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Preface

Bladder cancer is the sixth most common cancer in the world affecting more than 300,000
men and women worldwide. The diagnosis of bladder cancer not only places a significant
personal burden on individuals suffering with the disease (with regular need for surveil‐
lance and potential for surgery/radiotherapy) but also has a huge economic and psychoso‐
cial and psychosexual impact.

This book is a collection of articles by experts in the field of bladder cancer. It summarises
the vast breadth of current knowledge of the molecular processes and the genetic and epige‐
netic modulation involved in bladder carcinogenesis of the bladder, carcinoma in-situ and
the current treatment modalities of bladder cancer.

Tobacco smoking and also a number of occupational carcinogens have been linked to blad‐
der cancer. However the mechanisms involved in the carcinogenesis process are complex
and involve multiple steps. Thus, the mechanisms behind DNA damage, regulatory path‐
ways and genetic and epi-genetic modulation leading to bladder carcinogenesis are dis‐
cussed, highlighting the molecular targets of chemotherapy.

Focus has been placed on carcinoma-in situ of the bladder, an under emphasised but poten‐
tially aggressive and fatal form of pre-cancer which is increasing in incidence. Thus an over‐
view of this condition discussing the epidemiology, risk factors, presentation and the
management has been included.

Furthermore, this book also discusses the treatment of muscle invasive disease, immuno‐
therapy and advances in molecular signalling pathways with future therapeutic potential.
Therefore the roles of adjuvant and neo-adjuvent chemotherapy as well as other agents used
in muscle invasive bladder cancer and immune therapy have been included.

We believe that this book will provide an excellent overview of the molecular mechanics
underlying bladder carcinoma and their role in current and future therapy and would be
integral for clinicians and researchers in the field of bladder cancer.

Editor:
Professor Raj Persad. MBBS, ChM, FRCS, FRCS (Urol), FEBU.

Spire Bristol Hospital, UK

Co-editor:
Mr. Weranja Ranasinghe MBChB, MRCSED.

Cabrini Hospital, Melbourne, Australia
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Chapter 1

Genetic Instability in Normal-Appearing and Tumor
Urothelium Cells and the Role of the TP53 Gene in the
Toxicogenomic Effects of Antineoplastic Drugs

Daisy Maria Favero Salvadori and
Glenda Nicioli da Silva

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/53502

1. Introduction

Bladder cancer is one of the most common urinary neoplasms in industrialized countries,
with more than 50,000 new cases diagnosed annually in Europe and North America [1,2]. In
most countries of the Western world, transitional cell carcinomas (TCCs) account for 90% of
the malignancies of this organ, while 5% are identified as squamous cell carcinomas and 2%
as adenocarcinomas [3]. Approximately 80% of TCCs are low-grade tumors that are papil‐
lary, non-invasive and usually superficial, with stages Ta and Tis; the remaining 20% are
high-grade papillary or non-papillary tumors that are often invasive or metastatic, with
stages T1–T4. The five-year survival rate for TCC patients is 50%. The involvement of the
bladder muscular wall signifies a worse prognosis and requires aggressive medical inter‐
vention such as radical cystectomy [4,5].

Occupational exposures in the textile and tire industries were the first factors implicated in
the induction of bladder cancer. Currently, the prolonged use of phenacetin analgesics, ex‐
posure to cyclophosphamide, and smoking are the main risk factors associated with the eti‐
ology of transitional cell carcinoma [6]. Although men are 3-4 times more likely to develop
bladder cancer, women present more often with advanced disease and have a lower proba‐
bility of survival [7]. According to Shariat et al.[8], age is also considered a risk factor for
urothelial carcinoma because the incidence of this cancer increases progressively with age;
the incidence is higher after 60 years and peaks at 70 years, when the risk is 2% to 4% in men
and 0.5% to 1% in women [9].

© 2013 Salvadori and da Silva; licensee InTech. This is an open access article distributed under the terms of
the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

© 2013 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons 
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, 
and reproduction in any medium, provided the original work is properly cited.
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Clinically, the main problem associated with urothelial tumors is their highly unpredictable
potential to progress to muscle-invasive disease, become multifocal and recur [5,10]. The re‐
currences might be de novo lesions that are different from recidivates, which occur because
of incomplete resection of the primary tumor. After resection and/or treatment of a primary
tumor, de novo TCC occurs in 50% to 70% of patients over a period of 4–5 years of follow-up.
In fact, it has been suggested that patients undergoing surgical procedures are at a high risk
for developing new neoplasia and are also susceptible to recurrences, possibly because of
the presence of urothelial genetic instabilities [11-13].

Two hypotheses have been proposed to explain the association between urothelial carcino‐
genesis, multifocality and recurrence. The first hypothesis suggests a monoclonal origin of
the lesions. In other words, multifocal or recurrent tumors originate from a single trans‐
formed cell that proliferates and colonizes other parts of the bladder through intraepithelial
migration or transportation by urine. The second hypothesis proposes a polyclonal origin,
suggesting that urine carcinogens that are in contact with multiple sites lead to the develop‐
ment of independent multifocal tumors [14,15]. The understanding of the clonality of multi‐
focal bladder tumors is important to establish therapeutic strategies because new therapies
often target specific molecules in these tumors [10].

2. DNA mutation and bladder carcinogenesis

Tumors are made up of billions of cells that originate from an initial cell that eluded apopto‐
sis, accumulated genetic alterations and multiplied clonally [16]. It is expected that both ex‐
ternal and internal factors contribute to these genetic mutations. External factors include
lifestyle, such as excessive alcohol consumption, an unhealthy diet, exposure to excessive
sunlight and chemical carcinogens, lack of exercise and smoking [17]. Internal factors in‐
clude gene mutations, changes in the hormonal and immune systems, and metabolic abnor‐
malities. During cell division, spontaneous genetic errors occur at an estimated frequency of
approximately 10−5 to 10−6 [18]. Therefore, the blockade of apoptosis can favor the accumula‐
tion of mutated cells, a critical event in cancer pathogenesis [19].

Carcinogenesis is a multistep process that involves initiation, promotion and progression.
Initiation is characterized by the formation of a preneoplastic cell resulting from an irre‐
versible genotoxic event (gene mutation) caused by chemical, physical or biological carci‐
nogens.  This  mutation  usually  occurs  in  genes  that  control  the  cell  cycle,  cell
differentiation,  apoptosis  and DNA repair,  leading  to  the  survival  of  cells  with  genetic
alterations [20].  The promotion stage involves the selective clonal expansion of the initi‐
ated cell through an increase in cell growth or a decrease in apoptosis, leading to an ac‐
cumulation of  mutations  and an increase  in  the  level  of  genetic  instability  (genetic  and
epigenetic  changes)  [20].  The  third  step,  progression,  involves  genetic  events  such  as
changes  in  ploidy and chromosome integrity  and results  in  a  change  from the  preneo‐
plastic  state  to  the neoplastic  state,  producing cells  with a  high degree of  anaplasia,  an
imbalance between cell  proliferation and apoptosis and self-sufficiency (e.g.,  growth and
multiplication independent of stimuli - Figure 1) [20,21].
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Figure 1. Multistep process of carcinogenesis

Urinary bladder carcinogenesis also occurs through multiple stages that are characterized
by genetic changes that reflect the malignant transformation of an initiated normal cell [22].
These changes can occur in oncogenes/protooncogenes, tumor suppressor gene, regions of
microsatellites, and cell cycle regulatory genes [23], which can trigger a framework of genet‐
ic instability characterized by a significant increase in the mutation rate (an early event in
carcinogenesis). Genetic instability can be divided into two types: the first type comprises
the insertions/deletions (basic single nucleotide changes) that result in read errors and are
often observed in microsatellite regions (microsatellite instability), and the second type com‐
prises the loss or gain of whole chromosomes or chromosome fragments (chromosomal
changes), resulting in the loss or amplification of regions of DNA that contain genes crucial
for neoplastic development [24].

Several studies have shown that many genetic and molecular alterations are involved in the
initiation and progression stages of TCC, although the mechanisms responsible for the ma‐
lignant phenotype are not completely understood. It is known that the accumulation of ge‐
netic changes, and not just a single mutation, determines the clinical behavior of TCC [25].
In fact, several studies have demonstrated the existence of numerous chromosomal changes
in neoplastic and non-neoplasic urothelial cells from patients with a history of bladder can‐
cer. The most frequent changes are polysomy of chromosomes 3, 7 and 17 and monosomy of
chromosome 9 [26-30]. Furthermore, some authors have observed that 100% of patients with
chromosome 17 loss exhibit recurrence [31]. Genetic analyses have also shown that the onco‐
genes RAS (related to recurrence), erb-B2 (related to cell survival) and EGF/EGFR (related to
recurrence and tumor progression) are the most important prognostic markers for bladder
cancer [32]. Microsatellite alterations on chromosome 9 are indicative of genomic instability
[33], but chromosome 9q segment loss (in low-grade papillary TCC), FGFR3 mutations (low
grade non-invasive tumors with low potential of progression) and the loss of TP53 function
(associated with muscle-invasive disease and metastatic potential) have also been described
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[34,35]. Additionally, some authors have reported that SOCS-1, STAT-1, BCL-2, DAPK, and
E-cadherin gene methylation are linked to tumor recurrence [36].

The TP53 tumor suppressor gene has an important role in the cellular responses to various
stress agents, including DNA damage [37,38]. After DNA damage occurs, TP53 induces the
transient or permanent blockage of cell proliferation or activates cell death signaling path‐
ways [39]. However, it has been shown that some mutations in human tumors abolish or at‐
tenuate the binding of p53 protein to its consensus DNA sequence, abolishing the
transcriptional activation of TP53 target genes and resulting in the partial or complete loss of
p53 function [40]. In fact, some studies have demonstrated that bladder tumor cells are
grouped based on their molecular alterations in the TP53 and RB signaling pathways [41].
Several mutations were found to confer new functions to mutant p53 that are independent
of the wild-type p53 [42]. These findings have several implications, including a possible het‐
erogeneous clinical phenotype depending on whether p53 itself is mutated and the site of
the mutations or whether the p53 function is indirectly modified [43]. It has been demon‐
strated that genes related to cellular communication, cell cycle, cell division, cell death, cel‐
lular component organization, cell adhesion, and cell proliferation pathways, among others,
are closely associated with the tumor grade. Although gene networks vary according to the
tumor grade, TP53 and several other genes have been frequently shown to be associated
with the malignant phenotype of bladder tumors [44]. Independent of the TP53 status, dif‐
ferences have been reported in several signaling pathways, such as the AMP kinase, JAK/
STAT3, and MAP kinase (p38 MAPK, ERK, JNK) pathways. The downregulation of the adi‐
poR1 (involved in the AMP kinase pathway), ABCA7 (involved in the ERK phosphorylation
pathway), DUSP22 (involved in the ERK and MAPK pathways), and AKAP7 (involved in
second messenger-mediated signaling events) genes was observed in cells with different tu‐
mor grades. Similarly, genes related to transcription, replication and DNA synthesis are also
differentially expressed independent of the TP53 status [44]. Additionally, no relationship
between tumor grade or TP53 status and the expression of ANLN and S100P (genes used as
progression biomarkers in some types of tumors) in TCC lines has been described [44].

In normal cells, the p53 level is regulated by the interaction of the proteins mdm2, cop1, jnk
and pirh2, which promote p53 degradation (ubiquitin/proteasome pathway) (Figure 2). Af‐
ter exposure to genotoxic or non-genotoxic stressors, the level of p53 is increased because
the interaction with mdm2 and other regulators is inhibited. Then, several modulators (kin‐
ases, acetylases, etc) activate p53 transcriptional activity. The final result of p53 activation is
either cell cycle arrest and DNA repair or apoptosis (Figure 3) [45].

Smoking is usually associated with the development of persistent clones of DNA-damaged
cells in the urothelium and may partially explain the continuous occurrence of genetically
aberrant cells in the mucosa. It is important to note that increased DNA damage has been
detected in the transitional cells of smokers and ex-smokers who are free of neoplasia and
have normal urinary bladder cell cytology [46]. Cytogenetic analyses have shown that blad‐
der tumor recurrence is associated with high levels of DNA damage, which are still present
in the normal-appearing urothelium of patients surgically treated for TCC [12]. Data suggest
that part of this damage might occur through both clastogenic and aneugenic events, as de‐
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tected by the micronucleus test (Figure 4) in TCC patients (J.P. Castro Marcondes personal
communication, July 18, 2012). The increased level of DNA damage in cytologically “nor‐
mal” cells from patients with a history of TCC has been shown to be related to the tumor
histological grade, regardless of the length of time or clinical course since resection, suggest‐
ing these cells may be new TCC precursors or subclones of a previous TCC. Based on these
data, it has been suggested that the primary tumor represents only the most obvious compo‐
nent of the disease, and several foci of secondary “reseeded” or “relocated” anomalous uro‐
thelium exist or may appear when the primary neoplasm is diagnosed [12]. Therefore, the
genetic follow-up of patients after surgery must be a routine because elevated levels of DNA
damage could predict recurrence.

Figure 2. The TP53 gene and the p53 protein. A) The TP53 locus: chromosome 17 (17p13.1); B) the p53 protein (1 -
acidic transactivation domain and mdm2 protein binding site (amino-terminus), 2 – proline-rich region and second
transactivation domain, 3 - DNA binding domain, 4 - oligomerization domain and 5 - non-specific DNA binding do‐
main that binds to damaged DNA (carboxy-terminus)) and regulators. Adapted from [45].

Cystoscopy and cytology are considered standard procedures for monitoring patients with a
history of TCC and individuals with bladder cancer symptoms (hematuria, pollakiuria and
dysuria). However, these exams have a very limited ability to detect microscopic lesions and
are subjective because they depend on the cytopathologist’s experience; therefore, these tests
have very low sensitivity for low-grade lesions [47]. It has been shown that only 61% of pa‐
tients with biopsies positive for TCC had a similar diagnosis based on the cytological analy‐
sis [48]. On the other hand, some authors have reported 100% agreement between biopsies
and cytogenetic analysis results using probes for the centromeres of chromosomes 3, 7 and
17 and the 9p21 locus. Thus, the use of techniques that increase the sensitivity and specifici‐
ty of early TCC detection, both in patients undergoing bladder tumor resection and in pa‐
tients considered at risk for TCC, must be taken into consideration. In this context,
biomarkers linked to the behavior of a particular biological entity (e.g., chromosome dam‐
age) might be used to assess cancer risk in different tissues.
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Figure 3. Upstream and downstream p53 activation pathways. Adapted from [45].

Figure 4. Exfoliated urothelial cell with a micronucleus (arrow). Giemsa stain (X 1000). Adapted from [49].

3. Bladder cancer and chemotherapy

It is import to know the disease stage to effectively plan the treatment for bladder cancer.
Different types of treatments are available, including surgery, biologic therapy, radiothera‐
py, and chemotherapy. TCC has been efficiently treated with radiotherapy and combina‐
tions of different antineoplastic compounds. Intravesical Bacillus Calmette Guérin (BCG)
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instillations have shown success as adjuvant treatment for patients with intermediate and
high risk non-muscle-invasive bladder tumor [50]. BCG induces a massive influx of cyto‐
kines and inflammatory cells into the bladder wall and lumen [51]. Moreover, BCG therapy
has been demonstrated to reduce the recurrence rate and the risk of progression to muscle
invasive disease in patients with carcinoma in situ and superficial bladder tumors [52].

Combined chemotherapy protocols have been extensively studied with the goal of improv‐
ing bladder cancer treatment and the overall survival rate [53]. The standard protocol in‐
cludes the drugs methotrexate, vinblastine, doxorubicin and cisplatin (MVAC) [54], but
gemcitabine has also been successfully introduced [55]. The primary effect induced by these
drugs is DNA damage with consequent cell cycle arrest and apoptosis. However, tumor
cells have different levels of sensitivity to therapeutic agents, which may affect treatment
success. Moreover, the genetic background of each tumor/patient must be taken into ac‐
count to ensure treatment efficacy. In the context of developing chemotherapy protocols, the
characterization of genes associated with a tumor’s sensitivity to antitumor agents plays a
critical role in the selection of the optimal treatment [56].

In 2000, Von der Maase et al. [54] demonstrated that the gemcitabine/cisplatin regimen had
an efficacy similar to that of the MVAC protocol but with superior safety and tolerability,
thus providing a potential standard alternative to treat bladder cancer. Gemcitabine is a de‐
oxycytidine analog, which is phosphorylated to yield an active dFdCTP metabolite (gemci‐
tabine triphosphate) that is incorporated into DNA, causing DNA strand breaks and thereby
eliciting a DNA damage response characterized by cell cycle arrest in the G1/S phase and
replication blockage [57,58]. Gemcitabine can also be incorporated into RNA to inhibit RNA
synthesis [59]. Because of its low molecular weight of 299 Da, (lower than the molecular
weights of drugs commonly used in intravesical chemotherapy; e.g., mitomycin C and dox‐
orubicin), gemcitabine is able to penetrate the bladder mucosa, which has beneficial effects
on the treatment of invasive bladder cancers [60]. Cisplatin is one of the most potent antitu‐
mor agents, with the ability to induce DNA crosslinking and apoptosis [61,62]. A molecule
of cisplatin consists of a central atom of platinum surrounded by two chlorine atoms and
two ammonia groups. Cisplatin is activated by the reaction of water molecules with the
chloride ions. This activated compound than reacts with DNA, RNA, proteins and phospho‐
lipid membranes [63]. Similar to other platinum compounds, cisplatin forms DNA adducts
between adjacent guanines (65%) and between guanine and adenine (25%) and forms inter‐
strand crosslinks (10%) that interfere with DNA replication and repair, contributing to its
antitumor efficacy [64,65].

The TP53 status had been shown to play a pivotal role in the response to a large panel of
anticancer drugs. Numerous studies have investigated the relationship between the tumor
suppressor protein p53 and/or TP53 gene mutations and the response to chemotherapy.
Cote et al. [66] demonstrated that the presence of a normal functional TP53 is associated
with a good response to chemotherapy, and Hall et al. [67] suggested that the existence of
TP53 allelic variants indicates a complex role for the TP53 pathway in human neoplasias.
Therefore, differences among TP53 responses may reflect the complex biology of this gene
with respect to the regulation of apoptosis and cell proliferation. Because the TP53 network
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is linked to many other cellular pathways, it is possible that defects in some of these path‐
ways might qualitatively or quantitatively interfere with p53 function. Moreover, p53 is only
one component of a giant surveillance network modulated by many other elements, includ‐
ing negative (Mdm2, Mdmx, Pirh2 and COP1) [68] and positive (DERP6) [69] regulators of
p53, other members of the p53 family and several other signaling pathways [70].

The TP53 and p53 status have also been used as biological markers to predict the response
to chemotherapy. However, p53 expression and BCG response have shown contradictory re‐
sults in literature. While some authors have concluded that p53 expression is not suitable as
a marker to predict BCG response [71,72], other have stated that p53 has potential to be used
as an independent marker to distinguish BCG responders and BCG non-responders in terms
of time to recurrence and progression and progression to muscle invasive disease [73,74].
Moreover, independent on TP53 status, some investigators have reported that the BCG ther‐
apy induces cellular reactive oxygen species and lipid peroxidation in cancer cells, inducing
DNA damage, which could lead to mutations that select for their survival [75]. Thus, the au‐
thors suggest that reducing either the number of instillations of BCG that patients receive or
the dose of BCG may reduce the amount of ROS and DNA damage and could lead to re‐
duced disease progression [75]. Other authors have conclude that BCG response depend on
the combination of markers to provide important information for selecting patients for the
appropriate treatment [76].

On the other hand, there are few data in the literature regarding the relationship between
this biomarker and the response to gemcitabine or cisplatin [77-80]. With regard to cell cycle
kinetics, gemcitabine or combined treatment with gemcitabine plus cisplatin induces G1 cell
cycle arrest in TCC cell lines in vitro independent of the TP53 status. Conversely, only the
cell responses to cisplatin were dependent on the TP53 status. Whereas the wild-type TP53
cells stopped in S phase, the TP53-mutated cells accumulated in G2 phase [81]. Similar find‐
ings have been described regarding apoptosis: whereas cisplatin induces apoptosis in only
wt-TP53 cells, apoptosis occurs in cells treated with gemcitabine or gemcitabine plus cispla‐
tin independent of the TP53 status, although higher percentages are observed in the wt-
TP53 cells [81]. In wt-TP53 cells, gemcitabine-induced cellular damage can stimulate p53
expression, resulting in p21 expression and cell cycle arrest, enabling DNA damage repair or
inducing apoptosis mediated by the BAX gene. In cells with a mutated TP53 phenotype, the
expression of p53 and p21 cannot be induced, but BAX can still be expressed, resulting in
apoptosis [82]. Regarding cytotoxicity, TP53-wt cells were more resistant to cisplatin and
more sensitive to gemcitabine than mutated TP53 cells [81]. Some authors have suggested
that the effect of cisplatin on human cancer cells has characteristics of senescence rather than
apoptosis [83]. According to these authors, cancer cells lacking TP53 function can also be kil‐
led via a TP53-independent mechanism, similar to replicative senescence. However, com‐
bined treatment with cisplatin and gemcitabine was more effective in reducing cell survival
than treatment with the two drugs individually, independent of the TP53 status [81]. Inter‐
estingly, genetic networks determined by Bayesian interpolation and built from microarray
data show that, in vitro, TCC cell lines do not establish positive or negative relationships be‐
tween TP53 and a group of genes but instead exhibit direct interactions between TP53 and
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many genes. Furthermore, different gene networks have been observed according to the tu‐
mor cell lines were obtained, confirming that other genes and pathways are involved in the
chemotherapy response, independent of the TP53 status [44]. It is known that both gemcita‐
bine and cisplatin act by inducing DNA structural damage and modulating gene expression.
Some authors have demonstrated that gemcitabine has cytotoxic and genotoxic effects in
murine bone marrow [84], and other authors have confirmed the genotoxic effect of antineo‐
plastic drugs in circulating blood lymphocytes [85]. Several studies revealed that cisplatin is
an effective clastogen and inducer of both sister chromatid exchange and micronuclei devel‐
opment [86,87]. Furthermore, several authors have demonstrated that cisplatin induces a no‐
ticeable mutagenic effect, increasing the frequency of micronuclei and the percentage of
chromosome aberrations in rat bone-marrow cells [88]. Additionally, Brozovic et al. [89] re‐
ported that cisplatin induces strong genotoxicity in murine peripheral blood leucocytes and
brain, liver and kidney cells. In bladder cancer cells, gemcitabine and cisplatin, alone or in
combination, have been shown to cause significant DNA damage at different tumor devel‐
opment stages independent of the TP53 status (Figure 5). However, TP53-mutated TCC cells
are more resistant to the genotoxic effects induced by the combined treatment with gemcita‐
bine and cisplatin than wild-type cells are (E.A de Carmargo personal communication, June
27, 2012). Regarding the toxicogenomic and proteomics events, Nordentoft et al. [90] dem‐
onstrated that the relationship between the transcription factor TFAP2α and cisplatin or
gemcitabine sensitivity in bladder cancer cells is dependent on p53 because TFAP2α silenc‐
ing increased the proliferation of only the wild type TP53 bladder cells and reduced cispla‐
tin- and gemcitabine-induced cell death. Additionally, Gazzaniga et al [91] reported that
gemcitabine induces apoptosis in TP53-mutated cells, involving caspase-3, -8 and -9 activa‐
tion but no changes in Bcl-2, Bax, survivin and Bcl-X expression. In fact, the gemcitabine-in‐
duced modulation of Bax expression has been observed only in a wild-type TP53 cell line
(Da Silva et al., 2012, unpublished data, [92]). In contrast, following treatment with gemcita‐
bine or cisplatin plus gemcitabine, there was an observable upregulation of the GADD45A
and CDKN1A genes independent of the TP53 status in bladder cancer cell lines, thus provid‐
ing possible links to apoptosis and cell cycle arrest (Da Silva et al., 2012, unpublished data).
On the other hand, Cho et al [93] reported that Bcl-2 upregulation in a TP53 mutated bladder
cancer cell line contributes to the development of cisplatin resistance, and targeting this
gene with an siRNA may therefore be a potential tool to reverse cisplatin resistance. Matsui
et al [94] also reported that the expression of the galectin-7 gene could serve as a candidate
predictive marker for chemosensitivity to cisplatin in wild-type TP53 cells.

In conclusion, while there is evidence implicating the role of TP53 in the regulation of DNA
repair and apoptosis and as a molecular node, other target genes can also be modulated by
antineoplastic compounds and influence the success of drug therapy. Regardless of tumor-
associated TP53 mutations or the tumor grade, simultaneous treatment with cisplatin and
gemcitabine is an effective protocol for transitional cell carcinomas. In this context, because
high concentrations of cisplatin are toxic to humans, the use of low concentrations of cispla‐
tin and gemcitabine in combination might be clinically relevant in reducing the secondary
effects of chemotherapy [81].
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Figure 5. Genotoxic damage induced by cisplatin and gemcitabine in transitional carcinoma cells, as depicted by the
comet assay. (A) Untreated cells; (B) cells treated with cisplatin; (C) cells treated with gemcitabine. Ethidium bromide
staining (X 400).

4. Actual scenario

Most cellular components exert their functions by interacting with other components locat‐
ed within the same cell, in different cells, or even in different organs. In humans, the com‐
plexity of the interaction networks (the human interactome) is impressive: there are
approximately 25,000 protein-coding genes, approximately 1,000 metabolites and an indefi‐
nite number of distinct proteins and functional RNA molecules. Therefore, the number of
cellular components capable of being regulatory interactome centers exceeds 100000 [95].
Moreover, the intra- and inter-cellular connectivity implies that the impact of genetic abnor‐
mality is not restricted to the activity of the gene product but can have effects on other genes
and their products that might have no defect. Several authors have suggested that the dis‐
ease phenotype is rarely a consequence of abnormalities in a single gene product but reflects
various patho-biological processes that interact in a complex network [96]. Therefore, the ef‐
fects of cell interconnection on disease progression can lead to the identification of genes
and systems that offer better targets for drug development. Moreover, the potential use of
microRNA in the future therapeutic interventions has also been discussed. For example, the
effects of miR-100 on cell growth and clonogenic capacity in TCC cell lines emphasize a pos‐
sible link between this miRNA and bladder carcinoma pathogenesis [97]. These new con‐
cepts may identify more accurate biomarkers for monitoring the functional integrity of
networks and classifying diseases [96].

Changes in gene expression profiles may be immediate and more sensitive markers of drug
toxicity than markers that are typically analyzed in toxicity tests (morphological changes,
carcinogenicity and reproductive markers) [98]. Furthermore, some authors have shown
that the implementation of proteomic platforms for the identification of novel targets of in‐
terest (membrane antigens, protein overexpression, etc.) is gaining widespread attention.
The incorporation of biomarkers in clinical proteomics studies has also become important to
define biologically effective therapeutic protocols for each patient and type of disease [99].
Thus, studies comparing gene and protein expression can confirm and emphasize the im‐
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portance of using different technologies to understand and characterize complex biological
systems.

5. Final conclusion

In this chapter, we presented data that demonstrate that high levels of DNA damage in nor‐
mal-appearing urothelium are associated with tumor recurrence in patients treated for blad‐
der TCC. Furthermore, the identification of genes associated with the sensitivity of tumors
to chemotherapeutic drugs may play an important role in selecting the most efficient treat‐
ment protocol. Therefore, biomarker identification is relevant not only for diagnostic accura‐
cy and prognosis but also for cancer therapy.

Currently, the ability of genomics and proteomics techniques to identify biomarkers and in‐
crease our understanding of complex cellular networks has been demonstrated. Thus, high-
throughput methodologies help characterize diseases and increase our understanding of
tumor progression mechanisms and the chemotherapy results. It is known that the primary
effects of antineoplastic drugs are linked to DNA damage, leading to molecular events that
may result in cell cycle arrest and apoptosis, which are essential responses for the mainte‐
nance of genetic integrity and cell viability [100]. Furthermore, it is known that early detec‐
tion and treatment result in better survival rates for patients without clinical symptoms
during the early stages of carcinogenesis [101].
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1. Introduction

RTKs are often deregulated in human malignancies, contributing to cancer development
and progression. Deregulation of RTKs leads to aberrant receptor activity resulting in in‐
creased cell proliferation, inhibition of apoptosis, invasion, and enhanced tumor metastases.
Because RTKs are membrane proteins, they represent attractive targets for cancer therapy,
with a number of agents already approved for clinical use.

c-MET gene, located on chromosome 7q21-q31, encodes a single precursor protein and is
post-transcriptionally digested and glycosylated. The mature receptor is composed of a 50
kDa extracellular α-chain and a transmembrane 140 kDa β-chain, which are linked by disul‐
fide bonds [1]. The MET β-chain contains homologous domains that shared with other pro‐
teins, including a semaphorin (Sema) domain, a PSI domain (in plexins, semaphorins and
integrins), four IPT repeats (in immunoglobulins, plexins and transcription factors), a trans‐
membrane domain, a juxtamembrane domain, a tyrosine kinase domain and a carboxy-ter‐
minal tail region [2, 3].

The transforming property of c-MET was initially described in a human osteosarcoma cell
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[11, 12]. In summary, c-MET regulates embryonic development and play important roles in
the carcinogenesis, tumor progression, and a variety of cellular processes, including migra‐
tion, proliferation, morphogenesis, and angiogenesis [13, 14].

HGF is predominantly secreted by mesenchymal cells, and c-MET is widely expressed on
the surface of epithelial cancer cells [15]. Homodimerization of c-MET after binding to HGR
leads to transphosphorylation of cytoplasmic tyrosine kinase domain at two specific sites
(Y1234 and Y1235) and activation of down-stream signaling [16]. These events are essential
during embryogenesis, and also play a critical role in normal tissue homeostasis of the hepa‐
tocytes, renal tubule cells, and myoblasts [17].

The phosphorylation of two tyrosine residues within COOH terminus (Y1349 and Y1356) is
necessary and sufficient to mediate biological effects induced by of the c-MET activation
[18]. These two residues recruit a number of adapter proteins, including Gab1, Grb2, Shc
and the p85 subunit of phosphatidylinositol-3 kinase (PI3K) [17]. The involvement of di‐
verse effectors allows the activation of different downstream pathways, including PI3K-Akt
signaling, Ras-mitogen-activated protein kinase (MAPK) pathways, signal transducer and
activator of transcription proteins (STATs) and the nuclear factor-kB (NF-kB) complex [17].
These signaling pathways are important during embryogenesis and in normal tissue homeo‐
stasis, such as cell proliferation, differentiation, transformation, migration and apoptosis.

Accumulating data have demonstrated that crosstalk between c-MET and other RTKs may
contribute to tumor progression in some of human cancers [19-21]. As a result, evaluation of
c-MET expression status and its crosstalk partners of RTKs may identify a subset of c-MET-
positive cancer patients who may require co-targeting therapy.

2. Role of c-MET in human cancers

Overexpression of c-MET has been reported in different subtypes of lung cancer, including
adenocarcinoma (67%), carcinoid (60%), large cell carcinoma (57%), squamous cell carcino‐
ma (57%), and small cell lung cancer (SCLC) (25%) [22]. In terms of functional activity, posi‐
tive staining could be demonstrated in the subtypes of adenocarcinoma (44%), large cell
carcinoma (86%), squamous cell carcinoma (71%), carcinoid (40%), and SCLC (100%), re‐
spectively, using antibody for phospho-c-MET at the Y1003 (c-Cbl binding site). On the oth‐
er hand, positive staining was observed in 33% of adenocarcinomas, 57% of large cell
carcinoma and 50% of SCLCs using antibody for autophosphorylation of c-MET at the
Y1230/1234/1235 site [22]. Importantly, missense germ-line mutations in the tyrosine kinase
domain of c-MET have been described in patients with hereditary papillary renal carcinoma
[9]; whereas sporadic mutations in the tyrosine kinase, juxtamembrane, or semaphorin do‐
mains of c-MET have been detected in gastric cancer, HCC and SCLCs [23-25]. Concerning
biologic significance, activation of HGF/MET signalling pathway was shown to promote cell
invasiveness in vivo and trigger tumor metastases through angiogenic pathways [26]. In ad‐
dition, amplification of c-MET has been detected in the carcinomas of the stomach, esopha‐
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gus, and colorectum, non–small-cell lung cancer, and glioblastoma, and is usually associated
with acquired resistance to anticancer drugs-gefitinib or erlotinib [27-32].

Altered HGF secretion was reported in both solid and hematologic malignancies. Both tu‐
mor and mesenchymal cells are responsible for increased HGF production, leading to para‐
crine and/or autocrine activation of c-MET by HGF [33, 34, 35]. The enhanced c-MET
signaling is tumorigenic and could induce tumor metastasis in athymic nude mice [11]. As a
result, HGF and/or c-MET overexpression were suggested to be a prognostic biomarker for
cancer patients [36-38], although not all studies got the same conclusion [39, 40].

3. Role of c-MET-related RTKs in cancer

In addition to c-MET, coexpression of c-MET and related RTKs was shown to have prognos‐
tic relevance in some human cancers [41-45]. For example, RON and MET were overex‐
pressed in 55 % and 56 % of human ovarian cancer, respectively, and 42 % of them have co-
expression of RON and MET (P < 0.001) [41]. Coexpression of RON/MET was associated
with more aggressive phenotype of node-negative breast cancer patients. The 10-year dis‐
ease-free survival in RON-/MET- breast cancer is significantly higher than that of RON
+/MET+ group (79.3 % vs. 11.8 %) [42]. Furthermore, both MET and EGF family receptors
are overexpressed in different human cancers. Coexpression of c-MET and HER2 were ob‐
served in breast cancer and cholangiocarcinoma, and is usually associated with poor prog‐
nosis [43]. Similarly, coexpression of c-MET and HER2 could be detected in gastric cancer,
and activation of c-MET further increases the resistance to EGFR inhibitor-Lapatinib [44, 45].

4. Overexpression of c-MET as a prognostic indicator for urothelial
carcinoma of the bladder

High levels of c-MET expression have been correlated with metastatic progression of tumors
and poor survival in patients with carcinomas of the breast, extrahepatic biliary tract, stom‐
ach, endometrum, liver, colorectum, and kidney [46-53]. c-MET was also reported to play a
positive role in the tumorigenesis of human bladder [54, 55]. For example, expression of c-
met mRNA tended to positively correlate with differentiation of cancer cell lines in the ab‐
sence of point mutation [55]. Expression of Met was positively associated with histologic
grade, stage classification, tumor size, and nodular tumor growth (P < 0.05, respectively),
and is an independent indicators for poor long-term survival (P = 0.04) [55]. Furthermore,
pY1349 c-Met was found to be a prognostic marker in predicting metastasis-free and surviv‐
al of bladder cancer in a large cohort study of 133 non-metastatic specimens of bladder can‐
cer [56]. Taken together, c-met proto-oncogene plays an important role in the progression of
bladder carcinogenesis. Evaluation of Met expression could identify a subset of bladder can‐
cer patients who may require a more intensive treatment targeting strategy.
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5. The signaling pathway of c-MET

5.1. c-MET-related signaling pathways

The signaling for growth depends on RAS-MAPK signaling pathway and plays an essential
role in morphogenesis and epithelial-to-mesenchymal transition that results from loss of in‐
tracellular adhesion via cadherins, focal adhesion kinase, and integrins, in association with
alteration of cell shape [57]. Activation of HGF/c-MET axis prevents cell apoptosis through
PI3 kinase and subsequent Akt signaling events [58-60]. The crosstalk of c-MET and PI3K-
Akt pathway with RAS-MAPK pathway has been implicated in patient survival [61, 62].

5.2. Crosstalk with other membrane proteins or receptor tyrosine kinases

c-MET is known to interact with other membrane proteins on the cell surface [63], including
laminin receptor-α6β4 integrin, semaphorin receptors of plexin B family, and v6 splice var‐
iant of hyaluronan receptor-CD44 [63, 64]. The crosstalk between c-MET and membrane pro‐
teins modulates the activation of both c-MET and its partners and allows for integration of
signals present in the extracellular environment [65]. Crosstalk between c-MET and epider‐
mal growth factor receptor (EGFR) has been implicated in several biological systems [66].
Furthermore, the crosstalk of c-MET with other RTKs regulates different physiological
and/or pathological situations additively or synergistically. This interaction promotes trans-
phosphorylation of kinase of each other by directly binding or transducing through their
downstream signaling pathways indirectly. We review the potential role of c-MET and relat‐
ed RTKs, including RON, EGFR, Axl and platelet derived growth factor receptor-alpha
(PDGFR-α), in urothelial carcinoma of the bladder, either independently or in combination
in vivo (crosstalk) (Fig. 1).

6. RON

Recepteur d’Origine Nantais (RON) is a MET RTK subfamily member. Its ligand is macro‐
phage-stimulating protein (MSP) which is expressed by renal tubular cells [67-69]. Activa‐
tion of RON induces apoptotic resistance, superoxide anion production, and phagocytosis of
macrophages through different molecules and related signaling pathways, i.e. Src, ERK, p38
and PI3K/AKT, which are related to tumorigenesis [70-72]. The crosstalk between c-MET
and RON has been reported in different in vitro experimental models, and has been con‐
firmed in the human cancers of the liver, ovary, breast and urinary bladder.

Heterodimerization plays a pivotal role in initiating the crosstalk and activation of related
signal transduction pathways. Follenzi et al., showed that activated c-MET directly cross-
phosphorylates RON, and c-MET/RON heterodimmer activates the catalytic region of c-
MET at Y1234/Y1235 and RON at Y1238/Y1239, respectively (Figure 1A). Moreover, both
signal transducer docking sites of c-MET at Y1349/Y1356 and RON at Y1353/Y1360 are gen‐
erated for downstream signaling molecules. Mutation of RON suppresses the transforming
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phenotype induced by c-MET [73]. In contrast, RON is specifically trans-phosphorylated by
MET, but not by EGFR or HER2; and MET-specific kinase inhibitors also suppress the phos‐
phorylation of RON [41]. In addition to HGF, other cytokines, including EGF, interleukin-1,
interleukin-6 and tumor necrosis factor alpha (TNF- α), are able to induce the expression of
both MET and RON in HCC, suggesting that MET and RON are regulated by similar cyto‐
kine networks [42].

Overexpression of RON increases the growth, motility and anti-apoptosis of cancer cells in
vitro [74]. In primary human bladder cancer, overexpression of RON is detected in 32.8 % of
the tumors, and 23.3 % of these positive tumors also showed high levels of MET expression
as well. In addition, co-expressed RON and MET was significantly associated with de‐
creased overall survival (P= 0.005) or metastasis-free survival (P = 0.01) [74]. Overexpression
of RON and MET seems to be a universal event in uroepithelial cells [75]. These data sup‐
port the potential significance of RON/MET crosstalk, and the occurrence as a biomarker in
selection of appropriate treatment strategy for cancer patients.

7. EGFR

The EGFR (HER1 or ErbB-1 in humans) belongs to RTKs of ErbB family which consists of
EGFR, HER2/c-neu (ErbB-2), Her3 (ErbB-3) and Her4 (ErbB-4) four subfamily members. EGF
is the ligand of EGFR [76]. EGFR signaling pathway participates in the growth and progres‐
sion of urothelial cancers. Mutations affecting EGFR expression or activity may initiate a
cascade of events leading to autonomous cell proliferation, migration, invasion and apopto‐
sis inhibition, leading to tumor progression [77, 78].

The crosstalk between EGFR and MET has been reported during development and tumori‐
genesis. Cooperative action of MET and EGFR controls the number of nephron (the func‐
tional unit of the kidney) and maintains the duct morphology during kidney development
[79]. Three underlying mechanisms of crosstalk between MET and RTK have been reported:
(1) Trans-phophorylation and activation: Both RON and EGFR can bind with MET, and
form heterodimeric receptor complex to activate both tyrosine kinases through trans-phos‐
phorylation. The crosstalk of EGFR or RON with c-MET was confirmed by co-immunopre‐
ciptation assay (Figure 1A) [66, 80]; (2) c-MET activates EGFR through transcriptional
activation of the ligand EGF: c-MET increases the production of EGF through Ras/Erk sig‐
naling-mediated promoter activation. EGF then is transported out of the cell to bind with
EGFR in an autocrine or paracrine manner (Figure 1B) [81]; (3) EGFR activates c-MET
through Ras/Erk MAPK signaling pathway to activate metalloproteinasea (TIMP)-3 which
then cleavages the c-MET at ectodomain (Figure 1C). The truncated c-MET protein promotes
the proliferation and cell transformation [82, 83].

Naik et al., reported that positive staining for EGFR, HER2 and EGF could be detected in
23%, 60% and 47% of primary bladder cancer specimens, respectively [84]. The HER2/neu
gene amplification and protein overexpression were demonstrated in high grade, invasive
bladder cancer [85]. Overexpression of EGFR/ERBB2 correlates with higher tumor grading/
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stage and poorer clinical outcome in bladder cancer patients [86, 87]. These evidences sup‐
port the selection of EGFR as a molecular marker for diagnosis and/or prognosis of bladder
carcinoma [88, 89]. Recently, EGFR inhibitor Iressa has shown a strong protective efficacy
through cell cycle regulation in carcinogen induced rat bladder cancer model [90]. There‐
fore, EGFR, vascular endothelial growth factor (VEGF), mTOR and their-related signaling
molecules are excellent therapeutic targets, in combination with cytotoxic chemotherapy, in
the design of bladder cancer treatment [91]. Overexpression of RON and EGFR, as well as
their crosstalk, has been reported in various human bladder cancer cell lines [74, 92]. It is
noteworthy to clarify the potential of RTK co-targeting in the application of EGFR inhibitors
in bladder cancer therapy.

8. AXL

AXL is a member of TAM RTK family, including AXL, Tyro3 and Merk. It has a unique
structure of extracellular region that juxtaposes IgL and FNIII repeats [93, 94]. The protein S
and Gas6 (growth-arrest-specific protein 6) are ligands for TAM receptor [95]. Gas6/AXL
controls diverse cellular functions, including proliferation, survival, migration and anti-in‐
flammation through different signaling pathways [96]. Gas6/AXL stimulates cell prolifera‐
tion through MEK/Erk signaling pathway [97]. Gas6/AXL activates the PI3K/AKT and p38
signaling pathways to enhance the cell survival and migration, respectively [98, 99].
Gas6/AXL also suppresses Toll-like receptor and cytokine receptor signaling in innate im‐
mune cells through regulation of STAT1 [100, 101]. Overexpression of AXL has been report‐
ed in mesothelioma, NSCLC, breast carcinoma, and bladder cancer [20, 96, 102]. However,
AXL can be activated by a ligand-independent manner when AXL interacts with adjacent
cells in which AXL was overexpressed, suggesting that overexpression of AXL may be acti‐
vated per se through auto-activation [103].

9. PDGFR-α

PDGF, a ligand of PDGFR-α and -β, results in auto-phosphorylation and signaling transduc‐
tion of PDGFR [104]. PDGF/PDGFR signaling is involved in the development of various tis‐
sues, and is essential for epithelial-mesenchymal interaction during metamorphic skin
remodeling, mesenchymal cell migration and proliferation [105]. In PDGF-α knock-out
mice, neural tube and brain are abnormally accompanied by defect of the nervous system
[106]. PDGF contributes to the development and progression of cancer by autocrine or para‐
crine signaling, and further promotes tumorigenesis through proliferation, angiogenesis and
tumor stromal interaction [107].

In huamn uroepithelial cells, c-MET is frequently co-expressed with AXL, PDGFR-α, discoi‐
din domain receptor tyrosine kinase 2 (DDR2), and/or insulin-like growth factor I receptor
(IGF1R). Overexpression of AXL and PDGFR-α has been detected in various human cancers,
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and is associated with invasiveness and/or metastasis of carcinoma of the breast, kidney and
bladder [20, 108, 109]. Overexpression of c-MET/PDGFR-α was demonstrated in all of 9 hu‐
man bladder cancer cell lines tested [110]. We identified that both AXL and PDGFR may be
c-MET related RTKs in a cDNA microarray analysis [20]. In sharp contrast to crosstalk be‐
tween c-MET and RON or EGFR, both AXL and PDGFR do not directly bind with c-MET,
and is transcriptionally activated by mitogen activated protein kinase/extracellular signal-
regulated kinase (MEK/Erk) signaling pathway (Figure 1B) [20].

9.1. The relationship among environmental carcinogens, c-MET and RTKs

The environmental carcinogens, mainly from cigarette smoking, play important roles in the
bladder cancer development, specifically urothelial carcinoma [111, 112]. Cigar smoking,
pipe smoking, and secondhand smoke are implicated as risk factors for urothelial carcino‐
ma. The incidence of urothelial cancer is approximately 4 times higher in smokers compared
with non-smokers [113]. It is also reported that 50 % of all bladder cancers in men and 30 %
in women are due to cigarette smoking [114]. All these evidences suggest that smoking is
the most important risk factor for bladder cancer development. Genetic damage is the major
cause of smoking-related cancer induction by which normal cellular pathways are altered to
trigger cell growth and induce tumor formation [115]. In addition to bladder cancer, lung
cancer formation is also induced by genetic modifications mostly caused by tobacco smok‐
ing [116]. Genetic mutations and amplifications in RTK related signaling, such as c-MET,
EGFR, ErbB2, c-Kit, VEGFR, PI3K, and PTEN, contribute to lung cancer development by es‐
caping from normal growth control and transforming into a malignant phenotype [117, 118].
Several autocrine loops, including stem cell factor (SCF)/c-Kit, IGF-I/IGF-IR, and HGF/c-
MET, lead to the activation of PI3K/Akt signaling pathway and promote the cell growth,
survival, and chemotherapy resistance in lung cancer. During lung cancer development,
RTKs and their downstream effectors are selectively up-regulated. It is intriguing to clarify
whether crosstalk of c-MET with RTKs in bladder cancer is also related to smoking. Alto‐
gether, it is noteworthy to clarify the relationship among smoking, c-MET, RTKs and blad‐
der cancer development in the further study.

10. Conclusion and future direction

Overexpression of multiple RTKs has been reported in many human cancers, including
bladder cancer. Cross-connection among individual signaling pathway activated by each
RTK forms the signaling networks, which may complicate the development of anticancer
strategies. With discussion above, more attention is focused to identify the prognostic tar‐
gets and development of the targeted therapy for bladder cancer. In this review, we describe
the current knowledge of interaction between c-MET and related RTKs. On the basis of com‐
plicated signaling network, the multimodal strategies should include systemic chemo- or bi‐
ological therapies in combination with surgery and/or radiation applicable for invasive/
metastatic bladder cancers [91]. Diverse therapeutic strategies have been developed to inhib‐
it the HGF/c-MET signaling, including anti-HGF antibodies, HGF antagonists, anti-c-MET
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antibodies, and c-MET tyrosine kinase inhibitors. The c-MET pathway inhibitors have been
reported to block the activities of other related tyrosine kinases. For example, MP470, a
RAD51 inhibitor, suppresses the activity of c-MET and PDGFR [119]. MK-2461 suppresses
the activity of both c-MET and RON [120]. BMS-777607 inhibits the activity of c-MET, RON
and AXL [119, 121]. Furthermore, Foretinib, an oral multi-kinase inhibitor, inhibits the c-
MET activity and its related RTKs (RON, EGFR, AXL and PDGFR) [122, 123]. Altogether,
these inhibitors have potential to be used for bladder cancer therapy in the future. Coopera‐
tive action of c-MET with RON, EGFR, AXL and PDGFR-α has been reported to play impor‐
tant roles in bladder cancer progression, and thus deserves further investigation as the co-
targeting therapy candidates. Understanding of the mechanisms underlying crosstalk of c-
MET with RTKs is indispensible in the development of novel strategies against urothelial
bladder cancer.

Figure 1. The crosstalk between c-MET and related receptor tyrosine kinases

A. Trans-phosphorylation by other RTKs. The ligands, such as HGF, MSP and EGF, activate
the MET, RON and EGFR, respectively, through tyrosine phosphorylation. The activated re‐
ceptors (MET, RON or EGFR) cross talk with other RTKs through trans-phosphorylation. B.
Activation of other RTKs by c-MET through transcriptional regulation. HGF activates the c-
MET and downstream Ras/Erk signaling pathway through tyrosine phosphorylation. Ex‐
pression of PDGFR, AXL and EGF was enhanced through transcriptional regulation.
Overexpression of PDGFR and AXL enhances their binding with cognate ligands (PDGF
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and GAS6) and activation of their downstream signaling pathways. Overexpression of EGF
further enhances the activity of EGFR in an autocrine or paracrine manner. C. Metalloprotei‐
nase cleavage regulates c-MET activation. EGF induces the phosphorylation of EGFR and
activation of Ras/Erk signaling, and promotes the MET ectodomain shedding by cleavage of
TIMP3 sensitive metalloproteinase.
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1. Introduction

Currently, it is well recognized that epigenetic changes and genetic alterations are involved in
the initiation and progression of human cancer. Epigenetics refers to the study of changes in
gene expression caused by mechanisms other than classical mutations in the DNA sequence;
these changes are potentially reversible but are generally stably maintained during cell
division. The most common biological processes resulting from epigenetic mechanisms
include X-chromosome inactivation, cellular differentiation, maintenance of cell identity and
genomic imprinting.

Genomic imprinting is an epigenetic process of gene regulation in which the parental origin
of an allele determines whether the allele will be expressed or repressed [1]. The imprinting is
maintained by epigenetic modifications such as DNA methylation and repressive histone
marks that are transmitted to the gametes from the parental germ lines to ensure the expression
of a gene in a parent-specific manner. In somatic cells, the imprinted pattern is inherited during
mitotic division leading to the specific-monoallelic expression of the opposite allele on the
homologous chromosome [2]. However, in adult tissues, the patterns of imprinting of a gene
may be complex, in which the specific-monoallelic expression is restricted to a limited number
of cell types while biallelic transcripts produced from different promoters can be observed in
other cells or tissues [3]. Furthermore, the majority of the genes regulated by imprinting are
clustered with a long non-coding RNA; the expression of the genes in these clusters is
controlled in cis by an imprinting control region (ICR) containing a differentially methylated
region (DMR) that exhibits parent-specific DNA methylation. Thus, epigenetic modifications
lead to the expression from only one of the two chromosome homologues depending on
whether they are the maternally or paternally inherited copy of the gene.
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In humans, the appropriate expression of imprinted genes is important for normal develop‐
ment. The loss of genomic imprinting exposes the organism to a greater risk of diseases because
the disruption of normal patterns could lead to gain or loss of expression of the alleles and
subsequently to imbalances in the amount of the gene product. There are numerous diseases
associated with defects of imprinted genes including growth and metabolism disorders;
various childhood and adult cancers; and disorders in neurodevelopment, cognition, and
behavior as well as certain major psychiatric disorders.

Currently, approximately 80 imprinted genes have been characterized in the mouse genome.
Two-thirds of them show conserved imprinting patterns between mice and humans, whereas
others show imprinting patterns specific to humans. A large number of genes are also predicted
to be imprinted [4].

This chapter will describe the molecular basis of genomic imprinting including epigenetic
marks associated with the silencing of imprinted genes, the loss of imprinting as a potential
marker of risk and prognostic biomarkers in human cancer with a focus on bladder cancer.

2. Imprinted genes: regulation and function

Genomic imprinting has four important principles. First, it must be able to influence gene
expression. Second, it must be heritable in somatic lineages such that the memory of the
parental origin is propagated into daughter cells. Third, it should be initiated on the paternally
and maternally inherited chromosomes during gametogenesis or immediately after fertiliza‐
tion. Finally, imprinting must be erased in the germ line so that parental identity can be
established in the gametes for the next generation [5].

Mechanisms  responsible  for  establishing  and  maintaining  imprinting  include  DNA
methylation, chromatin modifications, insulation and the expression of non-coding RNAs
(ncRNAs). DNA methylation is a reversible reaction that is catalyzed by DNA methyltrans‐
ferases, an enzyme family that adds a methyl group to the 5-carbon of a cytosine that is
immediately followed by a guanine. In the human cells, the methylation is almost restricted
to these CpG dinucleotides, which are largely under-represented in the genome except at
genomic regions called CpG islands, some of them associated with gene promoters [6]. In
2004,  Kaneda et  al.  [7]  demonstrated that  a  specific  DNA methyltransferase,  Dnmt3a,  is
essential  for  the  establishment  of  both maternal  and paternal  imprinting.  Once imprint‐
ing is established in the germ line, it is necessary to maintain the marks after reprogram‐
ming and de novo methylation that occurs after the pre-implantation of the embryo [8]. In
somatic cells, imprinting is maintained and modified during development [9], and tissue-
specific imprinting is frequently observed [10].

Although DNA methylation is the most important mechanism for imprinting, it does not
appear to be the only mechanism. DMRs are often, but not exclusively, associated with
chromatin modifications [11]. The majority of imprinted genes are clustered into megabase-
long regions in the genome, which are essential to coordinate their regulation [12]. According
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to Barlow [2], more than 80% of the known imprinted genes are clustered into 16 genomic
regions that contain two or more genes. The cluster organization reflects the coordinated
regulation of the genes in a chromosomal domain [9]. These clusters share a number of features,
including a ncRNA that is expressed from the parental allele opposite the protein-coding genes
and the ICR [13]. The ICRs exhibit parental-specific epigenetic modifications (DNA methyla‐
tion and histone modifications) that govern their activity [14].

Chromatin is mainly composed of histone proteins (H2A, H2B, H3, and H4) that are subjected
to a variety of post-translational modifications on specific amino acid residues that are located
in the histone tails (NH2 terminal regions). These modifications include acetylation, methyl‐
ation, phosphorylation, sumoylation, ubiquitination and ADP ribosylation [15,16]. In somatic
cells, the germline DMRs are marked by allele-specific histone modifications. In both maternal
and paternal germ line DMRs, the unmethylated allele is associated with hallmarks of
permissive chromatin, such as dimethylation of lysine 4 of histone H3 (H3K4me2) and H3/H4
acetylation [17]. Still, allele-specific DNA methylation at the ICRs in mice is associated with
histone H4-lysine-20 and H3-lysine-9 trimethylation [18]. These marks, which also include
histone H3-lysine-27 trimethylation (H3K27me3), histone H4-lysine-20 trimethylation
(H4K20me3) and histone H3-lysine-9 di/trimethylation (H3K9me2/me3), are frequently
associated with heterochromatic regions and a repressed status [19].

In a study conducted by Henckel et al. [20] with mid-gestation embryos obtained from Dnmt3L
-/- females (DNA methylation at ICRs is not established during oogenesis), they observed a
lack of repressive histone modifications suggesting that there is a mechanistic link between
DNA and histone methylation at ICRs. It has been suggested that the methylation of the CpG
dinucleotides in these control regions can affect the expression of the gene by preventing the
binding of insulator proteins to differentially methylated regions. This methylation event
precludes the binding of transcription factors to the promoter and changes the chromatin
structure by recruiting methyl-CpG binding domain (MBD) proteins that bind to methylated
CpGs and recruit other proteins [1]. Thus, the regulation of expression could depend on the
local concentration of CpGs within the DMR.

The clusters are regulated by two main imprinting mechanisms. First, imprinting marks in the
DMR can act as insulator elements and regulate the expression of imprinted genes, and second,
the DMR can serve as a promoter for regulatory non-coding RNAs (ncRNAs). In the first
model, the imprinted genes share regulatory elements, and the insulator controls access to
these elements.

The H19/IGF2 locus is the well-documented example of this model. Located at 11p15.5 in the
human genome, these genes are connected and are expressed in a mutually exclusive manner
[21]. In humans and rats, the transcription of IFG2 and H19 genes are coordinated by a group
of enhancers located downstream to H19 and a DMR located upstream to this gene [22]. The
enhancers, lying between +7 and +9.5 kb from the promoter, include those sites that control
expression in endodermal [23] and mesodermal [24] tissues. The second important element in
this insulator model is the ICR or DMR. This element resides at -2 Kb to -4 Kb from the H19
transcriptional start site and is crucial for establishing the molecular imprint of the H19 gene
in the early embryo [25]. This region was shown to block enhancer activity for the H19 and
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IFG2 genes and contains seven CTCF-binding sites that are required for this activity. When
these CTCF-binding sites are methylated, they no longer bind the CTCF insulator protein [26].
CTCF is a ubiquitous, highly conserved transcription factor that plays multiple roles in gene
regulation, such as in activation, repression, silencing, chromatin insulation, and long-range
chromosome interactions [27]. On the maternal allele, the presence of CTCF blocks the
enhancer from interacting with IFG2 promoters and silences gene expression [28]. In contrast,
CTCF does not bind to the methylated, paternally inherited chromosome. As a result, the
enhancers are free to interact with the IFG2 promoter, and the H19 promoter is repressed [5].
The three-dimensional arrangement of the chromatin fiber created by CTCF-mediated
interactions also plays an important role in imprinted gene expression at the H19/IFG2 locus
[29]. In 2004, by using the chromosome conformation capture (3C) method in a mouse model,
it was demonstrated that the Igf2 DMR1 (one of the three DMRs found in mouse, located
upstream to the promoter 1 of the Igf2 gene) is able to interact with the H19-DMR [30]. Another
study also suggested that chromosomal looping is involved in the imprinting mechanism and
that the CTCF sites can mediate allele-specific chromosome interactions that control the
accessibility of the IFG2 promoter to the shared enhancer [31,32].

The second mechanism regulating the expression of imprinted gene clusters involves a
ncRNA. These ncRNAs function to silence large domains of the genome through their
interaction with chromatin [33]. At present, several classes of ncRNAs have been identified
within imprinted regions, including small nucleolar RNAs (snoRNAs), microRNAs (miRNAs),
small interfering RNAs (siRNAs), Piwi-interacting RNAs (piRNAs), antisense ncRNAs and
long non-coding RNAs (lncRNAs). While the expression of some plays a functional role in the
regulation of genomic imprinting, the function of others remains to be determined [34]. It has
been demonstrated that each imprinted cluster expresses at least on ncRNA that display
reciprocally imprinted expression patterns relative to the neighboring protein-coding genes
and that some of these genes are transcribed in an antisense orientation relative to the protein-
coding gene [35]. The most studied and well-understood clusters in this class are the Ifg2r and
Kcnq1 clusters. Ifg2r and two neighboring genes, Slc22a2 and Slc22a3 (solute carrier 22a2 and
22a3), are maternally expressed. This region also harbors one paternally expressed transcript,
Air (antisense to Ifg2r RNA) [36]. Air localizes to the silenced Slc22a3 promoter, recruits the
KMT1C lysine methyltransferase and leads to targeted H3K9 methylation and allele-specific
gene silencing by chromatin remodeling [37]. Similar to the Air–Ifg2r locus, the Kcnq1 locus
contains a series of maternally expressed genes (at least eight) and a unique non-coding
paternally expressed gene, Kcnq1ot1 [34]. This locus is governed by the maternally methylated
ICR, KvDMR1, located within an intron of the Kcnq1 gene. The promoter for the Kcnq1ot1 gene
resides within KvDMR1[14]. According [38], Kcnq1ot1 is required for epigenetic silencing of
neighboring genes upstream and downstream of the Kcnq1 locus.

The imprinted genes showed that complex regulation and functional consequences are
associated with imprinting-induced changes in the expression level. One consequence of
genomic imprinting is that viable embryos must receive two haploid genome complements
that come from parents of the opposite sex [39]. Generally, the imprinted genes are highly
expressed during embryonic development and are down-regulated after birth.
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The majority of imprinted genes in mammals has a critical role in the development and
function of the placenta [40] and brain [41], have been linked to cancer development and
are  associated  with  growth  disorders,  such  as  Beckwith-Wiedemann  and  Silver-Russel
syndromes [42],  and neurodevelopmental  disorders,  such as Angelman [43]  and Prader-
Willi syndromes [44].

3. Imprinting and cancer

Loss of imprinting (LOI), defined as the break the methylation patterns of DMRs associated
with monoallelic parental-specific expression, is a common event in human cancer [45]. This
term includes both the activation of the normally silenced allele and inactivation of the allele
that is expressed upon normal imprinting conditions.

Abnormal imprinting of the IGF2 and H19 genes in tumors was first described in the Wilms‘ tu‐
mor [46,47]. This tumor is a common solid cancer in children, and loss of imprinting has been
described as the most prevalent abnormality in the development of this tumor [48]. Thereafter,
loss of imprinting of IGF2 and H19 genes has been correlated with several common adult
human cancer (Table 1).

Despite these findings, the number of genes demonstrating LOI in human cancer is still limited
due to the small number of known genes regulated by imprinting. However, the statistics may
increase because of the growing interest in epigenetics and the large number of genes predicted
to be regulated by imprinting.

Imprinted

Gene
Oficial Name Other Aliases

Chromosomal

location
Cancer type Reference

DIRAS3
DIRAS family, GTP-

binding RAS-like 3
ARHI, NOEY2 1p31.1

Ovarian and breast [49]

Breast [50]

Myeloma [51]

Hepatocellular [52,53]

Thyroid [54]

Oligodendroglial [55]

PLAGL1

pleiomorphic

adenoma gene-like

1

RP3-468K18.1, LOT1,

ZAC, ZAC1
6q24-q25

Breast and ovarian [56]

Gastric

adenocarcinoma
[57]

Cervical [58]

PEG10
paternally

expressed 10

EDR, HB-1, MEF3L,

Mar2, Mart2, RGAG3
7q21

Hepatocellular [59]

B-cell chronic

lymphocytic
[60]
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Imprinted

Gene
Oficial Name Other Aliases

Chromosomal

location
Cancer type Reference

MEST

mesoderm specific

transcript homolog

(mouse)

PEG1 7q32

Osteossarcoma [61]

Lung [62]

Breast [63]

Uterine leiomyoma [64]

Wilms tumors [65]

CDKN1C

cyclin-dependent

kinase inhibitor 1C

(p57, Kip2)

BWCR, BWS, IMAGE,

KIP2, WBS, p57
11p15.5

Gastric [66,67]

Breast Lung [68]

Gastric

Hepatocellular

Pancreatic

Acute myeloid

leukemia

[69]

Bladder [70]

Hepatocellular [71]

Rhabdoid [72]

Osteosarcoma [61]

Pancreatic ductal [73]

Esophageal [74]

Wilms [75]

DLK1

delta-like 1

homolog

(Drosophila)

DLK, Delta1, FA1,

PREF1, Pref-1, ZOG,

pG2

14q32.2

Hepatocellular [76]

Multiple myeloma [77]

Acute myeloid

leukemia
[78]

PEG3
paternally

expressed 3

hCG_1685807, PW1,

ZNF904, ZSCAN24
19q13.4

Glioma [79, 80]

Ovarian [81, 82]

NNAT neuronatin Peg5 20q11.2-q12

Pediatric acute

leukemia
[83]

Wilms [65]

GNAS
GNAS complex

locus

RP4-543J19.4, AHO,

C20orf45, GNAS1,

GPSA, GSA, GSP, NESP,

PHP1A, PHP1B, PHP1C,

POH

20q13.32

Pituitary [84]

Somatotroph

adenomas
[85]

IGF2R
insulin-like growth

factor 2 receptor

CD222, CIMPR, M6P-R,

MPR1, MPRI
6q26 Wilms’tumor [86]
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Imprinted

Gene
Oficial Name Other Aliases

Chromosomal

location
Cancer type Reference

TFPI2
tissue factor

pathway inhibitor 2
PP5, REF1, TFPI-2 7q22 Prostate [87]

KCNQ1OT

1

KCNQ1 opposite

strand/antisense

transcript 1 (non-

protein coding)

KCNQ1-AS2,

KCNQ10T1, KvDMR1,

KvLQT1-AS, LIT1,

NCRNA00012

11p15 Colorectal [88]

IGF2

insulin-like growth

factor 2

(somatomedin A)

PP1446, C11orf43, IGF-

II, PP9974
11p15.5

Gastric [89]

Hepatocellular [90]

Insulinomas [91]

Wilms' tumor [92]

Bladder [93]

KCNQ1DN

KCNQ1

downstream

neighbor (non-

protein coding)

BWRT; HSA404617 11p15.5 Wilms' tumors [94]

SLC22A18
solute carrier family

22, member 18

BWR1A, BWSCR1A,

HET, IMPT1, ITM,

ORCTL2, SLC22A1L,

TSSC5, p45-BWR1A

11p15.5 Breast [95]

WT1 Wilms tumor 1

AWT1, EWS-WT1,

GUD, NPHS4, WAGR,

WIT-2, WT33

11p13 Wilms' tumors [96]

PEG3
paternally

expressed 3

hCG_1685807, PW1,

ZNF904, ZSCAN24
19q13.4

Glioma [97, 98]

Ovarian [99]

H19

H19, imprinted

maternally

expressed transcript

(non-protein

coding)

ASM, ASM1, BWS,

D11S813E, LINC00008,

NCRNA00008,

PRO2605, WT2

11p15.5

Colorectal [100]

Ovarian [101]

Hepatoblastoma [102]

Laryngeal squamous

cell carcinoma
[103]

Testicular seminomas [104]

Prostate [105]

Head and neck [106]

Ovarian [101]

Osteosarcoma [107]

Bladder [108, 93]

Table 1. Imprinted genes and cancers with LOI and DNA-methylation changes.
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Imprinted
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Oficial Name Other Aliases
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location
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Imprinted

Gene
Oficial Name Other Aliases

Chromosomal

location
Cancer type Reference
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Table 1. Imprinted genes and cancers with LOI and DNA-methylation changes.
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4. Imprinting and bladder cancer

Bladder cancer is the second-most common genitourinary disorder and the sixth-most
common disease in the world. Genetic and epigenetic alterations (Figure 1) are mostly likely
involved in the malignant transformation and progression of this tumor type [109].

Figure 1. Urotherial carcinogenesis is a complex process resulting from the accumulation of genetic and epigenetic
changes. Molecular and genetic analysis provide a framework for the characterization of molecular pathways (such as
RAS, FGFR3, RB1, TP53-associated pathways) leading to tumor formation and clonal expansion. These pathways has
been correlated with clinical and pathological parameters of both non-muscle and muscle invasive bladder cancer (A
and B). Among other epigenetic changes, loss of imprinting (LOI) could lead to gene expression imbalances and con‐
tribute to the carcinogenesis process.

Currently, the diagnosis of bladder cancer is based on histological, pathological and morpho‐
logical parameters and provides only a generalized outcome for patients [110]. In addition, the
gold standard to detect and monitor bladder cancer is cystoscopy, which is an invasive and
expensive method [111] even though this method shows poor performance in detecting low-
grade tumors [112]. An understanding of cancer biomarkers will provide an opportunity to
diagnose tumors earlier and with greater accuracy. Biomarkers can also help to identify those
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patients with a risk of disease recurrence, progression and metastasis as well as predict which
tumors will respond to different therapeutic approaches [113].

Although there are numerous studies reporting aberrant DNA methylation of several tumor
suppressor genes in bladder cancer, studies regarding LOI in this tumor type are sparse.

4.1. Catenin (cadherin-associated protein), alpha 3 gene — CTNNA3

The CTNNA3 gene encodes a novel alpha-catenin, alphaT-catenin, that has related functions
to alphaE-catenin, a well-known invasion suppressor gene necessary for the formation of cell-
cell adhesion complexes. In support of the hypothesis that CTNNA3 is a new imprinted gene,
Oudejans et al. [114] demonstrated that the 10q21.3 region containing the CTNNA3 gene shows
parent-specific imprinting patterns and that the transcription of this gene is down-regulated
in placental tissues of androgenetic origin. It was later demonstrated that the CTNNA3 gene
is subjected to imprinting in early placental tissues with preferential expression of the maternal
allele in the first trimester placental tissues [115]. However, it was observed that CTNNA3
imprinting depends on the trophoblast cell type because the expression in the extravillous
trophoblast is biallelic, whereas the expression in villous cytotrophoblast is maternal and
monoallelic. The expression of alphaT-catenin is also lost in villous syncytiotrophoblast as well
as in extravillous trophoblast following epithelial-mesenchymal transition, similar to the
imprinting pattern of the cyclin-dependent kinase inhibitor 1C (CDKN1C) gene, also known
as p57KIP. Taken together, these findings suggest that both genes share a conserved regulatory
mechanism that correlates with an early step in placental development.

To the best of our knowledge, there is only one report in the literature describing the frequency
of monoallelic versus biallelic expression of CTNNA3 in urothelial carcinomas of the bladder
[116]. Approximately 35% of informative bladder cancers showed monoallelic expression,
which was specifically associated with the tumor tissue. Furthermore, the CTNNA3 transcript
levels were significantly lower in tumor samples compared with the controls, all of which
displayed biallelic expression. These data suggest that epigenetic alterations of CTNNA3, such
as monoallelic expression, may disrupt key molecules involved in the protein interactions in
adherens junctions, such as beta catenin and E-cadherin, making CTNNA3 a candidate marker
for disease progression.

4.2. Cyclin-dependent kinase inhibitor 1C gene — CDKN1C

In humans, the imprinted gene CDKN1C is located at 11p15.5. This gene is expressed from the
maternally inherited allele and encodes the p57KIP2 protein, an inhibitor of cyclin-dependent
kinases. CDKN1C is considered a candidate tumor suppressor gene because of its location on
a frequently deleted genomic region in human cancers, biochemical activities and imprinting
regulation [117]. The imprinting of this locus is controlled by an ICR located ~ 700 kb from the
IGF2/H19 genes towards the centromere. The paternal allele of CDKN1C is silenced by the long
non-coding LIT1/KCNQ1OT1 RNA that originates from the differentially DNA-methylated
KvDMR1 [11], where resides the promoter for this gene.
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logical parameters and provides only a generalized outcome for patients [110]. In addition, the
gold standard to detect and monitor bladder cancer is cystoscopy, which is an invasive and
expensive method [111] even though this method shows poor performance in detecting low-
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patients with a risk of disease recurrence, progression and metastasis as well as predict which
tumors will respond to different therapeutic approaches [113].

Although there are numerous studies reporting aberrant DNA methylation of several tumor
suppressor genes in bladder cancer, studies regarding LOI in this tumor type are sparse.

4.1. Catenin (cadherin-associated protein), alpha 3 gene — CTNNA3

The CTNNA3 gene encodes a novel alpha-catenin, alphaT-catenin, that has related functions
to alphaE-catenin, a well-known invasion suppressor gene necessary for the formation of cell-
cell adhesion complexes. In support of the hypothesis that CTNNA3 is a new imprinted gene,
Oudejans et al. [114] demonstrated that the 10q21.3 region containing the CTNNA3 gene shows
parent-specific imprinting patterns and that the transcription of this gene is down-regulated
in placental tissues of androgenetic origin. It was later demonstrated that the CTNNA3 gene
is subjected to imprinting in early placental tissues with preferential expression of the maternal
allele in the first trimester placental tissues [115]. However, it was observed that CTNNA3
imprinting depends on the trophoblast cell type because the expression in the extravillous
trophoblast is biallelic, whereas the expression in villous cytotrophoblast is maternal and
monoallelic. The expression of alphaT-catenin is also lost in villous syncytiotrophoblast as well
as in extravillous trophoblast following epithelial-mesenchymal transition, similar to the
imprinting pattern of the cyclin-dependent kinase inhibitor 1C (CDKN1C) gene, also known
as p57KIP. Taken together, these findings suggest that both genes share a conserved regulatory
mechanism that correlates with an early step in placental development.

To the best of our knowledge, there is only one report in the literature describing the frequency
of monoallelic versus biallelic expression of CTNNA3 in urothelial carcinomas of the bladder
[116]. Approximately 35% of informative bladder cancers showed monoallelic expression,
which was specifically associated with the tumor tissue. Furthermore, the CTNNA3 transcript
levels were significantly lower in tumor samples compared with the controls, all of which
displayed biallelic expression. These data suggest that epigenetic alterations of CTNNA3, such
as monoallelic expression, may disrupt key molecules involved in the protein interactions in
adherens junctions, such as beta catenin and E-cadherin, making CTNNA3 a candidate marker
for disease progression.

4.2. Cyclin-dependent kinase inhibitor 1C gene — CDKN1C

In humans, the imprinted gene CDKN1C is located at 11p15.5. This gene is expressed from the
maternally inherited allele and encodes the p57KIP2 protein, an inhibitor of cyclin-dependent
kinases. CDKN1C is considered a candidate tumor suppressor gene because of its location on
a frequently deleted genomic region in human cancers, biochemical activities and imprinting
regulation [117]. The imprinting of this locus is controlled by an ICR located ~ 700 kb from the
IGF2/H19 genes towards the centromere. The paternal allele of CDKN1C is silenced by the long
non-coding LIT1/KCNQ1OT1 RNA that originates from the differentially DNA-methylated
KvDMR1 [11], where resides the promoter for this gene.
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In bladder cancer, the down-regulation of CDKN1C can be explained by multiple mecha‐
nisms, including a switch of both alleles toward a paternal imprinting pattern as indicat‐
ed by DMR hypomethylation and described by Hoffman et al. [70]. The other mechanisms
proposed by the author include a loss of heterozygosity (loss of expression of the mater‐
nal  allele)  and  the  hypermethylation  of  the  promoter  region,  although  this  mechanism
cannot be the only one responsible for the down-regulation of CDKN1C. Other studies have
indicated that CDKN1C is a putative tumor suppressor gene in bladder cancer due to the
reduced mRNA and protein levels compared with normal tissue. By immunohistochemi‐
cal analysis, it was observed that the presence of the p57KIP2 protein was detected in only
25.8% of the samples but in 100% of normal urinary bladder mucosa [118] suggesting that
a decrease in p57KIP2 expression may be a biomarker for bladder cancer. Furthermore, the
decreased expression of CDKN1C mRNA was frequently observed in a study using samples
of urothelial carcinoma tissues and cell lines. Interestingly, loss of CDKN1C transcripts was
correlated with the loss of H19 mRNA expression [119].

4.3. H19-imprinted maternally expressed transcript (non-protein coding) / insulin-like
growth factor gene (IFG2)

The IGF2 and H19 genes are located in the human chromosome at 11p15.5. The imprinted
cluster in this region has been implicated in a variety of cancers. Initially, the H19 gene was
thought to be involved in human cancer because of its potential tumor suppressor activity.
When tumor cell lines were transformed with an expression vector containing this gene, there
were morphological changes and a delay of growth [120]. However, later studies suggested
that the H19 gene has oncofetal characteristics due to abundant expression in some human
fetal tissues and tumors arising from these tissues [121].

Although the mechanism of H19 activity is controversial, it has been shown that the expression
patterns of several genes are altered in the presence of H19 RNA expression. These genes have
been linked to potentially malignant cellular processes such as invasion, migration and
angiogenesis. Additionally, the expression of some genes with functions in cell adhesion was
inversely correlated with H19 expression, which may lead to the development of more invasive
tumors [122].

The H19 gene produces a 2.3-kb non-coding RNA transcript that is capped, spliced and
polyadenylated. No protein product has been identified. Recently, Cai and Cullen [123]
showed that the H19 transcript can function as a primary miRNA in humans and mice. These
authors suggested that although this miR-675 is a derivative of the H19 gene, it does not have
a defined role, although it is possible that it functions as a regulator of mRNAs.

The IGF2 gene encodes the insulin-like growth factor II protein, which is structurally homol‐
ogous to insulin, and promotes growth and plays a role in metabolic processes in various cell
types [45]. IGF2 is regulated in a precise manner to maintain the monoallelic expression, which
highlights the importance of gene dosage. The LOI of IGF2 was first observed in the Wilms‘ tu‐
mor [46, 47], and subsequent studies have found that aberrant imprinting or LOI of IGF2 is
linked to many types of tumors.
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Investigation into the role of the H19 in bladder cancer began in 1995. Ariel et al. [121] suggested
that the H19 gene was a potential cancer marker because it was prominently expressed in more
malignant and invasive transitional cell carcinomas as well as in in situ carcinomas, demon‐
strating unpredictable behavior with high rates of recurrence, progression and metastasis.
These data were later confirmed, demonstrating that H19 expression was specifically associ‐
ated with tumors, with no detection of expression in normal urinary bladder mucosa, sug‐
gesting that H19 may have oncogenic properties in the bladder urothelium [124].

Disrupted H19 imprinting was first demonstrated in bladder cancer in a small number of
samples. Among the four informative samples (heterozygotes for a neutral genetic polymor‐
phism), two tumors showed biallelic expression of the H19 gene. The same study showed LOI
of the IGF2 gene in three cases [93]. LOI of IGF2 and H19 at low frequencies was also described
by another study in which only 12.5% and 22.2% of informative samples for the H19 and IGF2
genes, respectively, demonstrated this alteration. A DNA methylation analysis of the DMR
showed a consistent decrease in the percentage of methylation from normal to tumoral tissue
in the methylated allele. In both the methylated and unmethylated alleles of the IGF2 DMR,
the average amount of methylation decreased from normal to tumoral bladder tissue, showing
a relationship between the altered methylation in the DMR and a loss of imprinting pattern in
bladder cancer [125].

Most tumors in the urinary bladder are superficial, with a low risk of metastasis. In less
than  one  third  of  the  cases,  the  tumor  is  invasive  and  compromises  the  muscle  layer.
Despite this low risk of metastasis, bladder cancer has a high risk of recurrence [126]. The
IGF2 gene was shown to have a role in invasion and metastasis in several types of cancer
(reviewed in  [127].  In  bladder  cancer,  a  recent  study showed a  connection between the
increased levels of IGF2 and cytoplasmic immunolocalization of E-cadherin in nonmuscle
invasive  tumors  with  57%  of  analyzed  tumors  demonstrating  LOI  and  cytoplasmic
expression of E-cadherin. The study also demonstrated that E-cadherin may indicate tumor
recurrence independently of tumor grade or stage [128]. The CDH1 gene encodes a critical
protein involved in epithelial adhesion. The process of epithelial-mesenchymal transition
(EMT) has been identified as an important prognostic biomarker in bladder cancer [129]
and plays a central role in the process of carcinoma cell dispersion [130]. Morali et al. [131]
demonstrated that the IGF2 protein induced the spread and loss of cell-cell contacts in rat
bladder carcinomas derived from NBT-II cells and decreased the mean tumor height from
6.8 µm to 4 µm after 3 hours of treatment with IGF2.

The ICR located upstream of the H19 gene and its DMR contains seven CTCF binding sites.
Takai et al. [108] analyzed these sites in normal human embryonic ureteral tissue and found
that only the sixth site demonstrated allele-specific methylation, whereas the others sites were
methylated. In the analysis of the sixth site in six samples of human bladder cancer, two cases
showed hypomethylation of the paternal allele, and the CpG islands in the maternal alleles of
the remaining cases were sporadically methylated. The methylation status of the sixth CTCF-
binding site was also investigated in human bladder cancer and normal bladder tissues. The
authors suggested that the hypomethylation of the paternal allele observed in bladder cancer
was nearly absent in normal bladder tissue. This hypomethylation could be more prevalent
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In bladder cancer, the down-regulation of CDKN1C can be explained by multiple mecha‐
nisms, including a switch of both alleles toward a paternal imprinting pattern as indicat‐
ed by DMR hypomethylation and described by Hoffman et al. [70]. The other mechanisms
proposed by the author include a loss of heterozygosity (loss of expression of the mater‐
nal  allele)  and  the  hypermethylation  of  the  promoter  region,  although  this  mechanism
cannot be the only one responsible for the down-regulation of CDKN1C. Other studies have
indicated that CDKN1C is a putative tumor suppressor gene in bladder cancer due to the
reduced mRNA and protein levels compared with normal tissue. By immunohistochemi‐
cal analysis, it was observed that the presence of the p57KIP2 protein was detected in only
25.8% of the samples but in 100% of normal urinary bladder mucosa [118] suggesting that
a decrease in p57KIP2 expression may be a biomarker for bladder cancer. Furthermore, the
decreased expression of CDKN1C mRNA was frequently observed in a study using samples
of urothelial carcinoma tissues and cell lines. Interestingly, loss of CDKN1C transcripts was
correlated with the loss of H19 mRNA expression [119].

4.3. H19-imprinted maternally expressed transcript (non-protein coding) / insulin-like
growth factor gene (IFG2)

The IGF2 and H19 genes are located in the human chromosome at 11p15.5. The imprinted
cluster in this region has been implicated in a variety of cancers. Initially, the H19 gene was
thought to be involved in human cancer because of its potential tumor suppressor activity.
When tumor cell lines were transformed with an expression vector containing this gene, there
were morphological changes and a delay of growth [120]. However, later studies suggested
that the H19 gene has oncofetal characteristics due to abundant expression in some human
fetal tissues and tumors arising from these tissues [121].

Although the mechanism of H19 activity is controversial, it has been shown that the expression
patterns of several genes are altered in the presence of H19 RNA expression. These genes have
been linked to potentially malignant cellular processes such as invasion, migration and
angiogenesis. Additionally, the expression of some genes with functions in cell adhesion was
inversely correlated with H19 expression, which may lead to the development of more invasive
tumors [122].

The H19 gene produces a 2.3-kb non-coding RNA transcript that is capped, spliced and
polyadenylated. No protein product has been identified. Recently, Cai and Cullen [123]
showed that the H19 transcript can function as a primary miRNA in humans and mice. These
authors suggested that although this miR-675 is a derivative of the H19 gene, it does not have
a defined role, although it is possible that it functions as a regulator of mRNAs.

The IGF2 gene encodes the insulin-like growth factor II protein, which is structurally homol‐
ogous to insulin, and promotes growth and plays a role in metabolic processes in various cell
types [45]. IGF2 is regulated in a precise manner to maintain the monoallelic expression, which
highlights the importance of gene dosage. The LOI of IGF2 was first observed in the Wilms‘ tu‐
mor [46, 47], and subsequent studies have found that aberrant imprinting or LOI of IGF2 is
linked to many types of tumors.
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Investigation into the role of the H19 in bladder cancer began in 1995. Ariel et al. [121] suggested
that the H19 gene was a potential cancer marker because it was prominently expressed in more
malignant and invasive transitional cell carcinomas as well as in in situ carcinomas, demon‐
strating unpredictable behavior with high rates of recurrence, progression and metastasis.
These data were later confirmed, demonstrating that H19 expression was specifically associ‐
ated with tumors, with no detection of expression in normal urinary bladder mucosa, sug‐
gesting that H19 may have oncogenic properties in the bladder urothelium [124].

Disrupted H19 imprinting was first demonstrated in bladder cancer in a small number of
samples. Among the four informative samples (heterozygotes for a neutral genetic polymor‐
phism), two tumors showed biallelic expression of the H19 gene. The same study showed LOI
of the IGF2 gene in three cases [93]. LOI of IGF2 and H19 at low frequencies was also described
by another study in which only 12.5% and 22.2% of informative samples for the H19 and IGF2
genes, respectively, demonstrated this alteration. A DNA methylation analysis of the DMR
showed a consistent decrease in the percentage of methylation from normal to tumoral tissue
in the methylated allele. In both the methylated and unmethylated alleles of the IGF2 DMR,
the average amount of methylation decreased from normal to tumoral bladder tissue, showing
a relationship between the altered methylation in the DMR and a loss of imprinting pattern in
bladder cancer [125].

Most tumors in the urinary bladder are superficial, with a low risk of metastasis. In less
than  one  third  of  the  cases,  the  tumor  is  invasive  and  compromises  the  muscle  layer.
Despite this low risk of metastasis, bladder cancer has a high risk of recurrence [126]. The
IGF2 gene was shown to have a role in invasion and metastasis in several types of cancer
(reviewed in  [127].  In  bladder  cancer,  a  recent  study showed a  connection between the
increased levels of IGF2 and cytoplasmic immunolocalization of E-cadherin in nonmuscle
invasive  tumors  with  57%  of  analyzed  tumors  demonstrating  LOI  and  cytoplasmic
expression of E-cadherin. The study also demonstrated that E-cadherin may indicate tumor
recurrence independently of tumor grade or stage [128]. The CDH1 gene encodes a critical
protein involved in epithelial adhesion. The process of epithelial-mesenchymal transition
(EMT) has been identified as an important prognostic biomarker in bladder cancer [129]
and plays a central role in the process of carcinoma cell dispersion [130]. Morali et al. [131]
demonstrated that the IGF2 protein induced the spread and loss of cell-cell contacts in rat
bladder carcinomas derived from NBT-II cells and decreased the mean tumor height from
6.8 µm to 4 µm after 3 hours of treatment with IGF2.

The ICR located upstream of the H19 gene and its DMR contains seven CTCF binding sites.
Takai et al. [108] analyzed these sites in normal human embryonic ureteral tissue and found
that only the sixth site demonstrated allele-specific methylation, whereas the others sites were
methylated. In the analysis of the sixth site in six samples of human bladder cancer, two cases
showed hypomethylation of the paternal allele, and the CpG islands in the maternal alleles of
the remaining cases were sporadically methylated. The methylation status of the sixth CTCF-
binding site was also investigated in human bladder cancer and normal bladder tissues. The
authors suggested that the hypomethylation of the paternal allele observed in bladder cancer
was nearly absent in normal bladder tissue. This hypomethylation could be more prevalent
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than methylation in the maternal allele at this locus and might play a role in the overexpression
of H19 in advanced-stage bladder cancer, as reported by Cooper et al. [124].

Carcinogen exposure is one of the mechanisms implicated in the development of human
bladder carcinomas. In a mouse study that induced bladder cancer by N-butyl-N-(4-hydro‐
butyl) nitrosamine exposure, the expression of H19 was first noted in the lamina propria (the
drug was administered for 5 weeks) and posteriorly in epithelial cells (the drug was admin‐
istered for 20-28 weeks). The alterations in H19 expression levels were consistent with
preneoplastic changes in the transitional epithelium of the bladder [132].

Because the H19 gene is not expressed (or is expressed at low levels) in normal adult tissues
but is expressed in tumors derived from tissues previously expressing it during the embryo‐
genic period, H19 could be exploited for alternative therapeutic approaches. In fact, regulatory
sequences of H19 were used in a vector that expressed diphtheria toxin (DT-A) or herpes
simplex virus thymidine kinase (HSV-tk) that were then transfected into tumoral cell lines,
including a cell line derived from bladder cancer, and injected in an animal model of bladder
cancer. It was found that the expression of DT-A was specific to T24P bladder cancer cells
compared with human fibroblast IMR-90 cells. The in vivo experiment showed that the weights
of the tumors from DTA-PBH19-treated animals (with 3 doses) were significantly less than the
tumors from the control animals. Similar results were observed in animals treated with the
TK-H19 construct and ganciclovir (GCV) in a single dose, although the tumors started to resist
the growth-inhibitory effects of the TK-PBH19 and GCV treatment after the eighth day of
treatment. These initial findings demonstrated that the H19 regulatory sequence was capable
of driving expression of therapeutic genes [133].

Recently, a double promoter expressing DT-A was constructed with two regulatory sequences
(H19 and IGF2-P4) and tested in bladder cancer cell lines and animal models. The inclusion of
two promoters was more efficient at lysing the cancer cell lines when compared to the single-
promoter constructs, H19-DTA or IGF2-DTA. This increased efficacy was also observed in the
growth inhibition of heterotopic bladder tumors, with a 70% reduction in tumor development
compared to controls after three injections. The treatment of orthotopic tumors inhibited tumor
growth, reducing the size of treated tumors to 86% of the size of tumors found in the control
animals [134]. These findings suggest that this approach could be applied in cancer therapy.

4.4. Predict imprinted genes and bladder cancer

Although few studies have reported LOI in well characterized imprinted genes (such as IGF2
and H19) in bladder cancer, there is a list of newly predicted imprinted genes already impli‐
cated in this type of tumor, some of them are candidates to diagnostic and/or prognosis
markers.

A newly identified gene, BLCAP (bladder cancer associated protein), is a novel tumor sup‐
pressor gene candidate in human bladder cancer. This gene, also known as BC10 protein
(bladder cancer-10 kDa protein), is located at 20q11.23 and encodes a small protein with
unknown cellular functions. Although it has no homology to any known protein [135], it
includes putative cytoplasmic domains at the N- and C-terminal ends, a SPXX motif and a
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proline-rich area resembling the PXXP domain, which suggests that it may play a role in cell
signaling [136]. Transcriptional down-regulation of this gene has been observed in different
tumor types [137-138-139] including invasive bladder cancer [136]. In support of its role as a
tumor suppressor, Fan et al. [140] showed that overexpression of BLCAP resulted in growth
inhibition and induced apoptosis of human Ewing's sarcoma cells in vitro. In a recent study of
120 patients and validated with 2,108 samples, the authors confirmed that the loss of BLCAP
expression is associated with tumor progression, high levels of nuclear protein expression and
a poor prognosis, suggesting that BLCAP expression may be a prognostic biomarker[135].

BLCAP was initially considered a non-imprinted gene in human fetal tissues, with biallelic
expression in the fetal brain, adrenal gland, heart, kidney, liver, lung and placental tissues,
and showed an unmethylated promoter-associated CpG island in all tissues evaluated [141].
Recently, it was demonstrated that the BLCAP gene is imprinted in the human and mouse
brains and this tissue-specific pattern may be regulated by the high levels of NNAT transcrip‐
tion in the brain [142]. The NNAT gene lies within the intron of the BLCAP gene [142] and is
specifically expressed from the paternal allele in the central nervous system from mid-
gestation through early postnatal development [141]. Since that NNAT gene may influences
the imprinting of the BLCAP gene, it may be interesting to study the loss of imprinting of both
genes in bladder cancer.

Another gene that may be regulated by genomic imprinting is the retinoblastoma tumor
susceptibility gene (RB1). This important discovery was made in a genome-wide analysis of
CpG methylation from the blood sample of a child with multiple imprinting defects. This study
revealed a differential methylation pattern of a specific CpG island located within the intron
2 of the RB1 gene. It was suggested that the presence of the CpG island resulted from a
retrotransposition event in the KIAA0649 gene between exon 4 and an 18 bp segment of the
3’end of exon 3. The authors also showed that the CpG island 85 is unmethylated on the
paternal chromosome and that this CpG island on the maternal chromosome is methylated,
with a difference in gene expression favoring the maternal allele [143]. This finding was
unexpected because the paternal transcripts were predicted to be more highly expressed than
the maternal transcripts. According to the authors, this finding could be a result of transcrip‐
tional interference in which the lack of methylation of CpG number 85 and the expression of
a transcript (2B-transcript) could interfere with the expression of the paternal allele. To explain
this finding, Buiting et al. [144] proposed a model in which the binding of a transcriptional
complex in the unmethylated 2B-promoter region (paternal) blocks the transcriptional
complex that regulates the expression of an alternate transcript from the promoter located
upstream to exon 1, resulting in a low abundance of the paternal allele. Recently, Nakabayashi
et al. [145] confirmed the maternal methylation of the RB1 DMR in a study of rare reciprocal
genome-wide uniparental disomy samples in patients with Beckwith–Wiedemann and Silver–
Russell syndrome-like phenotypes.

The RB1 gene was one of the first tumor suppressor genes discovered, and its loss of function
has been reported in various tumor types. Rb1 protein interacts with a large and steadily
growing list of cellular proteins and an even greater number of genes [146], reinforcing its
central role in carcinogenesis. In bladder cancer, there are a large number of studies implicating
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than methylation in the maternal allele at this locus and might play a role in the overexpression
of H19 in advanced-stage bladder cancer, as reported by Cooper et al. [124].

Carcinogen exposure is one of the mechanisms implicated in the development of human
bladder carcinomas. In a mouse study that induced bladder cancer by N-butyl-N-(4-hydro‐
butyl) nitrosamine exposure, the expression of H19 was first noted in the lamina propria (the
drug was administered for 5 weeks) and posteriorly in epithelial cells (the drug was admin‐
istered for 20-28 weeks). The alterations in H19 expression levels were consistent with
preneoplastic changes in the transitional epithelium of the bladder [132].

Because the H19 gene is not expressed (or is expressed at low levels) in normal adult tissues
but is expressed in tumors derived from tissues previously expressing it during the embryo‐
genic period, H19 could be exploited for alternative therapeutic approaches. In fact, regulatory
sequences of H19 were used in a vector that expressed diphtheria toxin (DT-A) or herpes
simplex virus thymidine kinase (HSV-tk) that were then transfected into tumoral cell lines,
including a cell line derived from bladder cancer, and injected in an animal model of bladder
cancer. It was found that the expression of DT-A was specific to T24P bladder cancer cells
compared with human fibroblast IMR-90 cells. The in vivo experiment showed that the weights
of the tumors from DTA-PBH19-treated animals (with 3 doses) were significantly less than the
tumors from the control animals. Similar results were observed in animals treated with the
TK-H19 construct and ganciclovir (GCV) in a single dose, although the tumors started to resist
the growth-inhibitory effects of the TK-PBH19 and GCV treatment after the eighth day of
treatment. These initial findings demonstrated that the H19 regulatory sequence was capable
of driving expression of therapeutic genes [133].

Recently, a double promoter expressing DT-A was constructed with two regulatory sequences
(H19 and IGF2-P4) and tested in bladder cancer cell lines and animal models. The inclusion of
two promoters was more efficient at lysing the cancer cell lines when compared to the single-
promoter constructs, H19-DTA or IGF2-DTA. This increased efficacy was also observed in the
growth inhibition of heterotopic bladder tumors, with a 70% reduction in tumor development
compared to controls after three injections. The treatment of orthotopic tumors inhibited tumor
growth, reducing the size of treated tumors to 86% of the size of tumors found in the control
animals [134]. These findings suggest that this approach could be applied in cancer therapy.

4.4. Predict imprinted genes and bladder cancer

Although few studies have reported LOI in well characterized imprinted genes (such as IGF2
and H19) in bladder cancer, there is a list of newly predicted imprinted genes already impli‐
cated in this type of tumor, some of them are candidates to diagnostic and/or prognosis
markers.

A newly identified gene, BLCAP (bladder cancer associated protein), is a novel tumor sup‐
pressor gene candidate in human bladder cancer. This gene, also known as BC10 protein
(bladder cancer-10 kDa protein), is located at 20q11.23 and encodes a small protein with
unknown cellular functions. Although it has no homology to any known protein [135], it
includes putative cytoplasmic domains at the N- and C-terminal ends, a SPXX motif and a
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proline-rich area resembling the PXXP domain, which suggests that it may play a role in cell
signaling [136]. Transcriptional down-regulation of this gene has been observed in different
tumor types [137-138-139] including invasive bladder cancer [136]. In support of its role as a
tumor suppressor, Fan et al. [140] showed that overexpression of BLCAP resulted in growth
inhibition and induced apoptosis of human Ewing's sarcoma cells in vitro. In a recent study of
120 patients and validated with 2,108 samples, the authors confirmed that the loss of BLCAP
expression is associated with tumor progression, high levels of nuclear protein expression and
a poor prognosis, suggesting that BLCAP expression may be a prognostic biomarker[135].

BLCAP was initially considered a non-imprinted gene in human fetal tissues, with biallelic
expression in the fetal brain, adrenal gland, heart, kidney, liver, lung and placental tissues,
and showed an unmethylated promoter-associated CpG island in all tissues evaluated [141].
Recently, it was demonstrated that the BLCAP gene is imprinted in the human and mouse
brains and this tissue-specific pattern may be regulated by the high levels of NNAT transcrip‐
tion in the brain [142]. The NNAT gene lies within the intron of the BLCAP gene [142] and is
specifically expressed from the paternal allele in the central nervous system from mid-
gestation through early postnatal development [141]. Since that NNAT gene may influences
the imprinting of the BLCAP gene, it may be interesting to study the loss of imprinting of both
genes in bladder cancer.

Another gene that may be regulated by genomic imprinting is the retinoblastoma tumor
susceptibility gene (RB1). This important discovery was made in a genome-wide analysis of
CpG methylation from the blood sample of a child with multiple imprinting defects. This study
revealed a differential methylation pattern of a specific CpG island located within the intron
2 of the RB1 gene. It was suggested that the presence of the CpG island resulted from a
retrotransposition event in the KIAA0649 gene between exon 4 and an 18 bp segment of the
3’end of exon 3. The authors also showed that the CpG island 85 is unmethylated on the
paternal chromosome and that this CpG island on the maternal chromosome is methylated,
with a difference in gene expression favoring the maternal allele [143]. This finding was
unexpected because the paternal transcripts were predicted to be more highly expressed than
the maternal transcripts. According to the authors, this finding could be a result of transcrip‐
tional interference in which the lack of methylation of CpG number 85 and the expression of
a transcript (2B-transcript) could interfere with the expression of the paternal allele. To explain
this finding, Buiting et al. [144] proposed a model in which the binding of a transcriptional
complex in the unmethylated 2B-promoter region (paternal) blocks the transcriptional
complex that regulates the expression of an alternate transcript from the promoter located
upstream to exon 1, resulting in a low abundance of the paternal allele. Recently, Nakabayashi
et al. [145] confirmed the maternal methylation of the RB1 DMR in a study of rare reciprocal
genome-wide uniparental disomy samples in patients with Beckwith–Wiedemann and Silver–
Russell syndrome-like phenotypes.

The RB1 gene was one of the first tumor suppressor genes discovered, and its loss of function
has been reported in various tumor types. Rb1 protein interacts with a large and steadily
growing list of cellular proteins and an even greater number of genes [146], reinforcing its
central role in carcinogenesis. In bladder cancer, there are a large number of studies implicating

Loss of Imprinting as an Epigenetic Marker in Bladder Cancer
http://dx.doi.org/10.5772/55814

53



the RB1 gene in tumoral development and progression. Aggressive tumoral behavior, such as
in invasive high-stage muscle tumors, was associated with the down-regulation of RB1 mRNA
and protein in addition to altered mRNA expression of TP16 and CDK4 [147].

In some regions in the world, bladder cancer is associated with the urinary form of schistoso‐
miasis. Abdulamir et al. [148] profiled the molecular markers in schistosomal and non-
schistosomal bladder tumors and found lower expression levels of Rb protein in patient tumors
not caused by parasitic infection and an association between down-regulation of the protein
and late stages of the disease (III and IV) in the schistosomal and invasive non-schistosomal
bladder tumors. These findings support the hypothesis that the Rb protein can be used as a
prognostic marker and distinguish a tumor caused by infection from a tumor not caused by
infection.

According to the model proposed by Buiting et al. [144], the loss of imprinting (demethylation
of the maternal allele) could explain the lack/decrease in RB1 gene transcripts mentioned
above, highlighting the need to understand the mechanisms behind the down-regulation of
the RB1 gene. Furthermore, methylation of the RB1 gene promoter was evaluated in 45 patients
with bladder cancer and in bladder cancer cell lines. However, the authors found unmethy‐
lated promoter-associated CpG island in all bladder cancer cell lines and primary tumors
examined [149]. More recently, a study involving a large number of genes investigated the
methylation status of 25 proven or suspected tumor suppressor genes in pT1G3 transitional
cell carcinomas. The authors found that tumors displaying unmethylated RB1 and TP73,
among others genes, had higher progression rates in patients treated with non-maintenance
bacillus Calmette-Guérion (BCG) [150].

These studies found an unexpected result compared with the studies of RB1 gene expression,
as the decreased expression of this gene could be linked to hypermethylation of the promoter.
However, these studies did not examine the expression of the RB1 gene; therefore, the
association between the unmethylated promoter and cancer progression found in the study
by Agundez et al. [150] could be due to the decreased expression of the gene associated with
a loss of imprinting (demethylated maternal allele) at intronic CpG island 85.

TP73 is a TP53-related gene that encodes a p73 protein that shares considerable homology with
the tumor suppressor gene TP53, which was previously associated with the development of
neuroblastoma and other tumors [151]. This gene is located at 1p36.3 and was shown to be a
monoallelically expressed gene (reviewed in [152]) with maternal expression. Information
about the imprinting of TP73 gene in cancers is still limited and contradictory [153]. Kaghad
et al. [151] demonstrated that p73 is a candidate for the putative, imprinted neuroblastoma
suppressor gene; however, studies have shown a relationship between the loss of imprinting
(biallelic expression and switching alleles) and some types of cancer, such as ovarian cancer
[154], breast cancer [155] and gastric adenocarcinoma [156].

In bladder cancer, the loss of imprinting and an elevated expression of the TP73 gene was
suggested at first by Chi et al. [157], who found TP73 biallelic expression in 52.2% of tumor
samples analyzed but not in the normal tissue samples, with higher expression of the transcript
in biallelic expressers (66.7%), whereas only 2 (18.2%) of 11 monoallelic expressers showed
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high expression levels of this transcript. The authors also demonstrated that there is a positive
correlation between high expression of TP73 and tumor stage or grade. Based on these findings,
it was suggested that the TP73 gene is not a tumor suppressor in bladder carcinogenesis and
that the loss of imprinting (activation of a silent allele) could contribute to the progression of
bladder tumors. The overexpression of the TP73 was also observed in 22 of 23 bladder cancer
samples in a second study. However, when the allele-specific expression was evaluated, the
biallelic expression of the gene was observed in all cancers and matched normal tissues [158].

5. Perspectives

It is well known that disruption of epigenetic processes can lead to altered gene expression
associated with malignant cellular transformation. Still, it has been demonstrated that LOI
occurs in a large variety of human cancers, however it remains to be determined if there is a
commonality to the cell type which initially undergoes this alteration [159]. Moreover there is
a need for greater knowledge of imprinted genes, since disrupted expression of them has been
shown to have either oncogenic or tumour suppressing activity [11]. Future studies will
provide new insights, particularly into interactions between products of imprinted genes in
physiological pathways [9]. Among other epigenetic changes, the loss of imprinting in cancer
may prove useful for advancing our knowledge and for development of new prognostic and
therapeutic biomarkers.
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the RB1 gene in tumoral development and progression. Aggressive tumoral behavior, such as
in invasive high-stage muscle tumors, was associated with the down-regulation of RB1 mRNA
and protein in addition to altered mRNA expression of TP16 and CDK4 [147].

In some regions in the world, bladder cancer is associated with the urinary form of schistoso‐
miasis. Abdulamir et al. [148] profiled the molecular markers in schistosomal and non-
schistosomal bladder tumors and found lower expression levels of Rb protein in patient tumors
not caused by parasitic infection and an association between down-regulation of the protein
and late stages of the disease (III and IV) in the schistosomal and invasive non-schistosomal
bladder tumors. These findings support the hypothesis that the Rb protein can be used as a
prognostic marker and distinguish a tumor caused by infection from a tumor not caused by
infection.

According to the model proposed by Buiting et al. [144], the loss of imprinting (demethylation
of the maternal allele) could explain the lack/decrease in RB1 gene transcripts mentioned
above, highlighting the need to understand the mechanisms behind the down-regulation of
the RB1 gene. Furthermore, methylation of the RB1 gene promoter was evaluated in 45 patients
with bladder cancer and in bladder cancer cell lines. However, the authors found unmethy‐
lated promoter-associated CpG island in all bladder cancer cell lines and primary tumors
examined [149]. More recently, a study involving a large number of genes investigated the
methylation status of 25 proven or suspected tumor suppressor genes in pT1G3 transitional
cell carcinomas. The authors found that tumors displaying unmethylated RB1 and TP73,
among others genes, had higher progression rates in patients treated with non-maintenance
bacillus Calmette-Guérion (BCG) [150].

These studies found an unexpected result compared with the studies of RB1 gene expression,
as the decreased expression of this gene could be linked to hypermethylation of the promoter.
However, these studies did not examine the expression of the RB1 gene; therefore, the
association between the unmethylated promoter and cancer progression found in the study
by Agundez et al. [150] could be due to the decreased expression of the gene associated with
a loss of imprinting (demethylated maternal allele) at intronic CpG island 85.

TP73 is a TP53-related gene that encodes a p73 protein that shares considerable homology with
the tumor suppressor gene TP53, which was previously associated with the development of
neuroblastoma and other tumors [151]. This gene is located at 1p36.3 and was shown to be a
monoallelically expressed gene (reviewed in [152]) with maternal expression. Information
about the imprinting of TP73 gene in cancers is still limited and contradictory [153]. Kaghad
et al. [151] demonstrated that p73 is a candidate for the putative, imprinted neuroblastoma
suppressor gene; however, studies have shown a relationship between the loss of imprinting
(biallelic expression and switching alleles) and some types of cancer, such as ovarian cancer
[154], breast cancer [155] and gastric adenocarcinoma [156].

In bladder cancer, the loss of imprinting and an elevated expression of the TP73 gene was
suggested at first by Chi et al. [157], who found TP73 biallelic expression in 52.2% of tumor
samples analyzed but not in the normal tissue samples, with higher expression of the transcript
in biallelic expressers (66.7%), whereas only 2 (18.2%) of 11 monoallelic expressers showed
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high expression levels of this transcript. The authors also demonstrated that there is a positive
correlation between high expression of TP73 and tumor stage or grade. Based on these findings,
it was suggested that the TP73 gene is not a tumor suppressor in bladder carcinogenesis and
that the loss of imprinting (activation of a silent allele) could contribute to the progression of
bladder tumors. The overexpression of the TP73 was also observed in 22 of 23 bladder cancer
samples in a second study. However, when the allele-specific expression was evaluated, the
biallelic expression of the gene was observed in all cancers and matched normal tissues [158].

5. Perspectives

It is well known that disruption of epigenetic processes can lead to altered gene expression
associated with malignant cellular transformation. Still, it has been demonstrated that LOI
occurs in a large variety of human cancers, however it remains to be determined if there is a
commonality to the cell type which initially undergoes this alteration [159]. Moreover there is
a need for greater knowledge of imprinted genes, since disrupted expression of them has been
shown to have either oncogenic or tumour suppressing activity [11]. Future studies will
provide new insights, particularly into interactions between products of imprinted genes in
physiological pathways [9]. Among other epigenetic changes, the loss of imprinting in cancer
may prove useful for advancing our knowledge and for development of new prognostic and
therapeutic biomarkers.
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1. Introduction

Bladder  carcinoma is  the  sixth  most  common cancer  worldwide with increasing health‐
care  burden  and  treatment  costs  [1-3].  The  majority  (70%)  of  bladder  cancers  are  su‐
perficial  tumours  which  require  close  observation  with  repeat  cystocopy,  timely
resection  and  long  term follow-up.  Of  these  superficial  bladder  cancers,  10% are  carci‐
noma in situ [4].

Originally described by Melicow in 1952 [5], carcinoma in situ(CIS) of the bladder is defined
as a flat (e.g. non-papillary) high-grade non-invasive urothelial carcinoma (transitional cell
carcinoma) [6]. An important distinction is that CIS of the urinary bladder, unlike testicular
and prostatic CIS, ‘in situ’ disease is not a precursor to malignancy but is a malignant entity
in its own right [6, 7] which has over 50% five-year progression rate in untreated disease
and higher recurrence rates [8, 9].

CIS is characterised by a flat ‘red velvet’ lesion which is usually multifocal and predomi‐
nantly found in the trigone region, peri ureteral areas and the bladder neck with frequent
involvement of the posterior and lateral walls [10]. Extra-vesical CIS is frequently found in
the ureters and prostatic urethra.

The  microscopic  features  of  CIS  (Figure  1)  are  nuclear  anaplasia  (identical  to  that  of
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Figure 1. This figure demonstrates the histological features of CIS.

2. Classification of CIS

CIS was previously categorised under the broad term ‘moderate/severe dysplasia or marked
atypia’ [11] where the grade was determined by the degree/severity of dysplasia. However,
the grading of bladder cancers has been subject to much controversy and a more compre‐
hensive classification system was published by the World Health Organisation and the In‐
ternational Society of Urological Pathology (WHO/ISUP) in 1998 [13]. The current WHO/
ISUP classification states that ‘by definition, all CIS are high-grade lesions. CIS should not be sub
classified by grade, despite the spectrum of pleomorphism seen within this entity’ [11].

The TNM bladder cancer staging system also acknowledges CIS as a separate entity (Tis);
however, it is classified along with the low grade Ta and T1 tumours in bladder tumours.

Different classifications have been suggested in order to stratify risk and prognosis of CIS.
One of the methods used to determine the prognosis of CIS was by the presence of symp‐
toms, number of sites of involved (multifocal vs. unifocal) and concurrent CIS with papillary
tumours. However these features have not been completely validated [7].

A currently used classification of CIS [7, 10, 14] is:
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• Primary (isolated lesion in the bladder urothelium with no previous or concurrent papil‐
lary tumours).

• Secondary (CIS detected during the follow-up of patients with a previous papillary tu‐
mour).

• Concurrent (CIS in the presence of papillary tumours).

Primary CIS has a worse outcome with higher rates of progression to muscle invasive dis‐
ease resulting in a higher rates of cystectomy; but is shown to respond better to BCG thera‐
py compared to secondary CIS [15]. A further study confirmed the higher rates of
progression to muscle invasive disease in primary CIS, while concurrent CIS was shown to
have the worst survival rates [16]. This highlights the importance of differentiating between
the types of CIS in determining the prognosis and also identifying primary CIS early.

3. Incidence

Although increases in the incidences of bladder cancer in the USA, Japan and European
countries have been observed in recent decades [1, 2], the incidence of primary CIS remains
largely unknown. This is mainly due to bladder CIS being classified as a ‘premalignant con‐
dition’ with other ‘in situ’ diseases and therefore is a non-reportable condition in many
countries. An excellent example is that CIS and pTa bladder carcinomas are registered
alongside malignant disease in North America but not the UK [17]. However, more cancer
registries are recommended to include CIS as a reportable malignancy, as these ‘unreported’
increasing incidences can sometimes go unnoticed [18].

The literature suggests that between 5-10% of bladder carcinomas are CIS but this could be
as high as 19 % [14]. Our analysis of the Surveillance Epidemiology and End Result (SEER)
database [19] revealed an incidence of 14 per 100,000 persons where CIS was the primary
coded tumour from 1973 -2009. The incidence of CIS in males and females in the US were
24.9 and 6.2 per 100,000, respectively. In comparison the incidence of malignant bladder can‐
cer was 27 per 100,000 in males and 6.8 per 100,000 in females, for the same duration. In ad‐
dition, there was a 28% increase in the overall incidence of CIS from 1975, with 27% and 20%
seen in males and females respectively. On a Joinpoint regression analysis [20], there was a
significant 0.3% annual percentage increase in males since 1990, but not in females. It should
be noted that these CIS rates could also include secondary and concurrent CIS.

In Australia the incidence of primary CIS was 20.9 per 100,000 and 6.5 per 100,000 in males
and females >50 years respectively, with an 11% and 14% annual increase seen from 2001
onwards [18].

There could be significant variation in the reported incidence of CIS in cancer registry data
due to a variety of factors such as inter- observer variability in categorisation of the tumour,
coding differences and increasing awareness of CIS. Similarly, re-resection of the tumours
can upstage an initial diagnosis of a tumour. In addition, being an unreported malignancy,
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there is significant emphasis being placed on the hospital coding to determine the incidence
of CIS and it can also be difficult to determine if the diagnoses coded as CIS are histological‐
ly proven post biopsy or if they are based on cytology alone. Furthermore, increasing aware‐
ness with higher screening or investigation rates could play an important role in increased
number of diagnoses of CIS.

These factors provide some limitations for determining the actual incidence of CIS. Howev‐
er, importance of recording the trends of CIS is essential and may help observe for any in‐
creases in incidence and initiate awareness and early intervention.

4. Risk factors

4.1. Gender and age

Male gender is a well documented risk factor in bladder cancer with males having a 4.1
fold increase compared to females [1]. As with bladder carcinoma, male gender tends to
have  a  higher  preponderance  for  CIS  than  females  with  3.1-7  times  risk  of  developing
CIS [18, 21, 22].

Increasing age is also a risk factor for bladder cancer. The highest incidences of bladder can‐
cer are seen in the >50 year olds [23] while the mean incidence for patients with CIS also oc‐
curs between the ages of 65-73 years [21, 22].

4.2. Smoking

Smoking is one of the major risk factors for bladder cancer. Smoking increases the risk of
bladder cancer by 2- 6 fold which is augmented by increasing duration and frequency of
smoking, while cessation of smoking decreases this risk [2]. The effects of long term smok‐
ing are found to carry similar risks for developing bladder cancer in both sexes [24].

Although not many studies have focussed exclusively on the relationship of CIS and smok‐
ing, there is evidence to establish smoking as a risk factor for CIS. In a study which focussed
only on CIS, the 72% of patients who presented with CIS were either former or current
smokers [15]. In a another study of all superficial bladder tumours, which included CIS,
showed that those who continued to smoke after the diagnosis of the tumour, had worse
bladder cancer related outcomes with a shorter time to disease recurrence, while ex-smokers
tended to present with a tumour at a later age [25]. However, the link between smoking and
failure of BCG therapy bladder tumours is not very clear [26].

Despite the strong links between smoking and bladder cancer, smoking can only partially
account for the incidence of bladder cancer suggesting that other risk factors also contribute
to the risks [27].
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4.3. Schitosomiasis infection

Schistosoma haematobium or Bilharzia is  a  known pathogen for causing bladder cancer
in the prevalent areas and accounts for about 3% of the world bladder cancer [2].  Infec‐
tion with schistosomiasis increases the risk of bladder cancer by 5 fold and accounts for
majority of the incidence squamous cell bladder cancers [2]. However, CIS has been also
seen  in  patients  with  Schistosomial  infection  where  the  pathogenesis  is  thought  to  be
linked to chromosomal loss [28].

4.4. Occupational carcinogens

There is a well established link between occupational carcinogen and bladder cancer with an
estimated 20- 27% of bladder cancers attributed to occupational exposures. The main carci‐
nogens associated with industrial occupational risk are aromatic amines (beta-naphthyla‐
mine, 4-aminobiphenyl and benzidine) which are used widely as intermediary compounds
in the textile and rubber industries. The risk of occupational bladder cancer is dependent not
only on the intensity and characteristics of the workplace exposures, but also on individual
susceptibility to these cancers [29]. Similar to bladder carcinoma, CISs also develops in pa‐
tients exposed to these carcinogens [30] where mutations of the p53 gene is thought to ini‐
tiate the disease process [31]

4.5. Genes

Polymorphisms in the genes, NAT2 and GSTM1 are the main genetic modulations implicat‐
ed in the bladder cancer. NAT 2 encodes the N-acetyltransferase 2 enzyme responsible for
detoxification of aromatic amines by N-acetylation or activation by O-acetylation, while
GSTM1 encodes the glutathione S-transferase M1 enzyme responsible for detoxification of
carcinogens such as polycyclic aromatic hydrocarbons and reactive oxygen species. [32] In
CIS however, the genetic mutations are different and characterized by loss-of-function of the
tumour suppressor genes, such as p53, RB, and PTEN [33]. These genetic changes are dis‐
cussed in detail in another chapter.

4.6. Diet

Dietary factors are also shown to be linked to bladder cancer. Fruit and vegetative intake
correspond inversely with the risk of bladder cancer while there is evidence to show that
Vitamin B and yellow orange vegetables (in individuals with the presence of GSTM1) may
also reduce the risk of bladder cancer [32]. However, to our knowledge, there are no specific
studies looking at the dietary risks and CIS.

5. Presentation

Presentation of primary CIS of the bladder can be very variable (Table 1). Majority of the
patients with primary CIS present with only non-specific irritative bladder symptoms such
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as dysuria, frequency, urgency or nocturia [15] [21, 22, 34]. Furthermore up to 22- 26% of
patients are asymptomatic and less commonly may present with suprapubic fullness or
pain, back or flank discomfort, lower abdominal pain, or pelvic-perineal pain [15, 21, 22]. In
contrast with bladder cancer, fewer than 45% of the patients have macroscopic or micro‐
scopic haematuria in primary disease [22], highlighting the difficulty in diagnosing this con‐
dition. In contrast, the patients with secondary or concomitant CIS tend to present with
gross haematuria, possibly due to the presence of a papillary tumour [15].

Symptom
% with symptom

Primary CIS Secondary/concomitant CIS

Irritative 28.5(15) 9.8(15)

Asymptomatic 22(15)- 26(22) 21(15)

Macroscopic haematuria 31.2(15) 50.6(15)

Table 1. The percentage of patients presenting with various symptoms of primary and secondary/concomitant CIS.

6. Diagnostic workup

6.1. Biopsy of the red velvet lesion

The diagnosis of CIS can be challenging task due to the flat nature of the lesion, where
the mucosa containing the lesion could be unremarkable or simply an erosion [21]. There‐
fore,  biopsy  of  the  lesion  is  the  current  advocated  method  for  diagnosis  of  CIS  of  the
bladder. However, even the characteristic ‘red velvety patch’ of CIS could be non-specific
[21] and the specificity could be as low as 8% [35]. Thus it is recommended that the biop‐
sies of even the normal mucosa are taken in high risk patient or in the presence of posi‐
tive cytology [14, 21].

In addition, a second look transurethral resection (TUR) and bladder mapping biopsies are
frequently warranted to reduce under staging, exclude residual disease and concurrent CIS
in patients with other bladder tumours [15].

6.2. White light cystoscopy vs. fluorescent light cystoscopy

One of the difficulties during cystoscopy is the visualisation of this flat lesion in the bladder,
which could be inconspicuous under normal white light cystoscopy and can be missed re‐
sulting in significantly under-reporting. The recent use of fluorescent light cystoscopy using
5-aminolevulinic acid or hexaminolevulinate has been shown to enhance the detection of
CIS by more than 30%- 39% [36, 37] and also to reduce tumour recurrence at 1 and 2 years
[38]. When using florescent light cystoscopy, both 5-aminolevulinic acid and hexaminolevu‐
linate are shown to be equally effective at detecting CIS [37]. In addition, the use of HAL
when resecting tumours is shown to reduce tumour recurrence in CIS and also in multifocal
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tumours [39]. Despite the benefits of fluorescent light cystoscopy, one of its major draw‐
backs is the high false positive rates. The European Urology Association guidelines recom‐
mendations of the use of fluorescent light cystoscopy due to its high sensitivity [14], but it is
not universally used in practice due to availability and cost implications.

6.3. Biomarkers

Biomarkers have been widely used in aiding the detection of CIS. Some of the routinely
used biomarkers are urine cytology, UroVysion (fluorescent in-situ hybridization - FISH),
immunocytology and Nuclear Matrix Protein (NMP22). Of these, urine cytology is the most
frequently used in detecting CIS due to its high sensitivity. However the specificity of cytol‐
ogy, FISH and immunocytology are all below 30% limiting the diagnostic accuracy of CIS
[40]. Even, NMP22 which has the highest specificity for CIS, is only 43% [40] (Table 2).

Modality Percentage CIS detected

Biopsy of ‘red mucosa’ 8-78%(44), (35)

Florescent light cystocopy (using 5-aminolevulinic acid or

hexaminolevulinic acid)
92.4%(45).

White light cystoscopy 60.5%(45)

Urine Cytology 90% - 92.3(6, 40)

UroVysion (fluorescent in-situ hybridization - FISH) 83.6(40)

Immune-cytology µCyt 81.3(40)

NMP22 79.1(40)

Combination of FISH+ CYT 85.3(40)

Table 2. The percentage of CIS detected by each modality of testing.

Therefore to optimise the accuracy of diagnosis, it is recommended that these biomarkers
should be used in conjunction with each other rather than on their own [21]. The use of cy‐
tology and NMP22 together increase the specificity 55% and using all 4 modalities increase
the sensitivity to 65% [40]. However, due to lower sensitivities of some of these tests, the
overall sensitivity decreases as more tests are combined [40]. Therefore an optimum balance
must be used to obtain the best sensitivity and specificity values in diagnosis of CIS.

Another very useful role of biomarkers is to predict response to treatment. A number of
biomarkers, urine markers and genetic markers have been evaluated to predict which tu‐
mours will fail BCG therapy [41]. Interleukin -2 is shown to be promising in in identify‐
ing the tumours which will not respond to BCG therapy. However, currently none of the
other markers have large studies or long term validation to predict treatment failure pri‐
or to starting BCG [41].
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CIS by more than 30%- 39% [36, 37] and also to reduce tumour recurrence at 1 and 2 years
[38]. When using florescent light cystoscopy, both 5-aminolevulinic acid and hexaminolevu‐
linate are shown to be equally effective at detecting CIS [37]. In addition, the use of HAL
when resecting tumours is shown to reduce tumour recurrence in CIS and also in multifocal
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tumours [39]. Despite the benefits of fluorescent light cystoscopy, one of its major draw‐
backs is the high false positive rates. The European Urology Association guidelines recom‐
mendations of the use of fluorescent light cystoscopy due to its high sensitivity [14], but it is
not universally used in practice due to availability and cost implications.

6.3. Biomarkers

Biomarkers have been widely used in aiding the detection of CIS. Some of the routinely
used biomarkers are urine cytology, UroVysion (fluorescent in-situ hybridization - FISH),
immunocytology and Nuclear Matrix Protein (NMP22). Of these, urine cytology is the most
frequently used in detecting CIS due to its high sensitivity. However the specificity of cytol‐
ogy, FISH and immunocytology are all below 30% limiting the diagnostic accuracy of CIS
[40]. Even, NMP22 which has the highest specificity for CIS, is only 43% [40] (Table 2).

Modality Percentage CIS detected

Biopsy of ‘red mucosa’ 8-78%(44), (35)

Florescent light cystocopy (using 5-aminolevulinic acid or

hexaminolevulinic acid)
92.4%(45).

White light cystoscopy 60.5%(45)

Urine Cytology 90% - 92.3(6, 40)

UroVysion (fluorescent in-situ hybridization - FISH) 83.6(40)

Immune-cytology µCyt 81.3(40)

NMP22 79.1(40)

Combination of FISH+ CYT 85.3(40)

Table 2. The percentage of CIS detected by each modality of testing.

Therefore to optimise the accuracy of diagnosis, it is recommended that these biomarkers
should be used in conjunction with each other rather than on their own [21]. The use of cy‐
tology and NMP22 together increase the specificity 55% and using all 4 modalities increase
the sensitivity to 65% [40]. However, due to lower sensitivities of some of these tests, the
overall sensitivity decreases as more tests are combined [40]. Therefore an optimum balance
must be used to obtain the best sensitivity and specificity values in diagnosis of CIS.

Another very useful role of biomarkers is to predict response to treatment. A number of
biomarkers, urine markers and genetic markers have been evaluated to predict which tu‐
mours will fail BCG therapy [41]. Interleukin -2 is shown to be promising in in identify‐
ing the tumours which will not respond to BCG therapy. However, currently none of the
other markers have large studies or long term validation to predict treatment failure pri‐
or to starting BCG [41].
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6.4. Screening for CIS

The usefulness of biomarkers as screening tools in detection of CIS is suboptimal. A study
which screened a group of 183 smokers using a variety of screening tools, showed the true
positive rates for detection of malignant tumours were only 50% for Dipstick, 6% for Blad‐
derChek, 37% for cytology and 61% for UroVysion (FISH) [42]. The 2 patients with CIS, had
negative results for urine dipstick and cytology but were positive for UroVysion [42]. How‐
ever, another study showed low cost effectiveness of the use of Uro Vysion as a screening
tool, due to its high costs [43]. Thus screening for CIS may not be economically viable.

7. Treatment

Studies have demonstrated that the untreated natural history of CIS has a 50% progression
rate to malignant disease at 5 years and even with optimal treatment, progression and recur‐
rence rates are both high [8, 9].

7.1. Tumour resection

Transurethral resection (TUR) is essential in providing histological tissue and reducing the
tumour load. When the muscularis mucosa is involved, a re-resection is usually necessary.
Despite this, in treatment of CIS, solitary TUR is shown to be inferior compared to TUR
when used in conjunction with BCG, with the latter having increased the 10 year progres‐
sion free survival (71% vs. 50%) [46].

7.2. Intravesical Chemotherapy/Immunotherapy

Intravesical instillation of a chemotherapeutic/immunotherapeutic agent is the mainstay
treatment for CIS. A number of agents such as Bacille Calmette-Guerin (BCG), mitomycin C,
epirubicin, doxorubicin and adriamycin have been trialed. In comparison trails between
these agent, BCG is shown to be superior to other chemotherapeutic agents with higher
complete response rates (68% vs. 49%) and higher disease free rates (51% vs. 27%) [14]. Fur‐
thermore, the use of BCG with maintenance therapy was also superior to mitomycin C [47].

Despite the advantages of BCG therapy, studies have demonstrated that 20% to 40% fail to
respond and progress [41]. In addition, up to 90% of patients experience side effects such as
local cystitis symptoms such dysuria, frequency alteration, and occasional haematuria re‐
sulting a number of patients not completing the treatment schedule [41].

7.3. Radio therapy

Radiotherapy is a is also used as a treatment modality in bladder carcinoma, where radi‐
otherapy is shown to complete local regression of muscle-invasive bladder cancer in up‐
to 73% of patients [48].  However radiotherapy has been shown to be ineffective against
CIS of the bladder. In CIS patients treated with EBRT have demonstrated persistent CIS
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after treatment and was shown to be inferior to radical cystectomy [49, 50]. Furthermore
in patients with concomitant CIS treated with radiotherapy, the presence of CIS carried a
worse prognosis [51].

7.4. Cystectomy

Cystectomy is an important option in treating CIS of the bladder due to its high cure rates in
high risk patients [52] and is advocated in high risk patients. This is especially useful in pa‐
tients who do not respond to BCG, where early cystectomy is shown to improve long term
survival [53]. However, studies have shown that the presence of CIS to be an independent
risk factor for upper tract recurrence in patients who undergo cystectomy [54]. In patients
with prostatic urethral involvement, immediate or delayed urethrectomy is advocated [55].

7.5. Photodynamic therapy

Photodynamic therapy works by light of a specific wavelength that is absorbed by a chemi‐
cal photosynthesizer, which then transfers this energy to breakdown oxygen molecules into
highly reactive intermediates [56]. An advantage of photodynamic therapy is that the whole
bladder mucosa can be treated without having to localise multifocal superficial bladder tu‐
mours and occult CIS. A number of photo synthesizers have been used such as Hematopor‐
phyrin derivatives and 5-aminolevulinic Acid (ALA). Photodynamic therapy has been
shown to be very promising results in treating CIS, and may provide an alternative treat‐
ment for resistance disease [56].

7.6. Treatment for Non-intravesical CIS of the bladder

Extra vesical CIS of the bladder is seen most frequently in the ureters and in the prostatic
urethra. In upper tract CIS, BCG therapy is shown to be very effective [57] and the long term
data is seen to be as effective as nephroureteroctomy [58]. However, patients who undergo
radical nephrectomy and have upper tract concomitant CIS have higher rates of recurrence
and poorer cancer specific survival [59].

BCG therapy is also effective in patients with CIS of the prostatic urethra and transurethral
resection is thought to have no added advantage [60] However, presence of CIS of the pro‐
static urethra carries a poorer prognosis and in primary high grade bladder cancers treated
with BCG, it is recommended that the prostatic urethra is biopsied as it is a prognostic factor
for recurrence, progression of disease and bladder cancer specific mortality [61]. Presence of
CIS of the prostatic urethra is also an indication for early cystectomy [62].

7.6.1. Current recommendations for CIS

7.6.1.1. Treatment of primary CIS

The American Urology Association (AUA) guidelines [63] recommend re-resection in high
grade disease in the absence of muscularis propria in the specimen as standard treatment
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followed by an induction course of BCG and maintenance BCG therapy. They suggest that
cystectomy also maybe an option in select CIS patients due to high cure rates.

The European Association of Urology (EAU) guidelines [64] state that the BCG installation
should be administered for at least 1 year and if the prostatic urethra is involved, TUR of the
prostate followed by BCG therapy is recommended for the management of CIS. Unlike the
AUA guidelines, cystectectomy is only reserved for BCG failure due to concerns of over‐
treatment. They suggest 3 monthly follow up cytology with cystoscopy for 2 years and ev‐
ery 6 months thereafter until 5 years followed by annually thereafter. Annual upper tract
imaging is also recommended.

7.6.1.2. Treatment of recurrent disease

The AUA guidelines [63] recommend repeat resection in order to aid accurate staging as
standard treatment and also recommend cystectomy as an option due to high risk of pro‐
gression to muscle invasive disease in these patients. They suggest that further intravesical
therapy maybe an option.

The EAU [64] guidelines suggest that although further BCG instillation can be beneficial in
non-muscle invasive recurrence post chemotherapy, it increase the risk of progression in CIS
and they recommend the use of early cystectomy following BCG failure in suitable patients.
They further acknowledge that although device assisted chemotherapy instillation and use
of concomitant interferon alpha maybe beneficial in select patients, they feel that they are
still experimental.

In conclusion, this chapter discusses the incidence, diagnostic difficulty and management of
CIS and also the current recommended guidelines.
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1. Introduction

Cancer is fundamentally a disease with failure in regulation in tissue growth and the risk of
developing cancer increases with age. The armamentarium in treating cancer is mainly
threefold: surgical resection of the tumor, radiation therapy and cytotoxic drugs. For blad‐
der cancer, results from contemporary radical cystectomy series with pelvic lymph node dis‐
section for T2-4 NX M0 transitional cell carcinoma (TCC) provides accurate pathologic
staging of the primary tumor and lymph nodes, and due to increasing expertise with the dif‐
ferent types of urinary diversions durable preservation of quality of life. However, the 5-
year survival rate for all patients with pT2 tumors is approximately 50 – 80%, and for those
with negative lymph nodes 64 – 86% (Stein, Lieskovsky et al. 2001) (Shariat, Karakiewicz et
al. 2006) (Hautmann, de Petriconi et al.). In contrast, the 5-year survival rates for locally ad‐
vanced cancers, pT3 and pT4, in contemporary cystectomy series range from 22 – 58%. The
presence of pathologically proven lymph node metastases at radical cystectomy is associat‐
ed with a poor outcome with a 5-year survival of 30%.

After more than 30 years of clinically research in bladder cancer, the true role of neoad‐
juvant and adjuvant chemotherapy for locally advanced bladder cancer remains unclear.
Neoadjuvant  chemotherapy  has  been  shown  to  help  for  debulking  and  facilitation  for
surgical resection at radical cystectomy. The overall survival benefit is unfortunately rela‐
tively low (< 9%) and treatment protocols are often not suitable in older patients with co‐
morbidities  and  decreased  renal  function  (Grossman,  Natale  et  al.  2003)  (Sonpavde,
Amiel et al.  2008) (2005).  Identification of responders versus non-responders to neoadju‐
vant chemotherapy seems to be of value for selection of patients to be treated with this
modality,  still  at  present -  robust and readily available markers predicting treatment re‐
sponse  are  lacking  (Rosenblatt,  Sherif  et  al.).  Adjuvant  chemotherapy  trials  have  been
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less clear, with at least a trend of improved disease-free survival in small series of statis‐
tically  underpowered trials  (Walz,  Shariat  et  al.  2008).  Thus,  other  treatment  modalities
are highly warranted for these patients.

Immunotherapy offers an appealing complement to traditional chemotherapy, with possi‐
ble long-term protection against tumor recurrences through immunological memory. Vac‐
cination trials have shown promising results in colorectal cancer patients (Hanna, Hoover
et  al.  2001)  (Mocellin,  Rossi  et  al.  2004)  (Karlsson,  Marits  et  al.).  Similar  studies  have
been performed in patients with malignant melanoma (Dudley,  Wunderlich et  al.  2005).
Adoptive  immunotherapy  with  the  collection  and  expansion  of  autologous  tumor-reac‐
tive  lymphocytes,  followed by re-transfusion to  the  patient,  has  been reported to  influ‐
ence  tumor  progression.  Another  approach,  using  a  combination  between  adoptive
immunotherapy and a retroviral gene therapy using specific malignant melanoma T cell
receptors, showed sustained levels of circulating, engineered cells at one year after infu‐
sion in two patients who both demonstrated objective regression of metastatic melanoma
lesions (Morgan, Dudley et al. 2006).

Due to  promising  results  using  adoptive  immunotherapy,  our  interests  turned  to  blad‐
der  cancer,  as  few  new  cytotoxic  drugs  are  available.  This  review  provides  an  over‐
view  on  the  concept  of  sentinel  node  detection,  necessary  for  the  collection  and
expansion  of  autologous  tumor-reactive  lymphocytes  in  bladder  cancer  patients,  as  a
novel  adoptive immunotherapy.

2. Immunotherapy as cancer therapy

Over the past decade, interest has turned to other treatment concepts as novel cancer strat‐
egies than cytotoxic drugs. A variety of immunotherapeutic approaches have been tested in
order to stimulate the cellular and humoral arms of the immune system to induce tumor re‐
gression. Currently, the following treatment strategies seem most promising, including the
application of cytokines and adjuvant agents which modulate the cytokine response, cancer
vaccines designed to elicit cellular immune responses against tumor associated antigens
(TAAs), and monoclonal antibody drugs (Kusmartsev and Vieweg 2009).

Despite better understanding of the immune system only a few immunotherapeutic ap‐
proaches have received approval by the Federal Drug Agency (FDA) for treatment of uro‐
logical malignancies, such as the systemic administration of interleukin (IL-2) against
metastatic renal cell cancer (RCC) and the intravesical instillation of bacillus Calmette-Gué‐
rin (BCG) or interferon α for non-muscle-invasive bladder cancer. The cancer vaccine that
has received the most publicity and attention is undoubtedly Sipuleucel-T or Provenge®
(Lubaroff 2012). The vaccine was approved by the FDA in April 2010 for men with asympto‐
matic or minimal symptomatic castration resistant prostate cancer (CRPC).

Cancer vaccines are designed to stimulate expansion of the cellular arm of the immune sys‐
tem, mainly T cells and natural killer cells. Cytotoxic and helper T lymphocytes are consid‐
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ered the main immune effector cells, which in turn kill tumor cells via receptor mediated
interactions. Both cell types require activation by antigen presenting cells, such as dendritic
cells (DCs), to recognize and kill tumor cells in context with major histocompatibility com‐
plex (MHC) self-antigens. Natural killer cells, by contrast, kill rather non-specifically and
represent the first line of immunological defense against cancer and foreign pathogens.
Many vaccine approaches have shown high efficacy at triggering T-cell responses against
TAAs in tumor bearing animals—these approaches include vaccination with gene modified
tumor cells, antigen-loaded DCs, recombinant viral expression cassettes, and heat shock
proteins (Kusmartsev and Vieweg 2009).

Despite the fact that many immunologic approaches have moved from basic research in‐
to clinical trials, only a few showed clinical response and tumor regression. As the rates
of tumor regression has seldom exceeded 5 - 10%, with only a short duration of clinical
response,  the  efficacy  of  these  treatments  has  been  seriously  questioned  (Vieweg  and
Dannull 2005).  A possible explanation for the limited response of cancer vaccines lies in
the fact that new drugs must be initially studied in patients with advanced or metastatic
disease,  with  poor  survival  outcome.  Additionally,  the  immunogenicity  of  the  TAAs
used in reported vaccine formulations is  low, as most TAAs represent self-antigens that
are  overexpressed or  reactivated in cancer  cells  relative to  the non-cancerous cells  from
which they originated. Finally, tumors can evade the immune system (including the im‐
mune responses triggered by vaccination) through the induction of immune tolerance or
immune suppression (Kusmartsev and Vieweg 2009) (Gilboa 2004) (Rabinovich, Gabrilo‐
vich et al. 2007).

In times of economic uncertainties, cancer vaccine treatments are not without controversy.
The controversial issues that have been raised in using Sipuleucel-T include the high cost,
the modest improvement in overall survival (OS) and virtually an absence of change in time
to progression (Chambers and Neumann 2011) (Goozner 2011). Priced at $31,000 per treat‐
ment, with a usual course of three treatments, Sipuleucel-T is one of the most expensive can‐
cer therapies ever to hit the marketplace. Whether, health care providers can afford these
additional burden remains to be seen in the near future.

3. Immunotherapy in non-advanced urothelial carcinoma

Bladder  cancer  is  the  fifth  most  commonly  diagnosed  cancer  in  the  US  in  2012  (after
prostate, breast, lung, and colon cancers), with an estimated 73’510 new cases and 14’880
deaths  (2012).  Risk factors  for  developing bladder  cancer  include cigarette  smoking,  ex‐
posure  to  arsenic,  occupation  in  rubber  or  fossil  oil  industry,  and  schistosomiasis,  and
chronic inflammatory disease (Steineck, Plato et al.  1990).  Approximately 70% to 80% of
patients with newly diagnosed bladder cancer will present as noninvasive papillary tran‐
sitional-cell  carcinomas  (TCCs),  70%  of  which  will  recur,  and  10  –  20%  of  which  will
progress  and  invade  the  bladder  wall  (Babjuk,  Oosterlinck  et  al.  2012).  Those  who  do
present with superficial,  noninvasive bladder cancer can often be cured,  and those with
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deeply invasive disease can sometimes be cured by surgery, radiation therapy, or a com‐
bination of modalities that include chemotherapy.

According to the National Cancer Institute’s Surveillance Epidemiology and End Results
(SEER) registry, there has been a gradually increasing incidence of bladder cancer over the
past three decades (Kamel, Moore et al.). The incidence of muscle invasive tumors has re‐
mained stable over this time; however, the incidence of superficial, noninvasive bladder
cancer is rising.

Transurethral resection of bladder tumor (TURBT) is the standard initial therapeutic ap‐
proach for diagnosis and treatment of nonmuscle invasive bladder cancer (NMIBC) (Babjuk,
Oosterlinck et al. 2012) (Williams, Hoenig et al. 2010) (Brausi, Witjes et al.). However, al‐
though TURBT is an effective therapy, up to 45% of patients will experience tumor recur‐
rence within 1 year after TURBT alone (Hall, Chang et al. 2007). Additionally, a 3 to 15% risk
of tumor progression to muscle-invasive and/or metastatic cancer has been reported. Ac‐
cording to these figures TURBT alone is considered to be an insufficient treatment modality
in most patients. To overcome the limitations of TURBT alone, interest has turned towards
adjuvant intravesical treatment regimens since the early 1970s.

The difficulty in the management of  bladder cancer  comes from the inability  to  predict
which tumors will recur or progress. Current evidence suggest for the existence of mutu‐
ally  exclusive  molecular  pathways  to  tumorigenesis,  responsible  for  the  formation  of
papillary and invasive carcinomas, respectively (Wolff, Liang et al. 2005). The most com‐
mon genetic alterations in low grade papillary TCC are loss of heterozygosity of part or
all  of  chromosome 9 and activating mutations of  the fibroblast  growth factor receptor 3
(FGFR3)  (Cappellen,  De  Oliveira  et  al.  1999;  Cheng,  Huang et  al.  2002;  Bakkar,  Waller‐
and et al.  2003).  In contrast to the pathway responsible for the development of invasive
TCC which seems to start with dysplasia,  progress to carcinoma in situ,  followed by in‐
vasion of the lamina propria. The most frequent genetic alteration in dysplasia and carci‐
noma in  situ  is  mutation of  TP53,  followed by loss  of  heterozygosity  of  chromosome 9
(Burkhard, Markwalder et al.  1997; Orlow, LaRue et al.  1999; Sarkar, Julicher et al. 2000;
Hartmann,  Schlake et  al.  2002).  An important  marker  for  progression in  TCC is  loss  of
chromosome  8p,  which  occurs  in  approximately  60%  of  bladder  tumors  (Stoehr,  Wiss‐
mann et  al.  2004).  Global  trends of  increased genomic instability  and aberrant  methyla‐
tion  of  cytosine  residues  in  DNA  correlate  with  increased  tumor  invasion  and
progression (Dulaimi, Uzzo et al. 2004). This may partly explain why the incidence of su‐
perficial, noninvasive bladder cancer is rising (Kamel, Moore et al.).

4. Intravesical immunotherapy

Bacillus Calmette-Guerin (BCG) is the most commonly used first-line immunotherapeutic
agent for prophylaxis and treatment of carcinoma in situ and high-grade bladder cancer.
BCG has fundamentally changed the management of high risk nonmuscle invasive TCC,
particularly carcinoma in situ (CIS) (Babjuk, Oosterlinck et al.). The aim of adjuvant intra‐
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vesical immunotherapy is to avoid post-TURBT implantation of tumor cells, eradicate resid‐
ual cancer cells and delay tumor recurrence by local immunostimulation (Soloway,
Nissenkorn et al. 1983). The effect on cancer progression is unclear.

Other immunotherapeutic drugs include the interferons (IFN), interleukin (IL-2, IL-12), as
well as tumor necrosis factor (TNF), which have their place in BCG-refractory patients (Gla‐
zier, Bahnson et al. 1995; Magno, Melloni et al. 2002; Weiss, O'Donnell et al. 2003).

5. Bacillus Calmette-Guerin (BCG)

BCG is a live-attenuated vaccine, and until today considered to be the most effective in‐
travesical  treatment  for  carcinoma in  situ  and high grade stage Ta or  T1 TCC (Shelley,
Kynaston et al.  2001; Han and Pan 2006).  It  was developed by Albert Calmette and Ca‐
mille Guerin in 1921 at the Pasteur Institute in France by attenuating the bovine tubercu‐
lous  bacillus,  Mycobacterium  bovis  (Calmette  1931;  Herr  and  Morales  2008).  The
background of the antitumor properties of BCG is based on observational autopsy stud‐
ies in tuberculosis patients which had a lower frequency of various tumors (Pearl 1929).
Old et  al.  were  the  first  to  demonstrate  a  potential  benefit  using BCG in  infected mice
who showed increased resistance to challenge with transplantable tumors (Old, Clarke et
al.  1959).  Ten  years  later  Mathe  et  al.  reported  encouraging  results  with  BCG as  adju‐
vant therapy for acute lymphoblastic leukemia (Mathe, Pouillart et al. 1969). In 1976, Mo‐
rales et al. were the first to report the successful use of BCG in the treatment of bladder
cancer (Morales, Eidinger et al. 1976).

The exact  mechanisms of  action and its  antitumor properties  of  BCG in  bladder  cancer
remains  to  be  elucidated.  However,  immediately  after  intravesical  instillation,  BCG  in‐
fects and is internalized into urothelial and bladder cancer cells via a fibronectin-depend‐
ent process mediated by integrins (Becich, Carroll et al. 1991; Kuroda, Brown et al. 1993).
Fibronectin  attachment  protein  (FAP)  mediates  BCG  attachment  to  bladder  cancer  cells
and  the  urothelial  wall  following  intravesical  instillation.  The  interaction  between  BCG
with  urothelial  cells  results  in  several  immunologically  changes,  including  induction  of
chemokines such as interleukin (IL)-1, IL-6, IL-8, IL-17 [18], GM-CSF, tumor necrosis fac‐
tor (TNF), and the up-regulation of intracellular adhesion molecule (ICAM)-1 (Alexandr‐
off,  Jackson  et  al.  1999;  Simons,  O'Donnell  et  al.  2008).  These  cytokines  are  considered
critical  for  cellular  assault  by causing tumor cells  to  display molecules  that  serve as  at‐
tachment anchors for  immune cells,  including neutrophils  and T lymphocytes,  and acti‐
vation  signals  such  as  ICAM-1,  fatty-acid  synthetase  (FAS),  CD40,  etc  (Alexandroff,
Jackson  et  al.  1999;  Wolff,  Liang  et  al.  2005).  The  importance  of  these  immunologic
changes can be partly assessed by the high level  of  IL-8 production which is  associated
with better clinical responses to BCG (Thalmann, Dewald et al. 1997; Thalmann, Sermier
et al. 2000).

After  weekly  intravesical  instillations  of  BCG,  a  variety  of  immune  cells  such  as  neu‐
trophils,  macrophages,  natural  killer  cells,  T  lymphocytes,  and NKT cells  are  constantly
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recruited.  Urinary samples  from patients  under  BCG instillation therapy contain  almost
seventy-five  percent  of  neutrophils,  five  to  ten  percent  of  macrophages  and  one  to
three  percent  of  NK cells  (De  Boer,  De  Jong  et  al.  1991).  The  neutrophils  secrete  cyto‐
kines  which  in  turn  activate  various  effector  cells.  To  achieve  an  immunologic  reaction
and  a  potential  therapeutic  effect  it  takes  five  to  six  BCG  instillations  (Prescott,  James
et  al.  1992)  (Jackson,  Alexandroff  et  al.  1995).

Potential effector cells responsible for tumor killing include MHC-nonrestricted cells such as
NK cells lymphokine-activated killer (LAK) cells, BCG-activated killer cells, CD-1-restricted
CD8+ T cells, gd T cells, NKT cells, neutrophils, macrophages, and MHC-restricted CD8+
and CD4+ T cells (Kitamura and Tsukamoto 2011). Of these cells, T lymphocytes are consid‐
ered to be the most effective effector cells responsible for eliminating cancer cells (Alexandr‐
off, Nicholson et al.). In a depletion study, both CD8+ and CD4+ T cells were found to be
essential for the successful antitumor effects of BCG (Ratliff, Ritchey et al. 1993).

According to  the  current  literature  at  least  four  meta-analyses  have shown that  TURBT
plus intravesical BCG is superior to TURBT alone for delaying time to first tumor recur‐
rence (Shelley, Kynaston et al.  2001; Bohle and Bock 2004; Shelley, Wilt  et al.  2004; Han
and Pan 2006). The largest meta-analysis by the EORTC reviewed data from 24 random‐
ized  trials  and  reported  that  the  progression  rate  in  the  group  TURBT  plus  BCG  was
9.8% vs. 13.8% in the control groups with a median follow-up of 2.5 years (maximum up
to 15 years) (Pawinski, Sylvester et al. 1996). Despite the fact that BCG may delay tumor
progression,  patients  are  still  at  risk  for  metastatic  or  muscle-invasive  disease.  This  has
been  highlighted  in  the  study  by  Lamm et  al.  on  the  natural  history  of  untreated  CIS
with a progression rate to muscle-invasive disease in 54% (Lamm 1992).

Even with initial complete response after BCG treatment regimens, there is a continued risk
for tumor recurrence or the occurrence of new tumors on the long-term. Thus, according to
the risk assessment of the tumor lifelong surveillance is mandatory.

The administration of intravesical BCG, as well as its optimum dose and treatment schedule
remains under investigation. Until today the original treatment protocol by Morales et al. of
six instillations, once a week for six weeks, is still considered standard of care (Morales, Ei‐
dinger et al. 1976). Cystoscopy with urinary cytology is performed six weeks after comple‐
tion of BCG instillation to assess treatment response (Babjuk, Oosterlinck et al.).

6. Interferons (INFs)

IFNs are host-produced glycoproteins which act to mediate immune responses through antivi‐
ral, antiproliferative, and immuneregulatory activities (Williams, Hoenig et al.). In vitro stud‐
ies have shown that INFs have direct antitumor effects (Baron, Tyring et al. 1991). INF-α2b has
been the most extensively studied interferon as an intravesical agent, and it seems that the in vi‐
tro effect of antiproliferative activity on bladder cancer cells are also observed in vivo (Molto,
Alvarez-Mon et al. 1995). Several studies comparing the antitumor activity of INF-α2b com‐
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pared with BCG, demonstrated a clear inferiority regarding risk for recurrence or time to first
recurrence (Kalble, Beer et al. 1994; Portillo, Martin et al. 1997). For this reason, and the high
costs of INF-α2b, INF-α2b has been mainly used for salvage treatment protocols, as BCG fail‐
ure patients have a 15 - 20% complete response to INF-α2b at one year (Lam, Benson et al. 2003).

In order to determine whether mitomycin C followed by BCG vs. BCG plus IFN-a2b de‐
creased the intravesical recurrence rate, a randomized study could demonstrate that there is
no benefit by alternating IFN-a2b with BCG (Kaasinen, Rintala et al. 2000). Thus addition of
IFN-a to BCG does not seem to enhance the antitumor effects of BCG immunotherapy.

7. Future perspectives for intravesical treatments

Besides urgent need for tumor markers in bladder cancer patients to better detect recurrences,
attempts are under investigation for optimal drug delivery using intravesical treatments. Dif‐
ferent devices are currently under investigation such as thermochemotherapy and electromo‐
tive drug administration in non-muscle invasive bladder tumors. The idea behind these drug
delivery approaches is to temporarily breach the urothelium which in turn should lead in an in‐
creased accumulation of drugs in the bladder tissue. First results are encouraging using elec‐
tromotive  mitomycin  C  (eMMC)  instillations  in  patients  with  CIS,  with  a  statistically
significant, superior complete response rate at 6 months for eMMC (58%) compared to passive
MMC at the higher doses (31%) (Di Stasi, Giannantoni et al. 2003). The response rate of eMMC
approached that of BCG (64%). Local microwave hyperthermia (Synergo system) is another
technology being investigated in the treatment of bladder cancer. The Synergo system stimu‐
lates bladder wall hyperthermia through an energy delivering unit in the tip of a special cathe‐
ter equipped with internal thermocouples designed to maintain temperatures between 42 and
43°C. The aim is to increases cell-membrane permeability and by this way alter intracellular
drug trafficking and distribution (Moskovitz, Meyer et al. 2005). Whether these combined ap‐
proaches using thermal energy and intravesical agents will revolutionize the treatment of blad‐
der cancer remains to be seen in the future (Williams, Hoenig et al. 2010).

Another approach has been reported by Sharma et al. in a post TURBT adjuvant setting
(Sharma, Bajorin et al. 2008). The safety and immunogenicity of a recombinant NY-ESO-1
protein vaccine, which was administered with granulocyte macrophage colony-stimulating
factor and BCG as immunologic adjuvant was tested in a cohort of urothelial carcinoma pa‐
tients. Six patients met all eligibility criteria to receive the vaccination after TURBT for local‐
ized TCC. Tumor tissues were tested for NY-ESO-1 expression and patients, shown to have
NY-ESO-1 tumors, were vaccinated in the postoperative setting. Peripheral blood samples
were analyzed for vaccine-induced antibody and T-cell responses. NY-ESO-1-specific anti‐
body responses were induced in 5/6 patients whereas CD8 T-cell responses occurred in 1/6
patients and CD4 T-cell responses were found in 6/6 patients. This study demonstrates safe‐
ty and feasibility of the NY-ESO-1 recombinant protein in combination with BCG and gran‐
ulocyte macrophage colony-stimulating factor to induce predominantly antibody and CD4
T-cell responses in urothelial carcinoma patients. Induction of higher frequency of CD8 T-
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cell responses may be possible in clinical trials implementing NY-ESO-1 vaccination in com‐
bination with other immunomodulatory agents (Sharma, Bajorin et al. 2008).

8. Sentinel lymph node concept, detection and clinical implications

The sentinel node (SN) is defined as the first tumor-draining lymph node along the direct
drainage route from the tumor; in case of dissemination, it is considered being the first site
of metastasis. A tumor can have more than one primary sentinel node, due to different sec‐
tions of the tumor being drained. In a defined micro-anatomical drainage route, the first
node is called the first echelon SN followed by the second echelon SN, the third and so forth
(figure 1). Identification and subsequent pathologic examination of the SNs reflects the no‐
dal status of the remaining regional nodes. It is postulated that regional nodes in the vicini‐
ty, which are unconnected to the tumor draining routes, by definition cannot be or become
hosts of tumor dissemination. The concept of a sentinel node was first described 1960, in a
patient with cancer of the parotid gland (Gould, Winship et al. 1960). Detection of the SN
was further introduced in urology by Cabanas in 1977, aiming at improved accuracy in pen‐
ile carcinoma staging (Cabanas 1977). The SN technique is now established as a routine
method in malignant melanoma and breast cancer. SN detection is still experimental in uro‐
logic malignancies and is previously described in urinary bladder cancer (Sherif, De La
Torre et al. 2001) (Sherif, Garske et al. 2006) (Liedberg, Chebil et al. 2006), in prostate cancer
(Wawroschek, Vogt et al. 1999) (Jeschke, Nambirajan et al. 2005), in testicular cancer (Ohya‐
ma, Chiba et al. 2002) and in renal cell carcinoma (Sherif, Eriksson et al.) (Bex, Vermeeren et
al.). A further extension of the concept is in identification of Metinel nodes (MN), which are
defined as lymph nodes draining a metastatic site (Dahl, Karlsson et al. 2008 ). This might
have further implications in subsequent immunological therapies based on using tumor ex‐
tract as antigen source, due to the presence of intratumor heterogeneity both in primary tu‐
mors (Gerlinger, Rowan et al.) and the suggested clonal differentiation displayed in
metastatic sites (Malmstrom, Ren et al. 2002).

Various procedures entailing/techniques for sentinel node detection:

• Preoperative planar lymphoscintigraphy

• Preoperative planar lymphoscintigraphy in conjunction with SPECT/CT [single photone‐
mission CT (SPECT) with a low-dose CT]

• Intraoperative visual blue dye detection

• Intraoperative gamma probe/Geiger meter-detection

• Postoperative scintigraphy of main specimen with planar acquisition

In most centers one, two or three methods combined are considered being sufficient for the
everyday clinical praxis.
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9. T-cell function, including receptor and antigen recognition

The subset of lymphocytes called T cells mature in the thymus and are distinguished from
other lymphocytes (B-cells, NK-cells) by their T cell receptor (TCR) located on the cell sur‐
face. Different subsets of T cells display a variety of different functions:

• T helper cell (TH cells) [also known as CD4 cells]

• Cytotoxic T cells (CTLs or TC) [also known as CD8 cells]

• Memory T cells

◦ Central memory T cells (TCM cells)

◦ Effector memory T cells (TEM cells)

• Regulatory T cells (Treg cells)

◦ Naturally occurring Treg cells

◦ Adaptive Treg cells

• Natural killer T cells (NKT cells)

• γδ T cells (gamma delta T cells)

The origin of all T cells is the hematopoietic stem cells in the bone marrow. Immature thy‐
mocytes do not express any of the two markers CD4 or CD 8. During the development of the
thymocytes, they finally become either of the two major subsets followed by release to pe‐
ripheral tissues. Prior to the release, the TCR has developed on the surface through different
selection processes in the thymus, enabling the future mature T cell to interact with
MHC/HLA complexes and also to have attained a balanced reaction to self-antigens. The T
cells which exit the thymus are designated as mature naive T cells. The TCR is composed of
two separate peptide chains joined in a complex with CD3-proteins. When the TCR is acti‐
vated a number of processes take place finalizing in activation of the transcription factor
NFAT (Nuclear factor of activated T-cells). NFAT translocates to the nucleus of the T cell
and activates a number of genes as for instance IL-2, leading to growth, proliferation, and
differentiation of the T cell. The TCR requests co-stimulation of CD28 also expressed on the
T cell, for activation. In absence of interaction with CD28 when the T cell encounters APCs
(antigen presenting cells), the T cell will not proliferate and the end result will be anergy
and a suboptimal immunoresponse.

10. T-cell activation in lymph nodes

Animal models indicate that tumor antigensensitization of lymphocytes takes place in tu‐
mor draining lymph nodes (SNs and MNs), where tumor antigens are presented to T cells
by specialized APCs (Itano and Jenkins 2003). Naive T lymphocytes are activated through
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their TCRs by peptide–MHC complexes displayed on dendritic cells in secondary lymphoid
tissue (Jenkins, Khoruts et al. 2001). Upon activation, T cells undergo rapid proliferation, dif‐
ferentiating into effectors capable of migrating into various sites and of producing lympho‐
kines. A contraction phase then results in the elimination of the vast majority of T cells,
leaving behind a stable population of memory cells (Seder and Ahmed 2003).

11. Sentinel lymph node concept and immunology

In the sentinel nodes or metinel nodes, the antigen-presenting cells (most often dendritic
cells)  encounter tumor antigen, which is  digested to peptides.  The peptides are directed
to the class 2 pocket  and displayed on the cell  surface for recognition by CD4+ T cells.
Newly arrived T cells  are guided to the T-cell  zones of the node mainly by the chemo‐
kine CCL 21 through binding of the receptor CCR7 on the lymphocytes (Campbell, Bow‐
man et  al.  1998).  On encountering the APCs,  the naive T cells  are  specifically  activated
and undergo a clonal expansion.

Whereas effector memory cells are capable of executing immediate effector functions upon
antigen encounter, central memory cells home to lymph nodes, may provide a lifelong
source of new effector cells, both upon secondary stimulation and under the influence of ho‐
meostatic cytokines (Geginat, Sallusto et al. 2001) (Hammarlund, Lewis et al. 2003).

The tumor has its own line of defence when encountering an immunological assault in
which is known as tumor escape mechanisms; thus tumor cells may escape elimination by los‐
ing targeted antigens, rendering T-cells anergic by downregulation of costimulatory mole‐
cules, by inducing regulatory T-lymphocytes (T-regs), or by specifically deleting responding
T-lymphocytes (Staveley-O'Carroll, Sotomayor et al. 1998) (Woo, Yeh et al. 2002) (Engelhard,
Bullock et al. 2002) (Lee, Yee et al. 1999).

12. Adoptive immunotherapy using autologous T-cells in bladder cancer:
Results from the Karolinska University Hospital

Until now, only two pilot projects in humans describing immunotherapy using autologous
T-cells collected from tumor draining lymph nodes followed by cell culture and expansion,
have been published. The first one in advanced colon cancer and the second one in ad‐
vanced urothelial bladder cancer. In 2006 our group described the possibility and the techni‐
ques of identifying, harvesting, enhancing, refining and multiplying mainly T helper cells
(CD4+ Th1-lymphocytes) from draining sentinel lymph nodes in both colon cancer (Marits,
Karlsson et al. 2006) and in bladder cancer (Marits, Karlsson et al. 2006). From there, the next
step was taken and a treatment series of 16 patients with advanced colon cancer included
between 2003-2008, were described (Karlsson, Nilsson et al. 2008). The selected patients
were histopathologically classified as stage II, III or IV (AJCC criteria) tumors. The patients
were followed for 36 months on average (range 6–51 months) and monitored in accordance
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with the Swedish colorectal cancer follow-up protocol. The patients with distant metastases
(stage IV) responded to treatment, either with extended periods of stable disease (n = 4), par‐
tial response with diminished tumor burden (n = 1) or complete response with no detectable
remaining tumor (n = 4). The cumulative survival of the nine treated stage IV patients was
compared with all stage IV cases in the Stockholm region during the year of 2003. The me‐
dian survival of stage IV patients receiving immunotherapy was 2.6 years compared with
0.8 years median survival of the control group.

The same approach was used in urinary bladder cancer patients and the techniques and
methods were published 2010 in the first 12 patients in an ongoing pilot trial (Sherif, Hasan
et al. 2010). The preliminary results have so far included a total of 18 patients, in which 9
patients received intended treatment. Two of the nine treated patients showed objective re‐
sponses by RECIST criteria, and also exceptionally long overall survival (Sherif et al 2011).
Further evaluation and long-term follow-up results are necessary to assess the role of immu‐
notherapy in bladder cancer patients.

13. Future perspectives

Recent research has suggested that chemotherapy in the traditional form not only exerts its
effect on different moments in the cell cycle further leading to apoptosis, but also primarily
and secondarily plays a major role in tumor immunological events (Demaria, Volm et al.
2001) (Hong, Puaux et al.) (Ramakrishnan, Huang et al.). A challenging option would be to
combine neoadjuvant chemotherapy in high risk groups (non-responders and partial res‐
ponders to cisplatine combination therapies) with adjuvant immunotherapy in one form or
another. Hypothetically, neoadjuvant chemotherapy in urinary bladder cancer could be fol‐
lowed by sentinel node detection in conjunction with intended cystectomy. Primarily non-
responders (>pT0) could be offered inclusion in a trial entailing treatment with autologous
tumor-reactive lymphocytes.

14. Summary

According to the growing body of evidence in the understanding of molecular pathways
in tumor biology, other treatment modalities than surgery, chemotherapy and radiothera‐
py will  certainly increase our possibilities  to treat  various cancers.  Immunotherapy pro‐
vides the most exciting aspect for clinical research in the near future. As these treatments
are mainly applied to patients with advanced diseases it remains to be seen whether ear‐
ly treatment strategy immunotherapy protocols will  change the course of many diseases
in the near future. To date, however, there have been only a few published phase I or II
clinical trials of active immunotherapy for bladder cancer (table 1) (Sharma, Bajorin et al.
2008)  (Honma,  Kitamura  et  al.  2009)  (Sherif,  Hasan et  al.  2010)  (Malmstrom,  Loskog et
al.) (Matsumoto, Noguchi et al.).
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Author
Treatment

protocol
Disease stage

Number of

patients
Phase study Results Side effects

Sharma et al.

[2008]

NY-ESO-1

protein vaccine

+ CM-CSF + BCG

Adjuvant

treatment post-

TURBT

6 I Ag-specific

antibodies in

5/6 pts.,

CD8 T cell

response

in 1/6 Pts,

CD4 T cell

response in 6/6

pts.

Only mild

injection site

reactions

Honma et al.

[2009]

Survivin-2B80-8

8 peptide

vaccination

Advanced TCC 9 I CD8 T cell

response in

5/9 pts.,

tumor

reduction

in 1/9 pts.

No side effects

Sherif et al.

[2010]

Reinfusion of

autologous T-

helper

cells

T2-T4 N1-2

M0-1

bladder cancer

12 I Feasible in 6/12

Pts,

technical failure

in 6/12

Pts,

No severe

adverse events

Malmström et

al.

[2010]

Adenoviral

vector

expressing

CD40

ligand

(intravesical)

Muscle-invasive

TCC scheduled

for

cystectomy

(phase I),

Ta disease

(phase II)

8 I/II Enhancement

of T cell

infiltration and

IFN-γ

production,

reduction of

circulating

regulatory T-

cells

No severe

adverse events,

minor local pain

Matsumoto et

al.

[2011]

Personalized

peptide

vaccine

Advanced TCC

(MVAC failure)

10 I 1 CR, 1 PR, 2 SD,

PFS 3.0 months,

OS 8.9 months

No severe

adverse events

MVAC: methotrexate,vinblastine, adriamycin and cisplatin; CR: complete response; PR: partial response; SD: stable dis‐
ease, PFS: progression-free survival; OS: overall survival

Table 1. Present phase I and II clinical trials of active immunotherapy in bladder cancer
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1. Introduction

Bladder cancer is the seventh most prevalent cancer worldwide and the second most common
genitourinary malignancy. As such, it is a significant cause of morbidity and mortality.
Although 75% of patients present with non-muscle invasive bladder cancer (NMIBC) at initial
diagnosis and can be managed with transurethral resection (TUR), the remaining 25% show
muscle-invasive bladder cancer (MIBC) at presentation (Messing, et al., 1995). In spite of
improvements in surgical technique, survival rates and outcomes for patients with MIBC are
not good. Radical cystectomy is unsuccessful in approximately 50% of patients with MIBC,
and the 5-year overall survival rate after radical cystectomy for MIBC is only 40%-60%
(Ghoneim, et al., 1997; Stein, et al. 2001; Shariat et al., 2006 Koga et al., 2008).

For these reasons, peri-operative therapies, including neo-adjuvant and adjuvant chemother‐
apy, have become more prominent and have been investigated in many trials and studies
(Hussain, et al., 2003; Goethuys and Van Poppel, 2012). Unfortunately, the percentages of
patients receiving neo-adjuvant and adjuvant chemotherapy for locally advanced bladder
cancer (T2-T4a) are only 12% and 22%, respectively (Feifer et al., 2011). One reason for the low
treatment rate with these modalities is that some urologists do not prefer a conservative
treatment option or to engage in a surgical approach, while others do not collaborate easily
across disciplines. This paper will provide a clear, straightforward description of trends in
peri-operative therapy for bladder cancer.

Organ conservation by combined modality therapy is commonplace in contemporary oncol‐
ogy and has achieved success in selected patients with various types of malignancies, such as
breast, larynx, esophagus, and prostate. However, radical cystectomy remains the most

© 2013 Miyata and Sakai; licensee InTech. This is an open access article distributed under the terms of the
Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

© 2013 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons 
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, 
and reproduction in any medium, provided the original work is properly cited.



Chapter 6

Metastasis After Primary Treatment — Peri-Operative
and Bladder-Preservation Therapy in Muscle Invasive
Diseases

Yasuyoshi Miyata and Hideki Sakai

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/56014

1. Introduction

Bladder cancer is the seventh most prevalent cancer worldwide and the second most common
genitourinary malignancy. As such, it is a significant cause of morbidity and mortality.
Although 75% of patients present with non-muscle invasive bladder cancer (NMIBC) at initial
diagnosis and can be managed with transurethral resection (TUR), the remaining 25% show
muscle-invasive bladder cancer (MIBC) at presentation (Messing, et al., 1995). In spite of
improvements in surgical technique, survival rates and outcomes for patients with MIBC are
not good. Radical cystectomy is unsuccessful in approximately 50% of patients with MIBC,
and the 5-year overall survival rate after radical cystectomy for MIBC is only 40%-60%
(Ghoneim, et al., 1997; Stein, et al. 2001; Shariat et al., 2006 Koga et al., 2008).

For these reasons, peri-operative therapies, including neo-adjuvant and adjuvant chemother‐
apy, have become more prominent and have been investigated in many trials and studies
(Hussain, et al., 2003; Goethuys and Van Poppel, 2012). Unfortunately, the percentages of
patients receiving neo-adjuvant and adjuvant chemotherapy for locally advanced bladder
cancer (T2-T4a) are only 12% and 22%, respectively (Feifer et al., 2011). One reason for the low
treatment rate with these modalities is that some urologists do not prefer a conservative
treatment option or to engage in a surgical approach, while others do not collaborate easily
across disciplines. This paper will provide a clear, straightforward description of trends in
peri-operative therapy for bladder cancer.

Organ conservation by combined modality therapy is commonplace in contemporary oncol‐
ogy and has achieved success in selected patients with various types of malignancies, such as
breast, larynx, esophagus, and prostate. However, radical cystectomy remains the most

© 2013 Miyata and Sakai; licensee InTech. This is an open access article distributed under the terms of the
Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

© 2013 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons 
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, 
and reproduction in any medium, provided the original work is properly cited.



commonly offered treatment for bladder cancer; indeed, it is sometimes performed uncondi‐
tionally, even though this operation holds the possibility of significant morbidity. Modern
bladder conservation approaches combine surgery, chemotherapy, and radiation therapy.
However, there is variation in each protocol and in the methods used to carry out the protocols.

Over the last decade, numerous investigators have paid special attention to the multiple
interacting molecular pathways in urothelial cancer cells, and have demonstrated the complex
mechanisms of such interactions and their pathological roles in human bladder cancer.
Previous in vivo and in vitro studies have identified several factors as key to the development
and progression of urothelial cancer cells. In this paper, we highlight some of the major
molecular pathways and their clinical and pathological significance in bladder cancer. We also
present some molecular targeted agents and clinical trials in patients with MIBC.

2. Neo-adjuvant chemotherapy

One advantage of neo-adjuvant therapy compared with adjuvant therapy is that patient
tolerance is better; this is because the therapy is administered before surgery, including before
radical cystectomy. In addition, neo-adjuvant therapy allows for down-grading and down-
staging, which may increase the likelihood of resectability (Calabro and Sternberg, 2009).
Studies have shown that preoperative neo-adjuvant chemoradiation therapy reduced tumors
to the level of pT0 in approximately one quarter to one third of patients by the time cystectomy
was performed (Grossman et al., 2003; Alva et al., 2012). Such statistics give supporting
evidence to the possibility that bladder conservation therapy is a practical alternative for
selected patients with MIBC. This section will outline the history and present status of neo-
adjuvant therapy for patients with MIBC.

There have been several key randomized trials of radical cystectomy alone or with neo-
adjuvant therapy (Table 1). Among these trials, there has been no report of any single-agent
regimen producing a survival benefit through neo-adjuvant therapy (Wallance et al., 1991;
Martinez-Pineiro et al., 1995). A similar result was confirmed in a meta-analysis of individual
data from 2688 patients enrolled in 10 randomized trials (Advanced Bladder Cancer (ABC)
Meta-analysis Collaboration, 2003). On the other hand, there have been conflicting results on
the survival benefit of multi-agent chemotherapy. Among them, the Nordic Cystectomy Trial
I, performed using preoperative radiation therapy and 2 cycles of cisplatin (CDDP) and
doxorubicin (DXR) for patients with cT1G3-T4NxM0 disease, demonstrated no survival
benefit, either 5-year overall or cause-specific (Malmström et al., 1996). Similarly, the Nordic
Cystectomy Trial II (3 cycles of CDDP and methotrexate, MTX) showed no overall significant
difference in 5-year survival in 317 patients (Sherif et al., 2002). Thus, early trials revealed no
significant survival benefit of neo-adjuvant chemotherapy. Interestingly, however, the Nordic
Cystectomy Trial I also showed a 15% difference in overall survival for T3–T4a patients (P =
0.03). In addition, a combined analysis of the two Nordic Cystectomy Trials showed that the
5-year survival rates of patients receiving neo-adjuvant therapy (56%) were significantly better
(P = 0.049) compared with the patients not receiving neo-adjuvant therapy (48%) (Sherif, et al.,

Advances in the Scientific Evaluation of Bladder Cancer and Molecular Basis for Diagnosis and Treatment108

2004). These investigators concluded that neo-adjuvant platinum-based combination chemo‐
therapy was associated with a 20% reduction in the relative hazard of the probability of death.
In addition, a total of 449 patients form Nordic Cystectomy trial also showed that percentage
of pT0N0 was nearly double in the neo-adjuvant arm compared with controls (22.7% versus
12.5%, P = 0.006). Furthermore, there is a report that CDDP, MTX, and vinblastine (VBL)
showed more favorable results with neo-adjuvant chemotherapy compared with local therapy
alone without neo-adjuvant therapy (Medical Research Council, 1999). On the basis of
previously reported studies, one opinion is that neo-adjuvant chemotherapy cannot be
regarded as standard care (Kaufman et al., 2009). On the other hand, a trial with MVAC
(methotrexate, vinblastine, doxorubicin [adriamycin], and cisplatin) therapy showed a trend
toward a survival benefit with MVAC, although this difference did not reach the level of
significance (P = 0.06) (Grossman et al., 2003). Another prospective randomized trial by
Griffiths et al. (2011) showed that neo-adjuvant chemotherapy produced a survival benefit.
This study had a large impact because of the large study population (n = 976) and long follow-
up periods (median and interquartile range = 8.0 and 5.7 to 10.2 years). Thus, there are contrary
opinions regarding the survival benefit of neo-adjuvant chemotherapy for patients with MIBC.
However, a meta-analysis of 11 randomized trials conducted by the Advanced Bladder Cancer
Meta-analysis Collaboration that included 3005 bladder cancer patients demonstrated that
neo-adjuvant CDDP-based therapy had a significant positive effect on the absolute 5-year
overall survival rate (P = 0.003) and absolute disease-free survival rate (P < 0.0001) compared
with local therapy alone. A similar finding was reported in an additional meta-analysis
(Winquiest et al., 2004).

Authors (year) Intervention

Wallace 
(1991)

CDDP + Radiation therapy
Radiation therapy alone T2-4NxM0

No difference for overall survival (odds ratio=1.13 and
95% confidential interval=0.80-1.57)

Martinez
(1995)

CDDP+Cystectomy
Cystectomy alone

T2-4a
Nx-2M0

pT0 was found in 14.3% of the experimental arm. 
No difference for cause-specific survival (P=0.1349).

Malmström
(1996)

CDDP+ADM+Cystectomy
Cystectomy alone

T1G3-
T4aNxM0

ND for overall survival (P=0.1) in T1-2
15% benefit in T3-4a

Sherif
(2002)

CDDP+MTX+Cystectomy
Cystectomy alone

T2-4a
NxM0

pT0 in experimental arm was higher (26.4%) than control 
arm (11.5%, P=0.001). No difference for overall survival

Sherif
(2004)

CDDP+ADM or CDDP+MTX
+Cystectomy vs Cystectomy

T1G3-
T4aNxM0

5-year overall survival rate were better (P=0.045) in 
experimental arm (56%) than that in control arm (48%). 

Grossman
(2003)

MVAC+Cystectomy
Cystectomy alone

T2-4a
NxM0

Pathological CR was higher in MVAC group (P<0.001).
Trends in benefit for overall survival (P=0.06) .

N

255

121

325

317

620

317

ICT
(2011)

CMV + definitive treatment
Definitive treatment alone

T2G3-
T4aN0/XM0

5-year overall survival rates were 49 versus 43% and 
10-year rates were 36 versus 30% (P=0.037). 976

ICT
(1999)

CMV + definitive treatment
Definitive treatment alone

T2G3-
T4aN0/XM0

3-year overall survival rates were 50.0% in chemotherapy 
arm versus 55.5% in no-chemotherapy arm (P=0.075). 

976

ICT: International Collaboration of Trialists

Clinical stage Comments

Table 1. Randomized studies for Neo-adjuvant therapy
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3. Adjuvant therapy

The advantage of adjuvant chemotherapy compared with neo-adjuvant chemotherapy is that
various clinical judgments can be made based on complete pathological information. This
avoids over-treatment and unnecessary adverse events because pathological staging enables
improved accuracy in patient selection for specific therapies. However, the anti-tumor effects
and survival benefits of adjuvant chemotherapy are controversial. Several randomized
prospective trials showed that adjuvant chemotherapy following cystectomy produced a
survival benefit (Skinner, et al., 1991; Stockle 1995). However, these reports are relatively old
(1990s) and underpowered (<100 patients). A study in 2010 by Paz et al. showed significantly
longer overall survival in patients receiving adjuvant chemotherapy than in patients without
adjuvant chemotherapy. Although this study had a relatively large number (n = 142), it was
closed early because of slow data accrual and un-published data. Other large and recent trials
(n > 100) have demonstrated that adjuvant chemotherapy following cystectomy did not show
a significant survival difference compared with cystectomy alone (Stadler, et al. 2011; Cognetti,
et al. 2012). Svatek (2010) conducted a large retrospective study on the relationship between
adjuvant therapy and survival, and showed that adjuvant therapy (n = 932, 23.6%) was
independently associated with favorable overall survival in 3947 bladder cancer patients.

As a result of such controversy, clinical trials on the survival benefit of adjuvant chemotherapy
are relatively underpowered because of the small number of patients and are closed early due
to poor data accrual. Another reason is the disadvantages of adjuvant chemotherapy, including
post-operative complications and decrease in renal function. Donat (2009) found that approx‐
imately 30% of patients who received radical cystectomy and were candidates for adjuvant
chemotherapy could not receive it within 90 days after operation. Thus, the role and aim of
adjuvant chemotherapy after radical cystectomy is not clear. We close our discussion of this
issue in the present paper because our main purposes are to discuss the prevention of cancer
cell dissemination and understand the processes in MIBC.

4. Bladder conservation strategy

Loss of bladder function is considered a major type of mutilation. Despite advances in neo-
bladder construction, a decrease in the quality of life (QOL) is inevitable after cystectomy. In
addition, although progress has occurred in peri-operative management, radical cystectomy
still has a high risk of complications, including peri-operative mortality (Manoharan, et al.,
2009). A recent large review (Shansigh, et al., 2009) of 1,142 patients showed that an early
complication (that is, within 90 days) occurred in 64% of patients undergoing radical cystec‐
tomy; 13% of the complications were classed as grade 3-5 by the modified Clavien grading
system. In recent years, multimodality bladder conservation strategies have gradually gained
popularity, and various investigations have been undertaken. In fact, an organ conservation
strategy is useful to preserve bladder function and QOL (Zietman, et al., 2003). A modern
bladder conservation strategy is the use of trimodality therapy, which combines maximal TUR
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followed by an induction course of concurrent radiotherapy and chemotherapy. Patients who
incompletely respond to the combined treatment are advised to undergo immediate cystec‐
tomy. However, at present, consensus has yet to be reached on the efficacy of bladder conser‐
vation therapy for the inhibition of cancer cell progression, and prolongation of survival has
yet to be reached (Herr, et al., 1998).

4.1. Present status of bladder conservation therapy

Appropriate candidates for bladder conservation therapy include: patients with T2-4a and
clinically node-negative disease, proposed complete or near-complete operation, and adequate
organ function to tolerate chemotherapy. Many urologists, medical oncologists, and radiation
oncologists have tried various protocols to decrease local recurrence and metastasis, and to
improve survival. In the beginning, various monotherapies were also investigated as a safe
method of treatment. However, several key studies from pioneer centers in the 1990s to 2000s
found that a combination of TUR, chemotherapy, and radiotherapy yielded more favorable
outcomes and better anti-tumor effects than monotherapies and other combination therapies
(Housset, 1993; Rodel, 2002; Shipley, 2002). At present, trimodality therapy is the major
treatment strategy for bladder preservation. In addition, with improvements in radiation
therapy and the development of chemotherapy, several trials have been performed in patients
with MIBC who are clinically node-positive (Röedel et al., 2002; Gamal El-deeen et al., 2009).
Furthermore, trials have also been performed in MIBC patients with multiple tumors (Zhang,
et al. 2010). Thus, the applications for bladder conservation therapy are expanding. Represen‐
tative reports on outcomes of bladder preservation therapies are shown in Table 2. This table
lists relatively large studies (over 100 patients) on trimodality therapy, as well as randomized
trials for patients with MIBC with/without lymph node metastasis. In addition to them, several
interesting and important studies have been reported. For example, the protocol that radiation
with combination chemotherapy of paclitaxel and CDDP chemotherapy was administrated
after TUR was reported in T2-T4a bladder cancer patients. In this protocol, if repeat biopsy
showed less than T1 disease, consolidation with similar chemo-radiation therapy was given.
If repeat biopsy showed greater than pT1 disease, cystectomy and adjuvant GC therapy were
given. Of the 80 eligible patients, 65 patients (81%) were judged complete response. However,
of these 65 patients, 8 patients (28%) had local bladder recurrence. At median follow-up of 49.4
months, the actuarial 5-year overall and cause-specific survival rate was 56% and 71%,
respectively. In addition, the actuarial rate of surviving with an intact bladder was 59% at 36
months and 47% at 60 months (Kaufman, et al. 2009). On the other hand, On the other hand,
most recently, a large study on long-term outcomes of bladder preservation by combined-
modality therapy for MIBC has also been reported from Massachusetts General Hospital
(Efstathiou et al., 2012). This study showed the outcomes in 348 patients with T2-4a disease
who were treated with CDDP-based chemotherapy and radiotherapy after maximal TUR plus
neo-adjuvant or adjuvant therapy. Survival analysis of median follow-up at 7.7 years demon‐
strated that 5-, 10-, and 15-year overall survival rates were 55%, 35%, and 22%, respectively.
On the other hand, the 5-, 10-, and 15-year cumulative bladder-intact disease-specific survival
rates were 60%, 45%, and 36%, respectively. These investigators also showed that 102 patients
(29%) required follow-up cystectomy. In the conclusion of their report, Efstathiou et al. stated
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of these 65 patients, 8 patients (28%) had local bladder recurrence. At median follow-up of 49.4
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their opinion that bladder conservation therapy offers a unique opportunity for urologic
surgeons, radiation oncologists, and medical oncologists to work together in a truly multidis‐
ciplinary effort for the benefit of patients with invasive bladder cancer. Likewise, we and many
other investigators have also suggested that the bladder conservation strategy is a useful and
practical alternative for patients who are selected appropriately and when clinical manage‐
ment includes the methods described below.

Author
(year) N Survival

Rödel
(2002)

Induction therapy

CDDP/CBDCA 5FU+RT
or RT alone

42415

BIS

OS: 50
CSS: 56

Perdoná
(2008)

CMV and RT
CMV and RT+CDDP

43
78

47
54

OS: 60
OS: 72

Consolidative
therapy

Random

No
–

Weiss  
(2007) CDDP+5FU and RT112 61OS: 74

CSS: 82
No –

–No

Gamal El-Deen
(2009)

MCV/MVAC/GC and RT
RT alone
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72

–
–

OS: 60
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–No

Zhang
(2010)

MVAC+RT: as adjuvant 
for pT3+4 or pN+100

OS: –
CSS: 68

No – –
–

5 years- (%)

Eapen
(2004) CDDP+RT112 OS: 50

CSS: –No – –
–

Sabba
(2010) GC and RT+CDDP104 OS: 55

CSS: –
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–
–
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stage
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Route
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IV

IV

IV

IV

IA

IV

TUR

TUR

TUR

TUR

Partial

TUR

TUR

OS: Overall survival; CSS: Cause-specific survival, BIS: Bladder intact survival 

Shipley
(1998)

A: CMV and RT+CDDP
B: No chemotherapy

A: 61
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A: 38
B: 36

A: OS: 49
B: OS: 48

Kachnic
(1997) CMV and RT+CDDP106

43OS: 52
CSS: 60

RT+
CDDP

RT+
CDDP

No

YesT2-4aNxM0

T2-4aNxM0 IV

IV

TUR

TUR

Operation

Table 2. Published reports on bladder-conserving therapy (randomized study or patients number >100)

4.2. Intra-arterial chemotherapy in the bladder conservation strategy

Regarding the administration of chemotherapeutic drugs, intravenous infusion has been
common in almost all of the large studies (Table 2). On the other hand, intra-arterial chemo‐
therapy has also been used because infusion of chemotherapeutic drug(s) via the intra-arterial
route enables a higher drug concentration to be directed at the primary bladder tumor. This
treatment strategy, that is, the combination of intra-arterial chemotherapy and radiation
therapy, has been used in several studies. For example, Eapen, et al. (1989) reported intra-
arterial CDDP and concurrent radiation therapy with/without cystectomy in 25 bladder cancer
patients with T3-4N0M0 disease. Another example is that our own study group reported on a
combination therapy for 35 bladder cancer patients with T2-4N0M0, for whom two courses of
intra-arterial cisplatin and doxorubicin were administered at 3-week intervals, with radio‐
therapy administered for 4 weeks (Mokarim, et al., 1997). This study showed complete
response rates and tumor-free bladder preservation rates of 74% and 54%, respectively.
Unfortunately, these reports had relatively small numbers of patients (under 50 patients).
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At present, chemoradiation therapy incorporating this infusion protocol has resulted in high
complete remission (CR) rates of 83%-93% in patients with locally invasive bladder cancer
(Miyanaga, et al., 2000; Eapen, et al., 2004; Hashine et al., 2009). These rates seem to be higher
than the CR rates of conventional chemoradiation therapies, although a simple comparison is
impossible. However, these studies have also shown 5-year overall survival rates of 50%-66.6%
(Miyanaga, et al., 2000; Eapen, et al., 2004; Hashine, et al., 2009), which were similar to the
results of other studies using intravenous infusion (Table 2). Problems with this strategy
include specific complications (pelvic neuropathy and risk of severe bleeding) and the
complexity of the procedure. There has been only one report in a large study population on
trimodality bladder preservation incorporating intra-arterial chemotherapy (Eapen, et al.,
2004).

With regard to this treatment strategy, there has been a unique and interesting trial (Azuma,
et al., 2008) of combined therapy using balloon-occluded arterial infusion of CDDP and
hemodialysis with concurrent radiation. In this regimen, the study patients underwent TUR
and received balloon-occluded arterial infusion of 100-300 mg CDDP, together with concurrent
hemodialysis and a total of 60.4 Gy of radiation. In the first report, this therapy had been
administered to 41 patients with T2-4NxM0 disease. All patients with transitional cell carci‐
noma with T2-3 achieved a complete response (n = 29) and were able to retain their bladders
with no evidence of recurrence at a mean follow-up of 132 weeks (Azuma, et al., 2008).

4.3. Partial cystectomy in the bladder conservation strategy

With regard to surgery in bladder conservation therapy, TUR has been used in almost all of
the large studies (Table 2). On the other hand, several studies used partial cystectomy as the
primary therapy in their treatment strategy (Holzbeierlein et al., 2004; Kassouf et al., 2006;
Zhang et al., 2010). As mentioned above, radical cystectomy is the “gold standard” for surgical
treatment in patients with MIBC. In contrast, partial cystectomy provides a surgical alternative
for selected patients because patients who undergo partial cystectomy are considered to be at
higher risk for tumor recurrence and the need for second surgery (Evans and Texter, 1975;
Stein et al., 2001). Some authors hold the opinion that partial cystectomy is disproportionately
used and that overuse of this operation may constitute inappropriate delivery of health care
(Hollenbeck, et al., 2005). For these reasons, partial cystectomy is generally the recommended
treatment for adenocarcinoma and/or urothelial carcinoma at the dome of the urinary bladder.
However, there is no escaping the fact that partial cystectomy has potential advantages
compared with radical cystectomy, for example, functional advantages including continence
and sexual function, decreased incidence of surgical morbidity, and avoidance of the need for
urinary diversion. In recent years, population-based and matched case-control studies have
demonstrated that partial and radical cystectomy provided similar oncologic control and
outcome, including metastasis-free and cause-specific survival (Capitanio, et al., 2009;
Knoedler, et al., 2012). However, the fact remains that these results are obtained in “selected”
patients. In fact, two large cancer centers (Memorial Sloan-Kettering Cancer Center and M.D.
Anderson Cancer Center) have suggested that stringent selection of appropriate patients
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Zhang et al., 2010). As mentioned above, radical cystectomy is the “gold standard” for surgical
treatment in patients with MIBC. In contrast, partial cystectomy provides a surgical alternative
for selected patients because patients who undergo partial cystectomy are considered to be at
higher risk for tumor recurrence and the need for second surgery (Evans and Texter, 1975;
Stein et al., 2001). Some authors hold the opinion that partial cystectomy is disproportionately
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treatment for adenocarcinoma and/or urothelial carcinoma at the dome of the urinary bladder.
However, there is no escaping the fact that partial cystectomy has potential advantages
compared with radical cystectomy, for example, functional advantages including continence
and sexual function, decreased incidence of surgical morbidity, and avoidance of the need for
urinary diversion. In recent years, population-based and matched case-control studies have
demonstrated that partial and radical cystectomy provided similar oncologic control and
outcome, including metastasis-free and cause-specific survival (Capitanio, et al., 2009;
Knoedler, et al., 2012). However, the fact remains that these results are obtained in “selected”
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improves cancer control rates after partial cystectomy for patients with MIBC (Holzbeierlein,
et al., 2004; Kassouf, et al., 2006).

Ideal candidates for partial cystectomy are patients with a solitary tumor located in a resectable
area not requiring ureteral re-implantation, such as the dome of the urinary bladder, and which
can be resected with a 1-2 cm tumor-free margin to preserve normal bladder function. Patients
with associated carcinoma in situ should be excluded. Only 3%-10% of MIBC patients who are
candidates for cystectomy fit these criteria (Holzbeierlein, et al., 2004; Kassouf, et al., 2006;
Capitanio, et al., 2009). Marked variation in outcome after partial cystectomy has been
reported: the 5-year recurrence-free survival rates in separate series from M.D. Anderson
Cancer Center and Memorial Sloan-Kettering Cancer Center are 39% and 69%, respectively.
The bladder conservation strategy of partial cystectomy requires careful attention to patient
selection criteria in order to obtain optimal therapeutic outcome.

In recent years, laparoscopy with or without robotic radical cystectomy has begun to be
performed; this technique may lead to less bleeding, less post-operative pain, and earlier
recovery (Khan, et al., 2012). However, the long-term outcome is unclear, and the opera‐
tion requires a longer duration and engenders higher cost compared with open surgery.
These remain problems to be solved. Likewise, several studies and the experience of sev‐
eral  authors  with  robotic  partial  cystectomy  have  been  reported  (Luchey,  et  al.,  2012;
Seyam, et al., 2012). However, almost all of these procedures have been performed on be‐
nign tumors including paraganglioma and lymphangioma. On the other hand, there has
been  a  pilot  study  of  robotic  partial  cystectomy  for  bladder  cancer  (Allaparthi,  et  al.,
2010). Similar to radical cystectomy, obstacles to robotic partial cystectomy are high cost,
technical difficulties such as decisions regarding tumor margin, and relatively low num‐
bers  of  ideal  patients.  The  immediate  future  and  further  applications  of  robotic  partial
cystectomy for bladder cancer are uncertain.

5. GC regimen in peri-operative therapies

For the last several decades, MVAC and CMV (cisplatin, methotrexate, vinblastine) have been
especially employed for treating advanced urothelial carcinoma. Additionally, these regimens
have been used in almost all of the trials and studies on peri-operative chemotherapy. On the
other hand, the GC regimen has been reported as an alternative regimen and more tolerable
than the MVAC/CMV regimen in treating advanced urothelial cancer (von der Maase, et al.,
2005). In addition to treating advanced disease, the GC regimen seems more advantageous
than the MVAC/CMV regimen because the GC regimen has a lower toxicity profile and
therefore reduces the potential need for changing the treatment schedule because of toxic side
effects. Actually, various studies on peri-operative therapy with GC regimen have been
reported. In recent year, a randomized phase III trial of adjuvant GC therapy in 194 patients
with pT2G3-pT4N0-2 disease was reported. This manuscript demonstrated that 5-year overall
survival rate in adjuvant therapy (43.4%) was similar (P=0.24) to that in control (observation
and treatment on relapse) (53.7%).
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On the  other  hand,  several  studies  on  the  local  therapeutic  effects  of  neo-adjuvant  GC
therapy have been published (Table 3). In the series by Dash et al.,  pT0 was detected in
11 of 42 patients receiving the GC regimen (26%) and in 15 of 54 patients receiving the
MVAC regimen (28%). From these results, Dash et al. (2008) concluded that the GC regi‐
men has  ability  similar  to  that  of  the  MVAC regimen for  inducing  pathological  down-
staging in bladder cancer patients with locally advanced disease. Similar results (showing
complete response of MVAC = 31% and GC = 25%) were reported in 2012 by Yeshchina
et  al.  On the other  hand,  Weight,  et  al.  (2009)  reported that  the percentages of  patients
presenting  with  stage  pT0  at  the  time of  definitive  surgery  who were  treated  with  the
neo-adjuvant  GC regimen or  with  cystectomy alone were  10% (2/20)  and 9% (8/88),  re‐
spectively. In recent years, larger studies with a similar design showed that pT0 was de‐
tected in 20% (5 of 25) of patients with neo-adjuvant CG and 5% (7 of 135 patients) with
cystectomy alone (Scosyrev et  al.,  2011).  These authors  concluded that  the neo-adjuvant
GC regimen was capable of down-staging bladder cancer. Interestingly, Scosyrev et al. al‐
so suggested that GC has no effect on disease involving the lymph nodes. Unfortunately,
these studies were relatively small series and consisted of patients with a variety of clini‐
copathological  features.  Furthermore,  the  long-term  outcome  after  the  GC-  and  GEM-
based regimens for peri-operative treatment is still not fully known. Currently, in clinical
practice,  including phase  II  trials,  a  less  toxic  GC regimen is  commonly substituted for
peri-operative MVAC therapy.

Author
(year) N pT0 (%)  :  P value

Dash
(2008)

Induction

A:   42
B:   54

26
28

Scosyrev
(2012)

A: GC+radical cystectomy
B: Radical cystectomy only

A:   25
B: 135

20
5

Weight
(2009)

A:   20
B:   88

10
9

Clinical stage

T2-4N0M0

T2-4NanyM0

A: GC + cystectomy
B: MVAC + cystectomy

A: GC+radical cystectomy
B: Radical cystectomy only

Yeshchina
(2012)

A: GC + radical cystectomy
B: MAVC + radical cystectomy

A:   16
B:   45

25
31T2-4aN0-2M0 P=0.645

T2-4aN0-2M0

Capable of down-staging (proportion of 
pT0), but no effect on disease in node. 

This choice also affected no significant
difference in   adjuvant therapy (n=53).

P=0.03

No difference in down-staging, disease-
free survival, or residual disease.  . 

This study included 20 patients with GC 
(PTX in 1) and 9 with other regimens.   . 

–

–

Comments

Table 3. Neo-adjuvant gemcitabine plus cisplatin for muscle invasive bladder cancer

6. Molecular-targeted therapy
in peri-operative therapy

When molecular targeted therapy is performed, understanding of its clinical significance,
pathological roles, and prognostic value is essential. We therefore introduce some molecules
that are closely associated with malignant potential and aggressiveness in bladder cancer.
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6.1. p53

p53 regulates the cell cycle through inhibition of the cell cycle progression at the G1/S transi‐
tion, and p53 is also involved in various important cellular processes related to angiogenesis,
DNA repair, apoptosis, and response to therapy in bladder cancer cells (Mitra, et al., 2006).
The first report on the prognostic value of p53 expression in patients with bladder cancer
demonstrated that p53 expression status predicted recurrence and survival after radical
cystectomy in patients with organ-confined bladder cancer (Esrig, et al., 1994). After that, many
investigators showed that p53 mutations occur in approximately 50% of cases of bladder
cancer, and that altered p53 status is a useful predictor for cancer cell progression and outcome
in bladder cancer patients (Sarkis, et al. 1993; Esrig, et al., 1994; Serth, et al., 1995). However,
there was controversial opinion regarding the prognostic value of p53. Actually, a meta-
analysis that reviewed 117 studies with 10,026 patients showed that there is insufficient
evidence to know whether p53 can serve as a prognostic marker for bladder cancer (Malats,
et al., 2005).

Two independent clinical trials regarding p53 gene therapy were performed in a phase I study.
A study (SCH 58500) of the safety, feasibility, and biological activity of an adenoviral expres‐
sion vector encoding wild-type p53 was performed in 12 patients with histologically confirmed

Phase Sponsor Start
year

II

Intervention

CDDP, cabazitaxel 01616875United Bistrol Healthcare NHS Trust

Identifier
: NCT-

2012

I Intravesical vaccine
(rF-GM-CSF, -TRICOM)

00072137University of Medicine and
Dentistry of New Jersey

2003

II IFM, DXR, GEM, CDDP 00080795M.D. Anderson Cancer Center 2001

On
going

II GEM, CDDP, Sunitinib 00847015MSKCC 2009 Yes

II Dose-dense MVAC 00808639Dana-Farber Cancer Institute 2008 Yes

II Dose-dense MVAC 01031420Fox Chase Cancer Center 2009 Yes

II GEM, CDDP, Sorafenib 01222676Fondazione IRCCS Istituto
Nazionale dei tumori

2010 Yes

II Erotinib 007498922008 YesM.D. Anderson Cancer Center

0 Lapatinib 01245660University Hospital, Bordeaux 2012 Yes

No

No

Yes

II CBDCA, GEM, ABI-007 00585689University of Michigan 2007 Yes

II MVAC, bevacizmab 005061552007 YesM.D. Anderson Cancer Center

II Dose-dense GC 01589094MSKCC 2012 Yes

II GEM, CDDP, Sunitinib 00859339Hoosier Oncology Group 2008 No

II Sunitinib after cystectomy
following prior neo-adjuvant

01042795University of Michigan 2009 Yes

Table 4. Clinical trials of neo-adjuvant therapies
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MIBC (Kuball, et al., 2002). In another study, replication-deficient adenoviral vectors bearing
the wild-type TP53 gene (Ad5CMV-TP53) were transferred into bladder cancer cells of
advanced disease by repeated (28-day cycle) intravesical instillation in 13 patients with locally
advanced disease (Pagliaro, et al., 2003). These studies showed that such methods are safe,
without no dose-limiting toxicity, and feasible for treatment of patients with bladder cancer.
Yet, although the use of gene therapy in combination with transduction-enhancing agents
increased transduction efficacy and promoted a high level of patient tolerance, some investi‐
gators believe that more improvements in the efficacy of gene transfer and greater knowledge
of gene expression levels are required to develop more effective gene therapy.

There is the opinion that locally advanced bladder cancer cells that harbor p53 alterations may
respond beneficially to adjuvant chemotherapy containing DNA-damaging agents (Cote, et
al., 1997). In addition, there have been several reports that DNA-damaging agents such as
CDDP can increase the sensitivity of the bladder cancer cell lines (Lai, et al., 2005; Matsui, et
al., 2007). Thus, gene therapy that targets p53 alterations has the possibility of being effective
for bladder cancer patients with advanced disease.

6.2. Epidermal Growth Factor Receptor (EGFR)

Among the members of the EGFR family, ErbB1 and ErbB2 (Her2/neu) are the most studied
in human cancers. There is general agreement that they are overexpressed in the majority of
patients with urothelial cancer of the urinary bladder, including MIBC, and are positively
associated with pathological features (Wright, et al., 1991; Korkolopoulou, et al., 1997, Kossouf,
et al., 2008). Furthermore, with regard to their predictive value for prognosis and survival,
increased expression of these two molecules has been reported to be associated with worse
outcome (Korkolopoulou, et al., 1997; Krüger, et al. 2002; Kramer, et al., 2007). In addition,
overexpression of EGFR is known to be more common in MIBC (Kassouf, et al., 2008). From
these facts, there is a possibility that EGFR-targeted therapies have the potential to improve
prognosis and survival in patients with MIBC.

On the other hand, there have been several reports that ErbB2 expression is not correlated with
any pathological features, including grade and stage or survival, in bladder cancer patients
(Jimenez, et al., 2001; Kassouf, et al., 2007). To explain this discrepancy in the research findings,
differences in patient backgrounds and evaluation methods have been suggested. The
differing reports show that there is no general agreement about the pathological significance
and prognostic role of the EGFR in patients with bladder cancer. Jimenez et al. made the
interesting observation that the frequencies of overexpression of ErbB2 in primary tumors and
in metastatic tumors were 37% and 63%, respectively (Jimenez, et al., 2001). This finding may
suggest that ErbB2 could be an effective therapeutic target for the inhibition of cancer cell
progression after treatment of primary tumors.

Gefitinib (brand name, Iressa) is a small molecular EGFR tyrosine kinase inhibitor that
selectively inhibits EGFR. Several clinical trials with gefitinib are now in progress. The results
of Cancer and Leukemia Group B (CALGB) study number 9012 showed 23 confirmed objective
responses (7 complete responses and 16 partial responses) in 54 assessable patients. The
median time to progression and overall survival were 7.4 months and 15.1 months, respec‐
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increased transduction efficacy and promoted a high level of patient tolerance, some investi‐
gators believe that more improvements in the efficacy of gene transfer and greater knowledge
of gene expression levels are required to develop more effective gene therapy.

There is the opinion that locally advanced bladder cancer cells that harbor p53 alterations may
respond beneficially to adjuvant chemotherapy containing DNA-damaging agents (Cote, et
al., 1997). In addition, there have been several reports that DNA-damaging agents such as
CDDP can increase the sensitivity of the bladder cancer cell lines (Lai, et al., 2005; Matsui, et
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Among the members of the EGFR family, ErbB1 and ErbB2 (Her2/neu) are the most studied
in human cancers. There is general agreement that they are overexpressed in the majority of
patients with urothelial cancer of the urinary bladder, including MIBC, and are positively
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overexpression of EGFR is known to be more common in MIBC (Kassouf, et al., 2008). From
these facts, there is a possibility that EGFR-targeted therapies have the potential to improve
prognosis and survival in patients with MIBC.

On the other hand, there have been several reports that ErbB2 expression is not correlated with
any pathological features, including grade and stage or survival, in bladder cancer patients
(Jimenez, et al., 2001; Kassouf, et al., 2007). To explain this discrepancy in the research findings,
differences in patient backgrounds and evaluation methods have been suggested. The
differing reports show that there is no general agreement about the pathological significance
and prognostic role of the EGFR in patients with bladder cancer. Jimenez et al. made the
interesting observation that the frequencies of overexpression of ErbB2 in primary tumors and
in metastatic tumors were 37% and 63%, respectively (Jimenez, et al., 2001). This finding may
suggest that ErbB2 could be an effective therapeutic target for the inhibition of cancer cell
progression after treatment of primary tumors.

Gefitinib (brand name, Iressa) is a small molecular EGFR tyrosine kinase inhibitor that
selectively inhibits EGFR. Several clinical trials with gefitinib are now in progress. The results
of Cancer and Leukemia Group B (CALGB) study number 9012 showed 23 confirmed objective
responses (7 complete responses and 16 partial responses) in 54 assessable patients. The
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tively. Based on these results, the authors concluded that outcomes and survivals were not
significantly superior to those of previously reported results with GC alone (Philips et al.,
2009).However, there is a report that response rate and overall survival after combination
therapy with gefitinib and GC were similar to the rates using GC therapy alone in 54 chemo‐
therapy-naïve patients with locally advanced and metastatic urothelial cancer (Philips, et al.,
2009).

Cetuximab (Erbitux) is an intravenously administered monoclonal antibody against the EGFR.
In animal studies, cetuximab showed anti-growth activity against bladder cancer cells
(Perrotte, et al., 1999). Furthermore, the combination of paclitaxel and cetuximab exhibited
synergistic growth inhibition by suppression of proliferation and enhancement of apoptosis
in tumor and endothelial cells in a murine model of metastatic human bladder cancer (Inoue,
et al., 2000). Thus, cetuximab is expected to have a remarkable anti-tumor effect in patients
with advanced bladder cancer. A study comparing the effects of GC with or without cetuximab
in bladder cancer patients with locally advanced or metastatic disease is currently underway
in a phase II setting.

Trastuzumab (Herceptin) is a recombinant humanized monoclonal antibody to ErbB2 (HER2).
This drug has been reported to be safe and effective in other types of malignancies, especially
breast cancer (Burstein, et al., 2003). For treating bladder cancer, a phase II study of the effects
of second-line treatment with trastuzumab monotherapy in patients with metastatic urothelial
cancer and HER2 overexpression was completed in Germany (protocol number ML17599). In
addition, a multicenter phase II trial investigating trastuzumab together with paclitaxel,
carboplatin, and gemcitabine was conducted in 57 patients with advanced urothelial cancer
having positive expression of ErbB2 as determined by immunohistochemistry (CCUM-9955)
(Hussain, et al., 2007). This study showed a 70% response rate, and median times to progression
and survival were 9.3 months and 14.1 months, respectively. Interestingly, Trastuzumab is
being evaluated in combination with paclitaxel and radiotherapy as a bladder conservation
strategy.

Lapatinib is an oral small-molecule dual tyrosine kinase inhibitor of the EGFR and ErbB2. It
produces a remarkable response and anti-tumor effect in patients with urothelial cancer.
Synergic anti-tumor effects with various chemotherapy regimens are known to occur in
urothelial cancer cell lines (McHugh, et al., 2007). This phenomenon may enable reduced-dose
chemotherapy and/or reduced toxicity. On the other hand, a phase II study by Wulfing et al.
(2005) showed disappointing results in that only 2 out of 59 study patients showed partial
response when treated with lapatinib. Further studies and trials are necessary to obtain details
with regard to the optimal use and efficacy of lapatinib.

Erlotinib (Tarceva) is an oral small-molecule EGFR tyrosine kinase inhibitor. It has character‐
istics that inhibit activities of wild-type EGFR and mutant EGFRvIII without decreasing the
level of EGFR protein in a reversible manner (Zureikat and McLee, 2008). This agent has been
approved for metastatic non-small cell lung cancer and metastatic pancreatic cancer. In bladder
cancer, several clinical trials, including a phase II study, are exploring the use of erlotinib as a
prevention strategy or as neo-adjuvant therapy (NCT00749892).
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6.3. Vasculogenesis-related factors

Bevacizumab (Avastin) is a monoclonal antibody that acts as a VEGF inhibitor. It can bind all
VEGF isoforms. Bevacizumab is approved by the FDA for treating various solid tumors,
including colorectal cancer, breast cancer, and renal cell carcinoma. In urothelial cancer, a
phase II trial is being conducted on the use of cisplatin, gemcitabine and bevacizumab in
combination for metastatic urothelial cancer (Cancer: Hoosier Oncology Group, study number
GU04-75). A study by Hahn et al. (2011) showed that the best response, according to the
Response Evaluation Criteria in Solid Tumors, was complete response in 8 patients (19%) and
partial response in 23 patients (53%), out of 43 patients with metastatic or unresectable disease.
In addition, it showed that the median progression-free survival was 8.2 months, with a
median overall survival time of 19.1 months. Based on these results, these investigators
concluded that the full risk and benefit profile of this treatment in patients with metastatic
urothelial cancer will be determined by an ongoing phase III trial. In another study, phase II
trials are evaluating a neo-adjuvant GC regimen on the use of dose-dense (DD)-MVAC +
bevacizumab followed by radical cystectomy in patients with MIBC and patients with
resectable urothelial cancer of the bladder (NCT-00506155). An interesting pre-clinical trial
involving bevacizumab is being conducted, testing a combination of photodynamic therapy
(well-known as an emerging diagnostic and therapeutic strategy in bladder cancer [Patel, et
al., 2011]), bevacizumab, and fluorescence confocal endomicroscopy as a promising cancer
treatment approach (Bhuvaneswari, et al., 2010). A similar treatment strategy using a combi‐
nation of photodynamic therapy and molecular targeted therapy is being investigated by
another study group using bevaxizmab and cetuximab in a murine bladder cancer model
(Bhuvaneswari et al., 2011).

Thrombospondin (TSP)-1 is well-known as a representative molecule having anti-angiogenic
properties under physiological and pathological conditions. In bladder cancer, TSP-1 expres‐
sion has been negatively associated with malignant aggressiveness. (Grossfeld, et al., 2003).
This report also showed decreased expression of TSP-1 has been observed to predict poor
survival in patients with bladder cancer. Interestingly, these investigators also found that
alteration of p53 may decrease TSP-1 expression in bladder cancer. From these results, TSP-1
is speculated to be an effective and potential target for novel therapies. Actually, a plan for
TSP-1-target therapy has already been in existence and has been investigated in preclinical
studies, including a phase I trial (Taraboletti, et al., 2010; Li, et al., 2011). Unfortunately, such
a clinical trial is not being conducted in patients with MIBC.

7. Conclusions

In this paper, we described various trials and newly treatment strategies for patients with
MIBC. In present, choice of all or a part of operation, chemotherapy, and radiation therapy is
major treatment strategy for these patients. In addition, molecular-targeted therapy will be
added to these conventional therapies in near feature. However, many urologist, medical
oncologist, and radiation oncologists have a feeling that the near future strategies may not
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breast cancer (Burstein, et al., 2003). For treating bladder cancer, a phase II study of the effects
of second-line treatment with trastuzumab monotherapy in patients with metastatic urothelial
cancer and HER2 overexpression was completed in Germany (protocol number ML17599). In
addition, a multicenter phase II trial investigating trastuzumab together with paclitaxel,
carboplatin, and gemcitabine was conducted in 57 patients with advanced urothelial cancer
having positive expression of ErbB2 as determined by immunohistochemistry (CCUM-9955)
(Hussain, et al., 2007). This study showed a 70% response rate, and median times to progression
and survival were 9.3 months and 14.1 months, respectively. Interestingly, Trastuzumab is
being evaluated in combination with paclitaxel and radiotherapy as a bladder conservation
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Lapatinib is an oral small-molecule dual tyrosine kinase inhibitor of the EGFR and ErbB2. It
produces a remarkable response and anti-tumor effect in patients with urothelial cancer.
Synergic anti-tumor effects with various chemotherapy regimens are known to occur in
urothelial cancer cell lines (McHugh, et al., 2007). This phenomenon may enable reduced-dose
chemotherapy and/or reduced toxicity. On the other hand, a phase II study by Wulfing et al.
(2005) showed disappointing results in that only 2 out of 59 study patients showed partial
response when treated with lapatinib. Further studies and trials are necessary to obtain details
with regard to the optimal use and efficacy of lapatinib.

Erlotinib (Tarceva) is an oral small-molecule EGFR tyrosine kinase inhibitor. It has character‐
istics that inhibit activities of wild-type EGFR and mutant EGFRvIII without decreasing the
level of EGFR protein in a reversible manner (Zureikat and McLee, 2008). This agent has been
approved for metastatic non-small cell lung cancer and metastatic pancreatic cancer. In bladder
cancer, several clinical trials, including a phase II study, are exploring the use of erlotinib as a
prevention strategy or as neo-adjuvant therapy (NCT00749892).
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trials are evaluating a neo-adjuvant GC regimen on the use of dose-dense (DD)-MVAC +
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major treatment strategy for these patients. In addition, molecular-targeted therapy will be
added to these conventional therapies in near feature. However, many urologist, medical
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adequate to give satisfaction for outcome and survival in MIBC disease. So, numerous
investigators keep on studying the pathological features and molecular mechanism of bladder
cancer to break through the difficulty of the present strategies. We hope more detailed basic
studies and precise clinical trials in bladder cancer.
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adequate to give satisfaction for outcome and survival in MIBC disease. So, numerous
investigators keep on studying the pathological features and molecular mechanism of bladder
cancer to break through the difficulty of the present strategies. We hope more detailed basic
studies and precise clinical trials in bladder cancer.
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