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Preface

Objectives of this book

This book presents advanced acoustic analysis for complex scene analysis, understanding and
monitoring soundscape, that is soundscape semiotics. The different chapters show that efforts
are still to be produced to integrate robust processing and machine learning algorithms for
scaled soundscape semiotics. They demonstrate the need for standardization within various
fields like acoustic imaging, psycho-acoustics, computational auditory scene analysis and
bioacoustics.

Acoustic mining processes play a major role in communication and exploration for most of the
animals. They enable quick load and transfer of information tackling the reduced visibility and
the long distances. When animals need to grasp a sound target in presence of competing
signals, they may select specific features: a crucial process for their survival. For example, bats
have a sensory apparatus very different from human being. They perceive the world primarily
by sonar (echolocation), detecting the reflections from objects, of their own subtly modulated,
high-frequency shrieks. Their brain correlates the outgoing impulses with the subsequent
echoes. It enables bats to make precise localization and categorization from acoustics, estima‐
tion of distance, size, shape, motion, and texture of all kind of targets, obstacles, preys. It yields
to comparable scene analysis to those human being get by vision. At much lower resolution,
blind people are able to detect objects near them by a form of human-sonar, using vocal clicks
or taps of a cane.

In the last decades, computational acoustic scene analysis was mostly dedicated to human
audition, however bioacoustics is opening new paradigms in soundscape semiotics. Several
methods are developed from mono or multiple microphones array, and are important in many
applications, like for environmental conservation programs, and the international Scaled
Acoustic Biodiversity Big Data Project SABIOD1, that involves together major laboratories in
signal processing, speech processing, machine learning and bioacoustics. The aim of this book
is to demonstrate methods for soundscape semiotics, a new science, to detect and extract
characteristics from specific sounds, to localize their source, and if possible, to reveal neuro‐
physiological cues.

1 SABIOD Scaled Acoustic Biodiversity Project : http://sabiod.univ-tln.fr
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Worldwide challenges in acoustic categorization and localization

Recently, in 2013, three international challenges initiated objective evaluation of automatic
separation and categorization of complex natural sounds: the calls of different bird species
(that is the 'cocktail party' paradigm): the ICML4B2 and NIPS4B3 workshop challenges4 [1, 2],
and the MLSP 2013 challenge. In 2014, a bigger bird supervised categorization challenge
(LifeClef) runs on 500 species of the amazon forest5 over 14k records. Because the target are
not always know a priori, due to the considerable amount of data generated by simple and
efficient analog recorders, unsupervised soundscape semiotics methods have an increasing
importance and are central into the 2014 ICML workshop 'Unsupervised Learning from
Bioacoustic Big Data' (ICML uLearnBio6).

Other needs of soundscape semiotics concern sub-marine, like marine mammals monitoring
using passive bioacoustics. One the most demonstrative experiment was presented during the
2005 DCL workshop [3] from five ocean bottom mounted (-1500m) widely spaced hydro‐
phones (400 m distant) from NATO. An efficient algorithm [4, 5, 6, 7, 8] is based on the principle
of transitivity of Time Delay of Arrival (TDOA) computed from correlation of each couple of
hydrophones. It results in a high precision track without false alarm, robust to multiple sources
[5, 6, 7, 8] illustrated in fig. 1, 2, 3.

Figure 1. Video of precise 3D whale tracking by passive acoustics method, processed on the 2005 DCL challenge,
NATO Bahamas recordings [4,6,8]. This video shows, without post process, the accurate estimations of depth and ani‐
mal behavior in 4D (space and time). Available online video : http://sabiod.univ-tln.fr/tv [we thank P. Cosentino and L.
Hauc for their help in this representation].

2 http://sabiod.univ-tln.fr/icml2013 [2]
3 http://sabiod.univ-tln.fr/nips4b [1]
4 Data of these challenges are still available for researches, see also Dufour et al. in this book or [1,2]
5 http://www.imageclef.org/2014/lifeclef/bird
6 http://sabiod.univ-tln.fr/ulearnbio/
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Figure 2. Multiple Whale 3D tracking by passive acoustics, during half an hour, computed [5,6,8] from Bahamas data set
2003. Each symbol corresponds to 1 of the 4 whales diving in the area. They are clearly and continuously tracked show‐
ing correlated behaviors. Video at http://sabiod.org/tv

Localization passive acoustics methods allow also to detect and track events on short base
hydrophone array, as shown on 2 meters Nemo Onde array (INFN, CIBRA and the NEMO
collaboration group). Some of these recordings were distributed in the 2009 DCL challenge.
Taking into account the problem of data association, called the Rao-Blackwellized Monte Carlo
data association (RBMCDA), a method allows to locate several sperm whales with a reasonable
accuracy [7] illustrated Fig 3.

Figure 3. Whale 3D tracking results from ETNA area recorded in 2005 on NEMO 2m short base hydrophone array. We
see clearly 2 Physeter catodon diving together from -400m to -1000 m in 5 minutes [6,7]. [We thank G. Pavan & Rico‐
bene for NEMO recordings from INFN & CIBRA].
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Perspectives

The source localization can then be joined to acoustic categorization [9], in several applica‐
tions, as in speech processing. One of the first cocktail party speech recognizer was based on
this paradigm [10]. The book is presenting most advanced cognitive based models for speech
and/or soundscape analyses.

We have shown some examples of the soundscape semiotics challenges, within a general
framework merging signal processing, pattern recognition and machine learning. Many of these
activities are taking place into projects which aims to detect, cluster, classify and index acoustic
big data in various ecosystems, at different space and time scales, in order to reveal informa‐
tion on the health of an ecosystem, yielding to new biodiversity insights. This scaled acoustic
data science is a novel challenge that requires new methods.

Book organization

The chapters of this book assemble together auditory scene analysis, bioacoustics and human
auditory system models. They have been selected for their high level and originality. The book
is divided in two sections. First section - Advanced Signal Processing Methodologies for
Soundscape Analysis contains 5 chapters -, and second section - Human Hearing Estimations
and Cognitive Soundscape Analysis 3 chapters. The target audience comprises scholars and
specialists in the field.
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Chapter 1

Source Separation and DOA Estimation for
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1. Introduction

In human-machine communication the separation of a target speech signal and localization of
it in noisy environments are very important tasks. [1] For carrying out these tasks recent
advanced sensor array signal processing is promising technology. [2] It utilizes the collection
of multi-channel acoustic data by an array of microphones for detecting and producing output
signals which is much more intelligible and suitable for communication and automatic speech
recognition. [3]

BSS problem

Blind source separation (BSS) aims to estimate source signals by only using their mixed signals
without any a priori information about mixing process and acoustic circumstances. The
cocktail-party problem is one of the typical BSS problems. [1] Basically, the BSS problem can
be solved by exploiting intrinsic properties of speech signals. Depending on the inherent
properties there have been proposed lots of methods for BSS problems on speech signals.
Among them the most widely applied approaches are the following two.

1. Independent component analysis (ICA)[4]-[8], and

2. Time-Frequency sparseness of source signals [9]-[14].

The ICA-based separation relies on statistical independence of speech signals in time-domain [5]
[7] as well as in frequency-domain [6]. In addition, [8] proposed a dynamic recurrent separation
system by exploiting the spatial independence of located sources as well as temporal depend‐
ence. On the other hand the second approach exploits the sparseness of speech signals in time-
frequency (T-F) domain where only small number of T-F components are dominant in
representing a speech signal. The T-F sparseness leads the disjoint property of T-F domain

© 2014 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.
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components, called W-disjoint orthogonality (WDO) property [11] [12], between speech
signals. It means that at most one source dominates at every T-F points, in another word;
different speech signals rarely generate the same frequency at the same time.

Though ICA approach performs well even in a reverberant condition, it is difficult to solve the
underdetermined case in which the number of sources is greater than the number of sensors.
Additionally, the frequency-domain ICA [6] the permutation ambiguity of its solution is a
serious problem. It needs to align the separated frequency components that originate from the
same source.

The T-F masking method which is the most popular sparseness-based approach is the topic
concerned in this chapter. The representative method is known as DUET (Degenerate Unmix‐
ing Estimation Technique) [11]. A flow of conventional sparseness-based separation can be
summarized as follows.

Sparseness-based T-F masking

Observed signals in T-F domain:

Transform time domain acoustic observations during few seconds to the T-F domain signals
by applying short time Fourier transform (STFT) where a sparse representation of speech signal
is obtained. [15] Thus the T-F components of a speech signal distribute in T-F domain without
overlapping with T-F components of other speech signals.

Features of T-F cells:

As known in auditory scene analysis interaural time differences and level differences are
significant spatial features of sources. [1] These localization cues are estimated from the
differences in the direction and the distance of speakers. Actually, in microphone array the
geometric parameters of sources can be obtained from phase differences and attenuation ratios
at the mixture T-F cells.

Clustering T-F cells:

Under the WDO assumption the distribution of feature vectors obtained at all T-F cells makes
as many clusters as the number of sources. The essential task of separation therefore turns out
to cluster the feature vectors. The preliminary clustering method adopted in [9] - [12] is to make
the histogram of features and to find the peaks corresponding the sources. Each T-F cell in the
mixed signal is thereby associated with one peak depending on the distance in the cell’s feature
space.

Masking T-F cells:

Utilizing the clustering results individual binary masks are applied to the T-F domain
spectrogram to detect the components that originate from individual sources.

Inverse transform:

A set of masked T-F components are inversely transformed by STFT and then it provides
restored speech signal.

Soundscape Semiotics - Localisation and Categorisation4

Remarks:

1. T-F domain sparseness in speech signals is also employed as a separation principle in the
context of single channel or monaural signal source separation problem where harmonic
structure in spectrogram is crucial for segregation.[16] [17]

2. Associated with the features of T-F cells conventionally used features are summarized in
[13] and the features are evaluated from the separation performance point of view.

3. Clustering scheme in T-F masking would be crucial for high separation ability. Subsequent
studies after DUET-like approaches [11][12], maximum-likelihood (ML) based method for
real-time operation [18], k-means algorithm or hierarchical clustering, and EM algorithm
[19] have been proposed. The method called MENUET [13] applies k-means algorithm to
a vector space consisting of the signal level ratio and the frequency-normalized phase
difference with appropriately weighting terms for effective clustering. They solve the
optimization problem by adopting an efficient iterative update algorithm. In [14] k-means
algorithm is applied clustering spatial features for arbitrary sensor array configuration
even with wider sensor distance where spatial aliasing may occur. Their clustering
procedure is divided into two steps, the first one of which is applicable to the non-aliasing
or lower frequency band and the second one treats the remaining aliasing occurred
frequency band.

DOA estimation

Localization of acoustic sources using microphone array system is a significant issue in many
practical applications such as hands-free phone, camera control in video conference system,
robot audition, and so on. The latter half of this chapter focuses on the Direction-Of-Arrival
(DOA) estimation of sources. Since this monograph interests in speech signals, we make no
mention of the methods addressed for narrow-band signals, for instance in radar/sonar
processing. There have been proposed a large number of DOA estimation methods for
broadband signals [20], [21]. Typical array processing approaches are;

1. Generalized Cross-Correlation (GCC) methods [22]

2. Subspace approaches using spatial covariance matrix of observed signals [23]

3. T-F domain sparseness-based approaches [11],[24]-[27]

4. ICA separation based approaches [28]

The first category of GCC method is to estimate the delay time that maximizes a generalized
cross-correlation function between the filtered outputs of the acquired signals at microphones.
The phase transform (PHAT) method [22] exploits the fact that the Time-Delay-Of-Arrival
(TDOA) information is conveyed in the phase. Although GCC methods are usually performed
well and are also computationally efficient for single source case, it does not cope with multiple
sources case in which this chapter interests.

The second category is the subspace analysis applying a narrowband signal model. The
analysis uses the properties in the spatial covariance matrix of multichannel array observa‐
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tions. The MUSIC-like algorithms are well-known methods for narrowband target signals. For
broadband signals such as speech, several frequency-domain approaches have been proposed.
The subspace-based approaches for small number of sensors have to overcome two drawbacks,
one of which is the limited precision for DOA estimation, and the other is that it is unable to
deal with the underdetermined case.

Sparseness-based approaches

The third category of the DOA estimation algorithms is based on sparseness of speech signals
and is closely related to the BSS. Source sparseness assumption implies WDO or its weaker
condition TIFROM [24]. These conditions are the crucial properties to solve DOA problems
for underdetermined multiple sources. The BSS approach associated with these assumptions
is a group of T- F masking framework. In DUET-like methods [9]-[14], the delay time or the
frequency-normalized ratio of the frequency-domain observations at each T-F point is used to
compute the TDOA. An alternative DOA estimation method proposed by Araki et al. [27], in
the context of k-means algorithm, estimates DOA as the individual centroid of each cluster of
normalized observation vectors corresponding to an individual source. The DEMIX [25]
algorithm introduces a statistical model in order to exploit a local confidence measure to detect
the regions where robust mixing information is available. The computational cost of DEMIX
would be high due to performing the principal component analysis for every local scatter plot
of observation vectors at individual T-F points.

For addressing robust cocktail-party speech recognitions the localization cue such as TDOA
or spatial direction evaluated at each T-F cell has a central role. As in [29][30], integrating
approaches the segregation/localization of sound sources and speech recognition against
background interferences are significant CASA (Computational Auditory Scene Analysis)
front-ends.

DOA Tracking

Not only estimating but also tracking sound sources draws lots of attentions recently in robot
auditory systems. For instance, speaker’s DOA tracking by microphone array mounted on
mobile robot is the problem of moving sources and moving sensors.

BSS and DOA Problems:

The underlying BSS and DOA estimation problems addressed in this chapter are listed as
follows:

a. Use of a pair of microphones

b. Multiple simultaneously uttered speech signals under the assumption that the number of
sources is known a priori

c. Underdetermined cases, where the sources outnumber the sensors

d. The inter-sensor distance is bounded so as to avoid spatial aliasing (for instance, less than
4 cm spacing for an 8 kHz sampling rate)

Soundscape Semiotics - Localisation and Categorisation6

While stereophonic sensor is the simplest sensor array, the study of how to improve the
separation performance and to obtain accurate DOA by a pair of microphones is meaningful
because any complex array configuration can be considered as an integration of these.

The rest of this chapter is organized as follows. In section 2, problems of underlying BSS and
DOA estimation are described in detail. The proposed BSS method based on a frame-wise
scheme is introduced in section 3. Section 4 describes a DOA estimation algorithm by using T-
F cell selection and the kernel density estimator. The last section concludes this chapter.

2. Problem descriptions

2.1. Observation model

Source mixing models in time domain and its T–F domain description are described as follows.
All discrete time signals are sampled version of analog signals with sampling frequency fS.
Suppose N source signals s1(t), s2(t), ⋯ , sN (t) are mixed by time-invariant convolution and
the observed signals x1(t), x2(t), ⋯ , xM (t) at M sensors with omni-directive characteristic are
described as:
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where h mi(τ) represents the impulse response from i-th source to m-th sensor. Observed signals
xm(t)  (m=1~M) are converted into T–F domain signals Xm k , l  by using L-point windowed
STFT as written by
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where r is dummy variable in convolution sum operation, win(r) is a window and S is the
window shift length. Here, we apply half window size overlapping transformation, namely S
= L/2 in (2). Transformed T–F mixture model of Eq.(1) can be described by the instantaneous
mixtures at each time frame index k and frequency bin l.
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where Hmi l  is the frequency response (DFT) of h mi(t), Si k , l  is the windowed STFT repre‐
sentation of i-th source signal si(t), and the point k , l  is called “T-F cell” in this chapter.
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Assuming an anechoic mixing, the source signals which we want to recover are alternatively
redefined as the observed signals at the first mixture x1 k , l . In this case, the following mixing
models in the T–F domain are henceforth considered without loss of generality.
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where Si k , l  and Hmi l  are different from Si k , l  and ℋmi l  in (3), Si k , l  is the i-th source
signal observed at the first sensor (m=1), and Hmi l  eventually represents the DFT domain
operation of the transfer function with relative attention and delay between m-th and the first
sensors.

From then on, consider the mixture of two sources S1 k , l  and S2 k , l  which are received at
a pair of microphones. Their mixture system (4a) and (4b) can thus be expressed as
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(5)

2.2. Basic assumptions

As stated in Section 1, the WDO is commonly supposed in sparseness-based separation
approaches. At first, we denote the T-F domain Ω on which S1 k , l  and S2 k , l  are defined

{ }: , , 0 ,k l k K l Bé ùW = = Îë û : (6)

where B : = l1, L / 2  is the frequency band after deleting lower frequency components which
do not exist in actual speech signals, and l1 = f 1L / f s  means the Gauss floor function, and f 1
is the analog lowest frequency of speech components such as 80Hz in later experiments.

Next, define the T-F supports Ωi(i =1, 2) of Si k , l (i =1, 2) by

{ }: , , 1,2i ik l S k l ieé ù é ùW = > =ë û ë û (7)

where ε(>0) is a sufficiently small value. Although, in theory, the support of Si k , l (i =1, 2) is
defined by the condition |Si k , l | ≠0, Eq. (7) gives a set of components of actual signals except
noise-like ones satisfying |Si k , l | <ε.

Soundscape Semiotics - Localisation and Categorisation8

We may consequently express the WDO assumption between two source signals s1(t) and s2(t)

by the disjoint condition

( )1 2 empty setfW W =I (8)

This can equivalently be represented as follow.

1 2, , 0      at any ,  S k l S k l k lé ù é ù é ù=ë û ë û ë û (9)

The verification of above WDO condition for actual speech signals is performed in Fig. 1 where
(a) and (b) show spectrograms of two speech signals in the T-F domain, and (c) shows their
multiplication in which we see rarely overlapping between two spectrograms.

Obviously, the supports of X1 k , l  and X2 k , l  are coincident and it, denoted by ΩX , can be
given as

Figure 1. WDO property of two real speech signals
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The verification of above WDO condition for actual speech signals is performed in Fig. 1 where
(a) and (b) show spectrograms of two speech signals in the T-F domain, and (c) shows their
multiplication in which we see rarely overlapping between two spectrograms.

Obviously, the supports of X1 k , l  and X2 k , l  are coincident and it, denoted by ΩX , can be
given as

Figure 1. WDO property of two real speech signals
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1 2XW = W WU (10)

In addition the following null component domain, denoted by ΩN , is also introduced as

        1 2 : complementary set of N X X XW = W = W WU (11)

The WDO condition (8) accordingly derives that the T–F domain representation of the mixed
signal X1 k , l , given by Eq.(5), can be decomposed into the following three parts with no
overlapping in Ω.
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2.3. Source separation

Under the WDO assumption expressed in (12), the binary masking in the T–F domain is
performed as follow:

Clustering the T-F cells in the support ΩX  of the mixture X1 k , l  into two sub-regions Ω1 and
Ω2, the separated source estimates in T-F domain, Ŝ 1 k , l  and Ŝ 2 k , l , are obtained by
applying the masks

( )1 ,
, 1,2

0 .
i

i
k l

M k l i
otherwise

ì é ùÎWï ë ûé ù = =íë û
ïî

(13)

on X1 k , l  as follows.

$ ( )1, , , 1,2i iS k l M k l X k l ié ù é ù é ù= =ë û ë û ë û (14)

Clustering features

The separation task is to classify T–F cells composing the support ΩX  of X1 k , l  into either
Ω1 or Ω2. A pair of X1 k , l  and X2 k , l  is used to characterize a T-F cell k , l  at which spatial
features are introduced, and the clustering process is performed in the estimated feature space.

Effective features must be the signal level or attenuation ratio defined by

Soundscape Semiotics - Localisation and Categorisation10

1

2

,
, :

,
X k l

k l
X k l

a
é ùë ûé ù =ë û é ùë û

(15)

and the arrival time difference defined by the frequency-normalized phase difference (PD)
between X1 k , l  and X2 k , l  as

, : ,
2 s

Lk l k l
f l

d f
p

é ù é ù=ë û ë û (16)

where ϕ[k, l] is the PD as defined by

1 2, , ,k l X k l X k lf é ù é ù é ù= Ð -Ðë û ë û ë û (17)

Other features used for characterizing T-F cells are listed in [13]as well as the attenuation ratio
modifications. It is noted that the attenuation ratio would not give distinctive difference for
short distance microphone array. In our experimental setup, for example, the distance between
microphones is 4cm in order to avoid spatial aliasing at 8kHz sampling rate.

Clustering scheme

For given features at T-F cells in ΩX , clustering of these is the next step. In DUET where a pair

of microphones is used, the two dimensional histogram of feature vectors {α k , l , δ k , l }T

within a time interval, such as for several seconds, is generated and the clustering is performed
by finding the maximum peaks which are corresponding to sources. When the attenuation
feature is omitted the clustering problem is solely performed based on time delay histogram
distribution. The dimension of feature space will be higher for array configuration with many
microphones than two. For these cases more sophisticated clustering scheme such as k-means
algorithm or EM algorithm [19] should be adopted.

Inverse STFT

The final stage of the separation process is to obtain time domain separated signals ŝ i(t) (i =1, 2)
by applying the inverse STFT.

3. Sound source separation

3.1. Phase–difference vs. frequency data

As a T-F cell’s feature depending on the spatial location difference of sources, our strategies
exploit a frame-wise, namely, a time sequence of phase difference of observations versus

Source Separation and DOA Estimation for Underdetermined Auditory Scene
http://dx.doi.org/10.5772/56013

11



1 2XW = W WU (10)

In addition the following null component domain, denoted by ΩN , is also introduced as

        1 2 : complementary set of N X X XW = W = W WU (11)

The WDO condition (8) accordingly derives that the T–F domain representation of the mixed
signal X1 k , l , given by Eq.(5), can be decomposed into the following three parts with no
overlapping in Ω.

1 1

1 22

, ,
, ,,

,0 N

S k l k l
X k l k lS k l

k l

ì é ù é ùÎWë û ë ûïïé ù é ù= ÎWé ùíë û ë ûë û
ï é ùÎWï ë ûî

(12)

2.3. Source separation

Under the WDO assumption expressed in (12), the binary masking in the T–F domain is
performed as follow:

Clustering the T-F cells in the support ΩX  of the mixture X1 k , l  into two sub-regions Ω1 and
Ω2, the separated source estimates in T-F domain, Ŝ 1 k , l  and Ŝ 2 k , l , are obtained by
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frequency (PD-F) distribution. In a k-th frame, the point plot of the PD-F is defined as a

collection of two-dimensional vectors at k-th frame pk (l)as

( ) { }: , , , [1, ]
T

k l l k l l B k Kf é ù= Î Îë ûp (18)

An example of PD-F in (l , ϕ)-plane and its time sequence for the mixture of two speech signals

are shown in Fig.2 (a) and (b) respectively.

(a) PD-F plot 

Figure 2. PD-F and time sequence of PD-F (Blue and red points respectively corrrespond invividual source compo‐
nents)

The relationship between the gradient β of a vector in PD-F plane defined in Eq.(18) and the

source direction θ is: [33]
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2 sin  sf d
L c
pb qæ ö

= ç ÷
è ø

(19)

where d is the distance between the sensors, c is the sound velocity, and θ is the direction of
source. Here θ =0 corresponds to the broadside direction and the term (d / c)sinθ represents
the wave arriving delay between microphones. For example, the dot distribution in Fig.2 (a)
concentrates along two lines corresponding to two source directions. By determining the
gradients of these lines two directions of sources are estimated from the relationship of (19).

The conventionally utilized features associating with delay time at each T-F cell can be
estimated from the frequency normalization of PD-F dot corresponding to individual T-F cells.
Unlike the conventional delay-like features PD-F dots keep a linear dot distribution on the
plane and it is effectively utilized in both following source separation and direction finding
methods.

3.2. Frame categorization

Fig. 3(a) shows two simultaneously uttered speech signals. In the figure four frame time points
k1 - k4 indicated by the red rectangular parts are shown as the following four types of source
signal activity states:

Frame k=k1; No source signal is active (Non Source Active:NSA)

Frame k=k2; Only the first source is active (Single Source SSA)

Frame k=k3; Only the second source is active (Single Source SSA)

Frame k=k4; Both sources are active (Double Source Active:DSA)

Here we may define three sets of time-frame indeces as follows:

The whole set of time-frames, denoted by K:={1,.....,K}, is categorized into three sets with no
overlapping.

NSA SSA DSA= U UK K K K (20)

In addition, we define the following Sourse Active(SA) frame index set.

 SA SSA DSA= UK K K (21)

Source Separation and DOA Estimation for Underdetermined Auditory Scene
http://dx.doi.org/10.5772/56013

13



frequency (PD-F) distribution. In a k-th frame, the point plot of the PD-F is defined as a

collection of two-dimensional vectors at k-th frame pk (l)as

( ) { }: , , , [1, ]
T

k l l k l l B k Kf é ù= Î Îë ûp (18)

An example of PD-F in (l , ϕ)-plane and its time sequence for the mixture of two speech signals

are shown in Fig.2 (a) and (b) respectively.

(a) PD-F plot 

Figure 2. PD-F and time sequence of PD-F (Blue and red points respectively corrrespond invividual source compo‐
nents)

The relationship between the gradient β of a vector in PD-F plane defined in Eq.(18) and the

source direction θ is: [33]

Soundscape Semiotics - Localisation and Categorisation12

2 sin  sf d
L c
pb qæ ö

= ç ÷
è ø

(19)

where d is the distance between the sensors, c is the sound velocity, and θ is the direction of
source. Here θ =0 corresponds to the broadside direction and the term (d / c)sinθ represents
the wave arriving delay between microphones. For example, the dot distribution in Fig.2 (a)
concentrates along two lines corresponding to two source directions. By determining the
gradients of these lines two directions of sources are estimated from the relationship of (19).

The conventionally utilized features associating with delay time at each T-F cell can be
estimated from the frequency normalization of PD-F dot corresponding to individual T-F cells.
Unlike the conventional delay-like features PD-F dots keep a linear dot distribution on the
plane and it is effectively utilized in both following source separation and direction finding
methods.

3.2. Frame categorization

Fig. 3(a) shows two simultaneously uttered speech signals. In the figure four frame time points
k1 - k4 indicated by the red rectangular parts are shown as the following four types of source
signal activity states:

Frame k=k1; No source signal is active (Non Source Active:NSA)

Frame k=k2; Only the first source is active (Single Source SSA)

Frame k=k3; Only the second source is active (Single Source SSA)

Frame k=k4; Both sources are active (Double Source Active:DSA)

Here we may define three sets of time-frame indeces as follows:

The whole set of time-frames, denoted by K:={1,.....,K}, is categorized into three sets with no
overlapping.

NSA SSA DSA= U UK K K K (20)

In addition, we define the following Sourse Active(SA) frame index set.

 SA SSA DSA= UK K K (21)

Source Separation and DOA Estimation for Underdetermined Auditory Scene
http://dx.doi.org/10.5772/56013

13



0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

-20

-10

0

10

20

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

-10

-5

0

5

10

s1(t)

s2(t)

kk1 k2 k3 k4

(a) Two speech signals 

0 100 200 300
Frequency bin

0

2

1

3

PD
  [

ra
d]

source 1
source 2

0 100 200 300
Frequency bin

0 100 200 300
Frequency bin

0 100 200 300
Frequency bin

0

2

1PD
  [

ra
d]

source 1
source 2

3

0

2

1

3

PD
  [

ra
d]

source 1
source 2

0

2

1

3

PD
  [

ra
d]

source 1
source 2

(b) k1-th frame NSA frame (c) k2-th frame  SSA frame

(d) k3-th frame SSA frame (e) k4-th frame DSA frame

Fig. 3 Frame Classification (NSA,SSA,DSA)
Figure 3. Frame categorization (NSA, SSA, DSA)

Above frame categorization suggests the source separation algorithm consisting of the
following two parts:

• Assign each T-F component at SSA frame to either source by identifying the direction.

• Apply separation algorithm solely to DSA frames

The detail of these will be described in the next section.
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3.3. Source separation algorithm

Outline of the method

The outline of the separation method using PD-F plot is shown in Fig.4 and summarized.

Step1: Discriminate SA from NSA

The following average power at a frame is employed to check the presence of speech signal at
the frame.

( ) 2
1

1

1: ,
2 1 l B

E k X k l
L l Î

é ù= ë û- + å (22)

Here, the threshold operation is valid for basic voice activity detection as follow.

Figure 4. Flow of source separation method
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( ){ }SA SAk E k Th= >K (23)

where ThSA is determined by a pre-experiment of noise level estimate during no utterance. In
later experiments, we applied the following formula.

0 2SA ETh E s= + (24)

where E0 is the average noise power estimate and σE  is the standard deviation estimate given
by respectively.

2
0 1

1: ,
NSAkNSA

E X k l
Î

é ù= ë ûå
kk (25)

( )( )2
0

1:
NSA

E
kNSA

E k Es
Î

= -å
kk (26)

Step 2-1: Classify SA into SSA and DSA

At each k ∈ KSA PCA is applied to the set of vectors pk (l) by computing the following 2 × 2
covariance matrix.

( ) ( ) ( ) ( )
( ) ( )

11 12

1 21 22

1: .
2 1k k k

l B

R k R k
l l

L l R k R k
T

Î

é ù
= = ê ú

- + ê úë û
åR p p (27)

Denoting the eigenvalues of Rk  by λ1(k) and λ2(k) (assume λ1(k) ≥ λ2(k)), the ratio of the principal
eigenvalues defined by

( ) ( )
( )

2

1
: . 

k
r k

k
l
l

= (28)

is introduced to discriminate the SSA frames from the DSA. As shown in Fig.3 (c), (d), PD-F
vector distribution at a SSA frame tends to concentrate around the first principal axis. This
observation leads to the following discrimination of SSA from DSA frames and the estimation
of the source directions.

The following criterion is applied to detect SSA frames.
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( ){ }SSA SSAk r k Th= <K (29)

where ThSSA is determined experimentally.

Step 2-2:DOA estimation and SSA identification

Define the normalized eigenvector of the first principal eigenvalue as

( ) ( )
( )1

cos
:  

sin
k

k
k

b

b

é ù
= ê ú
ê úë û

e (30)

where β(k) is the gradient of the principal axes at k-th frame. The histogram of the set

( ){ }, SSAk kb ÎK (31)

will have two peaks which are corresponding two source directions θ1 and θ2 caluculated by
Eq. (19). By clustering the set of θ into two groups according to the distance from θ1 and θ2,
each SSA frame in KSSA is classified into each one of the sources from the direction θ1 and θ2.

Double Source Active (DSA)

For given set of DSA frames KDSA, the clustering of the vectors pk (l), l∈B into two sets is the
problem. Before describing this separation algorithm, three frequency bands, denoted by Bhigh,
Blow, and Bmid, are introduced to use in the following separation algorithm.

Frequency Bands

The following three frequency bands are defined respectively.

Bhigh : = {l | l2 < l < L / 2}, Blow : = {l | l1 < l < l2}, Bmid : = {l | l2 < l < l3}

where li = f i L / f s , (i =2, 3), f 2 is set 400Hz, and f3 is set 1kHz in later experiments.

The idea of source separation at DSA frames utilizing these bands is divided into two parts
according to above frequency bands.

1. The first scheme, called initial separation, is applied to the T-F cells in Bhigh  based on the
directions of sources which have been estimated at the SSA frames previously.

2. The clustering in Blow is performed utilizing a harmonic structure relationship between
the spectral components in Blow and that of Bmid . The harmonic structure in Bmid  can be
obtained by the initial separation results in Bhigh .

1. Initial separation
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Denote the source directions estimated in SSA frames by θ1 and θ2, and their corresponding
gradients in PD-F plane are β1 and β2 as defined in Eq.(31). The points on these two lines can
be expressed as

( ), 1,2ik l l if bé ù = =ë û (32)

At k ∈ KDSA, the nearest neighbor rule gives the binary mask M̃ i k , l  in Bhigh which is defined
as

1, arg min , ,
,

0, .

c highc
i

if i k l l l B
M k l

otherwise

f bì é ù= - Îë ûïé ù = íë û
ï
î

% (33)

As a result, the separated individual signals S̃ i k , l  (i = 1, 2) are represented by

1, , , ,i i highS k l M k l X k l l Bé ù é ù é ù= Îë û ë û ë û
% % (34)

2. Separation in Blow

Local maximum points in Bmid

The final task for separation process is to generate individual mask applied to Blow. In this final
separation process, the observed amplitude spectrum given by |X1[k, l]| with l∈ Blow is
compared with the initially separated spectra S̃ 1 k , l  and S̃ 2 k , l  with l ∈ Bmid in terms of
harmonic relationships. At first, with the help of local maximum frequencies of | S̃ i k , l | ,
harmonic structure in Bmid is estimated for each separation spectra. We denote the obtained
local maximum frequencies of | S̃ i k , l |  are bi1(k), bi2(k), ・ ・ ・, and the number of local
maxima in Bmid is qi(k).

Harmonics estimation

The distance of adjacent harmonics Δdi(k) is defined as

( ) ( ) ( ) ( )2 1 , 2  i i i id k b k b k q kD = - > (35)

When qi(k) = 0 or 1, we regard that there is no harmonic in the frame k. The estimated harmonics
in low frequency band gin(k) is

( ) ( ) ( )1 ,in l ig k b k d k n= - D (36)
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where n =1, 2, 3, ⋯ , gin(k )∈Blow, and gin(k ) means the harmonic structure of source i at frame
k.

Massk generation

We assume that the bandwidth of each harmonics is the same, and use 5 adjacent cells as
bandwidth in T–F domain. The mask in Blow is defined

( ) ( )
( )

1, 2 2,
,                         2, , 1,2,3,

0, .

in in

i i low

if g k l g k and
M k l q k l B n

otherwise

ì - < < +
ïïé ù = ³ Î =íë û
ï
ïî

L (37)

The integrated mask combining Eq. (33) and Eq. (37) is represented by
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Finally, the separated signals are obtained as shown in Eq.(14).

3.3. Experiments

Experimental condition

Some real life experiments are performed in a conference room to evaluate the separation
methods. Fig.5(a),(b) show the experimental environments and the setup. The experimental
parameters are show in Tab.1. One source was placed at the broadside (θ=0◦) and the location
of the other source is varied from 0◦ to 80◦ at intervals of every 10◦.
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Denote the source directions estimated in SSA frames by θ1 and θ2, and their corresponding
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As a result, the separated individual signals S̃ i k , l  (i = 1, 2) are represented by
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When qi(k) = 0 or 1, we regard that there is no harmonic in the frame k. The estimated harmonics
in low frequency band gin(k) is

( ) ( ) ( )1 ,in l ig k b k d k n= - D (36)
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where n =1, 2, 3, ⋯ , gin(k )∈Blow, and gin(k ) means the harmonic structure of source i at frame
k.
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Figure 6. Experimental results (SIR)

Fig. 6 shows the average signal-to-interference ratio (SIR) improvement brought by the
proposed and the conventional DUET method. The SIR improvement at the first sensor is
defined as follows.

                SIR  improvement Output SIR Input SIR     i i i= - (39)

Where

Input SIRi =10log10
si(t)
sj(t) , Output SIRi =10log10

yii(t)
yij(t)

The proposed frame-wise PD-F approach exceeds the conventional method in terms of SIR
improvement. The average improvement in our experiments is 6.22dB over the DUET. The
most significant contribution in SIR improvement is made by the separation process in DSA
frame which is 4.28dB. [31]
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Source signal duration 5s speech signals

Sampling Frequency 8 kHz

Sound Velocity 340 m/s

Window Hamming

STFT Frame Length 1024 sample

Frame Overlap 512 sample

Table 1. Experimental Parameters

4. DOA estimation

The DOA estimation method discussed in this section is based on the following three novel
approaches.

1. Inspired by the ideas of TIme-Frequency Ratio Of Mixtures (TIFROM)-like assumptions,
a novel reliability index is introduced. The selected cells with higher reliability are solely
utilized for DOA estimation.

2. A statistical error propagation model relating PD-F and the consequent DOA is intro‐
duced. The model leads to a probability density function (PDF) of the DOA, and hence
the DOA estimation problem is reduced to finding the most probable points of the PDF.

3. Source directions are determined using the kernel density estimator by utilizing the
proposed bandwidth control strategy.

DOA information

Under the assumption of anechoic mixing with no-attenuation model and WDO in Eq. (5), the
ratio between two observations Xm[k, l] (m=1,2) is represented by

2 2

1 1

, 2
exp sin ,

,
n s

n

X k l H l f l dj
L cX k l H l
p

q
é ù é ù é ùë û ë û= = ´ê úé ù é ù ë ûë û ë û

(40)

where θ is the direction of source which is dominant at [k,l]. The phase difference (PD) ϕ[k,l]
between two observations Xm[k, l] (m=1,2) defined by Eq. (17) is related to the angle θ as follows.

2
, sin sin ,  sf ld

k l Tl
Lc
p

f q w qé ù = = Dë û (41)

where T =d/c is the maximum delay time between sensors, and Δω =2π f S / L  is the unit
frequency width in L-point STFT. From Eqs. (16) and (41), the TDOA normalized by T, denoted
by τ k , l , can be represented as follows.
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4.1. Reliable T–F cell selection

As stated in 2.2, the following selection processes are applied only to the T-F cells in the support
ΩX  of X1 k , l  as in 2.2. This eventually reduces the computation time by eliminating noise-
like T-F components.

Since the PD estimation by (17) is subjected to unavoidable error, the success of DOA estima‐
tion is generally expected if reliable PD data are selected to use and outliers are eliminated.
Likewise in [24], the following assumption is employed. When a source is dominant in a set
of cells, all delays in it will take almost the same value; hence, the delay (42) and obviously the
PD data (17) in this set are expected to be reliable. Conventionally, the confidence measure is
obtained from the results of applying the principal component analysis to a set of steering
vectors in individual horizontal and vertical T-F regions. Unlike this approach, the normalized
delays τ k , l  given by Eq.(42) are used to evaluate the attribute consistency of the T-F cells.
According to the above assumption, two types of T-F regions around a cell [k, l] are considered:
a temporal neighborhood Γt[k, l] and a frequency neighborhood Γf [k, l],

{ } { }, : , , , : , ,t fk l k y l y Y k l k l z z Zé ù é ù é ù é ùG = + £ G = + £ë û ë û ë û ë û (43)

where integers Y and Z determine the numbers of cells in these regions, as denoted by |Γt[k,
l]| := 2Y + 1 and |Γf [k, l]| := 2Z + 1.

For each Γt[k, l] and Γf [k, l], the standard deviations of the normalized delays σΓt [k, l] and σΓf

[k, l] are calculated by

( )2

,

1, , ,
p q

k l p q k ls d mG G
é ùÎGë û

é ù é ù é ù= -ë û ë û ë ûG å (44)

,

1, , , , .t f
p q

k l p qm dG
é ùÎGë û

é ù é ù= G = G Gë û ë ûG å (45)

Now, the reliability index η[k, l] is calculated by

( ){ }, exp min , , ,
t f

k l k l k lh s sG Gé ù é ù é ù= -ë û ë û ë û (46)
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where η[k, l] is a normalized index satisfying 0 < η ≤ 1. When at least σΓt [k, l] or σΓf [k, l] at [k,
l] is sufficiently small, η[k, l] approaches unity, thereby the corresponding delay value δ[k, l]
is considered to be reliable. We observed the tendency that the PD error decreases as the
reliability index increases. Then, the cell group is selected with reliability index η[k, l] > ηth for
subsequent DOA estimation. In this paper, ηth is set to 0.96. The reason for using this value and
related remarks are given in later.

For each selected reliable T-F cell, the direction θ is computed using Eq.(41). Here the set of
computed directions is denoted as follows:

{ }1,2,..., ,  il
i i Iq é ùë û = (47)

where i is the numbering integer of the selected cells, I is the total number of data, and li is the
frequency bin at which the i-th cell is located.

DOA error distribution model

Consider a T-F cell at which the n-th source dominates and is located in the unknown direction
θn. From Eq. (41), the theoretical PD at the cell is given by

sin ,  n n nl Tl B lf w qé ù = D =ë û (48)

where Bn = ΔωT sinθn. The frame index k is omitted because k is not essential in this section. In
the l-th frequency bin, the observed ϕn[l] is distributed around its mean value Bnl,

,n nl B I lf fé ù é ù= + Dë û ë û (49)

where Δϕ[l] is a random variable representing the PD estimation error. Then, assume that the
random variable Δϕ[l] is an independent identical Gaussian distribution with zero mean and
constant variance σϕ

2, that is, N (o, σϕ
2). The constant variance means that Δϕ[l] is independent

of the frequency bin l; this assumption is represented as follows:

( )20, .l N ff sé ùD ë û : (50)

Fig. 7 (a) illustrates Gaussian error distribution at l-th frequency bin in PD-F plane in two-
source case. The Gaussian distribution assumption is motivated from the simplicity of
theoretical manipulation. From these error distribution model the problem is to estimate the
probability distribution of the direction θ as shown in Fig.7(b).

Now, the following proposition can be proved.

Source Separation and DOA Estimation for Underdetermined Auditory Scene
http://dx.doi.org/10.5772/56013

23



,
, sin

k l
k l

T l
f

t q
w

é ùë ûé ù = =ë û D
(42)

4.1. Reliable T–F cell selection

As stated in 2.2, the following selection processes are applied only to the T-F cells in the support
ΩX  of X1 k , l  as in 2.2. This eventually reduces the computation time by eliminating noise-
like T-F components.

Since the PD estimation by (17) is subjected to unavoidable error, the success of DOA estima‐
tion is generally expected if reliable PD data are selected to use and outliers are eliminated.
Likewise in [24], the following assumption is employed. When a source is dominant in a set
of cells, all delays in it will take almost the same value; hence, the delay (42) and obviously the
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where η[k, l] is a normalized index satisfying 0 < η ≤ 1. When at least σΓt [k, l] or σΓf [k, l] at [k,
l] is sufficiently small, η[k, l] approaches unity, thereby the corresponding delay value δ[k, l]
is considered to be reliable. We observed the tendency that the PD error decreases as the
reliability index increases. Then, the cell group is selected with reliability index η[k, l] > ηth for
subsequent DOA estimation. In this paper, ηth is set to 0.96. The reason for using this value and
related remarks are given in later.

For each selected reliable T-F cell, the direction θ is computed using Eq.(41). Here the set of
computed directions is denoted as follows:
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where i is the numbering integer of the selected cells, I is the total number of data, and li is the
frequency bin at which the i-th cell is located.

DOA error distribution model

Consider a T-F cell at which the n-th source dominates and is located in the unknown direction
θn. From Eq. (41), the theoretical PD at the cell is given by

sin ,  n n nl Tl B lf w qé ù = D =ë û (48)

where Bn = ΔωT sinθn. The frame index k is omitted because k is not essential in this section. In
the l-th frequency bin, the observed ϕn[l] is distributed around its mean value Bnl,

,n nl B I lf fé ù é ù= + Dë û ë û (49)

where Δϕ[l] is a random variable representing the PD estimation error. Then, assume that the
random variable Δϕ[l] is an independent identical Gaussian distribution with zero mean and
constant variance σϕ

2, that is, N (o, σϕ
2). The constant variance means that Δϕ[l] is independent

of the frequency bin l; this assumption is represented as follows:
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Fig. 7 (a) illustrates Gaussian error distribution at l-th frequency bin in PD-F plane in two-
source case. The Gaussian distribution assumption is motivated from the simplicity of
theoretical manipulation. From these error distribution model the problem is to estimate the
probability distribution of the direction θ as shown in Fig.7(b).

Now, the following proposition can be proved.
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Figure 7. PD error distribution and Kernel density estimation

Proposition: If the random variable Δϕ[l] is given by (50) and σ
ϕ
 is sufficiently small,

the PDF of θn
l  is given by
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This proposition can be proved by the linearized incremental analysis between ϕ[l] and θ[l].
The DOA error distribution model is shown in Fig. 8.
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Figure 8. PD error and DOA estimation error distributions
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4.2. DOA estimation using kernel density estimator

The kernel  density  estimation algorithm known as  Parzen window in machine learning
[32] is useful for statistical estimation even for a multiple-source problem. The algorithm
provides an estimate PDF of θ[l] by using the observed samples (47). The maximum PDF
point or the mode of the PDF can be considered as the optimal estimate of θn in the sense
of the most probable value. The kernel density estimator approach yields an approximate
estimation of the PDF of θ[l].

It is necessary to generalize the theoretical investigation noted above multisource and multi-
frequency cases. The theoretical PDF formulation of θ in the case of multiple sources should
be a Gaussian mixture with the same number of local modes (local peaks), each of which
corresponds to an individual source. For the selected reliable data in Eq. (47), the kernel density
estimator is applied to estimate the multi-modal PDF as follows:

$ ( )
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1 1 ,
ilI
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i i i
p K

I l l
q q

q
e e

é ùë û

=

æ ö-ç ÷=
ç ÷é ù é ùë û ë ûè ø

å (53)

where K(θ) is a kernel function, for which a Gaussian function is adopted in this study. ε l  is
the bandwidth of the kernel. The idea behind applying the kernel density estimator is to reflect
the theoretical result represented by the above proposition for the determination of the
bandwidth. Since the variance of θ[l] depends on l and θn as indicated in Eq. (52), the band‐
width is determined as the form of

1 . 
cos i

i I
i i

I
T l

e
w q é ùë û

é ù =ë û
D

h (54)

where ℏ is the control parameter and the observed θ[li] is substituted in place of a real unknown
θn in Eq. (52). Accordingly, the dependence of the bandwidth on θn is indirectly controlled.
The control parameter ℏ is predetermined experimentally. Fig. 9 shows three examples of
estimated PDFs for a two-source case with different ℏ. Finally, by finding the same number
of local modes (peaks) as the number of pre-assigned source numbers, the source directions
are estimated.

4.3. Experiments

Some experiments were conducted by the same setup and parameters as shown in Tab. 1. The
first experiment is the case of two sources one of which is placed at the broad side (near 0
degree) as shown in Fig.10 (a). The results are shown in Fig.10 (b) and (c). While the proposed
method gives a non-biased estimation, the estimates of the conventional method [27] tend to
be biased for the cases of non-symmetric source positions with respect to the broadside. The
second experiments for underdetermined case of three sources were performed. In this case
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where K(θ) is a kernel function, for which a Gaussian function is adopted in this study. ε l  is
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where ℏ is the control parameter and the observed θ[li] is substituted in place of a real unknown
θn in Eq. (52). Accordingly, the dependence of the bandwidth on θn is indirectly controlled.
The control parameter ℏ is predetermined experimentally. Fig. 9 shows three examples of
estimated PDFs for a two-source case with different ℏ. Finally, by finding the same number
of local modes (peaks) as the number of pre-assigned source numbers, the source directions
are estimated.

4.3. Experiments

Some experiments were conducted by the same setup and parameters as shown in Tab. 1. The
first experiment is the case of two sources one of which is placed at the broad side (near 0
degree) as shown in Fig.10 (a). The results are shown in Fig.10 (b) and (c). While the proposed
method gives a non-biased estimation, the estimates of the conventional method [27] tend to
be biased for the cases of non-symmetric source positions with respect to the broadside. The
second experiments for underdetermined case of three sources were performed. In this case
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three sources were symmetrically located at the closer locations { -23, 4, 23 degrees} and far
apart locations{ -42, 4, 42 degrees}. Fig.11 (a) and (b) show the results of the conventional
method [27] and the proposed. In the “far apart” case both methods can estimate the source
directions well. However, for the “closer” case, the proposed method provides less biased
estimates than [27]. From the additional experimental results with diffuse noise presented in
[33] and [34] it is proved the proposed cell selection method provides noise robust estimation
better than the conventional.
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Figure 10. DOA estimation results for two sources
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Figure 11. DOA estimation results for three sources

5. Conclusions

This monograph summarizes speech segregation and speaker’s direction estimation methods
which are based on sparseness of T-F components of speech signals. Throughout the discussion
we are interested in underdetermined source-sensor conditions. At first recent progresses on
BSS and DOA estimation algorithms associated with T-F sparse representation are reviewed.
Then we focus on presenting an author’s solution of BSS problems exploiting a series of phase
difference versus frequency data. In the algorithm time frame classification concerning source
active states is performed, and actual separation procedure is solely applied to the mixing
frames.

The latter half of this chapter treats DOA estimation algorithm in a pair of microphones.

The basic error propagating mechanism is introduced and then the kernel density estimator
is applied. The method provides a robust and non-biased DOA estimation and it develops
theory for arbitrary microphone array configuration. [35]

One of recent human machine speech communication research on segregation and localization
is associated with robot auditory system where the tracking of moving sources and sensors
have to be considered.[36] For coping with these cases the particle filter and adaptive array
processing have been attractive, and further efforts will be made.
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1. Introduction

For human-human or human-computer interaction, the talker’s direction and location are
important cues that determine who is talking. This information can be helpful, especially in
multi-user conversation scenarios such as a meeting system, robotic communication, and so
on. There have been studies for understanding of a conversation scene based on the talker
localization approach (e.g., [1, 2]). An approach using the turn-taking information obtained
from DOA (Direction-of-Arrival) estimation results for the discrimination of system requests
or users’ conversations has also been proposed [3].

Many systems using microphone arrays have been tried in order to localize sound sources.
Conventional techniques, such as MUSIC (MUltiple SIgnal Classification), CSP (Cross-power
Spectrum Phase), and so on (e.g., [4–9]), use simultaneous phase information from
microphone arrays to estimate the direction of the arriving signal. There have also been
studies on binaural source localization based on interaural differences, such as interaural
level difference and interaural time difference (e.g., [10, 11]). Sound source localization
techniques focusing on the auditory system have also been described in [12, 13].

Single-microphone source separation is one of the most challenging scenarios in the field of
signal processing, and some techniques have been described (e.g., [14–17]). In our previous
work [18], we discussed a sound source localization method using only a single microphone.
In that report, the acoustic transfer function was estimated from observed (reverberant)
speech using the statistics of clean speech signals without using texts of the user’s utterance,
where a GMM (Gaussian Mixture Model) was used to model the features of the clean speech.
This estimation is performed in the cepstral domain employing a maximum-likelihood-based
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approach. This is possible because the cepstral parameters are an effective representation for
retaining useful clean speech information. The experiment results of our talker-localization
showed its effectiveness. However, the previous method required the measurement of speech
for each room environment in advance. Therefore, this chapter presents a new method that
uses parabolic reflection that is able to estimate the sound source direction without any need
for such prior measurements.

In this chapter, we introduce the concept of an active microphone that achieves a good
combination of active-operation and signal processing. The active microphone has a
parabolic reflection board, which is extremely simple in construction. The reflector and
its associated microphone rotate together, perform signal processing, and seek to locate the
direction of the sound source. We call this microphone with the function of the rotation an
active microphone.

A simple signal-power-based method using a parabolic antenna has been proposed in the
radar field. But the signal-power-based method is not effective for finding the direction of a
person talking in a room environment. One of the reasons is that the power of the speech
signal varies for all directions of the parabolic antenna, since a person does not utter the
same power (word) for all directions of the parabolic antenna. Therefore, in this chapter,
our new sound-source-direction estimation method focuses on the acoustic transfer function
instead of the signal power. The use of the parabolic reflection board results in a difference in
the acoustic transfer functions of the target direction and the non-target directions, where the
active microphone with the parabolic reflection board rotates and observes the speech at each
angle. The sound source direction is detected by comparing the acoustic transfer functions
observed at each angle, which are estimated from the observed speech using the statistics
of clean speech signals. We compared our proposed method with the signal-power-based
method, and as the methods for obtaining the directivity of the microphone, we compared the
use of the parabolic reflection board with the use of a shotgun microphone. Its effectiveness
is confirmed by sound-source-direction estimation experiments in a room environment.

2. Active microphone

2.1. Parabolic reflection board

In this chapter, an active microphone with a parabolic reflection board is introduced for
estimation of sound source direction, where the reflection board has the shape of a parabolic
surface. The parabolic reflector has been used for estimation of the direction of arrival in
the radar field [19]. As shown in Figure 1, under the assumptions associated with plane
waves, any line (wave) parallel to the axis of the parabolic surface is reflected toward the
focal point. On the other hand, if the sound source is not located at 90 degrees (in front of
the parabolic surface), no reflection wave will travel toward the focal point. Therefore, the
use of the parabolic reflection board will be able to give us the difference in the acoustic
transfer function between the target direction and the non-target directions.

2.2. Signal-power-based estimation of sound source direction

In [20], a simple signal-power-based method using a parabolic reflection board has been
described. The use of parabolic reflection can increase the power gain of the signal arriving
from directly in front of the parabolic board. In that method, the microphone with a parabolic
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Figure 1. Concept of parabolic reflection

reflection board rotates, and calculates the power of the observed signal for each angle of the
parabolic reflection board. Then, the direction having maximum power was selected as the
sound source direction:

î = argmax
i

∑
n

∑
ω

log |Oi(ω; n)|2. (1)

Here, O(ω; n) is the ω-th frequency bins of short-term linear spectrum at the frame n. i is
the angle of the parabolic reflection board (microphone).

Figure 2. Power of a clean speech segment and the speech segment observed by the microphone with a parabolic reflection

board for each angle. The power was normalized so that the mean values of all directions was 0 dB.
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2.2. Signal-power-based estimation of sound source direction

In [20], a simple signal-power-based method using a parabolic reflection board has been
described. The use of parabolic reflection can increase the power gain of the signal arriving
from directly in front of the parabolic board. In that method, the microphone with a parabolic

Soundscape Semiotics - Localisation and Categorisation32
Evaluation of an Active Microphone with a Parabolic Reflection Board for Monaural Sound-Source-Direction Estimation 3

10.5772/56045

Figure 1. Concept of parabolic reflection

reflection board rotates, and calculates the power of the observed signal for each angle of the
parabolic reflection board. Then, the direction having maximum power was selected as the
sound source direction:

î = argmax
i

∑
n

∑
ω

log |Oi(ω; n)|2. (1)

Here, O(ω; n) is the ω-th frequency bins of short-term linear spectrum at the frame n. i is
the angle of the parabolic reflection board (microphone).

Figure 2. Power of a clean speech segment and the speech segment observed by the microphone with a parabolic reflection

board for each angle. The power was normalized so that the mean values of all directions was 0 dB.
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Its effectiveness has been confirmed on white noise signals. However, the signal-power-based
method was not effective for finding the direction of a talking person. This is because the
power of the uttered speech signals varies for all directions of the parabolic reflection board.
Figure 2 shows the power of a clean speech segment and the observed speech segment for
each angle of the parabolic reflection board. The size of the recording room was about 6.3 m
× 7.2 m (width × depth). The target sound source was located at 90 degrees and 2 m from
the microphone. The diameter of the parabolic reflection board was 24 cm, and the distance
to the focal point was 9 cm. The speech signal was sampled at 12 kHz, and windowed
with a 32-msec Hamming window every 8 msec. The power was normalized so that the
mean values of all directions were 0 dB. In the left portion of Figure 2, the text utterance is
the same for each angle of the parabolic reflection board, and in the right portion, the text
utterance is different for each angle. As shown in this figure, the power of the observed
speech was most enhanced by the parabolic reflection board at 90 degrees (target direction).
However, when the utterance text differs at each angle of the parabolic reflection board, the
power of observed speech at 90 degrees did not have the maximum power since the power
of input speech for another direction had a higher power than that for 90 degrees. For this
case, the signal-power-based fails to estimate the direction of the sound source correctly.

In this chapter, in order to estimate the direction of the sound source correctly when the
power of the uttered speech signals varies for all direction of the parabolic reflection board,
the acoustic transfer function is used instead of the power. Since the acoustic transfer function
does not depend on the uttered clean speech, the use of the acoustic transfer function can
estimate the direction of the sound source without the influence of the varying power of the
uttered speech signals.

Figure 3. Observed signal at the focal point, where the input signal is coming from directly in front of the parabolic surface

2.3. Signal observed using parabolic reflection

Next, we consider the signal observed using parabolic reflection [20]. As shown in Figure 3,
when the sound source is located directly in front of the parabolic surface and there are no
background noise and no directivity of the sound source, the observed signal at the focal
point at discrete time t can be expressed by the addition of the waves arriving at the focal
point directly (direct wave) and those arriving at the focal point after being reflected by the
parabolic surface (reflection waves):
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Figure 4. Observed signal at the focal point, where the input signal is coming from δ degrees

o(t) = xp(t) +
M

∑
m=1

xm(t) (2)

where o(t), xp and xm (m = 1, · · · , M) are observed sound, direct sound and reflection
sound, respectively. Based on the properties of a parabola, the time difference to the focal
point between the direct and reflection waves is constant without depending on m. Therefore,
(2) can be written as

o(t) = s(t) ∗ hp(t) +
M

∑
m=1

s(t − τ) ∗ hm(t) (3)

where s(t) and τ are clean speech and the time difference, respectively. hp is the acoustic
transfer function of a direct wave and hm is that of a reflection wave. By applying the
short-term Fourier transform, the observed spectrum at frame n is given by

O(ω; n)

≈ S(ω; n) · (Hp(ω; n) + e−j2πωτ
·

M

∑
m=1

Hm(ω; n))

= S(ω; n) · (Hp(ω; n) + Hr(ω; n)). (4)

Here Hp is the acoustic transfer function of the direct sound that is not influenced by
parabolic reflection. Hr is the acoustic transfer function resulting from parabolic reflection.

On the other hand, as shown in Figure 4, when the input signal is coming from δ degrees (not
coming from directly in front of the parabolic surface), the direction of the reflected signal
at the parabolic surface is off δ degrees from PO. Therefore, when the sound source is not
located in front of the parabolic surface, parabolic reflection does not influence the acoustic
transfer function since no reflection waves will travel toward the focal point:

O(ω; n) ≈ S(ω; n) · Hp(ω; n). (5)
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power of observed speech at 90 degrees did not have the maximum power since the power
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case, the signal-power-based fails to estimate the direction of the sound source correctly.

In this chapter, in order to estimate the direction of the sound source correctly when the
power of the uttered speech signals varies for all direction of the parabolic reflection board,
the acoustic transfer function is used instead of the power. Since the acoustic transfer function
does not depend on the uttered clean speech, the use of the acoustic transfer function can
estimate the direction of the sound source without the influence of the varying power of the
uttered speech signals.

Figure 3. Observed signal at the focal point, where the input signal is coming from directly in front of the parabolic surface

2.3. Signal observed using parabolic reflection

Next, we consider the signal observed using parabolic reflection [20]. As shown in Figure 3,
when the sound source is located directly in front of the parabolic surface and there are no
background noise and no directivity of the sound source, the observed signal at the focal
point at discrete time t can be expressed by the addition of the waves arriving at the focal
point directly (direct wave) and those arriving at the focal point after being reflected by the
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o(t) = xp(t) +
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∑
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xm(t) (2)

where o(t), xp and xm (m = 1, · · · , M) are observed sound, direct sound and reflection
sound, respectively. Based on the properties of a parabola, the time difference to the focal
point between the direct and reflection waves is constant without depending on m. Therefore,
(2) can be written as

o(t) = s(t) ∗ hp(t) +
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∑
m=1

s(t − τ) ∗ hm(t) (3)

where s(t) and τ are clean speech and the time difference, respectively. hp is the acoustic
transfer function of a direct wave and hm is that of a reflection wave. By applying the
short-term Fourier transform, the observed spectrum at frame n is given by

O(ω; n)

≈ S(ω; n) · (Hp(ω; n) + e−j2πωτ
·
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∑
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Hm(ω; n))

= S(ω; n) · (Hp(ω; n) + Hr(ω; n)). (4)

Here Hp is the acoustic transfer function of the direct sound that is not influenced by
parabolic reflection. Hr is the acoustic transfer function resulting from parabolic reflection.

On the other hand, as shown in Figure 4, when the input signal is coming from δ degrees (not
coming from directly in front of the parabolic surface), the direction of the reflected signal
at the parabolic surface is off δ degrees from PO. Therefore, when the sound source is not
located in front of the parabolic surface, parabolic reflection does not influence the acoustic
transfer function since no reflection waves will travel toward the focal point:

O(ω; n) ≈ S(ω; n) · Hp(ω; n). (5)
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Figure 5. Active microphone with parabolic reflection

Figure 6. Acoustic transfer function in a feature space for each angle of the active microphone. (a) The case that the direction

θ has the acoustic transfer function which is the farthest from those of other directions. (b) The case that the acoustic transfer

function of θ is similar to most of the acoustic transfer functions of other directions.

2.4. Estimation of sound source direction

As shown in Figure 5, new active microphone with a parabolic reflection board was
constructed with the microphone located at the focal point. In order to obtain the signal
observed at each angle, the angle of the microphone was changed manually in research
carried out for this chapter. Then, from equations (4) and (5), the spectrum of the signal
observed at a microphone angle θ can be expressed as

O
θ
(ω; n) ≈ S

θ
(ω; n) · H

θ
(ω; n)

H
θ
(ω; n) =

{

Hp(ω; n) + Hr(ω; n) (θ = θ̂)
Hp(ω; n) (θ �= θ̂)

(6)

where S
θ

and H
θ

are spectra of clean speech and acoustic transfer function at the angle θ,
and θ̂ is the sound source direction. Assuming Hp is nearly constant for each angle, when the
active microphone does not face the sound source, the value of H

θ
will be almost the same

for every non-target direction. On the other hand, the only condition under which H
θ

will
have a different value from that obtained at the other angles is when the active microphone
faces the sound source.

Therefore, the acoustic transfer function is estimated at each discrete direction θ, and the
sound source direction can be estimated by selecting the direction whose the acoustic transfer
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function is the farthest from the acoustic transfer functions of other directions. The sum of
the mutual distances is used to find such a direction. For each discrete direction θ, the
Euclidean distances from the acoustic transfer function of θ to those of other directions are
measured. As shown in Figure 6, when the direction θ has the acoustic transfer function
which is the farthest from those of other directions, the sum of the distances becomes larger
than those of other directions. Hence, the sound source direction is estimated by selecting
the direction having the maximum sum of the distances from the acoustic transfer function
of the direction to those of other directions:

θ̂ = argmax
θ

∑
θ
′

(H̄
θ
− H̄

θ
′ )2 (7)

where θ
′ is all directions of the microphone except θ, and H̄ is the expectation of H in regard

to the time frame. Actually, in this research, the cepstrum of acoustic transfer function is
used to calculate this equation. In the next section, we will describe how to estimate H

θ
from

observed speech signals.

3. Estimation of the acoustic transfer function

In our previous work [18], we proposed a method to estimate the acoustic transfer function
from the reverberant speech (any utterance) using the clean-speech acoustic model, where
a GMM is used to model the feature of the clean speech. The clean speech GMM enables
us to estimate the acoustic transfer function from the observed speech without needing to
have texts of the user’s utterance (text-independent estimation). However, because an active
microphone with parabolic reflection board was not used, the previous method required
the measurement of speech for each room environment in advance in order to be able to
determine the direction of a talking person. In this chapter, we can estimate the sound
source direction without any need for prior measurements by information fusion of an active
microphone and an estimation of an acoustic transfer function.

3.1. Cepstrum representation of reverberant speech

The reverberant speech signal, o(t), in a room environment is generally considered to be

the convolution of clean speech and the acoustic transfer function o(t) = ∑
L−1
l=0 s(t − l)h(l),

where s(t), h(l) and L are a clean speech signal, an acoustic transfer function (room impulse
response) from the sound source to the microphone, and the length of the acoustic transfer
function, respectively.

In recent studies for robust speech recognition and speech dereverberation, the reverberant
speech in the STFT (Short-Term Fourier Transform) domain is often modeled so that each
frequency bin of the reverberant speech is represented by the convolution of the frame
sequences of clean speech and the acoustic transfer function [21, 22].

O(ω; n) =
L′
−1

∑
l′=0

S(ω; n − l
′) · H(ω; l

′) (8)
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Figure 5. Active microphone with parabolic reflection

Figure 6. Acoustic transfer function in a feature space for each angle of the active microphone. (a) The case that the direction

θ has the acoustic transfer function which is the farthest from those of other directions. (b) The case that the acoustic transfer

function of θ is similar to most of the acoustic transfer functions of other directions.

2.4. Estimation of sound source direction

As shown in Figure 5, new active microphone with a parabolic reflection board was
constructed with the microphone located at the focal point. In order to obtain the signal
observed at each angle, the angle of the microphone was changed manually in research
carried out for this chapter. Then, from equations (4) and (5), the spectrum of the signal
observed at a microphone angle θ can be expressed as
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(6)

where S
θ

and H
θ

are spectra of clean speech and acoustic transfer function at the angle θ,
and θ̂ is the sound source direction. Assuming Hp is nearly constant for each angle, when the
active microphone does not face the sound source, the value of H

θ
will be almost the same

for every non-target direction. On the other hand, the only condition under which H
θ

will
have a different value from that obtained at the other angles is when the active microphone
faces the sound source.

Therefore, the acoustic transfer function is estimated at each discrete direction θ, and the
sound source direction can be estimated by selecting the direction whose the acoustic transfer
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function is the farthest from the acoustic transfer functions of other directions. The sum of
the mutual distances is used to find such a direction. For each discrete direction θ, the
Euclidean distances from the acoustic transfer function of θ to those of other directions are
measured. As shown in Figure 6, when the direction θ has the acoustic transfer function
which is the farthest from those of other directions, the sum of the distances becomes larger
than those of other directions. Hence, the sound source direction is estimated by selecting
the direction having the maximum sum of the distances from the acoustic transfer function
of the direction to those of other directions:

θ̂ = argmax
θ

∑
θ
′

(H̄
θ
− H̄

θ
′ )2 (7)

where θ
′ is all directions of the microphone except θ, and H̄ is the expectation of H in regard

to the time frame. Actually, in this research, the cepstrum of acoustic transfer function is
used to calculate this equation. In the next section, we will describe how to estimate H

θ
from

observed speech signals.

3. Estimation of the acoustic transfer function

In our previous work [18], we proposed a method to estimate the acoustic transfer function
from the reverberant speech (any utterance) using the clean-speech acoustic model, where
a GMM is used to model the feature of the clean speech. The clean speech GMM enables
us to estimate the acoustic transfer function from the observed speech without needing to
have texts of the user’s utterance (text-independent estimation). However, because an active
microphone with parabolic reflection board was not used, the previous method required
the measurement of speech for each room environment in advance in order to be able to
determine the direction of a talking person. In this chapter, we can estimate the sound
source direction without any need for prior measurements by information fusion of an active
microphone and an estimation of an acoustic transfer function.

3.1. Cepstrum representation of reverberant speech

The reverberant speech signal, o(t), in a room environment is generally considered to be

the convolution of clean speech and the acoustic transfer function o(t) = ∑
L−1
l=0 s(t − l)h(l),

where s(t), h(l) and L are a clean speech signal, an acoustic transfer function (room impulse
response) from the sound source to the microphone, and the length of the acoustic transfer
function, respectively.

In recent studies for robust speech recognition and speech dereverberation, the reverberant
speech in the STFT (Short-Term Fourier Transform) domain is often modeled so that each
frequency bin of the reverberant speech is represented by the convolution of the frame
sequences of clean speech and the acoustic transfer function [21, 22].

O(ω; n) =
L′
−1

∑
l′=0

S(ω; n − l
′) · H(ω; l

′) (8)
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Here O(ω; n), S(ω; n), and H(ω; n) are the ω-th frequency bins of short-term linear spectra of
the frame n. L′ is the length of the acoustic transfer function in the STFT domain. However,
that modeling is complex for estimating the frame sequence of the acoustic transfer function,
and it is difficult to deal with the estimated components of the acoustic transfer function for
this talker localization task. Therefore, in this chapter, we employ a simpler modeling of the
reverberant speech, which is approximately represented as the product of clean speech and
the acoustic transfer function.

O(ω; n) ≈ S(ω; n) · H(ω; n) (9)

Cepstral parameters are an effective representation for retaining useful speech information
in speech recognition. Therefore, we use the cepstrum for acoustic modeling necessary to
estimate the acoustic transfer function. The cepstrum of the observed signal is given by the
inverse Fourier transform of the log spectrum:

Ocep(d; n) ≈ Scep(d; n) + Hcep(d; n) (10)

where d is the cepstral index. Ocep, Scep, and Hcep are cepstra for the observed signal, clean
speech signal, and acoustic transfer function, respectively. As shown in equation (10), if O
and S are observed, H can be obtained by

Hcep(d; n) ≈ Ocep(d; n)− Scep(d; n). (11)

However S cannot be observed actually. Therefore H is estimated by maximizing the
likelihood (ML) of observed speech using clean-speech GMM.

3.2. Maximum-likelihood-based parameter estimation

The sequence of the acoustic transfer function in (11) is estimated in an ML manner [23] by
using the expectation maximization (EM) algorithm, which maximizes the likelihood of the
observed speech:

Ĥ = argmax
H

Pr(O|H, λS). (12)

Here, λ denotes the set of GMM parameters of the clean speech, while the suffix S represents
the clean speech in the cepstral domain. The GMM of clean speech consists of a mixture of
Gaussian distributions.

λS = {wk, N(µ
(S)
k , σ

(S)2

k )}, ∑
k

wk = 1 (13)

where wk, µk and σ
2
k are the weight coefficient, mean vector and variance vector (diagonal

covariance matrix) of the k-th mixture component, respectively. These parameters are
estimated using the EM algorithm using a clean speech database.

Soundscape Semiotics - Localisation and Categorisation38
Evaluation of an Active Microphone with a Parabolic Reflection Board for Monaural Sound-Source-Direction Estimation 9

10.5772/56045

The estimation of the acoustic transfer function in each frame is performed in a maximum
likelihood fashion by using the EM algorithm. The EM algorithm is a two-step iterative
procedure. In the first step, called the expectation step, the following auxiliary function Q is
computed.

Q(Ĥ|H) = E[log Pr(O, c|Ĥ, λS)|H, λS]

= ∑
c

Pr(O, c|H, λS)

Pr(O|H, λS)
· log Pr(O, c|Ĥ, λS) (14)

Here c represents the unobserved mixture component labels corresponding to the
observation sequence O.

The joint probability of observing sequences O and c can be calculated as

Pr(O, c|Ĥ, λS) = ∏
n

wc(n) Pr(O(n)|c(n), Ĥ, λS) (15)

where w is the mixture weight and On is the cepstrum at the n-th frame. Since we consider
the acoustic transfer function as additive noise in the cepstral domain, the mean to mixture k

in the model λO is derived by adding the acoustic transfer function. Therefore, equation (15)
can be written as

Pr(O, c|Ĥ, λS) = ∏
n

wc(n) · N(O(n); µ
(S)
k

+ Ĥ(n), Σ
(S)
k

) (16)

where N(O; µ, Σ) denotes the multivariate Gaussian distribution. It is straightforward to
derive that

Q(Ĥ|H) = ∑
k

∑
n

Pr(O(n), c(n) = k|H, λS) log wk

+∑
k

∑
n

Pr(O(n), c(n) = k|H, λS)

· log N(O(n); µ
(S)
k

+ Ĥ(n), Σ
(S)
k

). (17)

Here µ
(S)
k

and Σ
(S)
k

are the k-th mean vector and the (diagonal) covariance matrix in the clean
speech GMM, respectively. It is possible to train those parameters by using a clean speech
database. Next, we focus only on the term involving H.

Q(Ĥ|H) = −∑
k

∑
n

γk(n)
D

∑
d=1

�

1

2
log(2π)D

σ
(S)2

k,d

+
(O(d; n)− µ

(S)
k,d − Ĥ(d; n))2

2σ
(S)2

k,d







(18)
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Here O(ω; n), S(ω; n), and H(ω; n) are the ω-th frequency bins of short-term linear spectra of
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and it is difficult to deal with the estimated components of the acoustic transfer function for
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reverberant speech, which is approximately represented as the product of clean speech and
the acoustic transfer function.

O(ω; n) ≈ S(ω; n) · H(ω; n) (9)

Cepstral parameters are an effective representation for retaining useful speech information
in speech recognition. Therefore, we use the cepstrum for acoustic modeling necessary to
estimate the acoustic transfer function. The cepstrum of the observed signal is given by the
inverse Fourier transform of the log spectrum:

Ocep(d; n) ≈ Scep(d; n) + Hcep(d; n) (10)

where d is the cepstral index. Ocep, Scep, and Hcep are cepstra for the observed signal, clean
speech signal, and acoustic transfer function, respectively. As shown in equation (10), if O
and S are observed, H can be obtained by

Hcep(d; n) ≈ Ocep(d; n)− Scep(d; n). (11)

However S cannot be observed actually. Therefore H is estimated by maximizing the
likelihood (ML) of observed speech using clean-speech GMM.

3.2. Maximum-likelihood-based parameter estimation

The sequence of the acoustic transfer function in (11) is estimated in an ML manner [23] by
using the expectation maximization (EM) algorithm, which maximizes the likelihood of the
observed speech:

Ĥ = argmax
H

Pr(O|H, λS). (12)

Here, λ denotes the set of GMM parameters of the clean speech, while the suffix S represents
the clean speech in the cepstral domain. The GMM of clean speech consists of a mixture of
Gaussian distributions.

λS = {wk, N(µ
(S)
k , σ

(S)2

k )}, ∑
k

wk = 1 (13)

where wk, µk and σ
2
k are the weight coefficient, mean vector and variance vector (diagonal

covariance matrix) of the k-th mixture component, respectively. These parameters are
estimated using the EM algorithm using a clean speech database.
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The estimation of the acoustic transfer function in each frame is performed in a maximum
likelihood fashion by using the EM algorithm. The EM algorithm is a two-step iterative
procedure. In the first step, called the expectation step, the following auxiliary function Q is
computed.

Q(Ĥ|H) = E[log Pr(O, c|Ĥ, λS)|H, λS]
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Pr(O, c|H, λS)

Pr(O|H, λS)
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Here c represents the unobserved mixture component labels corresponding to the
observation sequence O.

The joint probability of observing sequences O and c can be calculated as

Pr(O, c|Ĥ, λS) = ∏
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wc(n) Pr(O(n)|c(n), Ĥ, λS) (15)

where w is the mixture weight and On is the cepstrum at the n-th frame. Since we consider
the acoustic transfer function as additive noise in the cepstral domain, the mean to mixture k

in the model λO is derived by adding the acoustic transfer function. Therefore, equation (15)
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Q(Ĥ|H) = ∑
k

∑
n

Pr(O(n), c(n) = k|H, λS) log wk

+∑
k

∑
n

Pr(O(n), c(n) = k|H, λS)

· log N(O(n); µ
(S)
k
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Here µ
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are the k-th mean vector and the (diagonal) covariance matrix in the clean
speech GMM, respectively. It is possible to train those parameters by using a clean speech
database. Next, we focus only on the term involving H.
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γk(n) = Pr(O(n), k|H, λS) (19)

Here O(n) is the cepstrum at the n-th frame for observed speech data. D is the dimension of

the O(n), and µ
(S)
k,d and σ

(S)2

k,d are the d-th mean value and the d-th diagonal variance value of

the k-th component in the clean speech GMM, respectively.

The maximization step (M-step) in the EM algorithm becomes “max Q(Ĥ|H)”. The
re-estimation formula can, therefore, be derived, knowing that ∂Q(Ĥ|H)/∂Ĥ = 0 as

Ĥ(d; n) =

∑k γk(n)
O(d;n)−µ

(S)
k,d

σ
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Therefore, the frame sequence of the acoustic transfer function Ĥ
θ
(d; n) is estimated from the

signal O
θ
(d; n) observed at direction θ in the cepstral domain using equation (20).

We obtain Ĥ
θ
(d; n) at a discrete direction. Next, the d-th dimension of the mean vector H̄

θ
(d)

is obtained by averaging Ĥ
θ
(d; n) per frame n.

H̄
θ
(d) = ∑

n

Ĥ
θ
(d; n) (21)

In a similar way, we obtain the mean vector H̄
θ
(d) at all discrete directions, and the sound

source direction is estimated using equation (7) using the cepstral vector H̄
θ
. In this chapter,

the angle of the parabolic reflection microphone was changed manually from 30 degrees to
150 degrees in increments of 20 degrees.

4. Experiment

4.1. Experiment conditions

The direction estimation experiment was carried out in a real room environment. The
parabolic reflection microphone shown in Figure 5 was used for the experiments. The
diameter was 24 cm, and the distance to the focal point was 9 cm. The microphone located at
the focal point was an omnidirectional type (SONY ECM-77B). The target sound source was
located at 90 degrees and 2 m from the microphone. The angle of the parabolic reflection
microphone was changed manually from 30 degrees to 150 degrees in increments of 20
degrees. Then the acoustic transfer function of the target signal at each angle was estimated
for the following speech lengths: 0.5, 1.0, 1.5, 2.0, 2.5, and 3.0 seconds. The size of the
recording room was about 6.3 m × 7.2 m (width × depth). Figure 7 shows the environment
of the experiment.

The speech signal was sampled at 12 kHz, and windowed with a 32-msec Hamming window
every 8 msec. The clean speech GMM was trained by using 50 sentences (spoken by a
female) in the ASJ Japanese speech database. The trained GMM has 64 Gaussian mixture
components. For estimation of the acoustic transfer function from the observed speech
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signal, 16-order MFCCs (Mel-Frequency Cepstral Coefficients) were used as feature vectors
of the clean speech and estimated acoustic transfer function. Then, the 1st and 2nd orders of
MFCCs of the estimated acoustic transfer function were used for estimating the sound source
direction using equation (7). The test data was spoken by the same female who recorded the
training data. The text utterances, however, were different.

4.2. Experiment results

Figure 8 shows the direction accuracy performance using the acoustic transfer function
estimated at various speech lengths. The performance is compared to the power-based
technique. The left figure shows the accuracy for the same text utterance at each angle of
the active microphone, and the right figure shows the accuracy for a different text utterance
at each angle of the active microphone. The test data for the same text utterance consisted
of 100 segments. The test data for the different utterance consisted of 600, 300, 200, 150,
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MFCCs of the estimated acoustic transfer function were used for estimating the sound source
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Figure 8 shows the direction accuracy performance using the acoustic transfer function
estimated at various speech lengths. The performance is compared to the power-based
technique. The left figure shows the accuracy for the same text utterance at each angle of
the active microphone, and the right figure shows the accuracy for a different text utterance
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Figure 9. Performance of a shotgun microphone without a parabolic reflection board

Figure 10. Mean values of the acoustic transfer functions for the microphone with a parabolic reflection board (left) and the

shotgun microphone (right)

120, and 100 segments, where one segment has a time length of 0.5, 1.0, 1.5, 2.0, 2.5, and 3.0
seconds, respectively. The test for the same text utterance was conducted 100 times, and that
for the different text utterance was conducted 600 times by changing the combination of the
text utterances for each direction.

As shown in the left figure, the performance for both the techniques based on the power and
the acoustic transfer function is high. However, the possibility of there being an identical text
utterance at each angle of the active microphone will be very small in a real environment. In
the right portion of Figure 8, we can see that the performance of the power-based technique
degrades drastically when the utterance text differs at each angle of the active microphone,
because the power of the speech signal varies for all directions of the active microphone.

On the other hand, the performance of the new method based on the acoustic transfer
function is high, even for different text utterances. This is because the new method uses
the information of the acoustic transfer function, which depends on the direction of the
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Figure 11. Acoustic transfer function computed by using true clean speech data (left) and that estimated by the proposed

method using only the statistics of clean speech GMM (right) at each angle in the cepstral domain

active microphone only and does not depend on the utterance text. Also, we can see that the
shorter the speech length for each angle is, the more the direction accuracy decreases. One
reason for this is that the statistics for the observed speech are not readily available if there
are not enough samples are used to estimate the acoustic transfer function.

Figure 9 shows the performance of a shotgun microphone (SONY ECM-674) without a
parabolic reflection board. The power-based method can provide good performance for
the same text utterance at each angle of the shotgun microphone due to the directivity of
the shotgun microphone, but the performance degrades when the utterance text differs
at each angle of the shotgun microphone. On the other hand, the performance of the
new method based on the acoustic transfer function is even lower. The directivity of the
shotgun microphone changes drastically as the sound-source direction changes from the
front direction to the side directions of the shotgun microphone, and, as a result, the acoustic
transfer function that is farthest from all the other acoustic transfer functions comes to be
that at 30 or 150 degrees in equation (7). The mean values of all acoustic transfer functions
for a parabolic reflection board and the shotgun microphone are plotted in Figure 10, where
the acoustic transfer function is computed by (11) using true clean speech signal Scep(d; n)
and the total number of frames is 36,600. Then the mean values are computed. As shown
in the right potion of Figure 10, we can see that the acoustic transfer function that is farthest
from all the other acoustic transfer functions is that at 30 or 150 degrees. As shown in the
left potion of Figure 10, on the other hand, the acoustic transfer function that is farthest from
all the other acoustic transfer functions is that at 90 degrees to the target direction.

Figure 11 shows the plot of acoustic transfer function for 300 segments of observed speech
for the case of the active microphone. In the left potion of Figure 11, the acoustic transfer
function Hsub was computed by (11) using true clean speech signal Scep(d; n). On the other
hand, in the right potion of Figure 11, the acoustic transfer function Hest was estimated by
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that at 30 or 150 degrees in equation (7). The mean values of all acoustic transfer functions
for a parabolic reflection board and the shotgun microphone are plotted in Figure 10, where
the acoustic transfer function is computed by (11) using true clean speech signal Scep(d; n)
and the total number of frames is 36,600. Then the mean values are computed. As shown
in the right potion of Figure 10, we can see that the acoustic transfer function that is farthest
from all the other acoustic transfer functions is that at 30 or 150 degrees. As shown in the
left potion of Figure 10, on the other hand, the acoustic transfer function that is farthest from
all the other acoustic transfer functions is that at 90 degrees to the target direction.

Figure 11 shows the plot of acoustic transfer function for 300 segments of observed speech
for the case of the active microphone. In the left potion of Figure 11, the acoustic transfer
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Figure 12. Comparison of true clean speech data and clean speech model

(20) using only the statistics of clean speech GMM. As shown in the left potion of Figure 11,
when the active microphone does not face the sound source, Hsub is distributed in almost
the same place, and Hsub of the sound source direction is distributed away from the Hsub of
other directions. In the right potion of Figure 11, though the distribution of the estimated
Hest may have some slight variations, it can be said that the distribution of Hest is similar that
of Hsub.

Figure 12 shows the difference in the direction accuracy between the use of Hsub (the true
clean speech data) and Hest (the statistics of clean speech model: GMM). As shown in this
figure, when the utterances for each angle consist of the same text, the direction accuracy
was 100%. However, when the texts of utterances for each angle are different, the direction
accuracy obtained using Hest decreased. This is because the value of Hest was influenced to
some extent by the phoneme sequence of clean speech.

5. Conclusions

This chapter has introduced the concept of an active microphone that achieves
a good combination of active-operation and signal processing, and described a
sound-source-direction estimation method using a single microphone with a parabolic
reflection board. The experiment results in a room environment confirmed that the acoustic
transfer function influenced by parabolic reflection can clarify the difference between the
target direction and the non-target direction. In future work, more research will be needed
in regard to different utterances and direction estimation in short intervals.

It is difficult for this method to estimate the directions of multiple sound sources because it
is difficult to estimate the acoustic transfer functions of multiple sound sources. Also, the
background noise and the reverberation may cause the measurement error of the acoustic
transfer function. We will evaluate the performance of the proposed system in noisy
environments and various room environments. In addition, we intend to investigate the
performance of the proposed system when the directivity and the orientation of the sound
source changes, and to test the performance of the system in a speaker-independent speech
model.
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1. Introduction

Thermoacoustic tomography (TAT) [1]-[3] is a novel, noninvasive medical imaging technique
that detects the large differences in microwave absorption between pathological and normal
tissue [4], [5].

It applies the principle of the thermoacoustic effect [6], an effect that arises from the combina‐
tion of the pressure oscillations of a sound wave with the accompanying adiabatic temperature
oscillations [7]. Within TAT an input microwave impulse stimulates thermo-expansion in bio-
tissue and consequently generates acoustic waves (P wave) to be recorded by transducers
arranged outside the tissue. When the tissue is relatively uniform, the initial local acoustic
amplitude is approximately proportional to the absorption ratio of the microwave [1], [8], [9].
Consequently, the TAT imaging problem is to retrieve the distribution of the initial acoustic
amplitude based on recorded acoustic wave energy, and thus it can be characterized as a
problem of “multiple sources localization”.

In recent years, imaging by using thermoacoustic effect has raise increasing concerns [10], [11].
In which TAT has also been well studied for brain imaging [8], [9], [12]. The reasons include
the following: first and far more important, TAT takes advantage of deep penetration of the
electromagnetic impulse and the high resolution of the ultrasonic wave for deep imaging.
Second, brain tissue is fundamentally uniform and isotropic. For example, the acoustic velocity
of human brain is narrowly ranged within 1483-1521 m/s [13]. Acoustic wave propagation
inside the brain is very close to one-way line-of-sight transmission without much aberration.
The most commonly used imaging algorithm of TAT is to back-project the wave energy
recorded by each transducer along the ray paths to all possible locations inside the imaging
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1. Introduction

Thermoacoustic tomography (TAT) [1]-[3] is a novel, noninvasive medical imaging technique
that detects the large differences in microwave absorption between pathological and normal
tissue [4], [5].

It applies the principle of the thermoacoustic effect [6], an effect that arises from the combina‐
tion of the pressure oscillations of a sound wave with the accompanying adiabatic temperature
oscillations [7]. Within TAT an input microwave impulse stimulates thermo-expansion in bio-
tissue and consequently generates acoustic waves (P wave) to be recorded by transducers
arranged outside the tissue. When the tissue is relatively uniform, the initial local acoustic
amplitude is approximately proportional to the absorption ratio of the microwave [1], [8], [9].
Consequently, the TAT imaging problem is to retrieve the distribution of the initial acoustic
amplitude based on recorded acoustic wave energy, and thus it can be characterized as a
problem of “multiple sources localization”.

In recent years, imaging by using thermoacoustic effect has raise increasing concerns [10], [11].
In which TAT has also been well studied for brain imaging [8], [9], [12]. The reasons include
the following: first and far more important, TAT takes advantage of deep penetration of the
electromagnetic impulse and the high resolution of the ultrasonic wave for deep imaging.
Second, brain tissue is fundamentally uniform and isotropic. For example, the acoustic velocity
of human brain is narrowly ranged within 1483-1521 m/s [13]. Acoustic wave propagation
inside the brain is very close to one-way line-of-sight transmission without much aberration.
The most commonly used imaging algorithm of TAT is to back-project the wave energy
recorded by each transducer along the ray paths to all possible locations inside the imaging
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domain [1], [9]. The back-projection method [15]-[18] has been reported to be well performed
on its simple scheme with high cost-effectiveness [19]. However, the approximation of one-
way sight transmission used in the back-projection algorithm is no longer valid when high
velocity contrast exists, for example, when the skull with an acoustic speed of 2500-2900 m/s
[20] is included in the imaging domain. For compensating skull-related aberration Jin et al. [13]
have developed a strategy based on the approximation of ray-tracing; however, it may still
suffer from the difficulty of accurately calculating Green's function when the velocity structure
becomes more irregular.

Currently reverse-time migration (RTM) has emerged as a more precise and powerful imaging
tool in the exploration geophysics community [21]-[24]. RTM takes full advantage of the wave
equation that includes all the dynamic features of a propagating wave field. Different from
back-projection, RTM is based on the insensitivity of the wave equation's solution to the
directionality of time. During RTM, by solving the wave equation with either the finite-
differences time domain (FDTD) method [25] or the pseudo-spectral time domain method [26],
all transducers act as a virtual source by broadcasting their own records back to the domain
in a time-reversed manner. If the velocity model is precise, the reversed-time wave field should
converge and be enhanced at the origins of the to-be-imaged structures. Previous studies [19],
[27], [28] have compared back-projection method and RTM by using complex velocity
structure models, and have confirmed better results by using RTM. However, with the
advantage of RTM outlined previously, the barriers to RTM adoption are also evident.
Compared with back-projection, RTM appears to be more sensitive to accuracy of given
velocity model. Once the velocity model is inaccurate, the quality of imaging results from RTM
may be insignificant in comparison to back-projection [19], [27]. Consequently the solutions
for creating accurate velocity model become extremely vital to guarantee the imaging quality
of RTM.

For estimate velocity model correctly before RTM, to the best of author’s horizon there are two
types of approaches. One is tomography, such as ultrasonic transmission tomography.
Although it has been reported to be effectiveness for velocity correction from Jin and Wang in
2006 [29], prior of RTM detection, additional laboratory experiment has to be conducted for
tomography data collection. This setup obviously increases the complexity of imaging
procedure and financial cost. The other approach is an iterative imaging procedure developed
by Whitmore [23]. In his approach for estimate the velocity correctly, an initial guess of the
velocity model is setup by incorporating all known external velocity information as the first
step. After that the TAT image result is derived by RTM, and a comparison between the
reconstructed image and the velocity model is made. The differences derived by this compar‐
ison are attempted to be eliminated by generating the new velocity model. This procedure is
repeated until both RTM results and velocity models are unchangeable. This iterative RTM
procedure will be applied in this work.

Based on our previous studies [28], [30], [31] in this paper we closely concentrate on two topics:
1) comparison between back-projection and RTM on transcranial TAT; 2) Application of
iterative RTM procedure on velocity correction. The synthetic dataset derived from a two-
dimensional (2D) brain model and real datasets acquired from laboratory experiments by Xu
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and Wang [9] (hereinafter referred as XW06) on rhesus monkey heads will be used for test
case. The comparison of imaging results derived by both methods supports the finding of
previous studies that RTM is superior to back-projection in imaging quality and accuracy.
Meanwhile by analysis the imaging results derived by this iterative RTM procedure, conclu‐
sion shows that iterative RTM procedure should be a promising approach for achieving
transcranial TAT.

This paper is organized as follows. Firstly back-projection and RTM are briefly introduced in
Section 2. Section 3 illustrates the validation of RTM and back-projection methods through
both synthetic data and laboratory data. The iterative RTM procedure will be described in
detail and demonstrated with the applications to synthetic data and real laboratory data in
Section 4. Section 5 is detailed discussion and analysis on the results coming from Section 3
and Section 4. Finally, in Section 6 we restate the major findings as conclusion.

2. Back-projection and reverse time migration

In this section we briefly introduce back-projection (or named Kirchhoff migration in explo‐
ration seismic engineering) and RTM, two different migration approaches used for transcranial
imaging. Generally speaking migration is an inversion operation involving rearrangement of
seismic or acoustic information elements from time to depth domain so that reflections and
diffractions are plotted at their true locations [32]. It plays a function of moving dipping events
to its original location and increasing the accuracy of the image. From seismic exploration the
seismic wave is generated by the source on the ground to propagate downward the earth. Once
it hits the non-continuity along sub-surface, reflection wave is generated and detected by
transducers located on the ground [33]. The misfits exist between observed data and sub-
surface’s real location even sources and receivers are perfectly overlapped. The reasons
include: 1) Due to the low frequency and non-infinitesimal width of the input beam, the
reflection wave could propagate to multiple direction rather than following the single line; 2)
Due to the possible non-horizontal structure owned by sub-surfaces, their locations could be
“shifted” to wrong position. As Figure 1 shows, combinations of source and receiver are
collocated (black solid dots) along the ground line AB. Suppose the velocity is uniform
underground, the slope reflectors along CD is shifted incorrectly to C’D’ from the results
collected by transducers with wave’s travel time unchanged. And therefore, the purpose of
migration is to shift C’D’ back to CD, and hence the correct structure can be reached.

The migration problem can be transformed as a more straight-forward case when it is applied
on TAT imaging. The purpose of migration on TAT imaging is to shift the locations of different
acoustic sources to their correct locations. In Figure 2, the shadowed area is the to-be-imaged
tissue, in which each point is an independent acoustic source after receiving microwave
impulse. The dashed circle surrounded shows the location of receiver array. Suppose the
velocity distribution in all 2D space is relatively uniform, and tissue’s acoustic wavelet is a
single narrow pulse, the possible location of certain source S is constrained on a circle with the
center as transducer TN. Its radius is the distance calculated by the wave propagation time took
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have developed a strategy based on the approximation of ray-tracing; however, it may still
suffer from the difficulty of accurately calculating Green's function when the velocity structure
becomes more irregular.

Currently reverse-time migration (RTM) has emerged as a more precise and powerful imaging
tool in the exploration geophysics community [21]-[24]. RTM takes full advantage of the wave
equation that includes all the dynamic features of a propagating wave field. Different from
back-projection, RTM is based on the insensitivity of the wave equation's solution to the
directionality of time. During RTM, by solving the wave equation with either the finite-
differences time domain (FDTD) method [25] or the pseudo-spectral time domain method [26],
all transducers act as a virtual source by broadcasting their own records back to the domain
in a time-reversed manner. If the velocity model is precise, the reversed-time wave field should
converge and be enhanced at the origins of the to-be-imaged structures. Previous studies [19],
[27], [28] have compared back-projection method and RTM by using complex velocity
structure models, and have confirmed better results by using RTM. However, with the
advantage of RTM outlined previously, the barriers to RTM adoption are also evident.
Compared with back-projection, RTM appears to be more sensitive to accuracy of given
velocity model. Once the velocity model is inaccurate, the quality of imaging results from RTM
may be insignificant in comparison to back-projection [19], [27]. Consequently the solutions
for creating accurate velocity model become extremely vital to guarantee the imaging quality
of RTM.

For estimate velocity model correctly before RTM, to the best of author’s horizon there are two
types of approaches. One is tomography, such as ultrasonic transmission tomography.
Although it has been reported to be effectiveness for velocity correction from Jin and Wang in
2006 [29], prior of RTM detection, additional laboratory experiment has to be conducted for
tomography data collection. This setup obviously increases the complexity of imaging
procedure and financial cost. The other approach is an iterative imaging procedure developed
by Whitmore [23]. In his approach for estimate the velocity correctly, an initial guess of the
velocity model is setup by incorporating all known external velocity information as the first
step. After that the TAT image result is derived by RTM, and a comparison between the
reconstructed image and the velocity model is made. The differences derived by this compar‐
ison are attempted to be eliminated by generating the new velocity model. This procedure is
repeated until both RTM results and velocity models are unchangeable. This iterative RTM
procedure will be applied in this work.

Based on our previous studies [28], [30], [31] in this paper we closely concentrate on two topics:
1) comparison between back-projection and RTM on transcranial TAT; 2) Application of
iterative RTM procedure on velocity correction. The synthetic dataset derived from a two-
dimensional (2D) brain model and real datasets acquired from laboratory experiments by Xu
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and Wang [9] (hereinafter referred as XW06) on rhesus monkey heads will be used for test
case. The comparison of imaging results derived by both methods supports the finding of
previous studies that RTM is superior to back-projection in imaging quality and accuracy.
Meanwhile by analysis the imaging results derived by this iterative RTM procedure, conclu‐
sion shows that iterative RTM procedure should be a promising approach for achieving
transcranial TAT.

This paper is organized as follows. Firstly back-projection and RTM are briefly introduced in
Section 2. Section 3 illustrates the validation of RTM and back-projection methods through
both synthetic data and laboratory data. The iterative RTM procedure will be described in
detail and demonstrated with the applications to synthetic data and real laboratory data in
Section 4. Section 5 is detailed discussion and analysis on the results coming from Section 3
and Section 4. Finally, in Section 6 we restate the major findings as conclusion.

2. Back-projection and reverse time migration

In this section we briefly introduce back-projection (or named Kirchhoff migration in explo‐
ration seismic engineering) and RTM, two different migration approaches used for transcranial
imaging. Generally speaking migration is an inversion operation involving rearrangement of
seismic or acoustic information elements from time to depth domain so that reflections and
diffractions are plotted at their true locations [32]. It plays a function of moving dipping events
to its original location and increasing the accuracy of the image. From seismic exploration the
seismic wave is generated by the source on the ground to propagate downward the earth. Once
it hits the non-continuity along sub-surface, reflection wave is generated and detected by
transducers located on the ground [33]. The misfits exist between observed data and sub-
surface’s real location even sources and receivers are perfectly overlapped. The reasons
include: 1) Due to the low frequency and non-infinitesimal width of the input beam, the
reflection wave could propagate to multiple direction rather than following the single line; 2)
Due to the possible non-horizontal structure owned by sub-surfaces, their locations could be
“shifted” to wrong position. As Figure 1 shows, combinations of source and receiver are
collocated (black solid dots) along the ground line AB. Suppose the velocity is uniform
underground, the slope reflectors along CD is shifted incorrectly to C’D’ from the results
collected by transducers with wave’s travel time unchanged. And therefore, the purpose of
migration is to shift C’D’ back to CD, and hence the correct structure can be reached.

The migration problem can be transformed as a more straight-forward case when it is applied
on TAT imaging. The purpose of migration on TAT imaging is to shift the locations of different
acoustic sources to their correct locations. In Figure 2, the shadowed area is the to-be-imaged
tissue, in which each point is an independent acoustic source after receiving microwave
impulse. The dashed circle surrounded shows the location of receiver array. Suppose the
velocity distribution in all 2D space is relatively uniform, and tissue’s acoustic wavelet is a
single narrow pulse, the possible location of certain source S is constrained on a circle with the
center as transducer TN. Its radius is the distance calculated by the wave propagation time took
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from S to TN. During the TAT imaging, for achieving the exact location of S, back-projection
and RTM are applied by different principles. Back-projection can be summed as a kind of
spatial integration method. It redistributes the received acoustic energies and makes summa‐
tion in space. In Figure 2, the results observed by different transducers are redistributed along
different circles in to-be-imaged domain. If there is a large number of transducers, the
amplitude at the location S will be enhanced due to interference of multi circles, otherwise the
amplitudes should be minimum [33]. This approach is easily to achieve when the velocity

Figure 1. Principle of migration. AB is the ground line; the black solid dots attached are combination of sources and
receivers. CD represents dip structures (black hollow dots) underground, it is incorrectly shifted to the location of C’D’
(gray solid dots). Migration plays a function of shift structures’ coordinate from C’D’ back to CD for getting correct
result.

Figure 2. Application of migration on TAT imaging. T1 and TN are any two transducers of transducers’ array shown as
dash circle surrounded with the target tissue (gray shadow). By applying back-projection, the acoustic amplitude of S
will be enhanced by multiple transducers.
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model is uniform; However when the velocity distribution inside the to-be-imaged domain is
complex, the possible location of S will be distorted from circle to an irregular shape. Combined
with multiple scattering, the assumption of one-way sight transmission in back-projection is
no longer established. Different from back-projection, RTM works by running the wave
equation backward for all transducers. It sets up all transducers as pseudo sources, and the
records are broadcasted with a time-reversed manner-from the end of the trace to time zero.
If the velocity model is presumed correctly, in TAT imaging the wave field at time 0 in space
will coincide with the original source distribution [19]. Compared with back-projection, by
applying full wave equation, RTM is capable of involving all wave field phenomenon
including diffraction, aberration and multiple scattering. However it requires much higher
usage of CPU time and memory [27].

3. Validation of RTM and back-projection methods

3.1. Validation via synthetic data

To test the effectiveness of back-projection and RTM, we have built a 2D synthetic human brain
model with an intact skull. In this model, the brain is made of gray matter and white matter
[14], and the skull is made of three layers, namely the inner table, diploe, and outer table [20].
To mimic a real laboratory experiment similar to [8], [13], we modeled the space outside the
skull as mineral oil. The reason for us using mineral oil is that it provides both back-ground
with uniform acoustic speed and tiny loss coupling between acoustic transducers and human
head surface. Additionally when compared with water, mineral oil has much weaker micro‐
wave absorption ratio (~0), this will guarantee the minimum errors are introduced during
modeling. Instead of mineral oil, a plenty kinds of fluid with weak microwave absorption ratio
and comparable acoustic velocity to bio-tissue could also been used in further realistic test. To
mimic pathological changes and build a benchmark for results analysis, in the synthetic model
we replaced a small area of the brain with blood. This area was located at the left cerebral
hemisphere and defined as elliptically-shaped. The distribution of acoustic velocity in the
synthetic model is shown in Figure 3a. From a review of several literatures, mechanical
parameters of all related bio-tissues were collected and are listed in Table I, in which the
velocities and densities of grey matter and white matter were measured from lamb brain using
acoustic frequency of 1 MHz [14]. The skull’s velocities, densities and thicknesses of different
layers are applied from datasets in research [20], [34] and [35]. The loss factor is defined in [35]
to depict the amplitude of the propagating acoustic wave’s energy decay. Its values come from
[14] for brain and [35] for skull, respectively.

After establishing the mechanical properties, we calculated the initial acoustic amplitudes in
the synthetic model. We assumed that the initial acoustic pressure (dyne/cm2) in mineral oil
and the skull was 0, so the acoustic wave field was entirely generated by multiple acoustic
sources in the brain at time zero. Their amplitudes were closely linked to the microwave
absorption ratio. As expressed in [6], the relationship between the power intensity I (W/cm2)
of absorbed microwaves and the generated peak acoustic pressure P0 (dyne/cm2) is shown as
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model is uniform; However when the velocity distribution inside the to-be-imaged domain is
complex, the possible location of S will be distorted from circle to an irregular shape. Combined
with multiple scattering, the assumption of one-way sight transmission in back-projection is
no longer established. Different from back-projection, RTM works by running the wave
equation backward for all transducers. It sets up all transducers as pseudo sources, and the
records are broadcasted with a time-reversed manner-from the end of the trace to time zero.
If the velocity model is presumed correctly, in TAT imaging the wave field at time 0 in space
will coincide with the original source distribution [19]. Compared with back-projection, by
applying full wave equation, RTM is capable of involving all wave field phenomenon
including diffraction, aberration and multiple scattering. However it requires much higher
usage of CPU time and memory [27].

3. Validation of RTM and back-projection methods

3.1. Validation via synthetic data

To test the effectiveness of back-projection and RTM, we have built a 2D synthetic human brain
model with an intact skull. In this model, the brain is made of gray matter and white matter
[14], and the skull is made of three layers, namely the inner table, diploe, and outer table [20].
To mimic a real laboratory experiment similar to [8], [13], we modeled the space outside the
skull as mineral oil. The reason for us using mineral oil is that it provides both back-ground
with uniform acoustic speed and tiny loss coupling between acoustic transducers and human
head surface. Additionally when compared with water, mineral oil has much weaker micro‐
wave absorption ratio (~0), this will guarantee the minimum errors are introduced during
modeling. Instead of mineral oil, a plenty kinds of fluid with weak microwave absorption ratio
and comparable acoustic velocity to bio-tissue could also been used in further realistic test. To
mimic pathological changes and build a benchmark for results analysis, in the synthetic model
we replaced a small area of the brain with blood. This area was located at the left cerebral
hemisphere and defined as elliptically-shaped. The distribution of acoustic velocity in the
synthetic model is shown in Figure 3a. From a review of several literatures, mechanical
parameters of all related bio-tissues were collected and are listed in Table I, in which the
velocities and densities of grey matter and white matter were measured from lamb brain using
acoustic frequency of 1 MHz [14]. The skull’s velocities, densities and thicknesses of different
layers are applied from datasets in research [20], [34] and [35]. The loss factor is defined in [35]
to depict the amplitude of the propagating acoustic wave’s energy decay. Its values come from
[14] for brain and [35] for skull, respectively.

After establishing the mechanical properties, we calculated the initial acoustic amplitudes in
the synthetic model. We assumed that the initial acoustic pressure (dyne/cm2) in mineral oil
and the skull was 0, so the acoustic wave field was entirely generated by multiple acoustic
sources in the brain at time zero. Their amplitudes were closely linked to the microwave
absorption ratio. As expressed in [6], the relationship between the power intensity I (W/cm2)
of absorbed microwaves and the generated peak acoustic pressure P0 (dyne/cm2) is shown as
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Eq. 1, where c is the sound velocity, β is the volumetric thermo-expansion coefficient, and Cp

is heat capacity. The definition of absorbed power intensity I can be expressed as Eq. 2 [8],
where E, ρ, and σ are the maximum amplitude of the radiated electromagnetic field, tissue’s
density, and electrical conductivity, respectively. By combining Eq. 1 and Eq. 2, Eq. 3 is derived
as the theoretical relationship between tissue’s electrical conductivity and initial acoustic
pressure generated based on the thermo-acoustic effect.

P0 = cβI
C p

(1)

I = σ
2ρ |E|2 (2)

P0 = βcσ
2cpρ

|E|2 (3)

The volumetric thermo-expansion coefficient β and heat capacity Cp of the brain are nearly
uniform: (β=12.3X10-5 /℃ [36] and Cp=4160 KJ/m3 ℃ [37]). The acoustic velocity and density
vary little among gray matter, white matter, and blood (Table 1). Consequently the initial
acoustic pressure can be well approximated as proportional to the electrical conductivity σ.
On the other hand, Table 2 shows that for input microwaves the electrical conductivities of
white matter, gray matter, and blood are significantly different [8]. For blood in particular,
σcan be more than 1.5 times higher than for the other two kinds of tissue. Using the value of
electrical conductivity for microwave of 900 MHz from [8] and Eq. 3, the distribution of initial
acoustic pressure is derived as shown in Figure. 3b.

Parameter

Bio-

Material

Density

kg/m3)

Acoustic

speed

(m/s)

Loss factor
Thickness

(mm)

Grey matter 1039 1483 0.0046 -

White matter 1044 1521 0.0069 -

Outer Table 1870 2900 0.1542 2.0

Diploe 1740 2500 0.1234 2.5

Inner Table 1910 2900 0.1985 1.7

Blood 1057 1500 0 -

Mineral oil 900 1437 0 -

Table 1. Selected mechanical parameters of human brain and skull
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Figure 3. Layout of the 2D human brain model with intact skull, where (a) is the distribution of acoustic velocity in the
model, in which the skull exhibits relatively higher velocity; and brain tissue has relatively uniform velocity distribution.
The white circle shows the locations of the 240 receivers. (b) shows the amplitude of the initial acoustic pressure
stimulated by microwaves during TAT transcranial diagnosis.

σ(Sm-1) in 900 MHz σ(Sm-1) in 1800 MHz

White matter 0.665 1.081

Grey matter 1.009 1.525

Blood 1.868 2.283

Table 2. Selected electrical conductivities of human brain

Once the synthetic model was established, we applied the FDTD method to forward modeling
acoustic wave propagation. Using the initial acoustic pressure shown in Figure. 3b, a zero-
offset Ricker wavelet with a central frequency of 0.15 MHz was applied to each point of the
brain as the acoustic source. The model space was meshed as 512 x 512 grids with a spatial
interval of 0.5 mm. A total of 1600 time steps with time intervals of 0.115 µs were judged long
enough to allow the acoustic waves to propagate to each receiver from the most remote grid
in the brain. The outgoing acoustic signal was recorded by 240 receivers located outside the
skull (white circle shown in Figure. 3). The derived synthetic time traces are shown in Figure.
4, which provides the input dataset for later imaging.

The velocity model used in both migration algorithms is critical to successful imaging. In this
study we applied two velocity models: one (abbreviated as V1) assumes the average acoustic
velocity is uniformly 1540 m/s in the model space. Essentially it approximates a “bare brain”
model with the effect of the skull excluded. The second model (abbreviated as V2) includes
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Eq. 1, where c is the sound velocity, β is the volumetric thermo-expansion coefficient, and Cp

is heat capacity. The definition of absorbed power intensity I can be expressed as Eq. 2 [8],
where E, ρ, and σ are the maximum amplitude of the radiated electromagnetic field, tissue’s
density, and electrical conductivity, respectively. By combining Eq. 1 and Eq. 2, Eq. 3 is derived
as the theoretical relationship between tissue’s electrical conductivity and initial acoustic
pressure generated based on the thermo-acoustic effect.

P0 = cβI
C p

(1)

I = σ
2ρ |E|2 (2)

P0 = βcσ
2cpρ

|E|2 (3)

The volumetric thermo-expansion coefficient β and heat capacity Cp of the brain are nearly
uniform: (β=12.3X10-5 /℃ [36] and Cp=4160 KJ/m3 ℃ [37]). The acoustic velocity and density
vary little among gray matter, white matter, and blood (Table 1). Consequently the initial
acoustic pressure can be well approximated as proportional to the electrical conductivity σ.
On the other hand, Table 2 shows that for input microwaves the electrical conductivities of
white matter, gray matter, and blood are significantly different [8]. For blood in particular,
σcan be more than 1.5 times higher than for the other two kinds of tissue. Using the value of
electrical conductivity for microwave of 900 MHz from [8] and Eq. 3, the distribution of initial
acoustic pressure is derived as shown in Figure. 3b.

Parameter

Bio-

Material

Density

kg/m3)

Acoustic

speed

(m/s)

Loss factor
Thickness

(mm)

Grey matter 1039 1483 0.0046 -

White matter 1044 1521 0.0069 -

Outer Table 1870 2900 0.1542 2.0

Diploe 1740 2500 0.1234 2.5

Inner Table 1910 2900 0.1985 1.7

Blood 1057 1500 0 -

Mineral oil 900 1437 0 -

Table 1. Selected mechanical parameters of human brain and skull
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Figure 3. Layout of the 2D human brain model with intact skull, where (a) is the distribution of acoustic velocity in the
model, in which the skull exhibits relatively higher velocity; and brain tissue has relatively uniform velocity distribution.
The white circle shows the locations of the 240 receivers. (b) shows the amplitude of the initial acoustic pressure
stimulated by microwaves during TAT transcranial diagnosis.

σ(Sm-1) in 900 MHz σ(Sm-1) in 1800 MHz

White matter 0.665 1.081

Grey matter 1.009 1.525

Blood 1.868 2.283

Table 2. Selected electrical conductivities of human brain

Once the synthetic model was established, we applied the FDTD method to forward modeling
acoustic wave propagation. Using the initial acoustic pressure shown in Figure. 3b, a zero-
offset Ricker wavelet with a central frequency of 0.15 MHz was applied to each point of the
brain as the acoustic source. The model space was meshed as 512 x 512 grids with a spatial
interval of 0.5 mm. A total of 1600 time steps with time intervals of 0.115 µs were judged long
enough to allow the acoustic waves to propagate to each receiver from the most remote grid
in the brain. The outgoing acoustic signal was recorded by 240 receivers located outside the
skull (white circle shown in Figure. 3). The derived synthetic time traces are shown in Figure.
4, which provides the input dataset for later imaging.

The velocity model used in both migration algorithms is critical to successful imaging. In this
study we applied two velocity models: one (abbreviated as V1) assumes the average acoustic
velocity is uniformly 1540 m/s in the model space. Essentially it approximates a “bare brain”
model with the effect of the skull excluded. The second model (abbreviated as V2) includes
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the effect of the high acoustic speed of the skull, which is almost double the speed of brain
tissues. In our study, velocity models V1 and V2 were applied to both back-projection and
RTM. Due to the velocity variance in V2, we applied V2 to two migration methods by different
approaches. In back-projection, ray-tracing was applied from every transducer to all direc‐
tions. This procedure was similar to the methods described in [13], but for simplicity we
considered only the rays’ travel time caused by velocity variance, and aberration around the
skull was ignored. Different from back-projection, as a kind of full-wave migration, RTM uses
the same scheme as forward modeling methods such as FDTD. Consequently V2 can be applied
to RTM in a straightforward manner. Comparisons of migration imaging results are shown in
Figure. 5-7.

Figure 5. Comparison among back-projection results: (a) shows the results using velocity model V1. (b) shows the ini‐
tial acoustic pressure of the original model, and (c).shows the back-projection result using velocity model V2

Figure 4. Acoustic signal recorded during FDTD forward modeling of TAT. This is a cluster with 240 traces, with 1600
samples contained in each trace.
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Figure 6. Comparison among RTM results: (a) shows the results using velocity model V1, (b) shows the initial acoustic
pressure of the original model, and (c) shows the RTM result using velocity model V2.

Figure 7. Comparison among KM results: (a), shows the results using velocity model V2 (b) shows the initial acoustic
pressure of the original model, and (c)shows the RTM result using velocity model V2.

Figure 5a andFigure 6a are results derived by back-projection and RTM using the “bare brain”
model V1. When compared with the distribution of initial acoustic pressure of the original
model (Figure 5b or Figure 6b) we can clearly observe two kinds of imaging artifacts. First, the
area with higher initial pressure at the left cerebral hemisphere, which is set up artificially in
an elliptical-shape, is seriously enlarged by back-projection (Figure 5a) and falsely elongated
along the major axis of the ellipse by RTM (Figure 6a); Second, delicate features such as the
gyrus, located in the outer part of the brain, and the gap which separates the left and right
cerebral hemispheres in our model are totally blurred in both results when using velocity
model V1. In contrast, from Figure 5c and Figure 6c, which are results based on velocity model
V2 with the skull’s velocity included, these two misfits are substantially reduced. From all of
these comparisons we can see that exclusion of the skull leads to severe error and distortion
in migration imaging for both back-projection and RTM.

To further examine the differences between back-projection and RTM, we reorganized the
results using back-projection, RTM, along with the original velocity model V2 as shown in
Figure 7. From it we can see that although both back-projection and RTM can transform most
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the effect of the high acoustic speed of the skull, which is almost double the speed of brain
tissues. In our study, velocity models V1 and V2 were applied to both back-projection and
RTM. Due to the velocity variance in V2, we applied V2 to two migration methods by different
approaches. In back-projection, ray-tracing was applied from every transducer to all direc‐
tions. This procedure was similar to the methods described in [13], but for simplicity we
considered only the rays’ travel time caused by velocity variance, and aberration around the
skull was ignored. Different from back-projection, as a kind of full-wave migration, RTM uses
the same scheme as forward modeling methods such as FDTD. Consequently V2 can be applied
to RTM in a straightforward manner. Comparisons of migration imaging results are shown in
Figure. 5-7.

Figure 5. Comparison among back-projection results: (a) shows the results using velocity model V1. (b) shows the ini‐
tial acoustic pressure of the original model, and (c).shows the back-projection result using velocity model V2

Figure 4. Acoustic signal recorded during FDTD forward modeling of TAT. This is a cluster with 240 traces, with 1600
samples contained in each trace.
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Figure 6. Comparison among RTM results: (a) shows the results using velocity model V1, (b) shows the initial acoustic
pressure of the original model, and (c) shows the RTM result using velocity model V2.

Figure 7. Comparison among KM results: (a), shows the results using velocity model V2 (b) shows the initial acoustic
pressure of the original model, and (c)shows the RTM result using velocity model V2.

Figure 5a andFigure 6a are results derived by back-projection and RTM using the “bare brain”
model V1. When compared with the distribution of initial acoustic pressure of the original
model (Figure 5b or Figure 6b) we can clearly observe two kinds of imaging artifacts. First, the
area with higher initial pressure at the left cerebral hemisphere, which is set up artificially in
an elliptical-shape, is seriously enlarged by back-projection (Figure 5a) and falsely elongated
along the major axis of the ellipse by RTM (Figure 6a); Second, delicate features such as the
gyrus, located in the outer part of the brain, and the gap which separates the left and right
cerebral hemispheres in our model are totally blurred in both results when using velocity
model V1. In contrast, from Figure 5c and Figure 6c, which are results based on velocity model
V2 with the skull’s velocity included, these two misfits are substantially reduced. From all of
these comparisons we can see that exclusion of the skull leads to severe error and distortion
in migration imaging for both back-projection and RTM.

To further examine the differences between back-projection and RTM, we reorganized the
results using back-projection, RTM, along with the original velocity model V2 as shown in
Figure 7. From it we can see that although both back-projection and RTM can transform most
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of the wave field back to its original location correctly, there are obvious differences in imaging
quality between the two methods. Compared with the original model shown in Fig. 5b, the
detail features are blurred in back-projection result (Figure 7a) but appear to be clean and sharp
in RTM result (Figure 7c). These visual differences can be further amplified through 1-D
comparison along the x-direction along the horizontal white dashed line shown in Figure 7
chosen to cross the brain’s left boundary, artificially blooded area, interhemispheric fissure,
and right boundary. The source amplitudes along this profile for back-projection RTM, and
the original model are shown in Figure 8. It is obvious that the result of RTM is far more
superior than that of back-projection. Compared with the back-projection result (the dotted
line), result of RTM (the solid line) has larger variance for depicting structures such as
interhemispheric fissure around 12.50 cm as well as the boundaries of the artificially blooded
area around 7.5 cm and 10 cm. These differences can also be clearly observed on brain
boundaries around 5 cm and 20 cm, where the amplitude from RTM decays as sharp as the
original model, but back-projection’s result is obviously incorrect and decay much slower
outside of the brain.

Figure 8. The cross-sections along the white dashed-line shown in Fig.5a-c, which passes brain’s left boundary, artifi‐
cially blooded area, interhemispheric fissure and the right boundary. The dotted-broken line, dotted line, and solid
line show the original model (Fig. 5b), the results by back-projection (Fig. 5a), and RTM (Fig. 5c) using the model V2.

3.2. Validation through laboratory data

The back-projection and RTM algorithms were also tested by using the laboratory data
acquired by XW06. In their experiment, the monkey’s head was decapitated and fixed by a
clamp and completely immersed in mineral oil. During TAT detection, this specimen was
stimulated by 3-GHz microwave pulses, and the derived acoustic wave field was recorded by
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a transducer with a 1 MHz central frequency and about 0.8 MHz bandwidth. The transducer
was positioned from 6-14 cm to the center of the monkey’s head, and the sampling frequency
was 20 MHz. During the experiment, the clamp fixing the monkey’s head was mounted on a
rotary table driven by a stepper motor with a step size of 2.25 degrees. Accordingly in this
laboratory application, the outgoing acoustic wave was observed by 160 receivers surrounding
the head in a 2D circle. With data processing performed through the procedure of [38] for high
frequency enhancement, only the segment with a spectrum of 0.3-1 MHz of the observed data
was picked up and enhanced for imaging by back-projection and RTM. We applied the
estimated average acoustic velocity to both image approaches, since any velocity information
on velocity distribution of earlier experiment in XW06 was unknown, which may introduce
some error and reduce the image quality.

Figure 9 shows the results based on a dataset collected from a one-month-old monkey head
with a skull thickness of less than 1 mm. The velocity model is assumed to be uniform as 1437
m/s, as the same as acoustic velocity of mineral oil. The region shown is 53mm by 51mm along
the coronal cross section. From the experiment of XW06, three steel needles with diameters of
0.9 mm were inserted in the approximate locations as shown in Figure. 9a (XW06). The results
derived from back-projection (Figure. 9b) and RTM (Figure. 9c) are shown side-by-side for
comparison. Both imaging algorithms show the three needles, and the black dot located at the
center is believed to be an air bubble introduced by inserting the needles (XW06). Compared
with the result derived from back-projection, the needle A in RTM result owns sharper edges.
Meanwhile, back-projection provides less visibility for needle C than RTM. From the plots
along the x cross-section shown in Figure. 9d, although both needle A and B can be detected
by using back-projection and RTM, the back-projection image is much nosier. The existence of
this noise causes seriously reduction of signal noise ratio and fussy in whole image by back-
projection. However needle B is seriously distorted from results of both back-projection and
RTM. This shows that due to the technical limitations of the coarsely estimated average acoustic
velocity for TAT reconstruction, neither of these two methods can provide satisfying image
quality.

4. Iterative RTM procedure

The previous result shows that the image quality of RTM is restricted by the precision of the
velocity model. In some sense, the increased requirement of RTM sensitivity to indistinct
velocity model brings a paradox: If the velocity model is well known by operation or any
invaded techniques, RTM is not necessary; If the velocity model is not known, RTM lacks an
essential input. For solving this paradox and improving the RTM result, rather than single
RTM run, we developed iterative RTM procedure based on the theory of Whitmore [23]. The
iterative RTM procedure works based on an assumption between velocity model and RTM
result. Suppose there exists a function to map velocity from RTM result, complex velocity
model could be renewed after RTM for one time. By repeating this procedure, velocity model
will continue be updated after multiple RTM runs until the result becomes promising. This
iterative RTM procedure is shown in Figure 10 as a schematic. An initial guess of a model is
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of the wave field back to its original location correctly, there are obvious differences in imaging
quality between the two methods. Compared with the original model shown in Fig. 5b, the
detail features are blurred in back-projection result (Figure 7a) but appear to be clean and sharp
in RTM result (Figure 7c). These visual differences can be further amplified through 1-D
comparison along the x-direction along the horizontal white dashed line shown in Figure 7
chosen to cross the brain’s left boundary, artificially blooded area, interhemispheric fissure,
and right boundary. The source amplitudes along this profile for back-projection RTM, and
the original model are shown in Figure 8. It is obvious that the result of RTM is far more
superior than that of back-projection. Compared with the back-projection result (the dotted
line), result of RTM (the solid line) has larger variance for depicting structures such as
interhemispheric fissure around 12.50 cm as well as the boundaries of the artificially blooded
area around 7.5 cm and 10 cm. These differences can also be clearly observed on brain
boundaries around 5 cm and 20 cm, where the amplitude from RTM decays as sharp as the
original model, but back-projection’s result is obviously incorrect and decay much slower
outside of the brain.

Figure 8. The cross-sections along the white dashed-line shown in Fig.5a-c, which passes brain’s left boundary, artifi‐
cially blooded area, interhemispheric fissure and the right boundary. The dotted-broken line, dotted line, and solid
line show the original model (Fig. 5b), the results by back-projection (Fig. 5a), and RTM (Fig. 5c) using the model V2.

3.2. Validation through laboratory data

The back-projection and RTM algorithms were also tested by using the laboratory data
acquired by XW06. In their experiment, the monkey’s head was decapitated and fixed by a
clamp and completely immersed in mineral oil. During TAT detection, this specimen was
stimulated by 3-GHz microwave pulses, and the derived acoustic wave field was recorded by
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a transducer with a 1 MHz central frequency and about 0.8 MHz bandwidth. The transducer
was positioned from 6-14 cm to the center of the monkey’s head, and the sampling frequency
was 20 MHz. During the experiment, the clamp fixing the monkey’s head was mounted on a
rotary table driven by a stepper motor with a step size of 2.25 degrees. Accordingly in this
laboratory application, the outgoing acoustic wave was observed by 160 receivers surrounding
the head in a 2D circle. With data processing performed through the procedure of [38] for high
frequency enhancement, only the segment with a spectrum of 0.3-1 MHz of the observed data
was picked up and enhanced for imaging by back-projection and RTM. We applied the
estimated average acoustic velocity to both image approaches, since any velocity information
on velocity distribution of earlier experiment in XW06 was unknown, which may introduce
some error and reduce the image quality.

Figure 9 shows the results based on a dataset collected from a one-month-old monkey head
with a skull thickness of less than 1 mm. The velocity model is assumed to be uniform as 1437
m/s, as the same as acoustic velocity of mineral oil. The region shown is 53mm by 51mm along
the coronal cross section. From the experiment of XW06, three steel needles with diameters of
0.9 mm were inserted in the approximate locations as shown in Figure. 9a (XW06). The results
derived from back-projection (Figure. 9b) and RTM (Figure. 9c) are shown side-by-side for
comparison. Both imaging algorithms show the three needles, and the black dot located at the
center is believed to be an air bubble introduced by inserting the needles (XW06). Compared
with the result derived from back-projection, the needle A in RTM result owns sharper edges.
Meanwhile, back-projection provides less visibility for needle C than RTM. From the plots
along the x cross-section shown in Figure. 9d, although both needle A and B can be detected
by using back-projection and RTM, the back-projection image is much nosier. The existence of
this noise causes seriously reduction of signal noise ratio and fussy in whole image by back-
projection. However needle B is seriously distorted from results of both back-projection and
RTM. This shows that due to the technical limitations of the coarsely estimated average acoustic
velocity for TAT reconstruction, neither of these two methods can provide satisfying image
quality.

4. Iterative RTM procedure

The previous result shows that the image quality of RTM is restricted by the precision of the
velocity model. In some sense, the increased requirement of RTM sensitivity to indistinct
velocity model brings a paradox: If the velocity model is well known by operation or any
invaded techniques, RTM is not necessary; If the velocity model is not known, RTM lacks an
essential input. For solving this paradox and improving the RTM result, rather than single
RTM run, we developed iterative RTM procedure based on the theory of Whitmore [23]. The
iterative RTM procedure works based on an assumption between velocity model and RTM
result. Suppose there exists a function to map velocity from RTM result, complex velocity
model could be renewed after RTM for one time. By repeating this procedure, velocity model
will continue be updated after multiple RTM runs until the result becomes promising. This
iterative RTM procedure is shown in Figure 10 as a schematic. An initial guess of a model is

Application of Iterative Reverse Time Migration Procedure on Transcranial Thermoacoustic Tomography Imaging
http://dx.doi.org/10.5772/56619

57



made, incorporating all known external velocity information. The image is derived through
RTM. After that a new velocity model is made based on current RTM result. This procedure
is repeated until both RTM results and velocity models are unchangeable.

As Figure 10 shows, the key procedure of iterative RTM is to update velocity model after each
RTM. This requires a function for mapping velocity from image derived by RTM. Since for
TAT imaging RTM image is the reconstruction of electrical conductivity distribution, the
desired function of velocity and electrical conductivity could be built by referring to Table 1
and Table 2. Based on the given velocity and electrical conductivity values of white matter and
gray matter, a function is established by using the second order polynomial fitting as shown
in Figure 11. Obviously this function is coarsely approximated. It could be improved by
involving more velocity–electrical conductivity pairs in further research. Meanwhile it’s
noteworthy that the mapping function can’t derive correct velocity on blood, water and
mineral oil, consequently a mask must be used to preserve the region outside sample from
wrongly updating. At present the function shown in Figure 11 is used in our research to map
the velocity from electrical conductivity derived by RTM; in this way the velocity model will
be updated for the next RTM iteration.

Figure 9. a) Diagram showing a monkey head with three inserted needles from XW06; (b) TAT result derived by KM;
(c) TAT result derived by RTM; (d) Line plot along the white dashed line at 2 cm of (b).

Soundscape Semiotics - Localisation and Categorisation58

Figure 11. Mapping function for calculating acoustic velocity through RTM derived electrical conductivity. This func‐
tion is second-order polynomial fitted by velocity-electrical conductivity pairs of white matter and grey matter given
by Table 1 and Table 2.

An example of applying iterative RTM procedure is shown in Figure 12. The laboratory data
of this case comes from XW06, which has been introduced in Section V. By referring to XW06,
the velocity model would not be known during TAT. The only knowledge of the velocity field

Figure 10. Schematic of iterative RTM procedure
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made, incorporating all known external velocity information. The image is derived through
RTM. After that a new velocity model is made based on current RTM result. This procedure
is repeated until both RTM results and velocity models are unchangeable.

As Figure 10 shows, the key procedure of iterative RTM is to update velocity model after each
RTM. This requires a function for mapping velocity from image derived by RTM. Since for
TAT imaging RTM image is the reconstruction of electrical conductivity distribution, the
desired function of velocity and electrical conductivity could be built by referring to Table 1
and Table 2. Based on the given velocity and electrical conductivity values of white matter and
gray matter, a function is established by using the second order polynomial fitting as shown
in Figure 11. Obviously this function is coarsely approximated. It could be improved by
involving more velocity–electrical conductivity pairs in further research. Meanwhile it’s
noteworthy that the mapping function can’t derive correct velocity on blood, water and
mineral oil, consequently a mask must be used to preserve the region outside sample from
wrongly updating. At present the function shown in Figure 11 is used in our research to map
the velocity from electrical conductivity derived by RTM; in this way the velocity model will
be updated for the next RTM iteration.

Figure 9. a) Diagram showing a monkey head with three inserted needles from XW06; (b) TAT result derived by KM;
(c) TAT result derived by RTM; (d) Line plot along the white dashed line at 2 cm of (b).

Soundscape Semiotics - Localisation and Categorisation58

Figure 11. Mapping function for calculating acoustic velocity through RTM derived electrical conductivity. This func‐
tion is second-order polynomial fitted by velocity-electrical conductivity pairs of white matter and grey matter given
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An example of applying iterative RTM procedure is shown in Figure 12. The laboratory data
of this case comes from XW06, which has been introduced in Section V. By referring to XW06,
the velocity model would not be known during TAT. The only knowledge of the velocity field
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in this case is 1437 m/s of mineral oil, which submerges the sample during TAT detection. To
demonstrate the iterative RTM procedure, we make an initial guess that velocity model is
uniform as 1437 m/s. By using the initial velocity model, the first RTM output is derived as
shown in Figure 12b, which is as the same as Figure 9c. Velocity model will then be updated
as new velocity input for RTM. This procedure is repeated for several times until RTM output
is unchangeable. The TAT results derived from iterative RTM procedure on step 3 and 5 are
displayed on Figure 12b and Figure 12c.

Figure 12. a) Diagram showing a monkey head with three inserted needles from XW06; (b) TAT result derived from
iterative RTM procedure on step 1; (c) TAT result derived from iterative RTM procedure on step 3; (d) TAT result de‐
rived from iterative RTM procedure on step 5.

From Figure 12, by using iterative RTM procedure the improvement on TAT image can be
observed from several aspects: First, by comparing with Figure 12b (Figure 9c), the distortion
of needle B has been well corrected after five times iteration. Second, the original RTM result
shown in Figure 12b provides less visibility for needle C. After two iterations, Figure 12c shows
that the boundary of needle C has been largely enhanced. Additionally, comparing among
Figure 12 a-c, the cross-section of needle A has been focused gradually with iteration times
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increasing. All of this shows that iterative RTM procedure has great potential of correcting
coarsely estimated velocity model and therefore enhance imaging capability of RTM.

5. Discussion

By combining Section II and III, It is clear that RTM is superior to back-projection in terms of
imaging quality and higher signal to noise ratio. Compared with back-projection, which makes
a ray approximation, RTM bases its entire algorithm on solving a full-wave equation, without
substantial approximation, and holds the original dynamic features of the wave field intact.
The handle of velocity heterogeneity is fundamentally intrinsic. Usually, adapting ray tracing
in back-projection is time consuming and has a limited improvement on image quality. Unlike
back-projection, the quality of RTM’s results is independent of the complexity of the velocity
model. This feature makes the wave propagation in the domain highly accurate compared
with using ray-tracing. Figure 5-8 show that RTM is able to recover almost all features of the
brain to their original potion when the skull’s velocity is included.

RTM can recover a complex structure’s boundary sharply. This has been reported by [19], [27]
and is proved by our results in Figure 6. When both velocity models V1 and V2 are used in
RTM, the boundaries of tiny features can be clearly seen. Especially, even though obvious
distortions exist in the result using V1 (Figure 6a), with the exclusion of the skull, all features
are still relatively un-blurred in comparison with the back-projection results (Figure 5a). By
comparison, looking at the cross-section in Figure 8, the sharp edges of brain are well recovered
by RTM but seriously smeared by back-projection. Further, in Figure 9 when the skull-
excluded model is applied, the contour of Needle C is well recovered by RTM but not by back-
projection.

Nevertheless, it is noteworthy that the image quality of RTM is still limited by the precision of
the velocity model. Consequently the key to capitalizing on the benefit of RTM is to build better
velocity models before applying RTM. For achieving this goal, we developed iterative RTM
procedure to update velocity model iteratively. Its principle is based on an assumption that
acoustic velocity could be mapped from RTM image through a certain function. The results
shown in Figure 12 demonstrated that currently even by using our coarsely approximated
velocity function, the quality of RTM image can be well improved after several iterations within
iterative RTM procedure. It could be improved by involving more velocity–electrical conduc‐
tivity pairs in our further research.

6. Conclusion

In this paper we have compared back-projection and RTM for transcranial TAT imaging.
Compared with back-projection, RTM offers better performance with regard to velocity
variance, imaging quality, and noise suppression caused by spatial aliasing. The capability of
RTM can be further improved by iterative RTM procedure, which aimed to provide velocity
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in this case is 1437 m/s of mineral oil, which submerges the sample during TAT detection. To
demonstrate the iterative RTM procedure, we make an initial guess that velocity model is
uniform as 1437 m/s. By using the initial velocity model, the first RTM output is derived as
shown in Figure 12b, which is as the same as Figure 9c. Velocity model will then be updated
as new velocity input for RTM. This procedure is repeated for several times until RTM output
is unchangeable. The TAT results derived from iterative RTM procedure on step 3 and 5 are
displayed on Figure 12b and Figure 12c.

Figure 12. a) Diagram showing a monkey head with three inserted needles from XW06; (b) TAT result derived from
iterative RTM procedure on step 1; (c) TAT result derived from iterative RTM procedure on step 3; (d) TAT result de‐
rived from iterative RTM procedure on step 5.

From Figure 12, by using iterative RTM procedure the improvement on TAT image can be
observed from several aspects: First, by comparing with Figure 12b (Figure 9c), the distortion
of needle B has been well corrected after five times iteration. Second, the original RTM result
shown in Figure 12b provides less visibility for needle C. After two iterations, Figure 12c shows
that the boundary of needle C has been largely enhanced. Additionally, comparing among
Figure 12 a-c, the cross-section of needle A has been focused gradually with iteration times
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increasing. All of this shows that iterative RTM procedure has great potential of correcting
coarsely estimated velocity model and therefore enhance imaging capability of RTM.

5. Discussion

By combining Section II and III, It is clear that RTM is superior to back-projection in terms of
imaging quality and higher signal to noise ratio. Compared with back-projection, which makes
a ray approximation, RTM bases its entire algorithm on solving a full-wave equation, without
substantial approximation, and holds the original dynamic features of the wave field intact.
The handle of velocity heterogeneity is fundamentally intrinsic. Usually, adapting ray tracing
in back-projection is time consuming and has a limited improvement on image quality. Unlike
back-projection, the quality of RTM’s results is independent of the complexity of the velocity
model. This feature makes the wave propagation in the domain highly accurate compared
with using ray-tracing. Figure 5-8 show that RTM is able to recover almost all features of the
brain to their original potion when the skull’s velocity is included.

RTM can recover a complex structure’s boundary sharply. This has been reported by [19], [27]
and is proved by our results in Figure 6. When both velocity models V1 and V2 are used in
RTM, the boundaries of tiny features can be clearly seen. Especially, even though obvious
distortions exist in the result using V1 (Figure 6a), with the exclusion of the skull, all features
are still relatively un-blurred in comparison with the back-projection results (Figure 5a). By
comparison, looking at the cross-section in Figure 8, the sharp edges of brain are well recovered
by RTM but seriously smeared by back-projection. Further, in Figure 9 when the skull-
excluded model is applied, the contour of Needle C is well recovered by RTM but not by back-
projection.

Nevertheless, it is noteworthy that the image quality of RTM is still limited by the precision of
the velocity model. Consequently the key to capitalizing on the benefit of RTM is to build better
velocity models before applying RTM. For achieving this goal, we developed iterative RTM
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6. Conclusion

In this paper we have compared back-projection and RTM for transcranial TAT imaging.
Compared with back-projection, RTM offers better performance with regard to velocity
variance, imaging quality, and noise suppression caused by spatial aliasing. The capability of
RTM can be further improved by iterative RTM procedure, which aimed to provide velocity

Application of Iterative Reverse Time Migration Procedure on Transcranial Thermoacoustic Tomography Imaging
http://dx.doi.org/10.5772/56619

61



model with higher accuracy. Generally speaking RTM owns great potential for achieving
acoustic localization on transcranial TAT imaging with high quality and accuracy.
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1. Introduction

In modern livestock production, biosecurity and improved disease monitoring are of great
importance to safeguard public and animal health. In addition, citizens expect that farm
animals have been reared and killed humanely with minimal environmental impact and that
food from animals is safe. These global threats and concerns can be combated through
surveillance and research networks for early detection of animal diseases and better scientific
cooperation between countries and research teams. The use of information technology (IT) can
provide new possibilities for continuous automatic monitoring (Fig. 1) and management of
livestock farming, according to multiple objectives.

Surveillance relies on vast streams of data to identify and manage risks. Currently data
collection nearly always depends on manual methods. While this might be acceptable in R&D
projects, it is unrealistic when solutions are applied on the scale needed on commercial farms.
Scoring of some animal-based information by human inspectors by manual methods is often
inaccurate, time consuming and expensive when implemented at farm level. It is clear that a
multidisciplinary and integrated approach, using modern IT systems, is needed to optimise
use of expensive inspectors.

One current advantage provided by technology in livestock production is the development of
sensors and sensing technologies to automatically monitor and evaluate data from processes
in real-time. Collecting data from livestock and their environment is now possible using
innovative, simple, low-cost IT systems; data are then integrated in real time by using
knowledge-based computer models [1].
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The initial application of technology in livestock has been the growth of housed pigs and
poultry though, in principle, this approach could be applied to any farmed species, including
animals farmed extensively [2]. Stockmen routinely gather auditory, olfactory and visual
information from their animals to evaluate health, welfare and productivity. New technology
can aid this task, even with large flocks or herds, thanks to the (r)evolution in sensors and
sensing techniques, e.g. developments in micro- and nano- electronics [3][4].

Other sensors include pedometers for monitoring oestrus behaviour in dairy cows [5].
Automatic weighing systems for broilers, laying hens and turkeys have been used for a number
of years to estimate the average weight of a flock [6]. Telemetry sensors for measuring heart
rate, body temperature and activity have also been developed [7]. Sensors for quantifying milk
conductivity and yield of individual cows are available and may be used to optimise produc‐
tion and provide early detection of poor welfare in individuals [8]. The above examples are
not exhaustive, but demonstrate the present and future possibilities in monitoring animal
disease, welfare and performance.

The last decade a new field of research has appeared in relation to livestock production and
animal welfare. Precision Livestock Farming (PLF) has emerged as a tool that uses continuous
and automatic techniques in real-time in order to monitor and control/manage animal
production, health, welfare and environmental load in livestock production. The first step in
PLF is the measurement and interpretation of animal bioresponses. In this direction, sound
has been extensively used as an important bioreponse that can provide useful information
regarding the status of the animals.

In this chapter, three examples of monitoring animal sounds as a tool to determine animal
status are presented, namely chicken embryos, chickens and pigs.

2. Interpretation of chicken embryo sounds

Industrial egg incubators vary in size and capacity from 10.800 to 129.600 eggs, with the larger
machines being commercially more attractive to hatchery managers due to the lower invest‐
ment and operational costs per egg. It has been shown in the relevant literature that the spread

Figure 1. Sound analysis can be used in a variety of applications. Pigs, chickens and chicken embryos are considered in
this chapter.
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of hatch of the eggs in an industrial incubator can be as long as 48h [9]. This has serious
implications to the later life of the chicks because for operational reasons access to feed and
water is delayed for the early hatchlings.

To study the effect further, techniques for monitoring the hatch window have been developed.
For example, monitoring climate variables (e.g. temperature and humidity) along with
biological variables (e.g. heart rate) have shown potential as estimators of the hatching process.
More specifically [10] studied the CO2 balance as an indirect measure of thermoregulation. In
[11] heart rate fluctuations were studied and were shown to have specific patterns during the
pipping and hatching stages. The resonance frequency of incubating eggs was also linked to
hatching and even a predictor of hatching could be made [12]. More recently, it was shown [13]
that magnetic resonance imaging (MRI) can be used to monitor hatching.

The above techniques are valuable tools in a research environment. However, their invasive
nature and/or high cost of implementation don’t allow for use in an industrial or commercial
setup. To overcome such problems, sound was used to study the hatching process [14]. Sound
can be measured non-invasively and a single microphone can acquire information about the
complete incubator which makes it attractive for the industry. At the same time, current
technology makes it possible to use microphones in different environment at a low cost.

At the same time, research has been conducted in relation to reducing the hatch window (i.e.
the time between the first and last chick that hatched) [15]-[17]. However, successful applica‐
tion of many of these techniques requires accurate identification of Internal Pipping (IP – the
moment in which the embryo is entering the air cell inside the egg) which is an important
milestone in the hatching process. Once this stage has been reached, chicks inside the egg start
to vocalise.

To address this problem of identifying the IP stage, an algorithm has been developed where
sound is recorded in an industrial incubator [18], is analysed in real-time using a Digital Signal
Processor (DSP) and is able to detect when all the chicks in the incubator have reached the IP
stage (i.e. IP100). Despite the fact that the collected sound is coming from the whole incubator,
the developed technique is able to isolate the sounds coming from all the eggs and infer
information about the embryo state. The algorithm is based on the observation that the
frequency content of the embryo sounds during different hatching stages is significantly
different [18]. This is visually illustrated in Fig. 2.

2.1. Algorithm description

Although the vocalisations at different stages of the hatching process do show statistically
significant differences in terms of the peak frequency, a successful classification algorithm
requires a robust feature that will not (or minimally) be affected by other sounds that are
acquired by the microphone. To account for this, the peak frequency of a sound is not used
directly by the algorithm. From the results of Fig. 2 and by experimentation a ratio of the total
energy in the 2-3 and 3-4 kHz frequency bands was able to provide a robust measure that can
easily be calibrated as explained below. This difference is visualised in Fig. 3 where the mean
spectra of the collected sounds are presented.

Automatic Identification and Interpretation of Animal Sounds, Application to Livestock Production Optimisation
http://dx.doi.org/10.5772/56040

67



The initial application of technology in livestock has been the growth of housed pigs and
poultry though, in principle, this approach could be applied to any farmed species, including
animals farmed extensively [2]. Stockmen routinely gather auditory, olfactory and visual
information from their animals to evaluate health, welfare and productivity. New technology
can aid this task, even with large flocks or herds, thanks to the (r)evolution in sensors and
sensing techniques, e.g. developments in micro- and nano- electronics [3][4].

Other sensors include pedometers for monitoring oestrus behaviour in dairy cows [5].
Automatic weighing systems for broilers, laying hens and turkeys have been used for a number
of years to estimate the average weight of a flock [6]. Telemetry sensors for measuring heart
rate, body temperature and activity have also been developed [7]. Sensors for quantifying milk
conductivity and yield of individual cows are available and may be used to optimise produc‐
tion and provide early detection of poor welfare in individuals [8]. The above examples are
not exhaustive, but demonstrate the present and future possibilities in monitoring animal
disease, welfare and performance.

The last decade a new field of research has appeared in relation to livestock production and
animal welfare. Precision Livestock Farming (PLF) has emerged as a tool that uses continuous
and automatic techniques in real-time in order to monitor and control/manage animal
production, health, welfare and environmental load in livestock production. The first step in
PLF is the measurement and interpretation of animal bioresponses. In this direction, sound
has been extensively used as an important bioreponse that can provide useful information
regarding the status of the animals.

In this chapter, three examples of monitoring animal sounds as a tool to determine animal
status are presented, namely chicken embryos, chickens and pigs.

2. Interpretation of chicken embryo sounds

Industrial egg incubators vary in size and capacity from 10.800 to 129.600 eggs, with the larger
machines being commercially more attractive to hatchery managers due to the lower invest‐
ment and operational costs per egg. It has been shown in the relevant literature that the spread

Figure 1. Sound analysis can be used in a variety of applications. Pigs, chickens and chicken embryos are considered in
this chapter.

Soundscape Semiotics - Localisation and Categorisation66

of hatch of the eggs in an industrial incubator can be as long as 48h [9]. This has serious
implications to the later life of the chicks because for operational reasons access to feed and
water is delayed for the early hatchlings.

To study the effect further, techniques for monitoring the hatch window have been developed.
For example, monitoring climate variables (e.g. temperature and humidity) along with
biological variables (e.g. heart rate) have shown potential as estimators of the hatching process.
More specifically [10] studied the CO2 balance as an indirect measure of thermoregulation. In
[11] heart rate fluctuations were studied and were shown to have specific patterns during the
pipping and hatching stages. The resonance frequency of incubating eggs was also linked to
hatching and even a predictor of hatching could be made [12]. More recently, it was shown [13]
that magnetic resonance imaging (MRI) can be used to monitor hatching.

The above techniques are valuable tools in a research environment. However, their invasive
nature and/or high cost of implementation don’t allow for use in an industrial or commercial
setup. To overcome such problems, sound was used to study the hatching process [14]. Sound
can be measured non-invasively and a single microphone can acquire information about the
complete incubator which makes it attractive for the industry. At the same time, current
technology makes it possible to use microphones in different environment at a low cost.

At the same time, research has been conducted in relation to reducing the hatch window (i.e.
the time between the first and last chick that hatched) [15]-[17]. However, successful applica‐
tion of many of these techniques requires accurate identification of Internal Pipping (IP – the
moment in which the embryo is entering the air cell inside the egg) which is an important
milestone in the hatching process. Once this stage has been reached, chicks inside the egg start
to vocalise.

To address this problem of identifying the IP stage, an algorithm has been developed where
sound is recorded in an industrial incubator [18], is analysed in real-time using a Digital Signal
Processor (DSP) and is able to detect when all the chicks in the incubator have reached the IP
stage (i.e. IP100). Despite the fact that the collected sound is coming from the whole incubator,
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Figure 3. Frequency content of the mean of vocalisations during Internal Pipping (dashed black line) and the mean of
vocalisations during Hatch (solid red line). A line visualising the limit of 3 kHz is also shown (vertical blue dotted line)

Figure 2. Boxplot showing the peak frequency of the collected sounds when the embryo is in Internal Pipping (IP),
External Pipping (EP) and when it has hatched (HT). The box shows the 25th and 75th percentile of the data, the whisk‐
ers are the most extreme points not considered outliers and the crosses are the outliers.
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The classification of the frequency ratio is based on an adaptive threshold. This threshold
reflects the background noise characteristics during a period where IP has not started yet.
During the beginning of the sound recording (e.g. Incubation Day 16) when the embryos have
not penetrated the air cell yet, the algorithm is defining a baseline. The threshold is then set to
90% lower than this threshold. Once the algorithm output remains below this threshold value
for more than 5 minutes continuously, IP100 has been reached an the algorithm is giving a
signal. In the training dataset, the algorithm has shown to have an accuracy of ±3.1 hrs in the
detection of IP100.

A block diagram description of the algorithm is shown in Fig. 4.
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Figure 4. Block diagram of the algorithm for automatic identification of IP100

2.2. Validation results

The algorithm was developed and tested using data collected during 12 incubations in an
industrial incubator (Petersime, Belgium). The algorithm had an absolute deviation of 3.2 hrs
from the actual IP100 point. An example of the output of the algorithm is presented in Fig. 5.
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As explained in the previous section, the threshold shown in Fig. 5 is automatically defined as
90% of the mean value during the initialisation of the algorithm. This value was chosen after
experimentation with the data and allows for short variations of the algorithm output due to
non-incubation sounds not to be considered as an alarm.

Figure 5. The output of the algorithm (black solid line) and the threshold that was automatically chosen (horizontal
blue dotted line). Once the algorithm output crosses the threshold for more than 5 minutes, IP100 is detected.

For the validation, the algorithm was implemented on a DSP (TMS320C6416T by Texas
Instruments) using the Real-Time Workshop® of the MATLAB® environment. Once it was
giving the signal that IP100 has been reached, a sample of 300 eggs was manually checked for
IP. This experimental setup is shown in Fig. 6. In total, 5 experiments were performed during
5 incubations and the results are shown in Table 1.

Trial no.
Time of IP100 detected by the algorithm

(incubation time in h)
Manual count of IP (%)

1 467 93

2 468 97

3 470 96

4 469 96

5 470 98

Table 1. Validation results of the algorithm for IP100 detection in industrial incubators
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The results of Table 1 show that IP100 was identify correctly. Although this may seem an
inaccurate claim (since the IP count was between 93% and 98%), it is important to note the
nature of the validation trial. Once the algorithm is providing a signal, IP is manually checked
in the incubator. In the hypothetical case that IP is shown to be 100% (i.e. all embryos have
been through the IP stage), it is not certain when this has happened. It is perfectly possible that
IP100 has been reached long before the manual count. However, if IP of 98% is manually
checked, then this means that almost all the embryos have been in the IP stage and therefore
from a practical point of view, it is very close to the actual IP100.

Figure 6. Schematic diagram of the experimental setup for the validation trial. The sound is acquired from a micro‐
phone placed in the left part of the incubator and the signal is directed to a Digital Signal Processor (DSP). The DSP is
executing the algorithm and is providing a signal by means of LEDs as to whether IP100 has been achieved.

3. Monitoring of vocalisations of chickens

Analysis and interpretation of vocalisations of chickens is a powerful tool when studying the
behaviour and welfare. It has been presented in the literature that different types of calls (such
as distress or happy calls) can be identified based on their frequency characteristics [19], [20].
More recently, attempts are made to automatically classify these calls and relate them to animal
welfare [21].

In relation to thermoregulation, chicken vocalisations have been shown to have specific
patterns when chicks are exposed to cold stress [22]. Furthermore, vocal solicitation of heat,
forms an integral part of the development of the thermoregulatory system of young chickens
[23]. Finally, the thermal comfort of chicks has been shown to have links with the amplitude
and frequency of calls [24].
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On a social level, chick vocalisations are directly linked to stress and welfare parameters.
A  dissociation  of  stress  behaviour  during  social-separation  of  the  chick  is  mediated  by
novelty  while  distress  calls  are  mediated  by  isolation  [25].  Lastly,  a  method  has  been
developed  that  could  be  used  for  stress  monitoring  of  a  flock  and  is  based  on  multi-
parametric sound analysis [26].

It should be noted that chickens, being living organisms, are Complex, Individually different,
Time varying and Dynamic (CITD) [27]. As such, the characteristics of their vocalisations are
expected to change with time. This is confirmed by experimental results in which the peak
frequency of the chicken vocalisations for the same chicken at 1 day and at 20 days old was
estimated to be 3603(±303) Hz and 3441(±289) Hz respectively. This parameters shows to be
significantly different between the two groups.

It should be noted that no distinction was made between different types of vocalisations. For
example, in [19] different types of calls (e.g. distress or pleasure calls) were studied and it was
shown that there are differences in terms of frequency content. A more detailed analysis is
needed in terms of the evolution of the frequency characteristics with age.

4. Pig cough identification for health monitoring

Similar to the effect on humans, respiratory diseases in pigs result in coughing and in a different
sound of coughing due to the different response of the respiratory system when contacting
different pathogenic agents. In humans, an experienced physician can identify over 100
different respiratory diseases based on the sound timbre [28]. In animals, veterinarians use a
similar approach to detect sick animals when they enter a farm. Their initial impression over
the herd is based on visual and auditory observation when they collect information about the
welfare, health and productive status of the animals. In this direction, pig vocalisations related
to pain were studied in [29], while vocalisation analysis in livestock farms as a measure of
welfare has been employed in [30], [31].

The frequency characteristics of pig vocalisation have been extensively studied under different
conditions [32][33][34]. These approaches have been further extended to develop algorithms
for automatic classification of pig coughing under commercial farming conditions. For this,
both frequency [35] and time domain [36] sound analysis techniques have been used. Fur‐
thermore, the distinction between dry and productive coughs has been made to further
enhance the capabilities of the algorithm. This latter has been studied in detail in [37] where
the energy envelope of a sound was shown to be different in dry and productive cough. The
system is therefore able to not only provide information about the number of coughing
incidents, but also in relation to the quality of the produced cough.

4.1. Algorithm description

As mentioned above, the objective of the algorithm is to detect productive and non-productive
coughs in a commercial piggery. Sound is acquired in the pig house by a single microphone
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placed in the middle of the compartment at a height of 2 meters above the ground. The overall
algorithm is shown in Fig. 7 and each block is subsequently described in more detail.

Sound

Buffer (5 minutes)

Individual sound 
extraction [36]

Cough classifier 
based on frequency 
analysis [34] or [35]

Cough classifier 
based on time series 
analysis [36] or [37]

Productive 
cough Dry cough

Figure 7. Block diagram of the algorithm to identify cough and distinguish between productive and dry cough.

The  first  step  of  the  algorithm  is  to  identify  individual  sounds  before  using  a  cough
classifier. A procedure that is based on the energy envelope of the sound signal has been
described in [36]. Briefly explained, this approach is identifying the parts of the signal with
high enough energy that could potentially be cough incidents. An example of this is shown
in Fig.  8  for  a  cough attack (a  series  of  coughing events).  It  should be  noted that  each
sound is identified as an event for further processing. There is no guarantee that the sound
originates from a single animal while overlap of sounds is possible (especially during busy
periods of the day).

It can be argued that a such a simple sound extraction algorithm would require accurate
calibration of the microphone and would be prone to errors due to large background noise.
To tackle this, depending on the situation, noise filters can be included preceding the appli‐
cation of the sound extraction algorithm in order to remove any structured and know back‐
ground noise. At the same time, an adaptive threshold procedure has also been integrated [36]
that allows for accurate selection of only sounds events without including noise. It was further
shown in [36] that despite the background noise, classification is still possible using this sound
extraction method.
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In the next instance, the algorithm is applying a classifier in order to identify coughs. At this
stage it is not important to determine whether the cough is productive or not. For this, either
the approach described in [34] or the approach described in [35] can be used. Both methods
are based on frequency analysis and exploit the characteristics of the frequency content of the
cough sounds in different frequency bands in comparison to other sounds that can occur in a
pig house (e.g. screams, grunts, feeding systems, contact with doors, etc.). Table 2 provides an
overview of the frequency bands an which of those are used by the two algorithms. It should
further be noted that both algorithms have employed fuzzy c-means clustering to reach their
results and have identified fixed thresholds for their classifiers.

Frequency range (Hz) Reference [34] Reference [35]
100-10000 √ √
100-6000 √ √
6000-10000 √
100-2000 √
2000-5000 √ √
2000-4000 √ √
4000-6000 √
2300-3200 √ √
7000-9000 √

Table 2. Frequency ranges used for the classification of cough. Differences between [34] and [35].

Once a sound has been identified as a cough, then the distinction between a productive and a
non-productive cough has to be made. For this, the algorithms presented in [36] or [37] can be

Figure 8. Extraction of individual sounds (bottom plot) from a cough attack (top plot). All 4 sound incidents are suc‐
cessfully extracted.
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used. Both algorithms are based on time-domain characteristics of the coughs. The algorithm
presented in [37] is focusing on the decay of the cough sound. To do so, the cough is described
by it energy envelope and subsequently a mathematical model is made for the drop of the
amplitude. It was shown that productive coughs have a longer decay (as expressed by the time
constant) than dry coughs. This is visualised in Fig. 9. It has been hypothesised that this
difference is due to differences in lung plasticity that is changing with the occurrence of a
respiratory disease. However, further research is needed to confirm this hypothesis.

An alternative method to classify a cough as productive or not is to use the algorithm described
in [36]. In this approach, a third order Auto-Regression (AR) model is used (e.g. [38]) to estimate
the sound signal. This model has the following form:

yk =a1yk -1 + a2yk -2 + a3yk -3 (1)

Where yk  is the value of the signal at sample time k and a1, a2 and a3 are the 3 model parameters.
It was shown that productive coughs can be distinguished from dry coughs by using these
three parameters. More specifically, a polyhedron is defined in the (a1, a2, a3) space that is
subsequently used as a classifier for productive coughs. Alternatively, the centre of the dry
cough can be defined and it can be assumed the coughs outside this cluster are productive
coughs.

Figure 9. The difference in the decay between a dry (red dashed line) and a productive (black solid line) cough is
shown as has been studied in [37]

In the literature it was shown [39] that the vocal tract can act as a first order filter that has the
form:

Automatic Identification and Interpretation of Animal Sounds, Application to Livestock Production Optimisation
http://dx.doi.org/10.5772/56040

75



In the next instance, the algorithm is applying a classifier in order to identify coughs. At this
stage it is not important to determine whether the cough is productive or not. For this, either
the approach described in [34] or the approach described in [35] can be used. Both methods
are based on frequency analysis and exploit the characteristics of the frequency content of the
cough sounds in different frequency bands in comparison to other sounds that can occur in a
pig house (e.g. screams, grunts, feeding systems, contact with doors, etc.). Table 2 provides an
overview of the frequency bands an which of those are used by the two algorithms. It should
further be noted that both algorithms have employed fuzzy c-means clustering to reach their
results and have identified fixed thresholds for their classifiers.

Frequency range (Hz) Reference [34] Reference [35]
100-10000 √ √
100-6000 √ √
6000-10000 √
100-2000 √
2000-5000 √ √
2000-4000 √ √
4000-6000 √
2300-3200 √ √
7000-9000 √

Table 2. Frequency ranges used for the classification of cough. Differences between [34] and [35].

Once a sound has been identified as a cough, then the distinction between a productive and a
non-productive cough has to be made. For this, the algorithms presented in [36] or [37] can be

Figure 8. Extraction of individual sounds (bottom plot) from a cough attack (top plot). All 4 sound incidents are suc‐
cessfully extracted.

Soundscape Semiotics - Localisation and Categorisation74

used. Both algorithms are based on time-domain characteristics of the coughs. The algorithm
presented in [37] is focusing on the decay of the cough sound. To do so, the cough is described
by it energy envelope and subsequently a mathematical model is made for the drop of the
amplitude. It was shown that productive coughs have a longer decay (as expressed by the time
constant) than dry coughs. This is visualised in Fig. 9. It has been hypothesised that this
difference is due to differences in lung plasticity that is changing with the occurrence of a
respiratory disease. However, further research is needed to confirm this hypothesis.

An alternative method to classify a cough as productive or not is to use the algorithm described
in [36]. In this approach, a third order Auto-Regression (AR) model is used (e.g. [38]) to estimate
the sound signal. This model has the following form:

yk =a1yk -1 + a2yk -2 + a3yk -3 (1)

Where yk  is the value of the signal at sample time k and a1, a2 and a3 are the 3 model parameters.
It was shown that productive coughs can be distinguished from dry coughs by using these
three parameters. More specifically, a polyhedron is defined in the (a1, a2, a3) space that is
subsequently used as a classifier for productive coughs. Alternatively, the centre of the dry
cough can be defined and it can be assumed the coughs outside this cluster are productive
coughs.

Figure 9. The difference in the decay between a dry (red dashed line) and a productive (black solid line) cough is
shown as has been studied in [37]

In the literature it was shown [39] that the vocal tract can act as a first order filter that has the
form:

Automatic Identification and Interpretation of Animal Sounds, Application to Livestock Production Optimisation
http://dx.doi.org/10.5772/56040

75



yk =
b1

1 + a1z -1 uk (2)

Where z -1 is the time-shift operator (i.e. yk z -1 = yk -1) and uk  is the input to the system. Similarly,
(1) can be re-written to have the form:

yk = 1
1 + a1z -1 + a2z -2 + a3z -3 ek (3)

Where ek  is white noise.

Since coughing can be considered involuntary in the studied cases, white noise can be
considered the input to the system. From the above it can be hypothesised that the classifier
was able to identify and exploit some higher order dynamics of the effect of the vocal tract on
the produced sound response. Of course this claim has to be studied further.

During the calibration phase of the algorithm, the centre of the dry cough cluster has to be
defined. For this, the first five dry coughs need to be identified and the average of their
parameters should be used as the centre of the productive cough cluster (the edges of the cluster
are defined by the variance of the parameters). It can be assumed that at the beginning of the
growing period there is no respiratory disease present and therefore only dry coughs are
present. So, the first five coughs that will be introduced are dry coughs and can be used to
define the dry cough cluster.

4.2. Validation results

The algorithm has been applied on a continuous recording with a total of 671 sounds (291
productive coughs, 231 dry coughs and 149 other sounds) collected under laboratory conditions.

The following Table 3 shows the results of the classification power of the algorithm.

Sound
Total

sounds

True positive

identifications

True negative

identifications

False positive

identifications

False negative

identifications

Dry cough 231 - 200 31 -

Productive

cough
281 231 - - 50

Other 144 - 130 14 -

Table 3. Performance of the productive vs. Dry cough identification algorithm

The above algorithm has been integrated in a commercial system by SoundTalks nv. (Belgium
– www.soundtalks.be).
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5. Conclusion

This chapter has presented three cases where sound has been used to identify and interpret
animal vocalisations. The studied cases are focused on identifying the status of animals in
livestock production that will allow the caretaker of the animals to quickly identify health,
welfare and production issues and take action. On the positive side, sound can be acquired
from a large space and without any contact with the animal. This latter is an important factor
in the potential for such technology to be applied in practice. Issues such as cost for placement,
loss of sensors due to misuse by the animals and acquisition of sensor at the slaughter line are
immediately solved. On the negative side though, the acquired sound signal cannot immedi‐
ately be linked to a specific animal and it is the combination of all sounds and vocalisations in
the area. As such, conclusions about a group of animals can be reached but not necessarily for
individual ones.

Sound analysis is an excellent show case for the merits of Precision Livestock Farming (PLF)
and can already demonstrate the benefit that PLF can have on intensive livestock production.
Further research in the field should focus on identifying critical areas for livestock productions
and work towards providing automatic tools for early diagnosis. In order for practical
implementation, issues that are not related to animal vocalisations will also have to be dealt
with. These include, but are not limited to room acoustics, positioning of the microphones for
better sound acquisition, identification of vocalisations in a noisy environment, etc.

In the direction of implementation of PLF systems, an EU project (EU-PLF, project number
311825) is currently running with the objective of creating a Blueprint that describes the process
of starting from a scientific idea, development of a commercial prototype, implementing a
system on farm and creating value for the farmer. In this framework, the results that have been
presented in section 4 of this chapter will be applied in a practical setting.

Acknowledgements

We would like to thank the European Union, the IWT (agentschap voor Innovatie door
Wetenschap en Technologie), the KU Leuven and Petersime nv. for funding parts of the
research described in this chapter. We would also like to thank all the researchers and
technicians involved in the research throughout the years.

Author details

Vasileios Exadaktylos, Mitchell Silva and Daniel Berckmans

Division M-BIORES: Measure, Model & Manage Bioresponses, Department of Biosystems,
KU Leuven, Belgium

Automatic Identification and Interpretation of Animal Sounds, Application to Livestock Production Optimisation
http://dx.doi.org/10.5772/56040

77
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Where z -1 is the time-shift operator (i.e. yk z -1 = yk -1) and uk  is the input to the system. Similarly,
(1) can be re-written to have the form:

yk = 1
1 + a1z -1 + a2z -2 + a3z -3 ek (3)

Where ek  is white noise.

Since coughing can be considered involuntary in the studied cases, white noise can be
considered the input to the system. From the above it can be hypothesised that the classifier
was able to identify and exploit some higher order dynamics of the effect of the vocal tract on
the produced sound response. Of course this claim has to be studied further.

During the calibration phase of the algorithm, the centre of the dry cough cluster has to be
defined. For this, the first five dry coughs need to be identified and the average of their
parameters should be used as the centre of the productive cough cluster (the edges of the cluster
are defined by the variance of the parameters). It can be assumed that at the beginning of the
growing period there is no respiratory disease present and therefore only dry coughs are
present. So, the first five coughs that will be introduced are dry coughs and can be used to
define the dry cough cluster.

4.2. Validation results

The algorithm has been applied on a continuous recording with a total of 671 sounds (291
productive coughs, 231 dry coughs and 149 other sounds) collected under laboratory conditions.

The following Table 3 shows the results of the classification power of the algorithm.

Sound
Total

sounds

True positive

identifications

True negative

identifications

False positive

identifications

False negative

identifications

Dry cough 231 - 200 31 -

Productive

cough
281 231 - - 50

Other 144 - 130 14 -

Table 3. Performance of the productive vs. Dry cough identification algorithm

The above algorithm has been integrated in a commercial system by SoundTalks nv. (Belgium
– www.soundtalks.be).
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5. Conclusion

This chapter has presented three cases where sound has been used to identify and interpret
animal vocalisations. The studied cases are focused on identifying the status of animals in
livestock production that will allow the caretaker of the animals to quickly identify health,
welfare and production issues and take action. On the positive side, sound can be acquired
from a large space and without any contact with the animal. This latter is an important factor
in the potential for such technology to be applied in practice. Issues such as cost for placement,
loss of sensors due to misuse by the animals and acquisition of sensor at the slaughter line are
immediately solved. On the negative side though, the acquired sound signal cannot immedi‐
ately be linked to a specific animal and it is the combination of all sounds and vocalisations in
the area. As such, conclusions about a group of animals can be reached but not necessarily for
individual ones.

Sound analysis is an excellent show case for the merits of Precision Livestock Farming (PLF)
and can already demonstrate the benefit that PLF can have on intensive livestock production.
Further research in the field should focus on identifying critical areas for livestock productions
and work towards providing automatic tools for early diagnosis. In order for practical
implementation, issues that are not related to animal vocalisations will also have to be dealt
with. These include, but are not limited to room acoustics, positioning of the microphones for
better sound acquisition, identification of vocalisations in a noisy environment, etc.

In the direction of implementation of PLF systems, an EU project (EU-PLF, project number
311825) is currently running with the objective of creating a Blueprint that describes the process
of starting from a scientific idea, development of a commercial prototype, implementing a
system on farm and creating value for the farmer. In this framework, the results that have been
presented in section 4 of this chapter will be applied in a practical setting.
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Chapter 5

Clusterized Mel Filter Cepstral
Coefficients and Support Vector Machines for
Bird Song Identification

Olivier Dufour, Thierry Artieres, Hervé Glotin and
Pascale Giraudet

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/56872

1. Introduction

We present here our contribution to the "Machine Learning for Bioacoustics" workshop
technical challenge of 30th International Conference on Machine Learning (ICML 2013). The
aim is to build a classifier able to recognize bird species one can hear from a recording in the
wild.

The method we present here is a rather simple strategy for bird songs and calls classification.
It builds on known and efficient technologies and ideas and must be considered as a baseline
on this challenge. As we are also co-organizing this challenge, our participation aimed at
defining a baseline system, with raw features, that all other participants could compare too.
We did not look for optimizing each parameter of our system, and as any other participant,
we conducted all the modeling and experimentation applying strictly the rules of the challenge.
The method we present is dedicated to the particular setting of the challenge. It relies in
particular on the fact that training signals are monolabel, i.e. only one species may be heard,
while test signals are multilabeled.

2. Description of the method

We present now the main steps of our approach. The Figures 1 and 2 illustrates the main steps
of the preprocessing and of feature extraction.

© 2014 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.
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We consider we want to learn a multilabel classifier from a set of N monolabeled training
samples {(xi, yi) | i = 1.. N} where each input xi is an audio recording and each yi is a bird species
∀  i,yi ∈  { bu | u = 1.. K} (in our case there are 35 species, K=35). The system should be able to
infer the eventually multiple classes (presence of bird species) in a test recording x.

Figure 1. Main steps of the preprocesing and of feature extraction.
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2.1. Preprocessing

Our preprocessing is based on MFCC cepstral coefficients, which have been proved useful for
speech recognition [4, 11]. A signal is first transformed into a series of frames where each frame
consists in 17 MFCC (mel-frequency cepstral coefficients) feature vectors, including energy.
Each frame represents a short duration (e.g. 512 samples of a signal sampled at 44.1 kHz).

2.2. Windowing, silence removal and feature extraction

2.2.1. Windowing

We use windowing, i.e. computing a new feature vector on a window of n frames, to get new
feature vectors that are representative of longer segments. The idea is close to the standard
syllable extraction step that is used in most of methods for bird identification [12, 2, 1], but is
much simpler to implement. In our case we considered segments of about 0.5 second duration
(i.e. n ~ few hundreds of frames) and used a sliding window with overlap (about 80%).

2.2.2. Silence removal

We first want to remove segments (windows) corresponding to silence since these would
perturbate the training and test steps. This is performed with a clustering step (learnt on
training signals) that only considers the average energy of the frames in a window. Ideally this
clustering makes that the windows are clustered into silence segments on the one hand, and
calls and songs segments on the other hand. Each window with low average energy is
considered a silence window and removed from consideration. Our best results were achieved
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At the end a segment in a window is represented as the concatenation of the 6 above features
for the 17 cepstral coefficients. It is then a new feature vector St (with t the number of the
window) of dimension 102.

Each signal is finally represented as a sequence of feature vectors St, each representing duration
of about 0.5 second with 80% overlap.

2.3. Training

Based on the feature extraction step we described above the simplest strategy to train a
classifier (e.g. we used Support Vector Machines) on the feature vectors St which are long
enough to include a syllable or a call, with the idea of aggregating all the results found on the
windows of a test signal to decide which species are present (see section Inference below).

Yet we found that a better strategy was to first perform a clustering in order to split all samples
(i.e. St) corresponding to a species into two different classes. The rationale behind this process
is that calls and songs of a particular species are completely different sounds [9] so that
corresponding feature vectors St probably lie in different areas in the feature space. It is then
probably worth using this prior to design classifiers (hopefully linear) with two times the
number of species rather than using non linear classifiers with as many classes as there are
species.

We implemented this idea by clustering all the frames St for a given species into two or more
clusters. The two clusters are now considered as two classes that correspond to a single species.
At the end, a problem of recognizing K species in a signal turns into a classification problem
with 2 x K classes. Note also that since the setting of the challenge is such that there is only one
species per training signal, all feature vectors St of all signal of a given bird species bu that fall
into cluster one are labeled as belonging to class bu

1 and all that fall into cluster 2 are labeled

as belonging to class bu
2.
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The final step is to learn a multiclass classifier (SVM) in a one-versus-all fashion, i.e. learning
one SVM to classify between the samples from one class and the samples from all other classes.
This is a standard approach (named Binary Relevance) for dealing with multilabel classifica‐
tion problem where one sample may belong to multiple classes. It is the optimal method with
respect to the Hamming Loss, i.e. the number of class prediction errors (either false positive
and false negative).

2.4. Inference

At test time an incoming signal is first preprocessed as explained before in section 2.1, silence
windows are removed (using clusters), and feature extraction is performed for all remaining
segments. This yields that an input signal is represented as a series of m feature vectors St.

All these feature vectors are processed by all 2K binary SVMs which provide scores that are
interpreted as class posterior probabilities (we use a probabilistic version of SVM), we then
get a matrix m x 2K of scores P (c |St) with c ∈ {bu

j |u =1.. K ,  j =1,2} and t = 1..m.

We experimented few ways to aggregate all these scores into a set of K scores, one for each
species, enabling ranking the species by decreasing probability of occurrence. Indeed this is
the expected format of a challenge submission, from which an AUC (Area Under the Curve)
score is computed. First we compute 2K scores, one for each class, then we aggregate the scores
of the two classes of a given species.

Our best results were obtained by computing mean probabilities of all scores { P (c | st) | t=1..m }
for each class c, using harmonic mean or trimmed harmonic mean (where a percentage of the
lowest scores are discarded before computing the mean). This yields scores that we consider
as class posterior probabilities of classes given the input signal x, P (c | x).

The ultimate step consists in computing a score for each species bu given the scores of the two
corresponding classes bu

1 and bu
2. We used the following aggregation formulae:

P(bu | x)=1 - (1 - P(bu
1 | x)) ×  (1 - P(bu

2 | x)) (7)

3. Experiments

3.1. Dataset

We describe now the data used for the "Machine Learning for Bioacoustics" technical challenge.
Note that the training dataset (signals with corresponding ground truth) was available for
learning systems all along the challenge together with the test set, without ground truth.
Participants were able to design their methods and select their best models by submitting
predictions on the test set which were scores on a subset only of the test set (33%). The final
evaluation and the ranking of participants were performed on the full test set once all partic‐
ipants have selected 5 of all their systems submitted.
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Training data consisted in thirty-five 30-seconds audio recordings labeled with a single species;
there was one recording per species (35 species overall). Yet, some train recording can include
low signal-to-noise ratio (SNR) signals of a second bird species of bird. Moreover, according
to circadian rhythm of each species, other acoustically actives species of animals can be present
such as nocturnal and diurnal insects (Grylidae, Cicada).

Test data consisted in ninety 150-seconds audio recordings with possibly none or multiple
species occurring in each signal.

The training and test data recordings have been performed with various devices in various
geographical and climatological settings. In particular background and SNR are very different
between training and test. All wav audio recordings have been sampled at 44 100 Hz with a
16-bits quantification resolution. Recordings were performed with 3 Song Meter SM2+
(Wildlife Acoustic recording device). Each SM2+ has been installed in a different sector (A, B
and C) of a Regional Park of the Upper Chevreuse Valley.

Every SM2+ recorded, at the same dates and hours (between 24 03 2009 and 22 05 2009), one
150-seconds recording per day between 04h48m00s a.m. and 06h31m00s a.m., which corre‐
spond to the maximal acoustical bird-activity period.

3.2. Implementation details

3.2.1. Frames and overlapping sizes

We computed Mel-frequency cepstral coefficients (MFCC) with the melfcc.m Matlab function
from ROSA laboratory of Columbia University [8]. This function proposes 17 different input
parameters. We tested numerous possible configurations [7] and measured for each one the
difference of energy contained in a given train file and a reconstructed signal of this recording
based on cepstral coefficients.

The difference was minimal with following parameters values:

window=512, fbtype=mel, broaden=0, maxfreq=sr/2, minfreq=0,wintime=window/sr, hoptime=
wintime/3, numcep=16,usecmp=0, dcttype=3, nbands=32, dither=0, lifterexp=0,sumpower=1, pre‐
emph=0, modelorder=0, bwidth=1, useenergy=1

This process transforms a 30-seconds train audio recording (at 44 kHz sampling rate) into about
7 700 frames of 16 cepstral coefficients which we augmented with the energy computed by
setting useenergy=0.

Next we computed feature vector St on 0.5 second windows with 80% overlap, which yields
about n=300 feature vectors per training signal (hence per species since there is only one
training recording per species) and about m= feature vectors per test signal.

3.2.2. LIBSVM settings

We used a multiclass SVM algorithm based on LIBSVM [3]. We selected model parameters
(kernel type etc.) through two fold cross validation. Best scores have been obtained with C-
SVC SVM type and linear kernel function.
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4. Results

4.1. General results

We report only our best results that correspond to the method presented in this paper for
various computations for the class score at inference time.

Table 1 shows how the way the mean score of a class is computed on the test set (see section
2.4) and influences the final result. The table compares arithmetic mean, harmonic mean, and
trimmed arithmetic mean (at 10, 20 et 30%). A trimmed mean at p% is the arithmetic mean
computed after discarding p% extreme values, i.e. the p/2% lowest values and the p/2% largest
values.

Although our method is simple it reached the fourth rank over more than 77 participating
teams at the Kaggle ICML Bird challenge with a score of 0.64639 while the best score (Private
score) of all challengers was 0.694 (the corresponding public Leaderboard score was 0.743).
See [13] for the best system, and [14] for the description of the other systems. It is also worth
noting that our system ranked about fifteen only on the validation set (one third of the total
test set). This probably shows that our system being maybe simpler than other methods
exhibits at the end a more robust behavior and improved generalization ability.

Figure 2. Technical principle of our best-scored run
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4.2. Monospecific results

According to these scores for 7 species, we notice in Figure 3:

• Scores of our model are close to the best ones and evolve the same way for the concerned
species. The slight difference is probably due to the way we calculate (trimmed mean) the
presence probability of one given species in a 150-seconds recording compared to the
presence probability of this same species in a half-second frame.

• All teams were not able to score high for Columba palumbus (Common Wood-pigeon),
Erithacus rubecula (European Robin), Parus caeruleus (Blue Tit), Parus palustris (Marsh Tit),
Pavo cristatus (Blue Peafowl) and Turdus viscivorus (Mistle Thrush).

◦ In the Common Wood-pigeon (top of Figure 4) train recording, we can see a series of 5
syllables (around 500 Hz). Syllables are very stable and different. Their alternation in time
domain is strict. Also, the train recording is highly corrupted by cicadas between 4 and
6 kHz and in the test recording, SNR is low. The series last 2.5 seconds (compared to 4
seconds in TRAIN) and are composed of 6 syllables well differentiated.

◦ The European Robin (bottom of Figure 4) is typically bird species whose songs are diverse
and rich in syllables. Frequency-domain variability between different songs and syllables
is important. Song duration varies between 1.5 and 3 seconds. It is one of the rare species
that can emit up to 8 kHz.

◦ In Blue Tit train recording, other species of birds are present. Therefore, Blue Tit produces
5 different cries composed of 5 different syllables.

◦ Mistle Thrush train recording songs vary a lot and are very different from songs in the
test recordings.

MFCC compression has the property of lowering the weights of cepstral coefficients corre‐
sponding to higher frequencies of the spectrogram. As a result, MFCC can lead to losing a part
of the signal that may be important in European Robin's case. Futhermore, the high variability
of the cries or songs of the different species is difficult to manage by classifiers, especially when
they are constrained to retain and learn only 2 types of emissions per species. Considering two
types of emissions was particularly sub-optimal for these 3 cases.

Table 1. Score Kaggle icml (AUC) according to the way scores are aggregated. Public scores are calculated on a third
of the test data, while private scores are calculated on the other part. Only the private scores are the official
competition results. The best private score of all challengers is 0.694 [13].
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Figure 3. Mean Average Precision (MAP) scores on nine species (ordered in abscissa from left to right) of the 6 best
teams of the challenge. The label 'USTVetal' refers to our team (MAP was not the official metrics of the challenge but
give interesting comparisons).

• For all teams, scores were very satisfactory for Parus major (Great Tit), Troglodytes troglo‐
dytes (Winter Wren) and Turdus merula (Eurasian Blackbird).

◦ Great Tit's signals (middle of Figure 4) are very simple and periodically repeated. A 500-
hertz high-pass filter has been applied on the train recording.

◦ Winter Wren's acoustic patterns are really stable. A 1000-hertz high-pass filter has been
applied on the train recording.

◦ Eurasian Blackbird's train recording has been filtered by a band pass filter from 1-6 kHz.
Best Mean Average Precisions were obtained when low frequency and high-frequency
noise was removed by filtering.
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We assume that congruence observed between the scores of the 6 best teams for these 9 species
is the same considering each of the species. The fact that the scores of each species evolve the
same way indicates that the Mean Average Precision (M.A.P) differences between species can
be due to:

1. Some species produce sounds harder to characterize than others: strong variability in
frequency and/or temporal domain.

2. Train recordings can't be compared to test recordings regarding SNR: filters, harmonic
richness, source-microphone distances etc. differ a lot.

3. Signals of interest are easier to extract in some train recordings than in others because of
data acquisition. Some filters have been applied to a part of the train recordings.
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4. For a given species, the signals provided in the train recording may not include a global
repertoire and this way not be part of the respective species test recordings.

5. For each species, frequency content of emissions and location of source in its environment
differ widely. Each bird species uses the available space in an ecosystem differently.
Obstacles between source and microphone depend on diet and customs of species
(arboricol, walking, granivorous, insectivorous species etc). But all frequencies aren't
affected the same way by transmission loss in the environment. For example, low
frequencies are particularly well filtered by vegetation close from the ground. Common
Wood-pigeon typically emits in low frequencies (see figure 4).

6. Natural (rain, wind, insects) or anthropic (motors etc) acoustic events are more diverse
and strong (regarding energy) in test recordings than in train. In addition, these events
vary much from one species to an other.

Hence, it seems reasonable to affirm that more complex syllables extraction methods (seg‐
mentation step) combined with the MFCC way constitute a better solution to improve our
performance. They would allow us to retain intraspecific variability for each class and
eliminate non-relevant information.

5. Conclusion and perspectives

Although the method that we presented is simple it performed well on the challenge and was
much robust between validation step and test set. We believe this robustness comes from the
simplicity of the method that do not rely on complex processing steps (like identifying
syllables) that other participants could have used [10, 13, 15, 16].

Possible improvements would consist in the integration in the model of additional information
such as syllables extraction, weather condition, or a taxonomia of species, allowing more
accurate hierarchical classification schemes. Also the MFCC shall be replaced either by a
scattering transform [17] or a deep convolutional network [18], that build invariant, stable and
informative signal representations for classification.
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Additional information is available at the end of the chapter
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1. Introduction

1.1. Sound source localization and HRTFs

In real environments, wave radiated by sound sources propagates to a listener by direct
and  reflected  paths.  The  scattering,  diffraction  and  reflection  effect  of  the  listener’s
anatomical structures (such as head, torso and pinnae) further disturb the sound field and
thereby modify the sound pressures received by the two ears. Human hearing comprehen‐
sively utilizes the information encoded in binaural pressures and then forms various spatial
auditory  experiences,  such  as  sound  source  localization  and  subjective  perceptions  of
environmental reflections.

Psychoacoustic experiments have proved that the following cues encoded in the binaural
pressures contribute to directional localization [1]:

1. The interaural time difference (ITD), i.e., the arrival time difference between the sound
waves at left and right ears, is the dominant directional localization cue for frequencies
approximately below 1.5 kHz.

2. The interaural level difference (ILD), i.e., the pressure level difference between left and
right ears caused by scattering and diffraction of head etc., is the important directional
localization cue for frequencies approximately above 1.5 kHz.

3. The spectral cues encoded in the pressure spectra at ears, which are caused by the
scattering, diffraction, and reflection of anatomical structures. In particular, the pinna-
caused high-frequency spectral cue above 5 to 6 kHz is crucial to front-back disambiguity
and vertical localization.

© 2014 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.
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4. The dynamic cue, i.e., the change in binaural pressures (thus ITD and ILD) introduced by
head movement, also contributes significantly to front-back disambiguity and vertical
localization.

In this chapter, the sound source position is specified by a spherical coordinate (r, θ, ϕ), where
r denotes the source distance relative to the head center (i.e., the origin). Elevation ϕ varies
from –90° to 90° with –90°, 0°, 90° denoting below, horizontal and above, respectively. Azimuth
θ varies from 0° to 360° with θ = 0°, 90°, 180°, and 270° denoting front, right, behind, and left
in the horizontal plane, respectively.

When both sound source and listener are fixed, the acoustical transmission from a point source
to the two ears can be regarded as a linear-time-invariable (LTI) process (see Figure 1). Head-
related transfer functions (HRTFs) are defined as the acoustical transfer function of this LTI
system:

0 0

( , , , , ) ( , , , , )
( , , , , ) , ( , , , , ) .

( , ) ( , )
L R
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P r f a P r f a

H r f a H r f a
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q f q f

q f q f= = (1)

where PL and PR represent sound pressures at left and right ears, respectively; P0 represents
the free-field sound pressure at head center with the head absent. Generally, HRTFs vary as
functions of frequency f and source position (r, θ, ϕ) (distance and direction) as well as
individual a. For r > 1.0 − 1.2 m, HRTFs are approximately independent of source distance and
called far-field HRTFs. For r < 1.0 m, however, HRTFs are relevant to source distance and called
near-field HRTFs.

Figure 1. Acoustic transmission from a point sound source to the two ears
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The measurement point for PL and PR in Eq. (1) varies across studies, among which the eardrum
is a most natural choice. Since the external ear canal is proved to be a direction-independent
one-dimensional transmission line below 10 kHz, the binaural pressures can be measured at
an arbitrary point from the blocked or open entrance of ear canal to the eardrum [2]. Although
the pressures differ at different reference points, they all capture the directional information
of sound source.

The time-domain counterparts of HRTFs are known as head-related impulse responses
(HRIRs), which relate to HRTFs by Fourier transform. HRIRs are the impulse responses from
a point sound source to two ears in the free-field. More generally, in reflective environments
such as a room, the impulse responses from a source to two ears are called binaural room
impulse responses (BRIRs). BRIRs can be regarded as generalized HRIRs from a free-field
without reflections to a sound field with reflections.

HRTFs or HRIRs contains most of above-mentioned source localization cues, except the
dynamic cue caused by head movement. Therefore, they are vital to the study of binaural
localization [3]. One important application of HRTFs is the binaural synthesis in virtual
auditory display (VAD). These are the major contents of this chapter.

2. Obtainment of HRTF

2.1. Measurement

Measurement is a conventional and accurate way to obtain HRTFs, especially for human
individuals. The principle and methods for HRTF measurement are similar to those for
measuring the response of an acoustical LTI system. Figure 2 shows a typical block diagram
of HRTF measurement. The measuring signal generated by a computer is rendered to a
loudspeaker after passing through a D/A converter and a power amplifier. Resultant signals
are recorded by a pair of microphones positioned at subject’s two ears, and then delivered to
the computer after amplification and A/D conversion. Finally, HRTFs or HRIRs are obtained
after some necessary signal processing.

Figure 2. The block diagram of HRTF measurement

Head-Related Transfer Functions and Virtual Auditory Display
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related transfer functions (HRTFs) are defined as the acoustical transfer function of this LTI
system:
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where PL and PR represent sound pressures at left and right ears, respectively; P0 represents
the free-field sound pressure at head center with the head absent. Generally, HRTFs vary as
functions of frequency f and source position (r, θ, ϕ) (distance and direction) as well as
individual a. For r > 1.0 − 1.2 m, HRTFs are approximately independent of source distance and
called far-field HRTFs. For r < 1.0 m, however, HRTFs are relevant to source distance and called
near-field HRTFs.

Figure 1. Acoustic transmission from a point sound source to the two ears
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The measurement point for PL and PR in Eq. (1) varies across studies, among which the eardrum
is a most natural choice. Since the external ear canal is proved to be a direction-independent
one-dimensional transmission line below 10 kHz, the binaural pressures can be measured at
an arbitrary point from the blocked or open entrance of ear canal to the eardrum [2]. Although
the pressures differ at different reference points, they all capture the directional information
of sound source.

The time-domain counterparts of HRTFs are known as head-related impulse responses
(HRIRs), which relate to HRTFs by Fourier transform. HRIRs are the impulse responses from
a point sound source to two ears in the free-field. More generally, in reflective environments
such as a room, the impulse responses from a source to two ears are called binaural room
impulse responses (BRIRs). BRIRs can be regarded as generalized HRIRs from a free-field
without reflections to a sound field with reflections.

HRTFs or HRIRs contains most of above-mentioned source localization cues, except the
dynamic cue caused by head movement. Therefore, they are vital to the study of binaural
localization [3]. One important application of HRTFs is the binaural synthesis in virtual
auditory display (VAD). These are the major contents of this chapter.

2. Obtainment of HRTF

2.1. Measurement

Measurement is a conventional and accurate way to obtain HRTFs, especially for human
individuals. The principle and methods for HRTF measurement are similar to those for
measuring the response of an acoustical LTI system. Figure 2 shows a typical block diagram
of HRTF measurement. The measuring signal generated by a computer is rendered to a
loudspeaker after passing through a D/A converter and a power amplifier. Resultant signals
are recorded by a pair of microphones positioned at subject’s two ears, and then delivered to
the computer after amplification and A/D conversion. Finally, HRTFs or HRIRs are obtained
after some necessary signal processing.

Figure 2. The block diagram of HRTF measurement
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To avoid the influence of environment, measurements are usually undertaken in an anechoic
chamber, or in a reflective room with a succeeding time-domain windowing so as to rule out
reflections. Post-equalization is usually supplemented to correct the non-ideal transmission
response in the measurement chain in Figure 2.

Due to the one-dimensional transmission characteristic from the entrance of ear canal to the
eardrum, the binaural pressures can be recorded at an arbitrary point from entrance of ear
canal to eardrum. In practice, recording binaural pressures with miniature microphones at the
blocked ear cannel entrance is the most convenient method for HRTF measurements of human
subjects, see Figure 3.

Figure 3. Blocked-ear-canal measurement with miniature microphone

Various signals, such as impulse signals, exponential sweep signals, and pseudo-random noise
signals, have been used in HRTF measurement, among which the bipolar maximal length
sequence (MLS) is often used. The MLS is a pseudo-random noise sequence (signal) with a
deterministic and periodic structure, but possesses characteristics similar to a random noise.
In particular, it possesses the lowest crest factor and pulse-like autocorrelation function
(equivalent to a nearly uniform power spectrum). For a long N-point MLS, its HRIR h(n) is
related to the circle cross-correlation calculation between the recorded signal y and MLS signal
x as:
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One advantage of the measurement using the MLS-like pseudo-random noise sequence is its
noise immunity. The deterministic and periodic characteristics of the MLS allow a high signal-
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to-noise ratio in measurement by means of averaging. In addition, the low cross-correlation
among the time-order-reversed MLS also allows for a fast measurement of HRTFs at different
directions using multiple sources simultaneously [4].

Figure 4 is the photo of a set of computer-controlled HRTF measurement apparatus in our
laboratory [5]. Multiple sound sources (i.e., small loudspeakers) are arranged in different
elevations. A computer-controlled horizontal turntable is adopted, on which a rod is installed
to support the artificial head or a seat for a human subject. The source distance relative to the
head center is adjustable with a maximum distance of 1.2 m.

Thus far, some research groups have constructed databases for measured far-field HRTFs from
artificial heads or human subjects [6-13]. Some databases are available on the internet.
Foremost of these are the HRTFs of Knowles Electronic Manikin for Acoustic Research
(KEMAR), an artificial head-and-torso model for the research of binaural hearing, see Figure
4. The KEMAR HRTF database constructed by the MIT Media laboratory has been widely used
in numerous studies. The database contains 512-point far-field (r = 1.4 m) HRIRs of 710 spatial
directions from elevation −40° to 90°. In the measurements, the binaural pressures were
recorded at the ends of the occluded-ear simulator, i.e., at eardrums.

Figure 4. Photo of HRTF measurement apparatus in our lab.

However, the HRTFs of an artificial head merely represent the mean characteristics of a certain
population, based on which the artificial head was designed, rather than the individual
characteristics of humans. For human HRTFs, the CIPIC database consists of 43 subjects mainly
from western population [10]. There are statistically significant differences in anatomical
dimensions and shapes as well as resulting HRTFs among different populations. Thus, our
group measured and established a far-field HRTF database with 52 Chinese subjects (half
males and half females) in 2005 [13]. This database includes far-field 512-point HRTFs at 493
source directions per subject with 44.1 kHz sampling frequency and 16-bit quantization. The
database also includes 17 anthropometric parameters relating to dimensions of head and
pinna, and so on.
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Figure 4 is the photo of a set of computer-controlled HRTF measurement apparatus in our
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head center is adjustable with a maximum distance of 1.2 m.
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directions from elevation −40° to 90°. In the measurements, the binaural pressures were
recorded at the ends of the occluded-ear simulator, i.e., at eardrums.
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However, the HRTFs of an artificial head merely represent the mean characteristics of a certain
population, based on which the artificial head was designed, rather than the individual
characteristics of humans. For human HRTFs, the CIPIC database consists of 43 subjects mainly
from western population [10]. There are statistically significant differences in anatomical
dimensions and shapes as well as resulting HRTFs among different populations. Thus, our
group measured and established a far-field HRTF database with 52 Chinese subjects (half
males and half females) in 2005 [13]. This database includes far-field 512-point HRTFs at 493
source directions per subject with 44.1 kHz sampling frequency and 16-bit quantization. The
database also includes 17 anthropometric parameters relating to dimensions of head and
pinna, and so on.
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Near-field HRTF measurement is relatively difficult. First, a near-field point sound source is
urgently needed. In the case of near-field, an ordinary small-size loudspeaker system is no
long approximately being as a point sound source due to its size, directivity, and multiple
scattering between source and subject. Second, near-field HRTF measurement is much more
time-consuming because measurements at various distances are required due to the distance
dependency of near-field HRTF. Such tedious measurement process is particularly unbearable
for human subjects. Till now, only a few research groups have measured near-field HRTFs for
artificial heads, and no public database is available [14-16]. Based on a spherical dodecahedron
sound source, Yu et al. measured the near-field HRTF for KEMAR with DB 60/61 small pinnae
[17]. The binaural pressures were recorded at the ends of a pair of Zwislocki occluded-ear
simulators. The resultant database includes HRIRs at 10 source distances of 0.20, 0.25, 0.30,
0.40, 0.50, 0.60, 0.70, 0.80, 0.90, and 1.00 m, and 493 directions at each source distance. Each
HRIR is 512-point length with 44.1 kHz sampling frequency and 32-bit (float) quantization.

2.2. Computation

Computation is an alternative method for obtaining HRTFs. From mathematical and physical
perspectives, calculating HRTFs pertains to solving the scattering problem caused by the
human anatomical structures; that is, solving the wave or Helmholtz equation subject to certain
boundary conditions.

The analytical solution of HRTFs can be solved from some simplified human anatomical
geometry. The spherical-head model is the simplest model for HRTF calculation. As shown in
Figure 5, the head is simplified as a rigid sphere with radius a, and the ears as two opposite
points on the sphere. For an incident plane wave or a sinusoidal point source that is infinitely
distant from the sphere center, the far-field HRTF can be calculated by Rayleigh’s solution for
pressure at the sphere surface, as [18]

P(Γ, f )= −
P

0

(ka)2∑
l=0

∞ (2l + 1) j l+1Pl(cosΓ)
dh l(ka) / d (ka) , (3)

where Γ is the angle between incident direction and received point (ear) on the sphere surface;
k = 2πf /c is the wave number; Pl(cosΓ) is the Legendre polynomial of degree l; hl(ka) is the lth-
order spherical Hankel function of the second kind. The calculation of spherical-head HRTF
can be extended to the case of an arbitrary (finite) source distance [19].

To investigate the torso effect on HRTFs, a simplified head-and-torso model called the
snowman model was used for HRTF calculation [20]. The model consists of a spherical head
located above a spherical torso, and the HRTFs of the model can be solved using the method
of multi-scattering or multipole re-expansion [21].

The calculation from the simplified head-and-torso model reflects some basic features of
HRTFs, but it is roughly valid at low and mid frequencies below 3 kHz. The geometry of a real
human head is more complex than a sphere and the contribution of pinnae to high-frequency
HRTFs is significant. To improve HRTF calculation accuracy, some numerical methods such
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as boundary element method (BEM) have been developed [22-24]. In BEM calculation, the
solution to the scattering problem of human anatomical structures can be expressed as a
Kirchhoff–Helmholtz integral equation. The geometrical surfaces of a human or artificial head
(such as head and pinnae) are first acquired by a laser 3D scanner or other scanning devices,
and then discretized into a mesh of triangular elements. The largest length of the elements is
closely related to the maximal frequency to be analyzed and should not exceed 1/4 to 1/6 of
the shortest wavelength concerned. Consequently, the Kirchhoff –Helmholtz integral equation
is converted into a set of linear algebra equations. Currently, the BEM calculation yields HRTFs
with reasonable accuracy up to or near 20 kHz.

However, numerical methods are also time-consuming. It usually takes dozens to hundreds
of hours for a typical personal computer to calculate a set of HRTFs at various source directions
by conventional BEM (depending on computational power, the number of elements, frequen‐
cy, and spatial resolution, etc.). High computational costs make calculation difficult. To reduce
the computational cost, the acoustic principle of reciprocity can be incorporated in HRTF
calculation. According to the acoustic principle of reciprocity, interchanging the source/
receiver positions results in identical pressures. In HRTF calculation, therefore, source position
can be fixed at the two ears and receiver points are selected at various spatial directions outside
the body. There is still some calculation due to each receiver, but these calculations are much
faster than the conventional calculation [23]. Moreover, some researches proposed a fast
multipole accelerated boundary element method (FMM BEM) for HRTF calculation [25].

2.3. Customization

Aside from measurement and calculation, in practical use, individualized HRTFs can also be
approximately obtained by customization. Generally, HRTFs can be customized using
anthropometry-based or subjective-selection-based methods.

The  anthropometry-based  methods  hypothesize  that  there  exists  a  strong  relationship
between individual HRTFs and individual anatomical features, because HRTFs character‐
ize  the  interaction  between  incident  sound  waves  and  human  anatomical  structures.
Accordingly, the individualized HRTFs can be approximately estimated or matched from
appropriate  anatomical  measurements  and  a  baseline  database  of  HRTFs.  Practical

Figure 5. The spherical-head model for HRTF calculation
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customization methods include selecting the  best-matched HRTFs from a  baseline  data‐
base in terms of the similarity on the measured anatomical parameters among the subject
and those in the baseline database [26]; scaling the logarithmic HRTF magnitude from a
generic  HRTF  using  anthropometry-predicted  scale  factor  [27];  establishing  statistical
relationship between the parameterized representation of HRTFs and anatomical parame‐
ters,  and  then  predicting  the  parameters  for  HRTF  representation  by  anthropometric
measurements  [28].  The  subjective-selection-based  methods  approximately  evaluate  the
individual  HRTFs  by  appropriate  subjective  evaluation  schemes  so  as  to  achieve  im‐
proved perceived performance, such as localization performance in VAD [29, 30].

Customization of individual HRTFs usually necessitates a baseline database with adequate
subjects so as to adapt to the diversity in individualized HRTFs. Customization is simpler than
measurement or calculation and yields moderate results, but its accuracy is inferior to
measurement and calculation.

3. Physical characters of HRTF

3.1. Time- and frequency-domain characteristics

Although HRIRs or HRTFs vary across individual, some common characteristics in time- and
frequency-domain are observed. Figure 6 shows far-field HRIRs of KEMAR with small pinnae
at horizontal azimuths 30° and 90°[8]. At azimuth 30°, the HRIR magnitude at preceding 30 to
58 samples is approximately zero, corresponding to the propagation delay from sound source
to ears. In practice, a time window is usually applied to raw HRIRs, and thus the initial delay
only has relative significance. The main body of the HRIRs, which reflects the complicated
interactions between incident sound waves and anatomical structures, persists for about 50 to
60 samples. Subsequently, the HRIR magnitude returns to nearly zero. When the sound source
deviates from directly front and back directions, the initial delay difference in the left- and
right-ear HRIRs reflects the propagation time difference from the sound source to the left and
right ears, i.e., ITD. At azimuth 90°, for instance, the left-ear HRIR lags to the right-ear HRIR
with a relative delay of 28 samples (approximately 635 µs at a sampling frequency of 44.1 kHz).
Moreover, when the sound source is located contralateral to the concerned ear, for example,
at an azimuth of 90° for the left ear, the HRIR magnitude is visibly attenuated because of the
head shadow effect. As elevation deviates from the horizontal plane, the difference in initial
delay and magnitude between left and right HRTFs at lateral directions reduces.

Figure 7 shows the magnitudes of HRTFs corresponding to the HRIRs in Figure 6. At low
frequencies below 0.4 to 0.5 kHz, the normalized log-magnitudes of HRTFs approach 0 dB and
are roughly frequency-independent because of the negligible scattering and shadow effect of
the head. The decrease in magnitude below 150 Hz is caused by the low-frequency limit of
loudspeaker response used in HRTF measurement, rather than by the HRTF itself. Because of
the finite source distance relative to the head center (r = 1.4 m) in HRTF measurement, a 2 to
4 dB difference between the left- and right-ear HRTF magnitudes is observed at a lateral
azimuth of 90° even at low frequencies. As frequency increases, the normalized log-magni‐
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tudes of HRTFs vary with frequency and azimuth in a complex manner, due to the overall
filtering effects of the head, pinna, torso, and ear canal. The apparent peak in HRTF magnitude
at 2 to 3 kHz results from the resonance of the occluded-ear simulator of KEMAR. Above 4
kHz, the contralateral HRTF magnitudes (for example, the left ear at an azimuth of 90°) are
visibly attenuated because of the low-pass filtering properties of the head shadow. The
ipsilateral HRTF magnitudes (for example, the right ear at an azimuth of 90°) increase to a
certain extent, although some notches occur. This phenomenon is partially attributed to the
approximate mirror-reflection effect of the head on ipsilateral incidence at high frequencies,
thereby leading to increased pressure for ipsilateral sound sources.

Figure 6. KEMAR far-field HRIRs at azimuths of 30° and 90° in the horizontal plane

To demonstrate the individuality of HRTFs, Figure 8 shows the normalized magnitudes of left-
ear HRTFs at (θ = 0°, ϕ = 0°) for 10 subjects randomly selected from the Chinese subject HRTF
database. Considerable inter-subject differences in HRTF magnitudes are observed above 6 to
7 kHz.

3.2. Localization cues in HRTFs

Various localization cues stated in Section 1 can be evaluated from measured HRTFs. ITD is a
dominant azimuthal localization cue below 1.5 kHz. There are various evaluation methods for
ITD, among which ITDp calculated from interaural phase delay difference is directly related
to low-frequency localization,
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database. Considerable inter-subject differences in HRTF magnitudes are observed above 6 to
7 kHz.

3.2. Localization cues in HRTFs

Various localization cues stated in Section 1 can be evaluated from measured HRTFs. ITD is a
dominant azimuthal localization cue below 1.5 kHz. There are various evaluation methods for
ITD, among which ITDp calculated from interaural phase delay difference is directly related
to low-frequency localization,
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where ψL and ψR denote the unwrapped phases of left- and right-ear HRTFs, respectively.
Besides, ITD can be evaluated as τmax at which the normalized interaural cross-correlation
function of a left- and right-ear HRIR pair maximizes.

Figure 7. Magnitudes of KEMAR HRTFs at azimuths of 30° and 90° in the horizontal plane

Figure 8. Left-ear HRTF magnitudes for 10 subjects at azimuth 0° in the horizontal plane
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max( , )correITD q f t= (6)

In some studies, ITD is usually evaluated by leading-edge detection, i.e., detecting instants tL,η

and tR,η at which the HRIRs first reach a certain percentage η (e.g., 10%) of maximum peak
amplitudes. Then, ITDlead is calculated by

, ,( , ) .lead L RITD t th hq f = - (7)

The ITDcorre and ITDlead are relevant to source direction but independent of frequency.

Figure 9 plots the variation of horizontal ITDs with azimuths from 0° to 180°. The ITDs are
calculated from MIT KEMAR (far-field) HRTFs, and left-right symmetric HRTFs are assumed.
The ITDs evaluated by four different methods, including ITDp at 0.35 and 2.0 kHz, ITDlead with
η = 10%, and ITDcorre, are shown in the figure. Before the ITDcorre is calculated, a pair of HRIRs
is subjected to low-pass filtering below 2.0 kHz to avoid the influence of resonance from the
occluded-ear simulator. The ITDs derived by different methods generally vary with azimuth
in a similar manner. The ITDs are zero at azimuths of 0° and 180°, then gradually increase as
the source deviates from the median line and maximizes at directions close to the lateral. For
example, the maximal ITDcorre is 710 µs at azimuth 90°. At a given azimuth, however, some
differences in ITD value exist among the ITDs derived from different methods, with the
ITDp at 0.35 kHz being the largest and ITDlead being the smallest. The range of ITD variation
decreases as elevation deviates from the horizontal plane.

ILD defined in Eq. (8) is another localization cue at high frequency.
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According to Eq. (8), ILD depends on both source direction and frequency. Figure 10 shows
ILD varying with azimuth at different frequencies. This ILD is calculated using the MIT-
KEMAR (far-field) HRTFs associated with the DB-061 small pinna. At low frequency of 0.35
kHz, ILD is small (within 4.5 dB) and almost invariable with source azimuth. The non-zero
ILD at low frequency is partly due to the finite source distance (1.4 m) in the MIT-KEMAR
HRTF measurement. For an infinitely distant source, the ILD at low frequency trends to zero.
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example, the maximal ITDcorre is 710 µs at azimuth 90°. At a given azimuth, however, some
differences in ITD value exist among the ITDs derived from different methods, with the
ITDp at 0.35 kHz being the largest and ITDlead being the smallest. The range of ITD variation
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According to Eq. (8), ILD depends on both source direction and frequency. Figure 10 shows
ILD varying with azimuth at different frequencies. This ILD is calculated using the MIT-
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As frequency increase, ILD increases and exhibits a complex variation manner with azimuth
and frequency, with the value at the front (0°) and back (180°) always being zero. The range
of ILD variation decreases as elevation deviates from the horizontal plane.

Figure 10. KEAMR ILDs in the horizontal plane for five frequencies.

The spectral cues provided by HRTFs at high frequency are vital for front-back and elevation
localization. Among various spectral cues, the first (lowest) frequency notch in HRTF magni‐
tude caused by the out-of-phase interference of pinna reflection/diffraction and direct sound
wave in the ear canal is of importance. The elevation dependence of the central frequency of

Figure 9. Horizontal ITDs of KEMAR evaluated by various methods.
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the pinna notch is regarded as an important vertical localization cue. Figure 11 shows the HRTF
magnitude spectra of a typical Chinese subject in the median plane with θ = 0° and elevation
ϕ = −30°, 0°, and 30°[13]. The pinna notch at 6 to 9 kHz is observed in the spectra. The central
frequency of the pinna notch at ϕ = −30°, 0°, and 30° are 6.5 (6.2), 8.1(7.9), and 8.8 (8.7) kHz for
the right (left) ear, respectively. At high elevations with ϕ ≥ 60°, the pinna notch gradually
vanishes. Considerable inter-individual differences exist in the central frequency of the pinna
notch and other high-frequency spectral features of HRTFs. Therefore, HRTFs are highly
individual dependent. Actually, statistical results indicate that HRTFs are left-right asymmet‐
ric above 5 − 6 kHz [31].

Figure 11. HRTF magnitude spectra for a typical Chinese subject at elevations –30°, 0°, and 30°

3.3. The minimum-phase characteristics of HRTFs

At a given source direction, HRTF is a complex-valued function of frequency and can be
decomposed by the product of a minimum-phase function Hmin(θ, ϕ, ƒ), an all-pass function
exp[ jψall(θ, ϕ, ƒ)], and a linear-phase function exp[- j2πƒT(θ, ϕ)]:
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The phase of the minimum-phase function is related to the logarithmic HRTF magnitude by
Hilbert transform:
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If the contribution of the all-pass phase component is negligible, Eq. (9) can be approximated
as

min( , , ) ( , , ) exp 2 ( , ) .H f H f j f Tq f q f p q fé ù» -ë û (11)

Eq. (11) is known as the minimum-phase approximation of HRTFs, in which an HRTF is
approximated by its minimum-phase function cascaded with a linear phase or a pure delay.
Studies have proved that, in most cases, HRTF is of minimum-phase below 10 − 12 kHz[32].
This conclusion is greatly convenient to the HRTF-related signal processing.

Excluding the all-pass phase component from the overall ITD calculation may cause errors
when the contribution of this component is non-negligible. Minnaar et al. investigated the all-
pass phase of the HRTFs of 40 subjects with 97 spatial directions per subject, and found that
below 1.5 kHz the contribution of the all-pass phase component to interaural group delay
difference is nearly independent of frequency[33]. If the interaural group delay difference
caused by the all-pass phase component is replaced by its value at 0 Hz, the error caused by
approximation is less than 30 µs and is inaudible [34].

3.4. Spatial-domain characteristics

Far-field HRTFs are continuous functions of source direction. As stated in Section 2.1, HRTFs
are usually measured at discrete and finite directions, i.e., sampled at directions around a
spatial spherical surface. Under certain conditions, the HRTFs at unmeasured directions (θ,
ϕ) can be estimated from measured data by following linear interpolation method:
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where H(θi, ϕi, f) with (θi, ϕi) (i = 0, 1, … M–1) denotes the measured HRTFs at a constant source
distance r = r0 and M appropriate spatial directions; Ai are a set of weights related to the target
direction (θ, ϕ).
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There are various HRTF interpolation schemes, leading to different selection of measured
directions and weights. The bilinear interpolation scheme shown in Figure 12 is commonly
used. Let θgrid and ϕgrid denote the measured intervals of azimuth and elevation, respectively.
The four adjacent measured directions (θ1, ϕ1), (θ1+θgrid, ϕ1), (θ1+θgrid, ϕ1+ϕgrid) and (θ1, ϕ1+ϕgrid)
are denoted by number 1, 2, 3 and 4, respectively. Then the HRTF at a target direction (θ, ϕ) =
(θ1+Δθ, ϕ1+Δϕ) within the grid is estimated as

1 2 3 4
ˆ ( , , ) (1, ) (2, ) (3, ) (4, ),H f A H f A H f A H f A H fq f » + + + (13)

where Aθ =Δθ/θgrid, Aϕ =Δϕ/ϕgrid, A1=(1−Aθ)(1−Aϕ), A2=Aθ(1−Aϕ), A3=AθAϕ, A4=(1−Aθ)Aϕ.

Figure 12. The bilinear interpolation

The HRTF spatial interpolation is closely related to the basis functions linear decomposition
of HRTFs. HRTF linear decomposition is categorized into two basic types: spectral shape basis
function decomposition and spatial basis function decomposition. Generally, the basis
function decomposition representation of an HRTF for a given ear can be written as

( , , ) ( , ) ( ).q q
q

H f w d fq f q f=å (14)

For spectral shape basis function decomposition, dq(f) are a series of frequency-dependent
spectral shape basis functions; wq(θ, ϕ) are source direction-dependent weights which may
also depend on individual. When the basis functions dq(f) are specified, H(θ, ϕ, f) is completely
determined by weights wq(θ, ϕ).

Various methods for deriving the spectral shape basis functions dq(f) are available, and
appropriate selection of basis functions depends on situation. There usually exist some
correlations among the HRTFs at different directions. If these correlations are completely
removed so that the HRTF can be represented by a small set of spectral shape basis functions,
data dimensionality is efficiently reduced. Principal components analysis (PCA) is a statistical
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algorithm for deriving a small set of orthonormal spectral shape basis functions and then
decomposing HRTFs. For example, Kistler et al. found that five spectral shape basis functions
derived from PCA accounted for more than 90% variation of logarithmic binaural HRTF
magnitudes for S = 10 human subjects at 256 source directions[35].

In contrast, in spatial basis function decomposition, wq(θ, ϕ) in Eq. (14) denote a set of source
direction-dependent spatial basis functions; dq(f) are frequency-dependent weights which may
also depend on individual. There are various selections for spatial basis functions, among
which azimuthal Fourier series and spatial spherical harmonic functions are two sets of pre-
determined and orthonormal spatial basis functions. In the former, HRTF at each elevation
plane is decomposed into a weighted sum of azimuthal harmonics. While in the latter, HRTF
at arbitrary direction is decomposed into a weighted sum of spherical harmonic functions.

The spatial sampling (Shannon–Nyquist) theorem for HRTF measurement can be derived from
the spatial harmonics representation of HRTF. Suppose that the spatial basis functions wq(θ,
ϕ) in Eq. (14) are specified, and the basis functions up to order Q are sufficient for accurately
representing HRTF. Given the measured HRTFs at M appropriate, Eq. (14) yields

,
1

( , ) ( ) ( , ) 0,1,2...( 1) .
Q

i i q q i i
q

H f d f w i Mq f q f
=

= = -å (15)

At each frequency f, Eq. (15) is a set of M linear equations, with the number of unknown dq(f)
equal to the number of basis functions Q. Selecting M appropriate measurement directions
and providing M ≥ Q, the exact or approximate solution of dq(f) can be obtained from Eq.
(15). The spatial basis functions representation of H(θ, ϕ, f) can then be realized by substituting
the resultant dq(f) into Eq. (14). Given a set of directionally continuous basis functions, HRTF
at arbitrary unmeasured direction can be recovered from M directional measurements.
Therefore, spatial basis functions decomposition of HRTFs can also be regarded as spatial
interpolation or fitting algorithm for HRTFs. Using the azimuthal Fourier series representation
of HRTF, Zhong and Xie proved that continuous HRTF in horizontal plane can be recovered
from 72 azimuth measurements [36]. When extended to three-dimensional space, recovering
spatial continuous HRTF using spherical harmonic functions representation requires M = 2209
directional measurements at least [37].

The number of directional measurements required for recovering HRTF is related to the total
number of spatial basis functions (i.e., Q) for HRTF representation with M ≥ Q. Aside from the
azimuthal Fourier series and spatial spherical harmonic functions representation, if we can
find another small set of spatial basis functions to efficiently represent HRTF, HRTF at
unmeasured direction can be recovered from a small set of directional measurements. Xie
applied spatial principal components analysis (SPCA) to a baseline HRTF dataset with high
directional resolution to derive the small set of spatial basis functions[38]. SPCA is applied to
spatial domain rather than frequency (or time) domain in conventional PCA. Using the
resultant spatial basis functions, HRTF magnitudes at 493 directions can be recovered from 73
directional measurements. This method is applicable to simplifying HRTF measurement.
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3.5. Characteristics of near-field HRTFs

When r < 1.0 m, the near-field HRTFs vary with source distance, and exhibit some character‐
istics that are remarkably distinguished from the far-field HRTFs [14, 39]. The distance
dependence of near-field HRTFs is regarded as a distance perception cue. Figure 13 shows
KEMAR HRTF magnitudes at r = 0.2 m, 0.5 m, 1.0 m and (θ, ϕ) = (90°, 0°) [40]. The magnitudes
vary obviously with source distance from r = 0.2 m to 0.5 m, and vary less with source distance
from r = 0.5 m to 1.0 m. The ipsilateral (right) HRTF magnitude increases with decreasing r
when a direct propagation path from source to concerned ear exists; the contralateral HRTF
magnitude decreases with decreasing r because of the enhancement of the head shadow when
a direct propagation path is missing. The variations in HRTF magnitude with r increase the
ILD associated with decreasing r. This phenomenon is particularly prominent at low frequen‐
cies, thereby relatively increases low-frequency magnitude and therefore causes a perceptible
change in timbre.

Figure 13. KEMAR HRTF magnitudes at r = 0.2 m, 0.5 m, 1.0 m and (θ, ϕ) = (90°, 0°)

4. Virtual auditory display

4.1. Basic principles

The binaural sound pressures recorded in the ear canals of a human subject or an artificial
head contain the main spatial information of sound events [41]. If the eardrum pressures
generated by a real sound event are replicated by sound reproduction, the same spatial
auditory event or experience as the real sound event is recreated. This is the basic principle of
binaural reproduction. The most straightforward method for binaural reproduction is
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vary obviously with source distance from r = 0.2 m to 0.5 m, and vary less with source distance
from r = 0.5 m to 1.0 m. The ipsilateral (right) HRTF magnitude increases with decreasing r
when a direct propagation path from source to concerned ear exists; the contralateral HRTF
magnitude decreases with decreasing r because of the enhancement of the head shadow when
a direct propagation path is missing. The variations in HRTF magnitude with r increase the
ILD associated with decreasing r. This phenomenon is particularly prominent at low frequen‐
cies, thereby relatively increases low-frequency magnitude and therefore causes a perceptible
change in timbre.

Figure 13. KEMAR HRTF magnitudes at r = 0.2 m, 0.5 m, 1.0 m and (θ, ϕ) = (90°, 0°)

4. Virtual auditory display

4.1. Basic principles

The binaural sound pressures recorded in the ear canals of a human subject or an artificial
head contain the main spatial information of sound events [41]. If the eardrum pressures
generated by a real sound event are replicated by sound reproduction, the same spatial
auditory event or experience as the real sound event is recreated. This is the basic principle of
binaural reproduction. The most straightforward method for binaural reproduction is
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recording the binaural signals through a pair of microphones placed in the ear canal of an
artificial head or human subject and then presenting the resultant signals via a pair of head‐
phones. This is the basic principle of the binaural recording and playback technique. Another
method is synthesizing the binaural signals by signals processing and then presenting via a
pair of headphone. This is the core idea of virtual auditory display (VAD).

As stated in Section 1, in the static state, the acoustical transmission from a sound source to
two ears is a linear time-invariable course. In the case of free-field sound source, the binaural
pressures are related to HRTFs by Eq. (1). If a mono stimulus E0(f) is filtered with a pair of
HRTFs at source direction (θ, ϕ) and the resultant signals are presented via headphone, i.e.,

0 0( , , ) ( , , ) ( ), ( , , ) ( , , ) ( ),L L R RE f H f E f E f H f E fq f q f q f q f= = (16)

then the binaural pressures in reproduction is equal to or directly proportional to those created
by a real source at direction (θ, ϕ), resulting in a perceived virtual source at corresponding
direction. Replacing the HRTFs with different directions in Eq. (16) yields virtual sources at
various directions. Note that HRTFs are individual dependent, thus an ideal VAD should use
individualized HRTFs in binaural synthesis [42]. Eq.(16) can be equally expressed in the time
domain as

0 0( , , ) ( , , ) * ( ), ( , , ) ( , , ) * ( ).L L R Re t h t e t e t h t e tq f q f q f q f= = (17)

That is, convoluting the mono stimulus e0(t) with a pair of HRIRs yields binaural sound signals.

4.2. Signal processing

Direct implementation of binaural synthesis in VAD by Eq. (16) or Eq. (17) usually suffers from
low computational efficiency. Alternatively, various HRTF filter model and structure are often
designed for binaural synthesis processing. The commonly used HRTF filter models are
classified into two catalogs: the moving average (MA) model and autoregressive moving-
average (ARMA) model.

In the complex-Z domain, the system function of a Q-order MA model can be written as

1
0 1( ) ..... ,Q

QH z b b z b z- -= + + + (18)

where b0, b1,…bQ are filter coefficients. In the discrete time domain, the impulse response length
of a MA model is N = Q +1, therefore MA is a finite impulse response (FIR) filter model.While
the system function of a (Q, P)-order ARMA model can be written as
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where a1,…, aP and b0, b1,…, bQ are filter coefficients. The impulse response length of an ARMA
model is infinite, therefore ARMA is an infinite impulse response (IIR) filter model.

HRTF filter design is to appropriately select the coefficients in Eq.(18) or Eq.(19) so that the
filter response exactly or approximately matches the target HRTF in some mathematical or
perceptual senses. Prior to filter design, some pre-processing schemes are often applied to raw
HRTFs so as to simplify the resultant filters. The common simplifications include truncation
by a time window so as to reduce the response length, smooth by auditory bandwidth to
discard the spectral details of HRTF insignificant to auditory perception, among others.
Minimum-phase approximation of HRTF is also beneficial to reduce the filter length.

Various conventional filter design methods, such as windowing or frequency sampling
method for FIR filter, and Prony or the Yule–Walker method for IIR filter, have been used in
HRTF filter design. Some other sophisticated methods for IIR filter design, such as balanced
model truncation (BMT) [43], method using logarithmic error criterion [44] and method of
common-acoustical-pole and zero [45]，have also been suggested. Frequency-warped filter
for HRTFs based on non-uniform frequency resolution of human hearing was also proposed
[46]. Those filters can be implemented by various structures and yield reasonable physical and
auditory perception performance in VAD. Reference [47] gives a review of HRTF filter design.
Aside from above methods, the methods of basis functions linear decomposition of HRTFs
(such as PCA) have been applied to binaural synthesis processing. The basis function decom‐
position-based methods allow for synthesizing multiple virtual sources with a parallel bank
of common filters, and then improve the efficiency in multiple virtual source synthesis [48].

4.3. Headphone presentation

As stated in Section 2.1, the binaural signals or HRTFs can be recorded at an arbitrary reference
point along the entrance of ear canal to the eardrum, or even at the blocked entrance of ear
canal. Therefore, directly rendering the recorded or synthesized binaural signals via head‐
phone without accounting for the measurement position may lead to incorrect eardrum
pressures. Moreover, the non-ideal transfer characteristics of the recording and playback chain,
which originates from the non-flat frequency responses of the recording microphone and
reproducing headphone as well as the unwanted coupling between headphone and external
ear, will inevitably cause linear distortions in both magnitude and phase of the reproduced
sound pressures at the eardrums. The overall non-ideal transfer characteristics of the recording
and playback chain can be represented by a pair of transfer functions, HpL(f) and HpR(f), one for
each ear. Ideally, if the recorded binaural signals is equalized by the inverse of HpL(f) and
HpR(f) prior to rendering to headphone, the linear frequency distortion in the signal chain can
then be eliminated or at least reduced as minimally as possible.
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Direct implementation of binaural synthesis in VAD by Eq. (16) or Eq. (17) usually suffers from
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designed for binaural synthesis processing. The commonly used HRTF filter models are
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In the complex-Z domain, the system function of a Q-order MA model can be written as
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model is infinite, therefore ARMA is an infinite impulse response (IIR) filter model.
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filter response exactly or approximately matches the target HRTF in some mathematical or
perceptual senses. Prior to filter design, some pre-processing schemes are often applied to raw
HRTFs so as to simplify the resultant filters. The common simplifications include truncation
by a time window so as to reduce the response length, smooth by auditory bandwidth to
discard the spectral details of HRTF insignificant to auditory perception, among others.
Minimum-phase approximation of HRTF is also beneficial to reduce the filter length.

Various conventional filter design methods, such as windowing or frequency sampling
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HRTF filter design. Some other sophisticated methods for IIR filter design, such as balanced
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for HRTFs based on non-uniform frequency resolution of human hearing was also proposed
[46]. Those filters can be implemented by various structures and yield reasonable physical and
auditory perception performance in VAD. Reference [47] gives a review of HRTF filter design.
Aside from above methods, the methods of basis functions linear decomposition of HRTFs
(such as PCA) have been applied to binaural synthesis processing. The basis function decom‐
position-based methods allow for synthesizing multiple virtual sources with a parallel bank
of common filters, and then improve the efficiency in multiple virtual source synthesis [48].

4.3. Headphone presentation

As stated in Section 2.1, the binaural signals or HRTFs can be recorded at an arbitrary reference
point along the entrance of ear canal to the eardrum, or even at the blocked entrance of ear
canal. Therefore, directly rendering the recorded or synthesized binaural signals via head‐
phone without accounting for the measurement position may lead to incorrect eardrum
pressures. Moreover, the non-ideal transfer characteristics of the recording and playback chain,
which originates from the non-flat frequency responses of the recording microphone and
reproducing headphone as well as the unwanted coupling between headphone and external
ear, will inevitably cause linear distortions in both magnitude and phase of the reproduced
sound pressures at the eardrums. The overall non-ideal transfer characteristics of the recording
and playback chain can be represented by a pair of transfer functions, HpL(f) and HpR(f), one for
each ear. Ideally, if the recorded binaural signals is equalized by the inverse of HpL(f) and
HpR(f) prior to rendering to headphone, the linear frequency distortion in the signal chain can
then be eliminated or at least reduced as minimally as possible.
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Figure 14 is the blocked diagram of binaural synthesis along with headphone equalization in
a VAD.

Figure 14. The blocked diagram of binaural synthesis along with headphone equalization

In particular, the transmission character from the electric input signal of headphone to the
reference point in the ear canal is described by headphone-to-ear-canal transfer function
(HpTF). If the reference point of HpTFs are identical to that of HRTFs and microphones for
binaural recording or HRTF measurement have an ideal transmission response, the HpL(f) and
HpR(f) in Eq. (20) can be replaced by HpTF, i.e., the binaural signals are equalized by the inverse
of HpTFs. For microphone with non-ideal transmission response, providing that the micro‐
phones used in HpTFs measurement are identical to those in binaural recording or HRTF
measurement, the effect of the non-ideal transmission response of microphone is cancelled in
equalization [2]. Note that, for a blocked ear canal measurement, the above equalization
method is not always valid unless a headphone with free-air equivalent coupling to the ear
(FEC-hedphone) is used. The transmission response on 14 types of headphones were measured
[49], and results indicated that the responses of all the headphones (except one) deviated from
that of ideal FEC-headphone on the order of 2 to 4 dB above 2 kHz. Moreover, the measure‐
ments above 7 kHz were unreliable. In practical uses, whether a headphone can be considered
as an FEC-headphone depends on acceptable error.

Similar to the case of HRTFs, HpTFs is individual dependent because of the difference in
structures and dimensions of the external ear. Ideally, individualized HpTFs should be
incorporated into equalization processing. Moreover, the measured HpTFs for some types of
headphone exhibit poor repeatability above 5 to 6 kHz due to the variation of compressive
deformation of pinna caused by headphone. This phenomenon makes the equalization
difficult.

In headphone presentation, an accurate virtual source can be rendered if the sound pressures
for a real sound source are exactly replicated at eardrums. Results of some psychoacoustic
experiments with careful individualized HRTFs processing and HpTFs equalization indicate
that headphone-rendered virtual source could achieve the equivalent localization performance
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as that of free-field real source [50]. However, numerous experimental results indicate that
subject-dependent errors in perceived virtual source position are generally existed such as

1. Reversal Error (i.e., front-back or back-front confusion). That is, a virtual source intended
in the front hemisphere is perceived at a mirror position in the rear hemisphere, or, less
frequently, the reverse. Sometimes, there is confusion with up and down source positions
termed up-down or down-up confusion.

2. Elevation error. For example, the direction of a virtual source in the front median plane
is usually elevated.

3. In-head localization (i.e., intracranial lateralization). The virtual source or auditory event
is perceived inside the head rather than outside headphone, leading to an unnatural
hearing experience.

As stated in Section 1, the interaural cues such as ITD and ILD only determine a confusion
cone rather than a well-defined spatial position of sound source. The dynamic cue caused by
head movement and high-frequency spectral cue introduced by pinnae etc. response for
resolving reversal ambiguation and vertical localization. However, conventional static VAD
is lack of dynamic cues, so that front-back and vertical localization depend more on high-
frequency spectral cue. Unfortunately, the high-frequency spectral cue is elaborate and highly
individual-dependent. Errors in binaural recording/synthesis and playback chain, such as non-
individualized HRTFs processing, incorrect or lack of headphone equalization, are possible
sources responsible for perceived position errors in headphone presentation. Using individual
HRTFs and HpTFs processing reduces localization errors. In addition, modeling room
reflections in binaural synthesis effectively eliminates in-head localization.

4.4. Loudspeaker presentation

Binaural signals from either binaural recording or synthesis, are originally intended for
headphone presentation. When binaural signals are reproduced through a pair of left and right
loudspeakers arranged in front of the listener, an unwanted cross-talk from each loudspeaker
to the opposite ear occurs. Cross-talk impairs the directional information encoded in the
binaural signals. Therefore, cross-talk cancellation should be introduced for binaural repro‐
duction through loudspeakers [51]. That is, prior to loudspeaker reproduction, binaural signals
should be pre-corrected or filtered so as to cancel the transmission from each loudspeaker to
the opposite ear.

Let EL(f) and ER(f), or simply EL and ER, denote frequency-domain binaural signals. As illus‐
trated in Figure 15, binaural signals are pre-filtered by a 2×2 cross-talk cancellation matrix and
then reproduced through the loudspeakers. The loudspeaker signals are given by
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where A11, A12, A21 and A22 are the four transfer functions or filters forming the cross-talk
cancellation matrix.

Figure 15. Binaural reproduction through loudspeakers

Let HLL, HRL, HLR and HRR denote the four acoustic transfer functions (HRTFs) from two
loudspeakers to two ears, respectively. These four transfer functions are determined by the
loudspeaker configuration and listener’s location. Then the reproduced pressures at two ears
are given by
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with Eq. (21) substituted. The transfer characters of cross-talk cancellation matrix are properly
selected so that the product of two 2×2 matrixes in Eq. (22) equals to an identity matrix, then
the cross-talk is completely cancelled out and the desired binaural signals are exactly delivered
to listener’s two ears. Therefore, the cross-talk cancellation matrix is obtained from the inverse
of the acoustic transfer matrix. In the left-right symmetrical case, HLL = HRR = Hα and HLR = HRL

= Hβ, the element of cross-talk cancellation matrix is
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If the signal processing initially aims to create appropriate loudspeakers signals, the two stages
of binaural synthesis and cross-talk cancellation can be merged together, yielding
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Eq. (24) demonstrates that loudspeaker signals L’ and R’ for target virtual source at direction
θ can be directly synthesized by filtering a mono stimulus E0(f) with a pair of filters GL(θ, f)
and GR(θ, f). This is the basic principle of loudspeaker-based binaural reproduction or
transaural synthesis. The cross-talk cancellation and transaural synthesis can be generalized
to the case of binaural reproduction through more than two loudspeakers and with more than
one listener [52]. In practice, the acoustic transfer matrix in Eq. (24) may be singular and thus
non-invertible at some frequencies. To address this problem, some approximate methods for
solving cross-talk cancellation matrix have been proposed [53].

The first problem with binaural reproduction through two frontal loudspeakers is reversal and
elevation errors. High-frequency spectral cues is vital to front-back and vertical localization.
But these cues cannot be stably replicated in loudspeaker reproduction because of the short
wavelength at high frequency. A slight change in listening position causes an obvious variation
in binaural pressures. Incorrect dynamic cues often causes back-front confusion in static
binaural reproduction through a pair of frontal loudspeakers. In contrast to headphone
reproduction, two-front loudspeaker reproduction can recreate only stable perceived virtual
sources in frontal-horizontal quadrants rather than in full three-dimensional directions.

The second problem with loudspeaker reproduction is a limited listening region or sweet
points. For a given loudspeaker configuration, the cross-talk in Eq. (23) or transaural synthesis
in Eq. (25) is designed according to a default (optimal) listening position. Head deviation from
the default position (including translation and tuning) spoils the cross-talk cancellation, and
thus alters the binaural pressures. Therefore, the performance of cross-talk cancellation is
position-dependent. There have been a lot of works on the stability of loudspeaker-based
binaural reproduction against head movement [54-57]. Kirkeby et al. proved that two frontal
loudspeakers configuration with narrow span angle is beneficial to the stability of virtual
source [54, 55]. Kirkeby further proposed using a pair of frontal loudspeakers with 10° span
(in contrast to 60° span in conventional stereo) for binaural or transaural reproduction, which
is known as “stereo dipole”. A stereo dipole improves the stability of virtual source at mid-
frequency at the cost of making low-frequency signal processing difficult because a large low-
frequency boost is required.
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elevation errors. High-frequency spectral cues is vital to front-back and vertical localization.
But these cues cannot be stably replicated in loudspeaker reproduction because of the short
wavelength at high frequency. A slight change in listening position causes an obvious variation
in binaural pressures. Incorrect dynamic cues often causes back-front confusion in static
binaural reproduction through a pair of frontal loudspeakers. In contrast to headphone
reproduction, two-front loudspeaker reproduction can recreate only stable perceived virtual
sources in frontal-horizontal quadrants rather than in full three-dimensional directions.

The second problem with loudspeaker reproduction is a limited listening region or sweet
points. For a given loudspeaker configuration, the cross-talk in Eq. (23) or transaural synthesis
in Eq. (25) is designed according to a default (optimal) listening position. Head deviation from
the default position (including translation and tuning) spoils the cross-talk cancellation, and
thus alters the binaural pressures. Therefore, the performance of cross-talk cancellation is
position-dependent. There have been a lot of works on the stability of loudspeaker-based
binaural reproduction against head movement [54-57]. Kirkeby et al. proved that two frontal
loudspeakers configuration with narrow span angle is beneficial to the stability of virtual
source [54, 55]. Kirkeby further proposed using a pair of frontal loudspeakers with 10° span
(in contrast to 60° span in conventional stereo) for binaural or transaural reproduction, which
is known as “stereo dipole”. A stereo dipole improves the stability of virtual source at mid-
frequency at the cost of making low-frequency signal processing difficult because a large low-
frequency boost is required.
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The third problem with loudspeaker reproduction is timbre coloration. Ideally, a perfect cross-
talk cancellation yields the same binaural pressures as those with a real source. Nevertheless,
as stated above, it is difficult to cancel out cross-talk completely within a full audible frequency
range. In practice, some reasons, such as slight movement, unmatched HRTFs, and room
reflection etc., inevitably lead to incomplete cross-talk cancellation so that the binaural
pressures at reproduction deviate from those of a real source. This in turn leads to perceived
coloration, especially at high frequency and for an off-center listener. Therefore additional
timbre equalization is required.

The principle of timbre equalization in two frontal loudspeakers reproduction can be explained
as follows. Due to the difficulty in robust rendering the fine high-frequency spectral cues to
listener’s ears in loudspeaker reproduction, the perceived virtual source direction is dominated
by the interaural cues (especially ITD) and limited to the frontal horizontal quadrant. While
the interaural cues are controlled by the relative rather than the absolute magnitude and phase
between left and right loudspeaker signals. Scaling both loudspeaker signals with identical
frequency-dependent coefficient does not alter their relative magnitude and phase and thus
the perceived virtual source direction. However, this manipulation alters the overall power
spectra of the loudspeaker signals and thus impairs the timbre. Xie et al. proposed a constant-
power equalization algorithm, in which the responses of transaural synthesis filters GL(θ, f)
and GR(θ, f) in Eq. (24) were equalized by their root-mean-square [58]. As a result, the GL(θ, f)
and GR(θ, f) in Eq. (25) are replaced by
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With GL’(θ, f) and GR’(θ, f), it can be proved that the loudspeaker signals given by Eq. (24)
satisfy following relationship of constant power spectra:

2 2 2
0| '| | '|L R E+ = (27)

Therefore, the overall power spectra of loudspeaker signals is equal to that of the input
stimulus, so reproduction coloration reduces.
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4.5. Simulation of reflections

Free-field virtual source synthesis and rendering are discussed above, in which room or
environment reflections are ignored. However, reflections exist in most real rooms and are
vital to spatial auditory perception. Therefore, a complete VAD should include reflection
modeling, and thereby is called virtual auditory or acoustic environment (VAE). Incorporating
reflections into VAE processing brings following advantages: (1) recreating the spatial
auditory perception in a room or reflective environment; (2) eliminating or reducing the in-
head localization in headphone presentation; (3) controlling perceived virtual source distance.

Usually, there are two basic methods for room or environment reflection rendering. The
physics-based method simulates the physical propagation of sound from source to receiver
inside a room, or equally, the binaural room impulse responses (BRIRs), and then synthesizes
the binaural signals by convoluting the input stimulus with BRIRs. The perception-based
method recreates desired auditory perception of reflections by some signal processing
algorithms from perceptual rather than physical viewpoint.

A complete physical modeling of BRIRs consists of source modeling (such as source radiation
pattern), transmission or room acoustics modeling (such as frequency-dependent surface
reflection, scattering and absorption, air absorption, etc.), listener modeling (scattering and
diffraction by human anatomical structures). The room acoustics modeling methods are
divided into two categories according to physical principle, i.e., geometrical acoustics-based
method and wave acoustics-based method. Geometrical acoustics neglects most wave nature
of sound, yielding the approximate solutions of room acoustic field. This approximation is
reasonable for high frequency and smooth boundary surface. The image-source method and
ray-tracing method are two commonly used geometrical acoustics-based methods. The former
decomposes the reflection sound field into the radiations of multiple image sources in free
space. While the later treats sound radiation like a number of rays, which propagate and then
are reflected and absorbed by boundary surface according to certain rule.

When the wave nature of sound is taken into account, wave acoustics-based methods should
be used. These methods solve the wave equation for pressure inside the room and yield more
accurate results. Various numerical methods, such as the finite element method, boundary
element method, finite-difference time domain method and digital waveguide mesh method,
have been suggested to solve the acoustic field in rooms with complex geometries. Limited to
the extensive computational workload, however, these numerical methods are merely suitable
for low-frequency and small room modeling.

Room acoustic field modeling yields time, direction, magnitude (or energy) as well as the
spectra of each reflection arriving at a received point. Each reflection is filtered with a pair of
corresponding HRTFs and the contribution of all reflections are combined to form complete
BRIRs. In actual VAD or VAE, convolution of the input stimulus with HRIRs can be imple‐
mented by some decomposed structures.

The calculation for modeling and convoluting with a pair of complete BRIRs is complex. In
some practical uses, the physics-based methods mentioned above are used to simulate and
render the early room reflections in VAEs. To simplify processing, the late and diffuse room
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The third problem with loudspeaker reproduction is timbre coloration. Ideally, a perfect cross-
talk cancellation yields the same binaural pressures as those with a real source. Nevertheless,
as stated above, it is difficult to cancel out cross-talk completely within a full audible frequency
range. In practice, some reasons, such as slight movement, unmatched HRTFs, and room
reflection etc., inevitably lead to incomplete cross-talk cancellation so that the binaural
pressures at reproduction deviate from those of a real source. This in turn leads to perceived
coloration, especially at high frequency and for an off-center listener. Therefore additional
timbre equalization is required.

The principle of timbre equalization in two frontal loudspeakers reproduction can be explained
as follows. Due to the difficulty in robust rendering the fine high-frequency spectral cues to
listener’s ears in loudspeaker reproduction, the perceived virtual source direction is dominated
by the interaural cues (especially ITD) and limited to the frontal horizontal quadrant. While
the interaural cues are controlled by the relative rather than the absolute magnitude and phase
between left and right loudspeaker signals. Scaling both loudspeaker signals with identical
frequency-dependent coefficient does not alter their relative magnitude and phase and thus
the perceived virtual source direction. However, this manipulation alters the overall power
spectra of the loudspeaker signals and thus impairs the timbre. Xie et al. proposed a constant-
power equalization algorithm, in which the responses of transaural synthesis filters GL(θ, f)
and GR(θ, f) in Eq. (24) were equalized by their root-mean-square [58]. As a result, the GL(θ, f)
and GR(θ, f) in Eq. (25) are replaced by
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With GL’(θ, f) and GR’(θ, f), it can be proved that the loudspeaker signals given by Eq. (24)
satisfy following relationship of constant power spectra:
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Therefore, the overall power spectra of loudspeaker signals is equal to that of the input
stimulus, so reproduction coloration reduces.
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4.5. Simulation of reflections

Free-field virtual source synthesis and rendering are discussed above, in which room or
environment reflections are ignored. However, reflections exist in most real rooms and are
vital to spatial auditory perception. Therefore, a complete VAD should include reflection
modeling, and thereby is called virtual auditory or acoustic environment (VAE). Incorporating
reflections into VAE processing brings following advantages: (1) recreating the spatial
auditory perception in a room or reflective environment; (2) eliminating or reducing the in-
head localization in headphone presentation; (3) controlling perceived virtual source distance.

Usually, there are two basic methods for room or environment reflection rendering. The
physics-based method simulates the physical propagation of sound from source to receiver
inside a room, or equally, the binaural room impulse responses (BRIRs), and then synthesizes
the binaural signals by convoluting the input stimulus with BRIRs. The perception-based
method recreates desired auditory perception of reflections by some signal processing
algorithms from perceptual rather than physical viewpoint.

A complete physical modeling of BRIRs consists of source modeling (such as source radiation
pattern), transmission or room acoustics modeling (such as frequency-dependent surface
reflection, scattering and absorption, air absorption, etc.), listener modeling (scattering and
diffraction by human anatomical structures). The room acoustics modeling methods are
divided into two categories according to physical principle, i.e., geometrical acoustics-based
method and wave acoustics-based method. Geometrical acoustics neglects most wave nature
of sound, yielding the approximate solutions of room acoustic field. This approximation is
reasonable for high frequency and smooth boundary surface. The image-source method and
ray-tracing method are two commonly used geometrical acoustics-based methods. The former
decomposes the reflection sound field into the radiations of multiple image sources in free
space. While the later treats sound radiation like a number of rays, which propagate and then
are reflected and absorbed by boundary surface according to certain rule.

When the wave nature of sound is taken into account, wave acoustics-based methods should
be used. These methods solve the wave equation for pressure inside the room and yield more
accurate results. Various numerical methods, such as the finite element method, boundary
element method, finite-difference time domain method and digital waveguide mesh method,
have been suggested to solve the acoustic field in rooms with complex geometries. Limited to
the extensive computational workload, however, these numerical methods are merely suitable
for low-frequency and small room modeling.

Room acoustic field modeling yields time, direction, magnitude (or energy) as well as the
spectra of each reflection arriving at a received point. Each reflection is filtered with a pair of
corresponding HRTFs and the contribution of all reflections are combined to form complete
BRIRs. In actual VAD or VAE, convolution of the input stimulus with HRIRs can be imple‐
mented by some decomposed structures.

The calculation for modeling and convoluting with a pair of complete BRIRs is complex. In
some practical uses, the physics-based methods mentioned above are used to simulate and
render the early room reflections in VAEs. To simplify processing, the late and diffuse room
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reflections are often simulated by some perception-based methods, such as various artificial
delay and reverberation algorithms [59]. These algorithms are based on the pre-measured or
pre-calculated room acoustic attributes or parameters (such as reverberation time) and render
the reflections from the perceptual rather than physical point of view.

4.6. Dynamic VAD

In static VAD or VAE discussed above, both virtual sources and listeners are assumed to be
fixed and real-time processing is not always required. In a real acoustic environment, however,
either source or listener movement alters the binaural pressures and brings dynamic acoustic
information. This dynamic information should be incorporated into VAD or VAE processing,
because it is significant for both source localization and recreating convincing auditory
perceptions of acoustic environment. Therefore, in addition to modeling the sound source,
room (environment) and listener, a sophisticated VAD should be able to constantly detect the
position and orientation of listener’s head, based on which the signal processing is updated in
real-time. In other words, a faithful VAE should be an interactive, dynamic and real-time
rendering system, and thus called dynamic and real-time VAD system.

Figure 16 shows the basic structure of a dynamic VAD system, which consists of three parts:

1. Information input and definition

This part inputs the prior information and data for dynamic VAD through a user interface.
These information and data are classified into three categories: source information, environ‐
ment information and listener information. The source information includes type of source
stimuli, the number, spatial positions, orientation, directivities (radiation pattern) and level of
sources, or predetermined trajectory for a moving source, etc. The environment information
includes room or environment geometry, absorption coefficients of surface material and air,
etc. The listener information includes the initial spatial position, orientation and individual
data of listener (such as HRTFs). A head-tracking device detects the position and orientation
of listener’s head and then provides those information to the system.

2. Dynamic VAD signal processing

According to prior information and data in part 1, this part simulates sound source as well as
both direct and reflected/scattered propagation from sound sources to two ears using certain
physical algorithms. Based on the temporary position of the head detected by head-tracking
devices, the HRTFs for binaural synthesis are constantly updated so as to obtain dynamic
binaural signals.

3. Reproduction

The resultant binaural signals are reproduced through headphone after headphone equaliza‐
tion, or through loudspeakers after cross-talk cancellation.

Ideally, the binaural signals or auditory scenario created by a dynamic VAD should synchro‐
nously vary with head movement just as in the real environment. Therefore, an ideal dynamic
VAD should be a linear time-variable system. However, the signal processing schemes in
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dynamic VAD are deduced from the static scheme, in which a series of short “static state” are
used for approximating the transient. Therefore, the dynamic behaviors of VAD should be
considered.

Figure 16. Structure of a typical dynamic VAD system

One problem concerned with the dynamic behaviors is the scenario update rate. A dynamic
VAD updates the binaural signals and thereby auditory scenario at certain time interval. The
scenario update rate of a VAD refers to the number of update scenario manipulations per
second. Another problem concerned with dynamic behaviors is the system latency time. When
the head moves, the synthesized binaural signals in existing VAD do not change synchro‐
nously but with a delay. The system latency time refers to the time from the listener’s head
movement to corresponding change in the synthesized binaural signals output, which is
contributed by the hardware (such as head tracker) and software structures, as well as the data
transmission and communication of the system. Usually, a high scenario update rate and low
system latency time are preferred for improving the performance of a dynamic VAD system.
Limited by the available system capacity, however, some tradeoffs in system performance
should be made in practical dynamic VAD on basis of psychoacoustic rules. In addition, the
auditory continuity of scenario update should also be taken in account.

Some psychoacoustic experiments have been carried out to investigate the required scenario
update rate  and system latency time in a  dynamic VAD. The experiment conducted by
Sandvad indicated  that  a  scenario  update  rate  of  10  Hz  or  less  degraded the  speed of
localization; and a scenario update rate of 20 Hz almost would not degrade the speed of
localization, although audible artifacts may occur for moderate to fast head movement [60].
While the results for system latency time vary among different studies [61-63]. A general
accepted conclusion is that a system latency time lower than 60 ms is adequate for most
applications [63].

Some dynamic VAD systems have been developed for various purposes and applications
[64-71]. For example, the SLAB (Sound Laboratory) developed by NASA in U. S. was intended
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reflections are often simulated by some perception-based methods, such as various artificial
delay and reverberation algorithms [59]. These algorithms are based on the pre-measured or
pre-calculated room acoustic attributes or parameters (such as reverberation time) and render
the reflections from the perceptual rather than physical point of view.

4.6. Dynamic VAD

In static VAD or VAE discussed above, both virtual sources and listeners are assumed to be
fixed and real-time processing is not always required. In a real acoustic environment, however,
either source or listener movement alters the binaural pressures and brings dynamic acoustic
information. This dynamic information should be incorporated into VAD or VAE processing,
because it is significant for both source localization and recreating convincing auditory
perceptions of acoustic environment. Therefore, in addition to modeling the sound source,
room (environment) and listener, a sophisticated VAD should be able to constantly detect the
position and orientation of listener’s head, based on which the signal processing is updated in
real-time. In other words, a faithful VAE should be an interactive, dynamic and real-time
rendering system, and thus called dynamic and real-time VAD system.

Figure 16 shows the basic structure of a dynamic VAD system, which consists of three parts:

1. Information input and definition

This part inputs the prior information and data for dynamic VAD through a user interface.
These information and data are classified into three categories: source information, environ‐
ment information and listener information. The source information includes type of source
stimuli, the number, spatial positions, orientation, directivities (radiation pattern) and level of
sources, or predetermined trajectory for a moving source, etc. The environment information
includes room or environment geometry, absorption coefficients of surface material and air,
etc. The listener information includes the initial spatial position, orientation and individual
data of listener (such as HRTFs). A head-tracking device detects the position and orientation
of listener’s head and then provides those information to the system.

2. Dynamic VAD signal processing

According to prior information and data in part 1, this part simulates sound source as well as
both direct and reflected/scattered propagation from sound sources to two ears using certain
physical algorithms. Based on the temporary position of the head detected by head-tracking
devices, the HRTFs for binaural synthesis are constantly updated so as to obtain dynamic
binaural signals.

3. Reproduction

The resultant binaural signals are reproduced through headphone after headphone equaliza‐
tion, or through loudspeakers after cross-talk cancellation.

Ideally, the binaural signals or auditory scenario created by a dynamic VAD should synchro‐
nously vary with head movement just as in the real environment. Therefore, an ideal dynamic
VAD should be a linear time-variable system. However, the signal processing schemes in
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dynamic VAD are deduced from the static scheme, in which a series of short “static state” are
used for approximating the transient. Therefore, the dynamic behaviors of VAD should be
considered.

Figure 16. Structure of a typical dynamic VAD system

One problem concerned with the dynamic behaviors is the scenario update rate. A dynamic
VAD updates the binaural signals and thereby auditory scenario at certain time interval. The
scenario update rate of a VAD refers to the number of update scenario manipulations per
second. Another problem concerned with dynamic behaviors is the system latency time. When
the head moves, the synthesized binaural signals in existing VAD do not change synchro‐
nously but with a delay. The system latency time refers to the time from the listener’s head
movement to corresponding change in the synthesized binaural signals output, which is
contributed by the hardware (such as head tracker) and software structures, as well as the data
transmission and communication of the system. Usually, a high scenario update rate and low
system latency time are preferred for improving the performance of a dynamic VAD system.
Limited by the available system capacity, however, some tradeoffs in system performance
should be made in practical dynamic VAD on basis of psychoacoustic rules. In addition, the
auditory continuity of scenario update should also be taken in account.

Some psychoacoustic experiments have been carried out to investigate the required scenario
update rate  and system latency time in a  dynamic VAD. The experiment conducted by
Sandvad indicated  that  a  scenario  update  rate  of  10  Hz  or  less  degraded the  speed of
localization; and a scenario update rate of 20 Hz almost would not degrade the speed of
localization, although audible artifacts may occur for moderate to fast head movement [60].
While the results for system latency time vary among different studies [61-63]. A general
accepted conclusion is that a system latency time lower than 60 ms is adequate for most
applications [63].

Some dynamic VAD systems have been developed for various purposes and applications
[64-71]. For example, the SLAB (Sound Laboratory) developed by NASA in U. S. was intended
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to provide a platform for psychoacoustic study [64-66]. It is a software-based system written
with VC++ language, and is implemented by a PC or server under Microsoft Windows
operating system. Through application programming interface (API), the SLAB provides
access to different psychoacoustic researches. In the SLAB, the dynamic virtual auditory
environment caused by moving sources in real-time can be rendered, including the simulation
of source radiation pattern, sound propagation, environment reflection and absorption, air
absorption etc. Six of 1st-order reflections were modeled by image source method. The
maximum achievable number of virtual sources depends on the available computational
ability of system (typical 4 CPUs). The typical scenario update rate is 120 Hz. Excluding the
external latency caused by head tracker, the internal system latency time is 24 ms. The binaural
signals are reproduced through headphone. The SLAB system has been updated for several
times. The latest version also supports using individualized HRTFs.

5. Applications of VADs

5.1. Psychoacoustic experiment and hearing training

Psychoacoustic acoustics investigates the relationship between acoustics-related physical
factors and resulting subjective perceptions. By means of VADs, the complete and precise
controlling over some physical characteristics of binaural signals is allowed, and correspond‐
ing subjective perceptions can be created. Therefore, VADs have become an important
experimental tool for psychoacoustic acoustics, such as auditory localization mechanism [72]
and masking [73]. VADs also benefit to hearing training for musicians and sound engineers.

5.2. Virtual reality and multimedia

Virtual reality is a kind of human-computer interface technology that provides users the feeling
of being presence by including various perceptual cues such as visual, auditory, tactile sense
[68]. The interaction and complementary of multiple information on above aspects strengthen
the sense of reality and immerse. By means of VADs, various auditory perceptions to source
localization or acoustical environments can be generated. Therefore, VADs are important to
virtual reality in regard to auditory simulation. A typical example is driving training simula‐
tion [74], which can be realized by the dynamic VADs presented in Section 4.6. Similar methods
can also be applied to some special environment trainings such as virtual aviation, aerospace,
submarine environments.

VADs have been widely applied on the entertainment functions of multimedia PC. At present,
game softwares under Windows platform possess the functions of VADs. In such kind of
consumer electronics, simplified signal processing in VADs is needed in consideration of cost
and computer capacity.
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5.3. Speech communication

Psychoacoustic research indicates that the target detection ability of the binaural hearing is
prior to the monoaural hearing in presence of background interference. In daily life, a listener
can detect the target speech information even in a noisy environment with negative signal-to-
noise ratio, suggesting the high speech intelligibility of the target. This is so-called the cocktail
party effect [75]. However, mono signal transmission is dominant in currently available
communication systems, resulting in low speech intelligibility. This condition can be improved
by using binaural signal transmission, in which spatial separation between target and com‐
peting sources is realized through VADs. This method can be applied to teleconference and
other speech communication systems. VADs are also helpful in aeronautical communication
on aspects of improving speech intelligibility and reducing the react time of the pilot in the
case of accident hazard [76].

5.4. Binaural auralization

On-site listening is the most straightforward way for subjective assessment of room acoustic
quality. However, this is difficult in practical use. One reason is the impossibility of accurately
compare among halls at different areas due to human short-term memory and expansive
travelling cost. Moreover, it is difficult to orginize the same band to play the same music at
different halls, which is needed in accurate subjective assessment.

As mentioned, BRIRs contain the main information of direct sounds and reflections. Binaural
auralization is achieved by convoluting the mono “dry” signal with mathematically or
physically-obtained BRIRs (see Section 4.5) and reproducing the synthesized binaural signals
through headphone or louderspeakers with proper crosstalk cancelling. In past decades,
binaural auralization has become an important tool in the research and design of room acousitc
quality [77]. Especially, binaural auralization is helpful to detect acoustic defects in regard to
subjective properties on the stage of room design. This function has been included in some
softwares for room acoustic design such as Odeon. Besides, binaural auralization has been
generally used in subjective assessment such as noise evaluation [78], subjective assessment
of sound reproduction systems [79], and virtual sound recording.

5.5. Virtual reproduction for multi-channel surround sound

Multi-channel surround sound reproduction, such as 5.1 channel surround sound, requires
multiple loudspeakers, which is complex and inconvenient in some practical applications such
as TV or multimedia computer. Hence, some HRTF-based virtual loudspeaker-based ap‐
proaches (i.e., HRTF-based binaural synthesis in Section 4.4) for multi-channel surround sound
reproduction have been introduced to reduce the number of loudspeaker needed. For example,
some commercial products have been introduced for the virtual reproduction of 5.1 channel
surround sound, that is, simulating 5.1 channel surround sound through a pair of actual
stereophonic loudspeakers, see Figure 17. Signals L and R are directly fed to left and right
loudspeakers respectively so as to create summing virtual source within the span of two
loudspeakers. Signal C is attenuated 3 dB and then fed to the left and right loudspeakers to
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to provide a platform for psychoacoustic study [64-66]. It is a software-based system written
with VC++ language, and is implemented by a PC or server under Microsoft Windows
operating system. Through application programming interface (API), the SLAB provides
access to different psychoacoustic researches. In the SLAB, the dynamic virtual auditory
environment caused by moving sources in real-time can be rendered, including the simulation
of source radiation pattern, sound propagation, environment reflection and absorption, air
absorption etc. Six of 1st-order reflections were modeled by image source method. The
maximum achievable number of virtual sources depends on the available computational
ability of system (typical 4 CPUs). The typical scenario update rate is 120 Hz. Excluding the
external latency caused by head tracker, the internal system latency time is 24 ms. The binaural
signals are reproduced through headphone. The SLAB system has been updated for several
times. The latest version also supports using individualized HRTFs.

5. Applications of VADs

5.1. Psychoacoustic experiment and hearing training

Psychoacoustic acoustics investigates the relationship between acoustics-related physical
factors and resulting subjective perceptions. By means of VADs, the complete and precise
controlling over some physical characteristics of binaural signals is allowed, and correspond‐
ing subjective perceptions can be created. Therefore, VADs have become an important
experimental tool for psychoacoustic acoustics, such as auditory localization mechanism [72]
and masking [73]. VADs also benefit to hearing training for musicians and sound engineers.

5.2. Virtual reality and multimedia

Virtual reality is a kind of human-computer interface technology that provides users the feeling
of being presence by including various perceptual cues such as visual, auditory, tactile sense
[68]. The interaction and complementary of multiple information on above aspects strengthen
the sense of reality and immerse. By means of VADs, various auditory perceptions to source
localization or acoustical environments can be generated. Therefore, VADs are important to
virtual reality in regard to auditory simulation. A typical example is driving training simula‐
tion [74], which can be realized by the dynamic VADs presented in Section 4.6. Similar methods
can also be applied to some special environment trainings such as virtual aviation, aerospace,
submarine environments.

VADs have been widely applied on the entertainment functions of multimedia PC. At present,
game softwares under Windows platform possess the functions of VADs. In such kind of
consumer electronics, simplified signal processing in VADs is needed in consideration of cost
and computer capacity.

Soundscape Semiotics - Localisation and Categorisation126
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Psychoacoustic research indicates that the target detection ability of the binaural hearing is
prior to the monoaural hearing in presence of background interference. In daily life, a listener
can detect the target speech information even in a noisy environment with negative signal-to-
noise ratio, suggesting the high speech intelligibility of the target. This is so-called the cocktail
party effect [75]. However, mono signal transmission is dominant in currently available
communication systems, resulting in low speech intelligibility. This condition can be improved
by using binaural signal transmission, in which spatial separation between target and com‐
peting sources is realized through VADs. This method can be applied to teleconference and
other speech communication systems. VADs are also helpful in aeronautical communication
on aspects of improving speech intelligibility and reducing the react time of the pilot in the
case of accident hazard [76].

5.4. Binaural auralization

On-site listening is the most straightforward way for subjective assessment of room acoustic
quality. However, this is difficult in practical use. One reason is the impossibility of accurately
compare among halls at different areas due to human short-term memory and expansive
travelling cost. Moreover, it is difficult to orginize the same band to play the same music at
different halls, which is needed in accurate subjective assessment.

As mentioned, BRIRs contain the main information of direct sounds and reflections. Binaural
auralization is achieved by convoluting the mono “dry” signal with mathematically or
physically-obtained BRIRs (see Section 4.5) and reproducing the synthesized binaural signals
through headphone or louderspeakers with proper crosstalk cancelling. In past decades,
binaural auralization has become an important tool in the research and design of room acousitc
quality [77]. Especially, binaural auralization is helpful to detect acoustic defects in regard to
subjective properties on the stage of room design. This function has been included in some
softwares for room acoustic design such as Odeon. Besides, binaural auralization has been
generally used in subjective assessment such as noise evaluation [78], subjective assessment
of sound reproduction systems [79], and virtual sound recording.

5.5. Virtual reproduction for multi-channel surround sound

Multi-channel surround sound reproduction, such as 5.1 channel surround sound, requires
multiple loudspeakers, which is complex and inconvenient in some practical applications such
as TV or multimedia computer. Hence, some HRTF-based virtual loudspeaker-based ap‐
proaches (i.e., HRTF-based binaural synthesis in Section 4.4) for multi-channel surround sound
reproduction have been introduced to reduce the number of loudspeaker needed. For example,
some commercial products have been introduced for the virtual reproduction of 5.1 channel
surround sound, that is, simulating 5.1 channel surround sound through a pair of actual
stereophonic loudspeakers, see Figure 17. Signals L and R are directly fed to left and right
loudspeakers respectively so as to create summing virtual source within the span of two
loudspeakers. Signal C is attenuated 3 dB and then fed to the left and right loudspeakers to
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create a summing virtual source at the front θ = 0°. Two surround signals LS and RS are filtered
by transaural synthesis filters and then fed to the loudspeakers.

Figure 17. The block diagram of virtual 5.1 channel surround sound through loudspeakers

HRTF-based binaural synthesis can also be applied into multi-channel surround sound virtual
reproduction through headphone. When directly rendering multi-channel surround sound
signals to headphone, unnatural perceptions such as in-head localization occur. Using HRTF-
based binaural synthesis, multiple loudspeakers can be virtually generated by headphone.
Correspondingly, subjective perception of headphone-based multi-channel surround sound
reproduction can be improved. Some related products have been introduced, such as Dolby
headphone (http://www.dolby.com).

In virtual reproduction for multi-channel surround sound, defects presented in Sections 4.3
and 4.4 for VADs also exist, such as timbre coloration, limited listening area, and directional
distortions. Our group has proposed some patents on the improvement of those defects.

6. Summary

HRTFs capture most localization information in binaural pressures and exhibit important
physical and auditory characteristics. One major application of HRTFs is VAD or VAE, in
which HRTF-based signal processing is used to recreate virtual source and other spatial
auditory events in headphone presentation or loudspeaker presentation with proper equali‐
zation. Great developments have been achieved in the field of HRTFs and VADs, but many
issues need further research. VADs have currently been applied to various fields in scientific
research, engineering, entertainment and consumer electronic products, among others.
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1. Introduction

Auditory spatial perception is the ability to perceive relative locations of sound sources in the
environment and the spatial character of the surrounding acoustic space. Any property of an
auditory event causing a rise to spatial sensation is called a spatial cue. Specific types of
judgments resulting from spatial cues are categorized and discussed in the psychoacoustic
literature as horizontal localization, vertical localization, auditory distance estimation, and
spaciousness assessment. While judgments of directions toward sound sources received
considerable interest in psychoacoustic literature, the judgments of auditory distance, and
especially the judgments of spaciousness, received much less attention.

Human horizontal and vertical localization judgments and formal and methodological issues
related to directional localization of sound sources have been recently reviewed by Letowski
and Letowski [1]. Comprehensive summaries of the issues related to auditory distance estima‐
tion have been published by several authors including Coleman [2], Blauert [3], and Zahorik et
al. [4]. However, these summaries were based on auditory research conducted primarily in closed
spaces and at relatively short distances up to about 25 m. Very few studies were reported to be
conducted in an open space and they never involved distances exceeding 50 m.

The present chapter is intended to address the distance estimation issues for distant sound
sources in an open space and discuss them in the context of our current knowledge of auditory
distance estimation. The first part of the chapter provides a comprehensive review of concepts
related to auditory distance judgments. It also includes an overview of environmental
conditions that effect sound propagation in both closed and open spaces. The second part
provides new distance estimation data for free field sound sources located at distances from
25 to 800 meters and uses these data as a basis for a discussion of the environmental variables
affecting auditory distance estimation in an open space.

© 2014 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.
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2. Distance perception

Distance perception, sometimes referred to as ranging [5], is the human ability to determine
the distance between oneself and a target in space or the distance between two targets in space.
The distance to a target can be judged on the basis of its visual, olfactory, and/or auditory
properties. Distance judgments may have a form of distance discrimination or distance
estimation. Distance discrimination is a relative judgment of the distance in terms of further-
closer, less-more, or same-different. Distance discrimination threshold is calculated as a
fraction (percentage) of the distance change that is noticeable by the observer. Distance
estimation is an absolute judgment about distance in terms of meters, feet, or time to travel;
categorical judgment of distance in terms of near-far or predetermined categories; or a direct-
action estimation of distance by reaching for the target or walking toward the target. The first
two classes of judgments are explicit estimations while the third one is an implicit estimation (e.g.,
[6]). Perceived and physical distance seem to be in general monotonically related but can be
quite different. In general, human estimation of distance is much less accurate than the
determination of angular direction and observers normally underestimate the magnitude of
distance.

There are three basic dichotomies that can be used in classifying distance judgments. The first
dichotomy divides distance judgments into static (explicit, no-action) and dynamic (implicit,
directed-action) behaviors of the judges (observers, listeners). In static (no-action) estimation
the judge estimates the distance to a given target from his/her stationary location. These
estimates are usually numerical but also can be comparative in relation to other objects in space.
In implicit (directed-action) estimation the observer reaches for (e.g., infants) or walks toward
(e.g., blindfolded) a target.

The second dichotomy refers to static (stationary) and dynamic (moving) behaviors of the
targets. Although dynamic behaviors of judges and target are discussed in the theoretical part
of this chapter, the main focus of the chapter is on human ability to assess the distance
numerically from a stationary position (explicit estimation). In an open space and for long
distances the directed-action (implicit) estimation is often impractical and in many cases
unrealistic.

The third dichotomy divides distance judgments into egocentric judgments and exocentric
judgments [7]. Egocentric judgments, or body-centered judgments, are the judgments where
the point of reference is the observer’s location in space. The specific subjective reference point
that people use for egocentric visual judgments is the point that lies between the eyes of the
observer. In the case of auditory judgments it is the midpoint of the interaural axis of the listener
[8-9]. The estimation that the target is located at a certain distance from the observer is an
egocentric judgment. In the case of auditory judgments the sound source can be perceived as
located either in the head of the listener (such situation takes place in most headphone
listening) or outside of the head. In the latter case, the sound source can be in front of, behind,
to the left, to the right, above, or below the listener. Exocentric judgments, also called allocentric
or geocentric judgments are based on the external frame of reference and are independent of
the actual location of the observer. The location of one target in space is referenced to the
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location of another target (e.g., a landmark) or to the axes of the external frame of reference.
Giving the response as further north rather than further to the right is an exocentric judgment.
This chapter is limited to auditory egocentric judgments and exocentric judgments are not
discussed.

3. Auditory distance estimation

Auditory distance estimation is an estimation of a distance to a sound source on the basis of
perceived sound. Estimated distance is perceptual measure of a physical distance. The goal of
auditory distance estimation is to determine the perceived location of a real or phantom sound
source generating a specific auditory event. Such judgments can be made in real surrounding
space in respect to natural and electroacoustic (loudspeakers) sound sources or in virtual
reality space simulated either through loudspeakers or headphones.

The results of auditory distance judgments are dependent on the availability of several
auditory distance cues. Depending on the state of motion of both the sound source and the
listener the distance estimation cues are usually classified as static cues (stationary sound
source and listener) and dynamic cues (moving sound source or listener) [10-11]. The five basic
static cues include: sound intensity, direct-to-reverberant energy ratio, sound spectrum, level
of background noise, and auditory parallax (interaural differences). The dynamic cues include
motion parallax and acoustic tau effect (estimated time-to-contact). Please note that static cues
operate as well in both the static conditions and the dynamic situations when the either the
listener or the sound source is moving. In this chapter only stationary sound source and
stationary listener situations are considered.

Another important characteristic of the distance cue is the absolute or relative character of the
cue. Absolute cues are those that do not require the listener’s familiarity with the sound source
and surrounding environment in making distance estimates. Relative cues are those that do.
Sound intensity, sound spectrum, and background noise are relative cues and all others are
absolute cues. In order to make an informed (relatively accurate) distance judgment using
relative cues the listener must be familiar with the sound source (have a prior knowledge about
sound emission level) and surrounding environment. A prime example of a relative cue is
sound intensity. Sound intensity alone is insufficient for the listeners to determine the actual
distances to an unfamiliar sound source since its original sound intensity is unknown to the
listener [12]. However, with increasing familiarity with both the given sound and surrounding
environment distance judgments based on sound intensity can become quite accurate [2, 13].

Other non-specific factors contributing to auditory distance estimates are the listener’s
expectations, past experience, and non-auditory cues (e.g., visible objects). For example,
whispered speech (produced typically at a level of about 30 dB SPL at 1m) is expected by the
listener to come from a nearby sound source whereas, normal (conversational) speech (65 dB
SPL at 1 m) and a shout (90 dB SPL at 1 m) from much larger distances [14-15]. Therefore, it
should be expected that the distance to artificially amplified whispered speech produced by a
distant sound source will most likely be greatly underestimated by the listener because a
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whisper is expected to come from a relatively close distance. More in-depth discussion of
acoustic cues and other general factors affecting distance estimation judgments may be found
elsewhere (e.g., [4, 16]).

Auditory distance is a prothetic (ratio scale) perceptual continuum. It has the natural zero point
(egocenter point) and a unit of measurement (e.g., meter) [17-18]. Each prothetic continuum
(y) is exponentially related to the underlying physical dimension (x) by a psychophysical
Power Law y=kxn (see Stevens Power Law [17-19]). In case of distance perception the Power
Law has the form

PD =kd a (1)

where PD is the perceived distance, d is the physical distance, α is the sensitivity of the observer
to the perceived distance, and k is a constant dependent on the unit of estimation. If α =1, then
the changes in the physical or intended distance to the target are accurately perceived. If k=1
and α <1 the distance is underestimated and when k=1 and α >1 then the distance is overesti‐
mated.

In the case of vision, egocentric visual distance estimates are nearly linearly related to physical
distances for short distances up to 15-20 m [20-25]. At larger distances observers begin to
underestimate the physical distance with estimates converging at a certain asymptotic ceiling
(visual horizon) [26-29]. In the case of audition the same general relationship exists but the
degree of distance underestimation is greater and the auditory horizon [30] is achieved earlier.
The distance to the horizon depends on the listener, available auditory cues, and the acoustic
environment, thus it can vary from one situation to another. Zahorik [31] compared results of
10 studies (33 data sets) and reported that the average exponent of the exponential function as
α =0.59 (SD=0.24) and the constant of proportionality as k=1.66 (SD=0.92). The exponents fitted
to individual data ranged from 0.15 to 0.7 and varied much larger between the listeners than
between the test conditions (environments). His own study conducted in virtual space
(distances from 0.3 m to 14.0 m) resulted in α = 0.39 (SD=0.13) and k = 1.32 (SD=0.56). In a later
study, Zahorik et al. [4] expanded the analysis conducted by Zahorik [31] on the results of 21
studies (84 data sets) and reported the average exponent as α =0.54 and the constant of
proportionality as k=1.3.

Several studies performed both in real and simulated (headphones) environments indicated
that at short physical distances, the perceived distance increases almost linearly with the
physical distance [30, 32] or the listeners slightly overestimate its value [4, 33-37]. The tangent
of the initial slope of the performance function is close to unity and it can be said that for short
distances the auditory distance is approximately a linear function of the physical distance. This
range is limited to 1-3 m in both real and virtual environments and it varies depending on both
the listening conditions and the listeners [4, 14, 30, 32].

At larger distances (3-48 m) listeners increasingly underestimate the actual distance to a sound
source although the distance judgments are slightly more accurate with implicit (e.g., walking
toward the source of sound) than explicit (numeric estimation of the distance when both sound
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source and the listener remain stationary) estimation (e.g., [37]). In both cases, however, the
degree of the underestimation was critically dependent on the availability of specific auditory
distance estimation cues, the listener’s familiarity with the sound source, visibility of the
environment, and the listener’s expectations [4, 16, 38-39]. In general, the distance estimates
were the most accurate in the case of live talkers [15, 30, 40]. It is also noteworthy that in the
case of reproduced speech phrases listeners can make relatively accurate estimates to a source
playing natural speech but fail when the speech is played backwards [38, 41].

Regrettably, despite an extensive knowledge accumulated to date about auditory distance
perception to sound sources located at short and intermediate distances in enclosed spaces
(both anechoic and reverberant) it is still unclear to what extent this knowledge may be applied
to sound sources located in an open field at large distances (100 m and more) and operating
under various atmospheric conditions. It is unknown what specific role auditory distance cues
will have under such conditions and how the open field conditions may affect listener’s
expectations and perception. A short review of sound behavior under various propagation
conditions is provided below.

4. Sound propagation in space

The egocentric auditory distance is the apparent distance from a listener to a sound source.
This distance is dependent on the number of auditory cues resulting from the characteristics
of the sound source, abilities of the listener, and factors related to sound wave propagation in
the surrounding space. The basic sound source, environment, and listener properties that affect
auditory distance estimation judgments are shown in Figure 1.

Figure 1. Basic variables that affect auditory distance judgments in an open environment. In a closed environment the
additional variables are reflections from space boundaries (echoes and space reverberation) while some environmen‐
tal variables not present.

4.1. Spherical wave propagation

For an ideal point source (acoustic monopole) radiating sound energy in an unbound sound
field (free field), sound energy spreads in all directions (wave front spreading) and the sound
intensity I at a given point in space is a function of distance r from the sound source
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α =0.59 (SD=0.24) and the constant of proportionality as k=1.66 (SD=0.92). The exponents fitted
to individual data ranged from 0.15 to 0.7 and varied much larger between the listeners than
between the test conditions (environments). His own study conducted in virtual space
(distances from 0.3 m to 14.0 m) resulted in α = 0.39 (SD=0.13) and k = 1.32 (SD=0.56). In a later
study, Zahorik et al. [4] expanded the analysis conducted by Zahorik [31] on the results of 21
studies (84 data sets) and reported the average exponent as α =0.54 and the constant of
proportionality as k=1.3.

Several studies performed both in real and simulated (headphones) environments indicated
that at short physical distances, the perceived distance increases almost linearly with the
physical distance [30, 32] or the listeners slightly overestimate its value [4, 33-37]. The tangent
of the initial slope of the performance function is close to unity and it can be said that for short
distances the auditory distance is approximately a linear function of the physical distance. This
range is limited to 1-3 m in both real and virtual environments and it varies depending on both
the listening conditions and the listeners [4, 14, 30, 32].

At larger distances (3-48 m) listeners increasingly underestimate the actual distance to a sound
source although the distance judgments are slightly more accurate with implicit (e.g., walking
toward the source of sound) than explicit (numeric estimation of the distance when both sound
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source and the listener remain stationary) estimation (e.g., [37]). In both cases, however, the
degree of the underestimation was critically dependent on the availability of specific auditory
distance estimation cues, the listener’s familiarity with the sound source, visibility of the
environment, and the listener’s expectations [4, 16, 38-39]. In general, the distance estimates
were the most accurate in the case of live talkers [15, 30, 40]. It is also noteworthy that in the
case of reproduced speech phrases listeners can make relatively accurate estimates to a source
playing natural speech but fail when the speech is played backwards [38, 41].

Regrettably, despite an extensive knowledge accumulated to date about auditory distance
perception to sound sources located at short and intermediate distances in enclosed spaces
(both anechoic and reverberant) it is still unclear to what extent this knowledge may be applied
to sound sources located in an open field at large distances (100 m and more) and operating
under various atmospheric conditions. It is unknown what specific role auditory distance cues
will have under such conditions and how the open field conditions may affect listener’s
expectations and perception. A short review of sound behavior under various propagation
conditions is provided below.

4. Sound propagation in space

The egocentric auditory distance is the apparent distance from a listener to a sound source.
This distance is dependent on the number of auditory cues resulting from the characteristics
of the sound source, abilities of the listener, and factors related to sound wave propagation in
the surrounding space. The basic sound source, environment, and listener properties that affect
auditory distance estimation judgments are shown in Figure 1.

Figure 1. Basic variables that affect auditory distance judgments in an open environment. In a closed environment the
additional variables are reflections from space boundaries (echoes and space reverberation) while some environmen‐
tal variables not present.

4.1. Spherical wave propagation

For an ideal point source (acoustic monopole) radiating sound energy in an unbound sound
field (free field), sound energy spreads in all directions (wave front spreading) and the sound
intensity I at a given point in space is a function of distance r from the sound source
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I = W
4πr 2 , (2)

where W is the power of the sound source [watts]. The equation (2) is commonly referred to
as the inverse-square law. This law applies only to the ideal omnidirectional sound source
operating in unlimited space and in the ideal medium, which does not attenuate sound energy.
Based on equation (2), the sound intensity level i radiated by the sound source decreases at the
rate of 6 dB for every doubling of the distance1 from the point-like sound source (e.g., idling
car) to the observer (listener) according to the formula

∆ i =10log
I2

I1
=20log

r2

r1
, (3)

where Δi is the difference in the sound intensity level between the sound source location and
the observation point and I1 and I2 are the sound intensities at the sound source and at the
observation point, respectively. Please note that the 6 dB rate of sound decay means that sound
intensity decreases four times and sound pressure decreases twice per doubling of the distance.
In calculating sound intensity level (dB IL) and sound pressure level (dB SPL) existing at a
specific point in space, the common reference values are Io=10-12 W/m2 and po = 10-6 Pa, respec‐
tively. The 6 dB decay per doubling of the distance only applies to free-sound field or anechoic
conditions.. Typical sound decay outdoors over soft ground is about 4.5 dB per doubling the
distance. In reverberant environments the decrease is even less, e.g. 4.25 dB in a normal room,
due to sound reflections from space boundaries [43].

Assuming that sound intensity at the sound source location is always measured at the distance
r1=1 m, the equation (3) can be reduced to

∆ i =20log (r2). (4)

Equations (3) and (4) are valid for an ideal sound source operating in a free sound field but
would fail in the presence of reflective surfaces where the sound attenuation with doubling
the distance can be expected to be no more than 4-5 dB (e.g., [43]).

Real sound sources, unlike the ideal point source, have finite dimensions and cannot be treated
as point sources in their proximity. The sound waves produced by various parts of a real sound
source interact in the space close to the source’s surface creating; due to constructive and
destructive interference of multiple waves originating from the sound source’s surface; a
complex pattern of spatial maxima and minima of sound intensity. In this region the sound
intensity does not obey the inverse-square law and the particle velocity is not in phase with
sound pressure. However, at some point in space these separate pressure waves combine
together to form a relatively uniform front propagating away from the source. The distance
from the sound source where the pattern of spatially distributed maxima and minima merges

1 . In the case of a line sound source, such as moving train or busy highway, producing cylindrical wave, doubling of
distance from the sound source results only in a 3 dB reduction of sound intensity level.
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in a uniform waveform front is approximately equal to the wavelength (λ) of the radiated
sound [43]. The sound field where the sound source can be treated as a point source and the
sound wave can be treated as a plane wave is called the far field. The area near the sound source
where these conditions are not met is called the near field.

Most real sound sources are not omnidirectional as the point sound source and radiate most
of their energy in certain specific directions. Such sound sources are called directional sources
and can be further referred to as dipole, quadrupole, etc. The directionality of a sound source
is captured by its directivity factor Q and it needs to be taken into account in calculating sound
intensity existing at a given distance and direction. Factor Q depends on sound frequency and
is equal to one (Q=1) at low frequencies when the wavelength of a sound wave is large in
comparison to the dimensions of the sound source and the sound source is effectively omni‐
directional. Factor Q can be as large as 10 or more for very directional sound sources. The
logarithmic form of the factor Q

DI =10logQ, (5)

is called directivity index DI and is expressed in dB.. For an omnidirectional sound source
radiating into unlimited free space, DI=0. For the same sound source radiating energy over
ideal reflective surface (hemispherical radiation), DI=3 dB [49]. To account for sound source
directivity the equation (2) can be modified as

I = QW
4πr 2 , (6)

where Q is the directivity factor of the sound source. This equation is only valid for the
observation point that is located on the main radiation axis of the sound source.

4.2. Atmospheric attenuation

In a real medium, such as air, sound energy propagating through the medium not only spreads
in different directions but is also absorbed by the medium resulting in an exponentially
decaying of energy described as the inverse exponential power law also called Beer-Lambert law.
According to this law

I = Ioe
-αd , (7)

where Io and I are sound intensities at the sound source and the observation point, respectively,
d is the distance between these two points, and α is the absorption coefficient of the medium.
Absorption of sound energy by a medium, called atmospheric absorption, is the result of internal
friction within the medium that converts acoustic energy into heat. The basic mechanisms of
atmospheric absorption are heat conduction, shear viscosity, and molecular relaxation
processes [44]. The amount of energy loss caused by these mechanisms depends on sound
frequency, temperature, and atmospheric (static) pressure within the medium and, in case of
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where W is the power of the sound source [watts]. The equation (2) is commonly referred to
as the inverse-square law. This law applies only to the ideal omnidirectional sound source
operating in unlimited space and in the ideal medium, which does not attenuate sound energy.
Based on equation (2), the sound intensity level i radiated by the sound source decreases at the
rate of 6 dB for every doubling of the distance1 from the point-like sound source (e.g., idling
car) to the observer (listener) according to the formula
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where Δi is the difference in the sound intensity level between the sound source location and
the observation point and I1 and I2 are the sound intensities at the sound source and at the
observation point, respectively. Please note that the 6 dB rate of sound decay means that sound
intensity decreases four times and sound pressure decreases twice per doubling of the distance.
In calculating sound intensity level (dB IL) and sound pressure level (dB SPL) existing at a
specific point in space, the common reference values are Io=10-12 W/m2 and po = 10-6 Pa, respec‐
tively. The 6 dB decay per doubling of the distance only applies to free-sound field or anechoic
conditions.. Typical sound decay outdoors over soft ground is about 4.5 dB per doubling the
distance. In reverberant environments the decrease is even less, e.g. 4.25 dB in a normal room,
due to sound reflections from space boundaries [43].

Assuming that sound intensity at the sound source location is always measured at the distance
r1=1 m, the equation (3) can be reduced to

∆ i =20log (r2). (4)

Equations (3) and (4) are valid for an ideal sound source operating in a free sound field but
would fail in the presence of reflective surfaces where the sound attenuation with doubling
the distance can be expected to be no more than 4-5 dB (e.g., [43]).

Real sound sources, unlike the ideal point source, have finite dimensions and cannot be treated
as point sources in their proximity. The sound waves produced by various parts of a real sound
source interact in the space close to the source’s surface creating; due to constructive and
destructive interference of multiple waves originating from the sound source’s surface; a
complex pattern of spatial maxima and minima of sound intensity. In this region the sound
intensity does not obey the inverse-square law and the particle velocity is not in phase with
sound pressure. However, at some point in space these separate pressure waves combine
together to form a relatively uniform front propagating away from the source. The distance
from the sound source where the pattern of spatially distributed maxima and minima merges

1 . In the case of a line sound source, such as moving train or busy highway, producing cylindrical wave, doubling of
distance from the sound source results only in a 3 dB reduction of sound intensity level.
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in a uniform waveform front is approximately equal to the wavelength (λ) of the radiated
sound [43]. The sound field where the sound source can be treated as a point source and the
sound wave can be treated as a plane wave is called the far field. The area near the sound source
where these conditions are not met is called the near field.

Most real sound sources are not omnidirectional as the point sound source and radiate most
of their energy in certain specific directions. Such sound sources are called directional sources
and can be further referred to as dipole, quadrupole, etc. The directionality of a sound source
is captured by its directivity factor Q and it needs to be taken into account in calculating sound
intensity existing at a given distance and direction. Factor Q depends on sound frequency and
is equal to one (Q=1) at low frequencies when the wavelength of a sound wave is large in
comparison to the dimensions of the sound source and the sound source is effectively omni‐
directional. Factor Q can be as large as 10 or more for very directional sound sources. The
logarithmic form of the factor Q

DI =10logQ, (5)

is called directivity index DI and is expressed in dB.. For an omnidirectional sound source
radiating into unlimited free space, DI=0. For the same sound source radiating energy over
ideal reflective surface (hemispherical radiation), DI=3 dB [49]. To account for sound source
directivity the equation (2) can be modified as

I = QW
4πr 2 , (6)

where Q is the directivity factor of the sound source. This equation is only valid for the
observation point that is located on the main radiation axis of the sound source.

4.2. Atmospheric attenuation

In a real medium, such as air, sound energy propagating through the medium not only spreads
in different directions but is also absorbed by the medium resulting in an exponentially
decaying of energy described as the inverse exponential power law also called Beer-Lambert law.
According to this law

I = Ioe
-αd , (7)

where Io and I are sound intensities at the sound source and the observation point, respectively,
d is the distance between these two points, and α is the absorption coefficient of the medium.
Absorption of sound energy by a medium, called atmospheric absorption, is the result of internal
friction within the medium that converts acoustic energy into heat. The basic mechanisms of
atmospheric absorption are heat conduction, shear viscosity, and molecular relaxation
processes [44]. The amount of energy loss caused by these mechanisms depends on sound
frequency, temperature, and atmospheric (static) pressure within the medium and, in case of
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molecular relaxation processes, on the humidity of the medium (air). This means, that changes
in meteorological conditions (weather) have a large effect on sound propagation. Note that
although light rain, snow, and fog have relatively very small effects on sound propagation,
their presence at larger quantities affects air humidity. The relations between the amount of
sound energy absorbed at given frequencies by a medium and meteorological conditions
(temperature, atmospheric pressure, and humidity) are complex and non-monotonic functions
and the actual amount of resulting absorption depends on specific combinations of these
conditions. For example, sound absorption at the temperature of 30 °C is greater for relative
humidity of 10% than for 40% while the reverse is true for the temperature of 15 °C (e.g., [45]).

Combining equations (6) and (7) we can predict sound intensity in a real medium as

I = QW
4πr 2 e -αd . (8)

At intermediate distances, up to approximately 200-300 m, and at low frequencies the loss of
sound energy due to atmospheric absorption by a laminar (not turbulent) medium is usually
small (less than 1 dB) and can be neglected for practical purposes [46]. However, at large
distances and high frequencies energy loss due to atmospheric absorption can be quite large
and exceed the loss caused by a three-dimensional spread of energy. The effect of atmospheric
absorption on sounds with high frequency energy above 10 kHz “can become distinctly
audible at distances as short as 15 m” (3, p126).

The relationship between the coefficient of absorption (α), sound frequency, and temperature,
atmospheric pressure, and relative humidity of the propagating medium can be calculated as

α =8.686 f 2 τ × 1.84 × 10-11

ρ +
(b1 + b2)
τ 3  , (9)

where f is sound frequency in Hz, τ is relative temperature (τ=T/T20 in K; T20=293.15 K), ρ is
relative atmospheric pressure (ρ=p/pn in Pa; pn=101,325 Pa), rh is relative humidity in %, and b1

and b2 are complex coefficients dependent on relative humidity rh in %, relative temperature
τ, sound frequency f, and relaxation frequencies fn and fo of nitrogen and oxygen (see ISO
9613-1:1993(E) standard [47], Southerland and Daigle [44], or Salomons [48] for more detailed
description of b1 and b2 coefficients, which are functions of some of the variables listed above).
According to this formula, the coefficient of absorption is proportional to the square of the
frequency and is a complex function of weather conditions. The formula is valid for pure tones
and narrow-band noises. Its accuracy is estimated to be ± 10% for 153 < T < 323 K, 0.05 < h
(concentration of water in the atmosphere; h=rh (p/pn)) < 5%, p > 200,000 Pa, and 0.0004 < f/p <
10 Hz/Pa [48, p111]. An example of the dependence of the absorption coefficient on frequency
for a specific set of environmental conditions is shown in Table 1. Note, however, that equation
(9) does not take into account the presence of wind and properties of the ground’s surface.

Spherical spread of sound energy (equation 2) and atmospheric absorption (equation 7) are
two main sources of attenuation of energy of the propagating sound. However, there are also
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several others. Sound waves propagating close to the ground surface are absorbed and
reflected by the ground. This additional factor affecting sound propagation is called ground
attenuation. Constructive interactions between direct and reflected sound waves may increase
the sound level at the listener up to 6 dB. Destructive interaction may in the worst case
completely cancel out the sound. In general, the softer the ground the greater ground attenu‐
ation in reference to an ideal reflective surface. The overall amount of ground attenuation
depends on the type of ground (ground impedance), sound frequency, the distance over the
ground, and the heights of both the sound source and the listener above the ground surface.
In the case of a grassy field the ground absorption is most pronounced in 200-600 Hz range
and extends toward higher frequencies [44, 49]. The closer the sound source is to the ground
surface the greater amount of ground attenuation and greater attenuation of energy at higher
frequencies. Fortunately, in many cases ground effects are of little consequence for transmis‐
sion of sound at heights of more than 1.5 m above ground level [50].

The presence of wind and changes in air temperature with level above the ground surface are
additional factors affecting sound propagation. Both these factors are discussed in the next
section.

4.3. Wind and other open space effects

When sound travels through still air with uniform atmospheric conditions, it propagates in
straight lines. However, wind conditions (velocity and direction), as well as temperature,
changes in altitude (height above the ground) affect sound velicity and cause sound waves
to propagate along curved lines. Under normal sunny conditions solar radiation heats the
earth surface and at lower altitudes the atmosphere is warmer and sound velocity is higher
causing  a  temperature  gradient.  In  the  evening,  the  earth  surface  cools  down  and  the
temperature gradient reverses itself. These two respective temperature conditions are called
temperature lapse and temperature inversion.  Similarly,  wind conditions depend on the
height above the ground due to the slowing of the wind at the ground surface due to surface
friction. This causes additional wind gradients. When sound velocity decreases with height
(upwind sound propagation; daytime sunny warming of the ground) it causes an upward
bend of the sound wave (upward refraction). Conversely, when sounds velocity increases
with height (downwind sound propagation; evening temperature conversion chilling the

f c

25 50 100 200 400 800 1600 3150 6300

31.5 63 125 250 500 1000 2000 4000 8000

40 80 160 315 630 1250 2500 5000 10000

A

0.018 0.07 0.25 0.77 1.63 2.88 6.3 18.8 67.0

0.028 0.11 0.37 1.02 1.96 3.57 8.8 29.0 105.0

0.045 0.17 0.55 1.31 2.36 4.58 12.6 43.7 157.0

Table 1. Atmospheric absorption coefficient α (in dB/km) for the preferred 1/3-octave center frequencies fc (in Hz)
[T=283.15 K (10°C); rh=80%; p=101,325 Pa (1 atm)].
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molecular relaxation processes, on the humidity of the medium (air). This means, that changes
in meteorological conditions (weather) have a large effect on sound propagation. Note that
although light rain, snow, and fog have relatively very small effects on sound propagation,
their presence at larger quantities affects air humidity. The relations between the amount of
sound energy absorbed at given frequencies by a medium and meteorological conditions
(temperature, atmospheric pressure, and humidity) are complex and non-monotonic functions
and the actual amount of resulting absorption depends on specific combinations of these
conditions. For example, sound absorption at the temperature of 30 °C is greater for relative
humidity of 10% than for 40% while the reverse is true for the temperature of 15 °C (e.g., [45]).

Combining equations (6) and (7) we can predict sound intensity in a real medium as

I = QW
4πr 2 e -αd . (8)

At intermediate distances, up to approximately 200-300 m, and at low frequencies the loss of
sound energy due to atmospheric absorption by a laminar (not turbulent) medium is usually
small (less than 1 dB) and can be neglected for practical purposes [46]. However, at large
distances and high frequencies energy loss due to atmospheric absorption can be quite large
and exceed the loss caused by a three-dimensional spread of energy. The effect of atmospheric
absorption on sounds with high frequency energy above 10 kHz “can become distinctly
audible at distances as short as 15 m” (3, p126).

The relationship between the coefficient of absorption (α), sound frequency, and temperature,
atmospheric pressure, and relative humidity of the propagating medium can be calculated as

α =8.686 f 2 τ × 1.84 × 10-11
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(b1 + b2)
τ 3  , (9)

where f is sound frequency in Hz, τ is relative temperature (τ=T/T20 in K; T20=293.15 K), ρ is
relative atmospheric pressure (ρ=p/pn in Pa; pn=101,325 Pa), rh is relative humidity in %, and b1

and b2 are complex coefficients dependent on relative humidity rh in %, relative temperature
τ, sound frequency f, and relaxation frequencies fn and fo of nitrogen and oxygen (see ISO
9613-1:1993(E) standard [47], Southerland and Daigle [44], or Salomons [48] for more detailed
description of b1 and b2 coefficients, which are functions of some of the variables listed above).
According to this formula, the coefficient of absorption is proportional to the square of the
frequency and is a complex function of weather conditions. The formula is valid for pure tones
and narrow-band noises. Its accuracy is estimated to be ± 10% for 153 < T < 323 K, 0.05 < h
(concentration of water in the atmosphere; h=rh (p/pn)) < 5%, p > 200,000 Pa, and 0.0004 < f/p <
10 Hz/Pa [48, p111]. An example of the dependence of the absorption coefficient on frequency
for a specific set of environmental conditions is shown in Table 1. Note, however, that equation
(9) does not take into account the presence of wind and properties of the ground’s surface.

Spherical spread of sound energy (equation 2) and atmospheric absorption (equation 7) are
two main sources of attenuation of energy of the propagating sound. However, there are also
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several others. Sound waves propagating close to the ground surface are absorbed and
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attenuation. Constructive interactions between direct and reflected sound waves may increase
the sound level at the listener up to 6 dB. Destructive interaction may in the worst case
completely cancel out the sound. In general, the softer the ground the greater ground attenu‐
ation in reference to an ideal reflective surface. The overall amount of ground attenuation
depends on the type of ground (ground impedance), sound frequency, the distance over the
ground, and the heights of both the sound source and the listener above the ground surface.
In the case of a grassy field the ground absorption is most pronounced in 200-600 Hz range
and extends toward higher frequencies [44, 49]. The closer the sound source is to the ground
surface the greater amount of ground attenuation and greater attenuation of energy at higher
frequencies. Fortunately, in many cases ground effects are of little consequence for transmis‐
sion of sound at heights of more than 1.5 m above ground level [50].

The presence of wind and changes in air temperature with level above the ground surface are
additional factors affecting sound propagation. Both these factors are discussed in the next
section.

4.3. Wind and other open space effects

When sound travels through still air with uniform atmospheric conditions, it propagates in
straight lines. However, wind conditions (velocity and direction), as well as temperature,
changes in altitude (height above the ground) affect sound velicity and cause sound waves
to propagate along curved lines. Under normal sunny conditions solar radiation heats the
earth surface and at lower altitudes the atmosphere is warmer and sound velocity is higher
causing  a  temperature  gradient.  In  the  evening,  the  earth  surface  cools  down  and  the
temperature gradient reverses itself. These two respective temperature conditions are called
temperature lapse and temperature inversion.  Similarly,  wind conditions depend on the
height above the ground due to the slowing of the wind at the ground surface due to surface
friction. This causes additional wind gradients. When sound velocity decreases with height
(upwind sound propagation; daytime sunny warming of the ground) it causes an upward
bend of the sound wave (upward refraction). Conversely, when sounds velocity increases
with height (downwind sound propagation; evening temperature conversion chilling the
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ground)  it  causes  a  downward  bend  of  sound  waves  (downward  refraction).  Upward
(downward) refraction of sound caused by the wind can decrease (increase) the expected
sound level at the listener location compared to no wind condition by as much as 10 dB
depending on the wind strength and change the region of the audibility of sound from smaller
or larger.

Atmospheric turbulence, i.e., existence of regions of inhomogeneity in air velocity; caused by
local variations in temperature and wind velocity; also affects sound propagation by scattering
and focusing sound energy. The changes in sound level caused by atmospheric turbulence can
be as large as 15-20 dB, are time dependent, and are characterized by increased sound level in
acoustic shadow zones. In addition, all solid objects, such as berms, barriers and towers that
are in the path of the propagating sound, disrupt natural propagation of sound energy causing
frequency-dependent diffraction and reflection of sound energy. In the case of trees and forests
their sound attenuation effect is usually negligible and should only be taken into account at
high frequencies (5 dB per 30 m at 4000 Hz [52]). For frequencies above 2 kHz sound attenuation
caused by dense forest made of large trees (e.g., jungle) can be estimated as [53]

∆ I d =8.5 + 0.12D, (10)

where D is the depth of an infinitely wide belt of forest2 (m). This estimation is somewhat
higher but not much higher than estimation of sound wave attenuation for grassy areas. All
these phenomena and mechanisms affect propagation of sound energy in the open space and
ultimately affect sound source distance estimations.

4.4. Closed space effects

In closed spaces reflections from space boundaries distort the smooth decrease of sound
intensity with the increasing distance from the sound source. Early sound reflections may
cause local reinforcement or decrease in sound energy in various locations in the space while
the late and multi-boundary reflections fuse together, forming a characteristic delayed trace
of sound called reverberation. Reverberant energy is roughly independent3 of the distance
from the sound source and can even dominate overall sound energy at large distance from the
sound source. According to the Hopkins-Stryker Equation [55] sound intensity at a given point
in a closed space is equal to

I =W ( Q
4πr 2 + 4

R ), (11)

where the first element is sound intensity of a direct sound and the second element is sound
intensity of the reverberant field caused by space reflections. R is the room constant (in m2)
dependent on total absorption of the space boundaries.

2 This is an empirical formula predicting the amount of sound attenuation (in dB) caused by a certain thickness of a belt
of trees. Sound attenuation (in dB) of octave band noises due to sound propagation through dense foliage is given in ISO
9613-2:1966 standard [51].
3 This cannot be said about early reflections, which depend on the position of the sound source in the space.
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R = aS
1 - a , (12)

where S is the total area of room boundaries (m2) and a is the average sound absorption
coefficient of room surfaces. The further from the sound source the smaller contribution of
direct sound energy and greater contribution of reverberant energy to the overall acoustic
energy in the space. At some distance from the sound source the contributions of direct and
reverberant (reflected) acoustic energies are equal and this distance is called critical distance
dc, which can be calculated from the equation (11) as

dc =0.141 QR, (13)

where V is space volume (m3), Q is directivity of sound source (dimensionless), and R is room
constant expressed in m2. The relative amounts of direct and reflected energy heard in the
room affect listener’s perception of the distance to a sound source. Note that in the case of a
directional sound source the direct-to-reverberant ratio of sound energy at a given location in
the room is also dependent on the orientation of the sound source in respect to room boundaries
and the listener’s position causing additional dependence of distance judgments on the relative
relation of the listener’s location to the acoustical axis of the sound source.

5. Distance estimation in an open field

The difficulty of making auditory judgments of distance to a sound source in an open space
has been recognized for many years even in relation to relatively short distances [2, 39]. This
difficulty dramatically increases in larger spaces and for greater distances. From all the
auditory cues discussed above only sound intensity, sound spectrum, and the level of
background noise can be used by the listener in a large open field. The only sound reflections
available to the listener in an open space are the ground reflections, which are dependent on
the form and type of terrain. However, these reflections create a confusing pattern of interfer‐
ences rather than providing a helpful distance cue to the listener. Still, such an open space is
an easier environment for making accurate distance judgments than an urban setting, which
is very confusing due to multiple strong reflections coming from unrelated surfaces (e.g., urban
canyon).

Meaningful distance estimation to a sound source in a large open space requires the listener
to know something about the signal at the source and the types of degradations affecting the
signal propagation through the space. This means that the listener needs to be familiar with
capabilities of the sound source and be able to predict specific sound source output under
given circumstances. In respect to sound propagation through space the sound is degraded by
overall attenuation, frequency-dependent attenuation (coloration), reverberation (in woods),
and fluctuations in level. In general, it is possible to measure (quantify) each of these kinds of
signal changes and even develop a single composite measure of these effects [56] but their
effects on auditory distance judgments would be still unknown due to missing field data.
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I =W ( Q
4πr 2 + 4

R ), (11)

where the first element is sound intensity of a direct sound and the second element is sound
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2 This is an empirical formula predicting the amount of sound attenuation (in dB) caused by a certain thickness of a belt
of trees. Sound attenuation (in dB) of octave band noises due to sound propagation through dense foliage is given in ISO
9613-2:1966 standard [51].
3 This cannot be said about early reflections, which depend on the position of the sound source in the space.
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R = aS
1 - a , (12)
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dc =0.141 QR, (13)
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In order to address the existing gap in knowledge regarding auditory distance estimation in
an open space we conducted a field study collecting auditory distance estimation data at
distances from 25 m to 800 m. To our knowledge this is the first study of this kind and therefore
with very limited guidance from literature we had to make several arbitrary decisions
regarding the extent of the study and selection of experimental conditions. For example, the
study was limited to stationary conditions of both the sound source and the listener, was
conducted under relatively stable weather conditions, and only included sound sources
located in front of the listener. These specific limitations of the study’s design will be evident
in the description of the study detailed below. We refer to this study as the Spesutie Island
Study, in reference to the place where the experimental data were collected.

5.1. Spesutie island study: Method

The Spesutie Island Study was conducted at Spesutie Island, MD on the outdoor test area
known as EM Range. The EM Range is an open field approximately 900 m long and 200 m
wide. The area is flat, covered with grass, and includes a sand/gravel track encircling the area.
Three sides of the area are surrounding by young trees and bushes and the fourth side is
separated by additional 50 m of grassy area separating the EM “Range” from a local road. The
general view of the area is shown in Figure 2.

Figure 2. Outdoor test area on Spesutie Island where the study was conducted. The human head represents the lis‐
tening station, squares with numbers next to them represent active loudspeakers and respective distances from the
listener, and black squares without numbers represent dummy loudspeakers. Some elements of the figure are not to
scale.

Eighteen boxes were scattered along the field within ±15° of the main listening axis of the
listener (see Figure 2). The boxes were made of wood with a removable front panel covered
with acoustically transparent cloth. Six of the loudspeaker boxes housed test loudspeakers and
other boxes served as decoys. The boxes that contained the test loudspeakers were located at
25, 50, 100, 200, 400, and 800 meters away from the listening station (see Figure 2). The
loudspeakers were Electro-Voice Sx500+ stage monitors capable of delivering approximately
120 dB peak SPL at 1 meter distance from the loudspeaker that were fed from Crown 2400
power amplifiers.
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The listening station consisted of a table, chair, monitor, keyboard, and a mouse. The station
was situated on a concrete slab, protected from sun and bugs by a (2.1m tall) canvas canopy
with the walls made of bug netting. The station was also equipped with a Brüel & Kjær 4133
microphone and a Davis Monitor II weather station. The microphone, mounted in an upright
position, 1 foot to the left of the listener was used to record actual background noise and test
signals during each sound presentation. A weather station, positioned 2 meters to the left of
the listener was used to monitor temperature, humidity, wind strength, and wind direction.
The data were automatically recorded in the listener file and were used to assess the effects of
meteorological variables on sound propagation.

The study was run using a PC desktop computer, TDT System II Signal Processing System,
Sony T77 DAT recorder, and supporting hardware and wiring. All equipment not used at the
listening station was located in a trailer located at the north end of the range; 50 m to the left
of the listening station (not shown in Figure 2). Proprietary software was used to control the
experiments and collect listener responses.

A group of 24 listeners between the ages of 18 and 25 participated in the study (M = 21.4; SD
= 3.6). All listeners had pure-tone hearing thresholds better than or equal to 20 dB hearing level
(HL) at audiometric frequencies from 250 through 8000 Hz (ANSI S3.6-2010 [56]) and no history
of otologic pathology. The difference between pure-tone thresholds in both ears was no greater
than 10 dB at any test frequency. The listeners had no previous experience in participating in
psychophysical studies and were not previously involved in any regular activity requiring
distance judgment (e.g., archery, hunting).

Eight natural test sounds were used in the study. Each sound had an overall duration of less
than 1s. All sounds, with an exception of generator and rifle shot sounds, which were recorded
during another study, were recorded by the authors. The recordings were made with an ACO
7012 microphone and a Sony T77 DAT tape recorder. The respective A-weighted sound
pressure levels of the recorded sounds were measured during sound recording. These levels
were recalculated for a 1m distance from the sound source and are listed in Table 2. The same
sound levels measured at a 1 m distance in front of a loudspeaker were used in the study. The
only exception was the rifle sound which had a sound pressure level that was too high at a 1m
distance to be reproduced and was scaled down by 30 dB to 94 dB A. Spectral and temporal
characteristics of all the sounds are shown in Figure 3.

During the study the listener was seated at the listening station and was asked to listen to
incoming sounds and respond using a computer keyboard and mouse. An individual test trial
consisted of an (1) a warning period indicating the beginning of a new test trial, (2) an
observation period and (3) a response period. A yellow-red-green status system light was built
into the graphical user interface located on the monitor in front of the listener. The light was
used to indicate the warning period (yellow light, 1s), the observation period (red light, 10s),
and the response period (green light) when listeners recorded their responses. The length of
the response period was not predetermined and listeners could use this time to take short
breaks. Listeners were also asked to wait prior to starting the next trial in the presence of
occasional extraneous sounds such as an airplane flying over or a car passing by that could
interfere with the performed task. To start the next trial, the listener selected the “GO” button
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incoming sounds and respond using a computer keyboard and mouse. An individual test trial
consisted of an (1) a warning period indicating the beginning of a new test trial, (2) an
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into the graphical user interface located on the monitor in front of the listener. The light was
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on the monitor with the mouse and activated the yellow light which indicated the beginning
of the new observation period.

Test Sound Sound Description Sound Level

Boltclick Rifle bolt closure sound 83

Carhorn Car horn sound 95

Dogbark Dog bark 88

Generator Generator sound 74

Joe Male whisper (“Joe”) 72

Rifle Rifle shot sound 124

Splash Water splash sound 73

Throat Throat clearing sound 74

Table 2. List of test sounds and their production levels (in dB A) at 1 meter distance from the sound source.

During each observation period a single test sound or no sound at all was presented. The
sound lasted less than 1s and could appear at any time during the observation period. The
time when the sound appeared within the observation period was randomized. During the
response period the listener was asked (1) to indicate if a sound was present, (2) to identi‐
fy the presented sound using a 12-item closed-set list of alternatives (which included all the
sounds presented in Table 2, plus bird, car engine, airplane, and other), and (3) to deter‐
mine the distance to the sound source in either meters or yards. No response feedback was
given to the listeners but the listeners were told that some sounds may appear very often
while  others  may  appear  occasionally  or  not  at  all.  Instructions  regarding  individual
responses and the templates for response input were provided on the computer screen. Prior
to the experiment the specific sounds used in the study plus several others listed on the list
of alternatives were demonstrated to the listener from a nearby loudspeaker and a short
training session was conducted.

One listening block included all seven sounds presented from all six loudspeakers with four
repetitions each. In addition 48 blank (no sound) trials were randomly presented in each block
resulting in 216 test trials per block. The responses made during the blank trials are not
included in the presented data analysis. The order of sounds in each listening block was
randomized. Four listening blocks were presented to each listener during a single listening
session. The duration of the listening session depended on the duration of the rest periods
taken by the listener but was typically 3.0 to 3.5 hours. Large amounts of data were collected
during the study but only the auditory distance estimation data collected when the listener
correctly recognized the sound are discussed in this chapter. The requirement of correct sound
recognition for making distance estimate a valid distance estimation judgment was made to
minimize the effects of occasional environmental sounds (birds, cars, remote military sounds,
airplanes, etc.) that could have been confused with the test stimuli on listeners’ responses.
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The study was conducted during a two week period in the month of August. At this time the
weather in Maryland is typical of that of the Mid-Atlantic United States. Historically, weather
conditions in August in Aberdeen, MD (Spesutie Island area; sea level altitude) are relatively
stable with 71% average relative humidity varying from high 50s% (morning) to high 80s%
(afternoon); mean temperature during the day in 22-26 °C range (mean 24.1°C) and are
characterized by the lowest average wind velocity throughout the year (about 5-6 km/h)
[57-58].

Figure 3. Spectral and temporal characteristics of the sounds used in the study.

The Maryland Department of Natural Resources [59] reports that there are over 400 species of
birds and an untold number of insects inhabiting the area surrounding the test site. Sounds
made by many of these species created the ambient noise floor that served as a backdrop for
our study. The time and temperature of the day also contributed to the acoustic behaviors of
some of the wildlife. Many of the insects that contributed to our background sounds were
crickets, katydids, cicada, bees, beetles, and grasshoppers. The average weather and noise
conditions observed during the study are listed in Table 3. The averages are mean values of
the average conditions for individual listening sessions. The overall weather conditions were
a bit warmer and drier than average for the area resulting in an average heat index of 31°C.
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Stronger winds generally came from the South and South-East directions while with many
periods of weak wind came from the other directions. The background noise varied between
35-60dB A-weighted depending on the time of the day and weather conditions with a large
number of insects producing sounds in the range of 4-8 kHz.

5.2. Spesutie island study: Data

One of the main arbitrary decisions that had to be made in designing the study was the decision
about production levels of the loudspeaker-simulated sound sources used in the study. Since
the goal of the study was to simulate as much as possible natural sound sources and to learn
some basics about the expected distance to an emitting sound source emitting sound in an
open space, all recorded sounds were reproduced at their natural recorded levels (except for
the rifle shot). This means that each sound was produced at only a single level (see Table 2) by
all loudspeakers regardless of the distance of the loudspeaker from the listener. As a conse‐
quence, not all the sounds were heard and properly recognized by all listeners when emitted
from the distant loudspeakers. The variable audibility of sounds was also exuberated by
changes in weather conditions across the study. This was the expected constraint of the
implemented study design focused on natural production levels. Obviously, the selected
sound events and their levels were selected arbitrarily, but they were representative of specific
sound sources and the selected design focused on sound production (as opposed to presen‐
tation) level. This design was considered important in an initial study of the effects of sound
propagation in an open field on perceived distance to a sound source.

The numbers of valid responses, that is, distance estimations made for correctly detected and
recognized sound sources, made by listeners for specific sound source-distance combinations
are shown in Table 4. The listeners made close to 100% valid distance estimations for distances
up to 100 m and more than 50% valid estimations for distances up to 400 m for all the sounds
except for Joe and Throat. They also made at least 50% valid estimations for Carhorn and Rifle
sounds presented at 800 m distance. The Joe and Throat sounds were practically inaudible to
most listeners beyond 100 m distance. Therefore, in order to avoid making conclusions on the
basis of a very limited number of responses for some sound-distance combinations, only the
combinations for which more than 50% of responses were collected were generally considered
in data analysis. The few exceptions are noted in the text.

Parameter Mean >Median Standard Deviation Unit

Temperature 28.5 29.0 2.3 °C

Relative Humidity 67.6 68.0 0.2 %

Atmospheric Pressure 1.005 1.006 0.018 Atm

Wind Velocity 5.3 4.6 2.3 km/h

Wind Direction 150.0 159.0 37.6 °

Noise Level 50.7 53.0 5.2 dB

Table 3. Mean, median, and standard deviation values of the weather and noise conditions during data collection.
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5.2.1. Effects of distance

Distance was the main variable investigated in the study. In order to assess the general effect
of distance on auditory distance estimation, estimates made by the listeners for all eight sounds
were averaged together for each of the six distances. Two specific cases were considered one,
where only distance-sound combinations providing at least 50% of valid responses were
considered and two, where all valid responses were averaged together regardless of the actual
numbers of responses for specific sound-distance combinations. Both mean and median results
of both types of averaging are shown in Figure 4. The standard deviations of the data are not
shown since the data are characterized by high variability and standard deviations are in the
order of the range of the distance being estimated. Such large variability of the auditory
estimation data is normal and is commonly reported (e.g., [4, 12, 60]).

Figure 4. Auditory distance estimation. Mean (left panel) and median (right panel) estimated distance as a function of
physical distance for all collected data and for cases where the number of listeners making valid responses was larger
or equal to 12. The numbers in the graph are the actual average estimated distances for six physical distances used in
the study.

Test Sound
Distance (m)

25 50 100 200 400 800

Boltclick

Carhorn

Dogbark

Generator

Joe

Rifle

Splash

Throat

Table 4. Number of valid responses (detected and recognized sounds) made by the listeners. Black cells: 24-22
responses; gray cells: 18-12 responses; white cells: 10 or fewer responses.
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were averaged together for each of the six distances. Two specific cases were considered one,
where only distance-sound combinations providing at least 50% of valid responses were
considered and two, where all valid responses were averaged together regardless of the actual
numbers of responses for specific sound-distance combinations. Both mean and median results
of both types of averaging are shown in Figure 4. The standard deviations of the data are not
shown since the data are characterized by high variability and standard deviations are in the
order of the range of the distance being estimated. Such large variability of the auditory
estimation data is normal and is commonly reported (e.g., [4, 12, 60]).

Figure 4. Auditory distance estimation. Mean (left panel) and median (right panel) estimated distance as a function of
physical distance for all collected data and for cases where the number of listeners making valid responses was larger
or equal to 12. The numbers in the graph are the actual average estimated distances for six physical distances used in
the study.

Test Sound
Distance (m)

25 50 100 200 400 800

Boltclick

Carhorn

Dogbark

Generator

Joe

Rifle

Splash

Throat

Table 4. Number of valid responses (detected and recognized sounds) made by the listeners. Black cells: 24-22
responses; gray cells: 18-12 responses; white cells: 10 or fewer responses.
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The two curves shown in both panels of Figure 4 are very close to each other despite the quite
different number of listeners’ responses for 200-800 m data. This supports the general validity
of the data collected for sound-distance combinations resulting in 50% or more valid responses.
The reported mean curves seem to reach their plateau of about 300 m at the distance of
1000-2000 m that can be hypothesized to be the auditory horizon (see [30, 32]) for the listeners
in an open grassy field. The shape of the curves agrees with typical curves published in similar
studies conducted at close distances and in enclosed environments. They can be approximated
by power functions (see equation 1) PD=12d0.41 (data for n≥12; R2>0.9) and PD=12d0.46 (all data;
R2>0.9). The power exponents of both functions are relatively close to the average values
reported for shorter distances by Zahorik [31] and Zahorik et al. [4].

The most notable property of the mean curves shown in Figure 4 is that the listeners were
either very accurate in their judgments or slightly overestimated the actual distance for
distances up to 100 m. Recall that in almost all previous studies conducted in closed spaces
such accurate or overestimating judgments were typical for distances not exceeding 1-3 m [32,
34, 61-62, 63]; the last study was conducted in an open space]. Brungart [64] investigated
auditory distance estimates over headphones to talkers recorded in open field at distances
ranging from 0.25 m to 64 m and reported underestimation of distances larger than 1 m. Visual
estimates made in open field at distances at 10 m and beyond are also reported as being
underestimated by observers (e.g., [65-66]). These data agree with the general trend in distance
estimation judgments described in Section 3. The low intensity sounds coming from larger
distances make the differentiation between distances more difficult for listeners. Additionally,
listeners tend to expect distant sound sources to be closer than they are in reality due to the
typical lack of experience with such judgments and missing cues.

A completely different character of the collected data emerges from the analysis of median
values. As shown in Figure 4 (right panel) all distances from 25 m to 800 m have been heavily
underestimated by most of the listeners. The observed difference between the mean and
median data results from the large variability of the listener responses. The majority of the
listeners underestimated all judged distances but several cases of overestimation greatly
affected the mean values. Inspection of the data indicated that some listeners had a tendency
to overestimate the actual distance to the sound source regardless of the distance and the type
of sound source. The latter agrees qualitatively with data reported by Cochran et al. [40] who
presented listeners (n=20) with both live and recorded speech stimuli in an outdoor environ‐
ment at distances from 1 to 29 m. Listeners estimated the distances using magnitude estimation
judgment relative to a standard distance and underestimated the longest distance by as much
as 30% when the standard distance was close to the listener.

One possible explanation is the fact that some listeners had a tendency to overestimate
distances to sound sources across all distances, which may be a sensory influence caused on
some listeners by a large visible space and a large number of potential sound source located
at large distances. They could expect a greater number of sounds coming from further distances
and could react accordingly. Calcagno et al. [67] studied auditory and audio-visual distance
estimation in a closed space for distances from 1 m to 6 m and reported that while auditory
distance estimates for distances over 2 m underestimated the distance, adding visual cues led
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to more accurate judgments or even overestimation of distance in the whole range of distances
up to 6 m. They hypothesized that auditory distance estimation is affected by visual awareness
of the environment, which hypothesis seems to be supported by the estimates made by some
of our listeners.

5.2.2. Effects of sound type

The distance estimation functions for the individual simulated sound sources used in the study
are shown in Figure 5.

Figure 5. Auditory distance estimation. Mean (left panel) and median (right panel) estimated distance as a function of
physical distance for individual sounds and distances where the number of listeners making valid responses was larger
or equal 12. The numbers on the graph are the average estimated distances for carhorn (top numbers) and generator
(bottom numbers) sounds.

Inspection of Figure 5 shows that distances to some of the sound sources (splash, generator)
were underestimated regardless of the actual distance. This can be seen in both mean (Figure
5, left panel) and median (Figure 5, right panel) data representations. In contrast, the distances
to sound sources producing relatively low output (joe, throat) that could only be heard at short
distances were judged accurately (medians) or overestimated by some listeners more than the
distances to other sound sources (means). These differences among sound sources may be due
to the spectro-temporal properties of emitted sounds, listeners’ expectations, or – in the latter
case - to a relatively narrow range of effective distances at which these sound were heard.
Interestingly, both the joe and throat sounds differed very much in their both temporal and
spectral properties (see Figure 3). Considering this, it seems unlikely that their spectro-
temporal properties themselves could be the only or the main factors causing the observed
mean overestimation of distances to both of these sound sources. In addition, both sounds are
vocal sounds which are familiar to general listeners and should result in fairly accurate
judgments. However, due to the requirements of the experimental deign of the study both
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The two curves shown in both panels of Figure 4 are very close to each other despite the quite
different number of listeners’ responses for 200-800 m data. This supports the general validity
of the data collected for sound-distance combinations resulting in 50% or more valid responses.
The reported mean curves seem to reach their plateau of about 300 m at the distance of
1000-2000 m that can be hypothesized to be the auditory horizon (see [30, 32]) for the listeners
in an open grassy field. The shape of the curves agrees with typical curves published in similar
studies conducted at close distances and in enclosed environments. They can be approximated
by power functions (see equation 1) PD=12d0.41 (data for n≥12; R2>0.9) and PD=12d0.46 (all data;
R2>0.9). The power exponents of both functions are relatively close to the average values
reported for shorter distances by Zahorik [31] and Zahorik et al. [4].

The most notable property of the mean curves shown in Figure 4 is that the listeners were
either very accurate in their judgments or slightly overestimated the actual distance for
distances up to 100 m. Recall that in almost all previous studies conducted in closed spaces
such accurate or overestimating judgments were typical for distances not exceeding 1-3 m [32,
34, 61-62, 63]; the last study was conducted in an open space]. Brungart [64] investigated
auditory distance estimates over headphones to talkers recorded in open field at distances
ranging from 0.25 m to 64 m and reported underestimation of distances larger than 1 m. Visual
estimates made in open field at distances at 10 m and beyond are also reported as being
underestimated by observers (e.g., [65-66]). These data agree with the general trend in distance
estimation judgments described in Section 3. The low intensity sounds coming from larger
distances make the differentiation between distances more difficult for listeners. Additionally,
listeners tend to expect distant sound sources to be closer than they are in reality due to the
typical lack of experience with such judgments and missing cues.

A completely different character of the collected data emerges from the analysis of median
values. As shown in Figure 4 (right panel) all distances from 25 m to 800 m have been heavily
underestimated by most of the listeners. The observed difference between the mean and
median data results from the large variability of the listener responses. The majority of the
listeners underestimated all judged distances but several cases of overestimation greatly
affected the mean values. Inspection of the data indicated that some listeners had a tendency
to overestimate the actual distance to the sound source regardless of the distance and the type
of sound source. The latter agrees qualitatively with data reported by Cochran et al. [40] who
presented listeners (n=20) with both live and recorded speech stimuli in an outdoor environ‐
ment at distances from 1 to 29 m. Listeners estimated the distances using magnitude estimation
judgment relative to a standard distance and underestimated the longest distance by as much
as 30% when the standard distance was close to the listener.

One possible explanation is the fact that some listeners had a tendency to overestimate
distances to sound sources across all distances, which may be a sensory influence caused on
some listeners by a large visible space and a large number of potential sound source located
at large distances. They could expect a greater number of sounds coming from further distances
and could react accordingly. Calcagno et al. [67] studied auditory and audio-visual distance
estimation in a closed space for distances from 1 m to 6 m and reported that while auditory
distance estimates for distances over 2 m underestimated the distance, adding visual cues led
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to more accurate judgments or even overestimation of distance in the whole range of distances
up to 6 m. They hypothesized that auditory distance estimation is affected by visual awareness
of the environment, which hypothesis seems to be supported by the estimates made by some
of our listeners.

5.2.2. Effects of sound type

The distance estimation functions for the individual simulated sound sources used in the study
are shown in Figure 5.

Figure 5. Auditory distance estimation. Mean (left panel) and median (right panel) estimated distance as a function of
physical distance for individual sounds and distances where the number of listeners making valid responses was larger
or equal 12. The numbers on the graph are the average estimated distances for carhorn (top numbers) and generator
(bottom numbers) sounds.

Inspection of Figure 5 shows that distances to some of the sound sources (splash, generator)
were underestimated regardless of the actual distance. This can be seen in both mean (Figure
5, left panel) and median (Figure 5, right panel) data representations. In contrast, the distances
to sound sources producing relatively low output (joe, throat) that could only be heard at short
distances were judged accurately (medians) or overestimated by some listeners more than the
distances to other sound sources (means). These differences among sound sources may be due
to the spectro-temporal properties of emitted sounds, listeners’ expectations, or – in the latter
case - to a relatively narrow range of effective distances at which these sound were heard.
Interestingly, both the joe and throat sounds differed very much in their both temporal and
spectral properties (see Figure 3). Considering this, it seems unlikely that their spectro-
temporal properties themselves could be the only or the main factors causing the observed
mean overestimation of distances to both of these sound sources. In addition, both sounds are
vocal sounds which are familiar to general listeners and should result in fairly accurate
judgments. However, due to the requirements of the experimental deign of the study both
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selected exemplars of sounds were relatively loud for their classes of sounds (whispered joe
was a voiced whisper). Therefore, it is quite possible that some listeners facing a large open
space and hearing louder than expected familiar sounds overestimated the actual distances
trying “to use” the whole visually available space. This hypothesis could be verified in the
future by conducting a similar study with both sounds presented with different intensities for
blindfolded listeners. It may be expected that lack of a visual cue in a form of a large open
space could lead to more accurate judgments of both sounds by all the listeners.

The data collected for boltclick, dogbark, rifle, and carhorn sounds show similar tendency and
they mostly influenced the average data discussed in Section 5.2.1. Surprisingly, scaling down
the rifle sound by 30 dB was not reflected in distance estimation estimates made by the listeners.
This may be attributed to the fact that the actual distance to the “real” rifle location was much
beyond the auditory horizon of the listeners. It may also be considered as a finding supporting
the theory that the size of visible environment affects (limits, in this case) the range of available
distance estimation options (alternatives).

Overall greater underestimation of distances to the splash and generator sounds was most likely
due to expectations and previous life experience of the listeners. The generator sound was
originally produced by a field generator that could be confused with residential outdoor power
equipment, such as a lawn mower, which produces spectrally very similar noise but is typically
heard from closer distances. The splash sound had the intensity and character typical for this
class of sounds but such sounds are seldom heard without close visual effect of splash. A
mental image of a visually close event could potentially affected listeners’ judgments.

5.2.3. Effects of temperature, humidity, and atmospheric pressure

The two main weather parameters investigated in this study were temperature and relative
humidity. Temperature is the measure of the average amount of kinetic energy in the body or
environment expressed on a normalized scale. Relative humidity is the ratio of the amount of
moisture in the air to the total amount of moisture that can be held at a given temperature, that
is, the degree of saturation of air with moisture.

In order to assess the effects of temperature and humidity on auditory distance estimation the
data collected during the times of highest and lowest values of both parameters have been
analyzed separately. The four extreme weather conditions labeled hot, cool, dry, and humid
weather and their temperature and humidity ranges are listed in Table 5. Obviously, they are
the extreme conditions in relation to the average weather conditions experienced during the
study. Note that temperature and humidity of air are interdependent variables and they could
not be absolutely separated for analysis purposes in our study.

Analysis of distance estimation data obtained under the weather conditions listed in Table 6
has been conducted by comparing data collected during pairs of each opposite conditions: hot
(5 listeners) and cool (5 listeners) and dry (4 listeners) and humid (4 listeners).

Hot-Cool: The five listeners exposed to the hot weather condition performed on the same level
as the rest of the listeners. However, the listeners exposed to the cool weather condition
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underestimated the distances for all sound sources more than the rest of the listeners. The mean
distance estimations of the cool weather group were frequently as much as twice smaller than
those of the rest of the group. The behaviors of both groups were very uniform across distances
from 25 m to 100 m and they become somewhat random at larger distances where the numbers
of responses became quite sparse (all listeners’ responses have been included in calculations).

Dry-Humid:  For  distances  from 25 m to  100 m both the  dry  weather  and humid weather
conditions listeners responses differed from the mean values for the whole group. The dry
weather  group provided slightly larger and the humid weather  group considerably smaller
distance estimates than the rest of the group. The behaviors of both groups were the same
for  all  sound sources  with one exception.  The dry weather  condition did not  affect  the
judgments for the dogbark  sound. For distances above 100 m the effect of the dry weather
conditions seemed to disappear and above 200 m the effect of the humid weather condi‐
tion becomes less clear.

Obviously, the above observations need to be treated with caution since they are based on
relatively small samples of both the listeners and weather conditions. Since the changes in
weather conditions also affect insects’ behavior, the weather-related changes in the distance
estimates may be affected, and to some degree explained, by the simultaneous changes in the
background noise level. These changes are discussed in the forthcoming Section 5.2.5 and
additional comments about joint temperature, humidity, and noise conditions are made in that
section. In addition, the listeners exposed to the “extreme” weather conditions had their own
expectations and experience that could be different from those of others and affected their
responses in a unique way.

No effect of atmospheric (barometric) pressure has been noted in the study. Atmospheric
pressure is the hydrostatic pressure caused by the weight of air molecules above the meas‐
urement point on the Earth’s surface. Low atmospheric pressure means that the air is rising
and high barometric pressure means that the air is sinking. Atmospheric pressure observed
during the study was quite high and relatively stable averaging 1.005 atm and varying from
1.001 atm to 1.009 atm across all listening sessions. Such pressure is typical for very warm
weather and was slightly higher than the historically average pressure for the month of August
in Maryland. Thus, due to relatively stable pressure conditions during the study no specific
effects of atmospheric pressure on distance estimation data were observed.

Type of Weather
Temperature

Range
Relative Humidity Range

Average

Temperature

Average Relative

Humidity

Hot Weather 29 - 34°C 55 - 75% 31°C 64%

Cool Weather 24 - 27°C 65 - 88% 25°C 78%

Dry Weather 24 - 33°C 50 - 62% 28°C 61%

Humid Weather 24 - 27°C 77 - 98% 26°C 80%

Table 5. Extreme (relative) weather conditions (temperature and relative humidity) recorded during the study.
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selected exemplars of sounds were relatively loud for their classes of sounds (whispered joe
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the theory that the size of visible environment affects (limits, in this case) the range of available
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originally produced by a field generator that could be confused with residential outdoor power
equipment, such as a lawn mower, which produces spectrally very similar noise but is typically
heard from closer distances. The splash sound had the intensity and character typical for this
class of sounds but such sounds are seldom heard without close visual effect of splash. A
mental image of a visually close event could potentially affected listeners’ judgments.

5.2.3. Effects of temperature, humidity, and atmospheric pressure

The two main weather parameters investigated in this study were temperature and relative
humidity. Temperature is the measure of the average amount of kinetic energy in the body or
environment expressed on a normalized scale. Relative humidity is the ratio of the amount of
moisture in the air to the total amount of moisture that can be held at a given temperature, that
is, the degree of saturation of air with moisture.

In order to assess the effects of temperature and humidity on auditory distance estimation the
data collected during the times of highest and lowest values of both parameters have been
analyzed separately. The four extreme weather conditions labeled hot, cool, dry, and humid
weather and their temperature and humidity ranges are listed in Table 5. Obviously, they are
the extreme conditions in relation to the average weather conditions experienced during the
study. Note that temperature and humidity of air are interdependent variables and they could
not be absolutely separated for analysis purposes in our study.

Analysis of distance estimation data obtained under the weather conditions listed in Table 6
has been conducted by comparing data collected during pairs of each opposite conditions: hot
(5 listeners) and cool (5 listeners) and dry (4 listeners) and humid (4 listeners).

Hot-Cool: The five listeners exposed to the hot weather condition performed on the same level
as the rest of the listeners. However, the listeners exposed to the cool weather condition
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underestimated the distances for all sound sources more than the rest of the listeners. The mean
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those of the rest of the group. The behaviors of both groups were very uniform across distances
from 25 m to 100 m and they become somewhat random at larger distances where the numbers
of responses became quite sparse (all listeners’ responses have been included in calculations).

Dry-Humid:  For  distances  from 25 m to  100 m both the  dry  weather  and humid weather
conditions listeners responses differed from the mean values for the whole group. The dry
weather  group provided slightly larger and the humid weather  group considerably smaller
distance estimates than the rest of the group. The behaviors of both groups were the same
for  all  sound sources  with one exception.  The dry weather  condition did not  affect  the
judgments for the dogbark  sound. For distances above 100 m the effect of the dry weather
conditions seemed to disappear and above 200 m the effect of the humid weather condi‐
tion becomes less clear.

Obviously, the above observations need to be treated with caution since they are based on
relatively small samples of both the listeners and weather conditions. Since the changes in
weather conditions also affect insects’ behavior, the weather-related changes in the distance
estimates may be affected, and to some degree explained, by the simultaneous changes in the
background noise level. These changes are discussed in the forthcoming Section 5.2.5 and
additional comments about joint temperature, humidity, and noise conditions are made in that
section. In addition, the listeners exposed to the “extreme” weather conditions had their own
expectations and experience that could be different from those of others and affected their
responses in a unique way.

No effect of atmospheric (barometric) pressure has been noted in the study. Atmospheric
pressure is the hydrostatic pressure caused by the weight of air molecules above the meas‐
urement point on the Earth’s surface. Low atmospheric pressure means that the air is rising
and high barometric pressure means that the air is sinking. Atmospheric pressure observed
during the study was quite high and relatively stable averaging 1.005 atm and varying from
1.001 atm to 1.009 atm across all listening sessions. Such pressure is typical for very warm
weather and was slightly higher than the historically average pressure for the month of August
in Maryland. Thus, due to relatively stable pressure conditions during the study no specific
effects of atmospheric pressure on distance estimation data were observed.
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5.2.4. Effects of wind

Wind is one of the major factors affecting sound wave propagation in the environment. Wind
effects are quite complex, fast changing (e.g., wind gusts), and confounded by other weather
conditions and, as a result, it is hard to assess various wind effects in studies like the current
one. Therefore, it was important for the study that all data collection was limited to a relatively
stable and weak wind conditions. The average wind speed throughout the study was
5.3km/h (median = 4.6 km/h), with an average direction of 150° (SSE direction). On the Beaufort
wind force scale most wind conditions recorded in the study ranged between 0 (calm, less than
1km/h) and 1 (light air, between 1-5.5km/h). There were several (9) sessions with stronger
winds ranging from 5.8 km/h to 9.8 km/h but in all cases except one (side wind; no strong
perceptual effects) the wind blew downwards (toward the listener). This limited the potential
analysis of the wind effects to the comparison between data collected during strong downwind
conditions (8 cases) and data collected during no-wind and low-strength-wind conditions (15
cases; 0 to 5.15 km/h; various wind directions) referred later as no wind condition. The results
of this analysis are shown in Figure 6.

Figure 6. Comparison of auditory distance estimation data for no wind and downwind conditions. The numbers in the
graph are the ratios of distance estimates for no wind and downwind conditions.

Under both no wind and downwind conditions the listeners generally underestimated
distances to all sound sources. The distance estimates made by the listeners making judgments
under no wind condition (M=3.9 km/h; SD=1.0 km/h) were about twice as large as those made
by the listeners exposed to strong downwind condition (M=8.2 km/h; SD=1.2 km/h). The results
were somewhat dependent on the type of sound with rifle (~2.4 ratio) and carhorn (~1.7 ratio)
sounds being affected the most and the least, respectively. Both of these sounds were the most
intense sounds but they greatly differed in spectro-temporal properties. The rifle sound was
shorter and had lower high frequency content than the carhorn sound (see Figure 3). Therefore,
it seems that the downward wind enhanced audibility of the rifle sound and helped to preserve
its less intense high frequency content but such enhancement did not change the perceptual
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impressions of the listeners in the case of the carhorn sound. Recall also that the rifle sound was
scaled down by 30 dB during its reproduction.

5.2.5. Effect of background noise

The background noise that affected the audibility of sounds produced by loudspeaker-
simulated sound sources was for the most part noise produced by ever-present insects.
Occasional sounds produced by birds, animals, distant cars, and overflying airplanes were
relatively rare, quite distinct, and usually quite short. They could affect one or two of the
specific judgments, resulting usually in invalid response, but they did not contribute signifi‐
cantly to the continuous noise present in the field. The average noise level across the study
was about 51 dB A and was dependent on the weather conditions and time of the day.
Typically, as the day became warmer insect activity decreased making the afternoons quieter
than the mornings. As a result most sounds were less audible during cooler mornings than
hotter afternoons. The relationship between the noise level and the temperature of air recorded
throughout the study is shown in Figure 7.

Figure 7. Relationship between background noise level (insects’ calls) and temperature of air measured during the
study. Not all the points on the graph correspond to actual listening sessions.

The spectral properties of the background noise are shown in Figure 8. The insects’ calls were
most intense in the frequency band from about 4 kHz to 8 kHz and the noise level resulting
from a number of insects’ calls decreased by 3-5 dB in the frequency range from ~0.5 kHz to
10 kHz when temperature increased from 28 °C to 32 °C.

As discussed in Section 5.2.3 in general cooler and more humid weather conditions resulted
in greater underestimation of the distances to all sound sources. The participants that listened
during these weather conditions usually gave closer distance estimates despite the fact that
the background noise level under these conditions was higher. However, the negative effect
on the audibility of sounds in an open field caused by higher background noise levels made
by insects at low temperatures was apparently compensated by the decreasing amount of air
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Under both no wind and downwind conditions the listeners generally underestimated
distances to all sound sources. The distance estimates made by the listeners making judgments
under no wind condition (M=3.9 km/h; SD=1.0 km/h) were about twice as large as those made
by the listeners exposed to strong downwind condition (M=8.2 km/h; SD=1.2 km/h). The results
were somewhat dependent on the type of sound with rifle (~2.4 ratio) and carhorn (~1.7 ratio)
sounds being affected the most and the least, respectively. Both of these sounds were the most
intense sounds but they greatly differed in spectro-temporal properties. The rifle sound was
shorter and had lower high frequency content than the carhorn sound (see Figure 3). Therefore,
it seems that the downward wind enhanced audibility of the rifle sound and helped to preserve
its less intense high frequency content but such enhancement did not change the perceptual
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impressions of the listeners in the case of the carhorn sound. Recall also that the rifle sound was
scaled down by 30 dB during its reproduction.

5.2.5. Effect of background noise

The background noise that affected the audibility of sounds produced by loudspeaker-
simulated sound sources was for the most part noise produced by ever-present insects.
Occasional sounds produced by birds, animals, distant cars, and overflying airplanes were
relatively rare, quite distinct, and usually quite short. They could affect one or two of the
specific judgments, resulting usually in invalid response, but they did not contribute signifi‐
cantly to the continuous noise present in the field. The average noise level across the study
was about 51 dB A and was dependent on the weather conditions and time of the day.
Typically, as the day became warmer insect activity decreased making the afternoons quieter
than the mornings. As a result most sounds were less audible during cooler mornings than
hotter afternoons. The relationship between the noise level and the temperature of air recorded
throughout the study is shown in Figure 7.

Figure 7. Relationship between background noise level (insects’ calls) and temperature of air measured during the
study. Not all the points on the graph correspond to actual listening sessions.

The spectral properties of the background noise are shown in Figure 8. The insects’ calls were
most intense in the frequency band from about 4 kHz to 8 kHz and the noise level resulting
from a number of insects’ calls decreased by 3-5 dB in the frequency range from ~0.5 kHz to
10 kHz when temperature increased from 28 °C to 32 °C.

As discussed in Section 5.2.3 in general cooler and more humid weather conditions resulted
in greater underestimation of the distances to all sound sources. The participants that listened
during these weather conditions usually gave closer distance estimates despite the fact that
the background noise level under these conditions was higher. However, the negative effect
on the audibility of sounds in an open field caused by higher background noise levels made
by insects at low temperatures was apparently compensated by the decreasing amount of air
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absorption (see Section 4.2) caused by increasing humidity and decreasing temperature or by
some other factors. Thus, two explanations for the observed effects are possible. First, that the
effect of changes in air absorption had stronger impact on the judgments of the listeners than
potentially counteracting simultaneous changes in noise level. Second, that poorer audibility
of sounds due to higher background noise level was perceptually associated with closer
distances to sound sources. The greater the background noise level and the lower signal-to-
noise ratio the stronger the listeners’ impression that the sound source was relatively near but
was masked by background noise. Listeners informally reported that at higher noise levels
they “heard” the space as being smaller. Such explanations of the noise effect also agrees with
the results of previous research studies conducted in closed spaces regarding the role of
background noise cue, where higher noise level masked environmental (reverberated) sounds
masking the impression that the space was smaller. The discussed effects might also result
from specific experience and predispositions of the small number of listeners who were
exposed to the “extreme” listening conditions analyzed in our study. Further studies are
needed to explain these relationships and answer the related questions.

5.2.6. Individual differences

Distance perception data obtained in the current study are marred by lack of consistency due
to listeners’ potential lack of ability to use distance estimation cues in open space and large
individual differences among the listeners. Typical standard deviations of the group’s
judgments were close to the size of the physical distance being estimated and quite independ‐
ent of the type of sound source. The large individual differences and disparities in judgments
also have been encountered in closed spaces by other researchers. Recently, Wisniewski at al.
[41] used open field recordings reproduced in a closed space and reported substantial
individual differences among the listeners in judging auditory distance. The differences
ranged from 51% to 77%. However, the listeners made the same general pattern of errors; a
finding that is not supported by the results of the present study. Similar, widely varying results

Figure 8. Examples of background noise levels in the morning (28 °C) and in the afternoon (32 °C) of the same day.
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of distance estimation have been reported in visual distance estimation studies conducted in
open fields. The results of all these perceptual studies indicate that regardless of sensory input
we have not yet found a common relationship between physical and perceived space that is
consistent with distance judgments in outdoor contexts [68-69].

6. Summary

The purpose of this chapter was to summarize the state of the art knowledge about the
mechanism of auditory distance perception and to report the results of the distance estimation
study conducted in an open field for distances in the 25-800 m range. Since this study seems
to be the first study of this kind, it actually poses more questions than provides definite
answers. A range of listeners’ behaviors has been identified but the exploratory nature of this
study and the relatively limited number of samples of both the listening conditions and
participants advise caution in generalizing the reported data. In addition, interdependence of
temperature, humidity, and environmental noise makes some observations tentative that
require more rigorous confirmation.

In summary, within the constraints of the reported study, the following conclusions can be
made on the basis of collected data:

• Auditory distance estimation judgments in the open field differ greatly among listeners;
however, for most listeners the perceived distance and the physical distance are monoton‐
ically related.

• The auditory distance judgments in an open field at distances of 25 m and beyond are
commonly underestimated compared to the actual distances to sound sources regardless of
the distance.

• Some of the listeners participating in the study generally overestimated all distances to the
sound sources4; this behavior can be explained by either the expectations caused by a large
visible space or by lack of an internal concept of auditory distance resulting in the same
numeric estimate across a range of physical distances.

• The type of sound source had an effect on the distance judgments; however, some of the
observed environmental effects on the perceived sounds were not always clear.

• The effects of temperature, humidity, and environmental noise are interrelated and difficult
to separate analytically; however, both higher humidity and lower temperature increased
distance underestimation by the listeners in the current study.

• Increased level of environmental noise at lower temperatures affected the audibility of
projected sounds but did not seem to affect in a clear way distance estimation judgements.

4 Individual data reported in some previous studies conducted in closed spaces and at shorter distances also indicate
that some listeners had a tendency to overestimate most distances.
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of distance estimation have been reported in visual distance estimation studies conducted in
open fields. The results of all these perceptual studies indicate that regardless of sensory input
we have not yet found a common relationship between physical and perceived space that is
consistent with distance judgments in outdoor contexts [68-69].

6. Summary

The purpose of this chapter was to summarize the state of the art knowledge about the
mechanism of auditory distance perception and to report the results of the distance estimation
study conducted in an open field for distances in the 25-800 m range. Since this study seems
to be the first study of this kind, it actually poses more questions than provides definite
answers. A range of listeners’ behaviors has been identified but the exploratory nature of this
study and the relatively limited number of samples of both the listening conditions and
participants advise caution in generalizing the reported data. In addition, interdependence of
temperature, humidity, and environmental noise makes some observations tentative that
require more rigorous confirmation.

In summary, within the constraints of the reported study, the following conclusions can be
made on the basis of collected data:

• Auditory distance estimation judgments in the open field differ greatly among listeners;
however, for most listeners the perceived distance and the physical distance are monoton‐
ically related.

• The auditory distance judgments in an open field at distances of 25 m and beyond are
commonly underestimated compared to the actual distances to sound sources regardless of
the distance.

• Some of the listeners participating in the study generally overestimated all distances to the
sound sources4; this behavior can be explained by either the expectations caused by a large
visible space or by lack of an internal concept of auditory distance resulting in the same
numeric estimate across a range of physical distances.

• The type of sound source had an effect on the distance judgments; however, some of the
observed environmental effects on the perceived sounds were not always clear.

• The effects of temperature, humidity, and environmental noise are interrelated and difficult
to separate analytically; however, both higher humidity and lower temperature increased
distance underestimation by the listeners in the current study.

• Increased level of environmental noise at lower temperatures affected the audibility of
projected sounds but did not seem to affect in a clear way distance estimation judgements.

4 Individual data reported in some previous studies conducted in closed spaces and at shorter distances also indicate
that some listeners had a tendency to overestimate most distances.
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• Downward wind greatly increased the degree of distance underestimation across all sound
sources and distances (upward wind has not been studied).

The authors hope that the results of this study will increase the listeners’ awareness of the
complex influences affecting listeners’ behaviors in an open field under changing weather
conditions. However, further studies are needed to expand our knowledge about the nature
of auditory distance estimations made under such environmental conditions and to confirm
or correct reported findings.

The future studies should include distance judgments in various types of listening environ‐
ments (such as the in a desert or in the extreme cold), sounds coming from different directions
(the back or sides) and a repeated version of the current study with blindfolded participants.
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1. Introduction

It has been shown that the apparent source width (ASW) for one-third-octave band pass noises
signal offers a satisfactory explanation for functions of the inter-aural cross-correlation (IACC)
and WIACC, which is defined as the time interval of the inter-aural cross-correlation function
within ten percent of the maximum (Sato and Ando, [18]). In this chapter, the binaural criteria
of spatial impression in halls will be investigated by comparing with ASW for the auditory
purpose assistant to visual attention, which is called source localization. It was proposed that
the ASW could properly define directional impression corresponding to the inter-aural time
delay (τIACC) perceived when listening to sound with a sharp peak in the inter-aural cross-
correlation function (ICF) with a small value of WIACC. We supposed that the ASW would be
sensed not only with regard to the relative amplitudes between reflections in a hall, but the
total arrived energies at two ears through the A-weighting network in the brain, termed as
listening level (LL) and the temporal characteristics of sound sources. This hypothesis is based
on the fact that the spatial experience in a room will be varied by changing the center frequency
of one-third-octave band pass noise signal, and the ASW decreases as the main frequency goes
up. For the purpose of this chapter, we shall discuss the relationship among some factors, the
geometric mean of sound energies at two ears, the reverberation, IACC, τIACC, and WIACC, and
whether they are independently related to the sound source on a horizontal plane. Finally, we
have discussed that the ASW impression varied in accordance with the acoustic characteristics
of sound intelligibility.

© 2014 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.
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2. Effects of reverberation time and sound source characteristics to auditory
localization

2.1. Physical properties of source signals regarding sound localization in a hall

According to the reports by Morimoto [1] regarding the influences of sound localization of
spatial perception in a hall, the reverberation energy (RT60 = 0.3, 0.9 s) may be treated as the
first reflection energy (delay time = 80, 160ms). However, the selection of music is exclusively
limited to using Wolfgang Amadeus Mozart’s Symphony No. 41, Movement IV as a music
source. We intended to prove that the sensitivities on the spatial impression of sound locali‐
zation will vary depending on the structural characteristics of music. Therefore, the other three
sound sources: Motif A (Royal Pavane by Gibbon, τe = 127 ms), Motif B (Sinfonietta, Opus 48;
IV movement; Allegro con brio by Arnold, τe = 35 ms) and Speech (female, τe = 23ms) were
adopted. According to the sound field design theory described by Ando [2], the determining
factor of an ideal reverberation time length lies in the effective delay of autocorrelation function
(τe) of sound sources illustrated in Figure 1. The reverberation time of our experiments was
set at: short (0.3 s), medium (0.9 s) and long (2.0 s) respectively. The judgments of the apparent
sound localization were responded from 12 participants by way of scaling using a normal
distribution between two horizontal stimuli angles. The primary analyses of correlations
between sound source and auditory localization will presumably the different τe proposed by
Ando [2]; namely, the significant difference sensation of reverberate image between Motifs
will have an influence on human auditory spatial perception of sound sources.

2.2. Analyses of source signals in a hall

The experiences of visual interaction with the direction of sound source at the stage of opera
or a classical orchestra have sometimes failed to catch the scene of the performance with respect
to the distance or width of the stage. However, it is important and cheering for the audiences
to trace and immediately respond to the present player on the stage as if the source directional
sensitivity in a diffusing sound field were accurately installed. In this paper, we have tried to
compare the source directional sensitivity of spaciousness as caused by early reflections with
different azimuth angles. Morimoto [1] reported that of early reflections at the point of
subjective equality (it was termed PSE) of spaciousness shows that they are comparable, but
early reflection levels seem to be generally slightly lower than the reverberation. That is, the
reverberation level correlated well with the early reflections level at the PSE. This means that
both energies are fairly proportional to each other and that the average difference is 1.27dB.
Barron and Marshall [3] described that the value of lateral energy fraction, as calculated for a
series of reflection sequences for two rectangular halls gave virtually identical values no matter
whether 80 ms or 100 ms was used as the limiting delay value for the early lateral reflections.
Inoue et al. [4] recently reported that the preference of sound impression did not increase with
spaciousness throughout, but may have a maximum value at certain spaciousness, that is, the
audience does not prefer excessive spaciousness. Hasegawa et al. [5] reported the sound image
width was perceived as narrower or wider than the actual presentation region when the sound
source width was decreased or increased, respectively by using two loudspeakers were semi-
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circularly arranged. Ando [2] reported the most preferred delay time of early reflections after
the direct sound differs greatly between the two Motifs. It is found that this corresponds to
effective durations (τe) of the autocorrelation function (ACF) of source music of 127 ms in Motif
A and 35 ms in Motif B. To obtain a degree of similar repetitive features of the sound signals,
τe values of ACF were analyzed as a phenomenon of stationary random processing (SRP)
strictly defined with an infinite length observation (Marple [6]). Concerning SRP for music
signal, the estimation of finite length data (2 s) will only obtain an estimation of ACF as
Equation (1). As τ << N, the estimation of ACF are almost equal to the ACF only in an initial
range. Thus, a linear sum of music shows an initial decline of envelope of ACF, and it can be
fit to a straight line regression of the power of the normalized ACF (Figure 1). The τe values
of ACF of music is defined as it crosses to -10 dB to that of delay.
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Figure 1. Definition of the effective durations (τe) of the autocorrelation function

In order to represent the geometrical size of a similar room, the delay time of subsequence
reflection is introduced as Δt2 = Δt1 + 0.8 Δt1. In this study, the term “auditory localization” was
defined as the detection of sound image edge perceived by the auditory event using two
loudspeakers as Hasegawa et al. [5].

2.3. Subjective judgments of sound localization

A method of adjustment using LED unit by the subject was employed in this experiment. The
subjects could switch the edge direction carefully with a LED unit equipment (Figure 2), as
they were asked to answer the angle of edge direction to the maximum possible under the
auditory spaciousness they perceived.
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auditory spaciousness they perceived.
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1. Apparatus

Figure 2 shows the experimental arrangement. Seven loudspeakers were arranged in the semi-
anechoic chamber of the acoustical studio at the Chaoyang University of Technology. The first
loudspeaker was in front of the subject at a distance of 1.5m. This 1oudspeaker was used to
radiate the direct sound. One further loudspeaker stood at azimuths of +108°, also at a 1.5m
distance, used to radiate reverberation. The direct sound was played by digital system
controlled on desktop PC derived from a DAT tape recorder (TEAC R-9) and delivered directly
to the front loudspeaker. The single early reflection and the reverberant signal with time delay
of preferred gap were listed in Table 1. The reverberation time (RT60) was created by a digital
reverberator (YAMAHA Pro R3). They were directly delivered to the left horizontal plane by
loudspeakers (-18°, -36°, -54°, -72°, -90°) and to the right plane (+108°). Mehrgardt and Mellert
[7] measured the transfer functions of the ear canal using the impulse response technique from
ten directions of the symmetry plane in a free sound field. The peaks of these functions yield
about 8% of the different amounts of the shifted curves at these ten directions from 0° to 180°.
The curves of 20 subjects overlap closely, if they are shifted along the logarithmic frequency
scale. The angles of the early reflection are in five directions of the frontal symmetry horizontal
plane (Figure 2). We could simulate five kinds of sound fields, which all consisted of the direct
sound plus reverberation and plus early reflection with arbitrary five azimuth angles. The
levels of the early reflections and the reverberant signals relative to the direct sounds which
were measured by a noise meter (ONO SOKKEI LA-5110) placed above the head of the subject.
For the level measurements (SLOW, A weighting, peak), pink noise was used as a source signal.
The LED unit could display each 3.0° azimuth angle; the results of these experiments were
scaled using normal distribution function as below, the score was 100 as the answer is
absolutely right to the present angle, and 0 showed that the answer was a different angle to
the present one.

Figure 2. Measuring set-up

Soundscape Semiotics - Localisation and Categorisation170

Motif Δt1 Δt2 τe Tempo

A 127 ms 229 ms 127 ms slowly

B 35 ms 63 ms 335 ms quickly

S 23 ms 41 ms 227 ms quickly

Table 1. Experimental arrangements for the three Motifs

Figure 2 simultaneously shows that the level and time delay structure of each signal was
constantly arranged for three Motifs respectively for all situations in our experiments. All the
data for three Motifs are shown in Table 1.

2. Musical Motif and Subjects

The Motifs used for the experiments were all initial 5s section of Symphony music; they are:
(A). Royal Pavane composed by Orlando Gibbons, (B). Sinfonitetta, Opus 48, IV movement
composed by Malcolm Arnold, and (S). Speech “In language infuse the T many words become
read the small set later.” Poem read by a female, recorded by Burd [8] in the anechoic chamber
of BBC. Twelve experienced males, ages 25 ± 2 years, with normal hearing sensitivity served
as subjects.

3. Procedures

The subject could switch at will between five azimuth angles using LED unit equipment. After
each angle adjustment, the experimenter recorded the results from the LED unit to calculate
the score with Equation (2). Reverberation times RT60 of 0.3, 0.9 and 2.0s, and the source signal
Motif A, B and S were used for the experimental sound field. The early reflection was radiated
at different azimuth angles of -18°, -36°, -54°, -72°, and -90° throughout the three Motifs. Each
measurement was repeated three times, yielding a total of 135 experimental results altogether
for each subject.

2( )
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2
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2.4. Analyses of perception on source localization

All data for the twelve subjects are shown together in Figure 3. A three-way (Motif * RT60*An‐
gle) factor analysis of variance (ANOVA) indicates significant individual difference between
three Motifs and five angles(p < 0.001, p < 0.001) for all experimental conditions. However, the
three-way factor analysis of variance indicates less significant difference (p = 0.029) between
three conditions of RT60. In addition, there is no interference between the three factors for all
experimental conditions. This means that all test sound fields could make the subjects perceive
spaciousness after the direct sound field no matter what the reverberation time was in the
situation of 0.3, 0.9 or 2.0 s. Therefore, the averaged tendency is obvious for three Motifs are
obviously higher (p < 0.001) as τe of ACF of the source signal is longer itself (Figure 4).
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Motif A, B and S were used for the experimental sound field. The early reflection was radiated
at different azimuth angles of -18°, -36°, -54°, -72°, and -90° throughout the three Motifs. Each
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2.4. Analyses of perception on source localization

All data for the twelve subjects are shown together in Figure 3. A three-way (Motif * RT60*An‐
gle) factor analysis of variance (ANOVA) indicates significant individual difference between
three Motifs and five angles(p < 0.001, p < 0.001) for all experimental conditions. However, the
three-way factor analysis of variance indicates less significant difference (p = 0.029) between
three conditions of RT60. In addition, there is no interference between the three factors for all
experimental conditions. This means that all test sound fields could make the subjects perceive
spaciousness after the direct sound field no matter what the reverberation time was in the
situation of 0.3, 0.9 or 2.0 s. Therefore, the averaged tendency is obvious for three Motifs are
obviously higher (p < 0.001) as τe of ACF of the source signal is longer itself (Figure 4).
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Especially, in the case of angle = -54°, scores are quite consistent; the Motifs are clearly
independent with the reverberation time. In the case of angle = -36°, the scores were least since
subjective diffuseness could be most intense, the source width image was blurred. We
conducted a further observation on the measurements of inter-aural cross-correlation coeffi‐
cient measured by Ando [2] for three Motifs. The measured values of the magnitude of ICF
(IACC) for five azimuth angles from -18° to -90° of early reflections are shown in Figure 5. The
results of measurements of IACC measured at both ears for music. Especially for Motif A and
B, they are noteworthy in connection with the results of source localization in this study.
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Figure 3. Scores of auditory source directional sensitivity were obtained by changing the coming azimuth angle of
early reflection for the three Motifs and different reverberation times. The tendency shows that Motif A obtained the
highest accuracy level while speech hit the lowest (p < 0.01).

3. Relationship between the envelope of sound image and source
characteristics in median plane localization

3.1. Pysical properties of apparent source width regarding sound incident angles

To design an indoor sound field, Ando [9] proposed there are three temporal components
involved. They are direct sound, first (initial) reflection and subsequent reverberation. This
section was further compared with the spatial perception of a media plane in attempt to detect
the edge of the sound envelopment composed by such three components. The relationship
between source temporal characteristics and apparent source width (ASW) of spatial impres‐
sion found in above section were reconfirmed, too. The experiment was arranged the direct
sound located in front of the subject (η = 0°, ξ = 0°), and the first reflection came from different
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vertical angles (η = 18°, 36°, 54°, 72°, 90°); and reverberation came with energy at a fixed angle
(ξ = 90°). The subjects were instructed to judge the angles of sound image outline in the sound
field by keeping attention on some 5 s duration dry sources of the parts of classic music. The
purpose of these arrangements is to confirm that whether subjective judgment of image
boundary is affected by reverberation time or not. Secondly, is the ability of edge localization
independent with the angles of first reflection in media plain?
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Figure 4. The scores of source width’s detection sensitivity function as effective delay of ACF of source in several an‐
gles (-18°, -36°, -54°, -72°).
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Figure 5. Source directional detection (Left) functions similarly as the tendency of measurements of cross- correlation
(фlr(0)) (Right) for five azimuth angles from -18° to -90° (contra- clockwise) of early reflections.
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(ξ = 90°). The subjects were instructed to judge the angles of sound image outline in the sound
field by keeping attention on some 5 s duration dry sources of the parts of classic music. The
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3.2. Studies reviews of apparent source width at the median plane

We have experienced in edge detection of the sound image envelope in relation to the
localization of sound sources on a horizontal plane in an indoor sound field (Chen [10]).
According to several reports by Morimoto ([11, 12] and [13]),they confirm that the localization
accuracies almost always depend on the presence of spectral cues of median-plane localization,
and that most sound images are recognized by both binaural disparity cues and spectral cues
at a certain biased direction. However, Morimoto applied only white-noise through a band-
pass filter as a sound source, but not a contribution to the aid of building acoustic design. We
referred to the results as Morimoto reported [14] on the energy setup of whole reflections
within a horizontal plane for apparent source width (ASW) in a hall, and found that source
temporal cues have a strong influence on the edge detection of the sound image envelope using
the auto- correlation technology proposed by Ando [9]. The purpose of this study focused on
the problem of whether or not the localization tests of source images in the upper hemisphere
in a median-plane need both binaural cross-correlation cues and dynamically temporal cues.
Temporal cues mean that the spaciousness of a sound field depends upon not only on inter-
aural cross–correlation but source characteristics themselves. After all, the coming orientations
of initial reflections to the audience in a hall indicate an important design theory which is to
be improved by source image creation.

Barron and Marshall [15] identified the arrival time of reflections by 80-100 ms after the direct
sound. In terms of Morimoto et al. [16], spatial impression comprises of at least the following
two components. One is an auditory source width (ASW) which is defined as the width of the
sound image fused temporally and spatially with a direct sound’s image and the other is
listener envelopment (LEV) which is the degree of the fullness of sound images around the
listener, excluding the sound image composing ASW. The auditory spaciousness was inquired
under initial reflection and reverberation in a concert hall by Morimoto et al. [16]. The
difference limen applied to subjective auditory perception. The sound pressure of direct sound
as the standard made that of initial and reverberation noticeable. The point of subjective
equality (PSE) applied to identify the least sound pressure level under the timing of just-
noticeable difference of direct sound energy. The outcomes show that the listener’s auditory
spaciousness is not affected by delayed reflections and reverberation time at the sound
pressure level (SPL) by 1.27 dB between the two reflections.

Room shape, reverberation time and first delay time are often taken into account in designing
an indoor sound field; therein, the sidewall planning influential to reflections is valued in
particular. However, the azimuth reflection is overlooked. From the reports of [10, 18], there
is a correlation between the apparent source width (ASW) and the direct sound, initial
reflection and subsequent reverberation of Motifs of which a sound field comprised might
compose varied spaciousness of apparent sound source or edge detection of sound image
envelopment. The experiments were conducted after validating and verifying the accuracy of
the temporal and spatial components to prevent the spatial split. By Chen [10], the temporal
characteristics of music do affect the auditory spaciousness of apparent sound source whereas
how reverberation time impact on spaciousness is in need of further verification. The human
auditory system is sensitive to sounds at frequencies between 1000-4000 Hz pursuant to an
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equal loudness contour. Asahi and Matsuoka [17] failed to explain how human ears discern
the frequencies. Morimoto et al. [13] employed white noise as the binaural stimuli by 4800 Hz
since the azimuth localization depends on the high-frequency sound source in contrast to the
low-frequency one. However, the author finds such statement in need of more verification.

This focus of the study is whether or not the localization tests of the source image in the upper
hemisphere (Figure 6) in a median-plane need both binaural cross-correlation cues and
dynamically temporal cues. Temporal cues mean that the spaciousness of a sound field
depends upon not only inter-aural cross-correlation but source the characteristics themselves.

Figure 6. Demonstration of a sound field

3.3. Subjective judgments of source envelope at the median plane

Figure 7 shows how the subject perceived the sound. There were direct sounds in front of the
subject (ξ=0°) with first reflection at vertical angles (η = 18°, 36°, 54°, 72°, 90°) and second
reflection (reverberation) in front of the subject at 90° (ξ= 90°).

1. Arrangement

The spaciousness consisted of the three components which involved direct sound, initial
reflection and reverberation and was surveyed to identify the degree of edge detection on
sound envelopment in the upper hemisphere in a median-plane excluding other unwanted
factors. First, the subject reported that the perceived angle seated at a specified chair of a semi-
anechoic chamber by a semi-round LED device with intervals by 3° across 60 LED lamps within
a radius of 1.5m in order to determine the angles of subjective edge detection on sound
envelopment.

2. Parameters

According to Ando [9], the temporal and spatial parameters of a sound field cover sound
pressure level (SPL), first reflection, reverberation time and inter-aural cross-correlation
coefficient (IACC) by which the parameters of the three components were set up. Figure 7
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 simultaneously shows the setting up of sound energy in compliance with spatial components
of sound energy in a common indoor sound field by the SN ratio of direct sound and first
reflection by 15 dB and SPL of direct sound and the other two by 75 dB(A) and 60 dB(A). By
the report on the auditory perception in a concert hall by Morimoto [8], reverberation can
compose a full image of spaciousness as the second reflection with energy more than the first
reflection by 1.27 dB. This is the so-called point of subjective equality (PSE). Thus, the energy
of early reflections was reduced to 58.73 dB (SLOW, A weighting, peak). Figure 7 shows the
equality. The time gap between direct and first reflection sound (Δt1) was determined pursuant
to research by Morimoto [16] under early reflection sound at 50 (ms) and reverberation at 80
(ms) in compliance with the gap by 1.8 times between early and subsequent reflections by
Ando [9]. Also, the author arranged the experiments under RT60 = 0.3s (short), 0.9s (medium)
and 2.0s (long) to enhance the impact of reverberation time on spaciousness in a sound field.

3. Determination

• Split judgment (Preliminary)

To prevent image split in a sound field, 36 sound fields randomly comprising of the three
Motifs (Motifs A-C with time: 5s) under 3 directions of early reflections (η = 18°, 54°, 90°) and
four reverberation times (0.0s, 0.3s, 0.9s, 2.0s) were judged by 15 subjects for 3 times respec‐
tively. In this procedure, the subjects confirmed that sound envelopment was perceived as an
integrated image without split.

• Edge detection (Primary)

To obtain sound image outline of respective angles, reverberation times and Motifs, 45 sound
fields randomly comprising of three Motifs (Motifs A-C with time: 5s) under five directions of

Figure 7. The block diagram of the simulation system for direct sound and two early reflections and the diffused re‐
verberation is attached on the second reflection, which was used in all subjective judgment experiments. Sound pres‐
sure levels of the three components were illustrated simultaneously. The direct sound was located in front of subject
(ξ=0°) with first reflection at the median plane from η = 18°to 90° and reverberation at clockwise horizontal plane 90°
(ξ= 90°, η = 0°).

Soundscape Semiotics - Localisation and Categorisation176

early reflections (η = 18°, 36°, 54°, 72°, 90°) and 3 reverberation times (0.3s, 0.9s, 2.0s) were
judged by subjects through the sensory threshold of adjustment method for three times
respectively. In this procedure, the subjects were asked to answer regarding how the location
of the edge of sound envelopment was perceived.

4. Subjects and samples

The subjects of two procedures were 15 male students with normal hearing aged 25±2. In terms
of the signal autocorrelation functional theory by Ando [9], a sound source is featured with
varied dynamically temporal characteristics critical to spaciousness of a sound field in addition
to spectral cues that are called autocorrelation or temporal cues. Table 2 shows details of Motifs
A-C.

Source Title Composer, writer Tone τe:ms

Motif A Royal Pavane Orlando Gibbons
Andante

Downcast
127

Motif B Sinfonietta, Opus 48; IV movement Malcolm Arnold
Light

Vivid
35

Motif C Symphony No.102 in B flat major; II movement Franz J. Haydn Adagio 65

Table 2. Details of Motifs A-C. Source: BBC (Burd, [8])

3.4. Analyses of subjective source envelope at the horizontal and the median plane

1. Subjective integrity of sound image

The subjective integrity of sound image outline is independent of the angles of first reflection
(η = 18°, 54°, 90°) (three-way ANOVA, P = 0.900). Motifs A-C are independent as well (three-
way ANOVA, P=0.322). Through the ANOVA, subjective integrity is dependent with the
reverberation time (three-way ANOVA, p < 0.001) and Table 3 shows the results of a Latin
Square Design (LSD) analysis of reverberation times. Results indicate that the subjective
integrity of the sound image is not affected by the variation of the reverberation time, but both
with and without reverberation time.

Means followed by the same letters are not significantly different at 5% level.

t Grouping Mean N RT60

A 2.9333 45 0.3

A 2.8667 45 2.0

A 2.8444 45 0.9

B 0.5333 45 ---

Table 3. LSD of reverberation times
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2. First reflection and edge detection on envelopment
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Figure 8. Results of edge detections on Motifs A-C oriented by lateral reflections at the median plane (Left: RT60 =
0.3s ; Right: RT60 = 2.0s)
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Figure 9. Results of edge detections for Motifs A-C oriented by lateral reflections on the horizontal plane as a refer‐
ence to Figure 3 (Left: RT60 = 0.3s ; Right: RT60 = 2.0s)

4. Relationship between speech articulation of monosyllable and inter-
aural cross-correlation

4.1. An approach on speech intelligibility regarding binaural sensation in a hall

The speech intelligibility for the monosyllables of Chinese in Taiwan area are in agreement
with the effective duration of autocorrelation function (τe) of the syllable itself in the same
reverberation levels were found (Chen and Chan [21]). On the contrary, it was found (Chen
[22]) that they are opposite between speech transmission index (STI proposed by Steeneken
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and Houtgast [23]) and magnitude of inter-aural cross- correlation (IACC) where the slope of
ceiling were changed in the hall. However, the range of STI (0.5 ~ 0.7) was quite constricted in
this study. Takaoka and et al. [24] once used noises and Japanese language to examine the
influence of a sound field’s reverberation time and IACC (magnitude of inter-aural cross-
correlation function) on speech articulation. It was found that under an IACC condition where
SN (signal-to-noise ratio) was between -10dB ~10dB and reverberation time varied between
0.5s ~ 4.0s, no obvious changes were noticed in speech articulation, and that only when SN
was lower than -10dB, IACC affect speech articulation within the range of IACC limited in
between 0.5 ~ 1.0. Accordingly, this section focuses on a broadened IACC range (0.34 ~ 0.87),
and adopted the paired comparison to identify the relationship between speech articulation
and IACC with or without reverberate energy in a hall.

4.2. A generalized theory of biaural measurements in a concert hall

1. The IACC of a sound field

In the field of room acoustics, Ando [9] adopted the magnitude of inter-aural cross-correlation
function (IACC) to elucidate human ear’s spatial impression on sound field, and also deter‐
mined main diffuse grades and perception of horizontal directionality of acoustic source in a
sound field. Tessier and et al., [25] stated that directionality of acoustic source was a physically
front-end mechanism of cocktail effect. They researched on voice articulation in noisy envi‐
ronment through acoustic source separation. But the purpose of study would not feed to the
systematical hall design. Ando [9] hypothesized that impulse response of each ear on the path
of sound transmission was hnl(t) and hnr(t) respectively. Their inter-aural cross-correlation
function can represent human’s subject sound localization or spatial impression against sound
field. The signals fl (t) and fr (t) of sound’s arriving in the ears can serve to express that IACC
represents brain’s spatial treatment mode, which is defined as follows:
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Figure 10. Results of averaged subjective edges values for the significant differences between Motifs A-C oriented by
the lateral reflections on the horizontal plane (upper) for mean values at all RT60 conditions, and the source width
associated with the τe, ACF of the music sources. However, the source width is independent of the reflections on the
median plane (see below).
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Figure 8. Results of edge detections on Motifs A-C oriented by lateral reflections at the median plane (Left: RT60 =
0.3s ; Right: RT60 = 2.0s)

30 

35 

40 

45 

50 

55 

60 

65 

70 

Motif A Motif B Motif C

E
dg

e 
de

te
ct

io
ns

Music sources

18
36
54
72
90

30 

35 

40 

45 

50 

55 

60 

65 

70 

Motif A Motif B Motif C

E
dg

e 
de

te
ct

io
ns

Music sources

18
36
54
72
90

Figure 9. Results of edge detections for Motifs A-C oriented by lateral reflections on the horizontal plane as a refer‐
ence to Figure 3 (Left: RT60 = 0.3s ; Right: RT60 = 2.0s)

4. Relationship between speech articulation of monosyllable and inter-
aural cross-correlation

4.1. An approach on speech intelligibility regarding binaural sensation in a hall

The speech intelligibility for the monosyllables of Chinese in Taiwan area are in agreement
with the effective duration of autocorrelation function (τe) of the syllable itself in the same
reverberation levels were found (Chen and Chan [21]). On the contrary, it was found (Chen
[22]) that they are opposite between speech transmission index (STI proposed by Steeneken
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and Houtgast [23]) and magnitude of inter-aural cross- correlation (IACC) where the slope of
ceiling were changed in the hall. However, the range of STI (0.5 ~ 0.7) was quite constricted in
this study. Takaoka and et al. [24] once used noises and Japanese language to examine the
influence of a sound field’s reverberation time and IACC (magnitude of inter-aural cross-
correlation function) on speech articulation. It was found that under an IACC condition where
SN (signal-to-noise ratio) was between -10dB ~10dB and reverberation time varied between
0.5s ~ 4.0s, no obvious changes were noticed in speech articulation, and that only when SN
was lower than -10dB, IACC affect speech articulation within the range of IACC limited in
between 0.5 ~ 1.0. Accordingly, this section focuses on a broadened IACC range (0.34 ~ 0.87),
and adopted the paired comparison to identify the relationship between speech articulation
and IACC with or without reverberate energy in a hall.

4.2. A generalized theory of biaural measurements in a concert hall

1. The IACC of a sound field

In the field of room acoustics, Ando [9] adopted the magnitude of inter-aural cross-correlation
function (IACC) to elucidate human ear’s spatial impression on sound field, and also deter‐
mined main diffuse grades and perception of horizontal directionality of acoustic source in a
sound field. Tessier and et al., [25] stated that directionality of acoustic source was a physically
front-end mechanism of cocktail effect. They researched on voice articulation in noisy envi‐
ronment through acoustic source separation. But the purpose of study would not feed to the
systematical hall design. Ando [9] hypothesized that impulse response of each ear on the path
of sound transmission was hnl(t) and hnr(t) respectively. Their inter-aural cross-correlation
function can represent human’s subject sound localization or spatial impression against sound
field. The signals fl (t) and fr (t) of sound’s arriving in the ears can serve to express that IACC
represents brain’s spatial treatment mode, which is defined as follows:
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Φll (0) and Φrr (0) are monaural autocorrelation functions when delaying τ at the original point
(autocorrelation function equals to the average sound intensity of both ears when τ = 0), and
total energy arriving both ears is:
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However, standardized cross-correlation function in a real room sound field can be modified
as follows based on number of reflected sounds and their difference in energy:
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whereΦlr
(n) (τ) is the cross-correlation function forming in both ears by the nth reflected sound;

Therefore, the grade of inter-aural cross-correlation function can be defined as Equation (7):
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and the maximum delay of signals between both ears is limited to |τ |≦ 1ms.

Moreover, when point source defuses on plane angle ξ(with the front ξ= 0 as datum point) and
if the source signal is broadband noise between low and high cut-off frequencies, f1 and f2, the
inter-aural cross-correlation function can be modified to:
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where H represents power value of each function, τξ represents the left and right delay caused
by horizontal angle ξ, and ω is frequency of filter.

where
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Figure 11 explains relationship between inter-aural cross-correlation function and various

reference factors, while variation width (WIACC) of cross-correlation is as follows when 
Δωc
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where δ is the percentage of human ear that can serve to judge change existing in IACC, which
is 0.3 normally; Equation (10) shows that maximum WIACC generates the maximum directional
perception against acoustic source at horizontal angle ξ. On the contrast, when IACC < 0.15,
subjective diffuseness can be perceived.

Figure 11. The eigenvalues of standardized IACC can be modified by Equation (4).

Sato, Mori and Ando [26] proposed magnitude of inter-aural cross-correlation function (IACC)
and variation width of cross-correlation function can determine magnitude of acoustic sound
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where H represents power value of each function, τξ represents the left and right delay caused
by horizontal angle ξ, and ω is frequency of filter.

where

( )2 1 2 12 , 2 ( )C f f f fw p w pD = + D = - (9)

Figure 11 explains relationship between inter-aural cross-correlation function and various

reference factors, while variation width (WIACC) of cross-correlation is as follows when 
Δωc

2  is

minimal:

1cos 1
4

c
IACCW

IACC
w d-D æ ö

» -ç ÷
è ø

(10)

where δ is the percentage of human ear that can serve to judge change existing in IACC, which
is 0.3 normally; Equation (10) shows that maximum WIACC generates the maximum directional
perception against acoustic source at horizontal angle ξ. On the contrast, when IACC < 0.15,
subjective diffuseness can be perceived.

Figure 11. The eigenvalues of standardized IACC can be modified by Equation (4).

Sato, Mori and Ando [26] proposed magnitude of inter-aural cross-correlation function (IACC)
and variation width of cross-correlation function can determine magnitude of acoustic sound
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width (ASW). Since the source used in the experiment was 1/3-octave noise, they found
perception of ASW was lessened when center frequency (125Hz – 2kHz) width was enlarged.
Therefore, they proposed to define WIACC as a span during which IACC was within 10% of
profile scope of cross-correlation figure’s maximum, which corresponds to ASW. Schroeder et
al [27] found correlation between IACCt (t = 50 ~ 140ms) and listing preference. Therefore,
IACC indeed increases its applicability to subjective diffuse of sound field. As stated in section
2., Chen and Chang [28] used sound field of two reflected sounds to investigate directional
perception of subjective source with musical samples, and he found IACC was the dominating
factor and inhibited by magnitude of total reflected sound and length of reverberation. Ohnisi
and et al., [29] utilized metro station to research transmitting articulation of sound and found
that under influence of 1/3-octave background noise, IACC of the diffuse sound field decreased
with increase of sound frequency, and articulation of sound transmission was lowered too.
Thus property of spatial sound transmission in sound field is related to variation of IACC.

2. Subjective word intelligibility in sound field

As early as the age when telecommunication devices, such as telephone, were first invented,
articulation test has been adopted to test perceptibility of auditory sense against language.
Such test was employed to test communicating quality between transmitter and receptor. But
now, it is applied to test articulation of telecommunication. Licklider and Kryter [30] conducted
objective physic and subjective psychological experiments for speech intelligibility (STI) in Bell
Telephone Laboratories and Harvard University’s Psychological Sound Laboratory respec‐
tively in order to establish a set of effective mono-syllabic test lists, known as Harvard P.B.50
word score (Phonetically Balanced Word List, PB). To expel suggestive factors of other speech
voice signals during process of measurement from influencing identical accuracy of STI,
articulation test lists were composed of a series of common mono-syllables, with each syllable
made up of consonant and vowel. Currently, there are many experimental measure methods
which adopt this mono-syllabic speech scale in the world such as Diaz and Velazquez’s [31]
mono-syllabic speech scale for Spanish. Chen and et al., [32] compiled 108 common vocal
samples from New Chinese Phonologic Rhymes, which were used in Taiwan area, and
summarized six sets of Chinese mono-syllabic subjective speech articulation scale item
(hereinafter refer to as “articulate scale”) from them. Based on these 6 mono-syllabic sets, this
study found reverberation time (RT60) in room less than 1.5 s in the space of the auditoriums,
about <12000 m3, the result of STI was consistent with subjective speech articulation and only
varied more obviously in few mono-syllables with nasal or voiceless alveolar affricate
consonant. To calculate the ability of speech intelligibility, this study calculated percentage of
syllable number the subjects could note down accurately during the test to represent correct
answer rate and spatial subjective speech intelligibility.

Morimoto, Sato and Kobayashi [33] proposed interaction between word-intelligibility and
word-difficulty, where highly intimate words were used to the perceived test sound. In word-
intelligibility, the levels of word recognition were the intelligibility percentage of the test sound
released to the subject. The experiment result showed that, word-intelligibility and word-
difficulty were extremely negatively correlated. Assuming in a sound field with a higher
speech transmission index in a public space, the perception of a word-difficulty was higher
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than that of word-intelligibility and could be assessed more strictly. When investigating
reliability of mono-syllabic speech scale, the issue that Chinese mono-syllables undeniably
contains mono-syllables, meaningful and meaningless. This study conducted the subjective
psychological experiment by adopting paired-comparison method to solve such vague signals
of language expression. By bold assumption that there were only identification method of two-
sample which was relatively unaffected by “meaningfulness” and “meaninglessness”, so the
subjects could easily identify which one was more intelligible. Similarly, Licklider [34]
investigated IACC’s effect on word-intelligibility under noise masking and found that except
the effect of SN ratio, decrease of IACC could improve word-intelligibility in the way that
mono-syllables were replaced by short sentences. Chen [35] arranged the recordings of mono-
syllables in 7 halls, and found that effect both word-difficulty and word-intelligibility could
be separated clearly using accumulated cepstrum of the speech voice.

4.3. Subjective attributes of the sound fields with two initial reflections in relation to mono-
syllables intelligibilities

1. Setting and configuration of objective physical quantities

Since the variation range for expanding IACC conditions in the experiment of Takaoka and et
al., [24] was too narrow, speakers in semi-anechoic chamber were employed to serve sound
field simulation of fewer reflection sound energy from various angles. This system was based
on the method of IACC simulation design by Damaske and Ando [36], which allowed
individual energy and time delay of direct and reflection sounds in sound field. It was
equipped with reverberator to feed subsequent reverberant energy so as to decrease quantity
of loudspeakers. This study cited the sound field simulation system in the subjective assess‐
ment experiment by Damaske and Ando [36] as reference. In order to simulate different
circumstances of room IACC’s effect on intelligibility of mono-syllables, this study hypothe‐
sized a direct sound in straight front of the subjects, the first and second reflected sounds were
hypothesized to transmit to the subjects from different azimuth angles. To further explore the
inference by reverberation time of the room, part of the energy of subsequent-RT (RT60) were
added to the first and second reflected sounds simultaneously, and then simulated to configure
the loudspeakers in the semi-anechoic chamber, whose diagram is shown as Figure 12.

For convenience of the experimental configuration of sound simulated quantity, IACC should
be first calculated by adopting Equation (7) from the values of Φlr(τ) and Φrr(τ) measured by
Ando [9]. Next, the loudspeakers should be arranged within the range as to generate the IACC
in the range of 0.3 to 1.0, where the white noise served as sound source and the dummy head
to receive signal. As illustrated in Figure 12, θ1 and θ2 were set at 90° and 108° respectively,
and with configuration of the IACC measurement was 0.34, 0.56, and 0.87 respectively.

Based on the above simulated configuration, loudspeakers on both sides were added RT
energy and set as RT60 = 0.5s and 2.0s respectively. All loudspeakers were 1m from center of
the subjects’ heads and 1.2m from the ground, while sound pressure was set as 65 dB (SLOW,
A weighting, peak) at upper center of the head. Initial reflected sounds mainly simulated the
reflection of right and left walls in the simulation of a hall. The delay time and details of sound
field are shown as Table 4.
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than that of word-intelligibility and could be assessed more strictly. When investigating
reliability of mono-syllabic speech scale, the issue that Chinese mono-syllables undeniably
contains mono-syllables, meaningful and meaningless. This study conducted the subjective
psychological experiment by adopting paired-comparison method to solve such vague signals
of language expression. By bold assumption that there were only identification method of two-
sample which was relatively unaffected by “meaningfulness” and “meaninglessness”, so the
subjects could easily identify which one was more intelligible. Similarly, Licklider [34]
investigated IACC’s effect on word-intelligibility under noise masking and found that except
the effect of SN ratio, decrease of IACC could improve word-intelligibility in the way that
mono-syllables were replaced by short sentences. Chen [35] arranged the recordings of mono-
syllables in 7 halls, and found that effect both word-difficulty and word-intelligibility could
be separated clearly using accumulated cepstrum of the speech voice.

4.3. Subjective attributes of the sound fields with two initial reflections in relation to mono-
syllables intelligibilities

1. Setting and configuration of objective physical quantities

Since the variation range for expanding IACC conditions in the experiment of Takaoka and et
al., [24] was too narrow, speakers in semi-anechoic chamber were employed to serve sound
field simulation of fewer reflection sound energy from various angles. This system was based
on the method of IACC simulation design by Damaske and Ando [36], which allowed
individual energy and time delay of direct and reflection sounds in sound field. It was
equipped with reverberator to feed subsequent reverberant energy so as to decrease quantity
of loudspeakers. This study cited the sound field simulation system in the subjective assess‐
ment experiment by Damaske and Ando [36] as reference. In order to simulate different
circumstances of room IACC’s effect on intelligibility of mono-syllables, this study hypothe‐
sized a direct sound in straight front of the subjects, the first and second reflected sounds were
hypothesized to transmit to the subjects from different azimuth angles. To further explore the
inference by reverberation time of the room, part of the energy of subsequent-RT (RT60) were
added to the first and second reflected sounds simultaneously, and then simulated to configure
the loudspeakers in the semi-anechoic chamber, whose diagram is shown as Figure 12.

For convenience of the experimental configuration of sound simulated quantity, IACC should
be first calculated by adopting Equation (7) from the values of Φlr(τ) and Φrr(τ) measured by
Ando [9]. Next, the loudspeakers should be arranged within the range as to generate the IACC
in the range of 0.3 to 1.0, where the white noise served as sound source and the dummy head
to receive signal. As illustrated in Figure 12, θ1 and θ2 were set at 90° and 108° respectively,
and with configuration of the IACC measurement was 0.34, 0.56, and 0.87 respectively.

Based on the above simulated configuration, loudspeakers on both sides were added RT
energy and set as RT60 = 0.5s and 2.0s respectively. All loudspeakers were 1m from center of
the subjects’ heads and 1.2m from the ground, while sound pressure was set as 65 dB (SLOW,
A weighting, peak) at upper center of the head. Initial reflected sounds mainly simulated the
reflection of right and left walls in the simulation of a hall. The delay time and details of sound
field are shown as Table 4.
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2. Sound source

Mono-syllables were same as the research [37] on the correlation between speech intelligibility
and continuous brain wave recorded on cerebral cortex, where mono-syllables with higher
subjective word-intelligibility such as /heh4/, /ian1/ and /tzuen1/ were figured out, and then
compared them with the lower /yu2/.

3. Subjects and experimental method

Total 58 students with average age 23±5 were enrolled as subjects. These subjects were
requested to listen and directly answer to experimenter as speech intelligibility. They sat on a
fixed chair in the semi-anechoic chamber and concentrated located as Figure 13. The speakers
(FOSTEX, NF-1A) were covered with cloth in the semi-anechoic chamber with the light dim.
Subjects kept their heads straight ahead and were not allowed to turn, and a repeated test
should be avoided in order to avoid over familiarity with the speech samples and thus
impairing independence of comparison between sample pairs modified by the assumption of
Thurstone’s CASE V [38]. This is an obedience to CASE V in paired- comparison theory, that
a pair of rivals is independent of each other. In order to quantify the psychological responses
of subjective word intelligibility, this study adopted paired-comparison method to gather the
scale values of individual syllable, by pairing individual Chinese mono- syllable samples with
sound field setting of IACC randomly, and took three different events which had RT60 =0.0 s,
0.5 s, and 2.0 s in turns. Thus each comparison experiment had six samples and 15 pairs, which
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were treated by different quantified values would be yielded under different IACC and RT60
settings. In distribution of time in psychological experiment, response time from prompting
time was 10 s, while interval of prompting between every two samples was 2 s. Each speech
dry source had a span about 0.3 s in average, thus time required by every 15 pairs was 3:15
min. Listening test of each speech had 60 pairs. With four speeches completed total 240 pairs
of differentiating pairs which were done in four working days.

Items Conditions

Azimuth angles

Direct (Ch1, 0 deg. straight front to subjects), 1st reflection (Ch2, 90 deg. Ch3,108

deg.), 2nd reflection (Ch4, 90 deg., Ch5, 108 deg.); Added RT energy (Ch2 90 deg.,

Ch3, 108 deg., Ch4, 90 deg., Ch5, 108 deg.)

Delay gap between the direct and

the reflections,

IACC(0.34)- direct : 63.6 dB(A), 1st reflection: 62.7dB(A) delay

(9.46ms), 2nd reflection: 62.7 dB(A) delay (17.04ms)

and its SPL setting

IACC(0.56)- direct : 62.8 dB(A), 1st reflection: 60.8dB(A) delay

(10.84ms), 2nd reflection: 48.8 dB(A) delay (19.51ms)

IACC(0.87)- direct : 64.6 dB(A), 1st reflection: 53.4dB(A) delay

(15.48ms), 2nd reflection: 53.4 dB(A) delay (27.87ms)

Reverberation time (RT60) 0.0 s , 0.5 s, 2.0 s

IACC, measured 0.34, 0.56, 0.87

Table 4. Experimental settings

Figure 13. Diagram of experiments

Contribution of Precisely Apparent Source Width to Auditory Spaciousness
http://dx.doi.org/10.5772/56616

185



2. Sound source

Mono-syllables were same as the research [37] on the correlation between speech intelligibility
and continuous brain wave recorded on cerebral cortex, where mono-syllables with higher
subjective word-intelligibility such as /heh4/, /ian1/ and /tzuen1/ were figured out, and then
compared them with the lower /yu2/.

3. Subjects and experimental method

Total 58 students with average age 23±5 were enrolled as subjects. These subjects were
requested to listen and directly answer to experimenter as speech intelligibility. They sat on a
fixed chair in the semi-anechoic chamber and concentrated located as Figure 13. The speakers
(FOSTEX, NF-1A) were covered with cloth in the semi-anechoic chamber with the light dim.
Subjects kept their heads straight ahead and were not allowed to turn, and a repeated test
should be avoided in order to avoid over familiarity with the speech samples and thus
impairing independence of comparison between sample pairs modified by the assumption of
Thurstone’s CASE V [38]. This is an obedience to CASE V in paired- comparison theory, that
a pair of rivals is independent of each other. In order to quantify the psychological responses
of subjective word intelligibility, this study adopted paired-comparison method to gather the
scale values of individual syllable, by pairing individual Chinese mono- syllable samples with
sound field setting of IACC randomly, and took three different events which had RT60 =0.0 s,
0.5 s, and 2.0 s in turns. Thus each comparison experiment had six samples and 15 pairs, which

Figure 12. Assumption of IACC configuration was composed by three loudspeakers arranged at different azimuth an‐
gles.

Soundscape Semiotics - Localisation and Categorisation184

were treated by different quantified values would be yielded under different IACC and RT60
settings. In distribution of time in psychological experiment, response time from prompting
time was 10 s, while interval of prompting between every two samples was 2 s. Each speech
dry source had a span about 0.3 s in average, thus time required by every 15 pairs was 3:15
min. Listening test of each speech had 60 pairs. With four speeches completed total 240 pairs
of differentiating pairs which were done in four working days.

Items Conditions

Azimuth angles

Direct (Ch1, 0 deg. straight front to subjects), 1st reflection (Ch2, 90 deg. Ch3,108

deg.), 2nd reflection (Ch4, 90 deg., Ch5, 108 deg.); Added RT energy (Ch2 90 deg.,

Ch3, 108 deg., Ch4, 90 deg., Ch5, 108 deg.)

Delay gap between the direct and

the reflections,

IACC(0.34)- direct : 63.6 dB(A), 1st reflection: 62.7dB(A) delay

(9.46ms), 2nd reflection: 62.7 dB(A) delay (17.04ms)

and its SPL setting

IACC(0.56)- direct : 62.8 dB(A), 1st reflection: 60.8dB(A) delay

(10.84ms), 2nd reflection: 48.8 dB(A) delay (19.51ms)

IACC(0.87)- direct : 64.6 dB(A), 1st reflection: 53.4dB(A) delay

(15.48ms), 2nd reflection: 53.4 dB(A) delay (27.87ms)

Reverberation time (RT60) 0.0 s , 0.5 s, 2.0 s

IACC, measured 0.34, 0.56, 0.87

Table 4. Experimental settings

Figure 13. Diagram of experiments

Contribution of Precisely Apparent Source Width to Auditory Spaciousness
http://dx.doi.org/10.5772/56616

185



4.4. Analyses of mono-syllabic word-intelligibility

1. The effect of IACC on mono-syllabic word-intelligibility

In order to enhance reliability of the integral answers conducted by paired-comparison
method, we counted the numbers of circular-triad once for every subject based on Thurstone’s
[38] response consistency test for the experiment of every 15 pairs, through which paired -
comparison of these 15 pairs were determined effective questionnaires. Subsequently, a test
of goodness of fit for comparison quantification model was performed to verify the scale values
met the hypothesis of paired-comparison CASE V by Thurstone [38] with respect to effective‐
ness of difference between stimuli samples and sample size (Mosteller, [39]).

Based on paired-comparison method CASE V by Thurstone [38], average quantified scale
value of word-intelligibility of 58 subjects under the conditions of additional RT60 were
calculated and shown in Figure 14 ~ 17. Quantified scale value of subjective word intelligibility
of mono-syllables under variation of IACC, 0.34, 0.56, and 0.87 showed that trend of subjective
higher word-intelligibility before addition RT60 was significant (p<0.001).

By ANOVA, the effect of IACC and RT60 on quantified scale values of mono-syllabic subjective
word-intelligibility showed that there exist no interaction between these two factors, two-way
ANOVA, F = 0.27 and p = 0.90. But in the case of an individual factor’s effect on quantified
scale values of mono-syllabic subjective word intelligibility, only RT60 presented significantly,
two-way ANOVA, F = 96.38 and p < 0.001), while the effect of IACC had lower significance,
two-way ANOVA, F = 5.34 and p < 0.05. This result reconfirm that RT60 is independent of
IACC in sound field, no matter when with regard to musical preference (Ando [9]) or word-
intelligibility.

Figure 14. Results of syllable“ Yu2”
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Figure 15. Results of syllable“ Heh4”

Figure 16. Results of syllable“ Ian1”
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Figure 17. Results of syllable“ Tzuen1”

In investigation of the effect of RT60 along on quantified scale values of mono-syllabic
subjective word-intelligibility with the setting RT60 = 0.0 s, 0.5 s, and 2.0 s, more significant
effect of IACC’s variation did not presented. Thus only one-way ANOVA analysis under the
environment with RT60 existence and not existence could be performed. The result showed
that the effect of IACC’s variation was significant in the environment with RT60, by one-way
ANOVA F = 3.74 and p < 0.05. It was doubted of the faith of the results on word-intelligibility
is usually changed with regard to IACC in the circumstance of only SN was lower than -10 dB
found by Takaoka and et al., [24]. We identify that two reflections of the sound field were not
harmful for the word-intelligibility in our settings, and there was no background noise
employed here. The setting of RT60 = 0.5 s and 2.0 s adopted here is 1.27 dB in relation to the
reflections without reverberant energy at the PSE as stated above (section 2.). Therefore,
reflection with RT60 will enhance the variation of IACC on word-intelligibility.

2. The effect of RT60 on quantified scale value of mono-syllabic subjective word-intelligi‐
bility

It is clear in Figure 14 ~ 17 that quantified scale values of mono-syllabic subjective word
intelligibility obviously changes with RT60. Such change is especially significant between RT60
= 0.0 s and RT60 = 0.5 s. In order to figure out difference among them, this study adopted p
value of matrix of Fisher LSD method (Table 5) by multiple mean comparison and found that
there was significant difference in quantified scale values of word-intelligibility between RT60
= 0.0 s and RT60 = 0.5 s, p<0.001, while there was no significant difference between RT60 = 0.5
s and RT60 = 2.0 s, p = 0.297 > 0.05. This result is similar to that of ANOVA on quantified scale
values stated as above, suggesting variation between environments of word-intelligibility with
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and without RT60 was significant. Therefore, Takaoka et al. [24] investigated the cross effect
of RT60s in sound field on grades of IACC and found that word-intelligibility between 0.5 s
and 4.0 s corresponded with the conclusion that grades of IACC were independent from each
other. This study complemented the phenomenon that quantified scale values of subjective
word intelligibility was influenced by grades of IACC.

Similarly, by testing p value in the matrix of Fisher LSD method (Table 6) with multiple mean
comparison it was clear that there was significant difference between quantified scale values
of word-intelligibility of IACC(0.34) and that of IACC(0.56), p = 0.025 < 0.05; there was also
significant difference between that of IACC(0.56) and that of IACC(0.87), p = 0.004 < 0.05; while
there was no significant difference between that of IACC(0.34) and that of IACC(0.87), p = 0.445
> 0.05. Therefore, it was clear from multiple mean comparison test that the effect of variation
in IACC on mono-syllabic word-intelligibility was similar to the variation of musical prefer‐
ence in sound field, which were both related to magnitude of data of standardized IACC grades
(Equation (4)). However musical preference was inversely proportional to that and was here
inversely proportional to mono-syllabic word-intelligibility, by one-way ANOVA F = 3.74 and
p < 0.05. This finding reconfirms that word-intelligibility under varied IACC is associated with
nonlinear response in evaluating the subjective localization of sound sources studied above
(Figure 5 of section 2.).

LSD test; variable; Probabilities for Post Hoc Tests. Error: Between MS =.11403, df = 27.00

RT60 {1} 0.872 {2}-0.706 {3} -0.853

0.0 s — 0.000* 0.000*

0.5 s 0.000* — 0.297

2.0 s 0.000* 0.297 —

Table 5. The results of RT60 effect evaluated using p value of matrix of Fisher LSD method

LSD test; variable; Probabilities for Post Hoc Tests. Error: Between MS = .11403, df = 27.00

IACC {1} -0.155 {2}-0.481 {3} -0.049

0.34 0.025* 0.445

0.56 0.025* 0.004*

0.87 0.445 0.004*

Table 6. The results of IACC effect evaluated using p value of matrix of Fisher LSD method

3. Relationship between the parameters within wave’s characteristics of IACC and word
intelligibility

In order to figure out the correlation between IACC and mono-syllabic word intelligibility in
detail, this study used dummy head measurement system to detect parameters which were
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grades of standardized IACC, delay of inter-aural cross-correlation function (τIACC), and width
of the inter-aural cross-correlation function (WIACC) (Table 7). Sato, Mori and Ando [26] stated
in their research that IACC and WIACC could determine acoustic source width (ASW). Accord‐
ing to Table 7, the measured data of WIACC in this study was not correlated well to IACC, while
τIACC and IACC showed the opposite trend. Of course, its effect on mono-syllabic word
intelligibility also presented RT60 condition under RT60 = 0.5s and 2.0s.

IACC 0.34 0.56 0.87

τIACC 0.22 0.06 0.09

WIACC 0.19 0.18 0.18

Table 7. The parameters are picked up by wave’s characteristic of IACC

5. Conclusions

These facts of section 2. and 3. point out that the temporal characteristics of source signal should
be taken into account when estimating and measuring physical measurements, like the lateral
energy fraction and the inter- aural cross- correlation coefficient, to estimate source localization
sensitivity. For section 4., the experiment of judgment through paired-comparison method,
quantified scale values of word-intelligibility was generated based on the hypothesis of CASE
V cited by Thurstone [38]. The results show that existence of reverberant energy in a sound
field had effect of mono-syllabic word-intelligibility, and that variation of IACC did too. Four
mono-syllables with different word-difficulty, subjective mono-syllabic word-intelligibility
had certain similar reaction trend under conditions of different IACC and RT60. Results of
inductive statistical analyses are shown as follows:

1. As shown in Figure 3, reverberation does not suppress the degree of source directional
sensitivity as early reflections after the direct sound, if their ratios of lateral to frontal
sound energy are the same. Even though music source directional concept of auditory
distinction is inverse to spaciousness of a sound field. The spaciousness is not at all
suppressed by levels of early reflections at the PSE at echo threshold for all levels of
reverberation whenever the reverberation (RT60) was fixed at 0.3 or 0.9 s concluded by
Morimoto [1] as well.

2. As shown in Figure 4, the source directional sensitivity caused by different source signals
is suppressed by τe of ACF of itself even if the sound field includes both early reflections
and reverberation and with their preferred initial time gap after direct sound signals. This
finding is an important problem with which to perceive the localization of performers for
assisting visual enjoyment in concert halls. The temporal structure of source signal to
auditory spaciousness is first discussed out of sound energy or directional mentioned
before.
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3. The source directional sensitivity are quicker as the coming direction of early reflection
sounds located at the azimuth angle from -36° to -54° (Figure 5) as the early reflection
functions as lateral energy fraction in a simulated diffuse sound field. The sound incidence
angle of -54° is found upon the deep notch and peak at 54° of the curve in the transfer
function of the ear canal entrance in a free sound field, especially in the frequency range
from 2 to 4 kHz (Mehrgardt and Mellert [7]). It is obvious that source localization at a
horizontal plane angle is dependent upon the transfer function of the ear canal.

4. As shown in Figure 7, with a fixed gap between the sound pressure levels of the three
spatial components, direct sound, first reflection and subsequent reverberation, the
reverberation discerned will affect the capability of an integrated image envelopment
without split, demonstrating that reverberation is crucial factor to the envelopment
perceived but the edge judgment of image boundary is not affected by reverberation time
(Figure 7). This finding is in harmony with the result of sensitivities on reflective signal
localization researched in section 2. The reverberation does not suppress the orientation
of both source image edges and reflection incidences in addition to the perception of
source image split.

5. As shown in Figure 8, the first reflection from the upper hemisphere at the angles η = 18°,
36°, 54°, 72°, 90° does not affect the edge judgment of image boundary for music Motifs
A-C. The ability of edge localization is independent with the angles of first reflection in
median plane but sound source. Rakerd, Hartmann and McCaskey [19] that found
listeners failed to identify noises with roved the location when the spectral structure was
at a high frequency because the spectral structure was confused with the spectral varia‐
tions caused by different location. Such is the fact that music with temporal variation leads
to confusion regarding the edge of the sound image with a reflection incidence on the
median plane in a diffuse sound field. Morimoto and Nomachi [11] have both explained
that localization accuracies of sound images on the median plane produced by both
binaural disparity cues and frequency cues. Morimoto, Yairi, Iida and Itoh [20] concluded
when the source is a wide-band signal, only higher frequency components (> 2 kHz) are
dominant on the median plane localization. However, they did not consider that a source
with a wide-band sound in temporal variation provides the changing of the source width
conception during a concert. Thus, it is presumably difficult to account for the different
locations on the median plane of a music source in a hall except for during a recital of an
instrument with a higher frequency tones.

6. As shown in Figure 9 and Figure 10, the difference of Motifs and the subjective judgment
of edge detections of sound image outline on horizontal plane are interdependent, and
the tempo of music proposed by Ando [9] are related well. This evidences that the
temporal cues are important to the subjective edge determination and source localization.

7. Depending on one-way ANOVA for the environment with and without reverberation,
the result of word intelligibility showed that variation of IACC (0.34 ~ 0.87) had significant
effect on the environment with reverberation (0.5s ~ 2.0s), F=3.74 and p<0.05. Takaoka and
et al., [24] reported that IACC influences on speech articulation within the range of 0.5~1.0
only when SN was lower than -10dB under RT60 = 0.5s ~ 4.0s. There is no conflict between

Contribution of Precisely Apparent Source Width to Auditory Spaciousness
http://dx.doi.org/10.5772/56616

191
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conception during a concert. Thus, it is presumably difficult to account for the different
locations on the median plane of a music source in a hall except for during a recital of an
instrument with a higher frequency tones.

6. As shown in Figure 9 and Figure 10, the difference of Motifs and the subjective judgment
of edge detections of sound image outline on horizontal plane are interdependent, and
the tempo of music proposed by Ando [9] are related well. This evidences that the
temporal cues are important to the subjective edge determination and source localization.

7. Depending on one-way ANOVA for the environment with and without reverberation,
the result of word intelligibility showed that variation of IACC (0.34 ~ 0.87) had significant
effect on the environment with reverberation (0.5s ~ 2.0s), F=3.74 and p<0.05. Takaoka and
et al., [24] reported that IACC influences on speech articulation within the range of 0.5~1.0
only when SN was lower than -10dB under RT60 = 0.5s ~ 4.0s. There is no conflict between
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these two results because word-intelligibility was not affected by RT60 varied from 0.5s
to 2.0s in our research when reverberation was constantly 1.27 dB higher than the
reflections. Reflections with RT60 enhance the variation of IACC on word-intelligibility
at the PSE of equal spatial impression in the source width. They have obviously confirmed
evidence by similar WIACC of varied IACC’s environments in Table 7, which may indecate
the source width of sound signal stated above.

8. Figures 14 ~ 17 illustrate the interaction between RT60 and mono-syllabic word articula‐
tion, which show that IACC’s effect on mono-syllabic word- intelligibility significantly
varied with span of RT60 (p<0.001 ANOVA).

9. Test on matrix of Fisher LSD with multiple mean comparison confirmed in Table 5 showed
that quantified psychological scale values of word-intelligibility were significantly
different between RT60 = 0.0 s and RT60 = 0.5 s, p < 0.001, while not significantly different
between RT60 = 0.5 s and RT60 = 2.0 s, p = 0.297 > 0.05. This finding indicates that the
source signal image was buried by reverberation and would defect word-intelligibility
such as source split as induced by with or without reverberation as investigated in section
2. Similarly, Table 6 confirmed that quantified psychological scale values of word-
intelligibility were significantly different at IACC(0.34) and IACC(0.56), with p = 0.025 <
0.05, was significantly different at IACC(0.56) and IACC(0.87) too, with p=0.004 < 0.05,
while was not significantly different at IACC(0.34) and IACC(0.87), with p=0.445 > 0.05.
The nonlinear responses in evaluating word-intelligibility, source edge and localization
of spatial impression at the horizontal plane under varied IACC are presumably influ‐
enced by transfer functions of the ear canal entrance as measured by Mehrgardt and
Mellert [7].

Glossary of symbols

ASW apparent source width

IACC inter-aural cross-correlation

τIACC inter-aural time delay at cross-correlation function

ICF inter-aural cross-correlation function

WIACC inter-aural variative width at cross-correlation function

LL listening level

RT60 reverberation time

τe effective delay of autocorrelation function

ACF autocorrelation function

PSE point of subjective equality
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DAT digital auditory tape cassette

ϕlr binaural normalized cross- correlation function

Φrr(τ) mono- aural autocorrelation function

Φlr(τ) binaural cross correlation function

η vertical angles at an median plane, 0° started from the front of head at ear height

ξ angles at clockwise horizontal plane, 0° started from the front of head at ear height

LEV listener envelopment

SPL sound pressure level

SN logarithm of signal over noise energy, denotes by decibel

Δt1 delay gap between direct and first reflection in a defuse sound field

LSD Latin Square Design

STI speech transmission index

δ percentage at the peak of wave form in inter-aural cross-correlation function, as the definition
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IACCt time gap of sound signal in inter-aural cross-correlation
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