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In the last years we have witnessed how the field of Cosmology has experienced a 
metamorphosis. From being essentially the search for three numbers (the expansion rate, 

the deceleration parameter, and the cosmological constant), it has become a precision 
science. This scientific discipline is determined to unravel the most minute details of the 

elementary processes that took place during the most primitive stages of the Universe 
and also of the mechanisms driving the cosmic expansion and the growth of structures 
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Preface

The vast amount of currently available data overwhelmingly support the view that our
Universe is mainly composed of sources of matter and energy of unknown nature, dubbed
dark matter and dark energy. Regular sources of matter and energy, those found in
laboratory, would represent a mere five percent of the total, and only a fraction of it appears
to be condensed forming stars. Dark sources of matter and energy seem necessary to
reconcile the amplitude and correlations of the tiny temperature fluctuations observed in the
cosmic microwave background radiation with the distribution of matter at large scales and
with the intensity of the light coming from distant supernovae (see chapter I). Though the
gravitational effects of these dark sources is manifest from cosmological observations, the
existence of dark matter particles has not yet been confirmed through laboratory
experiments or observations, and the effects of dark energy are even more elusive and
challenging from both the theoretical and the experimental/observational sides. This has
motivated new strategies and synergies between different sectors of the Physics community,
and numerous experiments and observational programs in different fronts are currently
underway or planned (see chapters II, III, and IV) to improve our understanding of the
distribution and properties of the matter in the Universe. These studies will significantly
contribute to determine whether the current cosmological model is consistent or not, and
should shed new light on the viability of the theoretical framework provided by Einstein's
theory of gravity or if it should be abandoned in favor of some extension of it (see chapters
V and VI).

The origin and evolution of the Universe in the very remote past determines in a very
fundamental way what we observe today and, for this reason, observations can help obtain
valuable information about the first instants of time of the Universe. As the volume of
observations increases and the precision improves, the theoretical frameworks used to
interpret them must also be extended and be sufficiently general as to allow for the
identification and correct interpretation of new physical phenomena present in the data.
This motivates the study of cosmological models without big bang (see chapter VII), of the
observable effects that the quantum interaction of our Universe with other universes could
have (see chapter VIII), and of how quantum gravity and new symmetries of nature could
influence the inflationary era and the primordial generation of standard matter and dark
matter particles (see chapters IX,X, and XI).

All these open questions provide a flavor of the research avenues currently followed in the
field of Cosmology and will have an important impact on the shape of this discipline in the
future. The theory of black holes and the consistency of their thermodynamical properties,
and recent phenomena observed in solar winds interacting with planetary atmospheres are
also covered in this book (see chapters XII and XIII, respectively). As all these are active
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areas of research not always fully settled, the idea of having different voices presenting
these topics and defending their own views is, in my opinion, an excellent scientific and
communicative exercise. For this reason, I would like to transmit to the authors of this book
my most sincere gratitude for their contributions and my deepest admiration for their work.

Gonzalo J. Olmo
Research Associate

Dept. Theoretical Physics & IFIC
University of Valencia - CSIC

Valencia (Spain)
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Insights
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Additional information is available at the end of the chapter
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1. Introduction

In this Chapter we are going to discuss about the large scale structure of the Universe. In
particular, about the laws of Physics which allow us to describe and try to understand the
present Universe behavior as a whole, as a global structure. These physical laws, when they
are brought to their most extreme consequences---to their limits in their respective domains
of applicability---are able to give us a plausible idea of how the origin of our Universe could
happen to occur and also of how, expectedly, its future evolution and its end will finally
take place.

The vision we have now of the so-called global or large-scale Universe (what astrophysicists
term the extragalactic Universe) began to get shape during the second and third decades of
the past Century. We should start by saying that, at that time, everybody thought that the
Universe was reduced to just our own galaxy, the Milky Way. It is indeed true that a very
large number of nebulae had been observed by then, but there was no clear proof that these
objects were not within the domains of our own galaxy. Actually, the first nebulae had been
already identified many centuries ago by Ptolemy who, in his celebrated work Almagest [1],
reported five in AD 150. Later, Persian, Arabic and Chinese astronomers, among others, dis‐
covered some more nebulae, along several centuries of the History of Mankind. Concerning
scientific publications, Edmond Halley [2] was the first to report six nebulae in the year
1715, Charles Messier [3] catalogued 103 of them in 1781 (now called Messier objects), while
confessing his interest was “detecting comets, and nebulae could just be mistaken for them,
thus wasting time.” William Herschel and his sister Caroline published three full catalogues
of nebulae, one after the other [4], between 1786 and 1802, where a total of 2510 nebulae
where identified. However, in all these cases the dominant belief was that these objects were
merely unresolved clusters of stars, in need of more powerful telescopes. On 26 April 1920,

© 2012 Elizalde; licensee InTech. This is an open access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

© 2012 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.
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in the Baird auditorium of the Smithsonian Museum of Natural History a debate took place
(called now by astronomers, in retrospective, the Great Debate), on the basis of two works
by Harlow Shapley and Heber Curtis, later published in the Bulletin of the National Re‐
search Council. During the day, the two scientists presented independent technical results
on “The Scale of the Universe” and then took part in a joint discussion in the evening. Shap‐
ley defended the Milky Way to be the entirety of the Universe and believed that objects as
Andromeda and the Spiral Nebulae were just part of it. Curtis, on the contrary, affirmed
that Andromeda and other nebulae were separate galaxies, or “island universes” (a term in‐
vented by the philosopher Immanuel Kant, who also believed that the spiral nebulae were
extragalactic). Curtis showed that there were more novae in Andromeda than in the Milky
Way and argued that it would be very unlikely within the same galaxy to have so many
more novae in one small section of the galaxy than in the other sections. This led him to sup‐
port Andromeda as a separate galaxy with its own signature age and rate of novae occur‐
rences. He also mentioned Doppler redshifts found in many nebulae. Following this debate,
by 1922 it had become clear that many nebulae were most probably other galaxies, far away
from our own.

Figure 1. Claudius Ptolemaeus, c. AD 90 – c. AD 168.

Open Questions in Cosmology2

Figure 2. Edmond Halley, 1656 – 1742.     Charles Messier, 1730 – 1817.

Figure 3. Sir Frederick William Herschel, 1738 – 1822.    Caroline Lucretia Herschel, 1750 – 1848.

2. An expanding Universe

But it was Edwin Hubble [5] who, between 1922 and 1924, presented a definite proof that
one of this nebulae, Andromeda, was at a distance of some 800.000 light years from us and,
therefore, far beyond the limits of our own galaxy, the Milky Way. In this way, he definitely
changed the until then predominant vision of our Universe, and opened to human knowl‐
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edge the much more complex extragalactic Universe, whose theoretical study is one of the
main goals of this Chapter [6].

Another very important fact, this one from the theoretical perspective, is that when Albert
Einstein constructed, at the beginning of the second decade of last century and starting from
very basic physical postulates–as the principles of covariance and equivalence of the laws
of Physics–his theory of General Relativity (GR), scientists (himself included) where firmly
convinced that our Universe was stationary. Static, in the more appropriate terminology,
albeit rather counterintuitive, since this does not mean that celestial bodies do not move,
but that stars and their clusters, in their wandering and distribution, would always have
remained from the utmost far past, and would continue to do so into the utmost far fu‐
ture,  as we see them at present,  with no essential  changes.  No beginning or end of the
Universe was foreseeable,  nor needed or called for.  But,  to his  extreme disappointment,
Einstein realized that a Universe of this sort was not compatible with his equations, that is,
the static universe is not a solution of Einstein’s field equations for GR. The reason (not
difficult to see) is that a universe of this kind cannot be stable: it will ultimately collapse
with time owing to the attraction of the gravity force, against which there is no available
protection. This led Einstein astray, until  he came up with a solution. While keeping all
physical principles that led him to construct his equations (there are ten of them, in scalar
language, six of which are independent, but only one in tensorial representation), there was
still the remaining freedom to introduce an extra term, a constant (with either sign) multi‐
plied by the metric tensor. This is the now famous cosmological constant, but the problem
was that it had no physical interpretation, of any sort. However, endowed with the right
sign, it did produce a repulsive pressure to exactly counter the gravitational attraction and
keep the universe solution static. Einstein was happy with this arrangement for some years
(later it was proven that this solution was not stable, but this is considered nowadays to be
just a technical detail that played no major role in the scientific discussion of the time).

Figure 4. Albert Einstein, 1879 – 1955.     Edwin Hubble, 1889 – 1953.

Open Questions in Cosmology4

The best known, by far, of the equations Einstein discovered (and probably the most famous
equation ever written) is: E = m c2 and corresponds to his Special Relativity theory (SR). It
has a very deep physical meaning, since it establishes the equivalence between mass and en‐
ergy, as two forms of one and the same physical quantity, thus susceptible to be trans‐
formed one into the other, and vice versa. The conversion factor is enormous (the velocity of
light squared), meaning that a very small quantity of mass will give rise to an enormous
amount of energy –as nuclear power plants prove every day (and very destructive bombs
did in the past, to the shame of the Humankind). In any case, here we are not referring to
this Einstein’s equation (which will not be discussed any further), but to the so-called Ein‐
stein’s field equations [7], actually only one in tensorial language, namely

Rμν −
1
2 gμνR + gμνΛ =

8πG
c 4 Tμν, (1)

which he published in 1915. This is an extraordinary formula: it connects, in a very precise
way, Mathematics with Physics, by establishing that the curvature, R, of space-time (a pure
mathematical concept, the reference, coordinate system, so to say) is proportional to (name‐
ly, it will be affected or even determined by) the stress-energy tensor, T, which contains the
whole of the mass-energy momentum (already unified by SR, as we just said) of the Uni‐
verse. The proportionality factors are the universal Newton constant, G, the speed of light, c,
to the fourth inverse power, and the numbers 8 and π, while Λ is the already mentioned cos‐
mological constant, which multiplies g, the metric of space-time itself. This last term is the
one that was absent in Einstein‘s initial formulation of GR.

Figure 5. Karl Schwarzschild, 1873 – 1916.      Alexander Alexandrovich Friedmann, 1988 – 1925.

Soon Karl Schwarzschild (letter to Einstein from December 1915) found a solution to Ein‐
stein’s  equations  (the  original  ones,  without  the  cosmological  constant),  which  corre‐
sponds to what is now know as a black hole (see below). Einstein was very surprised to see

Cosmological Constant and Dark Energy: Historical Insights
http://dx.doi.org/10.5772/51697

5



edge the much more complex extragalactic Universe, whose theoretical study is one of the
main goals of this Chapter [6].

Another very important fact, this one from the theoretical perspective, is that when Albert
Einstein constructed, at the beginning of the second decade of last century and starting from
very basic physical postulates–as the principles of covariance and equivalence of the laws
of Physics–his theory of General Relativity (GR), scientists (himself included) where firmly
convinced that our Universe was stationary. Static, in the more appropriate terminology,
albeit rather counterintuitive, since this does not mean that celestial bodies do not move,
but that stars and their clusters, in their wandering and distribution, would always have
remained from the utmost far past, and would continue to do so into the utmost far fu‐
ture,  as we see them at present,  with no essential  changes.  No beginning or end of the
Universe was foreseeable,  nor needed or called for.  But,  to his  extreme disappointment,
Einstein realized that a Universe of this sort was not compatible with his equations, that is,
the static universe is not a solution of Einstein’s field equations for GR. The reason (not
difficult to see) is that a universe of this kind cannot be stable: it will ultimately collapse
with time owing to the attraction of the gravity force, against which there is no available
protection. This led Einstein astray, until  he came up with a solution. While keeping all
physical principles that led him to construct his equations (there are ten of them, in scalar
language, six of which are independent, but only one in tensorial representation), there was
still the remaining freedom to introduce an extra term, a constant (with either sign) multi‐
plied by the metric tensor. This is the now famous cosmological constant, but the problem
was that it had no physical interpretation, of any sort. However, endowed with the right
sign, it did produce a repulsive pressure to exactly counter the gravitational attraction and
keep the universe solution static. Einstein was happy with this arrangement for some years
(later it was proven that this solution was not stable, but this is considered nowadays to be
just a technical detail that played no major role in the scientific discussion of the time).

Figure 4. Albert Einstein, 1879 – 1955.     Edwin Hubble, 1889 – 1953.

Open Questions in Cosmology4

The best known, by far, of the equations Einstein discovered (and probably the most famous
equation ever written) is: E = m c2 and corresponds to his Special Relativity theory (SR). It
has a very deep physical meaning, since it establishes the equivalence between mass and en‐
ergy, as two forms of one and the same physical quantity, thus susceptible to be trans‐
formed one into the other, and vice versa. The conversion factor is enormous (the velocity of
light squared), meaning that a very small quantity of mass will give rise to an enormous
amount of energy –as nuclear power plants prove every day (and very destructive bombs
did in the past, to the shame of the Humankind). In any case, here we are not referring to
this Einstein’s equation (which will not be discussed any further), but to the so-called Ein‐
stein’s field equations [7], actually only one in tensorial language, namely

Rμν −
1
2 gμνR + gμνΛ =

8πG
c 4 Tμν, (1)

which he published in 1915. This is an extraordinary formula: it connects, in a very precise
way, Mathematics with Physics, by establishing that the curvature, R, of space-time (a pure
mathematical concept, the reference, coordinate system, so to say) is proportional to (name‐
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Figure 5. Karl Schwarzschild, 1873 – 1916.      Alexander Alexandrovich Friedmann, 1988 – 1925.

Soon Karl Schwarzschild (letter to Einstein from December 1915) found a solution to Ein‐
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sponds to what is now know as a black hole (see below). Einstein was very surprised to see
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this so beautiful solution and wrote back to Schwarzschild congratulating him and admit‐
ting he had never thought that such a simple and elegant solution to his so complicated
equations could exist.

ds 2 = (1−
2Gm
c 2r )−1

dr 2 + r 2(dθ 2 + sin2θdϕ 2)−c 2(1−
2Gm
c 2r )dt 2 (2)

There is now evidence that Einstein himself had been working hard to find such solution
but failed, probably because he was looking for a more general one. Schwarzschild’s insight
was namely to look for the simplest, with spherical symmetry. And Alexander Friedmann,
in 1922, obtained another solution, which is derived by solving the now called Friedmann
equations:
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and they are even much more interesting for cosmology than Schwarzschild’s solution, be‐
cause they correspond to the whole Universe. Friedmann’s early death in 1925, at the age of
37, from typhoid fever, prevented him from realizing that, indeed, his solution would de‐
scribe an expanding universe. This honor was reserved to the Belgian priest, astronomer
and physicist Monsignor Georges Lemaître who, being not aware of Friedmann’s important
finding, went to re-discover essentially the same solution while he was working at the Mas‐
sachusetts Institute of Technology on his second PhD Thesis, which he submitted in 1925.
Before, Lemaître had already obtained a doctorate from Leuven university in 1920 and had
been ordained a priest three years later, just before going to Cambridge University, to start
working in cosmology under Arthur Eddington. In Cambridge, Massachusetts, he worked
with Harlow Shapley, already quite famous (as mentioned above) for his work on nebulae.

The case is that, around the same time, Willem de Sitter had also been working on a uni‐
verse solution (now called de Sitter space), which is the maximally symmetric vacuum solu‐
tion of Einstein's field equations with a positive (therefore repulsive) cosmological constant

Open Questions in Cosmology6

Λ, which corresponds to positive vacuum energy density and negative pressure. As a sub‐
manifold, de Sitter space is in essence the one sheeted hyperboloid

− x0
2 + ∑

i=1

n
xi

2 =α 2, (5)

being α some positive constant which has dimensions of length. Topologically, de Sitter
space is R × Sn−1. A de Sitter universe has no ordinary matter content, but just a positive cos‐
mological constant which yields the Hubble expansion rate, H, as

Hα Λ. (6)

Figure 6. Willem de Sitter, 1872 – 1934.      Monsignor Georges Henri Joseph Édouard Lemaître, 1894 – 1966.

It is then immediate to obtain the scale factor as

a(t)= e Ht , (7)

where H is Hubble’s constant and t is time. This was a very simple solution of Einstein’s
equations that undoubtedly corresponded to an expanding universe. In fact, in 1917 de Sit‐
ter had theorized, for the first time, that the Universe might be expanding. The big problem
with his solution was, however, that it only could describe a universe devoid of matter, just
a vacuum, and this seemed to be at that time not very useful or physically meaningful.
Nowadays, on the contrary, this solution has gained extreme importance, as an asymptotic
case to describe with good approximation the most probable final stages of the evolution of
our Universe (if it will go on expanding forever) and also, as we shall see latter in more de‐
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tail (even more in other Chapters), the initial stages, as the inflationary epoch: the fact that
the de Sitter expansion is exactly exponential is very helpful in the construction of inflation‐
ary models.

But let us continue with Lemaître. During his two-year stay in Cambridge, MA, he visited
Vesto Slipher, at the Lowell Observatory in Arizona, and also Edwin Hubble, at Mount Wilson,
in California, who had already accumulated at that time important evidence on the spectral
displacements towards longer light wavelengths (redshift) of a large number of far distant
nebulae. Actually, the most consistent earlier evidence of the redshift of distant nebulae had
been gathered by Slipher who, already in 1912, had published his first results on the surpris‐
ingly large recessional velocity of  the Andromeda nebula and, in 1914,  at  the American
Astronomical Society’s meeting at Evanston, Illinois, had announced radial velocities for fifteen
spirals, reporting that “in the great majority of cases the nebula is receding; the largest veloc‐
ities are all positive and the striking preponderance of the positive sign indicates a general
fleeing from us or the Milky Way.” Slipher was seeing the nebulae recede at up to 1,100
kilometers per second, the greatest celestial velocities that had ever been observed. He was so
clear and convincing that chronicles say that when Slipher described his equipment and
techniques along with his results, he received an unprecedented standing ovation. But the
interpretation of the redshifts as true movements of the galaxies was not generally accepted
then. De Sitter, for one, posited that the nebulae might only appear to be moving, the light
waves themselves getting longer and longer as the light traveled towards Earth because of
some interstellar processes.

Figure 7. Vesto Melvin Slipher, 1875 – 1969.      Henrietta Swan Leavitt, 1868 – 1921.

When Hubble arrived at Mount Wilson, California, in 1919, the prevailing view of the cosmos
was that the universe consisted entirely of the Milky Way Galaxy. Using the new Hooker
telescope at Mt. Wilson, Hubble identified Cepheid variable stars in several spiral nebu‐
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lae, including the Andromeda and the Triangulum nebulae. His observations, made in 1922–
1923, proved conclusively that these nebulae were much too distant to be part of the Mil‐
ky Way and should be considered as separate galaxies. This was the first clear evidence of
the “island universe” theory. Hubble, who was then 35, found opposition to his results in
the astronomy establishment and his finding was first published in the New York Times,
on November 23, 1924, before being formally presented in the 1925 meeting of the Ameri‐
can Astronomical Society. As said, most important in this discovery was the identification
of the Cepheid variable stars in those nebulae, and this brings us to Henrietta S. Leavitt,
who, in 1912, discovered the very important period-luminosity relation: a straight line rela‐
tionship between the  luminosity  and the  logarithm of  the  period of  variability  of  these
brilliant stars. Leavitt was a distinguished member of the so-called “women human comput‐
ers” brought in at Harvard College by Edward C. Pickering to measure and catalog the
brightness of stars in the observatory's photographic plate collection. In particular, her re‐
sults came from the study, during several years, of 1,777 variable stars. Hubble did public‐
ly recognize the importance of Leavitt’s discovery for his own (saying even that she deserved
the Nobel Prize). It is interesting to describe the now common explanation for the pulsa‐
tion of Cepheid variables, which have been for many decades the “standard candles” for
measuring distances at galaxy scales and were crucial, e.g., for the precise determination of
Hubble’s law. It is the so-called Eddington valve mechanism, based on the fact that dou‐
bly ionized helium is more opaque than singly ionized one. At the dimmest part of a Ce‐
pheid's cycle, the ionized gas in the outer layers of the star is more opaque. The gas is then
heated by the  star's  radiation,  temperature  increases  and it  begins  to  expand.  As  it  ex‐
pands, it cools, and becomes single ionized and thus more transparent, allowing the radia‐
tion to escape. Thus the expansion stops, and gas falls back to the star due to gravitational
attraction, and the process starts again.

In 1929 Hubble derived his important velocity-distance relationship for nebulae using, as he
later wrote to Slipher, “your velocities and my distances.” Hubble acknowledged Slipher's
seminal contribution to his own work by declaring that “the first steps in a new field are the
most difficult and the most significant. Once the barrier is forced, further development is
relatively simple.” Before that, however, we should go back again to Lemaître, who had vis‐
ited in 1924-25 both Slipher and Hubble to learn about their results first hand. He also at‐
tended the meeting of the American Astronomical Society in Washington DC, in 1925,
where Hubble announced his discovery that certain spiral nebulae, previously thought to be
gaseous clouds within the Milky Way, were actually separate galaxies. Lemaître realized
that the new galaxies could be used to test certain predictions of the general relativity equa‐
tions and, soon after the meeting, he started to work on his own cosmological model. He re‐
alized the uniformity of the recession speed of the galaxies (yet nebulae), in different
directions, and the fact that the redshift seemed to be proportional to the known distances to
them, and concluded that the recession speed of these celestial objects could be better under‐
stood not as proper displacements of the galaxies, but much more naturally as a stretching
of space itself, a true expansion of the fabric of our Universe! And this was not as crazy as it
could seem at first sight, since his solution to Einstein’s equations (recall, the same as Fried‐

Cosmological Constant and Dark Energy: Historical Insights
http://dx.doi.org/10.5772/51697

9



tail (even more in other Chapters), the initial stages, as the inflationary epoch: the fact that
the de Sitter expansion is exactly exponential is very helpful in the construction of inflation‐
ary models.

But let us continue with Lemaître. During his two-year stay in Cambridge, MA, he visited
Vesto Slipher, at the Lowell Observatory in Arizona, and also Edwin Hubble, at Mount Wilson,
in California, who had already accumulated at that time important evidence on the spectral
displacements towards longer light wavelengths (redshift) of a large number of far distant
nebulae. Actually, the most consistent earlier evidence of the redshift of distant nebulae had
been gathered by Slipher who, already in 1912, had published his first results on the surpris‐
ingly large recessional velocity of  the Andromeda nebula and, in 1914,  at  the American
Astronomical Society’s meeting at Evanston, Illinois, had announced radial velocities for fifteen
spirals, reporting that “in the great majority of cases the nebula is receding; the largest veloc‐
ities are all positive and the striking preponderance of the positive sign indicates a general
fleeing from us or the Milky Way.” Slipher was seeing the nebulae recede at up to 1,100
kilometers per second, the greatest celestial velocities that had ever been observed. He was so
clear and convincing that chronicles say that when Slipher described his equipment and
techniques along with his results, he received an unprecedented standing ovation. But the
interpretation of the redshifts as true movements of the galaxies was not generally accepted
then. De Sitter, for one, posited that the nebulae might only appear to be moving, the light
waves themselves getting longer and longer as the light traveled towards Earth because of
some interstellar processes.

Figure 7. Vesto Melvin Slipher, 1875 – 1969.      Henrietta Swan Leavitt, 1868 – 1921.

When Hubble arrived at Mount Wilson, California, in 1919, the prevailing view of the cosmos
was that the universe consisted entirely of the Milky Way Galaxy. Using the new Hooker
telescope at Mt. Wilson, Hubble identified Cepheid variable stars in several spiral nebu‐

Open Questions in Cosmology8

lae, including the Andromeda and the Triangulum nebulae. His observations, made in 1922–
1923, proved conclusively that these nebulae were much too distant to be part of the Mil‐
ky Way and should be considered as separate galaxies. This was the first clear evidence of
the “island universe” theory. Hubble, who was then 35, found opposition to his results in
the astronomy establishment and his finding was first published in the New York Times,
on November 23, 1924, before being formally presented in the 1925 meeting of the Ameri‐
can Astronomical Society. As said, most important in this discovery was the identification
of the Cepheid variable stars in those nebulae, and this brings us to Henrietta S. Leavitt,
who, in 1912, discovered the very important period-luminosity relation: a straight line rela‐
tionship between the  luminosity  and the  logarithm of  the  period of  variability  of  these
brilliant stars. Leavitt was a distinguished member of the so-called “women human comput‐
ers” brought in at Harvard College by Edward C. Pickering to measure and catalog the
brightness of stars in the observatory's photographic plate collection. In particular, her re‐
sults came from the study, during several years, of 1,777 variable stars. Hubble did public‐
ly recognize the importance of Leavitt’s discovery for his own (saying even that she deserved
the Nobel Prize). It is interesting to describe the now common explanation for the pulsa‐
tion of Cepheid variables, which have been for many decades the “standard candles” for
measuring distances at galaxy scales and were crucial, e.g., for the precise determination of
Hubble’s law. It is the so-called Eddington valve mechanism, based on the fact that dou‐
bly ionized helium is more opaque than singly ionized one. At the dimmest part of a Ce‐
pheid's cycle, the ionized gas in the outer layers of the star is more opaque. The gas is then
heated by the  star's  radiation,  temperature  increases  and it  begins  to  expand.  As  it  ex‐
pands, it cools, and becomes single ionized and thus more transparent, allowing the radia‐
tion to escape. Thus the expansion stops, and gas falls back to the star due to gravitational
attraction, and the process starts again.

In 1929 Hubble derived his important velocity-distance relationship for nebulae using, as he
later wrote to Slipher, “your velocities and my distances.” Hubble acknowledged Slipher's
seminal contribution to his own work by declaring that “the first steps in a new field are the
most difficult and the most significant. Once the barrier is forced, further development is
relatively simple.” Before that, however, we should go back again to Lemaître, who had vis‐
ited in 1924-25 both Slipher and Hubble to learn about their results first hand. He also at‐
tended the meeting of the American Astronomical Society in Washington DC, in 1925,
where Hubble announced his discovery that certain spiral nebulae, previously thought to be
gaseous clouds within the Milky Way, were actually separate galaxies. Lemaître realized
that the new galaxies could be used to test certain predictions of the general relativity equa‐
tions and, soon after the meeting, he started to work on his own cosmological model. He re‐
alized the uniformity of the recession speed of the galaxies (yet nebulae), in different
directions, and the fact that the redshift seemed to be proportional to the known distances to
them, and concluded that the recession speed of these celestial objects could be better under‐
stood not as proper displacements of the galaxies, but much more naturally as a stretching
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mann’s) could be actually interpreted as corresponding to an expanding Universe. Theory
and observations incredibly matched!

3. The Big Bang

Lemaître was still half-way to these conclusions when he submitted his PhD thesis at MIT in
1925, but he completed his work two years later and published it in an obscure Belgian jour‐
nal in 1927. The retreat of distant nebulae, he wrote in his paper, is “a cosmical effect of the
expansion of the universe.” He even estimated a rate of expansion close to the figure that
Hubble eventually calculated and published two years later. And at a scientific meeting in
Brussels, in 1927, the young priest cornered Einstein and tried to persuade him. We do not
know his exact words, but presumably they must have been something like: “Sehen Sie,
Herr Einstein, your static model for the Universe, with a cosmological constant, does not
stand, since it is not stable in the far past. But, on the other hand, you do not need a cosmo‐
logical constant, your original equations are all right! In fact, I have found a solution to these
equations which can be interpreted as describing an expanding Universe. And, on the other
hand, the redshifts of distant galaxies, as found by astronomers, as Slipher and Hubble,
most naturally account for an expansion of the space containing the galaxies, and not for ar‐
bitrary displacements of the galaxies themselves, since exactly the same pattern is seen in
any direction!” But, as quoted later by Lemaître, Einstein’s reply was utterly disappointing
to him. He answered: “Monsieur Lemaître, I can find no mistake in your calculations, but
your physical insight is abominable." Einstein, the great genius, the master of space and
time, was not ready to imagine a universe in which this space-time was stretching! It took
him more than two years to accept this. And now, when we are teaching the expanding uni‐
verse to high-school student, or even to popular audiences, we pretend they should get this
concept on the spot! Lemaître's paper was finally noticed by Eddington and with his help it
was reprinted in 1931 in the Monthly Notices of the Royal Astronomical Society; it explained
clearly, using Lemaître's (Friedmann’s) solution, why Hubble saw the velocities of the galax‐
ies steadily increase with distance. The same year, in the much prestigious journal Nature,
Lemaître suggested that all the mass-energy of the universe was once packed within a
“unique quantum,” which he later called the “primeval atom.” This was the logical conclu‐
sion of his looking back in time in the Universe evolution: an immediate consequence of his
model was that long time ago the Universe was much smaller and that, going even more
backwards, that it had had an origin. In 1933 he resumed his theory of the expanding Uni‐
verse and published a more detailed version in the Annals of the Scientific Society of Brus‐
sels, finally achieving his greatest popularity (his name is now, however, rather forgotten by
the younger generations of astronomers and physicists). From Lemaître's scenario arose the
current vision of the Big Bang (albeit not this name, as we will soon see), a model that has
shaped there since the thought of cosmologists as strongly as the idea of crystalline spheres,
popularized by Ptolemy (who was already mentioned at the beginning), influenced natural
philosophers through the Middle Ages. It took Einstein over two years to understand that
Lemaître's model was right and, then, he abhorred of the cosmological constant by pro‐
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nouncing his very famous sentence: “Away with the cosmological constant. This was the
biggest blunder in my life” (in German: “Weg mit der kosmologischen Konstante. Dass war
die grösste Eselei meines Lebens”). He clearly realized that, had he truly believed in his field
equations, he could have predicted that the Universe was actually expanding (and not stat‐
ic), much before anybody else. (Quite in the same way, say, as Dirac predicted the existence
of the positive electron, the positron, because it was a second solution of his quantum equa‐
tion for the electron, impossible to get rid of by natural arguments.)

Figure 8. Albert Einstein and Georges Lemaître.

It is easy to understand that the Church, which had been so disappointed with the findings
of Galileo several centuries ago and had condemned him for his defense of a sun-centered
universe, was extremely happy with Lemaître's scenario. He was lauded and raised to the
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rank of monsignor and was made a fellow, and later president, of the Pontifical Academy of
Sciences. But Lemaître always recoiled from any suggestion that his primeval atom had
been inspired by the biblical story of Genesis. He insisted, throughout his life, that his theo‐
ry about the origin of space and time sprang solely from the equations before him. Howev‐
er, the name Bib Bang, after which this theory is known today, was actually an occurrence of
a rival scientist, Fred Hoyle, who in a BBC radio program, broadcasted on March 28th, 1949,
pronounced these magic two words for the first time. Just the year before, Hoyle, Thomas
Gold and Hermann Bondi had issued a theory, that was to became quite famous under the
name of the Steady State theory, which involved a creation field (called the C-field), which
created matter and energy constantly in wider regions of the Universe in a rather smooth
manner. These researchers had realized the impossibility of the whole matter-energy of our
Universe having been all packed once within a unique quantum or primeval atom. This
could have no sense and a creation process needed to be involved. They were very clever to
solve the question how to create matter-energy from ‘nothing’, constantly and at ‘zero-cost,’
since they realized that any positive amount of ordinary matter and energy would be com‐
pensated by the same amount of negative energy which corresponds to the associated gravi‐
tational potential (which in GR does also have negative energy content!). This observation
was extremely important, since it anticipated the physical principles involved in inflationary
theories; indeed, it has been widely recognized that the steady state theory anticipated infla‐
tion. Actually, the possibility that the negative energy of gravity could supply the positive
energy for the matter of the universe was suggested by Richard Tolman already in 1932, al‐
though a viable mechanism for the energy transfer was not indicated. In any case, just trans‐
lating this physics to Lemaître's scenario would mean that an unbelievably enormous
amount of matter and energy should be created instantly, at the very moment of the origin
of our Universe. After these considerations the reader should be prepared to understand the
words that Fred Hoyle uttered on that occasion. In the BBC program Hoyle tried to push up
his theory, as being much more reasonable, in contraposition to Lemaître's one. At a point,
he refuted, in a very disrespectful manner, that: “The whole of the matter in the universe
was created in one Big Bang in a particular time in the remote past.” Hoyle could never
imagine that these two words, pronounced with the purpose to absolutely discredit the rival
theory, would serve from that moment on to identify what is nowadays the most accepted
theory of the Universe, a name that any school child knows. This was clearly not Hoyle’s
intention. Before going on, a last word on Lemaître's primeval atom scenario. It may seem
incredible that this wrong, physically unsustainable idea (again, the whole energy of the
universe could never in the past have been concentrated in a nutshell) can be still found
nowadays in popular books on cosmology that are being issued by scientific writers having
no idea about the physical principles underlying inflation, quantum gravity, or even the
more primitive steady state theory. The creation of matter and energy from a void, de Sitter
state is key to inflationary models and, as already said, the steady state theory gave a first
clear hint to how this could be done while respecting all basic physical principles including
energy conservation.

In the year 1963, Arno Allan Penzias and Robert Woodrow Wilson started a project, at the Bell
Labs in New Jersey, on the recalibration of a 20-foot horn-reflector, that had been previously
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employed for a number of years for satellite work, and which they wanted to prepare for use
in radioastronomy. Even if, at that time, there were at several other places much more pow‐
erful radio-telescopes available, this seven meter, very modest horn reflector had some spe‐
cial features they wanted to exploit for high-precision measurements in the 21 cm band, a
wavelength at which the galactic halo would be bright enough in order to be detected, and at
which the line corresponding to neutral hydrogen atoms could be observed. They wanted, in
particular, to detect the presence of hydrogen in clusters of galaxies (this development is very
nicely described, and in much more detail, in the Nobel Lecture by Wilson [8]). After having
carried out a number of measurements during several months, Penzias and Wilson did not
manage to get rid of a very light but persistent noise, which translated into temperature was
an excess of some 2 to 4 K, and which it was exactly the same in all directions, day and night.
Indeed, the antenna temperature should have been only the sum of the atmospheric contribu‐
tion, so-called temperature of the sky (due to microwave absorption by the terrestrial atmos‐
phere), of 2.3 K, and the radiation from the walls of the antenna and ground, of 1 K. Unless
Penzias and Wilson could understand what they first called “antenna problem” their 21 cm
galactic halo experiment would not be feasible. So they went through a number of possible
reasons for the temperature excess and tested for them. They considered the possibility of
some terrestrial source and pointed their antenna towards different directions, in particular
to New York City, but the variation was always insignificant. They also took into account the
possible influence of the radiation from our Galaxy, but they checked this could not contrib‐
ute decisively, either. They also ruled out discrete extraterrestrial radio sources as the source
of the excess radiation as they had a spectrum similar to that of the Galaxy. For some time they
lived with the antenna temperature problem and concentrated on measurements in which it
was not critical. One day they discovered that a pair of pigeons was roosting up in the horn
and had covered part of it with (in their own words) ‘what all city dwellers know well.’ They
cleaned the mess, and later, in the spring of 1965, they thoroughly cleaned out the horn-
reflector and put aluminum tape over the riveted joints, but only a small reduction in anten‐
na temperature was obtained. In this way, a whole year passed.

Figure 9. Arno Allan Penzias (born April 26, 1933).      Robert Woodrow Wilson (born January 10, 1936).

Cosmological Constant and Dark Energy: Historical Insights
http://dx.doi.org/10.5772/51697

13



rank of monsignor and was made a fellow, and later president, of the Pontifical Academy of
Sciences. But Lemaître always recoiled from any suggestion that his primeval atom had
been inspired by the biblical story of Genesis. He insisted, throughout his life, that his theo‐
ry about the origin of space and time sprang solely from the equations before him. Howev‐
er, the name Bib Bang, after which this theory is known today, was actually an occurrence of
a rival scientist, Fred Hoyle, who in a BBC radio program, broadcasted on March 28th, 1949,
pronounced these magic two words for the first time. Just the year before, Hoyle, Thomas
Gold and Hermann Bondi had issued a theory, that was to became quite famous under the
name of the Steady State theory, which involved a creation field (called the C-field), which
created matter and energy constantly in wider regions of the Universe in a rather smooth
manner. These researchers had realized the impossibility of the whole matter-energy of our
Universe having been all packed once within a unique quantum or primeval atom. This
could have no sense and a creation process needed to be involved. They were very clever to
solve the question how to create matter-energy from ‘nothing’, constantly and at ‘zero-cost,’
since they realized that any positive amount of ordinary matter and energy would be com‐
pensated by the same amount of negative energy which corresponds to the associated gravi‐
tational potential (which in GR does also have negative energy content!). This observation
was extremely important, since it anticipated the physical principles involved in inflationary
theories; indeed, it has been widely recognized that the steady state theory anticipated infla‐
tion. Actually, the possibility that the negative energy of gravity could supply the positive
energy for the matter of the universe was suggested by Richard Tolman already in 1932, al‐
though a viable mechanism for the energy transfer was not indicated. In any case, just trans‐
lating this physics to Lemaître's scenario would mean that an unbelievably enormous
amount of matter and energy should be created instantly, at the very moment of the origin
of our Universe. After these considerations the reader should be prepared to understand the
words that Fred Hoyle uttered on that occasion. In the BBC program Hoyle tried to push up
his theory, as being much more reasonable, in contraposition to Lemaître's one. At a point,
he refuted, in a very disrespectful manner, that: “The whole of the matter in the universe
was created in one Big Bang in a particular time in the remote past.” Hoyle could never
imagine that these two words, pronounced with the purpose to absolutely discredit the rival
theory, would serve from that moment on to identify what is nowadays the most accepted
theory of the Universe, a name that any school child knows. This was clearly not Hoyle’s
intention. Before going on, a last word on Lemaître's primeval atom scenario. It may seem
incredible that this wrong, physically unsustainable idea (again, the whole energy of the
universe could never in the past have been concentrated in a nutshell) can be still found
nowadays in popular books on cosmology that are being issued by scientific writers having
no idea about the physical principles underlying inflation, quantum gravity, or even the
more primitive steady state theory. The creation of matter and energy from a void, de Sitter
state is key to inflationary models and, as already said, the steady state theory gave a first
clear hint to how this could be done while respecting all basic physical principles including
energy conservation.

In the year 1963, Arno Allan Penzias and Robert Woodrow Wilson started a project, at the Bell
Labs in New Jersey, on the recalibration of a 20-foot horn-reflector, that had been previously

Open Questions in Cosmology12

employed for a number of years for satellite work, and which they wanted to prepare for use
in radioastronomy. Even if, at that time, there were at several other places much more pow‐
erful radio-telescopes available, this seven meter, very modest horn reflector had some spe‐
cial features they wanted to exploit for high-precision measurements in the 21 cm band, a
wavelength at which the galactic halo would be bright enough in order to be detected, and at
which the line corresponding to neutral hydrogen atoms could be observed. They wanted, in
particular, to detect the presence of hydrogen in clusters of galaxies (this development is very
nicely described, and in much more detail, in the Nobel Lecture by Wilson [8]). After having
carried out a number of measurements during several months, Penzias and Wilson did not
manage to get rid of a very light but persistent noise, which translated into temperature was
an excess of some 2 to 4 K, and which it was exactly the same in all directions, day and night.
Indeed, the antenna temperature should have been only the sum of the atmospheric contribu‐
tion, so-called temperature of the sky (due to microwave absorption by the terrestrial atmos‐
phere), of 2.3 K, and the radiation from the walls of the antenna and ground, of 1 K. Unless
Penzias and Wilson could understand what they first called “antenna problem” their 21 cm
galactic halo experiment would not be feasible. So they went through a number of possible
reasons for the temperature excess and tested for them. They considered the possibility of
some terrestrial source and pointed their antenna towards different directions, in particular
to New York City, but the variation was always insignificant. They also took into account the
possible influence of the radiation from our Galaxy, but they checked this could not contrib‐
ute decisively, either. They also ruled out discrete extraterrestrial radio sources as the source
of the excess radiation as they had a spectrum similar to that of the Galaxy. For some time they
lived with the antenna temperature problem and concentrated on measurements in which it
was not critical. One day they discovered that a pair of pigeons was roosting up in the horn
and had covered part of it with (in their own words) ‘what all city dwellers know well.’ They
cleaned the mess, and later, in the spring of 1965, they thoroughly cleaned out the horn-
reflector and put aluminum tape over the riveted joints, but only a small reduction in anten‐
na temperature was obtained. In this way, a whole year passed.

Figure 9. Arno Allan Penzias (born April 26, 1933).      Robert Woodrow Wilson (born January 10, 1936).

Cosmological Constant and Dark Energy: Historical Insights
http://dx.doi.org/10.5772/51697

13



Figure 10. Big Bang detection: Penzias and Wilson’s 20-foot horn-reflector.

At the same time, in Princeton, only 60 km away, R.H. Dicke, P.J.E. Peebles and D.T.

Figure 11. Robert H. Dicke, 1916 – 1997.      Philip J. E. Peebles, born April 25, 1935.      David T. Wilkinson, 1935 – 2002.

Wilkinson where working on a paper where they tried to guess the characteristics that a mi‐
crowave radiation that would come from a very dense universe, in its origin (possibly pul‐
sating), should have; that is to say, under the conditions that they thought could correspond
to those of the Big Bang. The sequence of events which led to the unraveling of the mystery
began one day when Penzias was talking to Bernard Burke of MIT about other matters and
mentioned the unexplained noise. Burke recalled hearing about the work of the theoretical
group in Princeton on radiation in the universe. In the preprint, Peebles, following Dicke’s
suggestion calculated that the universe should be filled with a relic blackbody radiation at a
minimum temperature of 10 K. Shortly after sending the preprint, Dicke and his coworkers
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visited Penzias and Wilson and were quickly convinced of the accuracy of their measure‐
ments. They agreed to a side-by-side publication of two letters in the Astrophysical Journal -
a letter on the theory from Princeton [9] and one on the measured excess temperature from
Bell Laboratories [10]. Penzias and Wilson were careful to exclude any discussion of the cos‐
mological theory of the origin of background radiation from their letter, because they had
not been involved in any of that work and thought, that their measurement was independ‐
ent of the theory and might outlive it. After the meeting, an experimental group was set up
in Princeton to complete their own measurement with the expectation that the background
temperature would be about 3 K. There was the great expectation that what Penzias and
Wilson had detected could be in fact the Big Bang itself! However, the final confirmation of
this extraordinarily important cosmological discovery took several years yet.

And the first additional evidence did not actually come from the experimental group at
Princeton, but from a totally different, indirect measurement. Indeed, it came out from res‐
cuing from oblivion a measurement that had been made thirty years earlier by W.S. Adams
and T. Dunhan Jr., who had discovered several faint optical interstellar absorption lines
which were later identified with the molecules CH, CH+, and CN. In the case of CN, in addi‐
tion to the ground state, absorption was seen from the first rotationally excited state. This
was reanalyzed in 1965-66, and it was realized that the CN is in equilibrium with the back‐
ground radiation, since there is no other significant source of excitation where these mole‐
cules are located. In December 1965, P.G. Roll and D.T. Wilkinson [11] completed their
measurement of 3.0 ± 0.5 K at 3.2 cm, the first confirming microwave measurement, which
was followed shortly by T.F. Howell and J.R. Shakeshaft's value of 2.8 ± 0.6 K at 20.7 cm [12]
and then by Penzias and Wilson’s one of 3.2 K ± 1 K at 21.1 cm [13]. By mid 1966 the intensi‐
ty of the microwave background radiation had been shown to be close to 3 K between 21 cm
and 2.6 mm, almost two orders of magnitude in wavelength. This was already very close to
the present, highly accurate value of 2,725 K.

In the same way that the first experimental evidence for the cosmic microwave background
radiation was obtained (but unrecognized) long before 1965, it soon was realized that the
theoretical prediction had been made, at least sixteen years before Penzias and Wilson’s de‐
tection, by George Gamow (a former student of Friedmann) in 1948, and improved by R.A.
Alpher and R.C. Herman, in 1949 [14]. Those authors are now recognized as the first who
theoretically predicted the cosmic radiation associated to the Big Bang, for which they calcu‐
lated a value of 5 K, approximately (a very nice figure that they later spoiled, bringing it to
28 K). We will finish this section with the well known fact that Arno Penzias and Robert
Wilson were laureated with the 1978 Nobel Prize in Physics by their very important discov‐
ery, which can be considered as one the milestone findings in Human History. The Universe
had indeed an origin, the fabric of space was stretching and, as clearly understood by Le‐
maître, Friedmann’s solution to Einstein’s equations was a unique, real description of our
Universe. The stationary universe, also under its more modern form of the steady state theo‐
ry, was dead.
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Figure 12. George Gamow, 1904 – 1968. Ralph Asher Alpher, 1921 – 2007 (with Victor S. Alpher, in Tampa, Florida).

4. The Big Bang modified: Inflation

However, the original Big Bang theory had to be modified, what occurred at the beginning
of the eighties, in order to solve several very serious discrepancies it had accumulated when
comparing it with the most accurate astronomical observations of the cosmos, specifically,
concerning what happened during the very first second in the history of the Universe. It was
realized that the expansion during this first second could by no means be an ordinary one,
understanding by this the one that has taken place later in its evolution, say, kind of a linear
one. A very special stage had to be devised to account for what occurred in this initial in‐
stant of time (well, in fact one second is a very, very long time at this scale). This stage is
generically called inflation, and its formulation is mainly due to Allan Guth, Katsuhiko Sato,
Andrei Linde, Andreas Albrecht, Paul Steinhardt, Alexei Starobinsky, Slava Mukhanov,
G.V. Chibisov, and a large list of other scientist (the number and classes of models are ac‐
tually still growing, nowadays). The name inflation comes from the fact that the Universe
expansion had to be enormous, incredibly big during an extremely small instant of time (of
the order of 10-33 seconds). In this infinitesimal fraction of a second the Universe expanded
from the size of a peanut to that of the present Milky Way (in volume, an increase of at least
75 orders of magnitude). Actually, in the inflationary theory the Universe begins incredibly
small, some 10-24 cm, a hundred billion times smaller than a proton. And, at the same time,
during inflation it cools down abruptly (supercooling) by 5 orders of magnitude, from some
1027 K to 1022 K. This relatively low temperature is maintained during the inflationary phase.
When inflation ends the temperature returns to the pre-inflationary temperature; this is
called reheating or thermalization because the large potential energy of the inflaton field de‐
cays into particles and electromagnetic radiation, which fills the universe, starting in this
way the radiation dominated phase of the Universe. Because the very nature of inflation is
not known, this process is still poorly understood. As explained before, energy conservation
is consistent with physics during the whole process: this lies in the subtle behavior of gravi‐
ty, already present in Newtonian physics, where we know that the energy of the gravitation‐
al potential is always negative, a fact which is maintained in GR. The development and
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shaping of the concept of inflation constitutes, for different reasons, another brilliant page in
the history leading to our present knowledge of the cosmos.

The first to come up to this very revolutionary idea was Allan Guth, born in 1947 and who
studied (both graduation and PhD) at MIT, from 1964 to 1971. During the following nine
years he was, successively, a PostDoc at Princeton, Columbia, Cornell and Stanford (SLAC),
all of them top class Universities. But Guth did not manage to jump over this level and get a
real contract. In 1978 he was at Cornell while his career was up in the air and he badly need‐
ed to find a permanent job to support his wife and son. Someday, a fellow PostDoc called
Henry Tye (now a professor at Cornell) proposed him to study jointly the problem of mo‐
nopole production in the very early Universe. Guth got interested in this subject so that
when Robert Dicke (whom we have already mentioned before) came to give a seminar, he
attended it with much interest. Guth was very intrigued by Dicke’s conclusion that the tra‐
ditional Big Bang theory had severe problems and that it was leaving out something impor‐
tant. There was the problem of flatness (also called Dicke’s coincidence): the fact that the
matter density of the Universe was so close to the critical mass corresponding to a flat (Eu‐
clidean) Universe. Also the horizon problem, namely the fact that the Universe is so perfect‐
ly homogeneous and isotropic at large enough scales, which is in absolutely good agreement
with the cosmological principle. And to these problems Guth and Tye added, as a results of
their specific study, the problem of absence of magnetic monopoles, which should actually
be very abundant in the present Universe, but it is the case that (with the only exception of
Blas Cabrera, who reported finding one in 1982) nobody has ever seen any of them. One
should note, however, that John Preskill, at Harvard at that time, had published a result in
the same direction before Guth and Tye. Anyway, all these problems and the sudden inter‐
est of Guth on cosmology kept him busy for two years. His personal description of how, in a
sleepless night, he suddenly thought of a mechanism in order to solve these severe prob‐
lems, all of them at once, is better than any science fiction story. Looking back at the situa‐
tion, now we can say that it was very risky on his side, being just a PostDoc fellow without a
tenured job, to propose such a revolutionary mechanism as the inflationary model, what he
did in 1980. Guth first made public his ideas in a seminar at SLAC on January 23, 1980. In
August, he submitted his paper, entitled “The Inflationary Universe: A Possible Solution to
the Horizon and Flatness Problems,” to the Physical Review, and was published in January
1981 [15]. Soon after, he captured the interest of several universities and got several offers
which he rejected, until he had the possibility to come back to MIT, as an associate visiting
professor in 1980. His scientific career has been growing since then. Not without some prob‐
lems at the beginning, however: it was discovered that his initial model had an important
flaw, which was corrected by Andrei Linde (now at Stanford) and, independently, by Paul
Steinhardt (Princeton) and Andreas Albrecht (Davies). The modified theory was given the
name of “new inflation.” The works of Katsuhiko Sato, who about the same time as Guth
proposed a much related theory and of Alexei Starobinsky, who argued at about the same
time that quantum corrections to gravity would replace the initial singularity of the universe
with an exponentially expanding de Sitter phase, must be mentioned, as well. In particular
the last one is getting more and more popular recently, in a unifying context to be explained
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later. The Spanish researcher Jaume Garriga, at Barcelona University, has published influen‐
tial papers in this area, too.

Figure 13. Allan Guth      Andrei Linde      Fritz Zwicky, 1898 – 1974

Nowadays, under the name of inflation there are over fifty different theories which have
evolved from Guth’s original idea. Borrowing of energy from the gravitational field is the
basic principle of the inflationary paradigm, completely different from the classical Big Bang
theory, where all matter-energy in the universe was assumed to be there from the beginning
(as explained above). In Guth’s words: “Inflation provides a mechanism by which the entire
universe can develop from just a few ounces of primordial matter.” As a final consequence
of all these developments, the so called standard cosmological model, or FLRW (Friedmann-
Lemaître-Robertson-Walker) model emerged. The two last names appear here because, be‐
tween 1935 and 1937, the mathematicians Howard P. Robertson and Arthur G. Walker
rigorously proved that the FLRW metric is the only one possible, on a spacetime that is spa‐
tially homogeneous and isotropic. In other words, they showed that the solution to Ein‐
stein’s equations found by Friedmann and later by Lemaître was unique in describing the
Universe we live in. Let us pause to ponder, for a second, the extraordinary beauty of this
cosmological model as a description of the Universe: to the uniqueness of Einstein’s field
equation (the only freedom being the cosmological constant) we add up the fact that the sol‐
ution is also single. We have arrived to just one possible mathematical description of our
Universe, and the inflation paradigm opens a possible way to understand how it could be
created, without violating the basic conservation principles of Physics. This last point will
however require further elaboration.

5. Dark matter

Before that, however, we need go back in time and explain about another very important
problem in cosmology which appeared for the first time, in a compelling, clear way, in 1933
when the Swiss astrophysicist Fritz Zwicky, at CALTECH, unveiled it from his detailed ob‐
servations of the most exterior galaxies of the Coma cluster. It should be mentioned, howev‐
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er, that two years before Zwicky, Einstein and de Sitter had already published a paper
where they considered a most probable theoretical existence of enormous amounts of matter
in the Universe which did not emit light. It had also been postulated by Jan Oort, one year
before Zwicky, to account for the orbital velocities of some stars in the Milky Way. But
Zwicky’s calculations, based on the use of the virial theorem, where much more convincing.
According to them, the gravity of the visible galaxies in the Coma cluster was too small in
order to possibly account for the large speeds of the more exterior galaxies. A big amount of
mass was missing! This was called the missing mass problem and Zwicky referred to this
unseen matter as dunkle Materie (dark matter). Since those years, more and more different
observations indicated the presence of dark matter in the universe, such as the anomalous
rotational speeds of galaxies, gravitational lensing by galaxy clusters, such as the Bullet
Cluster, the temperature distribution of hot gas in galaxies and clusters, and other.

Very famous astronomers in this context now are Vera Rubin and Kent Ford for their semi‐
nal papers published around 1975. It so happened that during some forty years after
Zwicky’s discovery no other corroborating observations appeared and the problem was al‐
most forgotten. But in the early 70s, Vera Rubin, a young astronomer at the Carnegie Institu‐
tion of Washington, presented findings based on a new, very sensitive spectrograph that
could measure the velocity curve of edge-on spiral galaxies to a great degree of accuracy. In
1975, in a meeting of the American Astronomical Society, Rubin and Ford announced their
important discovery that most stars in spiral galaxies orbit at roughly the same speed, im‐
plying that their mass densities were uniform well beyond the locations of most of the visi‐
ble stars in the galaxy. In 1980 they published a paper [16] which has had enormous
influence in modern cosmology, where they summarized the results of over a decade of
work on this subject. Their results have shaken the very grounds of Newton’s universal law
of gravity since they undoubtedly indicate either that Newton’s results are not applicable to
the Universe at large distances (the error obtained is certainly enormous) or that a very im‐
portant part of the mass of spiral galaxies must be located in the galactic halo region, which
is extremely dark in relation with the central part.

At the beginning and for some time these results met very strong skepticism by the com‐
munity of astronomers. But Rubin, a brave and stubborn scientist, never changed her con‐
viction that her results were correct. They have been subsequently checked to enormous
precision and there is now no more doubt that an important problem to be explained is fac‐
ing us. The most accepted conclusion is the existence of dark matter, that is, ordinary matter
made up of particles that we cannot see for some reason. There are many candidates for
dark matter but, while this is the most generally accepted conclusion, there still remains
open the other mentioned possibility, namely that Newton’s laws need to be modified at
large distances (modified gravities, MOG, MOND, and other theories). Actually, Rubin her‐
self is a convinced supporter of this second possibility. The debate continues and it is very
lively nowadays.

To finish with this point let us summarize that, talking in terms of dark matter, for what we
now know it must constitute an enormous amount of ordinary (that is, gravitating) matter,
ten times as abundant as visible galaxies. And we infer its existence not just by the clear
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later. The Spanish researcher Jaume Garriga, at Barcelona University, has published influen‐
tial papers in this area, too.

Figure 13. Allan Guth      Andrei Linde      Fritz Zwicky, 1898 – 1974
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gravitational effects we have mentioned, as the observed anomalies in the rotation curves of
spiral galaxies (just described), and which account for the rotational speeds of the exterior
stars of the galaxy as a function of the distance of the start to the galactic center, but also
from the rotation of the so-called satellite galaxies of our Milky Way (and of Andromeda,
too), some of which can already be measured with enough accuracy as they turn around our
own galaxy (resp. Andromeda), in a way very similar to how planets describe orbits around
the Sun. The extraordinary regularities found in the trajectories of such satellite galaxies
constitute a really thrilling, very active research field at present. A different way to trace the
presence of dark matter is through gravitational lensing (both macro and micro lensing). Its
effects are very apparent there, as a notorious amplification of the power of gravitational
lenses, compared with the case that the effect would be just due to the visible stellar objects.
In clusters as, for instance, Abell 1689, the observed, very strong effects cannot by any
means be explained as being produced by its visible mass only. And in the case of the Bullet
cluster one clearly detects an enormous mass acting as a gravitational lens and which is
completely separated from the barionic, visible mass which emits X rays.

Figure 14. Two Million Galaxies: S. Maddox (Nottingham U.) et al., APM Survey, Astrophys. Dept. Oxford U.

We certainly do not know yet what dark matter is made of, neither why we cannot see it.
But we do know that the discovered neutrino mass (neutrinos being indeed invisible!) is not
enough to account for it; and also that adding up the masses of big, Jupiter like planets (so
called MACHOs, which are also very difficult to see) is again not enough in order to explain
the missing amount of mass. But astroparticle physicists got indeed a good number of other
possible candidates, as axions, neutralinos and other (they come from the breakdown of cer‐
tain fundamental symmetries in particle and quantum field theories). What we know is that
they must be elusive particles, very weekly coupled with any of the known physical fields
since, on the contrary, its presence would have been detected already. It is for this reason
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that the generic name WIMPs (weakly interacting massive particles) has been proposed to
generically name any particle of this sort as a dark matter candidate.

6. The Universe in depth

Another very important landmark in the knowledge of the cosmos at large scale was the
publication, in 1986 of the first map of the Universe in three dimensions. In fact, it was only
a very thin slice of an angular sector of the same but it was extremely important and com‐
pletely changed the vision astronomers and other scientists had of it. Up to then, the only
representations of the cosmos were in form of two dimensional projections on the celestial
sphere, as still is (and serves as a very good example) the APM Galaxy Survey, which con‐
tains two million galaxies. Even if, in comparison, the Harvard CfA strip of Valérie de Lap‐
parent, Margaret Geller and John Huchra [17], contained only a total of 1,100 galaxies, what
was most important was that for 584 of them their distance from us could be determined
(through the observation of their cosmological redshift). And this allowed, for the first time
in History, to see a part of our Universe in the elusive third dimension: the distance from us.
Actually the plot looks again two-dimensional, since the slice is represented as flat but,
again, the spatial structures created by the disposition of the galaxies and clusters, away
from us, had never been seen before.

Figure 15. The first slice of the CfA Survey, by Valerie de Lapparent, Margaret Geller and John Huchra, published in 1986.

The impact of this work was spectacular, also due in part to the shapes of these point struc‐
tures, showing that the distribution of galaxies in space was anything but random, with gal‐
axies actually appearing to be distributed on surfaces, almost bubble like, surrounding large
empty regions, or “voids.” Anyone could easily identify what looked like a human being
(the man), another shape looked like a thumb imprint (God’s thumb) pointing towards us,
and so on. But the most intriguing fact, for scientists, was the presence in the whole picture
of such very large regions devoid of any galaxy (voids), while they concentrated on the
verge of these voids, and forming filaments and large walls (as the so-called Great Wall).
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Many astronomers, but also a good number of prestigious theoretical physicists and even
mathematicians who had never before dealt with cosmological issues started to work on this
point distribution, trying to find some fundamental model that could possibly generate such
peculiar pattern in the Universe evolution. Astronomers, on their side, tried to find new ob‐
servational confirmation of this large-scale behavior of galaxies and clusters. Collaborations
of pure theoreticians and astronomers flourished, as was the case of Edward Witten with
Jeremiah Ostriker. That same year, in Spain, in the historical Peñíscola Castle, we had a five-
day workshop of GIFT (Interuniversity Group of Theoretical Physics) where Ricky Kolb and
Mike Turner were invited to present such recent and astonishing developments. This author
was there and felt immediately captivated by such map. Coming back from the workshop
he handed a problem to Enrique Gaztañaga (who was, by the way, in search of a subject for
his PhD Thesis): to provide an effective mathematical characterization of the point distribu‐
tion, more simple than the usual higher-order point correlation statistics, and to try to gener‐
ate such point distribution from a phenomenological model by taking into account,
essentially, the gravitational attraction. This was the origin of our large-scale cosmology
group in our Institute ICE-CSIC and IEEC, in Barcelona. When more and more precise sur‐
veys, of millions of galaxies with redshifts, as the 2d Field, where carried out, all these spec‐
tacular forms have smoothly disappeared:

Figure 16. The 2dF Galaxy Redshift Survey (2dFGRS), by M.M. Colless, et al, 2001.

almost all were generated by errors in the computation of distances, due to the fact that the
redshift produced by the Universe expansion gets mixed with the redshift coming from the
proper movements of the galaxy with respect to other celestial bodies in its neighborhood
and from the movement of the observer, which are sometimes not easy to disentangle. Some
of the big structures remain, however, as is the case of the Great Wall, and of the voids sur‐
rounded by galaxies on their surfaces. Moreover, on top of slices we have now true 3-dimen‐
sional representations of the observed data, together with computer simulations depicting a

Open Questions in Cosmology22

very rich and marvelous web structure. However, the problem to obtain this large scale pat‐
tern starting from a fundamental theory remains, to large extent, open.

Summarizing a lot, cosmologists know now that our Universe is not static nor in a steady
state. Quite on the contrary, it had a very spectacular origin some 13,730 million years ago,
what we know with an error of less than 1%, according to the most recent (7th year) data
from the WMAP (Wilkinson Microwave Anisotropy Probe) satellite, and to the first data
coming from the PLANCK mission, and from different terrestrial observatories. All astro‐
nomical tests that have been carried out until now have confirmed, without the slightest
doubt and with increasing accuracy, the new Big Bang theory, that is, the one which in‐
cludes inflation (although, concerning this last, a too-large number of different, competing
models still remains). But this is by no means the last word.

7. The expansion accelerates

Until the end of last Century, cosmologists were convinced that the expansion of the fabric
of the Universe, originated in the Big Bang, was uniform. Up to then the main challenge of
cosmology at large scale was to determine if the mass-energy density, ρ, of our cosmos was
large enough (above critical) so that it would be able to completely stop this expansion at
some point in the future—an instant after which the Universe would begin to contract, to
finally finish in a so-called Big Crunch—or if, quite on the contrary, this energy density ρ
was smaller, subcritical, and thus unable to stop the Universe expansion completely, ever in
the future. In this case, expansion would continue forever, even if, of course, there was no
doubt that the action of gravity would certainly decelerate the expansion rate, this was crys‐
tal clear. The most precise observations carried out until then indicated that the actual value
of ρ was indeed very close to the critical value, ρc, being in fact quite difficult to determine if
it was, in fact, above or below such value.

This situation radically changed just before the end of the Century, because of two different
analyses of very precise observations carried out —with the big Hubble Space Telescope—
on type Ia supernovae by two teams, each comprising some thirty scientists. The two groups
wanted to measure with high precision the deceleration, caused by gravity attraction, on the
expansion rate of the Universe, by calibrating the variation in this expansion rate with dis‐
tance. To their enormous surprise, the values obtained by both teams were completely unex‐
pected, and matched with each other. The first to issue results, in 1998, was the High-z
Supernova Search Team an Australian-American project, led by Brian Schmidt and Adam
Riess, while the other group, with the name Supernova Cosmology Project and led by Saul
Perlmutter at Lawrence Berkeley National Laboratory, published independent results the
year after, 1999. The author cannot help mentioning that one of the members in this last col‐
laboration is the Spanish astronomer Pilar Ruiz Lapuente, from Barcelona University. The
common and very clear conclusion of the two observations was that the expansion of the
Universe is nowadays accelerating and not decelerating, and that it has been accelerating for
a long period of time in the past. This was one of these moments in History where you have
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something in front of your eyes that you really do not believe. You cannot explain it with the
scientific tools at your hand. The impact of this discovery on our knowledge of the Universe
was extraordinary and the three researchers who led the teams have been awarded the 2011
Nobel Prize in Physics. The first conclusion seems quite clear: in order that this acceleration
can occur a force must be present, as we already know since Galileo, XVI C, and Newton,
XVII C, but in this case the force must be acting constantly at the level of the whole cosmos!
The question is now, what kind of force can have this property in order to produce the de‐
sired acceleration?

Figure 17. Saul Perlmutter      Brian Schmidt      Adam Riess

Thinking for a while, it is not difficult to explain the problem even to a non-specialist. An
expanding Universe, as in the case of the Bing Bang theory, does not need any force to ex‐
pand forever, just an initial impulse, for a short interval of time, as when we throw a stone
in the air. In this case, owing to the enormous mass of the Earth we are sure the stone will
stop flying and come back; but if the Earth was the size of a mountain this same stone would
never return. As already explained, at cosmological level everything just depends on the
mass density of the whole Universe being larger or smaller than the critical value, ρc, which
marks the difference between the situation when the Universe would continue expanding
forever and the one in which it would stop expanding, to start contracting back. But now, in
order that the stone can accelerate, a force must act on it all the time, as with an accelerating
car. As in the case of dark matter, nobody knows yet what produces this acceleration of the
Universe expansion, and this missing energy is generically called dark energy. In fact a (too
large) number of possible explanations have arisen, which can be roughly classified into
three types.

The first one is the most natural and immediate, but in no way the simplest to match. Com‐
ing back where we started, with Einstein’s equation, the only possibility to provide a repul‐
sive force there is by introducing again the cosmological constant, Λ, with the appropriate
sign. There is no other freedom but, fortunately, we still have this one! Regretfully, however,
as with Einstein’s, there is a big question mark behind it, namely, what is the physical nature
of Λ? Where does it come from? This brings us to explain about another crucial revolution
which took place in Physics during the first thirty years of the past Century: Quantum Me‐
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chanics. This is probably the most radical change in our conception of the world that has ev‐
er happened. In spite of Richard Feynman saying that “nobody can understand QM,” the
fact that it works to enormous precision for the description of nature is witnessed by the un‐
challenged 14 to 15 digit matching in the results of some particle physics experiments. Al‐
ready Wolfgang Pauli in the 20’s, and then Yakov Zel’dovich in the 60’s, among others,
clearly realized that if the fluctuations of the quantum vacuum—which are always there ow‐
ing to W. Heisenberg’s uncertainty principle and have a magnitude of the order of Planck’s
constant— are taken into account in Einstein’s equation (as a valid form of energy satisfying
the equivalence principle), then their contribution at cosmological scale (which happens to
go together with Λ) would be enormously big. In principle, infinitely so, albeit we know that
through a regularization and renormalization process the number is rendered finite. But
even then it is still enormous: some 60 to 120 orders of magnitude larger than needed in or‐
der to explain the observed Universe acceleration. This is the famous cosmological constant
problem, which was around since the first attempts to reconcile General Relativity and
Quantum Physics appeared (although, at first, the problem was just to explain why vacuum
fluctuations yielded a zero contribution, not a very small one, as now). Some very important
physicists, as the Nobel Prize laureate Steven Weinberg [18], have been working for years on
this problem, without real success. The reader must be adverted that, in these discussions,
the concepts of cosmological constant and of quantum vacuum fluctuations are taken as one
and the same thing, the reason being that there is no other possible contribution to Λ which
is known up to now.

Another possible explanation is that there might exist some peculiar energy fluid filling the
Universe (of course not of ordinary nature, as in the case of dark matter). There are many
different models, with fancy names, for this fluid: quintessence, k-essence, Chaplygin gas,
Galileons, and many more. The third possible explanation is the most radical of all, from the
theoretical viewpoint and as seen from the whole description of the History of the Universe
as summarized in the present article: maybe something is in error when trying to apply Ein‐
stein’s General Relativity to cosmological scales, so that this marvelous theory may need be
modified at these scales (as also Newton’s equations might have to be modified too, in order
to account for the missing dark matter). The reader will find full details of these thrilling is‐
sues in the other chapters of the Book. Let me here just note that modifications of Einstein’s
equation usually proceed by way of introducing additional terms with higher order powers
on the Ricci curvature, R, a general function f(R), and/or higher order derivatives. In fact
some of these terms are difficult to avoid when one considers quantum corrections to Ein‐
stein’s equation, as Alexey Starobinsky and collaborators did already at the beginning of the
eighties, finding in this way a model that would, to start, produce inflation and which can
be modified to possibly account for its present acceleration, too. Scientists do not know yet
the right answer, nor if the Universe acceleration is actually constant. To this end, the deriv‐
ative of the acceleration should be obtained, what is still impossible with the quality of
present data.

We should add that, for some time, the interpretation of the Ia Supernovae results as imply‐
ing a Universal acceleration were controverted, some possible explanations involving a non-

Cosmological Constant and Dark Energy: Historical Insights
http://dx.doi.org/10.5772/51697

25



something in front of your eyes that you really do not believe. You cannot explain it with the
scientific tools at your hand. The impact of this discovery on our knowledge of the Universe
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Figure 17. Saul Perlmutter      Brian Schmidt      Adam Riess
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Copernican view of the position of our local galaxy group in the cosmos were published (we
could be in one of these enormous voids surrounded by very massive structures), and even
very recently some alternative interpretation has appeared. However, Type Ia Supernovae
are very good standard candles for the redshift range where the observations were carried
out, since they have a very strong and consistent brightness along considerable cosmological
distances; moreover, since 1990 several other independent proofs have been added to check
the results. Among them, the impact of acceleration on the fluctuations of the cosmic micro‐
wave background, where measures have been carried out on the imprint of the acceleration
on the gravitational potential wells which contribute to the integrated Sachs-Wolfe effect
(and translate into colder and hotter spots in the CMB map). Also, the effect of acceleration
on the gravitational lenses, and the one that it has on the large scale structures of the Uni‐
verse, on the basis of the phenomenon known as acoustic baryon oscillations (BAO). All
these observations are absolutely independent from each other and this contributes to the
fact that there remains little doubt today that the Universe expansion accelerates. The Dark
Energy Survey project (DES) is being set to provide new measurements, integrating all these
different techniques, with participation of a group of our Institute ICE-CSIC and IEEC, led
by Enrique Gaztañaga.

Figure 18. Jaume Garriga, UB      Enrique Gaztañaga, CSIC      Sergei D. Odintsov, ICREA      Emilio Elizalde, CSIC

As already mentioned, a promising possibility to explain the acceleration consists in modify‐
ing Einstein’s equation, that is GR itself, at least at large scales, entering the so-called f(R) or
scalar-tensor theories, in their different variants. In our group of the Institute for Space Sci‐
ence (ICE-CSIC) and of the Catalan Institute of Space Research (IEEC), led by Sergei D. Odi‐
ntsov and the author of this Chapter, we are presently working on this kind of models with
a long list of international collaborators. As clearly stated at the beginning, all present day
cosmology is based on Einstein’s equation, thus, in making this step we are entering a new
age in our knowledge of the cosmos. Yet to be seen is if it will finally be a successful one. As
advanced, there are different ways to depart from GR, one of the most popular is by extend‐
ing the Hilbert-Einstein action by the addition of a function, f(R), in principle arbitrary, of
the Ricci curvature, R. A theory of this kind was first proposed by Hagen Kleinert and Hans-
Jürgen Schmidt, and independently by Salvatore Capozziello, in 2002. Already from the be‐
ginning this theory was related with quintessence, in which a scalar field with time
evolution is incorporated to GR. The discussion about f(R) theories being in fact equivalent

Open Questions in Cosmology26

to scalar-tensor ones is still open today. At the classical level they are most probably equiva‐
lent, but at the quantum level the answer seems to be clearly negative. The recent and ex‐
tremely important discovery of the Higgs field will surely give a spectacular thrust to this
kind of models. In fact, in a paper of 2004 by Elizalde, Odintsov and Shin'ichi Nojiri (now at
Nagoya University, Japan)[19] there was an independent proposal of the so-called quintom
dark energy: one phantom plus one quintessence scalar which could have a relation with the
discovered Higgs.

And with this we have reached the very final stage of our general description of our knowl‐
edge of the cosmos at large scales. There are still no observations to confirm or disprove
these last theories. A lot more about them and all the most recent developments is to be
found in the other chapters of this Book. Some very promising results seem to indicate that,
within f(R) theories, there is the possibility to build, with blocks of a really fundamental
theory, as string or M theory, a fully-fledged model which could describe all the stages of
the evolution of the cosmos, from the Big Bang through inflation, reheating and recombina‐
tion, to the present accelerated expansion and on towards the end of the Universe in a de
Sitter asymptotic phase, which is the most plausible one (although some compelling models
with future singularities, as the Big Rip, or either pulsating universes, cannot be excluded
with present data). Adding up our knowledge of the Universe, we must shamefully confess
that over 95% of it is, as of today, ‘terra ignota.’ But this is actually good for Science, since it
means that, in front of us, there is a lot to be discovered, hopefully soon!

8. The origin of the Universe

Even more uncertain is the explanation of the creation of the Universe, of the very instant
when it came to being. We are more or less acquainted with the corresponding passage of
the Bible. Looking now at the descriptions of scientists, Stephen Hawking and Roger Pen‐
rose did important work on the subject, which has been influential for several decades, with
the conclusion (obtained again under very general and natural conditions) that such instant
is (or it was until recently) a mathematical singularity and, therefore, beyond reach of any
kind of physical interpretation. This result was quite disappointing but, fortunately, it just
affects classical theories and does not take into account quantum corrections which generi‐
cally soften the singularities, or even make them completely disappear. Making the story
short, there are new models (Alex Vilenkin and also Andrei Linde have been working on
them since over twenty years ago) in which one can sidestep the singularity problem: by
combining inflation with quantum fluctuations of the vacuum state of a primordial system
in which a spark or miniscule particle---a “twist in matter and space-time” so-called “Hawk‐
ing-Turok instanton”---would be able, at zero-energy cost (as explained already), to ignite
inflation which, on its turn, would amplify the negligibly small quantum fluctuations (of
Planck’s constant magnitude) of the vacuum, giving rise, in this way, to the cosmic fluctua‐
tions (of order 10-5) which we clearly observe on the CMB plot below. This is the most an‐
cient map of the Universe that we have been able to capture until now. It corresponds to
when it was some 370,000 years old. Just before that, the Universe was like a very dense and
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hot soup of quarks, gluons and elementary particles. It was absolutely dark, light being un‐
able to travel in it, since photons, even if continuously created, where destroyed immediate‐
ly, through recombination with the neighboring particles at such high densities. But the
Universe was expanding and the temperature went down until it reached a value below the
ionization threshold of the lightest of all atoms: that of hydrogen. All of a sudden, hydrogen
precipitated at cosmic scale and, in this way, for the very first time in History, the very first
light of the first cosmic dawn started to fill out the entire Universe. And this light is still
reaching us from the most remote corners of the cosmos, and we can see it in all its bright‐
ness with the very curious eyes of our satellites as COBE, WMAP and PLANCK, which have
transformed it into images, each time more and more clear, of the most ancient map of the
Universe we now have. Putting all pieces together the so-called standard cosmological mod‐
el, or ΛCDM (Cold Dark Matter with a cosmological constant, Λ) could be constructed and
remains unchallenged till now.

Figure 19. Stephen Hawking      Roger Penrose      Alex Vilenkin

Figure 20. CMB Seven Year Microwave Sky, NASA/WMAP Science Team.

In order to proceed further into the observation of the origin --- eventually until the very ori‐
gin of time --- we will need much better eyes. To start, those capable of processing the infor‐
mation hidden in the primordial gravitational waves, what we expect to be able to do in one
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to two decades from now (projects LISA, BBO, DECIGO, etc.). In that way we will obtain
pictures of a much younger Universe and inflation could be eventually confirmed. But what
is a real challenge for present day Physics, at least without involving any form of the an‐
thropic principle (which in its strong version states that the properties of the Universe, the
universal constants must be such that they need allow intelligent life to exist, that is, our
presence as observers), is to develop a model for the origin and evolution of a single Uni‐
verse like ours. The most advanced, and only feasible, theories will always produce a multi‐
verse, that is, an uncountable collection of universes, of all possible kinds of sizes and
properties, one of which, by mere chance, would be the one we happen to live in. But, until
no observational proof of the existence of a multiverse is obtained, these theories will yet
stay beyond the frontiers of Physics, and rather in the domain of science fiction. It must be
acknowledged that these theories have been built up by very competent scientists and that
they do not contravene any of the basic laws of nature. But in order to enter its realm, as in
the case of the other theories discussed in this Chapter, compelling observational evidence
must first be found.

As last word, among theorists there is still the much extended idea that the ultimate answer
will be found, sooner or later, within string (or M) theory, the so-called “theory of every‐
thing.” But a too common mistake at different moments in the History of Science has been
the strong belief that one already had on its hands the final theory, that all what was left to
do was just polish it a bit, fill up some small holes, and carry out more precise calculations.
Errors in the past have been flagrant and were committed by some of the most brilliant sci‐
entists of each generation. The author of this Chapter defends the idea that a new theory
will emerge, sooner or later, which will be very different from the ones we now have at dis‐
posal, and which will radically change our vision of the world, as much as General Relativi‐
ty and Quantum Mechanics did one hundred years ago.
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1. Introduction

Our current cosmological model, backed by a large body of evidence from a variety of
different cosmological probes (for example, see [1, 2]), describes a Universe comprised of
around 5% normal baryonic matter, 22% cold dark matter and 73% dark energy. While many
cosmologists accept this so-called concordance cosmology – the ΛCDM cosmological model
– as accurate, very little is known about the nature and properties of these dark components
of the Universe.

Studies of the cosmic microwave background (CMB), combined with other observational
evidence of big bang nucleosynthesis indicate that dark matter is non-baryonic. This
supports measurements on galaxy and cluster scales, which found evidence of a large
proportion of dark matter. This dark matter appears to be cold and collisionless, apparent
only through its gravitational effects.

While dark matter is largely responsible for the growth of the largest structures in the
Universe, dark energy – dominant at late times – appears to have a negative pressure, and to
be responsible for an accelerated expansion of the Universe [3]. It is usually parameterised
by its equation of state parameter w = p/ρ, where p is the pressure associated with the
dark energy and ρ is its energy density. An equation of state parameter of w = −1 would
indicate a cosmological constant, consistent with general relativistic theory, but deviations
from this value would suggest a rather more exotic dark energy, and might perhaps imply a
modification to our current theory of gravity.

Gravitational lensing – the deflection of light rays by massive objects due to gravitational
effects, which gives rise to distortions in images of galaxies – is an ideal probe of the dark
universe, as it can probe the evolution of the dark matter power spectrum in an unbiased
way, and offers complementary constraints to those obtained from the CMB and other probes
of large-scale structure.
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Our current cosmological model, backed by a large body of evidence from a variety of
different cosmological probes (for example, see [1, 2]), describes a Universe comprised of
around 5% normal baryonic matter, 22% cold dark matter and 73% dark energy. While many
cosmologists accept this so-called concordance cosmology – the ΛCDM cosmological model
– as accurate, very little is known about the nature and properties of these dark components
of the Universe.

Studies of the cosmic microwave background (CMB), combined with other observational
evidence of big bang nucleosynthesis indicate that dark matter is non-baryonic. This
supports measurements on galaxy and cluster scales, which found evidence of a large
proportion of dark matter. This dark matter appears to be cold and collisionless, apparent
only through its gravitational effects.

While dark matter is largely responsible for the growth of the largest structures in the
Universe, dark energy – dominant at late times – appears to have a negative pressure, and to
be responsible for an accelerated expansion of the Universe [3]. It is usually parameterised
by its equation of state parameter w = p/ρ, where p is the pressure associated with the
dark energy and ρ is its energy density. An equation of state parameter of w = −1 would
indicate a cosmological constant, consistent with general relativistic theory, but deviations
from this value would suggest a rather more exotic dark energy, and might perhaps imply a
modification to our current theory of gravity.

Gravitational lensing – the deflection of light rays by massive objects due to gravitational
effects, which gives rise to distortions in images of galaxies – is an ideal probe of the dark
universe, as it can probe the evolution of the dark matter power spectrum in an unbiased
way, and offers complementary constraints to those obtained from the CMB and other probes
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2 Open Questions in Cosmology

Moreover, gravitational lensing probes cosmological perturbations on smaller angular scales
than CMB studies, and is thus sensitive to the non-Gaussianity induced by the late-time
non-linear evolution of structures such as clusters of galaxies, as well as any primordial
non-Gaussianity arising, for example, due to inflation very early in the evolution of the
Universe.

Traditionally, constraints from gravitational lensing are obtained by considering two-point
statistics of the lensing shear field, which encodes the small elliptical distortions applied to
the images of galaxies as a result of the gravitational potential field of structures along the
light’s path. Such two-point statistics are only weakly sensitive to the dark energy density

parameter ΩΛ
1, and depend on a degenerate combination of the amplitude of the matter

power spectrum σ8 and the matter density parameter ΩM. In addition, two-point statistics
probe only the Gaussian part of the shear field, therefore in considering such statistics alone,
information about nonlinear structure evolution and primordial non-Gaussianity is lost.

Similarly, attempts to reconstruct a map of the two-dimensional projected surface mass
density (the convergence κ) and three dimensional density field have often involved the use
of Gaussian priors to constrain the reconstruction (for example, see [4]), thus again having
limited application in studies of non-Gaussianity.

In this chapter, we present a review of recently developed gravitational lensing techniques
that go beyond the standard two-point statistics, both in the arena of map-making in two
and three dimensions and that of higher-order statistics of the shear field or, equivalently,
the convergence field κ.

The methods we present are all based on the concept of sparse recovery, which has been
found to be a very powerful tool in signal processing [5, 6]. Such methods are based on the
assumption that a given image or observation can be represented sparsely in an appropriate
basis (such as a Fourier or wavelet basis). Sparse priors using a wavelet basis have been
used in many areas of signal processing in astronomy; of particular interest in this chapter
will be the areas of denoising and in the reconstruction of the 3D density field from lensing
measurements, but other applications include deconvolution and inpainting.

There is much information to be gained by considering non-Gaussian statistics and nonlinear
signal processing methods, and this is an exciting and active area of research. With new
surveys such as the Euclid satellite [7] coming online within the next decade, a wealth
of high-quality data will soon be available. These new techniques will therefore prove
invaluable in constraining the cosmological model, and allow us to better understand the
nature of the primary constituents of the Universe.

2. Weak gravitational lensing

We begin with a brief overview of weak lensing theory. For a more complete description and
discussion of the subject, see [8, 9]

2.1. Weak lensing theory

The basic idea underlying the theory of gravitational lensing is that massive objects distort
the spacetime around them, and thus bend the path of light in their vicinity. A light ray

1 The energy density parameters are defined by Ωi = ρi/ρc , where ρc is the critical density of the Universe
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originating at angle β is deflected such that it appears to the observer to originate at an
angular position θ, where

β = θ−α(θ) = θ−∇ψ(θ), (1)

where ψ is the two-dimensional deflection potential associated with the lens and α is the
deflection angle.

For extended sources, photons from different angular positions in the source plane are
deflected differently, giving rise to a distortion in the observed galaxy image, which is
described – to first order – by the Jacobian of the lens equation (1):

A =

∂β

∂θ
= δi,j −

∂2ψ

∂θi∂θj
=

�

1 − κ − γ1 −γ2

−γ2 1 − κ + γ1

�

, (2)

where κ =
1
2∇

2ψ is the convergence, or dimensionless surface density, and γ = γ1 + iγ2 =

|γ|e2iφ is the complex shear, which gives rise to an anisotropic elliptical distortion in the
lensed image. The components of the shear are related to the potential via:

γ1 =

1

2

�

∂
2
1ψ − ∂

2
2ψ

�

, γ2 = ∂1∂2ψ , (3)

where ∂i = ∂/∂θi, and the shear is related to the convergence through the relation:

γ(θ) =
1

π

�

d2θ′D(θ− θ′)κ(θ′) , (4)

where the convolution kernel D is given by

D(θ) ≡
θ2

2 − θ2
1 − 2iθ1θ2

|θ|4
= −

1

(θ1 − iθ2)
2

. (5)

The convergence, in turn, can be related to the 3D density contrast δ(r) ≡ ρ(r)/ρ − 1 by

κ(θ, w) =

3H2
0 ΩM

2c2

� w

0
dw′

fK(w
′

) fK(w − w′

)

fK(w)

δ[ fK(w
′

)θ, w′

]

a(w′

)

,

(6)

where ρ is the mean density of the Universe, H0 is the Hubble parameter, ΩM is the matter
density parameter, c is the speed of light, a(w) is the scale parameter evaluated at comoving
distance w, and

fK(w) =











K−1/2 sin(K1/2w), K > 0

w, K = 0

(−K)−1/2sinh([−K]1/2w) K < 0

, (7)

gives the comoving angular diameter distance as a function of the comoving distance and
the curvature, K, of the Universe.
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Moreover, gravitational lensing probes cosmological perturbations on smaller angular scales
than CMB studies, and is thus sensitive to the non-Gaussianity induced by the late-time
non-linear evolution of structures such as clusters of galaxies, as well as any primordial
non-Gaussianity arising, for example, due to inflation very early in the evolution of the
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the images of galaxies as a result of the gravitational potential field of structures along the
light’s path. Such two-point statistics are only weakly sensitive to the dark energy density
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density (the convergence κ) and three dimensional density field have often involved the use
of Gaussian priors to constrain the reconstruction (for example, see [4]), thus again having
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found to be a very powerful tool in signal processing [5, 6]. Such methods are based on the
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basis (such as a Fourier or wavelet basis). Sparse priors using a wavelet basis have been
used in many areas of signal processing in astronomy; of particular interest in this chapter
will be the areas of denoising and in the reconstruction of the 3D density field from lensing
measurements, but other applications include deconvolution and inpainting.

There is much information to be gained by considering non-Gaussian statistics and nonlinear
signal processing methods, and this is an exciting and active area of research. With new
surveys such as the Euclid satellite [7] coming online within the next decade, a wealth
of high-quality data will soon be available. These new techniques will therefore prove
invaluable in constraining the cosmological model, and allow us to better understand the
nature of the primary constituents of the Universe.
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We begin with a brief overview of weak lensing theory. For a more complete description and
discussion of the subject, see [8, 9]
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originating at angle β is deflected such that it appears to the observer to originate at an
angular position θ, where

β = θ−α(θ) = θ−∇ψ(θ), (1)

where ψ is the two-dimensional deflection potential associated with the lens and α is the
deflection angle.

For extended sources, photons from different angular positions in the source plane are
deflected differently, giving rise to a distortion in the observed galaxy image, which is
described – to first order – by the Jacobian of the lens equation (1):
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4 Open Questions in Cosmology

2.2. Two-point statistics

The typical gravitational shear applied to a galaxy as a result of lensing by large-scale
structure in the Universe – so-called cosmic shear – is of order |γ| ∼ 0.01. However, galaxies
are intrinsically elliptical in shape, with a typical ellipticity of order |ε| ∼ 0.2 − 0.3, therefore
the gravitational lensing effect can only be measured statistically; under the assumption
that galaxy shapes are intrinsically uncorrelated, the mean ellipticity computed over a large
number of sources will yield the gravitational shear: �ε� ≃ γ.

The most common method for constraining cosmological parameters in weak lensing studies
is to use two-point statistics of the shear field. The power spectrum of the shear or
convergence, Pκ(ℓ) = Pγ(ℓ), can be related directly to the 3D matter power spectrum of
density fluctuations δ by:

Pκ(ℓ) =
9H4

0 Ω
2
M

4c4

∫

dw
W2

(w)

a2
(w)

Pδ

(

ℓ

fK(w)

, w

)

, (8)

where

W(w) =

∫

∞

w
dw′

fK(w
′

− w)

fk(w
′

)

p(z)

[

dz

dw′

]

, (9)

is a weighting function integrated over the probability distribution of sources p(z) in the
sample as a function of redshift z.

When working with real data, it is often more convenient to consider statistics computed
in real space, namely the shear correlation functions, which are defined in terms of the
convergence power spectrum as [10, 11]:

ξ
±
(θ) = �γtγt� ± �γ

×
γ
×
� =

∫

∞

0

dℓ ℓ

2π
J0,4(ℓθ)Pκ(ℓ) , (10)

where Jn is an n-th order Bessel function of the first kind, and γt and γ
×

are the tangential
and cross shear components, respectively, which are defined relative to the vector connecting
the two galaxies separated by angular distance θ.

2.3. Cosmological constraints

The measured two-point statistics described above can, by virtue of their relationship to the
power spectrum of the underlying matter density fluctuations, be used to place constraints
on cosmological parameters. These constraints may be improved if information about the
distances to source galaxies is used to bin the galaxies into redshift slices, and compute the
correlation functions tomographically.

Figure 1 shows cosmological parameter constraints obtained using two state-of-the-art
telescopes: the Canada-France-Hawaii Telescope (CFHT), and the Hubble Space Telescope
(specifically, the Cosmos survey). While the CFHT results were obtained using a 2D analysis
[12], the Cosmos results show constraints obtained by both a 2D and a 3D analysis of
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the shear data [13]. In both cases, a large degeneracy is seen between the matter density
parameter ΩM and σ8, the amplitude of the matter power spectrum. The CFHT results
also show constraints on the dark energy equation of state parameter w. Here, again, a
degeneracy between parameters is seen.

(a) Joint constraints on ΩM and σ8

from a 2D analysis of the combined
CFHT wide and deep surveys [12].

(b) Joint constraints on ΩM and w
from a 2D analysis of the CFHT deep
survey [12].
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(c) Joint constraints on ΩM and σ8 from
a 2D and 3D analysis of the Cosmos
survey data [13].

Figure 1. Cosmological parameter constraints from recent weak lensing surveys. Contours are plotted at the 68% (cyan), 95%

(blue) and 99.9% (green) confidence levels for the CFHT data, and at the 68% (inner) and 95% (outer) confidence levels for the

Cosmos data.

While it is clear from the figures that two-point shear statistics hold a wealth of information,
it is also evident that these statistics depend on degenerate combinations of the cosmological
model parameters. In order to break these degeneracies, and thus more tightly constrain
our cosmological model, we must therefore consider higher-order statistics of the shear
or convergence. Such higher-order statistics will enable us to capture information about
the non-Gaussian part of the lensing spectrum due to a combination of primordial
non-Gaussianity and late-time nonlinear evolution of structures, which two-point statistics
are unable to probe.

3. Scalar fields associated with the shear

The shear γ is a spin-2 field, therefore while the two-point correlations of the shear field
can be reduced to a scalar quantity for parity reasons, this is not the case for higher-order
moments of the shear field [14–16]. For this reason, it is useful to compute a scalar quantity
from the shear field before computing higher-order statistics.

3.1. The aperture mass statistic

For this purpose, the aperture mass statistic Map [17, 18] is widely-used. The Map statistic
is defined as the convolution of the convergence κ with a radially symmetrical filter function
U(|ϑ|) of width θ:

Map(θ) =

∫

d2ϑ κ(ϑ)U(|ϑ|) . (11)
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The measured two-point statistics described above can, by virtue of their relationship to the
power spectrum of the underlying matter density fluctuations, be used to place constraints
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the shear data [13]. In both cases, a large degeneracy is seen between the matter density
parameter ΩM and σ8, the amplitude of the matter power spectrum. The CFHT results
also show constraints on the dark energy equation of state parameter w. Here, again, a
degeneracy between parameters is seen.

(a) Joint constraints on ΩM and σ8

from a 2D analysis of the combined
CFHT wide and deep surveys [12].

(b) Joint constraints on ΩM and w
from a 2D analysis of the CFHT deep
survey [12].
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(c) Joint constraints on ΩM and σ8 from
a 2D and 3D analysis of the Cosmos
survey data [13].

Figure 1. Cosmological parameter constraints from recent weak lensing surveys. Contours are plotted at the 68% (cyan), 95%

(blue) and 99.9% (green) confidence levels for the CFHT data, and at the 68% (inner) and 95% (outer) confidence levels for the

Cosmos data.

While it is clear from the figures that two-point shear statistics hold a wealth of information,
it is also evident that these statistics depend on degenerate combinations of the cosmological
model parameters. In order to break these degeneracies, and thus more tightly constrain
our cosmological model, we must therefore consider higher-order statistics of the shear
or convergence. Such higher-order statistics will enable us to capture information about
the non-Gaussian part of the lensing spectrum due to a combination of primordial
non-Gaussianity and late-time nonlinear evolution of structures, which two-point statistics
are unable to probe.

3. Scalar fields associated with the shear

The shear γ is a spin-2 field, therefore while the two-point correlations of the shear field
can be reduced to a scalar quantity for parity reasons, this is not the case for higher-order
moments of the shear field [14–16]. For this reason, it is useful to compute a scalar quantity
from the shear field before computing higher-order statistics.

3.1. The aperture mass statistic

For this purpose, the aperture mass statistic Map [17, 18] is widely-used. The Map statistic
is defined as the convolution of the convergence κ with a radially symmetrical filter function
U(|ϑ|) of width θ:

Map(θ) =

∫

d2ϑ κ(ϑ)U(|ϑ|) . (11)
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By considering the relationship between the shear, γ, and the convergence, one can
reformulate equation (11) in terms of the measured shear as

Map(θ) =

∫

d2ϑ γt(ϑ)Q(|ϑ|) , (12)

where γt(ϑ) is the tangential component of the shear at position ϑ relative to the centre of
the aperture, Q(|ϑ|) is a second radially-symmetric function, related to U(|ϑ|) by:

Q(ϑ) ≡
2

ϑ2

∫

ϑ

0
ϑ
′U(ϑ

′

)dϑ
′

− U(ϑ) , (13)

and U(ϑ) is required to be compensated, i.e.

∫

ϑcut

0
ϑ U(ϑ) dϑ = 0 , (14)

with ϑcut often taken to be the radius of the aperture, θ. Furthermore, Q(ϑ) and U(ϑ) are
required to go to zero smoothly at ϑcut. It is also preferable that the power spectrum of U(ϑ)

is local in the frequency domain, and shows no oscillatory behaviour. This ensures that the
filter function acts as a band-pass filter, allowing detection of structures at the scale of interest
only.

Several authors [19, 20] have advocated a filter function of the form:

U(ϑ) =
A

θ2

(

1 −
bϑ2

θ2

)

exp

(

−

bϑ2

θ2

)

,

Q(ϑ) =
A

θ2

bϑ2

θ2
exp

(

−

bϑ2

θ2

)

, (15)

where various choices for the constant b and the overall normalisation A have been used in
the literature [20–22]. Of specific interest is the form used in [20] and [22], where b = 1/2 is
chosen.2 This form is considered to be optimal for higher-order weak lensing statistics, such
as the skewness of the aperture mass statistic [19, 22].

Note that the Q(ϑ) filter function described in equation (15) shows a peak at ϑ =

√

2θ, and
tends to zero as ϑ → ∞. In practice, any algorithm used to generate an aperture mass map
will need to truncate this filter function at some finite radius. This will involve a trade-off
between accuracy and algorithm speed, and truncation may affect the effective width of the
filter.

One advantage of this method is that the aperture mass statistic can be computed directly
from the shear catalogue. Moreover, as the filter acts as a band-pass filter, it is possible to
boost the signal relative to the noise by considering a filter with a scale substantially larger

2 This form is analogous to the Mexican Hat wavelet function
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than the typical scale of the noise (which is typically dominant on pixel scales, depending
on the binning chosen for the shear data). Indeed, optimal signal-to-noise is obtained when
the filter is chosen such that its angular scale matches that of the structures we aim to detect,
and its shape matches closely the expected profile of these structures.

3.2. The wavelet transform

The wavelet transform is a multiscale transform, where the wavelet coefficients of an image
are computed at each position in the image at various different scales simultaneously. In one
dimension, the wavelet coefficient of a function f (x), evaluated at position b and scale a is
defined as [23, 24]:

W(a, b) =
1
√

a

∫

f (x)ψ∗

(

x − b

a

)

dx , (16)

where ψ(x) is the analysing wavelet. The analysis is analogous in 2 dimensions, with
ψ(x, y) = ψ(x)ψ(y).

By definition, wavelets are compensated functions; i.e. the wavelet function ψ(x) is
constrained such that

∫

R1 ψ(x)dx = 0 and hence, by extension

∫∫

R2
ψ(x, y)dx dy = 0. (17)

According to the definition in equation (16), the continuous wavelet transform of an image is
therefore nothing more than the convolution of that image with compensated filter functions
of various characteristic scales. If the image f (x, y) is taken to be the convergence κ(x, y),
then for an appropriate choice of (radially-symmetric, local) wavelet, the wavelet transform
is formally identical to the aperture mass statistic at the corresponding scales, the only
difference being the choice of filter functions.

In practice in application, we use the starlet transform algorithm [6, 23–25], which
simultaneously computes the wavelet transform on dyadic scales corresponding to 2j pixels.
This algorithm decomposes the convergence map of size N × N into J = jmax + 1 sub-arrays
of size N × N as follows:

κ(x, y) = cJ(x, y) +
jmax

∑
j=1

wj(x, y) , (18)

where jmax represents the number of wavelet bands (or, equivalently, aperture mass maps)
considered, cJ represents a smooth (or continuum) version of the original image κ, and wj

represents the input map filtered at scale 2j (i.e. the aperture mass map at θ = 2j pixels).

Using the wavelet formalism to derive the aperture mass statistic presents a number of
advantages. Many families of wavelet functions have been studied in the statistical literature,
and all these wavelet functions could be applied to the aperture mass statistic. This allows us
to tune our filter function to optimise the signal-to-noise in the resulting maps. In addition,
for some specific wavelet functions, discrete and very fast algorithms exist, allowing us to
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By considering the relationship between the shear, γ, and the convergence, one can
reformulate equation (11) in terms of the measured shear as
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and U(ϑ) is required to be compensated, i.e.

∫

ϑcut

0
ϑ U(ϑ) dϑ = 0 , (14)

with ϑcut often taken to be the radius of the aperture, θ. Furthermore, Q(ϑ) and U(ϑ) are
required to go to zero smoothly at ϑcut. It is also preferable that the power spectrum of U(ϑ)

is local in the frequency domain, and shows no oscillatory behaviour. This ensures that the
filter function acts as a band-pass filter, allowing detection of structures at the scale of interest
only.
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where various choices for the constant b and the overall normalisation A have been used in
the literature [20–22]. Of specific interest is the form used in [20] and [22], where b = 1/2 is
chosen.2 This form is considered to be optimal for higher-order weak lensing statistics, such
as the skewness of the aperture mass statistic [19, 22].

Note that the Q(ϑ) filter function described in equation (15) shows a peak at ϑ =

√

2θ, and
tends to zero as ϑ → ∞. In practice, any algorithm used to generate an aperture mass map
will need to truncate this filter function at some finite radius. This will involve a trade-off
between accuracy and algorithm speed, and truncation may affect the effective width of the
filter.

One advantage of this method is that the aperture mass statistic can be computed directly
from the shear catalogue. Moreover, as the filter acts as a band-pass filter, it is possible to
boost the signal relative to the noise by considering a filter with a scale substantially larger

2 This form is analogous to the Mexican Hat wavelet function
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than the typical scale of the noise (which is typically dominant on pixel scales, depending
on the binning chosen for the shear data). Indeed, optimal signal-to-noise is obtained when
the filter is chosen such that its angular scale matches that of the structures we aim to detect,
and its shape matches closely the expected profile of these structures.

3.2. The wavelet transform

The wavelet transform is a multiscale transform, where the wavelet coefficients of an image
are computed at each position in the image at various different scales simultaneously. In one
dimension, the wavelet coefficient of a function f (x), evaluated at position b and scale a is
defined as [23, 24]:

W(a, b) =
1
√

a

∫

f (x)ψ∗

(

x − b

a

)

dx , (16)

where ψ(x) is the analysing wavelet. The analysis is analogous in 2 dimensions, with
ψ(x, y) = ψ(x)ψ(y).

By definition, wavelets are compensated functions; i.e. the wavelet function ψ(x) is
constrained such that

∫

R1 ψ(x)dx = 0 and hence, by extension

∫∫

R2
ψ(x, y)dx dy = 0. (17)

According to the definition in equation (16), the continuous wavelet transform of an image is
therefore nothing more than the convolution of that image with compensated filter functions
of various characteristic scales. If the image f (x, y) is taken to be the convergence κ(x, y),
then for an appropriate choice of (radially-symmetric, local) wavelet, the wavelet transform
is formally identical to the aperture mass statistic at the corresponding scales, the only
difference being the choice of filter functions.

In practice in application, we use the starlet transform algorithm [6, 23–25], which
simultaneously computes the wavelet transform on dyadic scales corresponding to 2j pixels.
This algorithm decomposes the convergence map of size N × N into J = jmax + 1 sub-arrays
of size N × N as follows:

κ(x, y) = cJ(x, y) +
jmax

∑
j=1

wj(x, y) , (18)

where jmax represents the number of wavelet bands (or, equivalently, aperture mass maps)
considered, cJ represents a smooth (or continuum) version of the original image κ, and wj

represents the input map filtered at scale 2j (i.e. the aperture mass map at θ = 2j pixels).

Using the wavelet formalism to derive the aperture mass statistic presents a number of
advantages. Many families of wavelet functions have been studied in the statistical literature,
and all these wavelet functions could be applied to the aperture mass statistic. This allows us
to tune our filter function to optimise the signal-to-noise in the resulting maps. In addition,
for some specific wavelet functions, discrete and very fast algorithms exist, allowing us to
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compute a set of wavelet scales through the use of a filter bank with a very limited number
of operations. See [6] for a full review of the different wavelet transform algorithms.

In the starlet transform algorithm, the wavelet ψ(x, y) is separable and can be defined by:

ψ

( x

2
,

y

2

)

= 4

[

ϕ(x, y)−
1

4
ϕ

( x

2
,

y

2

)

]

, (19)

where ϕ(x, y) = ϕ(x)ϕ(y) and ϕ(x) is a scaling function from which the wavelet is generated.
In the case of the starlet wavelet, ϕ(x) is a B3-spline:

ϕ(x) =
1

12
(|x − 2|3 − 4|x − 1|3 + 6|x|3 − 4|x + 1|3 + |x + 2|3), (20)

which is a compact function that is identically zero for |x| > 2.

This wavelet function has a compact support in real space, is well localized in Fourier
domain, and the wavelet decomposition of an image can be obtained with a very fast
algorithm (see [24] for a full description).

Figure 2 shows the starlet wavelet and aperture mass filters defined above in both real and
Fourier space. Notice that the two filters presented have very similar shapes in real space,
but different widths. While the starlet filter function goes to zero identically at ϑ = 2θ,
and remains zero beyond this value, the Map filter function goes to zero as ϑ → ∞, and
must therefore be truncated when applied in practice. Clearly at ϑ = 5θ, the Map filters are
sufficiently close to zero, so that this is an appropriate truncation radius; however this will
impact the computation time of the Map statistic.

In Fourier space, we show the response of the Map filter for truncation radii of ϑcut = θ

and 5θ. Notice that the shape of the response curves in Fourier space for both the Map and
wavelet filter functions are similar, but that the peak of the response curve for the Map filter
function shifts when ϑcut is varied. This is because the effective scale of the filter function
is being changed. Also notice that in the case of ϑcut = θ, high-frequency oscillations are
present in the response curve. This is a direct result of the truncation of the filter function,
and will occur whenever such truncation is applied. Indeed, imperceptibly small oscillations
are still present in the response curve for the filter truncated at ϑcut = 5θ.

Such oscillations are not present at all with the starlet filter function, as no truncation is
applied to this function whatsoever. This gives the starlet transform the distinct advantage
of being directly applicable, without any consideration needed regarding truncation radii
and the associated impact on the Fourier-space response of the filter functions.

3.3. Advantages of the wavelet formalism

The aperture mass formalism tends to be the preferred method for weak lensing studies for a
number of reasons. Firstly, the filter functions can be simply expressed analytically, and any
associated statistics of the aperture mass can therefore be straightforwardly computed from
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(a) Map and wavelet filter functions in real space (b) Filter response curves in Fourier space

Figure 2. A comparison of the Map and starlet wavelet filters in real and Fourier space.

the shear catalogue directly. This avoids the need to generate an aperture mass map, which
can be computationally intensive, and furthermore does not require the computation of the
convergence, κ.

Computing the convergence from the shear measurements can be tricky for a number of
reasons. Equation (4) describes a convolution over all 2D space. Given that we aim to invert
this equation for an image of a finite size, a direct inversion in Fourier space will give rise
to significant edge effects, and a leakage of power into so-called B-modes, which effectively
imply a spurious (non-lensing) cross-component to the shear field γ, and usually only arise
due to systematic effects in the lensing measurements.

Several methods have been devised to invert equation (4) whilst minimising these
undesirable effects [26–29]. Most recently, the authors in [30] have presented a method
based on a wavelet-Helmholtz decomposition, with which they demonstrate a reconstruction
error at the few percent level, as compared to an error of ∼ 30% seen with Fourier-based
methods. This implies that there is little advantage to the shear catalogue as opposed to
the convergence map. Indeed, working on the convergence map and under the wavelet
framework may offer some distinct advantages.

The first advantage comes directly from the nature of the wavelet transform. The aperture
mass filter is a bandpass filter. Because the Map reconstruction is only computed for a
discrete set of aperture scales, information on intermediate scales may be lost, particularly
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compute a set of wavelet scales through the use of a filter bank with a very limited number
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which is a compact function that is identically zero for |x| > 2.

This wavelet function has a compact support in real space, is well localized in Fourier
domain, and the wavelet decomposition of an image can be obtained with a very fast
algorithm (see [24] for a full description).
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Fourier space. Notice that the two filters presented have very similar shapes in real space,
but different widths. While the starlet filter function goes to zero identically at ϑ = 2θ,
and remains zero beyond this value, the Map filter function goes to zero as ϑ → ∞, and
must therefore be truncated when applied in practice. Clearly at ϑ = 5θ, the Map filters are
sufficiently close to zero, so that this is an appropriate truncation radius; however this will
impact the computation time of the Map statistic.

In Fourier space, we show the response of the Map filter for truncation radii of ϑcut = θ

and 5θ. Notice that the shape of the response curves in Fourier space for both the Map and
wavelet filter functions are similar, but that the peak of the response curve for the Map filter
function shifts when ϑcut is varied. This is because the effective scale of the filter function
is being changed. Also notice that in the case of ϑcut = θ, high-frequency oscillations are
present in the response curve. This is a direct result of the truncation of the filter function,
and will occur whenever such truncation is applied. Indeed, imperceptibly small oscillations
are still present in the response curve for the filter truncated at ϑcut = 5θ.

Such oscillations are not present at all with the starlet filter function, as no truncation is
applied to this function whatsoever. This gives the starlet transform the distinct advantage
of being directly applicable, without any consideration needed regarding truncation radii
and the associated impact on the Fourier-space response of the filter functions.

3.3. Advantages of the wavelet formalism

The aperture mass formalism tends to be the preferred method for weak lensing studies for a
number of reasons. Firstly, the filter functions can be simply expressed analytically, and any
associated statistics of the aperture mass can therefore be straightforwardly computed from
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the shear catalogue directly. This avoids the need to generate an aperture mass map, which
can be computationally intensive, and furthermore does not require the computation of the
convergence, κ.

Computing the convergence from the shear measurements can be tricky for a number of
reasons. Equation (4) describes a convolution over all 2D space. Given that we aim to invert
this equation for an image of a finite size, a direct inversion in Fourier space will give rise
to significant edge effects, and a leakage of power into so-called B-modes, which effectively
imply a spurious (non-lensing) cross-component to the shear field γ, and usually only arise
due to systematic effects in the lensing measurements.

Several methods have been devised to invert equation (4) whilst minimising these
undesirable effects [26–29]. Most recently, the authors in [30] have presented a method
based on a wavelet-Helmholtz decomposition, with which they demonstrate a reconstruction
error at the few percent level, as compared to an error of ∼ 30% seen with Fourier-based
methods. This implies that there is little advantage to the shear catalogue as opposed to
the convergence map. Indeed, working on the convergence map and under the wavelet
framework may offer some distinct advantages.

The first advantage comes directly from the nature of the wavelet transform. The aperture
mass filter is a bandpass filter. Because the Map reconstruction is only computed for a
discrete set of aperture scales, information on intermediate scales may be lost, particularly
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at both the small and large frequency extremes. In contrast, the wavelet transform retains
information on all scales. The first wavelet scale is effectively a high-pass filter, retaining
all the high-frequency information in the image, while the remaining wavelet scales are
bandpass filtered as with the Map-filtered images. Finally, the wavelet transform retains cJ ,
which encodes the large-scale information in the image, and therefore consists of a smoothed
version of the image (or an image with a low-pass filter applied). Figure 3(a) demonstrates
this point for a wavelet transform with J = 5, showing the Fourier-space response of the
wavelet filter as a function of scale j.

(a) The filter response of each of 5 scales of the wavelet
transform

(b) Comparison of a the processing time of a
brute-force aperture mass algorithm and the starlet
transform algorithm

Figure 3. Illustration of the various advantages offered by the wavelet transform in terms of (a) retention of information on all

scales and (b) algorithm processing time.

In addition, from a mapping perspective, the starlet wavelet transform algorithm is
substantially faster than a brute-force computation of the aperture mass statistic in real space.
Such a naive implementation has complexity ∝ O(N2ϑ2

cut), where N × N is the dimension
of the image, and ϑcut is the chosen truncation radius. This scaling means that for large
apertures or, equivalently, for high-resolution images, the algorithm may prove to be very
time-consuming. The starlet wavelet transform algorithm is of complexity ∝ O(N2 J), where
J is the number of scales considered, and is limited by N ≥ 2J . This means that the processing
time for the wavelet transform algorithm is sensitive only to the number of scales considered,
rather than the size of the filter functions involved, and depends linearly on this number.

In Figure 3(b), we compare the processing time for the aperture mass algorithm and the
starlet transform algorithm, both programmed in C++, to analyse an image of 1024 × 1024
pixels on a 2 × 2.66GHz Intel Xeon Dual-Core processor. We consider aperture scales θ =

[2, 4, 8, 16, 32, 64], which correspond to J = jmax + 1 = [2, 3, 4, 5, 6, 7] wavelet scales in the
wavelet transform. In the aperture mass algorithm, the filters are truncated at a radius
of ϑcut = θ. For the application of filters which necessitate truncation at a much larger
radius, we expect the computation time to be roughly an order of magnitude longer. Even
at the smallest aperture radius, the wavelet transform is ∼ 5× faster than the aperture mass
algorithm. At θ = 64 pixels, the wavelet transform is ∼ 1200× faster than the aperture mass
algorithm. Note that the wavelet transform for a given value of J simultaneously computes

the wavelet transform at all scales 2j, 0 < j ≤ J − 1, in addition to the smoothed continuum
map cJ , whilst the aperture mass algorithm computes the transform at a single scale θ. We
note further that the computational time for the wavelet transform for J = 7 wavelet scales
is still a factor of ∼ 2× less than the computational time for the aperture mass algorithm at
θ = 2 pixels.
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As discussed in [31], this time advantage further extends to higher-order statistics of the

Map, which are typically related directly to n-point correlation functions of the shear. In

recent years, tree codes have been employed to speed up computation of n-point correlation

functions. Typical tree codes to compute n-point correlation functions are O(Ngal log(Ngal))

[32] on a shear catalogue. For a single Euclid exposure of 0.5 deg2, we can expect Ngal ∼

54, 000 (30 galaxies/arcmin2) - 180, 000 (100 galaxies/arcmin2). Tree codes exist that act on

pixelated data [33] which run at O(N2
pixnbin) where N2

pix is the total number of pixels and

nbin is the number of bins in the correlation function. For a Euclid exposure, assuming pixels

of 1 arcminute, we have N2
pix = 1800, and nbin will be dependent on the required resolution

of the correlation function.

The wavelet method acts on pixellated data, and is O(N2 J) in computation time, so our

algorithm will be comparable for computation of 2-point statistics, if the 2-point correlation

function is computed on pixellated data, but if a shear catalogue is used, we will have a

faster algorithm by at least an order of magnitude. For higher-order statistics, this advantage

is even more pronounced. Furthermore, while optimised software is freely and publicly

available to compute the wavelet transform, such optimised software is not available for

n-point correlation functions.

Another advantage of the wavelet formalism is that it is possible to carry out an explicit

denoising of the convergence field using thresholding based on a False Discovery Rate

method. For details on this method, see [34], where the MRLens software package encoding

this method is presented3. This allows one to derive robust detection levels in wavelet space,

and to produce high-fidelity denoised mass maps.

In addition, wavelet-based methods offer more flexibility than aperture mass filters. Whilst

we have thus far discussed only the starlet wavelet function, many other wavelet dictionaries

may be used. The starlet filter seems ideal for lensing studies, due to its similarity to the

aperture mass filter presented here, which was deemed to be optimal in [22]. However,

different dictionaries may be optimal in different applications; for example, if one were

attempting to study filamentary structure, ridgelets or curvelets might be a more appropriate

basis. The vastness of the wavelet libraries and the public availability of fast algorithms to

compute these transforms are major strengths of wavelet-based approaches.

4. Weak lensing beyond two-point shear statistics

As noted previously, the optimality of second-order statistics to constrain cosmological

parameters depends heavily on the assumption of Gaussianity of the field. However the

weak lensing field is composed, at small scales, of non-Gaussian features such as clusters

of galaxies. These non-Gaussian signatures carry additional information that cannot be

extracted with second-order statistics. Many studies [35–39] have shown that combining

second-order statistics with higher-order statistics tightens the constraints on cosmological

parameters. We now consider the higher-order statistics most commonly used in weak

lensing studies aimed at detecting and constraining non-Gaussianity in the lensing field.

3 The MRLens software, along with many other software packages for astronomical applications, is freely available
here: http://cosmostat.org/software.html
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at both the small and large frequency extremes. In contrast, the wavelet transform retains
information on all scales. The first wavelet scale is effectively a high-pass filter, retaining
all the high-frequency information in the image, while the remaining wavelet scales are
bandpass filtered as with the Map-filtered images. Finally, the wavelet transform retains cJ ,
which encodes the large-scale information in the image, and therefore consists of a smoothed
version of the image (or an image with a low-pass filter applied). Figure 3(a) demonstrates
this point for a wavelet transform with J = 5, showing the Fourier-space response of the
wavelet filter as a function of scale j.

(a) The filter response of each of 5 scales of the wavelet
transform

(b) Comparison of a the processing time of a
brute-force aperture mass algorithm and the starlet
transform algorithm

Figure 3. Illustration of the various advantages offered by the wavelet transform in terms of (a) retention of information on all

scales and (b) algorithm processing time.

In addition, from a mapping perspective, the starlet wavelet transform algorithm is
substantially faster than a brute-force computation of the aperture mass statistic in real space.
Such a naive implementation has complexity ∝ O(N2ϑ2

cut), where N × N is the dimension
of the image, and ϑcut is the chosen truncation radius. This scaling means that for large
apertures or, equivalently, for high-resolution images, the algorithm may prove to be very
time-consuming. The starlet wavelet transform algorithm is of complexity ∝ O(N2 J), where
J is the number of scales considered, and is limited by N ≥ 2J . This means that the processing
time for the wavelet transform algorithm is sensitive only to the number of scales considered,
rather than the size of the filter functions involved, and depends linearly on this number.

In Figure 3(b), we compare the processing time for the aperture mass algorithm and the
starlet transform algorithm, both programmed in C++, to analyse an image of 1024 × 1024
pixels on a 2 × 2.66GHz Intel Xeon Dual-Core processor. We consider aperture scales θ =

[2, 4, 8, 16, 32, 64], which correspond to J = jmax + 1 = [2, 3, 4, 5, 6, 7] wavelet scales in the
wavelet transform. In the aperture mass algorithm, the filters are truncated at a radius
of ϑcut = θ. For the application of filters which necessitate truncation at a much larger
radius, we expect the computation time to be roughly an order of magnitude longer. Even
at the smallest aperture radius, the wavelet transform is ∼ 5× faster than the aperture mass
algorithm. At θ = 64 pixels, the wavelet transform is ∼ 1200× faster than the aperture mass
algorithm. Note that the wavelet transform for a given value of J simultaneously computes

the wavelet transform at all scales 2j, 0 < j ≤ J − 1, in addition to the smoothed continuum
map cJ , whilst the aperture mass algorithm computes the transform at a single scale θ. We
note further that the computational time for the wavelet transform for J = 7 wavelet scales
is still a factor of ∼ 2× less than the computational time for the aperture mass algorithm at
θ = 2 pixels.
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As discussed in [31], this time advantage further extends to higher-order statistics of the

Map, which are typically related directly to n-point correlation functions of the shear. In

recent years, tree codes have been employed to speed up computation of n-point correlation

functions. Typical tree codes to compute n-point correlation functions are O(Ngal log(Ngal))

[32] on a shear catalogue. For a single Euclid exposure of 0.5 deg2, we can expect Ngal ∼

54, 000 (30 galaxies/arcmin2) - 180, 000 (100 galaxies/arcmin2). Tree codes exist that act on

pixelated data [33] which run at O(N2
pixnbin) where N2

pix is the total number of pixels and

nbin is the number of bins in the correlation function. For a Euclid exposure, assuming pixels

of 1 arcminute, we have N2
pix = 1800, and nbin will be dependent on the required resolution

of the correlation function.

The wavelet method acts on pixellated data, and is O(N2 J) in computation time, so our

algorithm will be comparable for computation of 2-point statistics, if the 2-point correlation

function is computed on pixellated data, but if a shear catalogue is used, we will have a

faster algorithm by at least an order of magnitude. For higher-order statistics, this advantage

is even more pronounced. Furthermore, while optimised software is freely and publicly

available to compute the wavelet transform, such optimised software is not available for

n-point correlation functions.

Another advantage of the wavelet formalism is that it is possible to carry out an explicit

denoising of the convergence field using thresholding based on a False Discovery Rate

method. For details on this method, see [34], where the MRLens software package encoding

this method is presented3. This allows one to derive robust detection levels in wavelet space,

and to produce high-fidelity denoised mass maps.

In addition, wavelet-based methods offer more flexibility than aperture mass filters. Whilst

we have thus far discussed only the starlet wavelet function, many other wavelet dictionaries

may be used. The starlet filter seems ideal for lensing studies, due to its similarity to the

aperture mass filter presented here, which was deemed to be optimal in [22]. However,

different dictionaries may be optimal in different applications; for example, if one were

attempting to study filamentary structure, ridgelets or curvelets might be a more appropriate

basis. The vastness of the wavelet libraries and the public availability of fast algorithms to

compute these transforms are major strengths of wavelet-based approaches.

4. Weak lensing beyond two-point shear statistics

As noted previously, the optimality of second-order statistics to constrain cosmological

parameters depends heavily on the assumption of Gaussianity of the field. However the

weak lensing field is composed, at small scales, of non-Gaussian features such as clusters

of galaxies. These non-Gaussian signatures carry additional information that cannot be

extracted with second-order statistics. Many studies [35–39] have shown that combining

second-order statistics with higher-order statistics tightens the constraints on cosmological

parameters. We now consider the higher-order statistics most commonly used in weak

lensing studies aimed at detecting and constraining non-Gaussianity in the lensing field.

3 The MRLens software, along with many other software packages for astronomical applications, is freely available
here: http://cosmostat.org/software.html
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4.1. Higher-order lensing statistics

As we have already noted, it is more convenient to consider higher-order statistics of the
Map or wavelet transform of the convergence field, as opposed to statistics of the shear field
directly. The obvious first extension to two-point statistics is to consider the three-point
correlation function or, equivalently, the bispectrum, usually considered as a function of
aperture or wavelet scale.

Interesting analytical results relative to the shear three-point correlation function or the
convergence bispectrum have been reported (for example, see [40–43]). However, it has
been shown that in using only the equilateral configuration of the bispectrum, the ability to
discriminate between cosmological models is relatively poor [38]. An analytical comparison
has been performed in [39] between the full bispectrum and an optimal match-filter peak
count for a Euclid-like survey, and both approaches were found to provide similar results.
However, as the full bispectrum calculation has a much higher complexity than other
statistics, and no public software exists to compute it, we will not consider the full bispectrum
here. Rather, we will restrict ourselves to statistics that are more straightforward to compute
from the Map or wavelet transform maps.

4.1.1. The Skewness

The skewness of the aperture mass map, 〈M3
ap〉, is the third-order moment of the aperture

mass Map(θ) and can be computed directly from shear maps filtered with different aperture
mass. The skewness is a measure of the asymmetry of the probability distribution function.
The probability distribution function will be more or less skewed positively depending on the
abundance of dark matter haloes at the θ scale. The formalism exists to predict the skewness
of the aperture mass map for a given cosmological model, which is related to the three-point
correlation function or the bispectrum of density fluctuations δ [20, 37].

In [37], it is argued that the skewness as a function of scale is a preferable statistic to
three-point correlation functions of the shear, as the integral relations between 〈M3

ap〉 and the
bispectrum are much easier and faster to compute than the three-point correlation function.
This is because the skewness is a local measure of the bispectrum, whereas the integral kernel
for the three-point correlation function is a highly oscillating function with infinite support.

This statistic can equivalently be computed from the wavelet transform of the convergence
map as the skewness 〈w3

j 〉 of the wavelet band j corresponding to the aperture scale θ. This

can be computed either on the noisy convergence map estimated, for example, by the Fourier
space relationship between the shear and convergence – in which case the results should be
comparable to the Map results – or on a denoised convergence map using the method of [34],
which should provide improved results.

4.1.2. The Kurtosis

The kurtosis of the aperture mass map, 〈M4
ap〉, is the fourth-order moment of the aperture

mass Map(θ) and can be computed directly from the different aperture mass maps. The
kurtosis is a measure of the peakedness of the probability distribution function. The presence
of dark matter haloes at a given θ scale will flatten the probability distribution function and
widen its shoulders leading to a larger kurtosis. The formalism exists to predict the kurtosis
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of the aperture mass map for a given cosmological model, which is related to the four-point
correlation function or trispectrum of the 3D density contrast [20].

Again, this statistic can be computed from the wavelet transform of the convergence map
as the kurtosis �w4

j � of the wavelet band j corresponding to the aperture scale θ. This can

be computed either on a noisy or a denoised convergence map, the latter expected to yield
improved constraints.

4.1.3. Peak Counts

We define a peak as set of connected pixels above a detection threshold T , and denote the

peak count in the Map and wavelet maps by PT

Map
and PT

wj
, respectively. If peak counting

is carried out on a denoised map, the detection threshold T is automatically set by the

denoising algorithm, and a small threshold ǫ is used when identifying peaks in the denoised

maps, in order to reject spurious detections in these denoised maps.

We consider all pixels that are connected via the sides or the corners of a pixel as one

structure. In a two-dimensional projected map of the convergence, we are therefore unable to

discriminate between peaks due to massive halos and peaks due to projections of large-scale

structures such as filaments.

While theory exists to predict cluster counts from the halo model and a cosmological

model encoding the growth and evolution of structures in the Universe, there is no analytic

formalism to predict the fraction of spurious detections in lensing maps arising from

projections of large-scale structure. In [44], an attempt is made to derive an analytic

formalism for predicting peak counts in projected maps. However, this method is based

on an assumption of Gaussianity in the lensing field and, predictably, underestimates counts

at the high end of the mass function, where clusters of galaxies are dominant. This means

that predicting peak counts for a given cosmological model relies on considering N-body

simulations generated under a range of cosmological parameters (for example, see [45]).

4.2. Optimal capture of non-Gaussianity

The question now arises: which of these statistics provides the most information about

the underlying cosmology and – specifically – non-Gaussianity in the density field? In

order to asses the performance of these statistics, we consider the ability of each statistic

to discriminate between cosmological models using N-body simulations under a range of

different cosmologies [38, 46].

To this end, we consider N-body simulations carried out for 5 different cosmological models

along the ΩM − σ8 degeneracy, the parameters of which are summarised in Table 1 below

[46]. These simulations were carried out using the RAMSES N-body code [47], and full details

of the models considered are given in [38]. For each model, 100 realizations of weak lensing

maps were generated for a field of 3.95◦ × 3.95◦, downsampled to 1024 × 1024 pixels (0.23′

per pixel). Noise was added to the simulations at a level consistent with predictions for deep

space-based observations, with a number density of galaxies of ng = 100 gal/arcmin2. This

is somewhat optimistic; however, as seen in [46], increasing the noise level in the simulations

does not change the conclusions of the comparison test between the higher-order statistics.
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4.1. Higher-order lensing statistics

As we have already noted, it is more convenient to consider higher-order statistics of the
Map or wavelet transform of the convergence field, as opposed to statistics of the shear field
directly. The obvious first extension to two-point statistics is to consider the three-point
correlation function or, equivalently, the bispectrum, usually considered as a function of
aperture or wavelet scale.

Interesting analytical results relative to the shear three-point correlation function or the
convergence bispectrum have been reported (for example, see [40–43]). However, it has
been shown that in using only the equilateral configuration of the bispectrum, the ability to
discriminate between cosmological models is relatively poor [38]. An analytical comparison
has been performed in [39] between the full bispectrum and an optimal match-filter peak
count for a Euclid-like survey, and both approaches were found to provide similar results.
However, as the full bispectrum calculation has a much higher complexity than other
statistics, and no public software exists to compute it, we will not consider the full bispectrum
here. Rather, we will restrict ourselves to statistics that are more straightforward to compute
from the Map or wavelet transform maps.

4.1.1. The Skewness

The skewness of the aperture mass map, 〈M3
ap〉, is the third-order moment of the aperture

mass Map(θ) and can be computed directly from shear maps filtered with different aperture
mass. The skewness is a measure of the asymmetry of the probability distribution function.
The probability distribution function will be more or less skewed positively depending on the
abundance of dark matter haloes at the θ scale. The formalism exists to predict the skewness
of the aperture mass map for a given cosmological model, which is related to the three-point
correlation function or the bispectrum of density fluctuations δ [20, 37].

In [37], it is argued that the skewness as a function of scale is a preferable statistic to
three-point correlation functions of the shear, as the integral relations between 〈M3

ap〉 and the
bispectrum are much easier and faster to compute than the three-point correlation function.
This is because the skewness is a local measure of the bispectrum, whereas the integral kernel
for the three-point correlation function is a highly oscillating function with infinite support.

This statistic can equivalently be computed from the wavelet transform of the convergence
map as the skewness 〈w3

j 〉 of the wavelet band j corresponding to the aperture scale θ. This

can be computed either on the noisy convergence map estimated, for example, by the Fourier
space relationship between the shear and convergence – in which case the results should be
comparable to the Map results – or on a denoised convergence map using the method of [34],
which should provide improved results.

4.1.2. The Kurtosis

The kurtosis of the aperture mass map, 〈M4
ap〉, is the fourth-order moment of the aperture

mass Map(θ) and can be computed directly from the different aperture mass maps. The
kurtosis is a measure of the peakedness of the probability distribution function. The presence
of dark matter haloes at a given θ scale will flatten the probability distribution function and
widen its shoulders leading to a larger kurtosis. The formalism exists to predict the kurtosis
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of the aperture mass map for a given cosmological model, which is related to the four-point
correlation function or trispectrum of the 3D density contrast [20].

Again, this statistic can be computed from the wavelet transform of the convergence map
as the kurtosis �w4

j � of the wavelet band j corresponding to the aperture scale θ. This can

be computed either on a noisy or a denoised convergence map, the latter expected to yield
improved constraints.

4.1.3. Peak Counts

We define a peak as set of connected pixels above a detection threshold T , and denote the

peak count in the Map and wavelet maps by PT

Map
and PT

wj
, respectively. If peak counting

is carried out on a denoised map, the detection threshold T is automatically set by the

denoising algorithm, and a small threshold ǫ is used when identifying peaks in the denoised

maps, in order to reject spurious detections in these denoised maps.

We consider all pixels that are connected via the sides or the corners of a pixel as one

structure. In a two-dimensional projected map of the convergence, we are therefore unable to

discriminate between peaks due to massive halos and peaks due to projections of large-scale

structures such as filaments.

While theory exists to predict cluster counts from the halo model and a cosmological

model encoding the growth and evolution of structures in the Universe, there is no analytic

formalism to predict the fraction of spurious detections in lensing maps arising from

projections of large-scale structure. In [44], an attempt is made to derive an analytic

formalism for predicting peak counts in projected maps. However, this method is based

on an assumption of Gaussianity in the lensing field and, predictably, underestimates counts

at the high end of the mass function, where clusters of galaxies are dominant. This means

that predicting peak counts for a given cosmological model relies on considering N-body

simulations generated under a range of cosmological parameters (for example, see [45]).

4.2. Optimal capture of non-Gaussianity

The question now arises: which of these statistics provides the most information about

the underlying cosmology and – specifically – non-Gaussianity in the density field? In

order to asses the performance of these statistics, we consider the ability of each statistic

to discriminate between cosmological models using N-body simulations under a range of

different cosmologies [38, 46].

To this end, we consider N-body simulations carried out for 5 different cosmological models

along the ΩM − σ8 degeneracy, the parameters of which are summarised in Table 1 below

[46]. These simulations were carried out using the RAMSES N-body code [47], and full details

of the models considered are given in [38]. For each model, 100 realizations of weak lensing

maps were generated for a field of 3.95◦ × 3.95◦, downsampled to 1024 × 1024 pixels (0.23′

per pixel). Noise was added to the simulations at a level consistent with predictions for deep

space-based observations, with a number density of galaxies of ng = 100 gal/arcmin2. This

is somewhat optimistic; however, as seen in [46], increasing the noise level in the simulations

does not change the conclusions of the comparison test between the higher-order statistics.
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Model Box Length
(h−1Mpc)

ΩM ΩΛ h σ8

m1 165.8 0.23 0.77 0.594 1

m2 159.5 0.3 0.7 0.7 0.9

m3 152.8 0.36 0.64 0.798 0.8

m4 145.7 0.47 0.53 0.894 0.7

m5 137.5 0.64 0.36 0.982 0.6

Table 1. Parameters of the five cosmological models that have been chosen along the ΩM − σ8 degeneracy. The simulations

have 2563 particles, h is equal to H0/100 km s−1Mpc−1, where H0 is the Hubble constant.

To find the best statistic, we need to characterise quantitatively for each statistic the
discrimination between two different models m1 and m2. To do this, we consider the
distribution functions for the different statistics estimated on the 100 realisations of each
model. These distributions are expected to overlap, so False Discovery Rate (FDR) method
is used to determine the threshold τ1 in the distribution function of model m1, such that the
distribution function of model m2 accounts for fewer than a fraction α = 0.05 of the total
counts. A similar threshold τ2 is defined for the distribution function of model m2. This
is illustrated in Figure 4. The discrimination efficiency is then defined as the percentage of
counts remaining under the hatched area for each model.

Figure 4. Illustration of the discrimination efficiency criterion. τ1 and τ2 are defined such that the yellow area under the curve

represents 0.05 of the total area under the curves for models m2 and m1, respectively. The discrimination efficiency is defined

as the area under the mi curve delimited by the threshold τi , as a percentage of the total area under the model mi curve.

In Table 2 below, we show the mean discrimination efficiency obtained considering all pairs
of models for the higher-order statistics of interest. These are presented as a function of
Map or wavelet scale, and shown for statistics computed on the aperture mass map and the
wavelet transform of the noisy convergence map. The results overall are comparable, with the
wavelet transform statistics appearing to offer a slight improvement over the Map statistics
in all cases. This is perhaps related to the fact that, when computing the Map statistics, we
truncate the filter at ϑcut = θ, which may give rise to some small systematics in the resulting
maps. Furthermore, it is clear that, in all cases, the peak statistics are much more efficient at
discriminating between cosmological models than either the skewness or the kurtosis.
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θi 〈M3
ap〉 〈M4

ap〉 P2σ
Map

P3σ
Map

0.46’ 04.60 % 02.30 % 39.70 % 54.95 %

0.92’ 33.40 % 03.70 % 79.30 % 76.40 %

1.85’ 03.45 % 01.45 % 91.25 % 89.20 %

3.70’ 15.15 % 23.00 % 69.40 % 86.70 %

7.40’ 26.95 % 24.30 % 4.90 % 60.50 %

(a) Mean discrimination efficiency of Map statistics

Scale 〈w3
j 〉 〈w4

j 〉 P2σ
wj

P3σ
wj

0.46’ 02.00 % 01.15 % 12.05% 00.70 %

0.92’ 37.95 % 04.75 % 86.30 % 73.05 %

1.85’ 03.55 % 02.10 % 94.40 % 93.85 %

3.70’ 18.25 % 25.65 % 84.05 % 87.05 %

7.40’ 36.40 % 30.90 % 24.60 % 66.35 %

(b) Mean discrimination efficiency of wavelet statistics

Table 2. Mean discrimination efficiency (in percent) from noisy Map reconstructions of the shear field, compared with that

obtained on the wavelet transform of the noisy convergence maps.

In Table 3 below, we present the mean discrimination efficiency of statistics computed
on the denoised convergence maps, as well as the peak discrimination efficiency between
each pair of models in our sample. There is a clear improvement on the discrimination
efficiency of all the higher-order statistics when denoising is applied to the convergence
maps. This is unsurprising, as the presence of Gaussian (or near-Gaussian) noise within the
shear and convergence maps will make the whole field appear more Gaussian, masking the
non-Gaussian features in the map and pushing the skewness and kurtosis values closer to
zero. The more noise that is present in the maps, the stronger this effect will be. It is for
this reason that such a dramatic improvement is seen in these statistics when denoising is
applied to the convergence maps before the statistics are computed.

The improvement seen in the discrimination efficiency of the peak statistics is also significant,
and this arises due to the fact that while the peak counts in the noisy maps involve application
of a simple nσ detection threshold to the maps, the denoising algorithm involves a more
sophisticated discriminant between signal and noise, again making use of the FDR method.
This technique is more effective and distinguishing between signal and noise, and therefore
more information about the true peaks in the map is retained using this denoising method
as compared to the nσ thresholding applied previously.

It is clear that peak statistics are much more efficient at capturing non-Gaussianity in the
shear field than other higher-order statistics, and that it is advantageous to measure this
statistic on denoised convergence maps. However, in order to combine constraints from
peak counting with other probes, such as two-point statistics, in order to better constrain
the cosmological model, it is important to be able to predict peak statistics as a function
of cosmology in order to be able to compute the likelihood function for all models within
the parameter space. As we have discussed, this is not possible to do analytically, due to
contamination by projections of large scale structures, and it is too computationally-intensive
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Model Box Length
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m5 137.5 0.64 0.36 0.982 0.6

Table 1. Parameters of the five cosmological models that have been chosen along the ΩM − σ8 degeneracy. The simulations

have 2563 particles, h is equal to H0/100 km s−1Mpc−1, where H0 is the Hubble constant.

To find the best statistic, we need to characterise quantitatively for each statistic the
discrimination between two different models m1 and m2. To do this, we consider the
distribution functions for the different statistics estimated on the 100 realisations of each
model. These distributions are expected to overlap, so False Discovery Rate (FDR) method
is used to determine the threshold τ1 in the distribution function of model m1, such that the
distribution function of model m2 accounts for fewer than a fraction α = 0.05 of the total
counts. A similar threshold τ2 is defined for the distribution function of model m2. This
is illustrated in Figure 4. The discrimination efficiency is then defined as the percentage of
counts remaining under the hatched area for each model.
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represents 0.05 of the total area under the curves for models m2 and m1, respectively. The discrimination efficiency is defined

as the area under the mi curve delimited by the threshold τi , as a percentage of the total area under the model mi curve.

In Table 2 below, we show the mean discrimination efficiency obtained considering all pairs
of models for the higher-order statistics of interest. These are presented as a function of
Map or wavelet scale, and shown for statistics computed on the aperture mass map and the
wavelet transform of the noisy convergence map. The results overall are comparable, with the
wavelet transform statistics appearing to offer a slight improvement over the Map statistics
in all cases. This is perhaps related to the fact that, when computing the Map statistics, we
truncate the filter at ϑcut = θ, which may give rise to some small systematics in the resulting
maps. Furthermore, it is clear that, in all cases, the peak statistics are much more efficient at
discriminating between cosmological models than either the skewness or the kurtosis.
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0.92’ 37.95 % 04.75 % 86.30 % 73.05 %

1.85’ 03.55 % 02.10 % 94.40 % 93.85 %

3.70’ 18.25 % 25.65 % 84.05 % 87.05 %

7.40’ 36.40 % 30.90 % 24.60 % 66.35 %
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Table 2. Mean discrimination efficiency (in percent) from noisy Map reconstructions of the shear field, compared with that

obtained on the wavelet transform of the noisy convergence maps.

In Table 3 below, we present the mean discrimination efficiency of statistics computed
on the denoised convergence maps, as well as the peak discrimination efficiency between
each pair of models in our sample. There is a clear improvement on the discrimination
efficiency of all the higher-order statistics when denoising is applied to the convergence
maps. This is unsurprising, as the presence of Gaussian (or near-Gaussian) noise within the
shear and convergence maps will make the whole field appear more Gaussian, masking the
non-Gaussian features in the map and pushing the skewness and kurtosis values closer to
zero. The more noise that is present in the maps, the stronger this effect will be. It is for
this reason that such a dramatic improvement is seen in these statistics when denoising is
applied to the convergence maps before the statistics are computed.

The improvement seen in the discrimination efficiency of the peak statistics is also significant,
and this arises due to the fact that while the peak counts in the noisy maps involve application
of a simple nσ detection threshold to the maps, the denoising algorithm involves a more
sophisticated discriminant between signal and noise, again making use of the FDR method.
This technique is more effective and distinguishing between signal and noise, and therefore
more information about the true peaks in the map is retained using this denoising method
as compared to the nσ thresholding applied previously.

It is clear that peak statistics are much more efficient at capturing non-Gaussianity in the
shear field than other higher-order statistics, and that it is advantageous to measure this
statistic on denoised convergence maps. However, in order to combine constraints from
peak counting with other probes, such as two-point statistics, in order to better constrain
the cosmological model, it is important to be able to predict peak statistics as a function
of cosmology in order to be able to compute the likelihood function for all models within
the parameter space. As we have discussed, this is not possible to do analytically, due to
contamination by projections of large scale structures, and it is too computationally-intensive
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Scale 〈w̃3
j 〉 〈w̃4

j 〉 Pw̃j

0.46’ 53.40 % 43.20 % 68.35 %

0.92’ 47.90 % 41.15 % 92.45 %

1.85’ 58.80 % 44.70 % 96.75 %

3.70’ 63.30 % 48.05 % 90.40 %

7.40’ 54.90 % 40.45 % 63.45 %

(a) Mean discrimination efficiency

m1 m2 m3 m4 m5

m1 x 85 % 100 % 100 % 100 %

m2 89 % x 92 % 100 % 100 %

m3 100 % 92 % x 89 % 100 %

m4 100 % 100 % 92 % x 98 %

m5 100 % 100 % 100 % 98 % x

(b) Discrimination efficiency for all models obtained using peak statistics

Table 3. Discrimination efficiency for statistics computed on denoised convergence maps.

to consider obtaining the predictions, and associated covariances, from N-body simulations
if we wish to sample the parameter space completely and at high resolution.

As the quality of data available to astronomers continues to improve, it has recently become
possible to consider the shear field in three dimensions, using the colours of galaxies to
determine their redshifts and, therefore, distances from us. If this information may be used
to deproject the lensing signal, and thus recover information about the full three-dimensional
density field, it should then be possible offer predictions for peak statistics as a function of
cosmology, uncontaminated by projection effects which will, in turn, allow us to improve our
constraints on our cosmological model.

5. Reconstructing the density contrast in 3D

The measured shear can be related to the 2D convergence via a simple linear relationship
(equation (4)), and the convergence is related to the density contrast by another linear
mapping (equation (6)). We can express these relationships conveniently in matrix notation
as

κ(θ, z) = Qδ(θ, z) , (21)

γ(θ, z) = PγκQδ(θ, z) . (22)

The 3D lensing problem is therefore one of finding an estimator to invert equation (21)
or (22) in the presence of noise. For simplicity, in what follows we assume the shear
measurement noise is Gaussian and uncorrelated between redshift bins. In practice, errors
in the photometric estimates of the redshifts of galaxies will introduce correlations between
redshift bins. Methods have been developed to account for such errors, however, and the
problem is therefore readily tractable [48].
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Therefore the 3D lensing problem is effectively one of observing the density contrast
convolved with the linear operator R, and contaminated by noise, which is assumed to be
Gaussian. Formally, we can write

d = Rs+ ε, ε ∼ N (0, σ
2
) , (23)

where d is the observation, s the real density and ε the Gaussian noise.

5.1. Linear approaches to 3D map-making

The general idea behind linear inversion methods is to find a linear operator H that acts on
the data vector to yield a solution that minimises some functional, such as the variance of
the residual between the estimated signal and the true signal, subject to some regularisation
or prior-based constraints. Two different linear approaches have been described in recent
literature [4, 49].

The most competitive method is that proposed in [4], in which the authors propose a
Saskatoon filter [50, 51], which combines a Wiener filter and an inverse variance filter, with
a tuning parameter α introduced that allows switching between the two. This gives rise to a
minimum variance filter, expressed as

ŝMV = [α1 + SR†
Σ
−1R]

−1SR†
Σ
−1

d , (24)

where S ≡

〈

ss
†
〉

encodes prior information about the signal covariance, Σ ≡

〈

nn
†
〉

gives
the covariance matrix of the noise, and 1 is the identity matrix.

This switching is designed to allow a balance between the increased constraining power
offered by the Wiener filter over the inverse variance filter – which yields an improved
signal-to-noise in the reconstruction – and the biasing that the Wiener filter imposes on the
solution.

As discussed extensively in [4] and [49], linear methods give rise to a significant bias in the
location of detected peaks, damping of the peak signal, and a substantial smearing of the
density along the line of sight. Furthermore, the resolution attainable in the reconstructions
obtained using linear methods is limited to the resolution of the data. In other words, we
cannot reconstruct the density contrast field at higher resolution than the resolution of our
input data which, in turn, is limited by the noise properties of the data.

Figure 5 shows the 3D reconstruction obtained in this way for a simulated cluster of
galaxies at a redshift of zcl = 0.25. The tuning parameter used for this reconstruction was
α = 0.05. The cluster was simulated according to an NFW halo with M = 1015h−1 M

⊙

and c = 3, and the shear data were assumed to come from a galaxy distribution given by

p(z) ∝ z2e−(1.4z)1.5
[52, 53], with a maximum redshift of zmax = 2.0 and a galaxy density

of ng = 100 galaxies/arcmin2. The simulation covers a 1◦ × 1◦ field binned into 60 × 60
angular pixels, and 20 redshift bins. Shown in the figure are both the 3D rendering of the
reconstruction, and a 1D plot showing the four central lines of sight through the cluster as a
function of redshift. The smearing, damping and redshift bias effects are all clearly visible in
the 1D plot, where the amplitude of the cluster density contrast should be δ ∼ 36.
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Scale 〈w̃3
j 〉 〈w̃4

j 〉 Pw̃j

0.46’ 53.40 % 43.20 % 68.35 %

0.92’ 47.90 % 41.15 % 92.45 %

1.85’ 58.80 % 44.70 % 96.75 %

3.70’ 63.30 % 48.05 % 90.40 %

7.40’ 54.90 % 40.45 % 63.45 %

(a) Mean discrimination efficiency

m1 m2 m3 m4 m5

m1 x 85 % 100 % 100 % 100 %

m2 89 % x 92 % 100 % 100 %

m3 100 % 92 % x 89 % 100 %

m4 100 % 100 % 92 % x 98 %

m5 100 % 100 % 100 % 98 % x

(b) Discrimination efficiency for all models obtained using peak statistics

Table 3. Discrimination efficiency for statistics computed on denoised convergence maps.
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density field, it should then be possible offer predictions for peak statistics as a function of
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as
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The 3D lensing problem is therefore one of finding an estimator to invert equation (21)
or (22) in the presence of noise. For simplicity, in what follows we assume the shear
measurement noise is Gaussian and uncorrelated between redshift bins. In practice, errors
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obtained using linear methods is limited to the resolution of the data. In other words, we
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galaxies at a redshift of zcl = 0.25. The tuning parameter used for this reconstruction was
α = 0.05. The cluster was simulated according to an NFW halo with M = 1015h−1 M

⊙

and c = 3, and the shear data were assumed to come from a galaxy distribution given by

p(z) ∝ z2e−(1.4z)1.5
[52, 53], with a maximum redshift of zmax = 2.0 and a galaxy density
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(a) 3D plot of the cluster reconstruction. (b) The four central lines of sight
through the cluster.

Figure 5. The reconstruction of a simulated cluster of galaxies using the method of [4]. Coloured broken lines in the 1D plot

show the reconstruction of the four central lines of sight, while the solid line shows the true cluster density contrast.

5.2. Compressive sensing

We consider some data Yi ( i ∈ [1, .., m]) acquired through the linear system

Y = ΘX , (25)

where Θ is an m × n matrix. Compressed sensing [54, 55] is a sampling/compression theory
based on the sparsity of the observed signal, which shows that, under certain conditions, one
can exactly recover a k-sparse signal (a signal for which only k pixels have values different
from zero, out of n total pixels, where k < n) from m < n measurements.

This recovery is possible from undersampled data only if the sensing matrix Θ verifies
the restricted isometry property (RIP) [see 54, for more details]. This property has the effect
that each measurement Yi contains some information about the entire pixels of X; in other
words, the sensing operator Θ acts to spread the information contained in X across many
measurements Yi.

Under these two constraints – sparsity and a transformation meeting the RIP criterion – a
signal can be recovered exactly even if the number of measurements m is much smaller than
the number of unknown n. This means that, using CS methods, we will be able to outperform
the well-known Shannon sampling criterion by far.

The solution X of (25) is obtained by minimizing

min
X

�X�1 s.t. Y = ΘX , (26)

where the ℓ1 norm is defined by �X�1 = ∑i | Xi |. The ℓ1 norm is well-known to be a
sparsity-promoting function; i.e. minimisation of the ℓ1 norm yields the most sparse solution
to the inverse problem. Many optimisation methods have been proposed in recent years to
minimise this equation. More details about CS and ℓ1 minimisation algorithms can be found
in [6].
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In real life, signals are generally not “strictly" sparse, but are compressible; i.e. we can
represent the signal in a basis or frame (Fourier, Wavelets, Curvelets, etc.) in which the curve
obtained by plotting the obtained coefficients, sorted by their decreasing absolute values,
exhibits a polynomial decay. Note that most natural signals and images are compressible in
an appropriate basis.

We can therefore reformulate the CS equation above (Equation (26)) to include the data
transformation matrix Φ:

min
α

�α�1 s.t. Y = ΘΦα , (27)

where X = Φ
∗

α, and α are the coefficients of the transformed solution X in Φ, which
is generally referred to as the dictionary. Each column represents a vector (also called an
atom), which ideally should be chosen to match the features contained in X. If Φ admits a
fast implicit transform (e.g. Fourier transform, Wavelet transform), fast algorithms exist to
minimise Equation (27).

One problem we face when considering CS in a given application is that very few matrices
meet the RIP criterion. However, it has been shown that accurate recovery can be obtained

as long the mutual coherence between Θ and Φ, µΘ,Φ = maxi,k

∣

∣

〈

Θi, Φk,
〉

∣

∣, is low [56].

The mutual coherence measures the degree of similarity between the sparsifying basis and
the sensing operator. Hence, in its relaxed definition, we consider a linear inverse problem
Y = ΘΦX as being an instance of CS when

1. the problem is underdetermined,

2. the signal is compressible in a given dictionary Φ,

3. the mutual coherence µΘ,Φ is low. This will happen every time the matrix A = ΘΦ has
the effect of spreading out the coefficients αj of the sparse signal on all measurements Yi.

Most CS applications described in the literature are based on such a soft CS definition.
Compressed sensing was introduced for the first time in astronomy for data compression
[57, 58], and a direct link between CS and radio-interferometric image reconstruction was
recently established in [59], leading to dramatic improvement thanks to the sparse ℓ1 recovery
[60].

The 3D weak lensing reconstruction problem can be seen to completely meet the soft-CS
criteria above. The problem is underdetermined, as we seek a higher resolution than can
be attained in the noise-limited observations, the matter density in the Universe is sparsely
distributed, and the lensing operator spreads out the underlying density in a compressed
sensing way.

In particular, for the reconstruction of clusters of galaxies, we are in a perfect situation for
sparse recovery because clusters are localised in the angular domain, and are not resolved
along the line of sight owing to the bin size. They can therefore be modelled as Dirac
δ−functions along the line of sight, while an isotropic wavelet basis can be used in the
angular domain.
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(a) 3D plot of the cluster reconstruction. (b) The four central lines of sight
through the cluster.

Figure 5. The reconstruction of a simulated cluster of galaxies using the method of [4]. Coloured broken lines in the 1D plot

show the reconstruction of the four central lines of sight, while the solid line shows the true cluster density contrast.
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5.3. Results and future prospects

In [61], we present an algorithm to solve the 3D lensing problem. In this method, the 3D
lensing problem is reduced to a one-dimensional problem, by taking as the data vector the
(noisy) lensing convergence along each line of sight, which is related to the density contrast
through Equation (21). Each line of sight can therefore be considered independently.

Clearly, a one-dimensional implementation throws away information, because we do not
account at all for the correlation between neighbouring lines of sight that will arise in
the presence of a large structure in the image; however, reducing the problem to a single
dimension is fast and easy to implement, and allows us to test the efficacy of the algorithm
using a particularly simple basis function through which we impose sparsity.

In Figure 6, we show the reconstruction obtained in this way for the simulated cluster
described in section 5.1. The line of sight plot shows a clear improvement in all the
target areas, reducing the bias, smearing and damping effects seen using linear methods.
Small-scale noise is present, particularly at high redshifts, but this is likely due to overfitting
in the algorithm used, and may be reduced by considering the whole 3D field, rather than
each line of sight independently (for a full discussion of this issue, see [61]).

(a) 3D plot of the cluster reconstruction. (b) The four central lines of sight
through the cluster.

Figure 6. The reconstruction of a simulated cluster of galaxies using the method of [61]. Coloured broken lines in the 1D plot

show the reconstruction of the four central lines of sight, while the solid line shows the true cluster density contrast.

This reconstruction was undertaken using the same resolution on the reconstruction as on the
input data. However, we know that the CS approach is particularly well-adapted to dealing
with ill-posed inversion problems. In order to test this, we consider a cluster at a redshifts
of zcl = 0.2, simulated as before. We use Nsp = 20 redshift bins in our data, but now aim to
reconstruct our density contrast with a redshift resolution of Nlp = 25. The results are shown
in Figure 7. Here, again, we see small scale noise at high-redshift, but the overall smearing
and redshift bias issues seen in the linear reconstructions is absent.

As noted previously, the one-dimensional solver employed here throws away a wealth
of information about the angular correlation of the lensing signal, and is thus not
optimal. Indeed, a simple algorithm based on this CS approach, but implemented as
a full three-dimensional treatment, offers marked improvements in the quality of the
reconstructions [62].
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(a) 3D plot of the cluster reconstruction. (b) The four central lines of sight
through the cluster.

Figure 7. The reconstruction of a simulated cluster of galaxies at a redshift of zcl = 0.2, and with improved resolution on the
reconstruction as compared to the input data.

This is demonstrated in Figure 8, which shows reconstructions of the cluster at redshift
zcl = 0.2, with the same improved resolution in the reconstruction as before, but this time
using the three-dimensional CS approach. Dramatic improvement is seen on all fronts, with
the reconstructions showing no bias or redshift smearing, and very little amplitude damping,
and with none of the small-scale false detections seen in the 1D CS approach.

(a) 3D plot of the cluster reconstruction. (b) The four central lines of sight
through the cluster.

Figure 8. The reconstruction of a simulated cluster of galaxies at a redshift of zcl = 0.2 using a 3D CS approach, and with
improved resolution on the reconstruction as compared to the input data.

This marked improvement in the cluster reconstruction seen in the 3D CS approach
represents a definite step in the right direction for weak lensing studies. There is much
work to be done, however. The application of this CS approach to the 3D lensing problem is
a very recent development, and many questions remain: the choice of algorithm, for example;
how best to control the noise in the reconstruction; how to deal with photometric redshift
errors; by what factor the reconstruction resolution might be improved as compared to the
data.
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5.3. Results and future prospects
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In Figure 6, we show the reconstruction obtained in this way for the simulated cluster
described in section 5.1. The line of sight plot shows a clear improvement in all the
target areas, reducing the bias, smearing and damping effects seen using linear methods.
Small-scale noise is present, particularly at high redshifts, but this is likely due to overfitting
in the algorithm used, and may be reduced by considering the whole 3D field, rather than
each line of sight independently (for a full discussion of this issue, see [61]).

(a) 3D plot of the cluster reconstruction. (b) The four central lines of sight
through the cluster.

Figure 6. The reconstruction of a simulated cluster of galaxies using the method of [61]. Coloured broken lines in the 1D plot

show the reconstruction of the four central lines of sight, while the solid line shows the true cluster density contrast.

This reconstruction was undertaken using the same resolution on the reconstruction as on the
input data. However, we know that the CS approach is particularly well-adapted to dealing
with ill-posed inversion problems. In order to test this, we consider a cluster at a redshifts
of zcl = 0.2, simulated as before. We use Nsp = 20 redshift bins in our data, but now aim to
reconstruct our density contrast with a redshift resolution of Nlp = 25. The results are shown
in Figure 7. Here, again, we see small scale noise at high-redshift, but the overall smearing
and redshift bias issues seen in the linear reconstructions is absent.

As noted previously, the one-dimensional solver employed here throws away a wealth
of information about the angular correlation of the lensing signal, and is thus not
optimal. Indeed, a simple algorithm based on this CS approach, but implemented as
a full three-dimensional treatment, offers marked improvements in the quality of the
reconstructions [62].
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(a) 3D plot of the cluster reconstruction. (b) The four central lines of sight
through the cluster.

Figure 7. The reconstruction of a simulated cluster of galaxies at a redshift of zcl = 0.2, and with improved resolution on the
reconstruction as compared to the input data.

This is demonstrated in Figure 8, which shows reconstructions of the cluster at redshift
zcl = 0.2, with the same improved resolution in the reconstruction as before, but this time
using the three-dimensional CS approach. Dramatic improvement is seen on all fronts, with
the reconstructions showing no bias or redshift smearing, and very little amplitude damping,
and with none of the small-scale false detections seen in the 1D CS approach.

(a) 3D plot of the cluster reconstruction. (b) The four central lines of sight
through the cluster.

Figure 8. The reconstruction of a simulated cluster of galaxies at a redshift of zcl = 0.2 using a 3D CS approach, and with
improved resolution on the reconstruction as compared to the input data.

This marked improvement in the cluster reconstruction seen in the 3D CS approach
represents a definite step in the right direction for weak lensing studies. There is much
work to be done, however. The application of this CS approach to the 3D lensing problem is
a very recent development, and many questions remain: the choice of algorithm, for example;
how best to control the noise in the reconstruction; how to deal with photometric redshift
errors; by what factor the reconstruction resolution might be improved as compared to the
data.
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Yet it is clear that this approach opens up the possibility of being able to generate accurate
reconstructions of the density contrast using weak lensing measurements, and perhaps using
information such as the 3D peak count – in combination with constraints from other probes –
to place ever-tighter constraints on our cosmological model. This, in turn, will offer a unique
insight into the nature and properties of the dark components of the Universe.
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Yet it is clear that this approach opens up the possibility of being able to generate accurate
reconstructions of the density contrast using weak lensing measurements, and perhaps using
information such as the 3D peak count – in combination with constraints from other probes –
to place ever-tighter constraints on our cosmological model. This, in turn, will offer a unique
insight into the nature and properties of the dark components of the Universe.
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1. Introduction

As of mid August 2012, the Planck cosmic microwave background anisotropy probe1 [1,2] –
launched into space on 14 May 2009 at 13:12:02 UTC, by an Ariane 5 ECA launcher, from the
Guiana Space Centre, Kourou, French Guiana – is still successfully operating. The spacecraft
accumulated data with its two instruments, the High Frequency Instrument (HFI) [3], based
on bolometers working between 100 and 857 GHz, and the Low Frequency Instrument (LFI)
[4], based on radiometers working between 30 and 70 GHz, up to the consumption of the
cryogenic liquids on January 2012, achieving ≃ 29.5 months of integration, corresponding to
about five complete sky surveys. A further 12 months extension is on-going for observations
with LFI only, cooled down with the cryogenic system provided by HFI. Moreover, Planck is
sensitive to linear polarization up to 353 GHz.

Thanks to its great sensitivity and resolution on the whole sky and to its wide frequency
coverage that allows a substantial progress in foreground modeling and removal, Planck will
open a new era in our understanding of the Universe and of its astrophysical structures (see
[5] for a full description of the Planck Scientific programme). Planck will improve the accuracy
of current measures of a wide set of cosmological parameters by a factor from ∼ 3 to ∼ 10
and will characterize the geometry of the Universe with unprecedented accuracy. Planck will
shed light on many of the open issues in the connection between the early stages of the
Universe and the evolution of the cosmic structures, from the characterization of primordial
conditions and perturbations, to the late phases of cosmological reionization.

⋆ This paper is based largely on the Planck Early Release Compact Source Catalogue, a product of ESA and the Planck
Collaboration. Any material presented in this review that is not already described in Planck Collaboration papers
represents the views of the authors and not necessarily those of the Planck Collaboration.

1 Planck (http://www.esa.int/Planck) is a project of the European Space Agency - ESA - with instruments provided
by two scientific Consortia funded by ESA member states (in particular the lead countries: France and Italy) with
contributions from NASA (USA), and telescope reflectors provided in a collaboration between ESA and a scientific
Consortium led and funded by Denmark.

©2012 Toffolatti et al., licensee InTech. This is an open access chapter distributed under the terms of the
Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted
use, distribution, and reproduction in any medium, provided the original work is properly cited.© 2012 Toffolatti et al.; licensee InTech. This is an open access article distributed under the terms of the
Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

© 2012 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons 
Attribution License http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, 
and reproduction in any medium, provided the original work is properly cited.
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1. Introduction

As of mid August 2012, the Planck cosmic microwave background anisotropy probe1 [1,2] –
launched into space on 14 May 2009 at 13:12:02 UTC, by an Ariane 5 ECA launcher, from the
Guiana Space Centre, Kourou, French Guiana – is still successfully operating. The spacecraft
accumulated data with its two instruments, the High Frequency Instrument (HFI) [3], based
on bolometers working between 100 and 857 GHz, and the Low Frequency Instrument (LFI)
[4], based on radiometers working between 30 and 70 GHz, up to the consumption of the
cryogenic liquids on January 2012, achieving ≃ 29.5 months of integration, corresponding to
about five complete sky surveys. A further 12 months extension is on-going for observations
with LFI only, cooled down with the cryogenic system provided by HFI. Moreover, Planck is
sensitive to linear polarization up to 353 GHz.

Thanks to its great sensitivity and resolution on the whole sky and to its wide frequency
coverage that allows a substantial progress in foreground modeling and removal, Planck will
open a new era in our understanding of the Universe and of its astrophysical structures (see
[5] for a full description of the Planck Scientific programme). Planck will improve the accuracy
of current measures of a wide set of cosmological parameters by a factor from ∼ 3 to ∼ 10
and will characterize the geometry of the Universe with unprecedented accuracy. Planck will
shed light on many of the open issues in the connection between the early stages of the
Universe and the evolution of the cosmic structures, from the characterization of primordial
conditions and perturbations, to the late phases of cosmological reionization.

⋆ This paper is based largely on the Planck Early Release Compact Source Catalogue, a product of ESA and the Planck
Collaboration. Any material presented in this review that is not already described in Planck Collaboration papers
represents the views of the authors and not necessarily those of the Planck Collaboration.

1 Planck (http://www.esa.int/Planck) is a project of the European Space Agency - ESA - with instruments provided
by two scientific Consortia funded by ESA member states (in particular the lead countries: France and Italy) with
contributions from NASA (USA), and telescope reflectors provided in a collaboration between ESA and a scientific
Consortium led and funded by Denmark.

©2012 Toffolatti et al., licensee InTech. This is an open access chapter distributed under the terms of the
Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted
use, distribution, and reproduction in any medium, provided the original work is properly cited.© 2012 Toffolatti et al.; licensee InTech. This is an open access article distributed under the terms of the
Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

© 2012 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons 
Attribution License http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, 
and reproduction in any medium, provided the original work is properly cited.



2 Open Questions in Cosmology

The Planck perspectives on some crucial selected topics linking cosmology to fundamental
physics (the neutrino masses and effective number of species, the primordial helium
abundance, various physics fundamental constants, the parity property of CMB maps and its
connection with CPT symmetry with emphasis to the Cosmic Birefringence, the detection of
the stochastic field of gravitational waves) will also show how Planck represents an extremely
powerful fundamental and particle physics laboratory. Some of these analyses will be carried
out mainly through a precise measure of CMB anisotropy angular power spectrum (APS)
in temperature, polarization and in their correlations, whereas others, in particular those
related to the geometry of the Universe and to the research of non-Gaussianity signatures,
are based on the exploitation of the anisotropy pattern. The most ambitious goal is the
possible detection of the so-called B-mode APS.

The first scientific results2, the so-called Planck Early Papers 3 have been released in January
2011 and published by Astronomy and Astrophysics (EDP sciences), in the dedicated Volume
536 (December 2011). A further set of astrophysical results has been presented on the
occasion of the Conference Astrophysics from radio to sub-millimeter wavelengths: the Planck view
and other experiments4 held in Bologna on 13-17 February 2012. Several articles have been
already submitted in 2012 and others are in preparation, constituting the set of so-called
Planck Intermediate Papers.

The outline of this Chapter is as follows: in Section 2 we briefly sketch the main
characteristics and the capabilities of the ESA Planck mission; in Section 3 we discuss the most
recent detection methods for compact source detection; in Section 4 the SZ effect, detected by
Planck in many cluster of galaxies and its importance for cosmological studies are analyzed;
Section 5 is dedicated to summarize current results obtained by Planck data on the properties
of EPS; finally, Section 6, discusses the very important results up to now achieved by the
analysis of CIB anisotropies detected by Planck.

2. The ESA Planck mission: Overview

CMB experimental data are affected by uncertainties due to instrumental noise (crucial at
high multipoles, ℓ, i.e. small angular scales), cosmic and sampling variance (crucial at low ℓ,
i.e. large angular scales) and from systematic effects. The uncertainty on the angular power
spectrum is given by the combination of three components, cosmic and sampling variance,
and instrumental noise, and it is approximately given by [9]:

δCℓ

Cℓ

=

√

2

fsky(2ℓ+ 1)

(

1 +
Aσ2

NCℓWℓ

)

. (1)

Here fsky is the sky coverage, A is the surveyed area, σ is the instrumental rms noise per
pixel, N is the total pixel number, Wℓ is the beam window function that, in the case of

2 http://www.sciops.esa.int/index.php?project=PLANCK&page=Planck_Published_Papers
3 The Planck Early papers describe the instrument performance in flight including thermal behaviour (papers I–IV),

the LFI and HFI data analysis pipelines (papers V–VI), and the main astrophysical results (papers VII-XXVI). These
papers have complemented by a subsequent work, published in 2012, based on a combination of high energy and
Planck observations (see [8]).

4 http://www.iasfbo.inaf.it/events/planck-2012/
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LFI

Frequency (GHz) 30 44 70

FWHM 33.34 26.81 13.03
N of R (or feeds) 4 (2) 6 (3) 12 (6)
EB 6 8.8 14
NET 159 197 158
δT/T [µK/K] (in T) 2.04 3.14 5.17
δT/T [µK/K] (in P) 2.88 4.44 7.32

HFI

Frequency (GHz) 100 143

FWHM in T (P) 9.6 (9.6) 7.1 (6.9)
N of B in T (P) – (8) 4 (8)
EB in T (P) 33 (33) 43 (46)
NET in T (P) 100 (100) 62 (82)
δT/T [µK/K] (in T) 2.04 1.56
δT/T [µK/K] (in P) 3.31 2.83

HFI

Frequency (GHz) 217 353

FWHM in T (P) 4.6 (4.6) 4.7 (4.6)
N of B in T (P) 4 (8) 4 (8)
EB in T (P) 72 (63) 99 (102)
NET in T (P) 91 (132) 277 (404)
δT/T [µK/K] in T (P) 3.31 (6.24) 13.7 (26.2)

HFI

Frequency (GHz) 545 857

FWHM in T 4.7 4.3
N of B in T 4 4
EB in T 169 257
NET in T 2000 91000
δT/T [µK/K] in T 103 4134

Table 1. Planck performance. The average sensitivity, δT/T, per (FWHM)2 resolution element (FWHM: Full Width at Half
Maximum of the beam response function, is indicated in arcmin) is given in CMB temperature units (i.e., equivalent

thermodynamic temperature) for 29.5 (plus 12 for LFI) months of integration. The white noise (per frequency channel for LFI

and per detector for HFI) in 1 sec of integration (NET, in µK ·
√

s) is also given in CMB temperature units. The other acronyms
here used are: N of R (or B) = number of radiometers (or bolometers), EB = effective bandwidth (in GHz). Adapted from [6, 7]

and consistent with [3, 4]. Note that at 100 GHz all bolometers are polarized and the equivalent temperature value is obtained

by combining polarization measurements.

a Gaussian symmetric beam, is Wℓ = exp(−ℓ(ℓ + 1)σ2
B), with σB = FWHM/

√

8 ln 2 the
beamwidth which defines the angular resolution of the experiment. For fsky = 1 the first
term in parenthesis defines the “cosmic variance”, an intrinsic limit on the accuracy at which
the APS of a certain cosmological model defined by a suitable set of parameters can be

derived with CMB anisotropy measurements5. It typically dominates the uncertainty on
the APS at low ℓ because of the small, 2ℓ+ 1, number of modes m for each ℓ. The second
term in parenthesis characterizes the instrumental noise, that never vanishes in the case of
real experiments. Note also the coupling between experiment sensitivity and resolution,
the former defining the low ℓ experimental uncertainty, namely for Wℓ close to unit, the
latter determining the exponential loss in sensitivity at angular scales comparable with the
beamwidth. We computed an overall sensitivity value, weighted over the channels, defined

by 1/σ2
j = ∑i 1/σ2

j,i, where j = T and i indicates the sensitivity of each frequency channel,

listed in Table 1. FWHM values of 13 and 33 arcmin are used in Fig.1 to define the overall
combination of Planck sensitivity and resolution, i.e. the computation of the effective beam

window function6, relevant for the sensitivity at high ℓ. Finally, to improve the signal to noise
ratio in the APS sensitivity, especially at high multipoles, a multipole binning is usually
applied. Of course, the real sensitivity of the whole mission will have to also include the
potential residuals of systematic effects. The Planck mission has been designed to suppress

5 Note that the cosmic and sampling variance (74% sky coverage excluding the sky regions mostly affected by Galactic
emission) implies a dependence of the overall sensitivity on r at low multipoles, relevant to the parameter estimation;
instrumental noise only determines the capability of detecting the B mode.

6 In fact, it is possible to smooth maps acquired at higher frequencies with smaller beamwidths to the lowest resolution
corresponding to a given experiment. We adopt here FWHM values of 33 and 13 arcmin, which correspond to the
lowest resolution of all the Planck instruments (i.e., 30 GHz channel) and to the lowest resolution of the so called
cosmological channels (i.e., 70 GHz channel), respectively (see Table 1).
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applied. Of course, the real sensitivity of the whole mission will have to also include the
potential residuals of systematic effects. The Planck mission has been designed to suppress

5 Note that the cosmic and sampling variance (74% sky coverage excluding the sky regions mostly affected by Galactic
emission) implies a dependence of the overall sensitivity on r at low multipoles, relevant to the parameter estimation;
instrumental noise only determines the capability of detecting the B mode.
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lowest resolution of all the Planck instruments (i.e., 30 GHz channel) and to the lowest resolution of the so called
cosmological channels (i.e., 70 GHz channel), respectively (see Table 1).

Extragalactic Compact Sources in the Planck Sky and Their Cosmological Implications
http://dx.doi.org/10.5772/52908

59



4 Open Questions in Cosmology

Figure 1. CMB E polarization modes (black long dashes) compatible with WMAP data and CMB B polarization modes (black
solid lines) for different tensor-to-scalar ratios T/S = r of primordial perturbations are compared to the Planck overall sensitivity
to the APS assuming two different FWHM angular resolutions (33 and 13 arcmin) and the overall sensitivity corresponding to

the whole mission duration (and also to two surveys only: upper curve in black thick dots, labeled 13 arcmin). The expected

noise is assumed to be properly subtracted. The plots include cosmic and sampling variance plus instrumental noise (green

dots for B modes, green long dashes for E modes, labeled with cv+sv+n; black thick dots, noise only) assuming a multipole

binning of 30%.The B mode induced by lensing (blue dots) is also shown. Galactic synchrotron (purple dashes) and dust (purple

dot-dashes) polarized emissions produce the overall Galactic foreground (purple three dots-dashes). WMAP 3-yr power-law
fits for uncorrelated dust and synchrotron have been used. For comparison, WMAP 3-yr results (http://lambda.gsfc.nasa.gov/)
derived from the foreground maps using HEALPix tools (http://healpix.jpl.nasa.gov/) [12] are shown (red three dots-dashes

broken line): power-law fits provide (generous) upper limits to the power at low multipoles. Residual contamination levels by

Galactic foregrounds (purple three dot-dashes) are shown for 10%, 5%, and 3% of the map level, at increasing thickness. We

plot also as thick and thin green dashes realistic estimates of the residual contribution of un-subtracted extragalactic sources,

Cres,PS
ℓ

and the corresponding uncertainty, δCres,PS
ℓ

.

potential systematic effects down to ∼ µK level or below. Fig.1 compares CMB polarization
modes with the ideal sensitivity of Planck (including also a 15% level of HFI data loss because
of cosmic rays; see [10]) and the signals coming from astrophysical foregrounds as discussed
below.

CMB anisotropy maps are contaminated by a significant level of foreground emission of both
Galactic and extragalactic origin. For polarization, the most critical Galactic foregrounds
are certainly synchrotron and thermal dust emission, whereas free-free emission gives
a negligible contribution. Other components, like spinning dust and “haze”, are still
poorly known, particularly in polarization. Synchrotron emission is the dominant Galactic
foreground signal at low frequencies, up to ∼60 GHz, where dust emission starts to
dominate. External galaxies are critical only at high ℓ, and extragalactic radio sources
are likely the most crucial in polarization up to frequencies ∼200 GHz, the most suitable
for CMB anisotropy experiments. We parameterize a potential residual from non perfect
cleaning of CMB maps from Galactic foregrounds simply assuming that a certain fraction
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Figure 2. CMB removed Planck full-sky maps. From left to right and from top to bottom: 30, 44, 70; 100, 143, 217; 353, 545,
and 857 GHz, respectively. Credits: Zacchei, et al., A&A, Vol. 536, A5, 2011; Planck HFI Core Team, A&A, Vol. 536, A6, 2011b,
reproduced with permission © ESO.

of the foreground signal at map level (or, equivalently, its square at power spectrum level)
contaminates CMB maps. Of course, one can easily rescale the following results to any
fraction of residual foreground contamination. The frequency of 70 GHz, i.e. the Planck
channel where Galactic foregrounds are expected to be at their minimum level, at least at
angular scales above ∼ one degree, is adopted as reference.

For what concerns CMB temperature fluctuations produced by undetected EPS [13], we
adopt the recent (conservative) estimate of their Poisson contribution to the (polarized) APS
[14] at 100 GHz7 by assuming a detection threshold of ≃ 0.1 Jy. We also assume a potential
residual coming from an uncertainty in the subtraction of this contribution computed by
assuming a relative uncertainty of ≃ 10% in the knowledge of their degree of polarization
and in the determination of the source detection threshold, implying a reduction to ≃ 30% of
the original level. Except at very high multipoles, their residual is likely significantly below
that coming from Galactic foregrounds.

The first publications of the main cosmological (i.e. properly based on Planck CMB maps)
implications are expected in early 2013, together with the delivery of a first set of Planck
maps and cosmological products coming from the first 15 months of data. They will be
mainly based on temperature data. Waiting for these products, a first multifrequency view
of the Planck astrophysical sky has been presented in the Early Papers: Fig. 2 reports
the first LFI and HFI frequency (CMB subtracted) maps. These maps are the basis of the
construction of the Planck Early Release Compact Source Catalog (ERCSC) (see [15] and The
Explanatory Supplement to the Planck Early Release Compact Source Catalogue), the first Planck
product delivered to the scientific community.

7 We adopt here a frequency slightly larger than that considered for Galactic foregrounds (70 GHz) because at small
angular scales, where point sources are more critical, the minimum of foreground contamination is likely shifted to
higher frequencies.
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6 Open Questions in Cosmology

Figure 3. The Planck ERCSC flux density limit quantified as the faintest ERCSC sources at |b| < 10◦ (dashed black line) and
at |b| > 30◦ (solid black line) is shown relative to other wide area surveys. See Fig. 5 of [15] for more details. Credit: Planck
Collaboration, A&A, vol. 536, A7, 2011, reproduced with permission © ESO.

Fig. 3 compares the sensitivity of Planck ERCSC with those of other surveys from radio to
far-infrared wavelengths. Of course, by accumulating sky surveys and refining data analysis,
the Planck sensitivity to point sources will significantly improve in the coming years. The
forthcoming Planck Legacy Catalog of Compact Sources (PCCS), to be released in early 2013
and to be updated in subsequent years, will represent one of the major Planck products
relevant for multi-frequency studies of compact or point–like sources.

2.1. Extragalactic point sources vs. non-Gaussianity

The cosmological evolution of extragalactic sources and its implications for the CMB and
the CIB will be discussed in the following Sections, 5 and 6. On the other hand, statistical
analyses of the extragalactic source distribution in the sky can be applied to test cosmological
models. In this context, the possibility of probing the Gaussianity of primordial perturbations
appears particularly promising. Primordial perturbations at the origin of the large scale
structure (LSS) may leave their imprint in the form of small deviations from a Gaussian
distribution, [16, 17] that can appear in different kinds of configurations, such as the so-called
local type, equilateral, enfolded, orthogonal. For example, the local type of deviation
from Gaussianity is parameterized by a constant dimensionless parameter fNL (see, e.g.,
[18–20]) Φ = φ + fNL(φ
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), where Φ denotes Bardeen’s gauge-invariant potential
(evaluated deep in the matter era in the CMB convention) and φ is a Gaussian random
field. Extragalactic radio sources are particularly interesting as tracers of the LSS since
they span large volumes extending out to substantial redshifts. The radio sources from the
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NRAO VLA Sky Survey (NVSS), the quasar catalogue of Sloan Digital Sky Survey Release
Six (SDSS DR6 QSOs) and the MegaZ-LRG (DR7), the final SDSS II Luminous Red Galaxy
(LRG) photometric redshift survey, have been recently analysed by [21] (see this work and
references therein for a thorough analysis on the subject). Through a global analysis of the
constraints on the amplitude of primordial non-Gaussianity by the angular power spectra
obtained from extragalactic radio sources (mapped by these surveys) and, moreover, from
their cross-correlation power spectra with the WMAP CMB temperature map, [21] set limits
on fNL = 48 ± 20, fNL = 50 ± 265 and fNL = 183 ± 95 at 68% confidence level for local,
equilateral and enfolded templates, respectively. These results have been found to be stable
with respect to potential systematic errors: the source number density and the contamination
by Galactic emissions, for NVSS sources; the use of different CMB temperature fluctuation
templates and the contamination of stars in the SDSS and LRG samples. Such tests of
non–Gaussianity would have profound implications for inflationary mechanisms – such as
single-field slow roll, multifields, curvaton (local type) – and for models which have effects
on the halo clustering can be described by the equilateral template (related to higher-order
derivative type non-Gaussianity) and by the enfolded template (related to modified initial
state or higher-derivative interactions). Fundamental progress on this topic will be achieved
by combining forthcoming LSS surveys with the CMB maps provided by Planck.

3. Methods for compact source detection in CMB maps

Compact sources, in CMB literature, are defined as spatially bounded sources which subtend
very small angular scales in the images, such as galaxies and galaxy clusters. On the other
hand, diffuse components, such as the CMB itself and Galactic foregrounds, do not show
clear spatial boundaries and extend over large areas of the sky. Due to the fact that compact
sources are spatially localized, the techniques for detecting them differ from those applied for
the separation of the diffuse components. Most of the detection methods use scale diversity,
i.e. different power at different angular scales, to enhance compact sources against diffuse
components. Sources must be detected against a combination of CMB, instrumental noise
and Galactic foregrounds. From the point of view of signal processing, the source is the
signal and the other components are the noise.

Point sources are “compact” sources in the sense that their typical observed angular size
is much smaller than the beam resolution of the experiment. Therefore, they appear as
point-like objects convolved with the instrumental beam. Radio sources and far–IR sources
are usually seen as point-like sources. Galaxy clusters, which are detected through the
thermal SZ effect [22], have a shape that is obtained as the convolution of the instrumental
beam with the cluster profile. In contrast to point sources, the cluster profile has to be taken
into account for cluster detection. However, since the projected angular scale of clusters is
generally small, techniques that are useful for point sources can be adapted for clusters, too.

The thermal SZ effect has a general dependence with frequency, that makes the use of
multichannel images very convenient for cluster detection. On the contrary, the flux of each
individual point source has its own frequency dependence. Despite this fact, the combination
of several channels can also improve point source detection. We will review techniques
applied to single-frequency channels in a first subsection and then we will discuss more
recent methods, that use multichannel information.
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Figure 3. The Planck ERCSC flux density limit quantified as the faintest ERCSC sources at |b| < 10◦ (dashed black line) and
at |b| > 30◦ (solid black line) is shown relative to other wide area surveys. See Fig. 5 of [15] for more details. Credit: Planck
Collaboration, A&A, vol. 536, A7, 2011, reproduced with permission © ESO.

Fig. 3 compares the sensitivity of Planck ERCSC with those of other surveys from radio to
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the Planck sensitivity to point sources will significantly improve in the coming years. The
forthcoming Planck Legacy Catalog of Compact Sources (PCCS), to be released in early 2013
and to be updated in subsequent years, will represent one of the major Planck products
relevant for multi-frequency studies of compact or point–like sources.

2.1. Extragalactic point sources vs. non-Gaussianity

The cosmological evolution of extragalactic sources and its implications for the CMB and
the CIB will be discussed in the following Sections, 5 and 6. On the other hand, statistical
analyses of the extragalactic source distribution in the sky can be applied to test cosmological
models. In this context, the possibility of probing the Gaussianity of primordial perturbations
appears particularly promising. Primordial perturbations at the origin of the large scale
structure (LSS) may leave their imprint in the form of small deviations from a Gaussian
distribution, [16, 17] that can appear in different kinds of configurations, such as the so-called
local type, equilateral, enfolded, orthogonal. For example, the local type of deviation
from Gaussianity is parameterized by a constant dimensionless parameter fNL (see, e.g.,
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equilateral and enfolded templates, respectively. These results have been found to be stable
with respect to potential systematic errors: the source number density and the contamination
by Galactic emissions, for NVSS sources; the use of different CMB temperature fluctuation
templates and the contamination of stars in the SDSS and LRG samples. Such tests of
non–Gaussianity would have profound implications for inflationary mechanisms – such as
single-field slow roll, multifields, curvaton (local type) – and for models which have effects
on the halo clustering can be described by the equilateral template (related to higher-order
derivative type non-Gaussianity) and by the enfolded template (related to modified initial
state or higher-derivative interactions). Fundamental progress on this topic will be achieved
by combining forthcoming LSS surveys with the CMB maps provided by Planck.

3. Methods for compact source detection in CMB maps

Compact sources, in CMB literature, are defined as spatially bounded sources which subtend
very small angular scales in the images, such as galaxies and galaxy clusters. On the other
hand, diffuse components, such as the CMB itself and Galactic foregrounds, do not show
clear spatial boundaries and extend over large areas of the sky. Due to the fact that compact
sources are spatially localized, the techniques for detecting them differ from those applied for
the separation of the diffuse components. Most of the detection methods use scale diversity,
i.e. different power at different angular scales, to enhance compact sources against diffuse
components. Sources must be detected against a combination of CMB, instrumental noise
and Galactic foregrounds. From the point of view of signal processing, the source is the
signal and the other components are the noise.

Point sources are “compact” sources in the sense that their typical observed angular size
is much smaller than the beam resolution of the experiment. Therefore, they appear as
point-like objects convolved with the instrumental beam. Radio sources and far–IR sources
are usually seen as point-like sources. Galaxy clusters, which are detected through the
thermal SZ effect [22], have a shape that is obtained as the convolution of the instrumental
beam with the cluster profile. In contrast to point sources, the cluster profile has to be taken
into account for cluster detection. However, since the projected angular scale of clusters is
generally small, techniques that are useful for point sources can be adapted for clusters, too.

The thermal SZ effect has a general dependence with frequency, that makes the use of
multichannel images very convenient for cluster detection. On the contrary, the flux of each
individual point source has its own frequency dependence. Despite this fact, the combination
of several channels can also improve point source detection. We will review techniques
applied to single-frequency channels in a first subsection and then we will discuss more
recent methods, that use multichannel information.
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3.1. Single channel detection

We now focus on techniques for detecting point–like sources. Galaxy clusters can be detected
by similar methods, but taking into account the cluster profile (see, e.g., [23-25]). Since
multichannel methods for cluster detection improve significantly the performance of single
channel techniques, we leave a more detailed study of clusters for the next subsection.

As mentioned before, compact source detection techniques make use of scale diversity. For
example, SEXTRACTOR [26] – where maps are pre–filtered by a Gaussian kernel the same
size as the beam – approximates the image background by a low-order polynomial and
then subtracts the background from the image. The object is detected after connecting the
pixels above a given flux density threshold. SEXTRACTOR has been used for elaborating the
Planck ERCSC [15] in the highest frequency channels, from 217 to 857 GHz. However, CMB
emission and diffuse foregrounds are complex and cannot be modeled in a straightforward
way. Thus, apart from this important application, SEXTRACTOR has had a limited use in
CMB astronomy.

A standard method which has been used often for compact source detection is the common
matched filter (MF) [27]. The MF is just a linear filter with suitable characteristics for
amplifying the source against the background. The image y(�x) is convolved with a filter
ψ(�x):

ω(�x) =
∫

y(�u)ψ(�x − �u) d�u (2)

The MF is defined as the linear filter that is an unbiased estimator of the source flux and
minimizes the variance of the filtered map. In order to satisfy these mathematical constraints,
if we assume that the beam is circularly symmetric and the background a homogeneous and
isotropic random field, the MF must be defined in Fourier space as

ψ(q) = k
τ(q)

P(q)
(3)

where τ(q) is the Fourier transform of the beam, P(q) the background power spectrum and
k the normalization constant. With this definition, the MF gives the maximum amplification
of the compact source with respect to the background. Once the source has been amplified,
point sources are detected in the filtered map as peaks above a given threshold, typically5σ,
with σ the r.m.s deviation of the filtered map. The MF has been used both with simulations
[28] and real data [29]. In this last paper, the WMAP team estimated the fluxes by fitting to a
Gaussian profile plus a planar baseline. In [24] the MF was also applied to the detection
of clusters. The use of wavelets for source detection is an interesting alternative to the
MF. Wavelets are compensated linear filters, i.e their integral is zero, that help to remove
the background contribution and yield a high source amplification. Since the beam is
approximately Gaussian, the Mexican Hat Wavelet (MHW), constructed as the Laplacian
of a Gaussian function, adapts itself very well to the detection problem. The MHW depends
on the scale R, a parameter that determines the width of the wavelet:

ψ(q) ∝ (qR)2 exp
(

−

(qR)2

2

)

(4)
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The MHW has been succesfully applied to simulated CMB data [30]. The scale R is fixed
in order to obtain the maximum amplification and the determination of the power spectrum
is not necessary. A family of wavelets that generalize the MHW, the Mexican Hat Wavelet
Family (MHWF) was presented in [31]. The performance of this family was compared with
the MF in [28] and it produced similar results when implemented on Planck simulations.
The MHWF was also applied to point source detection in WMAP images [32] by using a
non-blind method. This method yielded a larger number of detections than the MF used by
the WMAP group. The general expression of the MHWF is:

ψ(q) ∝ (qR)2n exp
(

−

(qR)2

2

)

(5)

n being a natural number. Further improvements can be obtained if we admit any real
exponent such as in the Bi-parametric Adaptive Filter (BAF) [33].

The MF and the diverse types of wavelets do not use any prior information about the
average number of sources in the surveyed patch, the flux distribution of the sources or other
properties. Therefore, useful information is being neglected by these methods. In contrast,
Bayesian methods provide a natural way to incorporate information about the statistical
properties of both the source and the noise. Several Bayesian methods have been proposed
in the literature for the detection problem [24, 34, 35]. These methods construct a posterior
probability Pr(θ|D, H) by using Bayes’ theorem

Pr(θ|D, H) =

Pr(D|θ, H)Pr(θ|H)

Pr(D|H)

(6)

where θ are the relevant parameters (positions, fluxes, sizes, etc.), D the data, and H the
underlying hypothesis. In Bayesian terminology Pr(D|θ, H) is the likelihood, Pr(θ|H) is the
prior and Pr(D|H) is the Bayesian evidence. Different Bayesian techniques can differ in the
priors or in the way of exploring the complicated posterior probability. PowellSnakes [34]
is an interesting method, which has been applied with success to the compilation of the
ERCSC for Planck frequencies between 30 and 143 GHz [15]. It uses Powell’s minimization
and physically motivated priors. This method can be also applied to cluster detection just by
introducing a suitable prior on the cluster size.

A simple Bayesian way of determining the position of the sources and estimating their
number and flux densities has been presented in [35]. Whereas by the MF, or by wavelets,
sources are detected above an arbitrary threshold, Bayesian methods select them in a more
natural way, for instance by comparing the posterior probability of two hypothesis: presence
or absence of the source. In the next subsection we will explore multichannel methods that
help improve the detection performance

3.2. Multi-channel detection

The flux density distribution, fν, of extragalactic radio sources as a function of frequency,
ν, is usually approximated by a power law, although this approximation is only valid in
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3.1. Single channel detection
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emission and diffuse foregrounds are complex and cannot be modeled in a straightforward
way. Thus, apart from this important application, SEXTRACTOR has had a limited use in
CMB astronomy.
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isotropic random field, the MF must be defined in Fourier space as
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where τ(q) is the Fourier transform of the beam, P(q) the background power spectrum and
k the normalization constant. With this definition, the MF gives the maximum amplification
of the compact source with respect to the background. Once the source has been amplified,
point sources are detected in the filtered map as peaks above a given threshold, typically5σ,
with σ the r.m.s deviation of the filtered map. The MF has been used both with simulations
[28] and real data [29]. In this last paper, the WMAP team estimated the fluxes by fitting to a
Gaussian profile plus a planar baseline. In [24] the MF was also applied to the detection
of clusters. The use of wavelets for source detection is an interesting alternative to the
MF. Wavelets are compensated linear filters, i.e their integral is zero, that help to remove
the background contribution and yield a high source amplification. Since the beam is
approximately Gaussian, the Mexican Hat Wavelet (MHW), constructed as the Laplacian
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n being a natural number. Further improvements can be obtained if we admit any real
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The MF and the diverse types of wavelets do not use any prior information about the
average number of sources in the surveyed patch, the flux distribution of the sources or other
properties. Therefore, useful information is being neglected by these methods. In contrast,
Bayesian methods provide a natural way to incorporate information about the statistical
properties of both the source and the noise. Several Bayesian methods have been proposed
in the literature for the detection problem [24, 34, 35]. These methods construct a posterior
probability Pr(θ|D, H) by using Bayes’ theorem
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where θ are the relevant parameters (positions, fluxes, sizes, etc.), D the data, and H the
underlying hypothesis. In Bayesian terminology Pr(D|θ, H) is the likelihood, Pr(θ|H) is the
prior and Pr(D|H) is the Bayesian evidence. Different Bayesian techniques can differ in the
priors or in the way of exploring the complicated posterior probability. PowellSnakes [34]
is an interesting method, which has been applied with success to the compilation of the
ERCSC for Planck frequencies between 30 and 143 GHz [15]. It uses Powell’s minimization
and physically motivated priors. This method can be also applied to cluster detection just by
introducing a suitable prior on the cluster size.

A simple Bayesian way of determining the position of the sources and estimating their
number and flux densities has been presented in [35]. Whereas by the MF, or by wavelets,
sources are detected above an arbitrary threshold, Bayesian methods select them in a more
natural way, for instance by comparing the posterior probability of two hypothesis: presence
or absence of the source. In the next subsection we will explore multichannel methods that
help improve the detection performance

3.2. Multi-channel detection

The flux density distribution, fν, of extragalactic radio sources as a function of frequency,
ν, is usually approximated by a power law, although this approximation is only valid in
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limited frequency intervals, i.e. fν ∝ (ν/ν0)
α, with ν0 being some frequency of reference.

Nevertheless, the so called “spectral index”, α, changes from source to source and this
formula is not reliable when the range of frequencies is wide enough. In [36] a scheme
for channel combination was proposed that makes the spectral behavior irrelevant. This
method is called matrix multifilters (MTXFs) and relies on the application of a set (N × N
matrix) of linear filters which combine the information of the N channels in such a way that:
1) an unbiased estimator of the source flux at each channel is obtained; and 2) the variance
of the estimator is minimum. Note that the method does not mix the images in a single
map, but it produces N maps in which the sources are conveniently amplified. The method
defaults to the MF when there is no cross-correlation among the channels. When there is a
non negligible correlation among the channels, as is the case for microwave images taken at
different frequencies where CMB and Galactic foregrounds are present in all the images, this
method gives a clear increase of the amplification when compared with the MF.

Now, we discuss a method tailored for cluster detection through the thermal SZ effect.
Matched Multifilters (MMF) [37] combine N channels in a single image, incorporating
the information about the spectral behavior (thermal SZ effect) and with the N filters
depending on a scale parameter S. The filters are constructed in the usual way, by imposing
unbiasedness and minimum variance. The MMF is given (in matrix notation) by

Υ(q) = αP
−1F, α

−1
=

∫

dq Ft
P
−1F, (7)

where F is the column vector [ fντν], which incorporates the spectral behavior fν and the
shape of the cluster at each frequency τν and P is the cross-power spectrum. Since the cluster
size is not known a priori, the images are convolved with a set of filters with different scales
Si, and it has been proven that the amplification is maximum when the chosen scale coincides
with the cluster size. A common pressure profile is assumed for the clusters. The detection
is performed by searching for the maxima of the filtered map above a given threshold. The
estimated amplitude of the thermal SZ effect is given by the amplitude at the maxima.

MMF can also be adapted to detect the fainter kinematic SZ effect. In this case an
orthogonality condition with respect to the spectral behavior of the thermal SZ effect is
imposed. Together with the usual unbiasedness and minimum variance conditions, this last
constraint helps cancel out the thermal SZ effect contamination [38]. A MMF can also be
designed for point source detection, by incorporating the (unknown) spectral behavior of the
sources as a set of parameters in the filter, it has also been proven that the amplification is
maximum when these parameters coincide with the real source spectrum. By changing the
parameters and selecting those which give the maximum amplification, in [39] the authors
were able to increase the number of point source detections in the WMAP 7-year maps.

Finally, a multi-channel Bayesian method has been developed recently, Powell-Snakes II [40].
This method constructs a posterior distribution by combining the likelihood and the prior
information of the different channels. It is an extension of Powell-Snakes I and uses prior
information on the positions, number of sources, intensities, sizes and spectral parameters.
The method is suitable both for point sources and for clusters. It is worth noting that
maximizing the likelihood when the sources are well separated, i.e. in the absence of source
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blending, amounts to using the MMF presented above. Here we have briefly summarized
the most important topics on the subject: a more detailed review can be found in [41].

4. Sunyaev-Zeldovich effect in clusters of galaxies

The Sunyaev-Zeldovich effect (SZ, [22]) accounts for the interaction between a hot plasma
(in a cluster environment) and the photons of the CMB. When CMB photons cross a galaxy
cluster, some of these photons interact with the free electrons in the hot plasma through
inverse Compton scattering. The temperature change observed in a given direction, θ, and
at the frequency ν, can be described as

∆T(θ, ν) = C0

∫

ne(l)T(l)dl (8)

where C0 contains all the relevant constants including the frequency dependence (gx =

x(ex
+ 1)/(ex

− 1) − 4, with x = hν/kT), ne is the electron density and T is the electron
temperature. The integral is performed along the line of sight.

The same electrons that interact with the CMB photons emit X-rays through the
bremstrahlung process:

Sx(θ, ν) = S0

∫

n2
e T1/2dl

Dℓ(z)
2

(9)

where Dℓ(z) is the luminosity distance. The quantity S0 contains all the relevant constants
and frequency dependence. Combining X–ray and SZ observations it is thus possible to
reduce the degeneracy between different models due to their different dependency on T and
especially with ne.

Due to the nature of the microwave radiation, water vapour (and hence our atmosphere)
presents a challenge for studying this radiation from the ground. Observations have to
be carried out through several windows where the transmission of the microwave light
is maximized. In recent years, ground–based experiments have benefited from important
progress in the development of very sensitive bolometers. These bolometer arrays when
combined with superb atmospheric conditions – found in places like the South Pole and
the Atacama desert (with extremely low levels of water vapour) – have allowed, for the
first time at all, galaxy clusters to be mapped in great detail through the SZ effect. The
South Pole Telescope (or SPT; see, e.g., [42]) and the Atacama Cosmology Telescope (or ACT;
see, e.g., [43]) are today the most important ground–based experiments carrying out these
observations.

From space, the Planck satellite – even though it lacks the spatial resolution of ground–based
experiments – complements them by applying a full–sky coverage, a wider frequency range
and a better understanding of Galactic and extragalactic foregrounds. In particular, Planck
is better suited than ground–based experiments to detect large angular scale SZ signals
like nearby galaxy clusters or the diffuse SZ effect. In fact, ground–based experiments
can have their large angular scales affected by atmospheric fluctuations that need to be
removed, carefully. This removal process can distort the modes that include the large
angular scales signal. On the contrary, Planck data does not suffer from these limitations
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limited frequency intervals, i.e. fν ∝ (ν/ν0)
α, with ν0 being some frequency of reference.

Nevertheless, the so called “spectral index”, α, changes from source to source and this
formula is not reliable when the range of frequencies is wide enough. In [36] a scheme
for channel combination was proposed that makes the spectral behavior irrelevant. This
method is called matrix multifilters (MTXFs) and relies on the application of a set (N × N
matrix) of linear filters which combine the information of the N channels in such a way that:
1) an unbiased estimator of the source flux at each channel is obtained; and 2) the variance
of the estimator is minimum. Note that the method does not mix the images in a single
map, but it produces N maps in which the sources are conveniently amplified. The method
defaults to the MF when there is no cross-correlation among the channels. When there is a
non negligible correlation among the channels, as is the case for microwave images taken at
different frequencies where CMB and Galactic foregrounds are present in all the images, this
method gives a clear increase of the amplification when compared with the MF.

Now, we discuss a method tailored for cluster detection through the thermal SZ effect.
Matched Multifilters (MMF) [37] combine N channels in a single image, incorporating
the information about the spectral behavior (thermal SZ effect) and with the N filters
depending on a scale parameter S. The filters are constructed in the usual way, by imposing
unbiasedness and minimum variance. The MMF is given (in matrix notation) by

Υ(q) = αP
−1F, α

−1
=

∫

dq Ft
P
−1F, (7)

where F is the column vector [ fντν], which incorporates the spectral behavior fν and the
shape of the cluster at each frequency τν and P is the cross-power spectrum. Since the cluster
size is not known a priori, the images are convolved with a set of filters with different scales
Si, and it has been proven that the amplification is maximum when the chosen scale coincides
with the cluster size. A common pressure profile is assumed for the clusters. The detection
is performed by searching for the maxima of the filtered map above a given threshold. The
estimated amplitude of the thermal SZ effect is given by the amplitude at the maxima.

MMF can also be adapted to detect the fainter kinematic SZ effect. In this case an
orthogonality condition with respect to the spectral behavior of the thermal SZ effect is
imposed. Together with the usual unbiasedness and minimum variance conditions, this last
constraint helps cancel out the thermal SZ effect contamination [38]. A MMF can also be
designed for point source detection, by incorporating the (unknown) spectral behavior of the
sources as a set of parameters in the filter, it has also been proven that the amplification is
maximum when these parameters coincide with the real source spectrum. By changing the
parameters and selecting those which give the maximum amplification, in [39] the authors
were able to increase the number of point source detections in the WMAP 7-year maps.

Finally, a multi-channel Bayesian method has been developed recently, Powell-Snakes II [40].
This method constructs a posterior distribution by combining the likelihood and the prior
information of the different channels. It is an extension of Powell-Snakes I and uses prior
information on the positions, number of sources, intensities, sizes and spectral parameters.
The method is suitable both for point sources and for clusters. It is worth noting that
maximizing the likelihood when the sources are well separated, i.e. in the absence of source
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blending, amounts to using the MMF presented above. Here we have briefly summarized
the most important topics on the subject: a more detailed review can be found in [41].

4. Sunyaev-Zeldovich effect in clusters of galaxies

The Sunyaev-Zeldovich effect (SZ, [22]) accounts for the interaction between a hot plasma
(in a cluster environment) and the photons of the CMB. When CMB photons cross a galaxy
cluster, some of these photons interact with the free electrons in the hot plasma through
inverse Compton scattering. The temperature change observed in a given direction, θ, and
at the frequency ν, can be described as

∆T(θ, ν) = C0

∫

ne(l)T(l)dl (8)

where C0 contains all the relevant constants including the frequency dependence (gx =

x(ex
+ 1)/(ex

− 1) − 4, with x = hν/kT), ne is the electron density and T is the electron
temperature. The integral is performed along the line of sight.

The same electrons that interact with the CMB photons emit X-rays through the
bremstrahlung process:

Sx(θ, ν) = S0

∫

n2
e T1/2dl

Dℓ(z)
2

(9)

where Dℓ(z) is the luminosity distance. The quantity S0 contains all the relevant constants
and frequency dependence. Combining X–ray and SZ observations it is thus possible to
reduce the degeneracy between different models due to their different dependency on T and
especially with ne.

Due to the nature of the microwave radiation, water vapour (and hence our atmosphere)
presents a challenge for studying this radiation from the ground. Observations have to
be carried out through several windows where the transmission of the microwave light
is maximized. In recent years, ground–based experiments have benefited from important
progress in the development of very sensitive bolometers. These bolometer arrays when
combined with superb atmospheric conditions – found in places like the South Pole and
the Atacama desert (with extremely low levels of water vapour) – have allowed, for the
first time at all, galaxy clusters to be mapped in great detail through the SZ effect. The
South Pole Telescope (or SPT; see, e.g., [42]) and the Atacama Cosmology Telescope (or ACT;
see, e.g., [43]) are today the most important ground–based experiments carrying out these
observations.

From space, the Planck satellite – even though it lacks the spatial resolution of ground–based
experiments – complements them by applying a full–sky coverage, a wider frequency range
and a better understanding of Galactic and extragalactic foregrounds. In particular, Planck
is better suited than ground–based experiments to detect large angular scale SZ signals
like nearby galaxy clusters or the diffuse SZ effect. In fact, ground–based experiments
can have their large angular scales affected by atmospheric fluctuations that need to be
removed, carefully. This removal process can distort the modes that include the large
angular scales signal. On the contrary, Planck data does not suffer from these limitations
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and its relatively poor angular resolution (if compared to some ground experiments) can
be used to its advantage. The wide frequency coverage and extremely high sensitivity of
Planck allows for detailed foreground (and CMB) removal that could overwhelm the weak
signal of the SZ effect. Planck data will help improve the understanding of the distribution
and the characteristics of the plasma in clusters. The conclusions derived on the internal
structure of clusters will ultimately have an impact on other works that focus on deriving
cosmological parameters. In fact, cosmological studies cannot by themselves disentangle
among the uncertainties in the physics inside galaxy clusters.

12:56:00.058:00.013:00:00.002:00.0

26:59:59.9
29:59.9

27:59:59.9

Figure 4. Fig. 1 from [44]. Coma cluster as seen by Planck. Contours show the the X-ray emission from Coma. Credit: Planck
Collaboration, A&A, Vol. 536, A8, 2011, reproduced with permission © ESO.

The Planck satellite is currently detecting hundreds of clusters of galaxies through the thermal
SZ effect. One of the peculiarities of the SZ effect is that the change in the CMB temperature
in the direction of a cluster is independent of the distance to that cluster. This makes the SZ
an ideal tool to explore the high redshift Universe. Planck is perfect for studying the most
massive clusters in the Universe and is expected to see clusters beyond z = 1. Earlier results
on galaxy clusters obtained by Planck have been presented in a subset of the Planck Early
results papers and, more specifically, can be found in [44–49] and also in [50], where new
results based on additional data are starting to be presented.

Among the first results published by the Planck collaboration on the SZ effect, the Coma
cluster (see Fig. 4) constitutes one of the most spectacular ones. Coma is a nearby massive
cluster that is well resolved by Planck. Fig. 4 shows the power of Planck to study the SZ
effect with unprecedented quality. In the near future, studies based on Planck data alone or
combined with X-ray data will reveal new details about the internal structure of this and
other clusters.

Planck’s earlier results include the detection of almost 200 clusters through their SZ signature
([44]). Planck is particularly sensitive to phenomena that increase the pressure, like mergers
or superclusters. One such supercluster was detected by Planck [45]. Most of the clusters
seen by Planck in the early analysis were known nearby objects but some of them were
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Figure 5. Fig. 3 from [44]. Distribution of Planck clusters that were already known (blue) and the new cluster candidates (green

and red). Credit: Planck Collaboration, A&A, Vol. 536, A8, 2011, reproduced with permission © ESO.

new clusters, that have been later confirmed by X-ray and/or optical follows up. Fig. 5
shows the distribution in the sky of clusters of galaxies as seen by Planck. This includes
the most massive clusters in the nearby and intermediate distance Universe. The redshift
independence of the SZ effect can be appreciated in Fig. 6 (next page), which shows the
relative flatness of the selection function of Planck as compared to cluster selections based
on X-ray luminosity. New analysis based on better data will improve the selection function
by reducing the limiting mass as a function of redshift. It is expected [5] that Planck will
increase the number of known clusters in a significant way and, in particular, it will explore
the high–redshift regime, detecting the most massive clusters at these high redshifts.

One of the most interesting conclusions derived by these earlier results comes from the
combination of X-ray and SZ data. Earlier studies based on X-ray data were able to conclude
that there exists a universal profile that accurately describes the gas pressure in galaxy
clusters [51]. The newly discovered (by Planck) SZ clusters seem to follow well this profile
but small deviations were observed when comparing the mean SZ profile with the average
profile derived from X-ray observations. Fig. 7 summarizes one of the main results of the
paper [45] where it can be appreciated how the average profile of the SZ observations (red
thick line) flattens towards the cluster center (R500 ≪ 1) when compared to the average of a
sample of cool, core relaxed X-ray clusters (thick blue line). This fact suggests that the new
clusters detected by Planck tend to be non–cool core, morphologically disturbed clusters. This
would explain why these clusters where not found by previous X-ray surveys but Planck, that
is sensitive to the total pressure rather than to the distribution of the gas, has no problem in
finding them.

Many other relevant results can be found in the first series of papers from the Planck ERCSC,
including studies of scaling relations between SZ quantities and optical or X-ray ones. More
recently, a new analysis based on 2.5 full sky surveys has studied the relationship between
the Compton parameter and weak lensing mass estimates [50]. As shown in Fig. 8, this work
is very promising and could allow – in the near future – the use of the Compton parameter
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by reducing the limiting mass as a function of redshift. It is expected [5] that Planck will
increase the number of known clusters in a significant way and, in particular, it will explore
the high–redshift regime, detecting the most massive clusters at these high redshifts.

One of the most interesting conclusions derived by these earlier results comes from the
combination of X-ray and SZ data. Earlier studies based on X-ray data were able to conclude
that there exists a universal profile that accurately describes the gas pressure in galaxy
clusters [51]. The newly discovered (by Planck) SZ clusters seem to follow well this profile
but small deviations were observed when comparing the mean SZ profile with the average
profile derived from X-ray observations. Fig. 7 summarizes one of the main results of the
paper [45] where it can be appreciated how the average profile of the SZ observations (red
thick line) flattens towards the cluster center (R500 ≪ 1) when compared to the average of a
sample of cool, core relaxed X-ray clusters (thick blue line). This fact suggests that the new
clusters detected by Planck tend to be non–cool core, morphologically disturbed clusters. This
would explain why these clusters where not found by previous X-ray surveys but Planck, that
is sensitive to the total pressure rather than to the distribution of the gas, has no problem in
finding them.

Many other relevant results can be found in the first series of papers from the Planck ERCSC,
including studies of scaling relations between SZ quantities and optical or X-ray ones. More
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Figure 6. Fig. 21 from [44]. Redshift distribution as a function of luminosity for the 158 clusters from the Planck Early SZ

sample (diamonds and triangles) identified with known X-ray clusters, compared with serendipitous and RASS clusters (crosses).

See [44] for more details. Credit: Planck Collaboration, A&A, Vol. 536, A8, 2011, reproduced with permission © ESO.

Figure 7. Fig. 10 from [45]. Scaled density profiles, derived from X-ray data, of the new Planck SZ clusters compared to those
of similar mass systems from representative X–ray samples. Thick lines show the mean profile of each sample. Credit: Planck
Collaboration, A&A, Vol. 536, A9, 2011, reproduced with permission © ESO.

as a mass proxy in cosmological studies, where a good mass estimator is crucial to derive
accurate cosmological parameters from the analysis of a cluster sample.

After Planck’s data release, science based on the SZ effect will change dramatically. Planck is
expected to release more than 2 full sky surveys of data early in 2013, thus opening the door
for multiple studies to be carried out by the scientific community. Cluster science based
on the SZ effect will motivate many of these studies. Of particular interest will be those
works that combine SZ effect and X-ray data. The different dependence of the SZ effect and
X-ray emission with electron density and temperature allows for deprojection techniques

Open Questions in Cosmology70
Extragalactic Compact Sources in the Planck Sky and Their Cosmological Implications 15

to reduce the uncertainties of the models. Also, the combination of X-ray and SZ data can
be particularly powerful to study the clumpiness of the gas and deviations from spherical
symmetry. An area where future Planck data will be used extensively will be the detection of
new cluster candidates. The legacy Planck cluster catalogue will contain the most significant
cluster signals. Hundreds of weaker SZ (and unknown) clusters will still be present in the
public data but not in the legacy catalogue. Many groups will dig into the Planck data
searching for these weaker signals. Among them there will be the most distant clusters at
z > 1 that will be crucial for future cosmological studies.

Figure 8. Fig. 1 from [50]. Correlation between the Compton parameter and the weak lensing mass. Credit: Planck
Collaboration, A&A, submitted (ms AA/2012/19398), 2012, reproduced with permission © ESO.

Another area where Planck data might contribute significantly is in the study of energetic
phenomena in galaxy clusters. The SZ effect is sensitive to the temperature of the Plasma (or
more generally, to the speed distribution of the electrons). Hot clusters have an SZ spectrum
that deviates from the standard shape. The shift (or relativistic correction) is more dramatic
at higher frequencies (ν > 100 GHz). Current X-ray missions like Chandra have some trouble
determining the temperature of the plasma for clusters with high temperatures. On the
contrary, the relativistic corrections to the SZ effect can dramatically boost the SZ signal
in Planck at frequencies ν > 500 GHz making, it easier to detect these clusters at these
frequencies and also to derive constraints on the physical state of the plasma. A strong
deviation in the spectrum could be an indication that very energetic phenomena (very high
temperatures, shock waves, etc.) are operating on the cluster at large scales.

5. Extragalactic radio and far–IR sources

The Planck ERCSC [15] provides positions and flux densities of compact sources found in
each of the nine Planck frequency maps. The flux densities are calculated using aperture
photometry, with careful modeling of Planck’s elliptical beams8. These data on sources
detected during the first 1.6 full-sky surveys offers, among other things, the opportunity
of studying the statistical and emission properties of extragalactic radio and far–IR sources
over a broad frequency range, never before fully explored by blind surveys.

8 Flux densities taken from the ERCSC should be divided by the appropriate colour correction to give the correct flux
values for an assumed narrow band measurement at the central frequency.
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more generally, to the speed distribution of the electrons). Hot clusters have an SZ spectrum
that deviates from the standard shape. The shift (or relativistic correction) is more dramatic
at higher frequencies (ν > 100 GHz). Current X-ray missions like Chandra have some trouble
determining the temperature of the plasma for clusters with high temperatures. On the
contrary, the relativistic corrections to the SZ effect can dramatically boost the SZ signal
in Planck at frequencies ν > 500 GHz making, it easier to detect these clusters at these
frequencies and also to derive constraints on the physical state of the plasma. A strong
deviation in the spectrum could be an indication that very energetic phenomena (very high
temperatures, shock waves, etc.) are operating on the cluster at large scales.

5. Extragalactic radio and far–IR sources

The Planck ERCSC [15] provides positions and flux densities of compact sources found in
each of the nine Planck frequency maps. The flux densities are calculated using aperture
photometry, with careful modeling of Planck’s elliptical beams8. These data on sources
detected during the first 1.6 full-sky surveys offers, among other things, the opportunity
of studying the statistical and emission properties of extragalactic radio and far–IR sources
over a broad frequency range, never before fully explored by blind surveys.

8 Flux densities taken from the ERCSC should be divided by the appropriate colour correction to give the correct flux
values for an assumed narrow band measurement at the central frequency.
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As shown by [15], their Table 1, the full-sky surveys of the Planck satellite are – and will be,

for years to come – unique in the millimetre, at λ ≤ 3 mm, and submillimetre domains. The

lack of data in this frequency range represented the largest remaining gap in our knowledge

of bright extragalactic sources (i.e., normal and star–forming galaxies and Active Galactic

Nuclei, AGNs) across the electromagnetic spectrum. In the course of its planned surveys,

Planck has been able to measure the integrated flux of many hundreds of “radio” sources

– i.e., sources at intermediate to high–redshift, dominated by synchrotron emission due to

hot electrons in the inner jets of the Active Galactic Nucleus (AGN) of the source – and

of many thousands “‘far–IR” sources – i.e., low–redshift dusty galaxies or sources with

emission dominated by interstellar dust in thermal equilibrium with the radiation field –

thus providing the first complete full-sky catalogue (ERCSC) of bright submillimetre sources.

Thanks to this huge amount of new data it is thus possible to investigate the spectral energy

distributions (SEDs) of EPS in a spectral domain very poorly explored before and, at the

same time, their cosmological evolution, at least for some relevant source populations.

5.1. Synchrotron sources: “blazars”

The most recent estimates on source number counts of radio (synchrotron) sources up to

∼ 50 − 70 GHz, and the optical identifications of the corresponding point sources (see, e.g.,

[52]), show that these counts are dominated by radio sources whose average spectral index

is “flat”, i.e., α ≃ 0.0 (with the usual convention Sν ∝ να). This result confirms that the

underlying source population is essentially made of Flat Spectrum Radio Quasars (FSRQ)

and BL Lac objects, collectively called “blazars”9, with minor contributions coming from

other source populations [13, 54]. At frequencies > 100 GHz, however, there is now new

information for sources with flux densities below about 1 Jy, coming from the South Pole

Telescope (SPT) collaboration [55], with surveys over 87 deg2 at 150 and 220 GHz, and from

the Atacama Cosmology Telescope (ACT) survey over 455 deg2 at 148 GHz [56].

The “flat” spectra of blazars are generally believed to result from the superposition of

different components in the inner part of AGN relativistic jets, each with a different

synchrotron self-absorption frequency [57]. At a given frequency, the observed flux density

is thus dominated by the synchrotron-emitting component which becomes self-absorbed,

and, in the equipartition regime, the resulting spectrum is approximately flat. Given their

sensitivity and full sky coverage, Planck surveys are uniquely able to shed light on this

transition from an almost “flat” to a “steep” regime in the spectra of blazar sources, which

can be very informative on the ages of sources and on the inner jet processes which determine

the acceleration of the electrons [58].

To study the spectral properties of the extragalactic radio sources in the Planck ERCSC
[59] used a reference 30 GHz sample above an estimated completeness limit Slim ≃ 1.0 Jy.
Not all of these sources were detected at the ≥ 5σ level in each of the Planck frequency
channels considered. Whenever a source was not detected in a given channel they replaced
its (unknown) flux density by a 5σ upper limit, where for σ they used the average r.m.s.

9 Blazars are jet-dominated extragalactic objects characterized by a strongly variable and polarized emission of the
non-thermal radiation, from low radio energies up to high energy gamma rays [53].
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error estimated at each Planck frequency. Finally, for estimating spectral index distributions,
these upper limits have been redistributed among the flux density bins by using a Survival
Analysis technique and, more specifically, by adopting the Kaplan-Meyer estimator10[59].

In the sample analyzed by [59], the 30–100 GHz median spectral index is very close to the
α ≃ −0.39 found by [60] between 20 and 95 GHz, for a sample with 20 GHz flux density S >

150 mJy. Moreover, the 30–143 GHz median spectral index is in very good agreement with
the one found by [56] for their bright (Sν > 50 mJy) 148 GHz-selected sample with complete
cross-identifications from the Australia Telescope 20 GHz survey, i.e α148

20 = −0.39 ± 0.04.

Fig.9 presents the contour levels of the distribution of α143
70 vs. α70

30 (obtained using Survival
Analysis) in the form of a 2D probability field: the colour scale can be interpreted as the
probability of a given pair of spectral indices and a bending down, i.e. α < −0.5, at high
frequencies is displayed. In the whole, the results of [59] show that in their sample selected
at 30 GHz a moderate steepening of spectral indices of EPS at high radio frequencies, i.e.
� 70 − 100 GHz, is clearly apparent11.
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Figure 9. Fig. 7 from [59]. Contour levels of the distribution of α143
70 vs. α70

30 obtained by Survival Analysis, i.e., taking into

account the upper limits to flux densities at each frequency. The colour scale can be interpreted as the probability of having any

particular pair of values of the two spectral indices. The maximum probability corresponds to α70
30 ≃ −0.18 and α143

70 ≃ −0.5.
Credit: Planck Collaboration, A&A, Vol. 536, A13, 2011, reproduced with permission © ESO.

As already noted, at high radio frequencies (ν > 30 GHz) most of the bright extragalactic
radio-sources are blazars. From the contour plot of Fig. 9 it is possible to see that the
maximum probability of the spectral indices of blazars corresponds to α70

30 ≃ −0.18 and

α143
70 ≃ −0.5. A secondary maximum can also be seen at α143

70 ≃ −1.2. In a companion paper,
i.e. [61], a detailed discussion on the modelling of the spectra of this source class is also
presented. In this paper, spectral energy distributions (SEDs) and radio continuum spectra
are presented for a northern sample of 104 extragalactic radio sources, based on the Planck
ERCSC and simultaneous multifrequency data12. The nine Planck frequencies, from 30 to 857
GHz, are complemented by a set of quasi–simultaneous observations ranging from radio to
gamma-rays. SED modelling methods are discussed, with an emphasis on proper, physical

10 Since the fraction of upper limits is found to be always small (it reaches approximately 30% only in the less sensitive
channel at 44GHz), the spectral index distributions are reliably reconstructed at each frequency.

11 Some hints in this direction were previously found by other works on the subject. Additional evidence of spectral
steepening is also presented in [61] by the analysis of a complete sample of blazars selected at 37 GHz.

12 The great amount of data present in the Planck ERCSC complemented with quasi-simultaneous ground–based
observations at mm wavelengths have also enabled the study of the very interesting spectral properties of the rare
peculiar and/or extreme radio sources detected by the Planck surveys [62].
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underlying source population is essentially made of Flat Spectrum Radio Quasars (FSRQ)

and BL Lac objects, collectively called “blazars”9, with minor contributions coming from

other source populations [13, 54]. At frequencies > 100 GHz, however, there is now new

information for sources with flux densities below about 1 Jy, coming from the South Pole

Telescope (SPT) collaboration [55], with surveys over 87 deg2 at 150 and 220 GHz, and from

the Atacama Cosmology Telescope (ACT) survey over 455 deg2 at 148 GHz [56].

The “flat” spectra of blazars are generally believed to result from the superposition of

different components in the inner part of AGN relativistic jets, each with a different

synchrotron self-absorption frequency [57]. At a given frequency, the observed flux density

is thus dominated by the synchrotron-emitting component which becomes self-absorbed,

and, in the equipartition regime, the resulting spectrum is approximately flat. Given their

sensitivity and full sky coverage, Planck surveys are uniquely able to shed light on this

transition from an almost “flat” to a “steep” regime in the spectra of blazar sources, which

can be very informative on the ages of sources and on the inner jet processes which determine

the acceleration of the electrons [58].

To study the spectral properties of the extragalactic radio sources in the Planck ERCSC
[59] used a reference 30 GHz sample above an estimated completeness limit Slim ≃ 1.0 Jy.
Not all of these sources were detected at the ≥ 5σ level in each of the Planck frequency
channels considered. Whenever a source was not detected in a given channel they replaced
its (unknown) flux density by a 5σ upper limit, where for σ they used the average r.m.s.

9 Blazars are jet-dominated extragalactic objects characterized by a strongly variable and polarized emission of the
non-thermal radiation, from low radio energies up to high energy gamma rays [53].

Open Questions in Cosmology72
Extragalactic Compact Sources in the Planck Sky and Their Cosmological Implications 17

error estimated at each Planck frequency. Finally, for estimating spectral index distributions,
these upper limits have been redistributed among the flux density bins by using a Survival
Analysis technique and, more specifically, by adopting the Kaplan-Meyer estimator10[59].

In the sample analyzed by [59], the 30–100 GHz median spectral index is very close to the
α ≃ −0.39 found by [60] between 20 and 95 GHz, for a sample with 20 GHz flux density S >

150 mJy. Moreover, the 30–143 GHz median spectral index is in very good agreement with
the one found by [56] for their bright (Sν > 50 mJy) 148 GHz-selected sample with complete
cross-identifications from the Australia Telescope 20 GHz survey, i.e α148

20 = −0.39 ± 0.04.

Fig.9 presents the contour levels of the distribution of α143
70 vs. α70

30 (obtained using Survival
Analysis) in the form of a 2D probability field: the colour scale can be interpreted as the
probability of a given pair of spectral indices and a bending down, i.e. α < −0.5, at high
frequencies is displayed. In the whole, the results of [59] show that in their sample selected
at 30 GHz a moderate steepening of spectral indices of EPS at high radio frequencies, i.e.
� 70 − 100 GHz, is clearly apparent11.
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Figure 9. Fig. 7 from [59]. Contour levels of the distribution of α143
70 vs. α70

30 obtained by Survival Analysis, i.e., taking into

account the upper limits to flux densities at each frequency. The colour scale can be interpreted as the probability of having any

particular pair of values of the two spectral indices. The maximum probability corresponds to α70
30 ≃ −0.18 and α143

70 ≃ −0.5.
Credit: Planck Collaboration, A&A, Vol. 536, A13, 2011, reproduced with permission © ESO.

As already noted, at high radio frequencies (ν > 30 GHz) most of the bright extragalactic
radio-sources are blazars. From the contour plot of Fig. 9 it is possible to see that the
maximum probability of the spectral indices of blazars corresponds to α70

30 ≃ −0.18 and

α143
70 ≃ −0.5. A secondary maximum can also be seen at α143

70 ≃ −1.2. In a companion paper,
i.e. [61], a detailed discussion on the modelling of the spectra of this source class is also
presented. In this paper, spectral energy distributions (SEDs) and radio continuum spectra
are presented for a northern sample of 104 extragalactic radio sources, based on the Planck
ERCSC and simultaneous multifrequency data12. The nine Planck frequencies, from 30 to 857
GHz, are complemented by a set of quasi–simultaneous observations ranging from radio to
gamma-rays. SED modelling methods are discussed, with an emphasis on proper, physical

10 Since the fraction of upper limits is found to be always small (it reaches approximately 30% only in the less sensitive
channel at 44GHz), the spectral index distributions are reliably reconstructed at each frequency.

11 Some hints in this direction were previously found by other works on the subject. Additional evidence of spectral
steepening is also presented in [61] by the analysis of a complete sample of blazars selected at 37 GHz.

12 The great amount of data present in the Planck ERCSC complemented with quasi-simultaneous ground–based
observations at mm wavelengths have also enabled the study of the very interesting spectral properties of the rare
peculiar and/or extreme radio sources detected by the Planck surveys [62].
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modelling of the synchrotron bump using multiple components, and a thorough discussion
on the original accelerated electron energy spectrum in blazar jets is presented. The main
conclusion is that, al least for a fraction of the observed mm/sub-mm blazar spectra, the
energy spectrum could be much harder than commonly thought, with a power-law index
∼ 1.5 and the implications of this hard value are discussed for the acceleration mechanisms
effective in blazar shocks.

It has also been shown by [59] that differential number counts at 30, 44, and 70 GHz are
in good agreement with those derived from WMAP [29] data at nearby frequencies. The
model proposed by [54] is consistent with the present counts at frequencies up to 70 GHz,
but over-predicts the counts at higher frequencies by a factor of about 2.0 at 143 GHz and
about 2.6 at 217 GHz13. As shown above, the analysis of the spectral index distribution over
different frequency intervals, within the uniquely broad range covered by Planck in the mm
and sub-mm domain, has highlighted an average steepening of source spectra above about
70 GHz. This steepening accounts for the discrepancy between the model predictions of [54]
and the observed differential number counts at HFI frequencies.

In the fall of 2011, a successful explanation of the change detected in the spectral behavior
of extragalactic radio sources (ERS) at frequencies above 70-80 GHz has been proposed by
[63]. This paper makes a first attempt at constraining the most relevant physical parameters
that characterize the emission of blazar sources by using the number counts and the spectral
properties of extragalactic radio sources estimated from high–frequency radio surveys14. As
noted before, a relevant steepening in blazar spectra with emerging spectral indices in the
interval between −0.5 and −1.2, is commonly observed at mm/sub-mm wavelengths. [63]
interpreted this spectral behavior as caused, at least partially, by the transition from the
optically–thick to the optically–thin regime in the observed synchrotron emission of AGN
jets [64]. Indeed, a “break” in the synchrotron spectrum of blazars, above which the spectrum
bends down, thus becoming “steep”, is predicted by models of synchrotron emission from
inhomogeneous unresolved relativistic jets [65, 66]. Based on these models, [63] estimated
the value of the frequency νM (and of the corresponding radius rM) at which the break occurs
on the basis of the flux densities of ERS measured at 5 GHz and of the most typical values
for the relevant physical parameters of AGNs.

As displayed in Fig. 10, high frequency (ν ≥ 100 GHz) data on source number counts are the
most powerful for distinguishing among different cosmological evolution models (see [63]
for more details on the models plotted in Fig. 10)15. As clearly shown, these most recent
data on number counts require spectral “breaks” in blazars’ spectra and clearly favor the

13 This implies that the contamination of the CMB APS by radio sources below the 1 Jy detection limit is lower than
previously estimated. No significant changes are found, however, if we consider fainter source detection limits, i.e.,
100 mJy, given the convergence between predicted and observed number counts.

14 The main goal of [63] was to present physically grounded models to extrapolate the number counts of ERS,
observationally determined over very large flux density intervals at cm wavelengths down to mm wavelengths,
where experiments aimed at accurately measuring CMB anisotropies are carried out.

15 The two most relevant models of [63], i.e. C2Co and C2Ex, assume different distributions of rM – i.e., the smallest
radius in the AGN jet from which optically-thin synchrotron emission can be observed – for BL Lacs and FSRQs, with
the former objects that generate, in general, the synchrotron emission from more compact regions, implying higher
values of νM (above 100 GHz for bright objects). These two models differ only in the rM distributions for FSRQs: in
the C2Co model the emitting regions are more compact, implying values of νM partially overlapping with those for
BL Lacs, whereas in the C2Ex model they are more extended, thus predicting very different values of νM for FSRQs
and BL Lacs.
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Figure 10. Comparison between predicted and observed differential number counts at 148GHz (left panel) and at 220GHz
(right panel). Filled circles: ACT data; open black circles: SPT data; open blue circles: Planck ERCSC counts [59] at 143GHz (left
panel) and 217GHz (right panel). The plotted lines indicate predictions of different models, as follows: C0(dotted lines), C1
(thick continuous lines), C2Ex (lower red long–dashed lines) and C2Co (upper red long–dashed lines) and the [54] model (blue
dash–dotted line). Credit: Tucci M., et al., A&A, Vol. 533, A57, 2011, reproduced with permission © ESO.

model C2Ex. According to this, most of the FSRQs (which are the dominant population at
low frequencies and at Jy flux densities), differently from BL Lacs, should bend their flat
spectrum before or around 100 GHz. The C2Ex model also predicts a substantial increase
of the BL Lac fraction at high frequencies and bright flux densities16. On the whole, the
results of [63] imply that the parameter rM should be of parsec–scales, at least for FSRQs, in
agreement with the theoretical predictions of [67], whereas values of rM ≪ 1 pc should be
only typical of BL Lac objects or of rare, and compact, quasar sources.

5.2. Far–IR sources: Local dusty galaxies

The full-sky coverage of the Planck ERCSC provides an unsurpassed survey of galaxies at
submillimetre (submm) wavelengths, representing a major improvement in the numbers of
galaxies detected, as well as the range of far-IR/submm wavelengths over which they have
been observed. The analysis done by [68] presented the first results on the properties of
nearby galaxies using these data. They matched the ERCSC catalogue to IRAS-detected
galaxies in the Imperial IRAS Faint Source Redshift Catalogue (IIFSCz) [69], so that they
could measure the SEDs of these objects from 60 to 850 µm. This produced a list of 1717
galaxies with reliable associations between Planck and IRAS, from which they selected a
subset of 468 for SED studies, namely those with strong detections in the three highest
frequency Planck bands and no evidence of cirrus contamination. This selection has thus
provided a first Planck sample of local, i.e. at redshift < 0.1, dusty galaxies, very important
for determining their emission properties and, in particular, the presence of different
dust components contributing to their submm SEDs. Moreover, the richness of data on

16 This is indeed observed: a clear dichotomy between FSRQs and BL Lac objects has been found in the Planck ERCSC.
Almost all radio sources show very flat spectral indices at LFI frequencies, i.e. αLFI ≥ −0.2, whereas at HFI
frequencies, BL Lacs keep flat spectra, i.e. αHFI ≥ −0.5, with a high fraction of FSRQs showing steeper spectra,
i.e. αHFI ≤ −0.5.
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modelling of the synchrotron bump using multiple components, and a thorough discussion
on the original accelerated electron energy spectrum in blazar jets is presented. The main
conclusion is that, al least for a fraction of the observed mm/sub-mm blazar spectra, the
energy spectrum could be much harder than commonly thought, with a power-law index
∼ 1.5 and the implications of this hard value are discussed for the acceleration mechanisms
effective in blazar shocks.

It has also been shown by [59] that differential number counts at 30, 44, and 70 GHz are
in good agreement with those derived from WMAP [29] data at nearby frequencies. The
model proposed by [54] is consistent with the present counts at frequencies up to 70 GHz,
but over-predicts the counts at higher frequencies by a factor of about 2.0 at 143 GHz and
about 2.6 at 217 GHz13. As shown above, the analysis of the spectral index distribution over
different frequency intervals, within the uniquely broad range covered by Planck in the mm
and sub-mm domain, has highlighted an average steepening of source spectra above about
70 GHz. This steepening accounts for the discrepancy between the model predictions of [54]
and the observed differential number counts at HFI frequencies.

In the fall of 2011, a successful explanation of the change detected in the spectral behavior
of extragalactic radio sources (ERS) at frequencies above 70-80 GHz has been proposed by
[63]. This paper makes a first attempt at constraining the most relevant physical parameters
that characterize the emission of blazar sources by using the number counts and the spectral
properties of extragalactic radio sources estimated from high–frequency radio surveys14. As
noted before, a relevant steepening in blazar spectra with emerging spectral indices in the
interval between −0.5 and −1.2, is commonly observed at mm/sub-mm wavelengths. [63]
interpreted this spectral behavior as caused, at least partially, by the transition from the
optically–thick to the optically–thin regime in the observed synchrotron emission of AGN
jets [64]. Indeed, a “break” in the synchrotron spectrum of blazars, above which the spectrum
bends down, thus becoming “steep”, is predicted by models of synchrotron emission from
inhomogeneous unresolved relativistic jets [65, 66]. Based on these models, [63] estimated
the value of the frequency νM (and of the corresponding radius rM) at which the break occurs
on the basis of the flux densities of ERS measured at 5 GHz and of the most typical values
for the relevant physical parameters of AGNs.

As displayed in Fig. 10, high frequency (ν ≥ 100 GHz) data on source number counts are the
most powerful for distinguishing among different cosmological evolution models (see [63]
for more details on the models plotted in Fig. 10)15. As clearly shown, these most recent
data on number counts require spectral “breaks” in blazars’ spectra and clearly favor the

13 This implies that the contamination of the CMB APS by radio sources below the 1 Jy detection limit is lower than
previously estimated. No significant changes are found, however, if we consider fainter source detection limits, i.e.,
100 mJy, given the convergence between predicted and observed number counts.

14 The main goal of [63] was to present physically grounded models to extrapolate the number counts of ERS,
observationally determined over very large flux density intervals at cm wavelengths down to mm wavelengths,
where experiments aimed at accurately measuring CMB anisotropies are carried out.

15 The two most relevant models of [63], i.e. C2Co and C2Ex, assume different distributions of rM – i.e., the smallest
radius in the AGN jet from which optically-thin synchrotron emission can be observed – for BL Lacs and FSRQs, with
the former objects that generate, in general, the synchrotron emission from more compact regions, implying higher
values of νM (above 100 GHz for bright objects). These two models differ only in the rM distributions for FSRQs: in
the C2Co model the emitting regions are more compact, implying values of νM partially overlapping with those for
BL Lacs, whereas in the C2Ex model they are more extended, thus predicting very different values of νM for FSRQs
and BL Lacs.
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Figure 10. Comparison between predicted and observed differential number counts at 148GHz (left panel) and at 220GHz
(right panel). Filled circles: ACT data; open black circles: SPT data; open blue circles: Planck ERCSC counts [59] at 143GHz (left
panel) and 217GHz (right panel). The plotted lines indicate predictions of different models, as follows: C0(dotted lines), C1
(thick continuous lines), C2Ex (lower red long–dashed lines) and C2Co (upper red long–dashed lines) and the [54] model (blue
dash–dotted line). Credit: Tucci M., et al., A&A, Vol. 533, A57, 2011, reproduced with permission © ESO.

model C2Ex. According to this, most of the FSRQs (which are the dominant population at
low frequencies and at Jy flux densities), differently from BL Lacs, should bend their flat
spectrum before or around 100 GHz. The C2Ex model also predicts a substantial increase
of the BL Lac fraction at high frequencies and bright flux densities16. On the whole, the
results of [63] imply that the parameter rM should be of parsec–scales, at least for FSRQs, in
agreement with the theoretical predictions of [67], whereas values of rM ≪ 1 pc should be
only typical of BL Lac objects or of rare, and compact, quasar sources.

5.2. Far–IR sources: Local dusty galaxies

The full-sky coverage of the Planck ERCSC provides an unsurpassed survey of galaxies at
submillimetre (submm) wavelengths, representing a major improvement in the numbers of
galaxies detected, as well as the range of far-IR/submm wavelengths over which they have
been observed. The analysis done by [68] presented the first results on the properties of
nearby galaxies using these data. They matched the ERCSC catalogue to IRAS-detected
galaxies in the Imperial IRAS Faint Source Redshift Catalogue (IIFSCz) [69], so that they
could measure the SEDs of these objects from 60 to 850 µm. This produced a list of 1717
galaxies with reliable associations between Planck and IRAS, from which they selected a
subset of 468 for SED studies, namely those with strong detections in the three highest
frequency Planck bands and no evidence of cirrus contamination. This selection has thus
provided a first Planck sample of local, i.e. at redshift < 0.1, dusty galaxies, very important
for determining their emission properties and, in particular, the presence of different
dust components contributing to their submm SEDs. Moreover, the richness of data on

16 This is indeed observed: a clear dichotomy between FSRQs and BL Lac objects has been found in the Planck ERCSC.
Almost all radio sources show very flat spectral indices at LFI frequencies, i.e. αLFI ≥ −0.2, whereas at HFI
frequencies, BL Lacs keep flat spectra, i.e. αHFI ≥ −0.5, with a high fraction of FSRQs showing steeper spectra,
i.e. αHFI ≤ −0.5.
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extragalactic point sources gathered by Planck has allowed the measurement of the submm
number density of bright (S > 0.5 − 2 Jy) dusty galaxies (and of synchrotron-dominated
sources) for the first time.

Figure 11. Fig. 2 from [68]. Sky plot of ERCSC sources in Galactic coordinates. ERCSC point-sources (black filled hexagons) and

ERCSC sources flagged as extended (blue filled hexagons) are shown. Red hexagons are sources associated with IIFSCz IRAS

FSC galaxies. Green hexagons are ERCSC sources not associated with IIFSCz, but associated with bright galaxies in NED (only

for |b| > 60◦ for extended sources). Credit: Planck Collaboration, A&A, Vol. 536, A16, 2011, reproduced with permission ©
ESO.

Fig. 11 shows the sky distribution of ERCSC sources at |b| > 20◦, with sources flagged as
extended in the ERCSC shown as blue filled hexagons, and point-sources shown in black.
Associations with the IIFSCz are shown as red circles. The extended sources not associated
with IIFSCz sources have a strikingly clustered distribution, which matches the areas of our
Galaxy with strong cirrus emission, as evidenced by IRAS 100 µm maps. Therefore, the
majority of these are cirrus sources and not extragalactic (see [68] for more details).

The studies of nearby galaxies detected by Planck [68] confirm the presence of cold dust in
local galaxies and also largely in dwarf galaxies. The SEDs are fitted using parametric dust
models to determine the range of dust temperatures and emissivities. They found evidence
for colder dust than has previously been found in external galaxies, with temperatures T <

20 K. Such cold temperatures are found by using both the standard single temperature dust
model with variable emissivity β, or a two dust temperature model with β fixed at 2. In
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[68] it is also found that some local galaxies are both luminous and cool, with properties
similar to those of the distant submm galaxies uncovered in deep surveys. This suggests
that previous studies of dust in local galaxies have been biased away from such luminous
cool objects. In most galaxies the dust SEDs are found to be better described by parametric
models containing two dust components, one warm and one cold, with the cold component
reaching temperatures as low as 10 K17. The main conclusion of [68] is that cold (T < 20
K) dust is thus a significant and largely unexplored component of many nearby galaxies.
Furthermore, a new population of cool submm galaxies is detected, with presence of very
cold dust (T = 10 − 13 K) showing a more extended spatial distribution than generally
assumed for the gas and dust in galaxies.

Figure 12. Fig. 9 from [70]. Planck differential number counts, normalized to the Euclidean value (i.e. S2.5dN/dS), compared
with models and other data sets. Planck counts: total (black filled circles); dusty (red circles); synchrotron (blue circles). Four
models are also plotted: [54], dealing only with synchrotron sources – solid line; [63] dealing only with synchrotron sources –

dots; [71] dealing only with dusty sources – long dashes; [72] dealing only with local dusty sources – short dashes. Other data

sets: Planck early counts for 30GHz-selected radio galaxies [59] at 100, 143 and 217GHz (open diamonds); Herschel ATLAS and
HerMES counts at 350 and 500µm from [73] and [74]; BLAST at the same two wavelengths, from [75], all shown as triangles.
Left vertical axes are in units of Jy1.5 sr−1, and the right vertical axis in Jy1.5.deg−2. Credit: Planck Collaboration, A&A, submitted

(ms AA/2012/20053), 2012, reproduced with permission © ESO.

Very recently, using EPS samples selected from the first Planck 1.6 full-sky surveys, i.e. from
the Planck ERCSC, [70] have derived number counts of extragalactic sources from 100 to
857 GHz (3 mm to 350 µm). Three zones (deep, medium and shallow) of approximately

17 Fits to SEDs of selected objects using more sophisticated templates derived from radiative transfer models confirm
the presence of the colder dust found through parametric fitting.
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Figure 11. Fig. 2 from [68]. Sky plot of ERCSC sources in Galactic coordinates. ERCSC point-sources (black filled hexagons) and

ERCSC sources flagged as extended (blue filled hexagons) are shown. Red hexagons are sources associated with IIFSCz IRAS

FSC galaxies. Green hexagons are ERCSC sources not associated with IIFSCz, but associated with bright galaxies in NED (only
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Fig. 11 shows the sky distribution of ERCSC sources at |b| > 20◦, with sources flagged as
extended in the ERCSC shown as blue filled hexagons, and point-sources shown in black.
Associations with the IIFSCz are shown as red circles. The extended sources not associated
with IIFSCz sources have a strikingly clustered distribution, which matches the areas of our
Galaxy with strong cirrus emission, as evidenced by IRAS 100 µm maps. Therefore, the
majority of these are cirrus sources and not extragalactic (see [68] for more details).

The studies of nearby galaxies detected by Planck [68] confirm the presence of cold dust in
local galaxies and also largely in dwarf galaxies. The SEDs are fitted using parametric dust
models to determine the range of dust temperatures and emissivities. They found evidence
for colder dust than has previously been found in external galaxies, with temperatures T <

20 K. Such cold temperatures are found by using both the standard single temperature dust
model with variable emissivity β, or a two dust temperature model with β fixed at 2. In
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[68] it is also found that some local galaxies are both luminous and cool, with properties
similar to those of the distant submm galaxies uncovered in deep surveys. This suggests
that previous studies of dust in local galaxies have been biased away from such luminous
cool objects. In most galaxies the dust SEDs are found to be better described by parametric
models containing two dust components, one warm and one cold, with the cold component
reaching temperatures as low as 10 K17. The main conclusion of [68] is that cold (T < 20
K) dust is thus a significant and largely unexplored component of many nearby galaxies.
Furthermore, a new population of cool submm galaxies is detected, with presence of very
cold dust (T = 10 − 13 K) showing a more extended spatial distribution than generally
assumed for the gas and dust in galaxies.

Figure 12. Fig. 9 from [70]. Planck differential number counts, normalized to the Euclidean value (i.e. S2.5dN/dS), compared
with models and other data sets. Planck counts: total (black filled circles); dusty (red circles); synchrotron (blue circles). Four
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sets: Planck early counts for 30GHz-selected radio galaxies [59] at 100, 143 and 217GHz (open diamonds); Herschel ATLAS and
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Left vertical axes are in units of Jy1.5 sr−1, and the right vertical axis in Jy1.5.deg−2. Credit: Planck Collaboration, A&A, submitted

(ms AA/2012/20053), 2012, reproduced with permission © ESO.

Very recently, using EPS samples selected from the first Planck 1.6 full-sky surveys, i.e. from
the Planck ERCSC, [70] have derived number counts of extragalactic sources from 100 to
857 GHz (3 mm to 350 µm). Three zones (deep, medium and shallow) of approximately

17 Fits to SEDs of selected objects using more sophisticated templates derived from radiative transfer models confirm
the presence of the colder dust found through parametric fitting.
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homogeneous coverage are used to ensure a clean completeness correction18. For the first
time, bright number counts of EPS at 353, 545 and 857 GHz (i.e., 850, 550 and 350 µm) have
been calculated19. Planck number counts are found to be in the Euclidean regime in this
frequency range, since the ERCSC comprises only bright sources (S > 0.3 Jy). The estimated
number counts appear generally in agreement with other data sets, when available (see [70]
for more details).

Using multi-frequency information to classify the sources as dusty- or
synchrotron-dominated (and measure their spectral indices), the most striking result
of [70] is the estimated contribution to the number counts by each population. These
new estimates of number counts of synchrotron and of dust–dominated EPS (displayed in
Fig. 12) have allowed new constraints to be placed on models which extend their predictions
to bright flux densities, i.e. S > 1 Jy. A very relevant result is that the model C2Ex of
[63] (see Section 5.1) is performing particularly well at reproducing the number counts
of synchrotron-dominated sources up to 545 GHz. On the contrary, [70] highlights the
failure of many models for number count predictions of dusty sources to reproduce all the
high-frequency counts. The model of [71] agrees marginally at 857 GHz but is too low at
545 GHz and also at lower frequencies, whereas the model of [72] is marginally lower at
857 GHz, fits the data well at 545 GHz, but is too low at 353 GHz. The likely origin of the
discrepancies is an inaccurate description of the galaxy SEDs used at low redshift in these
models. Indeed a cold dust component, detected by [68], is rarely included in the models of
galaxy SEDs at low redshift. On the whole, these results already obtained by the exploitation
of the Planck ERCSC data are providing valuable information about the ubiquity of cold dust
in the local Universe, at least in statistical terms, and are guiding to a better understanding
of the cosmological evolution of EPS at mm/sub-mm wavelengths.

6. Cosmic Infrared Background anisotropies

The Cosmic Infrared Background (CIB) is the relic emission, at wavelengths larger than a
few microns, of the formation and evolution of the galaxies of all types, including AGNs and
star-forming systems [76–78]20. The CIB accounts for roughly half of the total energy in the
optical/infrared Extragalactic Background Light (EBL) [77], although with some uncertainty,
and its SED peaks near 150 µm. Since local galaxies give rise to an integrated infrared
output that amounts to only about a third of the optical one [79], there must have been a
strong evolution of galaxy properties towards enhanced far–IR output in the past. Therefore,
the CIB, made up by high density, faint and distant galaxies21 is barely resolved into its
constituents. Indeed, less than 10% of the CIB is resolved by the Spitzer satellite at 160 µm

18 The sample, prior to the 80 % completeness cut, contains between 217 sources at 100 GHz and 1058 sources at 857 GHz
over about 12,800 to 16,550 deg2 (31 to 40 % of the sky). After the 80 % completeness cut, between 122 and 452 and
sources remain, with flux densities above 0.3 and 1.9 Jy, at 100 and 857 GHz, respectively.

19 More specifically, number counts have been provided of synchrotron-dominated sources at high frequency (353 to
857 GHz) and of dusty-dominated galaxies at lower frequencies (217 and 353 GHz).

20 An important goal of studies of galaxy formation has thus been the characterization of the statistical behavior of
galaxies responsible for the CIB - such as the number counts, redshift distribution, mean SED, luminosity function,
clustering – and their physical properties, such as the roles of star-forming vs. accreting systems, the density of star
formation, and the number density of very hot stars

21 The CIB records much of the radiant energy released by processes of structure formation occurred since the last
scattering epoch, four hundred thousand years after the Big Bang, when the CMB was produced.
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[75], about 10% by Herschel at 350 µm [73]. Thus, in the absence of foreground (Galactic dust)
and CMB emissions, and when the instrument noise is subdominant, maps of the diffuse
emission at the angular resolution probed by the current surveys reveal a web of structures,
characteristic of CIB anisotropies. With the advent of large area far-IR to millimeter surveys
(Herschel, Planck, SPT, and ACT), CIB anisotropies thus constitute a new tool for structure
formation and evolution studies.

CIB anisotropies are expected to trace large-scale structures and probe the clustering
properties of galaxies, which in turn are linked to those of their hosting dark matter halos.
Because the clustering of dark matter is well understood, observations of anisotropies in
the CIB constrain the relationship between dusty, star-forming galaxies at high redshift,
i.e. z ≥ 2, and the underlying dark matter distribution. The angular power spectrum
of CIB anisotropies has two contributions, a white-noise component caused by shot noise
and an additional component caused by spatial correlations between the sources of the CIB.
Correlated CIB anisotropies have already been measured by many space–borne as well as
ground–based experiments (see [80] for more details). Depending on the frequency, the
angular resolution and size of the survey, these measurements can probe two different
clustering regimes. On small angular scales (ℓ ≥ 2000), they measure the clustering within
a single dark matter halo and, accordingly, the physics governing how dusty, star–forming
galaxies form within a halo. On large angular scales, i.e. 200 ≤ ℓ ≤ 2000, CIB anisotropies
measure clustering between galaxies in different dark matter halos. These measurements
primarily constrain the large-scale, linear bias, b, of dusty galaxies, which is usually assumed
to be scale-independent over the relevant range.

Thanks to the exceptional quality of the Planck data, [80] were able to measure the clustering
of dusty, star-forming galaxies at 217, 353, 545, and 857 GHz with unprecedented precision.
The CIB maps were cleaned using templates: HI for Galactic cirrus; and the Planck 143 GHz
maps for CMB. Having HI data is necessary to cleanly separate CIB and cirrus fluctuations.
After careful cleaning, they obtained CIB anisotropy maps that reveal structures produced
by the cumulative emission of high-redshift, dusty, star–forming galaxies. The maps are
highly correlated at high Planck frequencies, whereas they decorrelate at lower Planck
HFI frequencies. [80] then computed the power spectra of the maps and their associated
errors using a dedicated pipeline and ended up with measurements of the APS of the CIB
anisotropy, Cℓ, at 217, 353, 545, and 857 GHz, with high signal-to-noise ratio over the range
200 < l < 2000. These measurements compare very well with previous measurements at
higher ℓ22.

Moreover, from Planck data alone [80] could exclude a model where galaxies trace the
(linear theory) matter power spectrum with a scale-independent bias: that model requires
an unrealistic high level of shot noise to match the small-scale power they observed.
Consequently, an alternative model that couples the dusty galaxy, parametric evolution
model of [71] with a halo model approach has been developed (see [80], again, for more
details). Characterized by only two parameters, this model provides an excellent fit to our
measured anisotropy angular power spectrum for each frequency treated independently. In
the near future, modelling and interpretation of the CIB anisotropy will be aided by the use

22 The SED of CIB anisotropies is not different from the CIB mean SED, even at 217 GHz. This is expected from the
model of [71] and reflects the fact that the CIB intensity and anisotropies are produced by the same population of
sources.
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homogeneous coverage are used to ensure a clean completeness correction18. For the first
time, bright number counts of EPS at 353, 545 and 857 GHz (i.e., 850, 550 and 350 µm) have
been calculated19. Planck number counts are found to be in the Euclidean regime in this
frequency range, since the ERCSC comprises only bright sources (S > 0.3 Jy). The estimated
number counts appear generally in agreement with other data sets, when available (see [70]
for more details).

Using multi-frequency information to classify the sources as dusty- or
synchrotron-dominated (and measure their spectral indices), the most striking result
of [70] is the estimated contribution to the number counts by each population. These
new estimates of number counts of synchrotron and of dust–dominated EPS (displayed in
Fig. 12) have allowed new constraints to be placed on models which extend their predictions
to bright flux densities, i.e. S > 1 Jy. A very relevant result is that the model C2Ex of
[63] (see Section 5.1) is performing particularly well at reproducing the number counts
of synchrotron-dominated sources up to 545 GHz. On the contrary, [70] highlights the
failure of many models for number count predictions of dusty sources to reproduce all the
high-frequency counts. The model of [71] agrees marginally at 857 GHz but is too low at
545 GHz and also at lower frequencies, whereas the model of [72] is marginally lower at
857 GHz, fits the data well at 545 GHz, but is too low at 353 GHz. The likely origin of the
discrepancies is an inaccurate description of the galaxy SEDs used at low redshift in these
models. Indeed a cold dust component, detected by [68], is rarely included in the models of
galaxy SEDs at low redshift. On the whole, these results already obtained by the exploitation
of the Planck ERCSC data are providing valuable information about the ubiquity of cold dust
in the local Universe, at least in statistical terms, and are guiding to a better understanding
of the cosmological evolution of EPS at mm/sub-mm wavelengths.

6. Cosmic Infrared Background anisotropies

The Cosmic Infrared Background (CIB) is the relic emission, at wavelengths larger than a
few microns, of the formation and evolution of the galaxies of all types, including AGNs and
star-forming systems [76–78]20. The CIB accounts for roughly half of the total energy in the
optical/infrared Extragalactic Background Light (EBL) [77], although with some uncertainty,
and its SED peaks near 150 µm. Since local galaxies give rise to an integrated infrared
output that amounts to only about a third of the optical one [79], there must have been a
strong evolution of galaxy properties towards enhanced far–IR output in the past. Therefore,
the CIB, made up by high density, faint and distant galaxies21 is barely resolved into its
constituents. Indeed, less than 10% of the CIB is resolved by the Spitzer satellite at 160 µm

18 The sample, prior to the 80 % completeness cut, contains between 217 sources at 100 GHz and 1058 sources at 857 GHz
over about 12,800 to 16,550 deg2 (31 to 40 % of the sky). After the 80 % completeness cut, between 122 and 452 and
sources remain, with flux densities above 0.3 and 1.9 Jy, at 100 and 857 GHz, respectively.

19 More specifically, number counts have been provided of synchrotron-dominated sources at high frequency (353 to
857 GHz) and of dusty-dominated galaxies at lower frequencies (217 and 353 GHz).

20 An important goal of studies of galaxy formation has thus been the characterization of the statistical behavior of
galaxies responsible for the CIB - such as the number counts, redshift distribution, mean SED, luminosity function,
clustering – and their physical properties, such as the roles of star-forming vs. accreting systems, the density of star
formation, and the number density of very hot stars

21 The CIB records much of the radiant energy released by processes of structure formation occurred since the last
scattering epoch, four hundred thousand years after the Big Bang, when the CMB was produced.
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[75], about 10% by Herschel at 350 µm [73]. Thus, in the absence of foreground (Galactic dust)
and CMB emissions, and when the instrument noise is subdominant, maps of the diffuse
emission at the angular resolution probed by the current surveys reveal a web of structures,
characteristic of CIB anisotropies. With the advent of large area far-IR to millimeter surveys
(Herschel, Planck, SPT, and ACT), CIB anisotropies thus constitute a new tool for structure
formation and evolution studies.

CIB anisotropies are expected to trace large-scale structures and probe the clustering
properties of galaxies, which in turn are linked to those of their hosting dark matter halos.
Because the clustering of dark matter is well understood, observations of anisotropies in
the CIB constrain the relationship between dusty, star-forming galaxies at high redshift,
i.e. z ≥ 2, and the underlying dark matter distribution. The angular power spectrum
of CIB anisotropies has two contributions, a white-noise component caused by shot noise
and an additional component caused by spatial correlations between the sources of the CIB.
Correlated CIB anisotropies have already been measured by many space–borne as well as
ground–based experiments (see [80] for more details). Depending on the frequency, the
angular resolution and size of the survey, these measurements can probe two different
clustering regimes. On small angular scales (ℓ ≥ 2000), they measure the clustering within
a single dark matter halo and, accordingly, the physics governing how dusty, star–forming
galaxies form within a halo. On large angular scales, i.e. 200 ≤ ℓ ≤ 2000, CIB anisotropies
measure clustering between galaxies in different dark matter halos. These measurements
primarily constrain the large-scale, linear bias, b, of dusty galaxies, which is usually assumed
to be scale-independent over the relevant range.

Thanks to the exceptional quality of the Planck data, [80] were able to measure the clustering
of dusty, star-forming galaxies at 217, 353, 545, and 857 GHz with unprecedented precision.
The CIB maps were cleaned using templates: HI for Galactic cirrus; and the Planck 143 GHz
maps for CMB. Having HI data is necessary to cleanly separate CIB and cirrus fluctuations.
After careful cleaning, they obtained CIB anisotropy maps that reveal structures produced
by the cumulative emission of high-redshift, dusty, star–forming galaxies. The maps are
highly correlated at high Planck frequencies, whereas they decorrelate at lower Planck
HFI frequencies. [80] then computed the power spectra of the maps and their associated
errors using a dedicated pipeline and ended up with measurements of the APS of the CIB
anisotropy, Cℓ, at 217, 353, 545, and 857 GHz, with high signal-to-noise ratio over the range
200 < l < 2000. These measurements compare very well with previous measurements at
higher ℓ22.

Moreover, from Planck data alone [80] could exclude a model where galaxies trace the
(linear theory) matter power spectrum with a scale-independent bias: that model requires
an unrealistic high level of shot noise to match the small-scale power they observed.
Consequently, an alternative model that couples the dusty galaxy, parametric evolution
model of [71] with a halo model approach has been developed (see [80], again, for more
details). Characterized by only two parameters, this model provides an excellent fit to our
measured anisotropy angular power spectrum for each frequency treated independently. In
the near future, modelling and interpretation of the CIB anisotropy will be aided by the use

22 The SED of CIB anisotropies is not different from the CIB mean SED, even at 217 GHz. This is expected from the
model of [71] and reflects the fact that the CIB intensity and anisotropies are produced by the same population of
sources.
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of cross-power spectra between bands, and by the combination of the Planck and Herschel
data at 857 and 545/600 GHz and Planck and SPT/ACT data at 220 GHz.
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1. Introduction

Astrophysical observations interpreted in the standard (ΛCDM) cosmological framework
indicate that about eighty percent of matter in the Universe is non-luminous. This dark
matter poses a major problem for particle physics: no known particle explains its inferred
properties. Observations are most consistent with the assumption that dark matter is
composed of weakly interacting massive particles. The discovery of these particles is vital to
validate the prevailing dark matter paradigm. In this work, we examine the uncertainties
affecting the astrophysical discovery of dark matter particles via secondary cosmic ray
emission.

Before trying to discover dark matter particles, we should know some of their properties.
These properties of dark matter are reconstructed from astrophysical observations, most of
which (including the galactic rotational velocities, galactic structure formation, and weak
gravitational lensing) indicate that dark matter particles have mass and are present in large
numbers around us. Measurements of the cosmic microwave background radiation and the
abundance of light elements further suggests that dark matter is not composed of baryonic
particles (that is quarks). Since electromagnetic interactions imply light emission, we are led
to conclude that dark matter particles may only interact with ordinary matter weakly, either
via the standard W and Z bosons, or via an unknown force. Since they are electrically neutral,
the simplest assumption is that dark matter particles are their own anti-particles. Their
diffuse distribution, inferred from their gravitational effects, indicates that they probably
interact weakly with each other. To be present over the observed distance scales, dark matter
particles have to be stable on the timescale of the age of the Universe. Lastly, the observed
large scale structure indicates that dark matter is cold - its particles are non-relativistic at its
present temperature.

Based on the above properties, dark matter particles are being searched for in three major
types of experiments. First, since the CERN Large Hadron Collider (LHC) in Geneva was
built specifically to explore the electroweak sector of the standard particle model, it is an
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obvious place for trying to create dark matter particles. While we are in (almost) full
control of this experiment, without knowing the exact mass and interaction strength between
ordinary and dark matter we can only hope that the energy and luminosity of the LHC
are high enough to produce the latter. Second, because it appears that the Solar System is
immersed in a high flux stream of dark matter particles, it is natural to try to detect collisions
between them and well shielded nuclei in underground laboratories. These experiments have
the potential to probe interactions between dark and ordinary matter even beyond the reach
of the LHC. However, these experiments are also limited by the unknown mass, interaction
strength, flux and velocity distribution of the dark matter particles. Finally, perhaps the most
general and unconstrained way to discover dark matter particles is to find traces of their
annihilation or decay products in cosmic rays bombarding Earth.

This last type of experiment is called indirect dark matter detection and it is a sensible way to
find dark matter particles if they are either their own anti-particles or the matter-antimatter
asymmetry in the dark sector is not pronounced. In this case, via weak interactions,
dark matter particles self annihilate into standard ones and create secondary cosmic rays.
Alternatively, if dark matter decays into standard particles (with the lifetime of about 1026 sec
or more) its decay products can contribute to the secondaries. The most promising detection
modes are the photon final states or the ones that contribute to anti-matter cosmic rays, such
as positrons or anti-protons. In the last few years several anomalies were found in the cosmic
positron fluxes by the PAMELA and Fermi-LAT satellites, which could be the first glimpses
of dark matter.

However, various factors make indirect detection of dark matter challenging and less
straightforward than we would like it to be. First, the immense cosmic ray background
originating from ordinary astrophysical sources makes it hard to find the signal contributed
by dark matter. Next, in many cases sources of the cosmic ray background are not known
or not understood well enough. Finally, an important source of uncertainty and the main
subject of our study is the cosmic ray propagation through the galaxy. This propagation
is described by the diffusion equation; an equation with many unknown parameters. We
review the state of this field of research. We show that using state of the art numerical codes,
CPU intensive statistical inference, and the latest cosmic ray observations, the most important
of these propagation parameters can be determined with a certain precision. Then we show
how to propagate these uncertainties into recent cosmic ray measurements of Fermi-LAT and
PAMELA. In the light of these findings we quantify the statistical significance of the present
hints of signals in dark matter indirect detection. Finally, we contrast the experimental
standing with some of the theoretical dark matter models proposed in the recent literature
to explain cosmic ray ’anomalies’.

2. Experimental status of cosmic electrons and positrons

Experiments detecting cosmic rays near Earth have been finding various unexpected
deviations from theoretical predictions over the last twenty years. The local flux of high
energy positrons is notoriously anomalous as reported by the
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• AMS [2],
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• CAPRICE [3],

• MASS [4], and

• HEAT [5, 6]

collaborations. Measurements of the PAMELA satellite stirred great interest by showing
an unmistakable rise of the local e+/e− fraction, that deviates significantly from theoretical
predictions for Ee+ > 10 GeV [7]. The combined experimental and theoretical uncertainties
do not seem to account for such a large excess [8–11].

The summed flux of electrons and positrons also indicates an anomalous excess of
observation over theory, as measured by the

• AMS [12],

• PPB-BETS [13], and

• HESS [14, 15]

collaborations. The Fermi Large Area Telescope (LAT) satellite confirmed the excess of the
e− + e+ flux for energies over 100 GeV [16, 17]. The Fermi-LAT results are consistent with
those of the PAMELA collaboration, which measured the cosmic ray electron flux up to 625
GeV [18]. To date the Fermi-LAT data are the most precise indication of such an anomaly
in the electron-positron spectrum. The Fermi-LAT data differ by several standard deviations
from the theoretical calculations encoded in GALPROP by [19].

3. The problem of cosmic ray background calculation

Between 2008 and 2011, of the order of a thousand papers were devoted to explaining
the difference between the experimental measurements of Fermi-LAT and PAMELA and
theoretical calculations. Speculation ranged from the modification of the cosmic ray
propagation through supernova remnants, to dark matter annihilation. A concise summary
of this literature with detailed references can be found in [20] and [21].

Before drawing conclusions from the electron-positron anomaly, however, one has to
carefully examine the status of the theoretical understanding of Galactic cosmic rays.
Unfortunately, even the origin of the cosmic rays is uncertain. The theory describing
the propagation of cosmic ray particles from their birthplace through the Milky Way is
based on the diffusion-convection model. The quantitative description of propagation is
facilitated by the transport equation. This is a partial differential equation for each cosmic ray
species which requires fixing the distribution of initial sources and the boundary conditions.
Specifying the initial source distribution is a source of significant uncertainty in these
calculations. The local cosmic ray fluxes are obtained as the self-consistent solutions of
the set of transport equations. Obtaining these solutions is challenging due to the large
number of free parameters such as the convection velocities, spatial diffusion coefficients,
and momentum loss rates.

In the rest of this chapter we show how to determine those uncertainties of the
electron-positron cosmic ray flux that originate from the propagation parameters of the
diffusion equation. First we find the set of propagation parameters that the electron-positron
flux is most sensitive to. Then we extract the values of these propagation parameters from
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obvious place for trying to create dark matter particles. While we are in (almost) full
control of this experiment, without knowing the exact mass and interaction strength between
ordinary and dark matter we can only hope that the energy and luminosity of the LHC
are high enough to produce the latter. Second, because it appears that the Solar System is
immersed in a high flux stream of dark matter particles, it is natural to try to detect collisions
between them and well shielded nuclei in underground laboratories. These experiments have
the potential to probe interactions between dark and ordinary matter even beyond the reach
of the LHC. However, these experiments are also limited by the unknown mass, interaction
strength, flux and velocity distribution of the dark matter particles. Finally, perhaps the most
general and unconstrained way to discover dark matter particles is to find traces of their
annihilation or decay products in cosmic rays bombarding Earth.

This last type of experiment is called indirect dark matter detection and it is a sensible way to
find dark matter particles if they are either their own anti-particles or the matter-antimatter
asymmetry in the dark sector is not pronounced. In this case, via weak interactions,
dark matter particles self annihilate into standard ones and create secondary cosmic rays.
Alternatively, if dark matter decays into standard particles (with the lifetime of about 1026 sec
or more) its decay products can contribute to the secondaries. The most promising detection
modes are the photon final states or the ones that contribute to anti-matter cosmic rays, such
as positrons or anti-protons. In the last few years several anomalies were found in the cosmic
positron fluxes by the PAMELA and Fermi-LAT satellites, which could be the first glimpses
of dark matter.

However, various factors make indirect detection of dark matter challenging and less
straightforward than we would like it to be. First, the immense cosmic ray background
originating from ordinary astrophysical sources makes it hard to find the signal contributed
by dark matter. Next, in many cases sources of the cosmic ray background are not known
or not understood well enough. Finally, an important source of uncertainty and the main
subject of our study is the cosmic ray propagation through the galaxy. This propagation
is described by the diffusion equation; an equation with many unknown parameters. We
review the state of this field of research. We show that using state of the art numerical codes,
CPU intensive statistical inference, and the latest cosmic ray observations, the most important
of these propagation parameters can be determined with a certain precision. Then we show
how to propagate these uncertainties into recent cosmic ray measurements of Fermi-LAT and
PAMELA. In the light of these findings we quantify the statistical significance of the present
hints of signals in dark matter indirect detection. Finally, we contrast the experimental
standing with some of the theoretical dark matter models proposed in the recent literature
to explain cosmic ray ’anomalies’.

2. Experimental status of cosmic electrons and positrons

Experiments detecting cosmic rays near Earth have been finding various unexpected
deviations from theoretical predictions over the last twenty years. The local flux of high
energy positrons is notoriously anomalous as reported by the

• TS [1],

• AMS [2],

Open Questions in Cosmology88
Uncertainties in Dark Matter Indirect Detection 3

• CAPRICE [3],

• MASS [4], and

• HEAT [5, 6]

collaborations. Measurements of the PAMELA satellite stirred great interest by showing
an unmistakable rise of the local e+/e− fraction, that deviates significantly from theoretical
predictions for Ee+ > 10 GeV [7]. The combined experimental and theoretical uncertainties
do not seem to account for such a large excess [8–11].

The summed flux of electrons and positrons also indicates an anomalous excess of
observation over theory, as measured by the

• AMS [12],

• PPB-BETS [13], and

• HESS [14, 15]

collaborations. The Fermi Large Area Telescope (LAT) satellite confirmed the excess of the
e− + e+ flux for energies over 100 GeV [16, 17]. The Fermi-LAT results are consistent with
those of the PAMELA collaboration, which measured the cosmic ray electron flux up to 625
GeV [18]. To date the Fermi-LAT data are the most precise indication of such an anomaly
in the electron-positron spectrum. The Fermi-LAT data differ by several standard deviations
from the theoretical calculations encoded in GALPROP by [19].

3. The problem of cosmic ray background calculation

Between 2008 and 2011, of the order of a thousand papers were devoted to explaining
the difference between the experimental measurements of Fermi-LAT and PAMELA and
theoretical calculations. Speculation ranged from the modification of the cosmic ray
propagation through supernova remnants, to dark matter annihilation. A concise summary
of this literature with detailed references can be found in [20] and [21].

Before drawing conclusions from the electron-positron anomaly, however, one has to
carefully examine the status of the theoretical understanding of Galactic cosmic rays.
Unfortunately, even the origin of the cosmic rays is uncertain. The theory describing
the propagation of cosmic ray particles from their birthplace through the Milky Way is
based on the diffusion-convection model. The quantitative description of propagation is
facilitated by the transport equation. This is a partial differential equation for each cosmic ray
species which requires fixing the distribution of initial sources and the boundary conditions.
Specifying the initial source distribution is a source of significant uncertainty in these
calculations. The local cosmic ray fluxes are obtained as the self-consistent solutions of
the set of transport equations. Obtaining these solutions is challenging due to the large
number of free parameters such as the convection velocities, spatial diffusion coefficients,
and momentum loss rates.

In the rest of this chapter we show how to determine those uncertainties of the
electron-positron cosmic ray flux that originate from the propagation parameters of the
diffusion equation. First we find the set of propagation parameters that the electron-positron
flux is most sensitive to. Then we extract the values of these propagation parameters from

Uncertainties in Dark Matter Indirect Detection
http://dx.doi.org/10.5772/52052

89



4 Open Questions in Cosmology

cosmic ray data (different from the Fermi-LAT and PAMELA measurements). Based on
the values of the propagation parameters most favored by the data we calculate theoretical
predictions for the electron-positron fluxes and compare these to Fermi-LAT and PAMELA.
By calculating the difference between our predictions and the observed fluxes we are able to
isolate the anomalous part of the cosmic e− and e+ fluxes.

Similar results have been published in the literature before. However, our results supersede
these in two important aspects. First, we show that when analyzed in the framework of
the standard propagation model there exists a statistically significant tension between the
e−, e+ and the rest of the charged cosmic ray fluxes. Second, unlike anyone else before
us, we isolate the anomalous contribution within the e− and e+ spectrum together with its
theoretical uncertainty.

Our analysis uses more charged cosmic ray spectral data points than similar studies before
us such as [22]. Unlike us [23] use gamma ray data when extracting the background,
however this may bias the analysis since gamma rays originating from anomalous electrons
or positrons are not part of the background. Our numerical treatment, similar to that of [24],
is more complete than the one of [25–27].

Our statistical analysis can be considered as an extension of [24] since we calculate the
e−, e+ background with a theoretical uncertainty. Ref. [24] use 76 spectral data points,
while we use 219 which gives us a significant edge over their analyses. The parameters that
we freely vary are somewhat different from those of [24]. Before we choose the parameter
space, we analyzed the sensitivity of the electron and positron spectrum to the parameters
to maximize the efficiency of our parameter extraction. Our choice and treatment of the
nuisance parameters also differs from [24]. Finally, we use a different scanning technique
from the one they use.

4. Cosmic ray propagation through the Galaxy

The propagation of charged particles through the Galaxy can be well described using the
diffusion-convection model [28]. This model assumes that the charged particles propagate
homogeneously within a defined region of diffusion (similar to the leaky box propagation
model), while taking the effects of energy loss into account. The diffusive region is assumed
to be a solid flat cylinder defined with a radius R and a half-height of L. Its shape is such that
it encloses the Galactic plane which confines charged cosmic rays to the Galactic magnetic
fields inside it, while cosmic rays outside are free to stream away. The solar system in this
diffusive region is defined in cylindrical coordinates as�r

⊙
= (8.33 kpc, 0 kpc, 0 kpc) [29]. The

phase-space density ψa(�r, p, t) of a particular cosmic ray species a at time t, Galactic position
�r and with momentum p can be determined by solving the cosmic ray transport equation,
which has the general form [30]
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ṗψa −
p

3
(∇ ·

�V)ψa

)

−

1

τf
ψa −

1

τr
ψa. (1)

Open Questions in Cosmology90
Uncertainties in Dark Matter Indirect Detection 5

If the time-scale of cosmic ray propagation (which is of the order of 1 Myr at 100 GeV
energies) is much longer than the typical time scales of the galactic collapse of dark matter
and the variation in the propagation conditions, then one can assume that the steady state
condition holds. In this case, the left hand side of equation 1 can be set to zero and
the time dependence of all quantities can be dropped. For our analysis we focus on a
simplified version of the transport equation which to a first order approximation is sufficient
to describe the propagation of electrons, positrons or anti-protons through the Galaxy and
their corresponding spectrum at Earth:

0 = Qa(�r, E) + K(E) ∇2
ψa +

∂

∂E

(

b(E) ψa − KEE(E) ψa

)

−

∂

∂z
(sign(z)VC ψa) , (2)

where E is the energy of the secondary particle species a. To ensure that on the outer
surface of the cylinder the cosmic ray density vanishes, boundary conditions are imposed.
Similarly, outside of the diffusive region, these boundary condtions allow the particles to
freely propagate and escape. This ensures that the modelling is consistent with the physical
picture described above. One also imposes the symmetric condition ∂ψa/∂r(r = 0) = 0 at
r = 0. In momentum space, null boundary conditions are imposed.

The transport of cosmic ray species through turbulent magnetic fields, the energy losses
experienced by these particles due to Inverse Compton scattering (ICS), synchrotron
radiation, Coulomb scattering or bremsstrahlung and their re-acceleration due to their
interaction with moving magnetised scattering targets in the Galaxy is defined by the
spatial diffusion coefficient K(E), the energy loss rate b(E) and the diffusive re-acceleration
coefficient KEE(E) respectively. The effect of Galactic winds propagating vertically from stars
in the Galactic disk can be incorporated by defining the convective velocity VC. The source
of the cosmic rays is defined by Qa(�r, E) in equation 2, with a standard source term resulting
from the annihilation of dark matter which can be written as:

Qa(�r, E) =
1

2

dNa

dE
�σav�0

(

ρg(�r)

mχ

)2

. (3)

Here �σav�0 corresponds to the thermally averaged annihilation cross section of the relevant
species, and ρg(�r) is the energy density of dark matter in the Galaxy. The energy
distribution of the secondary particle a is defined as dNa/dE and is normalised per
annihilation. This formula applies to self-conjugated annihilating dark matter. In the case of
non-self-conjugated dark matter, or of multicomponent dark matter, the quantities in Eq. (3)
should be replaced as follows, where an index i denotes a charge state and/or particle species
(indeed any particle property, collectively called "component") and fi = ni/n is the number
fraction of the i-th component:

mχ → ∑
i

fimi (mean mass), (4)

�σav� → ∑
ij

fi f j�σa,ijvij� (mean cross section times relative velocity), (5)

dNa/dE →

∑ij fi f jσa,ijvij (dNa,ij/dE)

∑ij fi f jσa,ijvij
, (annihilation spectrum per annihilation). (6)
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The spatial diffusion coefficient K(E) is assumed to have the form

K(E) = K0 vη

(

R

GeV

)δ

, (7)

where v is the speed (in units of c) and R = p/eZ is the magnetic rigidity of the cosmic ray
particles. Here Z is the effective nuclear charge of the particle and e is the absolute value
of its electric charge (if we considered particles other than electrons, positrons, protons or
anti-protons then this quantity would be different from 1). At low energies the behaviour of
the cosmic rays as they diffuse is controlled using the parameter η. Traditionally one will set
η = 1 but departures from this traditional value to other values (either positive or negative)
have been suggested. More detailed treatments allow one to incorporate spatial dependence
into the diffusion coefficient (K(�r, E)) and the influence of particle motion on the diffusion of
these particles (which leads to anisotropic diffusion).

Synchrotron radiation and Inverse Compton scattering are position dependent phenomena.
Synchrotron radiation arises from the interaction of a charged particle with Galactic magnetic
fields and thus it depends on the strength of the magnetic field which changes in the Galaxy.
Similarly, inverse Compton scattering is dependent on the distribution of background light
which varies in the Galaxy. If one neglects this position dependence of energy losses in the
Galactic halo and assumes that all energy losses can be described using a relationship that
is proportional to E2 (which is only valid if one neglects energy losses, such as Coulomb
losses and bremsstrahlung, and considers only inverse Compton scattering for electrons
with relatively low energy - Thomson scattering regime), then the energy loss rate can be
parametrized as

b(E) = b0 E2. (8)

In more detailed treatments the spatial dependence associated with the energy loss rate
b(�r, E) would be considered and a more general energy dependence relationship for the
energy loss rate would be obtained. Additionally Coulomb losses (dE/dt ∼ const) and
bremsstrahlung losses (dE/dt ∼ bE) could also be taken into account. These losses can
be calculated using functions dependent on position and energy as well as gas, interstellar
radiation and magnetic field distributions [31].

Finally, the diffusive re-acceleration coefficient KEE(E) is usually parametrized as

KEE(E) =
2

9
v2

A
v4 E2

K(E)
, (9)

where vA is the Alfvén speed.

A propagator, or Green’s function G, is used to describe the evolution of the cosmic ray that
originates from a source Q at�rS with energy ES through the diffusive halo and reaches the
Earth at point�r with energy E. This allows the general solution for Eq. (2) to be written as
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ψa(�r, E) =
∫ mχ

E
dES

∫

d3rS G(�r, E;�rS, ES) Qa(�rS, ES). (10)

The differential flux is related to the solution in Eq. (10) via

dΦa

dE
=

v(E)

4π
ψa(�r, E). (11)

For the propagation of protons or anti-protons in the Galactic halo, additional terms in Eq.
(2) should be introduced to account for spallations on the gas in the disk.

5. Statistical framework

We use standard Bayesian parameter inference to determine the statistically favored regions
of the propagation parameters P = {p1, ..., pN} that the electron and positron cosmic ray
fluxes are the most sensitive to. For full mathematical details we refer the reader to [21].
Here we only highlight the main concepts used.

Using the experimental data D = {d1, ..., dM} and their corresponding theoretical predictions
T = {t1(P), ..., tM(P)}, as the fuction of the parameters, we construct the likelihood function

L(D|P) =
M

∏
i=1

1
√

2πσi

exp(−χ
2
i (D, P)/2). (12)

Here

χ
2
i (D, P) =

(

di − ti(P)

σi

)2

, (13)

and σi are the corresponding combined theoretical and experimental uncertainties. Assuming
flat priors P(P), we then construct the posterior probability distribution

P(P|D) = L(D|P)P(P)/E(D). (14)

At this stage the value of the evidence E(D) is unknown. After integrating over the whole
parameter space its value can be recovered as

E(D) =

∫

L(D|P)P(P)
N

∏
j=1

dpj. (15)

More relevant to our purpose is the adaptive scan of the likelihood function during this
integration which will give us the shape of the posterior distribution over the relevant part
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More relevant to our purpose is the adaptive scan of the likelihood function during this
integration which will give us the shape of the posterior distribution over the relevant part
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of the parameter space (where the likelihood is the highest). Having this shape we can
calculate the probability density of a certain theoretical parameter pi acquiring a given value
by marginalization

P(pi|D) =

∫

P(P|D)

N

∏
i �=j=1

dpj. (16)

Here the integral is carried out over the full range of the parameters. We can also determine
Bayesian credibility regions Rx for each of the parameters:

x =

∫

Rx

P(pi|D) dpi. (17)

The above relation expresses the fact that x % of the total posterior probability lies within the
region Rx.

After examining the electron and positron fluxes for parameter sensitivity we found that the
relevant parameters are:

P = {γ
e− , γ

nucleus, δ1, δ2, D0xx}. (18)

These parameters enter into the diffusion calculation as follows; γe− and γnucleus are the
primary electron and nucleus injection indices parameterizing an injection spectrum without
a break; δ1 and δ2 are spatial diffusion coefficients below and above a reference rigidity ρ0;
and D0xx determines the normalization of the spatial diffusion coefficient.

We treat the normalizations of all charged cosmic ray fluxes as theoretical nuisance
parameters:

Pnuisance = {Φ
0
e− , Φ

0
e+ , Φ

0
p̄/p, Φ

0
B/C, Φ

0
(SC+Ti+V)/Fe, Φ

0
Be−10/Be−9}. (19)

We discuss other statistical and numerical issues, such as the choice of priors, the systematic
uncertainties, sampling and convergence, in detail in [21].

6. Experimental data used in this analysis

In our statistical analysis we use 219 of the most recent data points corresponding to
five different types of cosmic ray experiment. A majority of these data points (114 in
total) come from electron-positron related experiments while the other 105 are made up
of Boron/Carbon, anti-proton/proton and (Sc+Ti+V)/Fe and Be-10/Be-9 cosmic ray flux
measurements. If any of the energy ranges of the experiments overlap, the most recent
experimental data point was chosen in that energy range.

There are three main experiments that have measured electrons and positrons over different
decades of energy. These experiments include AMS by [12], Fermi-LAT by [17] and HESS by
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[14, 15]. The AMS collaboration reported an excess in positrons with energies greater than 10
GeV [12], while the HESS collaboration measured a significant steepening of the electron
plus photon spectrum above one TeV as measured by HESS’s atmospheric Cherenkov
telescope (ACT). Using the Large Area Telescope (LAT) on the Fermi Satellite, the Fermi-LAT
collaboration released a high precision measurement of the e+ + e− spectrum for energies
from 7 GeV to 1 TeV [17], extending the energy range of their previously published results.
We defined our e+ + e− spectrum by using data from these three experiments. The PAMELA
collaboration recently released their measurement of the e− only spectrum [18] confirming
the behaviour of the e+ + e− spectrum as measured by Fermi-LAT. The energy ranges that
these data points were selected over are listed in Table 1.

Measured flux Experiment Energy Number of
(GeV) data points

AMS [12] 0.60 - 0.91 3
e+ + e− Fermi-LAT [17] 7.05 - 886 47

HESS [14, 15] 918 - 3480 9

e+/(e+ + e−) PAMELA [32] 1.65 - 82.40 16

e− PAMELA [18] 1.11 - 491.4 39

anti-proton/proton PAMELA [33] 0.28 - 129 23

IMP8 [34] 0.03 - 0.11 7
ISEE3 [35] 0.12 - 0.18 6

Boron/Carbon [36] 0.30 - 0.50 2
HEAO3 [37] 0.62 - 0.99 3
PAMELA [38] 1.24 - 72.36 8
CREAM [39] 91 - 1433 3

(Sc+Ti+V)/Fe ACE [40] 0.14 - 35 20
SANRIKU [41] 46 - 460 6

[42] 0.003 - 0.029 3
[43] 0.034 - 0.034 1
[42] 0.06 - 0.06 1

Be-10/Be-9 ISOMAX98 [44] 0.08 - 0.08 1
ACE-CRIS [45] 0.11 - 0.11 1
ACE [46] 0.13 - 0.13 1
AMS-02 [47] 0.15 - 9.03 15

Table 1. In this table we have listed the cosmic ray experiments and the energy ranges of the corresponding data points that

we selected for our analysis. There are two sets of cosmic ray data listed in this table. Electron positron flux related

experiments make up the first five lines of the table, while all other experiments make up the rest of the table. On these two

sets of data, we perform a Bayesian analysis to highlight the tension between the two sets of data.

Apart from measuring the electron positron sum, collaborations such as PAMELA have
measured the differential positron fraction e+/(e+ + e−) between energies of 1.5 and 100
GeV [7]. If one assumes that all secondary positrons are produced during the propagation of
cosmic rays in the Galaxy, one would expect the positron fraction to decrease, however, the
observed fraction increases for energies greater than 10 GeV.

How primary and secondary cosmic rays are produced and transported throughout the
Galaxy can be studied by using cosmic-ray particles such as anti-protons. One requires a
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There are three main experiments that have measured electrons and positrons over different
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experiments make up the first five lines of the table, while all other experiments make up the rest of the table. On these two

sets of data, we perform a Bayesian analysis to highlight the tension between the two sets of data.

Apart from measuring the electron positron sum, collaborations such as PAMELA have
measured the differential positron fraction e+/(e+ + e−) between energies of 1.5 and 100
GeV [7]. If one assumes that all secondary positrons are produced during the propagation of
cosmic rays in the Galaxy, one would expect the positron fraction to decrease, however, the
observed fraction increases for energies greater than 10 GeV.

How primary and secondary cosmic rays are produced and transported throughout the
Galaxy can be studied by using cosmic-ray particles such as anti-protons. One requires a
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large number of measurements with good statistics over a large energy range to produce
detailed anti-proton spectra for study. Anti-proton spectra obtained from previous balloon
borne experiments such as CAPRISE98 [3] and HEAT [48] had very low statistics, but
recently the PAMELA satellite experiment [33] released a high-quality measurement of the
anti-proton/proton flux ratio for an energy range of 1-100 GeV. This spectrum confirmed the
behaviour of the anti-proton/proton ratio as observed by previous experiments.

Additionally one can use stable secondary to primary cosmic ray ratios such as
Boron/Carbon and (Sc+Ti+V)/Fe ratio to study the variation experienced by cosmic rays as
they propagate through the Galaxy. These ratios are particularly sensitive to the properties
of cosmic ray propagation as the element in the numerator is produced by a different
mechanism to the element that defines the denominator. Primary cosmic rays are produced
by the original source of the cosmic rays such as a supernova remnant, while the secondary
cosmic rays are generated by the interaction of their primaries with the interstellar medium
[49]. Ratios that are defined by a numerator and denominator which are produced by the
same mechanism, such as a primary/primary or a secondary/secondary cosmic ray ratio,
have a low sensitivity to any variation in the propagation parameters. Analysing Galactic
Boron/Carbon and (Sc+Ti+V)/Fe ratios allows one to determine the amount of interstellar
material transversed by the primary cosmic ray and its energy dependence [49].

Unstable isotopes such as Beryllium-10/Beryllium-9 are also beneficial to analyse as they
produce a constraint on the time it takes for a cosmic ray to propagate through the Galaxy
[50]. Various experiments such as ISOMAX98 [44], ACE-CRIS [45], ACE [46] and AMS-02
[47] have all measured Be-10/Be-9 data with varying statistics.

In Table 1 we state over what energy range and from which experiment we selected the data
points that define our spectrum of anti-proton/proton, Boron/Carbon, (Sc+Ti+V)/Fe and
Be-10/Be-9 ratio.

For energies below E < 10 GeV, solar magnetic and coronal activities perturb the low energy
part of the cosmic ray spectrum. This is called solar modulation and has an important role
in determining the observed spectral shape(s) of cosmic rays measured at earth [51, 52].
Solar modulation is accounted for in GALPROP by using a force field approximation. It
should be noted that this is an approximation and does not include important influences
such as the structure of the heliospheric magnetic field. To incorporate these effects into our
analysis we vary the value of the modulation potential in GALPROP. Following Gast & Schael
(2009), we also assume that the positively and negatively charged cosmic rays are modulated
differently by solar activities (charge-sign dependent modulation). This charge dependent
modulation has a significant effect on positrons and its effect on the anti-proton/proton ratio
can be comparable to the experiment’s statistical uncertainties. The modulation effect on
heavy nuclei such as B, C, Sc, Ti, V, Fe and Be is mild even though these nuclei have a
higher positive charge compared to the proton. The reason for this is that the modulation
potential is proportional to the charge-to-mass ratio and these heavy nuclei have a much
lower charge-to-mass ratio than the proton therefore the effect is minute. Regardless, as
we use the ratio of their fluxes, most of the effect of solar modulation on these nuclei is
cancelled, thus we can safely absorb this modulation effect into the systematic uncertainties
of the experiment. To be able to compare experimental data we set the modulation potential
in GALPROP for positrons (electrons) to the value determined by Gast & Schael (2009), φ+ =

442(2) MeV. Previous work by Usoskin et al. (2011) showed that the time dependence of the
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Figure 1. Best fit curves plotted against non-electron-positron related data. These curves were calculated using the most

probable parameter values obtained from the peak values of the posterior probabilities (inferred from p̄/p, B/C, (Sc+Ti+V)/Fe
and Be data) shown in red in Fig. 2. The best fit curves pass through the estimated systematic error bands, shown in gray.

solar modulation potential was not substantial over the period of PAMELA’s data taking,
and approximately the same average value for the potential can be used for Fermi-LAT.

7. Results

7.1. The presence or absence of a cosmic ray anomaly

There has been a plethora of experiments which have hinted at the existence of an anomaly in
the electron-positron spectrum. The most notable measurements are the Fermi-LAT electron
positron sum and the PAMELA positron fraction. Ref. [53] and [24] have all questioned
the reality of the anomaly in the PAMELA and Fermi-LAT data as well as the absence of
an anomaly in the anti-proton flux. Ref. [24] suggested that one requires only to readjust
the diffusion parameters that define the propagation model as encoded in GALPROP to
reproduce the Fermi-LAT data. This conclusion is highlighted clearly in figure 8 of [24],
where their propagation model obtained from the best fit to 76 cosmic ray spectral data points
agrees well with the Fermi-LAT data. Interestingly, the corresponding positron fraction
obtained from their best fit does not agree with the PAMELA data, indicating that one cannot
fit the PAMELA data by simply adjusting the parameters of the propagation model. This
indicates to us that the anomaly observed in cosmic electron-positron data is real and rather
than adjusting the propagation parameters, one has to perform a detailed investigation of its
existence and characteristics.
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One of our important results is that just by adjusting the parameters in Eq.(18) and (19) it
is possible to generate a theoretical prediction which is fully consistent with the Fermi-LAT
e− + e+ flux measurement. Similarly, we found that both the PAMELA positron fraction
and the electron flux can be reproduced by theory. This means that the theory has enough
flexibility to accommodate the experimentally measured fluxes.

If one assumes that all types of cosmic ray data (electron-positron related and
non-electron-positron related) can be described well using a single set of propagation
parameters it quickly becomes obvious that one cannot fit the data simultaneously. To
analyse this behaviour, we first divided the cosmic ray data listed in table 1 into two
groups: electron and/or positron fluxes as measured by AMS, Fermi, HESS and PAMELA
and non-electron and/or positron fluxes such as anti-proton/proton, Boron/Carbon,
(Sc+Ti+V)/Fe, Be-10/Be-9. We then attempted to fit only the second group of cosmic ray
data, that is, excluding the electron-positron related data. We obtain a χ2 per degree of
freedom of 0.34 from this fit and as a consequence the corresponding best fit curves each pass
through all the estimated systematic error bands shown in grey in Fig. 1. When we apply
the best-fit parameters to the electron and/or positron flux data, however, we obtain a χ2 per
degree of freedom of 24. Similarly, when we do the converse, i.e. find the best-fit propagation
parameters using only the electron-positron related flux, we obtain an excellent χ2 per degree
of freedom of 1.0, but the best-fit parameters gave a larger χ2 per degree of freedom (3.1) for
the non-electron-positron data. As we have a large number (105) of data points the deviations
observed between these two sets of data is significant which signals statistically significant
tension between electron-positron and non-electron-positron measurements. These results
support the conclusion highlighted in Fig. 7 and 8 of [24], that one requires something
more than simply adjusting the propagation parameters to accommodate for the cosmic ray
anomaly.

This tension between the electron-positron and non-electron-positron measurements was
further investigated by performing an independent Bayesian analysis on the two groups
of data. This allows us to extract the values of the propagation parameters as preferred by
the different sets of data. Interestingly, one can derive information about the propagation
parameters of the electron-positron related data from the non-electron-positron related data.
This arises due to a number of reasons. Firstly, the value of some propagation parameters
such as D0xx is highly dependent on the species that one is modelling the propagation
of. Secondly, to model the propagation of cosmic rays one uses the transport equation
(equation 1). In this equation a large number of processes, including nuclear fragmentation
and decay, are incorporated, which directly affects the predicted secondary electron-positron
flux. Thirdly, as the energy density of cosmic rays is comparable to the energy density of
the interstellar radiation field and the local magnetic field, different cosmic ray species will
influence the dynamics of each species non-negligibly.

As a consequence, even if no electron-positron related data is used in our fit one can still
constrain some of the propagation parameters of the electron-positron data. Unfortunately
this method does not constrain the value of injection indices sufficiently, so in order to
fix these parameters we have to include a minimal amount of information about the
electron-positron related fluxes in our analysis. We selected data points from the e− + e+

spectrum for four reasons: (1) these points cover the largest energy range; (2) before
setting out to find the optimal parameter value, within uncertainties the end points of
the e− + e+ spectrum agree with theoretical predictions; (3) for low energies the effect of
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Figure 2. Marginalized posterior probability distributions of propagation parameters listed in Eq.(18). The likelihood functions

containing electron and/or positron flux data are plotted as blue dashed lines while the likelihood functions for the rest of the

comic ray data are plotted as solid red lines. The 68 % credibility regions are highlighted by the shaded areas of the posteriors.

In the lower three frames it is evident that there exists a statistically significant tension between the electron-positron data and

the rest.

solar modulation on this data is minor; and (4) the theoretical prediction for the e− + e+

is insensitive to the value of the propagation parameter for mid-range energies (this is
highlighted by the distinct bow-tie shape of the theoretical uncertainty band).

In addition to using non-e± related data points (i.e. p̄/p, B/C, (Sc+Ti+V)/Fe and Be data),
we also selected four e± related data points to use in our analysis. This included the lowest
energy data point from AMS, the highest energy data point from HESS and the 19.40 GeV
and 29.20 GeV data points of Fermi-LAT. We checked that this selection of e± related data
points does not bias the final conclusion and the results that we obtained with this selection
are robust.

In figure 2 we have plotted the marginalized posterior probability densities of our selected
propagation parameters as obtained by completing a Bayesian analysis on the two sets
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Figure 2. Marginalized posterior probability distributions of propagation parameters listed in Eq.(18). The likelihood functions

containing electron and/or positron flux data are plotted as blue dashed lines while the likelihood functions for the rest of the

comic ray data are plotted as solid red lines. The 68 % credibility regions are highlighted by the shaded areas of the posteriors.

In the lower three frames it is evident that there exists a statistically significant tension between the electron-positron data and

the rest.

solar modulation on this data is minor; and (4) the theoretical prediction for the e− + e+

is insensitive to the value of the propagation parameter for mid-range energies (this is
highlighted by the distinct bow-tie shape of the theoretical uncertainty band).

In addition to using non-e± related data points (i.e. p̄/p, B/C, (Sc+Ti+V)/Fe and Be data),
we also selected four e± related data points to use in our analysis. This included the lowest
energy data point from AMS, the highest energy data point from HESS and the 19.40 GeV
and 29.20 GeV data points of Fermi-LAT. We checked that this selection of e± related data
points does not bias the final conclusion and the results that we obtained with this selection
are robust.

In figure 2 we have plotted the marginalized posterior probability densities of our selected
propagation parameters as obtained by completing a Bayesian analysis on the two sets
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of data. The blue dashed curve represents the likelihood functions generated for the
electron-positron related data (AMS, Fermi-LAT, HESS, and PAMELA), while the red solid
curves represent the likelihood functions obtained for the rest of the cosmic ray data
(anti-proton/proton, Boron/Carbon, (Sc+Ti+V)/Fe, Be-10/Be-9) listed in table 1. The 68%
credibility regions of the likelihood functions are highlighted by the shaded areas of figure 2
and table 2 lists the numerical values of these credibility regions as well as the best-fit values
of each propagation parameter. By looking at figure 2 it is obvious that the electron-positron
related data and the non-electron-positron related data are inconsistent with the hypothesis
that the model of cosmic ray propagation and/or the sources encoded in GALPROP provide
a sufficient theoretical description.

parameter Fit for the e± related data Fit for the rest of the data
best fit value 68% Cr range best fit value 68% Cr range

γe− 2.55 {2.45, 2.60} 2.71 {2.54, 2.92}

γnucleus 1.60 {1.51, 1.69} 2.10 {1.88, 2.92}
δ1 0.24 {0.23, 0.26} 0.06 {0.04, 0.08}
δ2 0.10 {0.08, 0.12} 0.35 {0.32, 0.39}
D0xx [×1028] 2.17 {1.85, 2.19} 11.49 {8.86,13.48}

Table 2. Best fit values of the propagation parameters and their 68 % credibility ranges. Numerical values are shown for both

fits: including the electron-positron related cosmic ray data only, and including the rest of the data.

For the posterior densities of the electron and nucleus injection indices γe− and γnucleus

shown in the first two frames of figure 2, there is a mild but tolerable tension between the two
data sets. In the final three frames of figure 2 the posterior densities for δ1, δ2 and D0xx are
shown. These frames indicate a statistically significant tension between the two sets of data
as the 68 % credibility regions of each set for the two spatial diffusion coefficients δ1 and δ2, as
well as D0xx do not overlap each other. Although not shown it is easily extrapolated that not
even the 99% credibility regions of these posteriors will overlap. As a consequence we can
conclude that if one adjusts the values of the cosmic ray parameters, one can indeed obtain
a good fit for either the electron-positron related data or to the rest of the data individually,
however, you cannot obtain a good fit for both sets of data simultaneously.

This tension can be interpreted to mean that the data measured by the PAMELA
and Fermi-LAT collaborations is affected by new physics that is unaccounted for by
the propagation model and/or cosmic ray sources encoded in GALPROP. Based on
simple theoretical arguments, the observed behaviour of the PAMELA positron fraction is
unexpected. If one attempts to fit this data by simply adjusting the value of the propagation
parameters this will lead to a bad fit of the non-electron-positron related data. One also
expects that the anomaly in the PAMELA e+/(e+ + e−) would also produce an observable
anomaly in other electron-positron related data such as the Fermi-LAT e+ + e− and the
PAMELA e− spectra. This conclusion agrees with the argument of [24] that “secondary
positron production in the general ISM is not capable of producing an abundance that rises
with energy”.

The observed tension in our data is dramatically increased when one incorporates the
recently released PAMELA e− flux [18] in our electron-positron related data. For consistency
we checked the result that we would obtain if we excluded this new electron flux data into our
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analysis. We noticed that the tension we observe is significantly milder if it is not included.
This, and the effect of using a larger amount of data compared to previous studies, suggests
why the tension we observe was not detected by authors such as [24].

7.2. The size of the anomaly

As we conclude that new physics is buried within the electron-positron fluxes, we now
attempt to extract from the data the size of this new physics signal. Assuming that the
new physics affects only the electron-positron fluxes but its influence on the rest of the
cosmic ray data is negligible, we can determine the central value and credibility regions
of the cosmic ray propagation parameters from the unbiased data: anti-proton/proton,
Boron/Carbon, (Sc+Ti+V)/Fe, Be-10/Be-9 to generate a background prediction for all cosmic
ray data including the electron-positron fluxes. Once we calculate the theoretical background
prediction we can subtract this background from the electron-positron data and determine if
a statistically significant signal can be extracted.

To do this we calculate the prediction for the PAMELA and Fermi-LAT electron-positron
fluxes by using the central values of the propagation parameters determined using p̄/p,
B/C, (Sc+Ti+V)/Fe, Be-10/Be-9. Then using all the scanned values of all five propagation
parameters lying within the 68 % credibility region we generate a 1-σ uncertainty band for the
background around this central value. In figure 3 we overlay the uncertainty background in
gray over the Fermi-LAT electron+positron and the PAMELA electron and positron fraction
fluxes. For the Fermi-LAT and PAMELA e− the statistical and systematic uncertainties
were combined in quadrature, while as the PAMELA e+/(e+ + e−) only had statistical
uncertainties, we scaled these uncertainties using τ = 0.2 to produce the experimental
error bands. The magenta bands correspond to our background predictions, while the green
dashed lines and band correspond respectively to the central value and the 1-σ uncertainty
of the calculated anomaly.

In figure 3 one can see that our background prediction deviates from the data at energies
below ≈ 10 GeV and above 100 GeV. For this analysis we focus on the deviation between the
background and the data for energies greater than 100 GeV, while for the deviation observed
at low energies we leave this to future research, but we note that this deviation could arise
from inadequacies of the propagation model. Based on our background prediction we obtain
a weak but statistically significant anomaly signal which we interpret as the presence of a new
physics in the Fermi-LAT electron+positron flux. A similar conclusion can be drawn about
the PAMELA positron fraction when taking the difference between the central values of the
data and the background, but due to sizeable uncertainties of the PAMELA measurement we
cannot claim a statistically significant deviation. 1

To determine the size of the new physics signal in the electron positron data we subtract
the central value of the corresponding background prediction from the central value of the
data. The 1-σ uncertainty band of the signal is obtained by combining the experimental

1 The Fermi-LAT collaboration recently presented a preliminary measurement of the positron fraction [54] which
confirmed the results of PAMELA. At first glance this measurement appears to have smaller systematic uncertainties
than that of PAMELA. If the officially published Fermi-LAT measurement has systematic errors of approximately
the same size as the statistical errors of PAMELA then the data will also deviate from our background unveiling an
anomalous signal in the positron fraction.
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of data. The blue dashed curve represents the likelihood functions generated for the
electron-positron related data (AMS, Fermi-LAT, HESS, and PAMELA), while the red solid
curves represent the likelihood functions obtained for the rest of the cosmic ray data
(anti-proton/proton, Boron/Carbon, (Sc+Ti+V)/Fe, Be-10/Be-9) listed in table 1. The 68%
credibility regions of the likelihood functions are highlighted by the shaded areas of figure 2
and table 2 lists the numerical values of these credibility regions as well as the best-fit values
of each propagation parameter. By looking at figure 2 it is obvious that the electron-positron
related data and the non-electron-positron related data are inconsistent with the hypothesis
that the model of cosmic ray propagation and/or the sources encoded in GALPROP provide
a sufficient theoretical description.

parameter Fit for the e± related data Fit for the rest of the data
best fit value 68% Cr range best fit value 68% Cr range

γe− 2.55 {2.45, 2.60} 2.71 {2.54, 2.92}

γnucleus 1.60 {1.51, 1.69} 2.10 {1.88, 2.92}
δ1 0.24 {0.23, 0.26} 0.06 {0.04, 0.08}
δ2 0.10 {0.08, 0.12} 0.35 {0.32, 0.39}
D0xx [×1028] 2.17 {1.85, 2.19} 11.49 {8.86,13.48}

Table 2. Best fit values of the propagation parameters and their 68 % credibility ranges. Numerical values are shown for both

fits: including the electron-positron related cosmic ray data only, and including the rest of the data.

For the posterior densities of the electron and nucleus injection indices γe− and γnucleus

shown in the first two frames of figure 2, there is a mild but tolerable tension between the two
data sets. In the final three frames of figure 2 the posterior densities for δ1, δ2 and D0xx are
shown. These frames indicate a statistically significant tension between the two sets of data
as the 68 % credibility regions of each set for the two spatial diffusion coefficients δ1 and δ2, as
well as D0xx do not overlap each other. Although not shown it is easily extrapolated that not
even the 99% credibility regions of these posteriors will overlap. As a consequence we can
conclude that if one adjusts the values of the cosmic ray parameters, one can indeed obtain
a good fit for either the electron-positron related data or to the rest of the data individually,
however, you cannot obtain a good fit for both sets of data simultaneously.

This tension can be interpreted to mean that the data measured by the PAMELA
and Fermi-LAT collaborations is affected by new physics that is unaccounted for by
the propagation model and/or cosmic ray sources encoded in GALPROP. Based on
simple theoretical arguments, the observed behaviour of the PAMELA positron fraction is
unexpected. If one attempts to fit this data by simply adjusting the value of the propagation
parameters this will lead to a bad fit of the non-electron-positron related data. One also
expects that the anomaly in the PAMELA e+/(e+ + e−) would also produce an observable
anomaly in other electron-positron related data such as the Fermi-LAT e+ + e− and the
PAMELA e− spectra. This conclusion agrees with the argument of [24] that “secondary
positron production in the general ISM is not capable of producing an abundance that rises
with energy”.

The observed tension in our data is dramatically increased when one incorporates the
recently released PAMELA e− flux [18] in our electron-positron related data. For consistency
we checked the result that we would obtain if we excluded this new electron flux data into our
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analysis. We noticed that the tension we observe is significantly milder if it is not included.
This, and the effect of using a larger amount of data compared to previous studies, suggests
why the tension we observe was not detected by authors such as [24].

7.2. The size of the anomaly

As we conclude that new physics is buried within the electron-positron fluxes, we now
attempt to extract from the data the size of this new physics signal. Assuming that the
new physics affects only the electron-positron fluxes but its influence on the rest of the
cosmic ray data is negligible, we can determine the central value and credibility regions
of the cosmic ray propagation parameters from the unbiased data: anti-proton/proton,
Boron/Carbon, (Sc+Ti+V)/Fe, Be-10/Be-9 to generate a background prediction for all cosmic
ray data including the electron-positron fluxes. Once we calculate the theoretical background
prediction we can subtract this background from the electron-positron data and determine if
a statistically significant signal can be extracted.

To do this we calculate the prediction for the PAMELA and Fermi-LAT electron-positron
fluxes by using the central values of the propagation parameters determined using p̄/p,
B/C, (Sc+Ti+V)/Fe, Be-10/Be-9. Then using all the scanned values of all five propagation
parameters lying within the 68 % credibility region we generate a 1-σ uncertainty band for the
background around this central value. In figure 3 we overlay the uncertainty background in
gray over the Fermi-LAT electron+positron and the PAMELA electron and positron fraction
fluxes. For the Fermi-LAT and PAMELA e− the statistical and systematic uncertainties
were combined in quadrature, while as the PAMELA e+/(e+ + e−) only had statistical
uncertainties, we scaled these uncertainties using τ = 0.2 to produce the experimental
error bands. The magenta bands correspond to our background predictions, while the green
dashed lines and band correspond respectively to the central value and the 1-σ uncertainty
of the calculated anomaly.

In figure 3 one can see that our background prediction deviates from the data at energies
below ≈ 10 GeV and above 100 GeV. For this analysis we focus on the deviation between the
background and the data for energies greater than 100 GeV, while for the deviation observed
at low energies we leave this to future research, but we note that this deviation could arise
from inadequacies of the propagation model. Based on our background prediction we obtain
a weak but statistically significant anomaly signal which we interpret as the presence of a new
physics in the Fermi-LAT electron+positron flux. A similar conclusion can be drawn about
the PAMELA positron fraction when taking the difference between the central values of the
data and the background, but due to sizeable uncertainties of the PAMELA measurement we
cannot claim a statistically significant deviation. 1

To determine the size of the new physics signal in the electron positron data we subtract
the central value of the corresponding background prediction from the central value of the
data. The 1-σ uncertainty band of the signal is obtained by combining the experimental

1 The Fermi-LAT collaboration recently presented a preliminary measurement of the positron fraction [54] which
confirmed the results of PAMELA. At first glance this measurement appears to have smaller systematic uncertainties
than that of PAMELA. If the officially published Fermi-LAT measurement has systematic errors of approximately
the same size as the statistical errors of PAMELA then the data will also deviate from our background unveiling an
anomalous signal in the positron fraction.
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Figure 3. The anomalous signal we extracted for various electron-positron fluxes. The green dotted curves (marking the

central values) and bands (showing 68 % credible intervals) correspond to the extracted size of the anomaly. The data points

correspond to the spectra measured by Fermi-LAT and PAMELA. Combined statistical and systematic uncertainties are shown

(by the gray bands) for Fermi-LAT and PAMELA e−, while (τ = 0.2) scaled statistical uncertainties are shown for PAMELA
e+/(e+ + e−). Overlaid in magenta is our background prediction (central value curve and 68 % credible intervals).

and background uncertainties quadratically. In Fig. 3 the results for the electron-positron
anomaly are shown. Based on our background predictions, we obtain a non-vanishing
anomalous signal for the Fermi-LAT e+ + e− flux, while for the PAMELA data we cannot
claim the presence of a statistically significant anomaly due to the large uncertainties of the
data.

7.3. The source of the anomaly

Since the publication of the PAMELA positron fraction [7], there have been numerous
publications that have speculated on the origin of the discrepancy between the theoretical
prediction of electron-positron spectra and the experimental data. Based on the available
evidence we can only postulate on the origin of this deviation. An obvious guess would
be that the model used to describe the propagation of electrons and positrons in our
Galaxy is insufficient in some respect, which if correct would mean that there exists no
anomalous signal in the data. One such reasonable effect which is not incorporated in the
two dimensional GALPROP calculation is the spectral hardening of cosmic ray spectra due to
the presence of non-steady sources. To confirm these possibilities it would be an interesting
exercise to repeat our analysis using different calculation tools such as DRAGON by [55],
USINE by [56], PPPC4DMID by [57] or the code of [58].
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If one assumes that the propagation model satisfactorily describes the propagation of cosmic

rays through our Galaxy it is only natural to suspect that local effects are modifying the

distribution of electrons and positrons. The lack of sources included in the GALPROP

calculation seem to confirm this suspicion. There have been a plethora of papers that

account for this anomaly by proposing various new sources of cosmic rays. There are two

major categories of new cosmic ray sources that have been proposed. The first involves

known astrophysical objects with uncertain parameters such as supernova remnants, pulsars,

or various other objects in the Galactic centre, while the second involves more exotic

astronomical and/or particle physics phenomena such as dark matter. Literature discussing

these cases is extensively cited by [21].

For energies greater than 100 GeV, energy losses such as inverse Compton scattering of

interstellar dust and cosmic microwave background light or synchrotron radiation become

important. These effects result in a relatively short lifetime of the electron and positron while

simultaneously this causes a decrease in the intensity of these particles as energy increases.

As a result it is hypothesised that a large number of the electrons and positrons detected at

Earth with an energy above 100 GeV come from individual sources within a few kilo-parsecs

of Earth [51, 52]. Random fluctuations in the injection spectrum and spatial distribution of

these nearby sources can produce detectable differences between the predicted background

and the most energetic part of the observed electron and positron spectrum. This deviation

could indicate the presence of new physics arising from either an astrophysical object(s) or

dark matter.

If the size of the anomalous signal can be isolated from the experimental data then,

regardless of the origin of the anomaly, the source will have to produce a signal with those

characteristics. In Fig. 4 we compare our extracted signal to a few randomly selected attempts

from the literature to match this anomaly. The first frame features the spectrum of electrons

and positrons unaccounted for from local supernovae as calculated by [59] . The top right

frame shows the contribution from additional primary cosmic ray sources such as pulsars or

annihilation of particle dark matter as calculated by [52]. The bottom left frame contains the

predictions of [60] for anomalous electron-positron sources from dark matter annihilations,

while the last frame shows the dark matter annihilation contributions calculated by [61].

If the theoretical uncertainty of a new cosmic ray source and its contribution to cosmic

ray measurements at Earth is unknown it can be difficult to draw any conclusion about

its contribution to our isolated signal. In the case where the theoretical uncertainty of a new

cosmic ray source is known it usually tends to be of significant size that it can prevent us

from judging whether it is a valid explanation of our signal. Regardless, we can select a few

scenarios that are more likely to be favoured than some others based on the present amount

of information we have obtained from our analysis. With more data it will be possible to

reduce the size of the uncertainty of our signal, while with more detailed calculations we

can produce a more precise prediction of the cosmic ray spectrum as measured at Earth.

This may enable the various suggestions of the source of the electron-positron anomaly to be

confirmed or ruled out.
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Figure 3. The anomalous signal we extracted for various electron-positron fluxes. The green dotted curves (marking the

central values) and bands (showing 68 % credible intervals) correspond to the extracted size of the anomaly. The data points

correspond to the spectra measured by Fermi-LAT and PAMELA. Combined statistical and systematic uncertainties are shown

(by the gray bands) for Fermi-LAT and PAMELA e−, while (τ = 0.2) scaled statistical uncertainties are shown for PAMELA
e+/(e+ + e−). Overlaid in magenta is our background prediction (central value curve and 68 % credible intervals).
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anomaly are shown. Based on our background predictions, we obtain a non-vanishing
anomalous signal for the Fermi-LAT e+ + e− flux, while for the PAMELA data we cannot
claim the presence of a statistically significant anomaly due to the large uncertainties of the
data.

7.3. The source of the anomaly

Since the publication of the PAMELA positron fraction [7], there have been numerous
publications that have speculated on the origin of the discrepancy between the theoretical
prediction of electron-positron spectra and the experimental data. Based on the available
evidence we can only postulate on the origin of this deviation. An obvious guess would
be that the model used to describe the propagation of electrons and positrons in our
Galaxy is insufficient in some respect, which if correct would mean that there exists no
anomalous signal in the data. One such reasonable effect which is not incorporated in the
two dimensional GALPROP calculation is the spectral hardening of cosmic ray spectra due to
the presence of non-steady sources. To confirm these possibilities it would be an interesting
exercise to repeat our analysis using different calculation tools such as DRAGON by [55],
USINE by [56], PPPC4DMID by [57] or the code of [58].
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calculation seem to confirm this suspicion. There have been a plethora of papers that

account for this anomaly by proposing various new sources of cosmic rays. There are two

major categories of new cosmic ray sources that have been proposed. The first involves

known astrophysical objects with uncertain parameters such as supernova remnants, pulsars,

or various other objects in the Galactic centre, while the second involves more exotic

astronomical and/or particle physics phenomena such as dark matter. Literature discussing

these cases is extensively cited by [21].

For energies greater than 100 GeV, energy losses such as inverse Compton scattering of

interstellar dust and cosmic microwave background light or synchrotron radiation become

important. These effects result in a relatively short lifetime of the electron and positron while

simultaneously this causes a decrease in the intensity of these particles as energy increases.

As a result it is hypothesised that a large number of the electrons and positrons detected at

Earth with an energy above 100 GeV come from individual sources within a few kilo-parsecs

of Earth [51, 52]. Random fluctuations in the injection spectrum and spatial distribution of

these nearby sources can produce detectable differences between the predicted background

and the most energetic part of the observed electron and positron spectrum. This deviation

could indicate the presence of new physics arising from either an astrophysical object(s) or

dark matter.

If the size of the anomalous signal can be isolated from the experimental data then,

regardless of the origin of the anomaly, the source will have to produce a signal with those

characteristics. In Fig. 4 we compare our extracted signal to a few randomly selected attempts

from the literature to match this anomaly. The first frame features the spectrum of electrons

and positrons unaccounted for from local supernovae as calculated by [59] . The top right

frame shows the contribution from additional primary cosmic ray sources such as pulsars or

annihilation of particle dark matter as calculated by [52]. The bottom left frame contains the

predictions of [60] for anomalous electron-positron sources from dark matter annihilations,

while the last frame shows the dark matter annihilation contributions calculated by [61].

If the theoretical uncertainty of a new cosmic ray source and its contribution to cosmic

ray measurements at Earth is unknown it can be difficult to draw any conclusion about

its contribution to our isolated signal. In the case where the theoretical uncertainty of a new

cosmic ray source is known it usually tends to be of significant size that it can prevent us

from judging whether it is a valid explanation of our signal. Regardless, we can select a few

scenarios that are more likely to be favoured than some others based on the present amount

of information we have obtained from our analysis. With more data it will be possible to

reduce the size of the uncertainty of our signal, while with more detailed calculations we

can produce a more precise prediction of the cosmic ray spectrum as measured at Earth.

This may enable the various suggestions of the source of the electron-positron anomaly to be
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Figure 4. Comparing the detected cosmic ray flux (data points and gray band) and the signal extracted in this work (green

dotted curve and band) to potential explanations of the electron-positron cosmic ray anomaly (solid curves). The various

theoretical predictions come from [59], [52], [60] and [61]. Currently the comparison is fairly inconclusive but with more data

it will be possible to shrink the uncertainty in the determination of the signal. Then various suggestions can be confirmed or

ruled out.

8. Conclusions

Motivated by the possibility of new physics contributing to the measurements of PAMELA
and Fermi-LAT, we subjected a wide range of cosmic ray observations to a Bayesian
likelihood analysis. In the context of the propagation model coded in GALPROP, we found a
significant tension between the e−\e+ related data and the rest of the cosmic ray fluxes. This
tension can be interpreted as the failure of the model to describe all the data simultaneously
or as the effect of a missing source component.

Since the PAMELA and Fermi-LAT data are suspected to contain a component unaccounted
for in GALPROP, we extracted the preferred values of the cosmic ray propagation parameters
from the non-electron-positron related measurements. Based on these parameter values we
calculated background predictions, with uncertainties, for PAMELA and Fermi-LAT. We
found a deviation between the PAMELA and Fermi-LAT data and the predicted background
even when uncertainties, including systematics, were taken into account. Interpreting this as
an indication of new physics we subtracted the background from the data isolating the size
of the anomalous component.

The signal of new physics in the electron+positron spectrum was found to be non-vanishing
within the calculated uncertainties. Thus the use of 219 cosmic ray spectral data points
within the Bayesian framework allowed us to confirm the existence of new physics effects in
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the electron+positron flux in a model independent fashion. Using the statistical techniques
we were able to extract the size, shape and uncertainty of the anomalous contribution in the
e− + e+ cosmic ray spectrum. We briefly compared the extracted signal to some theoretical
results predicting such an anomaly.
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Figure 4. Comparing the detected cosmic ray flux (data points and gray band) and the signal extracted in this work (green

dotted curve and band) to potential explanations of the electron-positron cosmic ray anomaly (solid curves). The various

theoretical predictions come from [59], [52], [60] and [61]. Currently the comparison is fairly inconclusive but with more data

it will be possible to shrink the uncertainty in the determination of the signal. Then various suggestions can be confirmed or

ruled out.

8. Conclusions

Motivated by the possibility of new physics contributing to the measurements of PAMELA
and Fermi-LAT, we subjected a wide range of cosmic ray observations to a Bayesian
likelihood analysis. In the context of the propagation model coded in GALPROP, we found a
significant tension between the e−\e+ related data and the rest of the cosmic ray fluxes. This
tension can be interpreted as the failure of the model to describe all the data simultaneously
or as the effect of a missing source component.

Since the PAMELA and Fermi-LAT data are suspected to contain a component unaccounted
for in GALPROP, we extracted the preferred values of the cosmic ray propagation parameters
from the non-electron-positron related measurements. Based on these parameter values we
calculated background predictions, with uncertainties, for PAMELA and Fermi-LAT. We
found a deviation between the PAMELA and Fermi-LAT data and the predicted background
even when uncertainties, including systematics, were taken into account. Interpreting this as
an indication of new physics we subtracted the background from the data isolating the size
of the anomalous component.

The signal of new physics in the electron+positron spectrum was found to be non-vanishing
within the calculated uncertainties. Thus the use of 219 cosmic ray spectral data points
within the Bayesian framework allowed us to confirm the existence of new physics effects in
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the electron+positron flux in a model independent fashion. Using the statistical techniques
we were able to extract the size, shape and uncertainty of the anomalous contribution in the
e− + e+ cosmic ray spectrum. We briefly compared the extracted signal to some theoretical
results predicting such an anomaly.
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1. Introduction

Cosmology is a young science. Less than a century ago cosmology stopped to be a branch of
philosophy and it crossbred with General Relativity to become a science. Until very recently
cosmological observations were quite rough and qualitative. Until the 80s one was quite
satisfied with data with error bars of few percent.

Since then a number of extremely precise surveys have been carried over producing a massive
amount of very precise data. The current picture that emerged from those data is quite
awkward. In order to fit observations and maintain standard GR as general framework for
gravity one is forced to introduce dark sources, at least in a large amount different from the
matter that can be seen in the universe and which has somehow odd behavior; see [1], [2],
[3], [4].

Actually, following this direction one is led to assume that about 70% of gravitational sources
in the universe is constituted by some strange kind of dark energy, closely resembling a
(small and positive) cosmological constant, about 25% of gravitational sources is constituted
by some kind of dark matter (for which different models have been proposed and discussed),
while visible matter amounts to few percents (about 4-5% depending on the model) of the
total amount of matter. It is important to notice that we do not have any direct evidence or
data about dark energy and dark matter other than their supposed gravitational effects on
visible matter. Moreover, the best models for dark energy and dark matter are often definitely
unsatisfactory from a fundamental viewpoint; see [5].

On the other hand, it has been suggested that the description of the gravitational field given
by standard GR may fail at cosmological scale and we missed something, so that a good
agreement with data can be obtained by modifying the description of gravity more than
adding exotic sources. In any event it is now clear that something has to be changed in our
standard framework in order to understand the universe out there.
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1. Introduction

Cosmology is a young science. Less than a century ago cosmology stopped to be a branch of
philosophy and it crossbred with General Relativity to become a science. Until very recently
cosmological observations were quite rough and qualitative. Until the 80s one was quite
satisfied with data with error bars of few percent.

Since then a number of extremely precise surveys have been carried over producing a massive
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[3], [4].
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while visible matter amounts to few percents (about 4-5% depending on the model) of the
total amount of matter. It is important to notice that we do not have any direct evidence or
data about dark energy and dark matter other than their supposed gravitational effects on
visible matter. Moreover, the best models for dark energy and dark matter are often definitely
unsatisfactory from a fundamental viewpoint; see [5].

On the other hand, it has been suggested that the description of the gravitational field given
by standard GR may fail at cosmological scale and we missed something, so that a good
agreement with data can be obtained by modifying the description of gravity more than
adding exotic sources. In any event it is now clear that something has to be changed in our
standard framework in order to understand the universe out there.
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2 Open Questions in Cosmology

Besides these obvious considerations let us add quite a trivial remark. Our understanding of
the meaning of observations is generally weak and often depending on the model. Standard
GR has a good set of protocols which allow one to make predictions and tests. The theory
is extremely well tested at Solar system scales, while it is known to require corrections (by
adding dark sources or by modifying dynamics) at galactic, astrophysical and cosmological
scale (oddly enough whenever non-vacuum solutions are considered).

However, what we observe when we measure the distance of a supernova is not clear
at all. GR is a relativistic theory with a huge symmetry group, namely all spacetime
diffeomorphisms. The observable quantities should be then invariant with respect to
spacetime diffeomorphisms, i.e. gauge invariant. Unfortunately, due to the particular nature
of diffeomorphisms and their action on the geometry of spacetime, we do not know any
non-trivial quantity which is diff-invariant. Also scalars are not (unless they are constant)
since the Lie derivative of a scalar with respect to a generic spacetime vector field (i.e. a
generic generator of spacetime diffeomorphisms) is

£ξ f = ξ
µ

∂µ f (1)

which is in general not zero, showing that in fact the quantity is not gauge invariant. This is
known since the very beginning and it is the starting point of the celebrated hole argument;
see [6]. Since we do measure quantities that are not gauge invariant, the only possible
explanation is that we set observational protocols which as a matter of fact break gauge
invariance on a conventional basis (possibly using matter references, as suggested in [6]).

That would not be too bad, if we clearly understood the details of such conventions and
gauge fixing, that we do not. Instead, standard GR mixes from its very beginning physical
quantities (i.e. the gravitational field) and the observational protocols (e.g. for measuring
distances and times) in the same object (namely, the metric tensor). Originally, Einstein had
not many options, since at that time the only way to describe curvature was through a metric
structure and general (linear) connections were still to be fully described. As a consequence
it becomes very difficult to keep the two things separated as they should.

In the 70s Ehlers, Pirani and Schild (EPS) gave a fundamental contribution to the
understanding of the foundations of any reasonable theory of spacetime and gravity. They
proposed an axiomatic approach to gravitational theories which, instead of assuming a metric
or a connection on spacetime, assumed as fundamental potentially observable quantities
(namely the worldlines of particles and light rays) and derived from them the geometry of
spacetime; see [7], [8]. The original project was to obtain standard GR. However, the proposal
finally turned out to give us a fundamental insight about what is to be considered observable
and which geometrical structures are really essential for gravity.

In particular EPS framework allows a more general geometric structure on spacetime in
which standard GR comes out to be just one of many possible theories of gravitation.
Moreover, a more general framework potentially allows to test which geometric structure on
spacetime is actually physically realized. As a side effect, EPS has an impact on observational
protocols (not all standard protocols can be trivially extended to a general extended theory).

We shall hereafter review the EPS framework, define extended theories of gravitation and
attempt a rough classification of possible extended theories. Finally we shall discuss some
simple application to cosmology and observational protocols.
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2. EPS structures on spacetime

As already mentioned, in the early 70s Ehlers, Pirani and Schild (EPS) proposed an axiomatic
framework for relativistic theories in which they showed how one can derive the geometric
structure of spacetime from potentially observable quantities, i.e. worldlines of particles
and light rays; see [7]. Accordingly, in the EPS framework the geometry of spacetime is
not assumed but derived by more fundamental objects. We shall first briefly review EPS
formalism; in the next Sections we shall discuss its consequences in gravitational theories
and cosmology.

Let M be an (orientable, time orientable, connected, paracompact, smooth) m-dimensional
manifold. Points in M are called events and M is called accordingly a spacetime. Let us stress
that although M is chosen so that it allows global Lorentzian metrics, we do not fix any
metric structure on M.

On M we consider two congruences of trajectories. Let P be the congruence of all possible
motions of massive particles and L be the congruence of all possible light rays. Of course
there are reasonable physical requirement to be asked about P and L since we expect they
cannot be chosen to be completely generic or unrelated since we expect photons to feel the
gravitational field as well as we expect matter to interact with the electromagnetic field.

If we restrict ourselves to particles and light rays passing through an event x ∈ M, we know
that the directions of light rays form a cone (the light cone). We can express this experimental
fact by asking that the directions of light rays divide spacetime directions (i.e. the projective
space of Tx M) into two connected components (i.e. the directions inside and outside the light
cone).

We also know that the set of vectors inside the light cone is topologically different from the set
of vectors outside the light cone. If one removes the zero vector then the set of vectors inside
the light cone disconnects into two connected components (namely, future and past directed
timelike vectors), while the set of vectors outside the light cone keeps being connected (there
is nothing like future directed spacelike vectors!).

Moreover, we know that one has two kinds of vectors tangent to light rays: the ones pointing
to the future and the ones pointing to the past. Thus we assume that (once the zero vector is
removed) the set of vectors tangent to light rays also splits into two connected components
(namely, future and past directed vectors). Let us stress that past and future are defined at a
point x and it does not really matter which one of them is called future or past. These three
requirements are physically well founded and in the end they constrain the light cones to be
cones without resorting to a metric structure we did not define yet.

Then we have a number of regularity conditions. We need axioms to certify that one has
enough light rays to account for physical standard messaging. Let us thus assume that for
any particle P ∈ P and for any event p ∈ P ⊂ M there exists a neighbourhood Vp and a
neighbourhood Up ⊂ Vp such that for any event x ∈ Up there are two light rays through x
hitting P within Vp.

Let us remark that in Minkowski spacetime one can set Up = Vp = M and there are always
two such light rays (as one can check by direct calculation remembering that particles and
light rays are given as straight lines in Minkowski spacetime).
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4 Open Questions in Cosmology
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Given two particles P, Q ∈ P we can consider the family of light rays λ ∈ L intersecting P
and Q. By the above assumption, when P and Q are close enough such family is not empty.
This family of light rays does define a local one-to-one map between P and Q which is called
a message which is denoted by µ : P → Q. If one takes the composition of a message from P
to Q and a message from Q to P the resulting map ǫ : P → P is called and echo of P on Q.
Both messages and echoes are assumed to be smooth maps.

P Q

μ: P → Q

P Q

ε: P → P

Figure 1. Messages and Echoes

Finally, we have to guarantee that there exist enough particles in P and light rays in L (which
until now could be empty, as far as we know). We assume that there is a particle for each
vector inside the light cone and a light ray for each vector on the light cone.

Let us now define a clock to be a parametrized particle, the parametrization accounting for
the time maintained by the clock; [9]. For any clock P ∈ P , for any event p ∈ P one can
set the parameter to be s = 0 at p. Using echoes one can use a number of clocks to define a
special class of local coordinates, called radar coordinates or parallax coodinates. If dim(M) = m
one can always choose m clocks Pi near an event p ∈ M so that there exists a neibourhood
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Up such that for any x ∈ Up there is a (future directed) light ray through x then hitting the
clock Pi at its parameter value si. The values of the parameters si do form a good coordinate
system in Up. We assume that the spacetime differential structure on M is the one compatible
with these charts. Let us remark that parallax coordinates mimick how astronomers define
positions of objects.

p

P1 P2 P3

s1
s2

s2

Figure 2. Parallax coordinates in dimension m = 3

One can show that as a consequence of these assumptions a class of Lorentzian metrics g is
defined on M. Let us then fix a clock P though an event p. For any event x ∈ Up one has
two light rays through x intersecting P, say at events p

±
which correspond to the parameter

values s
±

. Then we can define a local function Φ : Up → R : x �→ −s
+
· s

−
. As one can easily

show, if there exists a light ray through x and p then Φ(x) = 0. According to the topological
assumptions made on the light cones then one can show that Φ(p) = 0 and dΦ(p) = 0. Then
one can consider the Hessian ∂µνΦ(p) as the first non-zero term in the Taylor expansion of
Φ around the event p. In this case it defines a tensor field (a bilinear form)

gp = gµν(p) dxµ
⊗ dxν

= ∂µνΦ(p) dxµ
⊗ dxν (2)

For any light ray direction v at p one has g(v, v) = 0. One can also easily show that for u
tangent to the clock P one has g(u, u) < 0.

Accordingly, g cannot be definite positive. In order not to contradict again assumptions about
light cones, one can show that g is necessarily non-degenerate and Lorentzian (see [10]). Of
course the the tensor g depends on the conventional choice of the clock. If one changes
clock one defines a different tensor g̃ which is related to the previous one by a conformal
transformation, namely g̃ = ϕ(x) · g for some positive scalar field ϕ.

Let us now consider the set Lor(M) of all (global) Lorentzian metrics on M. Let us say that
two metrics g

(1), g
(2) ∈ Lor(M) are conformally equivalent iff there exists a positive scalar field
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6 Open Questions in Cosmology

ϕ such that g̃x = ϕ(x) · gx. The construction above shows that one can define out of light
rays (i.e. out of the electromagnetic field) a conformal class of metrics C = [g]. Let us remark
that the choice of a representative g̃ ∈ C is conventional and in fact part of the specification
of the observer; conformal transformations are gauge transformations.

Notice that light cones are invariant with respect to conformal transformations; given a
conformal structure C on M one can define lightlike (timelike and spacelike, respectively) vectors
being g(v, v) = 0 (g(u, u) < 0 and g(w, w) > 0, respectively) recovering standard notations
used in GR.

Finally, we have to focus on particles. Let us first assume that we have one particle through
p ∈ M for any timelike direction and a light ray for any lightlike direction. Some constraint
on particles must be set. Originally, EPS resorted to the equivalence principle and special
relativity (SR) assuming that particle worldlines are geodesics of some connection Γ̃.

We cannot, for various reasons, be totally satisfied with this assumption, even if we accept
of course the result. First of all relativistic theories are more fundamental than SR, which
should hence be obtained in some limit from GR rather than being used to define it. Then
the equivalence principle is an experimental fact and we would like to keep the possibility
to test it rather than assuming it as a must. Luckily enough, one can obtain geodesic
equations (together with a better insight on the nature of gravitational field) also without
resorting to SR and equivalence principle. In fact, if one assumes that free fall must be
described by differential equations of the second order, deterministic, covariant with respect
to spacetime diffeomorphisms and with respect to arbitrary reparametrizations of worldlines
those candidate equations are strongly constrained; see [11], [12]. If one then defines
gravitational interaction to be the one which cannot be cancelled in a way independent of
the coordinates and parametrizations then the equation uniquely determined are geodesic
equations

q̈λ
+ Γ̃

λ
αβ

q̇α q̇β
= λq̇λ (3)

for some (global torsionless) connection Γ̃(x) and some function λ(s). In this way free fall is
naturally associated to a connection Γ̃ and one is considering the Einstein’s lift experiment
as showing that there are observers who see a gravitational field rather than a gedanken
experiment showing that there is a class of observers who do not (approximately) observe it.

As is well known, different connections can define the same autoparallel trajectories. In fact
the connection

Γ̃
′α
βµ

= Γ̃
α
βµ

+ δ
α

(β
Vµ) (4)

defines the same geodesic trajectories as Γ̃
α
βµ

for any covector Vµ. In this case we say that

Γ̃ and Γ̃
′ are projectively equivalent. Accordingly, free fall corresponds to a projective class

P = [Γ̃]; see [13].

Finally, we need (as we said above) a compatibility condition between the conformal class C

associated to light cones and the projective class P associated to free fall. This is due by the
simple fact that we know that light rays (and hence light cones) feel the gravitational fields
as mass particles. Noticing that g-lightlike g-geodesics are conformally invariant (unlike
general g-geodesics), we have then to assume that g-lightlike g-geodesics are a subset of
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Γ̃-autoparallel trajectories. According to EPS-compatibility condition one can show that a
representative Γ̃ ∈ P of the projective structure can be always (and uniquely) chosen so that
there exists a covector A = Aµ dxµ such that

∇̃g = 2A ⊗ g (5)

where g is a representative of the conformal structure g ∈ C and the covariant derivative ∇̃

is the one associated to Γ̃; see [14]. Equivalently one has

Γ̃
α
βµ

= {g}α
βµ

+ (gαǫgβµ − 2δ
α

(β
δ

ǫ

µ)
)Aǫ (6)

To summarize, by assuming particles and light rays one can define on spacetime a EPS
structure, i.e. a triple (M,C,P). The conformal structure P describes light cones and it is
associated to light rays. Notice that having just a conformal structure one cannot yet define
distances (that are not conformally invariant) and this not being a gauge covariant must
resort to a convention which corresponds to the choice of a representative g ∈ C. On the other
hand, the projective structure P is associated to free fall so that one can make a canonical
gauge fixing by choosing the only representative in the form (6) or, equivalently, the 1-form
A.

The triple (M,C, Γ̃) (or, equivalently, the triple (M,C, A)) is called a Weyl geometry on
spacetime. This setting is more general than the setting for standard GR where one has
just a Lorentzian metric g determining both the conformal structure g ∈ C and the free fall
Γ̃ = {g} (i.e. the Levi-Civita connection uniquely associated to g). Hence standard GR is a
very peculiar case of EPS framework, where there is a gauge fixing of the conformal gauge.
Such a fixing is possible iff the covector A = Aµdxµ is exact, i.e. A = dϕ. In this case, there

exists a Lorentzian metric g̃ ∈ C also determining free fall by Γ̃ = {g̃}. When this happens
the Weyl geometry (M, [g̃], {g̃}) is called a metric Weyl geometry. Notice that this is still more
general than standard GR in the sense that the metric determining free fall and light cones
is not the original g chosen to describe dynamics, but a conformal one g̃ ∈ [g]. Reverting to
standard GR in a sense amounts to choose ϕ to be a constant (so that A vanishes identically).

At this point the reader could argue that in a metric Weyl geometry one could fix the
conformal metric g̃ at the beginning and use it to describe dynamics, thus obtaining a
framework which exactly reproduces standard GR. We shall discuss this issue below in
greater details. Now we simply notice that this is not the case. The choice of a representative
of the conformal structure is, in fact, what allows us to define distances.

In fact, since astronomers do measure distances, we do have a protocol (or better a number
of protocols) to measure distances. As a matter of fact, such a protocol selects (in a rather
obscure way) a precise representative g′ of the conformal structure which is the one that
corresponds to the distances that we measure. If one metric g geometrically accounts for
a given physical distance measured between two events then obviously no other conformal
metric g̃ (i.e. no other representative of the same conformal factor) can geometrically account
for the same measure (modulo constant conformal factors which can be treated as a definition
of units).
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rays (i.e. out of the electromagnetic field) a conformal class of metrics C = [g]. Let us remark
that the choice of a representative g̃ ∈ C is conventional and in fact part of the specification
of the observer; conformal transformations are gauge transformations.

Notice that light cones are invariant with respect to conformal transformations; given a
conformal structure C on M one can define lightlike (timelike and spacelike, respectively) vectors
being g(v, v) = 0 (g(u, u) < 0 and g(w, w) > 0, respectively) recovering standard notations
used in GR.

Finally, we have to focus on particles. Let us first assume that we have one particle through
p ∈ M for any timelike direction and a light ray for any lightlike direction. Some constraint
on particles must be set. Originally, EPS resorted to the equivalence principle and special
relativity (SR) assuming that particle worldlines are geodesics of some connection Γ̃.

We cannot, for various reasons, be totally satisfied with this assumption, even if we accept
of course the result. First of all relativistic theories are more fundamental than SR, which
should hence be obtained in some limit from GR rather than being used to define it. Then
the equivalence principle is an experimental fact and we would like to keep the possibility
to test it rather than assuming it as a must. Luckily enough, one can obtain geodesic
equations (together with a better insight on the nature of gravitational field) also without
resorting to SR and equivalence principle. In fact, if one assumes that free fall must be
described by differential equations of the second order, deterministic, covariant with respect
to spacetime diffeomorphisms and with respect to arbitrary reparametrizations of worldlines
those candidate equations are strongly constrained; see [11], [12]. If one then defines
gravitational interaction to be the one which cannot be cancelled in a way independent of
the coordinates and parametrizations then the equation uniquely determined are geodesic
equations

q̈λ
+ Γ̃

λ
αβ

q̇α q̇β
= λq̇λ (3)

for some (global torsionless) connection Γ̃(x) and some function λ(s). In this way free fall is
naturally associated to a connection Γ̃ and one is considering the Einstein’s lift experiment
as showing that there are observers who see a gravitational field rather than a gedanken
experiment showing that there is a class of observers who do not (approximately) observe it.

As is well known, different connections can define the same autoparallel trajectories. In fact
the connection

Γ̃
′α
βµ

= Γ̃
α
βµ

+ δ
α

(β
Vµ) (4)

defines the same geodesic trajectories as Γ̃
α
βµ

for any covector Vµ. In this case we say that

Γ̃ and Γ̃
′ are projectively equivalent. Accordingly, free fall corresponds to a projective class

P = [Γ̃]; see [13].

Finally, we need (as we said above) a compatibility condition between the conformal class C

associated to light cones and the projective class P associated to free fall. This is due by the
simple fact that we know that light rays (and hence light cones) feel the gravitational fields
as mass particles. Noticing that g-lightlike g-geodesics are conformally invariant (unlike
general g-geodesics), we have then to assume that g-lightlike g-geodesics are a subset of
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Γ̃-autoparallel trajectories. According to EPS-compatibility condition one can show that a
representative Γ̃ ∈ P of the projective structure can be always (and uniquely) chosen so that
there exists a covector A = Aµ dxµ such that

∇̃g = 2A ⊗ g (5)

where g is a representative of the conformal structure g ∈ C and the covariant derivative ∇̃

is the one associated to Γ̃; see [14]. Equivalently one has

Γ̃
α
βµ

= {g}α
βµ

+ (gαǫgβµ − 2δ
α

(β
δ

ǫ

µ)
)Aǫ (6)

To summarize, by assuming particles and light rays one can define on spacetime a EPS
structure, i.e. a triple (M,C,P). The conformal structure P describes light cones and it is
associated to light rays. Notice that having just a conformal structure one cannot yet define
distances (that are not conformally invariant) and this not being a gauge covariant must
resort to a convention which corresponds to the choice of a representative g ∈ C. On the other
hand, the projective structure P is associated to free fall so that one can make a canonical
gauge fixing by choosing the only representative in the form (6) or, equivalently, the 1-form
A.

The triple (M,C, Γ̃) (or, equivalently, the triple (M,C, A)) is called a Weyl geometry on
spacetime. This setting is more general than the setting for standard GR where one has
just a Lorentzian metric g determining both the conformal structure g ∈ C and the free fall
Γ̃ = {g} (i.e. the Levi-Civita connection uniquely associated to g). Hence standard GR is a
very peculiar case of EPS framework, where there is a gauge fixing of the conformal gauge.
Such a fixing is possible iff the covector A = Aµdxµ is exact, i.e. A = dϕ. In this case, there

exists a Lorentzian metric g̃ ∈ C also determining free fall by Γ̃ = {g̃}. When this happens
the Weyl geometry (M, [g̃], {g̃}) is called a metric Weyl geometry. Notice that this is still more
general than standard GR in the sense that the metric determining free fall and light cones
is not the original g chosen to describe dynamics, but a conformal one g̃ ∈ [g]. Reverting to
standard GR in a sense amounts to choose ϕ to be a constant (so that A vanishes identically).

At this point the reader could argue that in a metric Weyl geometry one could fix the
conformal metric g̃ at the beginning and use it to describe dynamics, thus obtaining a
framework which exactly reproduces standard GR. We shall discuss this issue below in
greater details. Now we simply notice that this is not the case. The choice of a representative
of the conformal structure is, in fact, what allows us to define distances.

In fact, since astronomers do measure distances, we do have a protocol (or better a number
of protocols) to measure distances. As a matter of fact, such a protocol selects (in a rather
obscure way) a precise representative g′ of the conformal structure which is the one that
corresponds to the distances that we measure. If one metric g geometrically accounts for
a given physical distance measured between two events then obviously no other conformal
metric g̃ (i.e. no other representative of the same conformal factor) can geometrically account
for the same measure (modulo constant conformal factors which can be treated as a definition
of units).

Extended Theories of Gravitation and the Curvature of the Universe – Do We Really Need Dark Matter?
http://dx.doi.org/10.5772/52041

117



8 Open Questions in Cosmology

In standard GR one assumes that such a representative g′ also determines light cones and free
fall. In metric Weyl geometries there is nothing ensuring that the canonical representative g̃
also gives us the measured distances, that as far as we can see could as well be related to any
other conformally equivalent metric g. Fixing the metric that we use to calculate distances is,
in the end, a choice that we can do only a posteriori, on the basis of observations.

At a fundamental level one can either decide to be strict on the interpretation of conformal
gauge symmetry (and accordingly quantities that are not gauge invariant, such as distances,
cannot be really observable) or one accepts conventional gauge fixing to define such
quantities as observable, thus restricting symmetries of the system to the conformal
transformations which preserves these gauge fixing. In the first case standard GR is
equivalent to metric Weyl geometry (though we cannot measure distances) or, in the second
case, we define distances but standard GR is not necessarily equivalent to metric Weyl
geometries. Again, deciding which is the metric that really enters observational protocols
is something that should not be imposed a priori but rather something to be tested locally.

3. Extended theories of gravitation

EPS analysis sets a number of constraints to any theoretical framework that can be called a
reasonable theory of gravitation. Such constraints are much weaker than the strong metricity
assumptions done in standard GR.

Before explicitly analyzing these constraints, let us first discuss about the interpretation of a
relativistic theory. One usually chooses fundamental fields in kinematics and then considers
dynamics. In gauge theories these two levels are usually quite disconnected since one is free
to change fundamental field variables; this induces a change of dynamics (which is in fact
assumed to be gauge covariant) and it does not affect observable quantities (which are also
assumed to be gauge invariant).

However, the situation in gravitational theories is quite different. In relativistic theories, as
we already discussed in the introduction, there are no known non-trivial gauge-invariant
quantities. If we want to retain some connection with astrophysics and cosmology we
are forced to assume as a fact that matter allows some conventional (partial) gauge fixing.
Strictly speaking observables are not gauge invariant and accordingly they are not preserved
under changes of fundamental field coordinates. When discussing the equivalence between
different formalisms one must additionally declare how observational and measuring
protocols are modified by the transformations allowed and/or chosen. For example, let
us consider a metric Weyl theory in which the dynamics is described in terms of a metric g
and a connection Γ̃. When a solution of field equations is found then one can determine both
light cones and free fall by a single conformal representative g̃. Of course one can rewrite
the dynamics in terms of g̃ only. Is this metric theory fully equivalent to GR, especially in
presence of matter?

To better understand this apparently trivial question, let us recall that changing a metric g to
a conformally equivalent one g̃ = ϕ · g will not change electromagnetism but will certainly
change the coupling with non-electromegnetic matter (e.g., a cosmological fluid).

We cannot answer this simple question, before considering which metric is used to define
distances. In standard GR, one makes the a priori (unjustified) ansatz that distances would be
defined by the same metric which defines free fall, i.e. in this case g̃. If in the original model
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distances were defined using g (which by the way is the only way to select a conformal gauge
to write a non conformally invariant dynamics) the new model is only similar to standard
GR but inequivalent as far as distances are concerned. If the original theory is recognized
to be inequivalent to standard GR based on the Hilbert-Einstein-Palatini Lagrangian L =

√

ggµνRµν(Γ) ds, let us remark that as a matter of fact dark sources are precisely related to
mismatches in observed distances. . . !

Now let us suppose for the sake of argument that standard GR is still a perfect theory to
describe the actual universe (something that we know to be strongly questioned by actual
observations). Still we believe that analyzing it within a wider framework as the one of
EPS structures and Weyl geometries is in any case useful if not even necessary. If we can
understand observations in this wider framework, in fact, we can better test gravity and
maybe eventually show that standard GR is compatible with observations. If we assume
standard GR setting and we build observational protocols for it then it may become difficult
to understand which data come from assumptions and which data come instead from real
physical facts, especially in a theory of gravitation in which we clearly made exceptions about
gauge invariant observables.

Having said that, we see now that EPS formalism points to a Weyl geometry on
spacetime in which one has a conformal structure C defining light cones and a compatible
(torsionless) connection Γ̃ defining free fall. Of course, whenever interaction with matter of
half-integer spin is considered nothing prevents from relaxing the symmetry requirements
on connections. However, until only test particles are considered matter is unaffected by
torsion and one can drop it from the beginning. Then our protocols for measuring distances
select a representative g ∈ C for the conformal structure. In particular there is no reason why
one should assume a priori that the connection Γ̃ is metric or, if such, that it is metric for the
same metric one happens to have selected for distances.

Accordingly, one can use the kinematic and interpretation suggested by EPS to constrain
dynamics. In a Palatini or metric-affine formalism the metric and connection are completely
unrelated a priori, so that only dynamics may give their reciprocal relations. Then field
equations may force a relation between the metric and the connection. That is exactly what
happens in vacuum standard Palatini GR: field equations force the connection to be the
Levi-Civita connection of the given metric. The same happens with some specific kind of
matter, but for general matter such a feature is generally lost, and in general the connection
cannot be the one associated to the original metric.

However, EPS analysis shows that the connection and the metric cannot be completely
arbitrary if one wants a theory that fits fundamental principles; in fact there must be a
covector Aµ for which (6) holds true. If the compatibility condition is not already imposed at
the kinematical level —for example writing the theory for the fundamental fields (gµν, Aµ)

instead of (gµν, Γ̃
α
βµ
)— then the only option is that field equations impose the compatibility

conditions a posteriori as a consequence of field equations.

We shall thence call extended theory of gravitation any field theory for independent variables
(gµν, Γ̃

α
βµ
) in which field equations imply the compatibility condition (6) as a consequence.

In these models the geometry of spacetime is described by a Weyl geometry.
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In standard GR one assumes that such a representative g′ also determines light cones and free
fall. In metric Weyl geometries there is nothing ensuring that the canonical representative g̃
also gives us the measured distances, that as far as we can see could as well be related to any
other conformally equivalent metric g. Fixing the metric that we use to calculate distances is,
in the end, a choice that we can do only a posteriori, on the basis of observations.

At a fundamental level one can either decide to be strict on the interpretation of conformal
gauge symmetry (and accordingly quantities that are not gauge invariant, such as distances,
cannot be really observable) or one accepts conventional gauge fixing to define such
quantities as observable, thus restricting symmetries of the system to the conformal
transformations which preserves these gauge fixing. In the first case standard GR is
equivalent to metric Weyl geometry (though we cannot measure distances) or, in the second
case, we define distances but standard GR is not necessarily equivalent to metric Weyl
geometries. Again, deciding which is the metric that really enters observational protocols
is something that should not be imposed a priori but rather something to be tested locally.

3. Extended theories of gravitation

EPS analysis sets a number of constraints to any theoretical framework that can be called a
reasonable theory of gravitation. Such constraints are much weaker than the strong metricity
assumptions done in standard GR.

Before explicitly analyzing these constraints, let us first discuss about the interpretation of a
relativistic theory. One usually chooses fundamental fields in kinematics and then considers
dynamics. In gauge theories these two levels are usually quite disconnected since one is free
to change fundamental field variables; this induces a change of dynamics (which is in fact
assumed to be gauge covariant) and it does not affect observable quantities (which are also
assumed to be gauge invariant).

However, the situation in gravitational theories is quite different. In relativistic theories, as
we already discussed in the introduction, there are no known non-trivial gauge-invariant
quantities. If we want to retain some connection with astrophysics and cosmology we
are forced to assume as a fact that matter allows some conventional (partial) gauge fixing.
Strictly speaking observables are not gauge invariant and accordingly they are not preserved
under changes of fundamental field coordinates. When discussing the equivalence between
different formalisms one must additionally declare how observational and measuring
protocols are modified by the transformations allowed and/or chosen. For example, let
us consider a metric Weyl theory in which the dynamics is described in terms of a metric g
and a connection Γ̃. When a solution of field equations is found then one can determine both
light cones and free fall by a single conformal representative g̃. Of course one can rewrite
the dynamics in terms of g̃ only. Is this metric theory fully equivalent to GR, especially in
presence of matter?

To better understand this apparently trivial question, let us recall that changing a metric g to
a conformally equivalent one g̃ = ϕ · g will not change electromagnetism but will certainly
change the coupling with non-electromegnetic matter (e.g., a cosmological fluid).

We cannot answer this simple question, before considering which metric is used to define
distances. In standard GR, one makes the a priori (unjustified) ansatz that distances would be
defined by the same metric which defines free fall, i.e. in this case g̃. If in the original model
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distances were defined using g (which by the way is the only way to select a conformal gauge
to write a non conformally invariant dynamics) the new model is only similar to standard
GR but inequivalent as far as distances are concerned. If the original theory is recognized
to be inequivalent to standard GR based on the Hilbert-Einstein-Palatini Lagrangian L =

√

ggµνRµν(Γ) ds, let us remark that as a matter of fact dark sources are precisely related to
mismatches in observed distances. . . !

Now let us suppose for the sake of argument that standard GR is still a perfect theory to
describe the actual universe (something that we know to be strongly questioned by actual
observations). Still we believe that analyzing it within a wider framework as the one of
EPS structures and Weyl geometries is in any case useful if not even necessary. If we can
understand observations in this wider framework, in fact, we can better test gravity and
maybe eventually show that standard GR is compatible with observations. If we assume
standard GR setting and we build observational protocols for it then it may become difficult
to understand which data come from assumptions and which data come instead from real
physical facts, especially in a theory of gravitation in which we clearly made exceptions about
gauge invariant observables.

Having said that, we see now that EPS formalism points to a Weyl geometry on
spacetime in which one has a conformal structure C defining light cones and a compatible
(torsionless) connection Γ̃ defining free fall. Of course, whenever interaction with matter of
half-integer spin is considered nothing prevents from relaxing the symmetry requirements
on connections. However, until only test particles are considered matter is unaffected by
torsion and one can drop it from the beginning. Then our protocols for measuring distances
select a representative g ∈ C for the conformal structure. In particular there is no reason why
one should assume a priori that the connection Γ̃ is metric or, if such, that it is metric for the
same metric one happens to have selected for distances.

Accordingly, one can use the kinematic and interpretation suggested by EPS to constrain
dynamics. In a Palatini or metric-affine formalism the metric and connection are completely
unrelated a priori, so that only dynamics may give their reciprocal relations. Then field
equations may force a relation between the metric and the connection. That is exactly what
happens in vacuum standard Palatini GR: field equations force the connection to be the
Levi-Civita connection of the given metric. The same happens with some specific kind of
matter, but for general matter such a feature is generally lost, and in general the connection
cannot be the one associated to the original metric.

However, EPS analysis shows that the connection and the metric cannot be completely
arbitrary if one wants a theory that fits fundamental principles; in fact there must be a
covector Aµ for which (6) holds true. If the compatibility condition is not already imposed at
the kinematical level —for example writing the theory for the fundamental fields (gµν, Aµ)

instead of (gµν, Γ̃
α
βµ
)— then the only option is that field equations impose the compatibility

conditions a posteriori as a consequence of field equations.

We shall thence call extended theory of gravitation any field theory for independent variables
(gµν, Γ̃

α
βµ
) in which field equations imply the compatibility condition (6) as a consequence.

In these models the geometry of spacetime is described by a Weyl geometry.
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Let us call extended metric theory of gravitation any extended theory of gravitation in which
field equations imply dynamically that the connection is a metric connection, so that in that
case the geometry of spacetime is described by a metric Weyl geometry.

We know a class of dynamics which are in fact extended metric theories of gravitation. As
is well known, any Palatini f (R)-theory is in fact an extended metric theory of gravitation;
see [8], [15], [19], [20], [21]. Standard GR is a specific extended metric theory of gravitation
in which field equations imply that Aµ = 0 (and then Γ = {g}).

Of course it is well known that general Weyl geometries may have unpleasant holonomy
problems in the definition of length (namely, the length of a ruler depends on the path).
However, metric Weyl geometries are not affected by these problems and they are still more
general than standard GR as we shall discuss hereafter for f (R)-models.

With such theories rulers cannot change length when parallel transported, although one has
to be careful to notice that the metric scales can change point by point because of conformal
rescaling.

3.1. Palatini f (R)-theories

In order to fix notation let us briefly review a generic f (R)-theory with matter.

Let us consider a Lorentzian metric gµν and a torsionless connection Γ̃
α
βµ

on spacetime M

of dimension m > 2. The conformal class [g] = C of metrics defines light cones. The
representative g ∈ C is chosen to define distances. The connection Γ̃ is associated to free fall
and it is chosen to be torsionless since geodesic equations is insensitive to torsion.

Let us remark that in this context conformal transformations are defined to be g̃(x) =

ϕ(x) · g(x) and they leave the connection unchanged. One is forced to leave the connection
unchanged (as it is possible in Palatini formalism) since our connection Γ̃ is uniquely selected
to describe free fall (and by the projective gauge fixing ∇g = 2A ⊗ g). One could say that
this definition of conformal transformations preserves the interpretation of fields.

Let us restrict our analysis to dynamics induced by a Lagrangian in the form

L =

√

g f (R) + Lm(φ, g) (7)

where f is a generic (analytic or sufficiently regular) function, φ is a collection of matter fields
and we set R := gµνR̃µν.

With this choice we are implicitly assuming that matter fields ψ minimally couple with the
metric g which in turn encodes electromagnetic properties (photons and light cones). Since
gravity, according to EPS formalism, is mostly inherent with the equivalence principle and
free fall, that is encoded in the projective structure P, one should better assume that matter
couples also with Γ̃ and investigate the more general case in which the matter Lagrangian
has the form Lm(ψ, g, Γ̃). However, this case in much harder to be investigated since it entails
that a second stress tensor is generated by the variational derivative

√

gT
µν

α =

δLm

δΓ̃α
µν

(8)
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No relevant progress in this direction is still at hands, although it corresponds to an even
more physically reasonable situation; only few concrete examples have been worked out
insofar; see [15], [22], [23].

Let us remark that a priori the Ricci tensor R̃µν of the connection Γ̃ is not necessarily
symmetric since the connection is not necessarily metric. As we said the matter Lagrangian
Lm is here assumed to depend only on matter and metric (together with their derivatives up
to order 1). Thus if one needs covariant derivatives of matter fields they are explicitly defined
with respect to the metric field. Requiring that the matter Lagrangian does not depend on
the connection Γ̃ is a standard requirement to simplify the analysis of field equation below
although (as we said above) it would correspond to more reasonable physical situations. Let
us here notice that what follows can be in fact extended to a more general framework; there
are in fact matter Lagrangians depending on the connection Γ̃ in which field equations still
imply the EPS-compatibility condition (6); see [15], [16], [17].

Field equations of (7) are

{

f ′(R)R̃
(µν) −

1
2 f (R)gµν = κTµν

∇̃α

(

√

g f ′(R)gβµ

)

= T
βµ

α = 0
(9)

We do not write the matter field equations (which will be considered as matter equations of
state). The constant κ = 8πG/c4 is the coupling constant between matter and gravity. The

second stress tensor T
βµ

α vanishes since the matter Lagrangian is assumed to be independent
of the connection Γ̃. The first stress tensor Tµν arises since the matter Lagrangian is a function
of the metric

√

gTµν =

δLm

δgµν
(10)

Notice that Tµν depends both on the matter fields and on the metric g.

Under these simplifying assumptions the second field equations can be solved explicitly. Let

us consider in fact a conformal transformation g̃µν = ( f ′(R))

2
m−2

· gµν (with m > 2). One has

g̃µν
= ( f ′(R))

2
2−m

· gµν
√

g̃ = ( f ′(R))

m
m−2

√

g (11)

and then

√

g̃g̃βµ
=

√

g f ′(R) · gβµ (12)

Thus the second field equation in (9) can be recast as

∇̃α

(

√

g f ′(R)gβµ
)

= ∇̃α

(

√

g̃g̃βµ
)

= 0 (13)

which by the Levi-Civita theorem implies

Γ̃
α
βµ

= {g̃}α
βµ

(14)
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Let us call extended metric theory of gravitation any extended theory of gravitation in which
field equations imply dynamically that the connection is a metric connection, so that in that
case the geometry of spacetime is described by a metric Weyl geometry.

We know a class of dynamics which are in fact extended metric theories of gravitation. As
is well known, any Palatini f (R)-theory is in fact an extended metric theory of gravitation;
see [8], [15], [19], [20], [21]. Standard GR is a specific extended metric theory of gravitation
in which field equations imply that Aµ = 0 (and then Γ = {g}).

Of course it is well known that general Weyl geometries may have unpleasant holonomy
problems in the definition of length (namely, the length of a ruler depends on the path).
However, metric Weyl geometries are not affected by these problems and they are still more
general than standard GR as we shall discuss hereafter for f (R)-models.

With such theories rulers cannot change length when parallel transported, although one has
to be careful to notice that the metric scales can change point by point because of conformal
rescaling.

3.1. Palatini f (R)-theories

In order to fix notation let us briefly review a generic f (R)-theory with matter.

Let us consider a Lorentzian metric gµν and a torsionless connection Γ̃
α
βµ

on spacetime M

of dimension m > 2. The conformal class [g] = C of metrics defines light cones. The
representative g ∈ C is chosen to define distances. The connection Γ̃ is associated to free fall
and it is chosen to be torsionless since geodesic equations is insensitive to torsion.

Let us remark that in this context conformal transformations are defined to be g̃(x) =

ϕ(x) · g(x) and they leave the connection unchanged. One is forced to leave the connection
unchanged (as it is possible in Palatini formalism) since our connection Γ̃ is uniquely selected
to describe free fall (and by the projective gauge fixing ∇g = 2A ⊗ g). One could say that
this definition of conformal transformations preserves the interpretation of fields.

Let us restrict our analysis to dynamics induced by a Lagrangian in the form

L =

√

g f (R) + Lm(φ, g) (7)

where f is a generic (analytic or sufficiently regular) function, φ is a collection of matter fields
and we set R := gµνR̃µν.

With this choice we are implicitly assuming that matter fields ψ minimally couple with the
metric g which in turn encodes electromagnetic properties (photons and light cones). Since
gravity, according to EPS formalism, is mostly inherent with the equivalence principle and
free fall, that is encoded in the projective structure P, one should better assume that matter
couples also with Γ̃ and investigate the more general case in which the matter Lagrangian
has the form Lm(ψ, g, Γ̃). However, this case in much harder to be investigated since it entails
that a second stress tensor is generated by the variational derivative

√

gT
µν

α =

δLm

δΓ̃α
µν

(8)
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No relevant progress in this direction is still at hands, although it corresponds to an even
more physically reasonable situation; only few concrete examples have been worked out
insofar; see [15], [22], [23].

Let us remark that a priori the Ricci tensor R̃µν of the connection Γ̃ is not necessarily
symmetric since the connection is not necessarily metric. As we said the matter Lagrangian
Lm is here assumed to depend only on matter and metric (together with their derivatives up
to order 1). Thus if one needs covariant derivatives of matter fields they are explicitly defined
with respect to the metric field. Requiring that the matter Lagrangian does not depend on
the connection Γ̃ is a standard requirement to simplify the analysis of field equation below
although (as we said above) it would correspond to more reasonable physical situations. Let
us here notice that what follows can be in fact extended to a more general framework; there
are in fact matter Lagrangians depending on the connection Γ̃ in which field equations still
imply the EPS-compatibility condition (6); see [15], [16], [17].

Field equations of (7) are

{

f ′(R)R̃
(µν) −

1
2 f (R)gµν = κTµν

∇̃α

(

√

g f ′(R)gβµ

)

= T
βµ

α = 0
(9)

We do not write the matter field equations (which will be considered as matter equations of
state). The constant κ = 8πG/c4 is the coupling constant between matter and gravity. The

second stress tensor T
βµ

α vanishes since the matter Lagrangian is assumed to be independent
of the connection Γ̃. The first stress tensor Tµν arises since the matter Lagrangian is a function
of the metric

√

gTµν =

δLm

δgµν
(10)

Notice that Tµν depends both on the matter fields and on the metric g.

Under these simplifying assumptions the second field equations can be solved explicitly. Let

us consider in fact a conformal transformation g̃µν = ( f ′(R))

2
m−2

· gµν (with m > 2). One has

g̃µν
= ( f ′(R))

2
2−m

· gµν
√

g̃ = ( f ′(R))

m
m−2

√

g (11)

and then

√

g̃g̃βµ
=

√

g f ′(R) · gβµ (12)

Thus the second field equation in (9) can be recast as

∇̃α

(

√

g f ′(R)gβµ
)

= ∇̃α

(

√

g̃g̃βµ
)

= 0 (13)

which by the Levi-Civita theorem implies

Γ̃
α
βµ

= {g̃}α
βµ

(14)
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i.e. the connection Γ̃ is the Levi-Civita connection of the conformal metric g̃. Thus in these
theories the connection is a posteriori metric and the geometry of spacetime is described by a
metric Weyl geometry. As a consequence the Ricci tensor R̃µν is symmetric being the Ricci
tensor of the metric g̃.

The first field equation now reads as

f ′(R)R̃µν −
1

2
f (R)gµν = κTµν (15)

The trace of this equation (with respect to gµν) is so important in the analysis of these models
that it is called the master equation. It reads

f ′(R)R−

m

2
f (R) = κT := κgµνTµν (16)

For any given (analytic) function f , the master equation is an algebraic (i.e. not differential)
equation between R and T. Assuming that m �= 2 and excluding the degenerate case in
which the following holds

f ′′(R)R+

2 − m

2
f ′(R) = 0 ⇒ f ′(R) =

m

2
C1R

m−2
2

⇒ f (R) = C1R
m
2 + C2 (17)

we see that the function F(R, T) := f ′(R)R −

m
2 f (R) − κT is also analytic and can be

generically (i.e. except a discrete set of values for R) solved for R = r(T) = κr̂(T).

In vacuum or for purely electromagnetic matter obeying Maxwell equations, one has
T = 0, i.e. the trace T of Tµν is zero and R takes a constant value from a discrete set
R ≡ ρ ∈ {ρ0, ρ1, . . . } that of course depends on f . In this vacuum (as well as in purely
electromagnetic) case the field equations simplify to

G̃µν = R̃µν −
1

2
R̃g̃µν =

(

2 − m

2m
( f ′(ρ))

2
2−m ρ

)

g̃µν = Λ(ρ)g̃µν (18)

Accordingly, vacuum (or purely electromagnetic) Palatini f (R)-theories are generically
equivalent to Einstein models with cosmological constant and the possible value of the
cosmological constant is chosen in a discrete set which depends on the function f . This is
known as universality theorem for Einstein equations (see [18]). The meaning of this result is
not to be overestimated; the equivalence is important but one has a huge freedom in choosing
the function f (which depends on countable infinite parameters) so that any value for the
cosmological constant can be in principle attained. Let us stress once more that this includes
all cases in which matter is present but the trace T = 0 as it happens for the electromagnetic
field.

Accordingly, the physics described by Palatini f (R)-theories in vacuum is not richer than
standard GR physics with cosmological constant. Still one should notice that in these vacuum
f (R)-theories free fall is given by g̃ while in standard GR it is given by g (while distances
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are defined by g in both cases); however, the conformal factor ϕ = ( f ′(ρ))
2

2−m is constant and
it does not affect geodesics and it can be compensated by a change of units.

However, when real matter is present the situation is completely different. In this more general
case, we have that R = r(T) depends on x ∈ M. The first field equation becomes then

G̃µν = R̃µν −
1

2
R̃g̃µν = κ

�

1

f ′(r(T))

�

Tµν −
1

m
Tgµν

�

+

2 − m

2m
r̂(T)gµν

�

= κT̃µν (19)

so that a Palatini f (R)-theory with real matter behaves like standard GR with a strongly
modified source stress tensor. Naively speaking, one can reasonably hope that the
modifications dictated by the choice of the function f can be chosen to fit observational
data.

In a sense, whenever T �= 0 the presence of standard visible matter ψ (assumed to generate,
through the matter Lagrangian Lm(g, ψ), an energy momentum stress tensor Tµν) would

produce by gravitational interaction with Γ̃ (i.e. with the Levi-Civita connection of the
conformal metric g̃ = f ′(T) · g) a kind effective energy momentum stress tensor T̃µν in which
standard matter ψ is seen to exist together with dark (virtual) matter generated by the gauging
of the rulers imposed by the T-dependent conformal transformations on g. In a sense, the
dark side of Einstein equations can be mimicked by suitably choosing f and Lm, as a curvature
effect induced by T = gµνTµν �= 0.

3.2. Equivalence with Brans-Dicke theories

Let us hereafter briefly review the mathematical equivalence between Palatini f (R)-theories
and Brans-Dicke theories and discuss about how physical is such an equivalence. Let us
hereafter restrict to the case in dimension m = 4.

A Brans-Dicke theory is a theory for a metric gµν and a scalar field ϕ. The dynamics is
described by a Lagrangian in the following form

LBD =

√

g

�

ϕR −

ω

ϕ
∇µ ϕ∇

µ
ϕ + U(ϕ)

�

+ Lm(g, ψ) (20)

where ω is a real parameter and U(ϕ) is a potential function.

Field equations for such a theory are







ϕ(Rµν −
1
2 Rgµν) = κTµν +∇µν ϕ +�ϕgµν +

ω

ϕ

�

∇µ ϕ∇ν ϕ −

1
2∇α ϕ∇α ϕgµν

�

+
1
2 Ugµν

R =
ω

ϕ2 ∇α ϕ∇α ϕ − 2 ω

ϕ
�ϕ − U′

(ϕ)

(21)
If one considers now the field equation (19) for a Palatini f (R)-theory and writes them for
the original metric gµν = ϕ−1

· g̃µν and the conformal factor ϕ = f ′(R) field equation reads
as

ϕRµν = ∇µν ϕ +

1

2
�ϕgµν −

3

2ϕ
∇µ ϕ∇ν ϕ +

1

4
ϕr̂(T)gµν + κ

�

Tµν −
1

4
Tgµν

�

(22)
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3.2. Equivalence with Brans-Dicke theories
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and Brans-Dicke theories and discuss about how physical is such an equivalence. Let us
hereafter restrict to the case in dimension m = 4.
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If one considers now the field equation (19) for a Palatini f (R)-theory and writes them for
the original metric gµν = ϕ−1

· g̃µν and the conformal factor ϕ = f ′(R) field equation reads
as

ϕRµν = ∇µν ϕ +

1

2
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while the master equation reads as

ϕR = 3�ϕ −

3

2ϕ
∇α ϕ∇

α
ϕ + κT + 2 f (23)

Within the framework for f (R)-theory, one can generically invert the definition of the
conformal factor

ϕ = f ′(R) ⇒ R = σ(ϕ) (24)

and define a potential function

U(ϕ) = −ϕσ(ϕ) + f (σ(ϕ)) (U′

(ϕ) = −σ
′

ϕ − σ + f ′σ′

= −σ) (25)

Then one has a manifest correspondence between a Palatini f (R)-theory and a Brans-Dicke
theory with the potential U(ϕ) = −ϕσ(ϕ) + f (σ(ϕ)) and ω = −

3
2 . This correspondence

holds at the level of field equations (and solutions) but it can be shown at the level of action
principles as well; see [20].

This equivalence is sometimes used against f (R)-theories since Brans-Dicke theories go to
standard GR for ω → ∞ and the value ω = −

3
2 is ruled out by standard tests in the solar

system, e.g. by precession of perihelia of Mercury. In view of the correspondence shown
above the same tests would rule out f (R)-theories as well.

Letting aside the fact that tests rule out Brans-Dicke theories without potential, there is
a further aspect that we believe is worth discussing here. In Brans-Dicke theory the
gravitational interaction is mediated by a scalar field as well as the metric field. That means
that g determines light cones, free fall and distances while the scalar field ϕ just participates
to the dynamics.

In the corresponding Palatini f (R)-theory the metric g defines distances, it defines light
cones (as well as g̃ does), but free fall is described by g̃ not by g!

The standard tests (as the precession of perihelia of Mercury) which rule out Brans-Dicke
theories (see e.g. [24]) simply do not apply to the corresponding f (R)-theory since, in the two
different models, Mercury moves along the geodesics of two different metrics. In Brans-Dicke
theories it moves along the geodesics of a metric g which can be expanded in series of
ω−1 around the standard Schwarzschild solution of standard GR; in the corresponding
f (R)-theory it moves along geodesics of a different metric g̃ which, being in vacuum and
in view of universality theorem, is a Schwarzschild-AdS solution; see also [25]. Since it
is reasonable to assume a value for the cosmological constant which has no measurable
effect at solar system scales, Mercury can be assumed move with good approximation along
geodesics of the standard Schwarzschild metric and, despite the mathematical equivalence,
f (R)-theories pass the tests while Brans-Dicke does not.

This is a pretty neat example in which a mathematical equivalence between two field
theories is broken by the interpretation of the theories since the physical assumptions are
not preserved by the transformation mapping one framework into the other; see [26], [27].
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4. Extended cosmologies

Let us now apply to a cosmological situation the discussion above for a general Palatini
f (R)-model.

In a cosmological setting let us assume that the matter stress tensor Tµν is the energy
momentum tensor of a (perfect) fluid

Tµν := pgµν + (p + ρ)uµuν (26)

where uαuβgαβ = −1 and we set ρ for the fluid density and p for its pressure. Matter field
equations are assumed to provide a relation between pressure and density under the form
p = wρ for some (constant) w. Then one has

T̃µν =

1

f ′

�

Tµν −
1

m
Tgµν

�

+

2 − m

2m
r̂(T)gµν =

=(ρ + p)( f ′)
m

2−m ũµũν +

�

p + ρ

m
( f ′)

m
2−m

−

m − 2

2m
r̂( f ′)

2
2−m

�

g̃µν =

=(ρ̃ + p̃)ũµũν + p̃g̃µν

(27)

where we set ũµ = ( f ′)
1

m−2 uµ and

�

ρ̃ =
m−1

m (p + ρ)( f ′)
m

2−m +
m−2
2m r̂( f ′)

2
2−m

p̃ =

p+ρ

m ( f ′)
m

2−m
−

m−2
2m r̂( f ′)

2
2−m

(28)

Thus the effect of a Palatini f (R)-dynamics is to modify the fluid tensor representing sources
into another stress tensor which is again in the form of a (perfect) fluid, with modified
pressure and density. This can be split quite naturally (though of course non-uniquely) into
three fluids with

�

ρ̃1 = ρ

p̃1 = p

�

ρ̃2 =
m−1

m (p + ρ)( f ′)
m

2−m
− ρ

p̃2 =

p+ρ

m ( f ′)
m

2−m
− p

�

ρ̃3 =
m−2
2m r̂( f ′)

2
2−m

p̃3 = −

m−2
2m r̂( f ′)

2
2−m = −ρ̃3

(29)

The first fluid accounts for what we see as visible matter and it has standard equation of
states p1 = w1ρ1 with w1 = w, i.e. the same state equation chosen for the visible matter. The
third fluid has equation of states in the form p3 = w3ρ3 with w3 = −1, i.e. it is a quintessence
field.

For the second fluid, taking into account the equation of state p = wρ of visible matter, one
can set







ρ̃2 =
m−1

m ( f ′)
m

2−m p +

�

m−1
m ( f ′)

m
2−m

− 1
�

ρ =

�

m−1
m ( f ′)

m
2−m (w + 1)− 1

�

ρ

p̃2 =

�

1
m ( f ′)

m
2−m

− 1
�

p +
1
m ( f ′)

m
2−m ρ =

�

1
m ( f ′)

m
2−m (w + 1)− w

�

ρ
(30)
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states p1 = w1ρ1 with w1 = w, i.e. the same state equation chosen for the visible matter. The
third fluid has equation of states in the form p3 = w3ρ3 with w3 = −1, i.e. it is a quintessence
field.

For the second fluid, taking into account the equation of state p = wρ of visible matter, one
can set
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which corresponds to an equation of state of the form p2 = w2ρ2 with

w2 =

1
m ( f ′)

m
2−m (w + 1)− w

m−1
m ( f ′)

m
2−m (w + 1)− 1

(31)

Within the standard viewpoint this kind of matter is quite puzzling. Its equation of state is
changing in time (since in cosmology f ′(r((m − 1)p(t)− ρ(t))) is a function of time).

It is reasonable to assume that at present time visible matter is dominated by dust (w = 0)
and m = 4, in which case we have

wdust

2 =

1

3 − 4( f ′)2
(32)

Of course, the splitting of the fluid is not canonical or unique. In particular the second fluid
can be further split in different components (for example in order to isolate components
which are dominant in various regimes).

This is probably the main reason to consider Palatini f (R)-theories as good as models also
for cosmology: although we assumed only dust at fundamental level, from the gravitational
viewpoint that behaves effectively as a more general fluid the characteristics of which depend
on the extended gravitational theories chosen, i.e. on f .

Morever, let us also remark that this simple toy model can be easily tested and falsified by
current data and it makes predictions about near future surveys. In the standard ΛCDM one
assumes a cosmological constant Λ which is here modeled by the third fluid. Thus in order
to fit data one has to fix the current value for f ′, which in turn fixes the current equation
of state for the CDM dark matter which is also observed. Of course one can consider other
reasonable models considering more realistic and finer descriptions of visible matter. Near
future surveys will provide data about the evolution of the cosmological constant in time
allowing in principle to observe f ′(t) directly.

Let us now set m = 4, w = 0 and impose the cosmological principle ansazt, i.e. homogeneity
and isotropy. Again should we impose it for g or g̃? It is fortunate that this does not matter
at all! If one does that for g̃ assuming the form

g̃ = −dt̃2
− ã2

(t̃)

(

dr2

1 − Kr2
+ r2dΩ

2

)

then also g is homogeneous and isotropic, i.e. in the form

g = −dt2
− a2

(t)

(

dr2

1 − Kr2
+ r2dΩ

2

)
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provided one rescales the cosmological time with the conformal factor (which depends only
on time)

dt̃ =
�

f ′ dt ⇒ t̃(t) =
�

�

f ′ dt

and rescales the Friedmann-Lemaître-Robertson-Walker (FLRW) scale factor accordingly

ã(t̃) =
�

f ′ a(t)

The equations for the scale factor are the celebrated Friedmann equations
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6 (ρ̃ + 3p̃) = κ

12 f ′

�

r̂(ρ)−
3ρ
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�

For a given f (and the associated r̂(ρ)) these are two equations for the two unknowns ã(t̃)
and ρ(t) which in principle should be determined as functions of t.

There is no much one can say in general without specifying f . Nevertheless, one can still
notice that the worldlines γ : s �→ (t0 + s, r0, θ0, φ0) are always geodesics (something that
depends on the cosmological principle, not on Friedmann equations). Also the curves γ̄ : s �→
(t0, r0s, θ0, φ0) are geodesic trajectories and their length is thence related to spacial distances
at time t0.

Let us thus consider a point (t0, r0, θ0, φ0) representing for example a galaxy, and let us
suppose we want to compute its distance from us. If we defined distances by g̃ (as one
would probably do in scalar tensor theories) such a distance would be given by

d̃ = ã(t̃0)r0

� 1

0

ds
�

1 − Ks2r2
0

However, we defined distances by using g. Accordingly, one has

d = a(t0)r0

� 1

0

ds
�

1 − Ks2r2
0

=

1
�

f ′
d̃

Then these f (R)-theories have an extra time-dependent mismatch in measuring distances.
Being the conformal factor dependent on time, it would affect non-trivially the measured
acceleration of faraway galaxies.

To the best of our knowledge such a possible effect has not only been totally ignored in
interpreting raw data, but it has not been discussed or proved to vanish.
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and ρ(t) which in principle should be determined as functions of t.

There is no much one can say in general without specifying f . Nevertheless, one can still
notice that the worldlines γ : s �→ (t0 + s, r0, θ0, φ0) are always geodesics (something that
depends on the cosmological principle, not on Friedmann equations). Also the curves γ̄ : s �→
(t0, r0s, θ0, φ0) are geodesic trajectories and their length is thence related to spacial distances
at time t0.

Let us thus consider a point (t0, r0, θ0, φ0) representing for example a galaxy, and let us
suppose we want to compute its distance from us. If we defined distances by g̃ (as one
would probably do in scalar tensor theories) such a distance would be given by
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For example, in this context the measured acceleration of the universe (which is defined to be
the acceleration of galaxies per unit of distance) would be

ä

a
= Φ

2
¨̃a

ã
−

Φ̇

Φ

ȧ

a
−

Φ̈

Φ
+

(

Φ̇

Φ

)2

where we set Φ
2
(t) = f ′ for the conformal factor.

It is therefore not difficult to find whole classes of functions f for which a solution in the
FLRW form is allowed ¨̃a/ã is negative (corresponding to an ever slower expansion) while ä/a
is positive (corresponding to an accelerating expansion). When this were the case part of the
effect of dark energy would be explained as a simple aberration of distance measurement.

Whether for some f this can fit experimental data better than the acceleration ¨̃a/ã is
something to be discussed on the observational ground. We just remark on a fundamental
ground that extrapolating our terrestrial current rulers to 10 billion years ago and 10 billion
light years away (in a theory in which geometry is dynamical and measurement protocols
depends on all sorts of physical assumptions on the behavior of electromagnetic and
gravitational fields) could be slightly hasty.

Of course we are not claiming these effect to be real. However, they are plausible and hence
they should be considered in data analysis (and possibly eventually shown to be null). They
were not introduced by ad hoc argument. On the contrary they are quite natural in metric
extended theories of gravitation.

5. Conclusions and perspectives

The astrophysical and cosmological observations of the last decade clearly point to a deep
reconsideration of standard scenarios based on standard GR, either on the source side or on
the gravitational dynamics; or both. Basically, all observations about gravity in non-vacuum
situations need to be somehow corrected.

If one decides to keep stuck to standard gravitational dynamics, then observations force
us to modify the matter energy momentum tensor by adding dark sources. If one decides
to modify gravity dynamics, the family of different available (covariant, variational, . . . )
theories is huge. Moreover, one variational model for gravity usually may support (for
example when the model contains more than one metric) many inequivalent definitions of
observational protocols. It is quite natural that in such a huge family one can find (many)
models which fit the observations.

Thus usually one has to choose which of these two ways is preferable. In any event, one
should reconsider foundations of gravitational theories from a more general perspective.
EPS formalism provides us with such a reconsideration. It clearly shows that on spacetime
coexist a conformal structure (associated to light rays and defining light cones and causality),
a (torsionless) projective structure (associated to particles and free fall), and a metric structure
(associated to our definition of clocks and rulers). These three structures can be assumed
to be a priori independent, provided that dynamics forces a posteriori some compatibility
conditions. The metric structure should also define the conformal structure and the projective
structure can be represented by an affine (torsionless) connection so that lightlike geodesics
of the metric structure are also autoparallel curves of the connection. This framework strongly
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constrains possible dynamics and it leads to extended theories of gravitation. Standard GR is a
model within this extended family of reasonable gravitational models.

In extended gravitational theories one can also recast the fields so that an extended
gravitational theory looks like standard GR with additional effective sources. This scenario
thoroughly agrees with observations as long as dark matter and dark energy will be
detected only through their gravitational effects. This scenario is reasonable also in view
of cosmological observations which clearly suggest that the spacetime geometrical structure
at large scale might be substantially different from the simple standard GR that we observe
at Solar System scale.

Even if in the end standard GR were the correct theory and dark energy and matter will be
understood at a fundamental level, this wider framework would be fundamental. It provides
an extended framework in which one could test directly the assumptions of standard GR on
an experimental basis without resorting to uncertain approximations.

In this paper we reviewed EPS formalism and defined extended theories of gravitation and
extended metric theories of gravitation. Then we showed that Palatini f (R)-theories provide a
family of such metric extended theories of gravitation.

If we restrict and apply f (R)-theories to cosmology we showed that matter naturally
induces effective sources which can naturally modelled by fluid energy momentum source
tensors which at least qualitatively present the main features of dark source models used
phenomenologically to fit data. A (running) cosmological constant naturally emerges as well
as a fluid with a running equation of states which depends explicitly of the f (R) dynamics
chosen. We also briefly discussed how one should define distances (as well as velocities and
acceleration parameteres) in this extended framework.
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something to be discussed on the observational ground. We just remark on a fundamental
ground that extrapolating our terrestrial current rulers to 10 billion years ago and 10 billion
light years away (in a theory in which geometry is dynamical and measurement protocols
depends on all sorts of physical assumptions on the behavior of electromagnetic and
gravitational fields) could be slightly hasty.

Of course we are not claiming these effect to be real. However, they are plausible and hence
they should be considered in data analysis (and possibly eventually shown to be null). They
were not introduced by ad hoc argument. On the contrary they are quite natural in metric
extended theories of gravitation.

5. Conclusions and perspectives

The astrophysical and cosmological observations of the last decade clearly point to a deep
reconsideration of standard scenarios based on standard GR, either on the source side or on
the gravitational dynamics; or both. Basically, all observations about gravity in non-vacuum
situations need to be somehow corrected.

If one decides to keep stuck to standard gravitational dynamics, then observations force
us to modify the matter energy momentum tensor by adding dark sources. If one decides
to modify gravity dynamics, the family of different available (covariant, variational, . . . )
theories is huge. Moreover, one variational model for gravity usually may support (for
example when the model contains more than one metric) many inequivalent definitions of
observational protocols. It is quite natural that in such a huge family one can find (many)
models which fit the observations.

Thus usually one has to choose which of these two ways is preferable. In any event, one
should reconsider foundations of gravitational theories from a more general perspective.
EPS formalism provides us with such a reconsideration. It clearly shows that on spacetime
coexist a conformal structure (associated to light rays and defining light cones and causality),
a (torsionless) projective structure (associated to particles and free fall), and a metric structure
(associated to our definition of clocks and rulers). These three structures can be assumed
to be a priori independent, provided that dynamics forces a posteriori some compatibility
conditions. The metric structure should also define the conformal structure and the projective
structure can be represented by an affine (torsionless) connection so that lightlike geodesics
of the metric structure are also autoparallel curves of the connection. This framework strongly

Open Questions in Cosmology128
Extended Theories of Gravitation and the Curvature of the Universe – Do We Really Need Dark Matter? 19

constrains possible dynamics and it leads to extended theories of gravitation. Standard GR is a
model within this extended family of reasonable gravitational models.

In extended gravitational theories one can also recast the fields so that an extended
gravitational theory looks like standard GR with additional effective sources. This scenario
thoroughly agrees with observations as long as dark matter and dark energy will be
detected only through their gravitational effects. This scenario is reasonable also in view
of cosmological observations which clearly suggest that the spacetime geometrical structure
at large scale might be substantially different from the simple standard GR that we observe
at Solar System scale.

Even if in the end standard GR were the correct theory and dark energy and matter will be
understood at a fundamental level, this wider framework would be fundamental. It provides
an extended framework in which one could test directly the assumptions of standard GR on
an experimental basis without resorting to uncertain approximations.

In this paper we reviewed EPS formalism and defined extended theories of gravitation and
extended metric theories of gravitation. Then we showed that Palatini f (R)-theories provide a
family of such metric extended theories of gravitation.

If we restrict and apply f (R)-theories to cosmology we showed that matter naturally
induces effective sources which can naturally modelled by fluid energy momentum source
tensors which at least qualitatively present the main features of dark source models used
phenomenologically to fit data. A (running) cosmological constant naturally emerges as well
as a fluid with a running equation of states which depends explicitly of the f (R) dynamics
chosen. We also briefly discussed how one should define distances (as well as velocities and
acceleration parameteres) in this extended framework.

Acknowledgements

We acknowledge the contribution of INFN (Iniziativa Specifica NA12) the local research
project Metodi Geometrici in Fisica Matematica e Applicazioni (2011) of Dipartimento di
Matematica of University of Torino (Italy). This paper is also supported by INdAM-GNFM.

Author details

L. Fatibene1,2,⋆ and M. Francaviglia1,2

⋆ Address all correspondence to: lorenzo.fatibene@unito.it

1 Department of Mathematics, University of Torino, Italy
2 INFN- Sezione Torino, Iniziativa Specifica Na12, Italy

References

[1] D. J. Mortlock, R. L. Webster, Mon. Not. Roy. Astron. Soc. 319 872 (2000)

[2] A. G. Riess et al. [Supernova Search Team Collaboration], Astron. J. 116 1009 (1998);
S. Perlmutter et al. [Supernova Cosmology Project Collaboration], Astrophys. J. 517 565
(1999);
J. L. Tonry et al. [Supernova Search Team Collaboration], Astrophys. J. 594 1 (2003)

Extended Theories of Gravitation and the Curvature of the Universe – Do We Really Need Dark Matter?
http://dx.doi.org/10.5772/52041

129



20 Open Questions in Cosmology

[3] D. N. Spergel et al. [WMAP Collaboration], Astrophys. J. Suppl. 148 175 (2003);
C. L. Bennett et al., Astrophys. J. Suppl. 148 1 (2003);
M. Tegmark et al. [SDSS Collaboration], Phys. Rev. D 69 103501 (2004)

[4] U. Seljak et al. [SDSS Collaboration], Phys. Rev. D 71, 103515 (2005)

[5] S. M. Carroll, W. H. Press and E. L. Turner, Ann. Rev. Astron. Astrophys. 30, 499 (1992).

[6] C. Rovelli, What is observable in classical and quantum gravity?, Class. Quantum Grav. 8:
297, 1991;

[7] J. Elhers, F.A. E. Pirani, A. Schild, The Geometry of free fall and light propagation in Studies
in Relativity, Papers in honour of J. L. Synge 6384 (1972)

[8] M. Di Mauro, L. Fatibene, M.Ferraris, M.Francaviglia, Further Extended Theories of
Gravitation: Part I , Int. J. Geom. Methods Mod. Phys. Volume: 7, Issue: 5 (2010);
gr-qc/0911.2841

[9] V. Perlick, Characterization of standard clocks by means of light rays and freely falling particles,
Gen. Rel. Grav. 19, 1059-1073 (1987)

[10] J.L. Synge, Relativity: the special theory, (Amsterdam, 1956)

[11] L. Fatibene, M. Francaviglia, G. Magnano, On a Characterization of Geodesic Trajectories
and Gravitational Motions, (in press) Int. J. Geom. Meth. Mod. Phys.; arXiv:1106.2221v2
[gr-qc]

[12] N. Dadhich, Universal Velocity and Universal Force, Physics News, 39, 20-25 (2009);
arXiv:1003.2359v1 [physics.gen- ph]

[13] J.A.Schouten, Ricci-Calculus: An Introduction to Tensor Analysis and its Geometrical
Applications, Springer Verlag (1954)

[14] N. Dadhich, J.M. Pons, Equivalence of the Einstein-Hilbert and the Einstein-Palatini
formulations of general relativity for an arbitrary connection, (to appear on GRG);
arXiv:1010.0869v3 [gr-qc]

[15] L. Fatibene, M.Ferraris, M.Francaviglia, S.Mercadante, Further Extended Theories of
Gravitation: Part II, Int. J. Geom. Methods Mod. Phys. 7, (5) (2010), pp. 899-906;
gr-qc/0911.284

[16] T.P. Sotiriou, f (R) gravity, torsion and non-metricity, Class. Quant. Grav. 26 (2009) 152001;
gr-qc/0904.2774

[17] T.P. Sotiriou, S. Liberati, Metric-affine f(R) theories of gravity, Annals Phys. 322 (2007)
935-966; gr-qc/0604006

[18] A. Borowiec, M. Ferraris, M. Francaviglia, I. Volovich, Universality of Einstein Equations
for the Ricci Squared Lagrangians, Class. Quantum Grav. 15, 43-55, 1998

[19] S. Capozziello, V.F. Cardone, A. Troisi, JCAP 08 001 (2006).

Open Questions in Cosmology130
Extended Theories of Gravitation and the Curvature of the Universe – Do We Really Need Dark Matter? 21

[20] A. De Felice, S. Tsujikawa, f (R) Theories, http://www.livingreviews.org/lrr-2010-3

[21] G.J. Olmo, Palatini Approach to Modified Gravity: f(R) Theories and Beyond, Int. J. Mod.
Phys.D 20, 413-462 (2011); arXiv:1101.3864v1 [gr-qc]

[22] G.J. Olmo, P. Singh, Covariant Effective Action for Loop Quantum Cosmology a la Palatini,
Journal of Cosmology and Astroparticle Physics 0901:030, 2009; arXiv:0806.2783

[23] L.Fatibene, M.Francaviglia, S. Mercadante, Matter Lagrangians Coupled with Connections,
Int. J. Geom. Methods Mod. Phys. 7(5) (2010), 1185-1189; arXiv:0911.2981

[24] S. Weinberg, Gravitation and Cosmology: Principles and Applications of the General Theory
of Relativity, Wiley, New York (a.o.) (1972). XXVIII, 657 S. : graph. Darst.. ISBN:
0-471-92567-5.

[25] G.J.Olmo, Nonsingular black holes in quadratic Palatini gravity, JCAP 1110 (2011) 018;
arXiv:1112.0475v2 [gr-qc]

[26] S. Capozziello, M.F. De Laurentis, M. Francaviglia, S. Mercadante, Found. of Physics 39
1161 (2009)

[27] V. Faraoni and E. Gunzig, Int. J. Theor. Phys. 38 217 (1999)

Extended Theories of Gravitation and the Curvature of the Universe – Do We Really Need Dark Matter?
http://dx.doi.org/10.5772/52041

131



20 Open Questions in Cosmology

[3] D. N. Spergel et al. [WMAP Collaboration], Astrophys. J. Suppl. 148 175 (2003);
C. L. Bennett et al., Astrophys. J. Suppl. 148 1 (2003);
M. Tegmark et al. [SDSS Collaboration], Phys. Rev. D 69 103501 (2004)

[4] U. Seljak et al. [SDSS Collaboration], Phys. Rev. D 71, 103515 (2005)

[5] S. M. Carroll, W. H. Press and E. L. Turner, Ann. Rev. Astron. Astrophys. 30, 499 (1992).

[6] C. Rovelli, What is observable in classical and quantum gravity?, Class. Quantum Grav. 8:
297, 1991;

[7] J. Elhers, F.A. E. Pirani, A. Schild, The Geometry of free fall and light propagation in Studies
in Relativity, Papers in honour of J. L. Synge 6384 (1972)

[8] M. Di Mauro, L. Fatibene, M.Ferraris, M.Francaviglia, Further Extended Theories of
Gravitation: Part I , Int. J. Geom. Methods Mod. Phys. Volume: 7, Issue: 5 (2010);
gr-qc/0911.2841

[9] V. Perlick, Characterization of standard clocks by means of light rays and freely falling particles,
Gen. Rel. Grav. 19, 1059-1073 (1987)

[10] J.L. Synge, Relativity: the special theory, (Amsterdam, 1956)

[11] L. Fatibene, M. Francaviglia, G. Magnano, On a Characterization of Geodesic Trajectories
and Gravitational Motions, (in press) Int. J. Geom. Meth. Mod. Phys.; arXiv:1106.2221v2
[gr-qc]

[12] N. Dadhich, Universal Velocity and Universal Force, Physics News, 39, 20-25 (2009);
arXiv:1003.2359v1 [physics.gen- ph]

[13] J.A.Schouten, Ricci-Calculus: An Introduction to Tensor Analysis and its Geometrical
Applications, Springer Verlag (1954)

[14] N. Dadhich, J.M. Pons, Equivalence of the Einstein-Hilbert and the Einstein-Palatini
formulations of general relativity for an arbitrary connection, (to appear on GRG);
arXiv:1010.0869v3 [gr-qc]

[15] L. Fatibene, M.Ferraris, M.Francaviglia, S.Mercadante, Further Extended Theories of
Gravitation: Part II, Int. J. Geom. Methods Mod. Phys. 7, (5) (2010), pp. 899-906;
gr-qc/0911.284

[16] T.P. Sotiriou, f (R) gravity, torsion and non-metricity, Class. Quant. Grav. 26 (2009) 152001;
gr-qc/0904.2774

[17] T.P. Sotiriou, S. Liberati, Metric-affine f(R) theories of gravity, Annals Phys. 322 (2007)
935-966; gr-qc/0604006

[18] A. Borowiec, M. Ferraris, M. Francaviglia, I. Volovich, Universality of Einstein Equations
for the Ricci Squared Lagrangians, Class. Quantum Grav. 15, 43-55, 1998

[19] S. Capozziello, V.F. Cardone, A. Troisi, JCAP 08 001 (2006).

Open Questions in Cosmology130
Extended Theories of Gravitation and the Curvature of the Universe – Do We Really Need Dark Matter? 21

[20] A. De Felice, S. Tsujikawa, f (R) Theories, http://www.livingreviews.org/lrr-2010-3

[21] G.J. Olmo, Palatini Approach to Modified Gravity: f(R) Theories and Beyond, Int. J. Mod.
Phys.D 20, 413-462 (2011); arXiv:1101.3864v1 [gr-qc]

[22] G.J. Olmo, P. Singh, Covariant Effective Action for Loop Quantum Cosmology a la Palatini,
Journal of Cosmology and Astroparticle Physics 0901:030, 2009; arXiv:0806.2783

[23] L.Fatibene, M.Francaviglia, S. Mercadante, Matter Lagrangians Coupled with Connections,
Int. J. Geom. Methods Mod. Phys. 7(5) (2010), 1185-1189; arXiv:0911.2981

[24] S. Weinberg, Gravitation and Cosmology: Principles and Applications of the General Theory
of Relativity, Wiley, New York (a.o.) (1972). XXVIII, 657 S. : graph. Darst.. ISBN:
0-471-92567-5.

[25] G.J.Olmo, Nonsingular black holes in quadratic Palatini gravity, JCAP 1110 (2011) 018;
arXiv:1112.0475v2 [gr-qc]

[26] S. Capozziello, M.F. De Laurentis, M. Francaviglia, S. Mercadante, Found. of Physics 39
1161 (2009)

[27] V. Faraoni and E. Gunzig, Int. J. Theor. Phys. 38 217 (1999)

Extended Theories of Gravitation and the Curvature of the Universe – Do We Really Need Dark Matter?
http://dx.doi.org/10.5772/52041

131



Chapter 6

Extending Cosmology: The Metric Approach

Sergio Mendoza

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/53878

Provisional chapter

Extending Cosmology: The Metric Approach

Sergio Mendoza

Additional information is available at the end of the chapter

10.5772/53878

1. Introduction

In this chapter it is reviewed a possible physical scenario for which the introduction of a
fundamental constant of nature with dimensions of acceleration into the theory of gravity
makes it possible to extend gravity in a very consistent manner. In the non-relativistic regime
a MOND-like theory with a modification in the force sector is obtained. This description
turns out to be the the weak-field limit of a more general metric relativistic theory of gravity.
The mass and length scales involved in the dynamics of the whole universe require small
accelerations which are of the order of Milgrom’s acceleration constant and so, it turns out
that this relativistic theory of gravity can be used to explain the expansion of the universe.
In this work it is explained how to build that relativistic theory of gravity in such a way that
the overall large-scale dynamics of the universe can be treated in a pure metric approach
without the need to introduce dark matter and/or dark energy components.

Cosmological and astrophysical observations are generally explained introducing two
unknown mysterious dark components, namely dark matter and dark energy. These ad
hoc hypothesis represent a big cosmological paradigm, since they arise due to the fact
that Einstein’s field equations are forced to remain unchanged under certain observed
astrophysical phenomenology.

A natural alternative scenario would be to see whether viable cosmological solutions can
be found if dark unknown entities are assumed non-existent. The price to pay with this
assumption is that the field equations of the theory of gravity need to be extended and so,
new Friedmann-like equations will arise. The most natural approach to extend gravity arises
when a metric extension f (R) is introduced into the theory [see e.g. 9, and references therein].

In a series of recent articles, Bernal, Capozziello, Cristofano & de Laurentis [4], Bernal,
Capozziello, Hidalgo & Mendoza [5], Carranza et al. [10], Hernandez et al. [17, 18], Mendoza
et al. [22, 23] have shown how relevant the introduction of a new fundamental physical

constant a0 ≈ 10−10m/s2 with dimensions of acceleration is in excellent agreement with
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distribution, and reproduction in any medium, provided the original work is properly cited.© 2012 Mendoza; licensee InTech. This is an open access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.
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2 Open Questions in Cosmology

different phenomenology at many astrophysical mass and length sizes, from solar-system
to extragalactic and cosmological scales. The introduction of the so called Milgrom’s
acceleration constant a0 in a description of gravity means that any gravitational field
produced by a certain distribution of mass (and hence energy) needs to incorporate the
acceleration a0 together with Newton’s gravitational constant G and the speed of light c in
the description of gravity.

In section 2 it is shown, through a description of an extended Newtonian gravity scenario, the
advantages of working with a modification of gravity dependent on the mass and lengths
associated with the dimensions and masses of the sources that generate the gravitational
field, and not with the dynamical acceleration they produce on test particles. Section 3
describes how it is possible to build a metric theory of gravity which generalises the
extended Newtonian description mentioned in section 2 and section 4 interconnects this
extended relativistic description of gravity with a metric description of gravity for which the
energy-momentum tensor appears in the gravitational field’s action. On section 5 we use the
developed theory of gravity for cosmological applications in a dust universe and see how it
is a coherent representation of gravity at cosmological scales. Finally on section 6, we discuss
the consequences of the developed approach of gravity and some of the future developments
of the theory.

2. Extended Newtonian gravity

Milgrom [26, 27, 29] constructed a MOdified Newtonian Dynamics (MOND) theory, based
on the introduction of a fundamental constant of nature a0 = 1.2 × 10−10m s−2 in such a
way that the acceleration experienced by a test particle on a gravitational field produced by
a point mass source M is such that:

a =

{

−

GM
r2 , for a ≫ a0,

−

√

a0GM
r , for a ≪ a0,

(1)

where r is the radial distance to the central mass. In other words, for accelerations a ≫

a0, Newtonian gravity is recovered and new MONDian effects are expected to appear for
accelerations a � a0. The strong a ≪ a0 MONDian regime means that Kepler’s third law
is not valid since for a circular orbit about the central mass M, the acceleration a = v/r,
where v is velocity of the test mass, and so v = (a0GM)

1/4
∝ M1/4, which is the Tully-Fisher

relation [see e.g. 33] for the case of a spiral galaxy and is the same relation experienced by
wide-open binaries [17] and by the tail of the “rotation curve” in globular clusters [15, 16].

In order to interpolate from the strong a ≫ a0 Newtonian regime to the weak a ≪ a0 one,
the traditional MONDian approach is to construct a somewhat built-by-hand interpolation
function µ(y) in such a way that

aµ(y) = −

GM

r2
, (2)
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where

µ(y) =

{

1, for y ≫ 1,

y, for y ≪ 1,
and y :=

a

a0
.

The usual approach to MOND as expressed by equation (2) means that Newton’s 2nd law
of mechanics needs to be modified [see e.g. 1]. As explained by Mendoza et al. [23], a better
physical approach can be constructed if the modification is made in the force (gravitational)
sector. Indeed, by the use of Buckingham’s theorem of dimensional analysis [cf. 35], the
gravitational acceleration experienced by a test particle is given by

a = a0g(x), (3)

where the dimensionless quantity

x :=
lM

r
, (4)

and a mass-length scale

lM :=

(

GM

a0

)1/2

. (5)

The length lM plays an important role in the description of the theory and is such that when
lM ≫ r, the strong Newtonian regime of gravity is recovered and when lM ≪ r the weak
MONDian regime of gravity appears. As such, the dimensionless acceleration (or transition
function) g(x) is such that:

a

a0
= g(x) :=

{

x2, when x ≫ 1,

x, when x ≪ 1.
(6)

In general terms, a mass distribution whose length is much greater than its associated
mass-length lM is in the MONDian regime (since x ≪ 1) and a mass distribution whose
length is much smaller than its mass-length scale is in the Newtonian regime (since x ≫ 1).
The case x = 1 can roughly be thought of as the point where the transition from the
Newtonian to the MONDian regime occurs.

A general transition function g(x) was built by [23] taking Taylor expansion series about the
correct MONDian and Newtonian limits, yielding:
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Figure 1. The figure taken from Mendoza et al. [23] shows the acceleration function a in units of Milgrom’s acceleration
constant a0 as a function of the parameter x. The thick dash-dot curve is the extreme limiting value n → ∞, i.e. a/a0 = x for
x ≤ 1 and a/a0 = x2 for x ≥ 1. The curves above and below this extreme acceleration line represent values of n = 4, 3, 2, 1,
for the minus and plus signs of equation (7) respectively. The extreme limiting curve has a kink at x = 1.

g(x) = x
1 ± xn+1

1 ± xn
. (7)

This non-singular function converges to the correct expected limits of equation (6) for any
value of the parameter n ≥ 0. As shown in Figure 1, the transition function g(x) rapidly
converges to the limit “step function”

g(x)

∣

∣

∣

∣

n→∞

=

{

x, for 0 ≤ x ≤ 1,

x2, for x ≥ 1,
(8)

when n � 3. The parameter n needs to be found empirically by astronomical observations.
The value found by Mendoza et al. [23] for the rotation curve of our galaxy is n � 3 and the
one found by Hernandez & Jiménez [15], Hernandez et al. [16, 17] is n � 8, with a minus sign
selection on the numerator and denominator on the right hand side of equation (7). These
authors have shown that a large value of n is coherent with solar system motion of planets,
rotation curves of spiral galaxies, equilibrium relations of dwarf spheroidal galaxies and their
correspondent relations in globular clusters, the Faber-Jackson relation and the fundamental
plane of elliptical galaxies as well as with the orbits of wide binary stars. The n = 3 model
in which a small, but measurable transition is obtained, has also been tested on earth and
moon-like experiments by Meyer et al. [25] and Exirifard [12] respectively, showing that it is
coherent with such precise measurements. In fact, these experiments also validate all n ≥ 3
models.
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Care must be taken when the introduction of a new fundamental constant of nature with
dimensions of acceleration a0 is made. In fact, the introduction of a0 does not impose any
causality arguments such as the ones given by the velocity of light c. In fact, one may think
of a0 as a fundamental constant needed to transit from one gravity regime to another. In this
respect for example, instead of using a0 as a fundamental constant, one may define

Σ0 := a0/G = 1.8 kg m−2, (9)

as the new fundamental constant of nature. The constant Σ0, with dimensions of surface mass
density, enters in the description of the gravitational theory in such a way that equations (3)
and (5) are given by:

a = −GΣ0g (lM/r) , lM := (M/Σ0) . (10)

and the acceleration in the full MONDian regime and the corresponding Tully-Fisher relation
are

a = −G
(Σ0 M)

1/2

r
, v = G1/2

Σ
1/4
0 M1/4. (11)

Also, a more manageable extended fundamental quantity, directly measurable through the
Tully-Fisher relation, can be defined:

ǫM := a0G = 8.004 × 10−21m4 s−4 kg−1, (12)

with dimensions of velocity to the fourth over mass, for which

a = −

ǫM

G
g (lM/r) , lM :=

(

G2 M/ǫ0

)

. (13)

With this, the acceleration of a test particle in the full MOND regime and the Tully-Fisher
relation are:

a = −

(ǫM M)

1/2

r
, v = (ǫM M)

1/4 . (14)

The choice of a new fundamental constant of nature has many ways in which it can be
introduced into the theory [35]. In this work, the use of a0 is kept as it is traditionally
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done, but we note the fact that ǫ0 is the best fundamental constant to use since it is directly
measured through the flattened rotation curves of spiral galaxies.

The extended Newtonian model of gravity presented in this section is equivalent with
MOND on spherical and cylindrical symmetry but deviates considerable from it for systems
away from this symmetry [23]. As we have already shown, there are however many
advantages of using this approach, the most objective meaning that the modification is made
on the force sector and not a modification on the dynamics.

3. Relativistic metric extension

Finding a relativistic theory of gravity for which one of its non-relativistic limits converges
to MOND yields usually strange assumptions and/or complicated ideas [see e.g. 3, 6, 30].
A good first approach was provided by a slight modification of Einstein’s field equations by
Sobouti [36], but the attempt is not complete.

In order to find an elegant and simple theory of gravity for which a MONDian solution
is found, Bernal, Capozziello, Hidalgo & Mendoza [5] used a correct dimensional metric
interpretation of Hilbert’s gravitational action Sf for a point mass source M generating the
gravitational field, in such a way that:

Sf = −

c3

16πGL2
M

∫

f (χ)
√

−g d4x, (15)

which slightly differs from its traditional form (see e.g. [7, 9, 37]) since the following
dimensionless quantity has been introduced:

χ := L2
MR, (16)

where R is Ricci’s scalar and LM defines a length fixed by the parameters of the model: The
explicit form of the length L has to be obtained once a certain known limit of the theory is
taken, usually a non-relativistic limit. Note that the definition of χ gives a correct dimensional
character to the action (15), something that is not completely clear in all previous works
dealing with a metric description of the gravitational field. For f (χ) = χ the standard
Einstein-Hilbert action of general relativity is obtained.

On the other hand, the matter action has its usual form,

Sm = −

1

2c

∫

Lm
√

−g d4x, (17)

with Lm the matter Lagrangian density of the system. The null variations of the complete
action, i.e. δ (SH + Sm) = 0, yield the following field equations:

Open Questions in Cosmology138
Extending Cosmology: The Metric Approach 7

10.5772/53878

f ′(χ) χµν −
1

2
f (χ)gµν − L2

M

(

∇µ∇ν − gµν∆
)

f ′(χ)

=

8πGL2
M

c4
Tµν,

(18)

where the dimensionless Ricci tensor χµν is given by:

χµν := L2
MRµν, (19)

and Rµν is the standard Ricci tensor. The Laplace-Beltrami operator has been written as ∆ :=
∇

α
∇α and the prime denotes derivative with respect to its argument. The energy-momentum

tensor Tµν is defined through the following standard relation: δSm = − (1/2c) Tαβ δgαβ. In
here and in what follows, we choose a (+,−,−,−) signature for the metric gµν and use
Einstein’s summation convention over repeated indices.

The trace of equation (18) is:

f ′(χ) χ − 2 f (χ) + 3L2
M ∆ f ′(χ) =

8πGL2
M

c4
T, (20)

where T := Tα
α .

In order to search for a MONDian solution, Bernal, Capozziello, Hidalgo & Mendoza [5]
analysed the problem in two ways. First by performing an order of magnitude approach to
the problem, and second, by doing a full perturbation analysis. Since the second technique is
merely to fix constants of proportionality of the problem, their order of magnitude approach
and its consequences are discussed in the remain of this section. Also, since we are interested
at the moment on a point mass distribution generating a stationary spherically symmetric
space-time, the trace equation (20) contains all the relevant information relating the field
equations. At this point it is also useful to assume a power law form for the function

f (χ) = χ
b. (21)

An order of magnitude approach to the problem means that d/dχ ≈ 1/χ, ∆ ≈ −1/r2 and
the mass density ρ ≈ M/r3. With this, the trace (20) takes the following form:

χ
b
(b − 2)− 3bL2

M
χ(b−1)

r2
≈

8πGML2
M

c2r3
. (22)

Note that the second term on the left-hand side of equation (22) is much greater than the first
term when the following condition is satisfied:
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done, but we note the fact that ǫ0 is the best fundamental constant to use since it is directly
measured through the flattened rotation curves of spiral galaxies.

The extended Newtonian model of gravity presented in this section is equivalent with
MOND on spherical and cylindrical symmetry but deviates considerable from it for systems
away from this symmetry [23]. As we have already shown, there are however many
advantages of using this approach, the most objective meaning that the modification is made
on the force sector and not a modification on the dynamics.

3. Relativistic metric extension

Finding a relativistic theory of gravity for which one of its non-relativistic limits converges
to MOND yields usually strange assumptions and/or complicated ideas [see e.g. 3, 6, 30].
A good first approach was provided by a slight modification of Einstein’s field equations by
Sobouti [36], but the attempt is not complete.

In order to find an elegant and simple theory of gravity for which a MONDian solution
is found, Bernal, Capozziello, Hidalgo & Mendoza [5] used a correct dimensional metric
interpretation of Hilbert’s gravitational action Sf for a point mass source M generating the
gravitational field, in such a way that:

Sf = −

c3

16πGL2
M

∫

f (χ)
√

−g d4x, (15)

which slightly differs from its traditional form (see e.g. [7, 9, 37]) since the following
dimensionless quantity has been introduced:

χ := L2
MR, (16)

where R is Ricci’s scalar and LM defines a length fixed by the parameters of the model: The
explicit form of the length L has to be obtained once a certain known limit of the theory is
taken, usually a non-relativistic limit. Note that the definition of χ gives a correct dimensional
character to the action (15), something that is not completely clear in all previous works
dealing with a metric description of the gravitational field. For f (χ) = χ the standard
Einstein-Hilbert action of general relativity is obtained.

On the other hand, the matter action has its usual form,

Sm = −

1

2c

∫

Lm
√

−g d4x, (17)

with Lm the matter Lagrangian density of the system. The null variations of the complete
action, i.e. δ (SH + Sm) = 0, yield the following field equations:
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T, (20)

where T := Tα
α .
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analysed the problem in two ways. First by performing an order of magnitude approach to
the problem, and second, by doing a full perturbation analysis. Since the second technique is
merely to fix constants of proportionality of the problem, their order of magnitude approach
and its consequences are discussed in the remain of this section. Also, since we are interested
at the moment on a point mass distribution generating a stationary spherically symmetric
space-time, the trace equation (20) contains all the relevant information relating the field
equations. At this point it is also useful to assume a power law form for the function

f (χ) = χ
b. (21)

An order of magnitude approach to the problem means that d/dχ ≈ 1/χ, ∆ ≈ −1/r2 and
the mass density ρ ≈ M/r3. With this, the trace (20) takes the following form:

χ
b
(b − 2)− 3bL2

M
χ(b−1)

r2
≈

8πGML2
M

c2r3
. (22)

Note that the second term on the left-hand side of equation (22) is much greater than the first
term when the following condition is satisfied:
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Rr2 �
3b

2 − b
. (23)

At the same order of approximation, Ricci’s scalar R ≈ κ = R−2
c , where κ is the Gaussian

curvature of space and Rc its radius of curvature and so, relation (23) essentially means that

Rc ≫ r. (24)

In other words, the second term on the left-hand side of equation (22) dominates the first
one when the local radius of curvature of space is much grater than the characteristic length
r. This should occur in the weak-field regime, where MONDian effects are expected. For a
metric description of gravity, this limit must correspond to the relativistic regime of MOND.

Under assumption (24), equation (22) takes the following form:

R(b−1)
≈ −

8πGM

3bc2rL
2(b−1)
M

. (25)

We now recall the well known relation followed by the Ricci scalar at second order of
approximation at the non-relativistic level [19]:

R = −

2

c2
∇

2
φ = +

2

c2
∇ · a, (26)

where the negative gradients of the gravitational potential φ provide the acceleration a :=
−∇φ felt by a test particle on a non-relativistic gravitational field. At order of magnitude,
equation (26) can be approximated as

R ≈ −

2φ

c2r2
≈

2a

c2r
. (27)

Substitution of this last equation on relation (25) gives

a ≈ −

c2r

2L2
M

(

8πGM

3bc2r

)1/(b−1)

,

≈ −c(2b−4)/(b−1)r(b−2)/(b−1)L−2
M (GM)

1/(b−1) . (28)

This last equation converges to a MOND-like acceleration a ∝ 1/r if b − 2 = − (b − 1), i.e.
when b = 3/2. Also, at the lowest order of approximation, in the extreme non-relativistic
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limit, the velocity of light c should not appear on equation (28) and so, the only way this
condition is fulfilled is that LM depends on a power of c, i.e.

L−2
M ∝ c(4−2b)/(b−1)

= c2, and so, LM ∝ c−1. (29)

As discussed by Bernal, Capozziello, Hidalgo & Mendoza [5], the length LM must be
constructed by fundamental parameters describing the theory of gravity and since the only
two characteristic lengths of the problem are the mass-length lM and the gravitational radius

rg =

GM

c2
, (30)

then the correct dimensional form of the length LM is given by

LM = ζ rα
gl

β

M, with α + β = 1, (31)

where the constant of proportionality ζ is a dimensionless number that can be found by a
full perturbation analysis technique and is given by [5]:

ζ =

2
√

2

9
, (32)

Substituting equation (31) and the value b = 3/2 into relation (29), it then follows that

α = β = 1/2, i.e. LM ≈ r1/2
g l1/2

M . (33)

If we now substitute this last result and the value b = 3/2 in equation (28) we get:

a ≈ −

(a0GM)

1/2

r
, (34)

which is the traditional form of MOND for a point mass source (see e.g. [2, 28, 29] and
references therein). Also, the results of equation (34) in (27) mean that

R ≈

rg

lM

1

r2
, (35)

and so, inequality (24) is equivalent to

Extending Cosmology: The Metric Approach
http://dx.doi.org/10.5772/53878

141



8 Open Questions in Cosmology

Rr2 �
3b

2 − b
. (23)

At the same order of approximation, Ricci’s scalar R ≈ κ = R−2
c , where κ is the Gaussian

curvature of space and Rc its radius of curvature and so, relation (23) essentially means that

Rc ≫ r. (24)

In other words, the second term on the left-hand side of equation (22) dominates the first
one when the local radius of curvature of space is much grater than the characteristic length
r. This should occur in the weak-field regime, where MONDian effects are expected. For a
metric description of gravity, this limit must correspond to the relativistic regime of MOND.

Under assumption (24), equation (22) takes the following form:

R(b−1)
≈ −

8πGM

3bc2rL
2(b−1)
M

. (25)

We now recall the well known relation followed by the Ricci scalar at second order of
approximation at the non-relativistic level [19]:

R = −

2

c2
∇

2
φ = +

2

c2
∇ · a, (26)
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equation (26) can be approximated as
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(

8πGM

3bc2r

)1/(b−1)

,

≈ −c(2b−4)/(b−1)r(b−2)/(b−1)L−2
M (GM)

1/(b−1) . (28)

This last equation converges to a MOND-like acceleration a ∝ 1/r if b − 2 = − (b − 1), i.e.
when b = 3/2. Also, at the lowest order of approximation, in the extreme non-relativistic
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limit, the velocity of light c should not appear on equation (28) and so, the only way this
condition is fulfilled is that LM depends on a power of c, i.e.
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= c2, and so, LM ∝ c−1. (29)

As discussed by Bernal, Capozziello, Hidalgo & Mendoza [5], the length LM must be
constructed by fundamental parameters describing the theory of gravity and since the only
two characteristic lengths of the problem are the mass-length lM and the gravitational radius
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GM
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, (30)

then the correct dimensional form of the length LM is given by

LM = ζ rα
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β

M, with α + β = 1, (31)

where the constant of proportionality ζ is a dimensionless number that can be found by a
full perturbation analysis technique and is given by [5]:

ζ =

2
√

2

9
, (32)

Substituting equation (31) and the value b = 3/2 into relation (29), it then follows that

α = β = 1/2, i.e. LM ≈ r1/2
g l1/2

M . (33)

If we now substitute this last result and the value b = 3/2 in equation (28) we get:

a ≈ −

(a0GM)

1/2

r
, (34)

which is the traditional form of MOND for a point mass source (see e.g. [2, 28, 29] and
references therein). Also, the results of equation (34) in (27) mean that

R ≈

rg

lM

1

r2
, (35)

and so, inequality (24) is equivalent to
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lM ≫ rg. (36)

The regime imposed by equation (36) is precisely the one for which MONDian effects should
appear in a relativistic theory of gravity. This is an expected generalisation of the results
presented in section 2. Note that in the weak field limit regime for which lM ≪ r together
with equation (36) yields r ≫ lM ≫ rg. In this connection, we also note that Newton’s theory
of gravity is recovered in the limit lM ≫ r ≫ rg.

In exactly the same way as it was done to build the transition function for the case of extended
Newtonian gravity in section 2, a general function f (χ) can be constructed:

f (χ) = χ
3/2 1 ± χp+1

1 ± χ3/2+p
→

{

χ3/2, for χ ≪ 1,

χ, for χ ≫ 1.
(37)

In other words, general relativity is recovered when χ ≫ 1 in the strong field regime and
the relativistic version of MOND with χ3/2 is recovered for the weak field regime of gravity
when χ ≪ 1 (see Figure 2). The unknown parameter p ≥ −1 needs to be calibrated with
astronomical observations, in an analogous form as the calibration of the parameter n in
equation (7) was done. This is a much harder task and a matter of future research. However,
since the non-relativistic approach to gravity explained in section 2 means that the transition
from the Newtonian to the MONDian regimes of gravity is very sharp, it most probably
means that the function f (χ) = χ for χ ≥ 1 and that f (χ) = χ3/2 for χ ≤ 1, but this has to
be tested by some astronomical observations.

The mass dependence of χ and LM mean that Hilbert’s action (15) is a function of the mass
M. This is usually not assumed, since that action is thought to be purely a function of the
geometry of space-time due to the presence of mass and energy sources. However, it was
Sobouti [36] who first encountered this peculiarity in the Hilbert action when dealing with
a metric generalisation of MOND. Following the remarks by Sobouti [36] and Mendoza &
Rosas-Guevara [24] one should not be surprised if some of the commonly accepted notions,
even at the fundamental level of the action, require generalisations and re-thinking. An
extended metric theory of gravity goes beyond the traditional general relativity ideas and in
this way, we need to change our standard view of its fundamental principles.

4. F(R, T) connection

For the description of gravity shown in section 3 it follows that an adequate way of writing
up the gravitational field’s action is given by:

Sf = −

c3

16πG

∫

f (χ)

L2
M

√

−g d4x. (38)

The function LM is a function of the mass of the system and in general terms it is a function
of the space-time coordinates. For the particular case of a spherically symmetric space-time

Open Questions in Cosmology142
Extending Cosmology: The Metric Approach 11

10.5772/53878

χ

(
a
/
a
0
)

21.510.50

2

1.5

1

0.5

0

χ

(
a
/
a
0
)

21.510.50

2

1.5

1

0.5

0

χ

(
a
/
a
0
)

21.510.50

2

1.5

1

0.5

0

χ

(
a
/
a
0
)

21.510.50

2

1.5

1

0.5

0

χ

(
a
/
a
0
)

21.510.50

2

1.5

1

0.5

0

χ

(
a
/
a
0
)

21.510.50

2

1.5

1

0.5

0

Figure 2. The figure shows the transition function f (χ), as a function of the dimensionless Ricci scalar χ, for different regimes

of gravity, converging to f (χ) = χ for χ ≫ 1 (general relativity) and to f (χ) = χ3/2 for χ ≪ 1 (a relativistic regime with MOND
as its weak field limit) -see equation (37). The thick dash-dot curve is the extreme limiting value p → ∞, i.e. f (χ) = χ3/2 for

χ ≤ 1 and f (χ) = χ for χ ≥ 1. The curves above and below this extreme function represent values of p = 3, 2, 1, 0 for the
minus and plus signs of equation (7) respectively. The extreme limiting curve has a kink at χ = 1.

it coincides with the mass of the central object generating the gravitational field as expressed
in equations (31) and (33). Generally speaking what the meaning of M would be for a
particular distribution of mass and energy needs further research, beyond the scope of this
book chapter. Nevertheless one expects that for dust systems with spherically symmetric
distributions, the function M would be given by the standard mass-energy relation [see e.g.
31]:

M :=
4π

c2

∫

T r2 dr, (39)

In very general terms, the definition of M in this last equation means that M would not be
invariant. However, in some particular systems with high degree of symmetry it is possible to
make this quantity invariant. For example, in the case of a spherically symmetric spacetime
produced by a point mass that quantity is simply the “Schwarzschild” mass of the point
mass generating the gravitational field. In the cosmological case it is also possible to define
it as an invariant quantity as discussed in section 5.

The field equations produced by the null variations of the addition of the field’s action Sf +

Sm can be constructed in the following form. Harko et al. [14] have built an F(R, T) theory
of gravity, so making the natural identification:

F(R, T) :=
f (χ)

L2
M

, (40)
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lM ≫ rg. (36)

The regime imposed by equation (36) is precisely the one for which MONDian effects should
appear in a relativistic theory of gravity. This is an expected generalisation of the results
presented in section 2. Note that in the weak field limit regime for which lM ≪ r together
with equation (36) yields r ≫ lM ≫ rg. In this connection, we also note that Newton’s theory
of gravity is recovered in the limit lM ≫ r ≫ rg.

In exactly the same way as it was done to build the transition function for the case of extended
Newtonian gravity in section 2, a general function f (χ) can be constructed:

f (χ) = χ
3/2 1 ± χp+1

1 ± χ3/2+p
→

{

χ3/2, for χ ≪ 1,

χ, for χ ≫ 1.
(37)

In other words, general relativity is recovered when χ ≫ 1 in the strong field regime and
the relativistic version of MOND with χ3/2 is recovered for the weak field regime of gravity
when χ ≪ 1 (see Figure 2). The unknown parameter p ≥ −1 needs to be calibrated with
astronomical observations, in an analogous form as the calibration of the parameter n in
equation (7) was done. This is a much harder task and a matter of future research. However,
since the non-relativistic approach to gravity explained in section 2 means that the transition
from the Newtonian to the MONDian regimes of gravity is very sharp, it most probably
means that the function f (χ) = χ for χ ≥ 1 and that f (χ) = χ3/2 for χ ≤ 1, but this has to
be tested by some astronomical observations.

The mass dependence of χ and LM mean that Hilbert’s action (15) is a function of the mass
M. This is usually not assumed, since that action is thought to be purely a function of the
geometry of space-time due to the presence of mass and energy sources. However, it was
Sobouti [36] who first encountered this peculiarity in the Hilbert action when dealing with
a metric generalisation of MOND. Following the remarks by Sobouti [36] and Mendoza &
Rosas-Guevara [24] one should not be surprised if some of the commonly accepted notions,
even at the fundamental level of the action, require generalisations and re-thinking. An
extended metric theory of gravity goes beyond the traditional general relativity ideas and in
this way, we need to change our standard view of its fundamental principles.

4. F(R, T) connection

For the description of gravity shown in section 3 it follows that an adequate way of writing
up the gravitational field’s action is given by:

Sf = −

c3

16πG

∫

f (χ)

L2
M

√

−g d4x. (38)

The function LM is a function of the mass of the system and in general terms it is a function
of the space-time coordinates. For the particular case of a spherically symmetric space-time
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Figure 2. The figure shows the transition function f (χ), as a function of the dimensionless Ricci scalar χ, for different regimes

of gravity, converging to f (χ) = χ for χ ≫ 1 (general relativity) and to f (χ) = χ3/2 for χ ≪ 1 (a relativistic regime with MOND
as its weak field limit) -see equation (37). The thick dash-dot curve is the extreme limiting value p → ∞, i.e. f (χ) = χ3/2 for

χ ≤ 1 and f (χ) = χ for χ ≥ 1. The curves above and below this extreme function represent values of p = 3, 2, 1, 0 for the
minus and plus signs of equation (7) respectively. The extreme limiting curve has a kink at χ = 1.

it coincides with the mass of the central object generating the gravitational field as expressed
in equations (31) and (33). Generally speaking what the meaning of M would be for a
particular distribution of mass and energy needs further research, beyond the scope of this
book chapter. Nevertheless one expects that for dust systems with spherically symmetric
distributions, the function M would be given by the standard mass-energy relation [see e.g.
31]:

M :=
4π

c2

∫

T r2 dr, (39)

In very general terms, the definition of M in this last equation means that M would not be
invariant. However, in some particular systems with high degree of symmetry it is possible to
make this quantity invariant. For example, in the case of a spherically symmetric spacetime
produced by a point mass that quantity is simply the “Schwarzschild” mass of the point
mass generating the gravitational field. In the cosmological case it is also possible to define
it as an invariant quantity as discussed in section 5.

The field equations produced by the null variations of the addition of the field’s action Sf +

Sm can be constructed in the following form. Harko et al. [14] have built an F(R, T) theory
of gravity, so making the natural identification:

F(R, T) :=
f (χ)

L2
M

, (40)
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it is possible to use all their results for our particular case expressed in equation (40).
For example, the null variations of the complete action Sf + Sm for the particular case of
equation (40) is given by Harko et al. [14]:

(

fR

L2
M

)

Rµν−
1

2L2
M

f gµν +

[

gµν∆ −∇µ∇ν

]

(

fR

L2
M

)

=

8πG

c4
Tµν −

(

f

L2
M

)

T

[

Tµν + Θµν

]

,

(41)

and its trace is given by:

fR R

L2
M

−

2 f

L2
M

+ 3∆

(

fR

L2
M

)

=

8πG

c4
T −

(

f

L2
M

)

T

[

T + Θ

]

, (42)

where the subscripts R and T stand for the partial derivatives with respect to those quantities,
i.e.

( )

R

:=
∂

∂R
, and

( )

T

:=
∂

∂T
. (43)

The tensor Θµν is such that Θµνδgµν := gαβδTαβ and for the case of an ideal fluid it can be
written as [14]:

Θµν = −2Tµν − pgµν. (44)

Note that equation (41) or (42) converge to the field (18) and trace (20) relations as discussed
in section 3 when one considers a point mass generating the gravitational field, i.e. when
LM = const. and so ∂/∂R = L2

M∂/∂χ.

In general terms, the F(R, T) theory described by Harko et al. [14] produces non-geodesic
motion of test particles since:

∇

µTµν =

(

f

L2
M

)

T

{

8πG

c4
−

(

f

L2
M

)

T

}

−1

×

[

(

Tµν + Θµν

)

∇

µ ln

(

f

L2
M

)

T

(R, T) +∇

µ
Θµν

]

�= 0,

(45)
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and as such the geodesic equation has a force term:

d2xµ

ds2
+ Γ

µ

νλ
uνuλ

= λ
µ, (46)

where the four-force

λ
µ :=

8πG

c4

(

ρc2
+ p

)

−1
[

8πG

c4
+

(

f

L2
M

)

T

]

−1

×

(gµν
− uµuν

)∇ν p,

(47)

is perpendicular to the four velocity dxα/ds. As discussed by Harko et al. [14], the motion
of test particles is geodesic, i.e. λµ

= 0 and/or ∇

αTαβ = 0, (i) for the case of a pressureless
p = 0 (dust) fluid and (ii) for the cases in which FT(R, T) = 0.

In what follows we will see how all the previous ideas can be applied to a
Friedmann-Lemaître-Robertson-Walker dust universe and so, the divergence of the energy
momentum tensor in equation (45) is null. It is worth noting that this condition on the
energy-momentum tensor for many applications needs to be zero, including applications to
the universe at any epoch.

5. Cosmological applications

There are many good and interesting attempts to explain many cosmological observations
using modified theories of gravity [see e.g. 32, and references therein], however these theories
are not generally fully consistent with the gravitational anomalies shown at galactic and
extragalactic scales discussed in sections 2 and 3. To see whether the gravitational f (χ)
theory developed in the previous sections can deal with cosmological data, let us now apply
the results obtained in those sections to an isotropic Friedmann-Lemaître-Robertson-Walker
(FLRW) universe following the procedures first explored by Carranza et al. [10]. In this case,
the interval ds is given by [21]:

ds2
= c2dt2

− a2
(t)

{

dr2

1 − κr2
+ r2dΩ

2

}

, (48)

where a(t) is the scale factor of the universe normalised to unity, i.e. a0 = 1, at the
present epoch t0, and the angular displacement dΩ

2 := dθ2
+ sin2

θ dϕ2 for the polar dθ

and azimuthal dϕ angular displacements with a comoving distance coordinate r. In what
follows we assume a null space curvature κ = 0 at the present epoch in accordance with
observations and deal with the expansion of the universe dictated by the field equations (41),
avoiding any form of dark unknown component. Since we are interested on the compatibility
of this cosmological model with SNIa observations, in what follows we assume a dust p = 0
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it is possible to use all their results for our particular case expressed in equation (40).
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+ 3∆
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fR
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M
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=

8πG

c4
T −

(

f
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M
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T
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]
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( )

R

:=
∂

∂R
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( )

T

:=
∂

∂T
. (43)
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∇
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f

L2
M
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T

{

8πG
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(

f

L2
M

)

T

}

−1

×

[

(

Tµν + Θµν

)

∇

µ ln

(

f

L2
M

)

T

(R, T) +∇

µ
Θµν

]

�= 0,

(45)
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+
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)∇ν p,
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model for which the covariant divergence of the energy-momentum tensor vanishes, and so
as discussed in section 4 the trajectories of test particles are geodesic.

To begin with, let us rewrite the field equations (41) inspired by the approach first introduced
by Capozziello & Fang [8] (see also Capozziello & Faraoni [9]) as follows:

Gµν =

8πG

c4

{(

1 +
c4

8πG
FT

)

Tµν

FR
+ Tcurv

µν

}

, (49)

where the Einstein tensor is given by its usual form:

Gµν := Rµν −
1

2
Rgµν. (50)

and

Tcurv
µν :=

c4

8πGFR

[(

1

2
(F − RFR)− ∆FR

)

gµν +

∇µ∇νFR

]

,

(51)

represents the “energy-momentum” curvature tensor. Since T00 = ρc2, then it will be useful
the identification T00 := ρcurvc2. With this last definition and using the fact that the
Laplace-Beltrami operator applied to a scalar field ψ is given by [see e.g. 19]:

∆ψ =

1
√

−g
∂µ

(√

−g gµν
∂νψ

)

, (52)

then

ρcurv =

c2

8πGFR

[

1

2
(RFR − F)−

3H

c2

dFR

dt

]

, (53)

where H := ȧ(t)/a(t) represents Hubble’s constant.

With the above definitions and using the 00 component of the field’s equations (49) and the
relation [cf. 11]:

R = −

6

c2

[

ä

a
+

(

ȧ

a

)2

+

κc2

a2

]

, (54)

Open Questions in Cosmology146
Extending Cosmology: The Metric Approach 15

10.5772/53878

between Ricci’s scalar and the derivatives of the scale factor for a FLRW universe, then the
dynamical Friedman’s-like equation for a dust flat universe is:

H2
=

8πG

3

[(

1 +
c4

8πG
FT

)

ρ

FR
+ ρcurv

]

. (55)

The energy conservation equation is given by the null divergence of the energy-momentum
tensor:

(

8πG

c4
+ FT

)

(ρ̇ + 3Hρ) = −ρ
dFT

dt
. (56)

For completeness, we write down the correspondent generalisation of Raychadhuri’s
equation for a dust flat universe:

2
ä

a
+ H2

= −

8πGpcurv

c2
, (57)

where the “curvature-pressure”

pcurv := ωc2
ρcurv, (58)

and

w =

c2
(F − RFR) /2 + d2FR/dt2

+ 3HdFR/dt

c2
(RFR − F) /2 − 3HdFR/dt

. (59)

On the other hand, note that the mass M that appears on the length LM must be the causally
connected mass at a certain cosmic time t, since particles beyond Hubble’s (or particle)
horizon with respect to a given fundamental observer do not have any gravitational influence
on him. At any particular cosmic epoch, this Hubble mass satisfies the spherically symmetric
condition implicit in equation (39) and so,

M = 4π

∫ rH

0
ρ r2 dr =

4

3
πρ

c3

H3
, (60)

where
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rH :=
c

H(t)
, (61)

is the Hubble radius or the distance of causal contact at a particular cosmic epoch [21]. In this
respect the mass M is measured from the point of view of any given fundamental observer
at a particular cosmic time t and so, it does not depend on which system of reference (or
coordinates) is measured. As such, the mass M represents an invariant scalar quantity. From
this last relation it follows that the length (31) is given by:

LM = ζ

(

4
3 πc3G

)3/4

c a1/4
0

ρ3/4

H9/4
, (62)

and so, by using relation (21) and the standard power-law assumptions:

a(t) = a(t0)

(

t

t0

)α

, ρ(t) = ρ0

(

a

a(t0)

)β

. (63)

for the unknown constant powers α and β, it follows that:

dFR

dt
= b(b − 1)Rb−1L

2(b−1)
M H

[

j − q − 2

1 − q
+

3

2

(

β +

3

α

)]

, (64)

dFT

dt
=

3

2
(b − 1)

RbL2b−2
M

ρc2
, (65)

where

q(t) := −

1

a

d2a

dt2
H−2, and j :=

1

a

d3a

dt3
H−3, (66)

are the deceleration parameter and the jerk respectively.

With these and the value of LM from equation (62), the curvature density (53) is given by:

ρcurv =

3H2

8πG
(b − 1)

[

(1 − q)−
j − q − 2

1 − q
−

3

2

(

β +

3

α

)]

. (67)

Substitution of the previous relations on Friedmann’s equation (55) gives:
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H2
=

8πGρ

3 Z FR
, (68)

where

Z := 1 + (b − 1)

[

j − q − 2

1 − q
−

4 (1 − q)

b
+

3

2

(

β +

3

α

)]

. (69)

is a dimensionless function.

An important result can be obtained evaluating equation (68) at the present epoch, yielding:

a0 =

[

9

4
ζ

4
(1 − q0)

2
(bZ0)

2/(b−1)
(

Ω
(0)
matt

)

(3b−5)/(b−1)
]

c H0, (70)

where the density parameter Ω
(0)
matt at the present epoch has been defined by it’s usual

relation:

Ω
(0)
matt :=

3H2ρ

8πG
. (71)

In other words, the value of Milgrom’s acceleration constant a0 at the current cosmic epoch
is such that

a0 ≈ c × H0. (72)

The numerical coincidence between the value of Milgrom’s acceleration constant a0 and the
multiplication of the speed of light c by the current value of Hubble’s constant H0 has been
noted since the early development of MOND [see e.g. 13, and references therein]. Note
that equation (72) means that this coincidence relation occurs at approximately the present
cosmic epoch in complete agreement with the results by Bernal, Capozziello, Cristofano &
de Laurentis [4] where it is shown that a0 shows no cosmological evolution and hence it can
be postulated as a fundamental constant of nature.

For the power law (21) and the assumptions made above, it follows that the energy
conservation equation (56) is given by:

(ρ̇ + 3Hρ) +
c2

8πG

(

A
ρ̇

ρ
+ B H

)

Rb L
2(b−1)
M = 0, (73)
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where:

A :=
9

4
(b − 1)2 ,

B :=
9

2

b − 1

b
+

27

4

(b − 1)2

α
+

3

2

b (b − 1) (j − q − 2)

1 − q
.

Direct substitution of the density power law (63) into relation (73) gives a constraint equation
between α, β and b:

β =

1

α

(

9 − 5b

3b − 5

)

. (74)

Let us now proceed to fix the so far unknown parameters of the theory α, β and b. To
do so, we need reliable observational data and as such, we use the redshift-magnitude
SNIa data obtained by Riess et al. [34] and the following well known standard cosmological
relations [see e.g. 21]:

1 + z = a(t0)/a(t), (75)

µ (z) = 5 log10 [H0 dL (z)]− 5 log10 h + 42.38, (76)

dL (z) = (1 + z)
∫ z

0

c

H (z)
dz, (77)

for the cosmological redshift z, the distance modulus µ, the luminosity distance dL

and where the normalised Hubble constant h at the present epoch is given by h :=
H0/

(

100 km s−1/ Mpc
)

. Also, from equation (63) it follows that

H(a) = H0

(

a

a(t0)

)

−1/α

= H0(1 + z)1/α, (78)

and the substitution of this into equation (77) gives the distance modulus dL as a function
of the redshift z. This means that the redshift magnitude relation (76) is a function that
depends on the values of the current Hubble constant H0 and the value of α. Figure 3
shows the best fit to the redshift magnitude relation of SNIa observed by Riess et al. [34],
yielding α = 1.359 ± 0.139 and h = 0.64 ± 0.009. The best fit presented on the figure was
obtained using the Marquardt-Levenberg fit provided by gnuplot (http://www.gnuplot.info)
for non-linear functions. These values do not provide the whole description of the problem,
since β and b are still unknown. However, according to the constraint equation (74) only one
of them is needed in order to know the other once α is known.
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Figure 3. Redshift magnitude plot for SNIa showing the distance modulus µ as a function of the redshift z for SNIa as
presented by Riess et al. [34]. The dotted red line shows the best fit to the data with the f (χ) gravity theory applied to a
flat dust FLRW universe (see text) with no dark components. The continuous blue line represents the best fit according to the

standard concordance dust ΛCDM model.

The parameter β can be found from conservation of mass arguments, since the total mass

of the universe Mtot = 4π
∫ Rmax

0 ρ r2 a3 dr = const., where the upper limit of the integral is
the radius of the whole universe. Since a(t) and ρ(t) are time dependent functions, the only
way the mass of the universe is conserved is by requiring a3 ρ = const. and so, β = 3. This
argument is exactly the one used in standard cosmology when dealing with a dust FLRW
universe [see e.g. 21]. Using this value of β and the one already found for α, it follows that
b = 1.57 ± 0.56, which is within the expected value of b = 3/2 discussed in section 3.

For completeness, we write down a few of the cosmographycal parameters obtained by this
f (χ) gravity applied to the universe:

h = 0.64 ± 0.009, q0 = −0.2642 ± 0.075,

j0 = −0.1246 ± 0.004.
(79)

6. Discussion

As explained by Carranza et al. [10], the obtained value b ≈ 3/2 is a completely expected
result due to the following arguments. As explained in section 2, a gravitational system
for which its characteristic size r is such that x := lM/r � 1 is in the MONDian gravity
regime. For the case of the universe, x ∼ a few and as such if not totally in the MONDian
regime of gravity, then it is far away from the regime of Newtonian gravity. The relativistic
version of this means that the universe is close to the regime for which f (χ) = χ3/2 and so
b = 3/2. This is a very important result since seen in this way, the accelerated expansion
of the universe is due to an extended gravity theory deviating from general relativity. It is
quite interesting to note that the function f (χ) = χ3/2 which at its non-relativistic limit is
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and where the normalised Hubble constant h at the present epoch is given by h :=
H0/

(

100 km s−1/ Mpc
)

. Also, from equation (63) it follows that

H(a) = H0

(

a

a(t0)

)

−1/α

= H0(1 + z)1/α, (78)

and the substitution of this into equation (77) gives the distance modulus dL as a function
of the redshift z. This means that the redshift magnitude relation (76) is a function that
depends on the values of the current Hubble constant H0 and the value of α. Figure 3
shows the best fit to the redshift magnitude relation of SNIa observed by Riess et al. [34],
yielding α = 1.359 ± 0.139 and h = 0.64 ± 0.009. The best fit presented on the figure was
obtained using the Marquardt-Levenberg fit provided by gnuplot (http://www.gnuplot.info)
for non-linear functions. These values do not provide the whole description of the problem,
since β and b are still unknown. However, according to the constraint equation (74) only one
of them is needed in order to know the other once α is known.
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Figure 3. Redshift magnitude plot for SNIa showing the distance modulus µ as a function of the redshift z for SNIa as
presented by Riess et al. [34]. The dotted red line shows the best fit to the data with the f (χ) gravity theory applied to a
flat dust FLRW universe (see text) with no dark components. The continuous blue line represents the best fit according to the

standard concordance dust ΛCDM model.

The parameter β can be found from conservation of mass arguments, since the total mass

of the universe Mtot = 4π
∫ Rmax

0 ρ r2 a3 dr = const., where the upper limit of the integral is
the radius of the whole universe. Since a(t) and ρ(t) are time dependent functions, the only
way the mass of the universe is conserved is by requiring a3 ρ = const. and so, β = 3. This
argument is exactly the one used in standard cosmology when dealing with a dust FLRW
universe [see e.g. 21]. Using this value of β and the one already found for α, it follows that
b = 1.57 ± 0.56, which is within the expected value of b = 3/2 discussed in section 3.

For completeness, we write down a few of the cosmographycal parameters obtained by this
f (χ) gravity applied to the universe:

h = 0.64 ± 0.009, q0 = −0.2642 ± 0.075,

j0 = −0.1246 ± 0.004.
(79)

6. Discussion

As explained by Carranza et al. [10], the obtained value b ≈ 3/2 is a completely expected
result due to the following arguments. As explained in section 2, a gravitational system
for which its characteristic size r is such that x := lM/r � 1 is in the MONDian gravity
regime. For the case of the universe, x ∼ a few and as such if not totally in the MONDian
regime of gravity, then it is far away from the regime of Newtonian gravity. The relativistic
version of this means that the universe is close to the regime for which f (χ) = χ3/2 and so
b = 3/2. This is a very important result since seen in this way, the accelerated expansion
of the universe is due to an extended gravity theory deviating from general relativity. It is
quite interesting to note that the function f (χ) = χ3/2 which at its non-relativistic limit is

Extending Cosmology: The Metric Approach
http://dx.doi.org/10.5772/53878

151



20 Open Questions in Cosmology

capable of predicting the correct dynamical behaviour of many astrophysical phenomena, is
also able to explain the behaviour of the current accelerated expansion of the universe.

Seen in this way, the behaviour of gravity towards the past (for sufficiently large redshifts z)
will differ from f (χ) = χ3/2 and eventually converge to f (χ) = χ, i.e. the gravitational
regime of gravity is general relativity for sufficiently large redshifts. A very detailed
investigation into this needs to be done at different levels in order to be coherent many
different cosmological observations [see e.g. 20]. This in turn can serve to calibrate the index
p of the transfer function f (χ) as presented in equation (37), which has a very soft transition
when p = −1, i.e.,

f (χ) =
χ3/2

1 + χ3/2
, (80)

and also has a very sharp transition when p → ∞, with the step function:

f (χ) =

{

χ3/2, for 0 ≤ χ ≤ 1,

χ, for χ ≥ 1.
(81)

In this respect, perhaps something close to a sharp transition (81) will be observed since, as
mentioned in section 2, at the non-relativistic level different astrophysical observations show
a sharp transition from the Newtonian to the MONDian regimes. This sort of decision has
to be taken with care and such a full description requires to analyse in full detail the whole
Friedmann-like equations:

(

8πG

c4
+ FT

)(

ρ̇ + 3Hρ +

3Hp

c2

)

=

− ρ
dFT

dt
+

1

c2

(

p
dFT

dt
+ FT

dp

dt

)

,

(82)

H2
=

8πG

3

[(

1 +
c4FT

8πG

)

ρ

FR
+ ρcurv

]

−

κc2

a2
, (83)

2
ä

a
+ H2

+

κc2

a2
= −

8πGp

c2FR
−

2pc2FT

FR
−

8πGpcurv

c2
. (84)

These equations are directly obtained from taking the null covariant divergence of the energy
momentum tensor, the 00 component of the field equations (49) and the density ρ contains all
species of matter and/or radiation. The curvature density ρcurv and the curvature pressure
pcurv are related to one another by relation (58) with ω given by equation (59).

It is quite remarkable that a metric extended theory of gravity is able to reproduce
phenomena from mass and length scales associated to the solar system up to cosmological
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scales. There are many more astrophysical challenges that this theory needs to address, in
particular with respect to lensing at different scales and the dynamics associated to galaxy
clusters. These will be addressed elsewhere.
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ä

a
+ H2

+

κc2

a2
= −

8πGp

c2FR
−

2pc2FT

FR
−

8πGpcurv

c2
. (84)

These equations are directly obtained from taking the null covariant divergence of the energy
momentum tensor, the 00 component of the field equations (49) and the density ρ contains all
species of matter and/or radiation. The curvature density ρcurv and the curvature pressure
pcurv are related to one another by relation (58) with ω given by equation (59).

It is quite remarkable that a metric extended theory of gravity is able to reproduce
phenomena from mass and length scales associated to the solar system up to cosmological

Open Questions in Cosmology152
Extending Cosmology: The Metric Approach 21

10.5772/53878

scales. There are many more astrophysical challenges that this theory needs to address, in
particular with respect to lensing at different scales and the dynamics associated to galaxy
clusters. These will be addressed elsewhere.

Acknowledgements

This work was supported by a DGAPA-UNAM grant (PAPIIT IN116210-3) and CONACyT
26344. The author acknowledges fruitful discussions at different stages with Tula Bernal,
Diego Carranza, Salvatore Capozziello, Rituparno Goswami, Xavier Hernandez, Juan Carlos
Hidalgo and Luis Torres.

Author details

Sergio Mendoza

Instituto de Astronomia, Universidad Nacional Autónoma de Mexico, Ciudad Universitaria,
Distrito Federal CP 04510, Mexico

References

[1] Bekenstein, J. [2006a]. The modified Newtonian dynamics - MOND and its implications
for new physics, Contemporary Physics 47: 387–403.

[2] Bekenstein, J. [2006b]. The modified Newtonian dynamics - MOND and its implications
for new physics, Contemporary Physics 47: 387–403.

[3] Bekenstein, J. D. [2004]. Relativistic gravitation theory for the modified Newtonian
dynamics paradigm, Physical Review D 70(8): 083509.

[4] Bernal, T., Capozziello, S., Cristofano, G. & de Laurentis, M. [2011]. Mond’s Acceleration
Scale as a Fundamental Quantity, Modern Physics Letters A 26: 2677–2687.

[5] Bernal, T., Capozziello, S., Hidalgo, J. C. & Mendoza, S. [2011]. Recovering MOND from
extended metric theories of gravity, European Physical Journal C 71: 1794.

[6] Blanchet, L. & Marsat, S. [2012]. Relativistic MOND theory based on the Khronon scalar
field, ArXiv e-prints .

[7] Capozziello, S., de Laurentis, M. & Faraoni, V. [2010]. A Bird’s Eye View of f(R)-Gravity,
The Open Astronomy Journal 3: 49–72.

[8] Capozziello, S. & Fang, L. Z. [2002]. Curvature Quintessence, International Journal of
Modern Physics D 11: 483–491.

[9] Capozziello, S. & Faraoni, V. [2010]. Beyond Einstein Gravity: A Survey of Gravitational
Theories for Cosmology and Astrophysics, Fundamental Theories of Physics, Springer.

[10] Carranza, D. A., Mendoza, S. & Torres, L. A. [2012]. A cosmological dust model with
extended f (χ) gravity, ArXiv e-prints .

Extending Cosmology: The Metric Approach
http://dx.doi.org/10.5772/53878

153



22 Open Questions in Cosmology

[11] Dalarsson, M. & Dalarsson, N. [2005]. Tensor calculus, relativity, and cosmology : a first
course.

[12] Exirifard, Q. [2011]. Lunar system constraints on the modified theories of gravity, ArXiv
e-prints .

[13] Famaey, B. & McGaugh, S. [2011]. Modified Newtonian Dynamics (MOND):
Observational Phenomenology and Relativistic Extensions, ArXiv e-prints .

[14] Harko, T., Lobo, F. S. N., Nojiri, S. & Odintsov, S. D. [2011]. f(R,T) gravity, Physical
Review D 84(2): 024020.

[15] Hernandez, X. & Jiménez, M. A. [2012]. The Outskirts of Globular Clusters as Modified
Gravity Probes, Astrophysical Journal 750: 9.

[16] Hernandez, X., Jimenez, M. A. & Allen, C. [2012a]. Flattened velocity dispersion profiles
in Globular Clusters: Newtonian tides or modified gravity?, ArXiv e-prints .

[17] Hernandez, X., Jiménez, M. A. & Allen, C. [2012b]. Wide binaries as a critical test of
classical gravity, European Physical Journal C 72: 1884.

[18] Hernandez, X., Mendoza, S., Suarez, T. & Bernal, T. [2010]. Understanding local
dwarf spheroidals and their scaling relations under MOdified Newtonian Dynamics,
Astronomy and Astrophysics 514: A101.

[19] Landau, L. & Lifshitz, E. [1975]. The classical theory of fields, Course of theoretical physics,
Butterworth Heinemann.

[20] Longair, M. [2011]. The Frontiers of Observational Cosmology and the Confrontation
with Theory, Journal of Physics Conference Series 314(1): 012011.

[21] Longair, M. S. [2008]. Galaxy Formation.

[22] Mendoza, S., Bernal, T., Hernandez, X., Hidalgo, J. C. & Torres, L. A. [2012].
Gravitational lensing with f (χ) = χ3/2 gravity in accordance with astrophysical
observations, ArXiv e-prints .

[23] Mendoza, S., Hernandez, X., Hidalgo, J. C. & Bernal, T. [2011]. A natural approach to
extended Newtonian gravity: tests and predictions across astrophysical scales, MNRAS
411: 226–234.

[24] Mendoza, S. & Rosas-Guevara, Y. M. [2007]. Gravitational waves and lensing of the
metric theory proposed by Sobouti, Astronomy and Astrophysics 472: 367–371.

[25] Meyer, H., Lohrmann, E., Schubert, S., Bartel, W., Glazov, A., Loehr, B., Niebuhr, C.,
Wuensch, E., Joensson, L. & Kempf, G. [2011]. Test of the Law of Gravitation at small
Accelerations, ArXiv e-prints .

[26] Milgrom, M. [1983]. A modification of the Newtonian dynamics - Implications for
galaxies, Astrophysical Journal 270: 371–389.

Open Questions in Cosmology154
Extending Cosmology: The Metric Approach 23

10.5772/53878

[27] Milgrom, M. [2008]. The MOND paradigm, arXiv:0801.3133 .

[28] Milgrom, M. [2009]. New Physics at Low Accelerations (MOND): an Alternative to Dark
Matter, arXiv:0912.2678 .

[29] Milgrom, M. [2010]. New Physics at Low Accelerations (MOND): an Alternative to Dark
Matter, in J.-M. Alimi & A. Fuözfa (ed.), American Institute of Physics Conference Series,
Vol. 1241 of American Institute of Physics Conference Series, pp. 139–153.

[30] Mishra, P. & Singh, T. P. [2012]. Galaxy rotation curves from a fourth order gravity,
ArXiv e-prints .

[31] Misner, C. W., Thorne, K. S. & Wheeler, J. A. [1973]. Gravitation, San Francisco:
W.H. Freeman and Co., 1973.

[32] Nojiri, S. & Odintsov, S. D. [2011]. Unified cosmic history in modified gravity: From
F(R) theory to Lorentz non-invariant models, Physics Reports 505: 59–144.

[33] Puech, M., Hammer, F., Flores, H., Delgado-Serrano, R., Rodrigues, M. & Yang, Y. [2010].
The baryonic content and Tully-Fisher relation at z ˜ 0.6, Astronomy and Astrophysics
510: A68+.

[34] Riess, A. G., Strolger, L.-G., Tonry, J., Casertano, S., Ferguson, H. C., Mobasher, B.,
Challis, P., Filippenko, A. V., Jha, S., Li, W., Chornock, R., Kirshner, R. P., Leibundgut,
B., Dickinson, M., Livio, M., Giavalisco, M., Steidel, C. C., Benítez, T. & Tsvetanov,
Z. [2004]. Type Ia Supernova Discoveries at z > 1 from the Hubble Space Telescope:
Evidence for Past Deceleration and Constraints on Dark Energy Evolution, Astrophysical
Journal 607: 665–687.

[35] Sedov, L. I. [1959]. Similarity and Dimensional Methods in Mechanics, Academic Press.

[36] Sobouti, Y. [2007]. An f(R) gravitation for galactic environments, Astronomy and
Astrophysics 464: 921–925.

[37] Sotiriou, T. P. & Faraoni, V. [2010]. f(R) theories of gravity, Reviews of Modern Physics
82: 451–497.

Extending Cosmology: The Metric Approach
http://dx.doi.org/10.5772/53878

155



22 Open Questions in Cosmology

[11] Dalarsson, M. & Dalarsson, N. [2005]. Tensor calculus, relativity, and cosmology : a first
course.

[12] Exirifard, Q. [2011]. Lunar system constraints on the modified theories of gravity, ArXiv
e-prints .

[13] Famaey, B. & McGaugh, S. [2011]. Modified Newtonian Dynamics (MOND):
Observational Phenomenology and Relativistic Extensions, ArXiv e-prints .

[14] Harko, T., Lobo, F. S. N., Nojiri, S. & Odintsov, S. D. [2011]. f(R,T) gravity, Physical
Review D 84(2): 024020.

[15] Hernandez, X. & Jiménez, M. A. [2012]. The Outskirts of Globular Clusters as Modified
Gravity Probes, Astrophysical Journal 750: 9.

[16] Hernandez, X., Jimenez, M. A. & Allen, C. [2012a]. Flattened velocity dispersion profiles
in Globular Clusters: Newtonian tides or modified gravity?, ArXiv e-prints .

[17] Hernandez, X., Jiménez, M. A. & Allen, C. [2012b]. Wide binaries as a critical test of
classical gravity, European Physical Journal C 72: 1884.

[18] Hernandez, X., Mendoza, S., Suarez, T. & Bernal, T. [2010]. Understanding local
dwarf spheroidals and their scaling relations under MOdified Newtonian Dynamics,
Astronomy and Astrophysics 514: A101.

[19] Landau, L. & Lifshitz, E. [1975]. The classical theory of fields, Course of theoretical physics,
Butterworth Heinemann.

[20] Longair, M. [2011]. The Frontiers of Observational Cosmology and the Confrontation
with Theory, Journal of Physics Conference Series 314(1): 012011.

[21] Longair, M. S. [2008]. Galaxy Formation.

[22] Mendoza, S., Bernal, T., Hernandez, X., Hidalgo, J. C. & Torres, L. A. [2012].
Gravitational lensing with f (χ) = χ3/2 gravity in accordance with astrophysical
observations, ArXiv e-prints .

[23] Mendoza, S., Hernandez, X., Hidalgo, J. C. & Bernal, T. [2011]. A natural approach to
extended Newtonian gravity: tests and predictions across astrophysical scales, MNRAS
411: 226–234.

[24] Mendoza, S. & Rosas-Guevara, Y. M. [2007]. Gravitational waves and lensing of the
metric theory proposed by Sobouti, Astronomy and Astrophysics 472: 367–371.

[25] Meyer, H., Lohrmann, E., Schubert, S., Bartel, W., Glazov, A., Loehr, B., Niebuhr, C.,
Wuensch, E., Joensson, L. & Kempf, G. [2011]. Test of the Law of Gravitation at small
Accelerations, ArXiv e-prints .

[26] Milgrom, M. [1983]. A modification of the Newtonian dynamics - Implications for
galaxies, Astrophysical Journal 270: 371–389.

Open Questions in Cosmology154
Extending Cosmology: The Metric Approach 23

10.5772/53878

[27] Milgrom, M. [2008]. The MOND paradigm, arXiv:0801.3133 .

[28] Milgrom, M. [2009]. New Physics at Low Accelerations (MOND): an Alternative to Dark
Matter, arXiv:0912.2678 .

[29] Milgrom, M. [2010]. New Physics at Low Accelerations (MOND): an Alternative to Dark
Matter, in J.-M. Alimi & A. Fuözfa (ed.), American Institute of Physics Conference Series,
Vol. 1241 of American Institute of Physics Conference Series, pp. 139–153.

[30] Mishra, P. & Singh, T. P. [2012]. Galaxy rotation curves from a fourth order gravity,
ArXiv e-prints .

[31] Misner, C. W., Thorne, K. S. & Wheeler, J. A. [1973]. Gravitation, San Francisco:
W.H. Freeman and Co., 1973.

[32] Nojiri, S. & Odintsov, S. D. [2011]. Unified cosmic history in modified gravity: From
F(R) theory to Lorentz non-invariant models, Physics Reports 505: 59–144.

[33] Puech, M., Hammer, F., Flores, H., Delgado-Serrano, R., Rodrigues, M. & Yang, Y. [2010].
The baryonic content and Tully-Fisher relation at z ˜ 0.6, Astronomy and Astrophysics
510: A68+.

[34] Riess, A. G., Strolger, L.-G., Tonry, J., Casertano, S., Ferguson, H. C., Mobasher, B.,
Challis, P., Filippenko, A. V., Jha, S., Li, W., Chornock, R., Kirshner, R. P., Leibundgut,
B., Dickinson, M., Livio, M., Giavalisco, M., Steidel, C. C., Benítez, T. & Tsvetanov,
Z. [2004]. Type Ia Supernova Discoveries at z > 1 from the Hubble Space Telescope:
Evidence for Past Deceleration and Constraints on Dark Energy Evolution, Astrophysical
Journal 607: 665–687.

[35] Sedov, L. I. [1959]. Similarity and Dimensional Methods in Mechanics, Academic Press.

[36] Sobouti, Y. [2007]. An f(R) gravitation for galactic environments, Astronomy and
Astrophysics 464: 921–925.

[37] Sotiriou, T. P. & Faraoni, V. [2010]. f(R) theories of gravity, Reviews of Modern Physics
82: 451–497.

Extending Cosmology: The Metric Approach
http://dx.doi.org/10.5772/53878

155



Chapter 7

Introduction to Palatini Theories of Gravity and

Nonsingular Cosmologies

Gonzalo J. Olmo

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/51807

Provisional chapter

Introduction to Palatini Theories of Gravity and

Nonsingular Cosmologies

Gonzalo J. Olmo

Additional information is available at the end of the chapter

1. Introduction

The impact of Einstein’s fundamental idea of gravitation as a curved space-time phenomenon
on our current understanding of the Universe has been enormously successful. A key
aspect of his celebrated theory of General Relativity (GR) is that the spatial sections of four
dimensional space-time need not be Euclidean. The Minkowskian description is just an
approximation valid on (relatively) local portions of space-time. On larger scales, however,
one must consider deformations induced by the matter on the geometry, which must be
dictated by some set of field equations. In this respect, the predictions of GR are in agreement
with experiments in scales that range from millimeters to astronomical units, scales in which
weak and strong field phenomena can be observed [39]. The theory is so successful in those
regimes and scales that it is generally accepted that it should work also at larger and shorter
scales, and at weaker and stronger regimes. The validity of these assumptions, obviously,
is not guaranteed a priori regardless of how beautiful and elegant the theory might appear.
Therefore, not only must we keep confronting the predictions of the theory with experiments
and/or observations at new scales, but also we have to demand theoretical consistency with
the other physical interactions and, in particular, in the quantum regime.

For the above reasons, we believe that scrutinizing the implicit assumptions and
mathematical structures behind the classical formulation of GR could help better understand
the starting point of some current approaches that go beyond our standard model of
gravitational physics. At the same time, this could provide new insights useful to address
from a different perspective some current open questions, such as the existence of black
hole and big bang singularities or the cosmic speedup problem. In this sense, Einstein
himself stated that ”the question whether the structure of [the spacetime] continuum is Euclidean,
or in accordance with Riemann’s general scheme, or otherwise, is . . . a physical question which must
be answered by experience, and not a question of a mere convention to be selected on practical
grounds” [10]. From these words it follows that questioning the regime of applicability of the
Riemannian nature of the geometry associated with the gravitational field and considering

©2012 Olmo, licensee InTech. This is an open access chapter distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
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2 Open Questions in Cosmology

more general frameworks are legitimate questions that should be explored by all available
means (theoretical and experimental). These are some of the basic points to be addressed in
this work.

In this chapter we explore in some detail the implications of relaxing the Riemannian
condition on the geometry by allowing the connection to be determined from first principles,
not by choice or convention. This approach, known as metric-affine or Palatini formalism
[24], assumes that metric and connection are equally fundamental and independent
geometrical entities. In consequence, any geometrical theory of gravity formulated in
this approach must provide enough equations to determine the form of the metric and
the connection (within the unavoidable indeterminacy imposed by the underlying gauge
freedom). We derive and discuss the field equations of a rather general family of Palatini
theories and then focus on two particular subfamilies which have attracted special attention
in recent years, namely, f (R) and f (R, Q) theories. The interest in studying these particular
theories lies in their ability to avoid (or soften in some cases) big bang and black hole
singularities and their relation with recent approaches to quantum gravity. Here we will
focus on the early-time cosmology of such theories.

The content is organized as follows. We begin by briefly reviewing in section 2 the basics
of differentiable manifolds with affine and metric structures, to emphasize that metric and
connection are equally fundamental and independent geometrical objects. In section 3 a
derivation of the field equations for a generic action depending on the metric and the
Riemann tensor is presented taking into account also the presence of torsion. In section
4 we discuss a particular family of Lagrangians of the form f (R, RµνRµν

) in combination
with perfect fluid matter, and prepare the notation and field equations needed to study
the dynamics of those theories. We then focus on the early-time characteristics of isotropic
and anisotropic homogeneous cosmologies 5 and show that nonsingular bouncing solutions
exist for f (R) and f (R, Q) models (subsections 5.5 and 5.6, respectively). We conclude with
a discussion of the results presented and point out some open questions that should be
addressed in the future.

2. Differentiable manifolds, affine connections, and the metric

In this section we quickly review some of the mathematical structures needed to construct a
geometric theory of the gravitational interactions. The goal is to put forward that metric and
connection are equally fundamental and independent geometrical entities, an aspect usually
overlooked in the construction of phenomenological extensions of GR. We will thus be more
sketchy than mathematically accurate. For a more exhaustive and precise discussion of these
topics see your favorite book on differentiable manifolds (or, for instance, [20]).

In the geometric description of gravitational theories, one begins by identifying physical
events with points on an n-dimensional manifold M. The next natural step is to provide
this manifold with a differentiable structure. One then labels the points p ∈ M with a set
of charts (Ui, ϕi), where the Ui are subsets of M and ϕi are maps from Ui to R

n (or an open
subset of R

n) such that every p ∈ M lies in at least one of the charts (Ui, ϕi). If for any two

charts (Ui, ϕi) and (Uj, ϕj) that overlap at some nonzero subset of points the map ϕi ◦ ϕj
−1

is not just continuous but differentiable, then we say that M is a differentiable manifold.
Since the Euclidean view of vectors as arrows connecting two points of the manifold is not
valid in general, to get a consistent definition we need to introduce first the concept of
curve and tangent vector to a curve at a point. We thus say that a smooth curve γ(t) in
M is a differentiable map that to each point of a segment associates a point in M, γ(t) :
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t ∈ [0, 1] → M. In a chart (U , ϕ), the points of the curve have the following coordinate
representation: x = ϕ(pt) = ϕ ◦ γ(t). If we consider now a function f on M, where f is a
map that to every p ∈ M assigns a real number ( f : M → R), the rate of change of f along
the curve γ(t) using the coordinates of the chart (U , ϕ) is given by

d f (ϕ ◦ γ(t))

dt
=

d f (x(t))

dt
=

∂ f

∂xµ

dxµ
(t)

dt
≡ Xµ

(t)
∂ f

∂xµ
, (1)

where we have defined the components of the tangent vector to the curve in this chart as
Xµ

≡ dxµ
(t)/dt. Vectors can thus be seen as differential operators X = Xµ∂µ whose action

on functions is of the form X[ f ] = Xµ∂µ f , thus providing a natural notion of directional
derivative for functions. The set {eµ ≡ ∂µ} defines a (coordinate) basis of the tangent space
of vectors at the point p, which we denote TpM. Obviously, vectors exist without specifying

the coordinates. Under changes of coordinates, we have V = Vµeµ = Ṽα ẽα = Ṽα ∂xµ

∂x̃α eµ,

which implies the well-known transformation law Vµ
= Ṽα ∂xµ

∂x̃α for the vector components.
When a vector is assigned smoothly to each point of M, it is called a vector field over
M. Each component of a vector field is thus a smooth function from M → R. Given a
vector field X, an integral curve of X is defined as the curve whose tangent vector coincides
with X. For infinitesimal displacements of magnitude ǫ in the direction of X, a given point

p of coordinates xµ becomes σ
µ

ǫ (x) = xµ
+ ǫXµ

(x). This transformation also induces a
correspondence between vectors of the tangent spaces TxM and Tσǫ(x)M. The effect of these

transformations on a vector field Y(x) leads to the concept of Lie derivative, whose action on
vector fields is defined as

LXY = [Xν
∂νYµ

(x)− Yν
∂νXµ

(x)] eµ ≡ [X, Y] . (2)

This derivative operator is independent of the choice of coordinates and follows naturally
from the differential structure of the manifold. It satisfies a number of useful properties
such as bilinearity in its two arguments, LX(Y + Z) = LXY + LXZ, LX+YZ = LXZ + LYZ,
and the chain rule LX f Y = (LX f )Y + fLXY, with LX f = X[ f ]. Though the Lie derivative
provides a natural directional derivative for functions, it does not work in the same way for
vectors and tensors of higher rank. In fact, since the partial derivatives of the vector X appear
explicitly in LXY, two vectors whose components at a given point have the same values but
whose partial derivatives at the point differ do not yield a vector that points in the same
direction, i.e., they are not proportional. Therefore, in order to introduce a proper notion
of directional derivative for vectors and tensors, we need to introduce a new structure called
connection which specifies how vectors (and tensors in general) are transported along a
curve.

Manifolds with a connection. We are thus going to introduce a derivative operator, which
we denote by ∇, such that given two vector fields X and Y we obtain a new vector field Z
defined by Z ≡ ∇XY. This derivative operator must be bilinear in its two arguments, ∇X(Y+

Z) = ∇XY+∇XZ, ∇X+YZ = ∇XZ+∇YZ, must satisfy the chain rule ∇X( f Y) = (∇X f )Y+

f∇XY, with ∇X f = X[ f ], and must also behave as a natural directional derivative in the
sense that ∇ f XY = f∇XY to guarantee that any two proportional vectors yield a result that
points in the same direction. In a given coordinate basis, we have ∇XY = Xµ

∇eµ
(Yνeν) =

Xµ

(

eµ[Y
ν
]eν + Yν

∇eµ
eν

)

. If our manifold is m−dimensional, defining m3 functions called

Introduction to Palatini Theories of Gravity and Nonsingular Cosmologies
http://dx.doi.org/10.5772/51807

159



2 Open Questions in Cosmology

more general frameworks are legitimate questions that should be explored by all available
means (theoretical and experimental). These are some of the basic points to be addressed in
this work.

In this chapter we explore in some detail the implications of relaxing the Riemannian
condition on the geometry by allowing the connection to be determined from first principles,
not by choice or convention. This approach, known as metric-affine or Palatini formalism
[24], assumes that metric and connection are equally fundamental and independent
geometrical entities. In consequence, any geometrical theory of gravity formulated in
this approach must provide enough equations to determine the form of the metric and
the connection (within the unavoidable indeterminacy imposed by the underlying gauge
freedom). We derive and discuss the field equations of a rather general family of Palatini
theories and then focus on two particular subfamilies which have attracted special attention
in recent years, namely, f (R) and f (R, Q) theories. The interest in studying these particular
theories lies in their ability to avoid (or soften in some cases) big bang and black hole
singularities and their relation with recent approaches to quantum gravity. Here we will
focus on the early-time cosmology of such theories.

The content is organized as follows. We begin by briefly reviewing in section 2 the basics
of differentiable manifolds with affine and metric structures, to emphasize that metric and
connection are equally fundamental and independent geometrical objects. In section 3 a
derivation of the field equations for a generic action depending on the metric and the
Riemann tensor is presented taking into account also the presence of torsion. In section
4 we discuss a particular family of Lagrangians of the form f (R, RµνRµν

) in combination
with perfect fluid matter, and prepare the notation and field equations needed to study
the dynamics of those theories. We then focus on the early-time characteristics of isotropic
and anisotropic homogeneous cosmologies 5 and show that nonsingular bouncing solutions
exist for f (R) and f (R, Q) models (subsections 5.5 and 5.6, respectively). We conclude with
a discussion of the results presented and point out some open questions that should be
addressed in the future.

2. Differentiable manifolds, affine connections, and the metric

In this section we quickly review some of the mathematical structures needed to construct a
geometric theory of the gravitational interactions. The goal is to put forward that metric and
connection are equally fundamental and independent geometrical entities, an aspect usually
overlooked in the construction of phenomenological extensions of GR. We will thus be more
sketchy than mathematically accurate. For a more exhaustive and precise discussion of these
topics see your favorite book on differentiable manifolds (or, for instance, [20]).

In the geometric description of gravitational theories, one begins by identifying physical
events with points on an n-dimensional manifold M. The next natural step is to provide
this manifold with a differentiable structure. One then labels the points p ∈ M with a set
of charts (Ui, ϕi), where the Ui are subsets of M and ϕi are maps from Ui to R

n (or an open
subset of R

n) such that every p ∈ M lies in at least one of the charts (Ui, ϕi). If for any two

charts (Ui, ϕi) and (Uj, ϕj) that overlap at some nonzero subset of points the map ϕi ◦ ϕj
−1

is not just continuous but differentiable, then we say that M is a differentiable manifold.
Since the Euclidean view of vectors as arrows connecting two points of the manifold is not
valid in general, to get a consistent definition we need to introduce first the concept of
curve and tangent vector to a curve at a point. We thus say that a smooth curve γ(t) in
M is a differentiable map that to each point of a segment associates a point in M, γ(t) :

Open Questions in Cosmology158
Introduction to Palatini Theories of Gravity and Nonsingular Cosmologies 3

t ∈ [0, 1] → M. In a chart (U , ϕ), the points of the curve have the following coordinate
representation: x = ϕ(pt) = ϕ ◦ γ(t). If we consider now a function f on M, where f is a
map that to every p ∈ M assigns a real number ( f : M → R), the rate of change of f along
the curve γ(t) using the coordinates of the chart (U , ϕ) is given by

d f (ϕ ◦ γ(t))

dt
=

d f (x(t))

dt
=

∂ f

∂xµ

dxµ
(t)

dt
≡ Xµ

(t)
∂ f

∂xµ
, (1)

where we have defined the components of the tangent vector to the curve in this chart as
Xµ

≡ dxµ
(t)/dt. Vectors can thus be seen as differential operators X = Xµ∂µ whose action

on functions is of the form X[ f ] = Xµ∂µ f , thus providing a natural notion of directional
derivative for functions. The set {eµ ≡ ∂µ} defines a (coordinate) basis of the tangent space
of vectors at the point p, which we denote TpM. Obviously, vectors exist without specifying

the coordinates. Under changes of coordinates, we have V = Vµeµ = Ṽα ẽα = Ṽα ∂xµ
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connection coefficients Γ
λ
µν by ∇eµ

eν ≡ Γ
λ
µνeλ we find that the last requirement, ∇ f XY =

f∇XY, is naturally satisfied. We thus find that

∇XY = Xµ

[

∂Yλ

∂xµ
+ Γ

λ
µνYν

]

eλ . (3)

The connection coefficients specify how the basis vectors change from point to point and,
in principle, can be arbitrarily defined. Under changes of coordinates, these coefficients
transform as follows:

∇eµ
eν ≡ Γ

λ
µνeλ =

∂x̃α

∂xµ
∇ẽα

(

∂x̃β

∂xν
ẽβ

)

=

∂x̃α

∂xµ

[

∂xλ

∂x̃ν

∂2 x̃γ

∂xλ∂xν
+

∂x̃β

∂xν
Γ̃

γ

αβ

]

ẽγ = Γ
λ
µν

∂x̃γ

∂xλ
ẽγ , (4)

which implies

Γ
λ
µν =

∂xλ

∂x̃γ

∂x̃α

∂xµ

∂x̃β

∂xν
Γ̃

γ

αβ
+

∂xλ

∂x̃γ

∂2 x̃γ

∂xµ∂xν
. (5)

This transformation law indicates that the connection coefficients do not transform as
tensorial quantities. Therefore, the connection cannot have an intrinsic geometrical meaning
as a measure of how much a manifold is curved. As intrinsic geometric objects, we can define
the torsion tensor

T(X, Y) = ∇XY −∇YX − [X, Y] , (6)

and the Riemann curvature tensor

R(X, Y)Z = ∇X∇YZ −∇Y∇XZ −∇
[X,Y]Z . (7)

In a coordinate basis, these tensors have the following components:

T(eµ, eν) =

(

Γ
λ
µν − Γ

λ
νµ

)

eλ , (8)

R(eµ, eν)eλ =

[

∂µΓ
β

νλ
− ∂νΓ

β

µλ
+ Γ

κ
νλ

Γ
γ
µκ − Γ

κ
µλ

Γ
γ
νκ

]

eγ . (9)

With the introduction of the connection, one can define the notion of parallel transport. Given
a curve γ(t) such that its tangent vector in a given chart has coordinates Xµ

= dxµ
(t)/dt,

we say that a vector Y is parallel transported along γ(t) if ∇XY = 0. In components,

this equation reads dYµ

dt + Γ
µ

αβ

dxα
(t)

dt Yβ
= 0, where d/dt ≡ Xµ∂µ. Geodesics are defined

as those curves which are parallel transported along themselves, namely, ∇XX = 0 or
dXµ

dt + Γ
µ

αβ
XαXβ

= 0.

Manifolds with a metric. So far we have been able to construct a number of geometrical
objects such as directional derivatives of vectors and tensors in general, the torsion and
Riemann tensors, geodesic curves, . . . without the need to introduce a metric tensor. A metric
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tensor provides a notion of distance between nearby points and allows, among other things,
to determine lengths, angles, areas, and volumes of objects which are locally defined in
space-time. Formally, a (pseudo-Riemannian) metric tensor is a symmetric bilinear form
that at each p ∈ M satisfies gp(U, V) = gp(V, U) for any two vectors U, V ∈ TpM and
gp(U, V) = 0 for any U ∈ TpM iff V = 0. The metric tensor allows to define an inner
product between vectors and also gives rise to an isomorphism between TpM and the dual
space of one-forms T∗

pM. In a coordinate basis, it can be represented by g = gµνdxµ
⊗

dxν,
where the differentials dxµ form a basis of T∗

pM. In manifolds with a metric, one can
impose a particular relation between the metric and the connection by demanding that the
scalar product of any two vectors which are parallel transported along any curve remains
covariantly constant. This condition can be translated into1

∇µgαβ = 0, which implies that

(recall that T
ρ

βσ
≡ Γ

ρ

βσ
− Γ

ρ

σβ
)

2Γ
λ

(µν)
+

(

T
ρ

νσgρµ + T
ρ

µσgρν

)

gσλ
= gλρ

[

∂µgρν + ∂νgρµ − ∂ρgµν

]

. (10)

From the right-hand side of this equation, one defines the Levi-Civita connection as

Lλ
µν ≡

gλρ

2

[

∂µgρν + ∂νgρµ − ∂ρgµν

]

. (11)

From this definition it follows that when the torsion vanishes, the connection is symmetric
and coincides with the Levi-Civita connection. In that case, when Γ

λ
µν = Lλ

µν, we say that
the associated geometry is Riemannian. It should be noted that though connections are not
tensors, the difference between any two connections is a tensor. This, in particular, allowed
us to construct the torsion tensor. With more generality, when the manifold is provided with
a metric, any connection Γ

λ
µν can be expressed as

Γ
λ
µν = Lλ

µν + Aλ
µν , (12)

where Aλ
µν is a tensor (which needs not be symmetric in its lower indices). Therefore, Palatini

theories of gravity, in which metric and connection are regarded as independent fields, can
be seen as theories in which an additional rank-three tensor field Aλ

µν has been added to the
gravitational Lagrangian.

3. Dynamics of Palatini theories

From the above quick review of the properties of differentiable manifolds with metric
and affine structures, it is clear that metric and connection are equally fundamental and
independent geometrical entities. In the construction of theories of gravity based on
geometry, we will thus assume this independence and will require those theories to yield
equations that allow to determine both the metric and the connection and the possible
relations between them. For simplicity, we will assume that the matter is only coupled to the

1 From now on we use the more standard notation ∇µ ≡ ∇eµ
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µν is a tensor (which needs not be symmetric in its lower indices). Therefore, Palatini

theories of gravity, in which metric and connection are regarded as independent fields, can
be seen as theories in which an additional rank-three tensor field Aλ

µν has been added to the
gravitational Lagrangian.

3. Dynamics of Palatini theories

From the above quick review of the properties of differentiable manifolds with metric
and affine structures, it is clear that metric and connection are equally fundamental and
independent geometrical entities. In the construction of theories of gravity based on
geometry, we will thus assume this independence and will require those theories to yield
equations that allow to determine both the metric and the connection and the possible
relations between them. For simplicity, we will assume that the matter is only coupled to the

1 From now on we use the more standard notation ∇µ ≡ ∇eµ
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metric (which is consistent with the experimental tests of the equivalence principle [39]) but
will allow an independent connection to appear in the gravitational sector of the theory. As
pointed out above, this is equivalent to having, besides the metric, a rank-three gravitational
tensor field. From a geometric perspective, this possibility seems much more natural and
fundamental than considering, for instance, scalar fields in the gravitational sector, though
scalar-tensor theories have traditionally received much more attention in the literature.

We begin by deriving the field equations of Palatini theories in a very general case and then
consider some simplifications to make contact with the literature. For a generic Palatini
theory in which the connection appears through the Riemann tensor or contractions of it, the
action can be written as follows [25]

S =

1

2κ2

∫

d4x
√

−g f (gµν, Rα
βµν) + Sm[gµν, ψ] , (13)

where Sm is the matter action, ψ represents collectively the matter fields, κ2 is a constant with

suitable dimensions (if f = R, then κ2
= 8πG), and

Rα
βµν = ∂µΓ

α
νβ

− ∂νΓ
α
µβ

+ Γ
α
µλ

Γ
λ
νβ

− Γ
α
νλ

Γ
λ
µβ

(14)

represents the components of the Riemann tensor, the field strength of the connection Γ
α
µβ

.

Note that since the connection is determined dynamically, i.e., we assume independence
between the metric and affine structures of the theory, we cannot assume any a priori
symmetry in its lower indices. This means that in the variation of the action to obtain
the field equations we must bear in mind that Γ

α
βγ

�= Γ
α
γβ

, i.e., we admit the possibility

of nonvanishing torsion. It should be noted that in GR energy and momentum are the
sources of curvature, while torsion is sourced by the spin of particles [14]. The fact that
torsion is usually not considered in introductory courses on gravitation may be rooted in
the educational tradition of this subject and the fact that the spin of particles was discovered
many years after the original formulation of GR by Einstein. Another reason may be that the
effects of torsion are very weak in general, except at very high densities, where the role of
torsion becomes dominant and may even avoid the formation of singularities (see [30] for a
recent discussion and earlier literature on the topic). For these reasons, and to motivate and
facilitate the exploration of the effects of torsion in extensions of GR, our derivation of the
field equations will be as general as possible (within reasonable limits). We will assume a
symmetric metric tensor gµν = gνµ and the usual definitions for the Ricci tensor Rµν ≡ Rρ

µρν

and the Ricci scalar R ≡ gµνRµν. The variation of the action (13) with respect to the metric
and the connection can be expressed as

δS =

1

2κ2

∫

d4x
√

−g

[

(

∂ f

∂gµν
−

f

2
gµν

)

δgµν
+

∂ f

∂Rα
βµν

δRα
βµν

]

+ δSm . (15)

Straightforward manipulations show that δRα
βµν can be written as

δRα
βµν = ∇µ

(

δΓ
α
νβ

)

−∇ν

(

δΓ
α
µβ

)

+ 2Sλ
µνδΓ

α
λβ

, (16)
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where Sλ
µν ≡ (Γ

λ
µν − Γ

λ
νµ)/2 now represents the torsion tensor (note the additional 1

2 factor as

compared to our initial definition in Eq.(8)) From now on we will use the notation Pα
βµν

≡

∂ f
∂Rα

βµν
. In order to put the δRα

βµν term in (15) in suitable form, we need to note that

IΓ =

∫

d4x
√

−gPα
βµν

∇µδΓ
α
νβ

=

∫

d4x
[

∇µ(

√

−gJµ
)− δΓ

α
νβ
∇µ

(

√

−gPα
βµν

)]

, (17)

where Jµ
≡ Pα

βµν
δΓ

α
νβ

. Since, in general, ∇µ(
√

−gJµ
) = ∂µ(

√

−gJµ
) + 2Sσ

σµ

√

−gJµ, we find

that (17) can be written as

IΓ =

∫

d4x
[

∂µ(

√

−gJµ
)− δΓ

α
νβ

{

∇µ

(

√

−gPα
βµν

)

− 2Sσ
σµ

√

−gPα
βµν

}]

. (18)

Using this result, (15) becomes

δS =

1

2κ2

∫

d4x

[

√

−g

(

∂ f

∂gµν
−

f

2
gµν

)

δgµν
+ ∂µ

(√

−gJµ
)

(19)

+

{

−

1
√

−g
∇µ

(

√

−gPα
β[µν]

)

+ Sν
σρPα

βσρ
+ 2Sσ

σµPα
β[µν]

}

2
√

−gδΓ
α
νβ

]

+ δSm .

We thus find that the field equations can be written as follows

κ
2Tµν =

∂ f

∂g(µν)
−

f

2
gµν (20)

κ
2Hα

νβ
= −

1
√

−g
∇µ

(

√

−gPα
β[µν]

)

+ Sν
σρPα

βσρ
+ 2Sσ

σµPα
β[µν] , (21)

where Pα
β[µν]

= (Pα
βµν

− Pα
βνµ

)/2, Tµν = −

2
√

−g
δSm
δgµν is the energy-momentum tensor of

the matter, and Hα
νβ

= −

1
√

−g
δSm
δΓα

νβ

represents the coupling of matter to the connection.

For simplicity, from now on we will assume that Hα
νβ

= 0. Eq. (21) can be put in a
more convenient form if the connection is decomposed into its symmetric and antisymmetric
(torsion) parts, Γ

α
µν = Cα

µν + Sα
µν, such that ∇µ Aν = ∂µ Aν −Cα

µν Aα − Sα
µν Aα = ∇

C
µ Aν − Sα

µν Aα

and ∇µ

√

−g = ∇

C
µ

√

−g − Sα
µα

√

−g. By doing this, (21) turns into

κ
2Hα

νβ
= −

1
√

−g
∇

C
µ

(

√

−gPα
β[µν]

)

+ Sλ
µαPλ

β[µν]
− S

β

µλ
Pα

λ[µν] . (22)

3.1. Example: f(R,Q) theories

Eqs. (20) and (22) can be used to write the field equations for the metric and the connection
for specific choices of the Lagrangian f (gµν, Rα

βµν). To make contact with the literature [26],
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metric (which is consistent with the experimental tests of the equivalence principle [39]) but
will allow an independent connection to appear in the gravitational sector of the theory. As
pointed out above, this is equivalent to having, besides the metric, a rank-three gravitational
tensor field. From a geometric perspective, this possibility seems much more natural and
fundamental than considering, for instance, scalar fields in the gravitational sector, though
scalar-tensor theories have traditionally received much more attention in the literature.

We begin by deriving the field equations of Palatini theories in a very general case and then
consider some simplifications to make contact with the literature. For a generic Palatini
theory in which the connection appears through the Riemann tensor or contractions of it, the
action can be written as follows [25]

S =

1

2κ2

∫

d4x
√

−g f (gµν, Rα
βµν) + Sm[gµν, ψ] , (13)

where Sm is the matter action, ψ represents collectively the matter fields, κ2 is a constant with

suitable dimensions (if f = R, then κ2
= 8πG), and

Rα
βµν = ∂µΓ

α
νβ

− ∂νΓ
α
µβ

+ Γ
α
µλ

Γ
λ
νβ

− Γ
α
νλ

Γ
λ
µβ

(14)

represents the components of the Riemann tensor, the field strength of the connection Γ
α
µβ

.

Note that since the connection is determined dynamically, i.e., we assume independence
between the metric and affine structures of the theory, we cannot assume any a priori
symmetry in its lower indices. This means that in the variation of the action to obtain
the field equations we must bear in mind that Γ

α
βγ

�= Γ
α
γβ

, i.e., we admit the possibility

of nonvanishing torsion. It should be noted that in GR energy and momentum are the
sources of curvature, while torsion is sourced by the spin of particles [14]. The fact that
torsion is usually not considered in introductory courses on gravitation may be rooted in
the educational tradition of this subject and the fact that the spin of particles was discovered
many years after the original formulation of GR by Einstein. Another reason may be that the
effects of torsion are very weak in general, except at very high densities, where the role of
torsion becomes dominant and may even avoid the formation of singularities (see [30] for a
recent discussion and earlier literature on the topic). For these reasons, and to motivate and
facilitate the exploration of the effects of torsion in extensions of GR, our derivation of the
field equations will be as general as possible (within reasonable limits). We will assume a
symmetric metric tensor gµν = gνµ and the usual definitions for the Ricci tensor Rµν ≡ Rρ

µρν

and the Ricci scalar R ≡ gµνRµν. The variation of the action (13) with respect to the metric
and the connection can be expressed as

δS =

1

2κ2

∫

d4x
√

−g

[

(

∂ f

∂gµν
−

f

2
gµν

)

δgµν
+

∂ f

∂Rα
βµν

δRα
βµν

]

+ δSm . (15)

Straightforward manipulations show that δRα
βµν can be written as

δRα
βµν = ∇µ

(

δΓ
α
νβ

)

−∇ν

(

δΓ
α
µβ

)

+ 2Sλ
µνδΓ

α
λβ

, (16)
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where Sλ
µν ≡ (Γ

λ
µν − Γ

λ
νµ)/2 now represents the torsion tensor (note the additional 1

2 factor as

compared to our initial definition in Eq.(8)) From now on we will use the notation Pα
βµν

≡

∂ f
∂Rα

βµν
. In order to put the δRα

βµν term in (15) in suitable form, we need to note that

IΓ =

∫

d4x
√

−gPα
βµν

∇µδΓ
α
νβ

=

∫

d4x
[

∇µ(

√

−gJµ
)− δΓ

α
νβ
∇µ

(

√

−gPα
βµν

)]

, (17)

where Jµ
≡ Pα

βµν
δΓ

α
νβ

. Since, in general, ∇µ(
√

−gJµ
) = ∂µ(

√

−gJµ
) + 2Sσ

σµ

√

−gJµ, we find

that (17) can be written as

IΓ =

∫

d4x
[

∂µ(

√

−gJµ
)− δΓ

α
νβ

{

∇µ

(

√

−gPα
βµν

)

− 2Sσ
σµ

√

−gPα
βµν

}]

. (18)

Using this result, (15) becomes

δS =

1

2κ2

∫

d4x

[

√

−g

(

∂ f

∂gµν
−

f

2
gµν

)

δgµν
+ ∂µ

(√

−gJµ
)

(19)

+

{

−

1
√

−g
∇µ

(

√

−gPα
β[µν]

)

+ Sν
σρPα

βσρ
+ 2Sσ

σµPα
β[µν]

}

2
√

−gδΓ
α
νβ

]

+ δSm .

We thus find that the field equations can be written as follows

κ
2Tµν =

∂ f

∂g(µν)
−

f

2
gµν (20)

κ
2Hα

νβ
= −

1
√

−g
∇µ

(

√

−gPα
β[µν]

)

+ Sν
σρPα

βσρ
+ 2Sσ

σµPα
β[µν] , (21)

where Pα
β[µν]

= (Pα
βµν

− Pα
βνµ

)/2, Tµν = −

2
√

−g
δSm
δgµν is the energy-momentum tensor of

the matter, and Hα
νβ

= −

1
√

−g
δSm
δΓα

νβ

represents the coupling of matter to the connection.

For simplicity, from now on we will assume that Hα
νβ

= 0. Eq. (21) can be put in a
more convenient form if the connection is decomposed into its symmetric and antisymmetric
(torsion) parts, Γ

α
µν = Cα

µν + Sα
µν, such that ∇µ Aν = ∂µ Aν −Cα

µν Aα − Sα
µν Aα = ∇

C
µ Aν − Sα

µν Aα

and ∇µ

√

−g = ∇

C
µ

√

−g − Sα
µα

√

−g. By doing this, (21) turns into

κ
2Hα

νβ
= −

1
√

−g
∇

C
µ

(

√

−gPα
β[µν]

)

+ Sλ
µαPλ

β[µν]
− S

β

µλ
Pα

λ[µν] . (22)

3.1. Example: f(R,Q) theories

Eqs. (20) and (22) can be used to write the field equations for the metric and the connection
for specific choices of the Lagrangian f (gµν, Rα

βµν). To make contact with the literature [26],
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[5] ,[23], we now focus on the case f (R, Q) = f (gµνRµν, gµνgαβRµαRνβ). For this family of
Lagrangians, we obtain

Pα
βµν

= δα
µ Mβν

= δα
µ
(

fRgβν
+ 2 fQRβν

)

, (23)

where fX = ∂X f . Inserting this expression in (22) and tracing over α and ν, we find that

∇

C
λ
[

√

−gMβλ
] = (2

√

−g/3)[Sσ
λσ

Mβλ
+ (3/2)S

β

λµ
Mλµ

]. Using this result, the connection

equation can be put as follows

1
√

−g
∇

C
α

[

√

−gMβν
]

= Sν
αλ

Mβλ
− Sν

βλ
Mλν

− Sλ
αλ

Mβν
+

2

3
δ

ν
αSσ

λσ
Mβλ (24)

The symmetric and antisymmetric combinations of this equation lead, respectively, to

1
√

−g
∇

C
α

[

√

−gM(βν)
]

= Sν
αλ

M[βλ]
− S

β

αλ
M[νλ]

− Sλ
αλ

M(βν)
+

Sσ
λσ

3

(

δ
ν
α Mβλ

+ δ
β

α Mνλ
)

(25)

1
√

−g
∇

C
α

[

√

−gM[βν]
]

= Sν
αλ

M(βλ)
− S

β

αλ
M(νλ)

− Sλ
αλ

M[βν]
+

Sσ
λσ

3

(

δ
ν
α Mβλ

− δ
β

α Mνλ
)

.(26)

Important simplifications can be achieved considering the new variables

Γ̃
λ
µν = Γ

λ
µν + αδ

λ
ν Sσ

σµ , (27)

and taking the parameter α = 2/3, which implies that S̃λ
µν ≡ Γ̃

λ

[µν]
is such that S̃σ

σν = 0. The

symmetric and antisymmetric parts of Γ̃
λ
µν are related to those of Γ

λ
µν by

C̃λ
µν = Cλ

µν +
1

3

(

δ
λ
ν Sσ

σµ + δ
λ
µ Sσ

σν

)

(28)

S̃λ
µν = Sλ

µν +
1

3

(

δ
λ
ν Sσ

σµ − δ
λ
µ Sσ

σν

)

(29)

Using these variables, Eqs. (25) and (26) take the following compact form

1
√

−g
∇

C̃
α

[

√

−gM(βν)
]

=

[

S̃ν
αλ

gβκ
+ S̃

β

αλ
gνκ

]

gλρ M
[κρ] (30)

1
√

−g
∇

C̃
α

[

√

−gM[βν]
]

=

[

S̃ν
αλ

gβκ
− S̃

β

αλ
gνκ

]

gλρ M
(κρ) . (31)

In these equations, M(βν)
= fRgβν

+ 2 fQR(βν)
(Γ), and M[βν]

= 2 fQR[βν]
(Γ), where

R
(βν)(Γ) = R

(βν)(Γ̃) and R
[βν](Γ) = R

[βν](Γ̃) +
2
3

(

∂βSσ
σν − ∂νSσ

σβ

)

.
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In the recent literature on Palatini theories, only the torsionless case has been studied in
detail. When torsion is considered in f (R) theories, Eqs. (30) and (31) recover the results
presented in [24]. In general, those equations put forward that when the traceless torsion
tensor S̃ν

αλ
vanishes, the symmetric and antisymmetric parts of Mβν decouple. The dynamics

of these theories, therefore, can be studied in different levels of complexity. The simplest case
will be studied here and consists on setting Sν

αλ
and R

[µν] to zero. A more detailed discussion
of the other cases can be found in [28].

3.2. Volume-invariant and torsionless f (R, Q)

When the torsion is set to zero, it can be shown [32], [12] that the vanishing of R
[µν]

guarantees the existence of a volume element that is covariantly conserved by Γ
α
µν. The

rank-two tensor that defines that volume element must be a solution of (30), which in this
case takes the form

∇

Γ
α

[

√

−g
(

fRgβν
+ 2 fQRβν

(Γ)

)]

= 0 . (32)

Note that here Rβν
(Γ) is symmetric because we are taking R

[µν](Γ) = 0. To obtain the solution
of (32), we first consider (20) particularized to our theory (with Sν

αλ
and R

[µν] set to zero),

fRRµν −
f

2
gµν + 2 fQRµαRα

ν = κ
2Tµν , (33)

and rewrite it in the following form

fRBµ
ν
−

f

2
δµ

ν
+ 2 fQBµ

αBα
ν
= κ

2Tµ
ν , (34)

where we have defined Bµ
ν
≡ Rµαgαν. This equation can be seen as a second-order algebraic

equation for the matrix B̂, whose components are [B̂]µ
ν
≡ Bµ

ν. The solutions to this equation

imply that B̂ is an algebraic function of the components of the stress-energy tensor Tµ
ν, i.e.,

B̂ = B̂(T̂). This relation is very important because it allows to express (32) in the form

∇

Γ
α

[

√

−ggβλ
(

fRδ
ν
λ
+ 2 fQBλ

ν
)

]

= 0 , (35)

where now fR, fQ and Bα
ν are functions of the stress-energy tensor of the matter. The

connection, therefore, can be obtained by elementary algebraic manipulations [23]. To do it,
one defines a rank-two symmetric tensor hµν such that

√

−ggβλ
(

fRδν
λ
+ 2 fQBλ

ν
)

=

√

−hhβν,

which turns (35) into the well-known equation ∇µ

[

√

−hhβν

]

= 0, and implies that Γ
α
βν

is

given by the Christoffel symbols of the tensor hµν, i.e.,

Γ
α
βγ

=

hαρ

2

(

∂βhργ + ∂γhρβ − ∂ρhβγ

)

. (36)
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[5] ,[23], we now focus on the case f (R, Q) = f (gµνRµν, gµνgαβRµαRνβ). For this family of
Lagrangians, we obtain

Pα
βµν

= δα
µ Mβν

= δα
µ
(

fRgβν
+ 2 fQRβν

)

, (23)

where fX = ∂X f . Inserting this expression in (22) and tracing over α and ν, we find that

∇

C
λ
[

√

−gMβλ
] = (2

√

−g/3)[Sσ
λσ

Mβλ
+ (3/2)S

β

λµ
Mλµ

]. Using this result, the connection

equation can be put as follows
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√
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∇
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[

√

−gMβν
]

= Sν
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Mβλ
− Sν
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Mλν

− Sλ
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+

2

3
δ

ν
αSσ
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Mβλ (24)

The symmetric and antisymmetric combinations of this equation lead, respectively, to

1
√

−g
∇

C
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[

√

−gM(βν)
]

= Sν
αλ

M[βλ]
− S

β

αλ
M[νλ]

− Sλ
αλ

M(βν)
+

Sσ
λσ

3

(

δ
ν
α Mβλ

+ δ
β

α Mνλ
)

(25)

1
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∇
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α

[

√
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]

= Sν
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M(βλ)
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β
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M(νλ)

− Sλ
αλ

M[βν]
+

Sσ
λσ

3

(

δ
ν
α Mβλ

− δ
β

α Mνλ
)

.(26)

Important simplifications can be achieved considering the new variables

Γ̃
λ
µν = Γ

λ
µν + αδ

λ
ν Sσ

σµ , (27)

and taking the parameter α = 2/3, which implies that S̃λ
µν ≡ Γ̃

λ

[µν]
is such that S̃σ

σν = 0. The

symmetric and antisymmetric parts of Γ̃
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µν are related to those of Γ

λ
µν by

C̃λ
µν = Cλ
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1

3

(

δ
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σµ + δ
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)

(28)

S̃λ
µν = Sλ

µν +
1

3

(

δ
λ
ν Sσ

σµ − δ
λ
µ Sσ

σν

)

(29)

Using these variables, Eqs. (25) and (26) take the following compact form

1
√

−g
∇

C̃
α

[

√

−gM(βν)
]

=

[

S̃ν
αλ

gβκ
+ S̃

β

αλ
gνκ

]

gλρ M
[κρ] (30)

1
√

−g
∇

C̃
α

[

√

−gM[βν]
]

=

[

S̃ν
αλ

gβκ
− S̃

β

αλ
gνκ

]

gλρ M
(κρ) . (31)

In these equations, M(βν)
= fRgβν

+ 2 fQR(βν)
(Γ), and M[βν]

= 2 fQR[βν]
(Γ), where

R
(βν)(Γ) = R

(βν)(Γ̃) and R
[βν](Γ) = R

[βν](Γ̃) +
2
3

(

∂βSσ
σν − ∂νSσ

σβ

)

.
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In the recent literature on Palatini theories, only the torsionless case has been studied in
detail. When torsion is considered in f (R) theories, Eqs. (30) and (31) recover the results
presented in [24]. In general, those equations put forward that when the traceless torsion
tensor S̃ν

αλ
vanishes, the symmetric and antisymmetric parts of Mβν decouple. The dynamics

of these theories, therefore, can be studied in different levels of complexity. The simplest case
will be studied here and consists on setting Sν

αλ
and R

[µν] to zero. A more detailed discussion
of the other cases can be found in [28].

3.2. Volume-invariant and torsionless f (R, Q)

When the torsion is set to zero, it can be shown [32], [12] that the vanishing of R
[µν]

guarantees the existence of a volume element that is covariantly conserved by Γ
α
µν. The

rank-two tensor that defines that volume element must be a solution of (30), which in this
case takes the form

∇

Γ
α

[

√

−g
(

fRgβν
+ 2 fQRβν

(Γ)

)]

= 0 . (32)

Note that here Rβν
(Γ) is symmetric because we are taking R

[µν](Γ) = 0. To obtain the solution
of (32), we first consider (20) particularized to our theory (with Sν

αλ
and R

[µν] set to zero),

fRRµν −
f

2
gµν + 2 fQRµαRα

ν = κ
2Tµν , (33)

and rewrite it in the following form

fRBµ
ν
−

f

2
δµ

ν
+ 2 fQBµ

αBα
ν
= κ

2Tµ
ν , (34)

where we have defined Bµ
ν
≡ Rµαgαν. This equation can be seen as a second-order algebraic

equation for the matrix B̂, whose components are [B̂]µ
ν
≡ Bµ

ν. The solutions to this equation

imply that B̂ is an algebraic function of the components of the stress-energy tensor Tµ
ν, i.e.,

B̂ = B̂(T̂). This relation is very important because it allows to express (32) in the form

∇

Γ
α

[

√

−ggβλ
(

fRδ
ν
λ
+ 2 fQBλ

ν
)

]

= 0 , (35)

where now fR, fQ and Bα
ν are functions of the stress-energy tensor of the matter. The

connection, therefore, can be obtained by elementary algebraic manipulations [23]. To do it,
one defines a rank-two symmetric tensor hµν such that

√

−ggβλ
(

fRδν
λ
+ 2 fQBλ

ν
)

=

√

−hhβν,

which turns (35) into the well-known equation ∇µ

[

√

−hhβν

]

= 0, and implies that Γ
α
βν

is

given by the Christoffel symbols of the tensor hµν, i.e.,

Γ
α
βγ

=

hαρ

2

(

∂βhργ + ∂γhρβ − ∂ρhβγ

)

. (36)
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From the defining expression of hµν, one finds that the relation between hµν and gµν can be
expressed as follows

hµν =

√

det Σ̂[Σ
−1

]µ

α
gαν , hµν

=

gµα
Σα

ν

√

det Σ̂

, (37)

where we have defined the matrix Σα
ν

≡

(

fRδν
α + 2 fQBα

ν
)

. With these relations and
definitions, the field equations for the metric hµν can be written in compact form expressing

(34) as Bµ
α
Σα

ν
=

f
2 δν

µ + κ2Tµ
ν and using the relation Bµ

α
Σα

ν
=

√

det Σ̂Rµα(h)h
αν to obtain

[27]

Rµ
ν
(h) =

1
√

det Σ̂

(

f

2
δ

ν
µ + κ

2Tµ
ν

)

. (38)

In general, it will be more convenient to work with the field equations for the auxiliary
metric hµν because their form is more tractable. Nonetheless, if one insists on writing the
field equations using the metric gµν, one must note that the connection (36) is related to the
Levi-Civita connection of gµν by the tensor (recall Eq.(12))

Aα
βγ

≡ Γ
α
βγ

− Lα
βγ

=

hαρ

2

[

∇

L
µhρν +∇

L
ν hρµ −∇

L
ρ hµν

]

. (39)

The Riemann tensors of Γ
α
βγ

and Lα
βγ

are thus related as follows

Rα
βµν(Γ) = Rα

βµν(L) +∇

L
µ Aα

νβ
−∇

L
ν Aα

µβ
+ Aλ

νβ
Aα

µλ
− Aλ

µβ
Aα

νλ
, (40)

which allows to express (38) in terms of the Ricci tensor of the metric gµν, the usual covariant
derivatives of Lα

βγ
, and the matter.

4. f (R, Q) theories with a perfect fluid

The explicit form of the matrix Σ̂ that relates the metrics hµν and gµν can only be found once
all the sources that make up Tµν have been specified. In our discussion we will just consider
a perfect fluid or a sum of non-interacting perfect fluids such that

Tµν = (ρ + P)uµuν + Pgµν (41)

with ρ = ∑i ρi and P = ∑i Pi. In order to find an expression for Σ̂, we first rewrite (34) using
matrix notation as

2 fQB̂2
+ fRB̂ −

f

2
Î = κ

2T̂ . (42)
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Using (41) this equation can be rewritten as follows

2 fQ

(

B̂ +

fR

4 fQ
Î

)2

=

(

κ
2P +

f

2
+

f 2
R

8 fQ

)

Î + κ
2
(ρ + P)uµuµ . (43)

Denoting λ2
≡

(

κ2P +

f
2 +

f 2
R

8 fQ

)

and making explicit the matrix representation, (43) becomes

2 fQ

(

B̂ +

fR

4 fQ
Î

)2

=

(

λ2
− κ2

(ρ + P) �0
�0 λ2 Î3X3

)

, (44)

where Î3X3 denotes 3-dimensional identity matrix. Since the right-hand side of (44) is a
diagonal matrix, it is immediate to compute its square root, which leads to

√

2 fQ

(

B̂ +

fR

4 fQ
Î

)

=

(

s1

√

λ2
− κ2

(ρ + P) �0
�0 λŜ3X3

)

, (45)

where s1 denotes a sign, which can be positive or negative, and Ŝ3X3 denotes a 3X3 diagonal
matrix with elements {si = ±1}. For consistency of the theory in the limit fQ → 0, we must

have s1 = 1 and Ŝ3X3 = Î3X3. This result allows to express Σ̂ as follows

Σ̂ =

(

σ1
�0

�0 σ2 Î3X3

)

, (46)

where σ1 and σ2 take the form

σ1 =

fR

2
±

√

2 fQ

√

λ2
− κ2

(ρ + P)

σ2 =

fR

2
+

√

2 fQλ . (47)

Note that we have kept the two signs ± in σ1. The reason for this will be understood later,
when particular models are considered. The point is that in some cases of physical interest,
at high densities one should take the negative sign in front of the square root to guarantee
that σ1 is continuous and differentiable accross the point where the square root vanishes.
This technical issue does not arise for σ2.

4.1. Workable models: f (R, Q) = f̃ (R) + αQ

So far we have made progress without specifying the form of the Lagrangian f (R, Q).
However, in order to find the explicit dependence of R = Bµ

µ and Q = Bµ
αBα

µ with the ρ and
P of the fluids, we must choose a Lagrangian explicitly. Restricting the function f (R, Q) to the
family f (R, Q) = f̃ (R) + αQ, we will see that it is possible to find the generic dependence of
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From the defining expression of hµν, one finds that the relation between hµν and gµν can be
expressed as follows

hµν =

√

det Σ̂[Σ
−1

]µ

α
gαν , hµν

=

gµα
Σα

ν

√

det Σ̂

, (37)

where we have defined the matrix Σα
ν

≡

(

fRδν
α + 2 fQBα

ν
)

. With these relations and
definitions, the field equations for the metric hµν can be written in compact form expressing

(34) as Bµ
α
Σα

ν
=

f
2 δν

µ + κ2Tµ
ν and using the relation Bµ

α
Σα

ν
=

√

det Σ̂Rµα(h)h
αν to obtain

[27]

Rµ
ν
(h) =

1
√

det Σ̂

(

f

2
δ

ν
µ + κ

2Tµ
ν

)

. (38)

In general, it will be more convenient to work with the field equations for the auxiliary
metric hµν because their form is more tractable. Nonetheless, if one insists on writing the
field equations using the metric gµν, one must note that the connection (36) is related to the
Levi-Civita connection of gµν by the tensor (recall Eq.(12))

Aα
βγ

≡ Γ
α
βγ

− Lα
βγ

=

hαρ

2

[

∇

L
µhρν +∇

L
ν hρµ −∇

L
ρ hµν

]

. (39)

The Riemann tensors of Γ
α
βγ

and Lα
βγ

are thus related as follows

Rα
βµν(Γ) = Rα

βµν(L) +∇

L
µ Aα

νβ
−∇

L
ν Aα

µβ
+ Aλ

νβ
Aα

µλ
− Aλ

µβ
Aα

νλ
, (40)

which allows to express (38) in terms of the Ricci tensor of the metric gµν, the usual covariant
derivatives of Lα

βγ
, and the matter.

4. f (R, Q) theories with a perfect fluid

The explicit form of the matrix Σ̂ that relates the metrics hµν and gµν can only be found once
all the sources that make up Tµν have been specified. In our discussion we will just consider
a perfect fluid or a sum of non-interacting perfect fluids such that

Tµν = (ρ + P)uµuν + Pgµν (41)

with ρ = ∑i ρi and P = ∑i Pi. In order to find an expression for Σ̂, we first rewrite (34) using
matrix notation as

2 fQB̂2
+ fRB̂ −

f

2
Î = κ

2T̂ . (42)
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Using (41) this equation can be rewritten as follows

2 fQ

(

B̂ +

fR

4 fQ
Î

)2

=

(

κ
2P +

f

2
+

f 2
R

8 fQ

)

Î + κ
2
(ρ + P)uµuµ . (43)

Denoting λ2
≡

(

κ2P +

f
2 +

f 2
R

8 fQ

)

and making explicit the matrix representation, (43) becomes

2 fQ

(

B̂ +

fR

4 fQ
Î

)2

=

(

λ2
− κ2

(ρ + P) �0
�0 λ2 Î3X3

)

, (44)

where Î3X3 denotes 3-dimensional identity matrix. Since the right-hand side of (44) is a
diagonal matrix, it is immediate to compute its square root, which leads to

√

2 fQ

(

B̂ +

fR

4 fQ
Î

)

=

(

s1

√

λ2
− κ2

(ρ + P) �0
�0 λŜ3X3

)

, (45)

where s1 denotes a sign, which can be positive or negative, and Ŝ3X3 denotes a 3X3 diagonal
matrix with elements {si = ±1}. For consistency of the theory in the limit fQ → 0, we must

have s1 = 1 and Ŝ3X3 = Î3X3. This result allows to express Σ̂ as follows

Σ̂ =

(

σ1
�0

�0 σ2 Î3X3

)

, (46)

where σ1 and σ2 take the form

σ1 =

fR

2
±

√

2 fQ

√

λ2
− κ2

(ρ + P)

σ2 =

fR

2
+

√

2 fQλ . (47)

Note that we have kept the two signs ± in σ1. The reason for this will be understood later,
when particular models are considered. The point is that in some cases of physical interest,
at high densities one should take the negative sign in front of the square root to guarantee
that σ1 is continuous and differentiable accross the point where the square root vanishes.
This technical issue does not arise for σ2.

4.1. Workable models: f (R, Q) = f̃ (R) + αQ

So far we have made progress without specifying the form of the Lagrangian f (R, Q).
However, in order to find the explicit dependence of R = Bµ

µ and Q = Bµ
αBα

µ with the ρ and
P of the fluids, we must choose a Lagrangian explicitly. Restricting the function f (R, Q) to the
family f (R, Q) = f̃ (R) + αQ, we will see that it is possible to find the generic dependence of
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Q with ρ and P, while R is found to depend only on the combination T = −ρ + 3P [23]. The
reason for this follows from the trace of (33) with gµν, which for this family of Lagrangians
gives the algebraic relation R f̃R − 2 f̃ = κ2T and implies that R = R(T) (like in Palatini f (R)
theories). For these theories, we have that fQ = α, which is a constant. Therefore, from the
trace of (44) we find

�

2 fQ

�

R +

fR

fQ

�

=

�

λ2
− κ2

(ρ + P) + 3λ , (48)

which can be cast as

�

�

2 fQ

�

R +

fR

fQ

�

− 3λ

�2

= λ
2
− κ

2
(ρ + P) (49)

After a bit of algebra we find that

λ =

�

2 fQ

8



3

�

R +

fR

fQ

�

±

�

�

R +

fR

fQ

�2

−

4κ2
(ρ + P)

fQ



 (50)

From this expression and the definition of λ2, we find

αQ = −

�

f̃ +
f̃ 2
R

4 fQ
+ 2κ

2P

�

+

fQ

16






3

�

R +

f̃R

fQ

�

±

�

�

�

�

�

R +

f̃R

fQ

�2

−

4κ2
(ρ + P)

fQ







2

, (51)

where R, f̃ , and f̃R are functions of T = −ρ + 3P.

5. Nonsingular cosmologies in f (R, Q) theories

The difficulties faced by GR to provide a consistent description of singularities and quantum
phenomena at high energies (microscopic or Planck scales) is generally seen as an indication
that we should go beyond the standard geometric structures to successfully quantize the
theory and avoid singularities. This idea has motivated a variety of approaches that range
from the consideration of higher-dimensional superstrings and other extended objects [11],
to non-commutative geometries or non-perturbative quantization methods [3], [31], [35] ,
to name just a few well-known cases. Unfortunately, the formidable task of building a
satisfactory quantum theory of gravity is not yet complete. Moreover, even if we managed
to get such a theory, we would still have to face the challenge of testing its predictions. In
this sense, it should be noted that since the quantum gravitational regime is so far from our
current and future experimental capabilities, our only hope might be to use the information
available in the cosmic microwave background radiation to verify or rule out our theories [1].
How much of the quantum gravitational regime could be contrasted with these yet-to-come
theories is not clear. This is due, in part, because the theorized rapid accelerated expansion
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that took place during the inflationary period may have washed out many of the relevant
proper signatures needed to distinguish the predictions of different quantum theories of
gravity.

A conservative approach, therefore, consists on exploring the quantum properties and
interactions of the matter fields in the very early universe using the well-established
methods of quantum field theory in curved space-times [29]. The success of this approach
has been confirmed in combination with models of inflation and sheds relevant light
on the mechanisms that may have caused the primordial spectra of scalar and tensorial
perturbations [38], [19], [9],[18], [15]. The applicability of this approach, however, becomes
unreliable at increasing energies as the regime of the classical big bang singularity is
approached and the quantum fluctuations of the gravitational field can no longer be
neglected. At that stage, a complete quantum theory of gravity seems necessary to provide
a consistent description of the ongoing physical processes. Obviously, different quantum
theories could lead to completely different quantum gravitational scenarios and, therefore, a
generic quantum origin for the universe cannot be guessed a priori by any logical means.

In recent years, bouncing cosmological models have attracted much attention [21]. These
are scenarios in which the big bang singularity is replaced by a quantum-induced bounce
that connects an earlier phase of contraction with the subsequent expanding phase (in which
we happen to exist). In such scenarios, aside from the quantum regime, the contracting
and expanding phases are expected to asymptote an effective classical geometry whose
dynamics, on consistency grounds, should match that of GR at low energies. In this
context, and as an intermediate step between the quantum field theory approach in the
(singular) curved background provided by GR and a (nonsingular) full theory of quantum
gravity, one could consider the case of a smooth effective geometry free from big bang
singularities on top of which quantum matter fields could still be treated perturbatively
in a consistent way. This view would somehow disentangle the non-perturbative part
of the quantum gravitational sector into an effective classical, nonsingular geometry, plus
perturbative quantum corrections that propagate on top of the regular effective background.
The absence of curvature singularities would make the treatment of quantum fields on
the resulting geometry more reliable, and could help shed new light on the effects of the
matter-gravity interaction in the very-early universe.

In the literature there exist many interesting examples of (quantum and non-quantum)
cosmological models that avoid the big bang singularity by means of a bounce. Roughly,
those models can be classified in two large groups, depending on whether they contain a
modified gravitational sector or a modified matter sector (see [21] for details and a very
complete list of references). Generically, modified gravity theories imply the existence of
new dynamical degrees of freedom, such as gravitational scalar fields (like in scalar-tensor
theories), higher-derivatives of the metric, extra dimensions, . . . The consideration of exotic
matter sources may be justified, in some cases, from an effective field theory approach,
such as in the case of non-linear theories of electrodynamics, which naturally arise in
low-energy limits of string theories. In the remainder of this chapter, we are going to
study bouncing cosmological models from the modified gravity perspective provided by the
Palatini theories discussed above. This approach is particularly interesting because, despite
being a modified-gravity approach, the underlying mechanisms that modify the gravitational
dynamics are not associated with new dynamical degrees of freedom or higher-derivative
equations. In fact, it is the nontrivial role played by the matter in the determination of the
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Q with ρ and P, while R is found to depend only on the combination T = −ρ + 3P [23]. The
reason for this follows from the trace of (33) with gµν, which for this family of Lagrangians
gives the algebraic relation R f̃R − 2 f̃ = κ2T and implies that R = R(T) (like in Palatini f (R)
theories). For these theories, we have that fQ = α, which is a constant. Therefore, from the
trace of (44) we find
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R +

fR

fQ
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=
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λ2
− κ2

(ρ + P) + 3λ , (48)

which can be cast as
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R +
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From this expression and the definition of λ2, we find
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




3

�

R +

f̃R

fQ

�

±

�

�

�

�

�

R +

f̃R

fQ

�2

−

4κ2
(ρ + P)

fQ




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where R, f̃ , and f̃R are functions of T = −ρ + 3P.

5. Nonsingular cosmologies in f (R, Q) theories

The difficulties faced by GR to provide a consistent description of singularities and quantum
phenomena at high energies (microscopic or Planck scales) is generally seen as an indication
that we should go beyond the standard geometric structures to successfully quantize the
theory and avoid singularities. This idea has motivated a variety of approaches that range
from the consideration of higher-dimensional superstrings and other extended objects [11],
to non-commutative geometries or non-perturbative quantization methods [3], [31], [35] ,
to name just a few well-known cases. Unfortunately, the formidable task of building a
satisfactory quantum theory of gravity is not yet complete. Moreover, even if we managed
to get such a theory, we would still have to face the challenge of testing its predictions. In
this sense, it should be noted that since the quantum gravitational regime is so far from our
current and future experimental capabilities, our only hope might be to use the information
available in the cosmic microwave background radiation to verify or rule out our theories [1].
How much of the quantum gravitational regime could be contrasted with these yet-to-come
theories is not clear. This is due, in part, because the theorized rapid accelerated expansion
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that took place during the inflationary period may have washed out many of the relevant
proper signatures needed to distinguish the predictions of different quantum theories of
gravity.

A conservative approach, therefore, consists on exploring the quantum properties and
interactions of the matter fields in the very early universe using the well-established
methods of quantum field theory in curved space-times [29]. The success of this approach
has been confirmed in combination with models of inflation and sheds relevant light
on the mechanisms that may have caused the primordial spectra of scalar and tensorial
perturbations [38], [19], [9],[18], [15]. The applicability of this approach, however, becomes
unreliable at increasing energies as the regime of the classical big bang singularity is
approached and the quantum fluctuations of the gravitational field can no longer be
neglected. At that stage, a complete quantum theory of gravity seems necessary to provide
a consistent description of the ongoing physical processes. Obviously, different quantum
theories could lead to completely different quantum gravitational scenarios and, therefore, a
generic quantum origin for the universe cannot be guessed a priori by any logical means.

In recent years, bouncing cosmological models have attracted much attention [21]. These
are scenarios in which the big bang singularity is replaced by a quantum-induced bounce
that connects an earlier phase of contraction with the subsequent expanding phase (in which
we happen to exist). In such scenarios, aside from the quantum regime, the contracting
and expanding phases are expected to asymptote an effective classical geometry whose
dynamics, on consistency grounds, should match that of GR at low energies. In this
context, and as an intermediate step between the quantum field theory approach in the
(singular) curved background provided by GR and a (nonsingular) full theory of quantum
gravity, one could consider the case of a smooth effective geometry free from big bang
singularities on top of which quantum matter fields could still be treated perturbatively
in a consistent way. This view would somehow disentangle the non-perturbative part
of the quantum gravitational sector into an effective classical, nonsingular geometry, plus
perturbative quantum corrections that propagate on top of the regular effective background.
The absence of curvature singularities would make the treatment of quantum fields on
the resulting geometry more reliable, and could help shed new light on the effects of the
matter-gravity interaction in the very-early universe.

In the literature there exist many interesting examples of (quantum and non-quantum)
cosmological models that avoid the big bang singularity by means of a bounce. Roughly,
those models can be classified in two large groups, depending on whether they contain a
modified gravitational sector or a modified matter sector (see [21] for details and a very
complete list of references). Generically, modified gravity theories imply the existence of
new dynamical degrees of freedom, such as gravitational scalar fields (like in scalar-tensor
theories), higher-derivatives of the metric, extra dimensions, . . . The consideration of exotic
matter sources may be justified, in some cases, from an effective field theory approach,
such as in the case of non-linear theories of electrodynamics, which naturally arise in
low-energy limits of string theories. In the remainder of this chapter, we are going to
study bouncing cosmological models from the modified gravity perspective provided by the
Palatini theories discussed above. This approach is particularly interesting because, despite
being a modified-gravity approach, the underlying mechanisms that modify the gravitational
dynamics are not associated with new dynamical degrees of freedom or higher-derivative
equations. In fact, it is the nontrivial role played by the matter in the determination of the
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space-time connection that induces nonlinearities in the matter sector that end up changing
the dynamics at very high matter-energy densities. In this sense, it should be noted that
the gravitational field equations in vacuum exactly recover those of GR (with possibly a
cosmological constant, depending on the particular Lagrangian chosen). For this reason, this
type of theories can be regarded as a minimal extension of the standard model of gravitational
physics, because they only appreciably depart from GR in regions that contain sources and
when those sources reach the energy-density scales that characterize the correcting terms of
the Lagrangian.

5.1. Homogeneous cosmologies in f (R, Q) theories

In this section we introduce the basic definitions and formulas needed to derive the

equations for the evolution of the expansion and shear [37] for an arbitrary Palatini f (R, Q)

theory of the kind presented in Section 3.2 . These magnitudes will be very useful to

extract information about the geometric properties of the space-time and to determine

whether cosmic singularities are present or not. We focus on homogeneous cosmologies

of the Bianchi I type (a different expansion factor for each spatial direction) because that

will allow us to test the rebustness of our results against deviations from the idealized

Friedmann-Robertson-Walker spacetimes (same expansion rate in all the spatial directions).

We will also particularize our results to the case of f (R) theories, i.e., no dependence on Q.

We consider a Bianchi I spacetime with physical line element of the form

ds2
= gµνdxµdxν

= −dt2
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∑
i=1

a2
i (t)(dxi

)
2 (52)

In terms of this line element, using the relation between metrics (37) and the expression (46)

for the matrix Σ̂ of a collection of perfect fluids, the nonzero components of the auxiliary

metric hµν become

htt = −
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σ2
2

√

σ1σ2
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≡ −S (53)

hij =
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σ1σ2a2
i δij ≡ Ωa2
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The relevant Christoffel symbols associated with hµν are the following:
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2ȧi

ai
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The nonzero components of the corresponding Ricci tensor are
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where Hk ≡ ȧk/ak. For completeness, we give an expression for the corresponding scalar
curvature

R(h) =
1

S


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k
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−
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(60)

From the above formulas, one can readily find the corresponding ones in the isotropic, flat
configuration by just replacing Hi → H. For the spatially nonflat case, the Rtt(h) component
is the same as in the flat case. The Rij(h) component, however, picks up a new piece, 2Kγij,

where γij represents the nonflat spatial metric of gij = a2
i γij. The Ricci scalar then becomes

R(h) → RK=0
(h) + 6K

a2Ω
.

5.2. Shear

From the previous formulas and the field equation (38), we find that the combination Ri
i
−

Rj
j (no summation over indices) leads to
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− Rj

j
=

1
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�
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�

∑
k
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�
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Ṡ
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�

��

= 0 , (61)

where we have defined Hij ≡ Hi − Hj. Note that the final equality Ri
i
− Rj

j
= 0, follows

from the fact that the right hand sides of Ri
i and Rj

j as given by (38) are equal. Expressing
(61) in the form

Ri
i
− Rj

j
=

d

dt

�

ln Hij + ln(a1a2a3) + ln Ω
3/2

− ln S1/2
�

= 0 , (62)

we see that it can be readily integrated regardless of the number and particular equations of
state of the fluids involved. The result is
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2ȧi

ai

]

(57)

Open Questions in Cosmology170
Introduction to Palatini Theories of Gravity and Nonsingular Cosmologies 15

The nonzero components of the corresponding Ricci tensor are

Rtt(h) = −∑
i
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Hij = Cij
S

1
2

Ω
3
2

Cij

(a1a2a3)
=

Cij

σ1

V0

V(t)
, (63)

where the constants Cij = −Cji satisfy the relation C12 + C23 + C31 = 0, V0 represents a
reference volume, and V(t) = V0a1a2a3 represents the volume of the universe. It is worth
noting that writing explicitly the three equations (63) and combining them in pairs, one can
write the individual Hubble rates as follows

H1 = θ +
(C12 − C31)

3σ1

(

V0

V(t)

)

H2 = θ +
(C23 − C12)

3σ1

(

V0

V(t)

)

(64)

H3 = θ +
(C31 − C23)

3σ1

(

V0

V(t)

)

where θ is the expansion of a congruence of comoving observers and is defined as 3θ = ∑i Hi.

Using these relations, the shear σ2
= ∑i (Hi − θ)

2 of the congruence takes the form

σ
2
=

(C2
12 + C2

23 + C2
31)

9σ2
1

(

V0

V(t)

)2

, (65)

where we have used the relation (C12 + C23 + C31)
2
= 0.

5.3. Expansion

We now derive an equation for the evolution of the expansion with time and a relation
between expansion and shear. From previous results, one finds that

Gtt(h) ≡ −

1

2 ∑
k

H2
k +

1

2

(

∑
k

Hk

)2

+

Ω̇

Ω
∑
k

Hk +
3

4

(

Ω̇

Ω

)2

(66)

In terms of the expansion and shear, this equation becomes

Gtt ≡ 3

(

θ +
Ω̇

2Ω

)2

−

σ2

2
. (67)

From the field equation (38), we find that

Gtt =
f + κ2

(ρ + 3P)

2σ1
, (68)
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which in combination with (67) yields

3

(

θ +
Ω̇

2Ω

)2

=

f + κ2
(ρ + 3P)

2σ1
+

σ2

2
. (69)

For a set of non-interacting fluids with equations of state wi = Pi/ρi, we have that Ω =

Ω(ρi, wi) and, therefore, Ω̇ = ∑i Ωρi ρ̇i, where Ωρi ≡ ∂Ω/∂ρi. Since for those fluids the

conservation equation is ρ̇i = −3θ(1 + ωi)ρi, we find that Ω̇ = −3θ ∑i(1 + ωi)ρiΩρi . With
this result, (69) can be written as

3θ
2

(

1 +
3

2
∆1

)2

=

f + κ2
(ρ + 3P)

2σ1
+

σ2

2
, (70)

where we have defined

∆1 = −∑
i

(1 + wi)ρi
∂ρi Ω

Ω
. (71)

Note that in this last equation wi = wi(ρi), i.e., they need not be constants. For fluids with
constant wi, the conservation equation implies that their density depends on the volume

of the universe according to ρi(t) = ρi(t0)

(

V0

V(t)

)1+wi

. This implies that once a particular

Lagrangian is specified, the equations of state Pi = wiρi are given, and the anisotropy
constants Cij are chosen, the right-hand side of Eqs. (65) and (70) can be parametrized in
terms of V(t). This, in turn, allows us to parametrize the Hi functions of (64) in terms of
V(t) as well. This will be very useful later for our discussion of particular models.

In the isotropic case (σ2
= 0 , θ = ȧ/a ≡ H) with nonzero spatial curvature, (70) takes the

following form:

H

2
=

1

6σ1

[

f + κ2
(ρ + 3P)− 6Kσ2

a2

]

[

1 + 3
2 ∆1

]2
(72)

The evolution equation for the expansion can be obtained by noting that the Rij equations,

which are of the form Rij ≡ (Ω/2S)gij [. . .] = ( f /2 + κ2P)gij/σ2, can be summed up to give

2(θ̇ + 3θ
2
) + θ

(

6Ω̇

Ω
−

Ṡ

S

)

+

{

Ω̈

Ω
+

1

2

Ω̇

Ω

(

Ω̇

Ω
−

Ṡ

S

)}

=

[

f + 2κ2P
]

σ1
. (73)

5.4. Limit to f (R)

We now consider the limit fQ → 0, namely, the case in which the Lagrangian only depends
on the Ricci scalar R. Doing this we will obtain the corresponding equations for shear and
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Lagrangian is specified, the equations of state Pi = wiρi are given, and the anisotropy
constants Cij are chosen, the right-hand side of Eqs. (65) and (70) can be parametrized in
terms of V(t). This, in turn, allows us to parametrize the Hi functions of (64) in terms of
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5.4. Limit to f (R)

We now consider the limit fQ → 0, namely, the case in which the Lagrangian only depends
on the Ricci scalar R. Doing this we will obtain the corresponding equations for shear and
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expansion in the f (R) case without the need for extra work. From the definitions of λ2 (see
below eq.(43)), and σ1 and σ2 in (47), it is easy to see that in the limit fQ → 0 we get

σ1 → σ2 → fR (74)

S → Ω → fR . (75)

With these rules it is easy to see that hµν = fRgµν, which makes (38) boil down to the expected

field equations for Palatini f (R) theories, namely, fRRµν(h)−
f
2 gµν = κ2Tµν. Equation (63)

turns into

Hij =
Cij

fR

V0

V(t)
, (76)

from which one can easily obtain expressions for H1, H2 and H3 as in (64). The shear becomes

σ
2
=

(C2
12 + C2

23 + C2
31)

9 f 2
R

(

V0

V(t)

)2

, (77)

where C12 + C23 + C31 = 0. The relation between expansion and shear for a collection of
non-interacting perfect fluids now becomes

3θ
2

(

1 +
3

2
∆̃1

)2

=

f + κ2
(ρ + 3P)

2 fR
+

σ2

2
(78)

where ∆̃1 is given by (71) but with Ω replaced by fR. In the isotropic case with nonzero K
we find

H

2
=

1

6 fR

[

f + κ2
(ρ + 3P)−

6K fR

a2

]

[

1 + 3
2 ∆̃1

]2
. (79)

5.5. Bouncing f (R) cosmologies

We now present the cosmological dynamics of simple f (R) models to illustrate how this
family of theories modifies the standard Big Bang picture of the early universe. Consider, for

instance, the model2 f (R) = R + aR2/RP, where RP = l−2
P = c3/h̄G is the Planck curvature.

From the trace equation R fR − 2 f = κ2T (see Sec.4.1), we find that this model leads to the
same relation between the matter and the scalar curvature as in GR, namely, R = −κ2T. This
implies that the theory behaves as GR whenever the energy density is much smaller than

the Planck density scale ρP ≡ RP/κ2. Since by definition θ =
1
3 ∑i

ȧi
ai

=
1
3

d
dt ln a1a2a3 =

1
3

V̇
V ,

where V = V0a1a2a3 represents the volume of the universe (with V0 = V(t0)), Eq. (78) for
this quadratic model with dust and radiation leads to

2 Note that the constant a could be absorbed into a redefinition of RP and, therefore, only its sign is relevant.
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θ
2
=

1

9

(

V̇

V

)2

=

(

ρd + ρr +
aρd

2ρP

) (

1 +
2aρd

ρP

)

3
(

1 −
aρd

ρP

)2
+

(C2
12 + C2

23 + C2
31)

54
(

1 −
aρd

ρP

)2

(

V0

V(t)

)2

, (80)

where ρd = ρd,0

(

V0

V(t)

)

and ρr = ρr,0

(

V0

V(t)

)4/3
.

In general, an homogeneous cosmological model experiences a bounce when the expansion
θ vanishes, which implies an extremum (a maximum or a minimum) of the volume of the
Universe. If V(t) vanishes at some finite time, then a big bang or big crunch singularity
is found, depending on whether V̇ > 0 or V̇ < 0 at that time. Focusing for the moment
on the isotropic case, C2

12 + C2
23 + C2

31 = 0, we find that a bounce occurs if a < 0 when

ρd reaches the value ρB
d = ρP/(2|a|) [see Fig.1)] . This value of the density implies that

fR = 1 − 2aρd/ρP = 0. This condition, fR = 0, characterizes the location of the bounce
in Palatini f (R) theories with a single fluid with constant equation of state [5]. For our
quadratic model, in particular, bouncing solutions exist if the dynamics allows to reach the
density ρB =

ρP

2a(3w−1)
> 0. This means that for a > 0 fluids with w > 1/3 avoid the

initial singularity, whereas for a < 0 it takes w < 1/3. The case a = 0 naturally recovers
the equations of GR. It is worth noting that a cosmic bounce may arise even for presureless
matter, w = 0, if a < 0, which implies that exotic sources of matter-energy that violate the
energy conditions are not necessary to avoid the big bang singularity in this framework. The
reason for this is that at high energies gravitation may become repulsive for matter sources
with w > −1, whereas it is attractive at low energy-densities for those same sources. Note
also that the pure radiation universe, w = 1/3, is a peculiar case because it does not produce
any modified dynamics in Palatini f (R) theories. On physical grounds, however, it should
be noted that due to quantum effects related with the trace anomaly of the electromagnetic
field, a gas of photons in a SU(N) gauge theory with Nf fermion flavors has an effective
equation of state given by

wrad
e f f =

1

3
−

5α2

18π2

(

Nc +
5
4 Nf

) (

11
3 Nc −

2
3 Nf

)

2 + 7
2

Nc Nf

N2
c −1

, (81)

where Nc is the color number of the gauge theory (which has Nc(Nc − 1) generators) [13],
[17]. Therefore, a universe filled with photons should be able to avoid the singularity if a > 0.
In physically realistic scenarios, one should consider the co-existence of several fluids and
take into account the time dependence of the number of effective degrees of freedom and
the transfer of energy among different species [15], which leads to the possibility of having
different effective fluids at different stages of the cosmic expansion. In this sense, the "dust
plus radiation" model represented by (80) needs not be accurate at all times because dust
particles may become relativistic at high energies and contribute to ρr rather than to ρd. This
suggests that the choice/determination of the sign of the parameter a is not a trivial issue
and would require a very careful and elaborate analysis (which goes beyond the scope of this
introductory work).

When anisotropies are taken into account, one finds that bouncing solutions are still possible
as long as the amount of anisotropy is not too large. In Fig.2, we see that increasing the
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expansion in the f (R) case without the need for extra work. From the definitions of λ2 (see
below eq.(43)), and σ1 and σ2 in (47), it is easy to see that in the limit fQ → 0 we get

σ1 → σ2 → fR (74)

S → Ω → fR . (75)

With these rules it is easy to see that hµν = fRgµν, which makes (38) boil down to the expected

field equations for Palatini f (R) theories, namely, fRRµν(h)−
f
2 gµν = κ2Tµν. Equation (63)

turns into

Hij =
Cij

fR

V0

V(t)
, (76)

from which one can easily obtain expressions for H1, H2 and H3 as in (64). The shear becomes
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where C12 + C23 + C31 = 0. The relation between expansion and shear for a collection of
non-interacting perfect fluids now becomes
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where ∆̃1 is given by (71) but with Ω replaced by fR. In the isotropic case with nonzero K
we find

H

2
=

1

6 fR

[

f + κ2
(ρ + 3P)−

6K fR

a2

]

[

1 + 3
2 ∆̃1

]2
. (79)

5.5. Bouncing f (R) cosmologies

We now present the cosmological dynamics of simple f (R) models to illustrate how this
family of theories modifies the standard Big Bang picture of the early universe. Consider, for

instance, the model2 f (R) = R + aR2/RP, where RP = l−2
P = c3/h̄G is the Planck curvature.

From the trace equation R fR − 2 f = κ2T (see Sec.4.1), we find that this model leads to the
same relation between the matter and the scalar curvature as in GR, namely, R = −κ2T. This
implies that the theory behaves as GR whenever the energy density is much smaller than

the Planck density scale ρP ≡ RP/κ2. Since by definition θ =
1
3 ∑i

ȧi
ai

=
1
3

d
dt ln a1a2a3 =

1
3

V̇
V ,

where V = V0a1a2a3 represents the volume of the universe (with V0 = V(t0)), Eq. (78) for
this quadratic model with dust and radiation leads to

2 Note that the constant a could be absorbed into a redefinition of RP and, therefore, only its sign is relevant.
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where ρd = ρd,0

(

V0
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)

and ρr = ρr,0

(

V0
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)4/3
.

In general, an homogeneous cosmological model experiences a bounce when the expansion
θ vanishes, which implies an extremum (a maximum or a minimum) of the volume of the
Universe. If V(t) vanishes at some finite time, then a big bang or big crunch singularity
is found, depending on whether V̇ > 0 or V̇ < 0 at that time. Focusing for the moment
on the isotropic case, C2

12 + C2
23 + C2

31 = 0, we find that a bounce occurs if a < 0 when

ρd reaches the value ρB
d = ρP/(2|a|) [see Fig.1)] . This value of the density implies that

fR = 1 − 2aρd/ρP = 0. This condition, fR = 0, characterizes the location of the bounce
in Palatini f (R) theories with a single fluid with constant equation of state [5]. For our
quadratic model, in particular, bouncing solutions exist if the dynamics allows to reach the
density ρB =

ρP

2a(3w−1)
> 0. This means that for a > 0 fluids with w > 1/3 avoid the

initial singularity, whereas for a < 0 it takes w < 1/3. The case a = 0 naturally recovers
the equations of GR. It is worth noting that a cosmic bounce may arise even for presureless
matter, w = 0, if a < 0, which implies that exotic sources of matter-energy that violate the
energy conditions are not necessary to avoid the big bang singularity in this framework. The
reason for this is that at high energies gravitation may become repulsive for matter sources
with w > −1, whereas it is attractive at low energy-densities for those same sources. Note
also that the pure radiation universe, w = 1/3, is a peculiar case because it does not produce
any modified dynamics in Palatini f (R) theories. On physical grounds, however, it should
be noted that due to quantum effects related with the trace anomaly of the electromagnetic
field, a gas of photons in a SU(N) gauge theory with Nf fermion flavors has an effective
equation of state given by
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where Nc is the color number of the gauge theory (which has Nc(Nc − 1) generators) [13],
[17]. Therefore, a universe filled with photons should be able to avoid the singularity if a > 0.
In physically realistic scenarios, one should consider the co-existence of several fluids and
take into account the time dependence of the number of effective degrees of freedom and
the transfer of energy among different species [15], which leads to the possibility of having
different effective fluids at different stages of the cosmic expansion. In this sense, the "dust
plus radiation" model represented by (80) needs not be accurate at all times because dust
particles may become relativistic at high energies and contribute to ρr rather than to ρd. This
suggests that the choice/determination of the sign of the parameter a is not a trivial issue
and would require a very careful and elaborate analysis (which goes beyond the scope of this
introductory work).

When anisotropies are taken into account, one finds that bouncing solutions are still possible
as long as the amount of anisotropy is not too large. In Fig.2, we see that increasing the
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Figure 1. Representation of the Hubble function (left) and volume of the Universe (right) as a function of time for the model

f (R) = R − R2/2RP in a universe filled with dust and radiation (for the numerical integration ρd,0 = 103ρr,0, and V = 105V0).

The GR solutions corresponding to a contracting branch, which ends in a big crunch, and an expanding branch, which begins

with a big bang, are represented together with the bouncing solution of the Palatini model that interpolates between those

singular solutions.
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Figure 2. Representation of the expansion (left) and volume of the Universe (right) as a function of time for the model

f (R) = R − R2/2RP in a universe filled with dust and radiation with anisotropies (for the numerical integration ρd,0 = 103ρr,0,

and V = 105V0). From right to left, we have plotted the bouncing cases C2
= 0, 40, 40.60211073, 40.60211073942454489657,

and the collapsing case with C2
= 40.60211073942454489658. Fine tunning the value of C2 even more should allow to keep

the universe in its minimum for longer periods of time in the past, which eventually should lead to an asymptotically static

solution.

value of C2
≡ C2

12 + C2
23 + C2

31 from zero, the volume of the universe presents a minimum as

long as C2
< C2

c . If C2
> C2

c , the collapse is unavoidable and V → 0 in a finite time. The
critical case C2

→ C2
c represents a configuration that is neither a bouncing universe nor a

big bang. It corresponds to a state in which the volume of the universe remains constant in
the past and expands in the future. Though this solution is clearly unstable and fine-tuned,
its existence puts forward the possibility of obtaining static regular solutions corresponding
to ultracompact objects, which could shed new light on the internal structure of black holes
and/or topological deffects when Planck scale corrections to the gravitational action are taken
into account. It should be noted, however, that in order to obtain this asymptotically static
solution one must cross from the domain where fR > 0 to the region where fR < 0. Since
the shear, as defined in (77) for f (R) theories with perfect fluids, is proportional to 1/ f 2

R,
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the crossing through fR = 0 implies a divergence in some curvature scalars of the theory.
Whether this divergence is a true (or strong) physical singularity in the sense defined in [36],
[8], [16] is an open question that will be explored elsewhere. In any case, we remark that the
existence of that divergence does not have any effect on the time evolution of the expansion
θ, as can be seen in Fig.2.

5.6. Nonsingular universes in f (R, Q) Palatini theories

In the previous section we have seen that Palatini f (R) models are able to avoid the big

bang singularity in idealized homogeneous and isotropic scenarios but run into trouble

when anisotropies are present. The divergence of the shear is a generic problem for those

f (R) theories in which the function fR vanishes at some point, regardless of the number

and equation of state of the fluids involved. Though the nature of this divergence has

not been identified yet with that of a strong singularity, which besides the divergence of

some components of the Riemann, Ricci, and Weyl tensors also requires the divergence

of some of their integrals, its very presence is a disturbing aspect that one would like to

overcome within the framework of Palatini theories. In this sense, a natural step is to study

the behavior in anisotropic scenarios of some simple generalization of the f (R) family to

see if the situation improves. Using Lagrangians of the form presented in (4.1), we will

show next that completely regular bouncing solutions exist for both isotropic and anisotropic

homogeneous cosmologies.

5.6.1. Isotropic universe

Consider Eq.(72) particularized to the following f (R, Q) Lagrangian

f (R, Q) = R + a
R2

RP
+ b

Q

RP
(82)

For this theory, we find that R = κ2
(ρ − 3P) and Q = Q(ρ, P) is given by (51) with α ≡ b/RP.

From now on we assume that the parameter b of the Lagrangian is positive and has been

absorbed into a redefinition of RP, which is assumed positive. This restriction is necessary

(though not sufficient) if one wants the scalar Q to be bounded from above when fluids with

w > −1 are considered. Stated differently, when b/RP > 0, positivity of the square root of

Eq.(51) establishes that there may exist a maximum for the combination ρ + P.

In order to have (72) well defined, one must make sure that the choice of sign in front of the

square root of σ1 in (47) is the correct one. In this sense, we find that to recover the f (R)

limit and GR at low curvatures, we must take the positive sign, i.e., σ1 = σ
+

1 . However,

when considering particular models, which are characterized by the constant a and, for

instance, a constant equation of state w, one realizes that the square root may reach a zero at

some high density. Beyond that point, we may need to switch from σ
+

1 to σ
−

1 to guarantee

that σ1 is a continuous and differentiable function (see Fig.3 for an illustration of this point).

Bearing in mind this technical subtlety, one can then proceed to represent the Hubble function

for different choices of parameters and fluid combinations to determine whether bouncing

solutions exist or not.
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c , the collapse is unavoidable and V → 0 in a finite time. The
critical case C2

→ C2
c represents a configuration that is neither a bouncing universe nor a

big bang. It corresponds to a state in which the volume of the universe remains constant in
the past and expands in the future. Though this solution is clearly unstable and fine-tuned,
its existence puts forward the possibility of obtaining static regular solutions corresponding
to ultracompact objects, which could shed new light on the internal structure of black holes
and/or topological deffects when Planck scale corrections to the gravitational action are taken
into account. It should be noted, however, that in order to obtain this asymptotically static
solution one must cross from the domain where fR > 0 to the region where fR < 0. Since
the shear, as defined in (77) for f (R) theories with perfect fluids, is proportional to 1/ f 2

R,
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the crossing through fR = 0 implies a divergence in some curvature scalars of the theory.
Whether this divergence is a true (or strong) physical singularity in the sense defined in [36],
[8], [16] is an open question that will be explored elsewhere. In any case, we remark that the
existence of that divergence does not have any effect on the time evolution of the expansion
θ, as can be seen in Fig.2.

5.6. Nonsingular universes in f (R, Q) Palatini theories

In the previous section we have seen that Palatini f (R) models are able to avoid the big

bang singularity in idealized homogeneous and isotropic scenarios but run into trouble

when anisotropies are present. The divergence of the shear is a generic problem for those

f (R) theories in which the function fR vanishes at some point, regardless of the number

and equation of state of the fluids involved. Though the nature of this divergence has

not been identified yet with that of a strong singularity, which besides the divergence of

some components of the Riemann, Ricci, and Weyl tensors also requires the divergence

of some of their integrals, its very presence is a disturbing aspect that one would like to

overcome within the framework of Palatini theories. In this sense, a natural step is to study

the behavior in anisotropic scenarios of some simple generalization of the f (R) family to

see if the situation improves. Using Lagrangians of the form presented in (4.1), we will

show next that completely regular bouncing solutions exist for both isotropic and anisotropic

homogeneous cosmologies.

5.6.1. Isotropic universe

Consider Eq.(72) particularized to the following f (R, Q) Lagrangian

f (R, Q) = R + a
R2

RP
+ b

Q

RP
(82)

For this theory, we find that R = κ2
(ρ − 3P) and Q = Q(ρ, P) is given by (51) with α ≡ b/RP.

From now on we assume that the parameter b of the Lagrangian is positive and has been

absorbed into a redefinition of RP, which is assumed positive. This restriction is necessary

(though not sufficient) if one wants the scalar Q to be bounded from above when fluids with

w > −1 are considered. Stated differently, when b/RP > 0, positivity of the square root of

Eq.(51) establishes that there may exist a maximum for the combination ρ + P.

In order to have (72) well defined, one must make sure that the choice of sign in front of the

square root of σ1 in (47) is the correct one. In this sense, we find that to recover the f (R)

limit and GR at low curvatures, we must take the positive sign, i.e., σ1 = σ
+

1 . However,

when considering particular models, which are characterized by the constant a and, for

instance, a constant equation of state w, one realizes that the square root may reach a zero at

some high density. Beyond that point, we may need to switch from σ
+

1 to σ
−

1 to guarantee

that σ1 is a continuous and differentiable function (see Fig.3 for an illustration of this point).

Bearing in mind this technical subtlety, one can then proceed to represent the Hubble function

for different choices of parameters and fluid combinations to determine whether bouncing

solutions exist or not.
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Figure 3. Illustration of the need to combine the two branches of σ1 to obtain a continuous and differentiable curve. The

branch that starts at σ1 = 1 has the plus sign in front of the square root (continuous green line). When the square root vanishes
(at the blue dot), the function must be continued through the dashed red branch, which corresponds to the negative sign in

front of the square root.

The classification of the bouncing solutions of the model (82) with a fluid with constant w
was carried out in [5]. It was found that for every value of the parameter a there exist an
infinite number of bouncing solutions, which depend on the particular equation of state w.
The bouncing solutions can be divided into two large classes:

• Class I: a ≥ 0. The bounce occurs when the scalar Q reaches its maximum value and
happens for all equations of state satisfying the condition

w > wmin =

a

2 + 3a
. (83)

From this equation it follows that a radiation dominated universe, with w = 1/3, always
bounces for any a > 0.

• Class II: a ≤ 0. This case is more involved because the bounce can occur either at the
point where Q reaches its maximum or when σ1 vanishes. This last case can only happen
at high curvatures when we are in the branch defined by σ1 = σ

−

1 . To proceed with the
classification, we divide this sector into several intervals:

• If −1/4 < a ≤ 0. The bounce occurs if

−

1

3
+

1

3

√

1 + 4a

1 + a
< w < ∞ (84)

We see that when a = 0 we find agreement with the discussion of case I. As a
approaches the limiting value −1/4, the bouncing solutions extend up to w → −1/3.

• If −1/3 ≤ a ≤ −1/4. Numerically one finds that the bouncing solutions cannot be
extended below w < −1 and occur if −1 < w < ∞, where w = −1 is excluded.
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• If −1 ≤ a ≤ −1/3. In this case, one finds numerically that the bouncing solutions are

restricted to the interval −1 < w <
α+βa

(1+3a)2 > 1, where α = 1.1335 and β = −3.3608.

• If a ≤ −1. Similarly as the family a ≥ 0, this set of models also allows for a simple
characterization of the bouncing solutions, which correspond to the interval −1 < w <

a/(2 + 3a). In the limiting case a = −1 we obtain the condition −1 < w < 1 (compare
this with the numerical fit above, which gives −1 < w < 1.12).

5.7. Anisotropic universe

Using Eqs. (70) and (72), the expansion can be written as follows:

θ
2
= H2

+

1

6

σ2

(1 + 3
2 ∆1)

2
, (85)

where H represents the Hubble function in the K = 0 isotropic case. To better understand

the behavior of θ2, let us consider when and why H2 vanishes. Using the results of [5]

summarized above, one finds that H2 vanishes either when the density reaches the value

ρQmax
or when the function σ1 vanishes. These two conditions imply a divergence in the

quantity (1 +
3
2 ∆1)

2, which appears in the denominator of H2 and, therefore, force the

vanishing of H2 (isotropic bounce). Technically, these two types of divergences can be easily

characterized. From the definition of ∆1 in (71), one can see that ∆1 ∼ ∂ρΩ/Ω. Since

Ω ≡

√

σ1σ2, it is clear that ∆1 diverges when σ1 = 0. The divergence due to reaching

ρQmax
is a bit more elaborate. One must note that ∂ρΩ contain terms that are finite plus a

term of the form ∂ρλ, with λ defined below Eq. (43). In this λ there is a Q term hidden

in the function f (R, Q), which implies that ∂ρλ ∼ ∂ρQ/RP plus other finite terms. From

the definition of Q it follows that ∂ρQ has finite contributions plus the term ∂ρΦ/
√

Φ,

where Φ ≡ (1 + (1 + 2a)R/RP)
2
− 4κ2

(ρ + P)/RP, which diverges when Φ vanishes. This

divergence of ∂ρQ indicates that Q cannot be extended beyond the maximum value Qmax.

Now, since the shear goes like σ2
∼ 1/(σ1)

2 [see Eq.(65)], we see that the condition σ1 = 0

implies a divergence on σ2 (though θ2 remains finite). This is exactly the same type of

divergence that we already found in the f (R) models, where σ1 → fR. Since in the f (R)

models the bounce can only occur when fR = 0, there is no way to avoid the divergence of

the shear in the anisotropic case within the f (R) setting. On the contrary, since the quadratic

f (R, Q) model (82) allows for a second mechanism for the bounce, which takes place at ρQmax
,

there is a natural way out of the problem with the shear. Summarizing, we conclude that

for universes governed by the Lagrangian (82) and containing a single stiff fluid there exist

completely regular bouncing solutions in the anisotropic case for w >
a

2+3a if a ≥ 0, for

w0 < w < ∞ if −1/3 ≤ a ≤ 0, for w0 < w < (α + βa)/(1 + 3a)2 if −1 ≤ a ≤ −1/3, and

for −1/3 < w < a/(2 + 3a) if a ≤ −1, where w0 < 0 is defined as the equation of state for

which the (isotropic) bounce occurs when Q = Qmax and σ1 = 0 simultaneously (see [5] for

details). These results imply that for a < 0 the interval 0 ≤ w ≤ 1/3 is always included in

the family of completely regular isotropic and anisotropic bouncing solutions, which contain

the dust and radiation cases. For a ≥ 0, the radiation case is always nonsingular too.
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The classification of the bouncing solutions of the model (82) with a fluid with constant w
was carried out in [5]. It was found that for every value of the parameter a there exist an
infinite number of bouncing solutions, which depend on the particular equation of state w.
The bouncing solutions can be divided into two large classes:

• Class I: a ≥ 0. The bounce occurs when the scalar Q reaches its maximum value and
happens for all equations of state satisfying the condition

w > wmin =

a

2 + 3a
. (83)

From this equation it follows that a radiation dominated universe, with w = 1/3, always
bounces for any a > 0.

• Class II: a ≤ 0. This case is more involved because the bounce can occur either at the
point where Q reaches its maximum or when σ1 vanishes. This last case can only happen
at high curvatures when we are in the branch defined by σ1 = σ

−

1 . To proceed with the
classification, we divide this sector into several intervals:

• If −1/4 < a ≤ 0. The bounce occurs if

−

1

3
+

1

3

√

1 + 4a

1 + a
< w < ∞ (84)

We see that when a = 0 we find agreement with the discussion of case I. As a
approaches the limiting value −1/4, the bouncing solutions extend up to w → −1/3.

• If −1/3 ≤ a ≤ −1/4. Numerically one finds that the bouncing solutions cannot be
extended below w < −1 and occur if −1 < w < ∞, where w = −1 is excluded.
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• If −1 ≤ a ≤ −1/3. In this case, one finds numerically that the bouncing solutions are

restricted to the interval −1 < w <
α+βa

(1+3a)2 > 1, where α = 1.1335 and β = −3.3608.

• If a ≤ −1. Similarly as the family a ≥ 0, this set of models also allows for a simple
characterization of the bouncing solutions, which correspond to the interval −1 < w <

a/(2 + 3a). In the limiting case a = −1 we obtain the condition −1 < w < 1 (compare
this with the numerical fit above, which gives −1 < w < 1.12).

5.7. Anisotropic universe

Using Eqs. (70) and (72), the expansion can be written as follows:

θ
2
= H2

+

1

6

σ2

(1 + 3
2 ∆1)

2
, (85)

where H represents the Hubble function in the K = 0 isotropic case. To better understand

the behavior of θ2, let us consider when and why H2 vanishes. Using the results of [5]

summarized above, one finds that H2 vanishes either when the density reaches the value

ρQmax
or when the function σ1 vanishes. These two conditions imply a divergence in the

quantity (1 +
3
2 ∆1)

2, which appears in the denominator of H2 and, therefore, force the

vanishing of H2 (isotropic bounce). Technically, these two types of divergences can be easily

characterized. From the definition of ∆1 in (71), one can see that ∆1 ∼ ∂ρΩ/Ω. Since

Ω ≡

√

σ1σ2, it is clear that ∆1 diverges when σ1 = 0. The divergence due to reaching

ρQmax
is a bit more elaborate. One must note that ∂ρΩ contain terms that are finite plus a

term of the form ∂ρλ, with λ defined below Eq. (43). In this λ there is a Q term hidden

in the function f (R, Q), which implies that ∂ρλ ∼ ∂ρQ/RP plus other finite terms. From

the definition of Q it follows that ∂ρQ has finite contributions plus the term ∂ρΦ/
√

Φ,

where Φ ≡ (1 + (1 + 2a)R/RP)
2
− 4κ2

(ρ + P)/RP, which diverges when Φ vanishes. This

divergence of ∂ρQ indicates that Q cannot be extended beyond the maximum value Qmax.

Now, since the shear goes like σ2
∼ 1/(σ1)

2 [see Eq.(65)], we see that the condition σ1 = 0

implies a divergence on σ2 (though θ2 remains finite). This is exactly the same type of

divergence that we already found in the f (R) models, where σ1 → fR. Since in the f (R)

models the bounce can only occur when fR = 0, there is no way to avoid the divergence of

the shear in the anisotropic case within the f (R) setting. On the contrary, since the quadratic

f (R, Q) model (82) allows for a second mechanism for the bounce, which takes place at ρQmax
,

there is a natural way out of the problem with the shear. Summarizing, we conclude that

for universes governed by the Lagrangian (82) and containing a single stiff fluid there exist

completely regular bouncing solutions in the anisotropic case for w >
a

2+3a if a ≥ 0, for

w0 < w < ∞ if −1/3 ≤ a ≤ 0, for w0 < w < (α + βa)/(1 + 3a)2 if −1 ≤ a ≤ −1/3, and

for −1/3 < w < a/(2 + 3a) if a ≤ −1, where w0 < 0 is defined as the equation of state for

which the (isotropic) bounce occurs when Q = Qmax and σ1 = 0 simultaneously (see [5] for

details). These results imply that for a < 0 the interval 0 ≤ w ≤ 1/3 is always included in

the family of completely regular isotropic and anisotropic bouncing solutions, which contain

the dust and radiation cases. For a ≥ 0, the radiation case is always nonsingular too.
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Figure 4. Representation of the expansion squared (left) and volume of the Universe (right) as a function of time for the

model f (R, Q) = R − l2
P R2/2 + l2

PQ in a radiation universe with anisotropies. We have plotted the bouncing cases C2
=

0, 50, 102, 103. Note that the bounce always occurs at the same maximum density (minimum volume). Note also that the time

spent in the bouncing region decreases as the anisotropy grows. The starting point of the time integration is chosen such that

at t = 0 the two branches of σ1 coincide.

5.8. Example: Radiation universe

As an illustrative example, we consider here the particular case of a universe filled with
radiation. Besides its obvious physical interest, this case leads to a number of algebraic
simplifications that make more transparent the form of some basic definitions

Q =

3R2
P

8



1 −
8κ2ρ

3RP
−

�

1 −
16κ2ρ

3RP



 (86)

σ
±

1 =

1

2
±

1

2
√

2

�

�

�

�

5 − 3

�

1 −
16κ2ρ

3RP
−

24κ2ρ

RP
(87)
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Note that the coincidence of the two branches of σ1 occurs at κ2ρ = RP/6, where σ
±

1 =

1
2 . It is easy to see that at low densities (86) leads to Q ≈ 4(κ2ρ)2/3 + 32(κ2ρ)3/9RP +

320(κ2ρ)4/27R2
P + . . ., which recovers the expected result for GR, namely, Q = 3P2

+ ρ2.

From this formula we also see that the maximum value of Q occurs at κ2ρmax = 3RP/16
and leads to Qmax = 3R2

P/16. At this point the shear also takes its maximum allowed value,

namely, σ2
max =

√

3/16R3/2
P (C2

12 + C2
23 + C2

31), which is always finite. At ρmax the expansion
vanishes producing a cosmic bounce regardless of the amount of anisotropy [see Fig.4].

6. Conclusions and open questions

In this chapter we have tried to convey the idea that in the construction of extended
theories of gravity, one should bear in mind the fact that metric and connection are equally
fundamental and independent objects. This observation allows to broaden the spectrum of
available possibilities to go beyond the standard model of gravitation. In fact, any theory of
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Figure 5. Comparison of the expansion in a universe filled with dust and radiation (ρ0,rad = 10−3ρ0,dust) and a radiation

dominated universe (dashed lines) for several values of the anisotropy.

gravity based on a geometry in which the connection has been forced to be given by the
Christoffel symbols of the metric admits an alternative formulation in which the form of the
connection is dictated by the theory itself, i.e., it is not given by convention or selected on
practical grounds.

In our exploration of Palatini theories, we have seen that assuming that metric and connection
are independent geometrical objects has non-trivial effects on the resulting field equations as
compared with the usual metric formulation of the same theories. For the particular family
of f (R, Q) models studied here, we have seen that the metric is governed by second-order
equations that boil down to GR in vacuum. This is in sharp contrast with the usual metric
formulation of those same theories, where one finds fourth-order derivatives of the metric
(see, for instance, [2] for a detailed analysis of the cosmology of the quadratic model (82) in
metric formalism). The absence of higher-order derivatives in the Palatini formulation is a
remarkable point that seems not to have been sufficiently appreciated in the literature. In
fact, having second-order field equations is very important because it automatically implies
the absence of ghosts and other dynamical instabilities. In this sense, it should be noted
that Lovelock3 theories [40], which are generally regarded as the natural extension of the
Einstein-Hilbert Lagrangian to higher dimensions, have received a lot of attention in the
literature because they are seen as the most general actions for gravity that give at most
second-order field equations for the metric. As we have seen here, this property is shared (at
least) by all Palatini theories of the f (R, Q) type (with or without torsion). This puts forward
that Palatini theories, are natural candidates to explore new dynamics beyond GR.

Before concluding, we would like to stress the fact that the quadratic Palatini model (82) is
able to avoid the big bang singularity in very natural situations, such as in pure radiation,
pure dust, or dust plus radiation universes with or without anisotropies (see Fig.5). This
observation has been possible thanks to the formulas presented in section 5, where we have

3 We would like to mention that when Lovelock theories are formulated à la Palatini, the resulting field equations are
exactly the same as one finds in their usual metric formulation [7].
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=

0, 50, 102, 103. Note that the bounce always occurs at the same maximum density (minimum volume). Note also that the time

spent in the bouncing region decreases as the anisotropy grows. The starting point of the time integration is chosen such that

at t = 0 the two branches of σ1 coincide.

5.8. Example: Radiation universe

As an illustrative example, we consider here the particular case of a universe filled with
radiation. Besides its obvious physical interest, this case leads to a number of algebraic
simplifications that make more transparent the form of some basic definitions

Q =

3R2
P
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Note that the coincidence of the two branches of σ1 occurs at κ2ρ = RP/6, where σ
±

1 =

1
2 . It is easy to see that at low densities (86) leads to Q ≈ 4(κ2ρ)2/3 + 32(κ2ρ)3/9RP +

320(κ2ρ)4/27R2
P + . . ., which recovers the expected result for GR, namely, Q = 3P2

+ ρ2.

From this formula we also see that the maximum value of Q occurs at κ2ρmax = 3RP/16
and leads to Qmax = 3R2

P/16. At this point the shear also takes its maximum allowed value,

namely, σ2
max =
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3/16R3/2
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31), which is always finite. At ρmax the expansion
vanishes producing a cosmic bounce regardless of the amount of anisotropy [see Fig.4].

6. Conclusions and open questions

In this chapter we have tried to convey the idea that in the construction of extended
theories of gravity, one should bear in mind the fact that metric and connection are equally
fundamental and independent objects. This observation allows to broaden the spectrum of
available possibilities to go beyond the standard model of gravitation. In fact, any theory of
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gravity based on a geometry in which the connection has been forced to be given by the
Christoffel symbols of the metric admits an alternative formulation in which the form of the
connection is dictated by the theory itself, i.e., it is not given by convention or selected on
practical grounds.

In our exploration of Palatini theories, we have seen that assuming that metric and connection
are independent geometrical objects has non-trivial effects on the resulting field equations as
compared with the usual metric formulation of the same theories. For the particular family
of f (R, Q) models studied here, we have seen that the metric is governed by second-order
equations that boil down to GR in vacuum. This is in sharp contrast with the usual metric
formulation of those same theories, where one finds fourth-order derivatives of the metric
(see, for instance, [2] for a detailed analysis of the cosmology of the quadratic model (82) in
metric formalism). The absence of higher-order derivatives in the Palatini formulation is a
remarkable point that seems not to have been sufficiently appreciated in the literature. In
fact, having second-order field equations is very important because it automatically implies
the absence of ghosts and other dynamical instabilities. In this sense, it should be noted
that Lovelock3 theories [40], which are generally regarded as the natural extension of the
Einstein-Hilbert Lagrangian to higher dimensions, have received a lot of attention in the
literature because they are seen as the most general actions for gravity that give at most
second-order field equations for the metric. As we have seen here, this property is shared (at
least) by all Palatini theories of the f (R, Q) type (with or without torsion). This puts forward
that Palatini theories, are natural candidates to explore new dynamics beyond GR.

Before concluding, we would like to stress the fact that the quadratic Palatini model (82) is
able to avoid the big bang singularity in very natural situations, such as in pure radiation,
pure dust, or dust plus radiation universes with or without anisotropies (see Fig.5). This
observation has been possible thanks to the formulas presented in section 5, where we have

3 We would like to mention that when Lovelock theories are formulated à la Palatini, the resulting field equations are
exactly the same as one finds in their usual metric formulation [7].
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extended the analysis carried out in [5] for a single perfect fluid with constant equation of
state to include several perfect fluids with arbitrary equation of state w(ρ). This allows
to explore the dynamics of realistic cosmological models with several fluids and is a
necessary step prior to the consideration of the growth and evolution of inhomogeneities
in these nonsingular backgrounds. Though the model (82) has been proposed on grounds
of mathematical simplicity and motivated by the form of the effective action provided by
perturbative quantization schemes in curved backgrounds, its ability to successfully deal
with cosmological [5] and black hole singularities [27] as well as other aspects of quantum
gravity phenomenology [26] demands further theoretical work to provide a more solid
ground to it. In this sense, we note that the effective dynamics of loop quantum cosmology
[4] in a Friedmann-Robertson-Walker background filled with a massless scalar can be exactly
reproduced by a Palatini f (R) theory [22]. The extension of that result to more general
spacetimes and matter sources could shed new light on the potential relation of (82) with a
more fundamental theory of quantum gravity. All these open questions will be considered
in detail elsewhere.
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The concept of the multiverse changes many of the preconceptions made in the physics
and cosmology of the last century, providing us with a new paradigm that has inevitably
influence on major philosophical ideas. The creation of the universe stops being a singled
out event to become part of a more general and mediocre process, what can be thought of
as a new “Copernican turn” in the natural philosophy of the XXI century. The multiverse
also opens the door to new approaches for traditional questions in quantum cosmology. The
origin of the universe, the problem of the cosmological constant and the arrow of time, which
would eventually depend on the boundary conditions that are imposed on the state of the
whole multiverse, challenge us to adopt new and open-minded attitudes for facing up these
problems.

It would mean a crucial step for the multiverse proposals if a particular theory could make
observable and distinguishable predictions about the current properties of our universe. That
would bring the multiverse into the category of a physical theory at the same footing as
any other. Then, once the concept of the multiverse has reached a wider acceptance in
theoretical cosmology, it is now imperiously needed to develop a precise characterization of
the concept of a physical multiverse: one for which the theory could be not only falseable
but also indirectly tested, at least in principle. Some claims have been made to that respect
[16, 17, 31], although we are far from being able to state the observability of any kind of
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multiverse. Classical correlations in the state of the multiverse would be induced by the
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2 Open Questions in Cosmology

On the one hand, together with the classical laws of thermodynamics, we can also consider
the novel laws of entanglement thermodynamics. This adds a new tool for studying the
properties of both the universe and the multiverse. Furthermore, we would expect that the
classical and the quantum thermodynamical laws were complementary provided that the
quantum theory is a more general framework from which the classical one is recovered as a
particular limiting case. Then, local entropic processes of a single universe could be related
to the thermodynamical properties of entanglement among universes [60].

On the other hand, the quantum effects of the space-time are customary restricted to the
obscure region of the Planck scale or to the neighbourhood of space-time singularities
(both local and cosmological). However, cosmic entanglement among different universes
of the multiverse could avoid such restriction and still be present along the whole history
of a large parent universe [31, 62]. Thus, the effects of inter-universal entanglement on a
single universe, and even the boundary conditions of the whole multiverse from which such
entanglement would be consequence of, could in principle be tested in a large parent universe
like ours. This adds a completely novel feature to the quantum theory of the universe.

The chapter is outlined as follows. In Sec. 2, we shall describe the customary picture in which
the universes are spontaneously created from the gravitational vacuum or space-time foam.
The universes are quantum mechanically described by a wave function that can represent,
in the semiclassical regime, either an expanding or a contracting universe. Then, it will
be introduced the so-called ’third quantization formalism’, where creation and annihilation
operators of universes can be defined and it can be given a wave function that represent
the quantum state of the multiverse. Afterwards, it will be shown that an appropriate
boundary condition of the multiverse allows us to interpret it as made up of entangled
pairs of universes.

In Sec. 3, we shall briefly summarize the main features of quantum entanglement in quantum
optics, making special emphasis in the characteristics that completely departure from the
classical description of light. In Sec. 4, we shall address the question of whether quantum
entanglement in the multiverse may induce observable effects in the properties of a single
universe. We shall pose a pair of entangled universes and compute the thermodynamical
properties of entanglement for each single universe of the entangled pair. It will be shown
that the entropy of entanglement can be considered as an arrow of time for single universes
and that the vacuum energy of entanglement might allow us to test the whole multiverse
proposal. Finally, in Sec. 4, we shall draw some tentative conclusions.

2. Quantum multiverse

2.1. Introduction

A many-world interpretation of Nature can be dated back to the very ancient Greek

philosophy1 or, in a more recent epoch, to the many-world interpretation that Giordano
Bruno derived from the heliocentric theory of Copernicus [68], in the XV century, and to
the Kant’s idea of ’island-universes’, term coined by the Prussian naturalist Alenxander von
Humboldt in the XIX century [33]. In any case, it was always a very controversial proposal

1 The interpretation was posed, of course, in a radically different cultural context. However, it is curious reading some
of the pieces that have survived from Greek philosophers like Anaximander, Heraclitus or Democritus, in relation to
a ’many-world’ interpretation on Nature.
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perhaps because the mediocre perception that it entails for our world and for the human
being itself.

As it happened historically, the controversy disappears when it is properly defined what
it is meant by the word ’world’. If Bruno meant by the word ’world’ what is now known
as a solar system, von Humbolt meant by ’island universes’ what we currently know as
galaxies. We now uncontroversially know that there exist many solar systems in billions of
different galaxies. Maybe, the controversy of the current multiverse proposals could partially
be unravelled by first defining precisely what we mean by the word ’universe’, in the physics
of the XXI century.

Since the advent of the theory of relativity, in the early XX century, we can understand by
the word ’universe’ a particular geometrical configuration of the space-time as a whole that,
following Einstein’s equations, is determined by a given distribution of energy-matter in the
universe. Furthermore, the geometrical description of the space-time encapsulates the causal
relation between material points and, thus, the universe entails everything that may have a
causal connection with a particular observer. In other words, the universe is everything we
can observe.

Being this true, it does not close the door for the observation of the quantum effects that other
universes might have in the properties of our own universe and, thus, it does not prevent
us to consider a multiverse scenario. For instance, let us consider a spatially flat space-time
endorsed with a cosmological constant. It is well-known that, for a given observer, there
is an event horizon beyond which no classical information can be transmitted or received.
Thus, two far distant observers are surrounded by their respective event horizons becoming
then causally disconnected from each other. These causal enclosures may be interpreted

as different universes within the whole space-time manifold2. However, cosmic fields are
defined upon the whole space-time and, then, some quantum correlations might be present
in the state of the field for two distant regions of the space-time, in the same way as non-local
correlations appear in an EPR state of light in quantum optics. Therefore, being two observers
classically disconnected, they may share common cosmological quantum fields allowing us,
in principle, to study the quantum influence that other regions of the space-time may have
in the properties of their isolated patches.

This is an example of a more general kind of multiverse proposals for which it can be defined
a common space-time to the universes. It includes the multiverse that comes out in the

scenario of eternal inflation [45, 46]. There are other proposals3 in which there is no common
space-time among the universes, being the most notable example the landscape of the string
theories [9, 71]. In such multidimensional theories, the dimensional reduction that gives

rise to our four dimensional universe may contain up to 10500 different vacua that can be
populated with inflationary universes [29]. Two universes belonging to different vacua share
no common space-time. However, it might well be that relic quantum correlations may
appear between their quantum states, and even some kind of interaction has been proposed
to be observable [31, 48], in principle.

Therefore, even if we have not been exhaustive in the justification of a multiverse scenario,
it can easily be envisaged that the multiverse is a plausible cosmological scenario within the
framework of the quantum theory provided that this has to be applied to the space-time as
a whole. That is the basic assumption of the present chapter.

2 This is the so-called Level I multiverse in Refs. [72, 73].
3 A more exhaustive classification of multiverses and their properties can be found in Refs. [49, 72, 73].
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4 Open Questions in Cosmology

2.2. Classical universes

In next sections, we shall describe the quantum state of a multiverse made up of
homogeneous and isotropic universes. Then, it is worth first noting that homogeneity and
isotropy are assumable conditions as far as we deal with large parent universes, where by
large we mean universes with a length scale which is much greater than the Planck scale
even though it can be rather small compared to macroscopic scales. At the Planck length
the quantum fluctuations of the metric become of the same order of the metric and the
assumptions of homogeneity and isotropy are meaningless. However, except for its very
early phase the universe can properly be modeled by a homogeneous and isotropic metric,
at least as a first approximation.

We will also consider homogeneous and isotropic scalar fields. This can be more
objectionable. It can be considered a good approximation after the inflationary expansion
of the universe has rapidly smoothed out the large inhomogeneities of the distribution of
matter in the universe, and it clearly is an appropriate assumption for the large scale of the
current universe. However, we should keep in mind that the study of inhomogeneities is a
keystone for the observational tests of the inflationary scenario. Similarly, they might encode
valuable information for testing the properties of inter-universal entanglement. However, as
a first approach to the problem, we shall mainly be concerned with a multiverse made up of
fully homogeneous and isotropic universes and matter fields.

Therefore, let us consider a space-time described by a closed Friedmann-Robertson-Walker
(FRW) metric,

ds2
= −N

2dt2
+ a2

(t)dΩ
2
3, (1)

where N is the lapse function that parameterizes the different foliations of the space-time
into space and time, a(t) is the scale factor, and dΩ

2
3 is the usual line element on S3 [39, 50, 80].

The degrees of freedom of the minisuperspace being considered are then the lapse function,
N , the scale factor, a, and n scalar fields, �ϕ = (ϕ1, . . . , ϕn), that represent the matter content
of the universe. The total action of the space-time minimally coupled to the scalar fields can
conveniently be written as [39]

S =

∫

dtL =

∫

dtN

(

1

2

GAB

N
2

dqA

dt

dqB

dt
− V(qI

)

)

, (2)

for I, A, B = 0, . . . , n, where GAB ≡ GAB(q
I
), is the minisupermetric of the n + 1 dimensional

minisuperspace, with {qI
} ≡ {a, �ϕ}, and the summation over repeated indices is implicitly

understood in Eq. (2). The minisupermetric GAB is given by [39], GAB = diag(−a, a3, . . . , a3
),

and the potential V(qI
) by

V(qI
) ≡ V(a, �ϕ) = a3

(V1(ϕ1), . . . , Vn(ϕn))− a, (3)

where Vi(ϕi) is the potential that corresponds to the field ϕi. The classical equations of
motion are obtained by variation of the action (2). Let us for simplicity consider only one
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scalar field, ϕ. Variation of the action with respect to the lapse function, fixing afterwards
the value N = 1, gives the Friedmann equation

(

da

dt

)2

= −1 + a2
σ

2

(

1

2

(

dϕ

dt

)2

+ V(ϕ)

)

≡ −1 + a2
σ

2
ρϕ, (4)

where ρϕ is the energy density of the scalar field, and [45] σ2
=

8π

3M2
P

, with MP ∼ 1019GeV

being the Planck mass. Variation of Eq. (2) with respect to the scalar field yields

d2 ϕ

dt2
+

3

a

da

dt

dϕ

dt
+

∂V(ϕ)

∂ϕ
= 0. (5)

Let us focus on a slow-varying scalar field, which constitutes a particularly interesting case

that can model the inflationary stage of the universe. In that case [45, 47],
d2 ϕ

dt2 ≪

3
a

da
dt

dϕ

dt

and (

dϕ

dt )
2
≪ V(ϕ), and V(ϕ) ≈ V(ϕ0) represents the nearly constant energy density of the

scalar field, i.e. ρϕ ≈ V(ϕ0).

A limiting case is that of a constant value of the field, ϕ̇ = 0 and ρϕ = V(ϕ0) ≡ Λ. It
effectively describes a de-Sitter space-time with a value Λ of the cosmological constant. Then,
the Friedmann equation (4) can be written as

da

dt
=

√

a2H2
− 1, (6)

where, H2
≡ σ2

Λ. It can be distinguished two regimes. For values, a ≥

1
H , the real solution

a(t) =
1

H
cosh Ht, (7)

represents a universe that starts out from a value a0 =
1
H at t = 0, and eventually follows

an exponential expansion. It corresponds to the Lorentzian regime of the universe. On the
other hand, there is no real solution of Eq. (6) for values a <

1
H . However, we can perform a

Wick rotation to Euclidean time, τ = it, by mean of which Eq. (6) transforms into

daE

dτ
=

√

1 − a2
E H2, (8)

whose solution,

aE(τ) =
1

H
cos Hτ, (9)

is the analytic continuation to Euclidean time of the Lorentzian solution (7). The solution
given by Eq. (9) represents an Euclidean space-time that originates at aE = 0 (for τ = −

π

2H ),
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2
≪ V(ϕ), and V(ϕ) ≈ V(ϕ0) represents the nearly constant energy density of the

scalar field, i.e. ρϕ ≈ V(ϕ0).

A limiting case is that of a constant value of the field, ϕ̇ = 0 and ρϕ = V(ϕ0) ≡ Λ. It
effectively describes a de-Sitter space-time with a value Λ of the cosmological constant. Then,
the Friedmann equation (4) can be written as

da

dt
=

√

a2H2
− 1, (6)

where, H2
≡ σ2

Λ. It can be distinguished two regimes. For values, a ≥

1
H , the real solution

a(t) =
1

H
cosh Ht, (7)

represents a universe that starts out from a value a0 =
1
H at t = 0, and eventually follows

an exponential expansion. It corresponds to the Lorentzian regime of the universe. On the
other hand, there is no real solution of Eq. (6) for values a <

1
H . However, we can perform a

Wick rotation to Euclidean time, τ = it, by mean of which Eq. (6) transforms into

daE

dτ
=

√

1 − a2
E H2, (8)

whose solution,

aE(τ) =
1

H
cos Hτ, (9)

is the analytic continuation to Euclidean time of the Lorentzian solution (7). The solution
given by Eq. (9) represents an Euclidean space-time that originates at aE = 0 (for τ = −

π

2H ),
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and expands to the value aE =
1
H at τ = 0. The transition from the Euclidean region to

the Lorentzian region occurs at the boundary hypersurface Σ0 ≡ Σ(a0), at t = 0 = τ. This
transition should not be seen as a process happening in time because the Euclidean time is not
actual time (it is imaginary time). On the contrary, it precisely corresponds to the appearance
of time [39] and to the appearance of the (real) universe, actually.

This is, briefly sketched, the classical picture for the nucleation of a universe from nothing
[26, 39, 77], depicted in Fig. 1, where by nothing we should understand a state of the universe
where it does not exist space, time and matter, in the customary sense4. Within that picture,
the quantum fluctuations of the gravitational vacuum provide it with a foam structure [13,
19, 25, 85] where tiny black holes, wormholes and baby universes [70] are virtually created
and annihilated (see, Fig. 2). Some of the baby universes may branch off from the parent
space-time and become isolated universes that, subsequently, may undergo an inflationary
stage and develop into a large parent universe like ours.

Figure 1. The creation of a De–Sitter universe from a De–Sitter instanton.

Figure 2. Space-time foam: some of the baby universes may branch off from the parent space-time.

2.3. Quantum state of the multiverse

Following the canonical quantization formalism, the momenta conjugated to the

configuration variables qI are given by pI ≡
δL

δ(
dqI

dt )

, where L ≡ L(qI ,
dqI

dt ) is the Lagrangian of

4 However, it does not correspond to the absolute meaning of ’nothing’, in a similar way as the vacuum of a quantum
field theory is not ’empty’ (see, Ref. [77]).
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Eq. (2). The Hamiltonian then reads

H ≡

dqI

dt
pI − L = NH ≡ N

(

GAB pA pB + V(qI
)

)

. (10)

The invariance of general relativity under time reparametrizations implies that the variation
of the Hamiltonian (10) with respect to the lapse function vanishes. We obtain thus the
classical Hamiltonian constraint, H = 0, which gives rise to the Friedmann equation (4).
The wave function of the universe, φ, can then be obtained by performing a canonical

quantization of the momenta, pI → p̂I ≡ −ih̄ ∂

∂qI , and applying the quantum version of

the Hamiltonian constraint to the wave function φ, i.e. Ĥφ = 0. With an appropriate choice
of factor ordering, it can be written as [39]

{

−

h̄2

√

−G

∂

∂qA

(

√

−G GAB ∂

∂qB

)

+ V(qI
)

}

φ(qI
) = 0, (11)

where GAB is the inverse of the minisupermetric GAB, with GABGBC = δA
C , and G is the

determinant of GAB. For a homogeneous and isotropic universe with a slow-varying field
the Wheeler-De Witt equation (11) explicitly yields

h̄2 ∂2φ

∂a2
+

h̄2

a

∂φ

∂a
+ (a4V(ϕ)− a2

)φ = 0, (12)

where, φ ≡ φ(a, ϕ). Let us note that if we replace V(ϕ) by Λ, the wave function φ ≡ φΛ(a)
represents the quantum state of a de-Sitter universe. For later convenience, let us write Eq.
(12) as

φ̈ +

Ṁ

M

φ̇ + ω
2
φ = 0, (13)

where, φ̇ ≡

∂φ

∂a and Ṁ ≡

∂M

∂a , with M ≡ M(a) = a, and, ω ≡ ω(a, ϕ) =
a
h̄

√

a2V(ϕ)− 1. It
will be useful later on to recall the formal resemblance of Eq. (13) to the equation of motion
of a harmonic oscillator. The WKB solutions of Eq. (13) can be written, in the Lorentzian
region, as

φ
±

WKB(a, ϕ) =
N(ϕ)

√

M(a)ω(a, ϕ)
e±iS(a,ϕ), (14)

where N(ϕ) is a normalization factor, and

S(a, ϕ) =

∫

da ω(a, ϕ) =
1

h̄

(a2V(ϕ)− 1)
3
2

3V(ϕ)
. (15)

The positive and negative signs of φ
±

WKB correspond to the contracting and expanding
branches of the universe, respectively. This can be seen by noticing that, for sufficiently
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region, as
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±
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2
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. (15)

The positive and negative signs of φ
±

WKB correspond to the contracting and expanding
branches of the universe, respectively. This can be seen by noticing that, for sufficiently
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Figure 3. Boundary conditions of the universe.

large values of the scale factor, the Fourier transform of φ
±

WKB(a, ϕ) is highly peaked around

the value of the classical momentum pc
a [20], i.e. φ̃

±

WKB(pa, ϕ) ≈ δ(pa − pc
a). The classical

momentum reads, pc
a = −a ∂a

∂t , and quantum mechanically, for large values of the scale factor,

p̂aφ = −ih̄φ̇ ≈ ±ωφ, where the positive and negative signs correspond to the signs of φ
±

WKB.

Then, ∂a
∂t ≈ ∓

ω

a , where the negative sign describes a contracting universe and the positive

sign an expanding universe. Thus, the solutions φ
±

WKB of the Wheeler-de Witt equation (13)
describe the contracting and expanding branches of the universe, respectively.

In order to fix the state of the universe, a boundary condition has to be imposed on the wave
function φWKB. The tunneling boundary condition [78, 79] states that the only modes that
survive the Euclidean barrier are the outgoing modes of the minisuperspace that correspond,
in the Lorentzian region, to the expanding branches of the universe (see, Fig. 3). Then, the
wave function of the universe reads

φ
T
(a, ϕ) ≈

N(ϕ)
√

M(a)ω(a, ϕ)
e−iS(a,ϕ), (16)

with [39, 79], N(ϕ) = e
−

1
3V(ϕ) . By using the matching conditions, the wave function (16) turns

out to be given in the Euclidean region by

φ
T
E(a, ϕ) ≈

e
−

1
3V(ϕ)

√

M(a)ω(a, ϕ)

(

e+I(a,ϕ)
+ e−I(a,ϕ)

)

, (17)

where, I = iS, is the Euclidean action. The first term in Eq. (17) may diverge as the scale
factor degenerates. However, this is not a problem in terms of Vilenkin’s reasoning [78]
because the tunneling boundary condition is mainly intended for fixing the state of the wave
function on the Lorentzian region where the current probability is defined, cf. [78]. The
philosophy of the ’no-boundary’ proposal of Hartle and Hawking [24] is quite the contrary.
For these authors, the actual quantum description of the universe is given by a path integral
performed over all compact Euclidean metrics. The no-boundary condition is then imposed
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on the Euclidean sector of the wave function. In the case being considered, it is equivalent to
impose regularity conditions [22], and thus

φ
NB
E (a, ϕ) ≈

N(ϕ)
√

M(a)ω(a, ϕ)
e−I(a,ϕ), (18)

with N(ϕ) = e
+

1
3V(ϕ) [22, 39]. In the Lorentzian sector, the wave function turns out to be

given by a linear combination of expanding and contracting branches of the universe [27],
i.e.

φ
T
(a, ϕ) ≈

e
+

1
3V(ϕ)

√

M(a)ω(a, ϕ)
cos S ∝

e
+

1
3V(ϕ)

√

M(a)ω(a, ϕ)

(

e+iS(a,ϕ)
+ e−iS(a,ϕ)

)

. (19)

Both expanding and contracting branches suffer subsequently a very effective decoherence
process [21, 37] becoming quantum mechanically independent. Thus, observers inhabiting a
branch of the universe cannot perceive any effect of the quantum superposition.

2.4. Third quantization formalism

Let us now introduce the so-called ’third quantization’ formalism [70], where the creation
and the annihilation of universes is naturally incorporated in a parallel way as the creation
and annihilation of particles is naturally formulated in a quantum field theory. The third
quantization formalism consists of considering the wave function of the universe, φ(a, �ϕ),
as a field defined upon the minisuperspace of variables (a, �ϕ). The minisupermetric of the
minisuperspace, GAB = diag(−a, a3, . . . , a3

), where Gaa = −a, has a Lorentzian signature
and it allows us to formally interpret the scale factor as an intrinsic time variable of the
minisuperspace. This has not to be confused with a time variable in terms of ’clocks and
rods’ measured by any observer. The consideration of the scale factor as a time variable
within a single universe is a tricky task (see Refs. [23, 30, 34, 38–40, 78]) that will partially be
addressed on subsequent sections.

We already noticed the formal analogy between the Wheeler-de Witt equation (13) and the
equation of motion of a harmonic oscillator. Taking further the analogy, we can find a (third
quantized) action for which the variational principle gives rise to Eq. (13), given by

(3)S =

1

2

∫

da (3)L =

1

2

∫

da
(

Mφ̇
2
−Mω

2
φ

2
)

. (20)

The third quantized momentum is defined as, (3)Pφ ≡

δ (3)L
δφ̇

= Mφ̇, where (3)L is the

Lagrangian of the action (20), and the third quantized Hamiltonian then reads

(3)H =

1

2M
P2

φ +

Mω2

2
φ

2, (21)

where M ≡ M(a) and ω ≡ ω(a, ϕ) are defined after Eq. (13). The configuration variable of
the third quantization formalism is the wave function of the universe, φ, and the quantum
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state of the multiverse is thus given by another wave function, Ψ ≡ Ψ(φ, a), which is the
solution of the (third quantized) Schrödinger equation [61, 70]

(3)Ĥ(φ,−ih̄
∂

∂φ
, a)Ψ(φ, a) = ih̄

∂Ψ(φ, a)

∂a
. (22)

The customary interpretation of the wave function Ψ is the following [70]: let us expand the
quantum state of the multiverse, |Ψ�, in an orthonormal basis of number states, |N�, i.e.

|Ψ� = ∑
N

ΨN(φ, a)|N�, (23)

then, |ΨN(φ, a0)|
2 gives the probability to find in the multiverse N universes with a value

a0 of the scale factor. We can consider different types of universes having different

energy-matter contents represented by the fields �ϕ(i) of the i-universe. The wave function
of the whole multiverse is given then by a linear superposition of wave functions of the form
[61, 62]

Ψ�N
(�φ, a) = ΨN1

(φ1, a)ΨN2
(φ2, a) · · ·ΨNn

(φn, a), (24)

where, �φ ≡ (φ1, φ2, . . . , φn) and �N ≡ (N1, N2, . . . , Nn), with Ni being the number of universes

of type i, represented by the wave function φi ≡ φ(�ϕ(i), a). Following the canonical

interpretation of the wave function in quantum mechanics, |Ψ�N
(�φ, a0)|

2 gives the probability

to find �N universes in the multiverse with a value of the scale factor and the scalar fields
given by, a = a0 and �ϕ(i)

= �ϕ
(i)
0 , for the i-universe.

Let us just consider one type, i, of universes. The wave function φi can be promoted to an
operator φ̂i that can be written as

φ̂i(a, ϕ) = Ai(a, ϕ)b̂†
0,i + A∗

i (a, ϕ)b̂0,i, (25)

where the probability amplitudes Ai(a, ϕ) and A∗

i (a, ϕ) satisfy the Wheeler-de Witt equation
(13), and

b̂0,i ≡

√

M0ω0

h̄

(

φ̂i +
i

M0ω0
P̂φi

)

, (26)

b̂†
0,i ≡

√

M0ω0

h̄

(

φ̂i −
i

M0ω0
P̂φi

)

, (27)

are the customary creation and annihilation operators of the harmonic oscillator, with M0

and ω0 being the mass and frequency terms, M(a) and ω(a, ϕ), respectively, evaluated on
the boundary hypersurface Σ0 for which, a = a0 and ϕ = ϕ0. The operators b̂0,i and b̂†

0,i can
then be interpreted as the annihilation and creation operators of universes with a value of
the scale factor a0 and an energy density given by ρϕ ≈ V(ϕ0), for the case of a slow-varying
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field. The kind of universes created and annihilated by b̂†
0,i and b̂0,i, respectively, also depend

on the boundary conditions imposed on the probability amplitudes Ai(a, ϕ) and A∗

i (a, ϕ).
Recalling the previous discussion on the boundary conditions of the universe, if the tunneling
boundary condition is imposed, then, b̂†

0,i (b̂0,i) creates (annihilates) expanding branches of

the universe. If otherwise the ’no-boundary’ proposal is chosen, b̂†
0,i (b̂0,i) creates (annihilates)

linear combinations of expanding and contracting branches.

Therefore, at least for universes with high order of symmetry, the third quantization
formalism parallels that of a quantum field theory in a curved space-time, i.e. it can formally
be seen as a quantum field theory defined on the curved minisuperspace described by the
minisupermetric GAB. The scale factor formally plays the role of the time variable and the
matter fields �ϕ the role of the spatial coordinates. Creation and annihilation operators of
universes can properly be defined in the curved minisuperspace. However, as it happens
in a quantum field theory, different representations can be chosen to describe the quantum
state of the universes. The meaning of such representations needs of a further analysis in
terms of the boundary condition that has to be imposed on the quantum state of the whole
multiverse.

2.5. Boundary conditions of the multiverse

For a given representation, b̂†
i and b̂i, the eigenvalues of the number operator N̂i ≡ b̂†

i b̂i

might be interpreted in the third quantization formalism as the number of i-universes in the
multiverse, where the index i labels the different kinds of universes considered in the model.
However, in terms of the constant operators b̂0,i and b̂†

0,i defined in Eqs. (26-27), the number

of universes of the multiverse is not conserved because N̂0,i ≡ b̂†
0,i b̂0,i is not an invariant

operator, i.e.

dN̂0,i

da
≡

i

h̄
[
(3)Ĥi, N̂0,i] +

∂N̂0,i

∂a
=

i

h̄
[
(3)Ĥi, N̂0,i] �= 0. (28)

For a large parent universe, i.e. for values a ≫ 1, the creation and annihilation operators can
asymptotically be taken to be the usual creation and annihilation operators of the harmonic
oscillator (21) with the proper frequency ω of the Hamiltonian, i.e.

b̂ω,i ≡

√

M(a)ωi(a, ϕ)

h̄

(

φ̂i +
i

M(a)ωi(a, ϕ)
P̂φi

)

, (29)

b̂†
ω,i ≡

√

M(a)ωi(a, ϕ)

h̄

(

φ̂i −
i

M(a)ωi(a, ϕ)
P̂φi

)

, (30)

for a given type of i-universes. However, in terms of the asymptotic representation (29-30)
the number operator, N̂ω,i ≡ b̂†

ω,i b̂ω,i, is neither an invariant operator because

dN̂ω,i

da
≡

i

h̄
[
(3)Ĥi, N̂ω,i] +

∂N̂ω,i

∂a
=

∂N̂ω,i

∂a
�= 0. (31)

It would be expected that the number of universes in the multiverse would be a property
of the multiverse independent of any internal property of a particular single universe.
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state of the multiverse is thus given by another wave function, Ψ ≡ Ψ(φ, a), which is the
solution of the (third quantized) Schrödinger equation [61, 70]

(3)Ĥ(φ,−ih̄
∂

∂φ
, a)Ψ(φ, a) = ih̄

∂Ψ(φ, a)

∂a
. (22)

The customary interpretation of the wave function Ψ is the following [70]: let us expand the
quantum state of the multiverse, |Ψ�, in an orthonormal basis of number states, |N�, i.e.

|Ψ� = ∑
N

ΨN(φ, a)|N�, (23)

then, |ΨN(φ, a0)|
2 gives the probability to find in the multiverse N universes with a value

a0 of the scale factor. We can consider different types of universes having different

energy-matter contents represented by the fields �ϕ(i) of the i-universe. The wave function
of the whole multiverse is given then by a linear superposition of wave functions of the form
[61, 62]

Ψ�N
(�φ, a) = ΨN1

(φ1, a)ΨN2
(φ2, a) · · ·ΨNn

(φn, a), (24)

where, �φ ≡ (φ1, φ2, . . . , φn) and �N ≡ (N1, N2, . . . , Nn), with Ni being the number of universes

of type i, represented by the wave function φi ≡ φ(�ϕ(i), a). Following the canonical

interpretation of the wave function in quantum mechanics, |Ψ�N
(�φ, a0)|

2 gives the probability

to find �N universes in the multiverse with a value of the scale factor and the scalar fields
given by, a = a0 and �ϕ(i)

= �ϕ
(i)
0 , for the i-universe.

Let us just consider one type, i, of universes. The wave function φi can be promoted to an
operator φ̂i that can be written as

φ̂i(a, ϕ) = Ai(a, ϕ)b̂†
0,i + A∗

i (a, ϕ)b̂0,i, (25)

where the probability amplitudes Ai(a, ϕ) and A∗

i (a, ϕ) satisfy the Wheeler-de Witt equation
(13), and

b̂0,i ≡

√

M0ω0

h̄

(

φ̂i +
i

M0ω0
P̂φi

)

, (26)

b̂†
0,i ≡

√

M0ω0

h̄

(

φ̂i −
i

M0ω0
P̂φi

)

, (27)

are the customary creation and annihilation operators of the harmonic oscillator, with M0

and ω0 being the mass and frequency terms, M(a) and ω(a, ϕ), respectively, evaluated on
the boundary hypersurface Σ0 for which, a = a0 and ϕ = ϕ0. The operators b̂0,i and b̂†

0,i can
then be interpreted as the annihilation and creation operators of universes with a value of
the scale factor a0 and an energy density given by ρϕ ≈ V(ϕ0), for the case of a slow-varying
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field. The kind of universes created and annihilated by b̂†
0,i and b̂0,i, respectively, also depend

on the boundary conditions imposed on the probability amplitudes Ai(a, ϕ) and A∗

i (a, ϕ).
Recalling the previous discussion on the boundary conditions of the universe, if the tunneling
boundary condition is imposed, then, b̂†

0,i (b̂0,i) creates (annihilates) expanding branches of

the universe. If otherwise the ’no-boundary’ proposal is chosen, b̂†
0,i (b̂0,i) creates (annihilates)

linear combinations of expanding and contracting branches.

Therefore, at least for universes with high order of symmetry, the third quantization
formalism parallels that of a quantum field theory in a curved space-time, i.e. it can formally
be seen as a quantum field theory defined on the curved minisuperspace described by the
minisupermetric GAB. The scale factor formally plays the role of the time variable and the
matter fields �ϕ the role of the spatial coordinates. Creation and annihilation operators of
universes can properly be defined in the curved minisuperspace. However, as it happens
in a quantum field theory, different representations can be chosen to describe the quantum
state of the universes. The meaning of such representations needs of a further analysis in
terms of the boundary condition that has to be imposed on the quantum state of the whole
multiverse.

2.5. Boundary conditions of the multiverse

For a given representation, b̂†
i and b̂i, the eigenvalues of the number operator N̂i ≡ b̂†

i b̂i

might be interpreted in the third quantization formalism as the number of i-universes in the
multiverse, where the index i labels the different kinds of universes considered in the model.
However, in terms of the constant operators b̂0,i and b̂†

0,i defined in Eqs. (26-27), the number

of universes of the multiverse is not conserved because N̂0,i ≡ b̂†
0,i b̂0,i is not an invariant

operator, i.e.

dN̂0,i

da
≡

i

h̄
[
(3)Ĥi, N̂0,i] +

∂N̂0,i

∂a
=

i

h̄
[
(3)Ĥi, N̂0,i] �= 0. (28)

For a large parent universe, i.e. for values a ≫ 1, the creation and annihilation operators can
asymptotically be taken to be the usual creation and annihilation operators of the harmonic
oscillator (21) with the proper frequency ω of the Hamiltonian, i.e.

b̂ω,i ≡

√

M(a)ωi(a, ϕ)

h̄

(

φ̂i +
i

M(a)ωi(a, ϕ)
P̂φi

)

, (29)

b̂†
ω,i ≡

√

M(a)ωi(a, ϕ)

h̄

(

φ̂i −
i

M(a)ωi(a, ϕ)
P̂φi

)

, (30)

for a given type of i-universes. However, in terms of the asymptotic representation (29-30)
the number operator, N̂ω,i ≡ b̂†

ω,i b̂ω,i, is neither an invariant operator because

dN̂ω,i

da
≡

i

h̄
[
(3)Ĥi, N̂ω,i] +

∂N̂ω,i

∂a
=

∂N̂ω,i

∂a
�= 0. (31)

It would be expected that the number of universes in the multiverse would be a property
of the multiverse independent of any internal property of a particular single universe.
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Therefore, it seems appropriate to impose the following boundary condition on the
multiverse:

The number of universes of the multiverse does not depend on the value of the scale
factor of a particular single universe.

This boundary condition imposes the restriction that the number operator N̂i for a particular
type of i-universes has to be an invariant operator5. We can then follow the theory of
invariants developed by Lewis [43] and others [11, 41, 55, 57, 67, 69, 76], and find a Hermitian
invariant operator, Îi = h̄(b̂†

i b̂i +
1
2 ), where [43]

b̂i(a) ≡

√

1

2h̄

(

1

Ri
φ̂i + i(RiP̂φi

− Ṙiφ̂i)

)

, (32)

b̂†
i (a) ≡

√

1

2h̄

(

1

Ri
φ̂i − i(RiP̂φi

− Ṙiφ̂i)

)

, (33)

with, Ri ≡ Ri(a, ϕ), that can be written as R =

√

φ2
1,i + φ2

2,i, being φ1,i and φ2,i two

independent solutions of the Wheeler-de Witt equation (13). In the semiclassical regime,
we can use independent combinations of the solutions φWKB

+
and φWKB

−

so that

Ri(a, ϕ) ≈
e
±

1
3Vi (ϕ)

√

M(a)ωi(a, ϕ)
, (34)

where the positive sign corresponding to the choice of the no-boundary proposal and the
negative sign to the tunneling boundary condition. The number operator for a particular
kind of i-universes in the representation given by Eqs. (32-33), N̂i ≡ b̂†

i b̂i, is then an invariant
operator fulfilling the boundary condition of the multiverse and, thus, the eigenvalues Ni,
with N̂i|Ni, a� = Ni|Ni, a� and Ni �= Ni(a), can properly be interpreted as the number of
i-universes of the multiverse.

In terms of the invariant representation, the Hamiltonian (21) takes the form

(3)Ĥ = h̄

(

β
+
(b̂†

)
2
+ β

−
b̂2

+ β0 (b̂
† b̂ +

1

2
)

)

, (35)

where,

β
∗

+
= β

−
=

1

4

{

(

Ṙ −

i

R

)2

+ ω
2R2

}

, (36)

β0 =

1

2

(

Ṙ2
+

1

R2
+ ω

2R2

)

. (37)

5 We are not considering transitions from one kind of universes to another.
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The Hamiltonian (35) is formally the same Hamiltonian of a degenerated parametric
amplifier used in quantum optics [66, 82] (see also, Sec. 3). The quadratic terms are
interpreted therein as the creation and annihilation operators of pairs of entangled photons.
Similarly, we can interpret the quadratic terms in b̂† and b̂ of Eq. (35) as operators that create
and annihilate, respectively, pairs of entangled universes. In the case that the universes were
distinguishable, the Hamiltonian (35) would take the form of a non-degenerated parametric
amplifier [82]

(3)Ĥ = h̄

(

β
+

b̂†
1 b̂†

2 + β
−

b̂1b̂2 +
β0

2
(b̂†

1 b̂1 + b̂†
2 b̂2 + 1)

)

, (38)

where the indices 1 and 2 label the two universes of the entangled pair. The distinguishability
of universes is certainly a tricky task. However, observers may exist in the two universes of
an entangled pair because the universes share similar properties and, then, the plausible
(classical and quantum) communications between these observers would make the universes
be distinguishable. Classical communications between the observers of different universes
can be conceivable by the presence of wormholes connecting the universes and quantum
communications could then be implemented by using quantum correlated fields shared by
the two observers. Therefore, it is at least plausible to pose a model of the multiverse made
up of entangled pairs of distinguishable universes.

The general quantum state of a multiverse formed by entangled pairs of de-Sitter universes
would be given by linear combinations of terms like [61, 62] (see Eq. (24))

Ψ�N
(�φ, a) = Ψ

Λ1
N1
(a, φ1)Ψ

Λ2
N2
(a, φ2) · · ·Ψ

Λn

Nn
(a, φn), (39)

where, �φ ≡ (φ1, φ2, . . . , φn), and �N ≡ (2N1, 2N2, . . . , 2Nn), with Ni being the number of pairs
of universes of type i, represented by the wave function φi ≡ φΛi

(a) that corresponds to the

value Λi of the cosmological constant. The wave functions, Ψ
Λi

Ni
(φi, a), in Eq. (39) are the

solutions of the third quantized Schrödinger equation

ih̄
∂

∂a
Ψ

Λi

Ni
(φi, a) = Ĥi(φ, pφ, a)ΨΛi

Ni
(φi, a), (40)

with

Ĥi = h̄

{

β
(i)
−

b̂
(i)
1 b̂

(i)
2 + β

(i)
+
(b̂

(i)
1 )

†
(b̂

(i)
2 )

†
+

1

2
β
(i)
0

(

(b̂
(i)
1 )

† b̂
(i)
1 + (b̂

(i)
2 )

† b̂
(i)
2 + 1

)

}

, (41)

for each kind of i-universes in the multiverse [62].

3. Quantum entanglement

3.1. Introduction

Back to the early years of the quantum development, in 1935, Schrödinger [64, 65] coined the
word ’entanglement’ to describe a puzzling feature of the quantum theory that was formerly
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Therefore, it seems appropriate to impose the following boundary condition on the
multiverse:

The number of universes of the multiverse does not depend on the value of the scale
factor of a particular single universe.

This boundary condition imposes the restriction that the number operator N̂i for a particular
type of i-universes has to be an invariant operator5. We can then follow the theory of
invariants developed by Lewis [43] and others [11, 41, 55, 57, 67, 69, 76], and find a Hermitian
invariant operator, Îi = h̄(b̂†

i b̂i +
1
2 ), where [43]

b̂i(a) ≡

√

1

2h̄

(

1

Ri
φ̂i + i(RiP̂φi

− Ṙiφ̂i)

)

, (32)

b̂†
i (a) ≡

√

1

2h̄

(

1

Ri
φ̂i − i(RiP̂φi

− Ṙiφ̂i)

)

, (33)

with, Ri ≡ Ri(a, ϕ), that can be written as R =

√

φ2
1,i + φ2

2,i, being φ1,i and φ2,i two

independent solutions of the Wheeler-de Witt equation (13). In the semiclassical regime,
we can use independent combinations of the solutions φWKB

+
and φWKB

−

so that

Ri(a, ϕ) ≈
e
±

1
3Vi (ϕ)

√

M(a)ωi(a, ϕ)
, (34)

where the positive sign corresponding to the choice of the no-boundary proposal and the
negative sign to the tunneling boundary condition. The number operator for a particular
kind of i-universes in the representation given by Eqs. (32-33), N̂i ≡ b̂†

i b̂i, is then an invariant
operator fulfilling the boundary condition of the multiverse and, thus, the eigenvalues Ni,
with N̂i|Ni, a� = Ni|Ni, a� and Ni �= Ni(a), can properly be interpreted as the number of
i-universes of the multiverse.

In terms of the invariant representation, the Hamiltonian (21) takes the form

(3)Ĥ = h̄

(

β
+
(b̂†

)
2
+ β

−
b̂2

+ β0 (b̂
† b̂ +

1

2
)

)

, (35)

where,

β
∗

+
= β

−
=

1

4

{

(

Ṙ −

i

R

)2

+ ω
2R2

}

, (36)

β0 =

1

2

(

Ṙ2
+

1

R2
+ ω

2R2

)

. (37)

5 We are not considering transitions from one kind of universes to another.
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The Hamiltonian (35) is formally the same Hamiltonian of a degenerated parametric
amplifier used in quantum optics [66, 82] (see also, Sec. 3). The quadratic terms are
interpreted therein as the creation and annihilation operators of pairs of entangled photons.
Similarly, we can interpret the quadratic terms in b̂† and b̂ of Eq. (35) as operators that create
and annihilate, respectively, pairs of entangled universes. In the case that the universes were
distinguishable, the Hamiltonian (35) would take the form of a non-degenerated parametric
amplifier [82]

(3)Ĥ = h̄

(

β
+

b̂†
1 b̂†

2 + β
−

b̂1b̂2 +
β0

2
(b̂†

1 b̂1 + b̂†
2 b̂2 + 1)

)

, (38)

where the indices 1 and 2 label the two universes of the entangled pair. The distinguishability
of universes is certainly a tricky task. However, observers may exist in the two universes of
an entangled pair because the universes share similar properties and, then, the plausible
(classical and quantum) communications between these observers would make the universes
be distinguishable. Classical communications between the observers of different universes
can be conceivable by the presence of wormholes connecting the universes and quantum
communications could then be implemented by using quantum correlated fields shared by
the two observers. Therefore, it is at least plausible to pose a model of the multiverse made
up of entangled pairs of distinguishable universes.

The general quantum state of a multiverse formed by entangled pairs of de-Sitter universes
would be given by linear combinations of terms like [61, 62] (see Eq. (24))

Ψ�N
(�φ, a) = Ψ

Λ1
N1
(a, φ1)Ψ

Λ2
N2
(a, φ2) · · ·Ψ

Λn

Nn
(a, φn), (39)

where, �φ ≡ (φ1, φ2, . . . , φn), and �N ≡ (2N1, 2N2, . . . , 2Nn), with Ni being the number of pairs
of universes of type i, represented by the wave function φi ≡ φΛi

(a) that corresponds to the

value Λi of the cosmological constant. The wave functions, Ψ
Λi

Ni
(φi, a), in Eq. (39) are the

solutions of the third quantized Schrödinger equation

ih̄
∂

∂a
Ψ

Λi

Ni
(φi, a) = Ĥi(φ, pφ, a)ΨΛi

Ni
(φi, a), (40)

with

Ĥi = h̄

{

β
(i)
−

b̂
(i)
1 b̂

(i)
2 + β

(i)
+
(b̂

(i)
1 )

†
(b̂

(i)
2 )

†
+

1

2
β
(i)
0

(

(b̂
(i)
1 )

† b̂
(i)
1 + (b̂

(i)
2 )

† b̂
(i)
2 + 1

)

}

, (41)

for each kind of i-universes in the multiverse [62].

3. Quantum entanglement

3.1. Introduction

Back to the early years of the quantum development, in 1935, Schrödinger [64, 65] coined the
word ’entanglement’ to describe a puzzling feature of the quantum theory that was formerly
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posed by Einstein, Podolski and Rosen in a famous gedanken experiment [12]. Schrödinger
also realized that entanglement is precisely the characteristic trait of quantum mechanics, the
one that enforces its entire departure from classical lines of thought [64]. Let us briefly show
it by following the example given in Ref. [66] (see also Ref. [82]). Let us consider the
photo-disintegration of a Hg2 molecule formed by two atoms of Hg with spin 1

2 . Before the
disintegration, the molecule is taken to be in a state of zero angular momentum so that the
composite state is given by

|Hg2� =
1
√

2
(| ↑1↓2� − | ↓1↑2�) , (42)

where 1 and 2 refer to the atoms of Hg and | ↑ (↓)� refers to the value +
1
2 (−

1
2 ) of

the projection of their spin along the z-axis. After the photo-disintegration, performed
with no disturbance of the angular momentum, the two atoms separate each other in
opposite directions so we can make independent measurements on them. Before doing any
measurement we do not know the particular value of the spin of each atom. However, we
do anticipatedly know that if a measurement of the spin projection is performed on the
atom 1 yielding a value +

1
2 (−

1
2 ), then, the spin projection of the atom 2 is to be −

1
2 (+

1
2 ).

Furthermore, if it is performed a different measurement of the projection of the spin of the
particle 1 along, say, the x-axis, we are determining the value of the spin projection of the
particle 2 along the same axis, too. This non-local feature of the quantum theory is known as
entanglement and the state (42) is called an entangled state.

In 1964, Bell derived certain inequalities [7, 8] that should be satisfied by any reasonable
realistic6 theory of local variables. The experiments of Aspect [3] and others [2, 63, 74, 83]
have shown that the entangled states of the quantum theory violate such inequalities.
Furthermore, these states have not only provided us with an experimental test of the
quantum postulates but they have also given rise to the development of a completely new
branch of physics, the so-called quantum information theory [32, 35, 75], which includes
interesting subjects like quantum computation, quantum cryptography, and quantum
teleportation, which are currently under a promising state of development.

It is finally worth noticing that the kinematical non-locality of the quantum theory is also
the feature that forces us to consider a wave function of the universe. As it is pointed out
in Ref. [39], if gravity is quantized, the kinematical non-separability of quantum theory demands
that the whole universe must be described in quantum terms (cf. p. 4). Every space-time region
is entangled to its environment, which is entangled to another environment and so forth,
ending up in a quantum description of the whole universe.

3.2. Squeezed and entangled states of light

Squeezed states of light [81] can be seen as a generalization of the coherent states. Let us
define the quadrature operators

X̂1 ≡ â + â† , X̂2 = i(â†
− â), (43)

6 By a realistic theory we mean a theory that presupposes that the elements of the theory represent elements of physical
reality (see Ref. [12]).
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where â† and â are the usual creation and annihilation operators of the harmonic oscillator.
The operators X̂1 and X̂2 are essentially dimensionless position and momentum operators.
The uncertainty relation for ∆X1 and ∆X2 reads

∆X1∆X2 ≥ 1, (44)

where, for a coherent state, ∆X1 = ∆X2 = 1. A squeezed state is defined as the quantum
state for which one of the quadratures satisfies7

(∆Xi)
2
< 1 (i = 1 or 2). (45)

Therefore, for a squeezed state the uncertainty of one of the quadratures is reduced below
the limit of the Heisenberg principle at the expense of the increased fluctuations of the other
quadrature.

Unlike the generation of coherent states, which is associated with linear terms of the creation
and annihilation operators in the Hamiltonian, the generation of squeezed states is associated
with quadratic terms of such operators. For instance, let us consider the Hamiltonian that
represents in quantum optics a degenerated parametric amplifier [66, 82]

Ĥ = ih̄
χ

2

(

(â†
)

2
− â2

)

, (46)

where χ is a coupling constant. Then, the time evolution of the vacuum state,

|s(t)� = Ŝ(χ)|0� = e
χ

2 ((â†
)

2
−â2

)t
|0�, (47)

yields a squeezed (vacuum) state, |s(t)�, with Ŝχ being the squeezing operator which satisfies,

Ŝ†
(χ) = Ŝ−1

(χ) = Ŝ(−χ). It is therefore a unitary operator. The Heisenberg equations of
motion for the quadrature amplitudes turn out to be then

dX̂1

dt
= χX̂1 ,

dX̂2

dt
= −χX̂2, (48)

with solutions given by

X̂1(t) = eχtX̂1(0) , X̂2(t) = e−χtX̂2(0). (49)

Then, for an initial vacuum state, for which ∆Xi(0) = 1, the variances of the quadratures
read

∆X1(t) = e2χt , ∆X2(t) = e−2χt. (50)

7 An ideal squeezed state also satisfies ∆X1∆X2 = 1
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quantum postulates but they have also given rise to the development of a completely new
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teleportation, which are currently under a promising state of development.

It is finally worth noticing that the kinematical non-locality of the quantum theory is also
the feature that forces us to consider a wave function of the universe. As it is pointed out
in Ref. [39], if gravity is quantized, the kinematical non-separability of quantum theory demands
that the whole universe must be described in quantum terms (cf. p. 4). Every space-time region
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ending up in a quantum description of the whole universe.

3.2. Squeezed and entangled states of light

Squeezed states of light [81] can be seen as a generalization of the coherent states. Let us
define the quadrature operators
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where â† and â are the usual creation and annihilation operators of the harmonic oscillator.
The operators X̂1 and X̂2 are essentially dimensionless position and momentum operators.
The uncertainty relation for ∆X1 and ∆X2 reads

∆X1∆X2 ≥ 1, (44)

where, for a coherent state, ∆X1 = ∆X2 = 1. A squeezed state is defined as the quantum
state for which one of the quadratures satisfies7

(∆Xi)
2
< 1 (i = 1 or 2). (45)

Therefore, for a squeezed state the uncertainty of one of the quadratures is reduced below
the limit of the Heisenberg principle at the expense of the increased fluctuations of the other
quadrature.

Unlike the generation of coherent states, which is associated with linear terms of the creation
and annihilation operators in the Hamiltonian, the generation of squeezed states is associated
with quadratic terms of such operators. For instance, let us consider the Hamiltonian that
represents in quantum optics a degenerated parametric amplifier [66, 82]

Ĥ = ih̄
χ

2

(

(â†
)

2
− â2

)

, (46)

where χ is a coupling constant. Then, the time evolution of the vacuum state,

|s(t)� = Ŝ(χ)|0� = e
χ

2 ((â†
)

2
−â2

)t
|0�, (47)

yields a squeezed (vacuum) state, |s(t)�, with Ŝχ being the squeezing operator which satisfies,

Ŝ†
(χ) = Ŝ−1

(χ) = Ŝ(−χ). It is therefore a unitary operator. The Heisenberg equations of
motion for the quadrature amplitudes turn out to be then

dX̂1

dt
= χX̂1 ,

dX̂2

dt
= −χX̂2, (48)

with solutions given by

X̂1(t) = eχtX̂1(0) , X̂2(t) = e−χtX̂2(0). (49)

Then, for an initial vacuum state, for which ∆Xi(0) = 1, the variances of the quadratures
read

∆X1(t) = e2χt , ∆X2(t) = e−2χt. (50)

7 An ideal squeezed state also satisfies ∆X1∆X2 = 1
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It can clearly be seen that one of the variances (∆X2) decreases in time at the expense of the
increase of the other (∆X1), with ∆X1(t)∆X2(t) = 1. The squeezed vacuum state is therefore
an ideal squeezed state (see footnote 7).

The Hamiltonian given by Eq. (46) is associated with the generation of entangled pairs of
photons of equal frequency. For that reason, squeezed states are usually dubbed two photon
coherent states [87, 88]. The non-degenerate amplifier is a generalization of the Hamiltonian
(46) which generates entangled pairs of distinguishable photons of frequency ω1 and ω2,
respectively. In that case, the Hamiltonian reads

Ĥ = ih̄χ(â†
1 â†

2 − â1 â2), (51)

where â†
1, â1 and â†

2, â2 are the creation and annihilation operators of modes with frequency
ω1 and ω2, respectively. The solutions of the Heisenberg equations read [82]

â1(t) = â1(0) cosh χt + â†
2(0) sinh χt, (52)

â2(t) = â2(0) cosh χt + â†
1(0) sinh χt, (53)

and the evolution of the two-mode vacuum state is now given by

|s2� = Ŝ2(χ)|0102� = e(â†
1 â†

2−â1 â2)χt
|0102�, (54)

where Ŝ2(χ) is the two mode squeeze operator.

Squeezed and entangled states are usually dubbed non-classical states [59] because they
may violate some inequalities that should be satisfied in the classical description of light.
For instance, in Fig. 4 it is depicted the typical experimental setup to test the violation of

the classical inequality g(2)(0) ≥ 1 (photon bunching [59, 82]), where g(2)(τ) is the second
order correlation function that measures the correlation between the state of the field at two
different times t and t + τ. Classically, a beam of light with an initial intensity IA is split into
two beams of equal intensities, IA1 = IA2 ≡ I. If the averaged intensity is defined by

�I� =
∫

P(I)I dI, (55)

for a given positive distribution P(I), then, g(2)(0) can be written as

g(2)(0) =
�IA1 IA2�

�IA1��IA2�
=

�I2
�

�I�2
= 1 +

1

�I�2

∫

dI P(I)(I − �I�)2
≥ 1. (56)

Quantum mechanically, however, the second order correlation function is defined, for a single
mode, as [59, 82]
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g(2)(0) =
�(a†

)
2a2

�

�a†a�2
≥ 1 −

1

�a†a�
. (57)

There is then room for a quantum violation of the classical inequality g(2)(0) ≥ 1. For a large

number of photons the quantum inequality (57) becomes the classical constraint g(2)(0) ≥ 1,
and light can be described classically.

Figure 4. Experimental setup for testing photon antibunching [59]: S, source of light; BS, beam splitter; PD, photodetector;

and, C, correlator.

It is worth noticing that what it is violated in an experimental setup involving squeezed
and entangled states are some classical assumptions. For instance, in the experimental setup
depicted in Fig. 4, the photon is not split into two photons by the beam splitter but it takes
either the path that reaches the photo-counter 1 or the path that reaches the photo-counter
2. The fact that the photon is not divided into two photons, as it would happen to an
electromagnetic wave, supports the consideration of the photon as a real and individual
entity. Moreover, the corpuscular nature of the photon is the postulate that Einstein assumed
in order to properly describe the photoelectric effect and it can be considered the germ of
quantum mechanics, actually.

However, such a conclusion does not imply that we can interpret the photon as a classical
particle. The double-slit experiment clearly shows that the concept of photon as a
localized particle is generally meaningless. The quantum concept of particle has rather
to be understood as a global property of the field. Their localization and the space-time
independence of different particles depend on the separability of their states. Furthermore,
the violation of the classical inequalities is associated with negative values of the probability
distributions. This can clearly be seen from Eq. (56), where a negative value of P(I) is

needed to obtain a value g(2)(0) < 1. It plainly shows that there are quantum states of light
that cannot be described classically [59].

Another test for the non-classicality of some quantum states is given by the violation of the
Bell’s inequalities. This is achieved, for a two mode state of light, whenever it is satisfied [59]

C ≡

�a†
1a1a†

2a2�

�a†
1a1a†

2a2�+ �(a†
1)

2a2
1�

≥

√

2

2
. (58)
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For the two mode squeezed operators (52-53), it can be checked that

�a†
1a1a†

2a2� = N2
(6x4

+ 6x2
+ 1) + N(6x4

+ 4x2
) + x2

(2x2
+ 1), (59)

�(a†
1)

2a2
1� = N2

(6x4
+ 6x2

+ 1) + N(6x4
+ 2x2

− 1) + 2x4, (60)

where, x ≡ x(t) = sinh χt, and the mean value has been computed for initial number states,
with N1 = N2 ≡ N. For an initial vacuum state, x(0) = 0 and N = 0, then C = 1 > 0.7,
which implies a maximum violation of Bell’s inequalities8. This result is expected because the
quantum vacuum state is a highly non-local state. For a pair of entangled photons (N = 1),
it is obtained

C =

14x4
+ 11x2

+ 1

28x4
+ 19x2

+ 1
, (61)

which implies a violation of Bell’s inequalities for a value, 0.31 > sinh χt > 0. At later

times, the effective number of photons, �Ne f f � = sinh2
χt, produced by the parametric

amplifier grows and the quantum correlations are destroyed. The radiation effectively
becomes classical, then. However, at shorter times, the two mode squeezed states violate
the Bell’s inequalities showing their non-classical behaviour.

Therefore, entangled and squeezed states can essentially be seen as non-classical states,
which is fundamentally related to the complementary principle of quantum mechanics.
Generally speaking, the classical description of light in terms of waves and particles,
separately, does not hold: i) the photon has to be considered as an individual entity (particle
description), and ii) we have to complementary consider interference as well as non-local
effects between the states of two distant photons (wave description).

3.3. Thermodynamics of entanglement

For a physical system whose quantum state is represented by a density matrix9, ρ̂(t),
whose evolution is determined by a Hamiltonian, Ĥ ≡ Ĥ(t), we can define the following
thermodynamical quantities [1, 14]

E(t) = Tr(ρ̂(t)Ĥ(t)), (62)

Q(t) =

∫ t
Tr

(

dρ̂(t′)

dt′
Ĥ(t′)

)

dt′, (63)

W(t) =

∫ t
Tr

(

ρ̂(t′)
dĤ(t′)

dt′

)

dt′, (64)

where Tr(Ô) denotes the trace of the operator Ô. The quantities E(t), Q(t), and W(t), are
the quantum informational analogue to the energy, heat and work, respectively. The first
principle of thermodynamics,

8 Let us notice that for a pure entangled state like |ψ� =
1
√

2
(|00�+ |11�), �ψ|(a†

1)
2a2

1|ψ� = 0 and thus C = 1, too.
9 In this section, it turns out to be convenient to use the density matrix formalism. This can generally be found in the

bibliography (see, for instance, Refs. [14, 32, 35, 54, 75]). Let us just briefly note that for a pure state |ψ�, the density
matrix is given by ρ̂ = |ψ��ψ|, and for a mixed state, ρ̂ = ∑i λi |i��i|, where λi < 1 are the eigenvalues of the density
matrix, with ∑i λi = 1, and the vectors {|i�} form an orthonormal basis.
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dE = δW + δQ, (65)

is then directly satisfied. The quantum informational analogue to the entropy is defined
through the von Neumann formulae [14, 35, 54, 75]

S(ρ) = −Tr (ρ̂(t) ln ρ̂(t)) = −Σiλi(t) ln λi(t), (66)

where λi(t) are the eigenvalues of the density matrix, and 0 ln 0 ≡ 0. For a pure state, ρ̂n
= ρ̂

and λi = δij for some value j. Then, the entropy vanishes. For a mixed state, S > 0. It can be
distinguished two terms [1] in the variation of entropy,

dS =

δQ

T
+ σ. (67)

The first term corresponds to the variation of the entropy due to the change of heat. The
second term in Eq. (67) is called [1] entropy production, and it accounts for the variation of
entropy due to any adiabatic process. The second principle of thermodynamics states that
the change of entropy has to be non-negative for any adiabatic process, i.e. σ ≥ 0.

Let us now analyze the thermodynamical properties of a two mode squeezed state, Eq. (54),
represented by the density matrix

ρ̂ = |s2��s2| = Ŝ2(r)|0102��0102|Ŝ
†
2(r), (68)

where the squeezing operator is given by, Ŝ2(r) ≡ e(â†
1 â†

2−â1 â2)r(t), with r(t) = χt, and |0102� ≡

|01�|02�, with |01� and |02� being the initial ground states of each single mode, respectively.
The reduced density matrix that represents the quantum state of each single mode can be
obtained by tracing out the degrees of freedom of the partner mode, i.e.

ρ̂1 ≡ Tr2ρ̂ =

∞

∑
N2=0

�N2|ρ̂ N2�, (69)

and similarly for ρ̂2 by replacing the indices 2 and 1. By making use of the disentangling
theorem [10, 86], the squeezing operator Ŝ2(r) can be written as

Ŝ2(r) = eΓ(t)â†
1 â†

2 e−g(t)(â†
1 â1+â†

2 â2+1)e−Γ(t)â1 â2 , (70)

where

Γ(t) ≡ tanh r(t) , g(t) ≡ ln cosh r(t), (71)

with, r(t) = χt. We can thus compute the reduced density matrix (69), yielding
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ρ̂1(t) = e−2g(t)
∞

∑
N1=0

e2N1 ln Γ(t)
|N1��N1| =

1

cosh2 r(t)

∞

∑
N1=0

(

tanh2 r(t)
)N1

|N1��N1|. (72)

It turns out to be that ρ̂1 describes a thermal state

ρ̂1(t) =
1

Z(t)

∞

∑
N1=0

e
−

ω1
T(t)

(N1+
1
2 )
|N1��N1|, (73)

where, Z−1
= 2 sinh ω1

2T(t)
, with a time dependent temperature of entanglement given by

T(t) =
ω1

2 ln 1
Γ(t)

, (74)

with ω1 being the frequency of the mode. It is worth mentioning that the thermal state (73) is

indistinguishable from a classical mixture [36, 56]. In that sense, it can be seen as a classical

state. However, it has been obtained from the partial trace of a composite entangled state

which is, as it has previously been shown, a quantum state having no classical analogue.

We can now compute the thermodynamical quantities given by Eqs. (62-64) and Eq. (66)

for the thermal state (73). The entropy of entanglement, i.e. the quantum entropy that

corresponds to the reduced density matrix ρ̂1, reads

Sent(t) = −Tr(ρ̂1 ln ρ̂1) = cosh2 r(t) ln cosh2 r(t)− sinh2 r(t) ln sinh2 r(t). (75)

The total energy E1 ≡ E(ρ1) yields

E1(t) = ω1(sinh2 r(t) +
1

2
) ≡ ω1(�N(t)�+

1

2
), (76)

where �N(t)� is an effective mean number of photons due to the squeezing effect. For a

mode of constant frequency ω1, the variation of work vanishes because

δW1 =

dω1

dt
(sinh2 r(t) +

1

2
) = 0. (77)

The variation of heat is however different from zero. It reads

δQ = ω1 sinh 2r(t)
∂r(t)

∂t
dt. (78)
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It can also be checked that

σ ≡

dSent

dt
−

1

T(t)

δQ

δt
= 0 , ∀t. (79)

Therefore, the second principle of thermodynamics provides us with no arrow of time
because the entropy production σ identically vanishes at any time. In a non-reversible
process, however, the constraint σ > 0 would give rise to the entanglement thermodynamical
arrow of time [36, 56].

4. Quantum entanglement in the multiverse

4.1. Creation of entangled pairs of universes

First, we shall present a plausible scenario for the nucleation of a pair of entangled universes.
The Wheeler-de Witt equation (12) for a de-Sitter universe with a massless scalar field reads

h̄2
φ̈ +

h̄2

a
φ̇ −

h̄2

a2
φ
′′

+ (Λa4
− a2

)φ = 0, (80)

where, φ ≡ φ(a, ϕ) is the wave function of the universe with, φ̇ ≡

∂φ

∂a and φ′

≡

∂φ

∂ϕ
, and Λ is

the cosmological constant. As it was already pointed out in Sec. 2, in the third quantization
formalism the wave function φ is promoted to an operator φ̂ that, in the case now being
considered, can be decomposed in normal modes as

φ̂(a, ϕ) =

∫

dk
(

eikϕ Ak(a)b̂†
k + e−ikϕ A∗

k (a)b̂k

)

, (81)

where, b̂k ≡ b̂k(a0) and b̂†
k ≡ b̂†

k (a0), are the constant operators defined in Eqs. (26-27), now
with the mode-dependent frequency,

ωk(a) =
1

h̄

√

Λa4
− a2

+

h̄2k2

a2
, (82)

evaluated at a0. The probability amplitudes Ak(a) and A∗

k (a) satisfy the equation of the
damped harmonic oscillator,

Äk(a) +
Ṁ

M

Ȧk(a) + ω
2
k Ak(a) = 0, (83)

with, M ≡ M(a) = a, and ωk ≡ ωk(a). Let us recall that the real values of the frequency
(82) define the oscillatory regime of the wave function of the universe in the Lorentzian
region, and the complex values define the exponential regime of the Euclidean region. Let
us first consider the zero mode of the wave function, i.e. k = 0. Then, the wave function
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ρ̂1(t) = e−2g(t)
∞

∑
N1=0

e2N1 ln Γ(t)
|N1��N1| =

1

cosh2 r(t)

∞

∑
N1=0

(

tanh2 r(t)
)N1

|N1��N1|. (72)

It turns out to be that ρ̂1 describes a thermal state

ρ̂1(t) =
1

Z(t)

∞

∑
N1=0

e
−

ω1
T(t)

(N1+
1
2 )
|N1��N1|, (73)

where, Z−1
= 2 sinh ω1

2T(t)
, with a time dependent temperature of entanglement given by

T(t) =
ω1

2 ln 1
Γ(t)

, (74)

with ω1 being the frequency of the mode. It is worth mentioning that the thermal state (73) is

indistinguishable from a classical mixture [36, 56]. In that sense, it can be seen as a classical

state. However, it has been obtained from the partial trace of a composite entangled state

which is, as it has previously been shown, a quantum state having no classical analogue.

We can now compute the thermodynamical quantities given by Eqs. (62-64) and Eq. (66)

for the thermal state (73). The entropy of entanglement, i.e. the quantum entropy that

corresponds to the reduced density matrix ρ̂1, reads

Sent(t) = −Tr(ρ̂1 ln ρ̂1) = cosh2 r(t) ln cosh2 r(t)− sinh2 r(t) ln sinh2 r(t). (75)

The total energy E1 ≡ E(ρ1) yields

E1(t) = ω1(sinh2 r(t) +
1

2
) ≡ ω1(�N(t)�+

1

2
), (76)

where �N(t)� is an effective mean number of photons due to the squeezing effect. For a

mode of constant frequency ω1, the variation of work vanishes because

δW1 =

dω1

dt
(sinh2 r(t) +

1

2
) = 0. (77)

The variation of heat is however different from zero. It reads

δQ = ω1 sinh 2r(t)
∂r(t)

∂t
dt. (78)
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It can also be checked that

σ ≡

dSent

dt
−

1

T(t)

δQ

δt
= 0 , ∀t. (79)

Therefore, the second principle of thermodynamics provides us with no arrow of time
because the entropy production σ identically vanishes at any time. In a non-reversible
process, however, the constraint σ > 0 would give rise to the entanglement thermodynamical
arrow of time [36, 56].

4. Quantum entanglement in the multiverse

4.1. Creation of entangled pairs of universes

First, we shall present a plausible scenario for the nucleation of a pair of entangled universes.
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h̄2
φ̈ +

h̄2

a
φ̇ −

h̄2

a2
φ
′′

+ (Λa4
− a2

)φ = 0, (80)

where, φ ≡ φ(a, ϕ) is the wave function of the universe with, φ̇ ≡

∂φ

∂a and φ′

≡

∂φ

∂ϕ
, and Λ is

the cosmological constant. As it was already pointed out in Sec. 2, in the third quantization
formalism the wave function φ is promoted to an operator φ̂ that, in the case now being
considered, can be decomposed in normal modes as

φ̂(a, ϕ) =

∫

dk
(

eikϕ Ak(a)b̂†
k + e−ikϕ A∗

k (a)b̂k

)

, (81)

where, b̂k ≡ b̂k(a0) and b̂†
k ≡ b̂†

k (a0), are the constant operators defined in Eqs. (26-27), now
with the mode-dependent frequency,

ωk(a) =
1

h̄

√

Λa4
− a2

+

h̄2k2

a2
, (82)

evaluated at a0. The probability amplitudes Ak(a) and A∗

k (a) satisfy the equation of the
damped harmonic oscillator,

Äk(a) +
Ṁ

M

Ȧk(a) + ω
2
k Ak(a) = 0, (83)

with, M ≡ M(a) = a, and ωk ≡ ωk(a). Let us recall that the real values of the frequency
(82) define the oscillatory regime of the wave function of the universe in the Lorentzian
region, and the complex values define the exponential regime of the Euclidean region. Let
us first consider the zero mode of the wave function, i.e. k = 0. Then, the wave function
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Figure 5. Before reaching the collapse, the instanton finds the transition hypersurface Σ
′′.

Figure 6. Creation of a pair of entangled universes from a pair of instantons.

φΛ(a) quantum mechanically describes the nucleation of a de-Sitter universe from a de-Sitter
instanton [26, 39, 77, 78] depicted in Sec. 2, with a transition hypersurface Σ0 ≡ Σ(a0) located
at a0 =

1
√

Λ
(see, Fig 1).

For values of k different from zero, the quantum correction term given in Eq. (82) introduces a
novelty. For the value, km > k > 0, where k2

m ≡

4
27h̄2

Λ2
, there are two transition hypersurfaces

from the Euclidean to the Lorentzian region, Σ
′

≡ Σ(a
+
) and Σ

′′

≡ Σ(a
−
), respectively,

located at [62]

a
+
≡

1
√

3Λ

√

1 + 2 cos

(

θk

3

)

, (84)

a
−
≡

1
√

3Λ

√

1 − 2 cos

(

θk + π

3

)

, (85)

where, in units for which h̄ = 1,

θk ≡ arctan
2k
√

k2
m − k2

k2
m − 2k2

. (86)

The picture is then rather different from the one depicted in Fig. 1. First, at the transition
hypersurface Σ

′ the universe finds the Euclidean region (let us notice that for k → 0, a
+
→ a0

and a
−

→ 0). However, before reaching the collapse, the Euclidean instanton finds a new
transition hypersurface Σ

′′ (see Fig 5). Then, following a mechanism that parallels that
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proposed by Barvinsky and Kamenshchik in Refs. [4–6], two instantons can be matched by
identifying their hypersurfaces Σ

′′ (see Fig. 6). The instantons can thus be created in pairs
which would eventually give rise to an entangled pair of universes. Let us notice that this is
a quantum effect having no classical analog because the quantum correction term in Eq. (82)
does not appear in the classical theory.

The matching hypersurface Σ
′′

≡ Σ
′′

(a
−
), where a

−
≡ a

−
(θk) is given by Eq. (85) with Eq.

(86), depends on the value k of the mode. Therefore, the matched instantons can only be
joined for an equal value of the mode of their respective scalar fields. The universes created
from such a double instanton are then entangled, with a composite quantum state given by

φI,I I =

∫

dk
(

eik(ϕI+ϕI I )AI,k(a)AII,k(a) b̂†
I,kb̂†

I I,k + e−ik(ϕI+ϕI I )A∗

I,k(a)A∗

I I,k(a) b̂I,k b̂I I,k

)

, (87)

where ϕI,I I are the values of the scalar field of each single universe, labelled by I and I I,
respectively. The cross terms like AI,k A∗

I I,k cannot be present in the state of the pair of
universes because the orthonormality relations between the modes [62]. Then, the composite
quantum state must necessarily be the entangled state represented by Eq. (87).

It is also worth mentioning that, in the model being considered, there is no Euclidean regime
for values k ≥ km and, therefore, no universes are created from the space-time foam with
such values of the mode. Then, km can be considered the natural cut-off of the model. Let
us also note that a similar behavior of the modes of the universe would be obtained for a
non-massless scalar field provided that the potential of the scalar field, V(ϕ), satisfies the
boundary condition [38, 39], V(ϕ) → 0 for a → 0.

4.2. Entangled and squeezed states in the multiverse

Entangled states, like those found in the preceding section or those appearing in the phantom
multiverse [18, 62], can generally be posed in the quantum multiverse. Furthermore, the
canonical representations of the harmonic oscillator that represent the quantum state of the
multiverse, in the model described in Sec. 2, are related by squeezed transformations [41].
Thus, squeezed states may generally be considered in the quantum multiverse.

As we saw in Sec. 3, entangled and squeezed states are usually dubbed ’non-classical’
states because they are related to the violation of classical inequalities. Such violation is
fundamentally associated to the complementary principle of quantum mechanics. In the
multiverse, squeezed and entangled states may also violate the classical inequalities [62].
However, the conceptual meaning of such violation can be quite different from that given
in quantum optics. For instance, if the existence of entangled and squeezed states would
imply a violation of Bell’s inequalities, then, it could not be interpreted in terms of locality or
non-locality because these concepts are only well-defined inside a universe, where space and
time are meaningful. In the quantum multiverse, there is generally no common space-time
among the universes and, therefore, the violation of Bell’s inequalities would be rather
related to the interdependence of the quantum states that represent different universes of
the multiverse.

Like in quantum optics [75], the violation of the classical inequalities in the multiverse
depends on the representation which is chosen to describe the quantum states of the
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identifying their hypersurfaces Σ

′′ (see Fig. 6). The instantons can thus be created in pairs
which would eventually give rise to an entangled pair of universes. Let us notice that this is
a quantum effect having no classical analog because the quantum correction term in Eq. (82)
does not appear in the classical theory.
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), where a
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(θk) is given by Eq. (85) with Eq.

(86), depends on the value k of the mode. Therefore, the matched instantons can only be
joined for an equal value of the mode of their respective scalar fields. The universes created
from such a double instanton are then entangled, with a composite quantum state given by
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∫
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(

eik(ϕI+ϕI I )AI,k(a)AII,k(a) b̂†
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where ϕI,I I are the values of the scalar field of each single universe, labelled by I and I I,
respectively. The cross terms like AI,k A∗

I I,k cannot be present in the state of the pair of
universes because the orthonormality relations between the modes [62]. Then, the composite
quantum state must necessarily be the entangled state represented by Eq. (87).

It is also worth mentioning that, in the model being considered, there is no Euclidean regime
for values k ≥ km and, therefore, no universes are created from the space-time foam with
such values of the mode. Then, km can be considered the natural cut-off of the model. Let
us also note that a similar behavior of the modes of the universe would be obtained for a
non-massless scalar field provided that the potential of the scalar field, V(ϕ), satisfies the
boundary condition [38, 39], V(ϕ) → 0 for a → 0.

4.2. Entangled and squeezed states in the multiverse

Entangled states, like those found in the preceding section or those appearing in the phantom
multiverse [18, 62], can generally be posed in the quantum multiverse. Furthermore, the
canonical representations of the harmonic oscillator that represent the quantum state of the
multiverse, in the model described in Sec. 2, are related by squeezed transformations [41].
Thus, squeezed states may generally be considered in the quantum multiverse.

As we saw in Sec. 3, entangled and squeezed states are usually dubbed ’non-classical’
states because they are related to the violation of classical inequalities. Such violation is
fundamentally associated to the complementary principle of quantum mechanics. In the
multiverse, squeezed and entangled states may also violate the classical inequalities [62].
However, the conceptual meaning of such violation can be quite different from that given
in quantum optics. For instance, if the existence of entangled and squeezed states would
imply a violation of Bell’s inequalities, then, it could not be interpreted in terms of locality or
non-locality because these concepts are only well-defined inside a universe, where space and
time are meaningful. In the quantum multiverse, there is generally no common space-time
among the universes and, therefore, the violation of Bell’s inequalities would be rather
related to the interdependence of the quantum states that represent different universes of
the multiverse.

Like in quantum optics [75], the violation of the classical inequalities in the multiverse
depends on the representation which is chosen to describe the quantum states of the
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universes [62]. Unlike quantum optics, we do not have an experimental device to
measure other universes rather than our own universe10. However, the extension of the
complementary principle to the quantum description of the multiverse entails two main
consequences. On the one hand, if the wave function of the universe has to be described
in terms of ’particles’, it means that in some appropriate representation we can formally
distinguish the universal states as individual entities, giving rise therefore to the multiverse
scenario. On the other hand, if it has to be complementary described in terms of waves,
then, interference between the quantum states of two or more universes can generally be
considered as well.

4.3. Thermodynamical properties of entangled universes

Let us consider a multiverse made up of homogeneous and isotropic universes with a
slow-varying scalar field ϕ, recalling that in the case for which ϕ̇ = 0 and V(ϕ0) ≡ Λ,
the model effectively represents a multiverse formed by de-Sitter universes.

Let us consider one type of universes and describe the quantum state of the multiverse in
terms of the annihilation and creation operators b̂(a) and b̂†

(a) given in Eqs. (32-33). The
vacuum state of the multiverse, |0̄�, is then defined as the eigenstate of the annihilation
operator b̂(a) with eigenvalue zero, i.e. b̂(a)|0̄� ≡ 0. On the other hand, observers inhabiting
a large parent universe would quantum mechanically describe the state of their respective
universes in the asymptotic representation given by Eqs. (29-30), with a ground state |0�
defined by, b̂ω(a)|0� ≡ 0.

We can consider therefore two representations: the one derived from a consistent formulation
of the boundary condition of the whole multiverse, or invariant representation, given by the
operators b̂(a) and b̂†

(a), and the asymptotic representation given by the operators b̂ω(a)
and b̂†

ω(a), which might be called the observer representation. They both are related by the
squeezing transformation

b̂ = µω b̂ω + νω b̂†
ω , (88)

b̂†
= µ

∗

ω b̂†
ω + ν

∗

ω b̂ω , (89)

where, µω ≡ µω(a, ϕ) and νω ≡ νω(a, ϕ), are given by

µω(a, ϕ) =
1

2
√

M(a)ω(a, ϕ)

(

1

R
+ RM(a)ω(a, ϕ)− iṘ

)

, (90)

νω(a, ϕ) =
1

2
√

M(a)ω(a, ϕ)

(

1

R
− RM(a)ω(a, ϕ)− iṘ

)

, (91)

with |µω |
2
− |νω |

2
= 1, and R ≡ R(a, ϕ) is given, in the semiclassical regime, by Eq. (34),

R ≈

e
±

1
3V(ϕ)

√

M(a)ω(a, ϕ)
,

10 In some sense, we are the ’measuring device’ of our universe.
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where the positive sign corresponds to the choice of the no-boundary condition and the
negative sign to the tunneling boundary condition. Let us further assume that the multiverse
is in the invariant vacuum state |0̄�. The density matrix that represents the quantum state of
the multiverse turns out to be then

ρ̂(a, ϕ) ≡ |0̄��0̄| = Û

†
S |0102��0102|ÛS, (92)

where |0102� ≡ |01�|02�, with |01� and |02� being the ground states of a pair of entangled
universes in their respective observer representations. Similarly to Eq. (54), the squeezing
operator ÛS is given by [62]

ÛS(a, ϕ) = er(a,ϕ)b̂1 b̂2−r(a,ϕ)b̂†
1 b̂†

2 , (93)

where the squeezing parameter, r(a, ϕ), reads

r(a, ϕ) ≡ arcsinh|νω(a, ϕ)|, (94)

with νω(a, ϕ) being given by Eq. (91). We can then follow the procedure of Sec. 3.3 to
compute the reduced density matrix, ρ̂1, that represents the quantum state of one single
universe of the entangled pair. It is given then by the thermal state [62]

ρ̂1(a, ϕ) ≡ Tr2ρ̂ =

1

Z

∞

∑
N=0

e−
ω(a,ϕ)

T (N+
1
2 )
|N��N|, (95)

with, |N� ≡ |N�2 and Z−1
= 2 sinh ω

2T . The two universes of the entangled pair evolve, in the
observer representation of each single universe, in thermal equilibrium with a temperature
of entanglement given by

T ≡ T(a, ϕ) =
ω(a, ϕ)

2 ln 1
Γ(a,ϕ)

, (96)

where, Γ(a, ϕ) ≡ tanh r(a, ϕ). The total energy reads

E(a) = ω(a)(�N�+

1

2
), (97)

where, �N� ≡ |νω |
2. The variation of the quantum informational analogues to the work, W,

and heat, Q, now read

δW = δω (�N�+

1

2
) ≈

∂ω(a, ϕ)

∂a
(�N�+

1

2
) da, (98)

δQ = ω δ�N� ≈ ω(a, ϕ)
∂�N�

∂a
da, (99)
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the multiverse turns out to be then
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Figure 7. Parameter of squeezing, r (dashed line), and entropy of entanglement, Sent (continuous line), with respect to the

value of the scale factor, a.

where in the last equalities it has been taken into account that for a slow-varying field,

δω ≈ ω̇ da and δ�N� ≈
˙

�N� da. From Eqs. (97-99) it can be checked that the first principle of
thermodynamics, δE = δW + δQ, is directly satisfied. The entropy of entanglement, Eq. (75),
reads

Sent(a, ϕ) = |µω(a, ϕ)|
2 ln |µω(a, ϕ)|

2
− |νω(a, ϕ)|

2 ln |νω(a, ϕ)|
2, (100)

with, |µω(a, ϕ)| = cosh r(a, ϕ) and |νω(a, ϕ)| = sinh r(a, ϕ). Therefore, like in Sec. 3.3, the
second principle of thermodynamics is also satisfied because the entropy production vanishes
for any values of the scale factor and the scalar field, i.e. σ ≡ σ(a, ϕ) = 0.

4.3.1. Entropy of entanglement as an arrow of time for single universes

Let us summarize the general picture described so far. The multiverse stays in a squeezed
vacuum state which is the product state of the wave functions that correspond to the state
of pairs of entangled i-universes (see Eq. (39)), where the index i labels all the species
of universes considered in the multiverse. The multiverse stays therefore in a highly
non-classical state. Furthermore, the quantum entropy of a pure state is zero and, therefore,
there is no thermodynamical arrow of time in the multiverse. Let us recall that, in the third
quantization formalism, the scale factor was just taken as a formal time-like variable given
by the Lorentzian structure of the minisupermetric. However, the minisuperspace is not
space-time and, therefore, the scale factor has no meaning of a physical (i.e. a measurable)
time, a priori, in the multiverse. It might well be said that (physical) time and (physical)
evolution are concepts that really make sense within a single universe.

For an observer inside a universe, this is described by a thermal state which is
indistinguishable from a classical mixture (see Eq. (73), and the comments thereafter), i.e.
it is seen as a classical universe. The entropy of entanglement for a single universe is a
monotonic function of the scale factor. However, the entropy production identically vanishes
for any increasing or decreasing rate of the scale factor so that the customary formulation of
the second principle of thermodynamics does not impose any arrow of time in the universe
within the present approach. Although the universe can be seen as a classical mixture by an
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observer inside the universe, its quantum state has been obtained from a highly non-classical
state. Thus, it would not be expected that the classical constraint σ ≥ 0 would impose any
arrow of time in the model.

The second principle of entanglement thermodynamics [58] does provide us with an arrow of
time for single universes. In the quantum multiverse, it can be reparaphrased as follows: by
local operations and classical communications alone, the amount of entanglement between
the universes cannot increase. Let us recall that by local operations we mean in the multiverse
anything that happens within a single universe, i.e. everything we can observe. Therefore,
the growth of cosmic structures, particle interactions and even the presence of life in the
universe cannot increase the amount of entanglement between a pair of entangled universes
provided that all these features are due to local interactions. They should decrease the rate
of entanglement in a non-reversible universe with dissipative processes, actually.

The amount of entanglement between the pair of universes only decreases for growing values
of the scale factor (see Fig. 7). Thus, the second law of the entanglement thermodynamics
implies that the universe has to expand once it is created in an entangled pair, as seen
by an observer inside the universe. Furthermore, if the classical thermodynamics and the
thermodynamics of entanglement were related, it could be followed that the negative change
of entropy would be balanced by the creation of cosmic structures and other local processes
that increase the local (classical) entropy. The decrease of the entropy of entanglement is
larger for a small value of the scale factor. Then, the growth of local structures in the universe
would be favored in the earliest phases of the universe, as it is expected.

4.3.2. Energy of entanglement and the vacuum energy of the universe

In the model being considered, σ ≡ dS −

δQ
T =0, and thus, the variation of the entropy of

entanglement is related to the quantum informational heat, Q, by

dS =

δQ

T
. (101)

Eq. (101) can be compared with the equation that is customary used to define the energy of
entanglement [42, 51–53], dEent = TdS. Then, in the case being considered, we can identify
the energy of entanglement, Eent, with the informational heat, Q, and interpret it as a vacuum
energy for each single universe of an entangled pair. It is given by the integral of Eq. (99),
with
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Figure 7. Parameter of squeezing, r (dashed line), and entropy of entanglement, Sent (continuous line), with respect to the

value of the scale factor, a.
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there is no thermodynamical arrow of time in the multiverse. Let us recall that, in the third
quantization formalism, the scale factor was just taken as a formal time-like variable given
by the Lorentzian structure of the minisupermetric. However, the minisuperspace is not
space-time and, therefore, the scale factor has no meaning of a physical (i.e. a measurable)
time, a priori, in the multiverse. It might well be said that (physical) time and (physical)
evolution are concepts that really make sense within a single universe.

For an observer inside a universe, this is described by a thermal state which is
indistinguishable from a classical mixture (see Eq. (73), and the comments thereafter), i.e.
it is seen as a classical universe. The entropy of entanglement for a single universe is a
monotonic function of the scale factor. However, the entropy production identically vanishes
for any increasing or decreasing rate of the scale factor so that the customary formulation of
the second principle of thermodynamics does not impose any arrow of time in the universe
within the present approach. Although the universe can be seen as a classical mixture by an
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whose integration yields

Eent = Q(a, ϕ0) =
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e
±

2
3V(ϕ0)

√

V(ϕ0)
a−6. (104)

The energy of entanglement (104) provides us with a curve that might be compared with
the evolution of the vacuum energy of the universe. From Eq. (104), it can be seen that
the vacuum energy would follow a different curve depending on whether the tunneling
condition or the no-boundary condition is imposed on the state of a single universe. The
boundary condition imposed on a single universe might therefore be discriminated from
observational data, at least in principle. However, the model being considered is unrealistic
for at least two reasons. First, after the inflationary stage the universe becomes hot [46, 47]
and the slow-roll approximation is no longer valid. Secondly, if the energy of entanglement
is to be considered as a vacuum energy, it should have been considered as a variable of the
model from the beginning. More realistic matter fields and the backreaction should be taken
into account to make a first serious attempt to observational fitting. However, the important
thing that is worth noticing is that the vacuum energy of entanglement might thus be tested
as well as the whole multiverse proposal. Furthermore, different boundary conditions would
provide us with different curves for the energy of entanglement along the entire evolution of
the universe. Therefore, the boundary conditions of the whole multiverse might be tested as
well by direct observation, which is a completely novel feature in quantum cosmology.

5. Conclusions: The physical multiverse

In this chapter, we have presented a quantum mechanical description of a multiverse made
up of large and disconnected regions of the space-time, called universes, with a high degree
of symmetry. We have obtained, within the framework of a third quantization formalism, a
wave function that quantum mechanically represents the state of the whole multiverse, and
an appropriate boundary condition for the state of the multiverse has allowed us to interpret
it as formed by entangled pairs of universes.

If universes were entangled to each other, then, the violation of classical inequalities like the
Bell’s inequalities could no longer be associated to the concepts of locality or non-locality
because there is not generally a common space-time among the universes of the quantum
multiverse. It would rather be related to the independence or interdependence of the
quantum states that represent different universes. Furthermore, the complementary principle
of quantum mechanics, being applied to the space-time as a whole, enhances us to: i) look for
an appropriate boundary condition for which universes should be described as individual
entities forcing us to consider a multiverse; and, ii) take into account as well interference
effects between the quantum states of two or more universes.

For a pair of entangled universes, the quantum thermodynamical properties of each single
universe have been computed. In the scenario of a multiverse made up of entangled pairs
of universes, the picture is the following: the multiverse may state in the pure state that
corresponds to the product state of the ground states derived from the boundary condition
imposed on the multiverse, for each type of single universes. Then, the entropy of the whole
multiverse vanishes and there is thus no physical arrow of time in the multiverse. For single
universes, however, it appears an arrow of time derived from the entropy of entanglement
with their partner universes.
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The entropy of entanglement decreases for an increasing value of the scale factor. The second
principle of thermodynamics is however satisfied because the process is non-adiabatic,
in the quantum informational sense, and the entropy production is zero. In fact, the
entropy production is zero for any increasing or decreasing rate of the scale factor, imposing
therefore no correlation between the cosmic arrow of time, which is given by expansion or
contraction rate of a single universe, and the customary formulation of the second principle
of thermodynamics. This is in contrast to what it happens inside a single universe, where
there is a correlation between the cosmic arrow of time and the entropy of matter fields
[27, 40]. Let us recall that the entropy of entanglement is a quantum feature having no
classical analogue and, thus, it is not expected that it imposes an arrow of time through the
customary, i.e. classical, formulation of the second principle of thermodynamics.

The second principle of entanglement thermodynamics, which states [58] that the entropy of
entanglement cannot be increased by any local operation and any classical communication
alone, does impose an arrow of time on single universes [60]. It should be noticed that by local
we mean in the multiverse anything that happens in a single universe. Therefore, everything
that we observe, i.e. the creation of particles, the growth of cosmic structures, and even life,
cannot make the inter-universal entanglement to grow provided that all these processes are
internal to a single universe. In an actual and non-reversible universe they should induce a
decreasing of the entropy of inter-universal entanglement, enhancing therefore the expansion
of the universe that would induce a correlation between the growth of cosmic structures and
the entanglement arrow of time.

In the model presented in this chapter, the energy of entanglement between a pair of
entangled universes provides us with a vacuum energy for each single universes. The energy
of entanglement of the universe is high in the early stage of the universes becoming very
small at later times. That behavior might be compatible with an initial inflationary universe,
for which a high value of the vacuum energy is assumed, that would eventually evolve to
a state with a very small value of the cosmological constant, like the current state of the
universe. However, it is not expected that such a simple model of the universe would fit with
actual observational tests. A more realistic model of the universes that form the multiverse,
in which genuine matter fields were considered, is needed to make a serious attempt of
observational fitting. However, the fact that inter-universal entanglement provides us with
testable properties of our universe opens the door to future developments that would make
falseable the multiverse proposal giving an observational support to the quantum multiverse.

In conclusion, the question of whether the multiverse is a physical theory or just a
mathematical construction, derived however from the general laws of physics, holds on
whether the existence of other universes may affect the properties of the observable universe.
Inter-universal entanglement is a novel feature that supplies us with new explanations for
unexpected cosmic phenomena and it might allow us to test the whole multiverse proposal.
It will be the future theoretical developments and the improved observational tests what will
make us to decide whether to adopt or deny such a cosmological scenario.
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1. Introduction

At the present time, there are some paradigms to explain the observations for the accelerated
expansion of the universe. Most of these paradigms are based on the dynamics of a scalar
(quintessence) or multiscalar field (quintom) cosmological models of dark energy, (see the

review [1–3]). The main discussion yields over the evolution of these models in the ω-ω
′

plane (ω is the equation of state parameter of the dark energy) [4–12, 14–19, 21–25]). In
the present study we desire to perform our investigation in the case of quintom cosmology,
constructed using both quintessence (σ) and phantom (φ) fields, mantaining a nonspecific
potential form V(φ, σ). There are many works in the literature that deals with this type
of problems, but in a general way, and not with a particular ansatz, one that considers
dynamical systems [12, 13, 20]. One special class of potentials used to study this behaviour
corresponds to the case of the exponential potentials [4, 6, 9, 26, 28] for each field, where the
corresponding energy density of a scalar field has the range of scaling behaviors [29, 30], i.e,
it scales exactly as a power of the scale factor like, ρφ ∝ a−m, when the dominant component
has an energy density which scales in a similar way. There are other works where other type
of potentials are analyzed [1, 9, 15, 19, 20, 23, 24, 31].

How come that we claim that the analysis of general potentials using dynamical systems was
made considering particular structures of them, in other words, how can we introduce this
mathematical structure within a physical context?. We can partially answer this question,
when the Bohmian formalism is introduced, i.e, many of them can be constructed using the
Bohm formalism [32–34] of the quantum mechanics under the integral systems premise,
which is known as the quantum potential approach. This approach makes possible to
identify trajectories associated with the wave function of the universe [32] when we choose
the superpotential function as the momenta associated to the coordinate field qµ. This
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investigation was undertaken within the framework of the minisuperspace approximation of
quantum theory when we investigate the models with a finite number of degrees of freedom.
Considering the anisotropic Bianchi Class A cosmological models from canonical quantum
cosmology under determined conditions in the evolution of our universe, and employing
the Bohmian formalism, and in particular the Bianchi type I to obtain a family of potentials
that correspond to the most probable to model the present day cosmic acceleration. In our
analysis, we found this special class of potentials, however these appear mixed.

This work is arranged as follows. In section 2 we present the corresponding Einstein Klein
Gordon equation for the quintom model. In section 3, we introduced the hamiltonian
apparatus which is applied to Bianchi type I and the Bianchi Type IX in order to construct
a master equation for all Bianchi Class A cosmological models with barotropic perfect fluid
and cosmological constant. Furthermore, we present the classical equations for Bianchi type
I, whose solutions are given in a quadrature form, which are presented in section 5 for
particular scalar potentials. In section 4 we present the quantum scheme, where we use the
Bohmian formalism and show its mathematical structure, also our approach is presented
in a similar way. Our treatment is applied to build the mathematical structure of quintom
scalar potentials using the integral systems formalism. For completeness we present the
quantum solutions to the Wheeler-DeWitt equation. Moreover, this section represents our
main objective for this work, and its where the utmost problem is treated. However it
is important emphasize that the quantum potential from Bohm formalism will work as a
constraint equation which restricts our family of potentials found. It is well known in the
literature that in the Bohm formalism the imaginary part is never determined, however in
this work such a problem is solved in order to find the quantum potentials, which is a more
important matter for being able to find the classical trajectories, which is shown in section 5,
that is devoted to obtain the classical solutions for particular scalar potentials, also we show
through graphics how the classical trajectory is projected from its quantum counterpart.
Finally we present the time dependence for the Ω, and quintom scalar fields (ϕ , ς).

2. The model

We begin with the construction of the quintom cosmological paradigm, which requires the
simultaneous consideration of two fields, namely one canonical σ and one phantom φ and
the implication that dark energy will be attributed to their combination. The action of a
universe with the constitution of such a two fields, the cosmological term contribution and
the matter as perfect fluid content, is

L =

√

−g

(

R − 2Λ −

1

2
gµν

∇µφ∇νφ +

1

2
gµν

∇µσ∇νσ − V(φ, σ)

)

+ Lmatter, (1)

and the corresponding field equations becomes

Gαβ + gαβΛ = −

1

2

(

∇αφ∇βφ −

1

2
gαβgµν

∇µφ∇νφ

)

+

1

2

(

∇ασ∇βσ −

1

2
gαβgµν

∇µσ∇νσ

)
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−

1

2
gαβ V(φ, σ)− 8πGTαβ, (2)

gµν
φ,µν − gαβ

Γ
ν
αβ
∇νφ +

∂V

∂φ
= 0, ⇔ �φ +

∂V

∂φ
= 0

gµν
σ,µν − gαβ

Γ
ν
αβ
∇νσ −

∂V

∂σ
= 0, ⇔ �σ −

∂V

∂σ
= 0,

T
µν

;µ = 0, with Tµν = Pgµν + (P + ρ)uµuν, (3)

here ρ is the energy density, P the pressure, and uµ the velocity, satisfying that uµuµ
= −1.

3. Hamiltonian approach

Let us recall here the canonical formulation in the ADM formalism of the diagonal Bianchi
Class A cosmological models. The metric has the form

ds2
= −N(t)dt2

+ e2Ω(t)
(e2β(t)

)ij ω
i
ω

j, (4)

where βij(t) is a 3x3 diagonal matrix, βij = diag(β
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+

√
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−

,−2β
+
), Ω(t) is

a scalar and ωi are one-forms that characterize each cosmological Bianchi type model, and
obey the form dωi
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2 Ci

jkωj
∧ ωk, and Ci

jk are structure constants of the corresponding

model.

The corresponding metric of the Bianchi type I in Misner’s parametrization has the following
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where the anisotropic radii are
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−

√

3β
− , R3 = eΩ−2β

+ .

We use the Bianchi type I and IX cosmological models as toy model to apply the formalism,
and write a master equation for all Bianchi Class A models. The lagrangian density (1) for
the Bianchi type I is written as (where the overdot denotes time derivative),

LI = e3Ω

[

6
Ω̇2

N
− 6

β̇2
+

N
− 6

β̇2
−

N
+ 6

ϕ̇2

N
− 6

ς̇2

N
+ N (−V(ϕ, ς) + 2Λ + 16πGρ)

]

, (6)

the fields were re-scaled as φ =

√

12ϕ, σ =

√

12ς for simplicity in the calculations.

The momenta are defined as Πqi =
∂L

∂q̇i , where qi
= (β

±
, Ω, ϕ, ς) are the coordinates fields.
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ΠΩ =

∂L

∂Ω̇
=

12e3ΩΩ̇

N
, → Ω̇ =

NΠΩ

12
e−3Ω

Π
±
=

∂L

∂β̇
±

= −12
e3Ωβ̇

±

N
, →

˙β
±
= −

NΠ
±

12
e−3Ω (7)

Πϕ =

∂L

∂ϕ̇
= 12

e3Ω ϕ̇

N
, → ϕ̇ =

NΠϕ

12
e−3Ω

Πς =

∂L

∂ς̇
= −12

e3Ως̇

N
, → ς̇ = −

NΠς

12
e−3Ω.

Writing (6) in canonical form, Lcanonical = Πqq̇ − NH and substituting the energy density
for the barotropic fluid, we can find the Hamiltonian density H in the usual way

HI =
e−3Ω

24

[

Π
2
Ω − Π

2
ς − Π

2
+
− Π

2
−
+ Π

2
ϕ + e6Ω

{

24V(ϕ, ς)− 48
(

Λ + 8πGMγe−3(γ+1)Ω
)}]

. (8)

For the Bianchi type IX we have the Lagrangian and Hamiltonian density, respectively

LIX = e3Ω

[

6
Ω̇2

N
− 6

β̇2
+

N
− 6

β̇2
−

N
+ 6

ϕ̇2

N
− 6

ς̇2

N
+ N (−V(ϕ, ς) + 2Λ + 16πGρ)

]

+Ne−2Ω

{

1

2

(

e4β
+
+4

√

3β
−

+ e4β
+
−4

√

3β
−

+ e−8β
+

)

−

(

e−2β
+
+2

√

3β
−

+ e−2β
+
−2

√

3β
−

+ e4β
+

)}]

, (9)

HIX =
e−3Ω

24

[

Π2
Ω
− Π2

ς − Π2
+
− Π2

−

+ Π2
ϕ + e6Ω

{

24V(ϕ, ς)− 48
(

Λ + 8πGMγe−3(γ+1)Ω
)}]

−24e4Ω

{

1
2

(

e4β
+
+4

√

3β
−

+ e4β
+
−4

√

3β
−

+ e−8β
+

)

−

(

e−2β
+
+2

√

3β
−

+ e−2β
+
−2

√

3β
−

+ e4β
+

)}]

, (10)

where we have used the covariant derivative of (3), obtaining the relation

3Ω̇ρ + 3Ω̇p + ρ̇ = 0, (11)

whose solution becomes

ρ = Mγe−3(1+γ)Ω. (12)

where Mγ is an integration constant, in this sense we have all Bianchi Class A cosmological
models, and their corresponding Hamiltonian density becomes
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HA = HI −
1

24
e−3ΩUA(Ω, β

±
), (13)

where the gravitational potential can be seen in table I, in particular, the Bianchi Type IX is

UIX(Ω, β
±
) = 12e4Ω

(

e4β
+
+4

√

3β
−

+ e4β
+
−4

√

3β
−

+ e4β
+

−2
{

e4β
+

+ e2β
+
−2

√

3β
−

+ e−2β
+
+2

√

3β
−

})

.

Considering the inflationary phenomenon γ = −1, the Hamiltonian density is

HIX =

e−3Ω

24

[

Π
2
Ω
− Π

2
ς − Π

2
+
− Π

2
−
+ Π

2
ϕ + e6Ω

{24V(ϕ, ς)− λeff}

−24e4Ω

{

1

2

(

e4β
+
+4

√

3β
−

+ e4β
+
−4

√

3β
−

+ e−8β
+

)

−

(

e−2β
+
+2

√

3β
−

+ e−2β
+
−2

√

3β
−

+ e4β
+

)}]

, (14)

where λeff = 48(Λ + 8πGM
−1 ).

The equation (13) can be considered as a master equation for all Bianchi Class A cosmological
models in this formalism, where U(Ω, β

±
) is the potential term of the cosmological model

under consideration, it can be read in table 1.

Bianchi type Hamiltonian density H

I e−3Ω

24

[

Π2
Ω
− Π2

ς − Π2
+
− Π2

−

+ Π2
ϕ + e6Ω

{24V(ϕ, ς)− λeff}

]

II e−3Ω

24

[

Π2
Ω
− Π2

ς − Π2
+
− Π2

−

+ Π2
ϕ + e6Ω

{24V(ϕ, ς)− λeff}

−12e4Ωe4β
+
+4

√

3β
−

]

VI
−1

e−3Ω

24

[

Π2
Ω
− Π2

ς − Π2
+
− Π2

−

+ Π2
ϕ + e6Ω

{24V(ϕ, ς)− λeff}

−48e4Ωe4β
+

]

VII0
e−3Ω

24

[

Π2
Ω
− Π2

ς − Π2
+
− Π2

−

+ Π2
ϕ + e6Ω

{

24V(ϕ, ς)− λe f f

}

−12e4Ω

(

e4β
+
+4

√

3β
−

− e4β
+
+ e4β

+
−4

√

3β
−

)]

VIII e−3Ω

24

[

Π2
Ω
− Π2

ς − Π2
+
− Π2

−

+ Π2
ϕ + e6Ω

{24V(ϕ, ς)− λeff}

−12e4Ω

(

e4β
+
+4

√

3β
−

+ e4β
+
−4

√

3β
−

+ e−8β
+

+2
{

e4β
+
− e−2β

+
−2

√

3β
−

− e−2β
+
+2

√

3β
−

})]

IX e−3Ω

24

[

Π2
Ω
− Π2

ς − Π2
+
− Π2

−

+ Π2
ϕ + e6Ω

{24V(ϕ, ς)− λeff}

−12e4Ω

(

e4β
+
+4

√

3β
−

+ e4β
+
−4

√

3β
−

+ e−8β
+

+2
{

e4β
+
+ e2β

+
−2

√

3β
−

+ e−2β
+
+2

√

3β
−

})]

Table 1. Hamiltonian density for the Bianchi Class A models in the quintom approach for the inflationary phenomenon.
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3.1. Classical field equation for Bianchi type I

On the other hand, the Einstein field equations (2,3) for the Bianchi type I, are

3
Ω̇2

N2
− 3

β̇2
+

N2
− 3

β̇2
−

N2
= 8πGρ − 3

ϕ̇2

N2
+ 3

ς̇2

N2
+ Λ +

V(ϕ, ς)

2
, (15)

2
Ω̈

N2
+ 3

Ω̇2

N2
− 3

Ω̇β̇
+

N2
− 3

√

3
Ω̇β̇

−

N2
− 2

Ω̇Ṅ

N3
−

β̈
+

N2
+ 3

β̇2
+

N2
+

β̇
+

Ṅ

N3
−

√

3
β̈
−

N2
+ 3

β̇2
−

N2

+

√

3
β̇
−

Ṅ

N3
= −8πGP + 3

ϕ̇2

N2
− 3

ς̇2

N2
+ Λ +

V(ϕ, ς)

2
, (16)

2
Ω̈

N2
+ 3

Ω̇2

N2
− 3

Ω̇β̇
+

N2
+ 3

√

3
Ω̇β̇

−

N2
− 2

Ω̇Ṅ

N3
−

β̈
+

N2
+ 3

β̇2
+

N2
+

β̇
+

Ṅ

N3
+

√

3
β̈
−

N2
+ 3

β̇2
−

N2

−

√

3
β̇
−

Ṅ

N3
= −8πGP + 3

ϕ̇2

N2
− 3

ς̇2

N2
+ Λ +

V(ϕ, ς)

2
, (17)

2
Ω̈
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+ 3

Ω̇2
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Ω̇β̇
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N2
− 2

Ω̇Ṅ

N3
+ 2

β̈
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+ 3

β̇2
+
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− 2
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Ṅ

N3
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= −8πGP + 3

ϕ̇2
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− 3

ς̇2
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+ Λ +

V(ϕ, ς)

2
, (18)

−3
Ω̇ς̇

N2
+

Ṅς̇

N3
−

ς̈

N2
+

∂V(ς, ϕ)

∂ς
= 0, (19)

−3
Ω̇ϕ̇

N2
+

Ṅϕ̇

N3
−

ϕ̈

N2
−

∂V(ς, ϕ)

∂ϕ
= 0, (20)

which can be written as

8πGP − Λ +

1

2

(

−6ϕ
′2
+ 6ς

′2
− V(ϕ, ς)

)

= −

2

3

a′′

a
− 3H2, (21)

8πGρ + Λ +

1

2

(

−6ϕ
′2
+ 6ς

′2
+ V(ϕ, ς)

)

= 3H2, (22)

−3Ω
′

ς
′

− ς
′′

−

∂V(ς, ϕ)

∂ς
= 0, (23)

−3Ω
′

ϕ
′

− ϕ
′′

+

∂V(ς, ϕ)

∂ϕ
= 0, (24)

where H2 is defined as H2
= H1H2 + H1H3 + H2H3, a = R1R2R3, and Hi =

Ṙi
Ri

. We have

done the time transformation d
dτ

=
d

Ndt = ′. Adding (21) and (22) we arrive

−

a′′

a
= 12πG

[

ρ + ρϕ + ρς + P + Pϕ + Pς

]

, (25)

where

Pϕ =

1

16πG

(

−6ϕ
′2
− V(ϕ, ς)|ς

)

, Pς =

1

16πG

(

6ς
′2
− V(ϕ, ς)|ϕ

)

,
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ρϕ =

1

16πG

(

−6ϕ
′2
+ V(ϕ, ς)|ς

)

, ρς =

1

16πG

(

6ς
′2
+ V(ϕ, ς)|ϕ

)

,

which are useful when we study the behavior of dynamical systems. Additionally we can
introduce the total quintom energy density and pressure as:

ρ
DE

= ρς + ρϕ, P
DE

= Pς + Pϕ, P
DE

= ω
DE

ρ
DE

(26)

where

ω
DE

=

6ς̇2
− 6ϕ̇2

− V(ς, ϕ)

6ς̇2
− 6ϕ̇2

+ V(ς, ϕ)
(27)

To solve the set of differential equation (β
±

, Ω, ϕ, ς) we begin with the equations (16, 17)
where we obtain the relation between the functions β

−
and Ω as

β
−
= β0

∫

e−3∆Ωdτ, (28)

similar to equations (17,18) we find

β
+
= β1

∫

e−3∆Ωdτ, (29)

then there is the relation between the anisotropic functions β
−
= β2β

+
with β2 =

β0

β1
.

For separable potentials, equations (24,23) can be solved in some cases in terms of the Ω

function, then, using equation (15) we can obtain in a quadrature form, the structure of Ω as

∫

dΩ
√

h(Ω)

= ∆τ, (30)

where the function h(Ω) has the corresponding information of all functions presented in
this equation (15). For instance, when the potential V(ϕ, ς) becomes null or constant, the
formalism is like the one formulated by Sáez and Ballester in 1986 [35] because both field are
equivalent, see equations (24,23), where

ς
′

= ς0e−3∆Ω, ς(τ) = ς0

∫

e−3∆Ω(τ)dτ + ς1, (31)

ϕ
′

= ϕ0e−3∆Ω, ϕ(τ) = ϕ0

∫

e−3∆Ω(τ)dτ + ϕ1, , (32)

and the function h(Ω) is
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+
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= 0, (24)

where H2 is defined as H2
= H1H2 + H1H3 + H2H3, a = R1R2R3, and Hi =

Ṙi
Ri

. We have

done the time transformation d
dτ

=
d

Ndt = ′. Adding (21) and (22) we arrive

−

a′′
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= 12πG

[
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]

, (25)

where
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)
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,

which are useful when we study the behavior of dynamical systems. Additionally we can
introduce the total quintom energy density and pressure as:

ρ
DE

= ρς + ρϕ, P
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= Pς + Pϕ, P
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DE
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(26)

where

ω
DE

=

6ς̇2
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− V(ς, ϕ)

6ς̇2
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(27)

To solve the set of differential equation (β
±

, Ω, ϕ, ς) we begin with the equations (16, 17)
where we obtain the relation between the functions β

−
and Ω as

β
−
= β0

∫

e−3∆Ωdτ, (28)

similar to equations (17,18) we find

β
+
= β1

∫

e−3∆Ωdτ, (29)

then there is the relation between the anisotropic functions β
−
= β2β

+
with β2 =

β0

β1
.

For separable potentials, equations (24,23) can be solved in some cases in terms of the Ω

function, then, using equation (15) we can obtain in a quadrature form, the structure of Ω as

∫

dΩ
√

h(Ω)

= ∆τ, (30)

where the function h(Ω) has the corresponding information of all functions presented in
this equation (15). For instance, when the potential V(ϕ, ς) becomes null or constant, the
formalism is like the one formulated by Sáez and Ballester in 1986 [35] because both field are
equivalent, see equations (24,23), where

ς
′

= ς0e−3∆Ω, ς(τ) = ς0

∫

e−3∆Ω(τ)dτ + ς1, (31)

ϕ
′

= ϕ0e−3∆Ω, ϕ(τ) = ϕ0

∫

e−3∆Ω(τ)dτ + ϕ1, , (32)

and the function h(Ω) is
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h(Ω) =

8πGMγ

3 e−3(1+γ)Ω
+

(

−ϕ2
0 + ς2

0

)

e−6∆Ω
+

Λe f f

3

1 − 9
(

1 + β2
2

)

β2
1e−6∆Ω

, (33)

where Λe f f = Λ + V0/2. For particular values in the γ parameter, the equation (30) has a
solution. This formalism was studied by one of the author and collaborators, in the FRW and
Bianchi type Class A cosmological models, [36–38].

4. Quantum approach

On the Wheeler-DeWitt (WDW) equation there are a lot of papers dealing with different
problems, for example in [39], they asked the question of what a typical wave function
for the universe is. In Ref. [40] there appears an excellent summary of a paper on quantum
cosmology where the problem of how the universe emerged from big bang singularity can no
longer be neglected in the GUT epoch. On the other hand, the best candidates for quantum
solutions become those that have a damping behavior with respect to the scale factor, in the
sense that we obtain a good classical solution using the WKB approximation in any scenario
in the evolution of our universe [41, 42]. Our goal in this paper deals with the problem to
build the appropriate scalar potential in the inflationary scenario.

The Wheeler-DeWitt equation for this model is achieved by replacing Πqµ = −i∂qµ in (8).

The factor e−3Ω may be a factor ordered with Π̂Ω in many ways. Hartle and Hawking [41]
have suggested what might be called a semi-general factor ordering which in this case would
order e−3ΩΠ̂2

Ω
as

− e−(3−Q)Ω
∂Ωe−QΩ

∂Ω = −e−3Ω
∂

2
Ω
+ Q e−3Ω

∂Ω, (34)

where Q is any real constant that measure the ambiguity in the factor ordering in the variable
Ω. In the following we will assume this factor ordering for the Wheeler-DeWitt equation,
which becomes

�Ψ + Q
∂Ψ

∂Ω
+ e6ΩU(Ω, β

±
, ϕ, ς, λeff)Ψ = 0, (35)

where � = −

∂2

∂Ω2 +
∂2

∂ς2 −

∂2

∂ϕ2 +
∂2

∂β2
−

+
∂2

∂β2
+

is the d’Alambertian in the coordinates qµ
=

(Ω, ς, β
±

, ϕ). In the following, we introduce the main idea of the Bohm formalism, and why
we choose the phase in the wave function to be real and not imaginary.

4.1. Mathematical structure in the Bohm formalism

In this section we will explain how the quantum potential approach or as is also known, the
Bohm formalism [34], works in the context of quantum cosmology. For the cases that will
be object of our investigation in the sections to come, it is sufficient to consider the simplest
model, for which the whole quantum dynamics resides in the single equation,
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Hψ =

(

gµν
∇µ∇ν − V(qµ

)

)

ψ = 0, (36)

where the metric may be qµ dependent. The ψ is called the wave function of the universe,
and we consider that ψ has the following traditional decomposition

ψ = R(qµ
) e

i
h̄ S(qµ

), (37)

with R and S as real functions. Inserting (37) into (36), we obtain two equations
corresponding to the real and imaginary parts, respectively, which are

�R − R

[

1

h̄2
(∇S)2

+ V

]

= �R − R [H(S)] = 0, (38)

2∇R · ∇S + R�S = 0, (39)

when we consider the problem of factor ordering, usually in cosmological problems, as we
indicated in the beginning of this section, equation (34), must be included as linear term of

Q
∂ψ

∂q , where Q is a real parameter that measures the ambiguity in this factor ordering. So,

the equations (38,39) are written as

�R + Q
∂R

∂q
− R

[

1

h̄2
(∇S)2

+ V

]

= 0, (40)

2∇R · ∇S + R�S + R
∂S

∂q
= 0, (41)

where q is a single field coordinate.

We assume that the wave function ψ is a solution of equation (36), and thus this equation is
equally satisfied. Considering the Hamiton-Jacobi analysis, we can identify the equation (40)
as the most important equation of this treatment, because with this equation we can derive
the time dependence, and thus, it serves as the evolutionary equation in this formalism.
Following the Hamilton-Jacobi procedure, the Πq momenta is related to the superpotential

function S, as Πqµ =
∂S

∂qµ , which are related with the classical momenta (8) written in the

previous section, thus,

dqµ

dt
= gµν δH(S)

δ
∂S
∂qν

, (42)

which defines the trajectory qµ in terms of the phase of the wave function S. We substitute

this equation into (40), and we find (using q̇µ
=

dqµ

dt and h̄ = 1),

[

�R + Q
∂R

∂q

]

= R
[

gµνq̇µq̇ν
+ V

]

. (43)
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where Λe f f = Λ + V0/2. For particular values in the γ parameter, the equation (30) has a
solution. This formalism was studied by one of the author and collaborators, in the FRW and
Bianchi type Class A cosmological models, [36–38].

4. Quantum approach

On the Wheeler-DeWitt (WDW) equation there are a lot of papers dealing with different
problems, for example in [39], they asked the question of what a typical wave function
for the universe is. In Ref. [40] there appears an excellent summary of a paper on quantum
cosmology where the problem of how the universe emerged from big bang singularity can no
longer be neglected in the GUT epoch. On the other hand, the best candidates for quantum
solutions become those that have a damping behavior with respect to the scale factor, in the
sense that we obtain a good classical solution using the WKB approximation in any scenario
in the evolution of our universe [41, 42]. Our goal in this paper deals with the problem to
build the appropriate scalar potential in the inflationary scenario.

The Wheeler-DeWitt equation for this model is achieved by replacing Πqµ = −i∂qµ in (8).
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Ω. In the following we will assume this factor ordering for the Wheeler-DeWitt equation,
which becomes
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∂ϕ2 +
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is the d’Alambertian in the coordinates qµ
=

(Ω, ς, β
±

, ϕ). In the following, we introduce the main idea of the Bohm formalism, and why
we choose the phase in the wave function to be real and not imaginary.

4.1. Mathematical structure in the Bohm formalism

In this section we will explain how the quantum potential approach or as is also known, the
Bohm formalism [34], works in the context of quantum cosmology. For the cases that will
be object of our investigation in the sections to come, it is sufficient to consider the simplest
model, for which the whole quantum dynamics resides in the single equation,

Open Questions in Cosmology226
Quintom Potential from Quantum Anisotropic Cosmological Models 9

Hψ =

(

gµν
∇µ∇ν − V(qµ

)

)

ψ = 0, (36)

where the metric may be qµ dependent. The ψ is called the wave function of the universe,
and we consider that ψ has the following traditional decomposition

ψ = R(qµ
) e

i
h̄ S(qµ

), (37)

with R and S as real functions. Inserting (37) into (36), we obtain two equations
corresponding to the real and imaginary parts, respectively, which are

�R − R

[

1

h̄2
(∇S)2

+ V

]

= �R − R [H(S)] = 0, (38)

2∇R · ∇S + R�S = 0, (39)

when we consider the problem of factor ordering, usually in cosmological problems, as we
indicated in the beginning of this section, equation (34), must be included as linear term of

Q
∂ψ

∂q , where Q is a real parameter that measures the ambiguity in this factor ordering. So,

the equations (38,39) are written as
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∂q
− R
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1

h̄2
(∇S)2

+ V

]

= 0, (40)

2∇R · ∇S + R�S + R
∂S

∂q
= 0, (41)

where q is a single field coordinate.

We assume that the wave function ψ is a solution of equation (36), and thus this equation is
equally satisfied. Considering the Hamiton-Jacobi analysis, we can identify the equation (40)
as the most important equation of this treatment, because with this equation we can derive
the time dependence, and thus, it serves as the evolutionary equation in this formalism.
Following the Hamilton-Jacobi procedure, the Πq momenta is related to the superpotential

function S, as Πqµ =
∂S

∂qµ , which are related with the classical momenta (8) written in the

previous section, thus,

dqµ

dt
= gµν δH(S)

δ
∂S
∂qν

, (42)

which defines the trajectory qµ in terms of the phase of the wave function S. We substitute

this equation into (40), and we find (using q̇µ
=

dqµ

dt and h̄ = 1),

[

�R + Q
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∂q

]

= R
[

gµνq̇µq̇ν
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Therefore we see that the quantum evolution differs from the classical one only by the
presence of the quantum potential term

[

�R + Q
∂R

∂q

]

on the left-hand side of the equation of motion. Since we assume that the wave function is
known, the quantum potential term is also known.

In the next subsection we will choose the ψ = We−S ansatz for the wave function, it was first
remarked by Kodama [43, 44] that the solutions to the Wheeler-DeWitt (WDW) equation in
the formulation of Arnowitt-Deser and Misner (ADM) and the Ashtekar formulation (in the
connection representation) are related by ψADM = ψAe±iΦA , where ΨA is the homogeneous
specialization for the generating functional of the canonical transformation between ADM
variables to Ashtekar’s, [45]. This function was calculated explicitly for the diagonal Bianchi
type IX model by Kodama, who also found ΨA = const as a solution, and ΨA is pure
imaginary, for a certain factor ordering, one expects a solution of the form ψ = We±Φ,
where W is a constant, and Φ = iΦA. In fact this type of solution has been found for the
diagonal Bianchi Class A cosmological models [46, 47], but W in some cases is a function, as
we will see in our present study.

4.2. Our treatment

Using the ansatz

Ψ = e±a1 β
+e±a2 β

−Ξ(Ω, ς, ϕ), (44)

the WDW equation is read as

[

�+ Q
∂

∂Ω
+ e6ΩU(ϕ, ς, λeff) + c2

]

Ξ = 0, (45)

where c2
= a2

1 + a2
2 and now � is written in the reduced coordinates ℓµ

= (Ω, ς, ϕ)

We find that the WDW equation is solved when we choose an ansatz similar to the one
employed in the Bohmian formalism of quantum mechanics [34], so we make the following
Ansatz for the wave function

Ξ(ℓ
µ
) = W(ℓ

µ
)e−S(ℓµ

), (46)

where S(ℓµ
) is known as the superpotential function, and W is the amplitude of probability

that is employed in Bohmian formalism [34]. Then (45) transforms into

�W − W� S − 2∇W · ∇S − Q
∂W

∂Ω
+ QW

∂S

∂Ω
+ W

[

(∇S)2
− U

]

= 0, (47)

where now, � = Gµν ∂2

∂ℓµ∂ℓν , ∇W · ∇Φ = Gµν ∂W
∂ℓµ

∂Φ

∂ℓν , (∇)
2
= Gµν ∂

∂ℓµ

∂

∂ℓν = −(
∂

∂ς
)

2
+ (

∂

∂Ω
)

2
+

(
∂

∂ϕ
)

2, with Gµν
= diag(−1, 1, 1), U = e6ΩU(ς, ϕ, λeff) + c2 is the potential term of the

cosmological model under consideration.
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Eq (47) can be written as the following set of partial differential equations

(∇S)2
− U = 0, (48a)

�W − Q
∂W

∂Ω
= 0 (48b)

W

(

�S − Q
∂S

∂Ω

)

+ 2∇W · ∇ S = 0 , . (48c)

The first two equations correspond to the real part in a separated way, also, the first equation
is called the Einstein-Hamilton-Jacobi equation (EHJ), and the third equation is the imaginary
part, such as the equations presented in previous section (40, 41).

Following the references [32, 33], first, we shall choose to solve Eqs. (48a) and (48c), whose
solutions at the end will have to fulfill Eq. (48b), which will play the role of a constraint
equation.

Taking the ansatz

S(Ω, ς, ϕ) =
e3Ω

µ
g(ϕ)h(ς) + c (b1Ω + b2∆ϕ + b3∆ς) , (49)

where ∆ϕ = ϕ − ϕ0, ∆ς = ς − ς0 with ϕ0 and ς0 as constant scalar fields, and bi as arbitrary
constants. Then, Eq (48a) is transformed as

e6Ω

[

h2

µ2

(

dg

dϕ

)2

−

g2

µ2

(

dh

dς

)2

+

9

µ2
g2h2

− U(ϕ, ς, λeff)

]

+

6ce3Ω

µ

[

b1gh +

b2

3
h

dg

dϕ
−

b3

3
g

dh

dς

]

+ c2
(

b2
1 + b2

2 − b2
3 − 1

)

= 0. (50)

At this point we question ourselves how to solve this equation in relation to the constant c,
implying the behavior of the universe with the anisotropic parameter β

±
.

1. When we consider this equation as an expansion in powers of eΩ, then each term is null
in a separated way, but maintaining that the constant c �= 0,

b2
1 − b2

3 + b2
2 − 1 = 0, (51)

b1gh +

b2

3
h

dg

dϕ
−

b3

3
g

dh

dς
= 0, (52)

h2

(

dg

dϕ

)2

− g2

(

dh

dς

)2

+ 9g2h2
− U(ϕ, ς, λeff) = 0, (53)

these set of equations do not have solutions in closed form, because the first equation
is not satisfied. So, it is necessary to take c=0, implying that the wave function in the
anisotropic coordinates have an oscilatory and hyperbolic behavior

Quintom Potential from Quantum Anisotropic Cosmological Models
http://dx.doi.org/10.5772/52054

229



10 Open Questions in Cosmology
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]
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∂

∂Ω
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µ
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∂Ω
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− U

]
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2
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∂
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∂

∂ς
)

2
+ (

∂

∂Ω
)

2
+

(
∂

∂ϕ
)
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Eq (47) can be written as the following set of partial differential equations
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−
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+
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−
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−
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these set of equations do not have solutions in closed form, because the first equation
is not satisfied. So, it is necessary to take c=0, implying that the wave function in the
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2. For the case c=0, we have the following.

The constants ai are related as a2 = ±ia1, hence the wave function corresponding to
the anisotropic behavior becomes e±a1 β

+
±ia1 β

− , i.e, one part goes as oscillatory in the
anisotropic parameter.

4.3. Mathematical structure of potential fields

To solve the Hamilton-Jacobi equation (48a)

−

(

∂S

∂ς

)2

+

(

∂S

∂Ω

)2

+

(

∂S

∂ϕ

)2

= e6αU(ϕ, ς, λeff)

we propose that the superpotential function has the form

S =

e3Ω

µ
g(ϕ)h(ς), (54)

and the potential

U = g2h2
[a0G(g) + b0H(h)] , (55)

where g(ϕ), h(ς), G(g) and H(h) are generic functions of the arguments, which will be
determined under this process. When we introduce the ansatz in (48a) we find the following
master equations for the fields (ϕ, ς), (here c1 = µa0 and c0 = µ0b0)

dϕ = ±

dg

g
√

p2
+ c1G

, with p2
= ν

2
−

9

2
, (56a)

dς = ±

dh

h
√

ℓ2
− c0H

, with ℓ
2
= ν

2
+

9

2
, (56b)

where ν is the separation constant.

For a particular structure of functions G and H we can solve the g(ϕ) and h(ς) functions,
and then use the expression for the potential term (55) over again to find the corresponding
scalar potential that leads to an exact solution to the Hamilton-Jacobi equation (48a). Some
examples are shown in Tables 2 and 3.

Thereby, the superpotential S(Ω, ϕ) is known, and the possible quintom potentials are shown
in table 3

To solve (48c) we assume that

W = e[η(Ω)+ξ(ϕ)+λ(ς)], (57)

and introducing the corresponding superpotential function S (54) into the equation (48c), it
follow the equation

Open Questions in Cosmology230
Quintom Potential from Quantum Anisotropic Cosmological Models 13

H(h) h(ς) G(g) g(ϕ)

0 h0e±ℓ∆ς 0 g0e±p∆ϕ

H0 h0e±
√

ℓ2
−c0 H0∆ς G0 g0e±

√

p2
+c1 G0∆ϕ

H0h−2
√

c0H0

ℓ
cosh [ℓ∆ς] G0g−2

√

c1 G0
p sinh [p∆ϕ]

H0h−n (n �= 2)
[

c0H0

ℓ2 cosh2
(

nℓ∆ς

2

)]1/n
G0g−n (n �= 2)

[

c1G0

p2 sinh2
(

np∆ϕ

2

)]1/n

H0 ln h eu(ς), G0 ln g ev(ϕ)

u(ς) =
ℓ2
−

(

c0H0
2 ∆ς

)2

c0H0
v(ϕ) =

−p2
+

(

c1G0
2 ∆ϕ

)2

c1G0

H0(ln h)2 er(ς) G0(ln g)2 eω(ϕ)

r(ς) = ℓ
√

c0H0
sin

(√

c0H0 ∆ς
)

ω(ϕ) =
p

√

c1G0
sinh

(√

c1G0 ∆ϕ
)

Table 2. Some exact solutions to eqs. (56a,56b), where n is any real number, G0 and H0 are arbitrary constants.

U(ϕ, ς) Relation between all constants

0 ℓ2
(s − p2

− 3k − 9)2
− p2

(s − ℓ2
)

2

+ℓ2p2
(k2

− Q2
) = 0

U0e±2[
√

ℓ2
−c0H0∆ς+

√

p2
+c1G0∆ϕ]

(ℓ2
− c0H0)(s − p2

− 3k − 9 − c1G0)
2

−(p2
+ c1G0)(s − ℓ2

+ c0H0)
2

+(ℓ2
− c0H0)(p

2
+ c1G0)(k

2
− Q2

) = 0

U0sinh2
(p∆ϕ) + U1 cosh2

(ℓ∆ς) k(k − 6) = Q2, s = ℓ2,

6k(9 + p2
) + 9Q2

− p4
+ (ℓ2

− 9)2
= 0

b0H0

[

c1G0
p2 sinh2

(

np∆ϕ

2

)]
2
n
[

c0H0
ℓ2 cosh2

(

n
2 ℓ∆ς

)

]
2−n

n
+ quantum constraint is not satisfied

a0G0

[

c1G0
p2 sinh2

(

np∆ϕ

2

)]
2−n

n
[

c0H0
ℓ2 cosh2

(

n
2 ℓ∆ς

)

]
2
n

e2u(ς)+2v(ϕ)
[b0H0u(ς) + a0G0 v(ϕ)] quantum constraint is not satisfied

e2r(ς)+2ω(ϕ)
[

b0H0r2
+ a0G0ω2

]

quantum constraint is not satisfied

Table 3. The corresponding quintom potentials that emerge from quantum cosmology in direct relation with the table (2).

Also we present the relation between all constant that satisfy the eqn. (48b).

1

g

d2g

dϕ2
+

2

g

dg

dϕ

dξ

dϕ
+ 9 −

1

h

d2h

dς2
−

2

h

dλ

dς

dh

dς
+ 6

dη

dΩ
− 3Q = 0, (58)

and using the method of separation of variables, we arrive to a set of ordinary differential
equations for the functions η(Ω), ξ(ϕ) and λ(ς) (however, this decomposition is not unique,
because it depend as we put the constants in the equations).

2
dη

dΩ
− Q = k, (59)

d2g

dϕ2
+ 2

dg

dϕ

dξ

dϕ
= [s − 3(k + 3)]g, (60)

d2h

dς2
+ 2

dh

dς

dλ

dς
= sh, (61)
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and then use the expression for the potential term (55) over again to find the corresponding
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in table 3

To solve (48c) we assume that
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whose solutions in the generic fields g and h are

η(Ω) =

Q + k

2
Ω,

λ(ς) =
s

2

�

dς

∂ς(lnh)
−

1

2

�

d2h
dς2

∂ςh
dς,

ξ(ϕ) =

�

s

2
−

3k

2
−

9

2

�

�

dϕ

∂ϕ(lng)
−

1

2

�

d2g
dϕ2

∂ϕg
dϕ,

then

W = e
s
2

�

�

dς

∂ς (lnh)
+

dϕ

∂ϕ (lng)

�

e

−

1
2

�





d2h
dς2

∂ςh dς+

d2g

dϕ2

∂ϕg dϕ





e
k
2

�

Ω−3
� dϕ

∂ϕ (lng)

�

e
1
2

�

QΩ−9
� dϕ

∂ϕ (lng)

�

. (62)

In a similar way, the constraint (48b) can be written as

∂
2
ϕξ +

�

∂ϕξ
�2

− ∂
2
ςλ − (∂ςλ)

2
+

k2
− Q2

4
= 0 , (63)

or in other words (here µ0 = s − 3(3 + κ))

2
∂3

ςh

∂ςh
− 2

∂3
ϕg

∂ϕg
+ 4sh

∂2
ςh

(∂ςh)2
− 4µ0g

∂2
ϕg

(∂ϕg)2
− 3

(∂2
ςh)2

(∂ςh)2
+ 3

(∂2
ϕg)2

(∂ϕg)2
−

s2h2

(∂ςh)2

+

µ2
0g2

(∂ϕg)2
− 2s + 2µ0 + k2

− Q2
= 0.

when we use the different cases presented in table (2), the following relations between all
constants were found, which we present in the same table II with the quintom potentials.
So, the quantum solutions for each potential scalar fields are presented in quadrature form,
using the equations (46, 54) and (57).

Thereby, under canonical quantization we were able to determine a family of potentials
that are the most probable to characterize the inflation phenomenon in the evolution of our
universe. The exact quantum solutions to the Wheeler-DeWitt equation were found using the
Bohmian scheme [34] of quantum mechanics where the ansatz to the wave function Ψ(ℓµ

) =

ea1 β
+
+iai β−W(ℓµ

)e−S(ℓµ
) includes the superpotential function which plays an important role

in solving the Hamilton-Jacobi equation. It was necessary to study the classical behavior
in order to know when the Universe evolves from a quintessence dominated phase to a
phantom dominated phase crossing the we f f = −1 dividing line, as a transient stage. Also,
this family of potentials can be studied within the dynamical systems framework to obtain
useful information about the asymptotic properties of the model and give a classification of
which ones are in agreement with the observational data [48]
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5. Classical solutions a la WKB

For our study, we shall make use of a semi-classical approximation to extract the dynamics
of the WDW equation. The semi-classical limit of the WDW equation is achieved by taking
Ψ = e−S, and imposing the usual WKB conditions on the superpotential function S, namely

(

∂S

∂q

)2

>>
∂2S

∂q2

Hence, the WDW equation, under the particular factor ordering Q = 0, becomes exactly the
afore-mentioned EHJ equation (48a) (this approximation is equivalent to a zero quantum
potential in the Bohmian interpretation of quantum cosmology [53]). The EHJ equation is
also obtained if we introduce the following transformation on the canonical momenta Πq →

∂qS in Eq. (8) and then Eq. (8) provides the classical solutions of the Einstein.Klein.Gordon
(EKG) equations. Moreover, for the particular cases shown in Table 1, the classical solutions
of the EKG, in terms of q(τ), arising from Eqs. (8) and (50) are given by

gh = 4µ
dΩ

dτ
,

dϕ

∂ϕLng
+

dς

∂ςLnh
= 0, (64)

the second equation appears in the W function (57), then the W is simplified by, we also have
the corresponding relation with the time τ

dτ = 12µ
1

h

dϕ

∂ϕg
, dτ = −12µ

1

g

dς

∂ςh
. (65)

In the following subsection, we will give details about the solutions corresponding to some
of the scalar potential shown in Table (3).

To recover the solutions for the anisotropic function β
±

, (28,29) we need to extend the
superpotential function S = S − a1β

+
− ia2β

−
, remember that these functions were used

in the ansatz for the wave function (44) in order to simplify the WDW equation (45). With
this extension, we has

∂S

∂β
±

= −bi = constants

and using the corresponding momenta (8), we obtain the corresponding solutions written in
quadrature form in equations (28,29). In this subsection we calculate the solution for the Ω

function, thence the classical solution will be complete.

5.0.1. Free wave function

This particular case corresponds to an null potential function U(ϕ, ς), (see first line in Table
(3)). The particular exact solution for the wave function Ξ becomes
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whose solutions in the generic fields g and h are
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∂
2
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�

∂ϕξ
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− ∂
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2
+
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− Q2

4
= 0 , (63)

or in other words (here µ0 = s − 3(3 + κ))

2
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− 2

∂3
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∂ϕg
+ 4sh

∂2
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− 4µ0g

∂2
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− 3

(∂2
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(∂ςh)2
+ 3

(∂2
ϕg)2
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−

s2h2

(∂ςh)2

+

µ2
0g2

(∂ϕg)2
− 2s + 2µ0 + k2

− Q2
= 0.

when we use the different cases presented in table (2), the following relations between all
constants were found, which we present in the same table II with the quintom potentials.
So, the quantum solutions for each potential scalar fields are presented in quadrature form,
using the equations (46, 54) and (57).

Thereby, under canonical quantization we were able to determine a family of potentials
that are the most probable to characterize the inflation phenomenon in the evolution of our
universe. The exact quantum solutions to the Wheeler-DeWitt equation were found using the
Bohmian scheme [34] of quantum mechanics where the ansatz to the wave function Ψ(ℓµ

) =

ea1 β
+
+iai β−W(ℓµ

)e−S(ℓµ
) includes the superpotential function which plays an important role

in solving the Hamilton-Jacobi equation. It was necessary to study the classical behavior
in order to know when the Universe evolves from a quintessence dominated phase to a
phantom dominated phase crossing the we f f = −1 dividing line, as a transient stage. Also,
this family of potentials can be studied within the dynamical systems framework to obtain
useful information about the asymptotic properties of the model and give a classification of
which ones are in agreement with the observational data [48]
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5. Classical solutions a la WKB

For our study, we shall make use of a semi-classical approximation to extract the dynamics
of the WDW equation. The semi-classical limit of the WDW equation is achieved by taking
Ψ = e−S, and imposing the usual WKB conditions on the superpotential function S, namely

(

∂S

∂q

)2

>>
∂2S

∂q2

Hence, the WDW equation, under the particular factor ordering Q = 0, becomes exactly the
afore-mentioned EHJ equation (48a) (this approximation is equivalent to a zero quantum
potential in the Bohmian interpretation of quantum cosmology [53]). The EHJ equation is
also obtained if we introduce the following transformation on the canonical momenta Πq →

∂qS in Eq. (8) and then Eq. (8) provides the classical solutions of the Einstein.Klein.Gordon
(EKG) equations. Moreover, for the particular cases shown in Table 1, the classical solutions
of the EKG, in terms of q(τ), arising from Eqs. (8) and (50) are given by

gh = 4µ
dΩ

dτ
,

dϕ

∂ϕLng
+

dς

∂ςLnh
= 0, (64)

the second equation appears in the W function (57), then the W is simplified by, we also have
the corresponding relation with the time τ

dτ = 12µ
1

h

dϕ

∂ϕg
, dτ = −12µ

1

g

dς

∂ςh
. (65)

In the following subsection, we will give details about the solutions corresponding to some
of the scalar potential shown in Table (3).

To recover the solutions for the anisotropic function β
±

, (28,29) we need to extend the
superpotential function S = S − a1β

+
− ia2β

−
, remember that these functions were used

in the ansatz for the wave function (44) in order to simplify the WDW equation (45). With
this extension, we has

∂S

∂β
±

= −bi = constants

and using the corresponding momenta (8), we obtain the corresponding solutions written in
quadrature form in equations (28,29). In this subsection we calculate the solution for the Ω

function, thence the classical solution will be complete.

5.0.1. Free wave function

This particular case corresponds to an null potential function U(ϕ, ς), (see first line in Table
(3)). The particular exact solution for the wave function Ξ becomes
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, (66)

Figure 1. Exact wave function for the free case, i.e. for U(ϕ, ς) = 0. The wave function (66) is peaked around the classical
trajectory ∆Ω ±

3
p ∆ϕ = ν0 = const, which is the solid line shown on the {Ω, ϕ} plane. For this case ν0 = −1 on equation

(68a)

the classical trajectory implies that ∆ς

ℓ
+

∆ϕ

p = 0, then there is the relation between the fields

ϕ and ς, as

∆ς = −

ℓ

p
∆ϕ.

So, this wavefunction can be written in terms of ϕ and Ω solely,

Ξ(Ω, ϕ) = e
k
2

(

∆Ω±

3
p ∆ϕ

)

+
Q
2 ∆Ω

Exp

[

−g0h0e
3
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3
p ∆ϕ

)
]

, (67)

Using the equantion (65), we find the classical trajectory on the {Ω, ϕ} plane as

∆Ω ±

3

p
∆ϕ = ν0 = const, (68a)

∆ϕ = Ln

[

3g0h0

4
∆τ

]

±

p
9

, (68b)
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9

, (68c)

∆Ω = Ln

�

3g0h0

4
∆τ

�
1
3

, (68d)

which corresponds to constant phase of second exponential in the W function. The behavior
of the scale factor correspond at stiff matter epoch in the evolution on the universe.

5.0.2. Exponential scalar potential

For an exponential scalar potential, see second line in Table (3), the exact solution of the
WDW equation is similar to the last one, only we redefine the constants,

ℓ →

�

ℓ2
− c1G0, p →

�

p2
+ c0H0

5.0.3. Hyperbolic scalar potential

This case corresponds to third line in Table ( U(ϕ, ς) = U0 sinh2
(p∆ϕ) + U1 cosh2

(ℓ∆ς), the
wave function for this is

Υ = e−
1
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9
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(69)

and the classical trajectory in the plane {Ω, ϕ} reads as

∆Ω −

3

p2
Ln|cosh(p∆ϕ)| = ǫ = const. (70)

Using the second equation in (64), we find the relation between the quintom fields

∆ς =

1

ℓ
arcsinh





F0

cosh
1

p2
(p∆ϕ)





ℓ2

,

then, the time dependence of the quintom fields only were possible to write in quadrature
form, having the following structure

�
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c1G0

∆τ

12ℓ
=

�

dϕ

cosh
9

p2
(p∆ϕ)

�
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. (71)
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Figure 2. Wave Function for the potential U(ϕ, ς) = U0 sinh2
(p∆ϕ) + U1 cosh2

(ℓ∆ς). The wave function

(69) is peaked around the classical trajectory ∆Ω −

3
p2 Ln|cosh(p∆ϕ)| = ǫ, which is the solid line shown on the

{Ω, ϕ} plane. For this case ǫ = 2.4 on equation (70)

6. Conclusions

In summary, we presented the corresponding Einstein Klein Gordon equation for the
quintom model, which is applied to the Bianchi Type I cosmological model including as
a matter content a barotropic perfect fluid and cosmological constant, and the classical
solutions are given in a quadrature form for null and constant scalar potentials, these
solutions are related to the Sáez-Ballester formalism, [35–38].

The quantum scheme in the Bohmian formalism and its mathematical structure, and our
approach were applied to the Bianchi type I cosmological model in order to build the
mathematical structure of quintom scalar potentials using the integral systems formalism.

Also, we presented the quantum solutions to the Wheeler-DeWitt equation, which is the main
equation to be solved and such a subject is our principal objective in this work to obtain the
family of scalar potential in the inflation phenomenon.

We emphasize that the quantum potential from the Bohm formalism will work as a constraint
equation which restricts our family of potentials found, see Table (3), [33].

It is well known in the literature that in the Bohm formalism the imaginary part is never
determined, however in this work such a problem has been solved in order to find the
quantum potentials, which was a more important matter for being able to find the classical
trajectories, which were showed through graphics how the classical trajectory is projected
from its quantum counterpart. We include some steps how we solve the imaginary like
equation (48c) when we found the superpotential function S (54) and particular ansatz for
the function W, being the equation (58), and using the separation variables method we find
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the set of equations that is necessary to solve. Also we give some explanation why this
decomposition in not unique.

Finally, we do the comment that solution to the equation (50), when we write this equation
as a quadratic equation, C2x2

+ C1x + C0 = 0 with x = eΩ, is not possible because the set of
equations that appear , only a subset have solution in closed form. The algebraic one is not
fulfill, making that the c parameter become null. In forthcoming work we will analyze under

the scheme of dynamical systems, the relation between the corresponding critical points and
its stability properties with these classical solutions for separable potentials obtained in this
work [54].

7. Acknowledgments

This work was partially supported by CONACYT 179881 grant. DAIP (2011-2012) and
PROMEP grants UGTO-CA-3, UAM-I-43. PRB and MA were partially supported by
UAEMex grant FEO1/2012 103.5/12/2126. This work is part of the collaboration within
the Instituto Avanzado de Cosmología, and Red PROMEP: Gravitation and Mathematical
Physics under project Quantum aspects of gravity in cosmological models, phenomenology and
geometry of space-time. Many calculations were done by Symbolic Program REDUCE 3.8.

Author details

J. Socorro1,2, Paulo A. Rodríguez 1, O. Núñez-Soltero1,
Rafael Hernández1 and Abraham Espinoza-García1

1 Departamento de Física de la DCeI de la Universidad de Guanajuato-Campus León,
Guanajuato, México
2 Departamento de Física, Universidad Autónoma Metropolitana, Apartado Postal 55-534,
C.P. 09340 México, DF, México

References

[1] E.J. Copeland, M. Sami and S. Tsujikawa Dynamics of dark energy Int. J. Mod. Phys. D 15
1753, (2006) [arXiv:hep-th 0603057].

[2] B. Feng The Quintom Model of Dark Energy [ArXiv:astro-ph/0602156].

[3] Y.F. Cai, E.N. Saridakis, M.R. Setare and J.Q. Xia Quintom cosmology: Theoretical
implications and observations Phys. Rep. 493, 1 (2010).

[4] Z.K. Guo, Y.S. Piao, X. Zhang and Y.Z. Zhang Cosmological evolution of a quintom model of
dark energy Phys. Lett. B 608, 177 (2005).

[5] B. Feng, X. Wang and X. Zhang Dark energy constraints from the cosmic age and supernova
Phys. Lett. B 607, 35 (2005).

[6] H.M. Sadjadi and M. Alimohammadi Transition from quintessence to the phantom phase in
the quintom model Phys. Rev. D 74 (4), 043506 (2006).

Quintom Potential from Quantum Anisotropic Cosmological Models
http://dx.doi.org/10.5772/52054

237



18 Open Questions in Cosmology

Figure 2. Wave Function for the potential U(ϕ, ς) = U0 sinh2
(p∆ϕ) + U1 cosh2

(ℓ∆ς). The wave function

(69) is peaked around the classical trajectory ∆Ω −

3
p2 Ln|cosh(p∆ϕ)| = ǫ, which is the solid line shown on the

{Ω, ϕ} plane. For this case ǫ = 2.4 on equation (70)

6. Conclusions

In summary, we presented the corresponding Einstein Klein Gordon equation for the
quintom model, which is applied to the Bianchi Type I cosmological model including as
a matter content a barotropic perfect fluid and cosmological constant, and the classical
solutions are given in a quadrature form for null and constant scalar potentials, these
solutions are related to the Sáez-Ballester formalism, [35–38].

The quantum scheme in the Bohmian formalism and its mathematical structure, and our
approach were applied to the Bianchi type I cosmological model in order to build the
mathematical structure of quintom scalar potentials using the integral systems formalism.

Also, we presented the quantum solutions to the Wheeler-DeWitt equation, which is the main
equation to be solved and such a subject is our principal objective in this work to obtain the
family of scalar potential in the inflation phenomenon.

We emphasize that the quantum potential from the Bohm formalism will work as a constraint
equation which restricts our family of potentials found, see Table (3), [33].

It is well known in the literature that in the Bohm formalism the imaginary part is never
determined, however in this work such a problem has been solved in order to find the
quantum potentials, which was a more important matter for being able to find the classical
trajectories, which were showed through graphics how the classical trajectory is projected
from its quantum counterpart. We include some steps how we solve the imaginary like
equation (48c) when we found the superpotential function S (54) and particular ansatz for
the function W, being the equation (58), and using the separation variables method we find

Open Questions in Cosmology236
Quintom Potential from Quantum Anisotropic Cosmological Models 19

the set of equations that is necessary to solve. Also we give some explanation why this
decomposition in not unique.

Finally, we do the comment that solution to the equation (50), when we write this equation
as a quadratic equation, C2x2

+ C1x + C0 = 0 with x = eΩ, is not possible because the set of
equations that appear , only a subset have solution in closed form. The algebraic one is not
fulfill, making that the c parameter become null. In forthcoming work we will analyze under

the scheme of dynamical systems, the relation between the corresponding critical points and
its stability properties with these classical solutions for separable potentials obtained in this
work [54].

7. Acknowledgments

This work was partially supported by CONACYT 179881 grant. DAIP (2011-2012) and
PROMEP grants UGTO-CA-3, UAM-I-43. PRB and MA were partially supported by
UAEMex grant FEO1/2012 103.5/12/2126. This work is part of the collaboration within
the Instituto Avanzado de Cosmología, and Red PROMEP: Gravitation and Mathematical
Physics under project Quantum aspects of gravity in cosmological models, phenomenology and
geometry of space-time. Many calculations were done by Symbolic Program REDUCE 3.8.

Author details

J. Socorro1,2, Paulo A. Rodríguez 1, O. Núñez-Soltero1,
Rafael Hernández1 and Abraham Espinoza-García1

1 Departamento de Física de la DCeI de la Universidad de Guanajuato-Campus León,
Guanajuato, México
2 Departamento de Física, Universidad Autónoma Metropolitana, Apartado Postal 55-534,
C.P. 09340 México, DF, México

References

[1] E.J. Copeland, M. Sami and S. Tsujikawa Dynamics of dark energy Int. J. Mod. Phys. D 15
1753, (2006) [arXiv:hep-th 0603057].

[2] B. Feng The Quintom Model of Dark Energy [ArXiv:astro-ph/0602156].

[3] Y.F. Cai, E.N. Saridakis, M.R. Setare and J.Q. Xia Quintom cosmology: Theoretical
implications and observations Phys. Rep. 493, 1 (2010).

[4] Z.K. Guo, Y.S. Piao, X. Zhang and Y.Z. Zhang Cosmological evolution of a quintom model of
dark energy Phys. Lett. B 608, 177 (2005).

[5] B. Feng, X. Wang and X. Zhang Dark energy constraints from the cosmic age and supernova
Phys. Lett. B 607, 35 (2005).

[6] H.M. Sadjadi and M. Alimohammadi Transition from quintessence to the phantom phase in
the quintom model Phys. Rev. D 74 (4), 043506 (2006).

Quintom Potential from Quantum Anisotropic Cosmological Models
http://dx.doi.org/10.5772/52054

237



20 Open Questions in Cosmology

[7] Z.K. Guo, Y.S. Piao, X. Zhang and Y.Z. Zhang Two-field quintom models in the ω −ω′ plane
Phys. Rev. D 74 (12), 127304 (2006).

[8] B. Feng, M. Li, Y.S. Piao and X. Zhang Oscillating quintom and the recurrent universe Phys.
Lett. B 634, 101 (2006).

[9] W. Zhao and Y. Zhang Quintom models with an equation of state crossing -1 Phys. Rev. D 73
(12) 123509 (2006).

[10] Y.F. Cai, M. Li,J.X. Lu, Y.S. Piao, T. Qiu and X. Zhang A string-inspired quintom model of
dark energy Phys. Lett. B 651,1 (2007)

[11] Y.F. Cai, T. Qiu, X. Zhang, Y.S. Piao and M. Li Bouncing universe with Quintom matter J.
of High Energy Phys. 10 71 (2007).

[12] M. Alimohammadi and H.M. Sadjadi, Phys. Lett. B 648, 113 (2007).

[13] R. Lazkoz, G. León and I. Quiros Quintom cosmologies with arbitrary potentials Phys. Lett.
B 649, 103 (2007).

[14] Y.F. Cai, T. Qiu, R. Brandenberger, Y.S. Piao, and X. Zhang On perturbations of a quintom
bounce J of Cosmology and Astroparticle Phys. 3, 13 (2008).

[15] Y.F. Cai and J. Wang Dark energy model with spinor matter and its quintom scenario Classical
and Quantum Gravity 25 (16), 165014 (2008).

[16] S. Zhang and B. Chen Reconstructing a string-inspired quintom model of dark energy Phys.
Lett. B 669, 4 (2008).

[17] J. Sadeghi, M.R. Setare, A. Banijamali and F. Milani Non-minimally coupled quintom model
inspired by string theory Phys. Lett. B 662, 92, (2008).

[18] K. Nozari. M.R. Setare, T. Azizi and N. Behrouz A non-minimally coupled quintom dark
energy model on the warped DGP brane Physica Scripta, 80 (2), 025901 (2009).

[19] M.R. Setare and E.N. Saridakis Quintom dark energy models with nearly flat potentials Phys.
Rev. D 79 (4), 043005 (2009).

[20] M. R. Setare and E. N. Saridakis Quintom Cosmology with general potentials. Int. Jour. of
Mod. Phys. D 18 (4), 549 (2009).

[21] J. Sadeghi, M.R. Setare and A. Banijamali String inspired quintom model with non-minimally
coupled modified gravity Phys. Lett. B 678,164 (2009)

[22] T. Qiu Theoretical Aspects of Quintom Models Mod. Phys. Lett.A 25, 909 (2010).

[23] E.N. Saridakis Quintom evolution in power-law potentials Nuclear Phys. B 830, 374 (2010).

[24] A.R. Amani Stability of Quintom Model of Dark Energy in ( ω, ω’) Phase Plane Int. J. of Theor.
Phys. 50, 3078 (2011).

Open Questions in Cosmology238
Quintom Potential from Quantum Anisotropic Cosmological Models 21

[25] H. Farajollahi, A. Shahabi, A. Salehi Dynamical stability in scalar-tensor cosmology
Astronomy & Astrophysics, Supplement 338, 205 (2012).

[26] Song-Kuan Guo, Yun-Song Piao, Xinmin Zhang and Yuan-Zhong Zhang Cosmological
Evolution of a Quintom Model of Dark Energy Phys. Lett. B 608, 177 (2005).
[arXiv:astro-ph/0410654]

[27] R. Lazkoz and G. León Quintom cosmologies admitting either tracking or phantom attractors
Phys. Lett. B 638, 303 (2006).

[28] L.P. Chimento, M. Forte, R. Lazkoz and M.G. Richarte Internal space structure
generalization of the quintom cosmological scenario Phys. Rev. D 79 (4) 043502(2009).

[29] A.R. Liddle, and R.J. Scherrer Classification of scalar field potential with cosmological scaling
solutions Phys. Rev. D 59, 023509 (1998).

[30] P.G. Ferreira & M. Joyce Cosmology with a primordial scaling field, Phys. Rev. D, 58, 023503
(1998).

[31] D. Adak, A. Bandyopadhyay and D. Majumdar Quintom scalar field dark energy model
with a Gaussian potential (2011) [arXiv:1103.1533]

[32] W. Guzmán, M. Sabido, J. Socorro and L. Arturo Ureña-López Scalar potentials out of
canonical quantum cosmology Int. J. Mod. Phys. D 16 (4), 641-653 (2007).

[33] J. Socorro and Marco D’oleire Inflation from supersymmetric quantum cosmology Phys. Rev.
D 82(4), 044008 (2010).

[34] D. Bohm Suggested interpretation of the quantum theory in terms of "Hidden" variables I Phys.
Rev. 85 (2), 166 (1952).

[35] D. Sáez and V.J. Ballester Physics Letters A 113, 467 (1986).

[36] J. Socorro, M. Sabido, M.A. Sánchez G. and M.G. Frías Palos Anisotropic cosmology in
Sáez-Ballester theory: classical and quantum solutions Rev. Mex. Fís. 56(2), 166-171 (2010),
[arxiv:1007.3306].

[37] M. Sabido, J. Socorro and L. Arturo Ureña-López Classical and quantum Cosmology of the
Sáez-Ballester theory Fizika B 19 (4), 177-186 (2010), [arXiv:0904.0422].

[38] J. Socorro, Paulo A. Rodríguez, Abraham Espinoza-García, Luis O. Pimentel and
P. Romero Cosmological Bianchi Class A Models in Sáez-Ballester Theory: in Aspects of
Today’s Cosmology InTech, Antonio Alfonso-Faus (Ed.) pages 185-204. Available from:
http://www.intechopen.com/articles/show/title/

[39] G.W. Gibbons and L. P. Grishchuk Nucl. Phys. B 313, 736 (1989).

[40] Li Zhi Fang and Remo Ruffini, Editors, Quantum Cosmology, Advances Series in
Astrophysics and Cosmology Vol. 3 (World Scientific, Singapore, 1987).

[41] J. Hartle, & S.W. Hawking Phys. Rev. D, 28, 2960 (1983).

Quintom Potential from Quantum Anisotropic Cosmological Models
http://dx.doi.org/10.5772/52054

239



20 Open Questions in Cosmology

[7] Z.K. Guo, Y.S. Piao, X. Zhang and Y.Z. Zhang Two-field quintom models in the ω −ω′ plane
Phys. Rev. D 74 (12), 127304 (2006).

[8] B. Feng, M. Li, Y.S. Piao and X. Zhang Oscillating quintom and the recurrent universe Phys.
Lett. B 634, 101 (2006).

[9] W. Zhao and Y. Zhang Quintom models with an equation of state crossing -1 Phys. Rev. D 73
(12) 123509 (2006).

[10] Y.F. Cai, M. Li,J.X. Lu, Y.S. Piao, T. Qiu and X. Zhang A string-inspired quintom model of
dark energy Phys. Lett. B 651,1 (2007)

[11] Y.F. Cai, T. Qiu, X. Zhang, Y.S. Piao and M. Li Bouncing universe with Quintom matter J.
of High Energy Phys. 10 71 (2007).

[12] M. Alimohammadi and H.M. Sadjadi, Phys. Lett. B 648, 113 (2007).

[13] R. Lazkoz, G. León and I. Quiros Quintom cosmologies with arbitrary potentials Phys. Lett.
B 649, 103 (2007).

[14] Y.F. Cai, T. Qiu, R. Brandenberger, Y.S. Piao, and X. Zhang On perturbations of a quintom
bounce J of Cosmology and Astroparticle Phys. 3, 13 (2008).

[15] Y.F. Cai and J. Wang Dark energy model with spinor matter and its quintom scenario Classical
and Quantum Gravity 25 (16), 165014 (2008).

[16] S. Zhang and B. Chen Reconstructing a string-inspired quintom model of dark energy Phys.
Lett. B 669, 4 (2008).

[17] J. Sadeghi, M.R. Setare, A. Banijamali and F. Milani Non-minimally coupled quintom model
inspired by string theory Phys. Lett. B 662, 92, (2008).

[18] K. Nozari. M.R. Setare, T. Azizi and N. Behrouz A non-minimally coupled quintom dark
energy model on the warped DGP brane Physica Scripta, 80 (2), 025901 (2009).

[19] M.R. Setare and E.N. Saridakis Quintom dark energy models with nearly flat potentials Phys.
Rev. D 79 (4), 043005 (2009).

[20] M. R. Setare and E. N. Saridakis Quintom Cosmology with general potentials. Int. Jour. of
Mod. Phys. D 18 (4), 549 (2009).

[21] J. Sadeghi, M.R. Setare and A. Banijamali String inspired quintom model with non-minimally
coupled modified gravity Phys. Lett. B 678,164 (2009)

[22] T. Qiu Theoretical Aspects of Quintom Models Mod. Phys. Lett.A 25, 909 (2010).

[23] E.N. Saridakis Quintom evolution in power-law potentials Nuclear Phys. B 830, 374 (2010).

[24] A.R. Amani Stability of Quintom Model of Dark Energy in ( ω, ω’) Phase Plane Int. J. of Theor.
Phys. 50, 3078 (2011).

Open Questions in Cosmology238
Quintom Potential from Quantum Anisotropic Cosmological Models 21

[25] H. Farajollahi, A. Shahabi, A. Salehi Dynamical stability in scalar-tensor cosmology
Astronomy & Astrophysics, Supplement 338, 205 (2012).

[26] Song-Kuan Guo, Yun-Song Piao, Xinmin Zhang and Yuan-Zhong Zhang Cosmological
Evolution of a Quintom Model of Dark Energy Phys. Lett. B 608, 177 (2005).
[arXiv:astro-ph/0410654]

[27] R. Lazkoz and G. León Quintom cosmologies admitting either tracking or phantom attractors
Phys. Lett. B 638, 303 (2006).

[28] L.P. Chimento, M. Forte, R. Lazkoz and M.G. Richarte Internal space structure
generalization of the quintom cosmological scenario Phys. Rev. D 79 (4) 043502(2009).

[29] A.R. Liddle, and R.J. Scherrer Classification of scalar field potential with cosmological scaling
solutions Phys. Rev. D 59, 023509 (1998).

[30] P.G. Ferreira & M. Joyce Cosmology with a primordial scaling field, Phys. Rev. D, 58, 023503
(1998).

[31] D. Adak, A. Bandyopadhyay and D. Majumdar Quintom scalar field dark energy model
with a Gaussian potential (2011) [arXiv:1103.1533]

[32] W. Guzmán, M. Sabido, J. Socorro and L. Arturo Ureña-López Scalar potentials out of
canonical quantum cosmology Int. J. Mod. Phys. D 16 (4), 641-653 (2007).

[33] J. Socorro and Marco D’oleire Inflation from supersymmetric quantum cosmology Phys. Rev.
D 82(4), 044008 (2010).

[34] D. Bohm Suggested interpretation of the quantum theory in terms of "Hidden" variables I Phys.
Rev. 85 (2), 166 (1952).

[35] D. Sáez and V.J. Ballester Physics Letters A 113, 467 (1986).

[36] J. Socorro, M. Sabido, M.A. Sánchez G. and M.G. Frías Palos Anisotropic cosmology in
Sáez-Ballester theory: classical and quantum solutions Rev. Mex. Fís. 56(2), 166-171 (2010),
[arxiv:1007.3306].

[37] M. Sabido, J. Socorro and L. Arturo Ureña-López Classical and quantum Cosmology of the
Sáez-Ballester theory Fizika B 19 (4), 177-186 (2010), [arXiv:0904.0422].

[38] J. Socorro, Paulo A. Rodríguez, Abraham Espinoza-García, Luis O. Pimentel and
P. Romero Cosmological Bianchi Class A Models in Sáez-Ballester Theory: in Aspects of
Today’s Cosmology InTech, Antonio Alfonso-Faus (Ed.) pages 185-204. Available from:
http://www.intechopen.com/articles/show/title/

[39] G.W. Gibbons and L. P. Grishchuk Nucl. Phys. B 313, 736 (1989).

[40] Li Zhi Fang and Remo Ruffini, Editors, Quantum Cosmology, Advances Series in
Astrophysics and Cosmology Vol. 3 (World Scientific, Singapore, 1987).

[41] J. Hartle, & S.W. Hawking Phys. Rev. D, 28, 2960 (1983).

Quintom Potential from Quantum Anisotropic Cosmological Models
http://dx.doi.org/10.5772/52054

239



22 Open Questions in Cosmology

[42] S.W. Hawking Nucl. Phys. B 239, 257 (1984).

[43] H. Kodama Progress of Theor. Phys. 80, 1024 (1988).

[44] H. Kodama Phys. Rev D 42, 2548 (1990).

[45] A. Ashtekar Phys. Rev. D 36,1587 (1989).

[46] V. Moncrief and M.P. Ryan Phys. Rev. D 44, 2375 (1991).

[47] O. Obregón and J. Socorro Ψ = We±Φ quantum cosmological solutions for Class A Bianchi
models Int. J. of Theor. Phys. 35 (7), 1381 (1995).

[48] Private communication with Luis Ureña, DCI-Universidad de Guanajuato.

[49] M.P, Ryan Hamiltonian cosmology, (Springer, Berlin, (1992)).

[50] Andrei C. Polyanin & Valentin F. Zaitsev Handbook of Exact solutions for ordinary
differential equations, Second edition, Chapman & Hall/CRC (2003).

[51] M.P. M.P. & L.C. Shepley Homogeneous Relativistic Cosmologies (Princenton (1985))

[52] P.V. Moniz Quantum cosmology -the supersymmetric perspective- Vol. 1 & 2, Lecture Notes
in Physics 803 & 804, (Springer, Berlin) (2010).

[53] G. D. Barbosa and N. Pinto-Neto, Noncommutative geometry and cosmology, Phys. Rev. D
70 103512 (2004).

[54] León, G., Leyva, Y., and Socorro, J.: [gr-qc.1208-0061]

Open Questions in Cosmology240

Chapter 10

Leptogenesis and Neutrino Masses in an Inflationary

SUSY Pati-Salam Model

C. Pallis and N. Toumbas

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/51888

Provisional chapter

Leptogenesis and Neutrino Masses

in an Inflationary SUSY Pati-Salam Model

C. Pallis and N. Toumbas

Additional information is available at the end of the chapter

1. Introduction

One of the most promising and well-motivated mechanisms for the generation of the Baryon
Asymmetry of the Universe (BAU) is via an initial generation of a lepton asymmetry, which
can be subsequently converted to BAU through sphaleron effects – see e.g. Ref. [1, 2].
Non-Thermal Leptogenesis (nTL) [3, 4] is a variant of this proposal, in which the necessitated
departure from equilibrium is achieved by construction. Namely, the right-handed (RH)
neutrinos, νc

i , whose decay produces the lepton asymmetry, are out-of-equilibrium at the
onset, since their masses are larger than the reheating temperature. Such a set-up can be
achieved by the direct production of νc

i through the inflaton decay, which can also take
place out-of-equilibrium. Therefore, such a leptogenesis paradigm largely depends on the
inflationary stage, which it follows.

In a recent paper [5] – for similar attempts, see Ref. [6–8] –, we investigate an inflationary
model where a Standard Model (SM) singlet component of the Higgs fields involved in
the spontaneous breaking of a supersymmetric (SUSY) Pati-Salam (PS) Grand Unified Theory
(GUT) can produce inflation of chaotic-type, named non-minimal Higgs Inflation (nMHI),
since there is a relatively strong non-minimal coupling of the inflaton field to gravity [9–12].
This GUT provides a natural framework to implement our leptogenesis scenario, since the
presence of the SU(2)R gauge symmetry predicts the existence of three νc

i . In its simplest
realization this GUT leads to third family Yukawa unification (YU), and does not suffer from
the doublet-triplet splitting problem since both Higgs doublets are contained in a bidoublet
other than the GUT scale Higgs fields. Although this GUT is not completely unified – as,
e.g., a GUT based on the SO(10) gauge symmetry group – it emerges in standard weakly
coupled heterotic string models [13] and in recent D-brane constructions [14].

The inflationary model relies on renormalizable superpotential terms and does not lead to
overproduction of magnetic monopoles. It is largely independent of the one-loop radiative
corrections [15], and it can become consistent with the fitting [16] of the seven-year data of
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2 Open Questions in Cosmology

the Wilkinson Microwave Anisotropy Probe Satellite (WMAP7) combined with the baryon-acoustic
oscillation (BAO) and the measurement of the Hubble constant (H0). At the same time the GUT
symmetry breaking scale attains its SUSY value and the µ problem of the Minimal SUSY SM
(MSSM) is resolved via a Peccei-Quinn (PQ) symmetry, solving also the strong CP problem.

Inflation can be followed by non-thermal leptogenesis, compatible with the gravitino ( ˜G)
limit [17–19] on the reheating temperature, leading to efficient baryogenesis. In Ref. [5]
we connect non-thermal leptogenesis with neutrino data, implementing a two-generation
formulation of the see-saw [20–22] mechanism and imposing extra restrictions from the
data on the light neutrino masses and the GUT symmetry on the heaviest Dirac neutrino
mass. There we [5] assume that the mixing angle between the first and third generation,
θ13, vanishes. However, the most updated [23, 24] analyses of the low energy neutrino data
suggest that non-zero values for θ13 are now preferred, while the zero value can be excluded
at 8 standard deviations. Therefore, a revision of our results, presented in Ref. [5], is worth
pursuing.

The three-generation implementation of the see-saw mechanism is here adopted, following a
bottom-up approach, along the lines of Ref. [25–28]. In particular, we use as input parameters
the low energy neutrino observables considering several schemes of neutrino masses. Using
also the third generation Dirac neutrino mass predicted by the PS GUT, assuming a mild
hierarchy for the two residual generations and imposing the restriction from BAU, we
constrain the masses of νc

i ’s and the residual neutrino Dirac mass spectrum. Renormalization
group effects [28, 29] are also incorporated in our analysis.

We present the basic ingredients of our model in Sec. 2. In Sec. 3 we describe the inflationary
potential and derive the inflationary observables. In Sec. 4 we outline the mechanism of
non-thermal leptogenesis, while in Sec. 5 we exhibit the relevant imposed constraints and
restrict the parameters of our model. Our conclusions are summarized in Sec. 6. Throughout
the text, we use natural units for Planck’s and Boltzmann’s constants and the speed of light
(h̄ = c = kB = 1); the subscript of type , χ denotes derivation with respect to (w.r.t) the field χ

(e.g., ,χχ = ∂2/∂χ2); charge conjugation is denoted by a star and log [ln] stands for logarithm
with basis 10 [e].

2. The Pati-Salam SUSY GUT model

In this section, we present the particle content (Sec. 2.1), the structure of the superpotential
and the Kähler potential(Sec. 2.2) and describe the SUSY limit (Sec. 2.3) of our model.

2.1. Particle content

We focus on a SUSY PS GUT model described in detail in Ref. [5, 30]. The representations and
the transformation properties of the various superfields under GPS = SU(4)C × SU(2)L ×

SU(2)R, their decomposition under GSM = SU(3)C × SU(2)L × U(1)Y , as well as their extra
global charges are presented in Table 1.

The ith generation (i = 1, 2, 3) left-handed (LH) quark and lepton superfields, uia, dia (a =

1, 2, 3 is a color index), ei and νi are accommodated in a superfield Fi. The LH antiquark
and antilepton superfields uc

ia, dc
ia, ec

i and νc
i are arranged in another superfield Fc

i . The
gauge symmetry GPS can be spontaneously broken down to GSM through v.e.vs which the
superfields Hc and H̄c acquire in the directions νc

H and ν̄c
H . The model also contains a gauge

singlet S, which triggers the breaking of GPS, as well as an SU(4)C 6-plet G, which splits
into gc

a and ḡc
a under GSM and gives [13] superheavy masses to dc

Ha and d̄c
Ha. In the simplest
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Super- Represe- Trasfor- Decompo- Global

fields ntations mations sitions Charges

under GPS under GPS under GSM R PQ Z
mp
2

Matter Superfields

Fi (4, 2, 1) FiU
†
LUC Qia(3, 2, 1/6) 1 −1 −

Li(1, 2,−1/2)

Fc
i (4̄, 1, 2) U∗

CU∗

RFc
i uc

ia(3̄, 1,−2/3) 1 0 −

dc
ia(3̄, 1, 1/3)

νc
i (1, 1, 0)

ec
i (1, 1, 1)

Higgs Superfields

Hc
(4̄, 1, 2) U∗

CU∗

RHc uc
Ha(3̄, 1,−2/3) 0 0 +

dc
Ha(3̄, 1, 1/3)

νc
H(1, 1, 0)

ec
H(1, 1, 1)

H̄c
(4, 1, 2) H̄cUR UC ūc

Ha(3, 1, 2/3) 0 0 +

d̄c
Ha(3, 1,−1/3)

ν̄c
H(1, 1, 0)

ēc
H(1, 1,−1)

S (1, 1, 1) S S(1, 1, 0) 2 0 +

G (6, 1, 1) UCGUC ḡc
a(3, 1,−1/3) 2 0 +

gc
a(3̄, 1, 1/3)

IH (1, 2, 2) UL IHUR Hu(1, 2, 1/2) 0 1 +

Hd(1, 2,−1/2)

P (1, 1, 1) P P(1, 1, 0) 1 −1 +

P̄ (1, 1, 1) P̄ P̄(1, 1, 0) 0 1 +

Table 1. The representations, the transformations under GPS, the decompositions under GSM as well as the extra global

charges of the superfields of our model. Here UC ∈ SU(4)C, UL ∈ SU(2)L, UR ∈ SU(2)R and , † and ∗ stand for the
transpose, the hermitian conjugate and the complex conjugate of a matrix respectively.

realization of this model [13, 30], the electroweak doublets Hu and Hd, which couple to the
up and down quarks respectively, are exclusively contained in the bidoublet superfield IH.

In addition to GPS, the model possesses two global U(1) symmetries, namely a PQ and

an R symmetry, as well as a discrete Z
mp
2 symmetry (‘matter parity’) under which F, Fc

change sign. The last symmetry forbids undesirable mixings of F and IH and/or Fc and Hc

and ensures the stability of the lightest SUSY particle (LSP). The imposed U(1) R symmetry,
U(1)R, guarantees the linearity of the superpotential w.r.t the singlet S. Finally the U(1)
PQ symmetry, U(1)PQ, assists us to generate the µ-term of the MSSM. The PQ breaking
occurs at an intermediate scale through the v.e.vs of P, P̄, and the µ-term is generated
via a non-renormalizable coupling of P and IH. Following Ref. [30], we introduce into the
scheme quartic (non-renormalizable) superpotential couplings of H̄c to Fc

i , which generate
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charges of the superfields of our model. Here UC ∈ SU(4)C, UL ∈ SU(2)L, UR ∈ SU(2)R and , † and ∗ stand for the
transpose, the hermitian conjugate and the complex conjugate of a matrix respectively.

realization of this model [13, 30], the electroweak doublets Hu and Hd, which couple to the
up and down quarks respectively, are exclusively contained in the bidoublet superfield IH.

In addition to GPS, the model possesses two global U(1) symmetries, namely a PQ and

an R symmetry, as well as a discrete Z
mp
2 symmetry (‘matter parity’) under which F, Fc

change sign. The last symmetry forbids undesirable mixings of F and IH and/or Fc and Hc

and ensures the stability of the lightest SUSY particle (LSP). The imposed U(1) R symmetry,
U(1)R, guarantees the linearity of the superpotential w.r.t the singlet S. Finally the U(1)
PQ symmetry, U(1)PQ, assists us to generate the µ-term of the MSSM. The PQ breaking
occurs at an intermediate scale through the v.e.vs of P, P̄, and the µ-term is generated
via a non-renormalizable coupling of P and IH. Following Ref. [30], we introduce into the
scheme quartic (non-renormalizable) superpotential couplings of H̄c to Fc

i , which generate
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intermediate-scale masses for the νc
i and, thus, masses for the light neutrinos, νi, via the

seesaw mechanism [20–22]. Moreover, these couplings allow for the decay of the inflaton

into νc
i , leading to a reheating temperature consistent with the �G constraint with more or less

natural values of the parameters. As shown finally in Ref. [30], the proton turns out to be
practically stable in this model.

2.2. Superpotential and Kähler potential

The superpotential W of our model splits into three parts:

W = WMSSM + WPQ + WHPS, (1)

which are analyzed in the following.

• WMSSM is the part of W which contains the usual terms – except for the µ term – of the
MSSM, supplemented by Yukawa interactions among the left-handed leptons and νc

i :

WMSSM = yijFi IHFc
j =

= yij

�

Hd εLie
c
j − Hu εLiν

c
j + Hd εQiadc

ja − Hu εQiauc
ja

�

, with ε =









0 1
−1 0








· (2)

Here Qia =



uia dia



 and Li =



νi ei



 are the i-th generation SU(2)L doublet LH

quark and lepton superfields respectively. Summation over repeated color and generation
indices is assumed. Obviously the model predicts YU at MGUT since the fermion masses
per family originate from a unique term of the PS GUT. It is shown [31, 32] that exact
third family YU combined with non-universalities in the gaugino sector and/or the
scalar sector can become consistent with a number of phenomenological and cosmological
low-energy requirements. On the other hand, it is expected on generic grounds that the
predictions of this simple model for the fermion masses of the two lighter generations are
not valid. Usually this difficulty can be avoided by introducing [33] an abelian symmetry
which establishes a hierarchy between the flavor dependent couplings. Alternatively,
the present model can be augmented [34] with other Higgs fields so that Hu and Hd

are not exclusively contained in IH, but receive subdominant contributions from other
representations too. As a consequence, a moderate violation of exact YU can be achieved,
allowing for an acceptable low-energy phenomenology, even with universal boundary
conditions for the soft SUSY breaking terms. However, we prefer here to work with the
simplest version of the PS model, using the prediction of the third family YU in order to
determine the corresponding Dirac neutrino mass – see Sec. 5.1.

• WPQ, is the part of W which is relevant for the spontaneous breaking of U(1)PQ and the
generation of the µ term of the MSSM. It is given by

WPQ = λPQ
P2P̄2

MS
− λµ

P2

2MS

�

IHεIH ε

�

, (3)
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where MS ≃ 5 · 1017 GeV is the String scale. The scalar potential, which is generated
by the first term in the RHS of Eq. (3), after gravity-mediated SUSY breaking, is
studied in Ref. [30, 35]. For a suitable choice of parameters, the minimum lies at
|�P�| = |�P̄�| ∼

√

m3/2 MS. Hence, the PQ symmetry breaking scale is of order
√

m3/2 MS ≃

(

1010
− 1011

)

GeV. The µ-term of the MSSM is generated from the second
term of the RHS of Eq. (3) as follows:

− λµ

�P�2

2MS

(

IHεIH ε

)

= µHd εHu ⇒ µ ≃ λµ

�P�2

MS
, (4)

which is of the right magnitude if λµ ∼ (0.001 − 0.01). Let us note that VPQ has
an additional local minimum at P = P̄ = 0, which is separated from the global PQ
minimum by a sizable potential barrier, thus preventing transitions from the trivial to the
PQ vacuum. Since this situation persists at all cosmic temperatures after reheating, we
are obliged to assume that, after the termination of nMHI, the system emerges with the
appropriate combination of initial conditions so that it is led [36] in the PQ vacuum.

• WHPS, is the part of W which is relevant for nMHI, the spontaneous breaking of GPS and
the generation of intermediate Majorana [superheavy] masses for νc

i [dc
H and d̄c

H]. It takes
the form

WHPS = λS
(

H̄c Hc
− M2

PS

)

+ λH Hc GεHc
+ λH̄ H̄cḠεH̄c

+ λiνc

(

H̄cFc
i

)2

MS
, (5)

where MPS is a superheavy mass scale related to MGUT – see Sec. 3.2 – and Ḡ is the dual
tensor of G. The parameters λ and MPS can be made positive by field redefinitions.

According to the general recipe [11, 12], the implementation of nMHI within SUGRA requires
the adoption of a Kähler potential, K, of the following type

K = −3m2
P ln

(

1 −
Hc† Hc

3m2
P

−

H̄c H̄c†

3m2
P

−

(

G†G
)

6m2
P

−

|S|2

3m2
P

+ kS
|S|4

3m4
P

+

kH

2m2
P

(H̄c Hc
+ h.c.)

)

,

(6)
where mP = 2.44 · 1018 GeV is the reduced Planck scale and the complex scalar components of
the superfields Hc, H̄c, G and S are denoted by the same symbol. The coefficients kS and kH

are taken real. From Eq. (6) we can infer that we adopt the standard quadratic non-minimal
coupling for Higgs-inflaton, which respects the gauge and global symmetries of the model.
This non-minimal coupling of the Higgs fields to gravity is transparent in the Jordan frame.
We also added the fifth term in the RHS of Eq. (6) in order to cure the tachyonic mass
problem encountered in similar models [10–12] – see Sec. 3.1. In terms of the components of
the various fields, K in Eq. (6) reads

K = −3m2
P ln

(

1 −
φαφ∗ᾱ

3m2
P

+ kS
|S|4

3m4
P

+

kH

2m2
P

(

ν
c
H ν̄

c
H + ec

Hēc
H + uc

Hūc
H + dc

Hd̄c
H + h.c.

)

)

(7a)
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intermediate-scale masses for the νc
i and, thus, masses for the light neutrinos, νi, via the

seesaw mechanism [20–22]. Moreover, these couplings allow for the decay of the inflaton

into νc
i , leading to a reheating temperature consistent with the �G constraint with more or less

natural values of the parameters. As shown finally in Ref. [30], the proton turns out to be
practically stable in this model.

2.2. Superpotential and Kähler potential

The superpotential W of our model splits into three parts:

W = WMSSM + WPQ + WHPS, (1)

which are analyzed in the following.

• WMSSM is the part of W which contains the usual terms – except for the µ term – of the
MSSM, supplemented by Yukawa interactions among the left-handed leptons and νc
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 are the i-th generation SU(2)L doublet LH

quark and lepton superfields respectively. Summation over repeated color and generation
indices is assumed. Obviously the model predicts YU at MGUT since the fermion masses
per family originate from a unique term of the PS GUT. It is shown [31, 32] that exact
third family YU combined with non-universalities in the gaugino sector and/or the
scalar sector can become consistent with a number of phenomenological and cosmological
low-energy requirements. On the other hand, it is expected on generic grounds that the
predictions of this simple model for the fermion masses of the two lighter generations are
not valid. Usually this difficulty can be avoided by introducing [33] an abelian symmetry
which establishes a hierarchy between the flavor dependent couplings. Alternatively,
the present model can be augmented [34] with other Higgs fields so that Hu and Hd

are not exclusively contained in IH, but receive subdominant contributions from other
representations too. As a consequence, a moderate violation of exact YU can be achieved,
allowing for an acceptable low-energy phenomenology, even with universal boundary
conditions for the soft SUSY breaking terms. However, we prefer here to work with the
simplest version of the PS model, using the prediction of the third family YU in order to
determine the corresponding Dirac neutrino mass – see Sec. 5.1.

• WPQ, is the part of W which is relevant for the spontaneous breaking of U(1)PQ and the
generation of the µ term of the MSSM. It is given by

WPQ = λPQ
P2P̄2

MS
− λµ

P2

2MS
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IHεIH ε

�

, (3)

Open Questions in Cosmology244
Leptogenesis and Neutrino Masses in an Inflationary SUSY Pati-Salam Model 5

where MS ≃ 5 · 1017 GeV is the String scale. The scalar potential, which is generated
by the first term in the RHS of Eq. (3), after gravity-mediated SUSY breaking, is
studied in Ref. [30, 35]. For a suitable choice of parameters, the minimum lies at
|�P�| = |�P̄�| ∼

√

m3/2 MS. Hence, the PQ symmetry breaking scale is of order
√

m3/2 MS ≃

(

1010
− 1011

)

GeV. The µ-term of the MSSM is generated from the second
term of the RHS of Eq. (3) as follows:

− λµ

�P�2

2MS

(

IHεIH ε

)

= µHd εHu ⇒ µ ≃ λµ

�P�2

MS
, (4)

which is of the right magnitude if λµ ∼ (0.001 − 0.01). Let us note that VPQ has
an additional local minimum at P = P̄ = 0, which is separated from the global PQ
minimum by a sizable potential barrier, thus preventing transitions from the trivial to the
PQ vacuum. Since this situation persists at all cosmic temperatures after reheating, we
are obliged to assume that, after the termination of nMHI, the system emerges with the
appropriate combination of initial conditions so that it is led [36] in the PQ vacuum.

• WHPS, is the part of W which is relevant for nMHI, the spontaneous breaking of GPS and
the generation of intermediate Majorana [superheavy] masses for νc

i [dc
H and d̄c

H]. It takes
the form

WHPS = λS
(

H̄c Hc
− M2

PS

)

+ λH Hc GεHc
+ λH̄ H̄cḠεH̄c

+ λiνc

(

H̄cFc
i

)2

MS
, (5)

where MPS is a superheavy mass scale related to MGUT – see Sec. 3.2 – and Ḡ is the dual
tensor of G. The parameters λ and MPS can be made positive by field redefinitions.

According to the general recipe [11, 12], the implementation of nMHI within SUGRA requires
the adoption of a Kähler potential, K, of the following type

K = −3m2
P ln

(

1 −
Hc† Hc

3m2
P

−

H̄c H̄c†

3m2
P

−

(

G†G
)

6m2
P

−

|S|2

3m2
P

+ kS
|S|4

3m4
P

+

kH

2m2
P

(H̄c Hc
+ h.c.)

)

,

(6)
where mP = 2.44 · 1018 GeV is the reduced Planck scale and the complex scalar components of
the superfields Hc, H̄c, G and S are denoted by the same symbol. The coefficients kS and kH

are taken real. From Eq. (6) we can infer that we adopt the standard quadratic non-minimal
coupling for Higgs-inflaton, which respects the gauge and global symmetries of the model.
This non-minimal coupling of the Higgs fields to gravity is transparent in the Jordan frame.
We also added the fifth term in the RHS of Eq. (6) in order to cure the tachyonic mass
problem encountered in similar models [10–12] – see Sec. 3.1. In terms of the components of
the various fields, K in Eq. (6) reads

K = −3m2
P ln

(

1 −
φαφ∗ᾱ

3m2
P

+ kS
|S|4

3m4
P

+

kH

2m2
P

(

ν
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H ν̄
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with

φ
α
= ν

c
H , ν̄

c
H , ec

H , ēc
H , uc

H , ūc
H , dc

H , d̄c
H , gc, ḡc and S (7b)

and summation over the repeated Greek indices is implied.

2.3. The SUSY limit

In the limit where mP tends to infinity, we can obtain the SUSY limit of the SUGRA potential.
Assuming that the SM non-singlet components vanish, the F-term potential in this limit, VF,
turns out to be

VF = λ
2
∣

∣

∣
ν̄

c
Hν

c
H − M2

PS

∣

∣

∣

2
+ λ

2
|S|2

(

|ν
c
H |

2
+ |ν̄

c
H |

2
)

, (8a)

while the D-term potential is

VD =

5g2

16

(

|ν
c
H |

2
− |ν̄

c
H |

2
)2

. (8b)

Restricting ourselves to the D-flat direction |νc
H | = |ν̄c

H |, we find from VF that the SUSY
vacuum lies at

�S� ≃ 0 and |�ν
c
H�| = |�ν̄

c
H�| = MPS. (9)

Therefore, WHPS leads to spontaneous breaking of GPS. As we shall see in Sec. 3, the same
superpotential, WHPS, gives rise to a stage of nMHI . Indeed, along the D-flat direction
|νc

H | = |ν̄c
H | ≫ MPS and S = 0, VSUSY tends to a quartic potential, which can be employed in

conjunction with K in Eq. (6) for the realization of nMHI along the lines of Ref. [12].

It should be mentioned that soft SUSY breaking and instanton effects explicitly break
U(1)R × U(1)PQ to Z2 × Z6. The latter symmetry is spontaneously broken by �P� and
�P̄�. This would lead to a domain wall problem if the PQ transition took place after nMHI.
However, as we already mentioned above, U(1)PQ is assumed already broken before or

during nMHI. The final unbroken symmetry of the model is GSM × Z
mp
2 .

3. The inflationary scenario

Next we outline the salient features of our inflationary scenario (Sec. 3.1) and calculate a
number of observable quantities in Sec. 3.2.

3.1. Structure of the inflationary potential

At tree-level the Einstein Frame (EF) SUGRA potential, ̂VHI, is given by [11]

̂VHI = eK/m2
P

(

Kαβ̄FαF∗
β̄
− 3

|WHPS|
2

m2
P

)

+

1

2
g2

∑
a

DaDa, (10a)
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where g is the unified gauge coupling constant and the summation is applied over the 21
generators Ta of the PS gauge group – see Ref. [5]. Also, we have

K
αβ̄

= K,φαφ∗β̄ , Kβ̄αKαγ̄ = δ
β̄

γ̄, Fα = WHPS,φα + K,φα WHPS/m2
P and Da = φα (Ta)

α

β
K,φβ (10b)

The φα’s are given in Eq. (7b). If we parameterize the SM singlet components of Hc and H̄c

by

ν
c
H = heiθ cos θν/

√

2 and ν̄
c
H = heiθ̄ sin θν/

√

2, (11)

we can easily deduce that a D-flat direction occurs at

θ = θ̄ = 0, θν = π/4 and ec
H = ēc

H = uc
H = ūc

H = dc
H = d̄c

H = gc
= ḡc

= 0. (12)

Along this direction, the D-terms in Eq. (10a) – and, also, VD in Eq. (8b) – vanish, and so �VHI

takes the form

�VHI = m4
P

λ2
(x2

h − 4m2
PS)

2

16 f 2
(13)

with
f = 1 + c

R
x2

h, mPS =

MPS

mP
, xh =

h

mP
and c

R
= −

1

6
+

kH

4
· (14)

From Eq. (13), we can verify that for c
R

≫ 1 and mPS ≪ 1, �VHI takes a form suitable
for the realization of nMHI, since it develops a plateau – see also Sec. 3.2. The (almost)

constant potential energy density �VHI0 and the corresponding Hubble parameter �HHI (along
the trajectory in Eq. (12)) are given by

�VHI0 =

λ2h4

16 f 2
≃

λ2m4
P

16c2
R

and �HHI =

�V1/2
HI0

√

3mP

≃

λmP

4
√

3c
R

· (15)

We next proceed to check the stability of the trajectory in Eq. (12) w.r.t the fluctuations of the
various fields. To this end, we expand them in real and imaginary parts as follows

X =

x1 + ix2
√

2
, X̄ =

x̄1 + ix̄2
√

2
where X = ec

H , uc
H , dc

H , gc and x = e, u, d, g . (16)

Notice that the field S can be rotated to the real axis via a suitable R transformation. Along
the trajectory in Eq. (12) we find

�

K
αβ̄

�

= diag











MK

f 2
,

1

f
, ...,

1

f
� �� �

3+6·3 times











with MK =









κ κ̄

κ̄ κ








, κ̄ = 3c2

R

x2
h and κ = f + κ̄. (17)
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where g is the unified gauge coupling constant and the summation is applied over the 21
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From Eq. (13), we can verify that for c
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≫ 1 and mPS ≪ 1, �VHI takes a form suitable
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To canonically normalize the fields νc
H and ν̄c

H , we first diagonalize the matrix MK . This can
be achieved via a similarity transformation involving an orthogonal matrix UK as follows:

UK MKUK = diag
�

f̄ , f
�

, where f̄ = f + 6c2
R

x2
h and UK =

1
√

2







1 1
−1 1





. (18)

Utilizing UK , the kinetic terms of the various fileds can be brought into the following form

K
αβ̄

φ̇
α
φ̇
∗β̄

=

f̄

2 f 2

�

ḣ2
+

1

2
h2

θ̇
2
+

�

+

h2

2 f

�

1

2
θ̇

2
−
+ θ̇

2
ν

�

+

1

2 f
χ̇αχ̇α =

1

2
�̇h

2
+

1

2
�̇ψα

�̇ψα, (19)

where θ
±

=

�

θ̄ ± θ
�

/
√

2, χα = x1, x2, x̄1, x̄2, S and ψα = θ
+

, θ
−

, θν, χα and the dot denotes
derivation w.r.t the cosmic time, t. In the last line, we introduce the EF canonically

normalized fields, �h and �ψ, which can be obtained as follows – cf. Ref. [5, 11, 12, 37]:

d�h

dh
= J =

�

f̄

f
, �θ

+
=

Jhθ
+

√

2
, �θ

−
=

hθ
−

�

2 f
, �θν =

h
�

f

�

θν −
π

4

�

and �χα =

χα
�

f
· (20)

Taking into account the approximate expressions for ḣ, J and the slow-roll parameters �ǫ, �η,

which are displayed in Sec. 3.2, we can verify that, during a stage of slow-roll inflation, �̇θ
+
≃

Jhθ̇
+

/
√

2 since Jh ≃

√

6mP, �̇θ
−
≃ hθ̇

−
/
�

2 f and �̇θν ≃ hθ̇ν/
�

f since h/
�

f ≃ mP/
√

c
R

. On

the other hand, we can show that �̇χα ≃ χ̇α/
�

f , since the quantity ḟ /2 f 3/2χα, involved in

relating χ̇α to �̇χα, turns out to be negligibly small compared with �̇χα. Indeed, the �χα’s acquire

effective masses m
�χα

≫
�HHI – see below – and therefore enter a phase of oscillations about

�χα = 0 with decreasing amplitude. Neglecting the oscillatory part of the relevant solutions,
we find

χ ≃ �χα0

�

f e−2 �N/3 and �̇χα ≃ −2χα0

�

f �HHI�ηχα
e−2 �N/3, (21)

where �χα0 represents the initial amplitude of the oscillations, �ηχα
= m2

�χα
/3 �HHI and we

assume �̇χα(t = 0) = 0. Taking into account the approximate expressions for ḣ and the
slow-roll parameter �ǫ in Sec. 3.2, we find

− ḟ /2 f 3/2
χα =

�

c
R
�ǫ �H2

HI/m2
�χα

�

�̇χα ≪ �̇χα. (22)

Having defined the canonically normalized scalar fields, we can proceed in investigating the

stability of the inflationary trajectory of Eq. (12). To this end, we expand �VHI in Eq. (10a) to
quadratic order in the fluctuations around the direction of Eq. (12), as described in detail in
Ref. [5]. In Table 2 we list the eigenvalues of the mass-squared matrices

M2
αβ

=

∂2
�VHI

∂ �ψα∂ �ψβ

�

�

�

�

�

Eq. (12)

with ψα = θ
+

, θ
−

, θν, x1, x2, x̄1, x̄2 and S (23)
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Fields Masses Squared Eigenstates

The S – νc
H – ν̄c

H Sector

2 real scalars m2
̂θν

= m2
Px2

h

(

2λ2
(x2

h − 6) + 15g2 f
)

/24 f 2
̂θν

m2
̂θ+

= λ2m4
Px2

h (1 + 6c
R
) /12J2 f 3

≃ 4 ̂H2
HI

̂θ
+

1 complex scalar m2
̂S
= λ2m2

Px2
h

(

12 + x2
h f̄

)

(6kS f − 1) /6 f 2 f̄ ̂S

The uc
Ha – ūc

Ha (a = 1, 2, 3) and ec
H – ēc

H Sectors

2(3 + 1) real scalars m2
û− = m2

Px2
h

(

λ2
(x2

h − 3) + 3g2 f
)

/12 f 2 ûa
1−, ûa

2+,

m2
ê− = m2

û− ê1−, ê2+

The dc
Ha – d̄c

Ha and gc
a – ḡc

a (a = 1, 2, 3) Sectors

3 · 8 real scalars m2
ĝ = m2

Px2
h

(

λ2x2
h + 24λ2

H̄
f
)

/24 f 2 ĝa
1, ĝa

2

m2
̂ḡ
= m2

Px2
h

(

λ2x2
h + 24λ2

H f
)

/24 f 2
̂ḡ

a
1,̂ḡ

a
2

m2
̂d+

= m2
Px2

h

(

λ2
+ 4λ2

H f
)

/4 f 2
̂da
1+, ̂da

2−

m2
̂d−

= m2
Px2

h

(

λ2
(

x2
h − 3

)

+ 12λ2
H f

)

/12 f 2
̂da
1−, ̂da

2+

Table 2. The scalar mass spectrum of our model along the inflationary trajectory of Eq. (12). To avoid very lengthy formulas

we neglect terms proportional to m2
PS and we assume λH ≃ λH̄ for the derivation of the masses of the scalars in the

superfields dc
H and d̄c

H .

involved in the expansion of ̂VHI. We arrange our findings into three groups: the SM singlet
sector, S − νc

H − ν̄c
H , the sector with the uc

H , ūc
H and the ec

H , ēc
H fields which are related with

the broken generators of GPS and the sector with the dc
H , d̄c

H and the gc, ḡc fields. Upon
diagonalization of the relevant matrices we obtain the following mass eigenstates:

x̂1± =

1
√

2

(

̂x̄1 ± x̂1

)

and x̂2∓ =

1
√

2

(

̂x̄2 ∓ x̂2

)

with x = u, e, d and g. (24)

As we observe from the relevant eigenvalues, no instability – as the one found in Ref. [37]
– arises in the spectrum. In particular, it is evident that kS � 1 assists us to achieve m2

̂S
> 0

– in accordance with the results of Ref. [12]. Moreover, the D-term contributions to m2
̂θν

and

m2
û− – proportional to the gauge coupling constant g ≃ 0.7 – ensure the positivity of these

masses squared. Finally the masses that the scalars ̂d1,2 acquire from the second and third
term of the RHS of Eq. (5) lead to the positivity of m2

̂d−
for λH of order unity. We have also

numerically verified that the masses of the various scalars remain greater than the Hubble
parameter during the last 50 − 60 e-foldings of nMHI, and so any inflationary perturbations
of the fields other than the inflaton are safely eliminated.

The 8 Goldstone bosons, associated with the modes x̂1+ and x̂2− with x = ua and e, are
not exactly massless since ̂VHI,h �= 0 – contrary to the situation of Ref. [30] where the
direction with non vanishing �νc

H� minimizes the potential. These masses turn out to be
mx0 = λmPxh/2 f . On the contrary, the angular parametrization in Eq. (11) assists us
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To canonically normalize the fields νc
H and ν̄c

H , we first diagonalize the matrix MK . This can
be achieved via a similarity transformation involving an orthogonal matrix UK as follows:

UK MKUK = diag
�

f̄ , f
�

, where f̄ = f + 6c2
R

x2
h and UK =

1
√

2







1 1
−1 1





. (18)

Utilizing UK , the kinetic terms of the various fileds can be brought into the following form

K
αβ̄

φ̇
α
φ̇
∗β̄

=

f̄

2 f 2

�

ḣ2
+

1

2
h2

θ̇
2
+

�

+

h2

2 f

�

1

2
θ̇

2
−
+ θ̇

2
ν

�

+

1

2 f
χ̇αχ̇α =

1

2
�̇h

2
+

1

2
�̇ψα

�̇ψα, (19)

where θ
±

=

�

θ̄ ± θ
�

/
√

2, χα = x1, x2, x̄1, x̄2, S and ψα = θ
+

, θ
−

, θν, χα and the dot denotes
derivation w.r.t the cosmic time, t. In the last line, we introduce the EF canonically

normalized fields, �h and �ψ, which can be obtained as follows – cf. Ref. [5, 11, 12, 37]:

d�h

dh
= J =

�

f̄

f
, �θ

+
=

Jhθ
+

√

2
, �θ

−
=

hθ
−

�

2 f
, �θν =

h
�

f

�

θν −
π

4

�

and �χα =

χα
�

f
· (20)

Taking into account the approximate expressions for ḣ, J and the slow-roll parameters �ǫ, �η,

which are displayed in Sec. 3.2, we can verify that, during a stage of slow-roll inflation, �̇θ
+
≃

Jhθ̇
+

/
√

2 since Jh ≃

√

6mP, �̇θ
−
≃ hθ̇

−
/
�

2 f and �̇θν ≃ hθ̇ν/
�

f since h/
�

f ≃ mP/
√

c
R

. On

the other hand, we can show that �̇χα ≃ χ̇α/
�

f , since the quantity ḟ /2 f 3/2χα, involved in

relating χ̇α to �̇χα, turns out to be negligibly small compared with �̇χα. Indeed, the �χα’s acquire

effective masses m
�χα

≫
�HHI – see below – and therefore enter a phase of oscillations about

�χα = 0 with decreasing amplitude. Neglecting the oscillatory part of the relevant solutions,
we find

χ ≃ �χα0

�

f e−2 �N/3 and �̇χα ≃ −2χα0

�

f �HHI�ηχα
e−2 �N/3, (21)

where �χα0 represents the initial amplitude of the oscillations, �ηχα
= m2

�χα
/3 �HHI and we

assume �̇χα(t = 0) = 0. Taking into account the approximate expressions for ḣ and the
slow-roll parameter �ǫ in Sec. 3.2, we find

− ḟ /2 f 3/2
χα =

�

c
R
�ǫ �H2

HI/m2
�χα

�

�̇χα ≪ �̇χα. (22)

Having defined the canonically normalized scalar fields, we can proceed in investigating the

stability of the inflationary trajectory of Eq. (12). To this end, we expand �VHI in Eq. (10a) to
quadratic order in the fluctuations around the direction of Eq. (12), as described in detail in
Ref. [5]. In Table 2 we list the eigenvalues of the mass-squared matrices

M2
αβ

=

∂2
�VHI

∂ �ψα∂ �ψβ

�

�

�

�

�

Eq. (12)

with ψα = θ
+

, θ
−

, θν, x1, x2, x̄1, x̄2 and S (23)
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Fields Masses Squared Eigenstates

The S – νc
H – ν̄c

H Sector

2 real scalars m2
̂θν

= m2
Px2

h

(

2λ2
(x2

h − 6) + 15g2 f
)

/24 f 2
̂θν

m2
̂θ+

= λ2m4
Px2

h (1 + 6c
R
) /12J2 f 3

≃ 4 ̂H2
HI

̂θ
+

1 complex scalar m2
̂S
= λ2m2

Px2
h

(

12 + x2
h f̄

)

(6kS f − 1) /6 f 2 f̄ ̂S

The uc
Ha – ūc

Ha (a = 1, 2, 3) and ec
H – ēc

H Sectors

2(3 + 1) real scalars m2
û− = m2

Px2
h

(

λ2
(x2

h − 3) + 3g2 f
)

/12 f 2 ûa
1−, ûa

2+,

m2
ê− = m2

û− ê1−, ê2+

The dc
Ha – d̄c

Ha and gc
a – ḡc

a (a = 1, 2, 3) Sectors

3 · 8 real scalars m2
ĝ = m2

Px2
h

(

λ2x2
h + 24λ2

H̄
f
)

/24 f 2 ĝa
1, ĝa

2

m2
̂ḡ
= m2

Px2
h

(

λ2x2
h + 24λ2

H f
)

/24 f 2
̂ḡ

a
1,̂ḡ

a
2

m2
̂d+

= m2
Px2

h

(

λ2
+ 4λ2

H f
)

/4 f 2
̂da
1+, ̂da

2−

m2
̂d−

= m2
Px2

h

(

λ2
(

x2
h − 3

)

+ 12λ2
H f

)

/12 f 2
̂da
1−, ̂da

2+

Table 2. The scalar mass spectrum of our model along the inflationary trajectory of Eq. (12). To avoid very lengthy formulas

we neglect terms proportional to m2
PS and we assume λH ≃ λH̄ for the derivation of the masses of the scalars in the

superfields dc
H and d̄c

H .

involved in the expansion of ̂VHI. We arrange our findings into three groups: the SM singlet
sector, S − νc

H − ν̄c
H , the sector with the uc

H , ūc
H and the ec

H , ēc
H fields which are related with

the broken generators of GPS and the sector with the dc
H , d̄c

H and the gc, ḡc fields. Upon
diagonalization of the relevant matrices we obtain the following mass eigenstates:

x̂1± =

1
√

2

(

̂x̄1 ± x̂1

)

and x̂2∓ =

1
√

2

(

̂x̄2 ∓ x̂2

)

with x = u, e, d and g. (24)

As we observe from the relevant eigenvalues, no instability – as the one found in Ref. [37]
– arises in the spectrum. In particular, it is evident that kS � 1 assists us to achieve m2

̂S
> 0

– in accordance with the results of Ref. [12]. Moreover, the D-term contributions to m2
̂θν

and

m2
û− – proportional to the gauge coupling constant g ≃ 0.7 – ensure the positivity of these

masses squared. Finally the masses that the scalars ̂d1,2 acquire from the second and third
term of the RHS of Eq. (5) lead to the positivity of m2

̂d−
for λH of order unity. We have also

numerically verified that the masses of the various scalars remain greater than the Hubble
parameter during the last 50 − 60 e-foldings of nMHI, and so any inflationary perturbations
of the fields other than the inflaton are safely eliminated.

The 8 Goldstone bosons, associated with the modes x̂1+ and x̂2− with x = ua and e, are
not exactly massless since ̂VHI,h �= 0 – contrary to the situation of Ref. [30] where the
direction with non vanishing �νc

H� minimizes the potential. These masses turn out to be
mx0 = λmPxh/2 f . On the contrary, the angular parametrization in Eq. (11) assists us
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to isolate the massless mode ̂θ
−

, in agreement with the analysis of Ref. [11]. Employing
the well-known Coleman-Weinberg formula [15], we can compute the one-loop radiative
corrections to the potential in our model. However, these have no significant effect on the
inflationary dynamics and predictions, since the slope of the inflationary path is generated
at the classical level – see the expressions for ǫ̂ and η̂ below.

3.2. The inflationary observables

Based on the potential of Eq. (13) and keeping in mind that the EF canonically inflaton ̂h is
related to h via Eq. (20), we can proceed to the analysis of nMHI in the EF, employing the
standard slow-roll approximation. Namely, a stage of slow-roll nMHI is determined by the
condition – see e.g. Ref. [38, 39]:

max{ǫ̂(h), |η̂(h)|} ≤ 1,

where

ǫ̂ =

m2
P

2

(

̂V
HI,̂h

̂VHI

)2

=

m2
P

2J2

(

̂VHI,h

̂VHI

)2

≃

4 f 2
0 m4

P

3c2
R

h4
(25a)

and

η̂ = m2
P

̂V
HI,̂ĥh

̂VHI

=

m2
P

J2

(

̂VHI,hh

̂VHI

−

̂VHI,h

̂VHI

J,h

J

)

≃ −

4 f0m2
P

3c
R

h2
, (25b)

are the slow-roll parameters and f0 = f (�h� = 2MPS) = 1 + 4c
R

m2
PS – see Sec. 4.1. Here we

employ Eq. (15) and the following approximate relations:

J ≃
√

6
mP

h
, ̂VHI,h ≃

4̂VHI

c
R

h3
f0m2

P and ̂VHI,hh ≃ −

12̂VHI

c
R

h4
f0m2

P. (26)

The numerical computation reveals that nMHI terminates due to the violation of the ǫ̂

criterion at a value of h equal to hf, which is calculated to be

ǫ̂ (hf) = 1 ⇒ hf = (4/3)1/4 mP

√

f0/c
R

. (27)

The number of e-foldings, ̂N
∗
, that the scale k

∗
= 0.002/Mpc suffers during nMHI can be

calculated through the relation:

̂N
∗
=

1

m2
P

∫

̂h
∗

̂hf

d̂h
̂VHI

̂V
HI,̂h

=

1

m2
P

∫ h
∗

hf

dh J2
̂VHI

̂VHI,h

, (28)

where h
∗
[
̂h
∗
] is the value of h [

̂h] when k
∗

crosses the inflationary horizon. Given that

hf ≪ h
∗
, we can write h

∗
as a function of ̂N

∗
as follows
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̂N
∗
≃

3c
R

4 f0

h2
∗
− h2

f

m2
P

⇒ h
∗
= 2mP

√

̂N
∗

f0/3c
R
· (29)

The power spectrum ∆
2
R

of the curvature perturbations generated by h at the pivot scale k
∗

is estimated as follows

∆
R

=

1

2
√

3 πm3
P

̂VHI(
̂h
∗
)

3/2

|
̂V

HI,̂h
(
̂h
∗
)|

≃

λh2
∗

16
√

2π f0m2
P

≃

λ ̂N
∗

12
√

2πc
R

· (30)

Since the scalars listed in Table 2 are massive enough during nMHI, ∆
R

can be identified

with its central observational value – see Sec. 5 – with almost constant ̂N
∗
. The resulting

relation reveals that λ is to be proportional to c
R

. Indeed we find

λ ≃ 8.4 · 10−4
πc

R
/ ̂N

∗
⇒ c

R
≃ 20925λ for ̂N

∗
≃ 55. (31)

The (scalar) spectral index ns, its running as, and the scalar-to-tensor ratio r can be estimated
through the relations:

ns = 1 − 6ǫ̂
∗
+ 2η̂

∗
≃ 1 − 2/ ̂N

∗
, (32a)

αs =
2

3

(

4η̂
2
∗
− (ns − 1)2

)

− 2̂ξ
∗
≃ −2̂ξ

∗
≃ −2/ ̂N2

∗
(32b)

and

r = 16ǫ̂
∗
≃ 12/ ̂N2

∗
, (32c)

where ̂ξ = m4
P
̂VHI,h

̂V
HI,̂ĥĥh

/ ̂V2
HI = mP

√

2ǫ̂ η̂,h/J + 2η̂ǫ̂. The variables with subscript ∗ are

evaluated at h = h
∗

and Eqs. (25a) and (25b) have been employed.

4. Non-thermal leptogenesis

In this section, we specify how the SUSY inflationary scenario makes a transition to the
radiation dominated era (Sec. 4.1) and give an explanation of the origin of the observed BAU

(Sec. 4.2) consistently with the ˜G constraint and the low energy neutrino data (Sec. 4.3).
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to isolate the massless mode ̂θ
−

, in agreement with the analysis of Ref. [11]. Employing
the well-known Coleman-Weinberg formula [15], we can compute the one-loop radiative
corrections to the potential in our model. However, these have no significant effect on the
inflationary dynamics and predictions, since the slope of the inflationary path is generated
at the classical level – see the expressions for ǫ̂ and η̂ below.

3.2. The inflationary observables

Based on the potential of Eq. (13) and keeping in mind that the EF canonically inflaton ̂h is
related to h via Eq. (20), we can proceed to the analysis of nMHI in the EF, employing the
standard slow-roll approximation. Namely, a stage of slow-roll nMHI is determined by the
condition – see e.g. Ref. [38, 39]:

max{ǫ̂(h), |η̂(h)|} ≤ 1,

where

ǫ̂ =
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, (25b)

are the slow-roll parameters and f0 = f (�h� = 2MPS) = 1 + 4c
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PS – see Sec. 4.1. Here we

employ Eq. (15) and the following approximate relations:
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, ̂VHI,h ≃

4̂VHI

c
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h3
f0m2

P and ̂VHI,hh ≃ −

12̂VHI

c
R

h4
f0m2

P. (26)

The numerical computation reveals that nMHI terminates due to the violation of the ǫ̂

criterion at a value of h equal to hf, which is calculated to be

ǫ̂ (hf) = 1 ⇒ hf = (4/3)1/4 mP

√

f0/c
R

. (27)

The number of e-foldings, ̂N
∗
, that the scale k

∗
= 0.002/Mpc suffers during nMHI can be

calculated through the relation:
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=
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∫
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̂hf
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=

1
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P
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hf
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̂VHI,h

, (28)

where h
∗
[
̂h
∗
] is the value of h [

̂h] when k
∗

crosses the inflationary horizon. Given that

hf ≪ h
∗
, we can write h

∗
as a function of ̂N

∗
as follows
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̂N
∗
≃

3c
R

4 f0

h2
∗
− h2

f

m2
P

⇒ h
∗
= 2mP

√

̂N
∗

f0/3c
R
· (29)

The power spectrum ∆
2
R

of the curvature perturbations generated by h at the pivot scale k
∗

is estimated as follows

∆
R

=

1

2
√

3 πm3
P

̂VHI(
̂h
∗
)

3/2

|
̂V

HI,̂h
(
̂h
∗
)|

≃

λh2
∗

16
√

2π f0m2
P

≃

λ ̂N
∗

12
√

2πc
R

· (30)

Since the scalars listed in Table 2 are massive enough during nMHI, ∆
R

can be identified

with its central observational value – see Sec. 5 – with almost constant ̂N
∗
. The resulting

relation reveals that λ is to be proportional to c
R

. Indeed we find

λ ≃ 8.4 · 10−4
πc

R
/ ̂N

∗
⇒ c

R
≃ 20925λ for ̂N

∗
≃ 55. (31)

The (scalar) spectral index ns, its running as, and the scalar-to-tensor ratio r can be estimated
through the relations:

ns = 1 − 6ǫ̂
∗
+ 2η̂

∗
≃ 1 − 2/ ̂N

∗
, (32a)

αs =
2

3

(

4η̂
2
∗
− (ns − 1)2

)

− 2̂ξ
∗
≃ −2̂ξ

∗
≃ −2/ ̂N2

∗
(32b)

and

r = 16ǫ̂
∗
≃ 12/ ̂N2

∗
, (32c)

where ̂ξ = m4
P
̂VHI,h

̂V
HI,̂ĥĥh

/ ̂V2
HI = mP

√

2ǫ̂ η̂,h/J + 2η̂ǫ̂. The variables with subscript ∗ are

evaluated at h = h
∗

and Eqs. (25a) and (25b) have been employed.

4. Non-thermal leptogenesis

In this section, we specify how the SUSY inflationary scenario makes a transition to the
radiation dominated era (Sec. 4.1) and give an explanation of the origin of the observed BAU

(Sec. 4.2) consistently with the ˜G constraint and the low energy neutrino data (Sec. 4.3).
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4.1. The inflaton’s decay

When nMHI is over, the inflaton continues to roll down towards the SUSY vacuum, Eq. (9).
There is a brief stage of tachyonic preheating [40] which does not lead to significant particle
production [41]. Soon after, the inflaton settles into a phase of damped oscillations initially

around zero – where ̂VHI0 has a maximum – and then around one of the minima of ̂VHI0.
Whenever the inflaton passes through zero, particle production may occur creating mostly
superheavy bosons via the mechanism of instant preheating [42]. This process becomes more
efficient as λ decreases, and further numerical investigation is required in order to check the
viability of the non-thermal leptogenesis scenario for small values of λ. For this reason, we
restrict to λ’s larger than 0.001, which ensures a less frequent passage of the inflaton through
zero, weakening thereby the effects from instant preheating and other parametric resonance
effects – see Appendix B of Ref. [5]. Intuitively the reason is that larger λ’s require larger
c
R

’s, see Eq. (31), diminishing therefore hf given by Eq. (29), which sets the amplitude of the
very first oscillations.

Nonetheless the standard perturbative approach to the inflaton decay provides a very
efficient decay rate. Namely, at the SUSY vacuum νc

H and ν̄c
H acquire the v.e.vs shown in

Eq. (9) giving rise to the masses of the (canonically normalized) inflaton ̂δh = (h − 2MPS) /J0

and RH neutrinos, ν̂c
i , which are given, respectively, by

mI =
√

2
λMPS

�J� f0
and Miν̂c = 2

λiνc M2
PS

MS

√

f0

, (33)

where f0 is defined below Eq. (25b) and f̄0 = f0 + 24c2
R

m2
PS ≃ J2

0 . Here, we assume the
existence of a term similar to the second one inside ln of Eq. (7a) for νc

i too.

For larger λ’s �J� = J(h = 2MPS) ranges from 3 to 90 and so mI is kept independent of λ and

almost constant at the level of 1013 GeV. Indeed, if we express ̂δh as a function of δh through
the relation

̂δh

δh
≃ J0 where J0 =

√

1 +
3

2
m2

P f 2
,h (�h�) =

√

1 + 24c2
R

m2
PS (34)

we find

mI ≃

√

2λMPS

f0 J0
≃

λmP

2
√

3c
R

≃

10−4mP

4.2
√

3
≃ 3 · 1013 GeV for λ �

10−4

4.2
√

6mPS

≃ 1.3 · 10−3 (35)

where we make use of Eq. (31) – note that f0 ≃ 1. The derivation of the (s)particle spectrum,
listed in Table 2, at the SUSY vaccum of the model reveals [5] that perturbative decays of
̂δh into these massive particles are kinematically forbidden and therefore, narrow parametric

resonance [40] effects are absent. Also ̂δh can not decay via renormalizable interaction terms
to SM particles.

The inflaton can decay into a pair of ν̂c
i ’s through the following lagrangian terms:
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LIνc
i
= −λiνc

MPS

MS

f0

J0

(

1 − 12c
R

m2
PS

)

̂δhν̂
c
i ν̂

c
i + h.c. . (36)

From Eq. (36) we deduce that the decay of ̂δh into ν̂c
i is induced by two lagrangian terms.

The first one originates exclusively from the non-renormalizable term of Eq. (5) – as in the
case of a similar model in Ref. [30]. The second term is a higher order decay channel due to
the SUGRA lagrangian – cf. Ref. [43]. The interaction in Eq. (36) gives rise to the following
decay width

ΓIjν̂c =

c2
Ijν̂c

64π
mI

√

√

√

√1 −
4M2

jν̂c

m2
I

with cIjν̂c =

Mjν̂c

MPS

f 3/2
0

J0

(

1 − 12c
R

m2
PS

)

, (37)

where Mjν̂c is the Majorana mass of the ν̂c
j ’s into which the inflaton can decay. The

implementation – see Sec. 4.3 – of the seesaw mechanism for the derivation of the
light-neutrinos masses, in conjunction with the GPS prediction m3D ≃ mt and our assumption
that m1D < m2D ≪ m3D – see Sec. 5.1 – results to 2M3ν̂c > mI. Therefore, the kinematically

allowed decay channels of ̂δh are those into ν̂c
j with j = 1 and 2. Note that the decay of the

inflaton to the heaviest of the ν̂c
j ’s (ν̂c

3) is also disfavored by the ˜G constraint – see below.

In addition, there are SUGRA-induced [43] – i.e., even without direct superpotential
couplings – decay channels of the inflaton to the MSSM particles via non-renormalizable
interaction terms. For a typical trilinear superpotential term of the form Wy = yXYZ, we
obtain the effective interactions described by the langrangian part

LIy = 6yc
R

MPS

m2
P

f 3/2
0

2J0

̂δh
(

̂X ̂ψY ̂ψZ +
̂Y ̂ψX ̂ψZ +

̂Z ̂ψX ̂ψY

)

+ h.c. , (38)

where y is a Yukawa coupling constant and ψX , ψY and ψZ are the chiral fermions associated
with the superfields X, Y and Z. Their scalar components are denoted with the superfield
symbol. Taking into account the terms of Eq. (2) and the fact that the adopted SUSY GUT
predicts YU for the 3rd generation at MPS, we conclude that the interaction above gives rise
to the following 3-body decay width

ΓIy =

14c2
Iy

512π3
m3

I ≃

3y2
33

64π3
f 3
0

(

mI

mP

)2

mI where cIy = 6y33c
R

MPS

m2
P

f 3/2
0

J0
, (39)

with y33 ≃ (0.55 − 0.7) being the common Yukawa coupling constant of the third generation
computed at the mI scale, and summation is taken over color, weak and hypercharge degrees
of freedom, in conjunction with the assumption that mI < 2M3ν̂c .
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production [41]. Soon after, the inflaton settles into a phase of damped oscillations initially

around zero – where ̂VHI0 has a maximum – and then around one of the minima of ̂VHI0.
Whenever the inflaton passes through zero, particle production may occur creating mostly
superheavy bosons via the mechanism of instant preheating [42]. This process becomes more
efficient as λ decreases, and further numerical investigation is required in order to check the
viability of the non-thermal leptogenesis scenario for small values of λ. For this reason, we
restrict to λ’s larger than 0.001, which ensures a less frequent passage of the inflaton through
zero, weakening thereby the effects from instant preheating and other parametric resonance
effects – see Appendix B of Ref. [5]. Intuitively the reason is that larger λ’s require larger
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’s, see Eq. (31), diminishing therefore hf given by Eq. (29), which sets the amplitude of the
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Nonetheless the standard perturbative approach to the inflaton decay provides a very
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≃ 1.3 · 10−3 (35)

where we make use of Eq. (31) – note that f0 ≃ 1. The derivation of the (s)particle spectrum,
listed in Table 2, at the SUSY vaccum of the model reveals [5] that perturbative decays of
̂δh into these massive particles are kinematically forbidden and therefore, narrow parametric

resonance [40] effects are absent. Also ̂δh can not decay via renormalizable interaction terms
to SM particles.

The inflaton can decay into a pair of ν̂c
i ’s through the following lagrangian terms:
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From Eq. (36) we deduce that the decay of ̂δh into ν̂c
i is induced by two lagrangian terms.

The first one originates exclusively from the non-renormalizable term of Eq. (5) – as in the
case of a similar model in Ref. [30]. The second term is a higher order decay channel due to
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)

, (37)

where Mjν̂c is the Majorana mass of the ν̂c
j ’s into which the inflaton can decay. The

implementation – see Sec. 4.3 – of the seesaw mechanism for the derivation of the
light-neutrinos masses, in conjunction with the GPS prediction m3D ≃ mt and our assumption
that m1D < m2D ≪ m3D – see Sec. 5.1 – results to 2M3ν̂c > mI. Therefore, the kinematically

allowed decay channels of ̂δh are those into ν̂c
j with j = 1 and 2. Note that the decay of the

inflaton to the heaviest of the ν̂c
j ’s (ν̂c

3) is also disfavored by the ˜G constraint – see below.

In addition, there are SUGRA-induced [43] – i.e., even without direct superpotential
couplings – decay channels of the inflaton to the MSSM particles via non-renormalizable
interaction terms. For a typical trilinear superpotential term of the form Wy = yXYZ, we
obtain the effective interactions described by the langrangian part
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)

+ h.c. , (38)

where y is a Yukawa coupling constant and ψX , ψY and ψZ are the chiral fermions associated
with the superfields X, Y and Z. Their scalar components are denoted with the superfield
symbol. Taking into account the terms of Eq. (2) and the fact that the adopted SUSY GUT
predicts YU for the 3rd generation at MPS, we conclude that the interaction above gives rise
to the following 3-body decay width

ΓIy =
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with y33 ≃ (0.55 − 0.7) being the common Yukawa coupling constant of the third generation
computed at the mI scale, and summation is taken over color, weak and hypercharge degrees
of freedom, in conjunction with the assumption that mI < 2M3ν̂c .
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Since the decay width of the produced ν̂c
j is much larger than ΓI– see below – the reheating

temperature, Trh, is exclusively determined by the inflaton decay and is given by [44]

Trh =

(

72

5π2g
∗

)1/4
√

ΓImP with ΓI = ΓI1ν̂c + ΓI2ν̂c + ΓIy, (40)

where g
∗

counts the effective number of relativistic degrees of freedom at temperature Trh.
For the MSSM spectrum plus the particle content of the superfields P and P̄ we find g

∗
≃

228.75 + 4(1 + 7/8) = 236.25.

4.2. Lepton-number and gravitino abundances

If Trh ≪ Miν̂c , the out-of-equilibrium condition [2] for the implementation of nTL is
automatically satisfied. Subsequently ν̂c

i decay into Hu and L∗

i via the tree-level couplings
derived from the second term in the RHS of Eq. (2). Interference between tree-level and
one-loop diagrams generates a lepton-number asymmetry (per ν̂c

j decay) ε j [2], when CP

conservation is violated. The resulting lepton-number asymmetry after reheating can be
partially converted through sphaleron effects into baryon-number asymmetry. In particular,
the B yield can be computed as

(a) YB = −0.35YL with (b) YL = 2
5

4

Trh

mI

2

∑
j=1

ΓIjν̂c

ΓI
ε j· (41)

The numerical factor in the RHS of Eq. (41 ) comes from the sphaleron effects, whereas the
one (5/4) in the RHS of Eq. (41 ) is due to the slightly different calculation [44] of Trh –
cf. Ref. [1]. In the major part of our allowed parameter space – see Sec. 5.2 – ΓI ≃ ΓIy and so
the involved branching ratio of the produced ν̂c

i is given by

ΓI1ν̂c + ΓI2ν̂c

ΓI
≃

ΓI2ν̂c

ΓIy
=

π2
(

1 − 12c
R

m2
PS

)2

72c2
R

y2
33m4

PS

M2
2ν̂c

m2
I

· (42)

For M2ν̂c ≃

(

1011
− 1012

)

GeV the ratio above takes adequately large values so that YL is
sizable. Therefore, the presence of more than one inflaton decay channels does not invalidate
the scenario of nTL.

It is worth emphasizing, however, that if M1νc � 10Trh, part of the YL can be washed out
due to ν̂c

1 mediated inverse decays and ∆L = 1 scatterings – this possibility is analyzed in
Ref. [27]. Trying to avoid the relevant computational complications we limit ourselves to cases
with M1ν̂c � 10Trh, so as any washout of the non-thermally produced YL is evaded. On the
other hand, YL is not erased by the ∆L = 2 scattering processes [45] at all temperatures T with
100 GeV � T � Trh since YL is automatically protected by SUSY [46] for 107 GeV � T � Trh

and for T � 107 GeV these processes are well out of equilibrium provided that that mass of
the heaviest light neutrino is 10 eV. This constraint, however, is overshadowed by a more
stringent one induced by WMAP7 data [16] – see Sec. 5.1.
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The required for successful nTL Trh must be compatible with constraints on the ˜G abundance,
Y
˜G
, at the onset of nucleosynthesis (BBN). This is estimated to be [19]:

Y
˜G
≃ c

˜G
Trh with c

˜G
= 1.9 · 10−22/GeV, (43)

where we assume that ˜G is much heavier than the gauginos. Let us note that non-thermal
˜G production within SUGRA is [43] also possible. However, we here prefer to adopt the

conservative approach based on the estimation of Y
˜G

via Eq. (43) since the latter ˜G production
depends on the mechanism of SUSY breaking.

Both Eqs. (41) and (43) yield the correct values of the B and ˜G abundances provided that no
entropy production occurs for T < Trh. This fact can be easily achieved within our setting.

The mass spectrum of the P-P̄ system is comprised by axion and saxion P
−
= (P̄ − P)/

√

2,

axino ψ
−
= (ψP̄ −ψP)/

√

2, a higgs, P
+
= (P̄+ P)/

√

2, and a higgsino, ψ
+
= (ψP̄ +ψP)/

√

2,
with mass of order 1 TeV and ψ denoting a Weyl spinor. The higgs and higgsinos can decay
to lighter higgs and higgsinos before domination [36]. Regarding the saxion, P

−
, we can

assume that its decay mode to axions is suppressed (w.r.t the ones to gluons, higgses and
higgsinos [47, 48]) and the initial amplitude of its oscillations is equal to fa ≃ 1012 GeV.
Under these circumstances, it can [47] decay before domination too, and evades [48] the
constraints from the effective number of neutrinos for the fa’s and Trh’s encountered in our
model. As a consequence of its relatively large decay temperature, the LSPs produced by
the saxion decay are likely to be thermalized and therefore, no upper bound on the saxion
abundance is [48] to be imposed. Finally, axino can not play the role of LSP due to its
large expected mass and the relatively high Trh’s encountered in our set-up which result to
a large Cold Dark Matter (CDM) abundance. Nonetheless, it may enhance non-thermally the
abundance of a higgsino-like neutralino-LSP, rendering it a successful CDM candidate.

4.3. Lepton-number asymmetry and neutrino masses

As mentioned above, the decay of ν̂c
2 and ν̂c

1, emerging from the ̂δh decay, can generate a
lepton asymmetry, εi (with i = 1, 2) caused by the interference between the tree and one-loop
decay diagrams, provided that a CP-violation occurs in hNij’s. The produced εi can be
expressed in terms of the Dirac mass matrix of νi, mD, defined in a basis (called νc

i -basis
henceforth) where νc

i are mass eigenstates, as follows:

εi = ∑
i �=j

Im

[

(m†
DmD)

2
ij

]

8π�Hu�
2
(m†

DmD)ii

(

FS

(

xij, yi, yj

)

+ FV(xij)

)

, (44a)

where we take �Hu� ≃ 174 GeV, for large tan β and

xij :=
Mjν̂c

Miν̂c
and yi :=

Γiνc

Miν̂c
=

(m†
DmD)ii

8π�Hu�
2

(44b)

(with i, j = 1, 2, 3). Also FV and FS represent, respectively, the contributions from vertex and
self-energy diagrams which in SUSY theories read [49]
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Since the decay width of the produced ν̂c
j is much larger than ΓI– see below – the reheating
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where g
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counts the effective number of relativistic degrees of freedom at temperature Trh.
For the MSSM spectrum plus the particle content of the superfields P and P̄ we find g
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R

m2
PS
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R
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PS
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m2
I
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with M1ν̂c � 10Trh, so as any washout of the non-thermally produced YL is evaded. On the
other hand, YL is not erased by the ∆L = 2 scattering processes [45] at all temperatures T with
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and for T � 107 GeV these processes are well out of equilibrium provided that that mass of
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via Eq. (43) since the latter ˜G production
depends on the mechanism of SUSY breaking.

Both Eqs. (41) and (43) yield the correct values of the B and ˜G abundances provided that no
entropy production occurs for T < Trh. This fact can be easily achieved within our setting.

The mass spectrum of the P-P̄ system is comprised by axion and saxion P
−
= (P̄ − P)/

√

2,

axino ψ
−
= (ψP̄ −ψP)/

√

2, a higgs, P
+
= (P̄+ P)/

√

2, and a higgsino, ψ
+
= (ψP̄ +ψP)/

√

2,
with mass of order 1 TeV and ψ denoting a Weyl spinor. The higgs and higgsinos can decay
to lighter higgs and higgsinos before domination [36]. Regarding the saxion, P

−
, we can

assume that its decay mode to axions is suppressed (w.r.t the ones to gluons, higgses and
higgsinos [47, 48]) and the initial amplitude of its oscillations is equal to fa ≃ 1012 GeV.
Under these circumstances, it can [47] decay before domination too, and evades [48] the
constraints from the effective number of neutrinos for the fa’s and Trh’s encountered in our
model. As a consequence of its relatively large decay temperature, the LSPs produced by
the saxion decay are likely to be thermalized and therefore, no upper bound on the saxion
abundance is [48] to be imposed. Finally, axino can not play the role of LSP due to its
large expected mass and the relatively high Trh’s encountered in our set-up which result to
a large Cold Dark Matter (CDM) abundance. Nonetheless, it may enhance non-thermally the
abundance of a higgsino-like neutralino-LSP, rendering it a successful CDM candidate.

4.3. Lepton-number asymmetry and neutrino masses

As mentioned above, the decay of ν̂c
2 and ν̂c

1, emerging from the ̂δh decay, can generate a
lepton asymmetry, εi (with i = 1, 2) caused by the interference between the tree and one-loop
decay diagrams, provided that a CP-violation occurs in hNij’s. The produced εi can be
expressed in terms of the Dirac mass matrix of νi, mD, defined in a basis (called νc

i -basis
henceforth) where νc

i are mass eigenstates, as follows:

εi = ∑
i �=j

Im

[

(m†
DmD)

2
ij

]

8π�Hu�
2
(m†

DmD)ii

(

FS

(

xij, yi, yj

)

+ FV(xij)

)

, (44a)

where we take �Hu� ≃ 174 GeV, for large tan β and

xij :=
Mjν̂c

Miν̂c
and yi :=

Γiνc

Miν̂c
=

(m†
DmD)ii

8π�Hu�
2

(44b)

(with i, j = 1, 2, 3). Also FV and FS represent, respectively, the contributions from vertex and
self-energy diagrams which in SUSY theories read [49]
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FV (x) = −x ln
(

1 + x−2
)

and FS (x, y, z) =
−2x(x2

− 1)

(x2
− 1)

2
+ (x2z − y)

2
· (44c)

Note that for strongly hierarchical Mν̂c ’s with xij ≫ 1 and xij ≫ yi, yj, we obtain the
well-known approximate result [26, 27]

FV + FS ≃ −3/x2
ij. (45)

The involved in Eq. (44a) mD can be diagonalized if we define a basis – called weak basis
henceforth – in which the lepton Yukawa couplings and the SU(2)L interactions are diagonal
in the space of generations. In particular we have

U†mDUc†
= dD = diag (m1D, m2D, m3D) , (46)

where U and Uc are 3 × 3 unitary matrices which relate Li and νc
i (in the νc

i -basis) with the
ones L′

i and νc′
i in the weak basis as follows:

L′

= LU and ν
c′
= Uc

ν
c. (47)

Here, we write LH lepton superfields, i.e. SU(2)L doublet leptons, as row 3-vectors in family
space and RH anti-lepton superfields, i.e. SU(2)L singlet anti-leptons, as column 3-vectors.
Consequently, the combination m†

DmD appeared in Eq. (44a) turns out to be a function just
of dD and Uc. Namely,

m†
DmD = Uc†d†

DdDUc. (48)

The connection of the nTL scenario with the low energy neutrino data can be achieved
through the seesaw formula, which gives the light-neutrino mass matrix mν in terms of
miD and Miν̂c . Working in the νc

i -basis, we have

mν = −mD d−1
νc mD, where dνc = diag (M1ν̂c , M2ν̂c , M3ν̂c ) (49)

with M1ν̂c ≤ M2ν̂c ≤ M3ν̂c real and positive. Solving Eq. (46) w.r.t mD and inserting the
resulting expression in Eq. (49) we extract the mass matrix

m̄ν = U†mνU∗

= −dDUcd−1
νc Uc dD, (50)

which can be diagonalized by the unitary PMNS matrix satisfying

m̄ν = U∗

ν diag (m1ν, m2ν, m3ν) U†
ν (51)
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and parameterized as follows:

Uν =

























c12c13 s12c13 s13e−iδ

−c23s12 − s23c12s13eiδ c23c12 − s23s12s13eiδ s23c13

s23s12 − c23c12s13eiδ
−s23c12 − c23s12s13eiδ c23c13

























·

























e−iϕ1/2

e−iϕ2/2

1

























, (52)

with cij := cos θij, sij := sin θij, δ the CP-violating Dirac phase and ϕ1 and ϕ2 the two
CP-violating Majorana phases.

Following a bottom-up approach, along the lines of Ref. [26–28], we can find m̄ν via Eq. (51)
using as input parameters the low energy neutrino observables, the CP violating phases and
adopting the normal or inverted hierarchical scheme of neutrino masses. Taking also miD as
input parameters we can construct the complex symmetric matrix

W = −d−1
D m̄νd−1

D = Ucdνc Uc (53)

– see Eq. (50) – from which we can extract dνc as follows:

d−2
νc = Uc†WW†Uc. (54)

Note that WW† is a 3 × 3 complex, hermitian matrix and can be diagonalized following the
algorithm described in Ref. [50]. Having determined the elements of Uc and the Mi�νc ’s we
can compute mD through Eq. (48) and the εi’s through Eq. (44a).

5. Constraining the model parameters

We exhibit the constraints that we impose on our cosmological set-up in Sec. 5.1, and
delineate the allowed parameter space of our model in Sec. 5.2.

5.1. Imposed constraints

The parameters of our model can be restricted once we impose the following requirements:

According to the inflationary paradigm, the horizon and flatness problems of the standard
Big Bang cosmology can be successfully resolved provided that the number of e-foldings,
�N
∗
, that the scale k

∗
= 0.002/Mpc suffers during nMHI takes a certain value, which

depends on the details of the cosmological model. Employing standard methods [51], we

can easily derive the required �N
∗

for our model, consistently with the fact that the P − P̄
system remains subdominant during the post-inflationary era. Namely we obtain

�N
∗
≃ 22.5 + 2 ln

VHI(h∗)
1/4

1 GeV
−

4

3
ln

VHI(hf)
1/4

1 GeV
+

1

3
ln

Trh

1 GeV
+

1

2
ln

f (hf)

f (h
∗
)

· (55)
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According to the inflationary paradigm, the horizon and flatness problems of the standard
Big Bang cosmology can be successfully resolved provided that the number of e-foldings,
�N
∗
, that the scale k

∗
= 0.002/Mpc suffers during nMHI takes a certain value, which

depends on the details of the cosmological model. Employing standard methods [51], we

can easily derive the required �N
∗

for our model, consistently with the fact that the P − P̄
system remains subdominant during the post-inflationary era. Namely we obtain

�N
∗
≃ 22.5 + 2 ln

VHI(h∗)
1/4
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−

4

3
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1/4

1 GeV
+

1

3
ln
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The inflationary observables derived in Sec. 3.2 are to be consistent with the fitting [16]
of the WMAP7, BAO and H0 data. As usual, we adopt the central value of ∆

R
, whereas

we allow the remaining quantities to vary within the 95% confidence level (c.l.) ranges.
Namely,

∆
R

≃ 4.93 · 10−5, ns = 0.968 ± 0.024, − 0.062 ≤ as ≤ 0.018 and r < 0.24
(56)

The scale MPS can be determined by requiring that the v.e.vs of the Higgs fields take the
values dictated by the unification of the gauge couplings within the MSSM. As we now
recognize – cf. Ref. [5] – the unification scale MGUT ≃ 2 · 1016 GeV is to be identified with
the lowest mass scale of the model in the SUSY vacuum, Eq. (9), in order to avoid any
extra contribution to the running of the MSSM gauge couplings, i.e.,

(a)

gMPS
√

f0

= MGUT ⇒ mPS =

1

2
√

2cmax
R

− c
R

with (b) cmax
R

=

g2m2
P

8M2
GUT

(57)

The requirement 2cmax
R

− c
R

> 0 sets an upper bound c
R

< 2cmax
R

≃ 1.8 · 103, which
however can be significantly lowered if we combine Eqs. (55) and (28) – see Sec. 5.2.1.

For the realization of nMHI , we assume that c
R

takes relatively large values – see
e.g. Eq. (17). This assumption may [52, 53] jeopardize the validity of the classical
approximation, on which the analysis of the inflationary behavior is based. To avoid
this inconsistency – which is rather questionable [11, 54] though – we have to check
the hierarchy between the ultraviolet cut-off, Λ = mP/c

R
, of the effective theory and

the inflationary scale, which is represented by ̂VHI(h∗)
1/4 or, less restrictively, by the

corresponding Hubble parameter, ̂H
∗
=

̂VHI(h∗)
1/2/

√

3mP. In particular, the validity of
the effective theory implies [52, 53]

̂VHI(h∗)
1/4

≤ Λ or ̂H
∗
≤ Λ for c

R
≥ 1. (58)

As discussed in Sec. 4.2, to avoid any erasure of the produced YL and to ensure that the
inflaton decay to ν̂2 is kinematically allowed we have to bound M1ν̂c and M2ν̂c respectively
as follows:

(a) M1ν̂c � 10Trh and (b) mI ≥ 2M2ν̂c ⇒ M2ν̂c �
λmP

4
√

3c
R

≃ 1.5 · 1013 GeV, (59)

where we make use of Eq. (35). Recall that we impose also the restriction λ ≥ 0.001 which
allows us to ignore effects of instant preheating [5, 42].

As discussed below Eq. (2), the adopted GUT predicts YU at MGUT. Assuming negligible
running of m3D from MGUT until the scale of nTL, ΛL, which is taken to be ΛL = mI, we
end up with the requirement:

m3D(mI) = mt(mI) ≃ (100 − 120) GeV. (60)
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Parameter Best Fit ±1σ

Normal Inverted

Hierarchy

∆m2
21/10−3eV2 7.62 ± 0.19

∆m2
31/10−3eV2 2.53+0.08

−0.10 −2.4+0.10
−0.07

sin2
θ12 0.320+0.015

−0.017

sin2
θ13 0.026+0.003

−0.004 0.027+0.003
−0.004

sin2
θ23 0.49+0.08

−0.05 0.53+0.05
−0.07

δ/π 0.83+0.54
−0.64 0.07

Table 3. Low energy experimental neutrino data for normal or inverted hierarchical neutrino masses. In the second case the

full range (0 − 2π) is allowed at 1σ for the phase δ.

where mt is the top quark mass and the numerical values correspond to y33(mI) = (0.55−
0.7) – cf. Ref. [55] – found [32, 56] working in the context of several MSSM versions with
tan β ≃ 50 and taking into account the SUSY threshold corrections. As regards the lighter
generation, we limit ourselves in imposing just a mild hierarchy between m1D and m2D,
i.e., m1D < m2D ≪ m3D since it is not possible to achieve a simultaneous fulfilment of all
the residual constraints if we impose relations similar to Eq. (60) – cf. Ref. [25–27].

From the solar, atmospheric, accelerator and reactor neutrino experiments we take into
account the inputs listed in Table 3 on the neutrino mass-squared differences ∆m2

21

and ∆m2
31, on the mixing angles θij and on the CP-violating Dirac phase, δ for normal

[inverted] neutrino mass hierarchy [23] – see also Ref. [24]. In particular, miν’s can be
determined via the relations:

m2ν =

�

m2
1ν

+ ∆m2
21 and



















m3ν =

�

m2
1ν

+ ∆m2
31, for normally ordered (NO) mν’s

or

m1ν =

�

m2
3ν

+

�

�∆m2
31

�

�, for invertedly ordered (IO) mν’s

(61)

The sum of miν’s can be bounded from above by the WMAP7 data [16]

∑imiν ≤ 0.58 eV (62)

at 95% c.l. This is more restrictive than the 95% c.l. upper bound arising from the effective
electron neutrino mass in β-decay [57]:

mβ :=
�

�

�∑iU
2
1iνmiν

�

�

�
≤ 2.3 eV. (63)

However, in the future, the KATRIN experiment [58] expects to reach the sensitivity of
mβ ≃ 0.2 eV at 90% c.l.
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The interpretation of BAU through nTL dictates [16] at 95% c.l.

YB = (8.74 ± 0.42) · 10−11
⇒ 8.32 ≤ 1011YB ≤ 9.16. (64)

In order to avoid spoiling the success of the BBN, an upper bound on Y
�G

is to be imposed

depending on the �G mass, m
�G
, and the dominant �G decay mode. For the conservative

case where �G decays with a tiny hadronic branching ratio, we have [19]

Y
�G
�



















10−14

10−13

10−12

for m
�G
≃



















0.69 TeV

10.6 TeV

13.5 TeV.

(65)

As we see below, this bound is achievable within our model only for m
�G
� 10 TeV.

Taking into account that the soft masses of the scalars are not necessarily equal to m
�G
, we

do not consider such a restriction as a very severe tuning of the SUSY parameter space.
Using Eq. (43) the bounds on Y

�G
can be translated into bounds on Trh. Specifically we

take Trh ≃ (0.53 − 5.3) · 108 GeV [Trh ≃ (0.53 − 5.3) · 109 GeV] for Y
�G
≃ (0.1 − 1) · 10−13

[Y
�G
≃ (0.1 − 1) · 10−12].

Let us, finally, comment on the axion isocurvature perturbations generated in our model.
Indeed, since the PQ symmetry is broken during nMHI, the axion acquires quantum
fluctuations as all the almost massless degrees of freedom. At the QCD phase transition,
these fluctuations turn into isocurvature perturbations in the axion energy density, which
means that the partial curvature perturbation in axions is different than the one in photons.
The results of WMAP put stringent bounds on the possible CDM isocurvature perturbation.
Namely, taking into account the WMAP7, BAO and H0 data on the parameter α0 we find the
following bound for the amplitude of the CDM isocurvature perturbation

|Sc| = ∆
R

�

α0

1 − α0
� 1.5 · 10−5 at 95% c.l. (66)

On the other, |Sc| due to axion, can be estimated by

|Sc| =
Ωa

Ωc

�HHI

π|θI|�φP∗

with
Ωa

Ωc
≃ θ

2
I

�

fa

1.56 · 1011 GeV

�1.175

(67)

where Ωa [Ωc] is the axion [CDM] density parameter, �φP∗ ∼ 1016 GeV [36] denotes the field
value of the PQ scalar when the cosmological scales exit the horizon and θI is the initial
misalignment angle which lies [36] in the interval [−π/6, π/6]. Satisfying Eq. (66) requires
|θI| � π/70 which is a rather low but not unacceptable value. Therefore, a large axion
contribution to CDM is disfavored within our model.
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5.2. Numerical results

As can be seen from the relevant expressions in Secs. 2 and 4, our cosmological set-up
depends on the parameters:

λ, λH , λH̄ , kS, g, y33, mℓν, miD, ϕ1 and ϕ2,

where mℓν is the low scale mass of the lightest of νi’s and can be identified with m1ν [m3ν] for
NO [IO] neutrino mass spectrum. Recall that we determine MPS via Eq. (57) with g = 0.7. We
do not consider c

R
and λiνc as independent parameters since c

R
is related to m via Eq. (31)

while λiνc can be derived from the last six parameters above which affect exclusively the YL

calculation and can be constrained through the requirements 5 - 9 of Sec. 5.1. Note that the
λiνc ’s can be replaced by Miν̂c ’s given in Eq. (33 ) keeping in mind that perturbativity requires

λiνc ≤

√

4π or Miν̂c ≤ 1016 GeV. Note that if we replace MS with mP in Eq. (5), we obtain a
tighter bound, i.e., Miν̂c ≤ 2.3 · 1015 GeV. Our results are essentially independent of λH , λH̄
and kS, provided that we choose some relatively large values for these so as m2

û−, m2
̂d−

and

m2
̂S

in Table 2 are positive for λ < 1. We therefore set λH = λH̄ = 0.5 and kS = 1 throughout

our calculation. Finally Trh can be calculated self-consistently in our model as a function of
mI, M2ν̂c ≫ M1ν̂c and the unified Yukawa coupling constant y33 – see Sec. 4.1 – for which we
take y33 = 0.6.

Summarizing, we set throughout our calculation:

kS = 1, λH = λH̄ = 0.5, g = 0.7 and y33 = 0.6. (68)

The selected values for the above quantities give us a wide and natural allowed region for the
remaining fundamental parameters of our model, as we show below concentrating separately
in the inflationary period (Sec. 5.2.1) and in the stage of nTL (Sec. 5.2.2).

5.2.1. The Inflationary Stage

In this part of our numerical code, we use as input parameters h
∗
, m2D ≫ m1D and c

R
. For

every chosen c
R

≥ 1 and m2D, we restrict λ and h
∗

so that the conditions Eq. (55) and (56 )
are satisfied. In our numerical calculations, we use the complete formulas for the slow-roll
parameters and ∆

R
in Eqs. (25a), (25b) and (30) and not the approximate relations listed in

Sec. 3.2 for the sake of presentation. Our results are displayed in Fig. 1, where we draw the
allowed values of c

R
(solid line), Trh (dashed line), the inflaton mass, mI (dot-dashed line)

and M2ν̂c (dotted line) – see Sec. 4.1 – [hf (solid line) and h
∗

(dashed line)] versus λ (a) [(b)]
for the m2D’s required from Eq. (64) and for the parameters adopted along the black dashed

line of Fig. 2 – see Sec. 5.2.2. The required via Eq. (55) ̂N
∗

remains almost constant and close
to 54.5.

The lower bound of the depicted lines comes from the saturation of the Eq. (58 ). The
constraint of Eq. (58 ) is satisfied along the various curves whereas Eq. (58 ) is valid only
along the gray and light gray segments of these. Along the light gray segments, though, we
obtain h

∗
≥ mP. The latter regions of parameter space are not necessarily excluded, since

the energy density of the inflaton remains sub-Planckian and so, corrections from quantum
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value of the PQ scalar when the cosmological scales exit the horizon and θI is the initial
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contribution to CDM is disfavored within our model.

Open Questions in Cosmology260

Leptogenesis and Neutrino Masses in an Inflationary SUSY Pati-Salam Model 21

5.2. Numerical results

As can be seen from the relevant expressions in Secs. 2 and 4, our cosmological set-up
depends on the parameters:

λ, λH , λH̄ , kS, g, y33, mℓν, miD, ϕ1 and ϕ2,

where mℓν is the low scale mass of the lightest of νi’s and can be identified with m1ν [m3ν] for
NO [IO] neutrino mass spectrum. Recall that we determine MPS via Eq. (57) with g = 0.7. We
do not consider c

R
and λiνc as independent parameters since c

R
is related to m via Eq. (31)

while λiνc can be derived from the last six parameters above which affect exclusively the YL

calculation and can be constrained through the requirements 5 - 9 of Sec. 5.1. Note that the
λiνc ’s can be replaced by Miν̂c ’s given in Eq. (33 ) keeping in mind that perturbativity requires

λiνc ≤

√

4π or Miν̂c ≤ 1016 GeV. Note that if we replace MS with mP in Eq. (5), we obtain a
tighter bound, i.e., Miν̂c ≤ 2.3 · 1015 GeV. Our results are essentially independent of λH , λH̄
and kS, provided that we choose some relatively large values for these so as m2
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constraint of Eq. (58 ) is satisfied along the various curves whereas Eq. (58 ) is valid only
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obtain h
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Figure 1. The allowed (by all the imposed constraints) values of c

R
(solid line), Trh – given by Eq. (40) – (dashed line), mI

(dot-dashed line) and M2ν̂c (dotted line) [hf (solid line) and h
∗
(dashed line)] versus λ (a) [(b)] for kS = 1, λH = λH̄ = 0.5 and

y33 = 0.6. The light gray and gray segments denote values of the various quantities satisfying Eq. (58 ) too, whereas along the
light gray segments we obtain h

∗
≥ mP.

gravity can still be assumed to be small. As c
R

increases beyond 906, f0 becomes much larger

than 1, ̂N
∗

derived by Eq. (28) starts decreasing and therefore, nMHI fails to fulfil Eq. (55).

This can be understood by the observation that ̂N
∗
, approximated fairly by Eq. (29), becomes

monotonically decreasing function of c
R

for c
R

> cmax
R

where cmax
R

can be found by the
condition

d ̂N
∗

dc
R

≃

3h2
∗

4m2
P

(

cmax
R

− c
R

)

cmax
R

= 0 ⇒ c
R

≃ cmax
R

, (69)

where cmax
R

is defined in Eq. (57 ) and Eq. (57 ) is also taken into account. As a consequence,
the embedding of nMHI in a SUSY GUT provides us with a clear upper bound of c

R
. All in

all, we obtain

0.001 � λ � 0.0412 and 1 � c
R
� 907 for 53.9 � ̂N

∗
� 54.7 (70)

When c
R

ranges within its allowed region, we take MPS ≃ (2.87 − 4) · 1016 GeV.

From Fig. 1- , we can verify our analytical estimation in Eq. (31) according to which λ is
proportional to c

R
. On the other hand, the variation of hf and h

∗
as a function of c

R
– drawn

in Fig. 1- – is consistent with Eqs. (27) and (29). Letting λ or c
R

vary within its allowed
region in Eq. (70), we obtain

ns ≃ 0.964, −6.5 �
αs

10−4
� −6.2 and 4.2 �

r

10−3
� 3.5. (71)

Clearly, the predicted αs and r lie within the allowed ranges given in Eq. (56 ) and Eq. (56 )
respectively, whereas ns turns out to be impressively close to its central observationally
favored value – see Eq. (56 ) and cf. Ref. [12].

From Fig. 1- we can conclude that mI is kept independent of λ and almost constant at
the level of 1013 GeV, as anticipated in Eq. (35). From the same plot we also remark that
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Parameters Cases

A B C D E F G

Normal Degenerate Inverted

Hierarchy Masses Hierarchy

Low Scale Parameters

m1ν/0.1 eV 0.01 0.1 0.5 1. 0.7 0.5 0.49

m2ν/0.1 eV 0.088 0.13 0.5 1. 0.7 0.51 0.5

m3ν/0.1 eV 0.5 0.5 0.71 1.1 0.5 0.1 0.05

∑i miν/0.1 eV 0.6 0.74 1.7 3.1 1.9 1.1 1

mβ/0.1 eV 0.03 0.013 0.14 0.68 0.45 0.33 0.4

ϕ1 π/2 π/2 π/2 −π/2 −π/2 −π/2 −π/4

ϕ2 0 −π/2 −π/2 π π π 0

Leptogenesis-Scale Parameters

m1D/GeV 0.4 0.3 0.8 1 0.9 0.9 0.9

m2D/GeV 9.2 3 6.5 8.6 3.95 6.6 9.2

m3D/GeV 120 100 100 120 120 110 110

M1ν̂c /1010 GeV 4.4 4.7 3.6 1.2 1.5 1.6 1.7

M2ν̂c /1012 GeV 2.7 0.6 0.65 1.5 0.9 1.5 2.8

M3ν̂c /1014 GeV 27 0.28 0.46 0.4 0.4 3.8 10

Resulting B-Yield

1011Y0
B 8.75 8.9 8.6 8.63 8.9 9. 8.76

1011YB 9.3 8.7 8.5 8.4 9.7 8.8 9.2

Resulting Trh and Y
˜G

Trh/109 GeV 1.2 0.89 0.89 0.99 0.91 0.99 1.2

1013Y
˜G

2.4 1.7 1.7 1.9 1.7 1.88 1.88

Table 4. Parameters yielding the correct BAU for various neutrino mass schemes for λ = 0.01 and c
R
= 220.

for λ � 0.03, Trh remains almost constant since ΓIy dominates over ΓI2ν̂c and f 3
0 ≃ 1 – see

Eq. (39). For λ � 0.03, f 3
0 ≃ 1 + 12c

R
m2

PS starts to deviate from unity and so, Trh increases
with c

R
or λ as shown in Fig. 1. The required by Eq. (64) M2ν̂c follows the behavior of the

required m2D – see Fig. 2- of Sec. 5.2.2.

5.2.2. The Stage of non-Thermal Leptogenesis

In this part of our numerical program, for a given neutrino mass scheme, we take as input
parameters: mℓν, miD, ϕ1, ϕ2 and the best-fit values of the neutrino parameters listed in
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Table 3. We then find the renormalization group (RG) evolved values of these parameters
at the scale of nTL, ΛL, which is taken to be ΛL = mI, integrating numerically the complete
expressions of the RG equations – given in Ref. [29] – for miν, θij, δ, ϕ1 and ϕ2. In doing this,
we consider the MSSM with tan β ≃ 50, favored by the preliminary LHC results – see, e.g.,
Ref. [32, 56] – as an effective theory between ΛL and a SUSY-breaking scale, MSUSY = 1.5 TeV.
Following the procedure described in Sec. 4.3, we evaluate Mi�νc at ΛL. We do not consider
the running of miD and Mi�νc and therefore, we give their values at ΛL.

We start the exposition of our results arranging in Table 4 some representative values of the
parameters leading to the correct BAU for λ = 0.01 and c

R
= 220 and normally hierarchical

(cases A and B), degenerate (cases C, D and E) and invertedly hierarchical (cases F and G)
mν’s. For comparison we display the B-yield with (YB) or without (Y0

B) taking into account
the RG effects. We observe that the two results are more or less close with each other. In
all cases the current limit of Eq. (62) is safely met – the case D approaches it –, while mβ

turns out to be well below the projected sensitivity of KATRIN [58]. Shown are also the
obtained Trh’s, which are close to 109 GeV in all cases, and the corresponding Y

�G
’s, which

are consistent with Eq. (65) for m
�G
� 11 TeV.

From Table 4 we also remark that the achievement of YB within the range of Eq. (64) dictates
a clear hierarchy between the Mi�νc ’s, which follows the imposed hierarchy in the sector of
miD’s – see paragraph 6 of Sec. 5.1. This is expected since, in the limit of hierarchical miD’s,
the Mi�νc ’s can be approximated by the following expressions [25, 26]

(M1�νc , M2�νc , M3�νc ) ∼
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Indeed, we see e.g. that for fixed j, the Mj�νc ’s depends exclusively on the mjD’s and M3�νc

increases when mℓν decreases with fixed m3D. As a consequence, satisfying Eq. (59 ) pushes
the m1D’s well above the mass of the quark of the first generation. Similarly, the m2D’s
required by Eq. (64) turns out to be heavier than the quark of the second generation. Also,
the required by seesaw M3�νc ’s are lower in the case of degenerate νi spectra and can be as
low as 3 · 1013 GeV in sharp contrast to our findings in Ref. [5], where much larger M3�νc ’s
are necessitated. An order of magnitude estimation for the derived εL’s can be achieved by
[25, 26]

ε2 ∼ −
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(72b)

which is rather accurate, especially in the case of IO mν’s.

To highlight further our conclusions inferred from Table 4, we can fix mℓν (m1ν for NO miν’s
or m3ν for IO miν’s) m1D, m3D, ϕ1 and ϕ2 to their values shown in this table and vary m2D

so that the central value of Eq. (64) is achieved. This is doable since, according Eq. (72a),
variation of m2D induces an exclusive variation to M2�νc which, in turn, heavily influences
εL – see Eqs. (44a) and (45) – and YL – see Eqs. (41) and (42). The resulting contours in the
λ − m2D plane are presented in Fig. 2 – since the range of Eq. (64) is very narrow the possible
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Figure 2. Contours on the λ − m2D plane, yielding the central YB in Eq. (64), consistently with the inflationary requirements,

for λH = λH̄ = 0.5, kS = 1 and y33 = 0.6 and various (mℓν , m1D, ϕ1, ϕ2)’s indicated next to the graph (c) and NO [IO] miν’s

(black [gray] lines). The corresponding ranges of Miν̂c ’s are also shown in the table included.

variation of the drawn lines is negligible. The resulting Mjν̂c ’s are displayed in the table
included. The conventions adopted for the types and the color of the various lines are also
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Table 3. We then find the renormalization group (RG) evolved values of these parameters
at the scale of nTL, ΛL, which is taken to be ΛL = mI, integrating numerically the complete
expressions of the RG equations – given in Ref. [29] – for miν, θij, δ, ϕ1 and ϕ2. In doing this,
we consider the MSSM with tan β ≃ 50, favored by the preliminary LHC results – see, e.g.,
Ref. [32, 56] – as an effective theory between ΛL and a SUSY-breaking scale, MSUSY = 1.5 TeV.
Following the procedure described in Sec. 4.3, we evaluate Mi�νc at ΛL. We do not consider
the running of miD and Mi�νc and therefore, we give their values at ΛL.

We start the exposition of our results arranging in Table 4 some representative values of the
parameters leading to the correct BAU for λ = 0.01 and c

R
= 220 and normally hierarchical

(cases A and B), degenerate (cases C, D and E) and invertedly hierarchical (cases F and G)
mν’s. For comparison we display the B-yield with (YB) or without (Y0

B) taking into account
the RG effects. We observe that the two results are more or less close with each other. In
all cases the current limit of Eq. (62) is safely met – the case D approaches it –, while mβ

turns out to be well below the projected sensitivity of KATRIN [58]. Shown are also the
obtained Trh’s, which are close to 109 GeV in all cases, and the corresponding Y

�G
’s, which

are consistent with Eq. (65) for m
�G
� 11 TeV.

From Table 4 we also remark that the achievement of YB within the range of Eq. (64) dictates
a clear hierarchy between the Mi�νc ’s, which follows the imposed hierarchy in the sector of
miD’s – see paragraph 6 of Sec. 5.1. This is expected since, in the limit of hierarchical miD’s,
the Mi�νc ’s can be approximated by the following expressions [25, 26]
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Indeed, we see e.g. that for fixed j, the Mj�νc ’s depends exclusively on the mjD’s and M3�νc

increases when mℓν decreases with fixed m3D. As a consequence, satisfying Eq. (59 ) pushes
the m1D’s well above the mass of the quark of the first generation. Similarly, the m2D’s
required by Eq. (64) turns out to be heavier than the quark of the second generation. Also,
the required by seesaw M3�νc ’s are lower in the case of degenerate νi spectra and can be as
low as 3 · 1013 GeV in sharp contrast to our findings in Ref. [5], where much larger M3�νc ’s
are necessitated. An order of magnitude estimation for the derived εL’s can be achieved by
[25, 26]
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which is rather accurate, especially in the case of IO mν’s.

To highlight further our conclusions inferred from Table 4, we can fix mℓν (m1ν for NO miν’s
or m3ν for IO miν’s) m1D, m3D, ϕ1 and ϕ2 to their values shown in this table and vary m2D

so that the central value of Eq. (64) is achieved. This is doable since, according Eq. (72a),
variation of m2D induces an exclusive variation to M2�νc which, in turn, heavily influences
εL – see Eqs. (44a) and (45) – and YL – see Eqs. (41) and (42). The resulting contours in the
λ − m2D plane are presented in Fig. 2 – since the range of Eq. (64) is very narrow the possible
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described next to the graph (c) of Fig. 2. In particular, we use black [gray] lines for NO [IO]
miν’s. The black dashed and the solid gray line terminate at the values of m2D beyond which
Eq. (64) is non fulfilled due to the violation of Eq. (59 ).

In all cases, two disconnected allowed domains arise according to which of the two
contributions in Eq. (36) dominates. The critical point (λc, c

Rc) is extracted from:

1 − 12c
Rcm2

PS = 0 ⇒ c
Rc = cmax

R

/2 ≃ 453 or λc ≃ 10−4cmax
R

/4.2 ≃ 0.021 (73)

where we make use of Eq. (57) and Eq. (31) in the intermediate and the last step respectively.
From Eqs. (40), (41) and (42) one can deduce that for λ < λc, Trh remains almost constant;
ΓI2ν̂c /ΓI decreases as c

R
increases and so the M2ν̂c ’s, which satisfy Eq. (64), increase. On

the contrary, for λ > λc, ΓI2ν̂c /ΓI is independent of c
R

but Trh increases with c
R

and so the
fulfilling Eq. (64) M2ν̂c ’s decrease.

Summarizing, we conclude that our scenario prefers the following ranges for the Miν̂c ’s:

1 � M1ν̂c /1010 GeV � 6, 0.6 � M2ν̂c /1012 GeV � 20, 0.3 � M3ν̂c /1014GeV � 30, (74a)

while the m1D and m2D are restricted in the ranges:

0.3 � m1D/GeV � 1, 1.5 � m2D/GeV � 20. (74b)

6. Conclusions

We investigated the implementation of nTL within a realistic GUT, based on the PS gauge
group. Leptogenesis follows a stage of nMHI driven by the radial component of the Higgs
field, which leads to the spontaneous breaking of the PS gauge group to the SM one with
the GUT breaking v.e.v identified with the SUSY GUT scale and without overproduction of
monopoles. The model possesses also a resolution to the strong CP and the µ problems of the
MSSM via a PQ symmetry which is broken during nMHI and afterwards. As a consequence
the axion cannot be the dominant component of CDM, due to the present bounds on the
axion isocurvature fluctuation. Moreover, we briefly discussed scenaria in which the potential
axino and saxion overproduction problems can be avoided.

Inflation is followed by a reheating phase, during which the inflaton can decay into the
lightest, ν̂c

1, and the next-to-lightest, ν̂c
2, RH neutrinos allowing, thereby for nTL to occur

via the subsequent decay of ν̂c
1 and ν̂c

2. Although other decay channels to the SM particles
via non-renormalizable interactions are also activated, we showed that the production of the
required by the observations BAU can be reconciled with the observational constraints on

the inflationary observables and the ˜G abundance, provided that the (unstable) ˜G masses are
greater than 11 TeV. The required by the observations BAU can become consistent with the
present low energy neutrino data, the restriction on m3D due to the PS gauge group and the
imposed mild hierarchy between m1D and m2D. To this end, m1D and m2D turn out to be
heavier than the ones of the corresponding quarks and lie in the ranges (0.1 − 1) GeV and
(2 − 20) GeV while the obtained M1ν̂c , M2ν̂c and M3ν̂c are restricted to the values 1010 GeV,
(

1011
− 1012

)

GeV and
(

1013
− 1015

)

GeV respectively.
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miν’s. The black dashed and the solid gray line terminate at the values of m2D beyond which
Eq. (64) is non fulfilled due to the violation of Eq. (59 ).

In all cases, two disconnected allowed domains arise according to which of the two
contributions in Eq. (36) dominates. The critical point (λc, c

Rc) is extracted from:
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/4.2 ≃ 0.021 (73)

where we make use of Eq. (57) and Eq. (31) in the intermediate and the last step respectively.
From Eqs. (40), (41) and (42) one can deduce that for λ < λc, Trh remains almost constant;
ΓI2ν̂c /ΓI decreases as c
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the contrary, for λ > λc, ΓI2ν̂c /ΓI is independent of c
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but Trh increases with c
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fulfilling Eq. (64) M2ν̂c ’s decrease.
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the GUT breaking v.e.v identified with the SUSY GUT scale and without overproduction of
monopoles. The model possesses also a resolution to the strong CP and the µ problems of the
MSSM via a PQ symmetry which is broken during nMHI and afterwards. As a consequence
the axion cannot be the dominant component of CDM, due to the present bounds on the
axion isocurvature fluctuation. Moreover, we briefly discussed scenaria in which the potential
axino and saxion overproduction problems can be avoided.

Inflation is followed by a reheating phase, during which the inflaton can decay into the
lightest, ν̂c

1, and the next-to-lightest, ν̂c
2, RH neutrinos allowing, thereby for nTL to occur

via the subsequent decay of ν̂c
1 and ν̂c

2. Although other decay channels to the SM particles
via non-renormalizable interactions are also activated, we showed that the production of the
required by the observations BAU can be reconciled with the observational constraints on

the inflationary observables and the ˜G abundance, provided that the (unstable) ˜G masses are
greater than 11 TeV. The required by the observations BAU can become consistent with the
present low energy neutrino data, the restriction on m3D due to the PS gauge group and the
imposed mild hierarchy between m1D and m2D. To this end, m1D and m2D turn out to be
heavier than the ones of the corresponding quarks and lie in the ranges (0.1 − 1) GeV and
(2 − 20) GeV while the obtained M1ν̂c , M2ν̂c and M3ν̂c are restricted to the values 1010 GeV,
(
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GeV and
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[27] Şenoğuz V.N. Phys. Rev. D , 76:013005, 2007 [arXiv:0704.3048].

[28] Pallis C. and Shafi Q. Phys. Rev. D , 86:023523, 2012 [arXiv:1204.0252].

[29] Antusch S. Kersten J. Lindner M. and Ratz M. Nucl. Phys. B, 674:401, 2003 [hep-ph/
0305273].

[30] Jeannerot R. Khalil S. Lazarides G. and Shafi Q. J. High Energy Phys., 10:012, 2000 [hep-
ph/0002151].

[31] King F.S. and Oliveira M. Phys. Rev. D , 63:015010, 2001 [hep-ph/0008183].

[32] Gogoladze I. Khalid R. Raza S. and Shafi Q. J. High Energy Phys., 12:055, 2010 [arXiv:
1008.2765].

[33] King F.S. and Oliveira M. Phys. Rev. D , 63:095004, 2001 [hep-ph/0009287].

[34] Gómez E.M. Lazarides G. and Pallis C. Nucl. Phys. B, 638:165, 2002 [hep-ph/0203131].

[35] Lazarides G. and Shafi Q. Phys. Rev. D , 58:071702.

[36] Dimopoulos K. et al. J. High Energy Phys., 05:057, 2003.

[37] Pallis C. and Toumbas N. J. Cosmol. Astropart. Phys., 02:019, 2011 [arXiv:1101.0325].

[38] Lyth H.D. and Riotto A. Phys. Rept., 314:1, 1999 [hep-ph/9807278].

[39] Lazarides G. J. Phys. Conf. Ser., 53:528, 2006 [hep-ph/0607032].

[40] Kofman L. Linde A.D. and Starobinsky A.D. Phys. Rev. Lett., 73:3195, 1994 [hep-th/
9405187].

Open Questions in Cosmology268

Leptogenesis and Neutrino Masses in an Inflationary SUSY Pati-Salam Model 29

[41] Garcia-Bellido J. Figueroa G.D. and Rubio J. Phys. Rev. D , 79:063531, 2009
[arXiv:0812. 4624].

[42] Felder N. Kofman L. and Linde A.D. Phys. Rev. D , 59:123523, 1999 [hep-ph/9812289].

[43] Endo M. Kawasaki M. Takahashi F. and Yanagida T.T. Phys. Lett. B , 642:518, 2006
[hep-ph/0607170].

[44] Pallis C. Nucl. Phys. B, 751:129, 2006 [hep-ph/0510234].

[45] Fukugita M. and Yanagida T. Phys. Rev. D , 42:1285, 1990.

[46] Ibáñez E.L. and Quevedo F. Phys. Lett. B , 283:261, 1992.

[47] Baer H. Kraml S. Lessa A. and Sekmen S. J. Cosmol. Astropart. Phys., 04:039, 2011.

[48] Kawasaki M. Nakayama K. and Senami M. J. Cosmol. Astropart. Phys., 03:009, 2008.

[49] Covi L. Roulet E. and Vissani F. Phys. Lett. B , 384:169, 1996 [hep-ph/9605319].

[50] Kopp J. Int. J. Mod. Phys. C, 19:523, 2008 [physics/0610206].

[51] Pallis C. Phys. Lett. B , 692:287, 2010.

[52] Burgess P.C. Lee M.H. and Trott M. J. High Energy Phys., 09:103, 2009 [arXiv:0902.
4465].

[53] Barbon F.L.J. and Espinosa R.J. Phys. Rev. D , 79:081302, 2009 [arXiv:0903.0355].

[54] Bezrukov F. et al. J. High Energy Phys., 016:01, 2011 [arXiv:1008.5157].

[55] Antusch S. and Spinrath M. Phys. Rev. D , 78:075020, 2008 [arXiv:0804.0717].

[56] Karagiannakis N. Lazarides G. and Pallis C. Phys. Lett. B , 638:165, 2011 [arXiv:1107.
0667].

[57] Klapdor-Kleingrothaus V. H. et al. Eur. Phys. J. A, 12:147, 2001.

[58] Osipowicz A. et al. [KATRIN Collaboration] hep-ex/0109033.

Leptogenesis and Neutrino Masses in an Inflationary SUSY Pati-Salam Model
http://dx.doi.org/10.5772/51888

269



Chapter 11

Light Cold Dark Matter in a Two-Singlet Model

Abdessamad Abada and Salah Nasri

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/52243

Provisional chapter

Light Cold Dark Matter in a Two-Singlet Model

Abdessamad Abada and Salah Nasri

Additional information is available at the end of the chapter

1. Introduction

Understanding the nature of dark matter (DM) as well as the origin of baryon asymmetry are
two of the most important questions in both Cosmology and Particle Physics. The failure of
the Standard Model (SM) of the electroweak and strong interactions in accommodating such
questions motivates the search for an explanation in the realm of new physics beyond it. The
most attractive strategy so far has been to look into extensions of the SM that incorporate
electrically neutral and colorless weakly interacting massive particles (WIMPs), with masses
from one to a few hundred GeV, coupling constants in the milli-weak scale and lifetimes
longer than the age of the Universe.

The most popular extension of the SM is the minimal supersymmetric standard model
(MSSM) in which the neutral lightest supersymmetric particle (LSP) is seen as a candidate for
dark matter. Indeed, neutralinos are odd under R -parity and are only produced or destroyed
in pairs, thus making the LSP stable [1]. They can annihilate through a t-channel sfermion
exchange into Standard Model fermions, or via a t-channel chargino-mediated process into
W

+
W

−, or through an s-channel pseudoscalar Higgs exchange into fermion pairs. They can
also undergo elastic scattering with nuclei through mainly a scalar Higgs exchange [2].

However, most particularly in light of the recent signal reported by CoGeNT [3], which favors
a light dark matter (LDM) with a mass in the range 7 − 9GeV and nucleon scattering cross
section σdet ∼ 10−4 pb, having a neutralino as a LDM candidate can be challenging. Indeed,
systematic studies show that an LSP with a mass around 10GeV and an elastic scattering
cross-section off a nucleus larger than ∼ 10−5 pb requires a very large tan β and a relatively
light CP-odd Higgs [4]. This choice of parameters leads to a sizable contribution to the
branching ratios of some rare decays, which then disfavors the scenario of light neutralinos
[5]. Also, in the next-to-minimal supersymmetric standard model (NMSSM) with 12 input
parameters [6], realizing a LDM with an elastic scattering cross section capable of generating
the CoGeNT signal is possible only in a finely-tuned region of the parameters where the
neutralino is mostly singlino and the light CP-even Higgs is singlet-like with a mass below a
few GeV. In such a situation, it is very difficult to detect such a light Higgs at the collider. It
is clear then that other alternative scenarios for LDM are needed [7].

©2012 Abada and Nasri, licensee InTech. This is an open access chapter distributed under the terms of the
Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted
use, distribution, and reproduction in any medium, provided the original work is properly cited.© 2012 Abada and Nasri; licensee InTech. This is an open access article distributed under the terms of the
Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

© 2012 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons 
Attribution License http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, 
and reproduction in any medium, provided the original work is properly cited.



Chapter 11

Light Cold Dark Matter in a Two-Singlet Model

Abdessamad Abada and Salah Nasri

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/52243

Provisional chapter

Light Cold Dark Matter in a Two-Singlet Model

Abdessamad Abada and Salah Nasri

Additional information is available at the end of the chapter

1. Introduction

Understanding the nature of dark matter (DM) as well as the origin of baryon asymmetry are
two of the most important questions in both Cosmology and Particle Physics. The failure of
the Standard Model (SM) of the electroweak and strong interactions in accommodating such
questions motivates the search for an explanation in the realm of new physics beyond it. The
most attractive strategy so far has been to look into extensions of the SM that incorporate
electrically neutral and colorless weakly interacting massive particles (WIMPs), with masses
from one to a few hundred GeV, coupling constants in the milli-weak scale and lifetimes
longer than the age of the Universe.

The most popular extension of the SM is the minimal supersymmetric standard model
(MSSM) in which the neutral lightest supersymmetric particle (LSP) is seen as a candidate for
dark matter. Indeed, neutralinos are odd under R -parity and are only produced or destroyed
in pairs, thus making the LSP stable [1]. They can annihilate through a t-channel sfermion
exchange into Standard Model fermions, or via a t-channel chargino-mediated process into
W

+
W

−, or through an s-channel pseudoscalar Higgs exchange into fermion pairs. They can
also undergo elastic scattering with nuclei through mainly a scalar Higgs exchange [2].

However, most particularly in light of the recent signal reported by CoGeNT [3], which favors
a light dark matter (LDM) with a mass in the range 7 − 9GeV and nucleon scattering cross
section σdet ∼ 10−4 pb, having a neutralino as a LDM candidate can be challenging. Indeed,
systematic studies show that an LSP with a mass around 10GeV and an elastic scattering
cross-section off a nucleus larger than ∼ 10−5 pb requires a very large tan β and a relatively
light CP-odd Higgs [4]. This choice of parameters leads to a sizable contribution to the
branching ratios of some rare decays, which then disfavors the scenario of light neutralinos
[5]. Also, in the next-to-minimal supersymmetric standard model (NMSSM) with 12 input
parameters [6], realizing a LDM with an elastic scattering cross section capable of generating
the CoGeNT signal is possible only in a finely-tuned region of the parameters where the
neutralino is mostly singlino and the light CP-even Higgs is singlet-like with a mass below a
few GeV. In such a situation, it is very difficult to detect such a light Higgs at the collider. It
is clear then that other alternative scenarios for LDM are needed [7].

©2012 Abada and Nasri, licensee InTech. This is an open access chapter distributed under the terms of the
Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted
use, distribution, and reproduction in any medium, provided the original work is properly cited.© 2012 Abada and Nasri; licensee InTech. This is an open access article distributed under the terms of the
Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

© 2012 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons 
Attribution License http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, 
and reproduction in any medium, provided the original work is properly cited.



2 Open Questions in Cosmology

The simplest of scenarios is then to extend the Standard Model by a real Z2 symmetric scalar
field, the dark matter, which has to be a SM gauge singlet that interacts with visible particles
via the Higgs field only. Such an extension was first proposed in [8] and further studied
in [9] where the Z2 symmetry is extended to a global U(1) symmetry, more extensively in
[10]. Specific implications on Higgs detection and LHC physics were discussed in [11] and
one-loop vacuum stability and perturbativity bounds discussed in [12]. However, the work
of [13] uses constraints from the experiments XENON10 [14] and CDMSII [15] to exclude
DM masses smaller than 50, 70 and 75GeV for Higgs masses equal to 120, 200 and 350 GeV
respectively. Also, the Fermi-LAT data on the isotropic diffuse gamma-ray emission can
potentially exclude this one-singlet dark-matter model for masses as low as 6GeV, assuming
a NFW profile for the dark-matter distribution [16].

Therefore, a two-singlet extension of the Standard Model was proposed in [17] as a simple
model for light cold dark matter. Both scalar fields are Z2 symmetric with one undergoing
spontaneous symmetry breaking. The behavior of the model under the DM relic-density
constraint and the restrictions from experimental direct detection was studied. It was
concluded that the model was capable of bearing a light dark-matter WIMP.

The present chapter describes how we can further the study of the two-singlet scalar model
(2SSM) by discussing some of its phenomenological implications. We limit ourselves to small
DM masses, from 0.1GeV to 10GeV. We discuss the implications of the model on the meson
factories and the Higgs search at the LHC. In fact, it is pertinent at this stage to mention
that there are more than one motivation for scalar-singlet extensions of the SM. Indeed,
besides providing a possible account for the dark matter in the Universe consistent with
the CoGeNT signal, they also provide a solution to the mu problem in the supersymmetric
standard model. They can explain the matter-anti matter asymmetry in the Universe [18],
and account for the possible occurrence of a light Higgs with a mass less or equal to 100GeV
while still in agreement with the electroweak precision tests [19] and potential signatures at
B-factories [20].

This chapter is organized as follows. The next section introduces briefly the model and
summarizes the results of [17] regarding relic-density constraint and direct detection. The
two following sections investigate the rare decays of Υ (section three) and B (section four)
mesons, most particularly their invisible channels. Section five looks into the decay channels
of the Higgs particle. In each of these situations, we try, when possible, to deduce preferred
regions of the parameter space and excluded ones. The last section is devoted to concluding
remarks. Results presented here are found in [20].

2. The 2SSM Model

The Standard Model is extended with two real, spinless and Z2-symmetric fields. One is the
dark-matter field S0 with unbroken symmetry to ensure the stability of the dark matter, the
other is an auxiliary field χ1 for which the symmetry is spontaneously broken. Both fields
are Standard-Model gauge singlets and can interact with SM particles only via the Higgs

doublet H. This latter is taken in the unitary gauge such that H†
= 1/

√

2 (0 h′), where
h′ is a real scalar. We assume all processes calculable in perturbation theory. The potential
function that incorporates S0, h′ and χ1 is:
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The mass parameters squared m̃2
0, µ2and µ2

1 and all the coupling constants are real positive
numbers. Electroweak spontaneous symmetry breaking occurs for the Higgs field with the
vacuum expectation value v = 246GeV. The field χ1 will oscillate around the vacuum
expectation value v1 which we take at the electroweak scale 100GeV. Writing h′ = v + h̃
and χ1 = v1 + S̃1, the potential function becomes, up to an irrelevant zero-field energy:

U = Uquad + Ucub + Uquar, (2)

where the quadratic terms are given by:
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with the mass-squared coefficients related to the original parameters of the theory by the
following relations:
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Clearly, we need to diagonalize the mass-squared matrix. Denoting the physical
mass-squared field eigenmodes by h and S1, we rewrite:
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where the physical fields are related to the mixed ones by a 2 × 2 rotation:
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. (6)

Here θ is the mixing angle, given by the relation tan 2θ = 2M2
1h/
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h

)

,and the physical
masses in (5) by the two relations:
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where ε is the sign function.
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where ε is the sign function.

Light Cold Dark Matter in a Two-Singlet Model
http://dx.doi.org/10.5772/52243

273



4 Open Questions in Cosmology

Written now directly in terms of the physical fields, the cubic interaction terms are expressed
as follows:
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where the cubic physical coupling constants are related to the original parameters via the
following relations:

λ
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η
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η
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2
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θ; (9)

λ
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2
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λ
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1

2
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In the same way, in terms of the physical fields too, the quartic interactions are given by:
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with the physical quartic coupling constants written as:

λ
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η
(4)
1 = η1 cos4

θ +
3

2
λ1 sin2 2θ + λ sin4

θ;

λ
(4)
0 = λ0 cos2

θ + η01 sin2
θ,

η
(4)
01 = η01 cos2

θ + λ0 sin2
θ;

λ
(4)
01 =

1

2
(η01 − λ0) sin 2θ,

λ
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λ
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Finally, after spontaneous breaking of the electroweak and Z2 symmetries, the part of the

Standard Model Lagrangian that is relevant to dark matter annihilation writes, in terms of

the physical fields h and S1, as follows:

USM = ∑
f

(

λh f h f̄ f + λ1 f S1 f̄ f
)

+ λ
(3)
hw hW−
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+ λ
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(
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)2
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(3)
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(
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)2
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(4)
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(
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)2
+ λ

(4)
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1

(
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)2
+ λh1zhS1

(

Zµ

)2
. (12)

The quantities m f , mw and mz are the masses of the fermion f , the W and the Z gauge

bosons respectively, and the above coupling constants are given by the following relations:

λh f = −

m f

v
cos θ; λ1 f =

m f

v
sin θ;

λ
(3)
hw = 2

m2
w

v
cos θ; λ

(3)
1w = −2

m2
w

v
sin θ;

λ
(3)
hz =

m2
z

v
cos θ; λ

(3)
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m2
z

v
sin θ;

λ
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m2
w
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1w =
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λ
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(4)
1z =
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z

2v2
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θ; λh1z = −

m2
z

2v2
sin 2θ. (13)

2.1. Dark Matter relic density constraint

The field S0 is odd under the unbroken Z2 symmetry, and so is a stable relic and can therefore

constitute the dark matter of the Universe. Its relic density can be obtained using the standard

approximate solutions to the Boltzmann equations [21]:

ΩDh̄2
=

1.07 × 109x f
√

g
∗

MPl �υ12σann�GeV
, (14)

where h̄ is the normalized Hubble constant,MPl = 1.22 × 1019GeV is the Planck mass, g
∗

the

number of relativistic degrees of freedom at the freeze-out temperature Tf , and x f = m0/Tf

which, for m0 in the range 1− 20GeV, is in the range 18.2− 19.4. The quantity �υ12σann� is the

thermally averaged annihilation cross section of S0 into fermion pairs f f̄ for m f < m0/2, and

into S1S1 for m1 < m0/2. The annihilation cross-section into fermions proceeds via s-channel

exchange of h and S1 and is given by:
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The field S0 is odd under the unbroken Z2 symmetry, and so is a stable relic and can therefore
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approximate solutions to the Boltzmann equations [21]:
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the

number of relativistic degrees of freedom at the freeze-out temperature Tf , and x f = m0/Tf

which, for m0 in the range 1− 20GeV, is in the range 18.2− 19.4. The quantity �υ12σann� is the

thermally averaged annihilation cross section of S0 into fermion pairs f f̄ for m f < m0/2, and
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v12σS0S0→ f f̄ =
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�


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and the annihilation into S1 pairs given by:
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
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. (16)

Solving (14) with the current value for the dark matter relic density ΩDh̄2
= 0.1123 ± 0.0035

[22] translates into a relation between the parameters of a given theory entering the calculated
expression of �v12σann�, hence imposing a constraint on these parameters which will limit the
intervals of possible dark matter masses. This constraint is exploited to examine aspects of
the theory like perturbativity, while at the same time reducing the number of parameters by
one.

Indeed, the model starts with eight parameters. The spontaneous breaking of the electroweak
and Z2 symmetries introduces the two vacuum expectation values v and v1 respectively,
which means we are left with six. Four of the parameters are the three physical masses m0

(dark-matter singlet S0), m1 (the second singlet S1) and mh (Higgs h), plus the mixing angle θ

between h and S1. We will fix the Higgs mass to mh = 125GeV [23, 24], except in the section
discussing Higgs decays where we let mh vary in the interval 100GeV − 200GeV. We will
take both m0 and m1 in the interval 0.1GeV − 10GeV. For the purpose of our discussions, it
is sufficient to let θ vary in the interval 1o

− 40o. The last parameters are the two physical

mutual coupling constants λ
(4)
0 (dark matter – Higgs) and η

(4)
01 (dark matter – S1 particle). But

η
(4)
01 is not free as it is the smallest real and positive solution to the dark-matter relic density

constraint (14), which will be implemented systematically throughout [17]. Thus we are left

with four parameters, namely, m0, m1, θ and λ
(4)
0 . To ensure applicability of perturbation
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theory, the requirement η
(4)
01 < 1 will also be imposed throughout, as well as a choice of

rather small values for λ
(4)
0 .

Studying the effects of the relic-density constraint for large ranges of the parameters through

the behavior of the physical mutual coupling constant η
(4)
01 between S0 and S1 as a function of

the DM mass m0 shows that, apart from forbidden regions and others where perturbativity
is lost, viable solutions in the small-moderate mass ranges of the DM sector exist for most
values of the parameters [17]. Forbidden regions are found for most of the ranges of the
parameters whereas perturbativity is lost mainly for larger values of m1.

2.2. Direct detection

On the other hand, experiments like CDMS II [15], XENON 10/100 [14, 25], DAMA/LIBRA
[26] and CoGeNT [3] search directly for a dark matter signal, which would typically come
from the elastic scattering of a dark matter WIMP off a non-relativistic nucleon target.
However, throughout the years, such experiments have not yet detected an unambiguous
signal, but rather yielded increasingly stringent exclusion bounds on the dark matter –
nucleon elastic-scattering total cross-section σdet in terms of the DM mass m0. Any viable
theoretical dark-matter model has to satisfy these bounds. In the 2SSM, σdet is found to be
given by the relation [17]:

σdet ≡ σS0 N→S0 N =

m2
N

�

mN −

7
9 mB

�2

4π (mN + m0)
2 v2





λ
(3)
0 cos θ

m2
h

−

η
(3)
01 sin θ

m2
1





2

, (17)

in which mN is the nucleon mass and mB the baryon mass in the chiral limit [13, 27, 28].
This relation was compared against the experimental bounds from CDMSII and XENON100.
We found that strong constraints were imposed on m0 in the range between 10 to 20GeV. We
found also that for small values of m1, very light dark matter is viable, with m0 as small as
1GeV.

3. Upsilon decays

We now further the analysis of the two-singlet model and start by looking at the constraints
on the parameter space of the model coming from the decay of the meson Υ in the state nS
(n = 1, 3) into one photon γ and one particle S1. For m1 � 8GeV, the branching ratio for this
process is given by the relation:

Br (ΥnS → γ + S1) =
GFm2

b sin2
θ

√

2πα
xn

�

1 −
4αs

3π
f (xn)

�

Br(µ) Θ
�

mΥnS
− m1

�

. (18)

In this expression, xn ≡

�

1 − m2
1/m2

Υns

�

with mΥ1(3)S
= 9.46(10.355)GeV the mass of Υ1(3)S,

the branching ratio Br(µ) ≡ Br
�

Υ1(3)S → µ+µ−

�

= 2.48(2.18) × 10−2 [29], α is the QED

coupling constant, αs = 0.184 the QCD coupling constant at the scale mΥnS
, the quantity GF
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intervals of possible dark matter masses. This constraint is exploited to examine aspects of
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and Z2 symmetries introduces the two vacuum expectation values v and v1 respectively,
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theory, the requirement η
(4)
01 < 1 will also be imposed throughout, as well as a choice of

rather small values for λ
(4)
0 .

Studying the effects of the relic-density constraint for large ranges of the parameters through

the behavior of the physical mutual coupling constant η
(4)
01 between S0 and S1 as a function of

the DM mass m0 shows that, apart from forbidden regions and others where perturbativity
is lost, viable solutions in the small-moderate mass ranges of the DM sector exist for most
values of the parameters [17]. Forbidden regions are found for most of the ranges of the
parameters whereas perturbativity is lost mainly for larger values of m1.

2.2. Direct detection

On the other hand, experiments like CDMS II [15], XENON 10/100 [14, 25], DAMA/LIBRA
[26] and CoGeNT [3] search directly for a dark matter signal, which would typically come
from the elastic scattering of a dark matter WIMP off a non-relativistic nucleon target.
However, throughout the years, such experiments have not yet detected an unambiguous
signal, but rather yielded increasingly stringent exclusion bounds on the dark matter –
nucleon elastic-scattering total cross-section σdet in terms of the DM mass m0. Any viable
theoretical dark-matter model has to satisfy these bounds. In the 2SSM, σdet is found to be
given by the relation [17]:

σdet ≡ σS0 N→S0 N =

m2
N

�

mN −

7
9 mB

�2

4π (mN + m0)
2 v2





λ
(3)
0 cos θ

m2
h

−

η
(3)
01 sin θ

m2
1





2

, (17)

in which mN is the nucleon mass and mB the baryon mass in the chiral limit [13, 27, 28].
This relation was compared against the experimental bounds from CDMSII and XENON100.
We found that strong constraints were imposed on m0 in the range between 10 to 20GeV. We
found also that for small values of m1, very light dark matter is viable, with m0 as small as
1GeV.

3. Upsilon decays

We now further the analysis of the two-singlet model and start by looking at the constraints
on the parameter space of the model coming from the decay of the meson Υ in the state nS
(n = 1, 3) into one photon γ and one particle S1. For m1 � 8GeV, the branching ratio for this
process is given by the relation:

Br (ΥnS → γ + S1) =
GFm2

b sin2
θ

√

2πα
xn

�

1 −
4αs

3π
f (xn)

�

Br(µ) Θ
�

mΥnS
− m1

�

. (18)

In this expression, xn ≡

�

1 − m2
1/m2

Υns

�

with mΥ1(3)S
= 9.46(10.355)GeV the mass of Υ1(3)S,

the branching ratio Br(µ) ≡ Br
�

Υ1(3)S → µ+µ−

�

= 2.48(2.18) × 10−2 [29], α is the QED

coupling constant, αs = 0.184 the QCD coupling constant at the scale mΥnS
, the quantity GF
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is the Fermi coupling constant and mb the b quark mass [22]. The function f (x) incorporates
the effect of QCD radiative corrections given in [30].

But the above expression is not sufficient because a rough estimate of the lifetime of S1

indicates that this latter is likely to decay inside a typical particle detector, which means we
ought to take into account its most dominant decay products. We first have a process by
which S1 decays into a pair of pions, with a decay rate given by:

Γ (S1 → ππ) ≃

GFm1

4
√

2π
sin2

θ





m2
1

27

�

1 +
11m2

π

2m2
1

�2

×

�

1 −
4m2

π

m2
1

�
1
2

Θ[(m1 − 2mπ) (2mK − m1)]

+3
�

M2
u + M2

d

�

�

1 −
4m2

π

m2
1

�
3
2

Θ (m1 − 2mK)



 . (19)

In the above decay rate, mπ(K) is the pion (kaon) mass. Also, chiral perturbation theory is
used below the kaon pair production threshold [31, 32], and the spectator quark model above
up to roughly 3GeV, with the dressed u and d quark masses Mu = Md ≃ 0.05GeV. Note that
this rate includes all pions, charged and neutral. Above the 2mK threshold, both pairs of
kaons and η particles are produced. The decay rate for K production is:

Γ (S1 → KK) ≃
9

13

3GF M2
s m1

4
√

2π
sin2

θ

�

1 −
4m2

K

m2
1

�
3
2

Θ (m1 − 2mK) . (20)

In the above rate, Ms ≃ 0.45GeV is the s quark-mass in the spectator quark model [33, 34].
For η production, replace mK by mη and 9

13 by 4
13 .

The particle S1 can also decay into c and b quarks (mainly c). Including the radiative QCD
corrections, the corresponding decay rates are given by:

Γ(S1 → qq̄) ≃
3GFm̄2

qm1

4
√

2π
sin2

θ

�

1 −
4m̄2

q

m2
h

�
3
2 �

1 + 5.67
ᾱs

π

�

Θ
�

m1 − 2m̄q
�

. (21)

The dressed quark mass m̄q ≡ mq(m1) and the running strong coupling constant ᾱs ≡ αs(m1)

are defined at the energy scale m1 [35]. Gluons can also be produced, with a corresponding
decay rate given by the relation:

Γ (S1 → gg) ≃
GFm3

1 sin2
θ

12
√

2π

�

α′s

π

�2


6 − 2

�

1 −
4m2

π

m2
1

�
3
2

−

�

1 −
4m2

K

m2
1

�
3
2



 Θ (m1 − 2mK) .

(22)
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Here, α′s = 0.47 is the QCD coupling constant at the spectator-quark-model scale, between
roughly 1GeV and 3GeV.

We then have the decay of S1 into leptons, the corresponding rate given by:

Γ
(

S1 → ℓ
+

ℓ
−

)

=

GFm2
ℓ
m1

4
√

2π
sin2

θ

(

1 −
4m2

ℓ

m2
1

)
3
2

Θ (m1 − 2mℓ) , (23)

where mℓ is the lepton mass. Finally, S1 can decay into a pair of dark matter particles, with
a decay rate:

Γ (S1 → S0S0) =

(

η
(3)
01

)2

32πm1

√

1 −
4m2

0

m2
1

Θ (m1 − 2m0) . (24)

The branching ratio for ΥnS decaying via S1 into a photon plus X, where X represents any
kinematically allowed final state, will be:

Br (ΥnS → γ + X) = Br (ΥnS → γ + S1)× Br (S1 → X) . (25)

In particular, X ≡ S0S0 corresponds to a decay into invisible particles.
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Figure 1. Typical branching ratios of Υ1S decaying into τ’s, charged pions and charged kaons as functions of m1. The

corresponding experimental upper bounds are shown.

The best available experimental upper bounds on 1S–state branching ratios are: (i)
Br (Υ1S → γ + ττ) < 5 × 10−5 for 3.5GeV < m1 < 9.2GeV [36]; (ii) Br

(

Υ1S → γ + π+π−

)

<
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is the Fermi coupling constant and mb the b quark mass [22]. The function f (x) incorporates
the effect of QCD radiative corrections given in [30].

But the above expression is not sufficient because a rough estimate of the lifetime of S1

indicates that this latter is likely to decay inside a typical particle detector, which means we
ought to take into account its most dominant decay products. We first have a process by
which S1 decays into a pair of pions, with a decay rate given by:

Γ (S1 → ππ) ≃

GFm1

4
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

 . (19)

In the above decay rate, mπ(K) is the pion (kaon) mass. Also, chiral perturbation theory is
used below the kaon pair production threshold [31, 32], and the spectator quark model above
up to roughly 3GeV, with the dressed u and d quark masses Mu = Md ≃ 0.05GeV. Note that
this rate includes all pions, charged and neutral. Above the 2mK threshold, both pairs of
kaons and η particles are produced. The decay rate for K production is:

Γ (S1 → KK) ≃
9

13

3GF M2
s m1

4
√

2π
sin2

θ

�

1 −
4m2

K

m2
1

�
3
2

Θ (m1 − 2mK) . (20)

In the above rate, Ms ≃ 0.45GeV is the s quark-mass in the spectator quark model [33, 34].
For η production, replace mK by mη and 9

13 by 4
13 .

The particle S1 can also decay into c and b quarks (mainly c). Including the radiative QCD
corrections, the corresponding decay rates are given by:

Γ(S1 → qq̄) ≃
3GFm̄2

qm1

4
√

2π
sin2

θ

�

1 −
4m̄2

q

m2
h

�
3
2 �

1 + 5.67
ᾱs

π

�

Θ
�

m1 − 2m̄q
�

. (21)

The dressed quark mass m̄q ≡ mq(m1) and the running strong coupling constant ᾱs ≡ αs(m1)

are defined at the energy scale m1 [35]. Gluons can also be produced, with a corresponding
decay rate given by the relation:

Γ (S1 → gg) ≃
GFm3

1 sin2
θ

12
√

2π

�

α′s

π

�2


6 − 2

�

1 −
4m2

π
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1

�
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2
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�
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4m2

K
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�
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

 Θ (m1 − 2mK) .

(22)

Open Questions in Cosmology278
Light Cold Dark Matter in a Two-Singlet Model 9

Here, α′s = 0.47 is the QCD coupling constant at the spectator-quark-model scale, between
roughly 1GeV and 3GeV.

We then have the decay of S1 into leptons, the corresponding rate given by:

Γ
(

S1 → ℓ
+

ℓ
−

)

=

GFm2
ℓ
m1

4
√

2π
sin2

θ

(

1 −
4m2

ℓ

m2
1

)
3
2

Θ (m1 − 2mℓ) , (23)

where mℓ is the lepton mass. Finally, S1 can decay into a pair of dark matter particles, with
a decay rate:

Γ (S1 → S0S0) =

(

η
(3)
01

)2

32πm1

√

1 −
4m2

0

m2
1

Θ (m1 − 2m0) . (24)

The branching ratio for ΥnS decaying via S1 into a photon plus X, where X represents any
kinematically allowed final state, will be:

Br (ΥnS → γ + X) = Br (ΥnS → γ + S1)× Br (S1 → X) . (25)

In particular, X ≡ S0S0 corresponds to a decay into invisible particles.
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Figure 1. Typical branching ratios of Υ1S decaying into τ’s, charged pions and charged kaons as functions of m1. The

corresponding experimental upper bounds are shown.

The best available experimental upper bounds on 1S–state branching ratios are: (i)
Br (Υ1S → γ + ττ) < 5 × 10−5 for 3.5GeV < m1 < 9.2GeV [36]; (ii) Br

(

Υ1S → γ + π+π−

)

<

Light Cold Dark Matter in a Two-Singlet Model
http://dx.doi.org/10.5772/52243

279



10 Open Questions in Cosmology

6.3 × 10−5 for 1GeV < m1 [37]; (iii) Br
(

Υ1S → γ + K+K−

)

< 1.14 × 10−5 for 2GeV <

m1 < 3GeV [38]. Figure 1 displays the corresponding branching ratios of Υ1S decays
via S1 as functions of m1, together with these upper bounds. Also, the best available
experimental upper bounds on Υ3S branching ratios are: (i) Br (Υ3S → γ + µµ) < 3 × 10−6

for 1GeV < m1 < 10GeV; (ii) Br (Υ3S → γ + Invisible) < 3 × 10−6 for 1GeV < m1 < 7.8GeV
[39]. Typical corresponding branching ratios are shown in figure 2.
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Figure 2. Typical branching ratios of Υ3S decaying into muons and dark matter as functions of m1. The corresponding

experimental upper bounds are shown.

When scanning the parameter space, we see that the Higgs-dark-matter coupling constant

λ
(4)
0 and the dark-matter mass m0 have little effect on the shapes of the branching ratios, apart

from excluding, via the relic density and perturbativity constraints, regions of applicability
of the model. This shows in figures 1 and 2 where the region m1 � 1.9GeV is excluded.
Also, the onset of the S0S0 channel for m1 ≥ 2m0 abates sharply the other channels as this
one becomes dominant by far. The effect of the mixing angle θ is to enhance all branching
ratios as it increases, due to the factor sin2

θ. Furthermore, we notice that the dark matter
decay channel reaches the invisible upper bound already for θ ≃ 15o, for fairly small m0, say
0.5GeV, whereas the other channels find it hard to get to their respective experimental upper
bounds, even for large values of θ.

4. B meson decays

Next we look at the flavor changing process in which the meson B+ decays into a K+

plus invisible. The corresponding Standard-Model mode is a decay into K+ and a pair of

neutrinos, with a branching ratio BrSM
(

B+
→ K+

+ νν̄
)

≃ 4.7× 10−6 [40]. The experimental

upper bound is BrExp
(

B+
→ K+

+ Inv
)

≃ 14 × 10−6 [41]. Here too, the most prominent B
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invisible decay is into S0S0 via S1. The process B+
→ K+

+ S1 has the following branching
ratio:

Br
(

B+

→ K+

+ S1

)

=

9
√

2τBG3
Fm4

t m2
bm2

+
m2
−

1024π5m3
B (mb − ms)

2
|VtbV∗

ts|
2 f 2

0

(

m2
1

)

×

√

(

m2
+
− m2

1

) (

m2
−

− m2
1

)

sin2
θ Θ (m

−
− m1) . (26)

In the above relation, m
±

= mB ± mK where mB is the B+ mass, τB its lifetime, andVtb and
Vts are flavor changing CKM coefficients. The function f0 (s) is given by the relation:

f0 (s) = 0.33 exp

[

0.63s

m2
B

−

0.095s2

m4
B

+

0.591s3

m6
B

]

. (27)

The different S1 decay modes are given in (19) - ( 24) above. The branching ratio of B+

decaying into K+
+ S0S0 via the production and propagation of an intermediary S1 will be:

Br(S1)
(

B+

→ K+

+ S0S0

)

= Br
(

B+

→ K+

+ S1

)

× Br (S1 → S0S0) . (28)
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Figure 3. Typical branching ratio of B+ decaying into dark matter via S1 as a function of m1. The SM and experimental bounds

are shown.

Figure 3 displays a typical behavior of Br(S1)
(

B+
→ K+

+ S0S0

)

as a function of m1. As we
see, the branching ratio is well above the experimental upper bound, and a mixing angle θ
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6.3 × 10−5 for 1GeV < m1 [37]; (iii) Br
(

Υ1S → γ + K+K−

)

< 1.14 × 10−5 for 2GeV <

m1 < 3GeV [38]. Figure 1 displays the corresponding branching ratios of Υ1S decays
via S1 as functions of m1, together with these upper bounds. Also, the best available
experimental upper bounds on Υ3S branching ratios are: (i) Br (Υ3S → γ + µµ) < 3 × 10−6

for 1GeV < m1 < 10GeV; (ii) Br (Υ3S → γ + Invisible) < 3 × 10−6 for 1GeV < m1 < 7.8GeV
[39]. Typical corresponding branching ratios are shown in figure 2.
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When scanning the parameter space, we see that the Higgs-dark-matter coupling constant

λ
(4)
0 and the dark-matter mass m0 have little effect on the shapes of the branching ratios, apart

from excluding, via the relic density and perturbativity constraints, regions of applicability
of the model. This shows in figures 1 and 2 where the region m1 � 1.9GeV is excluded.
Also, the onset of the S0S0 channel for m1 ≥ 2m0 abates sharply the other channels as this
one becomes dominant by far. The effect of the mixing angle θ is to enhance all branching
ratios as it increases, due to the factor sin2

θ. Furthermore, we notice that the dark matter
decay channel reaches the invisible upper bound already for θ ≃ 15o, for fairly small m0, say
0.5GeV, whereas the other channels find it hard to get to their respective experimental upper
bounds, even for large values of θ.

4. B meson decays

Next we look at the flavor changing process in which the meson B+ decays into a K+

plus invisible. The corresponding Standard-Model mode is a decay into K+ and a pair of

neutrinos, with a branching ratio BrSM
(

B+
→ K+

+ νν̄
)

≃ 4.7× 10−6 [40]. The experimental

upper bound is BrExp
(

B+
→ K+

+ Inv
)

≃ 14 × 10−6 [41]. Here too, the most prominent B
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invisible decay is into S0S0 via S1. The process B+
→ K+

+ S1 has the following branching
ratio:
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In the above relation, m
±

= mB ± mK where mB is the B+ mass, τB its lifetime, andVtb and
Vts are flavor changing CKM coefficients. The function f0 (s) is given by the relation:

f0 (s) = 0.33 exp

[

0.63s
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−

0.095s2
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+
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The different S1 decay modes are given in (19) - ( 24) above. The branching ratio of B+

decaying into K+
+ S0S0 via the production and propagation of an intermediary S1 will be:

Br(S1)
(
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)
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Figure 3 displays a typical behavior of Br(S1)
(

B+
→ K+

+ S0S0

)

as a function of m1. As we
see, the branching ratio is well above the experimental upper bound, and a mixing angle θ
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as small as 1o will not help with this, no matter what the values for λ
(4)
0 and m0 are. So, we

conclude that for m1 � 4.8GeV, this process excludes the two-singlet model for m0 < m1/2.
For m1 � 4.8GeV or m0 ≥ m1/2, the decay does not occur, so no constraints on the model
from this process.

Another process involving B mesons is the decay of Bs into predominately a pair of muons.

The Standard Model branching ratio for this process is BrSM
(

Bs → µ+µ−

)

= (3.2 ± 0.2)×

10−9 [42], and the experimental upper bound is BrExp
(

Bs → µ+µ−

)

< 1.08 × 10−8 [43]. In
the present model, two additional decay diagrams occur, both via intermediary S1, yielding
together the branching ratio:

Br(S1)
(Bs → µ

+

µ
−

) =

9τBs
G4

F f 2
Bs

m5
Bs

2048π5
m2

µm4
t |VtbV∗

ts|
2

(

1 − 4m2
µ/m2

Bs

)3/2

(

m2
Bs
− m2

1

)2
+ m2

1Γ2
1

sin4
θ. (29)

In this relation, τBs
is the Bs life-time, mBs

= 5.37GeV its mass, and fBs
a form factor that we

take equal to 0.21GeV. The quantity Γ1 is the total width of the particle S1 [17].
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Figure 4. Typical behavior of Br(S1)(Bs → µ+µ−

) as a function of m1, together with the SM and experimental bounds.

A typical behavior of Br(S1)
(Bs → µ+µ−

) as a function of m1 is displayed in figure 4. The

peak is at mBs
. All three parameters λ

(4)
0 , m0 and θ combine in the relic density constraint to

exclude few regions of applicability of the model. For example, for the values of figure 4, the
region m1 < 2.25GeV is excluded. However, a systematic scan of the parameter space shows

that outside the relic density constraint, λ
(4)
0 has no significant direct effect on the shape of

Br(S1)
(Bs → µ+µ−

). As m0 increases, it sharpens the peak of the curve while pushing it up.
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This works until about 2.7GeV, beyond which m0 ceases to have any significant direct effect.
Increasing θ enhances the values of the branching ratio without affecting the width. Also, for

all the range of m1, all of Br(S1)
+ BrSM stays below BrExp as long as θ < 10o. As θ increases

beyond this value, the peak region pushes up increasingly above BrExp, like in figure 4, and
hence gets excluded, but all the rest is allowed.

5. Higgs decays

We finally examine the implications of the model on the Higgs different decay modes. In
this section, we allow the Higgs mass mh to vary in the interval 100GeV − 200GeV. First,
h can decay into a pair of leptons ℓ, predominantly τ’s. The corresponding decay rate
Γ
(

h → ℓ+ℓ−
)

is given by the relation (23) where we replace m1 by mh and sin θ by cos θ. It
can also decay into a pair of quarks q, mainly into b’s and, to a lesser degree, into c’s. Here too
the decay rate Γ(h → qq̄) is given in (21) with similar replacements. Then the Higgs can decay
into a pair of gluons. The corresponding decay rate that includes the next-to-next-to-leading
QCD radiative corrections is given by:
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where the sum is over all quark flavors q. A systematic study of the double integral above
shows that, with mh in the range 100GeV – 200GeV, the t quark dominates in the sum over q,
but with non-negligible contributions from the c and b quarks.

For mh smaller than the W or Z pair-production thresholds, the Higgs can decay into a pair
of one real and one virtual gauge bosons, with rates given by:
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as small as 1o will not help with this, no matter what the values for λ
(4)
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In this relation, τBs
is the Bs life-time, mBs

= 5.37GeV its mass, and fBs
a form factor that we

take equal to 0.21GeV. The quantity Γ1 is the total width of the particle S1 [17].
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A typical behavior of Br(S1)
(Bs → µ+µ−

) as a function of m1 is displayed in figure 4. The

peak is at mBs
. All three parameters λ

(4)
0 , m0 and θ combine in the relic density constraint to

exclude few regions of applicability of the model. For example, for the values of figure 4, the
region m1 < 2.25GeV is excluded. However, a systematic scan of the parameter space shows

that outside the relic density constraint, λ
(4)
0 has no significant direct effect on the shape of

Br(S1)
(Bs → µ+µ−

). As m0 increases, it sharpens the peak of the curve while pushing it up.
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This works until about 2.7GeV, beyond which m0 ceases to have any significant direct effect.
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beyond this value, the peak region pushes up increasingly above BrExp, like in figure 4, and
hence gets excluded, but all the rest is allowed.
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where the sum is over all quark flavors q. A systematic study of the double integral above
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but with non-negligible contributions from the c and b quarks.
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For a heavier Higgs particle, the decay rates into a V pair is given by:

Γ (h → VV) =

GFm4
V cos2 θ
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with BV = 1 for W and 1
2 for Z.

While all these decay modes are already present within the Standard Model, the two-singlet
extension introduces two additional (invisible) modes, namely a decay into a pair of S0’s and
a pair of S1’s. The corresponding decay rates are:

Γ (h → SiSi) =
λ2

i

32πmh

(

1 −
4m2

i

m2
h

)
1
2

Θ (mh − 2mi) , (34)

where λi = λ
(3)
0(2)

for S0(1) given in (9). The total decay rate Γ (h) of the Higgs particle is the

sum of these partial rates. The branching ratio corresponding to a particular decay will be
Br (h → X) = Γ (h → X) /Γ (h).
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Figure 5. Branching ratios for Higgs decays. Very small dark-matter Higgs coupling.

Typical behaviors of the most prominent branching ratios are displayed in figure 5. A
systematic study shows that for all ranges of the parameters, the Higgs decays dominantly
into invisible. The production of fermions and gluons is comparatively marginal, whereas
that of W and Z pairs takes relative importance towards and above the corresponding
thresholds, and more significantly at larger values of the mixing angle θ.
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However, the decay distribution between S0 and S1 is not even. The most dramatic effect

comes from the coupling constant λ
(4)
0 . When it is very small, the dominant production is

that of a pair of S1. This is exhibited in figure 5 for which λ
(4)
0 = 0.01. As it increases, there

is a gradual shift towards a more dominating dark-matter pair production, a shift competed

against by the increase in θ. Figure 6 displays the branching ratios for λ
(4)
0 = 0.1 and figure

7 for the larger value λ
(4)
0 = 0.7. In general, increasing θ smoothens the crossings of the

WW and ZZ thresholds, and lowers the production of everything except that of a pair of S1,
which is instead increased.
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Figure 6. Branching ratios for Higgs decays. Small dark-matter Higgs coupling.

Like in the Standard Model, the production of a pair of b quarks dominates over the

production of the other fermions, and all fermions are not favored by increasing λ
(4)
0 .

Changes in m0 and m1 have very little direct effects on all the branching ratios except that
of S0S0 production where, at small θ, increasing m1 (m0) increases (decreases) the branching
ratio, with reversed effects at larger θ. Note though that these masses have indirect impact
through the relic density constraint by excluding certain regions [17].

6. Concluding remarks

Understanding light dark matter is one of the challenges facing popular extensions of the
Standard Model. In this chapter, we have furthered the study of a two-singlet extension of the
SM we proposed as a model for light dark matter by exploring some of its phenomenological
aspects. We have looked into the rare decays of Υ and B mesons and studied the implications
of the model on the decay channels of the Higgs particle.
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Typical behaviors of the most prominent branching ratios are displayed in figure 5. A
systematic study shows that for all ranges of the parameters, the Higgs decays dominantly
into invisible. The production of fermions and gluons is comparatively marginal, whereas
that of W and Z pairs takes relative importance towards and above the corresponding
thresholds, and more significantly at larger values of the mixing angle θ.
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Like in the Standard Model, the production of a pair of b quarks dominates over the

production of the other fermions, and all fermions are not favored by increasing λ
(4)
0 .

Changes in m0 and m1 have very little direct effects on all the branching ratios except that
of S0S0 production where, at small θ, increasing m1 (m0) increases (decreases) the branching
ratio, with reversed effects at larger θ. Note though that these masses have indirect impact
through the relic density constraint by excluding certain regions [17].

6. Concluding remarks

Understanding light dark matter is one of the challenges facing popular extensions of the
Standard Model. In this chapter, we have furthered the study of a two-singlet extension of the
SM we proposed as a model for light dark matter by exploring some of its phenomenological
aspects. We have looked into the rare decays of Υ and B mesons and studied the implications
of the model on the decay channels of the Higgs particle.
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Figure 7. Branching ratios for Higgs decays. Larger dark-matter Higgs coupling.

In brief, for both Υ and B decays, the Higgs-DM coupling constant λ
(4)
0 and the DM mass

m0 have little effect on the shapes of the branching ratios, apart from combining with the
other two parameters in the relic-density and perturbativity constraints to exclude regions
of applicability of the model. Also, the effect of increasing the h − S1 mixing angle θ is to
enhance all branching ratios. For Υ decays, the DM channel dominates over the other decay
modes in regions where kinematically allowed. It reaches the experimental invisible upper
bound for already fairly small values of θ and m0. From B+ decays, we learn that our model
is excluded for m1 < 4.8GeV (= mB − mK) and m0 < m1/2. From Bs decay into muons, we
learn that for the model to contribute a distinct signal to this process, it is best to restrict
4GeV � m1 � 6.5GeV with no additional constraint on m0 [20]. Also, in general, keeping

λ
(4)
0 � 0.1 to avoid systematic exclusion from direct detection for all these processes is safe.

Before closing the chapter, it is useful to comment briefly on how light dark matter in our
model affects Higgs searches. Since mh ≫ 2m0, the process h → S0S0 is kinematically
allowed and, for a large range of the parameter space, the ratio

R

(b)
decay =

Br (h → S0S0)

Br(h → bb̄)
(35)

can be larger than one for mh < 120GeV as can be seen in figure 6. In this situation, the LEP
bound on the Higgs mass can be weaker. Also, in our model, the Higgs production at LEP
via Higgstrahlung can be smaller than the one in the Standard Model, and so the Higgs can
be as light as 100GeV. Such a light Higgs would be in good agreement with the electroweak
precision tests. As to the Higgs searches at the LHC, the ATLAS and CMS collaborations
have reported the exclusion of a Higgs mass in the interval 145 – 460 GeV [23, 24], which
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seems to suggest that we should have limited our analysis of the Higgs branching ratios to
mh < 145GeV. However, it is important to note that these experimental constraints apply to
the SM Higgs and can not therefore be used as such if the Higgs interactions are modified.
In our model, the mixing of h with S1 will result in a reduction of the statistical significance
of the Higgs discovery at the LHC. Indeed, the relevant quantity that allows one to use the
experimental limits on Higgs searches to derive constraints on the parameters of the model
is the ratio:

RXSM
≡

σ (gg → h)Br (h → XSM)

σ(SM)
(gg → h)BrSM

(h → XSM)

=

cos4 θ

cos2 θ + Γ (h → Xinv) /Γ
SM
h

. (36)

In this expression, XSM corresponds to all the Standard Model particles, Xinv = S0S0 and

S1S1, σ is a cross-section, BrSM
(h → X) the branching fraction of the SM Higgs decaying

into any kinematically allowed mode X, and Γ
SM
h the total Higgs decay rate in the Standard

Model. To open up the region mh > 140GeV requires the ratio RXSM
to be smaller than 0.25

[23, 24], a constraint easily fulfilled in our model. By comparison, the minimal extensions
of the Standard Model with just one singlet scalar or a Majorana fermion, even under a Z2

symmetry, are highly constrained in this regard [44]. Finally, if the recent data from ATLAS
and CMS turn out to be a signal for a SM-like Higgs with mass about 125GeV, then this will
put a very strong constraint on the mixing angle θ. Indeed, only for θ � 0.50 will the ratio
Γ(h → bb̄)/Γ (h → inv) � 1. For larger values, the model is ruled out, independently of the
dark matter mass, but as long as m1 � 50GeV, which we are assuming in this work.
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Figure 8. The ratio Γ(h → bb̄)/Γ(h → inv) is larger than one for θ = 0.40 and mh = 125GeV.

Finally, it is important to find the bounds on the mass SM Higgs that can satisfy the triviality
and perturbativity constraints on the coupling constants in the scalar sector of this model up
to a scale higher then 1TeV. This requires studying the renormalization group equations of
these coupling constants [45].
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In brief, for both Υ and B decays, the Higgs-DM coupling constant λ
(4)
0 and the DM mass

m0 have little effect on the shapes of the branching ratios, apart from combining with the
other two parameters in the relic-density and perturbativity constraints to exclude regions
of applicability of the model. Also, the effect of increasing the h − S1 mixing angle θ is to
enhance all branching ratios. For Υ decays, the DM channel dominates over the other decay
modes in regions where kinematically allowed. It reaches the experimental invisible upper
bound for already fairly small values of θ and m0. From B+ decays, we learn that our model
is excluded for m1 < 4.8GeV (= mB − mK) and m0 < m1/2. From Bs decay into muons, we
learn that for the model to contribute a distinct signal to this process, it is best to restrict
4GeV � m1 � 6.5GeV with no additional constraint on m0 [20]. Also, in general, keeping
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0 � 0.1 to avoid systematic exclusion from direct detection for all these processes is safe.
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model affects Higgs searches. Since mh ≫ 2m0, the process h → S0S0 is kinematically
allowed and, for a large range of the parameter space, the ratio
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can be larger than one for mh < 120GeV as can be seen in figure 6. In this situation, the LEP
bound on the Higgs mass can be weaker. Also, in our model, the Higgs production at LEP
via Higgstrahlung can be smaller than the one in the Standard Model, and so the Higgs can
be as light as 100GeV. Such a light Higgs would be in good agreement with the electroweak
precision tests. As to the Higgs searches at the LHC, the ATLAS and CMS collaborations
have reported the exclusion of a Higgs mass in the interval 145 – 460 GeV [23, 24], which
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seems to suggest that we should have limited our analysis of the Higgs branching ratios to
mh < 145GeV. However, it is important to note that these experimental constraints apply to
the SM Higgs and can not therefore be used as such if the Higgs interactions are modified.
In our model, the mixing of h with S1 will result in a reduction of the statistical significance
of the Higgs discovery at the LHC. Indeed, the relevant quantity that allows one to use the
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h the total Higgs decay rate in the Standard

Model. To open up the region mh > 140GeV requires the ratio RXSM
to be smaller than 0.25

[23, 24], a constraint easily fulfilled in our model. By comparison, the minimal extensions
of the Standard Model with just one singlet scalar or a Majorana fermion, even under a Z2

symmetry, are highly constrained in this regard [44]. Finally, if the recent data from ATLAS
and CMS turn out to be a signal for a SM-like Higgs with mass about 125GeV, then this will
put a very strong constraint on the mixing angle θ. Indeed, only for θ � 0.50 will the ratio
Γ(h → bb̄)/Γ (h → inv) � 1. For larger values, the model is ruled out, independently of the
dark matter mass, but as long as m1 � 50GeV, which we are assuming in this work.
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Finally, it is important to find the bounds on the mass SM Higgs that can satisfy the triviality
and perturbativity constraints on the coupling constants in the scalar sector of this model up
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these coupling constants [45].
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1. Introduction

Ever since Hawking’s discovery in 1974, [1–3], that black holes have a temperature associated
to them, in the simplest case a temperature inversely proportional to their mass,

T =

h̄

8πGM
(1)

(we use units in which c = 1), the thermodynamics of black holes has been a fascinating area
of research. Equation (1) immediately implies that a Schwarzschild black hole in isolation
is unstable: it will radiate and in so doing loses energy hence the mass decreases, thus
increasing the temperature causing it to radiate with more power leading to a runaway effect.

Hawking’s result is fundamentally quantum mechanical in nature and came after a number
of important developments in the classical thermodynamics of black holes. Penrose [4]
realised that the mass of a rotating black hole can decrease, when rotational energy is
extracted, and this was followed by the observation that the area never decreases in any
classical process. Nevertheless there is still a minimum, irreducible, mass below which one
cannot go classically [5, 6]. This lead Bekenstein’s to propose that an entropy should be
associated with a black hole that is proportional to the area, A, of the event horizon, [7, 8].
In natural units,

S = α
A

h̄G
, (2)

where α is an undetermined constant, presumed of order one, and h̄G is the Planck length
squared. In the classical limit the temperature vanishes and the entropy diverges.

©2012 Dolan, licensee InTech. This is an open access chapter distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.© 2012 Dolan; licensee InTech. This is an open access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.
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2 Open Questions in Cosmology

The first law of black hole thermodynamics, in its simplest form, associates the internal
energy of a black hole with the mass, U(S) = M, (more precisely the ADM mass, as defined
with reference to the time-like Killing vector at infinity [9]) and reads

dU = TdS. (3)

In particular, for a Schwarzschild black hole, the event horizon radius is rh = 2GM and the
event horizon area is

A = 4πr2
h = 16πG2 M2

⇒ M =

1

4G

√

A

π
. (4)

Hence

U =

1

4

√

h̄S

παG
(5)

and

T =

∂U

∂S
=

1

8

√

h̄

παGS
=

h̄

32παGM
. (6)

Hawking’s result (1) then fixes the constant of proportionality in (2) to be one quarter.

The black hole instability referred to above is reflected in the thermodynamic potentials by
the fact that the heat capacity of a Schwarzschild black hole,

C = T
∂S

∂T
= −

h̄G

8πT2
< 0, (7)

is negative.

The first law generalises to electrically charged, rotating black holes as

dU = TdS + ΩdJ + ΦdQ (8)

where J is the angular momentum of the black hole, Ω its angular velocity, and Q the electric
charge and the electrostatic potential (see e.g. [9]).

In contrast to elementary treatments of the first law of black hole thermodynamics it is
noteworthy that (8) lacks the familiar PdV term, but a little thought shows that it is by no
means obvious how to define the volume of a black hole. For a Schwarzschild black hole
the radial co-ordinate, r, is time-like inside the event horizon, where r < rh, so it would

seem non-sensical to associate a volume V = 4π
∫ rh

0 r2dr =
4π

3 r3
h with the black hole. In

fact identifying any function of rh alone with a volume, V(rh), will lead to inconsistencies
in a thermodynamic description since the area, and hence the entropy, is already a function

of rh, S = πr2
h, so any volume V(rh) would be determined purely in terms of the entropy.

The internal energy, U(S, V), should be a function of two variables, so giving V(S) uniquely
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as a specific function of S is liable to lead to inconsistencies. We shall see below how this
potential problem is avoided.

2. Pressure and enthalpy

From the point of view of Eintein’s equations a pressure is associated with a cosmological
constant. There is now very strong evidence that the cosmological constant in our Universe
is positive [10, 11]. This poses a problem for the study of black hole thermodynamics
for two reasons: firstly there is no asymptotic regime in de Sitter space which allows the
unambiguous identification of the ADM mass of a black hole embedded in a space with a
positive Λ; secondly positive Λ corresponds to negative pressure, implying thermodynamic
instability. The first problem is related to the fact that there are two event horizons for
a de Sitter black hole, a black hole horizon and a cosmological horizon, and the radial
co-ordinate is time-like for large enough values of r, outside the cosmological horizon.
The second problem is not necessarily too serious as one can still glean some information
from negative pressure systems which are thermodynamically unstable [12] (instability is
not an insurmountable barrier to obtaining physical information from a thermodynamic
system, after all, as described above, Hawking’s formula (1) shows that black holes can
have negative heat capacity but it is still a central formula in the understanding of black
hole thermodynamics). In contrast for negative Λ there is no cosmological horizon and the
pressure is positive, the thermodynamics is perfectly well defined, so we shall restrict our

considerations here to negative Λ and identify the thermodynamic pressure P = −

Λ

8πG with
the fluid dynamical pressure appearing in Einstein’s equations.

The notion that the cosmological constant should be thought of as a thermodynamic variable
is not new, and its thermodynamic conjugate is often denoted Θ in the literature, [13–21], but
Θ was not given a physical interpretation in these works.

It may seem a little surprising to elevate Λ to the status of a thermodynamic variable. Λ

is usually thought of as a coupling constant in the Einstein action, on the same footing
as Newton’s constant, and it would seem bizarre to think of Newton’s constant as a
thermodynamic variable. However the nature of Λ has long been mysterious [22] and we
should keep an open mind as to its physical interpretation. Indeed in [23] it was argued
that Λ must be included in the pantheon of thermodynamic variables for consistency with
the Smarr relation [24], which is essentially dimensional analysis applied to thermodynamic
functions. Furthermore [23] suggested that, for a black hole embedded in anti-de Sitter (AdS)
space-time, the black hole mass is more correctly interpreted as the enthalpy, H beloved of
chemists, rather than the more traditional internal energy,

M = H(S, P) = U(S, V) + PV. (9)

The PV term in this equation can be though of as the contribution to the mass-energy of the
black hole due the negative energy density of the vacuum, ǫ = −P, associated with a positive
cosmological constant. If the black hole has volume V then it contains energy ǫV = −PV
and so the total energy is U = M − PV.

This interpretation forces us to face up to the definition of the black hole volume. In [23] V
is defined as the volume relative to that of empty AdS space-time: the black hole volume is
the volume excluded from empty AdS when the black hole is introduced. We shall refer to
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4G

√

A

π
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1

4

√

h̄S

παG
(5)

and

T =

∂U

∂S
=

1

8

√

h̄

παGS
=

h̄

32παGM
. (6)

Hawking’s result (1) then fixes the constant of proportionality in (2) to be one quarter.
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C = T
∂S

∂T
= −

h̄G

8πT2
< 0, (7)

is negative.

The first law generalises to electrically charged, rotating black holes as

dU = TdS + ΩdJ + ΦdQ (8)

where J is the angular momentum of the black hole, Ω its angular velocity, and Q the electric
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∫ rh

0 r2dr =
4π

3 r3
h with the black hole. In

fact identifying any function of rh alone with a volume, V(rh), will lead to inconsistencies
in a thermodynamic description since the area, and hence the entropy, is already a function

of rh, S = πr2
h, so any volume V(rh) would be determined purely in terms of the entropy.

The internal energy, U(S, V), should be a function of two variables, so giving V(S) uniquely

Open Questions in Cosmology292
Where Is the PdV in the First Law of Black Hole Thermodynamics? 3

as a specific function of S is liable to lead to inconsistencies. We shall see below how this
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Θ was not given a physical interpretation in these works.

It may seem a little surprising to elevate Λ to the status of a thermodynamic variable. Λ
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and so the total energy is U = M − PV.

This interpretation forces us to face up to the definition of the black hole volume. In [23] V
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this as the ‘geometric volume’ below. Other suggestions for the volume of a black hole have
been made in [25, 26]

An alternative definition of the black-volume is that it is the thermodynamic conjugate of the
pressure, under the Legendre transform (9),

V :=
∂H

∂P
, (10)

which we shall call the ‘thermodynamic volume’.

With the definition of the thermodynamic volume (10) we are in a position to state the
definitive version of the first law of black hole thermodynamics,

dU = TdS + ΩdJ + ΦdQ − PdV (11)

which follows from the Legendre transform of

dM = dH = TdS + ΩdJ + ΦdQ + VdP. (12)

Equation (12), in Θ dΛ notation, appeared in [27].

3. Thermodynamic volume

The suggested definition of the thermodynamic volume (10) must be tested for consistency.
For example, for a non-rotating black hole in four-dimensional space-time, the line element
is given, in Schwarzschild co-ordinates, by,

d2s = − f (r)dt2
+ f−1

(r)dr2
+ r2dΩ

2, (13)

with

f (r) = 1 −
2m

r
−

Λ

3
r2, (14)

and dΩ
2
= dθ2

+ sin2
θdφ2 the solid angle area element.1 The event horizon is defined by

f (rh) = 0,

Λ

3
r3

h − rh + 2m = 0, (15)

but we do not need to solve this equation explicitly in order to analyse (10). We already
know that

S = πr2
h, P = −

Λ

8π
(16)

1 From now on we set G = h̄ = 1 to avoid cluttering formulae.
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and, for negative Λ, the ADM mass is M = m [15], which, following the philosophy of [23],
we identify with the enthalpy, H(S, P). Solving (15) for m immediately yields

m =

rh

2

(

1 −
Λ

3
r2

h

)

, (17)

from which H(S, P) = M = m, with (16), identifies the enthalpy as

H(S, P) =
1

2

(

S

π

)
1
2
(

1 +
8SP

3

)

. (18)

The usual thermodynamic relations can now be used to determine the temperature and the
volume,

T =

(

∂H

∂S

)

P

⇒ T =

1

4

(

1

πS

)
1
2

(1 + 8PS) =
(1 − Λr2

h)

4πrh
(19)

V =

(

∂H

∂P

)

S

⇒ V =

4

3

S
3
2

√

π
=

4πr3
h

3
. (20)

That the resulting thermodynamic volume (for a non-rotating black hole) is identical to
the geometric volume is quite remarkable, but appears co-incidental as this equality no
longer holds for rotating (Kerr-AdS) black holes, as we shall see. It does however hold
for non-rotating black holes in all dimensions [28].

As mentioned in the introduction, equation (20) has a potential problem associated with it,
in that it implies that the volume and the entropy cannot be considered to be independent
thermodynamic variables, S determines V uniquely – they cannot be varied independently
and so V seems redundant. Indeed this may the reason why V was never considered in
the early literature on black hole thermodynamics. But this is an artifact of the non-rotating
approximation, V and S can, and should, be considered to be independent variables for a
rotating black hole.

The line element for a charged rotating black hole in 4-dimensional AdS space is [29]

ds2
= −

∆

ρ2

(

dt −
a sin2

θ

Ξ
dφ

)2

+

ρ2

∆
dr2

+

ρ2

∆θ

dθ
2
+

∆θ sin2
θ

ρ2

(

adt −
r2

+ a2

Ξ
dφ

)2

, (21)

where

∆ =

(r2
+ a2

)(L2
+ r2

)

L2
− 2mr + q2, ∆θ = 1 −

a2

L2
cos2

θ,

ρ
2
= r2

+ a2 cos2
θ, Ξ = 1 −

a2

L2
, (22)

and the cosmological constant is Λ = −

3
L2 = −8πP.
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the geometric volume is quite remarkable, but appears co-incidental as this equality no
longer holds for rotating (Kerr-AdS) black holes, as we shall see. It does however hold
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As mentioned in the introduction, equation (20) has a potential problem associated with it,
in that it implies that the volume and the entropy cannot be considered to be independent
thermodynamic variables, S determines V uniquely – they cannot be varied independently
and so V seems redundant. Indeed this may the reason why V was never considered in
the early literature on black hole thermodynamics. But this is an artifact of the non-rotating
approximation, V and S can, and should, be considered to be independent variables for a
rotating black hole.
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where

∆ =

(r2
+ a2

)(L2
+ r2

)

L2
− 2mr + q2, ∆θ = 1 −
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6 Open Questions in Cosmology

The physical properties of this space-time are well known [15]. The metric parameters m and
q are related to the ADM mass M and the electric charge Q by

M =

m

Ξ2
, Q =

q

Ξ
. (23)

The event horizon, r
+

, lies at the largest root of ∆(r) = 0, so, in terms of geometrical
parameters,

M =

(r2
+
+ a2

)(L2
+ r2

+
) + q2L2

2r
+

L2 Ξ2
(24)

and the area of the event horizon is

A = 4π
r2
+
+ a2

Ξ
, (25)

giving

S = π
r2
+
+ a2

Ξ
. (26)

The angular momentum is J = aM and the relevant thermodynamic angular velocity is

Ω =

a(L2
+ r2

+
)

L2
(r2

+
+ a2

)

. (27)

As explained in [27], Ω here is the difference between the asymptotic angular velocity and
the angular velocity at the black hole outer horizon.

The electrostatic potential, again the difference between the potential at infinity and at the
horizon, is

Φ =

qr
+

r2
+
+ a2

. (28)

To determine the thermodynamic properties, M must be expressed in terms of S, J, Q and P
(or, equivalently, L). This was done in [27] and the result is

H(S, P, J, Q) :=
1

2

√

√

√

√

(

S + πQ2
+

8PS2

3

)2
+ 4π2

(

1 + 8PS
3

)

J2

πS
. (29)

This generalises the Christodoulou-Ruffini formula [5, 6] for the mass of a rotating black hole
in terms of its irreducible mass, Mirr. (The irreducible mass for a black hole with entropy S

is the mass of a Schwarzschild black hole with the same entropy, M2
irr =

S
4π

).

Open Questions in Cosmology296
Where Is the PdV in the First Law of Black Hole Thermodynamics? 7

The temperature follows from

T =

∂H

∂S

∣

∣

∣

∣

J,Q,P

=

1

8πH

[

(

1 +
πQ2

S
+

8PS

3

)(

1 −
πQ2

S
+ 8PS

)

− 4π
2

(

J

S

)2
]

, (30)

from which we immediately see that T ≥ 0 requires

J2
≤

S2

4π2

(

1 +
πQ2

S
+

8PS

3

)(

1 −
πQ2

S
+ 8PS

)

. (31)

The maximum angular momentum,

|Jmax| =
S

2π

√

(

1 +
πQ2

S
+

8PS

3

)(

1 −
πQ2

S
+ 8PS

)

, (32)

is associated with an extremal black hole.

From (10) and (29) the thermodynamic volume is [30]

V =

∂H

∂P

∣

∣

∣

∣

S,J,Q

=

2

3πH

[

S

(

S + πQ2
+

8PS2

3

)

+ 2π
2 J2

]

, (33)

which is manifestly positive.

The angular velocity and the electric potential also follow from (29) via

Ω =

∂H

∂J

∣

∣

∣

∣

S,Q,P

=

4π2 J
(

1 + 8PS
3

)

2H
√

πS
(34)

and

Φ =

∂H

∂Q

∣

∣

∣

∣

S,J,P

=

2πQ
(

S + πQ2
+

8PS2

3

)

2H
√

πS
. (35)

The Smarr relation follows from (29), (30), (33), (34) and (35), namely

H

2
+ PV − ST − JΩ −

QΦ

2
= 0, (36)

from which it is clear that the PV-term must be included for consistency, as pointed out in
[23].
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S
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)
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3
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3πH
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3
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∣
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=

4π2 J
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3
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√
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and

Φ =
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∣

∣

∣
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=
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(
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+

8PS2

3

)

2H
√

πS
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The Smarr relation follows from (29), (30), (33), (34) and (35), namely

H

2
+ PV − ST − JΩ −

QΦ

2
= 0, (36)

from which it is clear that the PV-term must be included for consistency, as pointed out in
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It is clear from (33) that, in general, V is a function of all the four independent
thermodynamical variables, S, P, J and Q, but for the limiting case J = 0,

V =

4

3

S
3
2

√

π
, (37)

is determined purely in terms of S alone, independent of both P and Q. Thus, as explained in

the introduction, V and S cannot be viewed as thermodynamically independent variables as

J → 0, rendering the description in terms of the thermodynamic potential U(S, J) impossible

in this limit.

Expressing the thermodynamic volume (33) in terms of geometrical variables one gets [30]

V =

2π

3

{

(r2
+
+ a2

)

(

2r2
+

L2
+ a2L2

− r2
+

a2
)

+ L2q2a2

L2Ξ2 r
+

}

. (38)

Given that the area of the event horizon is

A = 4π
r2
+
+ a2

Ξ
(39)

then, if we define a naïve volume

V0 :=
r
+

A

3
=

4π

3

r
+
(r2

+
+ a2

)

Ξ
, (40)

equations (24) and (38) give

V = V0 +
4πa2 M

3
= V0 +

4π

3

J2

M
, (41)

a formula first derived in [31]. As pointed out in that reference, equation (40) implies that
the surface to volume ratio of a black hole is always less than that of a sphere with radius
r
+

in Euclidean geometry. This is the opposite of our usual intuition that a sphere has
the smallest surface to volume ratio of any closed surface — the isoperimetric inequality of
Euclidean geometry. Thus the surface to volume ratio of a black hole satisfies the reverse
of the usual isoperimetric inequality (a similar result holds in higher dimensions [31]). At
least this seems to be the case if quantum gravity effects are not taken into account. In one
case where quantum gravity corrections can be calculated using the techniques in [32] , the
three-dimensional Bañados–Zanelli–Teitelboim (BTZ) black hole [33], they tend to reduce
the black hole volume [28] so it seems possible that quantum gravity effects may affect the
reverse isoperimetric inequality.
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4. The First Law

To examine the consequences of the PdV term in the first law we need to perform a Legendre
transform on the enthalpy to obtain the internal energy U(S, V, J, Q) from U = H − PV. We
first write the enthalpy (29) in the form

H =

√

a + bP + cP2, (42)

where

a :=
π

S

{

1

4

(

S

π
+ Q2

)2

+ J2

}

b :=
4π

3

{

S

π

(

S

π
+ Q2

)

+ 2J2

}

(43)

c :=

(

4π

3

)2 ( S

π

)3

.

Note that the discriminant,

b2
− 4ac =

64π2

9
J2

(

J2
+

SQ2

π

)

, (44)

is positive.

Now

V =

∂H

∂P

∣

∣

∣

∣

S,J,Q

=

b + 2cP

2H
⇒ P =

2HV − b

2c
. (45)

This allows us to re-express H as a function of V,

H =

1

2

√

b2
− 4ac

V2
− c

. (46)

We can immediately conclude that

V2
≥ c =

(

4π

3

)2 ( S

π

)3

, (47)

with equality only when
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It is clear from (33) that, in general, V is a function of all the four independent
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M
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a formula first derived in [31]. As pointed out in that reference, equation (40) implies that
the surface to volume ratio of a black hole is always less than that of a sphere with radius
r
+

in Euclidean geometry. This is the opposite of our usual intuition that a sphere has
the smallest surface to volume ratio of any closed surface — the isoperimetric inequality of
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reverse isoperimetric inequality.
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4. The First Law
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i.e. when J = 0.

It is now straightforward to determine

U = H − PV = H −

�

HV2

c
−

bV

2c

�

=

bV

2c
−

�

�

V2
− c

��

b2
− 4ac

�

2c
, (49)

which immediately gives

U(S, V, J, Q) =

�

π

S

�3









�

3V

4π

���

S

2π

��

S

π
+ Q2

�

+ J2

�

(50)

−|J|

�

�

3V

4π

�2

−

�

S

π

�3
�

1
2 �

SQ2

π
+ J2

�

1
2



 .

Note the subtlety in the J → 0 limit, (50) is not differentiable at J = 0 unless

�3V

4π

�2
=

� S

π

�3
(51)

there.

Equation (50) can now be used to study the efficiency of a Penrose process. If a black hole
has initial mass Mi, with internal energy Ui, and is taken through a quasi-static series of
thermodynamic steps to a state with final internal energy Uf , then energy can be extracted if
Uf < Ui. This is the thermodynamic description of a Penrose process [4] and the efficiency
is

η =

Ui − Uf

Mi
. (52)

We can determine the maximum efficiency for a process at constant P by first expressing U
in (50) in terms of S, P, J and Q:

U =

�

S + πQ2
� �

S + πQ2
+

8PS2

3

�

+ 4π2
�

1 + 4PS
3

�

J2

2

�

πS

�

�

S + πQ2
+

8PS2

3

�2
+ 4π2

�

1 + 8PS
3

�

J2

�

, (53)

which is manifestly positive.

For simplicity consider first the Q = 0 case, for which

dU = TdS + ΩdJ − PdV. (54)
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The work extracted at any infinitesimal step is

dW = −dU = −TdS − ΩdJ + PdV (55)

and, since dS ≥ 0, this is maximised in an isentropic process dS = 0. Now with Q = 0 and S
and P held constant, the internal energy in equation (53) can be thought of as a function of
J only, U(J). The greatest efficiency is then obtained by starting with an extremal black hole
and reducing the angular momentum from Jmax to zero, it is given by

ηext =
U(Jmax)− U(0)

H(Jmax)
(56)

where H(Jmax) = Mext is the initial extremal mass. One finds

ηext =
1 + 2PS

1 + 4PS
−

1
√

2 + 8PS

3

(3 + 8PS)
. (57)

In asymptotically flat space, Λ = 0, we set P = 0 in ηext and obtain the famous result [9]

ηext = 1 −
1
√

2
≈ 0.2929. (58)

More generally, ηext is a maximum for SP = 1.837 . . . (obtained by solving a quartic equation)
and attains there the value 0.5184 . . . . Thus turning on a negative cosmological constant
increases the efficiency of a Penrose process, as first observed in [30].

What is happening here is that, as |J| decreases (giving a positive contribution to dW) the
volume decreases, which actually tends to decrease the work done because of the PdV term
in (55). But when P > 0, the extremal value |Jmax| in (32) is increased, which more than
compensates, and overall ηext is increased.

For a charged black hole the internal energy is a function of J and Q for an isobaric isentropic
process, U(J, Q). The requirement J2

max ≥ 0 in (32) imposes the constraint

Q2
≤ Q2

max =

(

S

π

)

(1 + 8PS) (59)

on the charge. The greatest efficiency is achieved starting from an extremal black hole with
Q2

= Q2
max and reducing both J and Q to zero in the final state,

ηext =
U(Jmax, Qmax)− J(0, 0)

H(Jmax, Qmax)
=

3

2

(

1 + 8PS

3 + 16PS

)

, (60)

with H(Jmax, Qmax) the initial extremal mass, Mext. For large S efficiencies of up to 75% are
possible [30], which should be compared to 50% in the Λ = 0 case, [9].
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5. Critical behaviour

With knowledge of both H and U general questions concerning the heat capacity of black

holes can be addressed. The heat capacity at constant volume, CV = T/
(

∂T

∂S

)

V,J,Q
, tends to

zero when J = 0, though CV can be non-zero for J �= 0 it does not diverge. For comparison

the heat capacity at constant pressure, CP = T/
(

∂T

∂S

)

P,J,Q
, CP vanishes when T = 0 and

diverges when ∂T

∂S
=0.

A full stability analysis was given in [27] and there are both local and global phase transitions.
Local stability can be explored visually, by plotting thermodynamic functions, or analytically,
examining the curvature of the derivatives of thermodynamics functions.

5.1. Q = 0

Let us first focus on the Q = 0 case. The blue (lower) curve in the figure below shows the
locus of points where CP diverges in the J − S plane, it is given by setting the denominator
of CP,

144 (π JP)
4
(9+32 SP)+24 (πPJ)

2
(PS)

2
(3+16 SP)(3+8 SP)

2
−(PS)

4
(1−8 SP)(3+8 SP)

3 (61)

to zero. The red (upper) curve is the T = 0 locus, all points above and left of this curve are
unphysical as T < 0 in this region.

Figure 1. T = 0 and CP → ∞ curves in J − S plane.

There is also a global phase transition, not shown in the figure, when the free energy
of pure AdS is lower than that of a black hole in asymptotically AdS space-time, the
famous Hawking-Page phase transition [34]. We shall focus on the second order local phase
transition here and examine its critical properties.

In general, at fixed P and J, there are two values of S at which CP diverges, and there is a
critical point where these two values coalesce into one, the maximum of the lower curve in
figure 1. This critical point was first identified in [27]. On purely dimensional grounds PCP
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can be expressed as a function of PS and PJ and the critical point can be found analytically,
by solving a cubic equation, but the explicit form is not very illuminating. Numerically it lies
at

(PS)crit ≈ 0.08204, (PJ)crit ≈ 0.002857. (62)

The critical temperature is obtained from (30), with Q = 0,

(

T
√

P

)

crit

≈ 0.7811 (63)

and the critical volume likewise from (33)

(

VP3/2
)

crit
≈ 0.01768 (64)

(the authors of [27] fix P =
3

8π
≈ 0.1194, corresponding to L = 1, and find a critical value of

J at Jc ≈ 0.0236).

The equation of state cannot be obtained analytically, but its properties near the critical point
can be explored by a series expansion and critical exponents extracted. Define the reduced
temperature and volume as

t =
T − Tc

Tc
v =

V − Vc

Vc
. (65)

It is convenient to expand around the critical point using

p := 16π

(

PJ − (PJ)crit

)

(66)

and

q := 8
(

PS − (PS)crit

)

. (67)

Expanding the temperature (30) around the critical point, with Q set to zero, gives

t = 2.881 p + 2.201 pq + 0.3436 q3
+ o(p2, pq2, q4

). (68)

while similar expansion of the thermodynamic volume (33) yields

v = −10.44 p + 2.284 q + o(p2, pq, q2
). (69)

For a given fixed J > 0, p is the deviation from critical pressure in units of 1/(16π J), but one
must be aware that this interpretation precludes taking the J → 0 limit in this formulation.
Bearing this in mind, (68) and (69) give the J > 0, Q = 0 equation of state parametrically in
terms of q. Eliminating q one arrives at

p = 0.3472 t − 0.1161 tv − 0.02883 v3
+ o(t2, tv2, v4

). (70)
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The critical exponent α is defined by

CV ∝ t−α (71)

and, since as already stated, CV does not diverge at t = 0, α = 0. To see this explicitly note

that CV = T/ ∂T
∂S

∣

∣

V
and

∂T

∂S

∣

∣

∣

∣

V

=

∂T

∂S

∣

∣

∣

∣

P

+

∂T

∂P

∣

∣

∣

∣

S

∂P

∂S

∣

∣

∣

∣

V

= Tc

(

∂t

∂S

∣

∣

∣

∣

P

+

∂t

∂P

∣

∣

∣

∣

S

∂P

∂S

∣

∣

∣

∣

V

)

. (72)

Now, near the critical point, (68) gives

∂t

∂S

∣

∣

∣

∣

P

= 8P
∂t

∂q

∣

∣

∣

∣

p

= o(p, q2
), (73)

∂t

∂P

∣

∣

∣

∣

S

= 8S
∂t

∂q

∣

∣

∣

∣

p

+ 16π J
∂t

∂p

∣

∣

∣

∣

q

= 2.881(16π J) + o(p, q), (74)

while (69) implies dp = 0.2188 d q for constant v, from which is follows that ∂P
∂S

∣

∣

∣

V
is non-zero

at the critical point, hence ∂T
∂S

∣

∣

∣

V
does not vanish at the critical point and so α = 0.

The exponent β is defined by

v> − v< = |t|β (75)

where v> is the greater volume and v< the lesser volume across the phase transition, at
constant pressure, when t < 0 (v< is negative, since v = 0 at the critical point).

Keeping p and t constant in (70) implies that

p
∫ v>

v<
dv = 0.3742 t

∫ v>

v<
dv −

∫ v>

v<

(

0.1161 tv + 0.02883 v3
)

dv. (76)

Allowing for the area of the rectangle in figure 3, namely 0.3742 |t|(v> − v<), Maxwell’s
equal area law then requires

∫ v>

v<

(

0.1161 tv + 0.02883 v3
)

dv = 0 ⇒ |t| ∝ (v2
>
+ v2

<
). (77)

It is clear from the figure that v> − v< ≫ v> + v< so

(v2
>
+ v2

<
) =

1

2

(

(v> − v<)
2
+ (v> + v<)

2
)

≈

1

2
(v> − v<)

2 (78)

giving
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Figure 2. Construction associated with Maxwell’s equal area law.

|t| ∝ (v> − v<)
2 (79)

and β =
1
2 .

The critical exponent γ is related to the isothermal compressibility,

κT = −

1

V

(

∂V

∂P

)

T,J

= −

1

V

(

∂V

∂P

)

S,J

−

(

∂V

∂S

)

P,J

(

∂T
∂P

)

S,J
(

∂T
∂S

)

P,J

(80)

which diverges along the same curve as CP does (the adiabatic compression, κS =

−

1
V

(

∂V
∂P

)

S,J
, is everywhere finite — see equation (92)). γ gives the divergence of the

isothermal compressibility near the critical point,

κT ∝ t−γ. (81)

γ can be found by expanding the denominator of CP in (61) around the critical point, but a
quicker method, since we have the equation of state, is to differentiate (70) with respect to v,
keeping t constant, giving

∂p

∂v

∣

∣

∣

∣

t

∝ −t, (82)
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and, since as already stated, CV does not diverge at t = 0, α = 0. To see this explicitly note
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Now, near the critical point, (68) gives
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while (69) implies dp = 0.2188 d q for constant v, from which is follows that ∂P
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at the critical point, hence ∂T
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does not vanish at the critical point and so α = 0.

The exponent β is defined by

v> − v< = |t|β (75)

where v> is the greater volume and v< the lesser volume across the phase transition, at
constant pressure, when t < 0 (v< is negative, since v = 0 at the critical point).
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Allowing for the area of the rectangle in figure 3, namely 0.3742 |t|(v> − v<), Maxwell’s
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giving
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Figure 2. Construction associated with Maxwell’s equal area law.

|t| ∝ (v> − v<)
2 (79)

and β =
1
2 .

The critical exponent γ is related to the isothermal compressibility,
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which diverges along the same curve as CP does (the adiabatic compression, κS =

−

1
V

(

∂V
∂P

)

S,J
, is everywhere finite — see equation (92)). γ gives the divergence of the

isothermal compressibility near the critical point,

κT ∝ t−γ. (81)

γ can be found by expanding the denominator of CP in (61) around the critical point, but a
quicker method, since we have the equation of state, is to differentiate (70) with respect to v,
keeping t constant, giving
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hence

κT ∝ −

∂v

∂p
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(83)

and γ = 1.

Lastly setting t = 0 in (70) we see that

|p| ∝ |v|δ (84)

with δ = 3, again the mean field result.

To summarise, the critical exponents are

α = 0, β =

1

2
, γ = 1, δ = 3. (85)

These are the same critical exponents as the Van der Waals fluid and, more importantly, are
mean field exponents. The same critical exponents have been found using a virial expansion
in [50].

It was first pointed in [35, 36] that a non-rotating, charged black hole has a critical point
of the same nature as that of of a Van der Waals fluid, and the critical exponents for the
black hole phase transition in this case were calculated in [37] and verified to be mean field
exponents, which are indeed the those of a Van der Waals fluid. A similarity between the
neutral rotating black hole and the Van der Waals phase transition was first pointed out in
[27] and further explored in [30].

The critical point can be visualised by plotting the Gibbs free energy

G(T, P, J) = H(S, P, J)− TS, (86)

for J = 1 and Q = 0, as a function of P and T as in figure 3. We see the “swallow-tail
catastrophe” that is typical of the Van der Waals phase transition [38].

This structure is a straightforward consequence of Landau theory, [39]. Near the critical point
the Landau free energy is

L(T, P, v) = G(T, P) + A
{

(p − Bt)v + Ctv2
+ Dv4

}

+ . . . , (87)

where G(T, P) is the Gibbs free energy and A, B, C and D are positive constants (for
simplicity the constant J is not made explicit). As stressed in [40] L is not strictly speaking a
thermodynamic function as it depends on three variables, p, t and v instead of two: v is to
be determined in terms of p and t by extremising L to obtain the equation of state.
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Figure 3. Gibbs free energy as a function of pressure and temperature, at fixed angular momentum.

For notational convenience equation (87) can be written, for fixed p and t, as

L = a + bv + cv2
+ v4 (88)

where a, b and c need not be positive and L →

1
AD L has been rescaled by a trivial positive

constant. We are to think of b and c are control parameters that can be varied by varying p
and t.

Extremising (88) with respect to v determines the value of v in terms of b and c through

b = −2cv − 4v3. (89)

Using this in L leads to

L = a − cv2
− 3v4. (90)

Equations (89) and (90) together give L(a, b, c) implicitly: a parametric plot of L(b, c), for
any fixed a, reveals a characteristic “swallow-tail catastrophe” structure. With hindsight the
swallow-tail structure is clear: in the A − D − E classification of critical points of functions,
[41], (88) has three control parameters and is derived from type A4 in Arnold’s classification.
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5.2. Q �= 0

The above structure was first found in AdS black hole thermodynamics in the charged J = 0

case [35, 36], where the equation of state can be found exactly and the critical exponents can

be determined [37]. When both J and Q are non-zero an analytic analysis is much more

difficult, for example finding the zero locus of the denominator of CP requires solving a

quintic equation. However numerical studies show that for a charged rotating black hole,

as long as the charge is below the extremal value, the picture is qualitatively the same: the

critical exponents are the same, the Landau free energy is still related to type A4 and the

Gibbs free energy still takes on a characteristic swallow-tail shape. For fixed values of J and

Q, not both zero, all that changes is the numerical value of the co-efficients in equations (68),

(69) and (70) or, equivalently the numerical values of the constants A, B, C and D in (87). As

long as none of these constants actually changes sign the nature of the critical point does not

change and the critical exponents are the same.

6. Compressibility and the speed of sound

In the previous section, the nature of the singularity in the isothermal compressibility near
the critical point was discussed, but the adiabatic compressibility

κS = −

1

V

(

∂V

∂P

)

T,J,Q

(91)

is also of interest, and this was studied in [42] on which most of this section is based. From
(10) one finds, setting Q = 0 for simplicity, that

κS =

36(2π J)4S

(3 + 8PS)
{

(3 + 8PS)S2
+ (2π J)2

}{

2(3 + 8PS)S2
+ 3(2π J)2

} . (92)

This is finite at the critical point, indeed it never diverges for any finite values of S, P and
J, and it vanishes as J → 0: non-rotating black holes are completely incompressible. Black
holes are maximally compressible in the extremal case T = 0, when J = Jmax in (32),

κS|T=0 =

2 S (1 + 8PS)2

(3 + 8PS)2
(1 + 4PS)

. (93)

A speed of sound, cS, can also be associated with the black hole, in the usual thermodynamic
sense that

c−2
S =

∂ρ

∂P

∣

∣

∣

∣

S,J

= 1 + ρ κS = 1 +
9 (2π J)4

{2(3 + 8PS)S2
+ 3 (2π J)2

}

2
, (94)
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where ρ =
M
V is the density. cS is unity for incompressible non-rotating black holes and is

lowest for extremal black holes in which case

c−2
S

∣

∣

∣

T=0
= 1 +

(

1 + 8PS

3 + 8PS

)2

. (95)

giving c2
S = 0.9 (in units with c = 1) when P = 0. In the limiting case PS → ∞, c2

S achieves a
minimum value of 1/2.

These results show that the equation of state is very stiff for adiabatic variations of
non-rotating black holes and gets softer as J increases. For comparison, the adiabatic
compressibility of a degenerate gas of N relativistic neutrons in a volume V at zero
temperature follows from the degeneracy pressure

Pdeg = (3π
2
)

1
3

ch̄

4

(

V

N

)

−

4
3

⇒ κS =

3

4Pdeg
. (96)

For a neutron star N
V ≈ 1045 m−3 and κS ≈ 10−34 kg−1 m s2. With zero cosmological constant

the black hole adiabatic compressibility at zero temperature is given by (93) with P = 0,

κS|T=P=0 =

2S

9
=

4πM2G3

9 c8
, (97)

where the relevant factors of c and G are included, and the entropy has been set to the
extremum value of 2πM. Putting in the numbers

κS|T=0 = 2.6 × 10−38

(

M

M
⊙

)2

kg−1 m s2, (98)

which is four orders of magnitude less than that of a solar-mass neutron star. We conclude
that the zero temperature black hole equation of state, although “softer” than that of a
non-rotating black hole, is still very much stiffer than that of a neutron star.

The “softest” compressibility for a neutral black hole however is the isothermal
compressibility: for an extremal black hole

κT

∣

∣

T=0
=

2S
(

11 + 80PS + 128(PS)2
)

(1 + 4PS)
(

3 + 48PS + 128(PS)2
) −→

P→0

22 S

3
, (99)

some 33 times larger than κS

∣

∣

T=P=0
in (97), but still much larger than degenerate matter in a

solar-mass neutron star.
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7. Open questions

The obvious open question arising from the ideas presented here is: what about Λ > 0?

The analysis of critical behaviour in §5 is only valid for Λ < 0, this critical point lies deep
in the region P > 0 and does not appear to be of any relevance to astrophysical situations.
It is certainly of interest in the AdS-CFT correspondence [43] but the particular analysis of
§5, being in 1 + 3-dimensions could only be relevant to 2 + 1-dimensional conformal field
theory, which is of course of interest in its own right [44]. Of course one could perform a
similar analysis for 4 + 1-dimensional, or yet higher dimensional black holes, to try and gain
insight into higher dimensional conformal field theory, and indeed this seems to have been
the motivation in [31, 35, 36], but these ideas are not the focus of this volume and will not be
pursued here.

The thermodynamics of black holes in de Sitter space-time is a notoriously difficult problem
[17, 20, 45–48] as there are two event horizons and no “asymptotically de Sitter” region inside
the cosmological horizon. Even with no black hole, a naïve interpretation of the cosmological
horizon implies that the transition from Λ = 0 to any infinitesimally small Λ > 0 appears
to involve a discontinuous jump from zero to infinite entropy, at least if one associates the
usual Hawking-Bekenstein entropy with the cosmological horizon when Λ > 0.

Nevertheless it is argued in [45] that a consistent strategy is to fix the relevant components
of the metric at the cosmological horizon, rather than at spacial infinity as would be done in
asymptotically flat or AdS space-time. When that is done the same expression for the ADM
mass (24) is obtained, but with L2

→ −L2, so Ξ > 1 while the angular momentum is still
given by J = aM. In this picture, all of the formulae in §3 are applicable for positive Λ and
negative P, provided P is not too negative. If Λ is too large the black hole horizon and the
cosmological horizon coincide and demanding that this does not happen puts a lower bound
on P, for any fixed S, J and Q: with Q = 0, for example, this requirement constrains P to

P >

√

S2
+ 12π J2

− 2S

8S
. (100)

Provided P lies above this lower bound we can analytically continue (29) to negative P, with
the understanding that S is the entropy of the black hole event horizon only and does not
include any contribution from the cosmological horizon.

Of course P < 0 is thermodynamically unstable, but it can be argued, in some circumstances
at least, that positive pressures can be analytically continued to negative pressures [12, 39],
and in a cosmological context there can now be little doubt that P < 0. Adopting the
strategy of [45] the maximal efficiency of a rotating black hole in de Sitter space will be less
than in the Λ = 0 case, based on simply changing the sign of Λ in §4, and the zero charge
efficiency vanishes when the black hole horizon and the cosmological horizon coincide at
PS = −

1
8 . Any such deviation from the Λ = 0 case will however be completely negligible for

astrophysical black holes around one solar mass and the observed value of Λ, but it could be
more significant during periods of inflation when Λ was larger.

It has been suggested that primordial black-holes may have formed in the early Universe [49]
and, if this is the case and if they formed in sufficient numbers at any stage, then one should
model the primordial gas as containing a distribution of highly incompressible black holes,
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like beads in a gas. These would certainly be expected to affect the overall compressibility of
the gas as well as the speed of sound through the gas. In a radiation dominated Universe,
ignoring the matter density, the speed of sound in the photon gas would be given by

c−2
γ =

∂ǫ

∂P

∣

∣

∣

∣

S

= 3c−2, (101)

where ǫ is the energy density (essentially since the equation of state is P =
1
3 ǫ) so cγ = 0.577 c.

Since the speed of sound associated with the embedded black hole “beads” is cS ≥

√

0.9 c =
0.9487 c the presence of a significant density of primordial black holes would expected to
affect speed of sound in the photon gas and thus affect the dynamics.

Figure 4. The speed of sound for an electrically neutral, extremal, black hole (with c = 1).

The square of the speed of sound for an extremal electrically neutral black hole is plotted in
figure 4, for PS > −1/8. For comparison the asymptotic value (c2

S = 1/2 for PS → ∞) and

the speed of sound in a thermal gas of photons (c2
γ = 1/3) are also shown.

8. Conclusions

In conclusion there are strong reasons to believe that the cosmological constant should
be included in the laws of black hole thermodynamics as a thermodynamic variable,
proportional to the pressure of ordinary thermodynamics. The conjugate variable is a
thermodynamic volume (10) and the complete first law of black hole thermodynamics is
now (8),
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and in a cosmological context there can now be little doubt that P < 0. Adopting the
strategy of [45] the maximal efficiency of a rotating black hole in de Sitter space will be less
than in the Λ = 0 case, based on simply changing the sign of Λ in §4, and the zero charge
efficiency vanishes when the black hole horizon and the cosmological horizon coincide at
PS = −

1
8 . Any such deviation from the Λ = 0 case will however be completely negligible for

astrophysical black holes around one solar mass and the observed value of Λ, but it could be
more significant during periods of inflation when Λ was larger.

It has been suggested that primordial black-holes may have formed in the early Universe [49]
and, if this is the case and if they formed in sufficient numbers at any stage, then one should
model the primordial gas as containing a distribution of highly incompressible black holes,
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like beads in a gas. These would certainly be expected to affect the overall compressibility of
the gas as well as the speed of sound through the gas. In a radiation dominated Universe,
ignoring the matter density, the speed of sound in the photon gas would be given by

c−2
γ =

∂ǫ

∂P

∣

∣

∣

∣

S

= 3c−2, (101)

where ǫ is the energy density (essentially since the equation of state is P =
1
3 ǫ) so cγ = 0.577 c.

Since the speed of sound associated with the embedded black hole “beads” is cS ≥

√

0.9 c =
0.9487 c the presence of a significant density of primordial black holes would expected to
affect speed of sound in the photon gas and thus affect the dynamics.

Figure 4. The speed of sound for an electrically neutral, extremal, black hole (with c = 1).

The square of the speed of sound for an extremal electrically neutral black hole is plotted in
figure 4, for PS > −1/8. For comparison the asymptotic value (c2

S = 1/2 for PS → ∞) and

the speed of sound in a thermal gas of photons (c2
γ = 1/3) are also shown.

8. Conclusions

In conclusion there are strong reasons to believe that the cosmological constant should
be included in the laws of black hole thermodynamics as a thermodynamic variable,
proportional to the pressure of ordinary thermodynamics. The conjugate variable is a
thermodynamic volume (10) and the complete first law of black hole thermodynamics is
now (8),
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dU = TdS + ΩdJ + ΦdQ − PdV. (102)

With this interpretation the ADM mass of the black hole is identified with the enthalpy

M = H(S, P, J, Q) = U(S, V, J, Q) + PV (103)

rather than the internal energy, U, of the system.

The inclusion of this extra term increases the maximal efficiency of a Penrose process: for a
neutral black hole in asymptotically anti-de Sitter space the maximal efficiency is increased
from 0.2929 in asymptotically flat space to 0.5184 in the asymptotically AdS case. For a
charged black hole the efficiency can be as high as 75%. A positive cosmological constant
is expected to reduce the efficiency of a Penrose process below the asymptotically flat space
value.

This point of view makes the relation between asymptotically AdS black holes and the Van
der Waals gas, first found in [35, 36], even closer as there is now a critical volume associated
with the critical point. The thermodynamic volume then plays the rôle of an order parameter
for this phase transition and the critical exponents take the mean field values,

α = 0, β =

1

2
, γ = 1, δ = 3. (104)

While there is no second order phase transition for a black hole in de Sitter space, there
are other possible physical effects of including the PdV term in the first law. The adiabatic
compressibility can be calculated (93) and the speed of sound for such a black hole (95) is
greater even than that of a photon gas and approaches c when PS = −1/8.

Despite much progress the thermodynamics of black holes in de Sitter space-time is still very
poorly understood and no doubt much still remains to be discovered.
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Chapter 13

Plasma Vortices in Planetary Wakes

H. Pérez-de-Tejada, Rickard Lundin and
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Additional information is available at the end of the chapter
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1. Introduction

Measurements conducted in interplanetary space and in the vicinity of planets of the solar
system have shown plasma structures produced by the solar wind that resemble fluid dy‐
namic features; namely, vortex rotations within the earth´s magnetosphere and also along
the Venus wake. In both planets the solar wind encounters different obstacles since the earth
is protected by its intrinsic magnetic field that is compressed by the dynamic pressure of the
solar wind to form a large size cavity (the magnetosphere) that bounds its direct approach to
the earth´s vicinity. At Venus the conditions are different since the planet does not have an
internal magnetization that would produce an earth-type magnetic obstacle to the solar
wind. Instead, the latter reaches directly upon the upper layers of the planet´s atmosphere
and interacts with its ionized components (the ionosphere). The outcome of this interaction
is a plasma wake of large extent whose geometry is similar to that of the earth´s magneto‐
spheric tail but that arises from conditions that are different in both planets. While there is
evidence for the observation of fluid-like vortices as the solar wind streams along the wake
of the earth and Venus there is a major issue as to the manner in which they are produced.
In fact, since the solar wind is a collisionless plasma; namely its charged particles barely exe‐
cute collisions among them (their mean free path is comparable to one astronomical unit) it
should not be expected that it behaves as a continuum when it interacts with planetary ob‐
stacles. The opposite has been verified by a variety of observations with indications that the
physical properties of both the solar wind fluxes and the planetary particles that are being
eroded through their interaction can be described in terms of fluid dynamic processes (a re‐
view of this issue was presented by Pérez-de-Tejada, 2012).

The motion of the solar wind particles as they interact with the earth´s magnetic field is de‐
scribed in terms of gyromagnetic trajectories as they move across the magnetic field lines.

© 2012 Pérez-de-Tejada et al.; licensee InTech. This is an open access article distributed under the terms of
the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

© 2012 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons 
Attribution License http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, 
and reproduction in any medium, provided the original work is properly cited.
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Their circular (Larmor) motion is influenced by local drift displacements that are produced
by space gradients of the magnetic field intensity and that carry them along the boundary of
the magnetosphere. Such process also occurs while there are local electric currents produced
by the different drift of the positive (mostly proton) and negative (electron) components of
the solar wind. Throughout the front part (dayside) of the magnetosphere the motion of
those particles is directed by magnetic (Lorentz) forces which guide them along the magnet‐
ic field lines in an environment where the local magnetic energy density is larger than their
kinetic energy density (Under such conditions the transport speed of magnetic signals, i.e.
the Alfven speed, is larger than the particles´ speed and the flow is labeled subalfvenic). The
gyrotropic motion of the solar wind particles as they encounter the earth´s magnetic field
provides a mechanism that leads to a continuum transport of their properties despite the
fact that they do not collide with each other. Alternate conditions are encountered along the
magnetospheric tail where the magnetic field intensity has decreased significantly with the
downstream distance from the earth and the speed of the solar wind particles has increased
to nearly its freestream values (the local flow is expected to achieve superalfvenic condi‐
tions). Data that will be addressed below show the presence of vortical plasma structures
within the magnetospheric tail and that reveal effects that can be related to Kelvin-Helm‐
holtz instabilities (Wolfe et al., 1980: Terada et al:, 2002) associated to a fluid dynamic re‐
sponse in their motion rather than to trajectories directed by the magnetic field.

The overall manner in which the solar wind responds as it interacts with the Venus iono‐
sphere is different since in the absence of an intrinsic planetary magnetization its particles
reach the ionospheric plasma and, at the same time, also encounter ions that are located in
the outer exosphere of the planet. Thus, the solar wind particles do not enter a region domi‐
nated by an intrinsic planetary magnetic field where they would be guided to carry out gy‐
romagnetic trajectories as it is the case in the earth´s magnetosphere. Instead, the processes
produced as a result of their interaction with the planetary ions are more complex since the
latter ions are accelerated by a (convective) electric field that derives from the relative veloci‐
ty difference that exists between them and the solar wind (the planetary oxygen ions of the
Venus exosphere are subject to the effects of that electric field). The result of that process is
labeled mass loading and leads the planetary ions to execute gyromagnetic trajectories as
they travel through the solar wind and its convected solar magnetic field. The magnetic field
intensity of the solar wind becomes enhanced around the upper boundary of the dayside
ionosphere (ionopause) in a layer labeled °magnetic barrier° that is produced by the solar
wind – ionosphere interaction. Despite the acceleration of the exospheric planetary ions by
the solar wind measurements show that the bulk of the solar wind momentum is mostly
transferred to the upper Venus ionosphere where it strongly contributes to produce the
nightward directed trans-terminator flow inferred from the Pioneer Venus Orbiter (PVO)
data that was reported by Knudsen et al., (1980).

Processes associated with this effect are different from those expected in gyrotropic trajecto‐
ries since they lead to the observation of vortical plasma structures in the near Venus wake
associated with superalfvenic flow conditions (the kinetic energy density of the plasma be‐
ing larger than the local magnetic energy density). The origin of the continuum response of
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the solar wind as it streams around and behind Venus does not seem to be only related to
gyromagnetic trajectories but to a fluid-like behavior generated by other particle motions.
Strong magnetic and plasma turbulence that has been inferred from different spacecraft
measurements (Bridge et al., 1967; Vőrős et al., 2008) suggest that the motion of the particles
may be dictated by local turbulence which should lead to a stochastic distribution of their
trajectories. It is possible that wave-particle interactions may be ultimately responsible for
the fluid-like character of the solar wind interaction with planetary ionospheres and the gen‐
eration of plasma and magnetic vortical structures as those reported by Pope et al., (2009)
from the Venus Express measurements.

2. Plasma vortices in the earth´s magnetosphere

Measurements conducted with various spacecraft that have probed the earth´s magneto‐
spheric tail have shown that the plasma flow that streams within that region of space exhib‐
its changes in its direction of motion that are suggestive of vortical structures. From the
analysis of plasma data first obtained with the International Sun Earth Explorer (ISEE) satel‐
lites and more recently with the Cluster spacecrafts it has been possible to derive that there
are regions along the tail direction of the magnetosphere where the plasma exhibits a sense
of rotation (clockwise in the morning sector of the magnetosphere and counter clockwise in
the evening sector both viewed from above the ecliptic plane) which suggests a wave mo‐
tion that in some instances leads to vortical structures that move tailward with a speed of
300-400 km/s. The inferred features have a scale size of several earth radii nearly comparable
to the width of the magnetospheric tail and it has been inferred that their rotation period is
of the order of 5-20 min (Hones et al. 1978; 1981; 1983). The vortex structures form part of a
wave which has a several earth radii wavelength and that increases downstream along the
tail direction. From observations carried out with the Cluster spacecrafts it has also been
possible to examine the plasma composition and the vortex flow dynamics at the time when
there are enhanced values of the solar wind dynamic pressure (Tian et al. 2010). As a whole
it is believed that vortices may derive from Kelvin-Helmholtz instabilities at the boundary
of the magnetosphere (magnetopause) or at the inner edge of a plasma boundary layer with‐
in the magnetosphere.

A suitable example of the plasma and magnetic field data obtained with a Cluster spacecraft
by the morning flank of the magnetosphere and far downstream from the earth (at x = -11 Re;

y = - 15 Re; z = 3 Re; Re being the earth radius) was presented by Tian et al., (2010) and is
reproduced in Figure 1. Those measurements lead to the observation of a series of vortices
that can be inferred from the ion velocity components marked in the lower panels of that
figure. The vortex regions are indicated by the shaded bands when the vx component be‐
comes large, the vy component changes sign (red profile), and the vortex rotation is derived
from changes in the velocity vector orientation in the frame at the left side of the bottom
panel. Comparable changes are also seen in the value of the Bx and By magnetic field compo‐
nents (second panel) which are derived by tracing the z-axis along the mean magnetic field
direction.
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the fluid-like character of the solar wind interaction with planetary ionospheres and the gen‐
eration of plasma and magnetic vortical structures as those reported by Pope et al., (2009)
from the Venus Express measurements.
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Measurements conducted with various spacecraft that have probed the earth´s magneto‐
spheric tail have shown that the plasma flow that streams within that region of space exhib‐
its changes in its direction of motion that are suggestive of vortical structures. From the
analysis of plasma data first obtained with the International Sun Earth Explorer (ISEE) satel‐
lites and more recently with the Cluster spacecrafts it has been possible to derive that there
are regions along the tail direction of the magnetosphere where the plasma exhibits a sense
of rotation (clockwise in the morning sector of the magnetosphere and counter clockwise in
the evening sector both viewed from above the ecliptic plane) which suggests a wave mo‐
tion that in some instances leads to vortical structures that move tailward with a speed of
300-400 km/s. The inferred features have a scale size of several earth radii nearly comparable
to the width of the magnetospheric tail and it has been inferred that their rotation period is
of the order of 5-20 min (Hones et al. 1978; 1981; 1983). The vortex structures form part of a
wave which has a several earth radii wavelength and that increases downstream along the
tail direction. From observations carried out with the Cluster spacecrafts it has also been
possible to examine the plasma composition and the vortex flow dynamics at the time when
there are enhanced values of the solar wind dynamic pressure (Tian et al. 2010). As a whole
it is believed that vortices may derive from Kelvin-Helmholtz instabilities at the boundary
of the magnetosphere (magnetopause) or at the inner edge of a plasma boundary layer with‐
in the magnetosphere.

A suitable example of the plasma and magnetic field data obtained with a Cluster spacecraft
by the morning flank of the magnetosphere and far downstream from the earth (at x = -11 Re;

y = - 15 Re; z = 3 Re; Re being the earth radius) was presented by Tian et al., (2010) and is
reproduced in Figure 1. Those measurements lead to the observation of a series of vortices
that can be inferred from the ion velocity components marked in the lower panels of that
figure. The vortex regions are indicated by the shaded bands when the vx component be‐
comes large, the vy component changes sign (red profile), and the vortex rotation is derived
from changes in the velocity vector orientation in the frame at the left side of the bottom
panel. Comparable changes are also seen in the value of the Bx and By magnetic field compo‐
nents (second panel) which are derived by tracing the z-axis along the mean magnetic field
direction.
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Figure 1. – A series of flow vortices in the earth´s magnetosphere observed by a Cluster spacecraft on July 6, 2003.
The magnetic field and its components are indicated in the top two panels and the ion velocity and its components in
the two lower panels (the velocity components in a reference frame in which the z and the x axes are parallel and
perpendicular to the average magnetic field are in the middle panel). The profiles were selected from those presented
in Figure 7 of Tian et al., (2010).

Figure 2. – Map of flow streamlines projected on the xy plane derived from the velocity rotation measured in the
13:36:45 UT – 13:38:20 UT time interval of July 6, 2003 in Figure 1. The streamlines are traced on the ion density (top
panel) and on the ion temperature (lower panel) distributions (the white arrows in the top panel represent the meas‐
ured velocity vector direction, and those in the lower panel the direction of the magnetic field). The streamlines de‐
scribe conditions from the inner plasma sheet across the dawn side of the magnetosphere and were selected from
those presented in Figure 11 of Tian et al., (2010).
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The rotation of the velocity vector implied from the lower panels in Figure 1 serves to con‐
struct streamline maps of the flow using a numerical code applied to the data points along
the spacecraft trajectory. The results are reproduced in Figure 2 where the observed direc‐
tion of the velocity vector projected on the xy plane is marked by the white arrows in the
upper panel and the direction of the magnetic field is indicated by white arrows in the lower
panel (after Tian et al., 2010). The gradual and persistent change in the direction of the veloc‐
ity vector with distance in the upper panel is indicative of an anticlockwise rotating vortex
structure with an approximated two dimensional 1-2 Re scale size. The reported observa‐
tions occurred at the time when there is an enhanced solar wind dynamic pressure thus im‐
plying an intensified compression of the magnetosphere which could in this case have led to
earthward moving directed vortices.

Measurements conducted with the ISEE vehicles have shown evidence of tailward directed
vortical structures along the sides of the magnetosphere. However, there are indications that
in the central plasma sheet of the magnetosphere the motion of the particles is observed to be
earthward from the tail. An example of such measurements is reproduced in Figure 3 with
evidence in the lower panel of a repeated rotation in the direction of the flow which in most
cases leads to large (> 100 km/s) speed values (upper panel) at the time when the solar ecliptic
longitude ϕSE becomes small; i.e. when the flow is sunward directed (Hones et al., 1981).

Figure 3. – Speed values (upper panel) and flow direction (lower panel) measured with the ISEE 2 spacecraft on March
10, 1979 within the earth´s magnetosphere. A repeated counterclockwise rotation of the solar ecliptic longitude an‐
gle ϕSE is detected in the evening sector of the plasma sheet (after Hones et al., 1981).

A general schematic view of the flow distribution along the sides of the magnetosphere that
has been derived from the ISEE measurements is reproduced in Figure 4. Tailward directed
vortex structures occur by those regions and the diagram illustrates plasma patterns that
may arise from Kelvin Helmholtz instabilities at the magnetopause and that lead to sudden
changes in the flow direction when observed in the earth´s rest frame.
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ity vector with distance in the upper panel is indicative of an anticlockwise rotating vortex
structure with an approximated two dimensional 1-2 Re scale size. The reported observa‐
tions occurred at the time when there is an enhanced solar wind dynamic pressure thus im‐
plying an intensified compression of the magnetosphere which could in this case have led to
earthward moving directed vortices.

Measurements conducted with the ISEE vehicles have shown evidence of tailward directed
vortical structures along the sides of the magnetosphere. However, there are indications that
in the central plasma sheet of the magnetosphere the motion of the particles is observed to be
earthward from the tail. An example of such measurements is reproduced in Figure 3 with
evidence in the lower panel of a repeated rotation in the direction of the flow which in most
cases leads to large (> 100 km/s) speed values (upper panel) at the time when the solar ecliptic
longitude ϕSE becomes small; i.e. when the flow is sunward directed (Hones et al., 1981).
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A general schematic view of the flow distribution along the sides of the magnetosphere that
has been derived from the ISEE measurements is reproduced in Figure 4. Tailward directed
vortex structures occur by those regions and the diagram illustrates plasma patterns that
may arise from Kelvin Helmholtz instabilities at the magnetopause and that lead to sudden
changes in the flow direction when observed in the earth´s rest frame.
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Figure 4. – Schematic description of plasma vortices within the earth´s magnetosphere inferred from the ISEE meas‐
urements. The flow pattern represented by the solid lines is mostly tailward through the magnetosphere as it is indi‐
cated by the white arrows at the bottom (Hones et al., 1981).

The vortex structures are superimposed on a general circulation flow pattern within the
magnetosphere in which the plasma is driven tailward along the sides by the kinetic pres‐
sure of the solar wind and then is forced back up in the sunward direction through the cen‐
tral plasma sheet region (Axford and Hines, 1961). The detail variation due to flow motion
within and around those vortices is described in Figure 5a as it would be expected at four
different distances from the magnetopause and that are represented by the dash lines A, B,
C, and D. For a tailward moving vortex pattern (indicated by changes in the arrows of the
flow direction) a waving motion should be apparent along the path line A which is located
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closer to the center of the tail. While along the path line B there should be a complete clock‐
wise rotation (measured from the bottom to the top) a wavy periodic reversal will occur
again along the path line C, and a counterclockwise rotation will prevail along the path line
D. These variations serve to describe the structure of the vortices as seen in the earth´s rest
frame. On the other hand, the flow pattern in the rest frame of the tailward moving wave is
sketched in Figure 5b to show how the shape of the vortex structure is maintained within
that wave (Hones et al., 1981).

Figure 5. – (left panel) Dawn sector of the flow pattern in Figure 4 depicting the sequence of flow vectors observed at
four different distances from the magnetopause. (right panel) Flow in the rest frame of the tailward moving wave
(Hones et al., 1981).
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The wavy pattern in the velocity direction that is implied from the measurements repro‐
duced in Figures 2 and 4 could result from effects associated with Kelvin-Helmholtz insta‐
bilities produced along the boundary of the magnetosphere. Such structures require,
however, fluid dynamic processes produced under conditions in which the flow is superalf‐
venic; namely, that the local value of the kinetic energy density of the plasma is larger than
the local magnetic energy density. As a whole this peculiarity is not applicable to the plasma
that pervades within the inner magnetosphere where the magnetic energy density is far
larger than the local kinetic energy density. However, different conditions occur along the
tail where the magnetic field intensity gradually decreases with the downstream distance
from the earth thus reducing the ratio of the magnetic energy density to the kinetic energy
density. A suitable comparative calculation of the conditions that were present at the time
when the plasma vortices of the Cluster data of Figure 1 were identified can be conducted
by using the corresponding pressure profiles of those data and that are reproduced in Fig‐
ure 6. Notable is that the plasma vortices in Figure 1 were detected after the dynamic pres‐
sure of the solar wind exhibited a sudden increase indicated by the dashed vertical line at
12:55 UT in Figure 6. The dynamic pressure PD ~ 3 nPa of the solar wind after that event
shown in the upper panel is over 10 times larger than the ~ 0.16 nPa magnetic pressure that
can be derived from the ~ 20 nT magnetic field intensity values measured at the same time
and that are shown in the third panel. The implication here is that the local flow is superalf‐
venic thus suggesting conditions that could have led to Kelvin-Helmholtz waves along the
magnetopause.

3. Plasma vortices in the Venus wake (PVO measurements)

Measurements conducted within and along the flanks of the Venus wake have revealed
conditions that are also suitable for the onset of fluid dynamic processes that lead to the
generation of vortex structures. From observations made with the early Mariner 5 space‐
craft it was noted that the solar wind that streams around Venus is subject to a large de‐
crease  of  its  momentum  flux  as  its  speed  U  and  density  n  in  the  wake  become
significantly smaller than the values measured under freestream conditions (Bridge et al.,
1967; Shefer et al.,  1979). A summary of those measurements is presented in Figure 7 to
show the presence of a velocity boundary layer that extends along the flanks of the Ve‐
nus wake (indicated by the  black  shaded region)  where  both  plasma properties  exhibit
strong deficient values. Such changes are bounded by a plasma transition labeled with the
items 2 and 4 along the trajectory of the spacecraft in the lower panel and also at the top
of the upper panel,  being different from the Venus bow shock encountered at the items
labeled 1 and 5 (in the latter case the plasma density is larger in the downstream side as
a  result  of  the  compressed  density  values  that  the  solar  wind  acquires  across  the  bow
shock).  Much of  the missing amount  of  momentum flux (nU2)  of  the solar  wind in the
wake that is implied from the profiles in Figure 7 between items 2 and 4 has been found
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to be comparable to the momentum flux of the plasma that streams in the trans-termina‐
tor flow within the Venus upper ionosphere (Perez-de-Tejada, 1986) and that was meas‐
ured  with  the  Pioneer  Venus  Orbiter  (PVO)  spacecraft  (Knudsen  et  al:  1980).  The
implication of this agreement is that there is an efficient transport of solar wind momen‐
tum to the Venus upper ionosphere that could be accounted for through the onset of vis‐
cous forces in a continuum fluid interpretation. As it was indicated before such processes
require small scale interactions among the particles of both populations in view that the
solar wind is a collisionless plasma. Wave-particle interactions resulting from the turbu‐
lence  associated with  strong fluctuations  in  the  magnetic  field  that  are  measured along
the flanks of the wake (Bridge et al., 1967; Vőrős et al., 2008) should be ultimately respon‐
sible for the erosion of the ionospheric particles produced by the solar wind and, at the
same time, for the the Kelvin-Helmholtz instabilities that develop under the measured su‐
peralfvenic flow conditions (Pèrez-de-Tejada et al., 2011).

Figure 6. – Pressure variations of the solar wind dynamic pressure (top panel) and its static pressure (second panel),
together with the magnetic field intensity (third panel) and the plasma pressure (bottom panel) of the plasma sheet
that were measured on July 6, 2003 with a Cluster spacecraft (Figure 12 in Tian et al., 2010).
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Figure 7. – Thermal speed, density, and bulk speed of the solar wind measured with the Mariner 5 spacecraft (its tra‐
jectory projected in cylindrical coordinates is shown in the lower panel). The labels 1 through 5 along the trajectory
and at the top of the upper panel mark important events in the plasma properties (bow shock, intermediate plasma
transition) (after Bridge et al..1967).

The presence of a velocity boundary layer along the flanks of the Venus wake has been con‐
firmed with observations conducted with the PVO and more recently with the Venus Ex‐
press (VEX) spacecraft (Pérez-de-Tejada et al., 2011). In the data obtained with both vehicles
it has been possible to identify features within that layer that can be interpreted in terms of
fluid dynamic processes and, in particular, vortical structures with properties similar to
those detected in the earth´s magnetosphere. The first indication on the existence of plasma
vortices in the Venus wake was inferred from the observation of changes in the velocity di‐
rection of plasma particles along the PVO trajectory across the Venus wake (Pérez-de-Tejada
et al., 1982). In some instances the ion fluxes are not directed away from the sun but their
motion has a sunward directed component. A description of such change serves to identify
the manner in which the flow is arranged to form vortical structures and their position with‐
in the wake.

From the collection of plasma ion fluxes measured during the first seasons of observation of
the PVO we will first refer to a set of plasma data in which the velocity vectors of the ion
fluxes exhibit sudden changes in the direction of the particle motion. Those data are present‐
ed in Table I and apply to PVO measurements conducted in orbits 80, 68, 65 and 66, which
were conducted in the vicinity of the midnight plane during the first season of observation
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of that spacecraft along its nearly polar oriented trajectory. The measurements conducted in
the energy cycle for each orbit correspond to those obtained near the outbound (southern
hemisphere) crossing of the upper boundary of the ionosphere (ionopause) and represent
the most intense ion fluxes that were observed during that cycle. Each reading in the first
and second columns describes the time (in UT) when it was made together with the number
of the corresponding energy step and the volt per charge value (in parenthesis). The count
number of the flux intensity (which leads to the intensity values given in the right side col‐
umn) and the latitudinal collector of the plasma instrument where it was received (marked
by the number 3 or 4) are indicated in the third column. These values together with the cal‐
culated particle speed if they represent either H+ or O+ ions, and the azimuthal sector (and
also the azimuthal angle α), are presented in the fourth through the seventh columns. The
most notable example in the data for orbit 80 shown at the top are measurements in which
there are fluxes with a sunward directed component (negative α values). These are observed
between the energy steps number 11 and 16 (first column), and there are also ion fluxes
measured along the solar wind direction (positive α values) between the energy steps num‐
ber 17 and 21. Comparable variations are also present in the data set of the other orbits with
a distribution of the azimuthal α angle that is persistent in orbit 68 (as in orbit 80), and then
fluctuating orientations in orbits 65 and 66.

A schematic representation of the direction of the particle fluxes in orbit 80 is described in
the upper panel of Figure 8 for 3 different energy cycles of measurements together with the
PVO trajectory projected on one quadrant using cylindrical coordinates (the outbound pass
with cycles II and III occurs in the southern hemisphere but has been projected to the same
quadrant of the inbound pass of cycle I that occurs in the northern hemisphere). The posi‐
tion of the spacecraft during the energy cycle I initiated at 19:34.27 UT in the inbound pass,
and the energy cycles II and III initiated at 19:59.16 UT and at 20:08.43 UT in the outbound
pass are shown in that figure (each cycle is marked by a rectangular shape). The arrows in‐
dicate the latitudinal direction of arrival of the particle fluxes corresponding to the orienta‐
tion of the collector of the plasma instrument where they were observed (measurements
made in collector labeled 4 in Table I during the outbound pass correspond to particle fluxes
reaching the most northbound direction detected by the instrument (22.5º < θ < 69º) and is
opposite to those made in collector 1 which would be the most southbound directed collec‐
tor of the instrument [Intriligator et al., 1980]. During the energy cycle I in the inbound pass
and also in the energy cycle III in the outbound pass there is a tendency for the particle flux‐
es to be directed away from the wake, implying the observation of northbound fluxes in the
northern hemisphere (collectors 3 and 4) and also the observation of southbound fluxes in
the southern hemisphere (collectors 1 and 2). Different conditions can be identified in the
energy cycle II measured in the vicinity of the outbound crossing of the ionopause that is
reported in Table I. In this cycle the (dominant) particle fluxes now converge toward the
wake (all are detected in collectors 3 or 4) and exhibit directions either with a sunward com‐
ponent (negative α values) or with an anti-sunward component (positive α values). This lat‐
er variation is indicated by large differences in the azimuthal sector number of the
measurements which implies angles that may differ by up to 180º between both cases (α = 0
corresponding to the antisolar direction).

Plasma Vortices in Planetary Wakes
http://dx.doi.org/10.5772/52998

327



Figure 7. – Thermal speed, density, and bulk speed of the solar wind measured with the Mariner 5 spacecraft (its tra‐
jectory projected in cylindrical coordinates is shown in the lower panel). The labels 1 through 5 along the trajectory
and at the top of the upper panel mark important events in the plasma properties (bow shock, intermediate plasma
transition) (after Bridge et al..1967).
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Table 1. Table I: Values of the ion flux intensity (right side column) measured during an energy cycle in the outbound
pass of the VO in orbits 80, 68, 65, and 66, through the Venus near wake. The time when the ion fluxes are measured
are given in the second column, and the corresponding energy step number with its volts per charge value (in
parenthesis) are presented in the first column. Their count number and the latitudinal collector of the plasma
instrument where the fluxes were measured is shown in the third column (fluxes in collectors 3 and 4 are northbound-
directed implying that fluxes converge toward the plasma wake in the southern (outbound measured) hemisphere).
Their speed for H+ and O+ ions is indicated in the fourth and fifth columns. The azimuthal sector and the
corresponding azimuthal angle α where the fluxes were detected are indicated in the sixth and seventh columns
(sectors above and below ~347.5 correspond to positive and negative α values where in the later case it implies
sunward directed fluxes).

A similar distribution of velocity vectors in the Venus wake is observed in the data of orbit
68 of Table I in energy cycles whose position along the PVO trajectory is reproduced in the
lower panel of Figure 8. As it was the case for orbit 80 in the upper panel of that figure the
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northbound directed diverging particle fluxes are measured in the inbound pass (energy cy‐
cle I initiated at 19:53.22 UT), and southbound directed fluxes that also diverge from the
wake are observed in the energy cycle III of the outbound pass initiated at 20:26.12 UT.

In addition, particle fluxes measured in the inner ionosheath during cycle II in the outbound
pass (initiated at 20:16.59 UT) and that were included in Table I, converge toward the wake
and like those in orbit 80 also include velocity vectors with a sunward directed component
(most notable flux intensities in the 4 – 16 energy steps) but there are also sporadic weak
fluxes with an anti-sunward directed component in the lowest energies that were measured.
The tendency in the data set of the outbound pass of orbits 80 and 68 is that the solar wind
streaming near the ionopause (cycle labeled II in Figure 8) can acquire an orientation with a
sunward directed component leading to a vortex structure (~180° change of the azimuthal α
angle in that region).

Figure 8. - Representative position of energy cycles (rectangular shapes) where measurements were made along the
trajectory of the PVO in orbit 80 (upper panel) and in orbit 68 (lower panel) projected on a quadrant in cylindrical
coordinates. The arrows show schematically the (latitudinal) velocity direction of ion fluxes detected at different ener‐
gy steps within each cycle.
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4. Plasma vortices in the Venus wake (VEX measurements)

More conclusive evidence in the observation of sunward directed plasma fluxes in the Ve‐
nus wake has been recently reported from measurements conducted with the ASPERA-4 in‐
strument of the Venus Express spacecraft [Lundin et al., 2011]. From a collection of velocity
vectors derived from measurements conducted in 380 orbits it was possible to produce the
average pattern of O+ and solar wind (SW) H+ ion velocity vectors presented in Figure 9
which are projected in cylindrical coordinates. Notable is that most of the velocity vectors of
the O+ ions are deviated towards the inner wake. On the other hand, for the majority of the
solar wind H+ ions the velocity vectors by the central tail at x < -2RV have a sunward direct‐
ed component. Such variation mostly occurs in the central wake but in the solar wind H+
ion panel there is also evidence of that behavior in the velocity vectors located downstream
from the polar region. The overall pattern of the velocity vectors is consistent with plasma
fluxes that reverse direction and agrees with a similar structure that was inferred from the
PVO observations; that is, velocity vectors with a sunward component and some directed
away from the wake can be separately identified in Figure 9, thus indicating the presence of
divergent and sunward directed ion fluxes as it was inferred from the PVO data.

Figure 9. – Velocity vectors of out-flowing O+ (upper panel) and solar wind H+ (lower panel) ions measured in the
Venus wake with the ASPERA-4 instrument of the Venus Express spacecraft projected in cylindrical coordinates. The
velocity scales for the O+ and the H+ ions are noted in the upper left corner in each diagram. Notice that the H+ flow
velocities in the wake are low and barely discernible. However, applying unit vectors we find that most solar wind H+
velocity vectors are sunward directed near the tail central plane at x < 2 RV.
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A more detail description of the distribution of velocity vectors measured with the ASPERA-4
instrument of the VEX spacecraft is presented in Figure 10 with an account of separate observa‐
tions of the solar wind H+ and the O+ ion fluxes with values now averaged along the z-direc‐
tion and subsequently projected to the xy plane. Most notable in the left panel of Figure 10 is a
pattern located in the central wake within which the velocity vectors of the H+ ions in the dusk
side (negative y-values) show a common tendency to be deflected towards the dawn side (pos‐
itive y-values), and also vectors located at and in the vicinity of the midnight meridian that ex‐
hibit a strong solar oriented component. This pattern is consistent with the onset of reverse
flow conditions that seem to occur slightly shifted towards the dawn side. As a whole the ve‐
locity vectors in that region contain cases in which they are directed anti-sunward, some are
deflected toward positive values in the y-axis, and in various observations they are mostly sun‐
ward oriented. A scheme with different properties is observed in the distribution of velocity
vectors of the planetary O+ ion population shown in the right panel of Figure 10. In this case the
velocity vectors across the wake show a more thorough deflection toward the dawn side (posi‐
tive y-values) but there is little or no indication in the xy-projection (values averaged along the
z-axis) that they have a sunward directed component.

Figure 10. – (left panel) Distribution of velocity vectors of the solar wind H+ ion population in the Venus wake ob‐
tained with the ASPERA-4 instrument of the Venus Express projected on the xy plane (the data show evidence of a
region in the central wake where the velocity vectors acquire a sunward directed component). (right panel) Distribu‐
tion of velocity vectors of the O+ ion population indicating that ions in the dusk (upper) side of the retrograde rotat‐
ing Venus ionosphere are deviated toward the positive (dawn side) y-direction (Lundin et al., 2011).

From the sunward directed fluxes reported in the left panel of Figure 10 the reversed flow
direction should mostly occur for the H+ population and, as it is the case for obstacles im‐
mersed in directional flows, the solar wind particles in the wake will be forced in the up‐
stream direction leading to a vortex structure. A schematic representation of the distribution
of flow streamlines that is compatible with this view is indicated in the left panel of Figure
11 with a circulation pattern in the wake that is consistent with the plasma data. The rota‐
tion of the flow direction in the wake is supported by the diagram presented in the right
panel of Figure 11 where a wide velocity boundary layer with a thickness that is larger
downstream from the terminator stresses the low local flow speeds that should occur near
the ionosphere. Such velocity layer derives from the observations shown in Figure 7 and is
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produced by viscous transport of solar wind momentum to the upper ionospheric plasma.
Since low speeds are expected close to the ionosphere the solar wind will reach a position
within the wake where the large local flow pressure values will produce a change in its di‐
rection thus leading to a vortex structure as that depicted for a flow past an obstacle indicat‐
ed in the right panel of Figure 11. It is to be noted that the fluid dynamic response of the
solar wind to the large pressure values present in the wake is different from processes asso‐
ciated with Kelvin-Helmholtz instabilities along the boundary of the ionosphere and that, as
it is the case in the earth´s magnetosphere, also contribute to produce vortex structures.

Figure 11. – (left panel) Schematic representation of a vortex structure generated downstream from a polar region of
the Venus ionosphere (the streamlines indicate the direction of motion of the solar wind). (right panel) Flow pattern
within a velocity boundary layer that extends past an obstacle (higher pressures in the wake reverse the flow direction
near the obstacle leading to a vortex structure, Schlichting, 1968).

The fluid dynamic interpretation of both phenomena serves to account for the processes that
produce the vortex structures in the earth´s magnetosphere and in the Venus plasma wake,
and should also be applicable to the conditions that are expected in other planets; namely,
those with an appreciable or strong intrinsic magnetic field (Jupiter, Saturn, Uranus, Nep‐
tune, and Mercury), or in other un-magnetized planets in which there may only be fossil
remnants of an early magnetic field as it is the case in Mars (Acuña et al., 1999).
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