was reached. The membrane structure was released by wet etching of the underlying
Si substrate in a TetraMethylAmmonium Hydroxide (TMAH) solution. Each sample consisted
of an array of H1 nanocavities, whose dimensions were scaled according to the lattice period
a (in the range a = 257 nm – 277 nm) thus allowing spectral shifting of the resonant wavelength.
Fig. 3(a) shows a Scanning Electron Microscope (SEM) image of the realized resonators.

Figure 3. a) Top and bird’s eyes view of the realized nanocavities acquired by SEM. (b) Resonances obtained by drop
casting colloidal nanocrystals on the structure for three different values of a and r = 0.308a. The inset shows the Lor‐
entzian fitting of the resonant peak for a = 265 nm. (c)-(f) Resonance of x- and z-pole modes for different values of the
hole shift and a = 270 nm. (g) Resonant frequencies of x- and z-pole modes as a function of the hole shift.
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ed on it with a rotating speed of 500 rpm, thus obtaining a thickness lower than 10 nm
as assessed by SEM inspection. After solvent evaporation, a second 200 nm thick layer of
Si3N4 was grown on top of the sample. We verified the uniformity of the deposited layer
by exploiting  both  the  morphological  characterization  and the  photoluminescence  maps
collected  by  a  confocal  microscope.  A  SEM  cross-section  of  the  resulting  sandwiched
structure  is  shown  in  Fig.  5(b).  The  nanocavities  were  then  realized  through  electron
beam lithography and dry and wet etching processes by following exactly the fabrication
procedure reported in paragraph 3 (Fig. 5(c)).

Figure 4. Cross view of the electric field x-component with the superposition of the slab cross-section at z = 0.

Also in this case, the optical measurements of the nanocavities were carried out by the
OLYMPUS FluoView 1000 confocal laser scanning microscope, with a spatial resolution of 200
nm. A CW laser diode emitting at wavelength λex = 405 nm was used as excitation source. In
Fig. 5(d) are reported the photoluminescence spectra collected from the 2D-PhC H1 nanocav‐
ities with different lattice constants a. Superimposed to the broad emission spectrum (FWHM
∼ 30 nm) of NCs uncoupled to the cavity, sharp peaks with a quality factor of about 600 are
clearly detected, assessing the modulating effects of the PhC nanocavity on the emission of
NCs coupled to the optical mode localized in the defect. Moreover, the normalized frequency
a/λ of the experimental results was found to be about a/λ ∼ 0.46 against the expected value of
a/λ of ∼ 0.431. As already suggested in case of the modal selective tuning, this slight difference
can be mainly attributed to the effects of fabrication imperfections, inducing unavoidable
uncontrolled variations in the optical properties of the PhC nanocavities [45].

The efficient coupling between the semiconductor nanocrystals layer and the dielectric cavi‐
ty is due to the fact that the nanocrystals layer can be precisely positioned in the maximum
of the confined electric field in the vertical direction. Indeed, in this case the Purcell effect
results optimized [46] and the spontaneous emission rate strongly increased, leading to the
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possibility to measure a better Q-factor [47]. At the same time it is noteworthy to point out
how the introduction of a guest material, embedded in two Si3N4 layers, does not affect the
optical properties of the nanocavity as shown by the good match of the calculated and meas‐
ured Q-factors (equal to 680 and 600, respectively).

Figure 5. a) Sketch of the fabrication process, (b) cross-section SEM image of the un-patterned sample; (c) bird’s eye
view of the fabricated Si3N4 2D-PhC H1 nanocavity membrane and (d) photoluminescence spectra collected from the
2D-PhC H1 nanocavities with different lattice constants a.

5. A biosensor based on Si3N4 PhC nanocavities

Recently the light molding properties of PhC have been profitably exploited to boost the
performance of optical sensors and transducers for biochemical analyses [48-50]. This para‐
graph proposes the idea of exploiting the sharp resonances of PhC nanocavities to assign
unique spectral features to fluorophore-labeled bioanalytes, thus allowing their identification
through wavelength-resolved light detection. Spectral tagging of organic dyes through
photonic crystal nanocavities is experimentally proved to bring important benefits to cutting
edge devices for biodiagnostics, such as DNA and protein biochips, in terms of improved
sensitivity, efficiency and multiplexing capability.
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5. A biosensor based on Si3N4 PhC nanocavities

Recently the light molding properties of PhC have been profitably exploited to boost the
performance of optical sensors and transducers for biochemical analyses [48-50]. This para‐
graph proposes the idea of exploiting the sharp resonances of PhC nanocavities to assign
unique spectral features to fluorophore-labeled bioanalytes, thus allowing their identification
through wavelength-resolved light detection. Spectral tagging of organic dyes through
photonic crystal nanocavities is experimentally proved to bring important benefits to cutting
edge devices for biodiagnostics, such as DNA and protein biochips, in terms of improved
sensitivity, efficiency and multiplexing capability.
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5.1. Working principle

PhC nanocavities can be embedded in a two-dimensional array, to realize an improved optical
detection system of a miniaturized assay for genomic and proteomic analyses, (DNA or protein
microarray). Fig. 6(a) is a three-dimensional sketch of the biochip architecture including
different nanocavities, each having a different resonant wavelength. Moreover, a one-to-one
correspondence is also preserved between a cavity and a group of specific bio-molecules
(probes) immobilized on the surface (as shown in the expanded view of Fig. 6(a)). The as-
realized chip can be exposed to a biological solution containing unknown target species, or
analytes; conjugation between the analytes and their complementary probes takes place on the
device surface [51]. Since the target analytes are typically labeled with fluorescent markers,
the binding events can be revealed through optical inspection of the biochip readout area, thus
allowing a complete compositional analysis of the assay [52].

Figure 6. Sketch of the proposed strategy for PhC-NC biochip. (a) Schematic of the array of PhC nanocavities pat‐
terned on the readout area. Inset: Detail showing examples of PhC nanocavities. The cavities are functionalized with
different probes molecules, that specifically interact with complementary target analytes labeled with fluorescent
markers. The signal is collected from this area and spectrally discriminated in order to identify the different spectral
tags univocally associated to each nanocavity and thus to each bioprobe. (b) Example of a possible luminescence de‐
tected from the whole readout area (black line) as compared to the unmodified broad marker luminescence (red dot‐
ted line). The presence of each peak in the spectrum reveals the presence of the corresponding analyte in the
investigated assay.

The recourse to a microarray configuration already allows the simultaneous analysis of a
certain number of analytes thanks to spatial discrimination [52,53]. Here we upgrade the
allowed degree of parallelization by assigning a peculiar spectral signature, given by the
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resonating behavior of each cavity, to each bioprobe immobilized on the surface. This gives
the possibility to distinguish the spectral response of each target analyte bound to the corre‐
sponding probe, albeit a single common fluorophore is used for the labeling of the whole
unknown solution. Fig. 6(b) exemplifies a possible spectral scan of the signal collected from
the whole readout area. Different peaks can be observed on the emission spectrum of the
fluorescent marker, each revealing the presence of a specific target analyte in the investigated
assay. Besides the spatial discrimination implemented in microarray configurations, in this
case the spectral distinction contributes substantially to the parallelization of the device. We
also expect a beneficial effect given by Purcell effect, which increases the radiative emission
rate of emitting materials interacting with quantum confined systems [54, 55]. Hence, a
significant increase in the luminescence intensity of the markers coupled to the PhC cavities
is envisioned, leading to a significant improvement of the signal-to-noise ratio and of the
overall sensitivity of the biochip detection.

5.2. Experimental results

PhC nanocavities resonating in the visible spectral range were fabricated in Si3N4 membranes
on a Si substrate, exploiting the modified single defect H1 nanocavity described in section 2
[33,43,47,57]. Several chips were fabricated, each containing an array of optimized H1 resona‐
tors with variable lattice constant a, thus tuning the corresponding resonant wavelengths. We
tested the proposed architecture both with single-stranded DNA (ss-DNA) and antibody
probes immobilized on the Si3N4 surface of two different devices. Complementary DNA targets
or specific secondary antibodies, labeled with cyanine 3 (Cy3) and rodhamine (TRITC)
fluorophores, respectively, were then allowed to recognize the immobilized probes, thus
obtaining a uniform fluorescent monolayer of the biomolecular species.

The effects of fluorescence enhancement and peak sharpening in resonant conditions are
clearly observed in the emission spectra reported in Fig. 7(a) for PhC nanocavities treated with
TRITC-labeled proteins and in Fig. 7(b) for DNA-functionalized nanocavities (five uppermost
lines, compared to the lowest spectrum corresponding to the emission of Cy3- DNA strands
without photonic resonators). In both cases it is evident that the change of the lattice period a
of the photonic crystal resonator leads to the modification of the spectral response coming from
target analytes conjugated by the same broad emitting organic dye: a specific spectral feature
is thus attributed to the target analytes captured on different cavities. The best measured Q-
factor obtained in the PhC-nanocavities DNA-chip prototype is ∼ 725, corresponding to a full-
width at half maximum of ∼ 0.9 nm. Taking into account the spectral resolution limits, a
conservative estimate suggests the possibility to distinguish up to 150 different resonant peaks
within the 150nm bandwidth of the Cy3 emission spectrum. This means that up to 150 parallel
analyses can be simultaneously performed with one single spectral scan of the readout area of
the biochip, thus drastically decreasing the time required for a complete compositional
identification.

By confocal microscopy it is also possible to visualize the effects of emission enhancement in
resonant conditions, as reported in the photoluminescence maps reported in Fig. 7(c). In this
array of five different nanocavities, functionalized with ss-DNA and hybridized with Cy3-
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significant increase in the luminescence intensity of the markers coupled to the PhC cavities
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probes immobilized on the Si3N4 surface of two different devices. Complementary DNA targets
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fluorophores, respectively, were then allowed to recognize the immobilized probes, thus
obtaining a uniform fluorescent monolayer of the biomolecular species.
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clearly observed in the emission spectra reported in Fig. 7(a) for PhC nanocavities treated with
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is thus attributed to the target analytes captured on different cavities. The best measured Q-
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labeled complementary DNA sequences we have performed a spectral scanning of the
acquisition wavelength with a resolution of 2 nm. When the detection wavelength matches
one of the five resonating wavelengths of the nanocavities, marked from λ1 to λ5 in Fig. 7(b),
it is possible to distinguish a bright spot in the center of each nanocavity.

Figure 7. a) PL spectra collected from TRITC-labeled proteins captured onto the PhC nanocavities; (b) PL spectra col‐
lected from Cy3–labeled DNA (colored lines) onto the PhC nanocavities as compared to Cy3 emission spectrum collect‐
ed on a PhC pattern (black line); (c) PL maps of an array of five Cye-labeled DNA-PhC nanocavities, collected at
different wavelengths [also indicated in (b)]. For each spectrum and PL map, the reported a value indicates the lattice
period of the measured PhC nanocavity.
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In order to quantify the enhancement effect of each photonic crystal pattern, in Fig. 8 it is
reported a three-dimensional intensity profile collected on a Cy3-labeled DNA functionalized
nanocavity in resonant conditions. The central bright spot corresponding to the H1 defect
cavity reveals a signal improvement as high as 160 as compared to the luminescence coming
from unpatterned Si3N4 surface. A major role of the Purcell effect [54,55] can be envisioned, by
virtue of the strong optical quantum confinement performed by the H1-shifted nanocavities.

Noteworthy, the photonic crystal pattern itself causes an improvement of fluorescence emis‐
sion as compared to the surrounding unpatterned Si3N4 layer, although the immobilization and
hybridization processes have been homogeneously performed on the whole sample surface. In
this case, an enhancement of ~ 20 times is achieved. This behavior may be ascribed to the combi‐
nation of two effects. First, the free-standing membrane layer makes available a larger surface
area to the probes immobilization (about a factor of 4 more than the unpatterned layer), result‐
ing in a higher number of immobilized Cy3-labeled analytes in the PhC regions. Second, in 2D-
PhC patterns an efficient transfer channel between externally radiated light and energy trapped
in the membrane is represented by the so-called leaky modes [48,57,58]. The coupling of such
modes with the absorption or emission bands of neighboring emitters may lead to a significant
increase of their luminescence. Although the photonic crystal pattern has not been specifically
optimized to maximize such effect, the role of leaky modes localized on the PhC pattern for the
further increase of the luminescence experimentally observed is not negligible.

Figure 8. Three-dimensional intensity profile of photoluminescence collected from Cy3- labeled DNA captured by a
functionalized nanocavity. Emission outside the PhC pattern has been normalized to unit. A 20-fold luminescence en‐
hancement due to the PhC pattern, as compared to the unpatterned Si3N4 surface, has been measured. The cavity con‐
finement further enhances Cy3 emission up to 160-fold.

The insertion of PhC cavities in classical biochip architectures leads, therefore, to a huge
increase of the emission intensity of fluorescent markers, thus providing higher sensitivity,
and allowing detection of very small amounts of target biomolecules in the investigated
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this case, an enhancement of ~ 20 times is achieved. This behavior may be ascribed to the combi‐
nation of two effects. First, the free-standing membrane layer makes available a larger surface
area to the probes immobilization (about a factor of 4 more than the unpatterned layer), result‐
ing in a higher number of immobilized Cy3-labeled analytes in the PhC regions. Second, in 2D-
PhC patterns an efficient transfer channel between externally radiated light and energy trapped
in the membrane is represented by the so-called leaky modes [48,57,58]. The coupling of such
modes with the absorption or emission bands of neighboring emitters may lead to a significant
increase of their luminescence. Although the photonic crystal pattern has not been specifically
optimized to maximize such effect, the role of leaky modes localized on the PhC pattern for the
further increase of the luminescence experimentally observed is not negligible.

Figure 8. Three-dimensional intensity profile of photoluminescence collected from Cy3- labeled DNA captured by a
functionalized nanocavity. Emission outside the PhC pattern has been normalized to unit. A 20-fold luminescence en‐
hancement due to the PhC pattern, as compared to the unpatterned Si3N4 surface, has been measured. The cavity con‐
finement further enhances Cy3 emission up to 160-fold.

The insertion of PhC cavities in classical biochip architectures leads, therefore, to a huge
increase of the emission intensity of fluorescent markers, thus providing higher sensitivity,
and allowing detection of very small amounts of target biomolecules in the investigated
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solution. In addition, the nanocavities attribute peculiar spectral features to the target analytes
captured by their surface, so that the presence of specific species in the solution can be inferred
by a simple spectral analysis of the optical response of the read-out region. This enables parallel
detection of multiple elements, thus accelerating the analysis time.

6. Conclusions and perspectives

This chapter details the use of Si3N4 2D-PhC nanocavities as flexible platform to realize
photonic devices based on the engineering of spontaneous emission of nanoemitters in the
visible spectral range. The versatility of the approach is demonstrated by coupling several
types of emitters to the two photonic states allowed in a closed band gap single point defect
nanocavity. In particular, DNA strands and antibodies marked with Cy3 and TRITC organic
dyes have been immobilized on top of the nanocavities, while colloidal quantum dots emitting
in the visible spectral range have been dropcasted on the devices and also positioned in the
resonators at the maximum of the localized photonic mode. The optical measurements, carried
out by μPL confocal microscopy, revealed maximum quality factors close to the theoretical
estimations for all the emitters. Improvements in modeling and processing of PhC structures
in Silicon Nitride, which is highly compatible with both biological materials and inorganic
quantum emiters, let us envision a broader application of two-dimensional PhC nanocavities
also in the visible spectral range. In particular, the coupling of a single colloidal dot-in-rod
nanocrystal with a photonic crystal cavity would be an important milestone to reach in next
years, and would allow further improvements of single photon rate and stability.
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solution. In addition, the nanocavities attribute peculiar spectral features to the target analytes
captured by their surface, so that the presence of specific species in the solution can be inferred
by a simple spectral analysis of the optical response of the read-out region. This enables parallel
detection of multiple elements, thus accelerating the analysis time.

6. Conclusions and perspectives

This chapter details the use of Si3N4 2D-PhC nanocavities as flexible platform to realize
photonic devices based on the engineering of spontaneous emission of nanoemitters in the
visible spectral range. The versatility of the approach is demonstrated by coupling several
types of emitters to the two photonic states allowed in a closed band gap single point defect
nanocavity. In particular, DNA strands and antibodies marked with Cy3 and TRITC organic
dyes have been immobilized on top of the nanocavities, while colloidal quantum dots emitting
in the visible spectral range have been dropcasted on the devices and also positioned in the
resonators at the maximum of the localized photonic mode. The optical measurements, carried
out by μPL confocal microscopy, revealed maximum quality factors close to the theoretical
estimations for all the emitters. Improvements in modeling and processing of PhC structures
in Silicon Nitride, which is highly compatible with both biological materials and inorganic
quantum emiters, let us envision a broader application of two-dimensional PhC nanocavities
also in the visible spectral range. In particular, the coupling of a single colloidal dot-in-rod
nanocrystal with a photonic crystal cavity would be an important milestone to reach in next
years, and would allow further improvements of single photon rate and stability.
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1. Introduction

In recent years, photonic sensors have seen a massive development because of the increasing
demand of sensing applications in healthcare, defence, security, automotive, aerospace,
environment, food quality control, to name a few.

The development and integration of Microfluidic and Photonic technologies, with specific
reference to the CMOS-compatible silicon-on-insulator (SOI) technology, allows to enhance
sensing performance in terms of sensitivity, limit-of-detection (LOD) and detection multiplex‐
ing capability. Photonic sensors have been the subject of intensive research over the last decade
especially for detection of a wide variety of biological and chemical agents. In this context,
photonic Lab-on-a-chip systems represent the state-of-the-art of photonic sensing since they
are expected to exhibit higher sensitivity and selectivity as well as high stability, immunity to
electromagnetic interference and product improvements, such as smaller integration sizes and
lower costs.

In recent years, rapid advancements in photonic technologies have significantly enhanced
sensing performance, particularly in the areas of light-analyte interaction, device miniaturi‐
zation, multiplexing and fluidic design and integration. This has led to drastic improvements
in sensor sensitivity, enhanced limit of detection (LOD), advanced fluidic handling capability,
lower sample consumption, faster detection time, and lower overall detection cost per
measurement. With future commercialization of photonic biosensors in a Lab-on-a-chip, next
generation biosensors are expected to be reliable and portable, able to be fabricated with mass
production techniques, to reduce the cost as well as to do multi-parameter analysis, enabling
fast and real-time measurements of a large amount of biological or physical parameters within
a single, compact sensor chip.

© 2013 Troia et al.; licensee InTech. This is an open access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

© 2013 Troia et al.; licensee InTech. This is a paper distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.
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In this context, photonic crystals (PhCs) represent an intriguing solution for achieving high
performance in sensing applications. In fact, since a lot of photonic architectures have been
widely investigated and employed in photonic sensing (e.g., ring resonator, surface Plasmon
resonance (SPR) – based sensors, microdisks, microspheres, to name a few), PhCs exhibit a
strong optical confinement of light to a very small volume, enabling the detection of chemical
species characterized by nanometer dimensions. In addition, by using advanced chemical
surface functionalization techniques and integration with microfluidic systems, very high
performance can be achieved in ultra compact sensor chips. For example, the detection of
dissolved avidin concentrations as low as 15 nM or 1 μm/ml, has been experimentally achieved
by using functionalized slotted PhC cavities with integrated microfluidics (Scullion et al.,
2011). Ultra high performance have been experimentally and theoretically demonstrated, such
as a LOD less than 20 pM for anti-biotin, corresponding to less than 4.5 fg of bound material
on the sensor surface and fewer than 80 molecules in the modal volume of the integrated
microcavity (Zlatanovic et al., 2009).

PhC-based sensors have been also proposed as gas sensors in mid infrared (mid-IR), since
many gases (e.g., CO2, CH4, CO) exhibit absorption lines in mid-IR wavelength region. Other
applications reported in literature concern with the detection of temperature, pressure, stress
and humidity measurements, to name a few.

From a technological point of view, photonic sensors based on PhCs, including photonic crystal
optical fiber (PCFs) and integrated planar photonic crystals, are suitable for multiplexing and
label-free detection. For example, a large-scale chip-integrated PhC sensor microarrays has
been recently proposed and demonstrated for biosensing on a SOI-based platform (Zou et al.,
2012). Standard and CMOS compatible technological processes (i.e., electron-beam lithogra‐
phy, inductively coupled plasma (ICP) etching, plasma enhanced chemical vapor deposition
(PECVD)) are generally employed for PhCs fabrication, making these sensors suitable for
mass-scale and low cost production. Finally, PCFs can be easily fabricated by stacking tubes
and rods of silica glass into a large structure of the pattern of holes required in the final fiber.

In this chapter, a complete review on planar PhC- and PCF-based sensors, is presented. In
particular, it will be focused on the choice of materials and sensing applications.

Optical sensing principles will be described in detail, with particular reference to homogene‐
ous and surface sensing, optical absorption, fluorescence, surface Plasmon resonance (SPR)
and photonic detection based on non linear effects (e.g., Four Wave Mixing, Raman effect,
surface enhanced Raman scattering). In addition, several advanced waveguide structures and
microstructured optical fibers (MOFs) will be analyzed. For example, resonant microcavities
based on integrated PhCs, slotted resonant cavities, interferometer configurations (e.g.,
directional couplers and Mach-Zehnder Interferometer (MZI), Sagnac interferometer), active
PhC-based sensing devices, to be named. Sensing applications and performance of PhC-based
sensors are reviewed and compared with those exhibited by other conventional photonic
architectures in literature. The state of the art of PhC- based sensors is analyzed, highlighting
on the actual strategic approach of integrating PhC sensors chips with Optofluidic Microsys‐
tems (Choi et al., 2006), and on advanced technologies and measurement setups employed in
PCF-based sensing.

Advances in Photonic Crystals242

2. Integrated photonic crystal sensors

Nowadays, integrated PhC-based sensors represent one of the most popular class of photonic
sensors, generally employed for physical and chemical/biochemical sensing. In this context,
the principal advantages of these intriguing photonic sensor architectures are ultra-high light
confinement in very small volumes, high wavelength selectivity, ultra high sensitivity and
selectivity in sensing mechanism.

Materials usually employed for sensing PhC planar devices are heteropitaxial layers such as
AlGaAs/GaAs, III-nitride compound layers or dielectric layers such as Si3N4, TiO2, SiO2 and
the well-known SOI wafers (Biallo et al., 2006). In addition, organic compounds, and polymers
have attracted an increasing interest in the last few years. Finally, porous silicon photonic
crystals have been recently proposed for organic vapor sensing, too. However, future inte‐
grated photonic sensors are expected to be CMOS-compatible, able to be realized with low
cost processes, and suitable for mass-scale production.

In this context, the SOI technological platform represents undoubtedly the most suitable
platform for fabricating ultra-compact and ultra-high performance PhC-based integrated
sensors.

To this purpose, several types of PhC-based sensor architectures are presented in this section,
focusing on employed sensing principles (i.e., refractive index (RI)-based sensor, optical
absorption, opto-mechanical, nonlinear effects) and application performance.

2.1. RI-based PhC sensors

Refractive index based sensors represent the most diffused class of PhC sensors. In fact, a large
number of advanced architectures (e.g., integrated microcavities and interferometric config‐
urations) employ the refractive index sensing for detection. RI-based PhC sensors present
numerous advantages such as minimal sample preparation without fluorescence labeling,
real–time detection, high sensitivity and selectivity. In particular, the sensing principle consists
in measuring RI changes of a bulk solution (e.g., deionized water, nWater = 1.33 or air, nAir = 1 @
λ = 1.55 μm) due to the presence of chemical analytes or gases generally characterized by higher
refractive indices. Applications in gaseous and aqueous environment have been studied to
detect concentrations of chemical and biological species. In fact, by using these sensors, it is
possible to quantify molecule and protein (e.g., streptavidin, DNA, mRNA) surface or
volumetric density. Recently, advanced PhC-based sensors properly designed for single-
molecule detection have been demonstrated to be able to detect the number of molecules
concentrated into a complex solution (Lin et al., 2012).

In this section, two fundamental sensing principles commonly employed in photonic RI
sensing are presented, i.e., surface and homogeneous sensing.
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Figure 1. a) Surface sensing and (b) homogeneous sensing. Probe molecules (blue) are deposited on hole surfaces and
target molecules (red) are captured by receptors forming an adlayer on the sensor surface.

In Fig. 1(a), the surface sensing principle is sketched. In particular, PhC holes are initially
functionalized by receptor molecules properly chosen in order to selectively adsorb target
analytes in a complex solution. Consequently, when the device is exposed to a chemical
sample, target molecules are immobilized by receptors on the sensor hole inner surfaces. The
adsorbed layer characterized by a thickness tad induces a localized refractive index change
around the hole region. Finally, a surface sensitivity Ss is generally defined as follows:
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where neff is the effective index of the optical mode propagating in the sensor device and tad has
been previously defined.

The remaining sensing mechanism named homogeneous sensing, is schematically sketched in
Fig. 1(b). In this case, the effective index of the propagating optical mode changes because of
cover RI variations induced by gases or liquid samples properly concentrated in the cover
medium, where the photonic sensor is exposed. Consequently, a homogeneous sensitivity Sh

can be defined as follows:
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being nc the cover refractive index.

In the following, main architectures of PhC RI-based sensors are presented, focusing on their
operating principles and performance.

The first class of sensors to be discussed are those based on photonic crystal resonant micro‐
cavities. These devices are fabricated by introducing localized defects (i.e., removing one or
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more holes) in the periodic hole distribution. In this way, the perfect periodicity of the photonic
crystal is compromised and a defective state in the band gap map is introduced, allowing the
excitation of resonance modes.

Two parameters, i.e., the quality factor Q and the wavelength sensitivity Sλ, have to be
considered for appreciating PhC-cavity-based sensor performances. The Q-factor defines the
shape of resonant peaks and consequently the value of the Full Width at Half Maximum
(FWHM) and it is expressed as follows:
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( )

0 0,
U t f
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fP t

w
= =
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where ω0 is the angular resonant frequency, U(t) is the energy stored in the cavity mode, P(t)
is the energy dissipated per cycle (i.e., a single roundtrip in the resonant cavity), f 0 is the
resonant frequency and ∆ f  is the peak bandwidth.

In particular, PhC-cavity-based sensors can be interrogated into two distinct modes. The first
one is the wavelength interrogation mode and the second one is the intensity interrogation
mode. In the first method, the optical readout consists in monitoring the wavelength of the
optical signal through an optical spectrum analyzer (OSA), while in the latter one, it is possible
to monitor the intensity changes of the output signal by using a photodetector (PD). In this
context, the wavelength sensitivity Sλ represents a fundamental parameter for quantifying the
sensor performance in case of wavelength interrogation scheme. Sλ is defined according to Eq.
(4), as the ratio between the shift of resonant wavelength (∆λ) induced by the change of the
background refractive index (∆n). Moreover, it is given in units of nm/RIU (refractive index
unit), as:
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In Fig. 2 a typical example of two-dimensional (2D) PhC microcavity in silicon-on-insulator
(SOI) wafer is shown (Liu et al., 2012). As sketched in Fig. 2, air holes are etched only in the
upper silicon layer and they can be realized by standard anisotropic etching. The periodic
structure is characterized by an hexagonal cell with lattice constant a =515 nm. The radius r of
air holes and the thickness of the silicon layer h are chosen to be the ratios r/a=0.33 and
h / a =0.427, resulting in r =170 nm and h =220 nm. As it is possible to observe in Fig. 2, the
microcavity is obtained by removing seven air holes at the centre of PhC in the ΓΚ direction.
Such microcavity is formally indicated as L7-cavity, because of the number of holes removed
in the periodic PhC structure.

Different arrangements of air holes near the cavity centre improve the Q-factor of the micro‐
cavity presented above. In particular, by shifting three rows of air holes in the ΓM direction
spaced from the cavity centre of a distance of 0.02a, 0.014a and 0.017a, it is possible to obtain
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an improvement of Q-factor of a factor ~1,000. In addition, by placing three pairs of mini holes
into the cavity region it is possible to further increase the performance of PhC resonant cavity.
The image of this new arrangement is sketched in Fig. 3. In particular, the pair named C has a
radius rC =0.78r  and an outward position shift dC =0.2a. The second pair centre (i.e., B) is not
moved, but the radii of these holes are minimized, resulting in dB =0 and rB =0.2r . Finally, the
innermost pair of holes have a displacement from original position dA =0.2a and a radius
slightly larger than previous pair to be rA =0.28r . Under these design conditions, in air-
infiltrated case, the cavity achieves a Q-factor of 2,600, exhibiting a resonant wavelength
around 1550 nm.

Figure 3. Zoom of cavity region of L7 cavity.

Performances of the sensor proposed have been evaluated in case of water or ethanol infiltra‐
tion, whose refractive indices are estimated to be 1.332 and 1.359 at λ ≈ 1.55 μm, respectively.
The resonant wavelength shift measured in the first case is 22.28 nm and in the latter is equal
to 12.65 nm. Finally, the device described until now exhibits a sensitivity as high as 460 nm/
RIU, being larger than sensitivities usually achieved by L3 cavity.

An interesting RI-based sensor employing a PhC resonant microcavity is characterized by a
cavity region in an air slot. In this sensor, the technological approach employed for realizing
the microcavity does not consist in modifying the lattice constant or the hole radii character‐

Figure 2. PhC microcavity (a) realized by removing seven holes as line defect (L7 cavity) and cross section (b).
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izing the PhC, but in introducing a straight line defect in which a modified waveguide width
acts as resonant cavity (Jágerská et al., 2010).

Figure 4. Air-slot PhC cavity with zoom of slit in the slot.

As sketched in Fig. 4, the device consists of a 2D PhC characterized by hexagonal cell and lattice
constant a =510 nm. The waveguide region is obtained by removing a row of air holes in the
middle of the structure. An air – slot is embedded in this line defect region. The width of the
air slot is kept constant at 100 nm, except in the middle. A slit is made by increasing the width
of air slot from 100 nm to 120 nm, in the centre. This reduction in slot width results in the
formation of reflective barriers for traveling mode, thus in a resonant cavity whose length is
L =3a.

The complete device has been processed on a 220-nm-thick SOI wafer with a 2 μm buried oxide
layer. The cavity mode is strongly confined into the cavity region, the effective mode volume
is Veff =0.05μm3 and the spatial overlapping between cavity mode and air slot is Γ >0.73.

The sensitivity can be expressed as a function of the spatial mode overlapping Γ, as reported
in the following expression:
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ngas is the gas RI and λ0 is the resonant wavelength. When air characterized by the refractive
index nair =1 is infiltrated in PhC holes, the sensor exhibits the resonance frequency
λ0 =1570 nm, near to cut-off frequency which occurs at 1590 nm. The quality factor has been
estimated to be Q =26,000 and the sensitivity Sλ =570 nm/RIU.

Sensor performances have been experimentally quantified by exposing the cavity to different
gases. Several gases have been used. In particular, air (n = 1.000265) as reference gas, nitrogen
(N2, n = 1.000270), helium (He, n = 1.000032), carbon dioxide (CO2, n = 1.000406), acetylene
(C2H2, n = 1.000579) and propane (C3H8, n = 1.000999). All refractive indices are given at
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izing the PhC, but in introducing a straight line defect in which a modified waveguide width
acts as resonant cavity (Jágerská et al., 2010).

Figure 4. Air-slot PhC cavity with zoom of slit in the slot.

As sketched in Fig. 4, the device consists of a 2D PhC characterized by hexagonal cell and lattice
constant a =510 nm. The waveguide region is obtained by removing a row of air holes in the
middle of the structure. An air – slot is embedded in this line defect region. The width of the
air slot is kept constant at 100 nm, except in the middle. A slit is made by increasing the width
of air slot from 100 nm to 120 nm, in the centre. This reduction in slot width results in the
formation of reflective barriers for traveling mode, thus in a resonant cavity whose length is
L =3a.

The complete device has been processed on a 220-nm-thick SOI wafer with a 2 μm buried oxide
layer. The cavity mode is strongly confined into the cavity region, the effective mode volume
is Veff =0.05μm3 and the spatial overlapping between cavity mode and air slot is Γ >0.73.

The sensitivity can be expressed as a function of the spatial mode overlapping Γ, as reported
in the following expression:
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ngas is the gas RI and λ0 is the resonant wavelength. When air characterized by the refractive
index nair =1 is infiltrated in PhC holes, the sensor exhibits the resonance frequency
λ0 =1570 nm, near to cut-off frequency which occurs at 1590 nm. The quality factor has been
estimated to be Q =26,000 and the sensitivity Sλ =570 nm/RIU.

Sensor performances have been experimentally quantified by exposing the cavity to different
gases. Several gases have been used. In particular, air (n = 1.000265) as reference gas, nitrogen
(N2, n = 1.000270), helium (He, n = 1.000032), carbon dioxide (CO2, n = 1.000406), acetylene
(C2H2, n = 1.000579) and propane (C3H8, n = 1.000999). All refractive indices are given at
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atmospheric pressure at the resonant wavelength λ0 =1570 nm and room temperature,
T =20°C .

Experimental results show a blue shift for He gas and a red shift for CO2 or C3H8 gas charac‐
terized by higher RIs. In fact, the resonant wavelength shift is demonstrated to be linearly
dependent on refractive index changes (ngas - 1) calculated with respect to the reference gas,
i.e. air (n = 1).

The PhC sensor described above is limited by the fact that resonant wavelength shifts are not
only influenced by cover refractive index changes, but also by external parameters such as
temperature, pressure, adsorbed humidity or progressive oxidation of sensor surface. In order
to minimize this effect, it is necessary to test the sensor with O2-free gases or use an identical
sensor architecture acting as a reference one for compensating undesired effects mentioned
above.

A PhC sensor based on a ring resonator cavity has been proposed for monitoring the level of
seawater salinity between 0% to 40% (Robinson et al., 2012). In particular, a ring resonator is
realized by removing a number of silicon rods in the PhC structure characterized by periodic
distribution of square cells of silicon rods in air. The sensor architecture is shown in Fig. 5
below.

Figure 5. Schematic structure of sensor for seawater sensing.

The lattice constant is a =540 nm and radius of rods is r =0.185a =100 nm. The refractive index
of silicon rods is n = 3.46 while the background RI is set to be the seawater RI. An input and
output waveguides are placed in horizontal direction with respect to the center of the ring
cavity.

Different salinity percentages induce background RI changes, resulting in a detectable
variation of the sensor transmission spectrum. In particular, it is possible to adopt both an
intensity and a wavelength interrogation scheme, resulting in a more accurate and precise
optical readout. The output efficiency of the sensor decreases from 99% to 80% by increasing
the salt level in water from 0% to 40%. Moreover, in the range of salinity 0÷40%, the water RI
increases from 1.33300 to 1.34031, respectively. According to Eq. (4), changes of the background
solution RI produce resonant wavelength shifts. In fact, in the range of interest, i.e., 0÷40% the
resonant wavelength shifts down from 1590.55 nm to 1590.05 nm. Finally, the Q-factor changes
as a function of the salinity. In fact, by increasing the salt level in water the Q-factor increases.
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A PhC sensor based on an air-bridge cavity has been proposed, exhibiting a good sensitivity
(Junhua et al., 2011). The photonic crystal sensor is characterized by a triangular (or equiva‐
lently hexagonal) array of air holes with lattice constant a =440 nm and radius
r =0.29a =127.5 nm. The microcavity has been realized by decreasing the radius of the central
hole (rd =0.2a =88 nm). The air-bridge is made by removing a portion of buried silicon dioxide
that is sandwiched between two silicon layers, as sketched in Fig. 6. The top silicon layer with
thickness t =0.591a is separated by 1 μm of SiO2 from the second silicon layer on the bottom of
the same structure.

Figure 6. Cross section (a) and top view (b) of the PhC sensor based on air-bridge cavity.

The band gap map evidences a photonic band gap only for transverse electric (TE)-polarized
mode in the microcavity. Under these conditions, the sensitivity has been estimated to be
S =570 nm/RIU, higher than sensitivity evaluated in a simple SOI PhC-based sensor charac‐
terized by the same physical characteristics.

In the sensor presented above, the design of defect radius and slab thickness assumes a
fundamental role for enhancing sensing performances. In fact, by changing the defect radius
it is possible to obtain different band gap maps. Moreover, different defective states, and,
consequently, different resonant conditions, can be properly introduced. For example, by
increasing the defect hole radius a blue shift of resonant wavelength occurs, exhibiting a higher
sensitivity. This effect is justified by the fact that a greater portion of localized field is distrib‐
uted into the cavity region, resulting in a high overlapping between the resonant optical modes
and the chemical/biochemical species to be sensed.

The slab thickness represents a key parameter because it influences performance parameters,
i.e., Sλ and Q-factor. In addition, also the field distribution and the energy bandgap are
seriously affected by the slab thickness. In fact, for a thinner slab Sλ is larger and Q-factor is
smaller because of less confinement and larger overlapping between the electric field intensity
and the background. On the contrary, the resonant wavelength shifts to longer wavelengths
by increasing the slab thickness.

A very interesting solution proposed for enhancing sensing performance consists in a PhC
sensor based on RI sensing principle and characterized by an array of resonant microcavities.

The first device is embedded on monolithic silicon substrate of thickness t =0.55a =232.65 nm
(Yang et al., 2011a). The 2D PhC is characterized by a triangular lattice of holes with lattice
constant a =423 nm and air hole radius r =0.32a =135.36 nm. As shown in Fig. 7, the device
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intensity and a wavelength interrogation scheme, resulting in a more accurate and precise
optical readout. The output efficiency of the sensor decreases from 99% to 80% by increasing
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increases from 1.33300 to 1.34031, respectively. According to Eq. (4), changes of the background
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that is sandwiched between two silicon layers, as sketched in Fig. 6. The top silicon layer with
thickness t =0.591a is separated by 1 μm of SiO2 from the second silicon layer on the bottom of
the same structure.
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The band gap map evidences a photonic band gap only for transverse electric (TE)-polarized
mode in the microcavity. Under these conditions, the sensitivity has been estimated to be
S =570 nm/RIU, higher than sensitivity evaluated in a simple SOI PhC-based sensor charac‐
terized by the same physical characteristics.

In the sensor presented above, the design of defect radius and slab thickness assumes a
fundamental role for enhancing sensing performances. In fact, by changing the defect radius
it is possible to obtain different band gap maps. Moreover, different defective states, and,
consequently, different resonant conditions, can be properly introduced. For example, by
increasing the defect hole radius a blue shift of resonant wavelength occurs, exhibiting a higher
sensitivity. This effect is justified by the fact that a greater portion of localized field is distrib‐
uted into the cavity region, resulting in a high overlapping between the resonant optical modes
and the chemical/biochemical species to be sensed.

The slab thickness represents a key parameter because it influences performance parameters,
i.e., Sλ and Q-factor. In addition, also the field distribution and the energy bandgap are
seriously affected by the slab thickness. In fact, for a thinner slab Sλ is larger and Q-factor is
smaller because of less confinement and larger overlapping between the electric field intensity
and the background. On the contrary, the resonant wavelength shifts to longer wavelengths
by increasing the slab thickness.

A very interesting solution proposed for enhancing sensing performance consists in a PhC
sensor based on RI sensing principle and characterized by an array of resonant microcavities.

The first device is embedded on monolithic silicon substrate of thickness t =0.55a =232.65 nm
(Yang et al., 2011a). The 2D PhC is characterized by a triangular lattice of holes with lattice
constant a =423 nm and air hole radius r =0.32a =135.36 nm. As shown in Fig. 7, the device
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consists of a waveguide obtained by removing a row of air holes along the horizontal direction.
Such waveguide guides light from the sensor input to the output. The cavity region is adjacent
to the waveguide and it is realized by pulling outwards two holes in the opposite direction
(parallel to the waveguide). In addition, radii of surrounding holes have been adjusted in order
to optimize the cavity dimension. In particular, radius of left and right holes is set to be rx =0.25a
and radius of top and bottom holes is ry =0.35a. The overall geometry is sketched in Fig. 7.

Figure 7. H0 cavity structure with the zoom of hole arrangement.

The hole shift represents a strategic design parameter. In fact, by varying the shift of cavity
holes, the resonant wavelength of the transmission spectrum shifts, resulting in changes of the
Q- factor, too. For the structure sketched in Fig. 7, it has been demonstrated that the optimal
shift is sx =0.2a, because the maximum Q-factor is obtained at this value. In addition, the best
set of radii has been set to rx =0.32a and ry =0.28a, in order to obtain a quality factor as high as
Q =2,761.

Another fundamental design parameter is the number of functionalized holes around the
cavity region for mass sensitivity analysis. Initially, probe receptors are deposited on the inner
hole surfaces near the cavity region. When target molecules are infiltrated into holes, the
refractive index around the cavity area changes. This phenomenon is due to binding between
probe molecules and target objects, resulting in a surface sensing.

It is convenient to introduce a new parameter known as mass sensitivity Sm, that illustrates the
dependence of the resonant wavelength shift ∆λ on the number of functionalized holes N:

mS
N
lD

= (6)

As expected, the sensitivity increases by decreasing the number of functionalized holes. The
most sensitive holes to RI changes are the innermost ones in the y direction. Consequently, in
order to optimize the sensing event, it is necessary to deposit a layer of probe molecules only
on the surface of holes mentioned above.
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In this way, n sensors are made in cascade, side-coupled with the same waveguide, allowing
a multiple and parallel sensing. As sketched in Fig. 8, each H0-cavity is characterized by the
same architecture with different sets of geometrical parameters. The transmission spectrum
shows n different dips, each one independent from the others. When a binding event occurs,
only the correspondent transmission dip is affected by a shift. This allows a multiple and
simultaneous sensing of different chemical species.

Figure 8. Array of H0 resonant cavities.

In conclusion, this sensor exhibits a wavelength sensitivity of 115.60 nm/RIU. In addition, the
sensitivity can be also varied from 84.39 nm/RIU to 161.25 nm/RIU, by adjusting the number
of functionalised holes from 2 to 28, respectively. The advantage of this architecture is
represented by the low mass limit of detection achieved with small functionalized area,
resulting in a good level of optical integration and large degree of multiplexed sensing in
aqueous environment.

A RI-based PhC sensor based on the same architecture described above (i.e., a series of
cascaded resonant cavities) has been proposed for simultaneous sensing of different species
in aqueous environment (Mandal et al., 2009). The architecture consists of arrays of one-
dimensional (1D) PhC resonators coupled to a single bus waveguide. Each cavity has a slightly
different width with respect to the others, so that everyone can independently detect a different
bio-molecular specie in response to changes of surrounding medium RI. The sensing mecha‐
nism occurs when bio molecules concentrated in the sensor cavity are captured by receptor
molecules previously deposited on the sensor surface. Ring resonators have been designed in
order to exhibit different and unique resonant wavelengths, so allowing multiplexed detection
with a single waveguide. When target molecules are selectively captured by receptors, the dip
in transmission spectrum shows a red shift. Analysis of the magnitude of this red shift provides
quantitative information about concentration of target molecules in the sample and, conse‐
quently, about their bound mass.

The structure consists of a single mode silicon waveguide designed to be 450 nm wide and 250
nm tall, while resonators have been realized with the cavity region surrounded by 8 air holes
at both sides with 200 nm in diameter, being the 1D lattice constant equal to 390 nm. The cavity
area of the first sensor has been obtained by shifting outwards the innermost holes of 39 nm
from the centre, as shown in Fig. 9.
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In conclusion, this sensor exhibits a wavelength sensitivity of 115.60 nm/RIU. In addition, the
sensitivity can be also varied from 84.39 nm/RIU to 161.25 nm/RIU, by adjusting the number
of functionalised holes from 2 to 28, respectively. The advantage of this architecture is
represented by the low mass limit of detection achieved with small functionalized area,
resulting in a good level of optical integration and large degree of multiplexed sensing in
aqueous environment.

A RI-based PhC sensor based on the same architecture described above (i.e., a series of
cascaded resonant cavities) has been proposed for simultaneous sensing of different species
in aqueous environment (Mandal et al., 2009). The architecture consists of arrays of one-
dimensional (1D) PhC resonators coupled to a single bus waveguide. Each cavity has a slightly
different width with respect to the others, so that everyone can independently detect a different
bio-molecular specie in response to changes of surrounding medium RI. The sensing mecha‐
nism occurs when bio molecules concentrated in the sensor cavity are captured by receptor
molecules previously deposited on the sensor surface. Ring resonators have been designed in
order to exhibit different and unique resonant wavelengths, so allowing multiplexed detection
with a single waveguide. When target molecules are selectively captured by receptors, the dip
in transmission spectrum shows a red shift. Analysis of the magnitude of this red shift provides
quantitative information about concentration of target molecules in the sample and, conse‐
quently, about their bound mass.

The structure consists of a single mode silicon waveguide designed to be 450 nm wide and 250
nm tall, while resonators have been realized with the cavity region surrounded by 8 air holes
at both sides with 200 nm in diameter, being the 1D lattice constant equal to 390 nm. The cavity
area of the first sensor has been obtained by shifting outwards the innermost holes of 39 nm
from the centre, as shown in Fig. 9.
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Figure 9. 1D-photonic crystal mycrocavity.

The architecture presented above has been adopted to detect different bio-molecules. The first
configuration consists of five resonators, each one to be functionalized by a different probe. In
particular, resonators functionalized with glutaraldehyde and streptavidin serve as control for
non specific analyte adsorption. The other resonators functionalized with monoclonal
antibodies are designed for monitoring and detecting in-vivo concentrations of interleukins 4,
6 and 8 (Mandal et al., 2009). The device can detect antibodies in a concentration range 1 μg/
ml÷1 mg/ml, suitable for clinical application and medical diagnostics, such as HIV test and
drug screening.

The same architecture characterized by analogous arrangement of five resonators near the PhC
waveguide, has been designed with a different number of functionalized holes rather than a
different size of cavity regions (Mandal et al., 2008). Each resonator has been functionalized
by a 50-nm-thick single stranded DNA (ssDNA) monolayer with refractive index nssDNA = 1.456.
A detection event occurs when the complementary ssDNA hybridizes with the functionalized
capture probes, forming a double stranded DNA (dsDNA). Moreover, the sensor sensitivity
can be tuned by changing the number of functionalized holes, as reported in the expression
below:
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where ∆n is the refractive index change due to the binding event, A is the functionalized area
of the sensor, ∆λ is the resonant wavelength shift and ∆m is the mass of bound target. The
sensor sensitivity increases by decreasing the number of functionalized holes N, as already
demonstrated for sensor architectures previously analyzed. In this specific case, for only two
functionalized holes a sensitivity as high as 3.5 nm/fg is achieved, while for sixteen holes the
sensitivity drops to 1 nm/fg.

In this review on RI-based PhC integrated sensors we present also an innovative sensor able
to detect in-vivo, single particles as small as viruses in aqueous and gaseous environment (Lee
et al., 2008). The PhC sensor is characterized by an hexagonal array of cylindrical air holes
embedded in a SOI wafer with a lattice constant a =400 nm and a pore radius r =120 nm. The
radius of central hole is rd =342.5 nm, resulting in a band gap ranging from 1440 nm to 1590
nm for TE modes.
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A latex sphere with a refractive index n = 1.45 can be trapped into the central hole of the PhC,
characterized by a bigger diameter compared to that of surrounding holes and to the diameter
of the same sphere to be sensed. In this way, it is possible to detect the presence of the single
particle trapped into the biggest hole by observing the resonant wavelength shift in the sensor
transmission spectrum. In fact, when the sphere is trapped into the sensor cavity, the resonant
peak characterized by a modest Q-factor around 2,000, is red shifted of about 4 nm. Moreover,
the red shift proportionally increases as the latex sphere diameter increases, too. Finally, the
sensor described until now represents a useful tool in medical and health applications for single
molecule detection.

Figure 10. Top view of the PhC device with one latex sphere in the central defect of microcavity.

In several RI-based sensors the PhC waveguide directly acts as sensing element without
designing any integrated microcavity, as previously analyzed in other sensor architectures.
As before, a PhC waveguide is generally realized by introducing a line defect in the periodic
planar structure. In such waveguide structures, only light at wavelengths outside the PhC
bandgap can be guided. In particular, propagating modes are confined by Total Internal
Reflection (TIR) along vertical direction and by the periodical structure laterally.

Performances of RI-based sensors can be quantified by monitoring the changes of cut-off
wavelength (λcutoff) as a function of the cover RI. In particular, λcutoff describes the maximum
wavelength at which the optical mode can propagate in the PhC waveguide and it depends
on the cover medium RI. Consequently, the sensor sensitivity can be defined as the ratio
between changes of cut-off wavelength and changes of cover RI, as follows:
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Figure 9. 1D-photonic crystal mycrocavity.

The architecture presented above has been adopted to detect different bio-molecules. The first
configuration consists of five resonators, each one to be functionalized by a different probe. In
particular, resonators functionalized with glutaraldehyde and streptavidin serve as control for
non specific analyte adsorption. The other resonators functionalized with monoclonal
antibodies are designed for monitoring and detecting in-vivo concentrations of interleukins 4,
6 and 8 (Mandal et al., 2009). The device can detect antibodies in a concentration range 1 μg/
ml÷1 mg/ml, suitable for clinical application and medical diagnostics, such as HIV test and
drug screening.

The same architecture characterized by analogous arrangement of five resonators near the PhC
waveguide, has been designed with a different number of functionalized holes rather than a
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A detection event occurs when the complementary ssDNA hybridizes with the functionalized
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can be tuned by changing the number of functionalized holes, as reported in the expression
below:
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where ∆n is the refractive index change due to the binding event, A is the functionalized area
of the sensor, ∆λ is the resonant wavelength shift and ∆m is the mass of bound target. The
sensor sensitivity increases by decreasing the number of functionalized holes N, as already
demonstrated for sensor architectures previously analyzed. In this specific case, for only two
functionalized holes a sensitivity as high as 3.5 nm/fg is achieved, while for sixteen holes the
sensitivity drops to 1 nm/fg.

In this review on RI-based PhC integrated sensors we present also an innovative sensor able
to detect in-vivo, single particles as small as viruses in aqueous and gaseous environment (Lee
et al., 2008). The PhC sensor is characterized by an hexagonal array of cylindrical air holes
embedded in a SOI wafer with a lattice constant a =400 nm and a pore radius r =120 nm. The
radius of central hole is rd =342.5 nm, resulting in a band gap ranging from 1440 nm to 1590
nm for TE modes.
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A latex sphere with a refractive index n = 1.45 can be trapped into the central hole of the PhC,
characterized by a bigger diameter compared to that of surrounding holes and to the diameter
of the same sphere to be sensed. In this way, it is possible to detect the presence of the single
particle trapped into the biggest hole by observing the resonant wavelength shift in the sensor
transmission spectrum. In fact, when the sphere is trapped into the sensor cavity, the resonant
peak characterized by a modest Q-factor around 2,000, is red shifted of about 4 nm. Moreover,
the red shift proportionally increases as the latex sphere diameter increases, too. Finally, the
sensor described until now represents a useful tool in medical and health applications for single
molecule detection.

Figure 10. Top view of the PhC device with one latex sphere in the central defect of microcavity.

In several RI-based sensors the PhC waveguide directly acts as sensing element without
designing any integrated microcavity, as previously analyzed in other sensor architectures.
As before, a PhC waveguide is generally realized by introducing a line defect in the periodic
planar structure. In such waveguide structures, only light at wavelengths outside the PhC
bandgap can be guided. In particular, propagating modes are confined by Total Internal
Reflection (TIR) along vertical direction and by the periodical structure laterally.

Performances of RI-based sensors can be quantified by monitoring the changes of cut-off
wavelength (λcutoff) as a function of the cover RI. In particular, λcutoff describes the maximum
wavelength at which the optical mode can propagate in the PhC waveguide and it depends
on the cover medium RI. Consequently, the sensor sensitivity can be defined as the ratio
between changes of cut-off wavelength and changes of cover RI, as follows:

cutoff

c c

TS
n n

lD¶
= =
¶ D

(8)

Photonic Crystals for Optical Sensing: A Review
http://dx.doi.org/10.5772/53897

253



where T  is the transmission spectrum, ∆nC  is the cover medium RI change and ∆λcutoff  is the
change of cut-off wavelength.

A RI-based PhC sensor has been proposed for detecting ssDNA, exhibiting a detection limit
of 19.8 nM (García-Rupérez et al., 2010). This sensor, potentially able to detect very low analyte
concentrations (e.g., proteins, bacteria, DNA) is fabricated in a SOI wafer with the silicon layer
thickness of 250 nm and a 3-μm-thick buried silicon dioxide.

Figure 11. Schematic of the PhC-based DNA sensor characterized by input and output 500-nm-wide single mode
waveguides.

The PhC lattice constant is a =390 nm  and the hole radius is r =111nm. Consequently, the
structure exhibits a guided TE mode with its band edge located around λ =1550 nm. At the
input and output of the PhC waveguide, light is coupled or collected by a 500-nm-wide single
mode waveguide, as sketched in Fig. 11.

Sensing operative regime is performed by spectral peaks created by the excitation of multiple-
k modes in the slow-wave regime near the band edge. In fact, changes of peak positions are
continuously monitored, thus defining the sensor sensitivity according to Eq. (8).

The sensor has been tested with a complementary ssDNA solution bind to the ssDNA probe
pre-deposited on the sensor surface. A peak shift of ∆λ =47.1 pm corresponds to a DNA
concentration of 0.5μM in the complex sample.

An important parameter to be properly designed for increasing sensing performance in single
line PhC waveguide sensor, is the radius of holes localized at both sides of the line defect
(Bougriou et al., 2011). In this context, an integrated sensor based on a PhC waveguide has
been proposed. The sensor architecture is characterized by circular air holes in silicon wafer,
as sketched in Fig. 12. The triangular lattice structure has a lattice constant a =370 nm  and hole
radius r =120 nm. The waveguide is obtained by removing an entire row of holes in the
horizontal direction, resulting in 9.5 μm long PhC waveguide. In addition, 12 rows of holes
are periodically distributed on each side of the line defect. The PhC sensor exhibits a large
band gap between 1230 nm and 1720 nm for TE modes and a very small band gap for TM
polarization.
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Device sensitivity has been evaluated by monitoring the cut-off wavelength shift when the
sensor, initially exposed to air cover (nC =1), is then covered by aqueous solution (i.e. de-
ionized water with nC =1.33). Consequently, the cut-off wavelength shift is estimated to be 30
nm, due to cover RI change of 0.33 (1.33-1).

Figure 12. Photonic crystal waveguide sensor with sensible holes.

Sensor sensitivity can be improved by infiltrating the sample to be analyzed only in holes
adjacent to the line defect. This arrangement produces a cut-off shift of 20 nm corresponding
to a sensitivity of 60 nm/RIU. Experiments have shown that the sensitivity can be further
increased by optimizing size holes near the line defect, which are more sensitive than outlying
regions. In fact, by increasing the hole size, wavelength cut-off shift of 80 nm and sensitivity
as high as Sλ = 240 nm/RIU can be achieved, resulting in an improvement of about 62% with
respect to the original sensor.

A RI-based sensor has been also proposed for gas sensing. In particular, the interaction between
the slow light mode propagating in the structure and the gas infiltrated in it, is transduced by
the waveguide effective refractive index changes, resulting in changes of slow light regime
wavelength (Awad et al., 2011). This type of sensor has the advantage of improving the sensing
performance because of the enhanced light-matter interaction. In addition, the selectivity of
the sensor is ensured because the transmission spectrum changes its amplitude only when the
gas is filled in the PhC structure.

As shown in Fig. 13, the sensor consists of an InP air bridge membrane configuration. In
particular, a layer of air on the bottom and on the top of the 285-nm-thick PhC slab ensures
the device symmetry. The PhC structure is embedded on the InP slab with triangular perio‐
dicity, lattice constant a =441 nm and radius of air holes r =0.33a. The waveguide is obtained
by removing an entire row of air holes.

Sensing performances have been estimated by exposing the sensor initially covered by air, to
Argon (n = 1.000282) and Helium (n = 1.000035) gas, properly filled in the PhC waveguide. In
particular, a shift of 0.6 nm has been detected in case of Helium filled in the waveguide and a
shift of 0.05 nm in case of Argon. The sensor exhibits a good tolerance from environmental
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Sensor sensitivity can be improved by infiltrating the sample to be analyzed only in holes
adjacent to the line defect. This arrangement produces a cut-off shift of 20 nm corresponding
to a sensitivity of 60 nm/RIU. Experiments have shown that the sensitivity can be further
increased by optimizing size holes near the line defect, which are more sensitive than outlying
regions. In fact, by increasing the hole size, wavelength cut-off shift of 80 nm and sensitivity
as high as Sλ = 240 nm/RIU can be achieved, resulting in an improvement of about 62% with
respect to the original sensor.

A RI-based sensor has been also proposed for gas sensing. In particular, the interaction between
the slow light mode propagating in the structure and the gas infiltrated in it, is transduced by
the waveguide effective refractive index changes, resulting in changes of slow light regime
wavelength (Awad et al., 2011). This type of sensor has the advantage of improving the sensing
performance because of the enhanced light-matter interaction. In addition, the selectivity of
the sensor is ensured because the transmission spectrum changes its amplitude only when the
gas is filled in the PhC structure.

As shown in Fig. 13, the sensor consists of an InP air bridge membrane configuration. In
particular, a layer of air on the bottom and on the top of the 285-nm-thick PhC slab ensures
the device symmetry. The PhC structure is embedded on the InP slab with triangular perio‐
dicity, lattice constant a =441 nm and radius of air holes r =0.33a. The waveguide is obtained
by removing an entire row of air holes.

Sensing performances have been estimated by exposing the sensor initially covered by air, to
Argon (n = 1.000282) and Helium (n = 1.000035) gas, properly filled in the PhC waveguide. In
particular, a shift of 0.6 nm has been detected in case of Helium filled in the waveguide and a
shift of 0.05 nm in case of Argon. The sensor exhibits a good tolerance from environmental
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perturbations and it is able to detect all gases characterized by refractive indices similar to
Argon and Helium ones, with the exception of those whose refractive indices are very close to
air RI (i.e., nAir = 1).

In  conclusion,  PhC-based  sensors  integrated  in  interferometer  architectures  have  been
reviewed. Generally, sensing principle characterizing interferometer architectures are based
on phase-shift measurement. In particular, if a perturbation occurs only on one arm of the
interferometer, the output signal differs from the input signal, showing a variation of its phase
or amplitude. In Mach Zehnder configuration it is possible to quantify the amount of phase shift
on the active arm by tracking the signal output intensity. The perturbation mentioned above
can be associated to the change of cover refractive index in one arm of the MZI, due to the
presence of analytes in the sample. This phenomenon can be described by the following relation:

2L nLpj b
l

D = D = D (9)

where ∆n is the refractive index variation, L is the length of the waveguide and λ is the
wavelength.

As sketched in Fig. 14, a MZI-based sensor with slot PhC waveguide has been fabricated and
experimentally characterized (Chen et al., 2008). The sensor is composed by PhC waveguides
in both active and reference arms, rib waveguides for sensor input and output, Y-junctions,
electrodes and electrode pads. In particular, PhC waveguides are realized by removing a single
row of air hole in a silicon slab. The device is fabricated on a SOI wafer, in which the thickness
of the silicon core layer is t =215 nm, the top cladding medium is air and the bottom layer is a
2-μm-thick buried oxide layer. In the silicon slab, the holes are arranged by hexagonal cells
with lattice constant a =400 nm resulting in air hole diameter d =0.53a.

For sensor applications, it is possible to induce localized RI changes by filling the waveguide
region with gas- or liquid-phase analyte materials. By this way, the output signal intensity can
be varied because of the conjunction effect of static driving voltage supported through

Figure 13. a) Top and (b) cross-sectional view of photonic crystal waveguide sensor for gas sensing.
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electrodes on the sensor arms and cover RI changes. Finally, experimental comparison
evidences how silicon slot PhC waveguide provides 30 times effective index change compared
with conventional silicon slotted strip waveguide.

A sensor which combines the optical power splitting characteristics of multi-mode interference
(MMI) power splitter and transmission drop resonance characteristics of multiple PhC
microcavities arrays, has been recently investigated and proposed (Zou et al., 2012). The
device, sketched in Fig. 15, is fabricated on a SOI platform and consists of a 1x4 MMI optical
power splitter which splits the input light from a ridge waveguide into four output channels.
The MMI has a length and a width of 123 μm and 16 μm, respectively. The input waveguide
is 2.5-μm-width and outputs are separated by 1.5 μm. PhC waveguides are line defects with
uniform lattice constant a =400 nm and diameter holes d =0.54a which is embedded on a silicon
slab thickness t =0.58a =232nm.

On arms #1 to #3, the edge air holes on the axis of PhC microcavity are shifted outward in the
horizontal direction by a distance equal to 0.15a. On the arm #4, two microcavities spaced of
50 μm, are designed as L13 type. In the first one, edge-air holes are shifted inward by 0.15a, in
the second microcavity edge-air holes are shifted outward by 0.15a resulting in zero cross talk.

Figure 15. Schematic of 1x4 MMI device.

Figure 14. MZI with slot Photonic Crystal waveguide (a) and cross-sectional view (b).
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power splitter which splits the input light from a ridge waveguide into four output channels.
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Each microcavity is coated with different receptor biomolecules, each responsive to its specific
conjugate. In fact, by introducing into the sensible area 60 μl of 600 nM of goat anti-rabbit IgG
Abs dissolved in PBS, only transmission spectrum of arm #2 changes, showing a resonant
wavelength shift. In fact, the arm #2 is printed with a specific conjugate rabbit anti-goat IgG
Abs. The arm #4 operates similarly while any shift is observed in remaining arms because arm
#1 and #3 are printed with human IL-10 Abs, and arm #4 in the second microcavity is coated
with BSA. Consequently, by changing the sample solution, thus by introducing 60 μl of 600
nM of rat anti-human IL-10 Abs dissolved in PBS, only one resonance wavelength shift is
observed in arm #1. Finally, the sensor is immune to environmental changes and allows
multiple detection, being very suitable for high throughput-screening.

2.2. Photonic crystal sensors based on optical adsorption

A lot of gas and liquid molecules absorb radiation in near- and mid-infrared, being spectro‐
scopically detectable. In particular, when the wavelength of the optical signal matches the
natural frequencies or resonances of the irradiated gas or molecule, the energy states of
vibrating atoms change in discrete steps. The resonance frequencies or wavelengths depend
on the number and mass of atoms in molecules as well as the number and strengths of chemical
bonds. If the chemical structure of the molecules is complex, then a range of resonant vibrations
characterize the optical absorption of molecules.

Based on these simple principles, the infrared (IR) spectroscopy is the simplest and the most
reliable spectroscopic and sensing technique. In particular, the absorption spectroscopy is
based on the Beer-Lambert law, defined as follows:

0 exp( ),I I L Ca a h= - = (10)

where I0 is the intensity of the incident light, α is the absorption coefficient of the chemical
specie being linearly dependent to the analyte concentration C via the molar absorptivity η,
and L  is the interaction length.

In this context, a photonic sensor based on a PhC slot waveguide has been proposed (Chak‐
ravarty et al., 2011a). The PhC waveguide is obtained by removing a single row of air holes
from the input to the output of the device, resulting in a line defect with uniform lattice constant
a. The device is designed for xylene sensing. Consequently the sensing platform is coated with
a hydrophobic ~0.8 - μm-thick film of poly-dimethyl siloxane (PDMS). In this way, sensor
selectivity is enhanced because adsorption of xylene is ensured by the functionalized coating
and the adsorption of water is inhibited by the hydrophobic properties of PDMS. The width

of PhC waveguide is 1.3× 3a, the hole radius is r =0.25a, the slot width w =0.2a and the
waveguide length is L =300 μm. The slow light guided mode propagates at normalized
frequency a /λ =0.275 and at this wavelength the constant lattice is set to be a =461 nm.
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Figure 16. Cross section of PhC slot waveguide.

The whole device, sketched in Fig. 16, has been fabricated on SOI wafer with 230-nm-thick top
layer and 3-μm-thick buried oxide. The sensing mechanism takes place by introducing analyte
in the device sensible area through tygon tubes.

The absorption spectrum of xylene is characterized by three absorption peaks approximately
centered at 1674 nm, 1697 nm and 1725 nm, being the latter peak characterized by a very small
intensity. Moreover, when a xylene concentration dissolved in deionized (DI) water is
introduced into the device, the intensity of the strongest absorbance peak at 1697 nm changes
linearly for small concentrations of xylene (from 100 ppb to 1 ppm), in agreement with the
Beer-Lambert law. At higher concentrations the absorbance curve deviates from linearity
because the PDMS film reaches saturation and reduces its absorption capacity.

An analogous architecture with the same values of geometrical parameters is used for methane
detection (Chakravarty et al., 2011b). The major absorption peak of methane occurs at 1.665 μm.

The experimental response of the sensor proposed follows the linear Beer-Lambert function
for low concentrations of methane in nitrogen, being 100 ppm the lowest detectable methane
concentration, and exhibits a deviation for higher concentrations, as previously analyzed in
case of xylene detection.

Another similar sensor characterized by slow light mode propagation has been proposed for
detection of hazardous gases and analytes in aqueous environment (Thévenaz et al., 2012). The
PhC waveguide consists of a 180-nm-thick GaInP slab with a triangular lattice of air holes
having a lattice constant of 486 nm and a defect line. In various experiments, the size of the
first row of holes has been changed in order to firstly modify dispersion properties of the device
and secondly to optimize sensing performance. In the first case, the hole size has been increased
from 204 nm to 233 nm, in the second case from 224 nm to 253 nm. These two different
geometrical arrangements influence the group refractive index ng. In fact, when a TE-polarized
mode is launched in the sensor the group index is measured to be ng =4.9 and ng =6.7 for the
first and second configuration, respectively. In case of transverse magnetic-(TM)-polarized
mode launched into the sensor, ng remains the same in both configurations, to be equal to
1.5.

The sensor is placed in a gas chamber hermetically closed, filled with acetylene gas at 50 torr.
In this way, the absorption coefficient is maximized and the linewidth of the absorption peak
is kept narrow. Finally, the sensor confirms a linear dependence of molecular absorption on
the group index and evidences how the distribution of the electric field is a very important
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parameter in gas-sensing measurements. In fact, by considering TM-polarized mode propa‐
gating in the sensor, a stronger optical absorption is achieved compared with that obtained
when TE-polarized mode propagates in the same sensor. This effect, is due to fact that in TM
polarization the electric field inside the lower-index slab material is increased by discontinuity
at dielectric interface.

Theoretically, it is possible to define the absorption coefficient as the ratio between the electric
field obtained by coupling optical wave and electric dipole and the Poynting vector. An
analytical expression for α is reported below:
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where H is the magnetic field, ε is the complex electric permittivity and Re and Im denote the
real and imaginary part of a complex number, respectively. In conclusion, the enhanced
overlapping between electric field intensity and molecule to be sensed evidences a decisive
influence on the absorption enhancement, thus in sensing performance.

Finally, a PhC sensor based on infrared absorption has been proposed for azote oxide (NO2)
detection (Maulina et al., 2011). The sensor consists of 1D PhC characterized by two different
defects. In addition, by changing the refractive index and thickness of both defects, it is possible
to tune the position of photonic pass band (PBB) in the PhC band gap.

Figure 17. 1D-PhC with two defects for NO2 sensing.

The two defects are named as regulator and receptor. Changes in the regulator defect influence
the wavelength of the transmission spectrum, while changes in receptor defect induce
variations in transmittance value. In particular, as plotted in Figure 17, the sensor consists of
a first defect sandwiched between 4 and 6 periodic cells, and the second adjacent defect
sandwiched between 6 and 2 cells. A cell is characterized by two alternate layers being the first
layer (i.e., OS-5) characterized by a high refractive index n = 2.1, and the second one magnesium
fluoride (MgF2) with the lower refractive index, n = 1.38. In addition, the first defect is OS-5
having twice the thickness of the other layers. The second defect is a void (low air refractive
index n = 1) to be filled with the sample to be detected. Finally, the whole structure is embedded
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on a layer of glass material borosilicate crown, known as BK-7 whose refractive index is n =
1.52. Experimental results have been performed by absorbing NO2 in air, combining Beer-
Lambert’s law and PBB phenomena. The PBB spectra change with respect to different con‐
centrations of absorbed NO2 gas. Results of spectroscopic measurements evidence a linear rise
of transmittance value with increasing the gas concentrations. Finally, the sensor presented
until now exhibits an efficiency up to 99 %.

2.3. Integrated photonic crystal sensors based on non linear effect

Recent studies have shown how new PhC sensors based on non linear effects represent a new
and intriguing approach for advanced sensing applications. Actually, the main non linear
effects investigated in these structures are Kerr nonlinearities (Van Driel, 2003), Raman effect
and harmonic generation.

In this section, an original sensor is proposed, consisting in a PhC microcavity in which the
Raman effect related to the vibrational excitations mode in silica is excited. By considering the
quantum mechanical approach, a photon of the incident field (i.e., the pump wave) is scattered
by a molecule of the medium in which the field propagates, resulting in the generation of a
photon of lower energy (i.e., the Stokes wave). At the same time, the residual energy is absorbed
by molecules via phonons. The Raman shift is then the frequency difference between the
incident wave and the scattered one (Stokes wave) in a stimulated Raman interaction.

The device proposed in this section, is based on a PhC cavity fabricated on a 220 nm SOI wafer
(Van Leest et al., 2012). Air holes in the silicon slab are arranged in hexagonal cells with lattice
constant a =430 nm and radius of air holes r =0.3a =129 nm.

Figure 18. Schematic of L6 cavity to generate Raman effect.

The device proposed is characterized by a L6 PhC cavity, i.e. a PhC structure without six central
air holes, as sketched in Fig. 18 above.

A resonant cavity with the overall length Lcav =2.9 μm is obtained by shifting outward the inner
holes along horizontal direction by a distance equal to 0.2*a =0.086 μm. Mathematical modeling
of the device suggests this design approach as fundamental in order to ensure the generation
of Stokes wave into the cavity, away from the resonant wavelength of about 15,6 THz. This
wavelength shift due to pump wave and resonant Stokes wavelength generated into the cavity,
is typical for silica.

In conclusion, the sensor investigated evidences intriguing potentialities and sensing per‐
formance of new class of PhC sensors based on non linear effect (i.e., Raman effect). In
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parameter in gas-sensing measurements. In fact, by considering TM-polarized mode propa‐
gating in the sensor, a stronger optical absorption is achieved compared with that obtained
when TE-polarized mode propagates in the same sensor. This effect, is due to fact that in TM
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at dielectric interface.
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where H is the magnetic field, ε is the complex electric permittivity and Re and Im denote the
real and imaginary part of a complex number, respectively. In conclusion, the enhanced
overlapping between electric field intensity and molecule to be sensed evidences a decisive
influence on the absorption enhancement, thus in sensing performance.
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detection (Maulina et al., 2011). The sensor consists of 1D PhC characterized by two different
defects. In addition, by changing the refractive index and thickness of both defects, it is possible
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1.52. Experimental results have been performed by absorbing NO2 in air, combining Beer-
Lambert’s law and PBB phenomena. The PBB spectra change with respect to different con‐
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Recent studies have shown how new PhC sensors based on non linear effects represent a new
and intriguing approach for advanced sensing applications. Actually, the main non linear
effects investigated in these structures are Kerr nonlinearities (Van Driel, 2003), Raman effect
and harmonic generation.

In this section, an original sensor is proposed, consisting in a PhC microcavity in which the
Raman effect related to the vibrational excitations mode in silica is excited. By considering the
quantum mechanical approach, a photon of the incident field (i.e., the pump wave) is scattered
by a molecule of the medium in which the field propagates, resulting in the generation of a
photon of lower energy (i.e., the Stokes wave). At the same time, the residual energy is absorbed
by molecules via phonons. The Raman shift is then the frequency difference between the
incident wave and the scattered one (Stokes wave) in a stimulated Raman interaction.

The device proposed in this section, is based on a PhC cavity fabricated on a 220 nm SOI wafer
(Van Leest et al., 2012). Air holes in the silicon slab are arranged in hexagonal cells with lattice
constant a =430 nm and radius of air holes r =0.3a =129 nm.

Figure 18. Schematic of L6 cavity to generate Raman effect.

The device proposed is characterized by a L6 PhC cavity, i.e. a PhC structure without six central
air holes, as sketched in Fig. 18 above.

A resonant cavity with the overall length Lcav =2.9 μm is obtained by shifting outward the inner
holes along horizontal direction by a distance equal to 0.2*a =0.086 μm. Mathematical modeling
of the device suggests this design approach as fundamental in order to ensure the generation
of Stokes wave into the cavity, away from the resonant wavelength of about 15,6 THz. This
wavelength shift due to pump wave and resonant Stokes wavelength generated into the cavity,
is typical for silica.
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particular, such sensors are expected to be able to detect single particle in aqueous solutions,
with very small dimensions comparable to that of virus or proteins.

Several research efforts are still being done in order to comprehend how to employ non linear
effects for sensing applications in PhC sensors fabricated on SOI technological platform.

2.4. Opto-mechanical sensors based on PhC

In this section, PhC-based sensors designed for pressure, force, strain and torsion sensing, are
discussed. The sensing principle consists in monitoring variations of optical characteristics
induced by the physical deformation of the PhC-based device.

In this context, a force and strain sensor is sketched in Fig. 19 (Li et al., 2011).

Figure 19. Schematic of DNR channel drop filter.

The architecture presented above is a typical dual-nanoring (DNR) channel drop filter on 2D
photonic crystal with hexagonal lattice. A silicon PhC crystal slab of 220 nm thickness is
released on a SOI substrate and the ratio between radius of air holes and lattice constant is set
to be r / a =0.292.

The nanoring is obtained by removing localized air holes to form an hexagonal defect. The
dual-nanoring is made by two aligned nanorings with a centre-to-centre distance d =11a. The
structure is sandwiched between two waveguides, so that it is possible to identify four ports
in the PhC platform. The first one acts as input port (red arrow) and the other ones are used
for transmission (TR) and forward (FD) or backward drop (BD), indicated in Fig. 19 as TR port,
FD port and BD port, respectively.

The device characterized by PhC single-nanoring structure shows a photonic band gap map
for TM modes, characterized by a band gap in the range of normalized frequency extended
from 0.26 to 0.33. The corresponding band gap wavelength ranges from 1242 nm to 1577 nm
and a resonant peak displayed in BD port is located at 1553.6 nm revealing a Q-factor of 3,884,
while FD and TR ports reveal a spectral dip at the same wavelength mentioned above.

Simulations evidence that two rings are always phase-matched and their resonances are not
independently. In fact, Li et al. have demonstrated that the wavelength of the resonant peak
at the BD port is strongly dependent on the ring size and separation distance d between two
rings. Consequently, when physical structure is deformed, a variation of the resonant wave‐
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length can be detected. The application of an external force to the device induces a strain
linearly proportional to the applied force located at the junction between cantilever and SOI
substrate.

Figure 20. Cantilever architecture (a) and different positioning of DNR on cantilever (b).

In particular, the stronger the applied force, thus the strain induced to the sensor, the bigger
the red shift of the resonant wavelength to be detected. As sketched in Fig. 20, three different
configurations are adopted by moving the DNR resonator on the cantilever and three different
correspondent sensor responses are obtained. For example, in cantilever labelled as type p1,
the resonant peak shifts from 1553.6 nm to 1554.9 nm, corresponding to a force variation
ranging from 0 to 400 nN. In this configuration, as the load force approaches to 500 nN, the
output signal intensity at the BD port is lightly reduced, while the signal intensity at the FD
port increases. Consequently the signal intensity at the TR port is also increased. The device
exhibits a degraded resonant behaviour due to deformed DNR resonator.

The cantilever labelled as type 2p, maintains the channel drop mechanism up to the load force
of 700 nN before losing its resonant behaviour. In the last configuration indicated as type p3,
only the second ring is kept within the deformation region and the sensitivity of the DNR is
reduced. In fact, a less range of load force is detected through this type of cantilever. The BD
behaviour is degraded in case of applied force higher than 100 nN.

A PhC micro-pressure sensor has been fabricated and characterized (Bakhtazad et al., 2010).
The device is based on an air-bridged line-defect silicon slab PhC waveguide, as sketched in
Fig. 21.

Figure 21. Sensor at rest (a) and sensor with applied pressure (b).
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particular, such sensors are expected to be able to detect single particle in aqueous solutions,
with very small dimensions comparable to that of virus or proteins.
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released on a SOI substrate and the ratio between radius of air holes and lattice constant is set
to be r / a =0.292.

The nanoring is obtained by removing localized air holes to form an hexagonal defect. The
dual-nanoring is made by two aligned nanorings with a centre-to-centre distance d =11a. The
structure is sandwiched between two waveguides, so that it is possible to identify four ports
in the PhC platform. The first one acts as input port (red arrow) and the other ones are used
for transmission (TR) and forward (FD) or backward drop (BD), indicated in Fig. 19 as TR port,
FD port and BD port, respectively.

The device characterized by PhC single-nanoring structure shows a photonic band gap map
for TM modes, characterized by a band gap in the range of normalized frequency extended
from 0.26 to 0.33. The corresponding band gap wavelength ranges from 1242 nm to 1577 nm
and a resonant peak displayed in BD port is located at 1553.6 nm revealing a Q-factor of 3,884,
while FD and TR ports reveal a spectral dip at the same wavelength mentioned above.

Simulations evidence that two rings are always phase-matched and their resonances are not
independently. In fact, Li et al. have demonstrated that the wavelength of the resonant peak
at the BD port is strongly dependent on the ring size and separation distance d between two
rings. Consequently, when physical structure is deformed, a variation of the resonant wave‐
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length can be detected. The application of an external force to the device induces a strain
linearly proportional to the applied force located at the junction between cantilever and SOI
substrate.

Figure 20. Cantilever architecture (a) and different positioning of DNR on cantilever (b).

In particular, the stronger the applied force, thus the strain induced to the sensor, the bigger
the red shift of the resonant wavelength to be detected. As sketched in Fig. 20, three different
configurations are adopted by moving the DNR resonator on the cantilever and three different
correspondent sensor responses are obtained. For example, in cantilever labelled as type p1,
the resonant peak shifts from 1553.6 nm to 1554.9 nm, corresponding to a force variation
ranging from 0 to 400 nN. In this configuration, as the load force approaches to 500 nN, the
output signal intensity at the BD port is lightly reduced, while the signal intensity at the FD
port increases. Consequently the signal intensity at the TR port is also increased. The device
exhibits a degraded resonant behaviour due to deformed DNR resonator.

The cantilever labelled as type 2p, maintains the channel drop mechanism up to the load force
of 700 nN before losing its resonant behaviour. In the last configuration indicated as type p3,
only the second ring is kept within the deformation region and the sensitivity of the DNR is
reduced. In fact, a less range of load force is detected through this type of cantilever. The BD
behaviour is degraded in case of applied force higher than 100 nN.

A PhC micro-pressure sensor has been fabricated and characterized (Bakhtazad et al., 2010).
The device is based on an air-bridged line-defect silicon slab PhC waveguide, as sketched in
Fig. 21.

Figure 21. Sensor at rest (a) and sensor with applied pressure (b).
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The device is fabricated in SOI technology. In this structure the bridge is obtained by removing
a portion of buried oxide layer of 1000 nm thickness, while the top silicon layer is 320-nm-
thick.

The PhC structure has hexagonal lattice with lattice constant a =430 nm, diameter holes
d =300 nm. A waveguide is embedded by removing a row of holes in ΓK direction. Two 700-
nm-thick channel waveguides are placed at input and output section in order to ensure an
efficient light coupling. In case of TM polarization, the structure shows a band gap with its
centre at about 1550 nm.

The sensor operation is based on the optical field profile changes to the proximity of sur‐
rounding material induced by the applied pressure on the top of the sensor. Consequently,
changes in the transmission spectrum are directly linked to the magnitude of the applied force.
To this purpose, it is possible to defined the device sensitivity as follows:

T T hS
P h P

d d d
d d d
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where T is the optical transmittance, P the applied pressure and h is the photonic crystal height
over the substrate. The best total sensitivity obtained is S =0.039 (%/MPa) under 1MPa uniform
pressure, i.e. a maximum displacement at centre of the rectangular platform of 78 pm.

A PhC optical cavity has been designed for detecting torsion or flexure induced by external
magnetic couple excitations (Wu et al., 2012). The design of this sensor is optimized to support
low effective mass torsional and flexural mechanical modes. The sensor is characterized by a
PhC opto-mechanical cavity in which the central element results to be suspended. This type
of sensors have been proposed for magnetic applications and are suitable for probing nano‐
magnetic torques.

Figure 22. Schematic of the torsion PhC-based sensor (a) and operative configurations (b): right torsional (top) and
flexural (bottom) movements of central sensor element.

As sketched in Fig. 22, the overall structure is characterized by air holes with radius
r =145 nm, patterned in a free standing silicon nanowire with refractive index n = 3.5, thickness
t =250 nm and width w =600 nm. The hole spacing varies quadratically over six periods,
ranging from aC =350 nm to a0 =450 nm. The suspended element is disconnected from the two

arms of the sensor by a gap of size d =0.58a0. Central position is defined as a2
' =1.12 a2 where a2
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is the nominal spacing between the first and second hole of the uncut structure. The gap
reduces the maximum value of device Q-factor. Moreover, the structure can support a Q-factor
higher than 104 by tuning gap size, d  parameter and gap position.

In presence of an external magnetic field, torsional and flexural resonance may be excited by
magnetic moment from nanomagnetic materials attached to the nanocavity paddle. These
magnetic resonance affects the suspended central element in the PhC cavity, inducing changes
of optical properties. Experimental results show higher Q-factor values and lower effective
mechanical mass (~100 fg).

2.5. Advances in PhC-based sensors: Materials and technologies

In this section, techniques commonly used for PhC fabrication, are briefly discussed. The
fabrication of these devices requires a series of technological steps which establish the effective
physical characteristics of the photonic crystal. In fact, periodicity, dept and radii of PhC holes
can be precisely controlled during technological processes, strongly influencing real perform‐
ances of the resulting PhC-based sensor. In particular, the geometrical arrangement strongly
affects the photonic crystal band gap map, influencing optical mode propagation properties.

In the following, an example of photonic crystal device fabrication is described. In particular,
when the photonic crystal is embedded on SOI chip, the first step generally consists in cleaning
the device surface with nitric acid in order to remove organic residuals. Consequently, a
positive electron beam (e-beam) resist is spun on the top surface of the SOI chip. The photonic
crystal is patterned using an e-beam lithography system operating at 100 keV. The resist is
developed with a microchem 1:3 methyl-isobytyl ketone:isopropanol (MIBK:IPA) solution for
30 s followed by a 10 s IPA rinse. Successively, the exposed areas are then etched using
inductively coupled plasma (ICP) dry etching system or Chlorine based ICP. The remaining
resist can be dissolved in a dilute 100:1 HF solution.

The top of device is often covered with a layer of polydimethylsiloxane (PDMS) that is realized
by using a soft lithography technique.

Micro fluidic channels, widely used in chemical and biochemical PhC-based sensing architec‐
tures, require precise fabrication steps. Initially, a mold for the channels is created by using a
4-inch pure silicon wafer. A 1-μm-thick UV resist layer is spun on the top of silicon, followed
by Near-UV lithography for writing the desired patterns of fluidic channels. Pattern-transfer
is done by reactive ion etching (RIE) and a depth of approximately 30 μm can be realized by
conventional etching. In conclusion, a PDMS layer is poured onto the silicon mold in order to
create flow channels.

The fabrication steps can differ for various devices depending on the materials employed, thus
the technological platform. For example, a guiding SiNx layer can be deposited on the substrate
by either Plasma Enhanced Chemical Vapor Deposition (PECVD) or Low Pressure Chemical
Vapor Deposition (LPCVD) techniques in order to optimize the film uniformity. This layer can
be patterned in a photonic crystal structure using either optical or e-beam lithography. The
first lithography technique is often used for large area array, the second one is preferred for
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PhC opto-mechanical cavity in which the central element results to be suspended. This type
of sensors have been proposed for magnetic applications and are suitable for probing nano‐
magnetic torques.

Figure 22. Schematic of the torsion PhC-based sensor (a) and operative configurations (b): right torsional (top) and
flexural (bottom) movements of central sensor element.

As sketched in Fig. 22, the overall structure is characterized by air holes with radius
r =145 nm, patterned in a free standing silicon nanowire with refractive index n = 3.5, thickness
t =250 nm and width w =600 nm. The hole spacing varies quadratically over six periods,
ranging from aC =350 nm to a0 =450 nm. The suspended element is disconnected from the two

arms of the sensor by a gap of size d =0.58a0. Central position is defined as a2
' =1.12 a2 where a2

Advances in Photonic Crystals264

is the nominal spacing between the first and second hole of the uncut structure. The gap
reduces the maximum value of device Q-factor. Moreover, the structure can support a Q-factor
higher than 104 by tuning gap size, d  parameter and gap position.

In presence of an external magnetic field, torsional and flexural resonance may be excited by
magnetic moment from nanomagnetic materials attached to the nanocavity paddle. These
magnetic resonance affects the suspended central element in the PhC cavity, inducing changes
of optical properties. Experimental results show higher Q-factor values and lower effective
mechanical mass (~100 fg).

2.5. Advances in PhC-based sensors: Materials and technologies

In this section, techniques commonly used for PhC fabrication, are briefly discussed. The
fabrication of these devices requires a series of technological steps which establish the effective
physical characteristics of the photonic crystal. In fact, periodicity, dept and radii of PhC holes
can be precisely controlled during technological processes, strongly influencing real perform‐
ances of the resulting PhC-based sensor. In particular, the geometrical arrangement strongly
affects the photonic crystal band gap map, influencing optical mode propagation properties.

In the following, an example of photonic crystal device fabrication is described. In particular,
when the photonic crystal is embedded on SOI chip, the first step generally consists in cleaning
the device surface with nitric acid in order to remove organic residuals. Consequently, a
positive electron beam (e-beam) resist is spun on the top surface of the SOI chip. The photonic
crystal is patterned using an e-beam lithography system operating at 100 keV. The resist is
developed with a microchem 1:3 methyl-isobytyl ketone:isopropanol (MIBK:IPA) solution for
30 s followed by a 10 s IPA rinse. Successively, the exposed areas are then etched using
inductively coupled plasma (ICP) dry etching system or Chlorine based ICP. The remaining
resist can be dissolved in a dilute 100:1 HF solution.

The top of device is often covered with a layer of polydimethylsiloxane (PDMS) that is realized
by using a soft lithography technique.

Micro fluidic channels, widely used in chemical and biochemical PhC-based sensing architec‐
tures, require precise fabrication steps. Initially, a mold for the channels is created by using a
4-inch pure silicon wafer. A 1-μm-thick UV resist layer is spun on the top of silicon, followed
by Near-UV lithography for writing the desired patterns of fluidic channels. Pattern-transfer
is done by reactive ion etching (RIE) and a depth of approximately 30 μm can be realized by
conventional etching. In conclusion, a PDMS layer is poured onto the silicon mold in order to
create flow channels.

The fabrication steps can differ for various devices depending on the materials employed, thus
the technological platform. For example, a guiding SiNx layer can be deposited on the substrate
by either Plasma Enhanced Chemical Vapor Deposition (PECVD) or Low Pressure Chemical
Vapor Deposition (LPCVD) techniques in order to optimize the film uniformity. This layer can
be patterned in a photonic crystal structure using either optical or e-beam lithography. The
first lithography technique is often used for large area array, the second one is preferred for
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much smaller device dimensions, being characterized by an higher resolution. The e-beam is
well-suited for flexible PhC lattice design. The pattern is transferred from the resist to the
SiNx layer using Fluorine-based dry etching.

Recently, several technological processes have been investigated and tested for fabrication of
3D PhC devices. This new class of devices is not popular as 2D PhCs, because the planar
technology is more established and applications of 2D PhCs are well established in optical
telecommunication, signal-processing and sensing.

In this context, the first sensor proposed is a PhC hydrogel for sensing of highly toxic mercury
ion (Hg2+) in water (Arunbabu et al., 2011). The detection of Hg2+ concentration is due to
diffraction of visible light from polymerized crystalline colloidal array (PCCA) which consists
of highly charged polystyrene particles which are polymerized within the polyacrylamide
hydrogel (named crystalline colloidal array or CCA). Different concentrations of analytes in
the 3D PhC change the volume of hydrogel resulting in an alteration of the lattice spacing of
CCA and, consequently, in a shift of the diffraction wavelength of light. Therefore, the
concentration of analytes can be extracted from the wavelength of diffracted light by PCCA.
In particular, this sensor employs an urease immobilized PCCA based sensing material for
determination of Hg2+. In fact, the presence of Hg2+ in a solution in contact with the PCCA
inhibits the urea hydrolysis and suppresses the normal production of NH4

+ and HCO3
-. The

optical result is a red shift diffraction which increases linearly for low concentration of Hg2+

and devices to linearity for higher concentration of Hg2+.

The sensor shows reversibility and LOD as low as 1 ppb, i.e., 1 μg/L. In conclusion, the sensor
can be used with the same physical principle for detection of Ag+ and Cu2+ ions which are, as
Hg2+, the principal inhibitor of urease.

A mechanically robust and highly sensitive sensor, with short response time, characterized by
a planar defect in the 3D macroporous array of pH-sensitive hydrogel poly (methacrylic acid)
(PMMA), has been proposed for pH detection (Griffete et al., 2011). Two different configura‐
tions of the structure fabricated by a Langimur-Blodgett technique and characterized by
hexagonal arrangement of spheres have been designed. In particular, one structure is a defect-
free (DF) colloidal crystal made from 10 layers of 280 nm diameter particles. The other one is
a planar defect-containing (DC) colloidal crystal which consists of a layer of silica particles of
390 nm diameter between two sections of 5 layers of particles of 240 nm diameter. As previ‐
ously analyzed in case of 2D planar PhC sensors, the defective layer in 3D technology also
introduces a change into the band gap map, influencing the optical properties of the device
(see Fig. 23).

Figure 23. 3D-PhC with defected layer.

Advances in Photonic Crystals266

In both structures, by increasing the pH of the complex sample a red shift of the diffraction
peak can be observed due to the ionization of the ionic gel. The diffraction red shift occurs after
the gel is swollen. The presence of defect in the 3D PhC structure enhances both sensitivity
and response time of the PhC sensor. In fact, the device characterized by the defect shows a
red-shift of ∆λ =60 nm that is greater than the wavelength shift ∆λ =40 nm obtained with the
defect-free device and estimated for the same pH concentration.

A different architecture used for pH sensing (Jiang et al., 2012) is based on poly(vinyl alcohol)
(PVA)/poly(acrylic acid) (PAA) photonic crystal materials. This sensor exhibits good durability
and adjustability. The pH response is monitored by diffraction wavelength shift. A solvent-
assisted method is used to physically cross-link a thermo-reversible PVA hydrogel around
CCA and form a gelated crystalline colloidal array photonic crystal material (GCCA). Gluta‐
raldehyde is used to chemically cross-link the PVA hydrogel in order to avoid the collapse of
cross-linked GCCA during the procedure for the introduction of environmentally sensitive
components. It has been demonstrated that the sensing is better for high concentration of
glutaraldheyde solution, because the high cross-link density improves equilibrium hydrogel
volume needed for the diffraction shift measuring. The modified Bragg’s law reported in Eq.
(13), regulates the phenomenon mentioned above:
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where D is the center-to-center distance between the nearest spheres, ni and Vi are the refractive
index and volume of each component, respectively, and θ is the angle between the incident
light and the sample normal. As pH increases the hydrogel absorbs water and swell. The
center-to-center distance also increases and a red shift of the diffraction peak is generated. The
sensor exhibits a wavelength shift of ∆λ =96 nm when a solution of pH 7.6 is concentrated in
cover medium for 30 min, being the same sensor initially exposed to a solution of pH = 4.8.

In conclusion, a photonic sensor consisting of a glass substrate and a three dimensional
photonic crystal realized by using nanoparticles and poly(dimethysiloxane) (PDMS) elastomer
has been investigated (Endo et al., 2007). The PhC is generated by infiltrating the opaline lattice
of particles with a liquid prepolymer to PMDS in voids. Subsequently the material is thermal
cured.

Even in this case, the physical sensing is governed by the Bragg’s law that can be written in
terms of spacing between planes of crystal (d111) as follows:
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where m is the order of diffraction and neff  is the mean refractive index of the crystalline lattice.

Photonic Crystals for Optical Sensing: A Review
http://dx.doi.org/10.5772/53897

267
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-. The
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and devices to linearity for higher concentration of Hg2+.
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Figure 23. 3D-PhC with defected layer.
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In both structures, by increasing the pH of the complex sample a red shift of the diffraction
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The first step for the sensor fabrication consists in drying aqueous dispersions of polystyrene
(PS) nanoparticles (with 202 nm-diameter) on the glass substrate. After the dry-up process
when the PS nanoparticles are spatially ordered, a PMDS solution without any air bubbles is
distributed on the top of PhC and all voids between the PS nanoparticles are totally filled. The
PDMS is first cured at room temperature, then it is baked at 60°C for 1 hour.

The sensor obtained, exhibits a Bragg reflection peak at 552 nm. When a non-polar organic
solvent such as xylene is in contact with the structure, it is possible to see a color change of 3D
structure from green to red. The shift increases when concentration of solvent in the solution
increases. In addition, the detection limit of this optical chemical sensor is found to be
dependent on the polarities of the solvents.

3. Photonic crystal fiber sensors

Photonic crystal fibers (PCFs), also named as micro-structured optical fibers (MOFs), represent
nowadays a new and intriguing typology of optical fibers suitable for sensing applications
such as measurement of strain, refractive index, pressure, temperature, magnetic field, to name
a few. PCF-based sensors are characterized by high sensitivity, small size, robustness, flexi‐
bility and ability for remote sensing. Other advantages concern with the possibility to be used
even in the presence of unfavorable environmental conditions such as noise, strong electro‐
magnetic fields, high voltages, nuclear radiation, for explosive or chemically corrosive media,
and at high temperatures.

Substantially, PCFs are fused-silica optical fibers characterized by a hollow or silica core
surrounding by a regular pattern of voids running along the fiber axis, as sketched in Fig. 30
below.

In particular, it is possible to appreciate the difference among PCFs, as in Fig. 24(a-b), with
respect to conventional single mode fibers (SMFs), as in Fig. 24(c). In particular, propagation
properties in conventional optical fibers and PCFs can be tuned by properly designing
geometrical parameters, such as the hole diameter indicated with h, the fiber core diameter d,
the pitch x (i.e., the distance between the center points of two consecutive holes), the fiber
length L and, obviously, materials.

In PCFs, light can be guided by two different mechanisms, i.e., index-guiding or bandgap-
guiding, as a function of the principle of the light confinement (Buczynski, 2004). In particular,
in PCFs characterized by a solid core or by a core with a refractive index higher than the micro-
structured cladding’s one, light is guided as in conventional silica fibers (i.e, doped silica core
surrounded by the silica cladding). In fact, light propagates in the high refractive index region
by the total internal reflection (TIR) principle at the interface between the core and the low
refractive index cladding. In addition, air holes periodically arranged over the fiber cross-
section characterize the micro-structured silica cladding, resulting in an effective cladding
index. Consequently, the TIR at the core-cladding interface is known as modified TIR and it
can occur with very low core-cladding refractive index (RI) contrasts, enabling the fabrication
of both core and cladding by the same material.
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On the contrary, by surrounding the fiber low index core (i.e., hollow core) with a photonic
crystal structure, it is possible to localize light in the fiber core by the photonic bandgap effect
(Barkou et al., 1999). Consequently, only those wavelengths that do not fall within the photonic
crystal stop band, can be confined in the core and propagate along the optical fiber. In this
way, the TIR principle does not occur and the fiber core can be characterized by a RI lower
than the cladding’s one, making these optical fibers very suitable for sensing applications. In
conclusion, hybrid PCF have also been theoretically and experimentally demonstrated,
revealing the possibility of guiding light through simultaneous photonic bandgap-guiding and
modified TIR (Xiao et al., 2007).

In both index-guiding and bandgap-guiding PCFs, the sensing mechanism consists in
changing fiber optical properties (i.e., cladding effective refractive index) by filling air holes
with chemical/biochemical liquids or gases. In this way, the interaction between the propa‐
gating light and the analyte to be detected is improved as it is not possible to achieve with
standard optical fibers, where the sensible area is realized by removing the cladding from the
fibers and directly exposing the fiber core to cover medium where the sample is concentrated.

From a technological point of view, it is possible to highlight the flexibility of the modeling
and design of PCFs with respect to conventional SMFs. In fact, in a SMF the only parameter
to take into account is the core diameter, while in a PCF there are three physical parameters
to be properly set: the core diameter (which for solid core PCF is defined as the diameter of
the ring formed by the innermost air holes), the diameter of the air holes of the cladding d and
the pitch Λ. These three physical parameters, in combination with the choice of the refractive
index of the material and the type of lattice, make the fabrication of PCFs very flexible and
open up the possibility to manage its properties leading to a freedom of design not possible
with common fibers.

In addition, the principal method of fabrication of PCF is the so called multiple thinning
(Buczynski, 2004). In summary, the method consists of four fundamental steps: creation of
individual capillaries, formation of the preform, drawing of intermediate preform, and finally,

Figure 24. Schematic of (a) solid core PCF, (b) hollow core PCF, and (c) conventional SMF.
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drawing of the final fiber. In particular, in the last step extra layers of polymer are usually
added to create a coating protecting the fiber mechanically.

PCFs have been widely used in sensing applications because of their ultra-high sensitivity,
selectivity and immunity to optical noise and to external interferences. According to an
exhaustive review on PCF sensors already published (Pinto et al., 2012), it is convenient to
distinguish between physical and biochemical PCF-based sensors. In particular, physical PCF
sensors are designed and implemented for measuring and monitoring physical parameters
such as temperature, strain, refractive index, pressure, electromagnetic field, vibration, to be
named. Moreover, PCF-based chemical and biochemical sensors are usually employed for gas
sensing (e.g, acetylene, methane, oxygen), molecular and protein detection, humidity and pH
monitoring.

3.1. Photonic crystal fiber sensors for physical sensing

In this paragraph, PCF sensors are investigated in detail, focusing on design criteria and
measurement setups usually employed in sensing procedures. To this purpose, by firstly
considering the class of PCF physical sensors, an highly sensitive torsion sensor has been
experimentally demonstrated by incorporating a segment of novel side-leakage PCF (Chen et
al., 2011). In Fig. 25, the cross-section of the fabricated PCF and the relevant experimental setup
are sketched.

Figure 25. Schematics of the (a) Ge-doped PCF cross-section and (b) of the experimental setup for torsion sensing.

The fiber is characterized by a 125 μm cladding diameter. The elliptical Ge-doped core, adopted
to introduce the fiber birefringence, is characterized by the major diameter of 4 μm while the
minor one is equal to 2.88 μm. Moreover, the diameter and the pitch of air holes are ~ 5.48 μm
and ~ 8.06 μm, respectively. The experimental setup equipped for torsion sensing is based on
the Sagnac interferometer. In particular, it is composed by an optical source, a 3dB coupler that
splits input light in two distinct optical signals counter-propagating in the Sagnac loop and by
a polarization controller (PC), used for the interferometer optimization. In addition, a 14.85-
cm-length segment of side-leakage photonic crystal fiber is incorporated in the Sagnac loop.
As sketched in Fig. 31, one of the optical fiber extremity is fixed while the other one is not

Advances in Photonic Crystals270

bounded, thus it can be twisted in clockwise and counter-clockwise directions. Finally, an
optical spectrum analyzer (OSA) is adopted for monitoring the output spectrum.

When the fiber is twisted, the linear defect can induce different mechanical stresses to the
elliptical Ge-doped core. The combination effects of the torsion-induced circular birefringence
and the intrinsic birefringence of the PCF fiber, generate an elliptical birefringence. Conse‐
quently, the elliptical birefringence is proportional to the torsion angle, and its rotary direction
is determined by the torsion direction. In fact, when the PCF is twisted clockwise, the elliptical
birefringence is right-rotary, on the contrary it is left-rotary when the fiber is twisted in the
opposite direction. Finally, the torsion-induced wavelength shift Δλ characterizing the sensor
transmission spectrum can be estimated by using the following expression:

tbl lh tD = D (15)

where λ is the operative wavelength, η is the circle birefringence ratio of the torsion-induced
circle birefringence to the sum of the fiber birefringence, bt is a constant that described the
torsion-induced variation of the circle birefringence, and Δτ is the torsion angle. Moreover,
the wavelength shift Δλ is negative when the fiber is twisted clockwise, whereas it is positive
when the fiber is twisted counter-clockwise.

Interesting results have been experimentally demonstrated with the PCF-based sensor
described until now. In particular, a maximum torsion sensitivity of about 0.9354 nm/° has
been achieved with a torsion angle measurement error due to the temperature effect of about
0.054 ~ 0.178 °/°C.

Generally, PCF sensors are designed to be strain and temperature independent. To this
purpose, temperature insensitivity can be achieved by engineering the fiber composition and
geometry. Otherwise, it can be contemplated the use of fiber Bragg grating (FBG) or long period
grating (LPG) in the measurement setup, but making the sensor architecture complicated and
costly (Gong et al., 2010).

A PCF-based modal interferometric torsion sensor has been investigated and experimentally
tested according to the experimental setup sketched in Fig. 26 (Nalawade et al., 2012).

Figure 26. Schematic of the experimental setup (Nalawade et al., 2012).

The measurement setup consists in a broadband source (BBS), a multi-mode optical fiber for
guiding the signal to the PCF and a single-mode fiber (SMF) for collecting the signal to the
OSA. A torsion sensitivity of about 79.83 pm/° has been achieved in the dynamic range of 180°.
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In addition, strain and temperature effects on torsion sensitivity have been demonstrated to
be negligible in the range 0÷4500 με and 30÷200 °C, revealing very high performance. In
conclusion, sensing performance described above and other intriguing experimental results
such as a torsion sensitivity of 1 nm/° with a temperature sensitivity of -0.5 pm/°C in the range
30÷100 °C (Zu et al., 2011), suggest PCF-based sensors as good candidates for torsion sensing.

PCFs have been widely used in industry and reservoir engineering for monitoring fundamen‐
tal parameters such as temperature and pressure. To this purpose, high performance have been
theoretically demonstrated by using a PCF-based sensor, as in Fig. 27 (Padidar et al., 2012):

Figure 27. (a) Cross section of the PCF fiber and (b) schematic of the PCF-based pressure/temperature sensor.

As sketched in Fig. 27(a), the PCF cross section is characterized by air holes properly designed
and periodically surrounding the inner hollow core. Consequently, this device has been
designed for operating by the band-gap guiding principle, making the sensor proposed
extremely selective in terms of operative wavelength. According to Fig. 27(b), the PCF
described until now is fixed in a chamber filled with a specific gas. Moreover, left fiber tip
receives input light at λ = 1.55 μm emitted by a laser source and the remaining tip guides the
propagating light at the photo-detector (PD).

The sensor mechanism is based on the transmission peak wavelength shift induced by the
temperature/pressure changes. In particular, it is needed to distinguish between the pressure
and temperature sensing principle. In fact, when the sensor is used for pressure measurement,
a mechanical piston (see Fig. 33b) can move due to pressure of oil well environmental. This
causes the chamber gas to be compressed in high pressure or be dispersed in low pressure.
Consequently, the refractive index of the specific gas filling PCF holes changes leading to a
variation of photonic band gap and fundamental modes of PCF. Moreover, the wavelength
sensitivity expressed in nm/RIU and previously defined in Eq. (4) can be applied also in this
kind of PCF sensing application, indicating analogous sensing performance.

The mechanical piston is not yet used when the PCF-based sensor operates as temperature
sensor. In particular, thermal gradients induce gas RI changes and, consequently, operative
wavelength shifts, according to Eq. (4). Obviously, the filling gas has to be properly chosen
such as its thermo-optic coefficient is high enough for ensuring appreciable sensitivity. This
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approach is used also for making the temperature effects negligible when the sensor is used
for pressure monitoring. In fact, the filling gas is chosen such as its thermo-optic coefficient
has opposite sign with respect to the silica’s one. In this way, silica and gas RI changes due to
temperature influences can be properly compensated, resulting in the possibility of completely
removing temperature effects.

In conclusion, the optimized PCF-based sensor architecture, characterized by a PCF with a
length of 0.25-mm, exhibits a sensitivity of about 480 nm/RIU.

Several measurement setups based on PCFs have been widely investigated for optimizing
pressure sensing performance. In particular, one of the most popular is the polarimetric
measurement. This principle consists in monitoring the light intensity at the sensor output,
modulated by the effect of applied pressure. In particular, by using input and output linear
polarizers it is possible to control the passage of only certain orientations of plane polarized
light, properly set by the input polarizer. Polarization changes induced by pressure influence,
alter the current state of light polarization proportionally to the pressure strength. Conse‐
quently, if the state of polarization at the sensor output is not equal to that of the output
polarizer, propagation of light is inhibited resulting in a light intensity reduction.

In this contest, an intensity measurement of pressure variation has been demonstrated,
resulting in a device sensitivity of 2.34×10-6 MPa-1 (Gahir et al., 2007). In addition, a high
birefringence photonic crystal fiber (Hi-Bi PCF) has been designed and fabricated for realizing
an hydrostatic pressure sensor based on a bidirectional modal interferometer, as sketched in
Fig. 28 (Favero et al., 2010).

Figure 28. (a) Unidirectional and (b) bidirectional polarimetric measurement scheme used for pressure sensing.
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conclusion, sensing performance described above and other intriguing experimental results
such as a torsion sensitivity of 1 nm/° with a temperature sensitivity of -0.5 pm/°C in the range
30÷100 °C (Zu et al., 2011), suggest PCF-based sensors as good candidates for torsion sensing.

PCFs have been widely used in industry and reservoir engineering for monitoring fundamen‐
tal parameters such as temperature and pressure. To this purpose, high performance have been
theoretically demonstrated by using a PCF-based sensor, as in Fig. 27 (Padidar et al., 2012):

Figure 27. (a) Cross section of the PCF fiber and (b) schematic of the PCF-based pressure/temperature sensor.

As sketched in Fig. 27(a), the PCF cross section is characterized by air holes properly designed
and periodically surrounding the inner hollow core. Consequently, this device has been
designed for operating by the band-gap guiding principle, making the sensor proposed
extremely selective in terms of operative wavelength. According to Fig. 27(b), the PCF
described until now is fixed in a chamber filled with a specific gas. Moreover, left fiber tip
receives input light at λ = 1.55 μm emitted by a laser source and the remaining tip guides the
propagating light at the photo-detector (PD).

The sensor mechanism is based on the transmission peak wavelength shift induced by the
temperature/pressure changes. In particular, it is needed to distinguish between the pressure
and temperature sensing principle. In fact, when the sensor is used for pressure measurement,
a mechanical piston (see Fig. 33b) can move due to pressure of oil well environmental. This
causes the chamber gas to be compressed in high pressure or be dispersed in low pressure.
Consequently, the refractive index of the specific gas filling PCF holes changes leading to a
variation of photonic band gap and fundamental modes of PCF. Moreover, the wavelength
sensitivity expressed in nm/RIU and previously defined in Eq. (4) can be applied also in this
kind of PCF sensing application, indicating analogous sensing performance.

The mechanical piston is not yet used when the PCF-based sensor operates as temperature
sensor. In particular, thermal gradients induce gas RI changes and, consequently, operative
wavelength shifts, according to Eq. (4). Obviously, the filling gas has to be properly chosen
such as its thermo-optic coefficient is high enough for ensuring appreciable sensitivity. This
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approach is used also for making the temperature effects negligible when the sensor is used
for pressure monitoring. In fact, the filling gas is chosen such as its thermo-optic coefficient
has opposite sign with respect to the silica’s one. In this way, silica and gas RI changes due to
temperature influences can be properly compensated, resulting in the possibility of completely
removing temperature effects.

In conclusion, the optimized PCF-based sensor architecture, characterized by a PCF with a
length of 0.25-mm, exhibits a sensitivity of about 480 nm/RIU.

Several measurement setups based on PCFs have been widely investigated for optimizing
pressure sensing performance. In particular, one of the most popular is the polarimetric
measurement. This principle consists in monitoring the light intensity at the sensor output,
modulated by the effect of applied pressure. In particular, by using input and output linear
polarizers it is possible to control the passage of only certain orientations of plane polarized
light, properly set by the input polarizer. Polarization changes induced by pressure influence,
alter the current state of light polarization proportionally to the pressure strength. Conse‐
quently, if the state of polarization at the sensor output is not equal to that of the output
polarizer, propagation of light is inhibited resulting in a light intensity reduction.

In this contest, an intensity measurement of pressure variation has been demonstrated,
resulting in a device sensitivity of 2.34×10-6 MPa-1 (Gahir et al., 2007). In addition, a high
birefringence photonic crystal fiber (Hi-Bi PCF) has been designed and fabricated for realizing
an hydrostatic pressure sensor based on a bidirectional modal interferometer, as sketched in
Fig. 28 (Favero et al., 2010).

Figure 28. (a) Unidirectional and (b) bidirectional polarimetric measurement scheme used for pressure sensing.
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In Fig. 28, it is possible to appreciate the difference between a conventional unidirectional
polarimetric measurement scheme, Fig. 28(a), and a bidirectional one, Fig. 28(b). In particular,
in the latter one only one polarizer (P) is used in combination with a polarization controller
(PC). In the scheme proposed by Favero et al., two orthogonally polarized modes of a high
birefringence PCF generate fringes over the optical spectrum of a BBS. In particular, the phase
difference between the two modes, indicated with φ, depends on the hydrostatic pressure P,
the sensor length L, and the wavelength λ, according to the following expression, being B the
phase modal birefringence:

( ) ( )4, , ,LP L B Ppj l l
l

= (16)

In conclusion, the wavelength measurement of pressure has been numerically and experi‐
mentally demonstrated, revealing a sensitivity of 3.38 nm/MPa with an operating limit of 92
MPa.

Polarimetric measurement sensor schemes have been also adopted for temperature sensing.
To this purpose, a Hi-Bi PCF has been used for a polarimetric interrogation revealing a
sensitivity of 0.136 rad/°C at the operative wavelength of 1310 nm (Ju et al., 2006).

PCFs represent an intriguing and efficient alternative to conventional electrical (E-Field) and
magnetic field (H-Field) sensors such as antennas, metal connections and conductive electro‐
des. The most important advantages of PCF-based E- and H-Field sensors over conventional
ones are their immunity to electromagnetic interferences (apart from the sensor head),
dielectric isolation between the sensor and the interrogation system and the capability to be
used in harmful and remote locations.

To this purpose, an all-fiber sensor based on a nematic liquid crystal infiltrated photonic crystal
fiber has been demonstrated as a directional E-Field sensor (Mathews et al., 2011a). In partic‐
ular, a 1mm-long infiltrated polarization maintaining photonic crystal fiber (PMPCF) is used
as sensor head. The length of the infiltrated section of the PCF, subjected to electric field, is
initially optimized to have a monolithically varying polarized transmission response with
electric field intensity change at 1550 nm. On selective infiltration of the two large holes
characterizing the PMPCF, the birefringence of the fiber is set by the refractive indices of the
nematic liquid crystal mixture, which vary as its molecules re-orientate on the application of
electric field.

The transmitted intensity of the linearly polarized light with the direction of polarization at
45° with respect to the PCF polarization axis, is given by the following expression:
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where Φ0 and I0 are the inherent phase retardances due to the infiltrated PMPCF and the light
intensity in the absence of field, respectively. The field induced phase retardance can be
expressed as follows:

( )/E E EppF = D (18)

where Eπ is the sensor characterization term, which is inversely proportional to the infiltration
length. Finally, interesting performance have been experimentally demonstrated such as an
angular sensitivity of the PMPCF orientation with respect to the electric field as -0.07 dB/degree
at a fixed electric field intensity of 3.67 kVrms/mm. The sensor sensitivity to E-fields oriented
parallel to the PCF polarization axis is the highest.

A polarimetric sensing scheme with selectively liquid-core infiltrated Hi-Bi PCF has been
demonstrated for E-field sensing, exhibiting a sensitivity of ~ 2 dB per kVrms/mm (Mathews et
al., 2011b).

In conclusion, an H-Field sensor based on Terfenol coated PCF has been fabricated and
experimentally tested (Quintero et al., 2011). In this context, the Faraday effect is generally
used for detecting and monitoring electric field current using optical fibers. In particular, the
light polarization rotation can be expressed as a function of the magnetic flux B, the interaction
length d of the propagating optical field and the magnetic field to be sensed, and of the Verdet’s
constant υ as in the following equation:

Bdb n= (19)

It is intuitive that, for enhancing the light polarization rotation induced by the H-Field, it is
possible to increase the fiber length or using fiber materials characterized by an higher Verdet’s
constant. The first approach is generally avoided because of the necessity of realizing optical
compact sensors preventing, at the same time, high propagation losses. The second approach
can be obtained by using some soft glasses for fiber optic fabrication, with the disadvantage
of being mechanically fragile and temperature sensible. To this purpose, an intriguing
alternative is represented by the use of Terfenol particles into optical fibers because of their
high magnetostriction properties. In particular, the H-Field sensors proposed by Quintero et
al., consists in a HiBi PCF made by a magnetostrictive composite using Terfenol particles with
size of 250 μm and a cycloaliphatic epoxy resin with a 30 % volume fraction of Terfenol-D.

In Fig. 29, the measurement setup employed for H-Field sensing is sketched.

The proposed PCF sensor is based on a modal interferometer, where the phase difference
between the two orthogonally polarized fiber modes along the optical path generates fringes
over a broadband propagation spectrum. By exposing the sensor head to a magnetic field, the
magnetostrictive composite changes size, resulting in a conversion of the magnetic energy into
a mechanical strain. In particular, the composite deformation causes changes of the cavity
length and of the effective RI of the propagating light. Consequently, the number of fringes as
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In Fig. 28, it is possible to appreciate the difference between a conventional unidirectional
polarimetric measurement scheme, Fig. 28(a), and a bidirectional one, Fig. 28(b). In particular,
in the latter one only one polarizer (P) is used in combination with a polarization controller
(PC). In the scheme proposed by Favero et al., two orthogonally polarized modes of a high
birefringence PCF generate fringes over the optical spectrum of a BBS. In particular, the phase
difference between the two modes, indicated with φ, depends on the hydrostatic pressure P,
the sensor length L, and the wavelength λ, according to the following expression, being B the
phase modal birefringence:
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In conclusion, the wavelength measurement of pressure has been numerically and experi‐
mentally demonstrated, revealing a sensitivity of 3.38 nm/MPa with an operating limit of 92
MPa.

Polarimetric measurement sensor schemes have been also adopted for temperature sensing.
To this purpose, a Hi-Bi PCF has been used for a polarimetric interrogation revealing a
sensitivity of 0.136 rad/°C at the operative wavelength of 1310 nm (Ju et al., 2006).

PCFs represent an intriguing and efficient alternative to conventional electrical (E-Field) and
magnetic field (H-Field) sensors such as antennas, metal connections and conductive electro‐
des. The most important advantages of PCF-based E- and H-Field sensors over conventional
ones are their immunity to electromagnetic interferences (apart from the sensor head),
dielectric isolation between the sensor and the interrogation system and the capability to be
used in harmful and remote locations.

To this purpose, an all-fiber sensor based on a nematic liquid crystal infiltrated photonic crystal
fiber has been demonstrated as a directional E-Field sensor (Mathews et al., 2011a). In partic‐
ular, a 1mm-long infiltrated polarization maintaining photonic crystal fiber (PMPCF) is used
as sensor head. The length of the infiltrated section of the PCF, subjected to electric field, is
initially optimized to have a monolithically varying polarized transmission response with
electric field intensity change at 1550 nm. On selective infiltration of the two large holes
characterizing the PMPCF, the birefringence of the fiber is set by the refractive indices of the
nematic liquid crystal mixture, which vary as its molecules re-orientate on the application of
electric field.

The transmitted intensity of the linearly polarized light with the direction of polarization at
45° with respect to the PCF polarization axis, is given by the following expression:
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where Φ0 and I0 are the inherent phase retardances due to the infiltrated PMPCF and the light
intensity in the absence of field, respectively. The field induced phase retardance can be
expressed as follows:

( )/E E EppF = D (18)

where Eπ is the sensor characterization term, which is inversely proportional to the infiltration
length. Finally, interesting performance have been experimentally demonstrated such as an
angular sensitivity of the PMPCF orientation with respect to the electric field as -0.07 dB/degree
at a fixed electric field intensity of 3.67 kVrms/mm. The sensor sensitivity to E-fields oriented
parallel to the PCF polarization axis is the highest.

A polarimetric sensing scheme with selectively liquid-core infiltrated Hi-Bi PCF has been
demonstrated for E-field sensing, exhibiting a sensitivity of ~ 2 dB per kVrms/mm (Mathews et
al., 2011b).

In conclusion, an H-Field sensor based on Terfenol coated PCF has been fabricated and
experimentally tested (Quintero et al., 2011). In this context, the Faraday effect is generally
used for detecting and monitoring electric field current using optical fibers. In particular, the
light polarization rotation can be expressed as a function of the magnetic flux B, the interaction
length d of the propagating optical field and the magnetic field to be sensed, and of the Verdet’s
constant υ as in the following equation:

Bdb n= (19)

It is intuitive that, for enhancing the light polarization rotation induced by the H-Field, it is
possible to increase the fiber length or using fiber materials characterized by an higher Verdet’s
constant. The first approach is generally avoided because of the necessity of realizing optical
compact sensors preventing, at the same time, high propagation losses. The second approach
can be obtained by using some soft glasses for fiber optic fabrication, with the disadvantage
of being mechanically fragile and temperature sensible. To this purpose, an intriguing
alternative is represented by the use of Terfenol particles into optical fibers because of their
high magnetostriction properties. In particular, the H-Field sensors proposed by Quintero et
al., consists in a HiBi PCF made by a magnetostrictive composite using Terfenol particles with
size of 250 μm and a cycloaliphatic epoxy resin with a 30 % volume fraction of Terfenol-D.

In Fig. 29, the measurement setup employed for H-Field sensing is sketched.

The proposed PCF sensor is based on a modal interferometer, where the phase difference
between the two orthogonally polarized fiber modes along the optical path generates fringes
over a broadband propagation spectrum. By exposing the sensor head to a magnetic field, the
magnetostrictive composite changes size, resulting in a conversion of the magnetic energy into
a mechanical strain. In particular, the composite deformation causes changes of the cavity
length and of the effective RI of the propagating light. Consequently, the number of fringes as
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well as the distance between consecutive fringes will change, both depending on the cavity
length and effective index. In conclusion, experimental results evidence how the optical
spectrum shifts towards longer wavelengths as the magnetic field increases, exhibiting a
sensitivity of 0.006 nm/mT over a range extended from 0 to 300 mT, with a resolution of about
±1 mT.

Nowadays, strain monitoring represents a very important sensing approach in several
application areas such as aeronautics, metallurgy, health monitoring of complex structures, to
name a few. Recently, a novel strain sensor has been experimentally demonstrated (Hu et al.,
2012). In particular, the sensor is based on a modified PCF-based MZI characterized by three
collapsed regions, as sketched in Fig. 30.

Figure 30. Schematic of the PCF-based MZI strain sensor.

The main advantage of using the modified PCF-based MZI configuration over the conventional
MZI scheme, consists in a significantly enhanced extinction ratio of the transmission spectrum,
resulting in an increased measurement accuracy. In collapsed regions (CR), realized by
collapsing air holes with heat-treatment (Magi et al., 2005), the PCF is not a SMF because there
is not any core-cladding structure. A part of the optical beam coming from the core of the lead-
in SMF will be coupled into cladding modes in CR1. Then, the two beams propagating along
the core and cladding of the PCF will combine and interfere in the collapsed regions CR3 and
CR2, successively. Therefore, the modified PCF-MZI is actually a combined one with two

Figure 29. Schematic of the measurement setup of the magnetic field sensor.
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cascaded MZIs (indicated with MZI1 and MZI2). Consequently, the interference takes place
two times resulting in a higher extinction ratio at the lead-out SMF with respect to the
conventional PCF-MZI.

In particular, at the end of the second MZI (i.e., MZI2), the transmission spectrum can be
expressed as follows:

2
2 1MZI MZIT kT= (20)

where k is the factor that describes the insertion loss of the transmission light at CR3 and TMZI1

is the total intensity of the transmission from MZI1, equal to:
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where E0, Ei, and Ej are the magnitudes of electric field of the core mode and the ith- and jth-
order cladding mode of the PCF in MZI1, respectively. Moreover, n0, ni, and nj are the effective
indices of the core mode, the ith- and jth-order cladding mode of the PCF in MZI1, respectively.
Finally, L is the physical length of the MZI1 and MZI2 (overall PCF length ~ 9.2 cm, CR1 length
= CR2 length = 135 μm and CR3 length = 291 μm), and λ is the operating wavelength of the
optical source.

When an axial strain is applied on the total length of the PCF, the physical length of each cavity
will change, and the effective RI for each mode of the PCF will change due to the photoelastic
effect, too. Consequently, the phase differences of MZI1 and MZI2 change due to the applied
strain and a wavelength shift of the interference patters can be observed.

In conclusion, the sensor described above exhibits a sensitivity as high as 11.22 dB/mε over a
range of 1.28 mε and high-temperature stability (i.e., 0.0015 nm/°C and 0.009 dBm/°C).

A birefringent interferometer configured by a polarization-maintaining photonic crystal fiber
(PM-PCF), has been proposed for temperature-insensitive strain measurement (Han, 2009).
The strain sensor exhibits a sensitivity of 1.3 pm/με in a strain range extended from 0 to 1600
με and a LOD for strain measurement as low as 2.1 με. In conclusion, the measured temper‐
ature sensitivity is -0.3 pm/°C.

3.2. Photonic crystal fiber for biochemical sensing

The review on PCF sensors is completed by focusing on the class of chemical and biochemical
PCF-based sensors.

PCFs are very suitable for chemical and biochemical sensing because of several unique
features. In particular, in a micro-structured optical fiber the hollow core and air holes
characterizing the cladding section, can be properly filled with liquid solutions or gases by
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well as the distance between consecutive fringes will change, both depending on the cavity
length and effective index. In conclusion, experimental results evidence how the optical
spectrum shifts towards longer wavelengths as the magnetic field increases, exhibiting a
sensitivity of 0.006 nm/mT over a range extended from 0 to 300 mT, with a resolution of about
±1 mT.

Nowadays, strain monitoring represents a very important sensing approach in several
application areas such as aeronautics, metallurgy, health monitoring of complex structures, to
name a few. Recently, a novel strain sensor has been experimentally demonstrated (Hu et al.,
2012). In particular, the sensor is based on a modified PCF-based MZI characterized by three
collapsed regions, as sketched in Fig. 30.

Figure 30. Schematic of the PCF-based MZI strain sensor.

The main advantage of using the modified PCF-based MZI configuration over the conventional
MZI scheme, consists in a significantly enhanced extinction ratio of the transmission spectrum,
resulting in an increased measurement accuracy. In collapsed regions (CR), realized by
collapsing air holes with heat-treatment (Magi et al., 2005), the PCF is not a SMF because there
is not any core-cladding structure. A part of the optical beam coming from the core of the lead-
in SMF will be coupled into cladding modes in CR1. Then, the two beams propagating along
the core and cladding of the PCF will combine and interfere in the collapsed regions CR3 and
CR2, successively. Therefore, the modified PCF-MZI is actually a combined one with two

Figure 29. Schematic of the measurement setup of the magnetic field sensor.
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cascaded MZIs (indicated with MZI1 and MZI2). Consequently, the interference takes place
two times resulting in a higher extinction ratio at the lead-out SMF with respect to the
conventional PCF-MZI.

In particular, at the end of the second MZI (i.e., MZI2), the transmission spectrum can be
expressed as follows:
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where k is the factor that describes the insertion loss of the transmission light at CR3 and TMZI1

is the total intensity of the transmission from MZI1, equal to:
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where E0, Ei, and Ej are the magnitudes of electric field of the core mode and the ith- and jth-
order cladding mode of the PCF in MZI1, respectively. Moreover, n0, ni, and nj are the effective
indices of the core mode, the ith- and jth-order cladding mode of the PCF in MZI1, respectively.
Finally, L is the physical length of the MZI1 and MZI2 (overall PCF length ~ 9.2 cm, CR1 length
= CR2 length = 135 μm and CR3 length = 291 μm), and λ is the operating wavelength of the
optical source.

When an axial strain is applied on the total length of the PCF, the physical length of each cavity
will change, and the effective RI for each mode of the PCF will change due to the photoelastic
effect, too. Consequently, the phase differences of MZI1 and MZI2 change due to the applied
strain and a wavelength shift of the interference patters can be observed.

In conclusion, the sensor described above exhibits a sensitivity as high as 11.22 dB/mε over a
range of 1.28 mε and high-temperature stability (i.e., 0.0015 nm/°C and 0.009 dBm/°C).

A birefringent interferometer configured by a polarization-maintaining photonic crystal fiber
(PM-PCF), has been proposed for temperature-insensitive strain measurement (Han, 2009).
The strain sensor exhibits a sensitivity of 1.3 pm/με in a strain range extended from 0 to 1600
με and a LOD for strain measurement as low as 2.1 με. In conclusion, the measured temper‐
ature sensitivity is -0.3 pm/°C.

3.2. Photonic crystal fiber for biochemical sensing

The review on PCF sensors is completed by focusing on the class of chemical and biochemical
PCF-based sensors.

PCFs are very suitable for chemical and biochemical sensing because of several unique
features. In particular, in a micro-structured optical fiber the hollow core and air holes
characterizing the cladding section, can be properly filled with liquid solutions or gases by
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using micropumps or particular syringes. In addition, by functionalizing inner walls of voids
and hollow core, it is possible to selectively immobilize chemical analytes into the optical
device enhancing, in this way, the light-matter interaction. The great overlapping between the
propagating optical signal and the analyte to be detected, can be further enhanced by designing
PCFs with long interaction lengths. Another important feature of PCFs is their flexibility that
allows to employ these sensors for advanced chemical remote sensing.

In the following, different sensing principles adopted in PCF-based sensing are described,
focusing on sensor architectures and technologies used for PCFs fabrication.

To this purpose, resonant chemical and biochemical sensors based on low-RI-contrast liquid-
core Bragg fibers have been experimentally demonstrated revealing ultra high performance
(Qu & Skorobogatiy, 2011). In Fig. 31, the cross section of the Bragg fiber designed and
fabricated for chemical and biochemical sensing, is sketched. In particular, the Bragg grating
has been realized surrounding the hollow core by a periodic sequence of high and low
refractive index layers. In this case, a water filled core (nWater = 1.33) is surrounded by a periodic
multilayer of polymethyl methacrylate (PMMA) and polystyrene (PS), whose RIs are nPMMA =
1.487 and nPS = 1.581 at the operative wavelength λ = 650 nm, respectively.

Figure 31. Cross section of the PMMA/Ps Bragg fiber designed for chemical and biochemical sensing.

The Bragg grating is properly designed in order to exhibit a central Bragg center wavelength
λC depending on optical and geometrical properties of the periodic multilayer, as reported in
the equation below:
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where dh and dl are the thickness of the low (nl) and high (nh) index layer in the Bragg reflector,
and nc is the refractive index of the liquid filled core. In the sensor proposed, dh = 0.13 μm, dl =
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0.37 μm, the number of bi-layers in the Bragg reflector is approximately 25, while refractive
indices have been previously indicated in Fig. 31.

The PCF-based sensor has been experimentally tested by filling the hollow core with sodium
chloride (NaCl) solutions of different concentrations. In particular, refractive indices of several
NaCl solutions as a function of NaCl weight concentrations (wt.%) have been evaluated for
accurate calculation (i.e., wt% = 0, 5, 10, 15, 20, 25 and corresponding RIs 1.333, 1.342, 1.351,
1.359, 1.368, 1.378).

As the NaCl concentration increases in water solution, the overall refractive index nc propor‐
tionally increases, too. Consequently, by observing Eq. (22), it is evident that the Bragg center
wavelength λc decreases, resulting in a measurable wavelength shift in the transmission
spectra of the Bragg fiber. The sensor described until now exhibits an experimental sensitivity
of ~1400 nm/RIU, defined as in Eq. (4) for homogeneous sensing. In addition, the sensor has
been tested also for surface sensing by detecting changes in thicknesses of thin layers deposited
directly on the inner surface of the fiber core. In particular, by coating a thin layer, the localized
refractive index near fiber inner surface changes, resulting in the modification of resonance
guidance of the Bragg fiber, thus to the resonant wavelength shift in the Bragg fiber transmis‐
sion. Moreover, if da is the thickness of the coated layer, the surface wavelength sensitivity can
be calculated as in Eq. (23):
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The presence of a 3.8-μm thick layer of sucrose solution leads to a 3.5 nm red shift of the
transmission spectrum with respect to the initial position referred to a water-filled fiber
without a sucrose layer. In conclusion, a moderate sensitivity Sλ,S ≈ 0.9 nm/μm results due to
poor overlap between core guided modes and the coated layer.

A PCF has been demonstrated as chemical sensor by selectively coating the fiber core with thin
film containing fluorescent probe (Peng et al., 2009). The Sol-Gel method has been applied for
chemical sensor functionalization. The acetylcholinesterase sensor has been experimentally
tested for monitoring organophosphorus pesticide residue, revealing interesting performance.
In particular, in organic pesticide parathion (PIC) and paraoxonase (Paraoxon) determination,
the linear measurements ranges could arrive to 1×10-9 ÷ 1×10-3 mol/L with a detection limit up
to 10-10 mol/L. In conclusion, authors suggest the PCF sensor for several application areas, such
as biological/chemical research, clinical medicine, environmental protection, food inspection
and preventive war biochemical fields.

A PCF interferometer operating in reflection mode has been proposed for humidity detection
(Mathew et al., 2010). Generally, hygroscopic materials are required for this application field
including meteorological services, air-conditioning, electronic processing, to name a few. The
innovative aspect that characterized the PCF sensor proposed above, consists in the use of all-
glass fiber optic based device, without using polymers or particular hygroscopic coatings.
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using micropumps or particular syringes. In addition, by functionalizing inner walls of voids
and hollow core, it is possible to selectively immobilize chemical analytes into the optical
device enhancing, in this way, the light-matter interaction. The great overlapping between the
propagating optical signal and the analyte to be detected, can be further enhanced by designing
PCFs with long interaction lengths. Another important feature of PCFs is their flexibility that
allows to employ these sensors for advanced chemical remote sensing.

In the following, different sensing principles adopted in PCF-based sensing are described,
focusing on sensor architectures and technologies used for PCFs fabrication.

To this purpose, resonant chemical and biochemical sensors based on low-RI-contrast liquid-
core Bragg fibers have been experimentally demonstrated revealing ultra high performance
(Qu & Skorobogatiy, 2011). In Fig. 31, the cross section of the Bragg fiber designed and
fabricated for chemical and biochemical sensing, is sketched. In particular, the Bragg grating
has been realized surrounding the hollow core by a periodic sequence of high and low
refractive index layers. In this case, a water filled core (nWater = 1.33) is surrounded by a periodic
multilayer of polymethyl methacrylate (PMMA) and polystyrene (PS), whose RIs are nPMMA =
1.487 and nPS = 1.581 at the operative wavelength λ = 650 nm, respectively.

Figure 31. Cross section of the PMMA/Ps Bragg fiber designed for chemical and biochemical sensing.

The Bragg grating is properly designed in order to exhibit a central Bragg center wavelength
λC depending on optical and geometrical properties of the periodic multilayer, as reported in
the equation below:
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where dh and dl are the thickness of the low (nl) and high (nh) index layer in the Bragg reflector,
and nc is the refractive index of the liquid filled core. In the sensor proposed, dh = 0.13 μm, dl =
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0.37 μm, the number of bi-layers in the Bragg reflector is approximately 25, while refractive
indices have been previously indicated in Fig. 31.

The PCF-based sensor has been experimentally tested by filling the hollow core with sodium
chloride (NaCl) solutions of different concentrations. In particular, refractive indices of several
NaCl solutions as a function of NaCl weight concentrations (wt.%) have been evaluated for
accurate calculation (i.e., wt% = 0, 5, 10, 15, 20, 25 and corresponding RIs 1.333, 1.342, 1.351,
1.359, 1.368, 1.378).

As the NaCl concentration increases in water solution, the overall refractive index nc propor‐
tionally increases, too. Consequently, by observing Eq. (22), it is evident that the Bragg center
wavelength λc decreases, resulting in a measurable wavelength shift in the transmission
spectra of the Bragg fiber. The sensor described until now exhibits an experimental sensitivity
of ~1400 nm/RIU, defined as in Eq. (4) for homogeneous sensing. In addition, the sensor has
been tested also for surface sensing by detecting changes in thicknesses of thin layers deposited
directly on the inner surface of the fiber core. In particular, by coating a thin layer, the localized
refractive index near fiber inner surface changes, resulting in the modification of resonance
guidance of the Bragg fiber, thus to the resonant wavelength shift in the Bragg fiber transmis‐
sion. Moreover, if da is the thickness of the coated layer, the surface wavelength sensitivity can
be calculated as in Eq. (23):
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The presence of a 3.8-μm thick layer of sucrose solution leads to a 3.5 nm red shift of the
transmission spectrum with respect to the initial position referred to a water-filled fiber
without a sucrose layer. In conclusion, a moderate sensitivity Sλ,S ≈ 0.9 nm/μm results due to
poor overlap between core guided modes and the coated layer.

A PCF has been demonstrated as chemical sensor by selectively coating the fiber core with thin
film containing fluorescent probe (Peng et al., 2009). The Sol-Gel method has been applied for
chemical sensor functionalization. The acetylcholinesterase sensor has been experimentally
tested for monitoring organophosphorus pesticide residue, revealing interesting performance.
In particular, in organic pesticide parathion (PIC) and paraoxonase (Paraoxon) determination,
the linear measurements ranges could arrive to 1×10-9 ÷ 1×10-3 mol/L with a detection limit up
to 10-10 mol/L. In conclusion, authors suggest the PCF sensor for several application areas, such
as biological/chemical research, clinical medicine, environmental protection, food inspection
and preventive war biochemical fields.

A PCF interferometer operating in reflection mode has been proposed for humidity detection
(Mathew et al., 2010). Generally, hygroscopic materials are required for this application field
including meteorological services, air-conditioning, electronic processing, to name a few. The
innovative aspect that characterized the PCF sensor proposed above, consists in the use of all-
glass fiber optic based device, without using polymers or particular hygroscopic coatings.
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As sketched in Fig 32, the PCF interferometer consists in a BBS, an optical spectrum analyzer
(OSA), a SMF spliced to a stub of a pure silica PCF characterized by four rings of air holes
arranged in a hexagonal pattern. During splicing, air holes of the PCF are completely closed
resulting in a ~300-μm long collapsed region. The end section of the PCF represents the sensor
head to be exposed to humidity in a climate chamber. In particular, the PCF end facet is cleaved
so that the PCF behaves as a mirror. In this case, air holes are left open allowing humidity to
fill in resulting in optical properties changes.

Figure 32. Schematic of the humidity sensor based on PCF interferometer.

The fundamental SMF mode excited by the BBS propagates to the collapse region where the
excitation of two core modes occurs. These modes propagate to the cleaved PCF end facet, thus
they are reflected to the collapse region where they recombine forming again a SMF funda‐
mental mode. The recombination leads to an interference pattern whose interference peaks
shift as a function of the relative humidity (RH) values in the climate chamber (i.e., the
adsorption and desorption of H2O molecules at the air-glass interface within the PCF holes).
The sensitivity of the PCF interferometer sensor has been experimentally demonstrated to be
about 5.6 pm/%RH in the range extended from 40 to 70% RH. Moreover, the shift of the
interference pattern is most significant above 70% RH, exhibiting a sensitivity as high as ~ 24
pm/%RH.

The chemical functionalization of PCF sensors represent an efficient sensing technique for the
selective detection of particular analyte in chemical liquid samples properly injected in holes
or hollow core, depending on the particular PCF cross section. However, this sensing approach
generally requires the repetition of chemical treatments at every new measure process and the
change of the functionalizing chemistry as a function of the particular analyte to be sensed by
the PCF sensor. In this context, label-free PCF biosensor, in which biomolecules are unlabeled
or unmodified have achieved considerable attention. Moreover, label-free sensing allows to
preserve chemical properties of the specie to be detected, resulting in the possibility of
executing in vivo analysis in addition to common in vitro ones.
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In this context, a novel PCF-based low-index sensor has been theoretically investigated,
revealing ultra high performance (Sun et al., 2011). In Fig. 33, two examples of PCF cross
sections are sketched. Both PCFs are characterized by a two distinct cores. In particular, in PCF
named Fiber (a) there is a pure silica core and the other core is obtained by filling air holes with
liquid analyte (i.e., water with RI nWater = 1.33). In Fiber (b), the solid core is the same as that
previously described, while the other core is made with an enlarged analyte-filled hole.

Figure 33. Cross sections of the analyte-filled micro-structured dual-core PCF (a), and dual-core PCF with an enlarge
analyte-filled hole (b).

The resonant wavelength of the propagating optical mode can change as a function of the
liquid analyte refractive index. In particular, the sensor sensitivity can be estimated according
to Eq. (4). Moreover, performance results calculated by semi-vectorial beam propagation
method, are listed in Table 1.

Numerical results Fiber (a) Fiber (b)

Analyte refractive index 1.33 1.35 1.42 1.4

Sensitivity, S (nm/RIU) 8500 8750 12750 10750

Detection limit, DL (RIU) 2.02×10-6 1.54×10-6 2.94×10-7 4.75×10-6

Table 1. Sensing performance of microstructured optical fiber simulated by semi-vectorial beam propagation method.

In conclusion, ultra-sensitive microstructured optical fiber refractive index sensor described
until now, are able to detect liquid analyte characterized by a refractive index lower than that
of the background, thus extending their regime of operation to low index liquid sample such
as water.

An all-solid twin-core photonic bandgap fiber has been also designed and simulated for
refractive index sensing (Yuan et al., 2010). In particular, two solid cores are separated by a
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resulting in a ~300-μm long collapsed region. The end section of the PCF represents the sensor
head to be exposed to humidity in a climate chamber. In particular, the PCF end facet is cleaved
so that the PCF behaves as a mirror. In this case, air holes are left open allowing humidity to
fill in resulting in optical properties changes.

Figure 32. Schematic of the humidity sensor based on PCF interferometer.

The fundamental SMF mode excited by the BBS propagates to the collapse region where the
excitation of two core modes occurs. These modes propagate to the cleaved PCF end facet, thus
they are reflected to the collapse region where they recombine forming again a SMF funda‐
mental mode. The recombination leads to an interference pattern whose interference peaks
shift as a function of the relative humidity (RH) values in the climate chamber (i.e., the
adsorption and desorption of H2O molecules at the air-glass interface within the PCF holes).
The sensitivity of the PCF interferometer sensor has been experimentally demonstrated to be
about 5.6 pm/%RH in the range extended from 40 to 70% RH. Moreover, the shift of the
interference pattern is most significant above 70% RH, exhibiting a sensitivity as high as ~ 24
pm/%RH.

The chemical functionalization of PCF sensors represent an efficient sensing technique for the
selective detection of particular analyte in chemical liquid samples properly injected in holes
or hollow core, depending on the particular PCF cross section. However, this sensing approach
generally requires the repetition of chemical treatments at every new measure process and the
change of the functionalizing chemistry as a function of the particular analyte to be sensed by
the PCF sensor. In this context, label-free PCF biosensor, in which biomolecules are unlabeled
or unmodified have achieved considerable attention. Moreover, label-free sensing allows to
preserve chemical properties of the specie to be detected, resulting in the possibility of
executing in vivo analysis in addition to common in vitro ones.
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In this context, a novel PCF-based low-index sensor has been theoretically investigated,
revealing ultra high performance (Sun et al., 2011). In Fig. 33, two examples of PCF cross
sections are sketched. Both PCFs are characterized by a two distinct cores. In particular, in PCF
named Fiber (a) there is a pure silica core and the other core is obtained by filling air holes with
liquid analyte (i.e., water with RI nWater = 1.33). In Fiber (b), the solid core is the same as that
previously described, while the other core is made with an enlarged analyte-filled hole.

Figure 33. Cross sections of the analyte-filled micro-structured dual-core PCF (a), and dual-core PCF with an enlarge
analyte-filled hole (b).

The resonant wavelength of the propagating optical mode can change as a function of the
liquid analyte refractive index. In particular, the sensor sensitivity can be estimated according
to Eq. (4). Moreover, performance results calculated by semi-vectorial beam propagation
method, are listed in Table 1.

Numerical results Fiber (a) Fiber (b)

Analyte refractive index 1.33 1.35 1.42 1.4

Sensitivity, S (nm/RIU) 8500 8750 12750 10750

Detection limit, DL (RIU) 2.02×10-6 1.54×10-6 2.94×10-7 4.75×10-6

Table 1. Sensing performance of microstructured optical fiber simulated by semi-vectorial beam propagation method.

In conclusion, ultra-sensitive microstructured optical fiber refractive index sensor described
until now, are able to detect liquid analyte characterized by a refractive index lower than that
of the background, thus extending their regime of operation to low index liquid sample such
as water.

An all-solid twin-core photonic bandgap fiber has been also designed and simulated for
refractive index sensing (Yuan et al., 2010). In particular, two solid cores are separated by a
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analyte-filled single hole acting as a microfluidic channel. By operating in the bandgap guiding
regime the proposed sensor is capable of measuring low refractive indices around that of water
(i.e., nWater = 1.33), revealing a theoretical sensitivity as high as 70,000 nm/RIU.

A refractive index sensor based on a PCF interferometer has been recently designed and
experimentally tested, revealing very interesting performance (Wang & Tang, 2012). In
particular, the sensor configuration is constituted by a single MZI realized by fusion splicing
a short section of PCF between two standard SMFs. The operation principle is analogous to
that already described in the sensor configuration based on two cascade PCF-based MZIs (Hu
et al., 2012). In particular, the excitation and recombination of cladding modes in collapsed
regions lead to a transmission spectrum characterized by sinusoidal interference pattern which
shifts differently when the cladding/core surface of the PCF is immersed with different RI of
the surrounding medium. Interesting performance have been experimentally demonstrated
by using wavelength-shift interrogation. In particular, two PCF sensor configurations, i.e.
sensing length for 3.5 and 5 cm, have been exposed to different concentrations of sucrose
solution revealing resolutions ranging in 1.62×10-4 ÷ 8.88×10-4 RIU for the 3-cm sensor long and
1.02×10-4 ÷ 9.04×10-4 RIU for the 5-cm sensor long. Sensing performance reported above have
been achieved for refractive indices in the range 1.333÷1.422, suggesting these sensors as
suitable for biochemical sensing and environmental monitoring applications.

Recently, research efforts concerning PhC-based sensors are oriented to the optimization of
light-matter interaction, with the aim to increase sensing performance. In this context, novel
PCF are proposed for advanced chemical and biochemical sensing. In particular, a index-
guided PCF characterized by a hollow high index ring defect at the center of its cross-section,
has been proposed and theoretically investigated (Park et al., 2011). The PCF cross section is
sketched in Fig. 34.

Figure 34. Cross section of the PCF characterized by a hollow GeO2-doped high index ring defect.

As shown in Fig. 34, the PCF cross section is characterized by a periodic distribution of air holes
surrounding the high index GeO2-doped silica ring defect. A perfect matched layer (PML) is
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used for numerical analysis. In particular, theoretical simulations reveal an high mode intensity
distribution inside the ring defect, i.e., the high refractive index region. Finally, the proposed
PCF designed with optimal parameters, exhibits a relative sensitivity as high as 5.09%, and a
confinement loss as low as 1.25 dB/m, suggesting this hollow core architecture as suitable for
biochemical sensing, such as for the characterization of gas species (Dicaire et al., 2010). In this
context, a PCF spliced to a standard optical fiber, has been arranged in an interferometer sensing
scheme for detecting volatile organic compounds (VOCs) (Villatoro et al., 2009). In particular,
the PCF consists of five rings of air holes arranged in a hexagonal pattern and guides light by
means of the internal reflection effect. The PCF voids have been experimentally infiltrated with
vapors of methyl alcohol (CH3OH), acetonitrile (CH3CN), isopropanol (C3H6OH), or tetrahydro‐
furan (THF), without using any permeable material. The sensing mechanism, as previously
analyzed for interferometer sensing architectures, consists in the variation of the effective
cladding index induced by the presence of VOCs in air holes. In this way, the reflection spectrum
characterized by a regular interference pattern, is affected by interference peak shifts propor‐
tional to refractive index changes. The proposed sensor based on PCF interferometer has been
fabricated and experimentally characterized, revealing interesting performance. In particu‐
lar, detection limits can be estimated by associating the maximum shifts observed in the
interference pattern of the reflection spectrum with the maximum volume that can be housed
in air voids, i.e., ~520 picoliter. Consequently, with THF the amount of VOC detected in this
low volume lies in the ~4×10-10 mole range, for acetonitrile this value is ~10.5×10-10 moles. Finally,
the sensor proposed is able to detect in the few hundreds or thousands of picomoles (10-12) range
for VOCs, as previously presented. In this way, the sensor can be used for advanced biochem‐
ical applications, such as trace chemical or gas detection.

The review on PCF biochemical sensors includes also the so called long-period fiber grating
(LPG). In particular, a LPG is a one dimension (1D) periodic structure formed by introducing
periodic modulation of the refractive index along the optical fiber. LPG resonantly couples
light from the fundamental core mode to some co-propagating cladding modes and leads to
dips in the transmission spectrum. LPGs have been widely used for sensing purposes, such as
strain, temperature and biochemical detection (Massaro, 2012). In this context, long-period
gratings in photonic crystal fibers (PCF-LPG) have been experimentally demonstrated and
used for label-free detection of biomolecules (Rindorf et al., 2006). In Fig. 35, a schematic of the
cross section of the PCF-LPG is shown.

The sensor proposed has been functionalized with poly-L-lysine (PLL) in order to selectively
immobilize charged DNA molecules on hole surfaces (see Fig. 41b). In particular, the PLL and
DNA layers are characterized by refractive indices in the range 1.45÷1.48, thus closer to that
of silica (1.453 @ 850 nm) than that of H2O (1.328 @ 850 nm, 25°C).

A deep in the transmission spectrum of the PCF-LPG sensor can be experimentally appreciated
at the resonant wavelength λR of the LPG. Moreover, the resonant wavelength can be expressed
as follows:

( ) ( )( )eff eff
R G co cln nl l l= L - (24)
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that already described in the sensor configuration based on two cascade PCF-based MZIs (Hu
et al., 2012). In particular, the excitation and recombination of cladding modes in collapsed
regions lead to a transmission spectrum characterized by sinusoidal interference pattern which
shifts differently when the cladding/core surface of the PCF is immersed with different RI of
the surrounding medium. Interesting performance have been experimentally demonstrated
by using wavelength-shift interrogation. In particular, two PCF sensor configurations, i.e.
sensing length for 3.5 and 5 cm, have been exposed to different concentrations of sucrose
solution revealing resolutions ranging in 1.62×10-4 ÷ 8.88×10-4 RIU for the 3-cm sensor long and
1.02×10-4 ÷ 9.04×10-4 RIU for the 5-cm sensor long. Sensing performance reported above have
been achieved for refractive indices in the range 1.333÷1.422, suggesting these sensors as
suitable for biochemical sensing and environmental monitoring applications.

Recently, research efforts concerning PhC-based sensors are oriented to the optimization of
light-matter interaction, with the aim to increase sensing performance. In this context, novel
PCF are proposed for advanced chemical and biochemical sensing. In particular, a index-
guided PCF characterized by a hollow high index ring defect at the center of its cross-section,
has been proposed and theoretically investigated (Park et al., 2011). The PCF cross section is
sketched in Fig. 34.

Figure 34. Cross section of the PCF characterized by a hollow GeO2-doped high index ring defect.

As shown in Fig. 34, the PCF cross section is characterized by a periodic distribution of air holes
surrounding the high index GeO2-doped silica ring defect. A perfect matched layer (PML) is
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used for numerical analysis. In particular, theoretical simulations reveal an high mode intensity
distribution inside the ring defect, i.e., the high refractive index region. Finally, the proposed
PCF designed with optimal parameters, exhibits a relative sensitivity as high as 5.09%, and a
confinement loss as low as 1.25 dB/m, suggesting this hollow core architecture as suitable for
biochemical sensing, such as for the characterization of gas species (Dicaire et al., 2010). In this
context, a PCF spliced to a standard optical fiber, has been arranged in an interferometer sensing
scheme for detecting volatile organic compounds (VOCs) (Villatoro et al., 2009). In particular,
the PCF consists of five rings of air holes arranged in a hexagonal pattern and guides light by
means of the internal reflection effect. The PCF voids have been experimentally infiltrated with
vapors of methyl alcohol (CH3OH), acetonitrile (CH3CN), isopropanol (C3H6OH), or tetrahydro‐
furan (THF), without using any permeable material. The sensing mechanism, as previously
analyzed for interferometer sensing architectures, consists in the variation of the effective
cladding index induced by the presence of VOCs in air holes. In this way, the reflection spectrum
characterized by a regular interference pattern, is affected by interference peak shifts propor‐
tional to refractive index changes. The proposed sensor based on PCF interferometer has been
fabricated and experimentally characterized, revealing interesting performance. In particu‐
lar, detection limits can be estimated by associating the maximum shifts observed in the
interference pattern of the reflection spectrum with the maximum volume that can be housed
in air voids, i.e., ~520 picoliter. Consequently, with THF the amount of VOC detected in this
low volume lies in the ~4×10-10 mole range, for acetonitrile this value is ~10.5×10-10 moles. Finally,
the sensor proposed is able to detect in the few hundreds or thousands of picomoles (10-12) range
for VOCs, as previously presented. In this way, the sensor can be used for advanced biochem‐
ical applications, such as trace chemical or gas detection.

The review on PCF biochemical sensors includes also the so called long-period fiber grating
(LPG). In particular, a LPG is a one dimension (1D) periodic structure formed by introducing
periodic modulation of the refractive index along the optical fiber. LPG resonantly couples
light from the fundamental core mode to some co-propagating cladding modes and leads to
dips in the transmission spectrum. LPGs have been widely used for sensing purposes, such as
strain, temperature and biochemical detection (Massaro, 2012). In this context, long-period
gratings in photonic crystal fibers (PCF-LPG) have been experimentally demonstrated and
used for label-free detection of biomolecules (Rindorf et al., 2006). In Fig. 35, a schematic of the
cross section of the PCF-LPG is shown.

The sensor proposed has been functionalized with poly-L-lysine (PLL) in order to selectively
immobilize charged DNA molecules on hole surfaces (see Fig. 41b). In particular, the PLL and
DNA layers are characterized by refractive indices in the range 1.45÷1.48, thus closer to that
of silica (1.453 @ 850 nm) than that of H2O (1.328 @ 850 nm, 25°C).

A deep in the transmission spectrum of the PCF-LPG sensor can be experimentally appreciated
at the resonant wavelength λR of the LPG. Moreover, the resonant wavelength can be expressed
as follows:
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where, ΛG is the period of the LPG and nco
eff (λ) and ncl

eff (λ) are the effective indexes of core and
cladding modes as a function of the free-space wavelength, respectively.

The resonant wavelength of the LPG when air is inside holes, is measured to be λAir = 753.6
nm. Successively, voids have been filled with phosphate buffered saline solution (PBS)
resulting in a shifted resonant wavelength λPBS = 842.5. Moreover, the immobilization of PLL
shifts the resonant wavelength to λPLL = 849.2 nm, and when DNA is adsorbed on the func‐
tionalized surface the new λR is measured to be λDNA = 851.4 nm. The average thicknesses of
PLL and the double-strained DNA monolayer are estimated to be tPLL = 4.79 nm and tDNA 1.65
nm, respectively.

In conclusion, the PCF-LPG is able to detect a cladding effective refractive index change of
approximately 10-4 RIU, exhibiting a wavelength sensitivity as high as 1.4 nm/nm (i.e., the shift
in resonance wavelength in nm per nm thickness of biomolecular layer).

3.2.1. Photonic crystal fiber sensors based on nonlinear effects for biochemical sensing

Non linear effects, such as Four Wave Mixing (FWM) and surface enhanced Raman scattering
(SERS) have been widely used for sensing applications.

In this context, a microstructured optical fiber (MOF) has been proposed for label-free selective
biosensing of streptavidin (Ott et al., 2008). In particular, the nonlinear biosensor is based on
the change in the degenerate FWM gain spectrum induced by the selective adsorption of
streptavidin antigen biomolecules on the walls of the holes, properly functionalized with α-
streptavidin, thus the antibody in the biochemical ligand.

In degenerate FWM, two pump signals at the same frequency ω, generate two new signals in
the MOF, i.e. Stokes and anti-Stokes signals characterized by frequencies ωS and ωaS, respec‐

Figure 35. Cross section of the PCF used as sensitive biochemical sensor (a). Single void hole filled with water and
functionalized with poly-L-lysine (PLL) of thickness tPLL on which the DNA layer of thickness tDNA is adsorbed (b).
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tively. These new signals are generated symmetrically around the pump ω because of the
principle of the energy conservation. In particular, it results that ωS = ω – Ω, and ωaS = ω + Ω.
Moreover, the gain of the degenerate FWM can be expressed as in the following expression:

( ) ( )
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è ø
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where γ = n2ω0/(cAeff) is the nonlinear parameter, c is the speed of light in vacuum, ω0 is the
pump frequency, n2 is the nonlinear refractive index of the material used for MOF fabrication
(i.e., n2 = 2.6×10-20 m2/W for silica), P0 is the peak power of the pump and Aeff is the effective area
of the guided mode. Finally, Δβ is the linear phase-mismatch expressed as follows:

( ) ( ) ( )2S aSb b w b w b wD = + - (26)

where β(ω) is the linear propagation constant at the frequency ω.

In the proposed sensor, each hole of the silica PCF is properly functionalized by forming a
layer of α-streptavidin with a thickness of 40 nm on the inner hole surfaces, as it has been
analogously described for PLL surface functionalization, previously sketched in Fig. 35. The
functionalized sensor is designed in order to exhibit precise Stokes and anti-Stokes signals
around the pump frequency ω. When streptavidin biomolecules are adsorbed onto the
functionalized surface, a bio-molecular adlayer of thickness tbio = 5 nm is formed. Consequently,
the hole diameter is reduced resulting in a change of the effective area of the guided mode,
Aeff. This effect causes a change in the degenerate FWM gain, resulting in shifts of Stokes and
anti-Stokes signals around the pump signal ω. In conclusion, by tracking the Stokes and anti-
Stokes frequency shifts it is possible to detect adsorbed biomolecules with ultra high perform‐
ance. In fact, the nonlinear sensor described until now exhibits a wavelength sensitivity of ~
10.4 nm/nm, which is a factor of 7.5 higher than that achieved by Rindorf et al., previously
reported to be 1.4 nm/nm.

Nowadays, one of the most important feature often required from optical biochemical sensors
is the molecular specificity in addition to high sensitivity, low cost, easy fabrication, label-free,
short-time detection, reusability, compactness, flexibility, to be named.

To this purpose, Raman spectroscopy represents a powerful optical technique due to its unique
molecular specificity. In fact, Raman signal carries the specific vibrational information of the
molecules to be sensed. The main drawback of this technique is represented by the weak of
the Raman signal, especially in case of very low concentration of molecules in a complex liquid
sample. In order to enhance the Raman signal, SERS has been widely used because of the
possibility of amplifying the Raman signal by orders of magnitude due to the strong enhance‐
ment of the electromagnetic field by the Surface Plasmon Resonance (SPR) of the metallic
nanostructures and the surface chemical enhancement. In particular, a surface plasmon is a
localized electromagnetic wave that propagates along the metal-dielectric interface and
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where, ΛG is the period of the LPG and nco
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eff (λ) are the effective indexes of core and
cladding modes as a function of the free-space wavelength, respectively.
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approximately 10-4 RIU, exhibiting a wavelength sensitivity as high as 1.4 nm/nm (i.e., the shift
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Non linear effects, such as Four Wave Mixing (FWM) and surface enhanced Raman scattering
(SERS) have been widely used for sensing applications.
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biosensing of streptavidin (Ott et al., 2008). In particular, the nonlinear biosensor is based on
the change in the degenerate FWM gain spectrum induced by the selective adsorption of
streptavidin antigen biomolecules on the walls of the holes, properly functionalized with α-
streptavidin, thus the antibody in the biochemical ligand.
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Figure 35. Cross section of the PCF used as sensitive biochemical sensor (a). Single void hole filled with water and
functionalized with poly-L-lysine (PLL) of thickness tPLL on which the DNA layer of thickness tDNA is adsorbed (b).
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tively. These new signals are generated symmetrically around the pump ω because of the
principle of the energy conservation. In particular, it results that ωS = ω – Ω, and ωaS = ω + Ω.
Moreover, the gain of the degenerate FWM can be expressed as in the following expression:
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where γ = n2ω0/(cAeff) is the nonlinear parameter, c is the speed of light in vacuum, ω0 is the
pump frequency, n2 is the nonlinear refractive index of the material used for MOF fabrication
(i.e., n2 = 2.6×10-20 m2/W for silica), P0 is the peak power of the pump and Aeff is the effective area
of the guided mode. Finally, Δβ is the linear phase-mismatch expressed as follows:
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where β(ω) is the linear propagation constant at the frequency ω.

In the proposed sensor, each hole of the silica PCF is properly functionalized by forming a
layer of α-streptavidin with a thickness of 40 nm on the inner hole surfaces, as it has been
analogously described for PLL surface functionalization, previously sketched in Fig. 35. The
functionalized sensor is designed in order to exhibit precise Stokes and anti-Stokes signals
around the pump frequency ω. When streptavidin biomolecules are adsorbed onto the
functionalized surface, a bio-molecular adlayer of thickness tbio = 5 nm is formed. Consequently,
the hole diameter is reduced resulting in a change of the effective area of the guided mode,
Aeff. This effect causes a change in the degenerate FWM gain, resulting in shifts of Stokes and
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exponentially decays into both media. Surface plasmons can be excited due to the resonant
transfer of the incident photon energy and momentum to collectively oscillating electrons in
a noble metal (e.g., silver, gold).

In this context, liquid-core PCFs have been experimentally investigated and theoretically
analyzed for biochemical sensing of various molecules such as Rhodamine B, Rhodamine 6G
(R6G), human insulin, and tryptophan, revealing excellent performance (Yang et al., 2011b).
Several biomolecules have been also detected at low concentrations (i.e., 10-6 M ÷ 10-7 M) by
LCPCF based on SERS, such as Prostate Specific Antigen (PSA) and alpha-synuclein, which
are indicators of prostate cancer and Parkinson’s disease, respectively (Shi et al., 2008).

Figure 36. Schematic of the inner wall-coated LCPCF sensor used for R6G detection (Yang et al., 2011b).

In Fig. 36, the schematic of the functionalized inner wall-coated of LCPCF employed for R6G
detection is sketched. The optical signal emitted by the laser source propagates along the
LCPCF and excites the SPR at the surface of silver nanoparticles (SNPs). Some of these metal
particles have attached on their surfaces R6G molecules to be detected. Consequently, the
enhanced Raman signal containing detailed molecule vibrational information, counter-
propagates to the Raman spectrometer in order to be analysed.

Interesting performance have been experimentally demonstrated. In fact, by using SNPs as the
SERS substrate and R6G as a test molecule, the lowest detectable concentration that has been
achieved is 10-10 M.
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Finally, a PCF sensor based on SERS on silver nanoparticle colloid has been experimentally
demonstrated for the detection of 4-mercaptobenzoic acid (4-MBA) molecules (Xie et al.,
2008). Experiments have been done by mixing 200 μL of 0.01 mM 4-MBA aqueous solution
with 100 μL of silver colloid and by filling the mixture solution into air holes of PCF through
a particular syringe setup.

3.2.2. Photonic crystal fiber sensors based on surface plasmon resonance

Optical sensors based on SPR have been widely used in biological sensing because of their
high sensitivity, and label-free detection.

Recently, the theoretical investigation of a PCF based on SPR has been demonstrated as
efficient biosensor operating in aqueous environment (Akowuah et al., 2012). The cross section
of the PCF SPR sensor proposed is sketched in Fig. 37. In particular, the proposed sensor
consists of two metalized microfluidic slots, air holes for light guidance and a small central air
hole for facilitating phase matching between guided and Plasmon modes. Extra air holes have
been inserted between the main air holes for reducing propagation losses and ensuring efficient
coupling between the core guided and plasma modes.

Figure 37. Schematic of the PCF based on SPR simulated for biochemical detection in aqueous environment.
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The sensor has been simulated and optimized by using the full-vectorial Finite Element
Method (FEM) with perfect matched layer (PML). In particular, when the sensor operates in
the wavelength interrogation mode, changes in the analyte refractive index are detected by
measuring the displacement of a plasmonic peak, and the wavelength sensitivity is defined as
in Eq. (4), in which λ is equal to λp representing the wavelength corresponding to the SP
resonance condition, in this case. Consequently, by changing the analyte refractive index from
1.33 (pure water) to 1.34, the optimized PCF SPR sensor exhibits a wavelength sensitivity as
high as 4000 nm/RIU and a limit of detection as low as 2.5×10-5 RIU.

Nowadays, PCF SPR sensors are investigating for biochemical sensing because of their ultra-
high performance. For example, a PCF-based refractive index sensor employing the SPR as
sensing principle, has been recently theoretically investigated. In particular, sensing perform‐
ance have been estimated to be S = 1700 nm/RIU (refractive index sensitivity), and LOD =
5.9×10-5 RIU, in aqueous environment (Peng et al., 2012).

In conclusion, PCF SPR sensors are also easy to fabricate. In fact, according to Fig. 37, deposition
of metal layers inside of the microfluidic slots can be performed either with the high-pressure
chemical vapor deposition technique or electroless plating techniques.

4. Conclusions

In this chapter the state-of-the-art of PhC-based sensors has been reviewed focusing on
principal features and advantages of different architectures and measurement setups present‐
ed in literature.

In case of integrated PhC-based sensors, the most common physical principle is the RI sensing
employed for detection of particles, gases, chemical and biological molecules, proteins, viruses,
salinity in water, to name a few. In addition to other sensing principles usually employed in
PhC-based sensing (i.e., optical absorption, nonlinear effect), SPR and fluorescence have been
also investigated, revealing intriguing performance in detection of DNA (Mathias et al.,
2010), immunoglubine G (IgG), Goat anti-Human IgG, bovine serum albumin (BSA) in
phosphate buffered saline (PBS) and Cysteammine (Huang et al., 2008).

Interferometric architectures and photonic sensors based on resonant microcavities represent
undoubtedly the most efficient integrated solutions for ultra high sensing performance and
simple optical and CMOS-compatible readouts. In this context, typical value of wavelength
sensitivities are of the order of Sλ =298 nm/RIU achieved by a slot-waveguide-based ring
resonator (Claes et al. 2009) and Sλ =26 nm/RIU exhibited by a Mach-Zehnder configuration
(Lu et al., 2009). In comparison with performance mentioned above, resonant PhC cavities have
been demonstrated to be able to achieve higher wavelength sensitivities as high as Sλ =460 nm/
RIU and Sλ =570 nm/RIU.

The principal disadvantage characterizing PhC-based sensors is represented by the rigorous
control of technological processes to be executed during design and fabrication. These
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requirements are necessary because of nanometric sizes of defects and holes in PhC periodic
structure and the very high sensor operating sensitivity with respect to geometrical and
physical changes. Anyways, the well-known SOI technological platform identifies a cheap and
standard facility for the mass-scale production of PhC-based sensors.

Photonic crystal fibers represent a very efficient sensing solution for industrial, medical and
environmental applications.

In fact, due to their fabrication simplicity, high fabrication tolerances and other advantages
such as immunity to external effects, PCFs are usually employed for remote sensing in
dangerous and harmful environments. Strategic approaches for improving sensing perform‐
ance concern with PCF technological optimization, selection of suitable materials to be
employed for sensing purposes (e.g., sol-gel, polymers), and the development of efficient and
innovate measurement setups for improving readout capabilities.

Finally, photonic crystal technology surely represents a research field to be further investigated
for its incredible potential in applications such as optical signal processing, telecommunica‐
tions and, last but not the least, advanced optical sensing.
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Silicon Photonic Crystals Towards Optical Integration
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Additional information is available at the end of the chapter
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1. Introduction

During the past two decades, there have been great interests in developing ways to manip‐
ulate photons at nanoscale,  realizing optical integrations,  developing smaller,  faster,  and
more  efficient  optoelectronic  devices  for  the  purpose  of  next-generation  optoelectronic
technology.  Great  progresses have been made in exploring photonic crystals  (PCs) [1,2],
plasmonic  structures  [3,4],  and  other  nanophotonic  devices  for  applications.  However,
plasmonic  structures  always  involve  some metal  cells  and  are  subject  to  strong  energy
dissipation and absorption loss in optical frequencies. Since silicon has a large refraction
index and low loss in the infrared wavelength, it becomes an important optical material that
has been widely used for integrated photonics applications. Meanwhile, silicon dominates
microelectronics  and this  makes the silicon-based optical  devices  have the advantage to
integrate with electronic devices.

Among all the semiconductor-based optical devices, a class of integrated optical devices that
are built in the platform of periodically patterned silicon structures (namely, silicon PCs) are
now attracting much attention [5–7]. Analogous to real crystal, electromagnetic (EM) wave is
strongly modulated in PC by means of periodic Bragg scattering. Photonic band gaps (PBGs),
which can prevent light from propagation in certain direction for a certain range of wave‐
lengths, are formed similarly to electron band gaps. If we introduce a line defect or a point
defect in PC, a defect state will take place within the PBG, where light is strongly localized
around the defect. These defects can serve as a high efficient waveguide channel or as a micro-
cavity with a high-quality (high-Q) factor. The mismatch of the PBGs spatial inversion
symmetry breaking and could lead to the optical isolation in any device where the forward
and backward transmissivity of light is very much different.In addition, the transmission
bands also provide remarkable dispersion properties due to strong Bragg scattering, and
negative refraction, self-collimation, superprism and many other anomalous transport
behaviors [8–13] can be achieved by engineering the unit cell geometry of PCs. In this review,

© 2013 Li et al.; licensee InTech. This is an open access article distributed under the terms of the Creative
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we briefly introduce the theoretical background of the light propagation in PC and show our
recent results on design, fabrication, and characterization of several basic integrated optical
devices in the platform of infrared silicon PC slab.

2. Theoretical and numerical tools

In this section, we briefly introduce the theoretical background and the numerical methods for
our study of PC. The propagation of electromagnetic waves in PC is governed by the Maxwell
equations [14]. For the sake of simplicity, we only consider a nonmagnetic linear system. In
particular, the dielectric constant ε is independent of frequency and we neglect any absorption
of electromagnetic waves by the material. Furthermore, there are no free charges or currents
in our system. With all of the assumptions, the magnetic field within the PC satisfies the
following equation that directly originates from the Maxwell equations [15]:
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Since our system involves a periodic dielectric function ε, we can apply Bloch-Floquet theorem
to our situation, which means that the solutions can be expressed as:
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where k  is the Bloch wave vector and uk (r) is a periodic function of position. This type of
solutions are periodic as a function of k .

Several theoretical methods have been developed to handle different problems for PC
structures, such as the plane-wave expansion method (PWEM) [15–18], transfer matrix method
(TMM) [19], finite-difference time-domain (FDTD) method [20,21], and multiple scattering
method [22,23]. Each method exhibits its own benefits and drawbacks. The PWEM is the
earliest method applied to PC [15], and has shown its great power in the discovery of three-
dimensional (3D) diamond-lattice PCs that have a complete PBG [15]. However, this method
has a severe limitation in that it can only deal with the photonic band structures. The TMM is
an efficient approach that was designed particularly to calculate the transmission spectra of
PC, but it can also be used to solve the photonic band structures. This approach works based
on the finite-difference scheme in the real space [19]. Later on, a plane-wave based transfer-
matrix method (PWTMM) was developed by Li et al. [24–26]. This method works on the plane-
wave space and uses plane wave functions (representing Bragg waves) to describe both the
EM fields and dielectric functions. This approach can handle a broad range of general PC
problems. In addition to the regular solutions of photonic band structures and transmission/
reflection/absorption spectra, this approach can efficiently solve the Bloch wave scattering at
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the interface between semi-infinite PC structures, because it can also work in the Bloch mode
space [27]. So far, other methods have not developed such a peculiar capability. For this reason,
it can calculate efficiently modal coupling with multimode PC waveguides [28], transmission
efficiency through general two-dimensional (2D) and 3D waveguide bends [29], and band
diagrams and field profiles of PC surface states [30]. On the other hand, this method has
adopted advanced numerical and mathematical analysis tools to enhance numerical conver‐
gence and accuracy, and it has shown its superior power in dealing with some metal PC
structures compared with other methods [31]. Recently, this method was also extended to solve
nonlinear optical problems in ferroelectric PC structures [32,33]. The FDTD method is a very
popular and universal approach in numerical simulations of various PC problems. In addition
to the regular band structures and optical spectra calculations, this technique can govern the
EM field evolution with time in arbitrary PC structures with infinite or finite structural domain.
The reason is that the technique works in the time domain and directly solves the Maxwell
equations.

Many free software packages and commercial software packages have been developed
worldwide and they are widely used in numerical simulations and solutions of different PC
problems. Our group has also developed homemade codes based on several methods includ‐
ing the PWEM, PWTMM, FDTD, and multiple scattering method. In addition, we also utilize
publicly available free software packages as they are more numerically economic or have better
numerical efficiency. In our case, we use MIT Photonic-Bands (MPB) package [16] to compute
the photonic band structures and use MEEP, a free FDTD simulation software package
developed at MIT [34] to calculate transmission spectra and model electromagnetic wave
transport features in the 2D PC structures and devices.

3. Sample fabrication and optical characterization

After the discovery of PC, many novel devices have been proposed to control light and
implement specific functionality of information processing. 2D air-bridged silicon PC slab [Fig.
1(a)] is an excellent platform to fabricate PC integrated optical devices. This system involves
a silicon membrane suspended in air, which confines light by high index contrast in the vertical
direction, while the periodic structures in the slab give a strong in-plane confinement of light
through PBGs. In most cases, a typical PC structure is a kind of periodic array of air holes
etched in a silicon-on-insulator (SOI) wafer by microfabrication techniques. The SOI wafer has
a Si/SiO2/Si structure. In our case, it has a 220 nm thick silicon top layer and a 3 μm buried
silica layer on top of a 0.5 mm thick single crystal silicon wafer. We directly use focused ion
beam (FIB) lithography to drill air holes in the silicon membrane or use electron-beam
lithography (EBL) to define PC patterns in a thin film of polymethylmethacrylate (PMMA),
and then transfer the patterns into the silicon membrane by inductively coupled plasma (ICP)
etching under the atmosphere of SF6 and C4F8 gases. Figures 1(b) and (c) are the top-view
scanning electron microscope (SEM) picture of our PC structures fabricated by FIB. By utilizing
state-of-the-art microfabrication techniques, the optical properties of the periodic array of air
holes can be easily and accurately controlled. For instance, one can change the diameters of
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state-of-the-art microfabrication techniques, the optical properties of the periodic array of air
holes can be easily and accurately controlled. For instance, one can change the diameters of

Silicon Photonic Crystals Towards Optical Integration
http://dx.doi.org/10.5772/55041

299



certain holes or omit to etch one or several holes at certain places. These procedures can allow
for engineering of the linear and point defect characteristics. After the air holes PC structures
get done, we use HF acid wet etching to remove the buried oxide layer under the silicon
membrane PC structures to form air-bridged structures. Usually, wide silicon wire wave‐
guides (also with the air-bridged geometry) close to the interface of PC structures are used as
the input and output infrared light beam channels, as shown in Fig. 1. These wire waveguides
are further connected with long adiabatically tapering ridge silicon waveguides (each about
0.2 mm long) to allow easy coupling with external infrared signals from single mode optical
fibers. As a result, a typical PC sample has a total length of about 0.5 mm and the input and
output ends are carefully polished to enhance the coupling efficiency of input and output
infrared signals.

The transmission spectra of a PC structure effectively reflect its optical properties. To get this
important physical quantity, we have set up an experimental apparatus that involves several
functional components. The overall measurement setup is schematically illustrated in Fig.
2(a), while a picture of the corresponding real system is displayed in Fig. 2(b). As shown in

(b) 

(c) 

(a) 

Figure 1. a) Schematic view of a 2D air-bridged PC structures with an input silicon waveguide. The whole structures
are fabricated in SOI wafer. The air-bridged structures are formed by HF wet etching; (b) and (c) are the top-view SEM
and optical microscopy image of a practical PC sample used in experiment. The long adiabatically tapering ridge wave‐
guide connected with the PC structure can be clearly visualized.
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Fig. 2(a), the PC samples are placed in the center of the stage, with its two sides connected with
the input and output optical fibers. The input optical signal comes from a continuous wave
tunable semiconductor laser with the wavelength ranging from 1500 to 1640 nm, launched into
one facet of the ridge waveguide via a single-mode lensed fiber. Power meter is used to detect
the optical signals transmitted through the PC structures and emitted from the output side.
The measurement is made with TE polarization (electric field parallel to the slab plane) since
it has a complete band gap in silicon PC slabs. The measurement data are normalized by a
ridge waveguide on silicon with the same length and width to yield the final transmission
spectra for a specific PC structure.

(b)

(a)

(c)

Figure 2. a) Schematic view and (b) experimental setup for the optical characterization of infrared 2D silicon PC slab struc‐
tures; (c) typical optical microscopy picture recorded by the CCD camera for the PC sample as displayed in Fig. 1(b).

In addition to the measurement of transmission spectra, our experimental setup can offer
another big power: it allows for easy and convenient direct monitoring of the transport path
of infrared light through PC devices. As depicted in Fig. 2(a), a charge-coupled device (CCD)
camera is mounted above the sample and it can in situ monitors the transport property by
imaging the roughness induced scattering infrared light from the surface of the PC structures.
The long-focus microscope objective connected with the CCD camera is shown in the upper
part of Fig. 2(b). The ray trace can be directly visualized by the camera to yield images at a
personal computer monitor, and this gives the researcher a rough but direct estimate abouthow
much the infrared signal has gone into the PC structures. The idea is simple: if the infrared
light is coupled into the PC sample with a sufficiently high efficiency, infrared light can
transport along the input ridge waveguide, PC devices, and the output ridge waveguide.
Significant scattering of infrared signal off the sample can take place and is collected by the
CCD camera and visualized in situ by the monitor. The strongest scattering occurs at the
discontinuity interface, including the end facets of input and output ridge waveguides and the
connection section between ridge waveguides and PC structures. Even within the PC struc‐
tures, remarkable scattering still takes place because of the inevitable roughness on the surface
of silicon slab and within the inner walls of air holes. On the other hand, if the infrared signal
coupled into the PC samples is weak, then the overall scattering light that can be collected by
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the CCD camera is also very weak, and no picture can be visualized in the monitor. Figure
2(c) shows a typical microscopy picture recorded by the CCD camera. Such an experimental
setup is very convenient to adjust the precise position of the input and output optical fibers,
so that they have a precise point-to-point alignment with about 250 nm thick PC samples to
allow for high-efficiency optical coupling. The infrared signal transporting through the PC
samples usually has a power level of micro-walt when the input signal from semiconductor
laser is on the power level of milli-walt. The signal has been already sufficiently strong to allow
for transmission spectrum measurement and CCD camera monitoring with high signal-to-
noise ratio.

4. PC band–gap devices: waveguides and cavities

4.1. PC waveguides

PC waveguides are one of the most important elements in PC integrated optics, because they
offer efficient channels for light propagating at wavelength scale and connect different devices
in integrated optical circuits. Usually, PC waveguides are formed by removing one row of
holes in a PC structure. The line defects can generate defect states within the complete PBG
and serve as waveguide channels for light to propagate efficiently and freely in PC structures.
Among many 2D PC slab structures, the triangular lattice of air holes has a relatively large
band gap for TE-like electromagnetic modes, where the magnetic field points in the perpen‐
dicular direction while the electric field is dominantly within the lateral plane of the slab. In
addition, the structures allow for easy fabrication by standard planar nanofabrication tech‐
nologies such as FIB and EBL, and have good mechanical stability. For these reasons, they are
widely and dominantly adopted in designing and exploring PC based integrated optical
devices [35,36].

Figure 3(a) shows the calculated TE-like mode photonic band structures of a particular 2D
triangular lattice PC slab, where a wide complete PBG is clearly seen. In the region, light
propagation inside the PC is prohibited. When removing one or several rows of air holes in
the PC structures, some allowed modes (defect states) appear within the PBG [Fig. 3(b)], and
they can be used to create waveguides or cavities. In most works, single-mode or multi-
mode optical waveguides are usually made along the Γ−Κ direction in the triangular lattice
PC. It has been well established in plenty of literatures that the number of waveguide modes
as well as the width of the transmission windows can be controlled by tuning the core width
of the line defects. However, waveguides along other directions in the triangular lattice PC
were rarely discussed. Just like the Γ−Κ direction, waveguides along the Γ−Μ direction should
also be able to guide confined modes due to the existence of a complete PBG in the 2D
triangular lattice PC. By removing a line of diamond areas,  we can obtain a cluster-like
waveguide along the Γ−Μ direction as depicted in Fig. 4(a). This kind of waveguide is called
Γ−Μ waveguide [37].

Figure 4(b) is the SEM picture of the original Γ−Μ waveguide, where the air holes remain to
locate at the original lattice site and the radius of all air holes remains the same. The air holes
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are directly drilled by FIB and the lattice constant is 430 nm. According to our simulation and
experiment results, we find that the width of the propagation modes for the original Γ−Μ
waveguide [Fig. 4(b)] is only 22 nm. Then we optimize the geometry to improve its transmis‐
sion characteristics. We shrink the radius r1 of the air holes in the two nearest-neighboring
rows around the waveguide and enlarge the radius r2 of the air holes in the two second-nearest-
neighboring rows, as shown in Fig. 4(c). The key point is to generate a transport pathway with
walls as smooth as possible. According to our simulations, the parameters corresponding to
an optimized waveguide are that r1 = 50 nm and r2 = 170 nm, while the radius of the original
air holes is r0 = 120 nm. Figures 5(a) and (b) are the calculated dispersion relations of the original
and optimized Γ−M waveguide, respectively. It’s shown that the optimized waveguides have
a high pass band that is much broader than the original waveguide. We can also obtain the
same conclusion from the measured transmission spectra in Figs. 5(c) and (d). Besides, the
intensities of the transmission spectra are much higher than the original one. As the Γ−Μ
waveguide is perpendicular to the usual Γ−Κ waveguide, it offers an alternative to construct
a waveguide interconnection beyond the usual scheme of Γ−Κ with Γ−Κ waveguides. A high-
performance wide-band Γ−Μ waveguide should be of great help to build integrated-optical
devices, such as interconnection networks, channel-drop filters, and wave division multiplex‐
ers, with more flexible geometrical configurations in 2D PC slabs.

Figure 3. a) Photonic band structures for air holes triangular lattice PC slab; (b) band diagrams for a PC W1 wave‐
guide, where one row of air holes is removed along the Γ−Κ direction. The upper and lower bands correspond to the
even-symmetric and odd-symmetric guided mode, respectively.
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Figure 4. a) Schematic of Γ−Μ waveguide constructed in a triangular-lattice PC slab. The width of the waveguide wd ,
as well as the radius of air holes in the first and second row r1 and r2, are the three crucial parameters to optimize the
width of the transmission windows; (b) and (c) are SEM pictures of original and optimized Γ−Μ waveguides [37].
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Figure 5. Calculated modal dispersion relation of (a) the original Γ−M waveguide and (b) an optimized Γ−M wave‐
guide. The band width of the waveguide modes (within the dashed boxes) is 22 nm in the original waveguide, which
has parameters: lattice constant a = 430 nm, hole radius r0 = r1 = r2 = 120 nm, and waveguide width w0 = 2a. After opti‐
mization by the following parameters as a = 430 nm, r1 = 50 nm, r2 = 170 nm, and wd = 0.65w0, the waveguide band
width is significantly broadened to 74 nm; (c) and (d) are the corresponding measured transmission spectra of the
original and optimized waveguides [37].

Based on the design of an optimized Γ−M waveguide, we combine the Γ−K waveguide and Γ
−M waveguide together to form a 90° waveguide bend as schematically depicted in Fig. 6(a)
[38]. This is the first design of a 90° waveguide bend in the 2D triangular-lattice PC. The whole
waveguide bend system is composed of two Γ−K waveguides as the input and output ports
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and the center Γ−M waveguide as the connection component. In other words, the structure
involves two consecutive segments of 90° waveguide bends. In constructing the waveguide
bend, we have used the optimized Γ−M waveguide discussed in the above and depicted in
Fig. 4(c). The guided modes in the optimized Γ−M waveguide have better phase-matching and
mode profile matching with the normal Γ−K waveguides. In the same time, we modify the
bend corner geometry by fabricating smaller air holes in the corner to make the guided modes
between the two kinds of waveguides matching better. Based on a serial of simulation and
experiment tests, we find the best values for r1 and r2. Figure 6(b) shows the SEM picture of
the waveguide bend with r1 = 50 nm and r2 = 150 nm. After optimization, we get 70 nm pass
band width while the transmission efficiency of a single bend is 45%. The proposed 90°
waveguide bends can help to construct integrated optical circuits with more flexible and
diversified infrastructures.

(a) (b)

Figure 6. a) Schematic geometry of 90° waveguide bends in a triangular lattice PC slab with optimized Γ−M wave‐
guide; (b) SEM picture of a practical sample of 90° waveguide bends with optimized bend corner geometry [38].

4.2. Coupled–cavity waveguide

Moreover, we have designed an air-bridged silicon PC coupled-cavity waveguides (PCCCWs)
[39] and mapped its near-field optical distributions at different wavelengths around 1550 nm
with the scanning near-field optical microscopy (SNOM) technology. For PCCCWs, the
eigenmodes usually have relatively narrow bandwidth with slow group velocity in the whole
band range. Previously, slow light propagation in such specific PCCCWs had still not been
experimentally studied via SNOM technique. Figures 7(b)−7(f) show the calculated optical
field distribution profiles at different wavelengths with a simulation model schematized in
Fig. 7(a). We fabricated the PCCCW in the SOI wafers with FIB system. Figure 8(a) displays
the SEM image of the element composed of the central PCCCW (encircled by a red square),
two identical W1 PC waveguides, and the input/output ridge waveguides. Figure 8(b)−8(f)
displays the near-field optical intensity distribution patterns of the PCCCW at different
wavelengths. The scanning area is 12 μm × 15 μm with the incident light propagating upwards
from the bottom of the image. Straight yellow lines in Figs. 8(b)−8(f) are used to label the
position for showing the cross-sectional profiles of the field distribution patterns.
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Figure 4. a) Schematic of Γ−Μ waveguide constructed in a triangular-lattice PC slab. The width of the waveguide wd ,
as well as the radius of air holes in the first and second row r1 and r2, are the three crucial parameters to optimize the
width of the transmission windows; (b) and (c) are SEM pictures of original and optimized Γ−Μ waveguides [37].
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Figure 5. Calculated modal dispersion relation of (a) the original Γ−M waveguide and (b) an optimized Γ−M wave‐
guide. The band width of the waveguide modes (within the dashed boxes) is 22 nm in the original waveguide, which
has parameters: lattice constant a = 430 nm, hole radius r0 = r1 = r2 = 120 nm, and waveguide width w0 = 2a. After opti‐
mization by the following parameters as a = 430 nm, r1 = 50 nm, r2 = 170 nm, and wd = 0.65w0, the waveguide band
width is significantly broadened to 74 nm; (c) and (d) are the corresponding measured transmission spectra of the
original and optimized waveguides [37].

Based on the design of an optimized Γ−M waveguide, we combine the Γ−K waveguide and Γ
−M waveguide together to form a 90° waveguide bend as schematically depicted in Fig. 6(a)
[38]. This is the first design of a 90° waveguide bend in the 2D triangular-lattice PC. The whole
waveguide bend system is composed of two Γ−K waveguides as the input and output ports
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and the center Γ−M waveguide as the connection component. In other words, the structure
involves two consecutive segments of 90° waveguide bends. In constructing the waveguide
bend, we have used the optimized Γ−M waveguide discussed in the above and depicted in
Fig. 4(c). The guided modes in the optimized Γ−M waveguide have better phase-matching and
mode profile matching with the normal Γ−K waveguides. In the same time, we modify the
bend corner geometry by fabricating smaller air holes in the corner to make the guided modes
between the two kinds of waveguides matching better. Based on a serial of simulation and
experiment tests, we find the best values for r1 and r2. Figure 6(b) shows the SEM picture of
the waveguide bend with r1 = 50 nm and r2 = 150 nm. After optimization, we get 70 nm pass
band width while the transmission efficiency of a single bend is 45%. The proposed 90°
waveguide bends can help to construct integrated optical circuits with more flexible and
diversified infrastructures.
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Figure 6. a) Schematic geometry of 90° waveguide bends in a triangular lattice PC slab with optimized Γ−M wave‐
guide; (b) SEM picture of a practical sample of 90° waveguide bends with optimized bend corner geometry [38].

4.2. Coupled–cavity waveguide

Moreover, we have designed an air-bridged silicon PC coupled-cavity waveguides (PCCCWs)
[39] and mapped its near-field optical distributions at different wavelengths around 1550 nm
with the scanning near-field optical microscopy (SNOM) technology. For PCCCWs, the
eigenmodes usually have relatively narrow bandwidth with slow group velocity in the whole
band range. Previously, slow light propagation in such specific PCCCWs had still not been
experimentally studied via SNOM technique. Figures 7(b)−7(f) show the calculated optical
field distribution profiles at different wavelengths with a simulation model schematized in
Fig. 7(a). We fabricated the PCCCW in the SOI wafers with FIB system. Figure 8(a) displays
the SEM image of the element composed of the central PCCCW (encircled by a red square),
two identical W1 PC waveguides, and the input/output ridge waveguides. Figure 8(b)−8(f)
displays the near-field optical intensity distribution patterns of the PCCCW at different
wavelengths. The scanning area is 12 μm × 15 μm with the incident light propagating upwards
from the bottom of the image. Straight yellow lines in Figs. 8(b)−8(f) are used to label the
position for showing the cross-sectional profiles of the field distribution patterns.
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Figure 7. Simulation model (a) and calculated optical field distributions at (b) 1550 nm; (c) 1560 nm; (d) 1571 nm; (e)
1590 nm; and (f) 1610 nm [39].

The optical intensity distribution patterns are different at 1550 and 1610 nm, even though both
of them mainly appear as a single narrow line along the central PCCCW region with a full
width at half maximum (FWHM) of about 350 nm. Precisely speaking, the pattern demon‐
strates a little bit shoulder as a result of mode superposition at 1550 nm, since it comprises two
eigenmodes. At 1610 nm, the calculated result consists well with the experimental one in Fig.
8(f), which presents a single line along the whole waveguide. The pattern appears bright and
wide with obvious interference nodes in the PCCCW section. The simulated field distribution
profiles in the W1 PC waveguide sections agree well with the detected ones at all these
wavelengths, which show a snake-like/single-line profile in the input/output W1 PC wave‐
guide except that of a snake-like profile in the output W1 PC waveguide at 1560 nm. In addition,
the simulated field distribution patterns of the snake-like profile in the PCCCW section appear
deviating greatly from the detected ones at 1550, 1571, and 1590 nm. However, if we calculate
the optical field distribution patterns at 1550, 1560, and 1571 nm with the even-to-odd
amplitude ratios of 1:4, 1:1, 1:4, and 1:6, respectively, we can find the simulated results are
consistent with the experimental patterns evolving from single-line, to snake-like, and then to
double-line structures for the PCCCW section. Combination of the near-field optical detection
and theoretical simulation shows that SNOM is an efficient tool to study the optical propaga‐
tion in the PCCCW and can help to design slow light elements.

4.3. High–Q cavity

Quantum information processing and quantum state manipulation have received great
attentions because of their potential revolutionary impact on future network communication.
Optical cavities, which can be used to store information, are considered to be one of the most
important devices in the quantum communication application. The generation and teleporta‐
tion of qubits require sufficiently high value of Q/V, where V stands for the mode volume of
the optical cavities. As a result, high-Q optical cavities show great potential application in
quantum information. Among all the optical cavities, 2D PC slab cavities are the best choice
because of their simultaneous high-Q and small mode volume characteristics. It has been
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reported that Rabi splitting can be observed experimentally when the quantum dots are
introduced into the PC cavities with high Q/V [40,41]. Moreover, due to the development of
nanofabrication technique, multiple high-Q PC slab cavities can be fabricated at the same time
on a single slab by the EBL and ICP etching technique. Once atoms or quantum dots are
embedded into the high-Q PC cavities, various quantum phenomena can be demonstrated on
chip. Recently, our works on high-Q silicon PC microcavities have achieved great progress
after extensive exploration and delicate improvement of nanofabrication techniques and
sample processing techniques have been made [42].

We focus on studying the L3 PC microcavities formed by removing three cylindrical air holes in
the Γ−K direction in a triangular lattice [Fig. 9(a)]. The lattice constant is 430 nm, the radius of
cylindrical air hole is 120 nm and the thickness of silicon slab is 235 nm. The FDTD calculation
results indicate that the L3 PC microcavity possesses a quality factor of about 5300 [Fig. 9(c)].
After trying hundreds of simulations, we find that the positions of air holes at the edges of the
microcavities affect the Q factor dramatically. The electric field pattern of the cavity mode can
be tuned to be Gaussian-type by displacing the six air holes outwardly at the edges of the
microcavities, and this can increase the quality factor significantly [41,42]. The optimal displace‐
ment is found to be 73, 10 and 73 nm for the first, second and third air holes at both edges of the
microcavities, which is depicted in Fig. 9(b). The maximum quality factor of 127,323 [Fig. 9(d)]
can be achieved, which is 20 times larger compared with the unadjusted one.

Based on the optimal parameters, we successfully fabricate the designed high-Q planar L3
PC microcavities in SOI wafer by implementing EBL and ICP [42]. As can be seen in Fig.
10(a), the L3 microcavity is side-coupled to a W1 waveguide with the barrier of three rows
of air holes. The samples are measured by our home-made fiber coupling system as described
in the above section. When the incident wavelength is off-resonant, light cannot couple with
the microcavity, leading to strong output. While, at resonance most energy is tunneled into
the  microcavity,  resulting  in  weak  output.  For  the  case  of  high-Q  microcavity,  a  sharp
transmission dip is expected in the transmission spectrum. The lattice constant, radius of
cylindrical air hole and the thickness of silicon slab are 430, 120 and 235 nm, respectively.
Limited by the fabrication accuracy of 10 nm, the displacement is adjusted to be 80, 20 and
80 nm for the six air holes at both edges of the microcavities. Figure 10(a) shows the enlarged

Figure 8. a) SEM topographic image, and the near-field optical intensity distributions at (b) 1550 nm; (c) 1560 nm; (d)
1571 nm; (e) 1590 nm; and (f) 1610 nm. The white dotted lines in each optical picture denote the interface between
the W1 PC waveguide and PCCCW. All pictures were obtained for the same scanning area of 12 μm × 15 μm [39].
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Figure 7. Simulation model (a) and calculated optical field distributions at (b) 1550 nm; (c) 1560 nm; (d) 1571 nm; (e)
1590 nm; and (f) 1610 nm [39].

The optical intensity distribution patterns are different at 1550 and 1610 nm, even though both
of them mainly appear as a single narrow line along the central PCCCW region with a full
width at half maximum (FWHM) of about 350 nm. Precisely speaking, the pattern demon‐
strates a little bit shoulder as a result of mode superposition at 1550 nm, since it comprises two
eigenmodes. At 1610 nm, the calculated result consists well with the experimental one in Fig.
8(f), which presents a single line along the whole waveguide. The pattern appears bright and
wide with obvious interference nodes in the PCCCW section. The simulated field distribution
profiles in the W1 PC waveguide sections agree well with the detected ones at all these
wavelengths, which show a snake-like/single-line profile in the input/output W1 PC wave‐
guide except that of a snake-like profile in the output W1 PC waveguide at 1560 nm. In addition,
the simulated field distribution patterns of the snake-like profile in the PCCCW section appear
deviating greatly from the detected ones at 1550, 1571, and 1590 nm. However, if we calculate
the optical field distribution patterns at 1550, 1560, and 1571 nm with the even-to-odd
amplitude ratios of 1:4, 1:1, 1:4, and 1:6, respectively, we can find the simulated results are
consistent with the experimental patterns evolving from single-line, to snake-like, and then to
double-line structures for the PCCCW section. Combination of the near-field optical detection
and theoretical simulation shows that SNOM is an efficient tool to study the optical propaga‐
tion in the PCCCW and can help to design slow light elements.

4.3. High–Q cavity

Quantum information processing and quantum state manipulation have received great
attentions because of their potential revolutionary impact on future network communication.
Optical cavities, which can be used to store information, are considered to be one of the most
important devices in the quantum communication application. The generation and teleporta‐
tion of qubits require sufficiently high value of Q/V, where V stands for the mode volume of
the optical cavities. As a result, high-Q optical cavities show great potential application in
quantum information. Among all the optical cavities, 2D PC slab cavities are the best choice
because of their simultaneous high-Q and small mode volume characteristics. It has been

Advances in Photonic Crystals306

reported that Rabi splitting can be observed experimentally when the quantum dots are
introduced into the PC cavities with high Q/V [40,41]. Moreover, due to the development of
nanofabrication technique, multiple high-Q PC slab cavities can be fabricated at the same time
on a single slab by the EBL and ICP etching technique. Once atoms or quantum dots are
embedded into the high-Q PC cavities, various quantum phenomena can be demonstrated on
chip. Recently, our works on high-Q silicon PC microcavities have achieved great progress
after extensive exploration and delicate improvement of nanofabrication techniques and
sample processing techniques have been made [42].

We focus on studying the L3 PC microcavities formed by removing three cylindrical air holes in
the Γ−K direction in a triangular lattice [Fig. 9(a)]. The lattice constant is 430 nm, the radius of
cylindrical air hole is 120 nm and the thickness of silicon slab is 235 nm. The FDTD calculation
results indicate that the L3 PC microcavity possesses a quality factor of about 5300 [Fig. 9(c)].
After trying hundreds of simulations, we find that the positions of air holes at the edges of the
microcavities affect the Q factor dramatically. The electric field pattern of the cavity mode can
be tuned to be Gaussian-type by displacing the six air holes outwardly at the edges of the
microcavities, and this can increase the quality factor significantly [41,42]. The optimal displace‐
ment is found to be 73, 10 and 73 nm for the first, second and third air holes at both edges of the
microcavities, which is depicted in Fig. 9(b). The maximum quality factor of 127,323 [Fig. 9(d)]
can be achieved, which is 20 times larger compared with the unadjusted one.

Based on the optimal parameters, we successfully fabricate the designed high-Q planar L3
PC microcavities in SOI wafer by implementing EBL and ICP [42]. As can be seen in Fig.
10(a), the L3 microcavity is side-coupled to a W1 waveguide with the barrier of three rows
of air holes. The samples are measured by our home-made fiber coupling system as described
in the above section. When the incident wavelength is off-resonant, light cannot couple with
the microcavity, leading to strong output. While, at resonance most energy is tunneled into
the  microcavity,  resulting  in  weak  output.  For  the  case  of  high-Q  microcavity,  a  sharp
transmission dip is expected in the transmission spectrum. The lattice constant, radius of
cylindrical air hole and the thickness of silicon slab are 430, 120 and 235 nm, respectively.
Limited by the fabrication accuracy of 10 nm, the displacement is adjusted to be 80, 20 and
80 nm for the six air holes at both edges of the microcavities. Figure 10(a) shows the enlarged

Figure 8. a) SEM topographic image, and the near-field optical intensity distributions at (b) 1550 nm; (c) 1560 nm; (d)
1571 nm; (e) 1590 nm; and (f) 1610 nm. The white dotted lines in each optical picture denote the interface between
the W1 PC waveguide and PCCCW. All pictures were obtained for the same scanning area of 12 μm × 15 μm [39].

Silicon Photonic Crystals Towards Optical Integration
http://dx.doi.org/10.5772/55041

307



view of the cavity region. A sharp and narrow transmission dip is observed at the 1567.35
nm in the measured transmission spectrum [Fig. 10(c)]. For the purpose of extracting the
quality factor accurately, we finely tune the wavelength between 1565 and 1570 nm. The
measured spectrum is  illustrated in Fig.  10(d) and the Q-factor as large as 71,243 is  ob‐
tained. Nevertheless, there are some deviation between the simulation and experiment. For
example, the resonant wavelength is 16.75 nm red-shifted from the simulated result and the
maximum quality factor is significantly less than the calculated value of 127,323 [Fig. 10(b)].
We believe that the deviation is caused by the imperfection of the cylindrical air holes and
the actual radius is not exactly the same as the value in simulation. The success of fabricat‐
ing high-Q silicon PC slab microcavities enables us to investigate various interesting quantum
phenomena, such as strong coupling between light and quantum system, quantum informa‐
tion processing technique, single photon source, all-solid quantum manipulation and high-
quality biochemistry sensing devices.

4.4. Channel drop filters

Channel drop filters are key components for extraction of light trapped in a point-defect
cavity to a neighboring waveguide and they sit on the basis of wave-division multiplexers
and demultiplexers. They have great applications in a wide variety of fields, such as photonic
integrated circuits, telecommunications, and quantum informatics. Based on the simulation
and experiment experiences about PC waveguides, we design and fabricate an ultra compact
three ports filter in 2D air-bridged silicon PC slab by closing the bus waveguide for 100%
reflection feedback. Figure 11(a) shows the SEM picture of the three ports filter structure [43].
This filter was fabricated by EBL and ICP techniques. The lattice constant of the PC and the
radius of the air hole are 430 and 145 nm, respectively. Port 3 is the input waveguide channel,
while ports 1 and 2 are two output waveguide channels, respectively. They are formed by
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Figure 9. Schematics of (a) the original PC L3 nanocavity and (b) the optimized nanocavity; (c), (d) show radiation
spectra of the original PC L3 nanocavity and the optimized nanocavity, respectively [42].
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missing one row of air holes along the Γ−K direction of the triangular-lattice PC, the so called
W1 waveguide. C1 and C2 are two point-defect cavities. The distance between the center of
the defect cavity and the neighboring waveguide is 3 rows of holes in the y direction. As
seen in Fig. 11(a), the C1 cavity consists of three missing air holes, and the two air holes at
the cavity edges are shifted outward by 10 nm apart from the regular positions. Similarly,
those of the C2 cavity are shifted by 20 nm. The slight shift of air holes is conducive to confine
light inside the cavity and leads to a higher quality factor. Meanwhile, the different shifts of
the two cavities make the resonant wavelengths slightly different. The experiment results
[Figs. 11(b) and (c)] show that the resonant wavelengths of C1 and C2 are 1529.5 and 1531
nm, respectively. The wavelength spacing of the two cavities is about 1.5 nm and might be
further reduced by continuously changing the size of the cavity.  The full  widths at  half
maximum of the peaks are 1.5 and 1.4 nm and the corresponding quality factors are about
1020  and 1090,  respectively.  To  estimate  the  drop efficiency,  a  reference  straight  wave‐
guide of the same parameters is positioned near the three-port filter. By keeping the same
intensity of input light, the transmission intensities of the reference waveguide and port 1
are 0.330 and 0.158 μw, respectively, when the input wavelength is set at 1529.5 nm. The
drop efficiency of port 1 is roughly estimated to be 48% and a similar result has been obtained
at port 2.
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radiation spectra calculated by FDTD method; (c) and (d) show transmission spectra of one of the fabricated samples.
The maximum Q value of up to 71000 is obtained [42].
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view of the cavity region. A sharp and narrow transmission dip is observed at the 1567.35
nm in the measured transmission spectrum [Fig. 10(c)]. For the purpose of extracting the
quality factor accurately, we finely tune the wavelength between 1565 and 1570 nm. The
measured spectrum is  illustrated in Fig.  10(d) and the Q-factor as large as 71,243 is  ob‐
tained. Nevertheless, there are some deviation between the simulation and experiment. For
example, the resonant wavelength is 16.75 nm red-shifted from the simulated result and the
maximum quality factor is significantly less than the calculated value of 127,323 [Fig. 10(b)].
We believe that the deviation is caused by the imperfection of the cylindrical air holes and
the actual radius is not exactly the same as the value in simulation. The success of fabricat‐
ing high-Q silicon PC slab microcavities enables us to investigate various interesting quantum
phenomena, such as strong coupling between light and quantum system, quantum informa‐
tion processing technique, single photon source, all-solid quantum manipulation and high-
quality biochemistry sensing devices.

4.4. Channel drop filters

Channel drop filters are key components for extraction of light trapped in a point-defect
cavity to a neighboring waveguide and they sit on the basis of wave-division multiplexers
and demultiplexers. They have great applications in a wide variety of fields, such as photonic
integrated circuits, telecommunications, and quantum informatics. Based on the simulation
and experiment experiences about PC waveguides, we design and fabricate an ultra compact
three ports filter in 2D air-bridged silicon PC slab by closing the bus waveguide for 100%
reflection feedback. Figure 11(a) shows the SEM picture of the three ports filter structure [43].
This filter was fabricated by EBL and ICP techniques. The lattice constant of the PC and the
radius of the air hole are 430 and 145 nm, respectively. Port 3 is the input waveguide channel,
while ports 1 and 2 are two output waveguide channels, respectively. They are formed by
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Figure 9. Schematics of (a) the original PC L3 nanocavity and (b) the optimized nanocavity; (c), (d) show radiation
spectra of the original PC L3 nanocavity and the optimized nanocavity, respectively [42].
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missing one row of air holes along the Γ−K direction of the triangular-lattice PC, the so called
W1 waveguide. C1 and C2 are two point-defect cavities. The distance between the center of
the defect cavity and the neighboring waveguide is 3 rows of holes in the y direction. As
seen in Fig. 11(a), the C1 cavity consists of three missing air holes, and the two air holes at
the cavity edges are shifted outward by 10 nm apart from the regular positions. Similarly,
those of the C2 cavity are shifted by 20 nm. The slight shift of air holes is conducive to confine
light inside the cavity and leads to a higher quality factor. Meanwhile, the different shifts of
the two cavities make the resonant wavelengths slightly different. The experiment results
[Figs. 11(b) and (c)] show that the resonant wavelengths of C1 and C2 are 1529.5 and 1531
nm, respectively. The wavelength spacing of the two cavities is about 1.5 nm and might be
further reduced by continuously changing the size of the cavity.  The full  widths at  half
maximum of the peaks are 1.5 and 1.4 nm and the corresponding quality factors are about
1020  and 1090,  respectively.  To  estimate  the  drop efficiency,  a  reference  straight  wave‐
guide of the same parameters is positioned near the three-port filter. By keeping the same
intensity of input light, the transmission intensities of the reference waveguide and port 1
are 0.330 and 0.158 μw, respectively, when the input wavelength is set at 1529.5 nm. The
drop efficiency of port 1 is roughly estimated to be 48% and a similar result has been obtained
at port 2.
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Figure 10. a) SEM pictures of one of the fabricated samples, including the L3 nanocavtiy with displaced air holes; (b)
radiation spectra calculated by FDTD method; (c) and (d) show transmission spectra of one of the fabricated samples.
The maximum Q value of up to 71000 is obtained [42].
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Figure 11. a) SEM image of the three-port filter; (b) and (c) the measured transmission spectra at ports 1 and 2, re‐
spectively [43].

It has been well known that structure is the kernel of filter design. Usually, the regulation of
microcavity resonant frequency is obtained by changing the size of the cavities. We have
proposed a new way to design multi-channel filters by changing the shape of the air holes [44].
When the shape of the air holes changes from circle to ellipse, two parameters, the ellipticity
and the orientation angle of the ellipse, in addition to its size can be further explored and they
can have a great influence on localized cavity modes. Therefore, we can use this for some
special purpose.
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Figure 12(a) schematically shows a one-channel PC filter. A horizontal channel (W1 wave‐
guide) serves as the input signal channel, which is created by removing a single line of air holes
along the Γ−K direction. A cavity is formed by removing three air holes along the Γ−K direction
that is rotated 60° from the W1 waveguide. It is located four rows away from the major channel
and is connected with the major channel through an indirect side coupling. Another single-
mode waveguide is formed parallel to the cavity and serves as the output signal channel.
Figure 12(b) shows an enlarged picture of the filter in the region around the cavity. One of its
axes is oriented counterclockwise by an angle θ to the x axis, namely, the input light propa‐
gation direction. The sizes of the axes parallel and perpendicular to this orientation are a and
b, respectively. Now we have great structural freedom to tune the optical properties of the new
PC filter by changing the parameters of θ, a and b. To show this point, we design and fabricate
a four-channel PC filter by using different cavity parameters as described in Table 1. The SEM
picture of the fabricated four-channel filter is displayed in Fig. 13(a). Four cavities are located
on the two sides of the central linear W1 waveguide. They are engineered by leaving several
air holes unetched in the Γ−K orientation. The input signal propagates upwards from the
bottom input ridge waveguide. Each cavity is coupled with another W1 waveguide that is
connected to a ridge waveguide, which serves as the output signal channel.

Figure 12. a) Schematic view of a one-channel PC filter, the major channel lies in the x direction, and the cavity and
output side channel are parallel to the Γ−K direction of the triangular lattice; (b) enlarged view of the filter around the
cavity. The air holes have a general elliptical shape with one of its axes oriented counterclockwise by an angle θ with
respect to the x axis. The two axes are of size a and b, respectively [44].
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can have a great influence on localized cavity modes. Therefore, we can use this for some
special purpose.
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along the Γ−K direction. A cavity is formed by removing three air holes along the Γ−K direction
that is rotated 60° from the W1 waveguide. It is located four rows away from the major channel
and is connected with the major channel through an indirect side coupling. Another single-
mode waveguide is formed parallel to the cavity and serves as the output signal channel.
Figure 12(b) shows an enlarged picture of the filter in the region around the cavity. One of its
axes is oriented counterclockwise by an angle θ to the x axis, namely, the input light propa‐
gation direction. The sizes of the axes parallel and perpendicular to this orientation are a and
b, respectively. Now we have great structural freedom to tune the optical properties of the new
PC filter by changing the parameters of θ, a and b. To show this point, we design and fabricate
a four-channel PC filter by using different cavity parameters as described in Table 1. The SEM
picture of the fabricated four-channel filter is displayed in Fig. 13(a). Four cavities are located
on the two sides of the central linear W1 waveguide. They are engineered by leaving several
air holes unetched in the Γ−K orientation. The input signal propagates upwards from the
bottom input ridge waveguide. Each cavity is coupled with another W1 waveguide that is
connected to a ridge waveguide, which serves as the output signal channel.

Figure 12. a) Schematic view of a one-channel PC filter, the major channel lies in the x direction, and the cavity and
output side channel are parallel to the Γ−K direction of the triangular lattice; (b) enlarged view of the filter around the
cavity. The air holes have a general elliptical shape with one of its axes oriented counterclockwise by an angle θ with
respect to the x axis. The two axes are of size a and b, respectively [44].
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Figure 13. a) SEM image of the four-channel filter; (b) Simulation results of transmission spectra for the four-channel
filter. (c) Experiment results of transmission spectra for the same filter [44].
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3 420 3 240 220 0 1563 1567 4
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Table 1. Structural parameters in the four-channel filter
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The simulation and experimental results of the transmission spectra for the four channels are
displayed in Figs. 13(b) and (c). Although significant noise exists, a resonant peak can be clearly
found for each channel. The peaks are located at 1549, 1541, 1567, and 1560 nm for channels 1,
2, 3, and 4, respectively. The results confirm that the air-hole shape has a great influence on
the functionality of the PC filter devices. The elliptical air holes can induce a fine tuning of the
resonant wavelength by changing the ellipticity of the elliptical air holes.

As described in the preceding section, a high-performance wide-band Γ−Μ waveguide can be
formed by modifying the radii of the air holes along the pathway. The combination of Γ−Μ
waveguides and Γ−K waveguides can offer a more flexible way to interconnect and couple
between different devices. We have proposed a type of PC filter using these two kinds of
waveguides [45]. The Γ−Μ waveguide and Γ−K waveguide are used as the input and output
signal channels respectively, and they are connected via cavity resonance. Figure 14(a) shows
the SEM picture of a four-channel filter structure. We change the size of the cavities by moving
the end points of the cavity [marked with “a, b” and “c, d” as shown in the inset of Fig. 14(b)] to
change the resonant frequency. Table 2 gives the detailed parameters of the four cavities. The
experiment demonstrates that the four resonant peaks are at the wavelengths of 1543, 1545, 1548
and 1551 nm, as shown in Fig. 14(b). In spite of the slight shift in the resonant peak toward higher
frequency, which we believe is induced by the uncertainties in the fabrication, the experimen‐
tal results are in fairly good agreement with the simulation results, where the maximum relative
deviation of resonant wavelength is within 2 nm. These results clearly demonstrate that the
designed Γ−M waveguides can act together with the usual Γ−K waveguide to construct high-
performance multichannel filers with more structural flexibility. In our experiment, we also use
the CCD camera to directly monitor the transport of infrared signal within the channel-drop
filter. The situation of on-resonance and off-resonance can be clearly visualized and distinguish‐
ed from the CCD camera images. One typical case is shown in Fig. 14(c).

5. PC band–engineering devices for anomalous transport control

In previous sections, we discuss several PC devices, including waveguides, cavities, and
channel-drop filters that are built on the silicon 2D PC platform. These devices work on defects
that are brought into PBG and they can be considered as PBG materials. As we have mentioned,
PC structures possess another important feature: photonic pass bands. In this section we show
several example devices that implement the dispersion and refraction properties of PCs at their
transmission bands.

Let’s first make an overview of how band dispersion engineering works. Figure 15(a) shows
the typical photonic bands structure of an air-bridge PC slab structure composed of a square-
lattice array of air holes etched in silicon slab. The areas labeled in Fig. 15(a) show the uncon‐
ventional light propagation, self-collimation and negative refraction, in PC. One effective way
to understand and exploit desirable light propagation properties in PC is using the equifre‐
quency surface (EFS) contours, as shown in Figs. 15(b) and 15(c). Figure 15(b) shows the EFS
contours of the first TE-like band. The EFS contours in the red line frame are flat, meaning that
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Figure 13. a) SEM image of the four-channel filter; (b) Simulation results of transmission spectra for the four-channel
filter. (c) Experiment results of transmission spectra for the same filter [44].
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The simulation and experimental results of the transmission spectra for the four channels are
displayed in Figs. 13(b) and (c). Although significant noise exists, a resonant peak can be clearly
found for each channel. The peaks are located at 1549, 1541, 1567, and 1560 nm for channels 1,
2, 3, and 4, respectively. The results confirm that the air-hole shape has a great influence on
the functionality of the PC filter devices. The elliptical air holes can induce a fine tuning of the
resonant wavelength by changing the ellipticity of the elliptical air holes.

As described in the preceding section, a high-performance wide-band Γ−Μ waveguide can be
formed by modifying the radii of the air holes along the pathway. The combination of Γ−Μ
waveguides and Γ−K waveguides can offer a more flexible way to interconnect and couple
between different devices. We have proposed a type of PC filter using these two kinds of
waveguides [45]. The Γ−Μ waveguide and Γ−K waveguide are used as the input and output
signal channels respectively, and they are connected via cavity resonance. Figure 14(a) shows
the SEM picture of a four-channel filter structure. We change the size of the cavities by moving
the end points of the cavity [marked with “a, b” and “c, d” as shown in the inset of Fig. 14(b)] to
change the resonant frequency. Table 2 gives the detailed parameters of the four cavities. The
experiment demonstrates that the four resonant peaks are at the wavelengths of 1543, 1545, 1548
and 1551 nm, as shown in Fig. 14(b). In spite of the slight shift in the resonant peak toward higher
frequency, which we believe is induced by the uncertainties in the fabrication, the experimen‐
tal results are in fairly good agreement with the simulation results, where the maximum relative
deviation of resonant wavelength is within 2 nm. These results clearly demonstrate that the
designed Γ−M waveguides can act together with the usual Γ−K waveguide to construct high-
performance multichannel filers with more structural flexibility. In our experiment, we also use
the CCD camera to directly monitor the transport of infrared signal within the channel-drop
filter. The situation of on-resonance and off-resonance can be clearly visualized and distinguish‐
ed from the CCD camera images. One typical case is shown in Fig. 14(c).

5. PC band–engineering devices for anomalous transport control

In previous sections, we discuss several PC devices, including waveguides, cavities, and
channel-drop filters that are built on the silicon 2D PC platform. These devices work on defects
that are brought into PBG and they can be considered as PBG materials. As we have mentioned,
PC structures possess another important feature: photonic pass bands. In this section we show
several example devices that implement the dispersion and refraction properties of PCs at their
transmission bands.

Let’s first make an overview of how band dispersion engineering works. Figure 15(a) shows
the typical photonic bands structure of an air-bridge PC slab structure composed of a square-
lattice array of air holes etched in silicon slab. The areas labeled in Fig. 15(a) show the uncon‐
ventional light propagation, self-collimation and negative refraction, in PC. One effective way
to understand and exploit desirable light propagation properties in PC is using the equifre‐
quency surface (EFS) contours, as shown in Figs. 15(b) and 15(c). Figure 15(b) shows the EFS
contours of the first TE-like band. The EFS contours in the red line frame are flat, meaning that
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this is the self-collimation region. The reason is that the group velocity, which is parallel to the
gradient of the EFS, is pointing in the same direction for all the modes located within the region.
As a result, if light propagates along the Γ−Μ direction, it does not suffer any diffraction in the
PC. Γ =(0, 0)(π / a) and Μ =(1, 1)(π / a) are high-symmetric points in the first Brillouin zone for
square lattice. This kind of PC structures can be used as the channelless waveguide in inte‐
grated optic devices. Figure 15(c) shows EFS contours of the second band. The EFS contours
are roughly circular around the direction at the reduced frequency (a /λ) range 0.28−0.31, as
indicated in the red solid line frame. When the frequency increases, the EFS contours move
toward the Γ point, which indicates the existence of negative refraction in the region. If the
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Figure 14. a) SEM image of the fabricated four-channel filter. Four cavities are located on the two sides of the input
waveguide; (b) experimental transmission spectra of the four channel filter in linear scale. The inset picture illustrates
two groups of end points (air-hole centers) of the cavity marked with “a, b” and “c, d.” Black arrows indicate the mov‐
ing direction of these air holes; (c) infrared CCD camera imaging of the output signal observed in experiment for one
channel of the sample. A bright spot appears at the end of the output channel when the input wavelength coincides
with the resonant wavelength and disappears when it is at off-resonance [45].
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incident light is mainly parallel to the Γ −Μ direction, the PC will behave like an isotropic
medium with a negative index of refraction in that particular frequency range.

5.1. Negative refraction

Based on the above analysis, we designed and fabricated an air-bridged PC structure that
exhibited negative refraction of infrared light [46]. The structure is schematically shown in Fig.
16(a). These structures are directly drilled by FIB technique. The input infrared signal channel
is a silicon wire waveguide, which is inclined with respect to the surface normal by 10°. The
lattice constant a of the square array is 460 nm and the diameter of the air hole is 220 nm. We
first use 3D FDTD method to simulate the electromagnetic field intensity distribution at
wavelength 1503 nm. The result is displayed in Fig. 16(b). We find strong reflection and
scattering at the interface between the input waveguide and the PC structure. This is induced
by the serious impedance mismatch at the interface, although the high index contrast air-
bridged structure can achieve good optical confinement. To surpass this obstacle, we use a
tapered air-holes connection layer at the input surface of PC structure to reduce the reflection
and scattering losses. As shown in Fig. 16(b), a large fraction of light power from the input
waveguide is coupled into the PC structure and negative refraction of light beam within the
PC structure is clearly seen. Besides, the reflection or scattering of light at the input interface
of the PC is very much reduced. This clearly indicates that the designed tapered interface can
reduce the interface impedance mismatch remarkably. The calculated value of negative
refraction angle is −45°.

In our measurement, TE-polarized light from a tunable semiconductor laser (1500−1640 nm)
was first launched into a tapered single mode fiber, and then coupled to the silicon wire
waveguide, and finally incident on the PC structure. The ordinary way to see the light
propagation behavior is to directly observe the pattern of the radiated light from the top of the
sample using a conventional microscopy objective and an infrared CCD camera. The result is
shown in Fig. 16(c). The light spot at the middle bottom part of the pattern is the radiated light
from the input silicon wire waveguide. The big light spot at the center represents the scattered
light at the interface between the input wire waveguide and the PC due to impedance
mismatch. There is also a small bright spot at the top right corner of the pattern, and it is
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1 0 1550 1543 - - -

2 5 1551.5 1545 1.5 2 0.5

3 10 1553 1548 3 5 2

4 15 1556 1551 6 8 2

Table 2. Structural parameters in the four channel Γ−M and Γ−M waveguides filter
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ing direction of these air holes; (c) infrared CCD camera imaging of the output signal observed in experiment for one
channel of the sample. A bright spot appears at the end of the output channel when the input wavelength coincides
with the resonant wavelength and disappears when it is at off-resonance [45].
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incident light is mainly parallel to the Γ −Μ direction, the PC will behave like an isotropic
medium with a negative index of refraction in that particular frequency range.

5.1. Negative refraction

Based on the above analysis, we designed and fabricated an air-bridged PC structure that
exhibited negative refraction of infrared light [46]. The structure is schematically shown in Fig.
16(a). These structures are directly drilled by FIB technique. The input infrared signal channel
is a silicon wire waveguide, which is inclined with respect to the surface normal by 10°. The
lattice constant a of the square array is 460 nm and the diameter of the air hole is 220 nm. We
first use 3D FDTD method to simulate the electromagnetic field intensity distribution at
wavelength 1503 nm. The result is displayed in Fig. 16(b). We find strong reflection and
scattering at the interface between the input waveguide and the PC structure. This is induced
by the serious impedance mismatch at the interface, although the high index contrast air-
bridged structure can achieve good optical confinement. To surpass this obstacle, we use a
tapered air-holes connection layer at the input surface of PC structure to reduce the reflection
and scattering losses. As shown in Fig. 16(b), a large fraction of light power from the input
waveguide is coupled into the PC structure and negative refraction of light beam within the
PC structure is clearly seen. Besides, the reflection or scattering of light at the input interface
of the PC is very much reduced. This clearly indicates that the designed tapered interface can
reduce the interface impedance mismatch remarkably. The calculated value of negative
refraction angle is −45°.

In our measurement, TE-polarized light from a tunable semiconductor laser (1500−1640 nm)
was first launched into a tapered single mode fiber, and then coupled to the silicon wire
waveguide, and finally incident on the PC structure. The ordinary way to see the light
propagation behavior is to directly observe the pattern of the radiated light from the top of the
sample using a conventional microscopy objective and an infrared CCD camera. The result is
shown in Fig. 16(c). The light spot at the middle bottom part of the pattern is the radiated light
from the input silicon wire waveguide. The big light spot at the center represents the scattered
light at the interface between the input wire waveguide and the PC due to impedance
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recognized to result from the radiated light when the negative refraction beam hits the end
facet of the PC structure. Because the TE-like modes are strongly confined guided mode on
the silicon slab and the surface fields are nonradiative and evanescent with respect to the
vertical direction of the PC slab, the far-field pattern observed and recorded by the ordinary
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Figure 15. a) Photonic band structures of TE-like bands for an air-holes square-lattice PC slab; (b) EFS contours of the
TE-like first band for the same PC show that self-collimation can occur in the direction around the Γ−Μ direction; (c)
EFS contours of the TE-like second band show that negative refraction can occur in the direction around the Γ−Μ di‐
rection [46].

Advances in Photonic Crystals316

optical microscopy is not able to reveal the detailed process about how the negative refraction
beam propagates inside the PC structure unless the scattering of light by roughness and
irregularity is sufficiently strong on the beam propagation path. This is indeed the case for
Fig. 16(c). In fact, the small bright spot could not appear without the intentional introduction
of the air slot at the far end of the PC structure. It would not be possible to tell which way the
infrared beam would refract if without the aid of this scattering light spot.

In order to observe clearly and tell unambiguously the ray trace of the negative refraction
beam in the PC structure, we used the SNOM technology (SNOM-100 Nanonics, Israel). A
probe scans in the vicinity of  the surface of  the PC structure and records the near-field
intensity  distribution.  The  tip  has  a  resolution  of  about  100  nm,  i.e.,  1/15  of  the  wave‐
length. The signal is recorded by an infrared single-photon detector,  which allows us to
capture very weak infrared signals. The probed near field information directly reflects light
propagation properties of the TE-like modes for the PC and enables one to visualize the ray
trace of the negative refraction light beam because the near field at the surface is an integral
part of the modal profile of the confined guided modes that exponentially decay away from
the surface of the slab. In the SNOM picture [Fig. 16(d)], a bright spot also appears at the
front interface of the PC structure, but it is much smaller than the one in Fig. 16(c). The ray
trace of the incident light beam along the silicon wire waveguide and its propagation along
the negative refraction direction inside the PC structure can be clearly seen. The negative
refraction  angle  is  about  −45°,  which  is  in  good  agreement  with  the  FDTD  simulation
presented in Fig. 16(b). The SNOM detection unambiguously discloses the negative refrac‐
tion property of the designed PC.

Figure 16. a) SEM picture of the PC structure and an input waveguide. The width of the waveguide d  is 2 μm; (b) Light
intensity distribution of TE-like modes for PC with deliberately designed tapered air-holes interface; (c) Directly ob‐
served pattern of the radiated light of λ= 1500 nm from the top using an objective lens; (d) SNOM picture of the nega‐
tive refraction of the same wavelength. In each picture, the boundary of the PC structure is superimposed as solid lines
[46].
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facet of the PC structure. Because the TE-like modes are strongly confined guided mode on
the silicon slab and the surface fields are nonradiative and evanescent with respect to the
vertical direction of the PC slab, the far-field pattern observed and recorded by the ordinary
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Figure 15. a) Photonic band structures of TE-like bands for an air-holes square-lattice PC slab; (b) EFS contours of the
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EFS contours of the TE-like second band show that negative refraction can occur in the direction around the Γ−Μ di‐
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optical microscopy is not able to reveal the detailed process about how the negative refraction
beam propagates inside the PC structure unless the scattering of light by roughness and
irregularity is sufficiently strong on the beam propagation path. This is indeed the case for
Fig. 16(c). In fact, the small bright spot could not appear without the intentional introduction
of the air slot at the far end of the PC structure. It would not be possible to tell which way the
infrared beam would refract if without the aid of this scattering light spot.

In order to observe clearly and tell unambiguously the ray trace of the negative refraction
beam in the PC structure, we used the SNOM technology (SNOM-100 Nanonics, Israel). A
probe scans in the vicinity of  the surface of  the PC structure and records the near-field
intensity  distribution.  The  tip  has  a  resolution  of  about  100  nm,  i.e.,  1/15  of  the  wave‐
length. The signal is recorded by an infrared single-photon detector,  which allows us to
capture very weak infrared signals. The probed near field information directly reflects light
propagation properties of the TE-like modes for the PC and enables one to visualize the ray
trace of the negative refraction light beam because the near field at the surface is an integral
part of the modal profile of the confined guided modes that exponentially decay away from
the surface of the slab. In the SNOM picture [Fig. 16(d)], a bright spot also appears at the
front interface of the PC structure, but it is much smaller than the one in Fig. 16(c). The ray
trace of the incident light beam along the silicon wire waveguide and its propagation along
the negative refraction direction inside the PC structure can be clearly seen. The negative
refraction  angle  is  about  −45°,  which  is  in  good  agreement  with  the  FDTD  simulation
presented in Fig. 16(b). The SNOM detection unambiguously discloses the negative refrac‐
tion property of the designed PC.

Figure 16. a) SEM picture of the PC structure and an input waveguide. The width of the waveguide d  is 2 μm; (b) Light
intensity distribution of TE-like modes for PC with deliberately designed tapered air-holes interface; (c) Directly ob‐
served pattern of the radiated light of λ= 1500 nm from the top using an objective lens; (d) SNOM picture of the nega‐
tive refraction of the same wavelength. In each picture, the boundary of the PC structure is superimposed as solid lines
[46].
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On the other hand, ordinary positive refraction only occurs for TM-like confined modes, so
the designed PC structure can behave as an efficient beam splitter in an integrated optical
circuit. The high-resolution SNOM technology can greatly help one to directly visualize the
ray trace and acquire deeper understanding on various anomalous wave propagation behav‐
iors, such as super-prism, superlensing, self-collimation, and slow light in deliberately
designed 2D PC slab structures in the optical wavelengths. This in turn can help to explore a
wider regime of controlling light behaviors on the nanoscale for future basic science and high
technology applications.

5.2. Self–collimation effect

Self-collimation effect is the propagation of light without diffraction along the propagation
direction. This phenomenon has been used to construct non-channel waveguides, beam
splitters and beam combiners [47,48]. The behaviors of these devices are determined by the
performance of the self-collimation effect. Recently we have designed and realized a simple
structure composed by a square lattice array of elliptical air-holes where broadband large-
angle self-collimation effect is observed for TE-like guided modes in infrared wavelength [49].

Figure 17(a) shows our PC structure formed by a square lattice of elliptical holes. The calculated
TE mode photonic band diagram of the fourth, fifth and sixth bands are shown in Fig. 17(b).
The self-collimation effect can be observed at the gray regions within a broad normalized
frequency range 0.36−0.39 and 0.43−0.46. For simplicity, we only consider the EFS contours
of the fifth TE band [Fig. 17(c)]. The contours are flat at the normalized frequency between 0.43
and 0.46 for all the values of ky and not just in the vicinity of ky =0. This feature indicates that
our structure can support self-collimation for incident light beams with large incident angles.
Then the FDTD simulation by using the MEEP package is performed to verify our prediction.
A structure with the size of 30 a× 45 a is considered. A Gaussian beam with a width of 4a
propagates into the surface at 0°, 20° and 60° incident angles (Fig. 18). For simplicity, we only
consider the minimum (0.36) and the maximum normalized frequency (0.43). Figure 18 shows
the electric field intensity distribution in the xy plane with 0°, 20° and 60° incident angles at
normalized frequency 0.36 [Fig. 18(a)] and 0.46 [Fig. 18(b)]. From the simulation results, we
find that the light beam is collimated along the propagation direction for each situation.
However, the couple efficiency of the incident light becomes lower and lower with the increase
of the incident angle. We do not show the field distributions for those incident angles that are
larger than 60°. These six situations in Fig. 18 are sufficient to show the broadband large-angle
characteristic of the self-collimation effect.

Following our simulation results, we fabricate our PC structures in SOI substrate by EBL and
ICP etching process. Figure 19 shows the SEM pictures of the designed PC structures with
0°, 20° or 60° incident waveguides. Ray trace of light beam is observed using IR camera and
a high numerical aperture (NA = 0.50) objective. Detailed images of the field intensity of the
scattered light are recorded for 0°, 20° and 60° incident angles for different incident wave‐
lengths. Here we only show the patterns of the minimum and maximum wavelengths for
each  incident  angle.  They  demonstrate  strong  light  confinement  along  the  propagation
direction for all the situations. The experimental results are in good agreement with FDTD
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Figure 17. a) Schematic of the PC structure formed by a square lattice of elliptical holes; (b) band diagram of the
fourth, fifth and sixth TE bands; (c) EFS contours of the fifth TE band [49].

Figure 18. Electric field intensity distribution with 0°, 20° and 60° incident angles at the minimum normalized fre‐
quency 0.36 (a) and the maximum 0.46 (b). A FDTD method is used in the simulations [49].
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On the other hand, ordinary positive refraction only occurs for TM-like confined modes, so
the designed PC structure can behave as an efficient beam splitter in an integrated optical
circuit. The high-resolution SNOM technology can greatly help one to directly visualize the
ray trace and acquire deeper understanding on various anomalous wave propagation behav‐
iors, such as super-prism, superlensing, self-collimation, and slow light in deliberately
designed 2D PC slab structures in the optical wavelengths. This in turn can help to explore a
wider regime of controlling light behaviors on the nanoscale for future basic science and high
technology applications.

5.2. Self–collimation effect

Self-collimation effect is the propagation of light without diffraction along the propagation
direction. This phenomenon has been used to construct non-channel waveguides, beam
splitters and beam combiners [47,48]. The behaviors of these devices are determined by the
performance of the self-collimation effect. Recently we have designed and realized a simple
structure composed by a square lattice array of elliptical air-holes where broadband large-
angle self-collimation effect is observed for TE-like guided modes in infrared wavelength [49].

Figure 17(a) shows our PC structure formed by a square lattice of elliptical holes. The calculated
TE mode photonic band diagram of the fourth, fifth and sixth bands are shown in Fig. 17(b).
The self-collimation effect can be observed at the gray regions within a broad normalized
frequency range 0.36−0.39 and 0.43−0.46. For simplicity, we only consider the EFS contours
of the fifth TE band [Fig. 17(c)]. The contours are flat at the normalized frequency between 0.43
and 0.46 for all the values of ky and not just in the vicinity of ky =0. This feature indicates that
our structure can support self-collimation for incident light beams with large incident angles.
Then the FDTD simulation by using the MEEP package is performed to verify our prediction.
A structure with the size of 30 a× 45 a is considered. A Gaussian beam with a width of 4a
propagates into the surface at 0°, 20° and 60° incident angles (Fig. 18). For simplicity, we only
consider the minimum (0.36) and the maximum normalized frequency (0.43). Figure 18 shows
the electric field intensity distribution in the xy plane with 0°, 20° and 60° incident angles at
normalized frequency 0.36 [Fig. 18(a)] and 0.46 [Fig. 18(b)]. From the simulation results, we
find that the light beam is collimated along the propagation direction for each situation.
However, the couple efficiency of the incident light becomes lower and lower with the increase
of the incident angle. We do not show the field distributions for those incident angles that are
larger than 60°. These six situations in Fig. 18 are sufficient to show the broadband large-angle
characteristic of the self-collimation effect.

Following our simulation results, we fabricate our PC structures in SOI substrate by EBL and
ICP etching process. Figure 19 shows the SEM pictures of the designed PC structures with
0°, 20° or 60° incident waveguides. Ray trace of light beam is observed using IR camera and
a high numerical aperture (NA = 0.50) objective. Detailed images of the field intensity of the
scattered light are recorded for 0°, 20° and 60° incident angles for different incident wave‐
lengths. Here we only show the patterns of the minimum and maximum wavelengths for
each  incident  angle.  They  demonstrate  strong  light  confinement  along  the  propagation
direction for all the situations. The experimental results are in good agreement with FDTD
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Figure 17. a) Schematic of the PC structure formed by a square lattice of elliptical holes; (b) band diagram of the
fourth, fifth and sixth TE bands; (c) EFS contours of the fifth TE band [49].

Figure 18. Electric field intensity distribution with 0°, 20° and 60° incident angles at the minimum normalized fre‐
quency 0.36 (a) and the maximum 0.46 (b). A FDTD method is used in the simulations [49].
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simulations. We believe that this kind of structure may have potential applications in beam
combiners and multiplexers.

Figure 19. Left panels: SEM pictures of designed PC structures with 0° (a), 20° (b) and 60° (c) incident waveguide. Mid‐
dle and right panels: Ray trace of light beam observed using IR camera and a high numerical aperture (NA = 0.50)
objective. The patterns of the minimum and maximum wavelengths are shown for each incident angle [49].

6. On–chip wavelength–scale optical diode and isolator

Optical isolation is a long pursued object with fundamental difficulty in integrated photonics.
The need to overcome this difficulty is becoming increasingly urgent with the emergence of
silicon nano-photonics, which promises to create on-chip large-scale integrated optical
systems. Motivated by the one-way effect, considerable effort has been dedicated to the study
of unidirectional nonreciprocal transmission of electromagnetic waves, showing important
promise in optical communications. Until now, on-chip integration of optical diode still stays
in theory, particularly in silicon. These “optical diodes” include fluorescent dyes with a
concentration gradient, absorbing multilayer systems, and second harmonic generators with
a spatially varying wave vector mismatch. An electro-tunable optical isolator based on liquid-
crystal heterojunctions, showing nonreciprocal transmission of circularly polarized light in
photonic bandgap regions, has been reported. In another configuration using liquid crystals,
linearly polarized light is used. In addition to many attempts on magneto-optical materials,
optical isolators have also been fabricated using nonlinear optical processes and electro-
absorption modulators.

An efficient routine to create optical diode is via time-reversal symmetry breaking or spatial
inversion symmetry breaking [50], which could lead to the optical isolation in any device where
the forward and backward transmissivity of light is very much different. We have reported a
method for making unidirectional on-chip optical diodes based on the directional bandgap
difference of two 2D square-lattice photonic crystals comprising a heterojunction structure and

Advances in Photonic Crystals320

the break of the spatial inversion symmetry. Simulations confirm the existence of a clear
isolation effect in the designed heterojunction structure. We fabricate these on-chip optical
diodes in silicon and the near-infrared experiment results show high-performance optical
isolation, in good agreement with the theoretical prediction [51]. This device may play the
same basic role in photonic circuits as the electrical diode does in electronic circuits. It could
further pave the way to achieve on-chip optical logical devices without nonlinearity or
magnetism and bloom the photonic network integration.

Figure 20(a) shows the schematic configuration of the original diode structure under study,
which consists of two PC slab domains (PC1 and PC2) with the same lattice constant a but
different air hole radii (r1 and r2, respectively) comprising a heterojunction structure. These
two PC regions stand at a silicon slab [grey area in Fig. 20(a)]. Each PC region has a square-
lattice pattern of air holes [white holes in Fig. 20(a)], with the hetero-interface between PC1
and PC2 along the Γ-M direction. We set the two hole radii as a fixed ratio to the lattice constant
a, which are r1=0.24a and r2=0.36a in order to simplify our discussion. These two composite PCs
would comprise a pure PC region if r1=r2. The light source is placed symmetrically aside the
structure with two 4a-wide ridge waveguides connecting the surface of the two PC regions.
The whole area is surrounded by a perfectly matched layer.

We simulated the transmission spectra for a TE-like light signal transporting along the forward
(from left to right) and backward (from right to left) direction. The refractive index of the
dielectric slab was set to 3.4, corresponding to that of silicon at 1,550 nm. The slab thickness
was h=0.5a. Figure 20(b) shows the calculated forward (black line) and backward (red line)
transmission spectra. The frequency is normalized by a/λ. It is clearly seen that there exists an
isolation band ranging from 0.2649 to 0.2958 (a/λ), where the forward transmission forms a
peak with a transmissivity of about 6% while the backward transmissivity is down between
0.5% and 1%. The forward peak is located at 0.2793 (a/λ), just in the middle of the isolation
band. We define S=(TF-TB)/(TF+TB) as the signal contrast of the diode, where TF and TB denote
the forward and backward transmissivity, respectively. The maximum S of this original diode
equals 0.846 at the peak. Besides, there exists another isolation region from 0.2196 to 0.2649 (a/
λ), where the backward transmissivity is higher than the forward transmissivity. This structure
thus shows an extraordinary phenomenon of unidirectional transport property.

We calculated the band diagram of the TE-like modes of these two PC slabs using the 3D-FDTD
method. Figures 21(a) and 21(b) show the calculation results. The first band (even mode) in
bulk PC2 [Fig. 2(b)] is directional as the top mode frequency in the Γ-Χ direction (x-axis) is
0.2345 (a/λ) but that in the Γ-Μ direction (45°-direction) is 0.3087 (a/λ). Inside the region
between 0.2345 (a/λ) and 0.3087 (a/λ), the all-directional transparent region of PC1 needs to be
above 0.2633 (a/λ) [Fig. 21(a)] in order to match the bottom mode frequency in the Γ-Χ direction
of the second band (odd mode). These two modes in PCs are the basic working mode of the
diode structure. Here the even and odd modes are defined with respect to the off-slab mirror-
reflection symmetry σz of the field component Ey. In the region between 0.2633 (a/λ) and 0.3087
(a/λ) PC1 is transparent in all directions, while PC2 is transparent along the Γ-Μ direction but
opaque along the Γ-Χ direction. Compared with Fig. 20(b), the unidirectional transport region
[0.2649 to 0.2958 (a/λ)] just coincides with the overlapped region between the directional
bandgap of PC2 and the all-directional pass band of PC1. This simple picture indicates that
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simulations. We believe that this kind of structure may have potential applications in beam
combiners and multiplexers.

Figure 19. Left panels: SEM pictures of designed PC structures with 0° (a), 20° (b) and 60° (c) incident waveguide. Mid‐
dle and right panels: Ray trace of light beam observed using IR camera and a high numerical aperture (NA = 0.50)
objective. The patterns of the minimum and maximum wavelengths are shown for each incident angle [49].

6. On–chip wavelength–scale optical diode and isolator

Optical isolation is a long pursued object with fundamental difficulty in integrated photonics.
The need to overcome this difficulty is becoming increasingly urgent with the emergence of
silicon nano-photonics, which promises to create on-chip large-scale integrated optical
systems. Motivated by the one-way effect, considerable effort has been dedicated to the study
of unidirectional nonreciprocal transmission of electromagnetic waves, showing important
promise in optical communications. Until now, on-chip integration of optical diode still stays
in theory, particularly in silicon. These “optical diodes” include fluorescent dyes with a
concentration gradient, absorbing multilayer systems, and second harmonic generators with
a spatially varying wave vector mismatch. An electro-tunable optical isolator based on liquid-
crystal heterojunctions, showing nonreciprocal transmission of circularly polarized light in
photonic bandgap regions, has been reported. In another configuration using liquid crystals,
linearly polarized light is used. In addition to many attempts on magneto-optical materials,
optical isolators have also been fabricated using nonlinear optical processes and electro-
absorption modulators.

An efficient routine to create optical diode is via time-reversal symmetry breaking or spatial
inversion symmetry breaking [50], which could lead to the optical isolation in any device where
the forward and backward transmissivity of light is very much different. We have reported a
method for making unidirectional on-chip optical diodes based on the directional bandgap
difference of two 2D square-lattice photonic crystals comprising a heterojunction structure and
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the break of the spatial inversion symmetry. Simulations confirm the existence of a clear
isolation effect in the designed heterojunction structure. We fabricate these on-chip optical
diodes in silicon and the near-infrared experiment results show high-performance optical
isolation, in good agreement with the theoretical prediction [51]. This device may play the
same basic role in photonic circuits as the electrical diode does in electronic circuits. It could
further pave the way to achieve on-chip optical logical devices without nonlinearity or
magnetism and bloom the photonic network integration.

Figure 20(a) shows the schematic configuration of the original diode structure under study,
which consists of two PC slab domains (PC1 and PC2) with the same lattice constant a but
different air hole radii (r1 and r2, respectively) comprising a heterojunction structure. These
two PC regions stand at a silicon slab [grey area in Fig. 20(a)]. Each PC region has a square-
lattice pattern of air holes [white holes in Fig. 20(a)], with the hetero-interface between PC1
and PC2 along the Γ-M direction. We set the two hole radii as a fixed ratio to the lattice constant
a, which are r1=0.24a and r2=0.36a in order to simplify our discussion. These two composite PCs
would comprise a pure PC region if r1=r2. The light source is placed symmetrically aside the
structure with two 4a-wide ridge waveguides connecting the surface of the two PC regions.
The whole area is surrounded by a perfectly matched layer.

We simulated the transmission spectra for a TE-like light signal transporting along the forward
(from left to right) and backward (from right to left) direction. The refractive index of the
dielectric slab was set to 3.4, corresponding to that of silicon at 1,550 nm. The slab thickness
was h=0.5a. Figure 20(b) shows the calculated forward (black line) and backward (red line)
transmission spectra. The frequency is normalized by a/λ. It is clearly seen that there exists an
isolation band ranging from 0.2649 to 0.2958 (a/λ), where the forward transmission forms a
peak with a transmissivity of about 6% while the backward transmissivity is down between
0.5% and 1%. The forward peak is located at 0.2793 (a/λ), just in the middle of the isolation
band. We define S=(TF-TB)/(TF+TB) as the signal contrast of the diode, where TF and TB denote
the forward and backward transmissivity, respectively. The maximum S of this original diode
equals 0.846 at the peak. Besides, there exists another isolation region from 0.2196 to 0.2649 (a/
λ), where the backward transmissivity is higher than the forward transmissivity. This structure
thus shows an extraordinary phenomenon of unidirectional transport property.

We calculated the band diagram of the TE-like modes of these two PC slabs using the 3D-FDTD
method. Figures 21(a) and 21(b) show the calculation results. The first band (even mode) in
bulk PC2 [Fig. 2(b)] is directional as the top mode frequency in the Γ-Χ direction (x-axis) is
0.2345 (a/λ) but that in the Γ-Μ direction (45°-direction) is 0.3087 (a/λ). Inside the region
between 0.2345 (a/λ) and 0.3087 (a/λ), the all-directional transparent region of PC1 needs to be
above 0.2633 (a/λ) [Fig. 21(a)] in order to match the bottom mode frequency in the Γ-Χ direction
of the second band (odd mode). These two modes in PCs are the basic working mode of the
diode structure. Here the even and odd modes are defined with respect to the off-slab mirror-
reflection symmetry σz of the field component Ey. In the region between 0.2633 (a/λ) and 0.3087
(a/λ) PC1 is transparent in all directions, while PC2 is transparent along the Γ-Μ direction but
opaque along the Γ-Χ direction. Compared with Fig. 20(b), the unidirectional transport region
[0.2649 to 0.2958 (a/λ)] just coincides with the overlapped region between the directional
bandgap of PC2 and the all-directional pass band of PC1. This simple picture indicates that
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the current unidirectional transport effect involves two ingredients: (I) directional bandgap of
PC2 and (II) all-directional pass band of PC1. Noting that the structure does not obey the spatial
inversion symmetry alone the propagating direction, the principle of optical isolation can thus
be summarized as follows:

1. Forward. When light goes across PC1 as the odd mode and reaches the hetero-junction
along the Γ-Χ direction, it cannot stay in the Γ-Χ direction in PC2 further because of the
Γ-Χ directional gap. But the hetero-junction is along the Γ-Μ direction, so light turns to
the hetero-junction and diffracts as the even mode at any Γ-Μ direction into PC2, which
passes through PC2 and eventually outputs.

2. Backward. When light goes directly into PC2 as the even mode, it turns to the two Γ-Μ
direction paths which cannot convert to the odd mode of PC1 in the Γ-Χ direction and
eventually leak out so that it does not output.
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Figure 21. a) Calculated modal dispersion curve for PC1 (r=0.24a). (b) Calculated modal dispersion curve for PC2
(r=0.36a), in which the black line is the air light cone. The red curve denotes the first even mode, while the green curve
denotes the second odd mode. The blue dashed line denotes the bottom frequency of the Γ-Χ directional odd mode
[0.2633 (a/λ)] of PC1 and the orange dashed line denotes the top frequency of the Γ-Μ directional even mode of PC2
[0.3087 (a/λ)] [51].
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Figure 20. a) Schematic geometry of an original heterojunction optical diode formed by the interface (normal to the
Γ-Μ direction) between two PC slabs (denoted as PC1 and PC2) with different hole radii (r1 and r2, respectively). (b)
Simulated transmission spectra of the diode in the forward direction (the black line) and the backward direction (the
red line). An input and output ridge waveguide has been used in the 3D-FDTD calculation. [51].
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Based on the numerical analysis of the optical diode, we have fabricated the original diode
structure as well as a revised diode structure (with better performance) in silicon, whose SEM
pictures are displayed in Fig. 22(a) and (c), respectively. Figures 22(b) and 22(d) show the
theoretical and experimental results of the transmission spectra of the two diodes in the
forward and backward directions. In Fig. 22(b) the theoretical forward peak of the original
diode structure is at 1,575 nm [0.2793 (a/λ)] and the maximum transmissivity is 6%. The
experimental forward peak is at 1,556 nm and the maximum transmissivity is 7%. In Fig.
22(d) the experimental forward peak is at 1,534 nm and the maximum transmissivity is 10%
for the revised diode, whereas the theoretical forward peak is at 1,552 nm [0.2834 (a/λ)] with
a transmissivity of 13%. The measured signal contrast S equals 0.718 (the original structure)
and 0.831 (the revised structure) at the peak frequency. Both experimental peaks in Figs. 22(b)
and 22(d) have a nearly 20 nm shift and 50 nm broadening against the theoretical simulations,
which is probably due to the imperfections in fabrication. The experiment confirms the
existence of the unidirectional transport effect in agreement with the theoretical prediction.
Due to the arbitrariness of the lattice constant a, we can freely adjust the working frequency
to anywhere as desired. This could be more convenient for the design of realistic photonic
devices.

The principle for optical diode as analyzed in the above is robust as it is based on a simple
directional bandgap mismatch effect of photonic crystal heterojunction. Yet, it should be
noticed that in Figs. 22(b) and 22(d) the backward transmissions are fluctuating within 1% to
2% and both are higher than the simulation values, as a result, the signal contrast S degrades
from 0.846 for the original structure and 0.92 for the revised structure in theory to 0.718 for the
original structure and 0.831 for the revised structure in experiment. The performance im‐
provement of the diode relies on how to maximize the peak of the forward transmissivity and
minimize the backward transmissivity in experiment. Several means can help improve the
forward transmissivity. First, one can change the air hole size of PC1 and PC2 and enlarge the
directional bandgap. Calculations show that the forward peak transmissivity of the revised
structure with r1 =0.30a and r2 =0.45a grows up dramatically to 29.4% while maintaining the
same low level of backward transmissivity. Second, one can change the relative size of the
input and output waveguides. Calculations show that by changing the input waveguide width
to 2a and keeping the output waveguide width 4a, the forward peak signal increases up to
20.8% in transmissivity.

To reduce the backward transmissivity, one can either enlarge the directional bandgap of PC2
to attenuate the backward signal more strongly, or eliminate the return of leak-out light from
the outside of slab or the structure boundary by introducing the absorbing metal dots near the
structure, or enlarge the heterojunction structure appropriately so that the leak-out light cannot
enter the output waveguide. Following the above general ideas, we further optimize the optical
diode structures as illustrated in Fig. 23. The structure has parameters of r1=100 nm and r2=160
nm, and the input and output waveguide width are 2a and 6a, respectively. In experiment, we
have got an optical diode with an maximum of 32.8% of the forward peak transmissivity and
0.885 of the signal contrast S at 1,557 nm.
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the current unidirectional transport effect involves two ingredients: (I) directional bandgap of
PC2 and (II) all-directional pass band of PC1. Noting that the structure does not obey the spatial
inversion symmetry alone the propagating direction, the principle of optical isolation can thus
be summarized as follows:

1. Forward. When light goes across PC1 as the odd mode and reaches the hetero-junction
along the Γ-Χ direction, it cannot stay in the Γ-Χ direction in PC2 further because of the
Γ-Χ directional gap. But the hetero-junction is along the Γ-Μ direction, so light turns to
the hetero-junction and diffracts as the even mode at any Γ-Μ direction into PC2, which
passes through PC2 and eventually outputs.

2. Backward. When light goes directly into PC2 as the even mode, it turns to the two Γ-Μ
direction paths which cannot convert to the odd mode of PC1 in the Γ-Χ direction and
eventually leak out so that it does not output.
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Figure 21. a) Calculated modal dispersion curve for PC1 (r=0.24a). (b) Calculated modal dispersion curve for PC2
(r=0.36a), in which the black line is the air light cone. The red curve denotes the first even mode, while the green curve
denotes the second odd mode. The blue dashed line denotes the bottom frequency of the Γ-Χ directional odd mode
[0.2633 (a/λ)] of PC1 and the orange dashed line denotes the top frequency of the Γ-Μ directional even mode of PC2
[0.3087 (a/λ)] [51].
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Figure 20. a) Schematic geometry of an original heterojunction optical diode formed by the interface (normal to the
Γ-Μ direction) between two PC slabs (denoted as PC1 and PC2) with different hole radii (r1 and r2, respectively). (b)
Simulated transmission spectra of the diode in the forward direction (the black line) and the backward direction (the
red line). An input and output ridge waveguide has been used in the 3D-FDTD calculation. [51].
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Based on the numerical analysis of the optical diode, we have fabricated the original diode
structure as well as a revised diode structure (with better performance) in silicon, whose SEM
pictures are displayed in Fig. 22(a) and (c), respectively. Figures 22(b) and 22(d) show the
theoretical and experimental results of the transmission spectra of the two diodes in the
forward and backward directions. In Fig. 22(b) the theoretical forward peak of the original
diode structure is at 1,575 nm [0.2793 (a/λ)] and the maximum transmissivity is 6%. The
experimental forward peak is at 1,556 nm and the maximum transmissivity is 7%. In Fig.
22(d) the experimental forward peak is at 1,534 nm and the maximum transmissivity is 10%
for the revised diode, whereas the theoretical forward peak is at 1,552 nm [0.2834 (a/λ)] with
a transmissivity of 13%. The measured signal contrast S equals 0.718 (the original structure)
and 0.831 (the revised structure) at the peak frequency. Both experimental peaks in Figs. 22(b)
and 22(d) have a nearly 20 nm shift and 50 nm broadening against the theoretical simulations,
which is probably due to the imperfections in fabrication. The experiment confirms the
existence of the unidirectional transport effect in agreement with the theoretical prediction.
Due to the arbitrariness of the lattice constant a, we can freely adjust the working frequency
to anywhere as desired. This could be more convenient for the design of realistic photonic
devices.

The principle for optical diode as analyzed in the above is robust as it is based on a simple
directional bandgap mismatch effect of photonic crystal heterojunction. Yet, it should be
noticed that in Figs. 22(b) and 22(d) the backward transmissions are fluctuating within 1% to
2% and both are higher than the simulation values, as a result, the signal contrast S degrades
from 0.846 for the original structure and 0.92 for the revised structure in theory to 0.718 for the
original structure and 0.831 for the revised structure in experiment. The performance im‐
provement of the diode relies on how to maximize the peak of the forward transmissivity and
minimize the backward transmissivity in experiment. Several means can help improve the
forward transmissivity. First, one can change the air hole size of PC1 and PC2 and enlarge the
directional bandgap. Calculations show that the forward peak transmissivity of the revised
structure with r1 =0.30a and r2 =0.45a grows up dramatically to 29.4% while maintaining the
same low level of backward transmissivity. Second, one can change the relative size of the
input and output waveguides. Calculations show that by changing the input waveguide width
to 2a and keeping the output waveguide width 4a, the forward peak signal increases up to
20.8% in transmissivity.

To reduce the backward transmissivity, one can either enlarge the directional bandgap of PC2
to attenuate the backward signal more strongly, or eliminate the return of leak-out light from
the outside of slab or the structure boundary by introducing the absorbing metal dots near the
structure, or enlarge the heterojunction structure appropriately so that the leak-out light cannot
enter the output waveguide. Following the above general ideas, we further optimize the optical
diode structures as illustrated in Fig. 23. The structure has parameters of r1=100 nm and r2=160
nm, and the input and output waveguide width are 2a and 6a, respectively. In experiment, we
have got an optical diode with an maximum of 32.8% of the forward peak transmissivity and
0.885 of the signal contrast S at 1,557 nm.
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Figure 23. a) Scanning electron microscope images of the optimized optical diode system. (b) Theoretical (left) and
experimental (right) transmission spectra of the optimized diode structure [51].

Our PC heterojunction diode has advantages of high signal contrast, wavelength-scale small
sizes, and being all-dielectric, linear, and passive. Furthermore, it has a much smaller scale
than those based on diffraction gratings and thus greatly facilitates large-scale integration. The
high performance on-chip optical diode realized in silicon without nonlinearity or magnetism
will stimulate the exploration of other more complex on-chip optical logical devices with ultra-
high stability, integration and much less power consumption. Such an optical diode may play
the same basic role in photonic circuits as the electrical diodes do in electronic circuits, which
have significantly revolutionized fundamental science and advanced technology in various
aspects of our routine life due to their capability of rectification of current flux. Furthermore,

Figure 22. a) Scanning electron microscope images of the original optical diode structures. (b) Theoretical (left)and
experimental (right) transmission spectra of the original diode structure. (c) Scanning electron microscope images of
the revised optical diode structures. (d) Theoretical (left) and experimental (right) transmission spectra of the revised
diode structure [51].
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its large-scale fabrication could be readily achieved by the well-developed CMOS techniques.
The realization of high-performance on-chip optical diodes may open up a road toward
photonic computers.

Strictly speaking, the existence of unidirectional transport effect of light does not mean
automatic achievement of optical isolation. Recently there have appeared hot controversies
upon whether isolation of light can be realized via linear and passive photonic structures.
Several schemes to realize unidirectional transport of light through linear and passive photonic
structures have been proposed, which are essentially based on the principle of spatial-
inversion symmetry breaking. Feng et al. reports a passive silicon optical diode based on one-
way guided mode conversion [52]. However, whether or not nonreciprocal transport of light
can happen in the structure has raised hot controversies [53,54]. Fan et al. made a scattering
matrix analysis for relevant forward and backward modes of the structure and argued that the
structure is essentially reciprocal and cannot enable optical isolation because it possesses a
symmetric coupling scattering matrix. In their response, Feng et al. acknowledge that their
structure, as a one-way mode converter with asymmetric mode conversion, is Lorentz
reciprocal, which states that the relationship between an oscillating current and the resulting
electric field is unchanged if one interchanges the points where the current is placed and where
the field is measured, and on its own cannot be used as the basis of an optical isolator. The
controversies have thus raised a fundamental question: Can one construct an optical isolator
by using a linear and time-independent optical system? The answer to this question by the
authors of Ref. [53,54] obviously is no.

But our theoretical and experimental study on the optical isolation performance of our PC
heterojunction diode leads to a totally different answer to the above question, namely, the
spatial inversion symmetry breaking diode can construct an optical isolator in no conflict with
any reciprocal principle [55]. To see whether there is a good isolation effect of the silicon diode,
we implement a direct method that is originated from the conventional magneto-optical
isolator that has been popularly used in laser devices [Fig. 24(a)]. One places a total reflection
mirror after the output port in the forward direction of the isolator device and monitor the
reflection signal from the input port. This reflection signal well describes and measures the
round-trip transmissivity of light across the isolator device. If the reflection signal is the same
as or is comparable with the forward signal, then the structure does not have the desired
isolation property. In contrast, if the reflection signal is much smaller than the forward signal,
then a good isolation property is implied.

An equivalent way to investigate the optical isolation performance of the diode structure is to
adopt a doubled-diode structure with a mirror-symmetrical plane at the forward direction
output port of the diode, as depicted in Fig. 25. Obviously this method has set all the forward
output signals as the backward input signal of the diode and thus can directly test the isolation
property of the diode structure. By implementing this method, we calculate simultaneously
the forward transmissivity and the round-trip transmissivity of the diode structure. Compar‐
ison of these two quantities would directly measure their isolation properties. Figure 25(a) is
the schematic geometry of the doubled-diode structure corresponding to the diode depicted
in Fig. 24(b). The parameters of the diode are the same as in Fig. 23. The width of the input and
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Figure 23. a) Scanning electron microscope images of the optimized optical diode system. (b) Theoretical (left) and
experimental (right) transmission spectra of the optimized diode structure [51].

Our PC heterojunction diode has advantages of high signal contrast, wavelength-scale small
sizes, and being all-dielectric, linear, and passive. Furthermore, it has a much smaller scale
than those based on diffraction gratings and thus greatly facilitates large-scale integration. The
high performance on-chip optical diode realized in silicon without nonlinearity or magnetism
will stimulate the exploration of other more complex on-chip optical logical devices with ultra-
high stability, integration and much less power consumption. Such an optical diode may play
the same basic role in photonic circuits as the electrical diodes do in electronic circuits, which
have significantly revolutionized fundamental science and advanced technology in various
aspects of our routine life due to their capability of rectification of current flux. Furthermore,

Figure 22. a) Scanning electron microscope images of the original optical diode structures. (b) Theoretical (left)and
experimental (right) transmission spectra of the original diode structure. (c) Scanning electron microscope images of
the revised optical diode structures. (d) Theoretical (left) and experimental (right) transmission spectra of the revised
diode structure [51].
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its large-scale fabrication could be readily achieved by the well-developed CMOS techniques.
The realization of high-performance on-chip optical diodes may open up a road toward
photonic computers.

Strictly speaking, the existence of unidirectional transport effect of light does not mean
automatic achievement of optical isolation. Recently there have appeared hot controversies
upon whether isolation of light can be realized via linear and passive photonic structures.
Several schemes to realize unidirectional transport of light through linear and passive photonic
structures have been proposed, which are essentially based on the principle of spatial-
inversion symmetry breaking. Feng et al. reports a passive silicon optical diode based on one-
way guided mode conversion [52]. However, whether or not nonreciprocal transport of light
can happen in the structure has raised hot controversies [53,54]. Fan et al. made a scattering
matrix analysis for relevant forward and backward modes of the structure and argued that the
structure is essentially reciprocal and cannot enable optical isolation because it possesses a
symmetric coupling scattering matrix. In their response, Feng et al. acknowledge that their
structure, as a one-way mode converter with asymmetric mode conversion, is Lorentz
reciprocal, which states that the relationship between an oscillating current and the resulting
electric field is unchanged if one interchanges the points where the current is placed and where
the field is measured, and on its own cannot be used as the basis of an optical isolator. The
controversies have thus raised a fundamental question: Can one construct an optical isolator
by using a linear and time-independent optical system? The answer to this question by the
authors of Ref. [53,54] obviously is no.

But our theoretical and experimental study on the optical isolation performance of our PC
heterojunction diode leads to a totally different answer to the above question, namely, the
spatial inversion symmetry breaking diode can construct an optical isolator in no conflict with
any reciprocal principle [55]. To see whether there is a good isolation effect of the silicon diode,
we implement a direct method that is originated from the conventional magneto-optical
isolator that has been popularly used in laser devices [Fig. 24(a)]. One places a total reflection
mirror after the output port in the forward direction of the isolator device and monitor the
reflection signal from the input port. This reflection signal well describes and measures the
round-trip transmissivity of light across the isolator device. If the reflection signal is the same
as or is comparable with the forward signal, then the structure does not have the desired
isolation property. In contrast, if the reflection signal is much smaller than the forward signal,
then a good isolation property is implied.

An equivalent way to investigate the optical isolation performance of the diode structure is to
adopt a doubled-diode structure with a mirror-symmetrical plane at the forward direction
output port of the diode, as depicted in Fig. 25. Obviously this method has set all the forward
output signals as the backward input signal of the diode and thus can directly test the isolation
property of the diode structure. By implementing this method, we calculate simultaneously
the forward transmissivity and the round-trip transmissivity of the diode structure. Compar‐
ison of these two quantities would directly measure their isolation properties. Figure 25(a) is
the schematic geometry of the doubled-diode structure corresponding to the diode depicted
in Fig. 24(b). The parameters of the diode are the same as in Fig. 23. The width of the input and
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round-trip output waveguides is the same 2a (a=440 nm) and the center connection waveguide
is 6a. The length of the center connection waveguide, which measures the distance of the total-
reflection mirror away from the output port of the diode, is 10a. The spectra [Fig. 25(b)] show
that the round-trip reflection peak is located at 1,582 nm and has a quantity of only 0.3%, which
is almost two orders of magnitude smaller than the forward peak [with a maximum trans‐
missivity of 22.9%]. The result indicates that the diode has a significant optical isolation
property.

Based on the above numerical analysis, the double-diode structure was fabricated in silicon.
Figure 25(c) shows the SEM images of the fabricated double-diode structures along the light
path. The lattice constant a was 440 nm, and the radii r1 and r2 of air holes in the two photonic
crystals of the heterojunction diode were approximately 110 nm and 160 nm. The length of the
output waveguide is 4 μm (≈10a). The slab thickness was 220 nm. Figure 25(d) shows the
experimentally measured forward and backward transmission spectra of the diode, as well as
the round-trip transmission spectrum of the doubled-diode structure. The forward, backward
and round-trip transmissions are optimized and the input/output loss has been removed. The

Figure 24. a) Traditional magnetic-optical isolator with reflection mirror at the output port. (b) On-chip optical diode
system with reflection mirror at the output port. The absence of the reflection signal at the input port can indicate the
isolation property of the system [55].
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spectra show that the maximum round-trip transmissivity, located at 1,553 nm, is only 0.4%,
almost two orders of magnitude smaller than the forward peak [with a maximum transmis‐
sivity of 32.9%]. The experiment confirms the existence of a significant isolation effect in
agreement with the theoretical prediction. We change the length of the center connection
waveguide of the double-diode structure from 4 μm to 3 μm and 5 μm. The measured round-
trip transmission spectra for the three structures are displayed in Fig. 25(e). The results show
that the round-trip transmission signal decreases remarkably along with the increasing length
of the center connection waveguide, and already reaches an extremely low level (below 0.05%)
in the whole spectrum range when the output waveguide length increases to 5 μm. This clearly
indicates that the mode dispersion in the output waveguide of the diode has no influence to
the isolation property of the diode. Due to the arbitrariness of the lattice constant a, we can
freely adjust the isolation frequency to anywhere as desired. This could be very convenient for
the design of realistic photonic devices.

Figure 25. a) Schematic geometry of a doubled-diode structure with the total reflection mirror modeling the round-
trip transmission of an isolator, and the corresponding single-diode structure under forward and backward transmis‐
sions. (b) Calculated forward (black line), backward (blue line), and round-trip (red line) transmission spectra of the
diode. (c) Scanning electron microscope images of doubled-diode structure. (d) Experimental transmission spectra of
forward transmission (black line), backward transmission (blue line), and the round-trip reflection (red line). (e) Experi‐
mental spectra of the round-trip reflection with changed center waveguide length L [55].

To better understand the underlying physics, we further make a detailed analyses based on
the scattering matrix theory adopted in Ref. [53,54], and find that the above numerical results
of optical isolation are in no conflict with the reciprocity theorem involved in our linear and
passive silicon optical diode structure. Our diode basically consists of two in-plane information
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is almost two orders of magnitude smaller than the forward peak [with a maximum trans‐
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Figure 25(c) shows the SEM images of the fabricated double-diode structures along the light
path. The lattice constant a was 440 nm, and the radii r1 and r2 of air holes in the two photonic
crystals of the heterojunction diode were approximately 110 nm and 160 nm. The length of the
output waveguide is 4 μm (≈10a). The slab thickness was 220 nm. Figure 25(d) shows the
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system with reflection mirror at the output port. The absence of the reflection signal at the input port can indicate the
isolation property of the system [55].
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spectra show that the maximum round-trip transmissivity, located at 1,553 nm, is only 0.4%,
almost two orders of magnitude smaller than the forward peak [with a maximum transmis‐
sivity of 32.9%]. The experiment confirms the existence of a significant isolation effect in
agreement with the theoretical prediction. We change the length of the center connection
waveguide of the double-diode structure from 4 μm to 3 μm and 5 μm. The measured round-
trip transmission spectra for the three structures are displayed in Fig. 25(e). The results show
that the round-trip transmission signal decreases remarkably along with the increasing length
of the center connection waveguide, and already reaches an extremely low level (below 0.05%)
in the whole spectrum range when the output waveguide length increases to 5 μm. This clearly
indicates that the mode dispersion in the output waveguide of the diode has no influence to
the isolation property of the diode. Due to the arbitrariness of the lattice constant a, we can
freely adjust the isolation frequency to anywhere as desired. This could be very convenient for
the design of realistic photonic devices.

Figure 25. a) Schematic geometry of a doubled-diode structure with the total reflection mirror modeling the round-
trip transmission of an isolator, and the corresponding single-diode structure under forward and backward transmis‐
sions. (b) Calculated forward (black line), backward (blue line), and round-trip (red line) transmission spectra of the
diode. (c) Scanning electron microscope images of doubled-diode structure. (d) Experimental transmission spectra of
forward transmission (black line), backward transmission (blue line), and the round-trip reflection (red line). (e) Experi‐
mental spectra of the round-trip reflection with changed center waveguide length L [55].

To better understand the underlying physics, we further make a detailed analyses based on
the scattering matrix theory adopted in Ref. [53,54], and find that the above numerical results
of optical isolation are in no conflict with the reciprocity theorem involved in our linear and
passive silicon optical diode structure. Our diode basically consists of two in-plane information
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channels (A and B, the input and output waveguide channels for infrared signal, which can
be either single mode or multimode channels.) as well as many in-plane side-way and off-
plane scattering channels (denoted as C as a whole, which causes dissipation of information
away the signal channels). At the two ends of the diode device the fields are written as follows:

,
out in

out in

out in

A A
B S B
C C

é ù é ù
ê ú ê ú=ê ú ê ú
ê ú ê úë û ë û

(3)

in which Ain corresponds to the input signal from port A, Aout to the output signal from port
A, Bin to the input signal from port B, Bout to the output signal from port B, Cin to the input
signal from port C, and Cout to the output signal from port C. The scattering matrix S transforms
the input state of all the channels [the column vector in the right hand of Eq. (3)] into the output
state of all the channels [the column vector in the left hand of Eq. (3)]. The scattering equation
of the forward transmission is written as:
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(4)

As the silicon diode structure is linear and passive, the system as a whole is reciprocal in regard
to time-reversal symmetry following the Lorentz reciprocity theorem. As a result, the scatter‐
ing matrix S is symmetric with S =S T  and further satisfies:

1.S S* -= (5)

Suppose all the output signals are reversed and come back into the system, then the input at
port B for the system is now exactly the same as aout1

∗ bout1
∗ cout1

∗ T . The scattering equation
is then
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(6)

which is exactly the same as the initial input from port A. This clearly indicates that there is
no isolation behavior in the structure if all information is reversed back into the system,
consistent with the reciprocity theorem for a time-reversal symmetric system.
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However, the story can be very different when the in-plane signal transport is concerned, as
is always the case for 2D silicon PC slab structures. In our structure the information and energy
involved in C channels are dissipated permanently against the in-plane channel A and B due
to scattering loss (both in-plane and off-plane), and they cannot be reversed back totally and
input again into the structure, so in practice, Cin in Eq. (3) can be assumed to be zero. As a
result, Eq. (6) should be modified as:
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out out

out

a
S b b

c

*

é ù é ù
ê ú ê ú=ê ú ê ú
ê ú ê úë ûë û

(7)

In general, Eq. (7) looks very different from Eq. (6), which indicates that the reciprocal transport
of light in regard to the signal channel A and B has been broken. It shows that even if the same
forward transmission signal of port B is reversed back and input into the diode, the output
signal of port A can be much different from the initial input signal ain0 of port A because no
signal is reversed and input back into the channel C. Therefore, the considerable unidirectional
transmission behavior can take place for the in-plane signal with no conflict with the reciprocal
principle. In other words, the aout2(=S12 •bout1

∗ ) could be much different from

ain0
∗ (=S11 •aout1

∗ + S12 •bout1
∗ + S13 •cout1

∗ ) when S11 •aout1
∗ + S13 •cout1

∗ ≠0. This justifies the occur‐
rence of a good isolation effect in the silicon optical diode. In ideal structures, both of them are
zero, and Eq. (7) becomes
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which implies a 100% signal contrast of the isolator.

It is worth saying a few more words here for better drawing a clear picture about the physics
discussed in the above. In nature, as time always flows forward and cannot be reversed, one
usually uses the term of reciprocal or nonreciprocal transport of light to describe a model
system of back transport of light, in many cases to describe the reflection of light back into the
considered structure. In this regard, simply consider a point source radiating an outgoing
spherical wave front. If time can be reversed, the outgoing spherical wave front is contracted
into an ingoing spherical wave front, eventually to a point. This is a very good picture to
describe reciprocal transport of light in a linear system. However, to realize in real world such
a concept, one needs to place a perfect spherical mirror concentric with the point source of
light, which reflects back all information carried by the outgoing expanding spherical wave
into the ingoing contracting spherical wave. If, however, one has only a small planar mirror
placed at some distance and with a limited solid angle with respect to the source, the reflected
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channels (A and B, the input and output waveguide channels for infrared signal, which can
be either single mode or multimode channels.) as well as many in-plane side-way and off-
plane scattering channels (denoted as C as a whole, which causes dissipation of information
away the signal channels). At the two ends of the diode device the fields are written as follows:

,
out in

out in

out in

A A
B S B
C C

é ù é ù
ê ú ê ú=ê ú ê ú
ê ú ê úë û ë û

(3)

in which Ain corresponds to the input signal from port A, Aout to the output signal from port
A, Bin to the input signal from port B, Bout to the output signal from port B, Cin to the input
signal from port C, and Cout to the output signal from port C. The scattering matrix S transforms
the input state of all the channels [the column vector in the right hand of Eq. (3)] into the output
state of all the channels [the column vector in the left hand of Eq. (3)]. The scattering equation
of the forward transmission is written as:
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As the silicon diode structure is linear and passive, the system as a whole is reciprocal in regard
to time-reversal symmetry following the Lorentz reciprocity theorem. As a result, the scatter‐
ing matrix S is symmetric with S =S T  and further satisfies:
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Suppose all the output signals are reversed and come back into the system, then the input at
port B for the system is now exactly the same as aout1
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is then
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which is exactly the same as the initial input from port A. This clearly indicates that there is
no isolation behavior in the structure if all information is reversed back into the system,
consistent with the reciprocity theorem for a time-reversal symmetric system.

Advances in Photonic Crystals328

However, the story can be very different when the in-plane signal transport is concerned, as
is always the case for 2D silicon PC slab structures. In our structure the information and energy
involved in C channels are dissipated permanently against the in-plane channel A and B due
to scattering loss (both in-plane and off-plane), and they cannot be reversed back totally and
input again into the structure, so in practice, Cin in Eq. (3) can be assumed to be zero. As a
result, Eq. (6) should be modified as:
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In general, Eq. (7) looks very different from Eq. (6), which indicates that the reciprocal transport
of light in regard to the signal channel A and B has been broken. It shows that even if the same
forward transmission signal of port B is reversed back and input into the diode, the output
signal of port A can be much different from the initial input signal ain0 of port A because no
signal is reversed and input back into the channel C. Therefore, the considerable unidirectional
transmission behavior can take place for the in-plane signal with no conflict with the reciprocal
principle. In other words, the aout2(=S12 •bout1

∗ ) could be much different from
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∗ ≠0. This justifies the occur‐
rence of a good isolation effect in the silicon optical diode. In ideal structures, both of them are
zero, and Eq. (7) becomes
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which implies a 100% signal contrast of the isolator.

It is worth saying a few more words here for better drawing a clear picture about the physics
discussed in the above. In nature, as time always flows forward and cannot be reversed, one
usually uses the term of reciprocal or nonreciprocal transport of light to describe a model
system of back transport of light, in many cases to describe the reflection of light back into the
considered structure. In this regard, simply consider a point source radiating an outgoing
spherical wave front. If time can be reversed, the outgoing spherical wave front is contracted
into an ingoing spherical wave front, eventually to a point. This is a very good picture to
describe reciprocal transport of light in a linear system. However, to realize in real world such
a concept, one needs to place a perfect spherical mirror concentric with the point source of
light, which reflects back all information carried by the outgoing expanding spherical wave
into the ingoing contracting spherical wave. If, however, one has only a small planar mirror
placed at some distance and with a limited solid angle with respect to the source, the reflected
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signal can never return to the initial state of a point source when it reaches the position where
the light source is located. The conventional magneto-optical isolator also works in this
category of physical picture. It is used to block down the back-reflection signal of the trans‐
mission light, and the underlying physics can be well described by the model of time-reversal
symmetry breaking. The same physics picture applies equally well to our optical diode. The
fact that there exists information dissipation from the signal channels to other channels in a
spatial-inversion symmetry breaking structure is sufficient to induce an optical isolation in
regard to the signal.

The above numerical calculations and experimental results have shown that our silicon PC
slab heterojunction diode exhibits promising performance of optical isolation, with a round-
trip transmissivity two orders of magnitude smaller than the forward transmissivity for in-
plane infrared light across the structure. Our scattering matrix analysis indicates that the
considerable unidirectional transport of in-plane signal light can be attributed to the informa‐
tion dissipation and selective modal conversion in the multiple-channel spatial-inversion
symmetry breaking structure and has no conflict with reciprocal principle for a time-reversal
symmetric structure. It is expected that optimized connection interfaces between the input and
output waveguides with the heterojunction diode can yield better impedance mismatch and
bring higher forward transmission efficiency. That optical isolation can occur in a linear,
passive, and time-independent optical structure would stimulate more thinkings and insights
on the general transport theory of light in the fundamental side and open up a road towards
photonic logics in silicon integrated optical devices and circuits in the application side.

7. Parallel–hetero photonic crystal structures

Photonic crystal heterostructures (PCHs) have attracted increasing interest in optical integrat‐
ed circuits and cavity quantum electrodynamics (cavity QED) due to their useful photonic
band-gap structure and the ability to provide nanocavities with ultra-high quality factor (Q
factor). The properties of PCHs have been investigated both in theory and experiment over
the past several years. In previous works, the transmission and reflection characteristics of
PCHs were revealed only across the hetero-interface between two photonic crystals with
different lattice constants. The basic character of PCHs was the shift of the band edge, which
results in a transmission gap with approximately 100% efficiency [56]. In comparison, recently
we have reported a method for making a parallel-hetero perturbation inside the waveguide
and analyze the optical properties of the photonic crystal parallel-hetero perturbation (PHP)
structure. It is expected that this new type of PCHs not only contains the band-edge shifting
property but also has an additional transmission gap which can be easily regulated in the
middle of the transmission band. Simulations and experiments confirm the existence of the
additional transmission gap [57]. Our work can help to enlarge the usage of PCHs in the design
and fabrication of novel cavities and filters via localized modulation of structural dispersion,
which are key components in a photonic network. Based on the PCH structures, we have
further proposed and realized a new scheme of cavity, an interface heterostructure cavity
without any confinement barrier to confine light. Interestingly, the localized resonant mode
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lies in the pass band of the waveguide, in comparison of those cavities whose localized modes
are always located within the band gap of the structures.

Figure 26(a) shows the geometry of the designed cavity, which consists of two identical
parallel-hetero perturbation (PHP) waveguides. Each PHP waveguide consists of two semi-
infinite PC (PC1 and PC2) slabs having slightly different lattice constants (a1 and a2, respec‐
tively). We assume a2 is 5% larger than a1. Each PC region has a triangular-lattice pattern of air
holes, with the W1 waveguide formed by a line of missing holes along the Γ-Κ direction.
Without periodicity along any direction, the PHP is essentially a kind of incommensurate PC
superlattice along the waveguide direction. The transmission spectra of PHP waveguide
structure exhibits an additional gap [0.29-0.30 (a1/λ)] in the middle of the pass band of the two
individual W1 waveguides besides the usual band edge shifting [0.26-0.27 (a1/λ)] [56]. Figure
26(b) shows the calculated resonance spectrum of the cavity by using 3D FDTD method in
association with the Pade approximation for the TE-like modes of the PC slab [58]. The
resonance spectrum shows that a resonant mode surprisingly appears in the pass band region
of the two PHP waveguides at 0.2855 (a1/λ). In addition, this resonant mode (called band-pass
mode) has a rather high value of Q factor reaching 5,340.

Figure 26. a) Schematic geometry of an anti-symmetric parallel-hetero cavity structure formed by only two PHP wave‐
guides. (b) Calculated resonant mode distribution of the interface PHC [58].

We calculated the Ey field distribution of TE-like mode transporting along the waveguide at
the resonance frequency 0.2855 (a1/λ). It is surprising that the interface PHC has no influence
on the propagation of waveguide mode [Fig. 27(a)]. To further confirm that the resonant mode
really exists, we plot in Fig. 27(b) the calculated Ey field distribution of the resonant mode at
the interface PHC at 0.2855 (a1/λ) using a point source located within the interface cavity region.
The mode does oscillate as a quadrupole form without barriers along the propagation direction
even after the light source is turned off. This indicates that the resonant mode does exist and
is not a calculation fault.

Based on the numerical analysis, an interface PHC structure was fabricated [Fig. 28(a)].The
experimental results [Fig. 28(b)] confirms the theoretical prediction with the Q factor of the
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signal can never return to the initial state of a point source when it reaches the position where
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category of physical picture. It is used to block down the back-reflection signal of the trans‐
mission light, and the underlying physics can be well described by the model of time-reversal
symmetry breaking. The same physics picture applies equally well to our optical diode. The
fact that there exists information dissipation from the signal channels to other channels in a
spatial-inversion symmetry breaking structure is sufficient to induce an optical isolation in
regard to the signal.

The above numerical calculations and experimental results have shown that our silicon PC
slab heterojunction diode exhibits promising performance of optical isolation, with a round-
trip transmissivity two orders of magnitude smaller than the forward transmissivity for in-
plane infrared light across the structure. Our scattering matrix analysis indicates that the
considerable unidirectional transport of in-plane signal light can be attributed to the informa‐
tion dissipation and selective modal conversion in the multiple-channel spatial-inversion
symmetry breaking structure and has no conflict with reciprocal principle for a time-reversal
symmetric structure. It is expected that optimized connection interfaces between the input and
output waveguides with the heterojunction diode can yield better impedance mismatch and
bring higher forward transmission efficiency. That optical isolation can occur in a linear,
passive, and time-independent optical structure would stimulate more thinkings and insights
on the general transport theory of light in the fundamental side and open up a road towards
photonic logics in silicon integrated optical devices and circuits in the application side.

7. Parallel–hetero photonic crystal structures

Photonic crystal heterostructures (PCHs) have attracted increasing interest in optical integrat‐
ed circuits and cavity quantum electrodynamics (cavity QED) due to their useful photonic
band-gap structure and the ability to provide nanocavities with ultra-high quality factor (Q
factor). The properties of PCHs have been investigated both in theory and experiment over
the past several years. In previous works, the transmission and reflection characteristics of
PCHs were revealed only across the hetero-interface between two photonic crystals with
different lattice constants. The basic character of PCHs was the shift of the band edge, which
results in a transmission gap with approximately 100% efficiency [56]. In comparison, recently
we have reported a method for making a parallel-hetero perturbation inside the waveguide
and analyze the optical properties of the photonic crystal parallel-hetero perturbation (PHP)
structure. It is expected that this new type of PCHs not only contains the band-edge shifting
property but also has an additional transmission gap which can be easily regulated in the
middle of the transmission band. Simulations and experiments confirm the existence of the
additional transmission gap [57]. Our work can help to enlarge the usage of PCHs in the design
and fabrication of novel cavities and filters via localized modulation of structural dispersion,
which are key components in a photonic network. Based on the PCH structures, we have
further proposed and realized a new scheme of cavity, an interface heterostructure cavity
without any confinement barrier to confine light. Interestingly, the localized resonant mode
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lies in the pass band of the waveguide, in comparison of those cavities whose localized modes
are always located within the band gap of the structures.

Figure 26(a) shows the geometry of the designed cavity, which consists of two identical
parallel-hetero perturbation (PHP) waveguides. Each PHP waveguide consists of two semi-
infinite PC (PC1 and PC2) slabs having slightly different lattice constants (a1 and a2, respec‐
tively). We assume a2 is 5% larger than a1. Each PC region has a triangular-lattice pattern of air
holes, with the W1 waveguide formed by a line of missing holes along the Γ-Κ direction.
Without periodicity along any direction, the PHP is essentially a kind of incommensurate PC
superlattice along the waveguide direction. The transmission spectra of PHP waveguide
structure exhibits an additional gap [0.29-0.30 (a1/λ)] in the middle of the pass band of the two
individual W1 waveguides besides the usual band edge shifting [0.26-0.27 (a1/λ)] [56]. Figure
26(b) shows the calculated resonance spectrum of the cavity by using 3D FDTD method in
association with the Pade approximation for the TE-like modes of the PC slab [58]. The
resonance spectrum shows that a resonant mode surprisingly appears in the pass band region
of the two PHP waveguides at 0.2855 (a1/λ). In addition, this resonant mode (called band-pass
mode) has a rather high value of Q factor reaching 5,340.

Figure 26. a) Schematic geometry of an anti-symmetric parallel-hetero cavity structure formed by only two PHP wave‐
guides. (b) Calculated resonant mode distribution of the interface PHC [58].

We calculated the Ey field distribution of TE-like mode transporting along the waveguide at
the resonance frequency 0.2855 (a1/λ). It is surprising that the interface PHC has no influence
on the propagation of waveguide mode [Fig. 27(a)]. To further confirm that the resonant mode
really exists, we plot in Fig. 27(b) the calculated Ey field distribution of the resonant mode at
the interface PHC at 0.2855 (a1/λ) using a point source located within the interface cavity region.
The mode does oscillate as a quadrupole form without barriers along the propagation direction
even after the light source is turned off. This indicates that the resonant mode does exist and
is not a calculation fault.

Based on the numerical analysis, an interface PHC structure was fabricated [Fig. 28(a)].The
experimental results [Fig. 28(b)] confirms the theoretical prediction with the Q factor of the
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cavity resonant mode decreases to 1,517 (centered at 1,570.2 nm) [Fig. 28(c)]. We then use an
infrared CCD camera to monitor the resonant properties on top of the interface PHC region.
When the laser wavelength is tuned to 1,570 nm, we can readily see a bright light spot located
at the exact interface position [red circle in Fig. 28(d)] besides the other two light spots induced
by the coupling between PHP waveguide and ridge waveguide. When the laser wavelength
is tuned to 1,560 nm, the light spot in the red circle is gone while the other two light spots
remain, indicating that the cavity is off resonance. This confirms the existence of the band-pass
resonant mode.

The physics of PHC can be understood from the point of view of slow light effect. We have
used a narrow light pulse centered at 0.2855 (a1/λ) to pass through the interface PHC and a
pure, same-length PHP waveguide, respectively, and recorded the output time of the pulse.
The interface PHC is 599.25 time units, while the pure PHP waveguide is 606.3 time units,
slightly longer than the interface PHC [Fig. 29(a)]. This indicates that the interface still contains
one PC period length, so the whole interface PHC can be seen as a three-part structure, a
combination of “slow light”–“fast light”–“slow light” region [Fig. 29(b)]. The central fast region
in the PHC, which is only one period long, could also confine energy between two slow light
regions and behaves as a cavity.

The physics underlying the interface PHC can also be analyzed by focusing on the phase shift
in the waveguide of the interface PHC during propagation due to the fact that this band-pass
mode is near the edge of the additional-gap region. The current PHC, which is made from an
incommensurate superlattice structure, is similar to a periodic structure with dislocations. As
a result, multiple scattering of light around the dislocation will occur and result in pinning
effect of light (energy shifting across the dislocation line). Previous study shows that the PHP
structure provides the asymmetric phase condition during the light propagation along the
waveguide. The interface connects two same anti-symmetric PHPs and can be seen as a vertical
edge dislocation line (phase reversal line), so that the phase condition is reversed to the
opposite aside the interface. In material science the dislocation could cause the charge
accumulation. Similarly our phase reversal dislocation gives an abrupt phase shift across the
interface and may cause the photon accumulation around the phase reversal line. This phase

Figure 27. a) Calculated TE-like mode Ey field distribution of light transporting along the waveguide at the resonance
frequency 0.2855 (a1/λ). (b) Calculated TE-like mode Ey field distribution of the interface-cavity resonance at the reso‐
nance frequency 0.2855 (a1/λ) [58].

Advances in Photonic Crystals332

reversal dislocation plays as a defect and forces the light energy distribution to become skew
and swinging while crossing the interface [Fig. 27(a)]. The local energy oscillation acts as the
cavity resonance and leads to the photon accumulation at the interface.

The PHC has several distinct properties. First, unlike the conventional PC cavities which are
formed either by removing one or several air holes or by waveguide-like hetero-cavities, the
current PHC does not have any confinement barrier to confine light. Second, the resonant mode
is located within the pass band of waveguides, so the localized resonant mode and the
continuous waveguide mode can easily co-exist in the same frequency and space regime.
Third, the coupling efficiency between waveguide and cavity modes is much higher than the
conventional cavities, which strongly depend on the transverse evanescent field profile
overlap of the cavity mode and the waveguide mode. As a result, this PHC has nearly no

Figure 28. a) SEM image of the fabricated interface PHC composed of two PHP waveguides. (b) Experimental trans‐
mission spectrum of the interface PHC compared with the simulation results. (c) Resonance spectrum of the light spot
obtained by its gray class analysis. (d) Infrared CCD images of the interface PHC structure on resonance (1,570 nm) and
off resonance (1,560 nm) with output ridge waveguide [58].
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cavity resonant mode decreases to 1,517 (centered at 1,570.2 nm) [Fig. 28(c)]. We then use an
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at the exact interface position [red circle in Fig. 28(d)] besides the other two light spots induced
by the coupling between PHP waveguide and ridge waveguide. When the laser wavelength
is tuned to 1,560 nm, the light spot in the red circle is gone while the other two light spots
remain, indicating that the cavity is off resonance. This confirms the existence of the band-pass
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The physics of PHC can be understood from the point of view of slow light effect. We have
used a narrow light pulse centered at 0.2855 (a1/λ) to pass through the interface PHC and a
pure, same-length PHP waveguide, respectively, and recorded the output time of the pulse.
The interface PHC is 599.25 time units, while the pure PHP waveguide is 606.3 time units,
slightly longer than the interface PHC [Fig. 29(a)]. This indicates that the interface still contains
one PC period length, so the whole interface PHC can be seen as a three-part structure, a
combination of “slow light”–“fast light”–“slow light” region [Fig. 29(b)]. The central fast region
in the PHC, which is only one period long, could also confine energy between two slow light
regions and behaves as a cavity.

The physics underlying the interface PHC can also be analyzed by focusing on the phase shift
in the waveguide of the interface PHC during propagation due to the fact that this band-pass
mode is near the edge of the additional-gap region. The current PHC, which is made from an
incommensurate superlattice structure, is similar to a periodic structure with dislocations. As
a result, multiple scattering of light around the dislocation will occur and result in pinning
effect of light (energy shifting across the dislocation line). Previous study shows that the PHP
structure provides the asymmetric phase condition during the light propagation along the
waveguide. The interface connects two same anti-symmetric PHPs and can be seen as a vertical
edge dislocation line (phase reversal line), so that the phase condition is reversed to the
opposite aside the interface. In material science the dislocation could cause the charge
accumulation. Similarly our phase reversal dislocation gives an abrupt phase shift across the
interface and may cause the photon accumulation around the phase reversal line. This phase

Figure 27. a) Calculated TE-like mode Ey field distribution of light transporting along the waveguide at the resonance
frequency 0.2855 (a1/λ). (b) Calculated TE-like mode Ey field distribution of the interface-cavity resonance at the reso‐
nance frequency 0.2855 (a1/λ) [58].
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reversal dislocation plays as a defect and forces the light energy distribution to become skew
and swinging while crossing the interface [Fig. 27(a)]. The local energy oscillation acts as the
cavity resonance and leads to the photon accumulation at the interface.

The PHC has several distinct properties. First, unlike the conventional PC cavities which are
formed either by removing one or several air holes or by waveguide-like hetero-cavities, the
current PHC does not have any confinement barrier to confine light. Second, the resonant mode
is located within the pass band of waveguides, so the localized resonant mode and the
continuous waveguide mode can easily co-exist in the same frequency and space regime.
Third, the coupling efficiency between waveguide and cavity modes is much higher than the
conventional cavities, which strongly depend on the transverse evanescent field profile
overlap of the cavity mode and the waveguide mode. As a result, this PHC has nearly no

Figure 28. a) SEM image of the fabricated interface PHC composed of two PHP waveguides. (b) Experimental trans‐
mission spectrum of the interface PHC compared with the simulation results. (c) Resonance spectrum of the light spot
obtained by its gray class analysis. (d) Infrared CCD images of the interface PHC structure on resonance (1,570 nm) and
off resonance (1,560 nm) with output ridge waveguide [58].
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influence on the propagation of waveguide mode despite the presence of localized cavity
mode. High coupling efficiency between waveguide and cavity mode can help to reduce the
operating power for PC lasers, and make it possible to integrate multiple lasers, photodetec‐
tors, and switches on a single chip.

8. Conclusions

In summary, we have presented recent progresses on infrared 2D air-bridged silicon PC slab
devices that were made in our group in the past several years. 2D air-bridged silicon PC slab
structures can confine light by the high index contrast in the vertical off-plane direction and
manipulate light by photonic band and band gaps in the lateral in-plane direction. In addition,
silicon is transparent and has a large refractive index in the infrared wavelengths. Therefore,
the air-bridged silicon PC structures become one of the most important elements in integrated
optics.

In this review, we have discussed several integrated optical elements and devices in regard to
their design, fabrication, and characterization. These devices are based on either the PBG or
photonic band structure engineering. To bring these devices into reality, we have made
extensive efforts to construct high-efficiency numerical simulation tools for solution of
photonic band structures, transmission spectra, light propagation dynamics, light wave
patterns, and many others. These simulations allow for design of optimized PC structures for
a specific application. The fabrication of these devices strongly depends on state-of-the-art
nanofabrication technologies including EBL, FIB, ICP etching, and other wet etching techni‐
ques and procedures. We have constructed a convenient experimental setup to measure the
transmission spectra and monitor the propagation path of infrared signals within PC structures
simultaneously. The setup makes the optical characterization of PC devices accurate, user-
friendly, fast, and convenient.

Figure 29. a) Time diagram of a narrow light pulse at 0.2855 (a1/λ) passing through the interface PHC and a pure,
same-length PHP waveguide. (b) Schematic slow light diagram of interface PHC [58].
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We have proposed Γ−Μ waveguides made in 2D triangular-lattice PC slabs. After a series of
optimization and improvement, we find out the optimized geometries for high performance
wide band Γ−Μ waveguides. As the Γ−Μ waveguide is perpendicular to the usual Γ−Κ
waveguide, we combine the Γ−K waveguide and Γ−M waveguide together to form 90°
waveguide bends and channel drop filters. The combination of Γ−Μ waveguide and Γ−K
waveguide can offer a flexible way to interconnect and couple between different devices. In
addition, we have shown design of two other kinds of channel drop filters. They achieve fine
tuning of the resonant wavelengths by changing the size of the cavities or the shape of the air
holes around the cavities. We have also designed and realized PC waveguide based on the
coupled-cavity scheme. There are a lot of geometric parameters to fine tune the light transport
properties in the structure. Moreover, we have successfully fabricated high-Q silicon PC
microcavities with a Q-factor up to 70000 and this paves the way to experimentally explore
light-matter interaction within the strong-coupling regime in the all-solid platform.

We have investigated optical devices that work on band structure engineering. We have
explored PC structures that exhibit interesting and useful dispersion and refraction properties,
such as negative refraction and self-collimation effects. We have designed and fabricated a
kind of PC structure with negative refraction effect and use SNOM technology to observe the
negative refraction ray trace of infrared light beam. In addition, we obtain broadband large-
angle self-collimation effect for TE-like guided modes in infrared wavelength.

We have demonstrated the design, fabrication, and characterization of on-chip wavelength-
scale optical diodes that are made from the heterojunction between two different silicon 2D
square-lattice PC slabs with directional bandgap mismatch and different mode transitions. The
measured transmission spectra show considerable unidirectional transmission behavior, in
good agreement with numerical simulations. The experimental realization of on-chip optical
diodes with wavelength-scale size using all-dielectric, passive, and linear silicon photonic
crystal structures may help to construct on-chip optical logical devices without nonlinearity
or magnetism, and would open up a road towards photonic computers.

We have demonstrated optical isolation of our diode structure. Both numerical simulations
and experimental measurements show that the round-trip transmissivity of our diode could
be two orders of magnitudes smaller than the forward transmissivity, indicating good
performance of optical isolation. The occurrence of in-plane light isolation is attributed to the
information dissipation due to off-plane and side-way scattering and selective modal conver‐
sion in the multiple-channel structure and has no conflict with the reciprocal principle. That
optical isolation can occur in a linear, passive, and time-independent optical structure would
stimulate more thinkings and insights on the general transport theory of light in the funda‐
mental side and open up a road towards photonic logics in silicon integrated optical devices
and circuits in the application side.

We have designed and fabricated cavities without confinement barrier by combining two
incommensurate PC superlattice waveguides. A resonant mode with a high quality factor
shows up in the pass band of waveguides. It has nearly no influence on the propagation of
waveguide mode and can be directly coupled with the waveguide mode. The experimental
measurement confirms the theoretical prediction of extraordinary coexistence of localized
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influence on the propagation of waveguide mode despite the presence of localized cavity
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structures can confine light by the high index contrast in the vertical off-plane direction and
manipulate light by photonic band and band gaps in the lateral in-plane direction. In addition,
silicon is transparent and has a large refractive index in the infrared wavelengths. Therefore,
the air-bridged silicon PC structures become one of the most important elements in integrated
optics.

In this review, we have discussed several integrated optical elements and devices in regard to
their design, fabrication, and characterization. These devices are based on either the PBG or
photonic band structure engineering. To bring these devices into reality, we have made
extensive efforts to construct high-efficiency numerical simulation tools for solution of
photonic band structures, transmission spectra, light propagation dynamics, light wave
patterns, and many others. These simulations allow for design of optimized PC structures for
a specific application. The fabrication of these devices strongly depends on state-of-the-art
nanofabrication technologies including EBL, FIB, ICP etching, and other wet etching techni‐
ques and procedures. We have constructed a convenient experimental setup to measure the
transmission spectra and monitor the propagation path of infrared signals within PC structures
simultaneously. The setup makes the optical characterization of PC devices accurate, user-
friendly, fast, and convenient.

Figure 29. a) Time diagram of a narrow light pulse at 0.2855 (a1/λ) passing through the interface PHC and a pure,
same-length PHP waveguide. (b) Schematic slow light diagram of interface PHC [58].
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waveguide, we combine the Γ−K waveguide and Γ−M waveguide together to form 90°
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waveguide can offer a flexible way to interconnect and couple between different devices. In
addition, we have shown design of two other kinds of channel drop filters. They achieve fine
tuning of the resonant wavelengths by changing the size of the cavities or the shape of the air
holes around the cavities. We have also designed and realized PC waveguide based on the
coupled-cavity scheme. There are a lot of geometric parameters to fine tune the light transport
properties in the structure. Moreover, we have successfully fabricated high-Q silicon PC
microcavities with a Q-factor up to 70000 and this paves the way to experimentally explore
light-matter interaction within the strong-coupling regime in the all-solid platform.

We have investigated optical devices that work on band structure engineering. We have
explored PC structures that exhibit interesting and useful dispersion and refraction properties,
such as negative refraction and self-collimation effects. We have designed and fabricated a
kind of PC structure with negative refraction effect and use SNOM technology to observe the
negative refraction ray trace of infrared light beam. In addition, we obtain broadband large-
angle self-collimation effect for TE-like guided modes in infrared wavelength.

We have demonstrated the design, fabrication, and characterization of on-chip wavelength-
scale optical diodes that are made from the heterojunction between two different silicon 2D
square-lattice PC slabs with directional bandgap mismatch and different mode transitions. The
measured transmission spectra show considerable unidirectional transmission behavior, in
good agreement with numerical simulations. The experimental realization of on-chip optical
diodes with wavelength-scale size using all-dielectric, passive, and linear silicon photonic
crystal structures may help to construct on-chip optical logical devices without nonlinearity
or magnetism, and would open up a road towards photonic computers.

We have demonstrated optical isolation of our diode structure. Both numerical simulations
and experimental measurements show that the round-trip transmissivity of our diode could
be two orders of magnitudes smaller than the forward transmissivity, indicating good
performance of optical isolation. The occurrence of in-plane light isolation is attributed to the
information dissipation due to off-plane and side-way scattering and selective modal conver‐
sion in the multiple-channel structure and has no conflict with the reciprocal principle. That
optical isolation can occur in a linear, passive, and time-independent optical structure would
stimulate more thinkings and insights on the general transport theory of light in the funda‐
mental side and open up a road towards photonic logics in silicon integrated optical devices
and circuits in the application side.

We have designed and fabricated cavities without confinement barrier by combining two
incommensurate PC superlattice waveguides. A resonant mode with a high quality factor
shows up in the pass band of waveguides. It has nearly no influence on the propagation of
waveguide mode and can be directly coupled with the waveguide mode. The experimental
measurement confirms the theoretical prediction of extraordinary coexistence of localized
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cavity mode and continuous waveguide mode with high coupling efficiency in the same
frequency and space regime. The novel type of cavity has a number of unique properties that
are advantageous to on-chip information transport and processing. The discovery of cavity
without confinement barrier might attract interest in fundamental physics and optical
engineering communities.

All of these results show that 2D air-bridged silicon PC structures can control light propaga‐
tion in many flexible ways and have many potential applications in all-optical integrated circuits
and other fields. The efforts that we have made and the experiences that we have accumulated
in the past several years will allow us to design and realize PC devices with novel functionalities.
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