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Preface

Adaptive signal filtering is an expanding discipline. In general, an adaptive scheme can be
used to characterise unknown systems in time-variant environments. The main objective of
this approach is to meet a difficult comprise: maximum convergence speed with maximum
accuracy. Adaptive systems can often have multiple input and output channels, can have
extremely long responses (e.g. acoustic systems), can work in noisy environments, can have
more or less memory, and so on. Each application requires a certain approach which deter‐
mines the filter structure, the cost function to minimize the estimation error, the adaptive
algorithm, and other parameters; and each selection involves certain cost in computational
terms, that in any case should consume less time than the time required by the application
working in real-time. Theory and application are not, therefore, isolated entities but an im‐
bricated whole that requires a holistic vision. This book collects some theoretical approaches
and practical applications in different areas that support expanding of adaptive systems.

Dr. Lino Garcia Morales
Technical University of Madrid, Spain
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Chapter 1

Hirschman Optimal Transform Block LMS Adaptive
Filter

Osama Alkhouli, Victor DeBrunner and
Joseph Havlicek

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/51394

Provisional chapter

Hirschman Optimal Transform Block LMS Adaptive

Filter

Osama Alkhouli,

Victor DeBrunner and Joseph Havlicek

Additional information is available at the end of the chapter

1. Introduction

The HOT is a recently developed discrete unitary transform that uses the orthonormal
minimizers of the entropy-based Hirschman uncertainty measure [2]. This measure is
different from the energy-based Heisenberg uncertainty measure that is only suited for
continuous time signals. The Hirschman uncertainty measure uses entropy to quantify the
spread of discrete-time signals in time and frequency [3]. Since the HOT bases are among
the minimizers of the uncertainty measure, they have the novel property of being the most
compact in discrete time and frequency. The fact that the HOT basis sequences have many
zero-valued samples, and their resemblance to the DFT basis sequences, makes the HOT
computationally attractive. Furthermore, it has been shown recently that a thresholding
algorithm using the HOT yields superior frequency resolution of a pure tone in additive
white noise to a similar algorithm based on the DFT [4]. The main theorem in [2] describes

a method to generate an N = K2-point orthonormal HOT basis, where K is an integer. A

HOT basis sequence of length K2 is the most compact bases in the time-frequency plane. The
32-point HOT matrix is




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








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1 0 0 1 0 0 1 0 0
0 1 0 0 1 0 0 1 0
0 0 1 0 0 1 0 0 1

1 0 0 e−j2π/3 0 0 e−j4π/3 0 0

0 1 0 0 e−j2π/3 0 0 e−j4π/3 0

0 0 1 0 0 e−j2π/3 0 0 e−j4π/3

1 0 0 e−j4π/3 0 0 e−j8π/3 0 0

0 1 0 0 e−j4π/3 0 0 e−j8π/3 0

0 0 1 0 0 e−j4π/3 0 0 e−j8π/3


























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(1)

Equation (1) indicates that the HOT of any sequence is related to the DFT of some polyphase
components of the signal. In fact, we called this property the “1 and 1/2 dimensionality”

©2012 Alkhouli et al., licensee InTech. This is an open access chapter distributed under the terms of the
Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted
use, distribution, and reproduction in any medium, provided the original work is properly cited.© 2013 Alkhouli et al.; licensee InTech. This is an open access article distributed under the terms of the
Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

© 2013 Alkhouli et al.; licensee InTech. This is a paper distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.
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2 Adaptive Filtering

of the HOT in [3]. Consequently, for this chapter, we will use the terms HOT and DFT of

the polyphase components interchangeably. The K2-point HOT requires fewer computations

than the K2-point DFT. We used this computational efficiency of the HOT to implement

fast convolution algorithms [5]. When K is a power of 2 integer, then K2log2K (complex)
multiplications are needed to compute the HOT, which is half that is required when
computing the DFT. In this chapter, we use the computational efficiency of the HOT to
implement a fast block LMS adaptive filter. The fast block LMS adaptive filter was first
proposed [6] to reduce computational complexity. Our proposed HOT block LMS adaptive
filter requires less than half of the computations required in the corresponding DFT block
LMS adaptive filter. This significant complexity reduction could be important in many real
time applications.

The following notations are used throughout this chapter. Nonbold lowercase letters are
used for scalar quantities, bold lowercase is used for vectors, and bold uppercase is used
for matrices. Nonbold uppercase letters are used for integer quantities such as length or
dimensions. The lowercase letter k is reserved for the block index. The lowercase letter n
is reserved for the time index. The time and block indexes are put in brackets, whereas
subscripts are used to refer to elements of vectors and matrices. The uppercase letter N is
reserved for the filter length and the uppercase letter L is reserved for the block length. The
superscripts T and H denote vector or matrix transposition and Hermitian transposition,
respectively. The subscripts F and H are used to highlight the DFT and HOT domain
quantities, respectively. The N × N identity matrix is denoted by IN×N or I. The N × N
zero matrix is denoted by 0N×N . The linear and circular convolutions are denoted by ∗

and ⋆, respectively. Diag [v] denotes the diagonal matrix whose diagonal elements are the
elements of the vector v.

2. The relation between the HOT and DFT in a matrix from

The algorithm that we proposing is best analyzed if the relation between the HOT and DFT
is presented in matrix form. This matrix form is shown in Figure 1, where I0, I1,..., IK−1

are K × K2 matrices such that multiplication of a vector with Ii produces the ith polyphase
component of the vector. The matrix IK is formed from I0, I1,..., IK−1, i.e.,

IK =















I0

I1
...

IK−2

IK−1















. (2)

Since the rows of
�

Ii

�

are taken from the rows of the K2
×K2 identity matrix, multiplications

with such matrices does not impose any computational burden. For the special case K = 3,
we have

I0 =





1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0



 , (3)
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Figure 1. The Relation between HOT and DFTs of the polyphase components.

I1 =





0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0



 , (4)

I2 =





0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1



 . (5)

The K2-point HOT matrix is denoted by H. It satisfies the following:

HHH
= KIK2

×K2 , (6)

H = HT . (7)

3. Convolution using the HOT

In this section, the “HOT convolution,” a relation between the HOT of two signals and their
circular convolution, is derived. Let u and w be two signals of length K2. The circular
convolution of the signals is y = w ⋆ u. In the DFT domain, the convolution is given by the
pointwise multiplication of the respective DFTs of the signals, i.e., yF(k) = wF(k)uF(k). A
similar relation in the HOT domain can be readily found through the relation between the
DFT and HOT. The DFT of u can be written as

Hirschman Optimal Transform Block LMS Adaptive Filter
http://dx.doi.org/10.5772/51394
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4 Adaptive Filtering

uF(k) =
K2

−1

∑
n=0

u(n) e−j 2π

K2 kn

=

K−1

∑
i=0

e−j 2π

K2 ki
K−1

∑
l=0

u(lK + i) e−j 2π

K kl . (8)

The signal u(lK + i), denoted by ui(l), is the ith polyphase component of u(n) with DFT
given by

uiF(k) =
K−1

∑
l=0

ui(l) e−j 2π

K kl . (9)

Therefore, the DFT of the signal u can be written in terms of the DFTs of the polyphase
components, or the HOT of u. The relation between the HOT and the DFTs of the polyphase
components is descried in Figure 1. Equation (8) may be written as

uF(k) =
K−1

∑
i=0

e−j 2π

K2 kiuiF(k). (10)

Define the diagonal matrix

Di,j(k) =















e−j 2π

K2 ki 0 · · · 0

0 e−j 2π

K2 k(i+1)
· · · 0

...
...

. . .
...

0 0 · · · e−j 2π

K2 kj















(11)

Then the DFT of the signal can be written in a matrix form

uF =

K−1

∑
i=0

D0,K2
−1(i)











FK

FK
...

FK











ui. (12)

The above is the desired relation between the DFT and HOT. It should be noted that equation
(12) represents a radix-K FFT algorithm which is less efficient than the radix-2 FFT algorithm.
Therefore, HOT convolution is expected to be less efficient than DFT convolution. Now, we
can use equation (12) to transform yF = wF ⊗ uF into the HOT domain. The symbol ⊗

indicates pointwise matrix multiplication and, throughout this discussion, pointwise matrix
multiplication takes a higher precedence than conventional matrix multiplication. We have
that
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K−1

∑
i=0

D0,K2
−1(i)











FK

FK
...

FK











yi =

K−1

∑
i=0

K−1

∑
j=0

D0,K2
−1(i + j)











FKwi

FKwi
...

FKwi











⊗











FKuj

FKuj

...
FKuj











. (13)

The above matrix equation can be separated into a system of K equations

K−1

∑
i=0

DrK,(r+1)K−1(i)FKyi =

K−1

∑
i=0

K−1

∑
j=0

DrK,(r+1)K−1(i + j) (FKwi)⊗

�

FKwj

�

, (14)

where r = 0, 1, . . . , K − 1. Since

DrK,(r+1)K−1(i) = e−j 2π

K riD0,K−1(i), (15)

the HOT of the output can be obtained by solving the following set of K matrix equations:

K−1

∑
i=0

e−j 2π

K riD0,K−1(i)FKyi =

K−1

∑
i=0

K−1

∑
j=0

e−j 2π

K r(i+j)D0,K−1(i + j) (FKwi)⊗

�

FKuj

�

. (16)

Since the DFT matrix is unitary, the solution of equation (16) can be expressed as

D0,K−1(s)FKys =
1

K

K−1

∑
r=0

K−1

∑
i=0

K−1

∑
j=0

ej 2π

K r(s−(i+j))D0,K−1(i + j) (FKwi)⊗

�

FKuj

�

, (17)

where

FKys =
1

K

K−1

∑
r=0

K−1

∑
i=0

K−1

∑
j=0

ej 2π

K r(i+j−s)D0,K−1(i + j − s) (FKwi)⊗

�

FKuj

�

. (18)

Moreover, as
K−1

∑
r=0

ej 2π

K r(i+j−s)
= Kδ(i + j − s), (19)

where δ(n) denotes the periodic Kronecker delta of periodicity K, equation (18) can be
simplified to

FKys =

K−1

∑
i=0

K−1

∑
j=0

δ(i + j − s)D0,K−1(i + j − s) (FKwi)⊗

�

FKuj

�

, (20)

where s = 0, 1, 2, . . . , K − 1. The pointwise matrix multiplication in equation equation (20)
can be converted into conventional matrix multiplication if we define Wi as the diagonal
matrix for FKwi. We have then that
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uF(k) =
K2

−1

∑
n=0

u(n) e−j 2π

K2 kn

=

K−1

∑
i=0

e−j 2π

K2 ki
K−1

∑
l=0

u(lK + i) e−j 2π

K kl . (8)

The signal u(lK + i), denoted by ui(l), is the ith polyphase component of u(n) with DFT
given by

uiF(k) =
K−1

∑
l=0

ui(l) e−j 2π

K kl . (9)

Therefore, the DFT of the signal u can be written in terms of the DFTs of the polyphase
components, or the HOT of u. The relation between the HOT and the DFTs of the polyphase
components is descried in Figure 1. Equation (8) may be written as

uF(k) =
K−1

∑
i=0

e−j 2π

K2 kiuiF(k). (10)

Define the diagonal matrix

Di,j(k) =















e−j 2π

K2 ki 0 · · · 0

0 e−j 2π

K2 k(i+1)
· · · 0

...
...

. . .
...

0 0 · · · e−j 2π

K2 kj















(11)

Then the DFT of the signal can be written in a matrix form

uF =

K−1

∑
i=0

D0,K2
−1(i)











FK

FK
...

FK











ui. (12)

The above is the desired relation between the DFT and HOT. It should be noted that equation
(12) represents a radix-K FFT algorithm which is less efficient than the radix-2 FFT algorithm.
Therefore, HOT convolution is expected to be less efficient than DFT convolution. Now, we
can use equation (12) to transform yF = wF ⊗ uF into the HOT domain. The symbol ⊗

indicates pointwise matrix multiplication and, throughout this discussion, pointwise matrix
multiplication takes a higher precedence than conventional matrix multiplication. We have
that
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K−1

∑
i=0

D0,K2
−1(i)











FK

FK
...

FK











yi =

K−1

∑
i=0

K−1

∑
j=0

D0,K2
−1(i + j)











FKwi

FKwi
...

FKwi











⊗











FKuj

FKuj

...
FKuj











. (13)

The above matrix equation can be separated into a system of K equations

K−1

∑
i=0

DrK,(r+1)K−1(i)FKyi =

K−1

∑
i=0

K−1

∑
j=0

DrK,(r+1)K−1(i + j) (FKwi)⊗

�

FKwj

�

, (14)

where r = 0, 1, . . . , K − 1. Since

DrK,(r+1)K−1(i) = e−j 2π

K riD0,K−1(i), (15)

the HOT of the output can be obtained by solving the following set of K matrix equations:

K−1

∑
i=0

e−j 2π

K riD0,K−1(i)FKyi =

K−1

∑
i=0

K−1

∑
j=0

e−j 2π

K r(i+j)D0,K−1(i + j) (FKwi)⊗

�

FKuj

�

. (16)

Since the DFT matrix is unitary, the solution of equation (16) can be expressed as

D0,K−1(s)FKys =
1

K

K−1

∑
r=0

K−1

∑
i=0

K−1

∑
j=0

ej 2π

K r(s−(i+j))D0,K−1(i + j) (FKwi)⊗

�

FKuj

�

, (17)

where

FKys =
1

K

K−1

∑
r=0

K−1

∑
i=0

K−1

∑
j=0

ej 2π

K r(i+j−s)D0,K−1(i + j − s) (FKwi)⊗

�

FKuj

�

. (18)

Moreover, as
K−1

∑
r=0

ej 2π

K r(i+j−s)
= Kδ(i + j − s), (19)

where δ(n) denotes the periodic Kronecker delta of periodicity K, equation (18) can be
simplified to

FKys =

K−1

∑
i=0

K−1

∑
j=0

δ(i + j − s)D0,K−1(i + j − s) (FKwi)⊗

�

FKuj

�

, (20)

where s = 0, 1, 2, . . . , K − 1. The pointwise matrix multiplication in equation equation (20)
can be converted into conventional matrix multiplication if we define Wi as the diagonal
matrix for FKwi. We have then that
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FKys =

K−1

∑
i=0

K−1

∑
j=0

δ(i + j − s)D0,K−1(i + j − s)WiFKuj. (21)

Combining the above K equations into one matrix equation, the HOT convolution can be
written as



















FKy0

FKy1

FKy2
...

FKyK−2

FKyK−1



















=



















W0 DWK−1 DWK−2 · · · DW2 DW1

W1 W0 WK−1 · · · DW3 DW2

W2 W1 W0 · · · DW4 DW3
...

...
...

. . .
...

...
WK−2 WK−3 WK−4 · · · W0 DWK−1

WK−1 WK−2 WK−3 · · · W1 W0





































FKu0

FKu1

FKu2
...

FKuK−2

FKuK−1



















(22)

where

D =













1 0 · · · 0

0 e
−j 2π

K2
· · · 0

...
...

. . .
...

0 0 · · · e
−j 2π

K2 (K−1)













(23)

Notice that the square matrix in equation (22) is arranged in a block Toeplitz structure.

A better understanding of this result may be obtained by comparing equation (22) with the
K-point circular convolution



















y0

y1

y2
...

yK−2

yK−1



















=



















w0 wK−1 wK−2 · · · w2 w1

w1 w0 wK−1 · · · w3 w2

w2 w1 w0 · · · w4 w3
...

...
...

. . .
...

...
wK−2 wK−3 wK−4 · · · w0 wK−1

wK−1 wK−2 wK−3 · · · w1 w0





































u0

u1

u2
...

uK−2

uK−1



















. (24)

The square matrix in equation (24) is also Toeplitz. However, equation (24) is a pure
time domain result, whereas equation (22) is a pure HOT domain relation, which may be
interpreted in terms of both the time domain and the DFT domain features. This fact can
be explained in terms of fact that the HOT basis is optimal in the sense of the entropic joint
time-frequency uncertainty measure Hp(u) = pH(u) + (1 − p)H(uF) for all 0 ≤ p ≤ 1.
Before moving on to the computational complexity analysis of HOT convolution, we make
the same observations about the term DFKwi appearing in equation (22). This term is the
complex conjugate of the DFT of the upside down flipped ith polyphase component of w.

It should be noted that equation (22) does not show explicitly the HOT of u(n) and w(n).
However, the DFT of the polyphase components that are shown explicitly in equation (22)
are related to the HOT of the corresponding signal as shown in Figure. 1. For example, the
0th polyphase component of the output is given by
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y0(k) = F−1
K I0wH(k)⊗ I0uH(k) + F−1

K D
K−1

∑
i=1

IK−iwH(k)⊗ IiuH(k). (25)

Next, we examine the computational complexity of HOT convolution. To find the HOT of the
two signals w and u, 2K2log2K multiplications are required. Multiplication with the diagonal
matrix D requires K(K − 1) multiplications. Finally, the matrix multiplication requires K3

scalar multiplications. Therefore, the total number of multiplications required is 2K2log2K +

K3
+ K2

− K. Thus, computation of the output y using the HOT requires K3
+ 3K2log2K +

K3
+ K2

− K multiplications, which is more than 6K2log2K + K2 as required by the DFT.
When it is required to calculate only one polyphase component of the output, only K2

+

2K2log2K + Klog2K multiplications are necessary. Asymptotically in K, we see that the HOT
could be three times more efficient than the DFT.

4. Development of the basic algorithm

In the block adaptive filter, the adaptation proceeds block-by-block with the weight update
equation

w(k + 1) = w(k) +
µ

L

L−1

∑
i=0

u(kL + i)e(kL + i), (26)

where d(n) and y(n) are the desired and output signals, respectively, u(n) is the tap-input
vector, L is the block length or the filter length, and e(n) = d(n) − y(n) is the filter error.
The DFT is commonly used to efficiently calculate the output of the filter and the sum in
the update equation. Since the HOT is more efficient than the DFT when it is only required
to calculate one polyphase component of the output, the block LMS algorithm equation (26)
is modified such that only one polyphase component of the error in the kth block is used to
update the filter weights. For reasons that will become clear later, the filter length L is chosen
such that L = K2/2. With this modification, equation (26) becomes

w(k + 1) = w(k) +
2µ

K

K/2−1

∑
i=0

u(kL + iK + j)e(kL + iK + j). (27)

Since the DFT is most efficient when the length of the filter is equal to the block length [7], this
will be assumed in equation (27). The parameter j determines which polyphase component
of the error signal is being used in the adaptation. This parameter can be changed from
block to block. If j = 0, the output can be computed using the HOT as in equation (25). A
second convolution is needed to compute the sum in equation (27). This sum contains only
one polyphase component of the error. If this vector is up-sampled by K, the sum is just
a convolution between the input vector and the up-sampled error vector. Although all the
polyphase components are needed in the sum, the convolution can be computed by the HOT
with the same computational complexity as the first convolution since only one polyphase
component of the error vector is non-zero.
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FKys =

K−1

∑
i=0

K−1

∑
j=0

δ(i + j − s)D0,K−1(i + j − s)WiFKuj. (21)

Combining the above K equations into one matrix equation, the HOT convolution can be
written as



















FKy0

FKy1

FKy2
...

FKyK−2

FKyK−1



















=



















W0 DWK−1 DWK−2 · · · DW2 DW1

W1 W0 WK−1 · · · DW3 DW2

W2 W1 W0 · · · DW4 DW3
...

...
...

. . .
...

...
WK−2 WK−3 WK−4 · · · W0 DWK−1

WK−1 WK−2 WK−3 · · · W1 W0





































FKu0

FKu1

FKu2
...

FKuK−2

FKuK−1



















(22)

where

D =













1 0 · · · 0

0 e
−j 2π

K2
· · · 0

...
...

. . .
...

0 0 · · · e
−j 2π

K2 (K−1)













(23)

Notice that the square matrix in equation (22) is arranged in a block Toeplitz structure.

A better understanding of this result may be obtained by comparing equation (22) with the
K-point circular convolution



















y0

y1

y2
...

yK−2

yK−1



















=



















w0 wK−1 wK−2 · · · w2 w1

w1 w0 wK−1 · · · w3 w2

w2 w1 w0 · · · w4 w3
...

...
...

. . .
...

...
wK−2 wK−3 wK−4 · · · w0 wK−1

wK−1 wK−2 wK−3 · · · w1 w0





































u0

u1

u2
...

uK−2

uK−1



















. (24)

The square matrix in equation (24) is also Toeplitz. However, equation (24) is a pure
time domain result, whereas equation (22) is a pure HOT domain relation, which may be
interpreted in terms of both the time domain and the DFT domain features. This fact can
be explained in terms of fact that the HOT basis is optimal in the sense of the entropic joint
time-frequency uncertainty measure Hp(u) = pH(u) + (1 − p)H(uF) for all 0 ≤ p ≤ 1.
Before moving on to the computational complexity analysis of HOT convolution, we make
the same observations about the term DFKwi appearing in equation (22). This term is the
complex conjugate of the DFT of the upside down flipped ith polyphase component of w.

It should be noted that equation (22) does not show explicitly the HOT of u(n) and w(n).
However, the DFT of the polyphase components that are shown explicitly in equation (22)
are related to the HOT of the corresponding signal as shown in Figure. 1. For example, the
0th polyphase component of the output is given by
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y0(k) = F−1
K I0wH(k)⊗ I0uH(k) + F−1

K D
K−1

∑
i=1

IK−iwH(k)⊗ IiuH(k). (25)

Next, we examine the computational complexity of HOT convolution. To find the HOT of the
two signals w and u, 2K2log2K multiplications are required. Multiplication with the diagonal
matrix D requires K(K − 1) multiplications. Finally, the matrix multiplication requires K3

scalar multiplications. Therefore, the total number of multiplications required is 2K2log2K +

K3
+ K2

− K. Thus, computation of the output y using the HOT requires K3
+ 3K2log2K +

K3
+ K2

− K multiplications, which is more than 6K2log2K + K2 as required by the DFT.
When it is required to calculate only one polyphase component of the output, only K2

+

2K2log2K + Klog2K multiplications are necessary. Asymptotically in K, we see that the HOT
could be three times more efficient than the DFT.

4. Development of the basic algorithm

In the block adaptive filter, the adaptation proceeds block-by-block with the weight update
equation

w(k + 1) = w(k) +
µ

L

L−1

∑
i=0

u(kL + i)e(kL + i), (26)

where d(n) and y(n) are the desired and output signals, respectively, u(n) is the tap-input
vector, L is the block length or the filter length, and e(n) = d(n) − y(n) is the filter error.
The DFT is commonly used to efficiently calculate the output of the filter and the sum in
the update equation. Since the HOT is more efficient than the DFT when it is only required
to calculate one polyphase component of the output, the block LMS algorithm equation (26)
is modified such that only one polyphase component of the error in the kth block is used to
update the filter weights. For reasons that will become clear later, the filter length L is chosen
such that L = K2/2. With this modification, equation (26) becomes

w(k + 1) = w(k) +
2µ

K

K/2−1

∑
i=0

u(kL + iK + j)e(kL + iK + j). (27)

Since the DFT is most efficient when the length of the filter is equal to the block length [7], this
will be assumed in equation (27). The parameter j determines which polyphase component
of the error signal is being used in the adaptation. This parameter can be changed from
block to block. If j = 0, the output can be computed using the HOT as in equation (25). A
second convolution is needed to compute the sum in equation (27). This sum contains only
one polyphase component of the error. If this vector is up-sampled by K, the sum is just
a convolution between the input vector and the up-sampled error vector. Although all the
polyphase components are needed in the sum, the convolution can be computed by the HOT
with the same computational complexity as the first convolution since only one polyphase
component of the error vector is non-zero.
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The block adaptive filter that implements the above algorithm is called the HOT block LMS
adaptive filter and is shown in Figure 2. The complete steps of this new, efficient, adaptive
algorithm are summarized below:

(a) Append the weight vector with K2/2 zeros (the resulting vector is now K2 points long as
required in the HOT definition) and find its HOT.

(b) Compute the HOT of the input vector

[

u
(

(k − 1) K2

2

)

· · · u
(

k K2

2

)

u
(

k K2

2 + 1
)

· · · u
(

(k + 1) K2

2 − 1
) ]T

. (28)

Note that this vector contains the input samples for the current and previous blocks.

(c) Use the inverse HOT and equation (22) to calculate the jth polyphase component of
the circular convolution. The jth polyphase component of the output can be found by
discarding the first half of the jth polyphase component of the circular convolution.

(d) Calculate the jth polyphase component of the error, insert a block of K/2 zeros,
up-sample by K, then calculate its HOT.

(e) Circularly flip the vector in (b) and then compute its HOT.

(f) Compute the sum in the update equation using equation (22). This sum is the first half
of the elements of the circular convolution between the vectors in parts (e) and (d).

5. Computational complexity analysis

In this section, we analyze the computational cost of the algorithm and compare it to
that of the DFT block adaptive algorithm. Parts (a), (b), and (e) require 3K2 log2 K
multiplications. Part (c) requires K log2 K + K2. Part (d) requires K log2 K multiplications,
and part (f) requires K2

+ K2 log2 K multiplications. The total number of multiplications is
thus 4K2 log2 K + 2K log2 K + 2K2. The corresponding DFT block adaptive algorithm requires
10K2 log2 K + 2K2 multiplications — asymptotically more than twice as many. Therefore, by
using only one polyphase component for the adaptation in a block, the computational cost
can be reduced by a factor of 2.5. While this complexity reduction comes at the cost of not
using all available information, the proposed algorithm provides better estimates than the
LMS filter. The reduction of the computational complexity in this algorithm comes from
using the polyphase components of the input signal to calculate one polyphase component
of the output via the HOT.

It is worth mentioning that the fast exact LMS (FELMS) adaptive algorithm [8] also reduces
the computational complexity by finding the output by processing the polyphase components
of the input. However, the computational complexity reduction of the FELMS algorithm is
less than that found in the DFT and HOT block adaptive algorithms because the FELMS
algorithm is designed to have exact mathematical equivalence to, and hence the same
convergence properties as, the conventional LMS algorithm. Comparing the HOT block LMS
algorithm with the block LMS algorithms described in Chapter 3, the HOT filter performs
computationally better.

The multiplication counts for both the DFT block and HOT block LMS algorithms are plotted
in Figure 3. The HOT block LMS adaptive filter is always more efficient than the DFT block
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Figure 2. HOT block LMS adaptive filter.

LMS adaptive filter and the asymptotic ratio between their computational cost is almost
reached at small filter lengths. The computational complexity of the HOT filter can be further
improved by relating the HOT of the circularly flipped vector in step (e) to the HOT of the
vector in step (b). Another possibility to reduce the computational cost of the HOT block
algorithm is by removing the gradient constraint in the filter weight update equation as has
been done in the unconstrained DFT block LMS algorithm [9].

6. Convergence analysis in the time domain

In this section, we analyze the convergence of the HOT block LMS algorithm in the time
domain. We assume throughout that the step size is small. The HOT block LMS filter
minimizes the cost
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The block adaptive filter that implements the above algorithm is called the HOT block LMS
adaptive filter and is shown in Figure 2. The complete steps of this new, efficient, adaptive
algorithm are summarized below:

(a) Append the weight vector with K2/2 zeros (the resulting vector is now K2 points long as
required in the HOT definition) and find its HOT.

(b) Compute the HOT of the input vector
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(k − 1) K2

2
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· · · u
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k K2

2

)
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(

k K2

2 + 1
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· · · u
(
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2 − 1
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. (28)

Note that this vector contains the input samples for the current and previous blocks.

(c) Use the inverse HOT and equation (22) to calculate the jth polyphase component of
the circular convolution. The jth polyphase component of the output can be found by
discarding the first half of the jth polyphase component of the circular convolution.

(d) Calculate the jth polyphase component of the error, insert a block of K/2 zeros,
up-sample by K, then calculate its HOT.

(e) Circularly flip the vector in (b) and then compute its HOT.

(f) Compute the sum in the update equation using equation (22). This sum is the first half
of the elements of the circular convolution between the vectors in parts (e) and (d).

5. Computational complexity analysis

In this section, we analyze the computational cost of the algorithm and compare it to
that of the DFT block adaptive algorithm. Parts (a), (b), and (e) require 3K2 log2 K
multiplications. Part (c) requires K log2 K + K2. Part (d) requires K log2 K multiplications,
and part (f) requires K2

+ K2 log2 K multiplications. The total number of multiplications is
thus 4K2 log2 K + 2K log2 K + 2K2. The corresponding DFT block adaptive algorithm requires
10K2 log2 K + 2K2 multiplications — asymptotically more than twice as many. Therefore, by
using only one polyphase component for the adaptation in a block, the computational cost
can be reduced by a factor of 2.5. While this complexity reduction comes at the cost of not
using all available information, the proposed algorithm provides better estimates than the
LMS filter. The reduction of the computational complexity in this algorithm comes from
using the polyphase components of the input signal to calculate one polyphase component
of the output via the HOT.

It is worth mentioning that the fast exact LMS (FELMS) adaptive algorithm [8] also reduces
the computational complexity by finding the output by processing the polyphase components
of the input. However, the computational complexity reduction of the FELMS algorithm is
less than that found in the DFT and HOT block adaptive algorithms because the FELMS
algorithm is designed to have exact mathematical equivalence to, and hence the same
convergence properties as, the conventional LMS algorithm. Comparing the HOT block LMS
algorithm with the block LMS algorithms described in Chapter 3, the HOT filter performs
computationally better.

The multiplication counts for both the DFT block and HOT block LMS algorithms are plotted
in Figure 3. The HOT block LMS adaptive filter is always more efficient than the DFT block
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Figure 2. HOT block LMS adaptive filter.

LMS adaptive filter and the asymptotic ratio between their computational cost is almost
reached at small filter lengths. The computational complexity of the HOT filter can be further
improved by relating the HOT of the circularly flipped vector in step (e) to the HOT of the
vector in step (b). Another possibility to reduce the computational cost of the HOT block
algorithm is by removing the gradient constraint in the filter weight update equation as has
been done in the unconstrained DFT block LMS algorithm [9].

6. Convergence analysis in the time domain

In this section, we analyze the convergence of the HOT block LMS algorithm in the time
domain. We assume throughout that the step size is small. The HOT block LMS filter
minimizes the cost
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Figure 3. Multiplication counts for both the DFT block and HOT block LMS algorithms.

ξ̂ =

2

K

K
2 −1

∑
i=0

∣

∣

∣
e(kL + iK + j)

∣

∣

∣

2
, (29)

which is the average of the squared errors in the jth polyphase error component. From
statistical LMS theory [10], the block LMS algorithm can be analyzed using the stochastic
difference equation [10]

ǫT(k + 1) =
(

I − µΛ

)

ǫT(k) +φ(k), (30)

where

φ(k) = −

µ

L
VH

L−1

∑
i=0

u(kL + i) eo
(kL + i) (31)

is the driving force of for the block LMS algorithm [10]. we found that the HOT block LMS
algorithm has the following driving force
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φHOT(k) = −

2µ

K
VH

K
2 −1

∑
i=0

u(kL + iK + j) eo
(kL + iK + j). (32)

It is easily shown that

EφHOT(k) = 0, (33)

EφHOT(k)φ
H
HOT(k) =

2µ
2 JminΛ

K
. (34)

The mean square of the lth component of equation (34) is given by

E |ǫl(k)|
2
=

2µ
Jmin
K

2 − µλl
+ (1 − µλl)

2k

(

|ǫl(0)|
2
−

2µ
Jmin
K

2 − µλl

)

, (35)

where λl is the lth eigenvalue of the input autocorrelation matrix. Therefore, the average
time constant of the HOT block LMS algorithm is given by

τ =

L2

2µ ∑
L
l=1 λl

. (36)

The misadjustment can be calculated directly and is given by

M =

∑
L
l=1 λl E |ǫl(∞)|

2

Jmin
. (37)

Using equation (30), one may find E|ǫl(∞)|
2 and substitute the result into equation (37). The

misadjustment of the HOT block LMS filter is then given by

M =

µ

K

L

∑
l=1

λl . (38)

Thus, the average time constant of the HOT block LMS filter is the same as that of the DFT
block LMS filter 1. However, the HOT block LMS filter has K times higher misadjustment
than the DFT block LMS algorithm 2.

The HOT and DFT block LMS algorithms were simulated using white noise inputs. The
desired signal was generated using the linear model d(n) = wo

(n) ∗ u(n) + eo
(n), where

eo
(n) is the measurement white gaussian noise with variance 10−4 and Wo

(z) = 1+ 0.5z−1
−

1 The average time constant of the DFT block LMS filter is [10] τ = L2/2µ ∑
L
l=1 λl .

2 The misadjustment of the DFT block LMS algorithm is [10] M =

µ

K2 ∑
L
l=1 λl .
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0.25z−2
+ 0.03z−3

+ 0.1z−4
+ 0.002z−5

− 0.01z−6
+ 0.007z−7. The learning curves are shown

in Figure 4 with the learning curve of the conventional LMS algorithm. The step sizes of all
algorithms were chosen to be the same. The higher mean square error of the HOT algorithm,
compared to the DFT algorithm, shows the trade-off for complexity reduction by more than
half. As expected the HOT and DFT block LMS algorithms converge at the same rate.
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Figure 4. Learning curves of the DFT and HOT block LMS algorithms with the conventional LMS filter.

7. Convergence analysis in the HOT domain

Let u(n) be the input to the adaptive filter and

ŵ(k) =
[

w0(k) w1(k) · · · w K2

2 −1
(k)

]T
(39)

be the tap-weight vector of the adaptive filter, where k is the block index. Define the extended
tap-weight vector

w(k) =
[

ŵT
(k) 0 0 · · · 0

]T
(40)
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and the tap-input vector

u(k) =
[

u
(

(k − 1) K2

2

)

· · · u
(

k K2

2

)

u
(

k K2

2 + 1
)

· · · u
(

(k + 1) K2

2 − 1
) ]T

. (41)

Denote the HOT transforms of u(k) and w(k) by uH(k) = Hu(k) and wH(k) = Hw(k),
respectively, where H is the HOT matrix. The 0th polyphase component of the circular
convolution of u(k) and w(k) is given by

FKy0(k) = FKw0(k)⊗ FKu0(k) + D
K−1

∑
i=1

FKwK−i(k)⊗ FKui(k). (42)

Using FKui(k) = IiHu(k) = IiuH(k), equation (42) can be written in terms of the HOT of
u(k) and w(k). The result is given by

FKy0(k) = I0wH(k)⊗ I0uH(k) + D
K−1

∑
i=1

IK−iwH(k)⊗ IiuH(k). (43)

The 0th polyphase component of the linear convolution of ŵ(k) and u(n), the output of the
adaptive filter in the kth block, is given by the last K/2 elements of y0(k). Let the desired
signal be d(n) and define the extended 0th polyphase component of the desired signal in the
kth block as

d0(k) =

[

0 K
2

d̂0(k)

]

. (44)

The extended 0th polyphase component of error signal in the kth block is given by

e0(k) =

[

0 K
2

ê0(k)

]

=

[

0 K
2

d̂0(k)

]

−

[

0 K
2 ×

K
2

0 K
2 ×

K
2

0 K
2 ×

K
2

I K
2 ×

K
2

]

F−1
K

×

[

I0wH(k)⊗ I0uH(k) + D
K−1

∑
i=1

IK−iwH(k)⊗ IiuH(k)

]

. (45)

Multiplying equation (45) by the DFT matrix yields

FKe0(k) = FK

[

0 K
2

d̂0(k)

]

− FK

[

0 K
2 ×

K
2

0 K
2 ×

K
2

0 K
2 ×

K
2

I K
2 ×

K
2

]

F−1
K

×

[

I0wH(k)⊗ I0uH(k) + D
K−1

∑
i=1

IK−iwH(k)⊗ IiuH(k)

]

. (46)
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×
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Define uc
H(k) = Huc

(k), where uc
(k) is the circularly shifted version of u(k). The adaptive

filter update equation in the kth block is given by

wH(k + 1) = wH(k) + µ H

�

I K2

2 ×

K2

2

0 K2

2 ×

K2

2

0 K2

2 ×

K2

2

0 K2

2 ×

K2

2

�

H−1φH(k), (47)

where φH(k) is found from


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
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


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...
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
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

FKe0(k)
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FKe0(k)
FKe0(k)


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
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






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I0uc
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

, (48)

as

φH(k) = I−1
K
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. (49)

Finally, the HOT block LMS filter in the HOT domain can be written as

wH(k + 1) = wH(k)

+ µ H
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. (50)

Next, we investigate the convergence properties of equation (50). we assume the following
linear statistical model for the desired signal:

d(n) = wo
(n) ∗ u(n) + eo

(n), (51)

Adaptive Filtering - Theories and Applications14
Hirschman Optimal Transform Block LMS Adaptive Filter 15

where wo is the impulse response of the Wiener optimal filter and eo
(n) is the irreducible

estimation error, which is white noise and statistically independent of the adaptive filter
input. The above equation can be written in the HOT domain form

[

0 K
2

d̂0(k)

]

=

[

0 K
2 ×

K
2

0 K
2 ×

K
2

0 K
2 ×

K
2

I K
2 ×

K
2

]

F−1
K

×

[

I0wo
H(k)⊗ I0uH(k) + D

K−1

∑
i=1

IK−iw
o
H(k)⊗ IiuH(k) + FKeo

0(k)

]

. (52)

This form will be useful to obtain the stochastic difference equation that describes the
convergence of the adaptive algorithm. Using the above equation to replace the desired
signal in equation (46), we have

FKe0(k) = FK

[

0 K
2 ×

K
2

0 K
2 ×

K
2

0 K
2 ×

K
2

I K
2 ×

K
2

]

F−1
K

×

[

I0ǫH(k)⊗ I0uH(k) + D
K−1

∑
i=1

IK−iǫH(k)⊗ IiuH(k) + FKeo
0(k)

]

, (53)

where ǫH(k) is the error in the estimation of the adaptive filter weight vector, i.e., ǫH(k) =

wo
H − wH(k). The ith block in equation (50) is given by

FKe0(k)⊗ Iiu
c
H(k) = Diag [Iiu

c
H(k)] FKe0(k). (54)

Substituting equation (53) into equation (54) yields

FKe0(k)⊗ Iiu
c
H(k) = Diag [Iiu

c
H(k)] FK

[

0 K
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∑
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]

. (55)

Upon defining

Ti,j = Diag [Iiu
c
H(k)] LKDiag

[

IjuH(k)
]

, (56)

where
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

, (48)

as

φH(k) = I−1
K
















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






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⊗
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








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
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









. (49)

Finally, the HOT block LMS filter in the HOT domain can be written as

wH(k + 1) = wH(k)

+ µ H

�

I K2

2 ×

K2

2
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2 ×

K2

2

0 K2

2 ×

K2

2

0 K2

2 ×

K2

2

�

H−1I−1
K
















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

















⊗



















I0uc
H(k)

I1uc
H(k)

I2uc
H(k)
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H(k)
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H(k)



















. (50)

Next, we investigate the convergence properties of equation (50). we assume the following
linear statistical model for the desired signal:

d(n) = wo
(n) ∗ u(n) + eo

(n), (51)

Adaptive Filtering - Theories and Applications14
Hirschman Optimal Transform Block LMS Adaptive Filter 15

where wo is the impulse response of the Wiener optimal filter and eo
(n) is the irreducible

estimation error, which is white noise and statistically independent of the adaptive filter
input. The above equation can be written in the HOT domain form

[

0 K
2

d̂0(k)

]

=

[

0 K
2 ×

K
2

0 K
2 ×

K
2

0 K
2 ×

K
2

I K
2 ×

K
2

]

F−1
K

×

[

I0wo
H(k)⊗ I0uH(k) + D

K−1

∑
i=1

IK−iw
o
H(k)⊗ IiuH(k) + FKeo

0(k)

]

. (52)

This form will be useful to obtain the stochastic difference equation that describes the
convergence of the adaptive algorithm. Using the above equation to replace the desired
signal in equation (46), we have

FKe0(k) = FK

[

0 K
2 ×

K
2

0 K
2 ×

K
2

0 K
2 ×

K
2

I K
2 ×

K
2

]

F−1
K

×

[

I0ǫH(k)⊗ I0uH(k) + D
K−1

∑
i=1

IK−iǫH(k)⊗ IiuH(k) + FKeo
0(k)

]

, (53)

where ǫH(k) is the error in the estimation of the adaptive filter weight vector, i.e., ǫH(k) =

wo
H − wH(k). The ith block in equation (50) is given by

FKe0(k)⊗ Iiu
c
H(k) = Diag [Iiu

c
H(k)] FKe0(k). (54)

Substituting equation (53) into equation (54) yields

FKe0(k)⊗ Iiu
c
H(k) = Diag [Iiu

c
H(k)] FK

[

0 K
2 ×

K
2

0 K
2 ×

K
2

0 K
2 ×

K
2

I K
2 ×

K
2

]

F−1
K ×

[

Diag [I0uH(k)] I0ǫH(k) + D
K−1

∑
i=1

Diag [IK−iuH(k)] IiǫH(k) + FKeo
(k)

]

. (55)

Upon defining

Ti,j = Diag [Iiu
c
H(k)] LKDiag

[

IjuH(k)
]

, (56)

where
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LK = FK

�

0 K
2 ×

K
2

0 K
2 ×

K
2

0 K
2 ×

K
2

I K
2 ×

K
2

�

F−1
K , (57)

the ith block of equation (50) can be written as

FKeo
(k)⊗ Iiu

c
H(k) =

�

Ti,0 Ti,K−1 Ti,K−2 · · · Ti,1

�















I0ǫH(k)
DI1ǫH(k)
DI2ǫH(k)

...
DIK−1ǫH(k)















+Diag [Iiu
c
H(k)] LKeo

(k). (58)

Using the fact that

Diag [v]R Diag [u] =
�

vuT
�

⊗ R, (59)

equation (56) can be written as

Ti,j =

�

Iiu
c
H(k)

�

IjuH(k)
�T �

⊗ LK . (60)

Define

UK2 = H

�

I K2

2 ×

K2

2

0 K2

2 ×

K2

2

0 K2

2 ×

K2

2

0 K2

2 ×

K2

2

�

H−1. (61)

Then

wH(k + 1) = wH(k)

+ µ UK2 I−1
K T















I0ǫH(k)
DI1ǫH(k)
DI2ǫH(k)

...
DIK−1ǫH(k)















+ µ UK2 I−1
K















Diag
�

I0uc
H(k)

�

Diag
�

I1uc
H(k)

�

Diag
�

I2uc
H(k)

�

...
Diag

�

IK−1uc
H(k)

�















LKeo
(k). (62)

The matrix T can be written as

T =

�

1K×K × LK

�

⊗













I0uc
H(k) [I0uH(k)]T I0uc

H(k) [IK−1uH(k)]T · · · I0uc
H(k) [I1uH(k)]T

I1uc
H(k) [I0uH(k)]T I1uc

H(k) [IK−1uH(k)]T · · · I1uc
H(k) [I1uH(k)]T

...
...

. . .
...

IK−1uc
H(k) [I0uH(k)]T IK−1uc

H(k) [IK−1uH(k)]T · · · IK−1uc
H(k) [I1uH(k)]T













,
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where × denotes the Kronecker product and 1K×K is the K × K matrix with all element being
equal to one. The matrix T can be written as

T =















I0uc
H(k)

I1uc
H(k)
...

IK−2uc
H(k)

IK−1uc
H(k)





























I0uH(k)
IK−1uH(k)

...
I2uH(k)
I1uH(k)















T

⊗

�

1K×K × LK

�

=

�

IKuc
H(k)uT

H(k)Ic
K

T
�

⊗

�

1K×K × LK

�

,

where

Ic
K =











I0

IK−1
...

I1











. (63)

Finally, the error in the estimation of the adaptive filter is given by

ǫH(k + 1) =

�

I − µUK2 I−1
K

�

IKuc
H(k)uT

H(k)Ic
K

T
�

⊗

�

1K×K × LK

�

ID
K

�

ǫH(k)

−µUK2 I−1
K















Diag[I0uc
H(k)]

Diag[I1uc
H(k)]

...
Diag[IK−2uc

H(k)]
Diag[IK−1uc

H(k)]















LKeo
(k), (64)

where

ID
K =



















I0

DI1

DI2
...

DIK−2

DIK−1



















. (65)

Therefore, the adaptive block HOT filter convergence is governed by the matrix

Ψ = H

�

I K2

2 ×

K2

2

0 K2

2 ×

K2

2

0 K2

2 ×

K2

2

0 K2

2 ×

K2

2

�

H−1I−1
K

�

IKEuc
H(k)uT

H(k)IcT
K

�

⊗

�

1K×K × LK

�

ID
K . (66)
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where × denotes the Kronecker product and 1K×K is the K × K matrix with all element being
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T =















I0uc
H(k)

I1uc
H(k)
...

IK−2uc
H(k)

IK−1uc
H(k)





























I0uH(k)
IK−1uH(k)

...
I2uH(k)
I1uH(k)















T

⊗

�

1K×K × LK

�

=

�

IKuc
H(k)uT

H(k)Ic
K

T
�

⊗

�

1K×K × LK

�

,

where

Ic
K =











I0

IK−1
...

I1











. (63)
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The structure of Ψ is now analyzed. Using the relation between the HOT and the DFT
transforms, we can write

IKuc
H =















FKuc
0

FKuc
1

...
FKuc

K−2
FKuc

K−1















. (67)

It can be easily shown that

FKuc
i =

�

FH
K ui if i = 0,

D∗FH
K uK−i if i �= 0.

(68)

Then we have

IKuc
K =















FH
K u0

D∗FH
K uK−1
...

D∗FH
K u2

D∗FH
K u1















(69)

and

IKuc
H(k)uT

H(k)IcT
K =















FH
K u0

D∗FH
K uK−1
...

D∗FH
K u2

D∗FH
K u1





























FKu0

FKuK−1
...

FKu2

FKu1















T

. (70)

Taking the expectation of equation (70) yields

IKEuc
H(k)uT

H(k)IcT
K =













FH
K Eu0uT

0 FK FH
K Eu0uT

K−1FK . . . FH
K Eu0uT

1 FK

D∗FH
K EuK−1uT

0 FK D∗FH
K EuK−1uT

K−1FK . . . D∗FH
K EuK−1uT

1 FK

...
...

. . .
...

D∗FH
K Eu1uT

0 FK D∗FH
K Eu1uT

K−1FK . . . D∗FH
K Eu1uT

1 FK













.

Each block in the above equation is an autocorrelation matrix that is asymptotically
diagonalized by the DFT matrix. Each block will be also pointwise multiplied by LK .
Three-dimensional representations of LK for K = 16 and K = 32 are shown in Figures 5 and
6, respectively. The diagonal elements of LK are much higher than the off diagonal elements.
Therefore, pointwise multiplying each block in the previous equation with LK makes it more
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diagonal. If each block is perfectly diagonal, then IK

(

IKEuc
H(k)uT

H(k)IcT
K

)

⊗ (1K×K × LK)I
D
K

will be block diagonal. Asymptotically the HOT block LMS adaptive filter transforms the K2

modes into K decoupled sets of modes.

Figure 5. Three-dimensional representation of L16.

Figure 6. Three-dimensional representation of L32.
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Figure 6. Three-dimensional representation of L32.
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8. Conclusions

The “HOT convolution,” a relation between the HOT of two signals and their circular
convolution was derived. The result was used to develop a fast block LMS adaptive filter
called the HOT block LMS adaptive filter. The HOT block LMS adaptive filter assumes that
the filter and block lengths are the same. This filter requires slightly less than half of the
multiplications that are required for the DFT block LMS adaptive filter. The reduction in
the computational complexity of the HOT block LMS comes from using only one polyphase
component of the filter error used to update the filter weights. Convergence analysis of the
HOT block LMS algorithm showed that the average time constant is the same as that of the
DFT block LMS algorithm and that the misadjustment is K times greater than that of the DFT
block LMS algorithm. The HOT block LMS adaptive filter transforms the K2 modes into K
decoupled sets of modes.
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1. Introduction

The electric power transmission grid has been progressively developed for over a century,
from initial design of local dc networks in low-voltage levels to three-phase high voltage ac
networks, and finally to modern bulk interconnected networks with various voltage levels
and multiple complex electrical components. The development of human society and eco‐
nomic needs is the major driving force the revolution of transmission grids stage-by-stage
with the aid of innovative technologies. The current power industry is being modernized
and tends to deal with the challenges more proactively by using the state-of-the-art technol‐
ogies in the areas of sensing, communications, control, computing, and information technol‐
ogy. The shift in the development of transmission grids to be more intelligent has been
summarized as “smart grid” [see Fig.1].

In a smart transmission network, flexible and reliable transmission capabilities can be facili‐
tated by the advanced Flexible AC Transmission Systems (FACTS), high-voltage dc (HVDC)
devices, and other power electronics-based devices. The FACTS devices are optimally
placed in the transmission network to provide a flexible control of the transmission network
and increase power transfer levels without new transmission lines. These devices also im‐
prove the dynamic performance and stability of the transmission network. Through the uti‐
lization of FACTS technologies, advanced power flow control, etc., the future smart
transmission grids should be able to maximally relieve transmission congestions, and fully
support deregulation and enable competitive power markets. In addition, with the increas‐
ing penetration of large-scale renewable/alternative energy resources, the future smart

© 2013 Han; licensee InTech. This is an open access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

© 2013 Han; licensee InTech. This is a paper distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
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transmission grids would be able to enable full integration of these renewable energy re‐
sources(Wira et al., 2010, Sauter & Lobashov 2011, Varaiya et al., 2011).

Smart substations would provide advanced power electronics and control interfaces for re‐
newable energy and demand response resources so that they can be integrated into the pow‐
er grid on a large scale at the distribution level. By incorporating micro-grids, the substation
can deliver quality power to customers in a manner that the power supply degrades grace‐
fully after a major commercial outage, as opposed to a catastrophic loss of power, allowing
more of the installations to continue operations. Smart substations should have the capabili‐
ty to operate in the islanding mode taking into account the transmission capability, load de‐
mand, and stability limit, and provide mechanisms for seamlessly transitioning to islanding
operation. Coordinated and self-healing are the two key characteristics of the next genera‐
tion control functions. These applications require precise tracking of the utility’s phase-angle
information, for high performance local or remote control, sensing and fault diagnosis pur‐
poses(Froehlich et al., 2011, Han et al., 2009).

Figure 1. The vision of the future smart grid (SG) infrastructure

On the other hand, the proliferation of nonlinear loads causes significant power quality con‐
tamination for the electric distribution systems. For instance, high voltage direct transmis‐
sion (HVDC), electric arc furnaces (EAFs), variable speed ac drives which adopts six-pulse
power converters as the first power conversion stage, these devices cause a large amount of
characteristic harmonics and a low power factor, which deteriorate power quality of the
electrical distribution systems. The increasing restrictive regulations on power quality prob‐
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lems have stimulated the fast development of power quality mitigation devices, which are
connected to the grid to improve the energy transmission efficiency of the transmission lines
and the quality of the voltage waveforms at the common coupling points (PCCs) for the cus‐
tomers. These devices are known as flexible AC transmission systems (FACTS) (Fig.2),
which are based on the grid-connected converters and real-time digital signal processing
techniques. Much work has been conducted in the past decades on the FACTS technologies
and many FACTS devices have been practically implemented for the high voltage transmis‐
sion grid, such as static synchronous compensators (STATCOMs), thyristor controlled series
compensators (TCSCs) and unified power flow controllers (UPFCs) (Fig.3), etc(Cirrincione
et al., 2008, Jarventausta et al, 2010).

Figure 2. The circuit diagram of the FACTS and HVDC link

The stable and smooth operation of the FACTS equipments is highly dependent on how
these power converters are synchronized with the grid. The need for improvements in the
existing grid synchronization approaches also stems from rapid proliferation of distributed
generation (DG) units in electric networks. A converter-interfaced DG unit, e.g., a photovol‐
taic (PV) unit (Fig.4), a wind generator unit (Fig.5) and a micro-turbine-generator unit, un‐
der both grid-connected and micro-grid (islanding) scenarios requires accurate converter
synchronization under polluted and/or variable-frequency environment to guarantee stable
operation of these grid-connected converters(Jarventausta et al., 2010).
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Figure 3. The circuit diagram of the unified power flow controller (UPFC)

Figure 4. The configuration of PV arrays with the electric network
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Figure 5. The configurations of the wind generators with the network

Besides, an active power filter (APF) (Fig.6) or dynamic voltage restorer (DVR) (Fig.7) rectifi‐
er also requires a reference signal which is properly synchronized to the grid. Interfacing
power electronic converters to the utility grid, particularly at the medium and high voltages,
necessitates proper synchronization for the purpose of operation and control of the grid-
connected converters. However, the controller signals used for synchronization are often
corrupted by harmonics, voltage sags or swells, commutation notches, noise, phase-angle
jump and frequency deviations(Abdeslam et al., 2007, Cirrincione et al., 2008).

Figure 6. The circuit diagram of the shunt active power filter
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Figure 7. The circuit diagram of the dynamic voltage restorer (DVR)

Figure 8. The diagram of the adaptive linear neural network (ADALINE)
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Therefore, a desired synchronization method must detect the phase angle of the fundamen‐
tal component of utility voltages as fast as possible while adequately eliminating the im‐
pacts of corrupting sources on the signal. Besides, the synchronization process should be
updated not only at the signal zero-crossing, but continuously over the fundamental period
of the signal(Chang et al., 2009, Chang et al., 2010). This chapter aims to present the harmon‐
ic estimation and grid-synchronization method using the adaptive linear neural network
(ADALINE) (Figs.8 and 9). The mathematical derivation of these algorithms, the parameter
design guidelines, and digital simulation results would be provided. Besides, their practical
application for the grid-connected converters in smart grid would also be presented in this
chapter.

Figure 9. The grid-synchronization algorithm using the ADALINE-identifier

2. Mathematical model of the adaptive linear neural network (ADALINE)

The adaptive linear neural network (ADALINE) was used to estimate the time-varying mag‐
nitudes and phases of the fundamental and harmonics from a distorted waveform. The
mathematical formulation of ADALINE is briefly reviewed. Consider an arbitrary signalY(t)
with Fourier series expansion as (Simon, 2002):
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where An and φn are correspondingly the amplitude and phase angle of the nth order har‐
monic component, and ε(t)represents higher order components and random noise. In order
to formulate the harmonic estimation problem by using ADALINE, we firstly define the pat‐
tern vectorXk and weight vector Wk as:

[1,sin ,cos , ,sin ,cos ]Tk k k k kX t t N t N tw w w w= × × × (2)
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The square error on the pattern Xk is expressed as:
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where dk is the desired scalar output. The mean-square error (MSE) ε can be obtained by cal‐
culating the expectation of both sides of Eq. (4), as:
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2 2

T T T
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where the weights are assumed to be fixed at Wk while computing the expectation. The ob‐
jective of the adaptive linear neural network (ADALINE) is to find the optimal weight vec‐
tor Ŵ k  that minimizes the MSE of Eq. (4). For convenience of expression, Eq. (5) is rewritten
as (Abdeslam et. al, 2007, Simon 2002):
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Notably, matrix R is real and symmetric, and ε is a quadratic function of weights. The gradi‐
ent function ∇ε corresponding to the MSE function of Eq. (4) is obtained by straightforward
differentiation:
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which is a linear function of weights. The optimal set of weights, Ŵ k , can be obtained by
setting ∇ε =0, which yields:

ˆ 0kP W- + =R (10)

The solution of the Eq. (10) is called Weiner solution or the Weiner filter:

1ˆ
kW P-= R (11)

The Weiner solution corresponds to the point in weight space that represents the minimum
mean-square error εmin. To compute the optimal filter one must first compute R-1 and P.
However, it would be difficult to compute R-1 and P accurately when the input data com‐
prises a random stream of patterns (drawn from a stationary distribution). Thus, by direct
calculating gradients of the square error at the kth iteration:
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whereek=(dk-sk), and sk = Xk
T Wk  since we are dealing with linear neurons. Therefore, the re‐

cursive weights updating equation can be expressed as:

1 ( ) ( )k k k k k k k k k kW W W e X W d s Xm e m m+ = + -Ñ = + = + -% (13)

where the learning rate μ is used to adjust the convergence speed and the stability of
weights updating process. Taking the expectation of Eq. (12), the following equation is de‐
rived:
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Notably, matrix R is real and symmetric, and ε is a quadratic function of weights. The gradi‐
ent function ∇ε corresponding to the MSE function of Eq. (4) is obtained by straightforward
differentiation:
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e e e e ee ¶ ¶ ¶ ¶ ¶

Ñ = = - +
¶ ¶ ¶ ¶ ¶

R (9)

which is a linear function of weights. The optimal set of weights, Ŵ k , can be obtained by
setting ∇ε =0, which yields:

ˆ 0kP W- + =R (10)

The solution of the Eq. (10) is called Weiner solution or the Weiner filter:

1ˆ
kW P-= R (11)

The Weiner solution corresponds to the point in weight space that represents the minimum
mean-square error εmin. To compute the optimal filter one must first compute R-1 and P.
However, it would be difficult to compute R-1 and P accurately when the input data com‐
prises a random stream of patterns (drawn from a stationary distribution). Thus, by direct
calculating gradients of the square error at the kth iteration:
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% (12)

whereek=(dk-sk), and sk = Xk
T Wk  since we are dealing with linear neurons. Therefore, the re‐

cursive weights updating equation can be expressed as:

1 ( ) ( )k k k k k k k k k kW W W e X W d s Xm e m m+ = + -Ñ = + = + -% (13)

where the learning rate μ is used to adjust the convergence speed and the stability of
weights updating process. Taking the expectation of Eq. (12), the following equation is de‐
rived:
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E ∇̃εk = − E ek Xk = − E dk Xk − Xk Xk
T Wk = RWk − P =∇ε. (14)

From Eq. (14), it  can be found that the long-term average of ∇̃εk  approaches ∇ε  hence
∇̃εk  can be used as unbiased estimate of ∇ε.If the input data set is finite (deterministic),
then the gradient ∇ε  can be computed accurately by collecting the different ∇̃εk  gradi‐
ents over all training patterns Xk for the same set of weights. The steepest descent search
is guaranteed to search the Weiner solution provided the learning rate condition Eq. (15)
is satisfied (Simon 2002):

max

20 m
l

< < (15)

where λmax represents the largest eigenvalue of R. As for learning rate μ, increasing it results
in a faster convergence at the trade-off of losing accuracy and increasing overshoots in tran‐
sient response. Theoretically, a dynamical learning rate has better convergence characteris‐
tic, however, the implementation will be more demanding, and requires more expensive
hardware setup. By a trial-and-error approach, a constant learning rate μ within the range of
0.025 and 0.04 is found sufficient for adequate stable convergence, which is consistent with
Widrow-Hoff delta rule (Chang 2009, Chang 2010, Wira et al., 2010).

When mean-square error ε is minimized, the weight vector Ŵ  after convergence would be:

0 1 1 2 2
ˆ [ , , , , ,..., , ] .T

N NW b a b a b a b= (16)

Thus the fundamental component of the measured signal Y1(tk)is:

1 1 1( ) sin cos .k k kY t a t b tw w= + (17)

Obviously, the dimension of the weight vector Wk to be updated depends on the order N of
the harmonics to be estimated. In case of highly distorted load, lower order structure of neu‐
ral network is not accurate enough when high convergence speed is required, so using high‐
er order ANN structure is inevitable.

3. Synchronization for grid-connected converters using ADALINE
technique

This Section formulates the generalized methodology for the phase-locked loop (PLL) de‐
sign and synthesis by using adaptive linear neural network (ADALINE) technique. The
mathematical derivation, the stability analysis and the detailed description of the proposed
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ADALINE-PLL are outlined consecutively herein. In subsection 3.1, the optimal control pa‐
rameters selection of the proposed ADALINE-PLL is discussed in terms of the continuous
domain and the discrete domain analysis. Furthermore, the time-domain simulation results
of the proposed ADALINE-PLL under different control parameters are also presented for
verification.

3.1. Mathematical formulation of the ADALINE-PLL

This section presents the grid synchronization technique using the ADALINE algorithm.
Firstly, the formulation of the ADALINE problem by using single-phase representation is
outlined as follows. An arbitrary grid voltage can be represented as:

1 0 1 0
2

( ) sin( ) sin( )
N

sa n n
n

v t V t V n tw j w j
=

= + + +å (18)

where φ1 and φn are the initial phase angle of the fundamental and nth order harmonic com‐
ponent, respectively. Here the dc offset is neglected for the sake of brevity. The phase angle
of the fundamental component voltage can be expressed as:

1 1 1j q q= D + (19)

where θ1 and Δθ1 represent the estimated phase angle of the fundamental grid voltage and
the estimation error, respectively, obtained from the ADALINE-PLL. Therefore, the phase
angle of the nth order harmonic component can be expressed as:

0 0 1 1 0 1 1 1( ) ( ) ( )n n nn t n t n n t n nw j w q j q w q q j j+ = + + - = + + D + - (20)

where φn is the initial phase angle of the nth order harmonic component. Substituting Eq.
(20) back into Eq. (19), rearranging terms, we get:

1 1 0 1 1 1 0 1

1 1 0 1

2 1 1 0 1

( ) cos( )sin( ) sin( )cos( )
{ cos( ( ))sin[ ( )]

sin( ( ))cos[ ( )]}

sa
N

n n

n n n

v t V t V t
V n n n t
V n n n t

q w q q w q
q j j w q
q j j w q=

= D + + D +

D + - +
+

+ D + - +å
(21)

From Eq. (21), it can be deduced that the original signal denoted by Eq. (18) can be regener‐
ated by adjusting the coefficients Vncos(nΔθ1 + (φn −nφ1)), Vnsin(nΔθ1 + (φn −nφ1)) (n=1, …,
N), even though the phase angle of the original signal is unknown. The objective of the pro‐
posed ADALINE-PLL is to reconstruct the phase information of the fundamental grid volt‐
age φ1 using least-mean-square (LMS) algorithm. Therefore, the grid voltage denoted by Eq.
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0 1 1 2 2
ˆ [ , , , , ,..., , ] .T

N NW b a b a b a b= (16)

Thus the fundamental component of the measured signal Y1(tk)is:

1 1 1( ) sin cos .k k kY t a t b tw w= + (17)

Obviously, the dimension of the weight vector Wk to be updated depends on the order N of
the harmonics to be estimated. In case of highly distorted load, lower order structure of neu‐
ral network is not accurate enough when high convergence speed is required, so using high‐
er order ANN structure is inevitable.

3. Synchronization for grid-connected converters using ADALINE
technique

This Section formulates the generalized methodology for the phase-locked loop (PLL) de‐
sign and synthesis by using adaptive linear neural network (ADALINE) technique. The
mathematical derivation, the stability analysis and the detailed description of the proposed

Adaptive Filtering - Theories and Applications32
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verification.

3.1. Mathematical formulation of the ADALINE-PLL

This section presents the grid synchronization technique using the ADALINE algorithm.
Firstly, the formulation of the ADALINE problem by using single-phase representation is
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ponent, respectively. Here the dc offset is neglected for the sake of brevity. The phase angle
of the fundamental component voltage can be expressed as:
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where θ1 and Δθ1 represent the estimated phase angle of the fundamental grid voltage and
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From Eq. (21), it can be deduced that the original signal denoted by Eq. (18) can be regener‐
ated by adjusting the coefficients Vncos(nΔθ1 + (φn −nφ1)), Vnsin(nΔθ1 + (φn −nφ1)) (n=1, …,
N), even though the phase angle of the original signal is unknown. The objective of the pro‐
posed ADALINE-PLL is to reconstruct the phase information of the fundamental grid volt‐
age φ1 using least-mean-square (LMS) algorithm. Therefore, the grid voltage denoted by Eq.
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(18) can be expressed by the inner product of two vectors, namely, the vector of trigonomet‐
ric functions and the vector of weights in the LMS-based weights updating algorithm. The
weight vector W is denoted by the coefficients of the corresponding trigonometric functions.
Followed by this idea, Eq. (21) can be expressed as:

ˆ TY W X= (22)

where Ŷ  is the estimated output of the grid voltage vsa(t) by using the LMS-based linear op‐
timal filter methodology. The vector W and X corresponding to the weight vector and the
input vector, respectively, are represented as:

1 1 1 1 1 1 1 1[ cos( ), sin( ),..., cos( ( )), sin( ( ))]Tn n n nW V V V n n V n nq q q j j q j j= D D D + - D + - (23)

0 1 0 1 0 1 0 1[sin( ), cos( ),...,sin[ ( )], cos[ ( )]]TX t t n t n tw q w q w q w q= + + + + (24)

Equation (23) can be rewritten as:

1 1[ , ,..., , ]Ta b aN bNW w w w w= (25)

Notably,  the  salient  difference  between  the  ADALINE  algorithm  and  the  ADALINE-
PLL algorithm is  that,  the  frequency and phase  angle  signals  utilized in  the  ADALINE
weights  updating process  were assumed to  be  constant.  However,  in  case  of  the  ADA‐
LINE-PLL,  the  frequency  and  phase  angle  of  fundamental  component  grid  voltage  is
recursively  updated  by  the  loop  filter  (LF)  and  voltage  controlled  oscillator  (VCO)  of
the  PLL.  In  other  words,  the  weights  updating  procedure  of  the  ADALINE  is  utilized
as  the  phase  detector  (PD)  for  the  PLL,  which  generate  the  error  signal  to  drive  the
loop  filter  (LF)  and  voltage  controlled  oscillator  (VCO),  according  to  the  initial  defini‐
tion  of  PLL  The  graphical  interpretation  of  the  proposed  ADALINE-PLL  is  illustrated
in  Fig.9.  In  order  to  better  illustrate  the  working  principle  of  the  proposed ADALINE-
PLL,  the  weights  updating  law  and  stability  conditions  are  discussed  in  detail  as  fol‐
lows.

In the discrete domain, the weight vector of the ADALINE should be changed in a mini‐
mum manner, subject to the constraint imposed on the updated filter output. Let Ŵ k  denote
the old weight vector of the ADALINE filter at the kth iteration and Ŵ k +1 denote its updated
weight vector at the (k+1)th iteration. Therefore, given the input vector Xk  and the desired
output Yk , the weight vector Ŵ k +1 can be written as:
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1 1
ˆ ˆ ˆ

k k kW W Wd + += - (26)

For each (Xk, Yk) pair, there exist at least one Ŵ k +1, such that the following equation is satis‐
fied:

1
ˆ H

k k kW X Y+ = (27)

Hence the weights adaption process is achieved by solving the optimization problem, as in‐
dicated by Eqs. (26)-(27). The cost function at the kth iteration can be formulated by using
the method of Lagrange multipliers (Wira et al., 2010, Yin et al., 2010), as:

2
1 1

ˆ ˆ|| || ( )H
k k k k kJ W Y W Xd l+ += + × - (28)

where λ denotes the real-valued Lagrange multiplier. The term | |δŴ k +1 ||2  denotes the
squared Euclidean norm of the weight change δŴ k +1.The cost function is a quadratic func‐
tion of the weight vector Ŵ k +1, as shown by expanding Eq. (28) into:

1 1 1
ˆ ˆ ˆ ˆ ˆ( ) ( ) ( )H H

k k k k k k k kJ W W W W Y W Xl+ + += - × - + × - (29)

The optimum weight vector can be found by minimizing the cost function Jk . Differentiate
the cost function Jk  with respect to Ŵ k +1, we get:

1
1

ˆ ˆ2( )ˆ
k

k k k
k

J
W W X

W
l+

+

¶
= - -

¶
(30)

By setting Eq.(30) equal to zero, the optimum value for Ŵ k +1, corresponding to the station‐
ary point of the cost function Jk , can be derived as:

1
1ˆ ˆ
2k k kW W Xl+ = + (31)

Hence, the output of the ADALINE as denoted by Eq. (22) can be rewritten as:

2
1

1 1ˆ ˆ ˆ( ) || ||
2 2

H H H
k k k k k k k k kY W X W X X W X Xl l+= = + = + (32)
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in  Fig.9.  In  order  to  better  illustrate  the  working  principle  of  the  proposed ADALINE-
PLL,  the  weights  updating  law  and  stability  conditions  are  discussed  in  detail  as  fol‐
lows.

In the discrete domain, the weight vector of the ADALINE should be changed in a mini‐
mum manner, subject to the constraint imposed on the updated filter output. Let Ŵ k  denote
the old weight vector of the ADALINE filter at the kth iteration and Ŵ k +1 denote its updated
weight vector at the (k+1)th iteration. Therefore, given the input vector Xk  and the desired
output Yk , the weight vector Ŵ k +1 can be written as:
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1 1
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For each (Xk, Yk) pair, there exist at least one Ŵ k +1, such that the following equation is satis‐
fied:
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Hence the weights adaption process is achieved by solving the optimization problem, as in‐
dicated by Eqs. (26)-(27). The cost function at the kth iteration can be formulated by using
the method of Lagrange multipliers (Wira et al., 2010, Yin et al., 2010), as:
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where λ denotes the real-valued Lagrange multiplier. The term | |δŴ k +1 ||2  denotes the
squared Euclidean norm of the weight change δŴ k +1.The cost function is a quadratic func‐
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1 1 1
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By setting Eq.(30) equal to zero, the optimum value for Ŵ k +1, corresponding to the station‐
ary point of the cost function Jk , can be derived as:

1
1ˆ ˆ
2k k kW W Xl+ = + (31)

Hence, the output of the ADALINE as denoted by Eq. (22) can be rewritten as:

2
1

1 1ˆ ˆ ˆ( ) || ||
2 2

H H H
k k k k k k k k kY W X W X X W X Xl l+= = + = + (32)
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Then, the Lagrange multiplier λ can be obtained as:

2
2

|| ||
k

k

e
X

l = (33)

where ek =Yk −Ŵ H
k
Xk  represents the estimation error of the ADALINE. From Eq. (31) and

Eq. (32), the following equation can be derived:

1 1 2
1ˆ ˆ ˆ

|| ||k k k k k
k

W W W X e
X

d + += - = (34)

In order to ensure stable operation of the weight vector updating process, a positive real scaling
factor μ (learning rate) is introduced to the step size. Hence Eq. (34) can be redefined as:

1 1 2
ˆ ˆ ˆ

|| ||k k k k k
k

W W W X e
X

md + += - = (35)

Equivalently,

1 2
ˆ ˆ

|| ||k k k k
k

W W X e
X

m
+ = + (36)

The aforementioned weights updating scheme, in essence, belongs to the well-known least
mean square (LMS) algorithm, which may introduce convergence problem in case of small
input vector Xk  since the squared norm | | Xk ||2  appears in the denominator, as indicated
by Eq. (36). To solve this problem, Eq. (36) can be modified as (Chang 2009):

1 2
ˆ ˆ

|| ||k k k k
k

W W X e
X
m

d+ = +
+

(37)

where δis a sufficiently small real number and δ >0. The weight adaptation law represented
in Eq.(37) is adopted and practically implemented herein.

3.2. Stability analysis of the ADALINE

The selection of the step-size parameter μ is a compromise between the estimation accuracy
and the convergence speed of the weights updating process. Generally speaking, a higher
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step-size would result in faster dynamic response and wider bandwidth of the ADALINE-
PLL. On the other hand, if the step-size is selected too small, the corresponding ADALINE
would be slow in transient response and results in a narrow bandwidth in frequency do‐
main. Assuming that the physical mechanism responsible for generating the desired re‐
sponse Yk is controlled by the multiple regression model:

1
ˆ H H

k k k k kY W X W X d+= = + (38)

where W represents the model’s unknown parameter vector and dk  represents unknown dis‐
turbances that accounts for various system impairments, such as random noise, modeling
errors or other unknown sources. The weight vector Ŵ k  computed by the ADALINE algo‐
rithm is an estimate of the actual weight vector W, hence the estimation error can be present‐
ed by:

ˆ
k kW We = - (39)

From Eqs.(37)-(39), the incremental in the estimation error can be derived as:

1 2|| ||k k k k
k

X e
X
me e

d+ = -
+

(40)

As stated above, the underlying idea of the ADALINE design is to minimize the incremental
change in the weight vector Ŵ k +1 from the kth and (k+1)th iteration, subject to a constraint
imposed on the updated weight vector Ŵ k +1. Based on this idea, the stability of the ADA‐
LINE algorithm can be investigated by defining the mean-square deviation of the weight
vector estimation error, hence we get:

2[|| || ]n kEr e= (41)

Taking the squared Euclidean norms of both sides of Eq. (41), rearranging terms, and then
taking the expectations on both sides of equation, we get:

2 2
2

1 2 2 2
|| || | |
[ ] 2 [ ]
( || || ) || ||

k k k k
n n

k k

X e e
E E

X X
x

r r m m
d d+

×
= + -

+ +
(42)

where ξk  denotes the undisturbed error signal defined by
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rithm is an estimate of the actual weight vector W, hence the estimation error can be present‐
ed by:

ˆ
k kW We = - (39)

From Eqs.(37)-(39), the incremental in the estimation error can be derived as:

1 2|| ||k k k k
k

X e
X
me e

d+ = -
+

(40)

As stated above, the underlying idea of the ADALINE design is to minimize the incremental
change in the weight vector Ŵ k +1 from the kth and (k+1)th iteration, subject to a constraint
imposed on the updated weight vector Ŵ k +1. Based on this idea, the stability of the ADA‐
LINE algorithm can be investigated by defining the mean-square deviation of the weight
vector estimation error, hence we get:
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Taking the squared Euclidean norms of both sides of Eq. (41), rearranging terms, and then
taking the expectations on both sides of equation, we get:
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where ξk  denotes the undisturbed error signal defined by
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From Eq.(43), it shows that the mean-square deviation ρn decrease exponentially with the in‐
crease of iterations, hence the ADALINE is therefore stable in the mean-square error sense
(i.e., the convergence process is monotonic), provided ρn+1 <ρn is satisfied, which corre‐
sponding to the following condition:
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Considering the limited rate of variation in parameters for the practical grid-connected con‐
verter applications, if faster adaptation for the weight vector Ŵ k +1than the parameter varia‐
tion of the input signal is ensured, it can be shown that this inequality can always be
satisfied. It should be noted that the selection of the step-size parameter μ has a significant
effect on the frequency characteristics of the ADALINE-PLL, which would be discussed in
the forthcoming subsection. Here we first describe the proposed ADALINE-PLL and its im‐
plementation in Matlab/Simulink1.

3.3. Description of the proposed ADALINE-PLL

Figs.10-11 show the single-phase and three-phase version of the proposed ADALINE-PLL.
The following discussion is mainly focused on the single-phase version of the ADALINE-
PLL, but the similar analysis can be easily extended to the three-phase version. For the sake
of brevity, only the fundamental component, fifth and seventh order harmonics are consid‐
ered in the grid voltages, hence the estimation blocks corresponding to these three compo‐
nents are considered in the single-phase ADALINE-PLL. One may extend the order of the
ADALINE-PLL by incorporating higher order harmonic blocks in the algorithm according
to the particular applications. Fig.10(a) shows the top layer representation of the single-
phase ADALINE-PLL, it can be observed that the estimation error, phase angle of the funda‐
mental component in grid voltage, the learning rate are utilized as the input signals to the
subsystems, namely, the fundamental frequency block, the fifth order harmonic block and
the seventh order harmonic block.

Figs.10(b)-(d) shows the three subsystems for individual harmonic component estimation,
namely, the fundamental component, the fifth and the seventh order harmonic components.
Once again, the weights of the fundamental frequency component are denoted as ωa1 and
ωb1, hence the phase estimation error denoted by Δθ1 can be regulated to zero by using a
properly designed closed-loop control system, which resembles that of the existing grid syn‐
chronization schemes. As shown in Fig.10(b), the per unit representation of the weight ωb1 is

1 www.mathworks.com
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utilized as the input signal for the loop filter (LF) of the PLL, which can be simply derived

as:

(a) 

(b) 

(c) 
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Figure 10. The Matlab/Simulink diagram for the single-phase ADALINE-PLL
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The derived signal ωb1
pu, is then used as input for the phase tracking algorithm. However, by

incorporating the adaptive linear optimal filter methodology, the proposed ADALINE-PLL
exhibits noticeable advantages compared to the existing grid synchronization algorithms in
terms of response speed, accuracy and robustness.

Figure 11. The Matlab/Simulink diagram for the three-phase ADALINE-PLL

Fig. 11 shows the corresponding three-phase version of the proposed ADALINE-PLL, which
has a similar architecture with that of the single-phase version. One of the salient features of
the three-phase ADALINE-PLL algorithm is that the Clark’s transformation and Park’s
transformation are utilized consecutively to derive the q-axis component of the grid voltag‐
es, similar to the procedure adopted in the conventional three-phase PLL (CPLL) and the
virtual PLL (VPLL). However, the adaptive linear optimal filter (ADALINE) is used as the
phase detector (PD) section, which generate the dc component for the voltage controlled os‐
cillator (PI regulator). It should be noted that there is one fundamental frequency shift when
the electric quantities are transformed from the stationary α-β reference frame to the syn‐
chronous rotating reference frame (d-q frame). Besides, it is well known that the typical bal‐
anced nonlinear load produce characteristic harmonics of the orders: -5, +7, -11, +13… 6n+1
(n is integer), corresponding to the 6nth order harmonic components in synchronous rotat‐
ing reference frame. Therefore, the 2nd order harmonic in Fig.11 corresponds to the funda‐
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mental frequency negative sequence component, while the 6th order harmonic corresponds
to the 5th order harmonic (negative sequence) and the 7th order harmonic (positive sequence)
in stationary phase a-b-c frame. Generally speaking, the harmonic components considered
in the proposed ADALINE-PLL are selected according to the particular applications and the
available computational resources.

3.4. Parameter selection of the ADALINE-PLL

In this section, the parameter design of the single-phase version ADALINE-PLL is discussed
by using continuous domain (s-domain) analysis, discrete domain (z-domain) analysis and
time-domain simulation. It is found that the proposed ADALINE-PLL has the characteristic
of band-pass filter around the fundamental frequency and a notch filter at harmonic fre‐
quencies.

3.4.1. Continuous-domain (s-domain) analysis

Assuming the phase angle of the fundamental grid voltage detected by the closed-loop
ADALINE-PLL is denoted by θ̂, which is an integral of the estimated angular frequency ω̂0.
In the steady state, the estimated angular frequency ω̂0 can be considered to be constant,
hence the phase angle can be approximated as θ̂ = ω̂0t . Therefore, the block diagram of the
ADALINE-PLL indicated by Fig.10 can be simplified as Fig.12, provided that the estimated
angular frequency ω̂0 is within its neighborhood, i.e., ω̂0

' ≤ ω̂0 ≤ ω̂0
'' (ω̂0

'  and ω̂0
'' represent the

lower and upper boundaries which defines the lock range of the PLL). Referring to the fun‐
damental frequency block in Fig.12, the estimated fundamental component in time domain
can be represented as:

{ } { }1 0 1 0 0 1 0ˆ ˆ ˆ ˆ( ) [ ( ) cos( )] ( ) cos( ) [ ( ) sin( )] ( ) sin( )sav t e t t h t t e t t h t tw w w w= × * × + × * × (46)

Figure 12. Frequency domain diagram for quasi-steady state analysis of the ADALINE-PLL
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in the proposed ADALINE-PLL are selected according to the particular applications and the
available computational resources.
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In this section, the parameter design of the single-phase version ADALINE-PLL is discussed
by using continuous domain (s-domain) analysis, discrete domain (z-domain) analysis and
time-domain simulation. It is found that the proposed ADALINE-PLL has the characteristic
of band-pass filter around the fundamental frequency and a notch filter at harmonic fre‐
quencies.

3.4.1. Continuous-domain (s-domain) analysis

Assuming the phase angle of the fundamental grid voltage detected by the closed-loop
ADALINE-PLL is denoted by θ̂, which is an integral of the estimated angular frequency ω̂0.
In the steady state, the estimated angular frequency ω̂0 can be considered to be constant,
hence the phase angle can be approximated as θ̂ = ω̂0t . Therefore, the block diagram of the
ADALINE-PLL indicated by Fig.10 can be simplified as Fig.12, provided that the estimated
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Figure 12. Frequency domain diagram for quasi-steady state analysis of the ADALINE-PLL
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where e(t)represents the estimation error of the ADALINE, vsa1(t)represents the estimated
fundamental component of grid voltage, h 1(t)represents the operator of integration and as‐
terisk denotes convolution. Applying Laplace transform to Eq. (46), rearranging terms, we
get:

1 1 0 1 0
1 ˆ ˆ( ) [ ( ) ( )] ( )
2saV s H s j H s j E sw w= + + - × (47)

where Vsa1(s), H1(s),E (s) corresponds to the Laplace transform of vsa1(t), h 1(t) and e(t), re‐
spectively. In Eq. (47), H1(s) is represented as:

1
1( )

k
H s

s
= (48)

where k1 is integration gain, corresponding to the learning rate (μ) of the weights updating
process (μ=k1T). Combining Eq.(47) and Eq.(48), we get
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Similarly, for the nth order harmonic block in Fig.12, the generalized transfer function from
estimation error E (s) to the individual harmonic component output Vsan(s), can be derived
as:

2 2
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For the present case, the fundamental component, fifth and seventh order harmonics are
considered, hence the error transfer function from the input Vsa(s) to E (s), can be represent‐
ed as:

1 5 7

( ) 1( )
( ) 1 ( ) ( ) ( )error
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E sG s
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= =
+ + + (51)

Similarly, the transfer function from the input Vsa(s) to the estimated fundamental compo‐
nent Vsa1(s), is:
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Fig. 13 shows the bode-plot of the ADALINE when only the fundamental frequency block is
considered. The frequency response of the ADALINE under the variations of the center fre‐
quency ω̂0 and the integration gain are shown in Fig.13(a) and Fig.13(b), respectively. Fig.
13(a) shows the open-loop frequency response of the ADALINE with the variation of center
frequency, it is interesting to notice that this characteristic provides the flexible frequency
tracking capability, compared to the adaptive linear neural network (ADALINE) algorithm
since the frequency response of ADALINE cannot adapt to the frequency variation in the in‐
put signal. It can be observed from Fig.13(b) that the integration gain, i.e., the learning rate
(μ), has a significant effect on the frequency characteristics of the ADALINE. Small learning
rate results in a sharp amplitude-frequency curve and steep phase-frequency curve. Besides,
small learning rate implies a narrow bandwidth and slow transient response of the weights
updating process. Higher learning rate, on the other hand, implies a flat amplitude-frequen‐
cy curve, which would improve the dynamic response, increase the bandwidth of the ADA‐
LINE.

(a) (b) 

Figure 13. Bode plot of the ADALINE when only the fundamental frequency block is considered. (a) Open-loop fre‐
quency response of ADALINE with the variation of the center frequency, (b) Closed-loop frequency response of ADA‐
LINE with the variation of gain.

Fig.14 shows the frequency response of the ADALINE when the fundamental component,
fifth and seventh harmonic components are considered. Fig.14(a) shows the bode-plot from
the input signal Vsa(s) to the estimation error E(s). It can be observed that it exhibits as a typi‐
cal notch filter, and significant attenuation is observed in the amplitude-frequency curve at
the harmonic components under consideration. The attenuation at particular harmonic fre‐
quency is controlled by the selection of the learning rate of ADALINE, higher learning rate
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since the frequency response of ADALINE cannot adapt to the frequency variation in the in‐
put signal. It can be observed from Fig.13(b) that the integration gain, i.e., the learning rate
(μ), has a significant effect on the frequency characteristics of the ADALINE. Small learning
rate results in a sharp amplitude-frequency curve and steep phase-frequency curve. Besides,
small learning rate implies a narrow bandwidth and slow transient response of the weights
updating process. Higher learning rate, on the other hand, implies a flat amplitude-frequen‐
cy curve, which would improve the dynamic response, increase the bandwidth of the ADA‐
LINE.
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Figure 13. Bode plot of the ADALINE when only the fundamental frequency block is considered. (a) Open-loop fre‐
quency response of ADALINE with the variation of the center frequency, (b) Closed-loop frequency response of ADA‐
LINE with the variation of gain.

Fig.14 shows the frequency response of the ADALINE when the fundamental component,
fifth and seventh harmonic components are considered. Fig.14(a) shows the bode-plot from
the input signal Vsa(s) to the estimation error E(s). It can be observed that it exhibits as a typi‐
cal notch filter, and significant attenuation is observed in the amplitude-frequency curve at
the harmonic components under consideration. The attenuation at particular harmonic fre‐
quency is controlled by the selection of the learning rate of ADALINE, higher learning rate
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implies higher attenuation. Fig.14(b) shows the bode-plot from the input signal Vsa(s) to the
estimated fundamental component Vsa1(s). It can be observed that it exhibits a band-pass fil‐
ter around the fundamental frequency, and a notch filter at the considered harmonic fre‐
quencies. In case of large frequency variation in grid voltages, the learning rates of the
ADALINE should be sufficiently high to ensure a wide bandwidth. Besides, it should be
noted that the number of harmonics considered in the ADALINE-PLL can be easily extend‐
ed to higher order harmonic components according to the particular applications.

(a) (b) 

Figure 14. Bode plot of the ADALINE when the fundamental frequency block, the fifth and seventh harmonic blocks
are considered.

It should be noted that the frequency domain analysis is based on the quasi-steady state
model of the ADALINE, which serves the purpose of phase detection (PD) for the PLL. The
estimated phase error signal is then utilized as the input for the loop filter (LF), which is se‐
lected as the standard proportional-integral (PI) regulator for the present case. Here the line‐
arized model for the phase estimation can be described as Fig.15(a). It is interesting to
observe that the derived linearized model for the phase estimation resembles that of the ex‐
isting PLL algorithms. The closed-loop transfer function of the linearized model indicated
by Fig.15(a) can be represented as:

ˆ ( )( )( )
( ) ( )

q
q

= =
+

f
c

f

K ssH s
s s K s (53)

where θ̂(s), θ(s) denote the Laplace transform of the estimated phase angle θ̂ and the actual
phase angle θ respectively. To achieve a good trade-off between the filter performance and
system stability, the proportional-integral (PI) type filter is utilized for the loop filter (LF),
which can be given as:
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where kp and τ denote the proportional gain and time constant of the PI regulator, and the
integrator gain ki=kp/τ. Equation (54) can be rewritten in the generalized second order system
as:
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The open loop transfer function of Fig.15 (a) can be derived as:
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The root locus for the PLL modeled in the s-domain is shown in Fig.15(b). There are two
open loop poles at the origin of the s-plane and one open loop zero at s=-1/τ. However, it is
interesting to notice from Fig.15(b) that the s-domain model never predicts an unstable
mode for any combination of PI parameters. Therefore, the discrete domain (z-domain)
would be necessary to study the stability characteristic of the proposed ADALINE-PLL, as
discussed in subsequent section.

3.4.2. Discrete-domain (z-domain) analysis

In the discrete domain, Eq. (50) can be rewritten as:

2
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where Ωn =nω̂0T , and T is the sampling frequency specified according to the particular ap‐
plications, for the present case, T=100μs is selected which is the typical sampling frequency
for the low voltage power converters. Hence, the discrete domain transfer function from
Vsa(z) to E (z) can be represented as:
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implies higher attenuation. Fig.14(b) shows the bode-plot from the input signal Vsa(s) to the
estimated fundamental component Vsa1(s). It can be observed that it exhibits a band-pass fil‐
ter around the fundamental frequency, and a notch filter at the considered harmonic fre‐
quencies. In case of large frequency variation in grid voltages, the learning rates of the
ADALINE should be sufficiently high to ensure a wide bandwidth. Besides, it should be
noted that the number of harmonics considered in the ADALINE-PLL can be easily extend‐
ed to higher order harmonic components according to the particular applications.

(a) (b) 

Figure 14. Bode plot of the ADALINE when the fundamental frequency block, the fifth and seventh harmonic blocks
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lected as the standard proportional-integral (PI) regulator for the present case. Here the line‐
arized model for the phase estimation can be described as Fig.15(a). It is interesting to
observe that the derived linearized model for the phase estimation resembles that of the ex‐
isting PLL algorithms. The closed-loop transfer function of the linearized model indicated
by Fig.15(a) can be represented as:
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where θ̂(s), θ(s) denote the Laplace transform of the estimated phase angle θ̂ and the actual
phase angle θ respectively. To achieve a good trade-off between the filter performance and
system stability, the proportional-integral (PI) type filter is utilized for the loop filter (LF),
which can be given as:
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The root locus for the PLL modeled in the s-domain is shown in Fig.15(b). There are two
open loop poles at the origin of the s-plane and one open loop zero at s=-1/τ. However, it is
interesting to notice from Fig.15(b) that the s-domain model never predicts an unstable
mode for any combination of PI parameters. Therefore, the discrete domain (z-domain)
would be necessary to study the stability characteristic of the proposed ADALINE-PLL, as
discussed in subsequent section.

3.4.2. Discrete-domain (z-domain) analysis

In the discrete domain, Eq. (50) can be rewritten as:
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where Ωn =nω̂0T , and T is the sampling frequency specified according to the particular ap‐
plications, for the present case, T=100μs is selected which is the typical sampling frequency
for the low voltage power converters. Hence, the discrete domain transfer function from
Vsa(z) to E (z) can be represented as:
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Figure 15. Small signal analysis of the proposed ADALINE-PLL in s-domain: (a) The approximated second order linear‐
ized model for phase estimation and (b) Root locus in s-domain of the linearized model.

Assuming that G(z)=G1(z) + G5(z) + G7(z), ω̂0 =2×π ×50, T=100μs, and the integration gain kn

of individual harmonic component are assumed to be identical for the sake of simplicity
(kn=K), then the following representation can be derived:
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The root locus for the ADALINE modeled in the z-domain is shown in Fig.16. There are two
open loop zeros at z=1, a pair of conjugate zeros and three pair of conjugate poles distribut‐
ing in the z-plane. It can be observed from Fig.16 that the stability margin increases with the
increase of integration gain K when 80<K<554 (0.008<μ<0.055) and decreases with the in‐
crease of K when 554<K<6833 (0.055<μ<0.68). Moreover, it can be observed from the root lo‐
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cus diagram that when 80<K<6833 (0.008<μ<0.68), the ADALINE system is stable, otherwise
it is unstable.

(a) 

(b) 

Figure 16. Small signal analysis of the proposed ADALINE-PLL in z-domain: (a) The approximated second order linear‐
ized model for phase estimation and (b) Root locus in z-domain of the linearized model.

The ADALINE subsystem is assumed to be stable in the following discrete domain analysis,
which implies that the phase detection is achieved. The z-domain analysis will be performed
on a discrete-time PLL system with a second-order loop filter. As shown in Fig.17(a), and
the block Kd(z) is the z-transform of the loop filter and voltage-controlled oscillator (VCO),
hence the closed-loop transfer function can be represented as:
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For the second order loop using the PI type filter, Kd(z) can be obtained as
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where α =1−T / τ and T denotes the sampling period of the discrete system. The transfer
function of the closed loop system in the discrete-time domain can be derived by substitut‐
ing Eq. (61) into Eq. (60) as
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Figure 17. Root locus of discrete-time ADALINE system

The root locus for the PLL modeled in the z-domain is shown in Fig.17(b). It can be observed
that there are two open loop poles at z=1 and two open loop zeros at z=0 and z=α. It is inter‐
esting to note that, since the open-loop zero location (α) is a function of the time constant τ,
the z-domain model can predict unstable loop performance for the condition of T >2τ in
which case an open-loop zero α is located on the negative real axis outside the unit circle.
For T < <τ, the quantity α is close to unity, in this case, the z-domain and s-domain model
predict similar characteristics for jitter2 frequencies within the loop’s bandwidth. Moreover,
the selection of parameter kp is a tradeoff between loop’s bandwidth and dynamic response.
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3.5. Time-domain simulation results of the ADALINE-PLL

Figs.18-19 show the time-domain simulation results of the single phase version of the pro‐
posed ADALINE-PLL under different control parameters. The grid voltage is assumed to
contain 0.1 p.u. 5th order harmonic and 0.1 p.u. 7th order harmonic components and a transi‐
ent voltage sag occurs at t=0.05s to test the dynamic response of the ADALINE-PLL. Fig.18
shows the performance of the single-phase ADALINE-PLL with the variation of learning
rate (μ) when the loop regulator gains are selected as:kp=300, ki=10000. It can be observed
that if the learning rate is selected too small, the estimation error of the ADALINE-PLL
would be remarkable and there would be significant oscillation in the estimated frequency
and the phase estimation error (see the dash line and the dash dot line in Fig.18). The solid
line in Fig.18 shows the performance of the ADALINE-PLL corresponding to the optimal
learning rate μ=0.035.

Figure 18. The performance of single-phase ADALINE-PLL with the variation of learning rate (μ) when kp=300,
ki=10000. (Solid line: μ=0.035; dash line: μ=0.015; dash dot line: μ=0.025.)

2 Jitter—The time variation of a characteristic of a periodic signal in electronics and telecommunications, often in rela‐
tion to a reference clock source.
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Figure 19. The performance of single-phase ADALINE-PLL with variation of kp, kiwhen μ=0.035. (Solid line:kp=300,
ki=10000; dash line: kp=250, ki=30000; dash dot line: kp=500, ki=6000.)

Fig.19 shows the performance of the ADALINE-PLL with the variation of regulator gains
when the learning rate is predefined. It can be observed that the dynamic response of the
ADALINE-PLL is mainly determined by the proportional gain kp, if kp is selected too small,
the ADALINE-PLL becomes sluggish and the estimated frequency and phase error decays
slowly (dash line in Fig.19). On the other hand, if the gain is selected too high, there would
be large overshoot in the estimated frequency and the phase estimation error (the dash dot
line in Fig.19). It should be noted that the performance of the ADALINE-PLL is less sensitive
to the integration gain ki. The solid line in Fig.19 shows the performance of ADALINE-PLL
corresponding to the optimal regulator parameters.

4. Performance comparison with the existing PLL algorithms

This section presents the performance comparison among the existing PLL algorithms and
the proposed ADALINE-PLL. Firstly, a brief introduction of the enhanced PLL (EPLL) and

Adaptive Filtering - Theories and Applications50

the park-PLL is presented. Then, the simulation results of these algorithms are compared
with those of the ADALINE-PLL under grid voltage disturbances, such as grid voltage sag,
harmonics and random noise contamination scenarios.

4.1.The enhanced phase-locked loop (EPLL)

In recent literature, the enhanced PLL (EPLL) system was proposed (Karimi-Ghartemani et
al, 2004). The major improvement introduced by the EPLL is in the PD mechanism, which is
replaced by a new strategy allowing more flexibility and provides more information such as
amplitude and phase angle. The mechanism of this EPLL is based on estimating in-phase
and quadrature-phase amplitudes of the desired signal, hence, has potential application in
communication systems which employ quadrature modulation techniques.

The Matlab/Simulink diagram of this EPLL is shown in Fig.20. It can be observed that there are
three gains, denoted as kg, kp and ki, which are selected to control the convergence speed for the
amplitude, phase and frequency of the fundamental component of the input signal. The guide‐
line for the selection of these gains, however, is not that trivial. The control loop interaction exists
since the amplitude, phase and frequency estimation are competing with each other, if any of
these gains is varied, it would affect the performance and stability of the closed-loop algorithm.
Generally, the gain for the frequency estimation (ki) should be very small to ensure stability.
However, it would result in slow dynamic performance under frequency deviation in the grid
voltage. If the frequency estimation is disabled by setting kito be zero, steady state error may ap‐
pear or the algorithm may even diverge under large deviations in the input. Therefore, this EPLL
scheme is difficult to be practically implemented, especially for the grid-connected converters
which has demanding requirements for tracking accuracy, stability and reliability of the syn‐
chronization algorithm (Karimi-Ghartemani et al, 2004).

Figure 20. The Matlab/Simulink diagram for the enhanced PLL (EPLL).
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Figure 19. The performance of single-phase ADALINE-PLL with variation of kp, kiwhen μ=0.035. (Solid line:kp=300,
ki=10000; dash line: kp=250, ki=30000; dash dot line: kp=500, ki=6000.)
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However, it would result in slow dynamic performance under frequency deviation in the grid
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scheme is difficult to be practically implemented, especially for the grid-connected converters
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4.2. The Park phase-locked loop (Park-PLL)

The park-PLL was another single-phase version of the three-phase synchronous reference
frame (SRF) PLL (Filho, R. M. S., et al., 2008). As shown in Fig.21, the circuit diagram of the
park-PLL consists of two matrix transformations, namely, the Park’s transformation and the
inverse Park’s transformation. The component vβ of the stationary frame is obtained by in‐
verse Park’s transformation of the filtered synchronous components vd

'  and vq
' in order to

emulate a three-phase balanced electric system. The time constants τd and τq of the two first-
order low pass filters (FOLPFs) determines the dynamic characteristics of the phase detec‐
tion (PD) section.

Figure 21. The Matlab/Simulink diagram of the park-PLL

It was reported that the PD is always asymptotically stable around the equilibrium condi‐
tion ω̂≅ω. As for the selection of time constants, ifτd(orτq) is made too small, a pair of real
poles will take place and results in a slow dynamic response. On the other hand, ifτd(orτq) is
made too high, a pair of complex conjugate poles with small real part will take place, which
makes the park-PLL slow and oscillatory. It was suggested that the filter cutoff frequency
should be equal to about two times line frequency to ensure a fast dynamic response (Filho,
R. M. S., et al., 2008).

After the cutoff frequency of the low pass filters is selected, the compensator gains, namely,
kp and ki, can be set in order to meet dynamic response and line disturbance rejection specifi‐
cations. However, it should be noted that each harmonic component of order h and ampli‐
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tude Vhin input grid voltage will produce two components of orders h±1 and amplitude of
Vh/2 in the PD output. Besides, a dc component in input voltage will also lead to a funda‐
mental frequency oscillation in the dq components. Therefore, a tradeoff between speed of
dynamic response and harmonic rejection capabilities should be achieved to optimize the
performance of the park-PLL.

4.3. The performance evalution among the EPLL, the Park-PLL, and the ADALINE-PLL

Fig.22  shows  the  simulation  results  corresponding  to  the  estimated  frequency  in  grid
voltage and the phase estimation error when the grid is  subjected to 0.7  per unit  (p.u.)
voltage  sag.  Here  the  existing  grid  synchronization  schemes,  namely,  the  enhance  PLL
(EPLL)  and  the  park-PLL  are  also  simulated  for  the  sake  of  comparison.  It  can  be  ob‐
served that  the park-PLL and the EPLL have similar  dynamic response in the estimated
frequency, with an overshoot of 5Hz when voltage sag occurs.  It  is  interesting to notice
that the response time of park-PLL and the EPLL is longer when the grid voltage recov‐
ers to normal condition. The proposed ADALINE-PLL shows the lowest frequency over‐
shoot compared with other grid synchronization schemes. As far as the phase estimation
error is concerned, the phase estimation error of the park-PLL and EPLL has high transi‐
ent overshoot with noticeable oscillations.  Whereas,  the proposed ADALINE-PLL shows
the best dynamic response with smallest phase estimation error with overshoot of about
2  degrees.  It  can  be  concluded from the  estimated  frequency  and the  phase  estimation
error  that  the ADALINE-PLL provides a  more robust  performance when subject  to  sig‐
nificant sag in the grid voltage.

Fig.23  shows  the  simulation  results  corresponding  to  the  estimated  frequency  in  grid
voltage and the phase estimation error when the grid is contaminated by harmonics. The
0.3 per unit (p.u.) 5th order harmonic and 0.3 per unit (p.u.) 7th order harmonic compo‐
nents  are  added to  the  grid  voltage  at  t=0.05s  with  a  duration  of  0.15s  to  test  the  im‐
munity  of  the  various  grid synchronization schemes.  The park-PLL and the  EPLL show
noticeable  oscillations in  the estimated frequency when the harmonics  are  added to  the
grid voltage. Besides, the park-PLL shows longer settling time when the grid voltage re‐
covers to the normal condition. The EPLL shows the highest estimation error in grid fre‐
quency with amplitude of about 20 Hz, and the park-PLL shows the estimation error of
about  10Hz  when  the  harmonics  are  imposed.  However,  the  proposed  ADALINE-PLL
shows the lowest frequency overshoot (0.5Hz) and highest estimation accuracy in the es‐
timated  frequency  compared  to  the  other  grid  synchronization  schemes.  Furthermore,
the  phase  estimation  error  of  the  park-PLL  and  the  EPLL  is  remarkable  during  transi‐
ents,  and the park-PLL is  found to have a  large settling time when the grid voltage re‐
covers.  Besides,  it  shows  that  the  EPLL  has  significant  ripples  in  the  phase  estimation
error.  However,  the  proposed  ADALINE-PLL  shows  negligible  estimation  error  com‐
pared  to  the  other  algorithms,  which  implies  that  the  proposed  ADALINE-PLL  shows
better robustness under harmonic contamination in grid voltages.
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pared  to  the  other  algorithms,  which  implies  that  the  proposed  ADALINE-PLL  shows
better robustness under harmonic contamination in grid voltages.
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Figure 22. Performance comparison among the EPLL, the park-PLL and the proposed ALOF-PLL algorithm under 0.7
p.u. voltage sag in grid voltages (note: the ADALINE-PLL is abbreviated by ALOF-PLL )
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Figure 23. Performance comparison among the park-PLL, the EPLL and the proposed ADALINE-PLL algorithm under
0.3 p.u. 5th order harmonic (negative sequence) and 0.3 p.u. 7th order harmonic (positive sequence) components in
grid voltages

On Using ADALINE Algorithm for Harmonic Estimation and Phase-Synchronization for the Grid-Connected...
http://dx.doi.org/10.5772/52547

55



Figure 22. Performance comparison among the EPLL, the park-PLL and the proposed ALOF-PLL algorithm under 0.7
p.u. voltage sag in grid voltages (note: the ADALINE-PLL is abbreviated by ALOF-PLL )

Adaptive Filtering - Theories and Applications54

Figure 23. Performance comparison among the park-PLL, the EPLL and the proposed ADALINE-PLL algorithm under
0.3 p.u. 5th order harmonic (negative sequence) and 0.3 p.u. 7th order harmonic (positive sequence) components in
grid voltages

On Using ADALINE Algorithm for Harmonic Estimation and Phase-Synchronization for the Grid-Connected...
http://dx.doi.org/10.5772/52547

55



Figure 24. Performance comparison among the park-PLL, the EPLL and the ADALINE-PLL algorithm when random
noise (power=5e-6) is suddenly applied in grid voltages
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Fig.24 shows the simulation results corresponding to the estimated frequency in grid volt‐
age  and  the  phase  estimation  error  when  the  grid  voltage  is  contaminated  by  random
noise. The random noise of power density 10e-5 per unit (p.u.) is added to the grid volt‐
age at t=0.05s with a duration of 0.15s to test the immunity of the various grid synchroni‐
zation schemes.  Similar  to  the  case  of  a  sudden applying harmonics,  the  park-PLL and
EPLL show noticeable oscillations in the estimated frequency when the noise is added to
the grid voltage. Besides, the park-PLL shows longer settling time when the grid voltage
recovers  to  the  normal  condition.  The EPLL shows the  highest  estimation error  in  grid
frequency with amplitude of about 5 Hz, and the park-PLL shows the estimation error of
about 2Hz when the noise is imposed. However, the proposed ADALINE-PLL shows the
lowest frequency oscillation (0.2Hz) and highest estimation accuracy in the estimated fre‐
quency compared to the other grid synchronization schemes. Moreover, the phase estima‐
tion error of the park-PLL and the EPLL is remarkable during transients,  and the park-
PLL  is  found  to  have  a  large  settling  time  when  the  grid  voltage  recovers.  Besides,  it
shows that  the  park-PLL has  the  maximum phase  estimation  error  of  about  3  degrees,
and the  phase  estimation error  of  EPLL is  less  than 2  degrees.  However,  the  proposed
ADALINE-PLL shows negligible estimation error compared to the other algorithms, with
amplitude of less than 0.5 degree. The estimated frequency and the phase estimation er‐
ror  in  Fig.24  indicate  that  the  proposed  ADALINE-PLL  shows  better  robustness  when
grid voltage is contaminated by random noise.

5. Conclusions

The electrical power systems are under a transition to the smart grid owing to the advance‐
ment of modern control, communication technologies and the requirement of real-time mar‐
keting. In the smart grid, the power converters are indispensable components which connect
the renewable energy resources and the FACTS devices, power quality conditioning devices
to the grid. Hence the accurate grid-synchronization of these power converters to the grid is
crucial to ensure their stable operation. This book chapter aims to provide a systematic ap‐
proach for the adaptive linear neural network (ADALINE) algorithm for the real-time har‐
monic estimation and phase synchronization for the grid-connected converters, which are
the fundamental building blocks for the smart grid infrastructure.

The mathematical derivation of the ADALINE algorithm and the ADALINE-PLL scheme is
presented, followed by the stability analysis, the continuous domain and the discrete do‐
main models, and the guidelines for parameter selection of the ADALINE-PLL algorithm.
The performance of the ADALINE-PLL is further validated by performance comparison
with the existing park-PLL and EPLL algorithms. It can be expected that the presented
ADALINE-based algorithms can find wide application in the grid-connected converters for
smart grid applications.
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Chapter 3

Applications of a Combination of Two Adaptive
Filters
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Additional information is available at the end of the chapter
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1. Introduction

Designing a Least Mean Square (LMS) family adaptive algorithm includes solving the well-
known trade-off between the initial convergence speed and the mean-square error in steady
state according to the requirements of the application at hands. The trade-off is controlled
by the step-size parameter of the algorithm. Large step size leads to a fast initial conver‐
gence but the algorithm also exhibits a large mean-square error in the steady state and in
contrary, small step size slows down the convergence but results in a small steady state er‐
ror [9,17]. In several applications it is, however, eligible to have both and hence it would be
very desirable to be able to design algorithms that can overcome the named trade-off.

Variable step size adaptive schemes offer a potential solution allowing to achieve both fast
initial convergence and low steady state misadjustment [1, 8, 12, 15, 18]. How successful
these schemes are depends on how well the algorithm is able to estimate the distance of the
adaptive filter weights from the optimal solution. The variable step size algorithms use dif‐
ferent criteria for calculating the proper step size at any given time instance. For example the
algorithm proposed in [15] changes the time-varying convergence parameters in such a way
that the change is proportional to the negative of gradient of the squared estimation error
with respect to the convergence parameter. Squared instantaneous errors have been used in
[12] and the squared autocorrelation of errors at adjacent time instances in [1] to modify the
step size. In reference [18] the norm of projected weight error vector is used as a criterion to
determine how close the adaptive filter is to its optimum performance.

More recently there has been an interest in a combination scheme that is able to optimize the
trade-off between convergence speed and steady state error [14]. The scheme consists of two
adaptive filters that are simultaneously applied to the same inputs as depicted in Figure 1.
One of the filters has a large step size allowing fast convergence and the other one has a

© 2013 Trump; licensee InTech. This is an open access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.
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distribution, and reproduction in any medium, provided the original work is properly cited.



Chapter 3

Applications of a Combination of Two Adaptive
Filters

Tõnu Trump

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/50451

1. Introduction

Designing a Least Mean Square (LMS) family adaptive algorithm includes solving the well-
known trade-off between the initial convergence speed and the mean-square error in steady
state according to the requirements of the application at hands. The trade-off is controlled
by the step-size parameter of the algorithm. Large step size leads to a fast initial conver‐
gence but the algorithm also exhibits a large mean-square error in the steady state and in
contrary, small step size slows down the convergence but results in a small steady state er‐
ror [9,17]. In several applications it is, however, eligible to have both and hence it would be
very desirable to be able to design algorithms that can overcome the named trade-off.

Variable step size adaptive schemes offer a potential solution allowing to achieve both fast
initial convergence and low steady state misadjustment [1, 8, 12, 15, 18]. How successful
these schemes are depends on how well the algorithm is able to estimate the distance of the
adaptive filter weights from the optimal solution. The variable step size algorithms use dif‐
ferent criteria for calculating the proper step size at any given time instance. For example the
algorithm proposed in [15] changes the time-varying convergence parameters in such a way
that the change is proportional to the negative of gradient of the squared estimation error
with respect to the convergence parameter. Squared instantaneous errors have been used in
[12] and the squared autocorrelation of errors at adjacent time instances in [1] to modify the
step size. In reference [18] the norm of projected weight error vector is used as a criterion to
determine how close the adaptive filter is to its optimum performance.

More recently there has been an interest in a combination scheme that is able to optimize the
trade-off between convergence speed and steady state error [14]. The scheme consists of two
adaptive filters that are simultaneously applied to the same inputs as depicted in Figure 1.
One of the filters has a large step size allowing fast convergence and the other one has a

© 2013 Trump; licensee InTech. This is an open access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

© 2013 Trump; licensee InTech. This is a paper distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



small step size for a small steady state error. The outputs of the filters are combined through
a mixing parameter λ. The performance of this scheme has been studied for some parameter
update schemes [2, 6, 19]. The reference [2] uses convex combination i.e. λ is constrained to
lie between 0 and 1. The reference [19] presents a transient analysis of a slightly modified
version of this scheme. The parameter λ is in those papers found using an LMS type adap‐
tive scheme and computing the sigmoidal function of the result. The reference [6] takes an‐
other approach computing the mixing parameter using an affine combination. This paper
uses the ratio of time averages of the instantaneous errors of the filters. The error function of
the ratio is then computed to obtain λ.

In [13] a convex combination of two adaptive filters with different adaptation schemes has
been investigated with the aim to improve the steady state characteristics. One of the adap‐
tive filters in that paper uses LMS algorithm and the other one Generalized Normalized
Gradient Decent algorithm. The combination parameter λ is computed using stochastic gra‐
dient adaptation. In [24] the convex combination of two adaptive filters is applied in a varia‐
ble filter length scheme to gain improvements in low SNR conditions. In [11] the
combination has been used to join two affine projection filters with different regularization
parameters. The work [7] uses the combination on parallel binary structured LMS algo‐
rithms. These three works use the LMS like scheme of [5] to compute λ.

It should be noted that schemes involving two filters have been proposed earlier [3, 16].
However, in those early schemes only one of the filters have been adaptive while the other
one has used fixed filter weights. Updating of the fixed filter has been accomplished by
copying of all the coefficients from the adaptive filter, when the adaptive filter has been per‐
forming better than the fixed one.

In this Chapter we compute the mixing parameter λ from output signals of the individual
filters. The way of calculating the mixing parameter is optimal in the sense that it results
from minimization of the mean-squared error of the combined filter. The scheme was inde‐
pendently proposed in [21] and [4]. In [23], the output signal based combination was used in
adaptive line enhancer and in [22] it was used in the system identification application.

We will investigate three applications of the combination: system investigation, adaptive
beamforming and adaptive line enhancer. We describe each of the applications in detail and
present a proper analysis.

We will assume throughout the Chapter that the signals are complex-valued and that the
combination scheme uses two LMS adaptive filters. The italic, bold face lower case and bold
face upper case letters will be used for scalars, column vectors and matrices respectively.
The superscript T denotes transposition and the superscript H Hermitian transposition of a
matrix. The operator E[·] denotes mathematical expectation, Re{·} is the real part of a com‐
plex variable and Tr[·] stands for the trace of a matrix.

Adaptive Filtering - Theories and Applications62

2. Combination of Two Adaptive Filters

Let us consider two adaptive filters, as shown in Figure 1, each of them updated using the
LMS adaptation rule

ei(n)=d (n)−wi
H (n −1)x(n), (1)

wi(n)=wi(n −1) + μiei
∗(n)x(n). (2)

In the above wi(n) is the N vector of coefficients of the i-th adaptive filter, with i = 1,2 and
x(n) is the known N input vector, common for both of the adaptive filters. The input process
is assumed to be a zero mean wide sense stationary Gaussian process. μ i is the step size of i-
th adaptive filter. We assume without loss of generality that μ 1 > μ2. The case μ 1 = μ2 is not
interesting as in this case the two filters remain equal and the combination renders to a sin‐
gle filter.

Figure 1. The combined adaptive filter.

The desired signal in 1 can be expressed as

d (n)=wo
H x(n) + ζ(n)., (3)

where the vector wo is the optimal Wiener filter coefficient vector for the problem at hands and
the process ζ(n) is the irreducible error that is statistically independent of all the other signals.
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the process ζ(n) is the irreducible error that is statistically independent of all the other signals.
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The outputs of the two adaptive filters are combined according to

y(n)=λ(n)y1(n) + 1−λ(n) y2(n), (4)

where yi(n)=wi
H (n −1)x(n) and the mixing parameter λ(n) can be any real number.

We define the a priori system error signal as difference between the output signal of the opti‐
mal Wiener filter at time n, given by yo(n)=wo

H x(n)=d (n)−ζ(n),  and the output signal of our
adaptive scheme y(n)

ea(n)= yo(n)−λ(n)y1(n)− (1−λ(n))y2(n). (5)

Let us now find λ(n) by minimizing the mean square of the a priori system error. The deriva‐
tive of E | ea(n)|2  with respect to λ(n) reads

∂E | ea(n)|2

∂λ(n) =2E Re{(yo(n)− y2(n))(y2(n)− y1(n))∗} + λ(n)| (y2(n)− y1(n))|2 . (6)

Setting the derivative to zero results in

λ(n)=
E Re{(d (n)− y2(n))(y1(n)− y2(n))∗}

E | (y1(n)− y2(n))|2 , (7)

where we have replaced the Wiener filter output signal yo(n) by its observable noisy version
d(n). Note however, that because the input signal x(n) and irreducible error ζ(n) are inde‐
pendent random processes, this can be done without introducing any error into our calcula‐
tions. The denominator of equation (7) comprises expectation of the squared difference of
the two filter output signals. This quantity can be very small or even zero, particularly in the
beginning of adaptation if the two step sizes are close to each other. Correspondingly λ com‐
puted directly from (7) may be large. To avoid this from happening we add a small regulari‐
zation constant  to the denominator of (7). The constant  should be selected small compared
to E xT (n)x(n)  but large enough to prevent division by zero in given arithmetic.

3. System Identification

In several areas it is essential to build a mathematical model of some phenomenon or sys‐
tem. In this class of applications, the adaptive filter can be used to find a best fit of a linear
model to an unknown plant. The plant and the adaptive filter are driven by the same known
input signal and the plant output provides the desired signal of the adaptive filter. The plant
can be dynamic and in this case we have a time varying model. The system identification
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configuration is depicted in Figure 2. As before x(n) is the input signal, v(n) is the measure‐
ment noise, y(n) is the adaptive filter output signal and e(n) is the error signal. The desired
signal is d (n)=wo

H x(n) + ζ(n), where wo is the vector of Wiener filter coefficients and the irre‐
ducible error ζ(n) consists of the measurement noise v(n) together with the effects of the
plant that can not be explained with a length N linear model. The result of pure system iden‐
tification problem is the vector of adaptive filter coefficients.

Figure 2. Block diagram of generelized sidelobe canceller.

The same basic configuration is also used to solve the echo and noise cancellation problems.
In echo cancellation the unknown plant is the echo path either electrical or acoustical and
the input signal x(n) is the speech signal of one of the parties of telephone conversation.
Speech of the other party is contained in the signal v(n). The objective is to cancel the compo‐
nents of the desired signal that are due to the input x(n).

In noise cancellation problems the signal v(n) is the primary microphone signal containing
noise and the signal to be cleaned. The input signal x(n) is formed by the reference micro‐
phones. The reference signals are supposed to be correlated with the noise in the primary
signal but not with the useful signal. The objective here is to suppress the noise and clean
the signal of interest i.e. v(n).

In here we are going to use the combination of two adaptive filters described in the previous
Section to solve the system identification problem.

3.2 Excess Mean Square Error

In this section we are interested in finding expressions that characterize transient perform‐
ance of the combined algorithm i.e. we intend to derive formulae that predict entire course
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of adaptation of the algorithm. Before we can proceed we need, however, to introduce some
notations.

First let us denote the weight error vector of i-th filter as

w̃i(n)=wo −wi(n). (8)

Then the equivalent weight error vector of the combined adaptive filter will be

w̃(n)=λw̃1(n) + (1−λ)w̃2(n). (9)

The mean square deviation of the combined filter MSD = E w̃H (n)w̃(n)  is given by

MSD =λ 2E w̃1
H (n)w̃1(n) + 2λ(1−λ)Re{E w̃2

H (n)w̃1(n)} + (1−λ)2E w̃2
H (n)w̃2(n) . (10)

The a priori estimation error of an individual filter is defined as

ei ,a(n)=w̃i
H (n −1)x(n). (11)

It follows from (5) that we can express the a priori error of the combination as

ea(n)=λ(n)e1,a(n) + (1−λ(n))e2,a(n) (12)

and because λ(n) is according to (7) a ratio of mathematical expectations and, hence, deter‐
ministic, we have for the excess mean square error of the combination,
EMSE (n)= E | ea(n)|2 ,

E | ea(n)|2 =λ 2E | e1,a(n)|2 + 2λ(1−λ)E Re{e1,a(n)e2,a
∗ (n)} + (1−λ)2E | e2,a(n)|2 . (13)

As ei ,a(n)=w̃i
H (n −1)x(n),  the expression of the excess mean square error becomes

E | ea(n)|2 =λ 2E w̃1
H xxH w̃1 + 2λ(1−λ)E Re{w̃1

H xxH w̃2} + (1−λ)2E w̃2
H xxH w̃2 . (14)

In what follows we often drop the explicit time index n as we have done in (14), if it is not
necessary to avoid a confusion.

Noting that yi(n)=wi
H (n −1)x(n), we can rewrite the expression for λ (n) in (7) as

λ(n)=
E w̃2

H xxH w̃2 − E Re{w̃2
H xxH w̃1}

E w̃1
H xxH w̃1 −2E Re{w̃1

H xxH w̃2} + E w̃2
H xxH w̃2

. (15)
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We  thus  need  to  investigate  the  evolution  of  the  individual  terms  of  the  type
EMS Ek ,l = E w̃k

H (n −1)x(n)xH (n)w̃l(n −1)  in order to reveal the time evolution of EMSE(n)
and  λ(n).  To  do  so  we,  however,  concentrate  first  on  the  mean  square  deviation  de‐
fined in (10).

Reformulation the relation (1) as

ei(n)=d (n)−wi
H (n −1)x(n)= eo(n) + w̃i

H (n −1)x(n) (16)

and subtracting (2) from wo we have

w̃i(n)= (I−μixxH )w̃i(n −1)−μixeo
∗(n). (17)

We next approximate the outer product of input signal vectors by its correlation matrix
xxH ≈Rx. The approximation is justified by the fact that with small step size the weight error
update of the LMS algorithm (17) behaves like a low pass filter with a low cutoff frequency.
With this approximations we have

w̃i(n)≈ (I−μiRx)w̃i(n −1)−μixeo
∗(n). (18)

This means in fact that we apply the small step size theory [9] even if the assumption of
small step size is not really true for the fast adapting filter. In our simulation study we will
see, however, that the assumption works in practice rather well.

Let us now define the eigendecomposition of the correlation matrix as

QH RxQ=Ω, (19)

where Q is a unitary matrix whose columns are the orthogonal eigenvectors of Rx and Ω is a
diagonal matrix having eigenvalues associated with the corresponding eigenvectors on its
main diagonal. We also define the transformed weight error vector as

vi(n)=QH w̃i(n) (20)

and the transformed last term of equation (18) as

pi(n)=μiQ
H xeo

∗(n). (21)

Then we can rewrite the equation (18) after multiplying both sides by QH from the left as
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vi(n)= (I−μiΩ)vi(n −1)−pi(n). (22)

We note that the mean of pi is zero by the orthogonality theorem and the crosscorrelation
matrix of pk and pl equals

E pkpl
H =μkμlQ

H E xeo
∗(n)eo(n)xH Q. (23)

We now invoke the Gaussian moment factoring theorem to write

E xeo
∗(n)eo(n)xH = E xeo

∗(n) E eo(n)xH + E xxH E | eo|
2 . (24)

The first term in the above is zero due to the principle of orthogonality and the second term
equals RJmin,  where Jmin = E | eo|

2  is the minimum mean square error produced by the cor‐
responding Wiener filter. Hence we are left with

E pkpl
H =μkμl JminΩ. (25)

As the matrices I and Ω in (22) are both diagonal, it follows that the m-th element of vector
vi(n) is given by

vi ,m(n)= (1−μiωm)vi ,m(n −1)− pi ,m(n)

= (1−μiωm)nvm(0) + ∑
i=0

n−1
(1−μiωm)n−1−i pi ,m(i),

(26)

where ω m is the m-th eigenvalue of Rx and vi,m and pi,m are the m-th components of the vec‐
tors vi and pi respectively.

We immediately see that the mean value of vi,m(n) equals

E vi ,m(n) = (1−μiωm)nvm(0) (27)

as the vector pi has zero mean.

To proceed with our development for the combination of two LMS filters we note that we
can express the MSD and its individual components in (10) through the transformed weight
error vectors as

E w̃k
H (n)w̃l(n) = E vk

H (n)vl(n)

= ∑
m=0

N −1
E vk ,m(n)vl ,m

∗ (n)
(28)
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so we also need to find the auto- and cross correlations of v.

Let us concentrate on the m-th component in the sum above corresponding to the cross term.

The expressions for the component filters follow as special cases. Substituting (26) into the

expression of m-th component of MSD above, taking the mathematical expectation and not‐

ing that the vector p is independent of v(0) results in

E vk ,m(n)vl ,m
∗ (n) = E (1−μkωm)nvk (0)(1−μlωm)nvl

∗(0)

+E ∑
i=0

n−1
∑
j=0

n−1
(1−μkωm)n−1−i(1−μlωm)n−1− j pk ,m(i)pl ,m

∗ ( j) .
(29)

We now note that most likely the two component filters are initialized to the same value      

                                                      vk ,m(0)=vl ,m(0)=vm(0)

and that

E pk ,m(i)pl ,m
∗ ( j) = {μkμlωmJmin, i = j

0, otherwise
. (30)

We then have for the m-th component of MSD

E vk ,m(n)vl ,m
∗ (n) = (1−μkωm)n(1−μlωm)n| vm(0)|2

+μkμlωmJmin(1−μkωm)n−1(1−μlωm)n−1

⋅∑
i=0

n−1
(1−μkωm)−i(1−μlωm)−i.

(31)

The sum over i in the above equation can be recognized as a geometric series with n terms.

The first term is equal to 1 and the geometric ratio equals (1−μkωm)−1(1−μlωm)−1. Hence we

have

∑
i=0

n−1
(1−μkωm)−i(1−μlωm)−i =

1− (1−μkλm)−1(1−μlλm)−1 n

1− (1−μkλm)−1(1−μlλm)−1

=
(1−μkωm)(1−μlωm)

μkμlωm
2 −μkωm −μlωm

−
(1−μkωm)−n+1(1−μlωm)−n+1

μkμlωm
2 −μkωm −μlωm

.

(32)

After substitution of the above into (31) and simplification we are left with
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μkμlωm
2 −μkωm −μlωm

.

(32)

After substitution of the above into (31) and simplification we are left with
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E vk ,m(n)vl ,m
∗ (n) = (1−μkωm)n(1−μlωm)n | vm(0)|2 +

Jmin

ωm
2−
ωm
μl
−
ωm
μk

−
Jmin

ωm
2−
ωm
μl
−
ωm
μk

,
(33)

which is our result for a single entry to the MSD crossterm vector. It is easy to see that for
the terms involving a single filter we get an expressions that coincide with the one available
in the literature [9].

Let us now focus on the cross term

                                               EMS Ekl = E w̃k
H (n −1)x(n)xH (n)w̃l(n −1) ,

appearing in the EMSE equation (14). Due to the independence assumption we can rewrite
this using the properties of trace operator as

EMS Ekl = E w̃k
H (n −1)Rxw̃l(n −1)

= Tr{E Rxw̃l(n −1)w̃k
H (n −1) }

= Tr{RxE w̃l(n −1)w̃k
H (n −1) }.

(34)

Let us now recall that according to (20) for any of the filters w̃i(n)=Qvi(n) so that we are

justified to write

EMS Ekl = Tr{RxE Qvl(n −1)vk
H (n −1)QH }

= Tr{E vk
H (n −1)QH RxQvl(n −1) }

= Tr{E vk
H (n −1)Ωvl(n −1) }

= ∑
i=0

N −1
ωiE vk ,i

∗(n −1)vl ,i(n −1) .

(35)

The EMSE of the combined filter can now be computed as

EMSE =∑
i=0

N −1
ωiE |λ(n)vk ,i(n −1) + (1−λ(n)vl ,i(n −1)|2 , (36)

where the components of type E vk ,i(n −1)vl ,i(n −1)  are given by (33). To compute λ(n) we

use (15) substituting (35) for its individual components.
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4. Adaptive Sensor Array

In this Chapter we describe how to use the combination of two adaptive filters in an adap‐
tive beamformer. The beamformer we employ here is often termed as Generalized Side‐
lobe Canceller [9].

Let ϕ denote the the angle of incidence of a planar wave impinging a linear sensor array,
measured with respect to the normal to the array. The electrical angle θ is related to the inci‐
dence angle as

θ =
2πδ

λ sin ϕ, (37)

where λ is the wavelength of the incident wave and δ is the spacing between adjacent sen‐
sors of the linear array.

Suppose that the signal impinging the array of M=N+1 sensors is given by

u(n)=A(Θ)s(n) + v(n), (38)

where s(n) is the vector of emitter signals, Θ is a collection of directions of arrivals, A(Θ) is the
array steering matrix with its columns a(θ) defined as responses toward the individual sour‐
ces s(n) and v(n) is a vector of additive circularly symmetric Gaussian noise. The M vectors

a(θ)= 1, e jθ, …, e j(M −1)θ T (39)

are called the steering vectors of the respective sources. We assume that the source of inter‐
est is located at the electrical angle θ 0.

The block diagram of the Generalized Sidelobe Canceller is shown in Figure 3. The structure
consists of two branches. The upper branch is the steering branch, that directs its beam to‐
ward the desired source. The lower branch is the blocking branch that blocks the signals im‐
pinging at the array from the direction of the desired source and includes an adaptive
algorithm that minimizes the mean square error between the output signals of the branches.

The weights in steering branch ws are selected from the condition

ws
H a(θ0)= g (40)

i.e. we require the response in the direction of the source of interest θ 0 to equal a constant g.
Common choices for g are g=M and g=1. Here we have used g=M.

The signal at the output of the upper branch is given by
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E vk ,m(n)vl ,m
∗ (n) = (1−μkωm)n(1−μlωm)n | vm(0)|2 +

Jmin

ωm
2−
ωm
μl
−
ωm
μk

−
Jmin

ωm
2−
ωm
μl
−
ωm
μk

,
(33)

which is our result for a single entry to the MSD crossterm vector. It is easy to see that for
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in the literature [9].
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H (n −1)Rxw̃l(n −1)
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H (n −1) }

= Tr{RxE w̃l(n −1)w̃k
H (n −1) }.

(34)
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d (n)=ws
H u(n). (41)

In the lower branch we have a blocking matrix, that will block any signal coming from the

direction θ 0. The columns of the M × M-1 blocking matrix Cb are defined as being the or‐

thogonal complement of the steering vector a(θ0) in the upper branch

aH (θ0)Cb =0. (42)

The vector valued signal x(n) at the output of the blocking matrix is formed as

x(n)=Cb
H u(n). (43)

Figure 3. Block diagram of generelized sidelobe canceller.

The output of the algorithm is

e(n)=d (n)−wb
H (n)x(n). (44)

The signals x(n) and d(n) can be used as the input and desired signals respectively in an

adaptive algorithm to select the blocking weights wb. In this Chapter we use the combina‐

tion of two adaptive filters that gives us fast initial convergence and low steady state misad‐

justment at the same time.
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4.1 Signal to Interference and Noise Ratio

The EMSE of the adaptive algorithm can be analysed as it is done in Section 3.1. In this ap‐
plication we are also interested in signal to interference and noise ratio (SINR) at the array
output. To evaluate this we first note that the power that signal of interest generates at the
array output is according to (40)

Ps =ws
H a(θ0)σs0

2aH (θ0)ws =| g|2 σs0

2, (45)

where σ s0
2 is the variance of the useful signal arriving from the angle θ 0.

To find the interference and noise power we first define the reduced signal vector s̆ and a
reduced DOA collection Θ̆ where we have left out the signal of interest and the steering vec‐
tor corresponding to the useful signal but kept all the interferers and the interference steer‐
ing vectors. The corresponding array steering matrix is Ă(Θ̆).

The correlation matrix of interference and noise in the signal x(n), which is the input signal
to our adaptive scheme, is then given by

R̆x =Cb
H Ă(Θ̆)E s̆s̆H ĂH (Θ̆)Cb + Cs

H Cbσv
2, (46)

where sigmav
2 is the noise variance, the first component in the summation is due to the inter‐

fering sources and the second component is due to the noise.

It follows from the standard Wiener filtering theory that the minimum interference and
noise power at the array output is given by

J̆ min =σint ,v
2 − p̆H R̆−1p̆, (47)

where the desired signal variance excluding the signal from the source of interest is

σint ,v
2 =ws

H ĂR̆ĂH ws + σv
2ws

H ws (48)

and the crosscorrelation vector between the adaptive filter input signal and desired signal
excluding the signal from source of interest is

p̆=Cb
H Ă(Θ̆)E s̆s̆H ĂH (Θ̆)ws + σv

2Cb
H Ă(Θ̆)ws. (49)

We can now find the eigendecomposition of R̆x and use the resulting eigenvalues in (35) and
(36) to find the excess mean square error due to interference and noise only EMSEint,v. The
error power can be computed as minimum interference and noise power at the array output
plus excess mean square error due to interference and noise only
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Pv ,int = J̆ min + EMSE int ,v(n) (50)

and the signal to noise ratio is thus given by

SNR(n)=
Ps

Pv ,int(n) . (51)

5. Adaptive Line Enhancer

Adaptive line enhancer is a device that is able to separate the input into two components.
One of them consists mostly of the narrow-band signals that are present at the input and the
other one consists mostly of the broadband noise. In the context of this paper the signal is
considered to be of narrow band if its bandwidth is small as compared to the sampling fre‐
quency of the system.

Figure 4. The adaptive line enhancer.

We assume that the broadband noise is zero mean, white and Gaussian and that the narrow
band component is centred. One is usually interested in the narrow band components and
the device is often used to clean narrow band signals from noise before any further process‐
ing. The line enhancer is shown in Figure 4. Note that the input signal to the adaptive filter
of the line enhancer is delayed by Δ sample times and the input vector is thus x(n-Δ). The
desired signal is d(n) = x(n). The line enhancer is in fact a Δ step predictor. The device is able
to predict the narrow band components that have long correlation times but it cannot pre‐
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dict the white noise and hence, only a prediction of narrow band components appears in the
filter output signal y(n). The signal y(n) is also the output of the system.

Let us now find the autocorrelation function of the enhancer output signal y(n). We make
the standard assumption from independence theory which states that the filter weights and
the input signal are independent [9].

The l-th autocorrelation lag of the filter output process r(l)= E y(n)y ∗(n + l) ,  equals

r(l)= E wH (n −1)x(n −Δ)xH (n −Δ + l)w(n −1 + l) . (52)

The input signal x(n) consists of two uncorrelated components s(n), the sum of narrow band
signals, and v(n), the additive noise

x(n)= s(n) + v(n). (53)

We can decompose the impulse response of the adaptive filter into two components. One of
them is the optimal Wiener filter for the problem

wo = E x(n −Δ)xH (n −Δ) −1E x(n −Δ)x(n) (54)

and the other one, w̃(n),  represents the estimation errors.

w̃(n)=wo −w(n). (55)

The output signal can hence be expressed as

y(n)= yo(n)− ỹ(n). (56)

Substituting (53) and (55) into (52) and noticing that the cross-correlation between the Wie‐
ner filter output and that of the filter defined by weight errors is

E yo(n) ỹ∗(l) = E wo
H x(n −Δ)xH (l −Δ)w̃(n −1) =0 (57)

because of the adopted independence assumption and because
E w̃(n −1) = E wo −w(n −1) =0,  we have

r(l)= E wo
H {s(n −Δ) + v(n −Δ)}{sH (n −Δ + l) + vH (n −Δ + l)}wo

+E w̃H (n −1){s(n −Δ) + v(n −Δ)}
⋅ {sH (n −Δ + l) + vH (n −Δ + l)}w̃(n −1 + l) .

(58)
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Developing and grouping terms in the above equation results in

r(l)= E wo
H s(n −Δ)sH (n −Δ + l)wo

+E wo
H v(n −Δ)vH (n −Δ + l) wo

+E w̃H (n −1)s(n −Δ)sH (n −Δ + l)w̃(n −1 + l)
+E w̃H (n −1)v(n −Δ) vH (n −Δ + l)w̃(n −1 + l) .

(59)

Using the fact that wo is deterministic and the properties of the trace operator we further obtain

r(l)= wo
H E s(n −Δ)sH (n −Δ + l) wo

+wo
H E v(n −Δ)vH (n −Δ + l) wo

+E Tr{w̃(n −1 + l)w̃H (n −1)s(n −Δ)sH (n −Δ + l)}
+E Tr{w̃(n −1 + l)w̃H (n −1)v(n −Δ)vH (n −Δ + l)} .

(60)

We now invoke the independence assumption saying that the weight vector w̃H (n −1) is in‐
dependent from the signals s(n −Δ) and v(n −Δ). This leads us to

r(l)= wo
H E s(n −Δ)sH (n −Δ + l) wo

+wo
H E v(n −Δ)vH (n −Δ + l) wo

+Tr{E w̃(n −1 + l)w̃H (n −1) E s(n −Δ)sH (n −Δ + l) }
+Tr{E w̃(n −1 + l)w̃H (n −1) E v(n −Δ)vH (n −Δ + l) }.

(61)

To proceed we need to find the matrix K(l)= E w̃(n −1 + l)w̃H (n −1) .

5.1 Weight error correlation matrix

In this Section we investigate the combination of two adaptive filters and derive the expres‐
sions for the crosscorrelation matrix between the output signals of the individual filters yi(n)
and yk(n). The autocorrelation matrices of the individual filter output signals follow directly
using only one signal in the formulae.

For the problem at hands we can rewrite the equation (18) noting that we have introduced a
Δ samples delay in the signal path as

w̃i(n)≈ (I−μiRx)w̃i(n −1)−μix(n −Δ)eo
∗(n). (62)

For the weight error correlation matrix we then have
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Ki ,k ,l(n)= E w̃i(n + l)w̃k
H (n) = E (I−μiRx)w̃i(n + l −1)w̃k (n −1)H (I−μkRx)

− E (I−μiRx)w̃i(n + l −1)μkxH (n −Δ)eo(n)

− E μix(n −Δ)eo
∗(n)(I−μkRx)w̃k

H (n −1)

+E μiμkx(n −Δ)eo
∗(n)eo(n)xH (n −Δ) .

The second and third terms of the above equal zero because we have made the usual inde‐
pendence theory assumptions which state, that the weight errors w̃i(n) are independent of

the input signal x(n-Δ). To evaluate the last term we assume that the adaptive filters are long
enough to remove all the correlation between eo(n) and x(n-Δ). In this case we can rewrite
the above as

Ki ,k ,l(n)= (I−μiRx)Ki ,k ,l(n −1)(I−μkRx) + μiμk JminRx, (63)

where Jmin = E | eo|
2  is the minimum mean square error produced by the corresponding

Wiener filter.

We now assume that the signal to noise ratio is low so that the input signal is dominated by
the white noise process v(n). In this case we can approximate the correlation matrix of the
input process by unit matrix as

Rx ≈σv
2I, (64)

where σ v
2 is the noise variance. Later in the simulation study we will see that the theory

developed this way actually works well with quite moderate signal to noise ratios. Then
substituting (64) into (63) yields

Ki ,k ,l(n)= (I−μiσv
2I)Ki ,k ,l(n −1)(I−μkσv

2I) + μiμk Jminσv
2I. (65)

In steady state, when n →∞ we have

Ki ,k ,l(∞)= (1−μiσv
2)Ki ,k ,l(∞)(1−μkσv

2) + μiμk Jminσv
2I. (66)

Solving the above for Ki ,k ,l(∞) we have

Ki ,k ,l(∞)=
μiμk Jmin

μiσx
2 + μkσx

2 −μiμkσv
2 I. (67)
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Developing and grouping terms in the above equation results in
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the white noise process v(n). In this case we can approximate the correlation matrix of the
input process by unit matrix as

Rx ≈σv
2I, (64)

where σ v
2 is the noise variance. Later in the simulation study we will see that the theory

developed this way actually works well with quite moderate signal to noise ratios. Then
substituting (64) into (63) yields

Ki ,k ,l(n)= (I−μiσv
2I)Ki ,k ,l(n −1)(I−μkσv

2I) + μiμk Jminσv
2I. (65)

In steady state, when n →∞ we have

Ki ,k ,l(∞)= (1−μiσv
2)Ki ,k ,l(∞)(1−μkσv

2) + μiμk Jminσv
2I. (66)

Solving the above for Ki ,k ,l(∞) we have

Ki ,k ,l(∞)=
μiμk Jmin

μiσx
2 + μkσx

2 −μiμkσv
2 I. (67)
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5.2. Second order statistics of line enhancer output signal

As we see from the previous discussion, the correlation matrix of the weight error vector is
diagonal. We therefore have that the matrix Ki ,k (l)= E w̃i(n −1 + l)w̃k

H (n −1)  has in steady
state, when n →∞,  elements different form zero only alongside the main diagonal and the

elements at this diagonal equal to 
μiμk J min

μiσx
2 + μk σx

2 − μiμk σv
2 . Substituting Ki ,k (l) into (61) we now have

that the l-th correlation lag of the output signal is equal to

ri ,k (l)= wo
H E s(n −Δ)sH (n −Δ + l) wo

+wo
H E v(n −Δ)vH (n −Δ + l) wo

+rs(l)N
μiμk Jmin

μiσx
2 + μkσx

2 −μiμkσv
2

+Tr{Ki ,k (l)E v(n −Δ)vH (n −Δ + l) },

(68)

where rs(l) is the l-th autocorrelation lag of the input signal s(n).

As the noise v has assumed to be white, the matrix E v(n −Δ)vH (n −Δ + l)  has nonzero ele‐
ments σ 2

v only along the l-th diagonal and the rest of the matrix is filled with zeroes. Then

ri ,k (l)= wo
H E s(n −Δ)sH (n −Δ + l) wo

+σv
2 ∑

i=0

N −l−1
wo

∗(i)wo(i + l)

+rs(l)N
μiμk Jmin

μiσx
2 + μkσx

2 −μiμkσv
2 + r0,

(69)

where r0 = N σv
2 μiμk J min

μiσx
2 + μk σx

2 − μiμk σv
2 ,  if l = 0 and zero otherwise.

From (4) we see that the autocorrelation lags of the combination output signal y(n) can be
composed from its components ri,k(l) as follows

                

r(l)= λ(n)2E y1(n)y1
∗(n + l) + 2λ(n)(1−λ(n))E Re{y1(n)y2

∗(n + l)}

+(1−λ(n))2E y2(n)y2
∗(n + l)

= λ(n)2r1,1(l) + 2λ(n)(1−λ(n))Re{r1,2(l)} + (1−λ(n))2r2,2(l).

The autocorrelation matrix of y is a Toeplitz matrix R having the autocorrleation lags r(l)
along its first row.

Thus far we have evaluated the terms E yi(n)yk
∗(n + l) ,  what remains is to find an expres‐

sion for the steady state combination parameter λ(∞). For this purpose we can use (15), not‐
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ing that yi(n)=wi
H (n −1)x(n −Δ). All the terms in the expression (15) are similar and we need

to evaluate

γik = E w̃i
H (n −1)x(n −Δ)xH (n −Δ)w̃k (n −1) . (70)

Due to the independence assumption we can rewrite (70) using the properties of trace oper‐
ator as

γik = Tr{E x(n −Δ)xH (n −Δ)w̃k (n −1)w̃i
H (n −1) }

= Tr{RxE w̃k (n −1)w̃i
H (n −1) }=Tr{RxKi ,k ,0(n −1)}.

(71)

We are now ready to find λ(∞) by substituting (71) and (67) into (15).

The power spectrum of the output process y(n) is given by

P( f )= lim
K →∞

1
K E| YK ( f )|2 = ∑

l=−∞

∞
r(l)e − j2πlf , (72)

where YK(f) is the length K discrete Fourier transform of the signal y(n) and f is the frequen‐
cy. There is a number of methods to compute an estimate of the power spectrum from the
correlation matrix of a signal. In this paper we have used the Capon method [20].

P
ˆ

( f )=
K

aH ( f )R−1a( f )
, (73)

where a( f )= 1 e − j2πf … e − j2π(M −1) f T  and R is the K × K Toeplitz correlation matrix of the
signal of interest. The Capon method was chosen because the signals we are interested in are
sine waves in noise and the Capon method gives a more distinct spectrum estimate than the
Fourier transform based methods in this situation.

6. Simulation Results

In this Section we present the results of our simulation study.

In order to obtain a practical algorithm, the expectation operators in both numerator and de‐
nominator of (7) have been replaced by exponential averaging of the type

Pav(n)= (1−γ)Pav(n −1) + γp(n), (74)

where p(n) is the quantity to be averaged, Pav(n) is the averaged quantity and γ is the
smoothing parameter. The averaged quantities were then used in (7) to obtain λ. The curves
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shown in the Figures to follow are averages over 100 independent trials. We often show the
simulation results and the theoretical curves in the same Figures. In several cases the curves
overlap and are therefore indistinguishable.

Figure 5. The true impulse response.

6.1 System Identification

We have selected the sample echo path model number one shown in Figure 5 from [10], to
be the unknown system to identify and combined two 64 tap long adaptive filters.

In the Figures below the noisy blue line represents the simulation result and the smooth red
line is the theoretical result. The curves are averaged over 100 independent trials.

In the system identification example we use Gaussian white noise with unity variance as the
input signal. The measurement noise is another white Gaussian noise with variance
συ

2 =10−3. The step sizes are μ1 =0.005 for the fast adapting filter and μ2 =0.005 for the slowly
adapting filter. Figure 6 depicts the evolution of EMSE in time. One can see that the system
converges fast in the beginning. The fast convergence is followed by a stabilization period
between sample times 1000-7000 followed by another convergence to a lower EMSE level
between the sample times 8000-12000. The second convergence occurs when the mean
squared error of the filter with small step size surpasses the performance of the filter with
large step size. One can observe that the there is a good accordance between the theoretical
and the simulated curves so that the theoretical and the simulation curves are difficult to
distinguish from each other.

The combination parameter λ is shown in Figure 7. At the beginning, when the fast converg‐
ing filter gives smaller EMSE than the slowly converging one, λ is clise to unity. When the
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slow filter catches up the fast one λ starts to decrease and obtains a small negative value at
the end of the simulation example. The theoretical and simulated curves fit well.

In the Figure 8 we show the time evolution of mean square deviation of the combination in
the same test case. Again one can see that the theoretical and simulation curves fit well.

Figure 6. Time-evolutions of EMSE with μ 1 = 0.005 and μ 2 = 0.0005 and σ v2 = 10-3.

Figure 7. Time-evolutions of λ with μ 1 = 0.005 and μ 2 = 0.0005 and σ v2 = 10-3.
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6.2 Adaptive beamforming

In the beamforming example we have used a 8 element linear array with half wave-length
spacing. The noise power is 10-4 in this simulation example. The useful signal which is 10 dB
stronger than the noise arrives form the broadside of the array. There are three strong inter‐
ferers at -35°, 10° and 15° with SNR1 = 33 dB and SNR2 = SNR3 = 30 dB respectively. The step
sizes of the adaptive combination are μ1 = 0.05 and μ 2= 0.006.

Figure 8. Time-evolutions of MSD with μ1 = 0.005 and mu;2 = 0.0005 and σv 2 = 10-3.

Figure 9. The antenna pattern.
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The steady state antenna pattern is shown in Figure 6. One can see that the algorithm has
formed deep nulls in the directions of the interferers while the response in the direction of
the useful signal is equal to the number of antennas i.e. 8.

The evolution of EMSE in this simulation example is depicted in Figure 10. One can see a
rapid convergence at the beginning of the simulation example. Then the EMSE value stabil‐
izes at a certain level and after a while a second convergence occurs. The dashed red line is
the theoretical result and the solid blue line is the simulation result. One can see that the two
overlap and are indistinguishable in black and white print.

Figure 10. Time evolution of EMSE.

The time evolution of λ for this simulation example is shown in Figure 11. At the beginning
λ is close to one forcing the output signal of the fast adapting filter to the output of the com‐
bination. Eventually the slow filter catches up with the fast one and λ starts to decrease ob‐
taining at the end of the simulation example a small negative value so that the output signal
is dominated by the output signal of the slowly converging filter. One can see that the simu‐
lation and theoretical curves for λ evolution are close to each other.

The signal to interference and noise ratio evolution is show in Figure 12. One can see a fast
improvement of SINR at the beginning of the simulation example followed by a stabilization
region. After a while a new region of SINR improvement occurs and finally the SINR stabil‐
izes at an improved level. Again the theoretical result matches the simulation curve well
making the curves indistinguishable in black and white print.
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6.3. Adaptive Line Enhancer

In order to illustrate the adaptive line enhancer application we have used length K = 32 cor‐
relation sequences to form K × K correlation matrices for the Capon method. The narrow
band signals were just sine waves in our simulations.

Figure 11. Time evolution of λ.

Figure 12. Time evolution of SINR.
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The input signal consist of three sine waves and additive noise with unity variance. The sine
waves with frequencies 0.1 and 0.4 have amplitudes equal to one and the third sine wave
with normalized frequency 0.25 has amplitude equal to 0.5. The spectra of the input signal
x(n) and the output signal y(n) are shown in Figure 13. The step sizes used were μ 1 = 0.5 and
μ 2 = 0.05, the filter is N=16 taps long and the delay Δ = 10.

Figure 13. Line enhancer output signal spectrum.

Figure 14. Line enhancer output signal autocorrelation.
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In Figure 14 we show the correlation functions of input and output signals in the second

simulation example. We can see that the theoretical correlation matches the correlation com‐

puted from simulations well.

Figure 15. Evolution of EMSE of the two component filters and the combination in time.

Figure 16. Line enhancer output signal spectrum.
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The evolution of the excess mean square error of the combination together with that of the
individual filters is shown in Figure 15. We see the fast initial convergence, which is due to
the fast adapting filter. After the initial convergence there is a period of stabilization fol‐
lowed by a second convergence between the sample times 500 and 1500, when the error
power of the slowly adapting filter bypasses that of the fast one.

In our final simulation example (Figure 16) we use three unity amplitude sinusoids with fre‐
quencies 0.1, 0.2 and 0.4. We have increased the noise variance to 10 so that the noise power
is 20 times the power of each of the individual sinusoids. The adaptive filter is N=16 taps
long and the delay Δ = 10. The step sizes of the individual filters in the combined structure
are μ 1 = 0.5 and μ 2 = 0.005. One can see that even in such noisy conditions there is still a
reasonably good match between the theoretical and simulation results.

7. Conclusions

In order to make the LMS type adaptive algorithm work properly one has to select a suitable

step size . The step size has to be smaller than 2
ωmax

, where ωmax is the largest eigenvalue of

the input signal autocorrelation matrix, in order to guarantee stability of the algorithm. Giv‐
en that the stability condition is fulfilled a large step size allows the algorithm to initially
converge fast but the mean square error in steady state remains large too. On the other hand
if one selects a small step size it is possible to achieve a small steady state error but the initial
convergence speed of the algorithm is reduced in this case. In this Chapter we have investi‐
gated the combination of two adaptive filters, which is a new and interesting way of achiev‐
ing fast initial convergence and low steady state error of an adaptive filter at the same time,
solving thus the trade-off one has in step size selection . We were looking at three applica‐
tions of the technique - system identification, adaptive beamforming and adaptive line en‐
hancing. In all three applications we saw that the combination worked as expected allowing
the algorithm to converge fast to a certain level and then after a while providing a second
convergence to a lower mean square error value.
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1. Introduction

Coronary Artery Disease (CAD) is a leading type of heart disease in the world caused by the
gradual build-up of plaque on the walls of the arteries. Due to CAD’s high incidence rate and
mortality, it is very harmful to human health. CAD can develop slowly and silently over years
without any symptoms. Early diagnose of CAD is one of the most important medical research
areas. Diastolic murmurs that occur as additional components in the heart sound signal
provide clinicians with valuable diagnostic and prognostic information about the function of
heart valves. When coronary arteries become narrowed or blocked, the turbulence appears
which is produced by blood moving across the stenotic arteries. During the relatively quiet
diastolic period of the cardiac cycle, the murmurs are likely to be loudest when coronary blood
flow is maximal. Initial studies show that diastolic murmurs produced by coronary arterial
stenosis contain higher frequency components.

The heart sound signal represents the mechanical activity of the cardiohemic system, which is
complicated and non-stationary. It contains physiological and pathological information
between the heart and the various parts of the body, so it can be used in diagnosis of heart
disease. Heart sound has been widely used in diagnosis of heart disease and many methods
have been adopted to aid the diagnosis [1, 2]. The heart sound signal generally can be separated
into four parts: the 1st heart sound S1, the systolic period, the 2nd heart sound S2 and the
diastolic period, shown in figure 1.

Diastolic murmurs occur between S2 and the next S1 when the heart muscle relaxes between
beats. Heart murmurs are usually considered pathological. They can be caused by some kinds
of heart attacks, such as coronary artery stenosis, aortic regurgitation, etc. Diastolic murmurs
can provide clinicians with valuable diagnostic and prognostic information about the function
of heart valves.

© 2013 Zhao et al.; licensee InTech. This is an open access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

© 2013 Zhao et al.; licensee InTech. This is a paper distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
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Short Time Fourier Transform, Wigner-Ville Distribution and Wavelet Transform, etc., have
some inherent limitations [3, 4, 5]. Short Time Fourier Transform involves an intrinsic trade-
off between time resolution and frequency resolution. In Wigner-Ville distribution, the
inherent cross-term interferences often mask the true time-frequency information associated
with the signal of interest. The wavelet transform has received considerable attention in recent
years. It provides a multi-resolution representation of signals, however, it is not adaptive in
nature; once the wavelet mother function is given, one will have to use it to analyse all the
data. In addition, the wavelet transform also underlies an uncertainty principle. In 1998,
Dr.Norden Huang proposed a novel signal processing algorithm: the Hilbert Huang Trans‐
form (HHT) [6, 7]. It has proved to be a powerful tool to analyse non-stationary and nonlinear
signals. The key parts of HHT are the Empirical Mode Decomposition (EMD) and Hilbert
transform. EMD can decompose adaptively diastolic murmurs into a finite and usually small
number of Intrinsic Mode Functions (IMFs) that admit a well-behaved Hilbert transform. The
Hilbert transform of IMFs can yield instantaneous frequency and instantaneous amplitude.
The local energy and instantaneous frequency derived from the IMFs give the fine-resolution
frequency-time distribution of the energy that is designated as the Hilbert spectrum. The three-
dimensional distribution can reflect the inherent essential characteristic of the signal.

The paper is organized as follows: section 2 introduces generalized wavelet shrinkage
denoising method. In section 3, the Hilbert spectrum based on EMD and marginal spectrum
distributions of diastolic murmurs are studied; a new method to restrict the end effect of EMD
is proposed in section 4.In section 5, the algorithm based on the Empirical Mode Decomposi‐
tion (EMD) and Teager Energy Operation (TEO) is proposed as an effective approach for
estimating the instantaneous frequency of diastolic murmurs. Finally, some conclusions are
given in section 6.

2. Wavelet shrinkage method

We consider the following model of a discrete noisy signal:
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Figure 1. Heart sound signal
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x zq s= + (1)

The vector x represents noisy signal and θ is an unknown original clean signal. z is independent
identity distribution Gaussian white noise with mean zero and unit variance. σ is intensity of
noise. For simplicity, we assume intensity of noise is one.

The step of wavelet shrinkage is defined as follows:

1. Apply discrete wavelet transform to observe noisy signals.

2. Estimate noise and threshold value, thresholding the wavelet coefficients of the observed
signal.

3. Apply the inverse discrete wavelet transform to reconstruct the signal.

The wavelet shrinkage method relies on the basic idea that the energy of signal will often be
concentrated in a few coefficients in the wavelet domain while the energy of noise is spread
among all coefficients in the wavelet domain. Therefore, the nonlinear shrinkage function in
the wavelet domain will tend to keep a few larger coefficients over threshold value that
represent the signal, while noise coefficients’ down threshold value will tend to reduce to zero.

In wavelet shrinkage, how to select the threshold function and how to select the threshold
value are most crucial. Donohue introduced two kinds of thresholding functions: ‘hard
threshold function’ and ‘soft threshold function’.
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The hard threshold function (2) results in larger variance and can be unstable because of the
discontinuous function. The soft threshold function (3) results in unnecessary bias due to
shrinkage of the large coefficients to zero. We build the generalized threshold function:
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λ is threshold value.
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When m is an even number:
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When m is odd number:
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When m=1, it is the soft threshold function; when m= ∞, it is the hard threshold function. When
m=2 it is Non-Negative Garrote threshold function. We show slope signal as an example,
Figure2 illustrates the generalized threshold functions for different m.

Figure 2. Generalized threshold function

It can clearly be seen that when the coefficient is small, the smaller m is, the closer the gener‐
alized function is to the soft threshold function; when the coefficient is big, the bigger m is, the
closer the generalized function is to the hard threshold function; when m lies between 1 and
∞, the general threshold function achieves a compromise between hard and soft threshold
function. With careful selection of m, we can achieve better denoising performance [8, 9].

We derived the exact formula of mean, bias, variance and l2 risk for the generalized threshold
function.
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Let x~N (θ, 1)

Am(θ)= ∫λ
∞ ϕ(x −θ)−ϕ(x + θ)

x m dxBm(θ)= ∫λ
∞ ϕ(x −θ) + ϕ(x + θ)

x m dx

ϕ And Φ are density and probability function of standard Gaussian random variable respec‐
tively. Then:

Mean:
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Bias:
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Variance:
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l2 Risk:
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Where

ρλ
m(θ)= E (δλ

m(x)−θ)2 =ρλ
H (θ)−2λmBm−2(θ) + λ 2mB2m−2(θ) + 2θλmAm−1(θ)

M H (λ, θ)=θ + θ 1−Φ(λ −θ)−Φ(λ + θ) + ϕ(λ −θ)−ϕ(λ + θ)
V H (λ, θ)= (θ 2 + 1)(2−Φ(λ −θ)−Φ(λ + θ) + (λ + θ)ϕ(λ −θ) + (λ −θ)ϕ(λ + θ)−M H (λ ,

θ
)
2

ρλ
H (θ)=1 + (θ 2 −1)(Φ(λ −θ)−Φ(−λ −θ)) + (λ + θ)ϕ(λ + θ) + (λ −θ)ϕ(λ −θ)

,

M m(λ, θ) ,S B m(λ, θ), V m(λ, θ) are the mean, bias, variance and risk of generalized thresh‐
old function. When m is 1, 2, ρλ

m(θ), they are the mean, bias, variance and risk of the risk of
soft, Non-Negative Garrote, hard threshold functions, respectively.

The soft threshold function provides smoother results in comparison with the hard threshold
function; however, the hard threshold function provides better edge preservation in compar‐
ison with the soft threshold function. The hard threshold function is discontinuous and this
leads to the oscillation of denoised signal. The soft threshold function tends to have bigger bias
because of shrinkage, whereas the hard threshold function tends to have bigger variance
because of discontinuity. The Non-Negative Garrote threshold function is the trade-off
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between the hard and soft threshold function. Firstly, it is continuous; secondly, the shrinkage
amplitude is smaller than the soft threshold function.

Stein Unbiased Risk Estimate (SURE) [10] is an adaptive threshold selection rule which is data
driven. The threshold value minimizes an estimate of the risk.

If ∞ is weakly differentiable, for single coefficient, θk
∧

= xk + H (xk ), k =1...N , H  is true risk.
Then
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When m is odd,
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Suppose wavelet coefficients are

SURE (xk , λ)=1 + (xk
2 −2)I (| xk | ≤λ) + λ 2m

xk
2m−2 I (| xk | >λ) + 2(m − 1)λ m

xk
m I (xk >λ)− 2(m − 1)λ m

xk
m I (xk < −λ)

, the threshold value λ is set to minimize the estimate of the x1....xN  risk for the given data,
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For hard threshold function (m is ∞), because H (x) is discontinuity, the SURE is illogical.

The noisy PCG signal is processed using the method mentioned above. For the generalized
threshold functions, parameter m is selected as 2 which is simple and provides a good
compromise between the hard and soft threshold function. The data-driven SURE threshold
value is used. The filtered PCG signal is illustrated as figure 4(a). The phase space diagram of
the filtered PCG signal is shown in figure 4(b). From visual inspection of figure 3, the PCG
signal is much cleaner after being denoised; the first heart sound, the systolic period, the second
heart sound and the diastolic period can be clearly identified. The results indicate that the
method we have proposed significantly reduces noise and preserves well the characteristics
of the PCG signal.

3. Analysis of diastolic murmurs for coronary artery disease based on
empirical mode decomposition

Since a novel signal processing algorithm - the Hilbert HuangTransform (HHT) - was proposed
by N.E.Huang in 1998 [6], it has been seen as a data-driven tool for nonlinear and non-
stationary signal processing. HHT consists of two parts: the EMD and Hilbert transform. EMD
as the important part of the HHT that can adaptively decompose signal into a finite and often
a series of small numbers of Intrinsic Mode Functions (IMFs) subjected to the following two
conditions:

1. In the whole dataset, the number of extrema and the number of zero-crossing must either
be equal or differ at most by one.
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heart sound and the diastolic period can be clearly identified. The results indicate that the
method we have proposed significantly reduces noise and preserves well the characteristics
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empirical mode decomposition

Since a novel signal processing algorithm - the Hilbert HuangTransform (HHT) - was proposed
by N.E.Huang in 1998 [6], it has been seen as a data-driven tool for nonlinear and non-
stationary signal processing. HHT consists of two parts: the EMD and Hilbert transform. EMD
as the important part of the HHT that can adaptively decompose signal into a finite and often
a series of small numbers of Intrinsic Mode Functions (IMFs) subjected to the following two
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(b) 

Figure 3. a) Noisy PCG signal (b) Phase space diagram of the noisy signal

(a) 

(b) 

Figure 4. a) PCG signal after denoising (b) Phase space diagram of denoised signal
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2. At any time, the mean value of the envelope of the local maxima and the envelope of the
local minima must be zero.

These two conditions guarantee the well-behaved Hilbert transform. The IMFs represent the
oscillatory modes embedded in the signal. Most signals include more than one oscillatory
mode and are not IMFs. EMD is a numerical sifting process to decompose a signal into a finite
number of hidden fundamental intrinsic oscillatory modes, i.e., IMFs. Applying the Hilbert
transform to each IMF, the instantaneous frequency and amplitude of each IMF can be obtained
which constitute the time-frequency-energy distribution of the signal, called the Hilbert
spectrum. The Hilbert spectrum provides higher resolution and concentration in the time-
frequency plane, and avoids the false high frequency and energy dispersion existent in the
Fourier spectrum.

Figure5 shows a classical IMF. The IMFs represent the oscillatory modes embedded in the
signal. Each IMF actually is a zero mean monocomponents AM-FM signal with the following
form:

( ) ( )cos ( )x t a t tf= (15)

with time varying amplitude envelope x(t)=a(t)cosϕ(t) and phase a(t). The amplitude and
phase both have physical and mathematical meaning.

Most signals include more than one oscillatory mode, so they are not IMFs. EMD is a numerical
sifting process to disintegrate empirically a signal into a finite number of hidden fundamental
intrinsic oscillatory modes, that is, IMFs. The sifting process can be separated into the following
steps:

1. Finding all the local extrema, including maxima and minima; then connecting all the
maxima and minima of signal x(t) using smooth cubic splines to get its upper envelope
ϕ(t) and lower envelope xup(t).

2. Subtracting mean of these two envelopes xlow(t) from the signal to get their difference:
m1(t)= (xup(t) + xlow(t)) / 2.

3. Regarding the h 1(t)= x(t)−m1(t) as the new data and repeating steps 1 and 2 until the
resulting signal meets the two criteria of an IMF, defined as h 1(t). The first IMF c1(t)
contains the highest frequency component of the signal. The residual signal c1(t) is given
by r1(t).

4. Regarding r1(t)= x(t)−c1(t) as new data and repeating steps (1) (2) (3) until extracting all
the IMFs. The sifting procedure is terminated until the m-th residue r1(t) becomes less than
a predetermined small number or becomes monotonic.

The original signal x (t) can thus be expressed as follows:
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x(t)=∑
j=1

M
cj(t) + rM (t) is an IMF where j represents the number of corresponding IMFs and cj(t)

is residue. The EMD decomposes non-stationary signals into narrow-band components with
decreasing frequency. The decomposition is complete, almost orthogonal, local and adap‐
tive. All IMFs form a completely and nearly orthogonal basis for the original signal. The ba‐
sis comes directly from the signal, which guarantees the inherent characteristic of signal and
avoids the diffusion and leakage of signal energy. The sifting process eliminates riding
waves, so each IMF is more symmetrical and is actually a zero mean AM-FM component.
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Figure 5. A classical IMF

Heart sounds are recorded from the chest of normal objects and CAD patients using a specially
designed high sensitivity cardiac microphone. The ECG signals are also recorded as a time
reference to aid in locating the diastolic phase. For each cycle, the central portion of diastole is
digitized (sample frequency equals 2.0 kHz).

Figure6 shows the diastolic murmurs of a normal object.  Figure7 shows the IMFs of the
murmur obtained by EMD. The diastolic murmurs can be decomposed into six IMFs. The
Hilbert spectrum is shown in figure 8. The vertical bars on the right of the panel give the
relative amplitude scale. Figure6 provides more distinct information on the time-frequen‐
cy  contents  of  diastolic  murmurs,  which  reveals  clearly  the  dynamic  characteristic  of
murmurs  in  the  time-frequency  plane.  The  Hilbert  spectrum  contains  no  energy  with
frequency above 350Hz. The spectrum appears in the skeleton form and can provide the
frequency  variations  from one  instance  to  the  next.  Figure  9  shows  the  marginal  spec‐
trum of the diastolic murmurs. It can be clearly seen that the energy mainly concentrates
on the lower frequency domain.
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Figure 6. Diastolic murmurs of a normal object
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Figure 7. IMFs of diastolic murmurs from the normal people
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Figure 8. Hilbert spectrum of the diastolic murmurs

0 100 200 300 400 500 600 700 800 900 1000
0

2

4

6

8

Frequency (Hz)

Figure 9. Marginal spectrum of the diastolic murmurs

Figure 10 shows the diastolic murmurs of the CAD patient, as diagnosed by coronary artery
radiography. The left anterior descending artery is stenosed about 60% and the right coronary
artery is stenosed about 85%. Figure 11 shows the IMFs of the murmur obtained by EMD. The
diastolic cardiac cycle can be decomposed into six IMFs. The Hilbert spectrum is illustrated in
figure 12. Figure 13 shows the marginal spectrum of diastolic murmurs. The HHT spectrum
has superior temporal and frequency resolutions. The spectrums show precise time-frequency
representation of signal. The energies spread over a much wider frequency domain. Much
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higher spectral energies are concentrated on high frequency compared with those of normal
people. More energy distributes in the frequency band over 200Hz and a peak also lies around
350Hz, which often does not appear in diastolic murmurs of normal people. It can be explained
as follows: for the CAD patient, the narrowed coronary arteries lead to the blood flow in
coronary artery changing from laminar flow to turbulence flow, from simplicity to complexity.
Coronary arterial stenosis gives rise to high frequencies of diastolic murmurs. The EMD
method makes no assumption about the linearity or stationarity of the signal, and the IMFs
are usually easy to interpret and relevant to the underlying dynamic processes being studied.
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Figure 10. Diastolic Murmurs of CAD patient
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Figure 11. Six IMFs of diastolic murmurs from patient
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method makes no assumption about the linearity or stationarity of the signal, and the IMFs
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Figure 12. Hilbert spectrum of the diastolic murmurs from patient
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Figure 13. Marginal spectrum of the diastolic murmurs from patient

4. A new method for processing end effect in empirical mode
decomposition

In the procedure of EMD, the cubic splines interpolation creates top and bottom envelopes
that are implemented in the first step of the above sifting process. It is difficult to interpolate
data near the beginnings or ends, where the cubic splines can have swings. The common
method to deal with end effect is to consider the end points both as maximum and minimum
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locations with values unchanged, but this method will give a distorted view of the local mean
near the boundaries. We propose a simpler method to restrict the end effect in spline interpo‐
lation [11]. The key points are to determine the values and locations of extrema nearby end
points. Suppose the length of data x is N, the steps can be implemented as follows:

1. Finding all the maxima and minima, and considering the end points both as maximum
and minimum, that is, maximum= [l maximum N] and minimum= [1 minimum N].

2. The end points are still considered both as maximum and minimum, whereas their values
can be adapted to rM (t) and δ1, γ1. Taking δN , γN , δ1 as the mean of all maximum except
for the first and last maximum (the subscript represents location of maximum). Similarly,
taking δN , γ1 as the mean of all minimum except for the first and last minimum (the
subscript represents location of minimum).

3. Comparing γN  with x (1), δ1 with x (N), δN  with x(1) and γ1 with x (N), respectively.

If γN <x(1) then δ1= x (1);if δ1< x (N) then δN = x (N); if δN > x (1)then γ1=x (1);If γ1>x(N) then
γN = x(N).

4. Using cubic splines interpolation to get top and bottom envelopes, and repeating the
second step of above sifting process to extract IMF.

The performance of the proposed method is compared with the traditional method where the
endpoints are considered both as maximum and minimum with values unchanged. As an
example, we decompose a sinusoid signal by the sifting process. Figure 14 shows the signal.

Figure 14. A sinusoid signal
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Figure 12. Hilbert spectrum of the diastolic murmurs from patient
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Figure 13. Marginal spectrum of the diastolic murmurs from patient

4. A new method for processing end effect in empirical mode
decomposition

In the procedure of EMD, the cubic splines interpolation creates top and bottom envelopes
that are implemented in the first step of the above sifting process. It is difficult to interpolate
data near the beginnings or ends, where the cubic splines can have swings. The common
method to deal with end effect is to consider the end points both as maximum and minimum
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locations with values unchanged, but this method will give a distorted view of the local mean
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Figure 15. Cubic splines interpolation in sifting process using the traditional method

Figure 16. IMFs of the sinusoid signal

Firstly, we consider the endpoints both as maximum and minimum with value unchanged.
Figure 15 shows the top and bottom envelopes calculated by cubic splines interpolation in the
sifting process. Top and bottom red dash dot line represent the envelopes. The sinusoid signal
is decomposed into six IMFs and one residue by sifting process as depicted in figure 16.
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Figure 17. Cubic splines interpolation in sifting process using the proposed method
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Figure 18. IMF and residue of the sinusoid signal using the proposed method

Secondly, applying the proposed method above to restrict the end effect, figure 17 shows the
top and bottom envelopes calculated by cubic splines interpolation in the sifting process. Red
circles represent the end values predicted. The sinusoid signal is decomposed into one IMF
and a residue by the sifting process as depicted in figure 18. The IMF is just the sinusoid and
the value of the residue is smaller than 10-6. From figure 18, it can easily be seen that the swings
appear near both ends and propagate inwards and produce superfluous IMFs. Actually, the
sinusoid signal is an IMF itself in nature because it satisfies the IMF conditions which has the
same numbers of zero-crossing and extrema, and can also be local symmetric. Therefore, the
sifting process as represented by figure 18 should extract only one IMF. The results indicate
that the method we proposed is effective.
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Secondly, applying the proposed method above to restrict the end effect, figure 17 shows the
top and bottom envelopes calculated by cubic splines interpolation in the sifting process. Red
circles represent the end values predicted. The sinusoid signal is decomposed into one IMF
and a residue by the sifting process as depicted in figure 18. The IMF is just the sinusoid and
the value of the residue is smaller than 10-6. From figure 18, it can easily be seen that the swings
appear near both ends and propagate inwards and produce superfluous IMFs. Actually, the
sinusoid signal is an IMF itself in nature because it satisfies the IMF conditions which has the
same numbers of zero-crossing and extrema, and can also be local symmetric. Therefore, the
sifting process as represented by figure 18 should extract only one IMF. The results indicate
that the method we proposed is effective.
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5. Instantaneous frequency estimation of diastolic murmurs based on EMD
and TEO

Diastolic murmurs can provide clinicians with valuable diagnostic and prognostic information
about the function of heart valves. Quantitative analysis of instantaneous frequency (IF) of the
murmurs can aid diagnosis [1, 13].

Instantaneous Frequency (IF) is an important signal characteristic, which characterizes the
transients and fast changes in frequency as time progresses. The IF of diastolic murmur is used
to describe the time-varying spectral contents of the characteristic frequency bands that are of
interest for cardiovascular research. The IF of a signal is traditionally obtained by taking the
first derivative of the phase of the signal with respect to time using the Hilbert transform.
However, this definition is questionable and will mislead interpretation of instantaneous
frequency, such as negative frequency. Instantaneous frequency can also be obtained from a
time–frequency distribution (TFD) as the first conditional moment in the frequency, suggesting
that the instantaneous frequency is the average frequency at each time, whereas the cross terms
existing in TFD will lead to a very rapid degradation of performance and severely pollute the
instantaneous frequency estimation [14].

TEO is a powerful nonlinear operator and has been successfully used in a number of applica‐
tions including speech signal processing, image processing, etc. [15]. TEO can track the
modulation energy and estimate the instantaneous amplitude and frequency of AM-FM
signals with the form

0
( ) ( )cos[2 ( ) ]

t
x t a t dp w t t= ò (17)

x(t)=a(t)cos 2π∫0
t
ω(τ)dτ  and a(t) are the instantaneous amplitude and frequency respectively.

In continuous time domain, TEO is defined by

2( ( )) [ ( )] ( ) ( )x t x t x t x tY = -& && (18)

Ψ(x(t))= ẋ(t) 2 − x(t)ẍ(t) corresponds to continuous signal, x(t) and ẋ(t) are the first order
and second order time derivatives of ẍ(t) respectively.

For example, for a sinusoid signal x(t), the TEO gives

2 2( ( ))x t A wY = (19)

Adaptive Filtering - Theories and Applications108

For a monochromatic signal, the output by TEO is proportional to the squared product of
frequency and amplitude.The TEO of the first order derivative Ψ(x(t))= A 2ω 2 of ẋ(t) produce
the output:

2 4( ( ))x t A wY =& (20)

The two results above can be combined to estimate the frequency and amplitude of the signal
Ψ(ẋ(t))= A 2ω 4 as follows [14]:

2 ( ( ))ˆ ( )
( ( ))
x tt
x t

w Y
=
Y
&

(21)

2
2 ( ( ))ˆ| ( )|

( ( ))
x tA t
x t

Y
=

Y &
(22)

The estimate of instantaneous frequency and amplitude above are also suitable for AM, FM
and AM-FM signals.

The discrete-time counterpart of TEO can be defined as:

2( ( )) ( ) ( 1) ( 1)x n x n x n x nY = - - + (23)

A discrete-time real value AM-FM signal that is usually used to model time-varying amplitude
and frequency patterns can be expressed as:

0
( ) ( )cos( ( )) ( )cos( ( ) )

n
c mx n a n n a n n q k dkf w w q= = + +ò (24)

Where x(n)=a(n)cos(ϕ(n))=a(n)cos(ωcn + ωm∫0
n
q(k )dk + θ) is the time-varying amplitude

modulation, a(n) is the carrier frequency, ωc is the maximum frequency deviation from the
carrier frequency and ωm, 0<ωm <ωc is the frequency deviation function and |q(n)| ≤1 is the
initial phase shift. The derivative of the phase θ, that is, the FM part of the signal is called as
instantaneous frequency:

( )( ) ( )c m
d nn q n

dn
fw w w= = + (25)
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Ψ(x(t))= ẋ(t) 2 − x(t)ẍ(t) corresponds to continuous signal, x(t) and ẋ(t) are the first order
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The instantaneous frequency ω(n)=
dϕ(n)

dn =ωc + ωmq(n) and amplitude ω(n) of the AM-FM

modulated signal a(n) at any time instant can be respectively demodulated by applying the
TEO to x(n) and its difference, which is called the Discrete Energy Separation Algorithm
(DESA):

( ) ( ) ( 1)y n x n x n= - - (26)

{ ( )} { ( 1)}( ) arccos 1
4 { ( )}

y n y nn
x n

w
æ öY + Y +

= -ç ÷Yè ø
(27)

2
{ ( )}| ( )|

sin ( ( ))
x na n

nw
Y

= (28)

or

1 { ( 1) ( 1)}( ) arccos 1
2 2 { ( )}

x n x nn
x n

w
æ öY + - -

= -ç ÷Yè ø
(29)

2 { ( )}| ( )|
{ ( 1) ( 1)}

x na n
x n x n

Y
=

Y + - -
(30)

The estimates above are valid under the assumptions that the signal does not vary too fast nor
too much compared to the carrier frequency. In general, the first demodulation algorithm (26)
~ (28) is called DESA-1 where ‘1’ implies the approximation of derivatives with a single sample
difference. That is, the signal derivative is approximated by the average of forward and
backward 1-point differences. The second demodulation algorithm (29) ~ (30) is called DESA-2
where ‘2’ implies a difference between samples whose time indices differ by 2. Both DESA-1
and DESA-2 algorithms yield very small errors and can give the accurate estimate of instan‐
taneous frequency. The DESA-2 algorithm is less computationally complex and has an
excellent, almost instantaneous, time resolution which can also lead to a simpler mathematical
analysis. In this paper, we focus on the instantaneous frequency rather than the instantaneous
amplitude by DESA-2.

Figure 19 shows an AM-FM signal |a(n)| = 2Ψ{x(n)}

Ψ{x(n + 1) − x(n − 1)}
 where

( ) 1 0.6cos(0.01 )

( ) cos
10 80

a n n

n n n

p
p pf

= +

= +
(31)
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The theoretic instantaneous frequency is shown in figure 20. The estimated instantaneous
frequency by DESA-2 is shown in figure 21. The estimated amplitude envelope is also
illustrated in figure 22. Note that there are no apparent discrepancies between the real values
and the DESA-2 calculations. The errors are very slow but less smooth. The results indicate
that DESA-2 can be used to track the instantaneous frequency and amplitude accurately.

Figure 19. Original AM-FM signal

Figure 20. Theoretic instantaneous frequency
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Figure 21. Estimated instantaneous frequency by DESA-2

Figure 22. Estimated amplitude envelope by DESA-2

Another mixture signal is composed of two linear swept-frequency signals shown in figure
23. The frequency of one chirp signal varies from 1Hz to 0.1 Hz and the other varies from 2 Hz
to 0.1 Hz. The estimated IF is shown in figure 24. The two chirp signals are also better identified
and localized except for near boundaries.
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Figure 23. A mixture signal of two chirp signals

Figure 24. Estimated IF of two IMFs by DESA-2

In this  paper,  we present  a  novel  method to estimate the IF of  diastolic  murmurs using
Empirical  Mode Decomposition (EMD) and nonlinear the Teager Energy Operator (TEO).
EMD  has  been  analysed  as  in  section  3  and  can  decompose  diastolic  murmurs  into  a
series  of  Intrinsic  Mode  Functions  (IMFs),  then  accurate  IF  estimation  can  be  acquired
by TEO.
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Figure 25. Block diagram of Instantaneous Frequency (IF) estimate based on EMD-TEO

The block diagram of the instantaneous frequency estimate based on EMD-TEO is shown in
figure 25 (IF refers to the instantaneous frequency in the block diagram).

The instantaneous frequency of the original signal can be obtained in the following steps:

a.
Decompose the original single into IMFs: 

a(n)=1 + 0.6cos(0.01πn)

ϕ(n)=
π
10 n + cos

π
80 n

 j=1…M.

b. Calculate the instantaneous frequency cj(t) of each IMF I Fj(t) by DESA-2.

c. Calculate the average instantaneous frequency of the original signal:

1
( ) ( ) /

M

j
j

t IF t Mw
=

=å (32)

It is the average frequency of mainly IMFs at each instant time.

Next we estimate the IF of diastolic murmurs from clinical coronary artery disease (CAD)
patient based on the EMD-Teager method. The left anterior descending artery is stenosed about
40% and the right coronary artery is stenosed about 55%, which has already been diagnosed
by catherization. Figure 26 shows the diastolic murmurs. Figure 27 shows the IMFs obtained
by EMD. The diastolic murmurs can be decomposed into six IMFs and one residue. The
amplitudes of IMF5 and IMF6 are smaller compared with the original signal. So IMF5 and
IMF6 are abandoned. Figure 28 shows the IF of each effective IMF by DESA-2. Figure 29 shows
the average IF of diastolic murmurs. Then some features such as mean, standard deviation,
etc., can be extracted from the average IF. For the normal subject, figure 30 shows the IF of each
effective IMF and figure 31 shows average IF of diastolic murmurs.
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Figure 26. Diastolic Murmurs of CAD object
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Figure 27. Six IMFs and one residue by EMD
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Figure 28. Estimated IF of four selective IMFs by DESA-2

Figure 29. The average instantaneous frequency of diastolic murmurs
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Figure 30. Estimated instantaneous frequency of normal object by DESA-2 algorithm

Figure 31. Estimated IF of normal object

For the CAD object, we can see that both the IF of each IMF and average IF are higher than
those for normal subject. The diastolic murmurs contain rich higher frequencies. The mean of
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Figure 28. Estimated IF of four selective IMFs by DESA-2
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Figure 30. Estimated instantaneous frequency of normal object by DESA-2 algorithm
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average IF is 185Hz and the standard deviation is 40Hz. For the normal subject, the mean of
average IF is 140Hz and the standard deviation is 26Hz. These can be explained as follows: for
the CAD subject, the narrowed coronary arteries lead to the blood flow in coronary artery
changing from laminar flow to turbulence flow, from simplicity to complexity. Coronary
arterial stenosis gives rise to high frequencies of diastolic murmurs. The instantaneous
frequency features effectively reveal the information as to whether the arteries are blocked and
denote the frequency change of diastolic murmurs when the coronary arteries are occluded.

6. Conclusion

Diastolic murmurs contain the information of coronary artery occlusions which give the basis
of CAD diagnosis. The Hilbert Huang Transform is an adaptive powerful method to analyse
nonlinear and non-stationary time series. The important part of HHT is the Empirical Mode
composition (EMD). In this paper, we firstly studied wavelet shrinkage denoising using the
generalized threshold function and the data-driven SURE threshold value, which successfully
removed noise from the PCG signal. Secondly, we obtained the Hilbert spectrum and marginal
spectrum of diastolic murmurs for normal subjects and CAD patients after EMD. They provide
higher resolution and energy concentration in the time-frequency plane. The Hilbert spectrum
and marginal spectrum effectively reveal the information as to whether the arteries are blocked
and provide a reliable indicator of CAD. For restricting the end effect of EMD, a simple,
powerful and effective method is presented. The IF estimation algorithm is studied based on
EMD-TEO. The results indicate that the IF of diastolic murmurs effectively reveal the infor‐
mation on whether the arteries are blocked and provide a reliable indicator of CAD and
provides a reliable indicator of coronary artery disease.
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1. Introduction

The adaptive noise cancellation has proved being very efficient method in various practical
applications such as voice clearance, recognition systems for voice, hands-free telephony,
and medical applications such as hearing aids and fetal electrocardiography [1], etc. Figure 1
[1], depicts the basic principle of noise cancellation (understanding that noise is an unwant‐
ed signal, d(n)), which is described by main signals that feed the system.

Figure 1. Adaptive noise cancelling approach

Acoustic noise has been studied in recent years due to growing interest in cancelling acous‐
tic noise through active control, since it is increasingly common to find sources of noise in
many industrial processes. Basic outlines of noise cancellation were based on the application
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of passive attenuators that were used for many years without much success [2], however,
development of digital signal processing has become increasingly feasible systems active
noise cancellation. Active noise cancellation systems cancel unwanted acoustic noise based
on the superposition principle: an acoustic noise of equal amplitude but opposite phase is
generated in order to cancel out the unwanted noise.

This work discusses a scheme of active noise cancellation using adaptive algorithms of the
digital filters required for the correct operation of the proposed system. The signal genera‐
tion "anti-noise" to cancel the primary source of noise is a problem different from change of
environment, since the signal is generated by electrical means and must be propagated
acoustically to have the desired effect; this creates a delayed signal in the generation and
propagation, so this change is necessary to calculate the required signal. This work consid‐
ers the estimation of this modification done "offline" [2].

Hybrid ANC systems correspond to a combination of control structures from the feedback and
feedforward systems, where the cancelling signal is generated based on the outputs of both the
reference sensor and the error sensor. While the feedforward system attenuates the primary
noise, which is correlated with the reference signal, the feedback system cancels the predicta‐
ble components of the primary noise signal that are not observed by the reference sensor.

As an example of the efficiency of the adaptive hybrid systems, this work evaluates a Hy‐
brid Active Noise Control (HANC) system under feedback acoustic situation. Proposed
scheme objective is to compare the performance of HANC versus common references: feed‐
back, feedforward and neutralization systems; the inner nature of HANC gives two main
characteristics: on line modeling of secondary path and a good performance under acoustic
feedback conditions. In the evaluated system, two least mean square (LMS) adaptive filters
are used in the noise control process: one for the feedforward stage and the other for the
feedback stage; both of them use the same error signal as used in the adaptation of the mod‐
eling filter. Then, the combination of the feedback and feedforward stages, results in a solid
robustness for the system in acoustic feedback situation.

This chapter discusses a vital application in telecommunications processes, which is the
echo in telephone line and the same time a new proposal: the hybrid structure proposed as a
solution to this problem. Finally, the computer simulations are presented to show the suc‐
cess of the proposed system. So, this chapter presents an adaptive hybrid system to resolve
the problems described: the noise cancellation using adaptive filtering and one proposal for
echo cancellation system. Furthermore, we present a hybrid structure which consists of a
feedforward structure, used to estimate the noise path, and a feedback structure, used to
cancel the noise, i.e., the unwanted signal: echo in telephony systems or noise signals like
conversations, snoring or engines. Hybrid active noise cancellation systems are a good solu‐
tion to these two important problems, since they have the properties of both the feedfor‐
ward and feedback systems.
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2. Adaptive systems as a solution to problems of signal cancellation

2.1. Adaptive Filtering: Active Noise Control

An adaptive filter responds to changes in its parameters like its resonance frequency, input
signal or transfer function that varies with time, for example. This behavior is possible since
the adaptive filter coefficients vary over time and are updated automatically by an adaptive
algorithm. Therefore, these filters can be used in applications where the input signal is un‐
known or not necessarily stationary. An adaptive filter is composed of two parts: digital fil‐
ter and adaptive algorithm.

One of the most important applications for this kind of system is active noise control (ANC).
ANC systems must respond to changes in frequency of the primary noise they want to can‐
cel out. In other words the primary non-stationary noise varies; hence we must use some
kind of adaptive system, to get an acceptable cancellation that carried out many operations
at a high speed. The ability of an adaptive filter to operate and respond satisfactorily to an
unknown environment, and variations that may be involved in signal reference, to make a
powerful adaptive filter for signal processing and control applications. There are several
types of adaptive filters but generally all share the characteristic of working with an input
signal (input vector), and a desired response (output vector). These two signals are used to
compute an estimate of error (error signal), which allows control of the coefficients of the
adjustable filter.

In other words, ANC is an approach to noise reduction and a secondary noise source that
destructively interferes with the unwanted noise is introduced. In general, active noise con‐
trol systems rely on multiple sensors to measure the unwanted noise field and the effect of
the cancellation. The noise field is modeled as a stochastic process, and an adaptive algo‐
rithm is used to adaptively estimate the parameters of the process. Thus, active noise control
involves an electroacoustic or electromechanical system that cancels the primary (unwanted)
noise based on the principle of superposition; specifically, an anti-noise of equal amplitude
and opposite phase is generated and combined with the primary noise, thus resulting in the
cancellation of both noises. ANC is developing rapidly because it permits improvements in
noise control, often with potential benefits in size, weight, volume, and cost. Thus, the active
noise control has been object of an intense research and central subject in many scientific ar‐
ticles in the last 10 years.

On the other hand, unwanted acoustic noise is a by-product of many industrial processes
and systems. This problem has become more and more evident as the applications of elec‐
tronic communication systems increase, since their effects represent an important source of
annoyances for the end user and they can reduce considerable the efficiency, the quality and
the reliability of this type of systems. These ANC systems use an active form of noise control
which includes the use of a second source of sound that generates a signal of the same char‐
acteristic as echo but with different phase. This allows to cancel this signal because the
waves of sounds propagate linearly, which is known as superposition effect Also, since the
characteristics of the signal to cancel change constantly, in this case the echo, the system re‐

Performance of Adaptive Hybrid System in Two Scenarios: Echo Phone and Acoustic Noise Reduction
http://dx.doi.org/10.5772/51517

123



of passive attenuators that were used for many years without much success [2], however,
development of digital signal processing has become increasingly feasible systems active
noise cancellation. Active noise cancellation systems cancel unwanted acoustic noise based
on the superposition principle: an acoustic noise of equal amplitude but opposite phase is
generated in order to cancel out the unwanted noise.

This work discusses a scheme of active noise cancellation using adaptive algorithms of the
digital filters required for the correct operation of the proposed system. The signal genera‐
tion "anti-noise" to cancel the primary source of noise is a problem different from change of
environment, since the signal is generated by electrical means and must be propagated
acoustically to have the desired effect; this creates a delayed signal in the generation and
propagation, so this change is necessary to calculate the required signal. This work consid‐
ers the estimation of this modification done "offline" [2].

Hybrid ANC systems correspond to a combination of control structures from the feedback and
feedforward systems, where the cancelling signal is generated based on the outputs of both the
reference sensor and the error sensor. While the feedforward system attenuates the primary
noise, which is correlated with the reference signal, the feedback system cancels the predicta‐
ble components of the primary noise signal that are not observed by the reference sensor.

As an example of the efficiency of the adaptive hybrid systems, this work evaluates a Hy‐
brid Active Noise Control (HANC) system under feedback acoustic situation. Proposed
scheme objective is to compare the performance of HANC versus common references: feed‐
back, feedforward and neutralization systems; the inner nature of HANC gives two main
characteristics: on line modeling of secondary path and a good performance under acoustic
feedback conditions. In the evaluated system, two least mean square (LMS) adaptive filters
are used in the noise control process: one for the feedforward stage and the other for the
feedback stage; both of them use the same error signal as used in the adaptation of the mod‐
eling filter. Then, the combination of the feedback and feedforward stages, results in a solid
robustness for the system in acoustic feedback situation.

This chapter discusses a vital application in telecommunications processes, which is the
echo in telephone line and the same time a new proposal: the hybrid structure proposed as a
solution to this problem. Finally, the computer simulations are presented to show the suc‐
cess of the proposed system. So, this chapter presents an adaptive hybrid system to resolve
the problems described: the noise cancellation using adaptive filtering and one proposal for
echo cancellation system. Furthermore, we present a hybrid structure which consists of a
feedforward structure, used to estimate the noise path, and a feedback structure, used to
cancel the noise, i.e., the unwanted signal: echo in telephony systems or noise signals like
conversations, snoring or engines. Hybrid active noise cancellation systems are a good solu‐
tion to these two important problems, since they have the properties of both the feedfor‐
ward and feedback systems.

Adaptive Filtering - Theories and Applications122

2. Adaptive systems as a solution to problems of signal cancellation

2.1. Adaptive Filtering: Active Noise Control

An adaptive filter responds to changes in its parameters like its resonance frequency, input
signal or transfer function that varies with time, for example. This behavior is possible since
the adaptive filter coefficients vary over time and are updated automatically by an adaptive
algorithm. Therefore, these filters can be used in applications where the input signal is un‐
known or not necessarily stationary. An adaptive filter is composed of two parts: digital fil‐
ter and adaptive algorithm.

One of the most important applications for this kind of system is active noise control (ANC).
ANC systems must respond to changes in frequency of the primary noise they want to can‐
cel out. In other words the primary non-stationary noise varies; hence we must use some
kind of adaptive system, to get an acceptable cancellation that carried out many operations
at a high speed. The ability of an adaptive filter to operate and respond satisfactorily to an
unknown environment, and variations that may be involved in signal reference, to make a
powerful adaptive filter for signal processing and control applications. There are several
types of adaptive filters but generally all share the characteristic of working with an input
signal (input vector), and a desired response (output vector). These two signals are used to
compute an estimate of error (error signal), which allows control of the coefficients of the
adjustable filter.

In other words, ANC is an approach to noise reduction and a secondary noise source that
destructively interferes with the unwanted noise is introduced. In general, active noise con‐
trol systems rely on multiple sensors to measure the unwanted noise field and the effect of
the cancellation. The noise field is modeled as a stochastic process, and an adaptive algo‐
rithm is used to adaptively estimate the parameters of the process. Thus, active noise control
involves an electroacoustic or electromechanical system that cancels the primary (unwanted)
noise based on the principle of superposition; specifically, an anti-noise of equal amplitude
and opposite phase is generated and combined with the primary noise, thus resulting in the
cancellation of both noises. ANC is developing rapidly because it permits improvements in
noise control, often with potential benefits in size, weight, volume, and cost. Thus, the active
noise control has been object of an intense research and central subject in many scientific ar‐
ticles in the last 10 years.

On the other hand, unwanted acoustic noise is a by-product of many industrial processes
and systems. This problem has become more and more evident as the applications of elec‐
tronic communication systems increase, since their effects represent an important source of
annoyances for the end user and they can reduce considerable the efficiency, the quality and
the reliability of this type of systems. These ANC systems use an active form of noise control
which includes the use of a second source of sound that generates a signal of the same char‐
acteristic as echo but with different phase. This allows to cancel this signal because the
waves of sounds propagate linearly, which is known as superposition effect Also, since the
characteristics of the signal to cancel change constantly, in this case the echo, the system re‐

Performance of Adaptive Hybrid System in Two Scenarios: Echo Phone and Acoustic Noise Reduction
http://dx.doi.org/10.5772/51517

123



quires a great capacity of adaptation. These adaptively systems, represent a feasible alterna‐
tive for echo cancellation in telephone lines due to their processing, capacity and lower cost.

2.2. Cancelling Telephone Echo

Telephone echo, is a phenomenon produced by the mismatching impedance of the hybrid
circuit used to couple the two lines with the four lines sections of long distance communica‐
tion systems that considerably degrades the quality of telecommunication systems. Several
systems have been proposed in the literature during the last several years, to solve these
problems, such as adaptive echo cancelers. The figure 2 depicts the basic structure of descri‐
bed system.

Figure 2. Echocancelling in long distance telephone systems

An echo canceler generates a replica of the echo signal and subtracts it from the signal to be
transmitted generating the so-called pseudo echo, which is then used to update the echo
canceler coefficients such that the mean square value of residual echo becomes a minimum.
However the real time estimation of the hybrid impulse response is a difficult task for sever‐
al reasons:

1. The echo path impulse response is non-stationary, and then the convergence of adapta‐
tion algorithm must be fast enough to track these changes.

2. The power spectral density of speech signals is not flat. This fact results in a slower con‐
vergence rate when gradient search based adaptive algorithms are used.

3. In most cases the echo canceler requires one hundred or more taps for an accurate esti‐
mation of a hybrid impulse response and several thousand of taps in the acoustic echo
path case, which makes the use of efficient adaptation algorithms difficult.

4. The presence of both, near and far-end speakers simultaneously often occurs, which re‐
quire some robust mechanisms or adaptation algorithms to handle it. Thus the develop‐
ment of low complexity and high convergence rate echo canceler structures has
received a lot of attention, resulting in several efficient echo canceler structures and
adaptation algorithms.
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The most suitable tool for solving the two aforementioned problems is adaptive filtering
which has been successfully applied in the solution of several practical problems [3].

3. ANC Systems: types and problematic

3.1. Types of ANC Systems

3.1.1. A priori (Feedforward)

Figure 4 shows, in a simplified way, an ANC Feedforward System, in which the digital filter
W(z) is used to estimate the unknown plant P(z). It is assumed that both the plant and the
filter have the same input signal x(n). Moreover, a Filtered LMS (Filtered-X Least Mean
Square, FXLMS) algorithm is introduced, which is a varying form of the LMS algorithm [2].
FXLMS algorithm solves the secondary path problem, described as the set of transforma‐
tions that the filter signal and the adaptive error signal go through, on their way from an
electric to an acoustic domain. During this electro-acoustic process, the signal may be de‐
layed or altered in such a way that it is necessary to minimize such effects. The FXLMS algo‐
rithm technique consists of placing a filter, with the same properties as the secondary path,
in the reference signal going towards the adaptive least mean square filter (LMS), as shown
in figure 3.

Figure 3. ANC Feedforward system with FXLMS algorithm

From Figure 3, filter Ŝ(z) is the model of the secondary path, defined by filter S(z). Taking
this into consideration, the update of filter W(z) is given as follows:

w̄(n + 1)= w̄(n) + μx̄̂(n)e(n) (1)

Where
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2. The power spectral density of speech signals is not flat. This fact results in a slower con‐
vergence rate when gradient search based adaptive algorithms are used.

3. In most cases the echo canceler requires one hundred or more taps for an accurate esti‐
mation of a hybrid impulse response and several thousand of taps in the acoustic echo
path case, which makes the use of efficient adaptation algorithms difficult.

4. The presence of both, near and far-end speakers simultaneously often occurs, which re‐
quire some robust mechanisms or adaptation algorithms to handle it. Thus the develop‐
ment of low complexity and high convergence rate echo canceler structures has
received a lot of attention, resulting in several efficient echo canceler structures and
adaptation algorithms.
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The most suitable tool for solving the two aforementioned problems is adaptive filtering
which has been successfully applied in the solution of several practical problems [3].

3. ANC Systems: types and problematic

3.1. Types of ANC Systems

3.1.1. A priori (Feedforward)

Figure 4 shows, in a simplified way, an ANC Feedforward System, in which the digital filter
W(z) is used to estimate the unknown plant P(z). It is assumed that both the plant and the
filter have the same input signal x(n). Moreover, a Filtered LMS (Filtered-X Least Mean
Square, FXLMS) algorithm is introduced, which is a varying form of the LMS algorithm [2].
FXLMS algorithm solves the secondary path problem, described as the set of transforma‐
tions that the filter signal and the adaptive error signal go through, on their way from an
electric to an acoustic domain. During this electro-acoustic process, the signal may be de‐
layed or altered in such a way that it is necessary to minimize such effects. The FXLMS algo‐
rithm technique consists of placing a filter, with the same properties as the secondary path,
in the reference signal going towards the adaptive least mean square filter (LMS), as shown
in figure 3.

Figure 3. ANC Feedforward system with FXLMS algorithm

From Figure 3, filter Ŝ(z) is the model of the secondary path, defined by filter S(z). Taking
this into consideration, the update of filter W(z) is given as follows:

w̄(n + 1)= w̄(n) + μx̄̂(n)e(n) (1)

Where
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x̄̂(n)= ŝ(n) * x̄(n) (2)

3.1.2. A posteriori (Feedback)

There are some situations in which it is not possible to take into account the reference signal
from the primary noise source in a Feedforward ANC system, due to difficult access to the
source, or another reason that makes it hard to identify a specific signal through the refer‐
ence microphone. A solution to this problem is to introduce a system, which will predict the
behavior of the input signal; this system is known as a posteriori ANC (Feedback ANC),
which is known for using only an error sensor and a secondary sound source to achieve
noise control.

Figure 4 describes a Feedback ANC system with FXLMS algorithm, in which d(n) is the
noise signal, e(n) is the error signal, defined as the difference between d(n) and signal y’(n),
which is the adaptive filter’s output once the secondary path has been crossed. Finally, the
adaptive filter’s input signal is generated by the sum of the error signal and the resulting
signal from the convolution between the secondary path Ŝ(z) and the estimated output of
the adaptive filter, y(n).

Figure 4. Feedback ANC system with FXLMS algorithm

3.1.3 What is a Hybrid system?

A hybrid ANC system is made up of an identification stage (feedforward) and a prediction
stage (feedback). The combination of both stages needs two reference sensors: one close to the
primary noise source and other with the residual error signal. Figure 6 shows the detailed
block diagram of a hybrid ANC system, in which it is possible to observe the basic systems
(Feedforward, Feedback) involved in the design. The attenuation signal, given by y(n), results
from the addition of both adaptive filter outputs, W(z) and M(z). Filter M(z) represents the
Feedback process of the adaptive filter, while filter W(z)represents the Feedforward process.
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The secondary path in the basic ANC system is also taken into consideration in the hybrid
system, and is given by the transfer function S(z).

Among the advantages of hybrid ANC systems we can mention:

1. The fact that lower order filters may be used to achieve the same performance;

2. The other two systems present much more significant plant noise than the hybrid sys‐
tem;

3. The combination of both systems allows for much more flexibility in regards of design;
and,

4. Cancellation of both narrowband and broadband noise.

Figure 5. Hybrid ANC system with FXLMS Algorithm

The block diagram if the hybrid ANC system in Figure 5 also shows FXLMS algorithm to
make up for the possible delays or problems induced by the secondary path [4].

3.2. Main problems in ANC Systems

3.2.1. Secondary Path Modeling

As mentioned previously, the process that transforms the resulting signal from the adaptive
filter y(n) into signal e(n), is defined as secondary path. This characteristic takes into consid‐
eration the digital to analog converter, the reconstruction filter, the sound source, the ampli‐
fier, the acoustic path from the sound source to the error sensor, the error microphone, and
the analog to digital converter. There are two techniques to estimate the secondary path,
both with characteristics that make each method more comprehensive and sophisticated in
certain ways; these techniques are: offline secondary path modeling and online secondary
path modeling. The first method is performed with a Feedforward system, where the plant is
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now S(z) and the coefficients from the adaptive filter are the secondary path estimation, as
shown in Figure 6 [4].

Figure 6. Offline Secondary Path Modeling

3.2.2. Acoustic Feedback

This property is typical of feedforward systems. Figure 7 shows the contribution of attenua‐
tion signal y(n), which causes the system to degrade because of the signal present in the ref‐
erence microphone.

Figure 7. Feedforward ANC process with acoustic feedback

Two possible solutions for acoustic feedback problem are: acoustic feedback neutralization
and the proposal of a hybrid system, which has a better performance in the frequency range
and attenuation level of interest [4]. To evaluate this approach, we used a hybrid system as
shown in Figure 8, where F(z) is the transfer function of the feedback process.

The system proposed in [5] will be analyzed and this system, with a set of signals and exper‐
imental conditions, was completely evaluated in [6].
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3.2.3. Online Acoustic Feedback Path Modeling

Most common way to eliminate acoustic feedback is to make an online path modeling, like in‐
dicated on [3] and, more recently, in relevant papers by [7] and [8]. However, one of the main
characteristics of the hybrid system presented by the authors in [9] is that it does not take the
secondary path modeling into consideration. Instead, the proposed hybrid system takes ad‐
vantage of the inherent robustness of hybrid systems when it comes to acoustic feedback, fig‐
ure 8.

Figure 8. Hybrid ANC system with acoustic feedback

The system in Figure 9, proposed by [10], was used to compare the robustness of the HANC
system against the neutralization system.

Figure 9. Kuo’s Neutralization System
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The details of the system in Figure 9 can be consulted in [10]. However, an important fact of
this system is that it uses additive noise for modeling, also, as mentioned in [7], regarding
predictable noise sources.

4. Echo Cancellation

4.1. Definition and general review

The echo is a problem that significantly degrades the quality of telecommunication systems.
This occurs, in telephone line, due to the decoupling impedance hybrid which exists in the
coils and are used to couple subscriber communication channel with the long distance chan‐
nels. There is also the so-called acoustic echo which occurs in teleconferencing systems and
hands free telephone systems. This type echo occurs due to acoustic coupling between loud‐
speakers and microphones used in these communication systems.

Several systems which try to solve this problem have appeared in the literature in recent
years. Among these are: directional microphone arrangement [11], echo suppressors and
adaptive echo cancellers [11, 12], etc. Among them, adaptive echo cancellation seems to be
the best way to reduce the echo problem [13, 14]. An echo canceller generates an echo repli‐
ca and subtracts the signal to be transmitted, generating a so-called residual echo. The echo
residual is then used to adapt the coefficients of the system, using in most cases a gradient-
based algorithm, in a way that the mean square value of the residual echo is progressively
minimized [11, 12, 13, 14]. However, the real-time estimate of the impulse response of the
hybrid or echo channel is a complex problem for several reasons:

1. The duration of the impulse response of a typical echo channels in teleconferencing sys‐
tems in the order of several hundreds of milliseconds, which means that transversal filter
coefficients of several thousand would be needed to reduce echo to acceptable levels. The
impulse response of a typical acoustic echo channel is shown in Figure 10.

2. The impulse response of echo channel is non-stationary because it changes with the move‐
ment of the interlocutors, or the number of active subscribers on a given time. Thus the
adaptive algorithm should be fast enough to track those changes.

3. The power density spectrum of the voice is not flat, and in many cases reduces speed of
convergence of the adaptive algorithm. The correct estimate of the echo channel using struc‐
tures with the least possible complexity and the relatively high speeds obtain convergence
of the adaptation algorithm, as mentioned above, are non-trivial problems which have re‐
ceived considerable attention in recent years; among the different proposed have been pro‐
posed several echo cancellation systems, among we can mention: transverse echo cancellers,
echo cancellers in the frequency domain, echo cancellers infinite impulse response subband
echo cancellers, etc., [11, 12, 13, 14].

Besides the reduction in the complexity of the canceller, to allow correct estimation of the
echo channel and the development of adaptive algorithms with rapid convergence, another
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major problem is handle the simultaneous presence of echo near the speaker's voice. The sit‐
uation we want to avoid is to interpret the speaker's voice echoing nearby, and make great
changes in the echo channel estimated in an unsuccessful attempt to cancel this. A checked
algorithm could operate incorrectly when the distant partner is present, so it is necessary to
incorporate certain mechanisms within the system to avoid this effect [11, 12, 13, 14].

Figure 10. A typical impulse response of acoustic echo channel

There are few references about the convenience of using adaptive hybrid schemes for solv‐
ing the problem of echo cancellation, and given the results obtained for applications for can‐
cellation of acoustic noise [15], hybrid scheme is proposed for electrical noise cancellation,
since it is on the phone lines where there is the problem described. Be detailed later about
how to do and the results achieved.

4.2. Telephone Systems

A long distance telephone system basically consists of a 2-wire portion, known as the sub‐
scriber circuit, and connects the subscriber to the local exchange and long-distance circuits
itself; this system consists of a transmission channel and another receiving, each of which
consists of two wires. A hybrid transformer is used to couple circuits’ long distance sub‐
scriber circuit and ideally isolate the transmission channels and reception of long-distance
circuit. However due to the decoupling impedance, they are not completely isolated so that
a portion of the received signal is delayed in the form of echoes. A similar problem arises in
teleconferencing systems with so-called acoustic echo which occurs due to coupling between
the microphone and speaker in the teleconference system. This result in a delayed and dis‐
torted replica of the signal produced by the loudspeaker is fed back into the microphone.

In both cases there is deterioration in the communication system, which resulted in the ap‐
pearance of echo cancellers. These cancellers have proved to be the best way to solve this
problem [11, 12]. The basic principle of echo cancellation, which is illustrated in Figure 11, is

Performance of Adaptive Hybrid System in Two Scenarios: Echo Phone and Acoustic Noise Reduction
http://dx.doi.org/10.5772/51517

131



The details of the system in Figure 9 can be consulted in [10]. However, an important fact of
this system is that it uses additive noise for modeling, also, as mentioned in [7], regarding
predictable noise sources.

4. Echo Cancellation

4.1. Definition and general review

The echo is a problem that significantly degrades the quality of telecommunication systems.
This occurs, in telephone line, due to the decoupling impedance hybrid which exists in the
coils and are used to couple subscriber communication channel with the long distance chan‐
nels. There is also the so-called acoustic echo which occurs in teleconferencing systems and
hands free telephone systems. This type echo occurs due to acoustic coupling between loud‐
speakers and microphones used in these communication systems.

Several systems which try to solve this problem have appeared in the literature in recent
years. Among these are: directional microphone arrangement [11], echo suppressors and
adaptive echo cancellers [11, 12], etc. Among them, adaptive echo cancellation seems to be
the best way to reduce the echo problem [13, 14]. An echo canceller generates an echo repli‐
ca and subtracts the signal to be transmitted, generating a so-called residual echo. The echo
residual is then used to adapt the coefficients of the system, using in most cases a gradient-
based algorithm, in a way that the mean square value of the residual echo is progressively
minimized [11, 12, 13, 14]. However, the real-time estimate of the impulse response of the
hybrid or echo channel is a complex problem for several reasons:

1. The duration of the impulse response of a typical echo channels in teleconferencing sys‐
tems in the order of several hundreds of milliseconds, which means that transversal filter
coefficients of several thousand would be needed to reduce echo to acceptable levels. The
impulse response of a typical acoustic echo channel is shown in Figure 10.

2. The impulse response of echo channel is non-stationary because it changes with the move‐
ment of the interlocutors, or the number of active subscribers on a given time. Thus the
adaptive algorithm should be fast enough to track those changes.

3. The power density spectrum of the voice is not flat, and in many cases reduces speed of
convergence of the adaptive algorithm. The correct estimate of the echo channel using struc‐
tures with the least possible complexity and the relatively high speeds obtain convergence
of the adaptation algorithm, as mentioned above, are non-trivial problems which have re‐
ceived considerable attention in recent years; among the different proposed have been pro‐
posed several echo cancellation systems, among we can mention: transverse echo cancellers,
echo cancellers in the frequency domain, echo cancellers infinite impulse response subband
echo cancellers, etc., [11, 12, 13, 14].

Besides the reduction in the complexity of the canceller, to allow correct estimation of the
echo channel and the development of adaptive algorithms with rapid convergence, another

Adaptive Filtering - Theories and Applications130

major problem is handle the simultaneous presence of echo near the speaker's voice. The sit‐
uation we want to avoid is to interpret the speaker's voice echoing nearby, and make great
changes in the echo channel estimated in an unsuccessful attempt to cancel this. A checked
algorithm could operate incorrectly when the distant partner is present, so it is necessary to
incorporate certain mechanisms within the system to avoid this effect [11, 12, 13, 14].

Figure 10. A typical impulse response of acoustic echo channel

There are few references about the convenience of using adaptive hybrid schemes for solv‐
ing the problem of echo cancellation, and given the results obtained for applications for can‐
cellation of acoustic noise [15], hybrid scheme is proposed for electrical noise cancellation,
since it is on the phone lines where there is the problem described. Be detailed later about
how to do and the results achieved.

4.2. Telephone Systems

A long distance telephone system basically consists of a 2-wire portion, known as the sub‐
scriber circuit, and connects the subscriber to the local exchange and long-distance circuits
itself; this system consists of a transmission channel and another receiving, each of which
consists of two wires. A hybrid transformer is used to couple circuits’ long distance sub‐
scriber circuit and ideally isolate the transmission channels and reception of long-distance
circuit. However due to the decoupling impedance, they are not completely isolated so that
a portion of the received signal is delayed in the form of echoes. A similar problem arises in
teleconferencing systems with so-called acoustic echo which occurs due to coupling between
the microphone and speaker in the teleconference system. This result in a delayed and dis‐
torted replica of the signal produced by the loudspeaker is fed back into the microphone.

In both cases there is deterioration in the communication system, which resulted in the ap‐
pearance of echo cancellers. These cancellers have proved to be the best way to solve this
problem [11, 12]. The basic principle of echo cancellation, which is illustrated in Figure 11, is

Performance of Adaptive Hybrid System in Two Scenarios: Echo Phone and Acoustic Noise Reduction
http://dx.doi.org/10.5772/51517

131



to generate an echo replica, this is subtracted from the signal to be transmitted, resulting in
the so-called residual echo that consists of part of the signal echo which could not be can‐
celed more near the speaker's voice, if this is present [11, 12]. The residual echo is then used
to adapt the parameters of the canceller in such a way that the residual echo power is pro‐
gressively minimized.

Figure 11. Echocancelling in long distance telephone systems

Echo canceller consists of two main parts. An adaptive filter, which generates an echo repli‐
ca and is subtracted from the signal being transmitted, and a system commonly known as
double-talk detector, this system prevents distortion due to the presence of the speaker's
voice service or in the absence of the partner away. The first component is the structure of
the adaptive filter along with its adaptation algorithm.

Some researchers have resulted in the appearance of various structures, such as transversal
filters, subband structures, structures in the frequency domain, etc., and various adaptive al‐
gorithms, mostly based on gradient descent search. Second component, despite its impor‐
tance, has received much less attention than the first component. Thus conducting research
aimed at developing highly reliable mechanisms to avoid distortion due to the simultaneous
presence of both parties, "double-talk detector," especially when using algorithms based on
gradient descent search is of great importance.

5. Delimitation of Proposed ANC System and its Application

5.1. Evaluated ANC Structure

Figure 12 shows the block diagram of the evaluated hybrid ANC structure with online sec‐
ondary path modeling. This hybrid ANC structure consists of a feedforward stage, W(z),
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which is used to estimate the noise path, P(z), and a predictive structure, M(z), which is
used to cancel the distortion due to the acoustic feedback path, F(z). Since the samples of
feedback distortion are strongly correlated among them, they can be predicted [15].

As shown in Figure 12 signal, a(n), is used simultaneously as:

1. The error signal to update the adaptive filter, W(z), which corresponds to the feedfor‐
ward stage used to identify the noise path, and,

2. To update the linear predictive filter M(z), which intends to cancel the distortion pro‐
duced by the feedback propagation from the canceling loudspeaker to the input micro‐
phone thorough the system F(z); and,

3.
To estimate

ˆ( )S z , which represents the online secondary path modeling adaptive filter.

Figure 12. Evaluated hybrid ANC structure

The hybrid ANC contains the advantages of feedback and feedforward systems. The model
presented by [16] was modified to adapt the system for a specific objective: reduce the resid‐
ual echo. This system uses two input signal x(n) and din(n), one for each talker. The plant
that models echo refers to the effect of mismatch of impedance present in the telephone cir‐
cuit. The echo signal is d(n) and the residual echo plus the far-end signal is represented by
e(n). This system incorporates the signal of the feedforward and the feedback effect that
means both systems contribute to generate the cancelling signal, which approximates to the
echo signal. Also this system includes a switch on the feedback system: when the echo signal
and the far-end signal are highly correlated, the feedback system cancels part of the far-end
signal even if the hybrid system already converged [17].
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Figure 13. Adapted Hybrid ANC for Active Echo Cancellation

To analyze the system is necessary to consider the correlation between signals, as shown in
the equation (3):

R = E x̄(n)x̄2(n) (3)

The cross correlation vector between the entrance and the echo is given by:

p̄ = E d (n)x(n) (4)

and the correlation matrix can be written as follows:

Rw0

−−−−

= p̄ (5)

where w0̄ is the optimum vector of the transversal filter. In the selected algorithm, LMS, the
reference signal x(n) is processed by an adaptive filter W(z). In this case the coefficients of
the filter are updated by the gradient of the error signal power obtained plus the previous
coefficients and μstep size:

( 1) ( ) ( ) ( )w n w n x n e nm+ = + (6)

5.2. Active Echo Cancellation in Telephone Lines

There are two kinds of echo: electric and acoustic. The electric echo is present in traditional
telephony lines because of the impedance mismatch of the conversion (from two to four
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wires). The acoustic echo is the direct or indirect feedback of reflected signals to the micro‐
phone during a conversation. There are two controls applied to echo: suppressor and cancel‐
ler systems. Echo Cancellation systems need to consider the disturbances in the far-end
talker's signal and the superposition of the near-end talker's that generates double-talk. Two
general approaches are the use of suppressors and the use of cancellers. The echo suppres‐
sor has a sensor that measures the voice signal power in each part of the circuit to decrease
the impact of the echo. The echo suppressor changes the full duplex channel to a half-duplex
channel [14, 18]. This characteristic is a disadvantage of this type of control because it can‐
cels part of the speech. Echo cancellers use the superposition principle that means this sys‐
tem generates a similar signal with delay and attenuation similar to the transmitted signal. It
is recommended to train the system to approach the characteristics of the echo signal. For
this problem some authors [19, 20], offered different solutions based on Double-Talk Detec‐
tor (DTD) [21]; this principle detects the presence of simultaneous speech of both talkers and
pause the coefficient updating of the adaptive filter. It is known that the adaptive filter is the
key to treat echo problems. It is necessary to consider the speed of convergence and robust‐
ness of the system. Most of echo cancellation systems use transversal filters and the LMS al‐
gorithm or variations of this to adjust the coefficients [22].

The result is an error signal named as residual echo signal due to estimation of the adaptive
filter [21], this scenario, adapted to an ANC system is shown in Figure 14 [3].

Figure 14. System identification viewpoint of ANC

From Figure 14, the residual echo e(n) is defined as

( ) ( ) ( )x n d n y n= - (7)

where d(n) is the echo signal and y(n) is the response generated by the adaptive filter after
processing the algorithm. Also [3], presents the criteria of the Mean Square Error (MSE) to
find the convergence point of the system. To analyze the performance of the Echo Cancella‐
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Figure 13. Adapted Hybrid ANC for Active Echo Cancellation
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Rw0

−−−−

= p̄ (5)
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( 1) ( ) ( ) ( )w n w n x n e nm+ = + (6)
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tion system Echo Return Loss Enhancement (ERLE) criteria was developed. The ERLE crite‐
rion is described in equation (8).
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ERLE parameter was used to evaluate the present proposed system.

6. Performance Parameters and Several Aspects Considered

6.1. Parameters and issues

The proposed system has different parameters to consider. These parameters determine
whether the system converges or not.

1. Step size (μ): controls the system stability and speed of convergence, one for each part of
the system (feedback and feedforward).

2. Plant: simulates the echo effect

3. Adaptive filter W (z) : length and values for established plants

4. Number of blocks and iterations: reflected in the number of samples observed

5. Entrance signals: including the near-end and the far-end

Step size values were taken by [16, 23]. The plant simulates the effect of echo that the near-
end suffer because of the impedance mismatch, proposed by [24].

The input signals utilized are sorted into one of three types, considering the classification
proposed by [3, 25], as well as companies such as [26].

1. Continuous; the level of sound remains constant or nearly constant with small fluctua‐
tions. For Echo cancellation, the selected signals were vacuum, four tones and silence.

2. Intermittent: the level of sound presents some fluctuations that can be periodic or ran‐
dom. The selected signals are real voices recorded in a computer for Echo considera‐
tions.

3. Impulsive: the level of noise presents impulses in a brief period of time.

For Acoustic Noise Reduction applications, the system was tested with several real sound
signals taken from an Internet database [27]. The sound files were selected taking into ac‐
count that the system is to be implemented in a duct-like environment. Also, six different
types of signals were used for the analyzed system:

1. A sinusoidal reference signal with frequency of 300 Hz, and 30 dB SNR;
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2. A reference signal composed of the sum of narrow band sinusoidal signals of 100, 200,
400, and 600 Hz; and,

3. The rest of the reference signals are.wav audio files with recordings of real noise sour‐
ces, which are “motor” and “airplane”, as in [16].

The most important values are modeling error, as was defined by [28], and MSE, given by
the ratio between the power of the error signal, and the power of the reference signal:
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6.2. System Training

For experience, we need to train the system before to start to work [16]. So, we have two
considerations:

1. For echo cancellation, we adapt the plant for 20 representative coefficients instead the
1000 given by [24]. The adaptive filter was a vector of 20 coefficients initialized in zero.
The near-end voice was a female voice and silence for the far-end. The step size value
were change until get the higher level of ERLE, after run the simulation of the system
using Matlab®, with a software interface developed specifically for this purpose, the re‐
sults of the adaptive filter were retaken to repeat the processing, when a 40dB of cancel‐
lation were achieve the training was stopped. The scenario for training work was
single-talk with a single voice signal in the near-end.

2. For the situation for Acoustic Noise Reduction, secondary path is offline modeling stop‐
ped when the error is reduced-35dB similar to [15]. The excitation signal v(n) used was
white Gaussian noise with variance of 0.05.

7. Analysis of Results

7.1. Echo cancellation phone lines

To consider an approximation of a real system the results of processing echo of voice
with the hybrid proposed system. We present the results using the female voice signal
(Figure 15) in the near-end and two different masculine voice signals in far-end (Figure
16 and Figure 17).
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Figure 15. Female voice signal

Figure 16. First masculine voice signal

Figure 17. Second masculine voice signal
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The echo signal generated by the adaptation of the plant is represented in the Fig 18.

Figure 18. Echo of the female voice signal with adapted plant

Applying the function with the parameters of Table 1, the obtained results are shown in Fig‐
ure 19 and Figure 20. Both figures show that system achieves cancellation of the echo signal.

Parameters Value

Step size 0.1

Plant From [24]

Blocks 1000

Iteration 80

Table 1. Analysis Parameters

Figure 19. ERLE using female voice in the near-end and masculine voice 1 in far-end
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Figure 20. ERLE using female voice in the near-end and masculine voice 2 in far-end

Figure 21. Cancelling voice signal, system with masculine voice 1

Figure 22. Cancelling voice signal, system with masculine voice 2
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Looking for a detailed analysis in the cancelling signal (Figure 21), which imitates echo sig‐
nal, for the first masculine signal, the system begins to diverge. This occurs because of the
high correlation between the two entrances voices; this effect is given by the feedback be‐
cause even when the system already converge starts to cancel the far-end signal [29].

Then, instead of the first male signal, another signal was used and the system converged
better, this can be seen in Figure 22, this situation is because the correlation between this sig‐
nal and the female is smaller.

As mentioned before, the step size factor has a major impact on the development of the sys‐
tem, and proved to be the main reason to make the system converge; additional simulations
were performed using the parameters in Table 2; this means a smaller size step and the male
voice first.

Parameters Value

Step size 0.01

Plant From [24]

Blocks 1000

Iteration 80

Table 2. Analysis Parameters for Additional Test

The system improves its performance using the parameters of Table 2. The generated cancel‐
ling signal (Figure 23), does not have impulsive periods.

Figure 23. Cancelling voice signal, system with masculine voice 1 and adjusted step size
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7.2. Active Noise Cancellation

7.2.1. General results (MSE and Modelling Error)

This section presents the simulation experiments performed for acoustic noise reduction.
First, an offline modeling was used to obtain FIR representations of tap weight length 20 for
P(z) and of tap weight length 20 for S (z) . The control filter W (z) and the modeling filter
Ŝ (z) are FIR filters of tap weight length of L =20 both of them. A null vector initializes the
control filter W (z) . To initialize Ŝ (z) , offline secondary path modeling is performed, which
is stopped when the modeling error has been reduced to -5dB. The step size parameters are
adjusted by trial and error for fast and stable convergence.

Various articles on the subject of ANC were references taken into consideration before estab‐
lishing main analysis parameters to determine the hybrid system’s performance:

a) Filter order; it is important to evaluate the system under filters of different orders. In this
case, 20 coefficients were selected (we considered the fact that the distance between the
noise source and the control system is not supposed to be very large).

b) Nature of the filter coefficients; on a first stage, the coefficients were set according to real
values taken from a previous study made on a specific air duct [2]. These coefficients were
taken from the work done in [16] to determine the values of the primary and secondary path
filters for an air duct.

The simulation results are presented according to the following parameters:

1. Mean Square Error (MSE); and

2. Modeling error from online secondary path modeling.

Table 3 shows the values used for the feedforward and feedback step sizes, as well as the
range of step sizes used for the secondary path filter. The values were set by trial and error,
starting with the values that were determined with the previous test.

Signal
Step size

μw, μm

Step size

μs

Continuous 0.000001 0.0001 – 0.001

Intermittent 0.000001 0.0001 – 0.001

Impulsive 0.000001 0.0001 – 0.001

Table 3. Filters Step Size Used in Proposed Analysis

Also, a white noise with zero mean and variance equal to 0.05 was used in the system. Since
there were not enough resources to implement an abrupt secondary path change (which
means there was only one set of values available for the secondary path filter from [15], a
gradual change was made, given by the sum of a sinusoidal function to the secondary path
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coefficients, from iteration 1000 to 1100. The best response was shown by the continuous sig‐
nal; Figure 24 shows the Modeling error for this case, while Figure 25 shows the MSE.

Figure 24. Relative modeling error for continuous signal

Figure 25. MSE for continuous signal

From Table 3, it can be noticed that the step sizes had to be considerably reduced, in the or‐
der of 1000, in comparison to the values established for the tests with Echo cancellation. This
is due to the fact that the coefficient values are not necessarily within a range of -1 to 1, so
the secondary path modeling needs a smaller step size to be able to achieve convergence.

For the intermittent signal, the effects of the small step sizes were similar: the system took
more time to converge and the level of noise cancellation was reduced. Nonetheless, the re‐
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sponse achieved stability during the simulation. Figure 26 and Figure 27 correspond to the

Modeling error and MSE for the intermittent signal, respectively.

Figure 26. Relative modelling error for intermittent signal

Figure 27. MSE for intermittent signal

Finally, for impulsive input signal the results were not as good as expected. The results can be

explained since there are very abrupt changes in the signal amplitude, and the step size is very

small. Hence, the values of the coefficients tend to infinity and the simulation stops abruptly.
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7.2.2. Comparison versus Neutralization and Feedforward Systems

In this section, three paths were used: the main or primary path P(s), the secondary path
S(s), and the acoustic feedback path F(s). All the filters used in the evaluated proposals are
finite response filters (FIR). The values of these paths are based on [2], and represent the ex‐
perimental values of a given duct. A total of 25 coefficients will be used in all paths so as to
report an extreme condition for a real duct under analysis.

To initialize Ŝ(z), the offline secondary path modeling is stopped when the modeling error
has been reduced up to -35dB, similar to [15]. The excitation signal v(n), is white Gaussian
noise with variance equal to 0.05.

The values for the step size are adjusted by trial-and-error to achieve a faster convergence
and stability, following the guidelines from previous work on Hybrid Active Noise Control
[16], and the values selected in [7] for neutralization. A summary of the selected values for
μ, is shown in Table 4.

System
Primary Path

μP

Secondary Path

μS

Feedback Path

μF

Neutralization

System
0.000001 0.00005 0.00005

Hybrid

System
0.001 0.001 NA

Table 4. Filters Step Size Used in Proposed Analysis

Figure 28. MSE with “sinusoidal” reference signal for Feedforward System
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Figure 28 to Figure 41 show the result of the systems analysis with the previously men‐
tioned set of signals. All results are shown in dBs, measuring the error power at the output
(Mean Square Error).

First, we show the main signal for ANC systems, the sinusoidal signal. Figures 28 to 30
show the MSE value obtained.

Figure 29. MSE with “sinusoidal” reference signal for Neutralization System

Figure 30. MSE with “sinusoidal” reference signal for Hybrid System

Another important is a narrow band signal, as explained before, is composed of the sum of
narrow band sinusoidal signals of 100, 200, 400, and 600 Hz. Figures 31 to 33 show the re‐
sults for this consideration
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Figure 31. MSE with “4 tones” reference signal for Feedforward System

Figure 32. MSE with “4 tones” reference signal for Neutralization System

Figure 33. MSE with “4 tones” reference signal for Hybrid System
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Finally, we use two recorded signals, corresponding to a "plane" and one to a "motor",
meaning the evidence most relevant to our system. Of Figures 34 through 41, shows the con‐
vergence achieved with the proposed system.

Finally, it is important to consider that an ANC system should respond successfully to a
change in the status of secondary path, which corresponds, for example, a possible move‐
ment of the microphone in a pipeline, or any vibration or change in of the system. Figures 24
and 25 show an abrupt change in secondary path at iteration 1000 [5]. We can observe that
the behavior of both remain stable.

Figures 40 and 41 show selected results for the neutralization and hybrid systems, which are
of greatest interest.

Figure 34. MSE with “Motor” reference signal for Feedforward System

Figure 35. MSE with “Motor” reference signal for Neutralization System
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Figure 36. MSE with “Motor” reference signal for Hybrid System
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Figure 39. MSE with “Airplane” reference signal for Hybrid System

Figure 40. MSE with “4 tones” reference signal for Neutralization System, considering changing secondary path

Figure 41. MSE with “4 tones” reference signal for Hybrid System, considering changing secondary path
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8. Conclusions

The adaptive filtering is a powerful tool that offers various solutions to many fields of sci‐
ence today. This chapter shows the efficiency of the hybrid system in reducing electrical
noise and noise currently present in conventional systems where noise becomes a significant
cause of health problems, or a situation that can affect communications Internet or phone, to
name a few.

Adaptive filtering, which has been successfully applied in the solution of several practical
problems which main kinds are described some in this chapter, has relied mainly in the
transversal filter structures. However, when the filter order becomes large, the transversal
computational complexity and convergence rate may limit its capability for solving practical
problems. This chapter presented an overview of the Hybrid System.

In particular, there are few references about hybrid systems, those conjoined feature more
traditional patterns such as a priori and a posteriori systems. Of course they inherit the prob‐
lems of these two, but the advantage they offer is based on the robustness of such systems
for signals of different characteristics as continuous, intermittent and impulsive, and we
tested a hybrid system in two interesting and relevant scenarios: unwanted signals in the
fields of acoustics and telephony.

The proposed system works in an acceptable way for telephone echo problems, but it is nec‐
essary to consider and adjust the different parameters. The system is capable of cancelling
echo of voice signals and can be applied to simulated scenarios of double talk without use
the Double Talk Detector. Also it is necessary to evaluate the correlation between input sig‐
nals since this correlation has a great impact of the performance of the system. If both sig‐
nals are highly correlated, it is necessary to use a small step size for both feedback and
feedforward systems. We established the double talk situation in telephony conversations as
the test system for our Hybrid system including some talks simulating a real conversation.

With respect to Acoustic Noise Reduction, it must be notice that the results presented for a
real-value filter coefficients refer to only one specific type of duct. This means that the re‐
sponse could probably improve in a different environment or in a duct with different prop‐
erties. This situation represents a problem for the designer of a hybrid ANC, because for
each environment where the system is to be applied would be no need to identify accurately
the parameters to achieve the desired response. However difficult, this may not be impossi‐
ble to do, so there is still a lot of work to be done with hybrid ANC systems.

This chapter discusses a new Hybrid Active Noise Control system and the impact adaptive
filtering has on this field. The objective is to achieve improved performance at a reasonable
computational cost in a Hybrid ANC system that considers two of the more important trou‐
bles of the ANC. We show two examples to prove the contribution of this system, one is a
little generalist about cancelling several kinds of noise, and one very specific, which repre‐
sents one persistent problem like telephone echo on telecommunications nowadays: net‐
works have been modified by the use of new technologies and constant innovations have
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led to automate the process of interconnection of subscribers, and the inclusion of forms of
streaming media.

Therefore, he was a rigorous analysis of the results and their parameters under the above
considerations. The results show the relevance of hybrid systems for consideration in re‐
moving acoustic noise or echo in telephony, with tools of adaptive systems. The advisability
of this hybrid system is a matter that must be analyzed in depth.
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