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Preface

Image Fusion is an important branch of information fusion, and it is also an important tech‐
nology for image understanding and computer vision. The fusion process is to merging dif‐
ferent images into one to get more accurate description for the scene. The original images for
image fusion are always obtained by several different image sensors, or the same sensor in
different operating modes. The fused image can provide more effective information for fur‐
ther image processing, such as image segmentation, object detection and recognition. Image
fusion is a new study field which combined with many different disciplines, such as sensors,
signal processing, image processing, computer and artificial intelligence.

Since the 1990s, image fusion has been applied in many fields, such as remote sensing, robot
vision, medical imaging and diagnostics. Hence its application values are increasingly con‐
cerned by many scholars. In the past two decades, a large number of research literatures
appear. This book is edited based on these research results, and many research scholars give
a great help to this book.

This book consists of seven chapters. Chapter 1 introduces the applications of multi-spectral
image for remote sensing techniques. This chapter is written by Dong Jiang, Dafang
Zhuang, et al. These chapters focus on the multi-spectral image fusion, and several tradi‐
tional and improved algorithms are present.

Chapter 2 introduces a multi-features fusion of multi-temporal hyperspectral images via a
cooperative GDD/SVM method. This chapter is written by Selim Hemissi and Imed Riadh
Farah. This chapter mainly discusses the feature fusion for hyperspectral data. Several fea‐
ture extraction and classification algorithms are discussed in this chapter.

Chapter 3 gives a novel image fusion algorithm based wide-swath and high-resolution syn‐
thetic aperture radar system using MIMO UWB-OFDM architecture. This chapter is written
by Md Anowar Hossain, Ibrahim Elshafiey, et al.

Multiple-Input Multiple-Output (MIMO) radar has been gradually concerned by people.
However, only few scholars study the fusion technology on MIMO synthetic aperture radar
(SAR). This chapter gives different fusion algorithms for the multi-sensor and multi-fre‐
quency imagery to enhance the resolution of the SAR image.

Chapter 4 introduces the high-resolution and hyperspectral data fusion and classification.
This chapter is written by Hina Pande and Poonam S. Tiwari. High-resolution image has a
high spatial resolution, and hyperspectral data has a large number of measured wavelength
bands. The purpose of the fusion is to get a new image which has the spatial resolution of
the high resolution image and preserves the spectral characteristics of the hyperspectral im‐



Preface

Image Fusion is an important branch of information fusion, and it is also an important tech‐
nology for image understanding and computer vision. The fusion process is to merging dif‐
ferent images into one to get more accurate description for the scene. The original images for
image fusion are always obtained by several different image sensors, or the same sensor in
different operating modes. The fused image can provide more effective information for fur‐
ther image processing, such as image segmentation, object detection and recognition. Image
fusion is a new study field which combined with many different disciplines, such as sensors,
signal processing, image processing, computer and artificial intelligence.

Since the 1990s, image fusion has been applied in many fields, such as remote sensing, robot
vision, medical imaging and diagnostics. Hence its application values are increasingly con‐
cerned by many scholars. In the past two decades, a large number of research literatures
appear. This book is edited based on these research results, and many research scholars give
a great help to this book.

This book consists of seven chapters. Chapter 1 introduces the applications of multi-spectral
image for remote sensing techniques. This chapter is written by Dong Jiang, Dafang
Zhuang, et al. These chapters focus on the multi-spectral image fusion, and several tradi‐
tional and improved algorithms are present.

Chapter 2 introduces a multi-features fusion of multi-temporal hyperspectral images via a
cooperative GDD/SVM method. This chapter is written by Selim Hemissi and Imed Riadh
Farah. This chapter mainly discusses the feature fusion for hyperspectral data. Several fea‐
ture extraction and classification algorithms are discussed in this chapter.

Chapter 3 gives a novel image fusion algorithm based wide-swath and high-resolution syn‐
thetic aperture radar system using MIMO UWB-OFDM architecture. This chapter is written
by Md Anowar Hossain, Ibrahim Elshafiey, et al.

Multiple-Input Multiple-Output (MIMO) radar has been gradually concerned by people.
However, only few scholars study the fusion technology on MIMO synthetic aperture radar
(SAR). This chapter gives different fusion algorithms for the multi-sensor and multi-fre‐
quency imagery to enhance the resolution of the SAR image.

Chapter 4 introduces the high-resolution and hyperspectral data fusion and classification.
This chapter is written by Hina Pande and Poonam S. Tiwari. High-resolution image has a
high spatial resolution, and hyperspectral data has a large number of measured wavelength
bands. The purpose of the fusion is to get a new image which has the spatial resolution of
the high resolution image and preserves the spectral characteristics of the hyperspectral im‐



age. Several algorithms is introduced to achieve this goal, and many classification results
based on the fused images are present in this chapter.

Chapter 5 introduces a new metric for objective evaluation of night vision colorization. This
charter is written by Yufeng Zheng. Evaluation metric is to balance whether the fused image
is good or not. This chapter mainly focuses on how to objectively evaluate the image quali‐
ties of colorized images. In this chapter, some colorization techniques are introduced, and a
new colorization metric, OEI, is proposed.

Chapter 6 shows the application of à trous wavelet in image fusion. à trous wavelet has the
shift-invariance, and it has a better property than Mallat wavelet. Hence it is more suitable
for image fusion. In this chapter, the theory of à trous wavelet is introduced, and several test
experiments are shown.

Chapter 7 introduces the image fusion algorithm via shearlets. This chapter is written by
Miao Qiguang, Shi Cheng, et al. Shearlet was proposed in 2005. In this chapter, the theory of
shearlet is introduced. Meanwhile, for the multi-focus image, a novel fusion framework
based on shearlets is proposed. And for the remote sensing image, combined with PCNN, a
new fusion algorithm is discussed.

This book focus on the latest research achievements, and to some extent reflects the current
work of the scholars. Thanks to all the scholars who have contributed to this book.

Prof. Qiguang Miao
School of Computer Science and Technology

Xidian University
China

XII Preface

Chapter 1

Investigation of Image Fusion for Remote Sensing
Application

Dong Jiang, Dafang Zhuang and Yaohuan Huang

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/56946

1. Introduction

Remote sensing techniques have proven to be powerful tools for the monitoring of the
Earth’s surface and atmosphere on a global, regional, and even local scale, by providing im‐
portant coverage, mapping and classification of land cover features such as vegetation, soil,
water and forests. The volume of remote sensing images continues to grow at an enormous
rate due to advances in sensor technology for both high spatial and temporal resolution sys‐
tems. Consequently, an increasing quantity of image data from airborne/satellite sensors
have been available, including multi-resolution images, multi-temporal images, multi-fre‐
quency/spectral bands images and multi-polarization image. Remote sensing information is
convenient and easy to be accessed over a large area at low cost, but due to the impact of
cloud, aerosol, solar elevation angle and bio-directional reflection, the surface energy pa‐
rameters retrieved from remote sensing data are often missing; meanwhile, the seasonal var‐
iation of surface parameter time-series plots will be also affected. To reduce such impacts,
generally time composite method is adopted. The goal of multiple sensor data fusion is to
integrate complementary and redundant information to provide a composite image which
could be used to better understanding of the entire scene.

1.1. Definition of image fusion

The definition of image fusion varies. For example:

• Image fusion is the combination of two or more different images to form a new image by using a
certain algorithm (Genderen and Pohl 1994 ) [1].

© 2013 Jiang et al.; licensee InTech. This is a paper distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.
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© 2013 Jiang et al.; licensee InTech. This is a paper distributed under the terms of the Creative Commons
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distribution, and reproduction in any medium, provided the original work is properly cited.



• Image fusion is the process of combining information from two or more images of a scene into a
single composite image that is more informative and is more suitable for visual perception or com‐
puter processing. (Guest editorial of Information Fusion, 2007) [2].

• Image fusion is a process of combining images, obtained by sensors of different wavelengths simul‐
taneously viewing of the same scene, to form a composite image. The composite image is formed to
improve image content and to make it easier for the user to detect, recognize, and identify targets
and increase his situational awareness. 2010. (http://www.hcltech.com/aerospace-and-defense/ en‐
hanced-vision-system/).

Image fusion has proved to be an effective way for optimum utilization of large volumes of
image from multiple sources since early 1990’s. Multiple image fusion seeks to combine in‐
formation from multiple sources to achieve inferences that are not feasible from a single sen‐
sor or source. It is the aim of image fusion to integrate different data in order to obtain more
information than can be derived from each of the single sensor data alone [3].

This chapter focused on multi-sensor image fusion in remote sensing. The fusion of informa‐
tion from sensors with different physical characteristics enhances the understanding of our
surroundings and provides the basis for regional planning, decision-making, urban sprawl
monitoring and land use/ land cover classification, etc.

1.2. Techniques and application of image fusion

In the past decades it has been applied to different fields such as pattern recognition, visual
enhancement, object detection and area surveillance.In 1997, Hall and Llinas gave a general
introduction to multi-sensor data fusion [4]. Another in-depth review paper on multiple sen‐
sors data fusion techniques was published in 1998 [3]. This paper explained the concepts,
methods and applications of image fusion as a contribution to multi-sensor integration ori‐
ented data processing. Since then, image fusion has received increasing attention. Further
scientific papers on image fusion have been published with an emphasis on improving fu‐
sion quality and finding more application areas. As a case in point, Simone et al. describe
three typical applications of data fusion in remote sensing, such as obtaining elevation maps
from synthetic aperture radar (SAR) interferometers, the fusion of multi-sensor and multi-
temporal images, and the fusion of multi-frequency, multi-polarization and multi-resolution
SAR images [5]. Quite a few survey papers have been published recently, providing over‐
views of the history, developments, and the current state of the art of image fusion in the
image-based application fields [6-8], but recent development of multi-sensor data fusion in
remote sensing fields has not been discussed in detail (Table 1).

2. Advance in image fusion techniques

2.1. Categorization of image fusion techniques

During the past two decades, several fusion techniques have been proposed. Most of these
techniques are based on the compromise between the desired spatial enhancement and the
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spectral consistency. Among the hundreds of variations of image fusion techniques, the
widely used methods include, but are not limited to, intensity-hue-saturation (IHS), high-
pass filtering, principal component analysis (PCA), different arithmetic combination(e.g.
Brovey transform), multi-resolution analysis-based methods (e.g. pyramid algorithm, wave‐
let transform), and Artificial Neural Networks (ANNs), etc. The chapter will provide a gen‐
eral introduction to those selected methods with emphases on new advances in the remote
sensing field. In general, all above mentioned approaches can be divided into four different
types: signal level, pixel level, feature level, and decision level image fusion [4].

1. Signal level fusion. In signal-based fusion, signals from different sensors are combined
to create a new signal with a better signal-to noise ratio than the original signals.

2. Pixel level fusion. Pixel-based fusion is performed on a pixel-by-pixel basis. It generates
a fused image in which information associated with each pixel is determined from a set
of pixels in source images to improve the performance of image processing tasks such
as segmentation

3. Feature level fusion. Feature-based fusion at feature level requires an extraction of ob‐
jects recognized in the various data sources. It requires the extraction of salient features
which are depending on their environment such as pixel intensities, edges or textures.
These similar features from input images are fused.

4. Decision-level fusion consists of merging information at a higher level of abstraction,
combines the results from multiple algorithms to yield a final fused decision. Input im‐

Data source Objective Authors Time

SPOT HRV & ERS SAR Automatic registration Olivier Thepaut,

Kidiyo Kpalma,

Joseph Ronsin [9]

1994

Hyperspectral image & SAR image Automatic target cueing Tamar Peli,

Mon Young, Robert Knox, Ken Ellis,

Fredrick Bennet [10]

1999

Multifrequency, multipolarization SAR

images

Land use classification G. Simone,

A. Farina, F.C. Morabito, S.B. Serpico, L.

Bruzzone [5]

2001

Landsat ETM+ Pan band & CBERS-1

multiple spectral data

Methods comparison Marcia L.S. Aguena, Nelson D.A.

Mascarenhas [11]

2006

Landsat ETM+ & MODIS Urban sprawl

monitoring

Ying Lei,

Dong Jiang, and

Xiaohuan Yang [12]

2007

AVIRIS and LIDAR Coastal mapping Ahmed F. Elaksher [13] 2008

Table 1. Examples of application of image fusion

Investigation of Image Fusion for Remote Sensing Application
http://dx.doi.org/10.5772/56946
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ages are processed individually for information extraction. The obtained information is
then combined applying decision rules to reinforce common interpretation.

2.2. Advance in image fusion methods

2.2.1. Convenient image fusion methods

The PCA transform converts inter-correlated multi-spectral (MS) bands into a new set of un‐
correlated components. To do this approach first we must get the principle components of
the MS image bands. After that, the first principle component which contains the most infor‐
mation of the image is substituted by the panchromatic image. Finally the inverse principal
component transform is done to get the new RGB (Red, Green, and Blue) bands of multi-
spectral image from the principle components.

The IHS fusion converts a color MS image from the RGB space into the IHS color space. Be‐
cause the intensity (I) band resembles a panchromatic (PAN) image, it is replaced by a high-
resolution PAN image in the fusion. A reverse IHS transform is then performed on the PAN
together with the hue (H) and saturation (S) bands, resulting in an IHS fused image.

Different arithmetic combinations have been developed for image fusion. The Brovey trans‐
form, Synthetic Variable Ratio (SVR), and Ratio Enhancement (RE) techniques are some suc‐
cessful examples. The basic procedure of the Brovey transform first multiplies each MS band
by the high resolution PAN band, and then divides each product by the sum of the MS
bands. The SVR and RE techniques are similar, but involve more sophisticated calculations
for the MS sum for better fusion quality.

Convenient fusion algorithms mentioned above have been widely used for relatively simple
and time efficient fusion schemes. However, several problems must be considered before
their application: 1) These fusion algorithms generate a fused image from a set of pixels in
the various sources. These pixel-level fusion methods are very sensitive to registration accu‐
racy, so that co-registration of input images at sub-pixel level is required; 2) One of the main
limitations of HIS and Brovey transform is that the number of input multiple spectral bands
should be equal or less than three at a time; 3) These image fusion methods are often suc‐
cessful at improves the spatial resolution, however, they tend to distort the original spectral
signatures to some extent [14, 15]. More recently new techniques such as the wavelet trans‐
form seem to reduce the color distortion problem and to keep the statistical parameters in‐
variable.

2.2.2. Multi-resolution analysis-based methods

Multi-resolution or multi-scale methods, such as pyramid transformation, have been adopt‐
ed for data fusion since the early 1980s [16]. The Pyramid-based image fusion methods, in‐
cluding Laplacian pyramid transform, were all developed from Gaussian pyramid
transform, have been modified and widely used [17, 18].

In 1989, Mallat put all the methods of wavelet construction into the framework of functional
analysis and described the fast wavelet transform algorithm and general method of con‐
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structing wavelet orthonormal basis. On the basis, wavelet transform can be really applied
to image decomposition and reconstruction [19, 20]. Wavelet transforms provide a frame‐
work in which an image is decomposed, with each level corresponding to a coarser resolu‐
tion band. For example, in the case of fusing a MS image with a high-resolution PAN image
with wavelet fusion, the Pan image is first decomposed into a set of low-resolution Pan im‐
ages with corresponding wavelet coefficients (spatial details) for each level. Individual
bands of the MS image then replace the low-resolution Pan at the resolution level of the
original MS image. The high resolution spatial detail is injected into each MS band by per‐
forming a reverse wavelet transform on each MS band together with the corresponding
wavelet coefficients (Figure 1).

Figure 1. Generic flowchart of wavelet-based image fusion

In the wavelet-based fusion schemes, detail information is extracted from the PAN image
using wavelet transforms and injected into the MS image. Distortion of the spectral informa‐
tion is minimized compared to the standard methods. In order to achieve optimum fusion
results, various wavelet-based fusion schemes had been tested by many researchers. Among
these schemes several new concepts/algorithms were presented and discussed. Candes pro‐
vided a method for fusing SAR and visible MS images using the Curvelet transformation.
The method was proven to be more efficient for detecting edge information and denoising
than wavelet transformation [21]. Curvelet-based image fusion has been used to merge a
Landsat ETM+ panchromatic and multiple-spectral image. The proposed method simultane‐
ously provides richer information in the spatial and spectral domains [22]. Donoho et al. pre‐
sented a flexible multi-resolution, local, and directional image expansion using contour
segments, the Contourlet transform, to solve the problem that wavelet transform could not
efficiently represent the singularity of linear/curve in image processing [23]. Contourlet
transform provides flexible number of directions and captures the intrinsic geometrical
structure of images.
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In general, as a typical feature level fusion method, wavelet-based fusion could evidently
perform better than convenient methods in terms of minimizing color distortion and denois‐
ing effects. It has been one of the most popular fusion methods in remote sensing in recent
years, and has been standard module in many commercial image processing soft wares,
such as ENVI, PCI, ERDAS. Problems and limitations associated with them include: (1) Its
computational complexity compared to the standard methods; (2) Spectral content of small
objects often lost in the fused images; (3) It often requires the user to determine appropriate
values for certain parameters (such as thresholds). The development of more sophisticated
wavelet-based fusion algorithm (such as Ridgelet, Curvelet, and Contourlet transformation)
could improve the performance results, but these new schemes may cause greater complexi‐
ty in the computation and setting of parameters.

2.2.3. Artificial neural network based fusion method

Artificial neural networks (ANNs) have proven to be a more powerful and self-adaptive
method of pattern recognition as compared to traditional linear and simple nonlinear analy‐
ses [24]. The ANN-based method employs a nonlinear response function that iterates many
times in a special network structure in order to learn the complex functional relationship be‐
tween input and output training data. The general schematic diagram of the ANN-based im‐
age fusion method can be seen in Figure 2.

Figure 2. General schematic diagram of the ANN-based image fusion method.

The input layer has several neurons, which represent the feature factors extracted and nor‐
malized from image A and image B. The function of each neuron is a sigmoid function given
by [25]:
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In Figure 6, the hidden layer has several neurons and the output layer has one neuron (or
more neuron). The ith neuron of the input layer connects with the jth neuron of the hidden
layer by weight Wij, and weight between the jth neuron of the hidden layer and the tth neu‐
ron of output layer is Vjt (in this case t = 1). The weighting function is used to simulate and
recognize the response relationship between features of fused image and corresponding fea‐
ture from original images (image A and image B). The ANN model is given as follows:
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In equation (6), Y=pixel value of fused image exported from the neural network model,
q=number of nodes hidden (q~8 here), Vj=weight between jth hidden node and output node
(in this case, there is only one output node), c=threshold of the output node, Hj=exported
values from the jth hidden node:
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Where Wij=weight between ith input node and the jth hidden node, ai=values of the ith input
factor, n=number of nodes of input (n~5 here), hj=threshold of the jth hidden node.

As the first step of ANN-based data fusion, two registered images are decomposed into sev‐
eral blocks with size of M and N (Figure 2). Then, features of the corresponding blocks in the
two original images are extracted, and the normalized feature vector incident to neural net‐
works can be constructed. The features used here to evaluate the fusion effect are normally
spatial frequency, visibility, and edge. The next step is to select some vector samples to train
neural networks. An ANN is a universal function approximator that directly adapts to any
nonlinear function defined by a representative set of training data. Once trained, the ANN
model can remember a functional relationship and be used for further calculations. For
these reasons, the ANN concept has been adopted to develop strongly nonlinear models for
multiple sensors data fusion. Thomas et al. discussed the optimal fusion method of TV and
infrared images using artificial neural networks [26]. After that, many neural network mod‐
els have been proposed for image fusion such as BP, SOFM, and ARTMAP neural networks.
BP algorithm has been mostly used. However, the convergence of BP networks is slow and
the global minima of the error space may not be always achieved [27]. As an unsupervised
network, SOFM network clusters input sample through competitive learning. But the num‐
ber of output neurons should be set before constructing neural networks model [28]. RBF
neural network can approximate objective function at any precise level if enough hidden
units are provided. The advantages of RBF network training include no iteration, few train‐
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ing parameters, high training speed, simply process and memory functions [29]. Hong ex‐
plored the way that using RBF neural networks combined with nearest neighbor clustering
method to cluster, and membership weighting is used to fuse. Experiments show this meth‐
od can obtain the better effect of cluster fusion with proper width parameter [30].

Gail et al. used Adaptive Resonance Theory (ART) neural networks to form a new frame‐
work for self-organizing information fusion. The ARTMAP neural network can act as a self-
organizing expert system to derive hierarchical knowledge structures from inconsistent
training data [31]. ARTMAP information fusion resolves apparent contradictions in input
pixel labels by assigning output classes to levels in a knowledge hierarchy. Wang et al. pre‐
sented a feature-level image fusion method based on segmentation region and neural net‐
works. The results indicated that this combined fusion scheme was more efficient than that
of traditional methods [32].

The ANN-based fusion method exploits the pattern recognition capabilities of artificial neu‐
ral networks, and meanwhile, the learning capability of neural networks makes it feasible to
customize the image fusion process. Many of applications indicated that the ANN-based fu‐
sion methods had more advantages than traditional statistical methods, especially when in‐
put multiple sensor data were incomplete or with much noises. It is often served as an
efficient decision level fusion tools for its self learning characters, especially in land use/land
cover classification. In addition, the multiple inputs − multiple outputs framework make it
to be a possible approach to fuse high dimension data, such as long-term time-series data or
hyper-spectral data.

2.2.4. Dempster-Shafer evidence theory based fusion method

Dempster-Shafer decision theory is considered a generalized Bayesian theory, used when
the data contributing to the determination of the analysis of the images is subject to uncer‐
tainty. It allows distributing support for proposition not only to a proposition itself but also
to the union of propositions that include it. Huadong Wu et.al. presented a system frame‐
work that manages information overlap and resolves conflicts, and the system provides en‐
eralizable architectural support that facilitates sensor fusion [33].

Compared with Bayesian theory, the Dempster-Shafer theory of evidence feels closer to our
human perception and reasoning processes. Its capability to assign uncertainty or ignorance
to propositions is a powerful tool for dealing with a large range of problems that otherwise
would seem intractable [33]. The Dempster-Shafer theory of evidence has been applied on
image fusion using SPOT/HRV image and NOAA/AVHRR series. The results show unam‐
biguously the major improvement brought by such a data fusion, and the performance of
the proposed method [34]. H. Borotschnig et.al. compared three frameworks for information
fusion and view-planning using different uncertainty calculi: probability theory, possibility
theory and Dempster-Shafer theory of evidence [35]. The results indicated that Dempster-
Shafer decision theory based sensor fusion method will achieve much higher performance
improvement, and it provides estimates of imprecision and uncertainty of the information
derived from different sources

New Advances in Image Fusion8

3. Applications of image fusion

It has been widely used in many fields of remote sensing, such as object identification, clas‐
sification, and change detection. The following paragraphs describe the recent achievements
of image fusion in more detail.

3.1. Object identification

The feature enhancement capability of image fusion is visually apparent in VIR/VIR combi‐
nations that often results in images that are superior to the original data. In order to maxi‐
mize the amount of information extracted from satellite image data useful products can be
found in fused images [3]. An integrated system for automatic road mapping from high-res‐
olution multi-spectral satellite imagery by information fusion was discussed by Jin et al. in
2005 [36]. Garzeli. A. presents a solution to enhance the spatial resolution of MS images with
high-resolution PAN data. The proposed method exploits the undecimated discrete wavelet
transform, and the vector multi-scale Kalman filter, which is used to model the injection
process of wavelet details. Fusion simulations on spatially degraded data and fusion tests at
the full scale reveal that an accurate and reliable PAN-sharpening is achieved by the pro‐
posed method [37]. A case study, which extracted artificial forest and residential areas using
high spatial resolution image and multiple spectral images, was shown as follows.

Forest classification and mapping provides an important basis for forest monitoring and
ecological protection. The method based on single pixel or only on spectral features cannot
effectively distinguish the types of forest. Here we present an approach for extracted artifi‐
cial forest areas using SPOT 5 Panchromatic band and multiple spectral images in Naban
River National Nature Reserve, is located in Jing Hong City, Yunnan province, South China.
The resolution of the panchromatic band of SPOT-5 image is 2.5 m and that of the multi-
spectral bands is 10 m. The Pansharpening fusion method is first used for panchromatic and
multi-spectral data fusion of SPOT-5 image data. Next, histogram equalization, median fil‐
tering and PCA method are used to make image optical spectrum enhancement and denois‐
ing, so as to improve the multi-scale image segmentation effect. Compared with the original
spectrum data, the image textures of artificial forest after the pretreatment are regularly ar‐
ranged and its visual texture features are very obvious. The particle size information of nat‐
ural forests is significant. So that forest classification could be easily achieved (Figure 3).

3.2. Land use and land cover classification

Classification of land use and land cover is one of the key tasks of remote sensing applica‐
tions. The classification accuracy of remote sensing images is improved when multiple
source image data are introduced to the processing [3]. Images from microwave and optical
sensors offer complementary information that helps in discriminating the different classes.
As discussed in the work of Wu et al., a multi-sensor decision level image fusion algorithm
based on fuzzy theory are used for classification of each sensor image, and the classification
results are fused by the fusion rule. Interesting result was achieved mainly for the high
speed classification and efficient fusion of complementary information [38]. Land-use/land-
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cover classification had been improved using data fusion techniques such as ANN and the
Dempster-Shafer theory of evidence. The experimental results show that the excellent per‐
formance of classification as compared to existing classification techniques [39, 40]. Image
fusion methods will lead to strong advances in land use/land cover classifications by use of
the complementary of the data presenting either high spatial resolution or high time repeti‐
tiveness.

For example, Indian P5 Panchromatic image(Figure 4 b) with spatial resolution of 2.18 m of
Yiwu City, Southeast China, in 2007 was fused with multiple spectral bands of China-Brazil
CBERS data (spatial resolution: 19.2m) (Figure 4 a)in 2007. Brovey transformation fusion
method was used.

(a) (b) 

(c) (d) 

Figure 3. Extracted artificial forest and residential areas using image fusion techniques; (a) Before fusion (Artificial for‐
est), (b) Fused image (Artificial forest), (c) Before fusion (Natural forest), (d) Fused image (Natural forest and residential
area)and residential area.

New Advances in Image Fusion10

(a) (b) 

Figure 4. Result of image fusion: CBERS MS and P5 PAN; (a) CBERS multiple spectral image (b) Fused image

(a) (b) (c)

Figure 5. Different land use types in fused image; (a) cultivated land (b) water (c) urban settlements

Results indicated that the accuracy of residential areas of Yiwu city derived from fused im‐
age is much higher than result derived from CBERS multiple spectral image (Figure 5).

3.3. Change detection

Change detection is the process of identifying differences in the state of an object or phe‐
nomenon by observing it at different times. Change detection is an important process in
monitoring and managing natural resources and urban development because it provides
quantitative analysis of the spatial distribution of the population of interest [41]. Image fu‐
sion for change detection takes advantage of the different configurations of the platforms
carrying the sensors. The combination of these temporal images in same place enhances in‐
formation on changes that might have occurred in the area observed. Sensor image data
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with low temporal resolution and high spatial resolution can be fused with high temporal
resolution data to enhance the changing information of certain ground objects. Madhavan et
al. presented a decision level fusion system that automatically performs fusion of informa‐
tion from multi-spectral, multi-resolution, and multi-temporal high-resolution airborne data
for a change-detection analysis. Changes are automatically detected in buildings, building
structures, roofs, roof color, industrial structures, smaller vehicles, and vegetation [42]. An
example of change detection using Landsat ETM+ and MODIS data is presented as follow.

Recent study indicated that urban expansion could be efficiently monitored using satellite
images with multi-temporal and multi-spatial resolution. For example, Landsat ETM+ Pan‐
chromatic image(Figure 6 a) with spatial resolution of 10 m of Chongqing City, Southwest
China, in 2000 was fused with daily-received multiple spectral bands of MODIS data (spa‐
tial resolution: 250m) (Figure 6 b)in 2006.

Brovey transformation fusion method was used.

( )1 1 2 3/    = ´ + +fused pan b b b bDN DN DN DN DN DN (4)

Where DNfused means the DN of the resulting fused image produced from the input data in
three MODIS multiple spectral bands (DNb1, DNb2, DNb3) multiplied by the high resolution
Landsat ETM+ Pan band (DNpan).

The building areas remained unchanged from 2000 to 2006 were in grey-pink. Meanwhile,
the newly established buildings were in dark red color in the composed image (Figure 7)
and could be easily identified.

Figure 6. Satellite images of Chongqing City; a) ETM image, 2000 b) MODIS image, 2006
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Figure 7. Fusion result of multiple sources images of Chongqing City

In recent years, object-oriented processing techniques are becoming more popular, com‐
pared to traditional pixel-based image analysis, object-oriented change information is neces‐
sary in decision support systems and uncertainty management strategies. An in-depth paper
presented by Ruvimbo et al. introduced the concept and applications of object-oriented
change detection for urban areas [43]. In general, due to the extensive statistical and derived
information available with the object-oriented approach, a number of change images can be
presented depending on research objectives. In land use and land cover analysis; this level
of precision is valuable as analysis at the object level enables linkage with other GIS databas‐
es or derived socio-economic attributes.

4. Discussion and conclusions

Multi-sensor image fusion seeks to combine information from different images to obtain
more inferences than can be derived from a single sensor. It is widely recognized as an effi‐
cient tool for improving overall performance in image based application. The chapter pro‐
vides a state-of-art of multi-sensor image fusion in the field of remote sensing. Below are
some emerging challenges and recommendations.
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4.1. Improvements of fusion algorithms

Among the hundreds of variations of image fusion techniques, methods which had be wide‐
ly used including IHS, PCA, Brovey transform, wavelet transform, and Artificial Neural
Network (ANN). For methods like HIS, PCA and Brovey transform, which have lower com‐
plexity and faster processing time, the most significant problem is color distortion. Wavelet-
based schemes perform better than those methods in terms of minimizing color distortion.
The development of more sophisticated wavelet-based fusion algorithm (such as Ridgelet,
Curvelet, and Contourlet transformation) could evidently improve performance result, but
they often cause greater complexity in computation and parameters setting. Another chal‐
lenge on existing fusion techniques will be the ability for processing hyper-spectral satellite
sensor data. Artificial neural network seem to be one possible approach to handle the high
dimension nature of hyper-spectral satellite sensor data.

4.2. From image fusion to multiple algorithm fusion

Each fusion method has its own set of advantages and limitations. The combination of sev‐
eral different fusion schemes has been approved to be the useful strategy which may ach‐
ieve better quality of results. As a case in point, quite a few researchers have focused on
incorporating the traditional IHS method into wavelet transforms, since the IHS fusion
method performs well spatially while the wavelet methods perform well spectrally. Howev‐
er, selection and arrangement of those candidate fusion schemes are quite arbitrary and of‐
ten depends upon the user’s experience. Optimal combining strategy for different fusion
algorithms, in another word, ‘algorithm fusion’ strategy, is thus urgent needed. Further in‐
vestigations are necessary for the following aspects: 1) Design of a general framework for
combination of different fusion approaches; 2) Development of new approaches which can
combine aspects of pixel/feature/decision level image fusion; 3) Establishment of automatic
quality assessment method for evaluation of fusion results.

4.3. Establishment of an automatic quality assessment scheme.

Automatic quality assessment is highly desirable to evaluate the possible benefits of fusion,
to determine an optimal setting of parameters for a certain fusion scheme, as well as to com‐
pare results obtained with different algorithms. Mathematical methods were used to judge
the quality of merged imagery in respect to their improvement of spatial resolution while
preserving the spectral content of the data. Statistical indices, such as cross entropy, mean
square error, signal-to-noise ratio, have been used for evaluation purpose. While recently a
few image fusion quality measures have been proposed, analytical studies of these measures
have been lacking. The work of Chen et al. focused on one popular mutual information-
based quality measure and weighted averaging image fusion [44]. Zhao presented a new
metric based on image phase congruency to assess the performance of the image fusion al‐
gorithm [45]. However, in general, no automatic solution has been achieved to consistently
produce high quality fusion for different data sets. It is expected that the result of fusing da‐
ta from multiple independent sensors will offer the potential for better performance than
can be achieved by either sensor, and will reduce vulnerability to sensor specific counter‐
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measures and deployment factors. We expect that future research will address new per‐
formance assessment criteria and automatic quality assessment methods [46].
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1. Introduction

Considering the emergence of hyperspectral sensors, feature fusion has been more and more
important for images classification, indexing and retrieval. In this chapter, a cooperative
fusion method GDD/SVM (Generalized Dirichlet Distribution/Support Vector Machines),
which involves heterogeneous features, is proposed for multi-temporal hyperspectral images
classification. It differentiates, from most of the previous approaches, by incorporating the
potentials of generative models into a discriminative classifier. Therefore, the multi-features,
including the 3D spectral features and textural features, can be integrated with an efficient
way into a unified robust framework. The experimental results on a series of Hyperion
images show that the precision is 92.64% and the recall is 91.87%. The experiments on
AVIRIS dataset also confirm the improved performance and show that this cooperative fusion
approach has consistence over different testing datasets.

2. Problem statement

The semantic categorization of remote-sensing images requires analysis of many features
of the images such as texture, spectral profiles, etc. Current feature fusion approaches
commonly concatenate different features. It gives, generally good results and several
approaches have been proposed using this schema. However, most of them have various
conditional constraints, such as noise and imperfection, which might retain the use of such
systems under degraded performance. However, how to fuse heterogeneous features in a
flexible way is still an open research question.
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2 Image Fusion

Similarly, in the area of Supervised Machine Learning (SML), diversity with respect to
the errors committed by component classifiers has received much attention. Generative
and discriminative approaches are two distinct schools of probabilistic machine learning.
It has shown that discriminative approaches such as SVM [1] outperform model based
approaches due to their flexibility in decision boundaries estimation. Conversely, since that
discriminative methods are concerned with boundaries, all the classes need to be estimated
conjointly [2]. Complementary, one of the interesting characteristics, that generative models
have over discriminative ones, is that they are learnt independently for each class. Moreover,
following their modeling power, generative models are able to deal with missing data.
An ideal fusion method should combine these two approaches in order to improve the
classification accuracy.

3. Theoretical background

3.1. Generalized dirichlet distribution

Priors based on Dirichlet location-scale mixture of normals are widely used to model
densities as mixtures of normal kernels. A random density f arising from such a prior
can be expressed as

f (y) = (φ ∗ P)(y) =
∫

1

σ
φ

(

y − θ

σ

)

dP(θ, σ), (1)

where φ(·) is the standard normal density and the mixing distribution P follows a Dirichlet
process.

[3] initiated a theoretical study of these priors for the problem of density estimation. They
showed that if a density f0 satisfies certain conditions, then a Dirichlet location mixture of
normals achieves posterior consistency at f0. Their conditions can be best summarized as
f0 having a moment generating function on an open interval containing [−1, 1]. Ghosal and
van der Vaart (2001) extended these results to rate calculations for the more general Dirichlet
location-scale mixture prior. However, they restricted the scale parameter σ to a compact
interval [σ, σ] ⊂ (0, ∞).

3.1.1. Preliminaries

To make this chapter relatively self-contained, we recall the definitions of posterior
consistency in the context of density estimation and regression. These definitions formalize
the concept that in order to achieve consistency, the posterior should concentrate on
arbitrarily small neighborhoods of the true model when more observations are made
available.

Posterior consistency for density estimation: Suppose X1, X2, · · · are independent and
identically distributed according to an unknown density f0. We take the parameter space
as F - a set of probability densities on the space of the observations and consider a prior
distribution Π on F . Then the posterior distribution Π(·|X1, · · · , Xn) given a sample
X1, · · · , Xn is obtained as,
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Π(A|X1, · · · , Xn) =

∫

A ∏
n
i=1 f (Xi)dΠ( f )

∫

F ∏
n
i=1 f (Xi)dΠ( f )

.

We say that the posterior achieves weak (or strong) posterior consistency at f0 if for any weak
(or L1) neighborhood U of f0, Π(U|X1, X2, · · · , Xn) → 1 almost surely as n → ∞.

Posterior consistency for regression: Suppose one observes Y1, Y2, · · · from the model
Yi = α0 + β0xi + ǫi, where xi’s are known non-random covariate values and ǫi’s are
independent and identically distributed with an unknown symmetric density f0. The
regression coefficients α0, β0 are also unknown. Here, it is appropriate to consider the
parameter space as Θ = F∗ × R × R, where F∗ is a set of symmetric probability densities
on R with a prior Π on Θ. The posterior distribution Π(·|Y!, · · · , Yn) is then computed as,

Π(A|Y1, · · · , Yn) =

∫

A ∏
n
i=1 f (Yi − α − βxi)dΠ( f , α, β)

∫

× ∏
n
i=1 f (Yi − α − βxi)dΠ( f , α, β)

.

We say that the posterior achieves weak consistency at ( f0, α0, β0) if for any weak
neighborhood U of f0 and any δ > 0,

Π(( f , α, β) : f ∈ U, |α − α0| < δ, |β − β0| < δ|Y1, Y2, · · · , Yn) → 1

almost surely as n → ∞.

3.1.2. Density estimation: weak consistency

We start with weak posterior consistency for the problem of density estimation. Our main
tool is the following theorem due to Schwartz (1965).

A prior Π achieves weak posterior consistency at a density f0, if

∀ǫ > 0, Π

(

f ∈ F :
∫

f0(x) log
f0(x)

f (x)
dx < ǫ

)

> 0 (2)

We would use the notation f0 ∈ KL(Π) to indicate that a density f0 satisfies (2).

General Mixture Priors First consider the case when the mixing distribution P in (1) follows
some general distribution Π̃, not necessarily a Dirichlet process. It is reasonable to assume
that the weak support of Π̃ contains all probability measures on R × R

+ that are compactly
supported. The next lemma reveals the implication of this property.

Consider an f0 ∈ F such that
∫

x2 f0(x)dx < ∞. Suppose f̃ = φ ∗ P̃ is such that P̃((−a, a)×
(σ, σ)) = 1 for some a > 0, 0 < σ < σ. Then for any ǫ > 0, there exists a weak neighborhood
W of P̃ such that for any f = φ ∗ P with P ∈ W,

∫

f0(x) log
f̃ (x)

f (x)
dx < ǫ (3)
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4 Image Fusion

The proof of this lemma is similar to the proof of Theorem 3 of Ghosal et al. (1999) and we
present it in the appendix. Here we state and prove the main result.

Let f0(x) be a continuous density on R satisfying:

1. f0 is nowhere zero and bounded above by M < ∞.

2.
∣

∣

∫

R
f0(x) log f0(x)dx

∣

∣ < ∞.

3.
∫

R
f0(x) log

f0(x)
ψ1(x)

dx < ∞ where ψ1(x) = inft∈[x−1,x+1] f0(t) .

4. ∃η > 0 such that
∫

R
|x|2(1+η) f0(x)dx < ∞.

Then, f0 ∈ KL(Π).

Assumption 4 provides the important moment condition on f0. Assumption 2 is satisfied by
most of the common densities and assumption 3 can be viewed as a regularity conditions.
The interval [x − 1, x + 1] that appears in assumption 3 can be replaced by [x − a, x + a] for
any a > 0.

Proof. of Theorem 3.1.2 Note that,

∫

f0(x) log
f0(x)

f (x)
dx =

∫

f0(x) log
f0(x)

f̃ (x)
dx +

∫

f0(x) log
f̃ (x)

f (x)
dx. (4)

Therefore, the result would follow if for any ǫ > 0, we can find an f̃ which makes
∫

f0 log
f0

f̃
dx < ǫ/2 and also satisfies the condition of Lemma 3.1.2. Next we show how

to construct such an f̃ .

Consider the densities fn = φ ∗ Pn, n ≥ 1, with Pn’s constructed as,

dPn(θ, σ) = tn I(θ∈[−n,n]) f0(θ)δσn (σ) (5)

where σn = n−η , tn = (
∫ n
−n f0(y)dy)−1, IA is the indicator function of a set A and δx is the

point mass at a point x. Note that fn can be simply written as,

fn(x) = tn

∫ n

−n

1

σn
φ

(

x − θ

σn

)

f0(θ)dθ. (6)

Find a positive constant ξ such that
∫ ξ
−ξ φ(t)dt > 1 − ǫ. Now fix an x ∈ R. For sufficiently

large n such that [x − ξσn, x + ξσn] ⊂ [−n, n], one obtains,

inf
y∈(x−ξσn ,x+ξσn)

f0(y)(1 − ǫ) <
fn(x)

tn
< sup

y∈(x−ξσn ,x+ξσn)

f0(y) + Mǫ (7)
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Since tn → 1 and σn → 0, (7) would imply that fn(x) → f0(x) as n → ∞ by continuity of f0.
Therefore one can conclude,

log
f0(x)

fn(x)
→ 0 for all x ∈ R (8)

Since tn is a decreasing sequence and f0(θ) < M for all θ ∈ R, one can readily see that for all
n ≥ 1 and all x ∈ R,

fn(x) = tn

∫ n

−n

1

σn
φ

(

x − θ

σn

)

f0(θ)dθ ≤ Mtn ≤ Mt1. (9)

Now, fix an x ∈ R. Since, |x − θ| ≤ |x|+ n for all θ ∈ [−n, n] and tn ≥ 1, it follows that for
all n ≤ |x|,

fn(x) ≥
1

σn
φ

(

|x|+ n

σn

)

= nηφ(nη(|x|+ n)) ≥ |x|ηφ(2|x|1+η). (10)

The last inequality follows from the fact that τηφ(τη(|x|+ τ)) is decreasing in τ for τ ≥ 1.

Let ψn(x) = inft∈[x−σn ,x+σn ] f0(t). It may be noted that the function ψ1(x) of assumption 3

is consistent with this definition. Let An = [−n, n] ∩ [x − σn, x + σn] and c =
∫ 1

0 φ(t)dt < 1.
Observe that for all n > |x|,

fn(x) ≥ tn

∫

An

1

σn
φ

(

x − θ

σn

)

f0(θ)dθ ≥ tnψn(x)
∫

An

1

σn
φ

(

x − θ

σn

)

dθ (11)

Since tn ≥ 1, ψn(x) ≥ ψ1(x) and
∫

An

1
σn

φ( x−θ
σn

)dθ ≥
∫ 1

0 φ(t)dt = c for all n ≥ 1 and all x ∈ R

it follows from (11) that fn(x) ≥ cψ1(x) for all n > |x|.. Therefore,

fn(x) ≥

{

cψ1(x) |x| < 1

min(|x|ηφ(2|x|1+η), cψ1(x)) |x| ≥ 1
(12)

A little algebraic manipulation with (9) and (12) obtains, ∀n ≥ 1,

∣

∣

∣

∣

log
f0(x)

fn(x)

∣

∣

∣

∣

≤ log
Mt1

f0(x)
+ log

f0(x)

cψ1(x)
+ I{|x|>1} log

f0(x)

|x|ηφ(2|x|1+η)
(13)

From the assumptions of Theorem 3.2, it can be easily verified that the function on the right
hand side of the above display is f0 integrable. Therefore an application of DCT on (8)
implies that,

lim
n→∞

∫

f0(x) log
f0(x)

fn(x)
dx = 0. (14)

Therefore we can simply choose f̃ = fn0 for some large enough n0.
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φ

(

x − θ

σn

)

f0(θ)dθ. (6)

Find a positive constant ξ such that
∫ ξ
−ξ φ(t)dt > 1 − ǫ. Now fix an x ∈ R. For sufficiently

large n such that [x − ξσn, x + ξσn] ⊂ [−n, n], one obtains,

inf
y∈(x−ξσn ,x+ξσn)

f0(y)(1 − ǫ) <
fn(x)

tn
< sup

y∈(x−ξσn ,x+ξσn)

f0(y) + Mǫ (7)
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Since tn → 1 and σn → 0, (7) would imply that fn(x) → f0(x) as n → ∞ by continuity of f0.
Therefore one can conclude,

log
f0(x)

fn(x)
→ 0 for all x ∈ R (8)

Since tn is a decreasing sequence and f0(θ) < M for all θ ∈ R, one can readily see that for all
n ≥ 1 and all x ∈ R,

fn(x) = tn

∫ n

−n

1

σn
φ

(

x − θ

σn

)

f0(θ)dθ ≤ Mtn ≤ Mt1. (9)

Now, fix an x ∈ R. Since, |x − θ| ≤ |x|+ n for all θ ∈ [−n, n] and tn ≥ 1, it follows that for
all n ≤ |x|,

fn(x) ≥
1

σn
φ

(

|x|+ n

σn

)

= nηφ(nη(|x|+ n)) ≥ |x|ηφ(2|x|1+η). (10)

The last inequality follows from the fact that τηφ(τη(|x|+ τ)) is decreasing in τ for τ ≥ 1.

Let ψn(x) = inft∈[x−σn ,x+σn ] f0(t). It may be noted that the function ψ1(x) of assumption 3

is consistent with this definition. Let An = [−n, n] ∩ [x − σn, x + σn] and c =
∫ 1

0 φ(t)dt < 1.
Observe that for all n > |x|,

fn(x) ≥ tn

∫

An

1

σn
φ

(

x − θ

σn

)

f0(θ)dθ ≥ tnψn(x)
∫

An

1

σn
φ

(

x − θ

σn

)

dθ (11)

Since tn ≥ 1, ψn(x) ≥ ψ1(x) and
∫

An

1
σn

φ( x−θ
σn

)dθ ≥
∫ 1

0 φ(t)dt = c for all n ≥ 1 and all x ∈ R

it follows from (11) that fn(x) ≥ cψ1(x) for all n > |x|.. Therefore,

fn(x) ≥

{

cψ1(x) |x| < 1

min(|x|ηφ(2|x|1+η), cψ1(x)) |x| ≥ 1
(12)

A little algebraic manipulation with (9) and (12) obtains, ∀n ≥ 1,

∣

∣

∣

∣

log
f0(x)

fn(x)

∣

∣

∣

∣

≤ log
Mt1

f0(x)
+ log

f0(x)

cψ1(x)
+ I{|x|>1} log

f0(x)

|x|ηφ(2|x|1+η)
(13)

From the assumptions of Theorem 3.2, it can be easily verified that the function on the right
hand side of the above display is f0 integrable. Therefore an application of DCT on (8)
implies that,

lim
n→∞

∫

f0(x) log
f0(x)

fn(x)
dx = 0. (14)

Therefore we can simply choose f̃ = fn0 for some large enough n0.
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6 Image Fusion

3.2. Dirichlet mixture of normals

Next we consider Π̃ = Dir(αG0), a Dirichlet process with parameter αG0. Here α is a positive
constant and G0 is a probability measure on R × R

+.

Suppose f0 ∈ F satisfies the following property: For any 0 < τ < 1, ǫ > 0, there exist a set
A and a positive number x0 such that Π̃(A) > 1 − τ and for any f = φ ∗ P with P ∈ A,

∫

|x|>x0

f0(x) log
f0(x)

f (x)
dx < ǫ. (15)

Then, f0 ∈ KL(Π).

Note that the moment condition of Theorem 3.1.2 is substantially reduced.

Let f0 be a density on R satisfying

1.
∫

f0(x) log f0(x)dx < ∞.

2. ∃ η ∈ (0, 1) such that
∫

|x|η f0(x)dx < ∞.

Further assume that there exist σ0 > 0, 0 < β < η, γ > β and b1, b2 > 0 such that for large
x > 0

3. max
(

G0

([

x − σ0x
η
2 , ∞

)

× [σ0, ∞)
)

, G0

(

[0, ∞)× (x1− η
2 , ∞)

))

≥ b1x−β

4. G0

(

(−∞, x)× (0, e|x|
η− 1

2 )
)

> 1 − b2|x|
−γ.

and for large x < 0,

3’. max
(

G0

((

−∞, x + σ0|x|
η
2

]

× [σ0, ∞)
)

, G0

(

(−∞, 0]× (|x|1−
η
2 , ∞)

))

≥ b1|x|
−β

4.’ G0

(

(x, ∞)× (0, e|x|
η− 1

2 )
)

> 1 − b2|x|
−γ.

then f0 ∈ KL(Π). Other than the important moment condition on f0 this theorem also
requires some regularity in the tail of the base measure G0. For example, assumption 3,3’
requires the tail of G0 not to decay faster than a polynomial rate for the scale parameter σ.
This condition seems very reasonable since the Cauchy density itself can be written as a scale
mixture of normals with the mixing density having a polynomial decay towards infinity.

A standard choice for G0 is the conjugate normal-inverse gamma distribution (see Escobar
and West 1995), under which, θ|σ ∼ N(0, ξσ2) and σ−2 ∼ Gamma(r, λ), for some ξ, r, λ > 0.
For such a G0 with r ∈ (1/2, 1), one can show that the conditions of Theorem 3.2 hold true
with η ∈ (2r/(1+ r), 1), β = r(2− η) and γ = 2r. For example, the conditions in Assumptions
3, 3’ are satisfied since,

G0

(

[0, ∞)× (x1− η
2 , ∞)

)

=
1

2
Pr(σ−2 ≤ x−(2−η)) = c

∫ x−(2−η)

0
vr−1e−λvdv ≤ c′x−r(2−η),
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for some positive constants c, c′. To see that the conditions of Assumptions 4, 4’ also hold,
note that,

1 − G0

(

(−∞, x)× (0, e|x|
η− 1

2 )
)

≤ Pr(θ > x) + Pr(σ−2
< e−2|x|η+1).

An argument similar to the one provided above shows that the second term, namely,

Pr(σ−2
< e−2|x|η+1) is bounded by a constant times e−2r|x|η+r. Therefore, this term

can be made smaller than c|x|−γ for a suitable constant c. Now, using the inequality
1−Φ(X) ≤ (1/x)φ(x), where Φ(·) and φ(·) are the standard normal distribution and density
functions, we obtain

Pr(θ > x) ≤
c

x

∫

∞

0
vr−1/2−1e−( x2

2ξ +λ)vdv =
c′

x( x2

2ξ + λ)r−1/2
≤

c′′

x2r

for some positive constants c, c′, c′′. The desired inequality follows from these two bounds.
Therefore, such a choice of G0 would lead to posterior consistency, for example, when f0 is a
Cauchy density.

Proof. of Theorem 3.2 We simply need show that such an f0 satisfies the condition of Lemma
3.2. Let w(x) = exp(−xη), x ≥ 0. Define a class of subsets of R × R

+ indexed by x ∈ R, as
follows:

Kx =

{

(θ, σ) ∈ R × R
+ :

1

σ
φ

(

x − θ

σ

)

≥
1

√
2π

w(|x|)

}

(16)

These sets are of particular interest, since for f = φ ∗ P,

∫

|x|>x0

f0(x) log
f0(x)

f (x)
dx ≤

∫

|x|>x0

f0(x) log
f0(x)

∫

Kx

1
σ φ

(

x−θ
σ

)

dP(θ, σ)
dx

≤
∫

|x|>x0

f0(x) log
f0(x)

1√
2π

w(|x|)P(Kx)
dx

≤
∫

|x|>x0

f0(x)

{

log f0(x) + |x|η + log

√
2π

P(Kx)

}

dx. (17)

By the assumptions of the Theorem, this quantity can be made arbitrarily small for a suitably
large x0 if we can show that P(Kx) > c1 exp(−c2|x|

η) for all |x| > x0 for some fixed constants
c1, c2 > 0. Therefore it suffices to prove that, For any τ > 0 there exists an x0 > 0 and a set
A with Π̃(A) > 1 − τ such that P ∈ A ⇒ P(Kx) ≥ (1/2) exp(−2|x|η/b1) for all |x| > x0.

The proof of this Lemma is fairly technical. It makes an extensive use of the tail behavior of
a random probability P arising from a Dirichlet process. For clarity of reading, we present
details of the proof in the Appendix.
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6 Image Fusion

3.2. Dirichlet mixture of normals

Next we consider Π̃ = Dir(αG0), a Dirichlet process with parameter αG0. Here α is a positive
constant and G0 is a probability measure on R × R

+.

Suppose f0 ∈ F satisfies the following property: For any 0 < τ < 1, ǫ > 0, there exist a set
A and a positive number x0 such that Π̃(A) > 1 − τ and for any f = φ ∗ P with P ∈ A,

∫

|x|>x0

f0(x) log
f0(x)

f (x)
dx < ǫ. (15)

Then, f0 ∈ KL(Π).

Note that the moment condition of Theorem 3.1.2 is substantially reduced.

Let f0 be a density on R satisfying

1.
∫

f0(x) log f0(x)dx < ∞.

2. ∃ η ∈ (0, 1) such that
∫

|x|η f0(x)dx < ∞.

Further assume that there exist σ0 > 0, 0 < β < η, γ > β and b1, b2 > 0 such that for large
x > 0

3. max
(

G0

([

x − σ0x
η
2 , ∞

)

× [σ0, ∞)
)

, G0

(

[0, ∞)× (x1− η
2 , ∞)

))

≥ b1x−β

4. G0

(

(−∞, x)× (0, e|x|
η− 1

2 )
)

> 1 − b2|x|
−γ.

and for large x < 0,

3’. max
(

G0

((

−∞, x + σ0|x|
η
2

]

× [σ0, ∞)
)

, G0

(

(−∞, 0]× (|x|1−
η
2 , ∞)

))

≥ b1|x|
−β

4.’ G0

(

(x, ∞)× (0, e|x|
η− 1

2 )
)

> 1 − b2|x|
−γ.

then f0 ∈ KL(Π). Other than the important moment condition on f0 this theorem also
requires some regularity in the tail of the base measure G0. For example, assumption 3,3’
requires the tail of G0 not to decay faster than a polynomial rate for the scale parameter σ.
This condition seems very reasonable since the Cauchy density itself can be written as a scale
mixture of normals with the mixing density having a polynomial decay towards infinity.

A standard choice for G0 is the conjugate normal-inverse gamma distribution (see Escobar
and West 1995), under which, θ|σ ∼ N(0, ξσ2) and σ−2 ∼ Gamma(r, λ), for some ξ, r, λ > 0.
For such a G0 with r ∈ (1/2, 1), one can show that the conditions of Theorem 3.2 hold true
with η ∈ (2r/(1+ r), 1), β = r(2− η) and γ = 2r. For example, the conditions in Assumptions
3, 3’ are satisfied since,

G0

(

[0, ∞)× (x1− η
2 , ∞)

)

=
1

2
Pr(σ−2 ≤ x−(2−η)) = c

∫ x−(2−η)

0
vr−1e−λvdv ≤ c′x−r(2−η),
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for some positive constants c, c′. To see that the conditions of Assumptions 4, 4’ also hold,
note that,

1 − G0

(

(−∞, x)× (0, e|x|
η− 1

2 )
)

≤ Pr(θ > x) + Pr(σ−2
< e−2|x|η+1).

An argument similar to the one provided above shows that the second term, namely,

Pr(σ−2
< e−2|x|η+1) is bounded by a constant times e−2r|x|η+r. Therefore, this term

can be made smaller than c|x|−γ for a suitable constant c. Now, using the inequality
1−Φ(X) ≤ (1/x)φ(x), where Φ(·) and φ(·) are the standard normal distribution and density
functions, we obtain

Pr(θ > x) ≤
c

x

∫

∞

0
vr−1/2−1e−( x2

2ξ +λ)vdv =
c′

x( x2

2ξ + λ)r−1/2
≤

c′′

x2r

for some positive constants c, c′, c′′. The desired inequality follows from these two bounds.
Therefore, such a choice of G0 would lead to posterior consistency, for example, when f0 is a
Cauchy density.

Proof. of Theorem 3.2 We simply need show that such an f0 satisfies the condition of Lemma
3.2. Let w(x) = exp(−xη), x ≥ 0. Define a class of subsets of R × R

+ indexed by x ∈ R, as
follows:

Kx =

{

(θ, σ) ∈ R × R
+ :

1

σ
φ

(

x − θ

σ

)

≥
1

√
2π

w(|x|)

}

(16)

These sets are of particular interest, since for f = φ ∗ P,

∫

|x|>x0

f0(x) log
f0(x)

f (x)
dx ≤

∫

|x|>x0

f0(x) log
f0(x)

∫

Kx

1
σ φ

(

x−θ
σ

)

dP(θ, σ)
dx

≤
∫

|x|>x0

f0(x) log
f0(x)

1√
2π

w(|x|)P(Kx)
dx

≤
∫

|x|>x0

f0(x)

{

log f0(x) + |x|η + log

√
2π

P(Kx)

}

dx. (17)

By the assumptions of the Theorem, this quantity can be made arbitrarily small for a suitably
large x0 if we can show that P(Kx) > c1 exp(−c2|x|

η) for all |x| > x0 for some fixed constants
c1, c2 > 0. Therefore it suffices to prove that, For any τ > 0 there exists an x0 > 0 and a set
A with Π̃(A) > 1 − τ such that P ∈ A ⇒ P(Kx) ≥ (1/2) exp(−2|x|η/b1) for all |x| > x0.

The proof of this Lemma is fairly technical. It makes an extensive use of the tail behavior of
a random probability P arising from a Dirichlet process. For clarity of reading, we present
details of the proof in the Appendix.
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8 Image Fusion

4. Density estimation: strong consistency

We establish L1-consistency of a Dirichlet location-scale mixture of normal prior Π by
verifying the conditions of Theorem 8 of Ghosal et al. (1999). This theorem is reproduced
below.

Let Π be a prior on F such that f0 ∈ KL(Π). If there is a δ < ǫ/4, c1, c2 > 0, β < ǫ2/8 and
Fn ⊆ F such that for all n large,

1. Π(F c
n) < c1e−nc2 ,

2. J(δ,Fn) < nβ,

then Π achieves strong posterior consistency at f0.

Here J(δ,G) denotes logarithm of the covering number of G by L1 balls of radii δ.

We first show how to calculate J(δ,G) for certain type of sets G. For some a > 0, u > l > 0
define

Fa,l,u = { f = φ ∗ P : P ((−a, a]× (l, u]) = 1} (18)

Then,

J(2κ,Fa,l,u) ≤ b0

�

b1
a

l
+ b2 log

u

l
+ 1

�

. (19)

where b0, b1 and b2 depend upon κ but not on a, l or u.

Proof. Let φθ,σ denote the normal density with mean θ and standard deviation σ. For σ2 >

σ1 > σ2/2, it can be shown that,

�

�φθ1,σ1
− φθ2,σ2

�

� ≤
�

�φθ1,σ2
− φθ2,σ2

�

�+
�

�φθ2,σ1
− φθ2,σ2

�

�

≤

�

2

π

|θ2 − θ1|

σ2
+ 3

σ2 − σ1

σ1
. (20)

Let ζ = min(κ/6, 1). Define σm = l(1 + ζ)m, m ≥ 0. Let M be the smallest integer such
that σM = l(1 + ζ)M ≥ u. This implies M ≤ (1 + ζ)−1 log(u/l) + 1. For 1 ≤ j ≤ M, let

Nj =

�

�

32
π a/(κσj−1)

�

. For 1 ≤ i ≤ Nj; 1 ≤ j ≤ M, define

Eij =

�

−a +
2a(i − 1)

Nj
, −a +

2ai

Nj

�

× (σj−1, σj]. (21)

Then, (θ, σ), (θ′, σ′) ∈ Eij ⇒
�

�φθ,σ − φθ′ ,σ′

�

� < κ. Take N = ∑
M
j=1 Nj and let

PN =







(P11, · · · , PN11, · · · , P1M, · · · , PNM M) : Pij ≥ 0, ∑
ij

Pij = 1







(22)
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be the N dimensional probability simplex and P∗
N be a κ-net in PN . Let τj’s be as before and

θij = −a + 2a(i − 1/2)/Nj, 1 ≤ i ≤ Nj, 1 ≤ j ≤ M. So (θij, σj) ∈ Eij ∀i, j. It can be shown by
following an argument similar to the one presented in the proof of Lemma 1 of Ghosal et al.
(1999) that ,

F =







M

∑
j=1

Nj

∑
i=1

P∗
ijφθij ,σj

: P∗ ∈ P∗
N







(23)

is a 2κ-net in Fa,l,u and consequently, J(2κ,Fa,l,u) ≤ J(κ,PN) ≤ N
�

1 + log 1+κ
κ

�

. But,

N ≤
M

∑
j=1

�

�

32

π

a

σj−1κ
+ 1

�

=

�

32

π

a

lκ

M−1

∑
j=0

(1 + ζ)−j + M

≤

�

32

π

a

l

1 + ζ

κζ
+

1

1 + ζ
log

u

l
+ 1

= b1
a

l
+ b2 log

u

l
+ 1 (24)

From this the result follows with b0 = 1 + log 1+κ
κ .

Let F κ
a,l,u = { f = φ ∗ P : P((−a, a]× (l, u]) ≥ 1 − κ}. Then J(3κ,F κ

a,l,u) ≤ J(κ,Fa,l,u).

Proof. Let f = φ ∗ P ∈ F κ
a,l,u. Consider the probability measure defined by P∗(A) = P(A ∩

(−a, a]× (l, u])/P((−a, a]× (l, u]). Then the density f ∗ = φ ∗ P∗ clearly belongs to Fa,l,u and
further satisfies � f − f ∗� < 2κ. This proves the lemma.

Suppose for each κ > 0, β > 0, there exist sequences of positive numbers an, un ↑ ∞, ln ↓ 0
with ln < un and constant β0, all depending on κ and β such that

1. Π̃ ({P : P((−an, an]× (ln, un]) < 1 − κ}) < e−nβ0 ,

2. an/ln < nβ, log(un/ln) < nβ.

then f0 ∈ KL(Π) implies that Π achieves strong posterior consistency at f0.

Proof. Take Fn = F κ
an ,ln ,un

. Then the conditions of Theorem 4 are easily verified using Lemma
4 for a suitable choice of κ > 0.

If Π̃ = Dir(αG0), verification of conditions 1 and 2 becomes particularly simple. For example,
if G0 is a product of a normal on θ and an inverse gamma on σ2, then the conditions of
theorem 4 are satisfied if an = O(

√
n), ln = O(1/

√
n) and un = O(en).
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8 Image Fusion

4. Density estimation: strong consistency

We establish L1-consistency of a Dirichlet location-scale mixture of normal prior Π by
verifying the conditions of Theorem 8 of Ghosal et al. (1999). This theorem is reproduced
below.

Let Π be a prior on F such that f0 ∈ KL(Π). If there is a δ < ǫ/4, c1, c2 > 0, β < ǫ2/8 and
Fn ⊆ F such that for all n large,

1. Π(F c
n) < c1e−nc2 ,

2. J(δ,Fn) < nβ,

then Π achieves strong posterior consistency at f0.

Here J(δ,G) denotes logarithm of the covering number of G by L1 balls of radii δ.

We first show how to calculate J(δ,G) for certain type of sets G. For some a > 0, u > l > 0
define

Fa,l,u = { f = φ ∗ P : P ((−a, a]× (l, u]) = 1} (18)

Then,

J(2κ,Fa,l,u) ≤ b0

�

b1
a

l
+ b2 log

u

l
+ 1

�

. (19)

where b0, b1 and b2 depend upon κ but not on a, l or u.

Proof. Let φθ,σ denote the normal density with mean θ and standard deviation σ. For σ2 >

σ1 > σ2/2, it can be shown that,

�

�φθ1,σ1
− φθ2,σ2

�

� ≤
�

�φθ1,σ2
− φθ2,σ2

�

�+
�

�φθ2,σ1
− φθ2,σ2

�

�

≤

�

2

π

|θ2 − θ1|

σ2
+ 3

σ2 − σ1

σ1
. (20)

Let ζ = min(κ/6, 1). Define σm = l(1 + ζ)m, m ≥ 0. Let M be the smallest integer such
that σM = l(1 + ζ)M ≥ u. This implies M ≤ (1 + ζ)−1 log(u/l) + 1. For 1 ≤ j ≤ M, let

Nj =

�

�

32
π a/(κσj−1)

�

. For 1 ≤ i ≤ Nj; 1 ≤ j ≤ M, define

Eij =

�

−a +
2a(i − 1)

Nj
, −a +

2ai

Nj

�

× (σj−1, σj]. (21)

Then, (θ, σ), (θ′, σ′) ∈ Eij ⇒
�

�φθ,σ − φθ′ ,σ′

�

� < κ. Take N = ∑
M
j=1 Nj and let

PN =







(P11, · · · , PN11, · · · , P1M, · · · , PNM M) : Pij ≥ 0, ∑
ij

Pij = 1







(22)
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be the N dimensional probability simplex and P∗
N be a κ-net in PN . Let τj’s be as before and

θij = −a + 2a(i − 1/2)/Nj, 1 ≤ i ≤ Nj, 1 ≤ j ≤ M. So (θij, σj) ∈ Eij ∀i, j. It can be shown by
following an argument similar to the one presented in the proof of Lemma 1 of Ghosal et al.
(1999) that ,

F =







M

∑
j=1

Nj

∑
i=1

P∗
ijφθij ,σj

: P∗ ∈ P∗
N







(23)

is a 2κ-net in Fa,l,u and consequently, J(2κ,Fa,l,u) ≤ J(κ,PN) ≤ N
�

1 + log 1+κ
κ

�

. But,

N ≤
M

∑
j=1

�

�

32

π

a

σj−1κ
+ 1

�

=

�

32

π

a

lκ

M−1

∑
j=0

(1 + ζ)−j + M

≤

�

32

π

a

l

1 + ζ

κζ
+

1

1 + ζ
log
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From this the result follows with b0 = 1 + log 1+κ
κ .

Let F κ
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(−a, a]× (l, u])/P((−a, a]× (l, u]). Then the density f ∗ = φ ∗ P∗ clearly belongs to Fa,l,u and
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A Multi-Features Fusion of Multi-Temporal Hyperspectral Images Using a Cooperative GDD/SVM Method
http://dx.doi.org/10.5772/56949

27



10 Image Fusion

4.1. Support vector machines

We give, in this section, a very brief presentation of Support Vector Machines (SVMs) that
is needed for the definition of their functional versions. We refer the reader to e.g. [4] for
a more comprehensive presentation. As stated in section ??, X denotes an arbitrary Hilbert
space. Our presentation of SVM departs from the standard introduction because it assumes
that the observations belong to X rather than to a d. This will make clear that the definition
of SVM on arbitrary Hilbert spaces is not the difficult part in the construction of functional
SVM. We will discuss problems related to the functional nature of the data in section 4.1.5.

Our goal is to classify data into two predefined classes. We assume given a learning set, i.e.
N examples (x1, y1), . . . , (xN , yN) which are i.i.d. realizations of the random variable pair
(X, Y) where X has values in X and Y in {−1, 1}, i.e. Y is the class label for X which is the
observation.

4.1.1. Hard margin SVM

The principle of SVM is to perform an affine discrimination of the observations with maximal
margin, that is to find an element w ∈ X with a minimum norm and a real value b, such that
yi(�w, xi�+ b) ≥ 1 for all i. To do so, we have to solve the following quadratic programming
problem:

(P0) min
w,b

�w, w�, subject to yi(�w, xi�+ b) ≥ 1, 1 ≤ i ≤ N.

The classification rule associated to (w, b) is simply (x) = sign(�w, x�+ b). In this situation
(called hard margin SVM), we request the rule to have zero error on the learning set.

4.1.2. Soft margin SVM

In practice, the solution provided by problem (P0) is not very satisfactory. Firstly, perfectly
linearly separable problems are quite rare, partly because non linear problems are frequent,
but also because noise can turn a linearly separable problem into a non separable one.
Secondly, choosing a classifier with maximal margin does not prevent overfitting, especially
in very high dimensional spaces (see e.g. [5] for a discussion about this point).

A first step to solve this problem is to allow some classification errors on the learning set.
This is done by replacing (P0) by its soft margin version, i.e., by the problem:

(PC)minw,b,ξ�w, w�+ C ∑
N
i=1 ξi,

subject to yi(�w, xi�+ b) ≥ 1 − ξi, 1 ≤ i ≤ N,
ξi ≥ 0, 1 ≤ i ≤ N.

Classification errors are allowed thanks to the slack variables ξi. The C parameter acts as
an inverse regularization parameter. When C is small, the cost of violating the hard margin
constraints, i.e., the cost of having some ξi > 0 is small and therefore the constraint on w
dominates. On the contrary, when C is large, classification errors dominate and (PC) gets
closer to (P0).
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4.1.3. Non linear SVM

As noted in the previous section, some classification problems don’t have a satisfactory linear
solution but have a non linear one. Non linear SVMs are obtained by transforming the
original data. Assume given an Hilbert space H (and denote �., .�H the corresponding inner
product) and a function φ from X to H (this function is called a feature map). A linear SVM
in H can be constructed on the data set (φ(x1), y1), . . . , (φ(xN), yN). If φ is a non linear
mapping, the classification rule (x) = sign(�w, φ(x)�H + b) is also non linear.

In order to obtain the linear SVM in H one has to solve the following optimization problem:

(PC,H)minw,b,ξ�w, w�H + C ∑
N
i=1 ξi,

subject to yi(�w, φ(xi)�H + b) ≥ 1 − ξi, 1 ≤ i ≤ N,
ξi ≥ 0, 1 ≤ i ≤ N.

It should be noted that this feature mapping allows to define SVM on almost arbitrary input
spaces.

4.1.4. Dual formulation and Kernels

Solving problems (PC) or (PC,H) might seem very difficult at first, because X and H are
arbitrary Hilbert spaces and can therefore have very high or even infinite dimension (when
X is a functional space for instance). However, each problem has a dual formulation. More
precisely, (PC) is equivalent to the following optimization problem (see [6]):

(DC)maxα ∑
N
i=1 αi − ∑

N
i=1 ∑

N
j=1 αiαjyiyj�xi, xj�,

subject to ∑
N
i=1 αiyi = 0,

0 ≤ αi ≤ C, 1 ≤ i ≤ N.

This result applies to the original problem in which data are not mapped into H, but also to
the mapped data, i.e., (PC,H) is equivalent to a problem (DC,H) in which the xi are replaced
by φ(xi) and in which the inner product of H is used. This leads to:

(DC,H)maxα ∑
N
i=1 αi − ∑

N
i=1 ∑

N
j=1 αiαjyiyj�φ(xi), φ(xj)�H,

subject to ∑
N
i=1 αiyi = 0,

0 ≤ αi ≤ C, 1 ≤ i ≤ N.

Solving (DC,H) rather than (PC,H) has two advantages. The first positive aspect is that
(DC,H) is an optimization problem in N rather than in H which can have infinite dimension
(the same is true for X ).

The second important point is linked to the fact that the optimal classification rule can
be written (x) = sign(∑N

i=1 αiyi�φ(xi), φ(x)�H + b). This means that both the optimization
problem and the classification rule do not make direct use of the transformed data, i.e. of the
φ(xi). All the calculations are done through the inner product in H, more precisely through
the values �φ(xi), φ(xj)�H. Therefore, rather than choosing directly H and φ, one can provide
a so called Kernel function K such that K(xi, xj) = �φ(xi), φ(xj)�H for a given pair (H, φ).
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In practice, the solution provided by problem (P0) is not very satisfactory. Firstly, perfectly
linearly separable problems are quite rare, partly because non linear problems are frequent,
but also because noise can turn a linearly separable problem into a non separable one.
Secondly, choosing a classifier with maximal margin does not prevent overfitting, especially
in very high dimensional spaces (see e.g. [5] for a discussion about this point).

A first step to solve this problem is to allow some classification errors on the learning set.
This is done by replacing (P0) by its soft margin version, i.e., by the problem:

(PC)minw,b,ξ�w, w�+ C ∑
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i=1 ξi,

subject to yi(�w, xi�+ b) ≥ 1 − ξi, 1 ≤ i ≤ N,
ξi ≥ 0, 1 ≤ i ≤ N.

Classification errors are allowed thanks to the slack variables ξi. The C parameter acts as
an inverse regularization parameter. When C is small, the cost of violating the hard margin
constraints, i.e., the cost of having some ξi > 0 is small and therefore the constraint on w
dominates. On the contrary, when C is large, classification errors dominate and (PC) gets
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Solving (DC,H) rather than (PC,H) has two advantages. The first positive aspect is that
(DC,H) is an optimization problem in N rather than in H which can have infinite dimension
(the same is true for X ).

The second important point is linked to the fact that the optimal classification rule can
be written (x) = sign(∑N

i=1 αiyi�φ(xi), φ(x)�H + b). This means that both the optimization
problem and the classification rule do not make direct use of the transformed data, i.e. of the
φ(xi). All the calculations are done through the inner product in H, more precisely through
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In order that K corresponds to an actual inner product in a Hilbert space, it has to fulfill
some conditions. K has to be symmetric and positive definite, that is, for every N, x1, . . . , xN

in X and α1, . . . , αN in , ∑
N
i=1 ∑

N
j=1 αiαjK(xi, xj) ≥ 0. If K satisfies those conditions, according

to Moore-Aronszajn theorem [? ], there exists a Hilbert space H and feature map φ such that
K(xi, xj) = �φ(xi), φ(xj)�H.

4.1.5. The case of functional data

The short introduction to SVM proposed in the previous section has clearly shown that
defining linear SVM for data in a functional space is as easy as for data in d, because we
only assumed that the input space was a Hilbert space. By the dual formulation of the
optimization problem (PC), a software implementation of linear SVM on functional data
is even possible, by relying on numerical quadrature methods to calculate the requested
integrals (inner product in L2(µ), cf section ??).

However, the functional nature of the data has some effects. It should be first noted that
in infinite dimensional Hilbert spaces, the hard margin problem (P0) has always a solution
when the input data are in general positions, i.e., when N observations span a N dimensional
subspace of X . A very naive solution would therefore consists in avoiding soft margins and
non linear kernels. This would not give very interesting results in practice because of the
lack of regularization (see [5] for some examples in very high dimension spaces, as well as
section ??).

Moreover, the linear SVM with soft margin can also lead to bad performances. It is indeed
well known (see e.g. [7]) that problem (PC) is equivalent to the following unconstrained
optimization problem:

(Rλ)min
w,b

1

N

N

∑
i=1

max (0, 1 − yi(�w, xi�+ b)) + λ�w, w�,

with λ = 1
CN . This way of viewing (PC) emphasizes the regularization aspect (see also

[8–10]) and links the SVM model to ridge regression [? ]. As shown in [11], the penalization
used in ridge regression behaves poorly with functional data. Of course, the loss function
used by SVM (the hinge loss, i.e., h(u, v) = max(0, 1 − uv)) is different from the quadratic
loss used in ridge regression and therefore no conclusion can be drawn from experiments
reported in [11]. However they show that we might expect bad performances with the linear
SVM applied directly to functional data. We will see in sections ?? and ?? that the efficiency
of the ridge regularization seems to be linked with the actual dimension of the data: it does
not behave very well when the number of discretization points is very big and thus leads to
approximate the ridge penalty by a dot product in a very high dimensional space (see also
section ??).

It is therefore interesting to consider non linear SVM for functional data, by introducing
adapted kernels. As pointed out in e.g. [10], (PC,H) is equivalent to

(Rλ,H)min
f∈H

1

N

N

∑
i=1

max (0, 1 − yi f (xi))) + λ� f , f �H.
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Using a kernel corresponds therefore both to replace a linear classifier by a non linear one,
but also to replace the ridge penalization by a penalization induced by the kernel which
might be more adapted to the problem (see [9] for links between regularization operators
and kernels). The applications presented in ?? illustrate this fact.

5. Proposed approach

5.1. Overview of the proposed fusion schema

In this chapter, we propose a new technique in remote-sensing images classification by fusing
heterogeneous representations. The proposed approach involve several steps including
preprocessing; features extraction; features fusion; matching and classification stages. The
block diagram of the proposed technique is shown in Fig. 1. In our previous work [12],
we proposed a novel 3D model which design the spectral signature as a three dimensional
function which are the time, reflectance, and wavelength band (equation 1). For each pixel,
we generated a surface (3D Mesh) which generalizes the usual signature by adding a time
dimension. We call this new representation the multi-temporal spectral signature. Interested
readers can refer to [12].

Figure 1. General workflow of the proposed approach

5.2. Images pre-processing and features extraction

In this study multi-temporal hyperspectral images constitutes the source data. Spectral and
textural features are the foundational data for this kind of images. The 3D spectral features
are extracted from the relative mesh of a given pixel (multi-temporal spectral signature)
while the textural ones are derived directly from images. Mainly, two features vectors are
generated for each pixel as follows:

Heat kernel signature (HKS) : The HKS is a signature computed only from the intrinsic
geometry of an object. Suppose (m, g) is a compelte Riemannian manifold, g is the
Riemannian metric. δ is the Laplace-Beltrami operator. The eigenvalues {λn} and
eigenfunctions {φn} of δ are δφn = λnφn, where φn is normalized to be orthonormal in
L2(M). The Laplace spectrum is given by 0 = λ0 < λ1 ≤ λ2 ≤ . . . , λn → ∞. △ is the
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might be more adapted to the problem (see [9] for links between regularization operators
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5.2. Images pre-processing and features extraction

In this study multi-temporal hyperspectral images constitutes the source data. Spectral and
textural features are the foundational data for this kind of images. The 3D spectral features
are extracted from the relative mesh of a given pixel (multi-temporal spectral signature)
while the textural ones are derived directly from images. Mainly, two features vectors are
generated for each pixel as follows:

Heat kernel signature (HKS) : The HKS is a signature computed only from the intrinsic
geometry of an object. Suppose (m, g) is a compelte Riemannian manifold, g is the
Riemannian metric. δ is the Laplace-Beltrami operator. The eigenvalues {λn} and
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Laplace-Beltrami operator. As a local shape descriptor, Sun et al. [? ] defined the heat kernel
signature (HKS) by :

h(x, t) = Kx,t(x, x) =
∞

∑
i=0

e−λt φ2
i (x) (25)

where λ0, λ1, · · · ≥ O are eigenvalues and 0, φ1, . . . are the corresponding eigenfuctions on
the Laplace-Beltrami operator, satisfying δXφi = λiφi. Let’s denote this vector by Y.

Spatio-temporal Gabor filters: Texture is one of the important characteristics used in
identifying objects or regions of interest. It contains important information about the
structural arrangement of surfaces. Fusing texture with 3D spectral information is conducive
to the interpretation of remote seeing image [13]. We use a method for dynamic texture
modeling based on spatio-temporal Gabor filters. Briefly, the sequence of images is convolved
with a bank of spatiotemporal Gabor filters and a feature vector is constructed with the
energy of the responses as components. Let’s denote this vector by Y′.

5.3. Multi-Features fusion based on a cooperative GDD/SVM classifier

In this section, we present an approach that combines an SVM classifier [1] with a
generatively trained GDD model and profits, accordingly, from the advantages of both
techniques. The key idea here is to concatenate the extracted features into one vector and to
project it in a new space. First, a straightforward feature combination approach is used to
concatenate feature vectors (Y and Y′) to a single feature vector X = (Xi1, . . . , Xidim). The dim
size may differ from one pixel to another making the fusion and classification a challenging
tasks. To overcome this limit, we use the Generalized Dirichelet Distribution (GDD) model
[14] to map each feature vector into its Fisher score. Therefore, the Fisher kernel function
from the GDD is used to replace the Gaussian kernel in the classical SVM.

Let (X1, . . . , XN) denote a collection of N multi-temporal hyperspectral pixels. Each data Xi

is assumed to have dim size, X = (Xi1, . . . , Xidim). Each data Xi is assumed to be drawn from
the following finite mixture model :

p(Xi/θ) =
M

∑
j=1

p(Xi/j, θj)P(j) (26)

where M is the number of components, the P(j), (0 < P(j) < 1 and ∑
dim
j=1 P(j) = 1) are the

mixing proportions and p(X/j, θj) is the Probability Density Function PDF. θ is the set of
parameters to be estimated : θ = (α1, . . . , αM, P(1), . . . , P(M)).

If the random vector X = (Xi1, . . . , Xidim) follows a Dirichelet distribution, the joint density
function is given by :

X = (Xi1, . . . , Xidim) =
τ(|α|)

∏
dim+1
i=1 τ(αi)

dim+1

∏
i=1

Xαi−1
i (27)
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Since that each feature vector X may has an arbitrary dimension, the proposed method
defines the fusion as a projection from one feature vector space (spectral bands) to another
with a fixed dimentionnality. Accordingly, the feature-level fusion is done by projecting the
vector X combining into one vector in the Fisher space. Thus, the generative model will have
its impact on the final classification result through the projection of the extracted features in
this new space.

SVM classifier is used to classify the fused features and the multi-temporal dataset of images.
Given the generative model obtained by GDD with parameters θ, we compute for each
sample X the Fisher score Ud = ▽θ logP(x|θ) (the gradient of the log likehood of x for
model θ). The Fisher kernel operates in the gradient space of the generative mode and
provides a natural similarity measure between data samples. For each sample, this score is a
vector of fixed dimentionality. Using this score, the Fisher Information matrix is defined as
I = EXi

{

UXi
TUXi

}

. After Fisher score normalization, we compute the Fisher kernel function
on the basis of the Euclidean distance between the scores of the new sample and the training
samples :

K(X, X
′
) = UXi

I
−1UX′

i
T (28)

In the second stage, suppose our training set S consists of labels input vectors (Xi, zj), i =
1, . . . , m where Xi ∈ R

n and zi ∈ {±1}. Given a kernel matrix and a set of labels zi for each
sample, the SVM proceeds to learn a classifier of the form,

z(x) = sign(∑
i

αizi)K(Xi, X)) (29)

where the coefficients αi are determined by solving a constrained quadratic program which
aims to maximize the margin between the classes. In our experiments we used the LIBSVM
package. Our research deals with multi-class problem. The One-Vs-One approach is
adopted to extend the proposed approach to multi-temporal hyperspectral classification.

6. Results and discussion

The proposed approach was tested on two different data sets. The datasets involve several
types of information with dimensions ranging from 176 to 183 bands. The first dataset,
Hyperion, contains vegetation type data, is divided into five classes, has 183 spectral bands
and has a pixel size of 30m. The second set is from an airborne sensor (AVIRIS), divided into
7 classes, has 176 spectral bands and a pixel size of 18m. First, we present experiments that
assess the classification accuracy of the proposed approach (PA). We also included the direct
SVM fusion and a probabilistic fusion approach in our comparison as a baseline. Figure (2)
summarizes the results obtained. At each level of label noise we carry out four experiments,
and the figures show the mean performance. The strength of this approach is that it combines
the rich modeling power of GDD with the discriminative power of the SVM algorithm.
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∞

∑
i=0

e−λt φ2
i (x) (25)
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p(Xi/θ) =
M

∑
j=1

p(Xi/j, θj)P(j) (26)

where M is the number of components, the P(j), (0 < P(j) < 1 and ∑
dim
j=1 P(j) = 1) are the

mixing proportions and p(X/j, θj) is the Probability Density Function PDF. θ is the set of
parameters to be estimated : θ = (α1, . . . , αM, P(1), . . . , P(M)).

If the random vector X = (Xi1, . . . , Xidim) follows a Dirichelet distribution, the joint density
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X = (Xi1, . . . , Xidim) =
τ(|α|)

∏
dim+1
i=1 τ(αi)

dim+1

∏
i=1

Xαi−1
i (27)

New Advances in Image Fusion32
A Multi-Features Fusion of Multi-Temporal Hyperspectral Images Using a Cooperative GDD/SVM Method 15

10.5772/56949

Since that each feature vector X may has an arbitrary dimension, the proposed method
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and has a pixel size of 30m. The second set is from an airborne sensor (AVIRIS), divided into
7 classes, has 176 spectral bands and a pixel size of 18m. First, we present experiments that
assess the classification accuracy of the proposed approach (PA). We also included the direct
SVM fusion and a probabilistic fusion approach in our comparison as a baseline. Figure (2)
summarizes the results obtained. At each level of label noise we carry out four experiments,
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(a) Overall accuracy of the EKFD [Both two sets] 

(b-1) Map of ground truth 
(b-2) Result of classificationwith EKFD [First set] 

(c) Overall accuracy of the EKFD [Two sets] 

Figure 2. Experimental results.
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1. Introduction

The principle idea behind synthetic aperture radar (SAR) stems from the desire for high-
resolution images. SAR transmits signal at spaced intervals called pulse repetition interval
(PRI). The responses at each PRI are collected and processed to reconstruct a radar image of
the terrain [1]. In general, high-resolution SAR images in range domain are generated using
ultra-wideband (UWB) waveforms as radar transmitted pulse [2]. UWB pulses (500 MHz
bandwidth and above) can enhance the range resolution considerably. UWB technology has
dual advantages: good capacity of penetration and high-resolution target detection in range
domain for radar applications [3].

Orthogonal frequency division multiplexing (OFDM), a modulation scheme commonly
utilized in commercial communications, shows a great potential for use in forming radar
waveforms. An OFDM signal is comprised of several orthogonal subcarriers, which are
simultaneously emitted over a single transmission path. Each subcarrier occupies a small slice
of the entire signal bandwidth [4]. Technology advances helped in increasing the sampling
speed capabilities, allowing accurate generation of UWB-OFDM waveforms. This results in a
diverse signal that is capable of high-resolution imaging. While OFDM has been elaborately
studied and commercialized in the digital communication field, it has not yet been widely
studied by the radar scientific community apart from a few efforts [5-7]. The advantages of
using OFDM in radar applications include: (a) Transceiver system is based on digital imple‐
mentation using relatively inexpensive components (b) Ease of narrowband interference
mitigation (c) High-resolution in UWB scale and good multi-path potential (d) Same architec‐
ture can be used to transmit large amounts of data in real time; and (e) Flexibility in pulse
shaping using different subcarrier compositions.

© 2013 Hossain et al.; licensee InTech. This is a paper distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



New Advances in Image Fusion36

Chapter 3

Multi-Frequency Image Fusion Based on MIMO UWB
OFDM Synthetic Aperture Radar

Md Anowar Hossain, Ibrahim Elshafiey and
Majeed A. S. Alkanhal

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/56943

1. Introduction

The principle idea behind synthetic aperture radar (SAR) stems from the desire for high-
resolution images. SAR transmits signal at spaced intervals called pulse repetition interval
(PRI). The responses at each PRI are collected and processed to reconstruct a radar image of
the terrain [1]. In general, high-resolution SAR images in range domain are generated using
ultra-wideband (UWB) waveforms as radar transmitted pulse [2]. UWB pulses (500 MHz
bandwidth and above) can enhance the range resolution considerably. UWB technology has
dual advantages: good capacity of penetration and high-resolution target detection in range
domain for radar applications [3].

Orthogonal frequency division multiplexing (OFDM), a modulation scheme commonly
utilized in commercial communications, shows a great potential for use in forming radar
waveforms. An OFDM signal is comprised of several orthogonal subcarriers, which are
simultaneously emitted over a single transmission path. Each subcarrier occupies a small slice
of the entire signal bandwidth [4]. Technology advances helped in increasing the sampling
speed capabilities, allowing accurate generation of UWB-OFDM waveforms. This results in a
diverse signal that is capable of high-resolution imaging. While OFDM has been elaborately
studied and commercialized in the digital communication field, it has not yet been widely
studied by the radar scientific community apart from a few efforts [5-7]. The advantages of
using OFDM in radar applications include: (a) Transceiver system is based on digital imple‐
mentation using relatively inexpensive components (b) Ease of narrowband interference
mitigation (c) High-resolution in UWB scale and good multi-path potential (d) Same architec‐
ture can be used to transmit large amounts of data in real time; and (e) Flexibility in pulse
shaping using different subcarrier compositions.

© 2013 Hossain et al.; licensee InTech. This is a paper distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



Although SAR is a well-known remote sensing application which obtains high-resolution in
range domain by transmitting wide-band waveform and high-resolution in azimuth domain
by utilizing the relative motion between the target and the radar platform, current single
antenna SAR is not able to provide some remote sensing performances, such as simultaneously
high-resolution and wide-swath imaging. Multiple-Input Multiple-Output (MIMO) SAR
provides a solution to resolve these problems and provides following advantages compared
to traditional SAR: diversity in viewing angles on a particular target to improve identifiability,
increased azimuth resolution or decreased pulse repetition frequency (PRF) which results in
wider swath. Due to the larger number of degrees-of-freedom of a MIMO system, enhanced
resolution can be achieved by coherently processing of multiple waveforms at multiple
receivers simultaneously.

Several research works have been reported in recent years to overcome the trade-off between
wide-swath and azimuth resolution in conventional SAR system [8]. However, MIMO SAR
systems are only investigated by generalizing the theoretical modeling of MIMO communi‐
cation systems and discussed recently in radar communities [9 and 10]. The configuration of
the proposed MIMO-SAR system in this chapter is considered as two co-located transmitters
and two receivers along with image fusion technique.

In remote sensing applications, the increasing availability of spaceborne sensor gives a
motivation to utilize image fusion algorithms. Several situations in image processing require
high spatial and high spectral resolution in a single image. Image fusion is the process of
combining relevant information from two or more images into a single image. The resulting
image will be more informative than any of the input images [11].

The structure of the chapter is as follows. UWB-OFDM pulse shaping for MIMO SAR is
described in section 2, while the comparison of auto-correlation and cross-correlation of
different pulses in radar perspective is presented in section 3. Detailed analysis of MIMO wide-
swath SAR system and its functionality is discussed in section 4. MIMO wide-swath SAR
imaging results based on UWB-OFDM waveforms are presented in section 5. Section 6 presents
the optimized SAR image based on image fusion technique. Final conclusions are provided in
section 7.

2. MIMO UWB OFDM signal generation

A widely studied approach in MIMO architecture involves the transmission of orthogonal
signals from different antennas. This makes it possible to separate the reflected signals from
the target arriving at the receiver. In particular, we develop a procedure to design the optimal
waveform that ensures orthogonality by imposing the rules shown in Table 1. The key to our
approach is to use a model for the received radar signals that explicitly includes the transmitted
waveforms. To achieve lower cross-correlation between transmitted pulses with a common
bandwidth for the same range resolution, OFDM frequency-domain sample vector for N
subcarriers is generated using the sequences shown in Table 1. The sequence in Table 1
generates the orthogonal signals based on the placement of 1’s and 0’s. We observe that in each
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column, if we consider a 1, the other elements are 0’s and the next column is filled with all 0’s
to prevent over-sampling. The spectrum of an OFDM signal is shown in Figure 1 where the
width of the main-lobe depends on the duration of the pulse. In digital implementation of an
OFDM signal, the pulse duration is related to the number of subcarriers. As the number of
subcarrier increases, the duration of the pulse increases.

1 2 3 - - - - - - - - - - - - N

Ψω1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

Ψω2 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0

Ψω3 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0

Ψω4 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0

Table 1. OFDM frequency-domain sample vector generation

Figure 1. OFDM signal spectrum

As an example, an OFDM signal is generated according to the scheme shown in Figure 2 by
spreading the digital frequency domain vector shown in Table 1 and the modulation symbol
from random integer generator. The order of modulation (M) is chosen as 4 for QPSK. Inverse
Fast Fourier Transform (IFFT) is then applied to obtain the discrete time domain OFDM signal
and finally Hanning window is imposed to minimize the side-lobes. The time-domain OFDM
signal is given as
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As an example, an OFDM signal is generated according to the scheme shown in Figure 2 by
spreading the digital frequency domain vector shown in Table 1 and the modulation symbol
from random integer generator. The order of modulation (M) is chosen as 4 for QPSK. Inverse
Fast Fourier Transform (IFFT) is then applied to obtain the discrete time domain OFDM signal
and finally Hanning window is imposed to minimize the side-lobes. The time-domain OFDM
signal is given as
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Ψtxi(t)=Ϝ -1 Ψωi  w(n)      i =1,2, ⋯4 (1)

where, Hanning window w(n)=0.5{1 - cos( 2πn
N )},    0≤n ≤ N - 1 and N is the number of subcar‐

riers. The term Ψωi  denotes the spreading sequences for ith sub-pulses. Each antenna transmits
two sub-pulses simultaneously.

UWB-OFDM waveforms are generated using the following parameters: number of OFDM
subcarriers, N = 256, sampling time, Δts = 1ns results in baseband bandwidth, B0 = 1/2Δts = 500
MHz, dividing by a factor of two to satisfy Nyquist criterion. UWB-OFDM waveform in
frequency domain and time domain is shown in Figure 3 and Figure 4 respectively. We can
observe that the Hanning window reasonably minimizes side-lobes which in turns improve
the auto-correlation function (ACF) and cross-correlation function (CCF) of time-domain
OFDM waveforms as shown in Figure 5 and Figure 6, respectively.

Figure 2. OFDM signal generator

Figure 3. UWB-OFDM waveform in frequency-domain (a) before windowing (b) after windowing
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Figure 4. UWB-OFDM waveform in time-domain (a) before windowing (b) after windowing

Figure 5. Auto-correlation function (ACF) of OFDM pulses in time domain (a) before windowing (b) after windowing

Figure 6. Cross-correlation function (CCF) of OFDM pulses in time domain (a) before windowing (b) after windowing

Multi-Frequency Image Fusion Based on MIMO UWB OFDM Synthetic Aperture Radar
http://dx.doi.org/10.5772/56943

41



Ψtxi(t)=Ϝ -1 Ψωi  w(n)      i =1,2, ⋯4 (1)

where, Hanning window w(n)=0.5{1 - cos( 2πn
N )},    0≤n ≤ N - 1 and N is the number of subcar‐

riers. The term Ψωi  denotes the spreading sequences for ith sub-pulses. Each antenna transmits
two sub-pulses simultaneously.

UWB-OFDM waveforms are generated using the following parameters: number of OFDM
subcarriers, N = 256, sampling time, Δts = 1ns results in baseband bandwidth, B0 = 1/2Δts = 500
MHz, dividing by a factor of two to satisfy Nyquist criterion. UWB-OFDM waveform in
frequency domain and time domain is shown in Figure 3 and Figure 4 respectively. We can
observe that the Hanning window reasonably minimizes side-lobes which in turns improve
the auto-correlation function (ACF) and cross-correlation function (CCF) of time-domain
OFDM waveforms as shown in Figure 5 and Figure 6, respectively.

Figure 2. OFDM signal generator

Figure 3. UWB-OFDM waveform in frequency-domain (a) before windowing (b) after windowing

New Advances in Image Fusion40

Figure 4. UWB-OFDM waveform in time-domain (a) before windowing (b) after windowing

Figure 5. Auto-correlation function (ACF) of OFDM pulses in time domain (a) before windowing (b) after windowing

Figure 6. Cross-correlation function (CCF) of OFDM pulses in time domain (a) before windowing (b) after windowing

Multi-Frequency Image Fusion Based on MIMO UWB OFDM Synthetic Aperture Radar
http://dx.doi.org/10.5772/56943

41



3. Comparison of auto-correlation and cross-correlation

Cross-correlation is the measure of similarity between two different sequences and can be
given as

Rxy(m)= { ∑n=0

N -m-1

xn+myn
*   m≥0

Ryx
* (-m)            m <0

(2)

where, xn and yn are the elements of two different sequences and have period N. Auto-
correlation shows the measure of similarity between the sequence and its cyclic shifted copy
can be obtained from equation (2) as a special case (x = y) [12].

Figure 7. Ideal Walsh-Hadamard sequences (a) ACF (b) CCF

The auto-correlation and cross-correlation properties of the sequences used in generating the
transmitted waveform play an important role in high-resolution SAR imaging based on MIMO
architecture. Practically, lower cross-correlation between waveforms avoids interference
which results in independent information gains from target signature at various angles.
Similarly, low auto-correlation peak side-lobe ratio ensures high-resolution in range domain.
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Thus, the waveforms with lower cross-correlation and auto-correlation peak side-lobe are
desired for MIMO SAR systems. The sequences with good auto-correlation property provide
high-resolution target detection and lower cross-correlation mitigates the interference from
nearby sensors.

Orthogonality is the most important properties of Walsh-Hadamard sequences [12]. Because
of this property, the cross-correlation between any two codes of the same set is zero as shown
in Figure 7. Unfortunately, Walsh sequences are orthogonal only in the case of perfect
synchronization, and have non-zero off-peak auto-correlations and cross–correlation in
asynchronous case. To compare the performance of OFDM signal using Walsh-Hadamard
sequences and proposed orthogonal sequences for radar application, we can analyze ACF and
CCF by assuming a point target at the center of the target area.

Figure 8. Point target profile using Walsh-Hadamard sequences and proposed orthogonal sequences (a) ACF of
Walsh-Hadamard (b) ACF of proposed orthogonal sequences (c) CCF of Walsh-Hadamard (d) CCF of proposed orthog‐
onal sequences

Figure 8(a) and Figure 8(b) show the auto-correlation, while Figure 8(c) and Figure 8(d) show
the cross-correlation in terms of a point target using Walsh-Hadamard sequences and pro‐
posed orthogonal sequences respectively. The auto-correlation is measured as the correlation
between the received signal and the transmitted signal at same antenna, while cross-correlation
is measured as the correlation between transmitted signal in one antenna and the received
signal in another antenna. We can observe that the significant improvement in ACF and CCF
for a point target profile using proposed orthogonal pulses in comparison with Walsh-
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asynchronous case. To compare the performance of OFDM signal using Walsh-Hadamard
sequences and proposed orthogonal sequences for radar application, we can analyze ACF and
CCF by assuming a point target at the center of the target area.
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Figure 8(a) and Figure 8(b) show the auto-correlation, while Figure 8(c) and Figure 8(d) show
the cross-correlation in terms of a point target using Walsh-Hadamard sequences and pro‐
posed orthogonal sequences respectively. The auto-correlation is measured as the correlation
between the received signal and the transmitted signal at same antenna, while cross-correlation
is measured as the correlation between transmitted signal in one antenna and the received
signal in another antenna. We can observe that the significant improvement in ACF and CCF
for a point target profile using proposed orthogonal pulses in comparison with Walsh-
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Hadamard sequences. In MIMO SAR, ACF between transmitted and received signal of the
same antenna should provide narrow main-lobe width for high-resolution. Lower CCF
properties between transmitted signal of one antenna and received signal of another antenna
are needed to avoid interference from nearby sensor. The main-lobe width of the proposed
sequence shown in Figure 8(b) is reasonably narrow in comparison with Figure 8(a) which in
turns improves the range resolution. In case of CCF, since all cross-correlation values, not just
peak values, affect the system performance, we should consider the measure as mean cross-
correlation value. The mean CCF of the proposed sequence shown in Figure 8 (d) is much
lower than the Walsh-Hadamard sequence shown in Figure 8(c).

4. MIMO wide-swath SAR imaging system

In MIMO SAR, independent signals are transmitted through different antennas, and these
signals are received by multiple antennas after propagating through the environment. Each
antenna transmits a unique waveform orthogonal to the waveforms transmitted by other
antennas; the returns of each orthogonal signal will carry independent information about the
targets. In the receiver, a matched filter-bank is used to extract the orthogonal waveform
components. Consider the MIMO SAR system with a transmit array equipped with 2 co-
located antennas and a receive array (possibly the same array) equipped with 2 co-located
antennas. Suppose both transmit and receive arrays are close to each other in space but they
see different target area at different directions. Figure 9 shows the MIMO wide-swath stripmap
SAR imaging topology and Figure 10 shows the block diagram of the MIMO OFDM SAR
imaging system.

The antenna beam A and B are illuminating the swath A and B respectively. At an specific PRI,
TxA transmits pulse ΨtxA(t) via the antenna beam A, while TxB transmits the pulse ΨtxB(t) via
the antenna beam B at the same time. Echoes from swath A and B will exist at the both receivers.
To separate echoes from swath A and B, a careful design of transmit antenna pattern as well
as transmitted pulse is required. It can further reduce the disturbance echoes from the temporal
undesired swath.

The OFDM signal generator generates signal according to the scheme shown in Figure 2. The
detailed of the block diagram components such as D/A converter, mixer and power amplifier
shown in Figure 10 can be found in [5]. We consider four typical orthogonal sub-pulses based
on the sample vectors shown in Table 1. Two different signals ΨtxA(t) and ΨtxB(t) are trans‐
mitted simultaneously from antenna A and B respectively at each PRI where each signal is the
combination of two sub-pulses and are given as

ΨtxA(t)=Ψtx1(t) + Ψtx2(t) (3)

ΨtxB(t)=Ψtx3(t) + Ψtx4(t) (4)
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Figure 10. MIMO OFDM SAR imaging system

Figure 9. MIMO stripmap wide-swath SAR imaging topology
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The received signal for radar at antenna A is given by

ΨrxA(t , u)=α ∑
n=1

N

σnΨtxA(t - tdnA) + β ∑
n=1

N

σnΨtxB(t - tdnB) + ηA(t) (5)

Similarly, the received signal at antenna B is given as

ΨrxB(t , u)=α ∑
n=1

N

σnΨtxB(t - tdnB) + β ∑
n=1

N

σnΨtxA(t - tdnA) + ηB(t) (6)

where, α and β are the scale factor and is chosen as 1

2
 and 1

10
 respectively. The scale factor

α is chosen to distribute the total power to two sub-pulses and β is chosen to model the out-

of-beam signal. The term tdnA =  2
c (XcA + xn)2 + (yn - u)2 is the time-delay associated with the

target position (xn, yn) in swath A and tdnB =  2
c (XcB + xn)2 + (yn - u)2 is the time-delay associated

with swath B. XcA and XcB denote the range distance to the center of the swath A and B
respectively, where, n = 1, 2, 3…N are the number of targets within the antenna beam at any
given synthetic aperture position (u) in azimuth direction while σn denotes the reflectivity of
the nth target. The terms ηA(t) and ηB(t) denote the additive white Gaussian noise.

Next, the received radar echoes should be separated apart by matched filtering. As the
transmitted signal matrix is known to both transmitter and receiver and the transmitted
waveforms are designed to be orthogonal, they should satisfy the conditions

∫
0

T p

Ψrxm(t)Ψtxn
* (t)= {δ(t),        m =n

0,              m≠n
(7)

where, Tp is the sub-pulse duration and (.)* denotes a conjugate operator. At receiving antenna
A, two received orthogonal sub-pulses can be extracted by two matched filters and is given by

ΨMFn(t)=Ϝ -1 F{ΨrxA(t)}.F{Ψtxn
* (t)} (8)

Similarly, at receiving antenna B, two sub-pulses can be separated as

ΨMFn(t)=Ϝ -1 F{ΨrxB(t)}.F{Ψtxn
* (t)} (9)

where, n = 1, 2 for equation (8) and n = 3, 4 for equation (9) while Ϝ -1 and F denote the inverse
Fourier transform and Fourier transform operations respectively. Therefore, echoes from
different swaths could be considered as well separated after the matched filtering.
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Finally, we will have a total of four extracted signals from two receiving antennas. Compared
to the traditional phased array SAR where the same waveform is used at all the transmitting
antennas and a total of 2 coefficients are obtained from the matched filtering, the MIMO OFDM
SAR gives more coefficients and therefore provides more degrees of freedom [8]. Each matched
filter output is then processed separately using SAR imaging algorithms such as Range-
Doppler algorithm and image fusion technique is then applied to achieve final SAR recon‐
structed image as described in the following sections.

5. MIMO Wide-swath SAR Imaging

The scenario involves the wide-swath SAR imaging by considering four distinct orthogonal
UWB-OFDM sub-pulses as SAR transmitted signals using two antennas. The objective is to
investigate the performance of the proposed orthogonal waveforms in MIMO architecture. Let
us consider 2 point targets reside in swath A at the positions [(x1, y1), (x2, y2)] = [(300, 100), (900,
-50)] while 2 point targets reside at the positions [(x3, y3), (x4, y4)] = [(300, -50), (900, 100)] in
swath B. Stripmap SAR imaging topology is considered for raw data generation based on the
proposed UWB-OFDM waveforms [5] while Range-Doppler algorithm is used for SAR image
reconstruction [13 and 14]. Processing of SAR raw data from multiple antennas can be done
in parallel. Field Programmable Gate Array (FPGA) is a powerful tool for real-time imple‐
mentation of SAR image reconstruction from raw data [15 and 16]. Figure 11 and Figure 12
show the resolved images of swath A based on the output of matched filter 1 and 2 respectively
while Figure 13 and Figure 14 show the reconstructed images of swath B based on the output
of matched filter 3 and 4.

6. Image fusion

Observing a given scene from two SAR antennas with distinct trajectories allows one to
determine the position of the scattering points. Unfortunately, SAR interferometry fails when
the scenes imaged by the two antennas are not really the same scene, due to a too large distance
between the trajectories of the two SAR antennas. In these cases, the two images may not be
sufficiently correlated. SAR image fusion is presented here exploiting the data recorded by
same antennas about the same scene using two sub-pulses simultaneously. The usefulness of
the fusion technique is evaluated by estimating the noise level for the non-fused and the fused
images in terms of entropy. In addition, the behavior of the back-scatterer, as a function of
frequency, changes on the basis of the surface types. Therefore, if the images acquired in many
regions of the spectrum are fused, the output image will carry useful information about specific
back-scatterers. Furthermore, the fusion of multi-frequency images can allow us to fuse the
information acquired about the object observed in many spectral bands, in the same spatial
context. Complementary information about the same observed scene can be available in the
following cases:– data recorded by the same sensor scanning the same scene at different dates
(multi-temporal image fusion); – data recorded by the same sensor operating in different
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The received signal for radar at antenna A is given by
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respectively, where, n = 1, 2, 3…N are the number of targets within the antenna beam at any
given synthetic aperture position (u) in azimuth direction while σn denotes the reflectivity of
the nth target. The terms ηA(t) and ηB(t) denote the additive white Gaussian noise.

Next, the received radar echoes should be separated apart by matched filtering. As the
transmitted signal matrix is known to both transmitter and receiver and the transmitted
waveforms are designed to be orthogonal, they should satisfy the conditions
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Similarly, at receiving antenna B, two sub-pulses can be separated as
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where, n = 1, 2 for equation (8) and n = 3, 4 for equation (9) while Ϝ -1 and F denote the inverse
Fourier transform and Fourier transform operations respectively. Therefore, echoes from
different swaths could be considered as well separated after the matched filtering.
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Finally, we will have a total of four extracted signals from two receiving antennas. Compared
to the traditional phased array SAR where the same waveform is used at all the transmitting
antennas and a total of 2 coefficients are obtained from the matched filtering, the MIMO OFDM
SAR gives more coefficients and therefore provides more degrees of freedom [8]. Each matched
filter output is then processed separately using SAR imaging algorithms such as Range-
Doppler algorithm and image fusion technique is then applied to achieve final SAR recon‐
structed image as described in the following sections.

5. MIMO Wide-swath SAR Imaging

The scenario involves the wide-swath SAR imaging by considering four distinct orthogonal
UWB-OFDM sub-pulses as SAR transmitted signals using two antennas. The objective is to
investigate the performance of the proposed orthogonal waveforms in MIMO architecture. Let
us consider 2 point targets reside in swath A at the positions [(x1, y1), (x2, y2)] = [(300, 100), (900,
-50)] while 2 point targets reside at the positions [(x3, y3), (x4, y4)] = [(300, -50), (900, 100)] in
swath B. Stripmap SAR imaging topology is considered for raw data generation based on the
proposed UWB-OFDM waveforms [5] while Range-Doppler algorithm is used for SAR image
reconstruction [13 and 14]. Processing of SAR raw data from multiple antennas can be done
in parallel. Field Programmable Gate Array (FPGA) is a powerful tool for real-time imple‐
mentation of SAR image reconstruction from raw data [15 and 16]. Figure 11 and Figure 12
show the resolved images of swath A based on the output of matched filter 1 and 2 respectively
while Figure 13 and Figure 14 show the reconstructed images of swath B based on the output
of matched filter 3 and 4.

6. Image fusion

Observing a given scene from two SAR antennas with distinct trajectories allows one to
determine the position of the scattering points. Unfortunately, SAR interferometry fails when
the scenes imaged by the two antennas are not really the same scene, due to a too large distance
between the trajectories of the two SAR antennas. In these cases, the two images may not be
sufficiently correlated. SAR image fusion is presented here exploiting the data recorded by
same antennas about the same scene using two sub-pulses simultaneously. The usefulness of
the fusion technique is evaluated by estimating the noise level for the non-fused and the fused
images in terms of entropy. In addition, the behavior of the back-scatterer, as a function of
frequency, changes on the basis of the surface types. Therefore, if the images acquired in many
regions of the spectrum are fused, the output image will carry useful information about specific
back-scatterers. Furthermore, the fusion of multi-frequency images can allow us to fuse the
information acquired about the object observed in many spectral bands, in the same spatial
context. Complementary information about the same observed scene can be available in the
following cases:– data recorded by the same sensor scanning the same scene at different dates
(multi-temporal image fusion); – data recorded by the same sensor operating in different
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spectral bands (multi-frequency image fusion); – data recorded by the same sensor at different

polarizations (multi-polarization image fusion); – data recorded by the same sensor located

on platforms flying at different heights (multi-resolution image fusion).

Figure 11. Reconstructed image from matched filter 1 (swath A)

Figure 12. Reconstructed image from matched filter 2 (swath A)
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Many methods exist to perform image fusion. The very basic one is based on discrete wavelet
transform (DWT) has become a very useful tool for fusion. DWT is a wavelet transform for
which the wavelets are discretely sampled. As with other wavelet transforms, a key advantage
it has over Fourier transforms is temporal resolution: it captures both frequency and location
information (location in time). Figure 15 shows the block diagram of wavelet transform based
image fusion technique. The principle of image fusion using wavelets is to merge the wavelet
decompositions of the two original images using fusion methods applied to approximations
coefficients and details coefficients [11]. The DWT is a spatial frequency decomposition that
provides a flexible multi-resolution analysis of an image. The inverse discrete wavelet
transform (IDWT) is applied to the combined coefficient map to produce the fused image from
the two input images.

Figure 13. Reconstructed image of matched filter 3 (swath B)

In all wavelet based image fusion schemes the DWT of the two registered input images I1(x,
y) and I2(x, y) are computed and these transforms are combined using some kind of fusion rule.
Then the inverse discrete wavelet transform (IDWT) is computed and the fused image I(x, y)
is reconstructed as

Ι(x, y)=W -1 ϕ{W (I1(x, y)), W (I2(x, y))} (10)

where, W and W-1 denotes the DWT and IDWT respectively. The term ϕ denotes the rules
imposed in fusion such as wavelet function, level, approximation, and detail coefficients.
Figure 16 shows the single level decomposition of the image shown in Figure 14 using Haar
wavelet function.
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spectral bands (multi-frequency image fusion); – data recorded by the same sensor at different
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on platforms flying at different heights (multi-resolution image fusion).

Figure 11. Reconstructed image from matched filter 1 (swath A)

Figure 12. Reconstructed image from matched filter 2 (swath A)

New Advances in Image Fusion48

Many methods exist to perform image fusion. The very basic one is based on discrete wavelet
transform (DWT) has become a very useful tool for fusion. DWT is a wavelet transform for
which the wavelets are discretely sampled. As with other wavelet transforms, a key advantage
it has over Fourier transforms is temporal resolution: it captures both frequency and location
information (location in time). Figure 15 shows the block diagram of wavelet transform based
image fusion technique. The principle of image fusion using wavelets is to merge the wavelet
decompositions of the two original images using fusion methods applied to approximations
coefficients and details coefficients [11]. The DWT is a spatial frequency decomposition that
provides a flexible multi-resolution analysis of an image. The inverse discrete wavelet
transform (IDWT) is applied to the combined coefficient map to produce the fused image from
the two input images.

Figure 13. Reconstructed image of matched filter 3 (swath B)

In all wavelet based image fusion schemes the DWT of the two registered input images I1(x,
y) and I2(x, y) are computed and these transforms are combined using some kind of fusion rule.
Then the inverse discrete wavelet transform (IDWT) is computed and the fused image I(x, y)
is reconstructed as

Ι(x, y)=W -1 ϕ{W (I1(x, y)), W (I2(x, y))} (10)

where, W and W-1 denotes the DWT and IDWT respectively. The term ϕ denotes the rules
imposed in fusion such as wavelet function, level, approximation, and detail coefficients.
Figure 16 shows the single level decomposition of the image shown in Figure 14 using Haar
wavelet function.
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Figure 14. Reconstructed image of matched filter 4 (swath B)

Figure 15. Wavelet transform based image fusion

Figure 17 shows the fused image obtained using the reconstructed images from matched filters
1 and 2 while Figure 18 shows the fused image using the reconstructed images from matched
filters 3 and 4. The image fusion output shown in Figure 17 and Figure 18 is achieved by taking
the ‘maximum’ for ‘approximations’ and the ‘minimum’ for the ‘details’ using level 5 based
on Haar wavelet. Haar wavelet is chosen because of its simplicity and good reconstruction
capability. Since wavelet coefficients with large absolute values contain the information about
the salient features of the images such as edges and lines, a good fusion rule is to choose the
‘maximum’ for ‘approximation’ values, while ‘minimum’ is chosen for the ‘details’ to suppress
the noise. Final reconstructed wide-swath SAR image shown in Figure 19 with all resolved
point targets of swath A and B is the horizontal concatenation of fused images of Figure 17
and Figure 18.

New Advances in Image Fusion50

Figure 16. Single level decomposition (a) Approximation (b) Horizontal detail (c) Vertical detail (d) Diagonal detail

Figure 17. Fused image of swath A
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Figure 14. Reconstructed image of matched filter 4 (swath B)

Figure 15. Wavelet transform based image fusion

Figure 17 shows the fused image obtained using the reconstructed images from matched filters
1 and 2 while Figure 18 shows the fused image using the reconstructed images from matched
filters 3 and 4. The image fusion output shown in Figure 17 and Figure 18 is achieved by taking
the ‘maximum’ for ‘approximations’ and the ‘minimum’ for the ‘details’ using level 5 based
on Haar wavelet. Haar wavelet is chosen because of its simplicity and good reconstruction
capability. Since wavelet coefficients with large absolute values contain the information about
the salient features of the images such as edges and lines, a good fusion rule is to choose the
‘maximum’ for ‘approximation’ values, while ‘minimum’ is chosen for the ‘details’ to suppress
the noise. Final reconstructed wide-swath SAR image shown in Figure 19 with all resolved
point targets of swath A and B is the horizontal concatenation of fused images of Figure 17
and Figure 18.
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Figure 16. Single level decomposition (a) Approximation (b) Horizontal detail (c) Vertical detail (d) Diagonal detail

Figure 17. Fused image of swath A
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Figure 18. Fused Image of Swath B

Figure 19. Final SAR image

To assess the reduction in noise level due to image fusion technique, we can analyze both input
images and fused image in terms of entropy. Entropy is a good measure for information content
(uncertainty) present in the image space. Information content in SAR images after wavelet
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transform based image fusion is identified with entropy value that serves as a measure of the
roughness present in the image space. Entropy is used as a metric of noise level in non-fused
and fused images. Table 2 summarizes the entropy of the input images of swath A and B as
well as the fused images for different wavelet families. We observe that the Haar wavelet gives
the best reduction in noise level.

Wavelet Parameters
Entropy of image

1

Entropy of

image 2

Entropy of

fused image

(Swath A)

Entropy of

fused image

(Swath B)

Haar
Level : 5

Approx.: Max

Details: Min

(Swath A)

4.6353

(Swath B)

4.5606

(Swath A)

4.6072

(Swath B)

4.5362

3.9572 3.8627

Daubechies1 3.9574 3.8630

Symlets2 3.9594 3.8696

Coiflets2 3.9605 3.8723

Table 2. Entropy of fused SAR images using different wavelet families.

7. Conclusions

An image fusion based MIMO UWB-OFDM SAR system has been presented which is able to
provide wide-swath imaging. Pulse shaping is an important component in OFDM applica‐
tions. As orthogonal transmission waveforms are required for the proposed MIMO OFDM
SAR system, a new approach to generate OFDM waveforms is explored and investigated. It
is shown that the proposed MIMO UWB-OFDM SAR indeed provides a potential solution to
high-resolution remote sensing as well as wide-swath imaging. The usefulness of the devel‐
oped approach has been demonstrated by fusing SAR images. Image fusion techniques
provide a powerful tool to reduce clutter and certain types of noise such as AWGN, and thus
can be used to enhance the quality of SAR images. The performance of the system is estimated
by testing the proposed technique on SAR data acquired on multiple sensors. The results are
evaluated by estimating the information flow from the input data to the output image, in terms
of automatic recognition and detection of features present in the acquired images. Each SAR
sensor acquires data about the inspected region using more than one frequency, and a
processor that exploits the information carried by multiple frequencies is thus needed. Future
work may include investigation of the proposed system by exploiting sensors that scan the
from multiple heights using various platforms.
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Figure 18. Fused Image of Swath B

Figure 19. Final SAR image

To assess the reduction in noise level due to image fusion technique, we can analyze both input
images and fused image in terms of entropy. Entropy is a good measure for information content
(uncertainty) present in the image space. Information content in SAR images after wavelet
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1. Introduction

Resolution can be defined as the fineness with which an instrument can distinguish between
the different values of some measured attribute. In the context of remotely sensed data
references are made to four types of resolutions i.e. spatial resolution, spectral resolution,
radiometric resolution and temporal resolution. The spatial resolution refers to the area of
smallest resolvable element (e.g. pixel); spectral resolution refers to the smallest wavelength
which can be detected in the spectral measurement (Lillesand and Kiefer, 2000). Technically
these two types of resolution can be inter-related so that one can be improved at the expense
of the others. The information content of an image is based on spatial and spectral resolution
of an imaging system. To exploit and explore the benefit of enhanced spatial capability and
spectral capability in, fusion techniques were developed to merge complementary informa‐
tion. Fusion of multispectral and panchromatic image has been done in past several times by
many researchers for different purposes i.e. for feature extraction, 3D modelling (building
extraction etc.). “Image fusion is the combination of two or more images to form a new image by using
a certain algorithm”. (Pohl and Genderen Van, 1998).

“The “hyper” in the hyperspectral means “over” as in “too many” and refers to the large
number of measured wavelength bands” (Shippert, 2008). Hyperspectral imaging in remote
sensing was a major breakthrough that opened the avenues of research in various fields like
mineralogy mapping for oil exploration, environmental geology, vegetation sciences, hydrol‐
ogy, tsunami-aids, biomass estimation and many more due to its ample spectral information
contained in hundreds of co-registered bands.

The fusion of hyperspectral with multispectral image results in a new image which has the
spatial resolution of the high resolution image and preserves the spectral characteristics of the
hyperspectral image. There are some algorithms used specifically to fuse and classify the

© 2013 Pande and Tiwari; licensee InTech. This is a paper distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.
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Hyperspectral data with the multispectral data. Some of the algorithms are transformation
based (e.g. Intensity, Hue, Saturation), wavelet decomposition, neural networks, knowledge-
based image fusion, Colour Normalised Transform (CNT), Principal Component Transform
(PCT) and the Gram-Schmidt Transform. (Ali Darvishi et al., 2005). Combining hyperspectral
and multispectral images can enhance the information content of the image thus help in
geospatial data extraction. Fusion of multi-sensor image data has been widely used procedures
now-a-days for complementing and enhancing the information content. The present work
primarily focuses on the qualitative assessment of the fused image in terms of the spatial and
spectral improvement.

The main objective of the present work is the analysis of the high resolution and hyperspectral
data fusion using three different approaches (Gram-Schmidt, Principal Component, and
Colour Normalised Transform), analyzing the spectral variation due to fusion and its effect
on classification and feature extraction.

1.1. Theoretical concepts: Different fusion algorithms

1.1.1. IHS (Intensity Hue Saturation)

According to Chen et al., 2003 in the IHS transformation image fusion, the Intensity (I), the
spatial component and the Hue (H) and the Saturation (S), the spectral components of an image
are generated from the RGB image. The Intensity (I) component is then substituted by the high
resolution panchromatic image to render a new image in RGB, which is referred as the fused
image.

1.1.2. Colour Normalised Transform

The Colour Normalised Transform is another fusion technique that uses a mathematical
grouping of the colour image and a high resolution image. The Colour Normalised Transform
is also named as the Energy Subdivision Transform that employs a high resolution image to
sharpen a low resolution image. This algorithm is also called as Brovey Transform. The Brovey
Transform algorithm uses a formula that normalises multispectral bands used for a RGB (Red
Green Blue) display and multiplies the result by high resolution data to add the intensity or
the brightness component of the image. Brovey Transform is used to increase the contrast and
intensity in the low and high ends of the histogram and for producing visually appealing
images. (Sanjeevi, 2006)

Brovey Transform works as:

DNf = A (w1* DNa + w2* DNb )+ B

DNf = A* DNa* DNb +B

A and B are scaling and additive factors respectively and w1 and w1 weighting parameters.
DNf, DNa and DNb refer to digital numbers of the final fused image and the input images a
and b respectively.
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1.1.3. Wavelets-Transform image fusion

According to Gomez et al., 2001 the wavelet concept is utilized to fuse the two spectral levels
of a hyperspectral image with one band of multispectral image. Wavelets generally mean
“waves”. Image fusion by Wavelet-based method involves two processing steps: first step
consists of extracting the details or the structures. The extracted structures are decomposed
into three wavelet coefficients based upon the direction that is the vertical, horizontal and the
diagonal. Thus, in combining the high resolution image with a low-resolution image, the high-
resolution image is first reference stretched three times, each time to match one of the low-
resolution band histograms while, the second step necessitates the introduction of these
structures/details into each low-resolution image band through the inverse wavelet transform.
Thus, the spectral content from the low-resolution band image is preserved because only the
scale structures between the two different resolution images are added. (Sanjeevi, 2008)

1.1.4. Gram-Schmidt Transform

Aiazzi et al., 2006 described that the Gram-Schmidt Transform (GST) is another fusion
algorithm which is used to fuse a multispectral image with a panchromatic image. The Gram-
Schmidt Transform was invented by Brover and Laben in 1998 and patented by Eastman
Kodak. This algorithm works in two modes: “mode1” and “mode2”. The “mode1” takes the
pixel average of the multispectral (MS) bands. The spatial quality in “mode1” is better but
suffers from the spectral distortions due to the radiometric difference of the average of the MS
bands and the panchromatic image. While, in “mode2” the spectral distortions are not present
but suffer from poor enhancement and low sharpness.

1.1.5. Principal Component Transform

The Principal Component Transform (PCT) used to enhance a low resolution image using a
high resolution data. The PC band1 is replaced with a high resolution band, which is scaled
to match the PC band1. Hence, there is almost no distortion in the spectral information in the
fused output image.

The mathematical operation that applies a linear transformation, based on an image-specific
matrix is as follows:

PC = Wpc * DN

Where Wpc = transformation matrix

PC = transformed data (uncorrelated)

DN = original data

2. Literature review

Pohl and Genderen Van, 1998 proposed that image fusion is a tool to combine the multisource
imagery using the advanced image processing techniques. According to Pohl and Genderen
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Van, 1998, the main objectives of image fusion are to sharpen images, improve geometric
corrections, enhance certain features that are not visible in either of the images, replace the
defective data, complement the data sets for the improved classification, detect changes using
multitemporal data and, substitute the missing information in one of the image with the signals
from another source image.

According to Kasetkasem, Arora and Varshney (2004), merging methods are often divided
into two categories: first method simultaneously takes into account all bands in the merging
process e.g. Hue- Saturation-Value transformation, Principle-Component transformation,
Gram-Schmidt transformation technique; the second category deal separately with the spatial
information and each spectral band e.g. Brovey transformation, High-Pass-Filter transforma‐
tion technique.

Ali Darvishi et al., 2005 analysed the capability of the two algorithms that is Gram-Schmidt
and the Principal Component transform in the spectral domain. For this purpose two datasets
have been taken (Hyperion/ Quickbird-MS and Hyperion/ Spot-Pan). The main objective of
the study was the investigation of the two algorithms in the spectral domain and the statistical
interpretation of the fused images with the raw Hyperion. The study area was Central Sulawesi
in Indonesia. The results of the fusion show that the GST and PCT has almost similar ability
in protecting the statistics as compared to the raw Hyperion. The correlation analysis show
poor correlation between the raw Hyperion and the fused image bands. The results of the
analysis show that the bands located in the high-frequency area of the spectrum better preserve
the statistics as compared to the bands located in the low-frequency region. Different statistical
parameters like the standard deviation, mean, median, and mode, maximum, minimum values
of the raw Hyperion and the two fused images (GST & PCT) were compared for the analysis.

Gomez et al., 2001 has studied the fusion of the hyperspectral data with the multispectral data
using the Wavelet-based image fusion. In the present study, two levels of hyperspectral data
were used in fusion with one band of multispectral data. The fused image obtained had a RMSE
(Root Mean Square Error) of 2.8 per pixel with a SNR (Signal to Noise Ration) of 36 dB. The
results show that the fusion of hyperspectral data with the multispectral data produced a
composite image of high spatial resolution of the multispectral data with all the spectral
characteristics of the hyperspectral data with minimum artifacts. The study concluded that
more than two datasets can be fused using the Wavelet transform image fusion technique.

Chen et al., 2003 carried out a study which took the hyperspectral data, AVIRIS ( Airborne
Visible/ Infrared Imaging Spectrometer) to fuse with TOPSTAR ( Topographic Synthetic
Aperture Radar) which provides the textural information to get a composite image to study
the urban scene. The study has been conducted for the urban area of Park city, Utah. The
composite image obtained has been superimposed on the DEM (Digital Elevation Model)
generated from the TOPSTAR data to get a 3D perspective. The transformed image obtained
was interpreted for the visual discrimination among various urban types. This was possible
after fusion of AVIRIS and TOPSTAR data using IHS (Intensity Hue Saturation) transform,
which resulted in an image having high spatial and spectral resolution. The objective of the
study was to study the areas which are at a risk due to the geological hazards like the ava‐
lanches, mudflows etc. The fused image was interpreted for information extraction for
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assessment and mitigation of these hazards in the area. The results of the fusion of the AVIRIS
and TOPSTAR data show better enhancement in the urban features. The spectral resolution of
the AVIRIS data helped in better discriminating among various urban features like the
buildings and the mining tailings. The MNF-transformed bands of the AVIRIS data also
improved the discriminability among the various features. The combined use of the HIS fused
data, the MNFtransformed bands and the DEM of the area provided for better understanding
of the urban features.

Ling et al., 2006 has analysed the results of fusing the high resolution data like the IKONOS
and Quickbird using the Fast Fourier Transform - enhanced IHS method. The study aimed at
evaluating the ability of the traditional methods like the HIS and the PCA (Principal Compo‐
nent Analysis) in fusing the high resolution data to preserve the colour and spectral informa‐
tion in the fused product. The study integrated the IHS transform with the FFT filtering of both
the panchromatic and the intensity component of the multispectral image. The study has been
done using the IKONOS and the Quickbird data. The analysis prove that the HIS transform
using the FFT filtering improved the results in preserving the high spatial quality and the
spectral characteristics.

3. Data used and study area

3.1. Hyperion

Hyperion is an EO-1 (Earth Observation-1) sensor which was developed under NASA’s new
millennium program in November, 2000. The level 1 product used in the present study has
242 bands in the range of 355-2577 nm at 10 nm bandwidth (Table 1). Out of these 242 bands
only 198 bands are calibrated. The bands which are not calibrated are set to zero.

3.2. IKONOS (MSS & Panchromatic)

IKONOS was the first commercial high resolution satellite to be positioned into the orbit. The
IKONOS (MSS) image has 4 bands (red, green, blue, NIR) with 4m spatial resolution and
IKONOS (Pan) has one band (.4-.9 µm) with 1m spatial resolution (Table 1).

3.3. Study area

For the present study datasets of two areas were selected- Dehradun and Udaipur city area.

The city of Dehradun is situated in the south central part of Dehradun district. Dehradun city
lies at 30°19' N and 78°20' E. The city is located at an altitude of 640 m above MSL. The lowest
altitude is 600 m in the southern board is 38.04 sq. Km. The highest altitude is 1000 m in the
northern part of the city. The site where the city is located slopes gently from north to south
direction. The northern part of the region is heavily dissected by a number of seasonal streams
(Fig 1a). The study strip can be divided into two distinct land cover classes:

1. The western portion is dominated with varied vegetation of Sal, Teak, Bamboo, etc.
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Van, 1998, the main objectives of image fusion are to sharpen images, improve geometric
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composite image obtained has been superimposed on the DEM (Digital Elevation Model)
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was interpreted for the visual discrimination among various urban types. This was possible
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which resulted in an image having high spatial and spectral resolution. The objective of the
study was to study the areas which are at a risk due to the geological hazards like the ava‐
lanches, mudflows etc. The fused image was interpreted for information extraction for
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assessment and mitigation of these hazards in the area. The results of the fusion of the AVIRIS
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millennium program in November, 2000. The level 1 product used in the present study has
242 bands in the range of 355-2577 nm at 10 nm bandwidth (Table 1). Out of these 242 bands
only 198 bands are calibrated. The bands which are not calibrated are set to zero.

3.2. IKONOS (MSS & Panchromatic)

IKONOS was the first commercial high resolution satellite to be positioned into the orbit. The
IKONOS (MSS) image has 4 bands (red, green, blue, NIR) with 4m spatial resolution and
IKONOS (Pan) has one band (.4-.9 µm) with 1m spatial resolution (Table 1).

3.3. Study area

For the present study datasets of two areas were selected- Dehradun and Udaipur city area.

The city of Dehradun is situated in the south central part of Dehradun district. Dehradun city
lies at 30°19' N and 78°20' E. The city is located at an altitude of 640 m above MSL. The lowest
altitude is 600 m in the southern board is 38.04 sq. Km. The highest altitude is 1000 m in the
northern part of the city. The site where the city is located slopes gently from north to south
direction. The northern part of the region is heavily dissected by a number of seasonal streams
(Fig 1a). The study strip can be divided into two distinct land cover classes:

1. The western portion is dominated with varied vegetation of Sal, Teak, Bamboo, etc.
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2. The southern part with the urban and some patches of vegetation.

The urban pattern in Dehradun city is rather scattered and irregular. The northern part again
consists of varied LULC classes like the crop fields, fallow land, urban, grassland, shrubs, and
vegetation of mix type. A seasonal river named Tons flows from North East to South West
direction. Geomorphically, the northern part of the region is occupied by piedmont fan of post-
Siwalik Dun gravels called the Donga fan. Donga fan is a region in the Dehradun city that
consists of the varied LULC classes.

Udaipur, Rajasthan, India has been selected as the second study area. Rajasthan is one of the
mineral rich states of India. This north-western state of India occupies a place of pride in
production and marketing of metallic and non metallic minerals in India. The Aravalli range,
one of the oldest mountain ranges of the world runs along the NE–SW direction for more than
720 km, covering nearly 40, 000 km2. The study area (Longitude 73° 32′ 58″ to 73° 49′ 35″ E
and Latitude 24° 08′ 18″ to 24° 59′ 53″ N) covers an area of about 750 km2 of this main block

Sensor Altitude 705Km

Spatial Resolution 30 mt

Radiometric Resolution 16 bit

Swath 7.2 Km

IFOV (mrad) 0.043

No.Of Rows 256

No.of Columns 3128

VNIR Spectral Range 0.45-1.35 µm

SWIR Spectral Range 1.40-2.48 µm

Altitude 681 Km

Inclination 98.20

Repeat Cycle 14 day

Sensor Optical Sensor Assembly

Swath width 11Km

Off Nadir Viewing +-Omnidirectional

Revisit time 1-3 days

Spatial Resolution 1m (PAN), 4m (MSS)

Spectral Bands (µm) 0.45-0.52

0.52-0.60

0.63-0.69

0.76-0.90

0.45-0.90 (PAN)

Table 1. Technical Specification of the (a) Hyperion and (b)IKONOS (XS and PAN) sensors
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of the Aravalli range corresponding to path and row number 146/40 corresponding to full scene
of Hyperion (Fig 1 b).

Figure 1. Study area (a) Dehradun (b) Udaipur

4. Methodology

The methodology adopted was chosen to analyze the performance of the hyperspectral and
high-resolution data fusion for classification. The major objective of the study was to compa‐
ratively evaluate the three algorithms i.e. the GS (Gram-Schmidt), PC (Principal Component)
and the CN (Colour Normalised) Transform on the fusion of Hyperion data with the high-
spatial resolution IKONOS (mss) data. The fused images were analysed for pros and cons of
the spectral domain image fusion models. For analyzing the spectral variation due to fusion,
major land cover areas were identified. The original Hyperion spectra over these landcover
areas was compared visually with the fused spectra over same area. The analysis was carried
out visually and statistically by comparing spectral profiles of different features with the
original Hyperion profiles. (Fig 2).Overall classification accuracy has been used to evaluate the
Hyperion data, multispectral IKONOS and the fused data for the two study areas. The
methodology is divided in 3 broad steps (Fig 2):

4.1. Pre-processing stage

The Hyperion Level 1R product used was having many bad lines and columns in the different
bands. Thus radiometric correction for removal of bad columns was performed by calculating
the average of the DN values of the adjacent columns. Atmospheric correction techniques have
been developed in order to allow the retrieval of pure ground radiances from the target
materials. The haziness in atmosphere accounts for the reduced radiation from Sun reaching
the Earth surface causing blurriness in the image. Due to this reason, the atmospheric correc‐
tion for the Hyperion image was considered important in the present study. In the present
work, the FLAASH model in ENVI 4.5 is chosen which is a first-principles atmospheric
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The methodology adopted was chosen to analyze the performance of the hyperspectral and
high-resolution data fusion for classification. The major objective of the study was to compa‐
ratively evaluate the three algorithms i.e. the GS (Gram-Schmidt), PC (Principal Component)
and the CN (Colour Normalised) Transform on the fusion of Hyperion data with the high-
spatial resolution IKONOS (mss) data. The fused images were analysed for pros and cons of
the spectral domain image fusion models. For analyzing the spectral variation due to fusion,
major land cover areas were identified. The original Hyperion spectra over these landcover
areas was compared visually with the fused spectra over same area. The analysis was carried
out visually and statistically by comparing spectral profiles of different features with the
original Hyperion profiles. (Fig 2).Overall classification accuracy has been used to evaluate the
Hyperion data, multispectral IKONOS and the fused data for the two study areas. The
methodology is divided in 3 broad steps (Fig 2):

4.1. Pre-processing stage

The Hyperion Level 1R product used was having many bad lines and columns in the different
bands. Thus radiometric correction for removal of bad columns was performed by calculating
the average of the DN values of the adjacent columns. Atmospheric correction techniques have
been developed in order to allow the retrieval of pure ground radiances from the target
materials. The haziness in atmosphere accounts for the reduced radiation from Sun reaching
the Earth surface causing blurriness in the image. Due to this reason, the atmospheric correc‐
tion for the Hyperion image was considered important in the present study. In the present
work, the FLAASH model in ENVI 4.5 is chosen which is a first-principles atmospheric
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correction modelling tool for retrieving spectral reflectance from hyperion. The spectral
subsets for the Hyperion data have been created in the same wavelength range as that of the
IKONOS i.e. 400-900 nm and so band number 12 to 55 are used. So, in total, the Hyperion image
file has been reduced from resized 117 bands to 36 bands. Co-registration of hyperion image
has been done within IKONOS MSS. The amount of RMS in the registration processes was
about 0.823 pixels.

 
 

Fig2: Methodology for comparative evaluation of fusion algorithms on classification accuracy 
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Image fusion is the phenomenon of combination of one or more images using an algorithm to acquire a composite 
image which caters with better and enhanced spatial and spectral information. After developing the spectral subsets 
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IKONOS data utilizing Principal component Transformation, Gram-Schmidt Transformation (GST) and Color 
Normalized Transformation. The merging of the spectral subsets of the Hyperion image file (R, G, B and NIR bands) 
with the IKONOS (R, G, B and NIR bands) produced four separate. These separate images were then stacked to get 
one single 36 band image which achieved the spatial resolution of IKONOS and the spectral characteristics of the 
Hyperion image (Fig 3 & 4).   

  
   
 
 
 
 
 
 

                 
 
 
 
 

(a)CN Fused Image        (b)  PC Fused Image  (c)GST Fused Image 
Figure 3: Hyperion and IKONOS MSS fused images for part of Dehradun area (a: Fusion using CN Transform, b: 
Fusion using PC Transform, c: Fusion using GS Transform) 

Georefrencing 

Atmospheric Correction 

Radiometric Corrections 

Spectral subsetting 

Image Fusion 

GST PCT CN 

Hyperion Ikonos MSS 

Spectra comparisoion over 
major land use categories 

Classification and Accuracy 
Assessment 

Figure 2. Methodology for comparative evaluation of fusion algorithms on classification accuracy

4.2. Image fusion

Image fusion is the phenomenon of combination of one or more images using an algorithm to
acquire a composite image which caters with better and enhanced spatial and spectral informa‐
tion. After developing the spectral subsets for the Hyperion image its individual (R, G, B and
NIR) band has been fused with the R, G, B and NIR band of IKONOS data utilizing Principal
component  Transformation,  Gram-Schmidt  Transformation (GST)  and Color  Normalized
Transformation. The merging of the spectral subsets of the Hyperion image file (R, G, B and NIR
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bands) with the IKONOS (R, G, B and NIR bands) produced four separate. These separate images
were then stacked to get one single 36 band image which achieved the spatial resolution of
IKONOS and the spectral characteristics of the Hyperion image (Fig 3 & 4).
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Figure 4: Hyperion and IKONOS MSS fused images for part of Udaipur area(a: Fusion using CN Transform, b: 
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The spectral profiles of the various land cover classes present in the scene area like vegetation,
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correction modelling tool for retrieving spectral reflectance from hyperion. The spectral
subsets for the Hyperion data have been created in the same wavelength range as that of the
IKONOS i.e. 400-900 nm and so band number 12 to 55 are used. So, in total, the Hyperion image
file has been reduced from resized 117 bands to 36 bands. Co-registration of hyperion image
has been done within IKONOS MSS. The amount of RMS in the registration processes was
about 0.823 pixels.
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4.2. Image fusion

Image fusion is the phenomenon of combination of one or more images using an algorithm to
acquire a composite image which caters with better and enhanced spatial and spectral informa‐
tion. After developing the spectral subsets for the Hyperion image its individual (R, G, B and
NIR) band has been fused with the R, G, B and NIR band of IKONOS data utilizing Principal
component  Transformation,  Gram-Schmidt  Transformation (GST)  and Color  Normalized
Transformation. The merging of the spectral subsets of the Hyperion image file (R, G, B and NIR
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bands) with the IKONOS (R, G, B and NIR bands) produced four separate. These separate images
were then stacked to get one single 36 band image which achieved the spatial resolution of
IKONOS and the spectral characteristics of the Hyperion image (Fig 3 & 4).
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4.3. Spectra comparision

The spectral profiles of the various land cover classes present in the scene area like vegetation,
bare soil, crop land, fallow land etc. and three fused products have been compared with the
Hyperion.

4.3.1. Vegetation

In the Hyperion image, we observe that in the beginning there is a slow rise in the curve starting
from the wavelength of 500 nm to a value of more than 250 and there exists a short peak in the
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blue region. At a wavelength of 700 nm there is a sharp rise in the curve that reaches to a value
of 2000 and then there exists some small peaks in the NIR region which establishes that
vegetation is best discriminated in this region. In the CN fused image, the outcomes of the
spectral profile is almost similar with only one remarkable difference that is in the reflectance
value. The vegetation here shows a rise in reflectance value only up to 450-750. In the PC fused
image, the results are different with respect to Hyperion and CN fused image. The spectral
profile of the GS fused image is almost similar to the PC fused image (Fig 5).

Figure 5. Spectral profiles for Sal Vegetation

4.3.2. Building

In the Hyperion image, the curve starts rising slowly from the blue region up to a value of 1000
and then suddenly at the green edges the slope of the curve increases and there is a linear rise
in the curve up to a value of 2500. In the NIR end small peaks are observed. Similar sort of
consequences are observed in the CN fused image but the value is limited only up to 800. The
results of the PC fused image are somewhat different. The building feature seen above is
enhanced with values ranging more than 4000. The rise starts from the blue region that reaches
to a peak at 1625. In between green and the red region of the spectrum, the rise is continuous.
The curve is flattened at a value of 1500 but suddenly the curve rises at 680 nm with a steep
slope that reaches a maximum value of 3900. Then after the red region, small peaks are
observed. The spectrum observed for the GS fused image is same as the PC fused image (Fig 6).
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Figure 6. Spectral profiles for Bulding with terracotta roof

4.3.3. Bare soil

The spectral profile of the bare soil shows variations in the Hyperion image. The curve rises
with a high slope and one can observe short peaks at wavelengths of 580 nm, 680 nm and
highest rise at 820 nm. The rise in the curve is not uniform as there are some dumpy peaks and
dips in the curve. Only, between blue and the green region, the rise is somewhat linear with
one peak at 580 nm. In between the green and the red region, one enhanced peak can be
observed at 680 nm but near to the red region at a value of about 3360 there is a flat dip. In the
NIR region, some undulations are present in the curve with a peak at a value of about 3680 at
820 nm. In the CN fused image, one can observe a number of dips and peaks in the curve. The
curve initially rises and meets a pointed peak with a value near to 500 at 515 nm. Then, in
between the blue and the green region, the curve rises with a steep slope with two peaks at a
value of 612.5 and 662.5 at 580 nm and 650 nm. There is a small dip after the green end. In
between the green and the red region, there is a peak at a value of about 637.5 at 680 nm. After
the rise, there is a flat dip at the red region but after this dip the curve rises again in the NIR
region with some flat peaks and a sharp dip at a value of 637.5 at 875 nm wavelength. In the
PC and the GS fused image, the range of the reflectance value is from 2000-4500. The spectral
profile of the bare soil in the PC fused image shows some remarkable outcomes. The curve
first rises slowly till the green end and then there is a sudden and sharp fall in the curve till it
reaches a value below 2000 at 630 nm. The dip in the curve remains constant till it reaches 2000
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blue region. At a wavelength of 700 nm there is a sharp rise in the curve that reaches to a value
of 2000 and then there exists some small peaks in the NIR region which establishes that
vegetation is best discriminated in this region. In the CN fused image, the outcomes of the
spectral profile is almost similar with only one remarkable difference that is in the reflectance
value. The vegetation here shows a rise in reflectance value only up to 450-750. In the PC fused
image, the results are different with respect to Hyperion and CN fused image. The spectral
profile of the GS fused image is almost similar to the PC fused image (Fig 5).

Figure 5. Spectral profiles for Sal Vegetation

4.3.2. Building
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to a peak at 1625. In between green and the red region of the spectrum, the rise is continuous.
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slope that reaches a maximum value of 3900. Then after the red region, small peaks are
observed. The spectrum observed for the GS fused image is same as the PC fused image (Fig 6).
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Figure 6. Spectral profiles for Bulding with terracotta roof

4.3.3. Bare soil

The spectral profile of the bare soil shows variations in the Hyperion image. The curve rises
with a high slope and one can observe short peaks at wavelengths of 580 nm, 680 nm and
highest rise at 820 nm. The rise in the curve is not uniform as there are some dumpy peaks and
dips in the curve. Only, between blue and the green region, the rise is somewhat linear with
one peak at 580 nm. In between the green and the red region, one enhanced peak can be
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value of 612.5 and 662.5 at 580 nm and 650 nm. There is a small dip after the green end. In
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at 690 nm but after that the curve rises sharply with a steep slope till the value of about 4750
at the red end. After the red end, in the NIR region the curve is runs almost flat with a little
dip at 4500 at 875 nm. The result of the spectral profile of the bare soil in the GS fused image
is almost similar to the profile in the PC fused image with minor differences at certain points.
Initially, the curve rises and a small peak is encountered at a value of about 2250 at 520 nm
wavelength. The curve rises again in the same way as in the PC fused image. The curve runs
almost flat below the value of about 2000 in between 630-695 nm. After this the curve rises
sharply with a steep slope till the red region. In the NIR region, the outcomes are almost
comparable as the PC fused image (Fig 7).

Figure 7. Spectral profiles for Bare soil

4.3.4. Fallow land

In the Hyperion image, we observe a continuous rise in the curve up to a value of 3625. For
fallow land, the rise starts from wavelength of 500 nm and the slope of the curve is not that
much steep. The rise in the curve is continuous with no noteworthy dips. In the CN fused
image, the events are similar to the Hyperion but there is a difference in the range of the
reflectance value up to which the curve rises. The range of the values in the CN fused image
is limited to 400. In the PC fused image, the curve starts rising from the wavelength of 500 nm
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up to 750 and then there is a small dip. The dip is not remarkable and then again the curve
rises. The curve rises linearly with a steep slope in between green and the red region up to
value of 2500 and then again in the NIR region (beyond 750 nm) small pronounced peaks are
present. The spectral profile of the fallow land in the GS fused image is almost comparable in
the PC fused image (Fig 8).

Figure 8. Spectral profiles for Fallow Land

4.3.5. Dry river

The spectral profile of river in the Hyperion image show lots of undulations i.e. a number of
peaks and dips are observed. The curve rises sharply until it reaches a value of about 1820 at
520 nm. At 520 nm there is a pointed peak and then there is a small dip at about 530 nm. Again,
the curve rises till it reaches a value of about 2050 at 590 nm. Then, suddenly the curve falls
down till it reaches a value of about 1900 at 665 nm. After the fall in the curve, the curve again
starts rising till it reach the red end. In the NIR region, the curve consists of two pointed peaks
at 775 nm and 600 nm. After this the curve again drops to a value of about 1965 at 890 nm. In
the CN fused image, the curve rises gently up to low values. There is a flattened peak at the
blue region and then after the blue region the curve drops down almost flat till 690 nm. After

High-Resolution and Hyperspectral Data Fusion for Classification
http://dx.doi.org/10.5772/56944

69



at 690 nm but after that the curve rises sharply with a steep slope till the value of about 4750
at the red end. After the red end, in the NIR region the curve is runs almost flat with a little
dip at 4500 at 875 nm. The result of the spectral profile of the bare soil in the GS fused image
is almost similar to the profile in the PC fused image with minor differences at certain points.
Initially, the curve rises and a small peak is encountered at a value of about 2250 at 520 nm
wavelength. The curve rises again in the same way as in the PC fused image. The curve runs
almost flat below the value of about 2000 in between 630-695 nm. After this the curve rises
sharply with a steep slope till the red region. In the NIR region, the outcomes are almost
comparable as the PC fused image (Fig 7).

Figure 7. Spectral profiles for Bare soil

4.3.4. Fallow land

In the Hyperion image, we observe a continuous rise in the curve up to a value of 3625. For
fallow land, the rise starts from wavelength of 500 nm and the slope of the curve is not that
much steep. The rise in the curve is continuous with no noteworthy dips. In the CN fused
image, the events are similar to the Hyperion but there is a difference in the range of the
reflectance value up to which the curve rises. The range of the values in the CN fused image
is limited to 400. In the PC fused image, the curve starts rising from the wavelength of 500 nm

New Advances in Image Fusion68

up to 750 and then there is a small dip. The dip is not remarkable and then again the curve
rises. The curve rises linearly with a steep slope in between green and the red region up to
value of 2500 and then again in the NIR region (beyond 750 nm) small pronounced peaks are
present. The spectral profile of the fallow land in the GS fused image is almost comparable in
the PC fused image (Fig 8).

Figure 8. Spectral profiles for Fallow Land

4.3.5. Dry river

The spectral profile of river in the Hyperion image show lots of undulations i.e. a number of
peaks and dips are observed. The curve rises sharply until it reaches a value of about 1820 at
520 nm. At 520 nm there is a pointed peak and then there is a small dip at about 530 nm. Again,
the curve rises till it reaches a value of about 2050 at 590 nm. Then, suddenly the curve falls
down till it reaches a value of about 1900 at 665 nm. After the fall in the curve, the curve again
starts rising till it reach the red end. In the NIR region, the curve consists of two pointed peaks
at 775 nm and 600 nm. After this the curve again drops to a value of about 1965 at 890 nm. In
the CN fused image, the curve rises gently up to low values. There is a flattened peak at the
blue region and then after the blue region the curve drops down almost flat till 690 nm. After

High-Resolution and Hyperspectral Data Fusion for Classification
http://dx.doi.org/10.5772/56944

69



690 nm the curve rises sharply till the red region is encountered at 660 nm. In the NIR region,
the curve runs almost flat with wide contiguous bands. In the PC fused image, the curve starts
at the value of about 1500 in the blue region. The curve runs parallel to the ground till the value
of about 1750 at 620 nm. After this the curve suddenly drops down and the dip encountered
in the region between the blue and the red end is almost flat. At 690 nm, suddenly there is a
steep rise in the curve till it reaches a value of about 3375 at 775 nm. After this in the NIR region,
the curve again runs flat with small flattened peaks. The spectral profile of river in the GS fused
image is almost similar to the profile in the PC fused image (Fig 9).

Figure 9. Spectral profiles for Dry River Bed

4.3.6. Land with grass

In the Hyperion image, the curve rises slowly with almost flattened slope till it reaches a value
of 1500 at a wavelength of 700 nm but then after that the curve rises linearly with a steep slope.
This slope is between green and the red region. At the red region, this sharp rise in the curve
is slowed down and then after that in the NIR region the curve rises slowly with one enhanced
peak at 4500 at a wavelength of 875 nm. In the CN fused image, the curve rises slowly with a
stumpy slope till it reaches 475 at a wavelength of 775 nm till the red region of the spectrum.
In the NIR region, we observe some peaks in the curve. In the PC fused image, the curve shows
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some dips. Initially, the curve rises slowly till 1350 at a wavelength of 610 nm (approximated)
then after the green end, the curve shows some variations. After the green end, the curve rises
suddenly with a high slope till it reaches a value of 2750 at a wavelength of 680 nm. After 680
nm, the curve shows a decrease in the values till it reaches 2375 at the red region. In the NIR
region, again the curve rises with some small peaks. The spectral profile of the grounds with
grass in the GS fused image show almost the same outcomes as the PC fused image (Fig 10).

Figure 10. Spectral profiles for Ground with grass

4.4. Classification

In the context of the present work, the original and the three fused datasets were classified by
SAM (Spectral Angle Mapper) method of supervised classification. The Spectral Angle Mapper
Classification (SAM) is an automated method for directly comparing image spectra to a
reference or an endmember. This method treats both spectra as vectors and calculates the
spectral angle between them. This method is insensitive to illumination since the SAM
algorithm uses only the vector direction and not the vector length. The result of the SAM
classification is an image showing the best match at each pixel. The selection of the classification
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algorithm was also based on the characteristics of the image and the training data. The SAM
decision rule of classification classified the image into 9 classes i.e. vegetation type1, vegetation
type 2, river, shrubs, urban features, grassland, fallow land, bare soil, and crops.

After the classification was performed the classification accuracy has been computed for the
IKONOS, Hyperion and the three merged images (Fig 11 & 12). Samples of each of the class
from different locations in the Dehradun and Udaipur city have been collected for accuracy
assessment.
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Figure 11: Classified Product for Hyperion and IKONOS MSS fused images for part of Dehradun area (a: Fusion 
using CN T, b: Fusion using PC T, c: Fusion using GS T) 
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5. Results and discussions

Although many studies focus on the development of fusion techniques, fewer studies con‐
centrate on the development of image assessment methods. This study concentrates on
statistical measures and classification accuracy for fusion performance. Statistical evaluation
procedures have the advantage that they are objective, quantitative, and repeatable. The
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correlation coefficients between the original hyperion bands and the equivalent fused bands
and the other three parameters ie Mean, Standard Deviation, and Median were calculated.

The statistical parameters for various fused products were plotted along with the raw Hyper‐
ion image. The graph depicts that there is no noticeable change in the statistics in the original
Hyperion and fused products. PCT fused and the GST fused images demonstrate some
comparable values for the mean, maximum, minimum and standard deviation but roughly
have the same ability in preserving the statistics. The CNT fused image show very low values
than the raw Hyperion image (Fig 13 a & b).

After evaluating the spectral profiles we observe that although the range of values in the CN
fused image is not comparable to the Hyperion but in most of the cases the shape of the profile
closely matches with the profile of the feature in Hyperion. So, we can infer that spectrally the
CN (Colour Normalised) approach better preserves the spectral characteristics in the fused
image. In terms of the visual discreteness or the spatial characteristics of the various LULC
classes in the fused images, GS (Gram-Schmidt) and the PC (Principal Component) transform
are best suitable if compared to Hyperion while if compared to IKONOS there is almost no
gain in the spatial quality.

For performance analysis of fusion the classified images were analyzed using reference data
form ground. The results of classification of the PCT and GST fused image are almost similar
though for CN fused image results are deteriorated because of the artificial pixels that hinder
in the classification process (Fig 11 & 12). The overall classification accuracy was calculated for
the IKONOS, Hyperion and the three merged products. It was observed that the accuracy is
improving in PCT fused image and GST fused image while deteriorating in CNT fused Image
(Table 2).

The comparison of the separability analysis done to the original data sets and the three fused
products, show that the separability for some of the classes increases after fusion and hence
the classification accuracy achieved is higher (Fig 14). The classified images show some black
pixels not belonging to any of the specified classes. Such pixels are left unclassified as they did
not match with the pixel spectrum of any of the land cover class specified, or they are exhibiting
a large angular difference (greater than.1 radians) between the known and the unknown pixel
spectrum.

Data Product Overall Accuracy Achieved (Dehradun) Overall Accuracy Achieved (Udaipur)

IKONOS 75.86% 79.72%

HYPERION 68.15% 63.14%

PCT FUSED IMAGE 80.23% 83.34%

GST FUSED IMAGE 81.12% 80.23%

CNT FUSED IMAGE 65.14% 68.57%

Table 2. Classification Accuracy
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algorithm was also based on the characteristics of the image and the training data. The SAM
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IKONOS, Hyperion and the three merged images (Fig 11 & 12). Samples of each of the class
from different locations in the Dehradun and Udaipur city have been collected for accuracy
assessment.
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correlation coefficients between the original hyperion bands and the equivalent fused bands
and the other three parameters ie Mean, Standard Deviation, and Median were calculated.

The statistical parameters for various fused products were plotted along with the raw Hyper‐
ion image. The graph depicts that there is no noticeable change in the statistics in the original
Hyperion and fused products. PCT fused and the GST fused images demonstrate some
comparable values for the mean, maximum, minimum and standard deviation but roughly
have the same ability in preserving the statistics. The CNT fused image show very low values
than the raw Hyperion image (Fig 13 a & b).

After evaluating the spectral profiles we observe that although the range of values in the CN
fused image is not comparable to the Hyperion but in most of the cases the shape of the profile
closely matches with the profile of the feature in Hyperion. So, we can infer that spectrally the
CN (Colour Normalised) approach better preserves the spectral characteristics in the fused
image. In terms of the visual discreteness or the spatial characteristics of the various LULC
classes in the fused images, GS (Gram-Schmidt) and the PC (Principal Component) transform
are best suitable if compared to Hyperion while if compared to IKONOS there is almost no
gain in the spatial quality.

For performance analysis of fusion the classified images were analyzed using reference data
form ground. The results of classification of the PCT and GST fused image are almost similar
though for CN fused image results are deteriorated because of the artificial pixels that hinder
in the classification process (Fig 11 & 12). The overall classification accuracy was calculated for
the IKONOS, Hyperion and the three merged products. It was observed that the accuracy is
improving in PCT fused image and GST fused image while deteriorating in CNT fused Image
(Table 2).

The comparison of the separability analysis done to the original data sets and the three fused
products, show that the separability for some of the classes increases after fusion and hence
the classification accuracy achieved is higher (Fig 14). The classified images show some black
pixels not belonging to any of the specified classes. Such pixels are left unclassified as they did
not match with the pixel spectrum of any of the land cover class specified, or they are exhibiting
a large angular difference (greater than.1 radians) between the known and the unknown pixel
spectrum.

Data Product Overall Accuracy Achieved (Dehradun) Overall Accuracy Achieved (Udaipur)

IKONOS 75.86% 79.72%

HYPERION 68.15% 63.14%

PCT FUSED IMAGE 80.23% 83.34%

GST FUSED IMAGE 81.12% 80.23%

CNT FUSED IMAGE 65.14% 68.57%

Table 2. Classification Accuracy
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Figure 14. Class seperability analysis for original and Fused images
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1. Introduction

A night vision colorization technique can produce colorized imagery with a naturalistic and
stable color appearance by processing multispectral night vision (NV) imagery. The multi‐
spectral images typically include visual-band (e.g., red, green, and blue (RGB), or intensified)
imagery and infrared imagery (e.g., near infrared (NIR) and long wave infrared (LWIR)).
Although appropriately false-colored imagery is often helpful for human observers in
improving their performance on scene classification and reaction time tasks (Waxman et al.,
1996; Essock et al., 1999), inappropriate color mappings can also be detrimental to human
performance (Toet et al., 2001; Varga, 1999). A possible reason is lack of physical color
constancy. Another drawback with false coloring is that observers need specific training with
each of the false color schemes so that they can correctly and quickly recognize objects; whereas
with colorized nighttime imagery rendered with natural colors, users should be able to readily
recognize and identify objects without any training.

There are several night vision (NV) colorization techniques developed in past decades. Toet
(2003) proposed a NV colorization method that transfers the color characteristics of daylight
imagery into multispectral NV images. Essentially, this color-mapping method matches the
statistical  properties  (i.e.,  mean and standard deviation)  of  the NV imagery to that  of  a
natural daylight color image (manually selected as the “target” color distribution). Zheng
and Essock (2008) presented a “local  coloring” method that can colorize the NV images
more like daylight imagery by using histogram matching. The local-coloring method renders
the  multispectral  images  with  natural  colors  segment  by  segment  (i.e.,  “segmentation-
based”),  and also provides automatic  association between the source and target  images.
Zheng (2011) recently introduced a channel-based color fusion method, which is fast enough

© 2013 Zheng et al.; licensee InTech. This is a paper distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.
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for real-time applications. Note that the term “color fusion” in this chapter refers to combing
multispectral  images into a  color-version image with the purpose of  resembling natural
scenes. Hogervorst and Toet (2008 & 2012) recently proposed a new color mapping method
using a lookup table (LUT). The LUT is created between a false-colored image (formed with
multispectral NV images) and its color reference image (aiming at the same scene but taken
at daytime). The colors in the resulting colored NV image resemble the colors in the daytime
color image. This LUT-mapping method runs fast for real-time implementations. The LUT-
mapping method and the statistic-matching method are also summarized in their recent
paper (Toet & Hogervorst, 2012). Most recently Zheng (2012) developed a joint-histogram
matching method for NV colorization.

The quality of colorized images can be assessed by subjective and/or objective measures.
However, subjective evaluation normally costs time and resources. Moreover, the subjec‐
tive evaluation methods cannot be readily and routinely used for real-time and automat‐
ed  systems.  On  the  other  hand,  objective  evaluation  metrics  can  automatically  and
quantitatively measure the image qualities (Liu et al., 2012 & Blasch et al., 2008). Over the
past decade, many objective metrics for grayscale image evaluations have been proposed
(Alparone et al., 2004; Wald et al., 1997; Tsagaris & Anastassopoulos, 2006). However, the
metrics for grayscale images cannot be directly extended to the evaluations of  colorized
images.  Recently,  some objective  evaluations  of  color  images have been reported in  the
literature.  To objectively assess  a  color  fusion method,  Tsagaris  (2009)  proposed a  color
image fusion measure (CIFM) by using the amount of common information between the
source images and the colorized image, and also the distribution of color information. Yuan
et al. (2011) presented an objective evaluation method for visible and infrared color fusion
utilizing four  metrics:  image sharpness  metric,  image contrast  metric,  color  colorfulness
metric,  and color naturalness metric.  In this chapter,  we introduce an objective evaluation
index  (OEI)  to  quantitatively  evaluate  the  colorized images.  Given  a  reference  (daylight
color)  image  and  several  versions  of  the  colorized  NV  images  from  different  coloring
techniques, all color images are first converted into International Commission on Illumina‐
tion (CIE) LAB space, with dimension L for lightness and a and b for the color-opponent
dimensions (Malacara, 2002). Then the OEI metric is computed with the four established
metrics, phase congruency metric (PCM), gradient magnitude metric (GMM), image contrast
metric (ICM), and color natural metric (CNM).

Certainly, a color presentation of multispectral night vision images can provide a better visual
result for human users. We would prefer the color images resembling natural daylight pictures
that we are used to; meanwhile the coloring process shall be efficient enough ideally for real
time applications. In this chapter, we will discuss and explore how to objectively evaluate the
image qualities of colorized images. The remainder of this chapter is organized as follows. Six
NV colorization techniques are briefly reviewed in Section 2. Next, four image quality metrics
are described in Section 3. A new colorization metric, objective evaluation index (OEI), is
introduced in Section 4. The experiments and discussions are presented in Section 5. Conclu‐
sions are finally drawn in Section 6.

New Advances in Image Fusion80

2. Overview of night vision colorization techniques

All color mapping methods described in Subsections 2.2-2.6 are performed in lαβ color space.
Thus the color space conversion from RGB to lαβ must be done prior to color mapping, and
then the inverse transformation to RGB space is necessary after the mapping. The details of
lαβ color space transformation are given elsewhere (Toet, 2003; Zheng & Essock, 2008).
Certainly, two images, a source image and a target image, are involved in a color mapping
process. The source image is usually a color fusion image (in Subsections 2.2-2.5) or a false-
colored image (in Subsection 2.6); while the target image is normally a daylight picture
containing the similar scene. The target image may have a different resolution as depicted in
Subsections 2.2-2.5; however, the LUT described in Subsection 2.6 is established using the
registered target (reference) image.

2.1. Channel-based color fusion (CBCF)

A fast color fusion method, termed as channel-based color fusion (CBCF), was introduced to
facilitate realtime applications (Zheng, 2011). Notice that the term of “color fusion” means
combing multispectral images into a color-version image with the purpose of resembling
natural scenes. Relative to the “segmentation-based colorization” (Zheng & Essock, 2008),
color fusion trades the realism of colors with speed.

The general framework of channel-based color fusion is as follows, (i) prepare for color fusion,
preprocessing (denoising, normalization and enhancement) and image registration; (ii) form
a color fusion image by properly assigning multispectral images to red, green, and blue
channels; (iii) then fuse multispectral images (gray fusion) using aDWT algorithm (Zheng et
al., 2005); and, (iv) replace the value component of color fusion in HSV color space with the
gray-fusion image, and finally transform back to RGB space.

In NV imaging, there may be several bands of images available, for example, visible (RGB),
image intensified (II), near infrared (NIR), medium wave infrared (MWIR), long wave infrared
(LWIR). Upon the available images and the context, we only discuss two of two-band color
fusions of (II ⊕  LWIR), (NIR ⊕  LWIR). The symbol ‘⊕ ’ denotes the fusion of multiband
images.

A color fusion of NIR and LWIR is formulated by,
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LWIR image; symbol ‘•’ means element-by-element multiplication; VF is the value component
of FC in HSV space, Fus() means image fusion operation using aDWT algorithm (Zheng et al.,
2005). Although the limits given in contrast stretching are obtained empirically according to
the night vision images that we had, it is viable to formulate the expressions and automate the
fusion based upon a set of conditions (imaging devices, imaging time, and application
location). Notice the transform parameters in Eqs. (1) were applied to all color fusions in our
experiments (see Fig. 3d).

[ , ] Max Min
0 Min Min[ , ]

Max Min

( ) ,Min Max

Min Max

L L
S I I

L L
S I L

I I
-

= = - +
-

I I (2)

where IS is the scaled image, I0 is the original image; IMin and IMax are the maximum and
minimum pixel values in I0, respectively; LMin and LMax are the expected minimum and
maximum pixel values in IS, respectively. After the image contrast stretching, IS ∈  [ LMin, LMax].

2.2. Statistic matching

A statistic matching (stat-match) is used to transfer the color characteristics from natural
daylight imagery to false color night-vision imagery, which is formulated as:

IC
k =(IS

k −μS
k )⋅

σT
k

σS
k + μT

k , for k ={ l ,  α,  β }, (3)

where IC is the colored image, IS is the source (false-color) image in lαβ space; μ denotes the
mean and σ denotes the standard deviation; the subscripts ‘S’ and ‘T’ refer to the source and
target images, respectively; and the superscript ‘k’ is one of the color components: {l, α, β}.

After this transformation, the pixels comprising the multispectral source image have means
and standard deviations that conform to the target daylight color picture in lαβ space. The
colored image is transformed back to the RGB space through the inverse transforms (Zheng
& Essock, 2008; see Fig. 3e).

2.3. Histogram matching (HM)

Histogram matching (i.e., histogram specification) is usually used to enhance an image when
histogram equalization fails (Gonzalez & Woods, 2002). Given the shape of the histogram that
we want the enhanced image to have, histogram matching can generate a processed (i.e.,
matched) image that has the specified histogram. In particular, by specifying the histogram of
a target image (with daylight natural colors), a source image (with false colors) resembles the
target image in terms of histogram distribution after histogram matching.

Histogram matching (hist-match) can be implemented as follows. First, the normalized
cumulative histograms of source image and target image (hS and hT) are calculated, respectively.
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where N is the total number of pixels in the image, nk is the number of pixels that have gray
level uk, and L is the number of gray (bin) levels in the image. Typically, L = 256 for a digital
image. But we can round the image down to m (m < L, e.g., m = 64) levels, and thus its histogram
is called m-bin histogram. Clearly, S(uk) is a non-decreasing function. Similarly, hT = T(vk) can
be computed (see the “Target” curve in Fig. 1c).

Second, considering hS = hT (i.e., S(uk) = T(vk)) for histogram matching, the matched image is
accordingly computed as

1[ ( )], 0,1,2,..., 1.k kv T S u k L-= = - (5)

It is straightforward to find a discrete solution of the inverse transform, T-1[S()] as both T() and
S() can be implemented with look up tables.

Similar to the statistic matching (described in Subsection 2.2), histogram matching also serves
for color mapping (see Fig. 3f) and is performed component-by-component in lαβ space.
Specifically, with each color component (say the α component, treated as a grayscale image)
of a false-colored image, we can compute S(uk). With a selected target image, T(vk) can be
calculated with regard to the same color component (say α). Using Eq. (5) the histogram
matching can be completed regarding the color component (α). Histogram matching and
statistic matching can be applied separately or jointly. When applied together, for instance, it
is referred to as “statistic matching then histogram matching” (Zheng & Essock, 2008).

2.4. Joint histogram matching (JHM)

As described in Subsection 2.3, histogram matching is applied to each color component (plane)
separately. It is highly possible to distort the color distributions of the mapped image (see Fig.
3f). To avoid color distortion, we introduce a new color mapping method, joint histogram
matching (joint-HM).

In lαβ space, α and β represent the color distributions; while l is the intensity component. A
joint histogram (also called 2D histogram) of two color planes (α versus β) is calculated and then
matched from source to target. The intensity component (l) is matched individually. The joint
histogram is actually the joint (2D) intensity distribution of the two images, which is often used
to compute the joint entropy (Hill & Batchelor, 2001) for image registration.

How to calculate the normalized cumulative histogram (denoted as h) from a 2D joint
histogram (denoted as HJ) needs further discussion. To do histogram matching, h is expected
to be a non-decreasing function. We propose to form a one-dimensional (1D) histogram by
stacking HJ column-by-column and then perform histogram matching as defined in Eq. (10).
Of course, to correctly index a 1D transform (T-1()), the proper calculation of um (with m bins)
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fusion based upon a set of conditions (imaging devices, imaging time, and application
location). Notice the transform parameters in Eqs. (1) were applied to all color fusions in our
experiments (see Fig. 3d).
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mean and σ denotes the standard deviation; the subscripts ‘S’ and ‘T’ refer to the source and
target images, respectively; and the superscript ‘k’ is one of the color components: {l, α, β}.

After this transformation, the pixels comprising the multispectral source image have means
and standard deviations that conform to the target daylight color picture in lαβ space. The
colored image is transformed back to the RGB space through the inverse transforms (Zheng
& Essock, 2008; see Fig. 3e).
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histogram equalization fails (Gonzalez & Woods, 2002). Given the shape of the histogram that
we want the enhanced image to have, histogram matching can generate a processed (i.e.,
matched) image that has the specified histogram. In particular, by specifying the histogram of
a target image (with daylight natural colors), a source image (with false colors) resembles the
target image in terms of histogram distribution after histogram matching.

Histogram matching (hist-match) can be implemented as follows. First, the normalized
cumulative histograms of source image and target image (hS and hT) are calculated, respectively.
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for color mapping (see Fig. 3f) and is performed component-by-component in lαβ space.
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statistic matching can be applied separately or jointly. When applied together, for instance, it
is referred to as “statistic matching then histogram matching” (Zheng & Essock, 2008).
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As described in Subsection 2.3, histogram matching is applied to each color component (plane)
separately. It is highly possible to distort the color distributions of the mapped image (see Fig.
3f). To avoid color distortion, we introduce a new color mapping method, joint histogram
matching (joint-HM).

In lαβ space, α and β represent the color distributions; while l is the intensity component. A
joint histogram (also called 2D histogram) of two color planes (α versus β) is calculated and then
matched from source to target. The intensity component (l) is matched individually. The joint
histogram is actually the joint (2D) intensity distribution of the two images, which is often used
to compute the joint entropy (Hill & Batchelor, 2001) for image registration.

How to calculate the normalized cumulative histogram (denoted as h) from a 2D joint
histogram (denoted as HJ) needs further discussion. To do histogram matching, h is expected
to be a non-decreasing function. We propose to form a one-dimensional (1D) histogram by
stacking HJ column-by-column and then perform histogram matching as defined in Eq. (10).
Of course, to correctly index a 1D transform (T-1()), the proper calculation of um (with m bins)
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using two gray (bin) levels is expected. If HJ is computed as (β vs. α), its matching process is
denoted as joint-HM(βα). Eventually, the histogram of the mapped image is sort of tradeoff
between two histograms, “Source” and “Target”. This is expected since we want no color
distortion (i.e., preserving its own colors to some extent) during color mapping (see Fig. 3g).

2.5. Statistic matching then joint-histogram matching (SM-JHM)

The joint-HM can be applied together with statistic matching such as “stat-match then joint-
HM”, which usually result a better NV colorization. The statistic matching globally "paints"
the image, while the joint-HM colors is more like the daylight picture in details (see Fig. 3h).

2.6. Lookup table (LUT)

Hogervorst and Toet (2008) proposed a color mapping method using a lookup table (LUT).
The LUT is created using a false-colored image (formed with two-band NV images) and the
reference (i.e., target) daylight image. This method yields a colored NV image similar to the
daytime image in colors. The implementation of this LUT method is described as follows.

1. Create a false-colored image (of 3 color planes) by assigning LWIR image to R, NIR image
to G plane, and zeros to B, respectively;

2. Build RG colormap (i.e., a 256×256 LUT) and convert the false-colored image to an indexed
image (0 to 65535) associated with the RG colormap;

3. For all pixels in the indexed false-colored image whose index value equals 0:

a. Locate all corresponding pixels in the reference (i.e., target) color image (that must
be strictly aligned with the false-colored image);

b. Calculate the averaged lαβ values of those corresponding pixels and then convert
them back to RGB values;

c. Assign the RGB values to index 0 in the lookup table;

4. Vary the index value from 2 to 65535 and repeat the processes described in Step 3. At the
end, the LUT will be established.

Once the LUT is created, the LUT-based mapping procedure is simple and fast (see Fig. 3i),
and thus can be deployed in realtime. However, the LUT creation thoroughly relies on the
aligned reference image aiming at the same scene. Any misalignment, using a different
reference color image, or coloring a different NV imagery (i.e., aiming at different direction),
will usually result a poor colorization (see Fig. 5i).

3. Four image quality metrics

Three image quality metrics for grayscale images and one metric for color images are reviewed
in this section. The color-related metrics are defined in the CIELAB space (Malacara, 2002)
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specified by the International Commission on Illumination. The perceptually uniform CIELAB
space consists of an achromatic luminosity component L* (black-white) and two chromatic
values a* (green-magenta) and b* (blue-yellow). The coordinates L*a*b* (CIE 1976) can be
calculated using the CIE XYZ tristimulus values (Malacara, 2002).

3.1. Phase Congruency Metric (PCM)

The phase congruency (PC) model is also called the “local energy model” developed by Morrone
et al. (1986). This model postulates that the features in an image are perceived at the points
where the Fourier components are maximal in phase. Based on the physiological and psycho‐
physical evidences, the PC theory provides a simple but biologically plausible model of how
mammalian visual systems detect and identify the features in an image. PC can be considered
as a significance measure of local structures in an image.

According to the definition of PC (Morrone et al., 1986), there are many different implemen‐
tations of PC map developed so far. A widely-used method developed by Kovesi (1999) is
adopted in this chapter. Given a 1D image f(x), Mn

e and Mn
o represent the even-symmetric and

odd-symmetric filters at scale n, respectively. Mn
e and Mn

o form a quadrature pair: en(x) and
on(x). Responses of the quadrature pair form a response vector:
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where ε is a small positive constant.
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The joint-HM can be applied together with statistic matching such as “stat-match then joint-
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1. Create a false-colored image (of 3 color planes) by assigning LWIR image to R, NIR image
to G plane, and zeros to B, respectively;
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a. Locate all corresponding pixels in the reference (i.e., target) color image (that must
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b. Calculate the averaged lαβ values of those corresponding pixels and then convert
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c. Assign the RGB values to index 0 in the lookup table;

4. Vary the index value from 2 to 65535 and repeat the processes described in Step 3. At the
end, the LUT will be established.

Once the LUT is created, the LUT-based mapping procedure is simple and fast (see Fig. 3i),
and thus can be deployed in realtime. However, the LUT creation thoroughly relies on the
aligned reference image aiming at the same scene. Any misalignment, using a different
reference color image, or coloring a different NV imagery (i.e., aiming at different direction),
will usually result a poor colorization (see Fig. 5i).

3. Four image quality metrics

Three image quality metrics for grayscale images and one metric for color images are reviewed
in this section. The color-related metrics are defined in the CIELAB space (Malacara, 2002)
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In order to calculate the quadrature pair of filters Mn
e and Mn

o, Gabor filters (Gabor, 1946) or
log-Gabor filters (Mancas-Thillou & Gosselin, 2006) can be applied. In this chapter, we use log-
Gabor filters (e.g., wavelets at scale n = 4) due to its following two features: (i) log-Gabor filters,
by definition, have no direct current (DC) component; and (ii) the transfer function of the log-
Gabor filter has an extended tail at the high frequency end, which makes it more capable to
encode natural images than ordinary Gabor filters (Zhang et al., 2011). The transfer function
of a log-Gabor filter in the frequency domain is

2
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2
[log( )]

2= ,( ) reG
w w

sw
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where ω0 is the filter's center frequency and σr  controls the filter's bandwidth.

To compute the PCM of two-dimensional (2D) grayscale images, we can apply the 1D analysis
over several orientations and then combine the results according to some rules. The 1D log-
Gabor filters described above can be extended to 2D ones by applying Gaussian function across
the filter perpendicular to its orientation (Kovesi, 1999; Fischer et al., 2007; Wang et al., 2008).
The 2D log-Gabor function has the following transfer function
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where θj=( jπ) / (2J ) and j = 0, 1, 2,..., J‒1. J is the number of orientations and σθ determines the
filter's angular bandwidth. By modulating ω0 and θj and convolving G2 with the 2D image, we
get a set of responses at each point (x, y) as en,θj

(x,y ),on,θj
(x,y )] . The local amplitude at scale n

and orientation θj is

2 2
, , ,= ( , ) ( , ).n n nj j j

A e x y o x yq q q+ (12)

and the local energy along orientation θj is
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The two-dimensional PCM at (x, y) is defined as
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where ε is a small positive constant. It should be noted that PC2D(x,y) is a real number within
[0,1]. The phase congruency metric (PCM) of an image is defined as
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where M×N is the size of the image. The range of PCM is [0,1].

3.2. Gradient Magnitude Metric (GMM)

The image gradient magnitude (GM) is computed to encode contrast information. PC and GM
are complementary and they reflect different aspects of the HVS (human visual system) in
assessing the local image quality. The GM measures the sharpness of an image. The perception
of sharpness is related to the clarity of detail of an image. Image gradient computation is a
traditional topic in image processing. Gradient operators can be expressed by convolution
masks. One of commonly used gradient operators is the Sobel operator. The partial derivatives
of image f(x, y), Gx and Gy, along horizontal and vertical directions using the Sobel operators
are
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The GM of f(x, y) at pixel (x, y) is defined as

2 2( , ) = .x yG x y G G+ (18)

The averaged GM over all pixels is called image gradient magnitude metric (GMM),
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where ε is a small positive constant. It should be noted that PC2D(x,y) is a real number within
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where M×N is the size of the image. The range of PCM is [0,1].

3.2. Gradient Magnitude Metric (GMM)

The image gradient magnitude (GM) is computed to encode contrast information. PC and GM
are complementary and they reflect different aspects of the HVS (human visual system) in
assessing the local image quality. The GM measures the sharpness of an image. The perception
of sharpness is related to the clarity of detail of an image. Image gradient computation is a
traditional topic in image processing. Gradient operators can be expressed by convolution
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The GM of f(x, y) at pixel (x, y) is defined as
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The averaged GM over all pixels is called image gradient magnitude metric (GMM),
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where M×N is the size of the image.

3.3. Image Contrast Metric (ICM)

An image with excellent contrast has a wide dynamic range of intensity level and appropriate
intensity. Both the dynamic range of intensity level or the overall intensity distribution of the
image can be provided by a histogram. A global contrast metric is proposed using the
histogram character. The histogram of image with levels in the range [0, N-1] is a frequency-
distribution function defined as the overall intensity distribution of an image

( ) = ,k kh X n (20)

where Xk  is the k-th level of input and nk  is the number of the pixels in the image having level
xk . The probability density function (PDF) is computed by

( ) = ,k kP X n n (21)

where n is the total number of the pixels of the image. The dynamic range value β is defined
as
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The dynamic range matrix α of histogram is defined as
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where α∈  [0,1] and a larger value of α means a wider dynamic range in the histogram, which
leads to better contrast. The image contrast metric is defined as
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For color images, the image contrast metric is determined by both gray contrast and color
contrast. Because human perception is more sensitive to the luminance on contrast evaluation,
we employ L* channel in the CIELAB space to evaluate the color contrast. Thus, image contrast
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is determined by the histogram of gray intensity and the histogram of color luminance L* (see
Fig. 1). For the gray intensity I, the gray contrast metric is defined as
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where αI  and P(Ik ) can be calculated as above for gray intensity. For L* channel, the color
contrast metric is
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where αc and P(L k ) can be calculated as above for L* channel. The global image contrast
metric (ICM) is defined as

2 2
1 2= ,g cICM C Cw w+ (28)

where ω1 and ω2 are the weights of Cg  and Cc. For simplicity, we choose ω1=ω2= 0.5. ICM varies
within [0,1]. The evaluation of image contrast metric of color fusion image is shown in Fig. 1.

Gray contrast 
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(gray image) 

Convert to
Gray image

Color contrast 
metric 

( L* channel)

Convert to 
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Combine to 
global ICM ICMColorized

Image

Figure 1. Diagram of calculation of the contrast metric.

3.4. Color Natural Metric (CNM)

Given a daylight image f1(x, y) and a colorized image f2(x, y), if a colorized image is similar to
the daylight image then the colorized image is considered as of a good quality. Since a human
is sensitive to hue in addition to luminance, we compare the a* and b* channels of the reference
image with that of the colorized image using the gray relational analysis (GRA) theory (Ma et
al., 2005).
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Given a daylight image f1(x, y) and a colorized image f2(x, y), if a colorized image is similar to
the daylight image then the colorized image is considered as of a good quality. Since a human
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We first convert two images, f1 and f2, to L*a*b* space. L i(x,y), ai(x,y), and bi(x,y) are the L*a*b*

values of f i at pixel (x, y). The gray relation coefficient between a1 and a2 at pixel (x, y) is defined
as
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where ε is a small positive constant.

The gray relation coefficient between b1 and b2 at pixel (x, y) is defined as
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In the definitions of ξa(x,y) and ξb(x,y), min() and max() are operated over whole image.
However, it is possible that min() and max() are operated over a small neighborhood of (x, y).

The gray rational degrees of a* and b* information for two images are defined as
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x y
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where ω(x,y) is the weight of the gray rational coefficient, which satisfies

( , )
( , ) = 1.

x y
x ywå (33)

For simplicity, we choose ω(x,y)=
1

M × N  where M and N are the length of vectors x and y

respectively.

The color natural metric (CNM) is defined as

= .a bCNM R R (34)

CNM varies within [0,1]; the larger the CNM, the more similar the two images.
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4. Objective Evaluation Index (OEI)

With the four metrics defined in Section 3, a new objective evaluation index (OEI) is proposed to
quantitatively evaluate the qualities of colorized images. Given the reference image f1 and the
colorized image f2, the OEI is calcualted in two steps. First the local similarity maps of the two
images are computed, and then the similarity maps are integrated into a single similarity score.

The two images are first converted into L*a*b* space. For L* information, the PC maps are
calculated and denoted as PC1 and PC2 for f1 and f2 images, respectively. The similarity measure
between PC1 and PC2 at pixel (x, y) is defined as

1 2 1
2 2
1 2 1

2 ( , ) ( , )
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PC x y PC x y K

S x y
PC x y PC x y K

+

+ +
(35)

where K1 is a positive constant. In practice, the determination of K1 depends on the dynamic
range of PC values. SPC  varies within [0,1]. Similarly, the similarity measure based on the two
GM values is defined as

1 2 2
2 2
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where K2 is a positive constant. SG varies within [0,1]. Then, SPC(x,y) and SG(x,y) are combined
into one similarity measure, SL (x), as follows

1 2( , ) = [ ( , )] [ ( , )] ,L PC GS x y S x y S x yl l (37)

where λ1 and λ2 are parameters to adjust the relative importance of PC and GM features.

With the aid of the similarity SL (x,y) at each pixel (x, y), the overall similarity between f1 and
f2 can be calculated with the averaged SL (x,y) over all pixels. However, the image saliency
(i.e., local significance) usually varies with the pixel location. For example, edges convey more
crucial information than smooth areas. Specifically, a human is sensitive to phase congruent
structures (Henriksson et al., 2009), and thus a larger PC(x, y) value between f1 and f2 implies
a higher impact on evaluating the similarity between f1 and f2 at location (x, y). Therefore, we
use PCmax(x,y)=max PC1(x,y ), PC2(x,y)  to weigh the importance of SL (x,y) in formulating
the overall similarity. Accordingly, the objective evaluation index (OEI) between f1 and f2 is
defined as follows
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where

max 1 2( , ) = max[ ( , ), ( , )],PC x y PC x y PC x y (39)
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where CNM is previously defined and K3 and γi (i = 1,2,3) are positive constants. The diagram
of calculating OEI is shown in Fig. 2. The range of OEI is [0,1]. The larger the OEI value of a
colorized image is, the more similar (i.e., the better) the colorized image is to the reference
image. Error pooling is the integration of methods with tradeoffs between γ1, γ2, and γ3.
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Figure 2. Diagram of calculating OEI in L*a*b* space.

γ1, γ2, and γ3 are the weights of three components in the OEI metric. Selection of γi is critical
for the OEI calculation. The values of γi are empirically decided, and the typical values of γ1

and γ2 are between 0.8~1.1 and γ3 is between 0.05~0.2. Ki (i = 1,2,3) are constants to increase the
metric stability. In our experiments presented in Section 6, we chose γ1=γ2= 1, γ3= 0.2; K1 = 0.85,
K2 = 160, K3 = 0.001; and λ1 =λ2 =1.
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5. Experimental results and discussions

In our experiments, five triplets of multispectral NV images (as shown in Figs. 3-7; collected
at Alcorn State University), color RGB, near infrared (NIR) and long wave infrared (LWIR),
were colorized by using six different coloring methods as described in Section 2. The three-
band input images are shown in Figs. 3-7a, b and c, respectively. The image resolutions and
its taken time are given in figure captions. The RGB images and LWIR images were taken by
a FLIR SC620 two-in-one camera, which has LWIR camera (of 640×480 pixel original resolution
and 7.5~13 µm spectral range) and an integrated visible-band digital camera (2048×1536 pixel
original resolution). The NIR images were taken by a FLIR SC6000 camera (640×512 pixel
original resolution and 0.9~1.7 µm spectral range). Two cameras (SC620 and SC6000) were
placed on the same fixture and turned to aim at the same location. The images were typically
captured during sunset time and dusk time during a fall season. One exception is shown in
Fig. 7, which was taken at noon time.

   
            (a)                             (b)                      (c) 

   
           (d)                             (e)                      (f) 

          (g)                             (h)                     (i) 
Fig. 3. Night-vision coloring comparison (Case# AT008 – taken at sunset time; 640×480 
pixels): (a-c) Color RGB, NIR, and LWIR images, respectively; (d-f) The colorized images 
using channel-based color fusion of (NIR LWIR), statistic-matching, and histogram-
matching, respectively; (g-i) The colorized images using joint-HM, stat-match then joint-
HM, and LUT-mapping, respectively. The settings in the color-mappings of (e-i) are 
source = (d) and target = (a). Notice that the contrasts of all color images were increased 
by 10%, and the brightness of (a) and (i) were increased by 10%. 
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and LWIR images, respectively; (d-f) The colorized images using channel-based color fusion of (NIR⊕ LWIR), statistic-
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Of course, image registration and fusion (Hil & Batchelor, 2001) were applied to the three band
images shown in Figs. 3-7, where manual alignment was employed to the RGB image shown
in Figs. 5-6a since they are so dark and noisy. To better present the color images (including the
daylight RGB images and the colorized NV images), contrast and brightness adjustments (as
described in figure captions) were applied. Notice that piecewise contrast stretching (Eq. (2))
was used for NIR enhancement. As referred in Eq. (1d), the fused images (shown elsewhere
(Zheng & Essock, 2008)) were obtained using the aDWT algorithm (Zheng et al., 2005). The
channel-based color fusion (CBCF, defined in Eqs. (1)) was applied to the NIR and LWIR
images (shown in Figs. 3-7b & c), and the results are illustrated in Figs. 3-7d. The resulted
images from two-band color fusion (Figs. 3-7d) resemble natural colors, which makes scene
classification easier. The paved ground appears reddish since they have strong heat radiations
(at dusk time) and thus causes strong responses in LWIR images. In the color-fusion images,
the trees, buildings and grasses can be easily distinguished from ground (parking lots) and
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           (g)                             (h)                      (i) 
Fig. 4. Night-vision coloring comparison (Case# AT009 – taken after sunset time; 
640×480 pixels): (a-c) Color RGB, NIR, and LWIR images, respectively; (d-f) The 
colorized images using channel-based color fusion of (NIR LWIR), statistic-matching, 
and histogram-matching, respectively; (g-i) The colorized images using joint-HM, stat-
match then joint-HM, and LUT-mapping, respectively. The settings in the color-
mappings of (e-i) are source = (d) and target = (a). Notice that the contrasts of all color 
images were increased by 10%, and the brightness of (a) was increased by 10%. 
 

 

 

 

 

Figure 4. Night-vision coloring comparison (Case# AT009 – taken after sunset time; 640×480 pixels): (a-c) Color RGB,
NIR, and LWIR images, respectively; (d-f) The colorized images using channel-based color fusion of (NIR⊕ LWIR), statis‐
tic-matching, and histogram-matching, respectively; (g-i) The colorized images using joint-HM, stat-match then joint-
HM, and LUT-mapping, respectively. The settings in the color-mappings of (e-i) are source = (d) and target = (a). Notice
that the contrasts of all color images were increased by 10%, and the brightness of (a) was increased by 10%.
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sky. For example, the car is clearly identified in Fig. 5d, where the water area (between ground
and trees and shown in cyan color) is certainly noticeable. However, it is hard to realize any
water area in the original images (Figs. 5a-c).

All color mapping methods were applied to the five triplets and their results are presented in
Figs. 3-7. The source images are the color-fusion images (Figs. 3-7d), while the target images
are the color RGB images (Figs. 3-4a & Fig. 8a-b). Figs. 5-6a cannot be used as the target images
since they are too dark and noisy. Figs. 3-7e show the colored images with the statistic matching
(SM) method, which are more similar to the daylight pictures in contrast with the color-fusion
images. The five results (Figs. 3-7e) are equivalently good, which means that the statistic
matching is reliable. The histogram matching (HM) results shown in Figs. 3-7f are oversatu‐
rated, which may be more suitable for segmentation-based colorization (Zheng & Essock,
2008). The joint histogram matching (JHM) are illustrated in Figs. 3-7g, where the mapped
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Fig. 5. Night-vision coloring comparison (Case# AT012 – taken at dusk time; 640×480 
pixels): (a-c) Color RGB, NIR, and LWIR images, respectively; (d-f) The colorized images 
using channel-based color fusion of (NIR LWIR), statistic-matching, and histogram-
matching, respectively; (g-i) The colorized images using joint-HM, stat-match then joint-
HM, and LUT-mapping, respectively. The settings in the color-mappings of (e-i) are 
source = (d) and target = Fig. 8(a) due to the dark RGB image in (a). Notice that the 
contrasts of all color images were increased by 10%, and the brightness of (a) and (i) were 
increased by 20% and 10%, respectively. 
 

 

 

 

Figure 5. Night-vision coloring comparison (Case# AT012 – taken at dusk time; 640×480 pixels): (a-c) Color RGB, NIR,
and LWIR images, respectively; (d-f) The colorized images using channel-based color fusion of (NIR⊕ LWIR), statistic-
matching, and histogram-matching, respectively; (g-i) The colorized images using joint-HM, stat-match then joint-HM,
and LUT-mapping, respectively. The settings in the color-mappings of (e-i) are source = (d) and target = Fig. 8(a) due to
the dark RGB image in (a). Notice that the contrasts of all color images were increased by 10%, and the brightness of
(a) and (i) were increased by 20% and 10%, respectively.
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Of course, image registration and fusion (Hil & Batchelor, 2001) were applied to the three band
images shown in Figs. 3-7, where manual alignment was employed to the RGB image shown
in Figs. 5-6a since they are so dark and noisy. To better present the color images (including the
daylight RGB images and the colorized NV images), contrast and brightness adjustments (as
described in figure captions) were applied. Notice that piecewise contrast stretching (Eq. (2))
was used for NIR enhancement. As referred in Eq. (1d), the fused images (shown elsewhere
(Zheng & Essock, 2008)) were obtained using the aDWT algorithm (Zheng et al., 2005). The
channel-based color fusion (CBCF, defined in Eqs. (1)) was applied to the NIR and LWIR
images (shown in Figs. 3-7b & c), and the results are illustrated in Figs. 3-7d. The resulted
images from two-band color fusion (Figs. 3-7d) resemble natural colors, which makes scene
classification easier. The paved ground appears reddish since they have strong heat radiations
(at dusk time) and thus causes strong responses in LWIR images. In the color-fusion images,
the trees, buildings and grasses can be easily distinguished from ground (parking lots) and
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Fig. 4. Night-vision coloring comparison (Case# AT009 – taken after sunset time; 
640×480 pixels): (a-c) Color RGB, NIR, and LWIR images, respectively; (d-f) The 
colorized images using channel-based color fusion of (NIR LWIR), statistic-matching, 
and histogram-matching, respectively; (g-i) The colorized images using joint-HM, stat-
match then joint-HM, and LUT-mapping, respectively. The settings in the color-
mappings of (e-i) are source = (d) and target = (a). Notice that the contrasts of all color 
images were increased by 10%, and the brightness of (a) was increased by 10%. 
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sky. For example, the car is clearly identified in Fig. 5d, where the water area (between ground
and trees and shown in cyan color) is certainly noticeable. However, it is hard to realize any
water area in the original images (Figs. 5a-c).

All color mapping methods were applied to the five triplets and their results are presented in
Figs. 3-7. The source images are the color-fusion images (Figs. 3-7d), while the target images
are the color RGB images (Figs. 3-4a & Fig. 8a-b). Figs. 5-6a cannot be used as the target images
since they are too dark and noisy. Figs. 3-7e show the colored images with the statistic matching
(SM) method, which are more similar to the daylight pictures in contrast with the color-fusion
images. The five results (Figs. 3-7e) are equivalently good, which means that the statistic
matching is reliable. The histogram matching (HM) results shown in Figs. 3-7f are oversatu‐
rated, which may be more suitable for segmentation-based colorization (Zheng & Essock,
2008). The joint histogram matching (JHM) are illustrated in Figs. 3-7g, where the mapped
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matching, respectively; (g-i) The colorized images using joint-HM, stat-match then joint-
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images are better than the color fusions but preserve much reddish colors (existed in source
images). The “stat-match then joint-HM” (SM-JHM) means that a joint-HM is performed with
inputs of (source = the SM-colored image in Fig. 3e; target = the RGB image in Fig. 3a). The SM-
JHM results are presented in Figs. 3-7h, which sometimes are better than the results from either
stat-match or joint-HM (e.g., Fig. 3h). The examples of LUT-mapping colorization are given in
Figs. 3-7i. Figs. 3-4i and Fig. 7i (an ideal case of LUT mapping) shows impressive colors;
whereas Figs. 5-6i exhibit noisy and distorted since the reference images (shown in Figs. 8a-b)
are misaligned with the NV images (shown in Figs. 5-6). When using the LUT established in
a different case at daytime (aiming at different direction at nighttime), the more misalignment
the worse the LUT-colored results appear. The LUT-based colorization described in Subsection
2.6 is perhaps suitable for a surveillance application where a camera is aiming at a fixed
direction.

           (a)                            (b)                      (c) 

           (d)                            (e)                      (f) 

          (g)                           (h)                      (i) 
Fig. 6. Night-vision coloring comparison (Case# ST029 – taken at dusk time; 640×480 
pixels): (a-c) Color RGB, NIR, and LWIR images, respectively; (d-f) The colorized images 
using channel-based color fusion of (NIR LWIR), statistic-matching, and histogram-
matching, respectively; (g-i) The colorized images using joint-HM, stat-match then joint-
HM, and LUT-mapping, respectively. The settings in the color-mappings of (e-i) are 
source = (d) and target = Fig. 8(b) due to the dark RGB image in (a). Notice that the 
contrasts of (d-i) were increased by 10%, and (a) was increased by 20%. The brightness of 
(a) and (i) were increased by 20% and 10%, respectively. 
 

 

 

 

 

Figure 6. Night-vision coloring comparison (Case# ST029 – taken at dusk time; 640×480 pixels): (a-c) Color RGB, NIR,
and LWIR images, respectively; (d-f) The colorized images using channel-based color fusion of (NIR⊕ LWIR), statistic-
matching, and histogram-matching, respectively; (g-i) The colorized images using joint-HM, stat-match then joint-HM,
and LUT-mapping, respectively. The settings in the color-mappings of (e-i) are source = (d) and target = Fig. 8(b) due to
the dark RGB image in (a). Notice that the contrasts of (d-i) were increased by 10%, and (a) was increased by 20%. The
brightness of (a) and (i) were increased by 20% and 10%, respectively.
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Fig. 7. Night-vision coloring comparison (Case# ST102 – taken at noon time; 640×480 
pixels): (a-c) Color RGB, NIR, and LWIR images, respectively; (d-f) The colorized images 
using channel-based color fusion of (NIR LWIR), statistic-matching, and histogram-
matching, respectively; (g-i) The colorized images using joint-HM, stat-match then joint-
HM, and LUT-mapping, respectively. The settings in the color-mappings of (e-i) are 
source = (d) and target = (a). 
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Fig. 8. Color RGB images for night-vision colorization (taken before sunset time; 640×480 
pixels): (a) from Case# AT002 (target of Fig. 5, AT012); (b) from Case#  ST014 (target of 
Fig. 6, ST029). Notice that their contrasts were increased by 10%. 

Figure 8. Color RGB images for night-vision colorization (taken before sunset time; 640×480 pixels): (a) from Case#
AT002 (target of Fig. 5, AT012); (b) from Case# ST014 (target of Fig. 6, ST029). Notice that their contrasts were in‐
creased by 10%.
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Fig. 7. Night-vision coloring comparison (Case# ST102 – taken at noon time; 640×480 
pixels): (a-c) Color RGB, NIR, and LWIR images, respectively; (d-f) The colorized images 
using channel-based color fusion of (NIR LWIR), statistic-matching, and histogram-
matching, respectively; (g-i) The colorized images using joint-HM, stat-match then joint-
HM, and LUT-mapping, respectively. The settings in the color-mappings of (e-i) are 
source = (d) and target = (a). 
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and LWIR images, respectively; (d-f) The colorized images using channel-based color fusion of (NIR⊕ LWIR), statistic-
matching, and histogram-matching, respectively; (g-i) The colorized images using joint-HM, stat-match then joint-HM,
and LUT-mapping, respectively. The settings in the color-mappings of (e-i) are source = (d) and target = (a).
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images are better than the color fusions but preserve much reddish colors (existed in source
images). The “stat-match then joint-HM” (SM-JHM) means that a joint-HM is performed with
inputs of (source = the SM-colored image in Fig. 3e; target = the RGB image in Fig. 3a). The SM-
JHM results are presented in Figs. 3-7h, which sometimes are better than the results from either
stat-match or joint-HM (e.g., Fig. 3h). The examples of LUT-mapping colorization are given in
Figs. 3-7i. Figs. 3-4i and Fig. 7i (an ideal case of LUT mapping) shows impressive colors;
whereas Figs. 5-6i exhibit noisy and distorted since the reference images (shown in Figs. 8a-b)
are misaligned with the NV images (shown in Figs. 5-6). When using the LUT established in
a different case at daytime (aiming at different direction at nighttime), the more misalignment
the worse the LUT-colored results appear. The LUT-based colorization described in Subsection
2.6 is perhaps suitable for a surveillance application where a camera is aiming at a fixed
direction.
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           (d)                            (e)                      (f) 

          (g)                           (h)                      (i) 
Fig. 6. Night-vision coloring comparison (Case# ST029 – taken at dusk time; 640×480 
pixels): (a-c) Color RGB, NIR, and LWIR images, respectively; (d-f) The colorized images 
using channel-based color fusion of (NIR LWIR), statistic-matching, and histogram-
matching, respectively; (g-i) The colorized images using joint-HM, stat-match then joint-
HM, and LUT-mapping, respectively. The settings in the color-mappings of (e-i) are 
source = (d) and target = Fig. 8(b) due to the dark RGB image in (a). Notice that the 
contrasts of (d-i) were increased by 10%, and (a) was increased by 20%. The brightness of 
(a) and (i) were increased by 20% and 10%, respectively. 
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New Advances in Image Fusion96

           (a)                            (b)                      (c) 

           (d)                            (e)                      (f) 

           (g)                            (h)                     (i) 
Fig. 7. Night-vision coloring comparison (Case# ST102 – taken at noon time; 640×480 
pixels): (a-c) Color RGB, NIR, and LWIR images, respectively; (d-f) The colorized images 
using channel-based color fusion of (NIR LWIR), statistic-matching, and histogram-
matching, respectively; (g-i) The colorized images using joint-HM, stat-match then joint-
HM, and LUT-mapping, respectively. The settings in the color-mappings of (e-i) are 
source = (d) and target = (a). 
 

           (a)                             (b)  
Fig. 8. Color RGB images for night-vision colorization (taken before sunset time; 640×480 
pixels): (a) from Case# AT002 (target of Fig. 5, AT012); (b) from Case#  ST014 (target of 
Fig. 6, ST029). Notice that their contrasts were increased by 10%. 

Figure 8. Color RGB images for night-vision colorization (taken before sunset time; 640×480 pixels): (a) from Case#
AT002 (target of Fig. 5, AT012); (b) from Case# ST014 (target of Fig. 6, ST029). Notice that their contrasts were in‐
creased by 10%.

           (a)                            (b)                      (c) 

           (d)                            (e)                      (f) 

           (g)                            (h)                     (i) 
Fig. 7. Night-vision coloring comparison (Case# ST102 – taken at noon time; 640×480 
pixels): (a-c) Color RGB, NIR, and LWIR images, respectively; (d-f) The colorized images 
using channel-based color fusion of (NIR LWIR), statistic-matching, and histogram-
matching, respectively; (g-i) The colorized images using joint-HM, stat-match then joint-
HM, and LUT-mapping, respectively. The settings in the color-mappings of (e-i) are 
source = (d) and target = (a). 
 

           (a)                             (b)  
Fig. 8. Color RGB images for night-vision colorization (taken before sunset time; 640×480 
pixels): (a) from Case# AT002 (target of Fig. 5, AT012); (b) from Case#  ST014 (target of 
Fig. 6, ST029). Notice that their contrasts were increased by 10%. 

Figure 7. Night-vision coloring comparison (Case# ST102 – taken at noon time; 640×480 pixels): (a-c) Color RGB, NIR,
and LWIR images, respectively; (d-f) The colorized images using channel-based color fusion of (NIR⊕ LWIR), statistic-
matching, and histogram-matching, respectively; (g-i) The colorized images using joint-HM, stat-match then joint-HM,
and LUT-mapping, respectively. The settings in the color-mappings of (e-i) are source = (d) and target = (a).
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Visual inspections of colorized images can generally tell which one is better or the best when
there are big enough differences between several versions of colorized images. For example,
casual inspections may easily confirm that, top 3 methods are SM, SM-JHM, and LUT; HM
and JHM are poor; and CBCF is medium. However, the subjective evalutions become more
and more difficult with a larger number of color images and also hard with small or diverse
differences. In other words, it is hard for subjective evalutions to give an exact order of six
colroziation methods. Let us examine the objective evaluations.

The objective evaluations using the OEI metric defined in Eq. (14) (refer to Section 4) are
presented in Table 1 (corresponding to Figs. 3-7 respectively), where the orders of metric
values (1 for the smallest OEI) are given within round parentheses. Keep in mind that, the
larger the OEI value of a colorized image is, the better quality (i.e., the higher order number)
the  colorized  image  has.  According  to  the  OEI  values  in  Table  1,  the  quality  order  of
colorized images varies with figures (cases).  To have an overall  impression, the sums of
the order numbers in five cases (i.e., Figs. 3-7) are calculated and shown at the rightmost
column in Table 1. The quality order of each colorization method (6 for the best) is given
within the curly brackets. The order of colorization methods from the best to the worst: SM
(stat-match), SM-JHM (stat-match then joint-HM), LUT, CBCF (channel-based color fusion),
HM  (histogram  matching),  JHM  (joint-HM).  This  order  sorted  by  OEI  values  is  quite
consistent with the order of subjective evaluations.

Method (Plot)
Fig. 3

(AT008)

Fig. 4

(AT009)

Fig. 5

(AT012)

Fig. 6

(ST029)

Fig. 7

(ST102)

Sum

{Order}

CBCF (d) 0.4753 (3) 0.5497 (3) 0.5178 (2) 0.5132 (4) 0.5872 (3) 15 {3}

SM (e) 0.5470 (6) 0.6022 (5) 0.6058 (6) 0.5529 (5) 0.6337 (6) 28 {6}

HM (f) 0.4519 (2) 0.4890 (1) 0.3587 (1) 0.5099 (3) 0.5736 (2) 9 {2}

JHM (g) 0.4372 (1) 0.5250 (2) 0.5189 (3) 0.4674 (1) 0.5503 (1) 8 {1}

SM-JHM (h) 0.5428 (5) 0.5954 (4) 0.5978 (5) 0.5678 (6) 0.6154 (4) 24 {5}

LUT (i) 0.5148 (4) 0.6025 (6) 0.5238 (4) 0.4882 (2) 0.6322 (5) 21 {4}

Table 1. The OEI (Order) values of six color-mapping methods over five cases shown in Figs. 3-7 (The Sum & {Order} at
last colmun is calculated with the orders of five cases).

The subjective evaluations of night vision coloration are based on casual visual inspections.
More qualitative measurements, subjective evaluations (by a group of subjects), and statistical
analysis will be introduced in the future. The quantitative (objective) evaluations using the
objective quality index (OEI) require a reference (daylight) image. Thus we will continuously
improve the OEI metric by relaxing the requirement of a reference image. We will further
conduct more comprehensive comparisons.
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6. Conclusions

In this chapter, we review six night-vision colorization techniques, a channel-based color
fusion (CBCF) procedure; statistic matching (SM), histogram matching (HM), joint histogram
matching (JHM), and stat-match then joint-HM (SM-JHM) method, and LUT-based ap‐
proaches. An objective evaluation metric for NV colorization, objective evaluation index (OEI),
is introduced. The experimental results with five case analyses showed the order of coloriza‐
tion methods from the best to the worst: SM, SM-JHM, LUT, CBCF, HM, JHM. The order of
objective evaluations comply with the order of subjective evaluations.

The accurate objective metric such as OEI will help develop, select, and/or tune up a better NV
colorization technique. The ideally colorized NV imagery can significantly enhance the night
vision targeting by human users and will eventually lead to improved performance of remote
sensing, nighttime perception, and situational awareness.
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Visual inspections of colorized images can generally tell which one is better or the best when
there are big enough differences between several versions of colorized images. For example,
casual inspections may easily confirm that, top 3 methods are SM, SM-JHM, and LUT; HM
and JHM are poor; and CBCF is medium. However, the subjective evalutions become more
and more difficult with a larger number of color images and also hard with small or diverse
differences. In other words, it is hard for subjective evalutions to give an exact order of six
colroziation methods. Let us examine the objective evaluations.
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colorized images varies with figures (cases).  To have an overall  impression, the sums of
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6. Conclusions
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objective evaluations comply with the order of subjective evaluations.

The accurate objective metric such as OEI will help develop, select, and/or tune up a better NV
colorization technique. The ideally colorized NV imagery can significantly enhance the night
vision targeting by human users and will eventually lead to improved performance of remote
sensing, nighttime perception, and situational awareness.
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1. Introduction

1.1. Introduction to the à trous wavelet

In 1992, Mallat and Zhong designed a fast algorithm for the orthogonal wavelet transform
(OWT) of a discrete signal f0(x) having finite energy by level filtering with a brace of low-filter
h(n) and high-pass filter g(n). For the original image A0, the OWT can be achieved as:
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The reconstruction can be achieved by the inverse OWT (IOWT) as:
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In (1) and (2), r=1, 2,…, N denotes the decomposition levels, h̃ (m) and g̃(m) are the conjugate
filters of h(n) and g(n). Ar denotes the low frequency component of A0 in horizontal and vertical
direction. Similarly, Dr

1, Dr
2, Dr

3 respectively denote the horizontal low frequency and vertical
high frequency component, the horizontal high frequency and vertical low frequency compo‐
nent, the horizontal high frequency and vertical high frequency component at resolution level
r. High frequency component represent the detail and edge information while the low
frequency component represent the coarse information.

As a simple example, the brace of low-filter h(n) and high-pass filter g(n) is given by
h(n)=[0.7071, 0.7071], g(n)=[-0.7071, 0.7071].

The OWT is a popular method used for fusing multisensor images. The OWT decomposes an
image with a wavelet basis according to pyramid scheme. The resolution is reduced by one-
half at each level by subsampling data by two. One low frequency component, horizontal,
vertical and diagonal detail components are produced at each level. The complete decompo‐
sition produces the same number of pixels as the original image.

The OWT can be used to improve the quality of the fused image. However, some limita‐
tions exist:  1)  the OWT is applied to discrete images with sizes that are powers of two,
because the resolution is reduced by two at each level. In this sense, it is not possible to
fuse images of any sizes; 2) the analysis pixel by pixel is not possible since data are reduced
at  each  resolution,  it  cannot  follow  to  distinguish  the  evolution  of  a  dominant  feature
through levels. 3) no satisfactory rule allowing a good quality of the fusion with the OWT
exists (Chibani and Houacine, 2003).

For the OWT, the down-sampled multiresolution analysis does not preserve the transla‐
tion  invariance,  i.e.  a  translation  of  the  original  signal  does  not  necessarily  imply  a
translation  of  the  corresponding  wavelet  coefficients.  Therefore,  wavelet  coefficients
generated by an image discontinuity could disappear arbitrarily. This nonstationarity in the
representation is  a  direct  consequence of  the  downsampling operation.  In  order  to  pre‐
serve  this  property,  stationary  wavelet  transform  was  introduced  (Garzelli  2002).  The
redundant wavelet transform (RWT) overcomes the limits of the OWT, and allows a great
flexibility  in  defining  fusion  rules.  The  RWT  can  be  finished  by  using  à  trous  (holes)
algorithm as:
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The original signal can be reconstructed by adding the set of wavelet coefficients for all scales
with the last approximation scale fJ(x) as
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The RWT of an image is accomplished by a separated fltering following rows and columns,
respectively. Specifically, a single wavelet plane is produced at each scale by subtraction of
two successive approximations without decimation. Hence, wavelet and approximation
planes have the same dimensions as the original image.

A scaling function which has a B3 cubic spline profile, and its use leads to a convolution with
a mask of 5×5:

1
256 (1 4 6 4 1

4 16 24 16 4
6 24 36 24 6
4 16 24 16 4
1 4 6 4 1

)
The RWT method is based on the fact that, in the RWT decomposition, the images are the
successive versions of the original image at increasing scales. Thus, the first RWT planes of the
high-resolution panchromatic image have spatial information that is not present in the
multispectral image. The RWT based image fusion can be carried out using substitution
method and additive method. In the wavelet substitution method, some of the RWT planes of
the multispectral image are substituted by the RWT planes corresponding to the panchromatic
image. In the additive method, the RWT planes of the panchromatic image are added to the
multispectral image or to the intensity component of the multispectral images.

In the substitution method, the RWT planes of the multispectral image are discarded and
substituted by the corresponding planes of the panchromatic image. While, in the additive
method all the spatial information in the multispectral image is preserved, and the detail
information from both sensors is used. The main difference between adding the panchromatic
RWT planes to the multispectral images and to the intensity component is that in the first case,
high frequency information is added to each multispectral image, while in the latter high
frequency information modifies only the intensity. Thus, from the theoretical point of view,
adding to the intensity component is a better choice than adding to each multispectral image
(Núñez et al., 1999).

2. Multivalued wavelet transform

2.1. Feature space

Remote sensing image is the carrier of information by sampling the real valued function of
space-time about the observed earth's surface. The digital number values of a remote sensing
image have multivarious meanings, which include fractal geometry (Liu and Li 1997),
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2. Multivalued wavelet transform

2.1. Feature space

Remote sensing image is the carrier of information by sampling the real valued function of
space-time about the observed earth's surface. The digital number values of a remote sensing
image have multivarious meanings, which include fractal geometry (Liu and Li 1997),

A Trous Wavelet and Image Fusion
http://dx.doi.org/10.5772/56947

105



raggedness of ground surface (Liu 2000), inner specialties (Eskicioglu and Fisher 1995),
definition and contrast (Lu and Healy, Jr. 1994), and edge and boundary-dependent shape
segmentation (Nikolov et al. 2000). They are displayed by the grey-values, the abstracted
spectral reflectance, statistical elements, e.g., mean and variance, the mutual relationship
between neighborhood pixels, and grey-values of the same object, respectively. In the follow‐
ing text, these statistical attributes of the original image (I) are dissected into seven represen‐
tative features with pseudo-formulae.

1. Setover: Setover (S) is an important connection between the specific observation of grey-
value fluctuation and the usual intensity stability. It balances the total oscillation around the
center by the absolute bias between each grey-value and the mean μI. Simultaneously it
improves the confidence and sensitivity to locate abnormity by removing μI.

IS I m= - (6)

2. Visibility: Visibility (V) is defined inspired from the human visual system (Li et al. 2002) with
μI and the standard deviation σI. Its each element is the contributive rate scaling local variety.
It is equivalent to the deep projection of the corresponding setover onto σI.
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3. Flat: The grey-values of a remote sensing image indirectly memorize the reflectance of the
scanned groundcover by surveying device. In order to eliminate the possible influence of
sunshine, namely the average intensity, flat (F) is defined according as each grey-value is
divided by μI.

I
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4. Gradient: Gradient (G) is pictured by the spatial frequency (Eskicioglu and Fisher 1995)
following from the fact that the relationship between contiguous grey-values usually implies
change. It is the manner that grey-values switch to their neighbors and weighs the overall
activity level of image.
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m and n denote the row and column of the image I.
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5. Contrast: Contrast (C) is another ratio of the difference between the grey-values of the current
pixel and the background to μI for magnifying the maximum likelihood of variation-dependent
identification. Between the contrast and the visibility of an image, a high correlation exists (Li
et al. 2002).
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6. Definition: In order to find out where is how change, definition (D) is defined with the
minimum mi of all grey-values, the current grey-value, and the total deflection δI. Definition
predicates that the more abrupt the change is, the clearer the feature of the image becomes.
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7. Curvature: Curvature (U) is a ruler of the deflection extent, and it is rewarded by increasing
the accuracy of smoothness or roughness recognition; on the other hand, it is an indicator of
salient information that will actually guide the variation finder (Chakraborty et al. 1995).
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ma is the maximum grey-value.

Apparently, all features are cognate with each other, in other words, when one is high or goes
down, so the others appear. Subsequently, a feature vector formed orderly from above seven
features can be considered as a paradigm in a mathematical structure called feature space. It
is evident that this representation space is beneficial to image processing and analysis
technologies at heightening the precision of significance verdict in manner of replacing the
original image with the feature vector as follows:

0       I S V F G C D U= é ùë û (14)
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2.2. Multivalued wavelet transform

The multivalued wavelet transform (MWT) employed can be performed by applying the RWT
to each feature of I0 as
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The original feature vector I0 can be rebuilt perfectly as
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For fusing one multispectral (T) image and one panchromatic (P) image, the T image is first
resampled to the pixel size of the P image. This fuser that produces the fused image (F) is
summarized as follows:
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where E(x, y) denotes the value of the electing map at position (x, y), and j is the decomposition
level.

3. Example

3.1. Fusing QuickBird images using à trous wavelet

The raw images are downloaded from http://studio.gge.unb.ca/UNB/images. These images
are acquired by a commercial satellite, QuickBird, which collects one 0.7 m resolution pan‐
chromatic band (450-900 nm) and blue (450-520 nm), green (520-600 nm), red (630-690 nm),
near infrared (760-900 nm) bands of 2.8 m resolution. The QuickBird data set was taken over
the Pyramid area of Egypt in 2002. The test images of size 1024 by 1024 at the resolution of 0.7
m are cut from the raw images and used as HRPI and LRMIs. Fig. 1(a) displays the LRMIs as
a color composite where the red, green, blue bands are mapped into the RGB color space. The
HRPI is shown in Fig. 1(b). The near infrared band is not shown because of the limited space

New Advances in Image Fusion108

in this paper, although the images were processed and numerically evaluated. The study area
is composed of various features such as roads, buildings, trees, etc., ranging in size from less
than 5 m up to 50 m. It is obvious that the HRPI has better spatial resolution than the LRMIs
and more details can be found from the HRPI. Before the image fusion, the raw LRMIs were
resampled to the same pixel size of the HRPI in order to perform image registration.

The resolution ratio between the QuickBird HRPI and the LRMIs is 1: 4. Therefore, when
performing the à trous based fusion algorithm, à trous filter 2-1/2(1/16, 1/4, 3/8, 1/4, 1/16),
together with a decomposition level of two, is employed to abstract the high frequency
information of the HRPI. Fused images are shown in Fig. 1(c).

(a) (b) 

(c) 

Figure 1. (a) the original LRMIs at 2.8 m resolution level; (b) the HRPI at 0.7 m resolution level; (c) the HRMIs produced
from the AWT method

Visual inspection provides a comprehensive impression of image clarity and the similarity of
the original and fused images (Wang et al., 2005). By visually comparing all the HRMIs (Fig.
1(c)) with the LRMI (Fig. 1(a)), it is apparent that the spatial resolutions of the HRMIs are much
higher than that of the LRMI. Some small spatial structure details, such as edges, lines, which
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where E(x, y) denotes the value of the electing map at position (x, y), and j is the decomposition
level.
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3.1. Fusing QuickBird images using à trous wavelet

The raw images are downloaded from http://studio.gge.unb.ca/UNB/images. These images
are acquired by a commercial satellite, QuickBird, which collects one 0.7 m resolution pan‐
chromatic band (450-900 nm) and blue (450-520 nm), green (520-600 nm), red (630-690 nm),
near infrared (760-900 nm) bands of 2.8 m resolution. The QuickBird data set was taken over
the Pyramid area of Egypt in 2002. The test images of size 1024 by 1024 at the resolution of 0.7
m are cut from the raw images and used as HRPI and LRMIs. Fig. 1(a) displays the LRMIs as
a color composite where the red, green, blue bands are mapped into the RGB color space. The
HRPI is shown in Fig. 1(b). The near infrared band is not shown because of the limited space
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in this paper, although the images were processed and numerically evaluated. The study area
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and more details can be found from the HRPI. Before the image fusion, the raw LRMIs were
resampled to the same pixel size of the HRPI in order to perform image registration.

The resolution ratio between the QuickBird HRPI and the LRMIs is 1: 4. Therefore, when
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together with a decomposition level of two, is employed to abstract the high frequency
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Figure 1. (a) the original LRMIs at 2.8 m resolution level; (b) the HRPI at 0.7 m resolution level; (c) the HRMIs produced
from the AWT method

Visual inspection provides a comprehensive impression of image clarity and the similarity of
the original and fused images (Wang et al., 2005). By visually comparing all the HRMIs (Fig.
1(c)) with the LRMI (Fig. 1(a)), it is apparent that the spatial resolutions of the HRMIs are much
higher than that of the LRMI. Some small spatial structure details, such as edges, lines, which
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are not discernible in the LRMI, can be identified individually in each of the HRMIs. Buildings
corners, holes, and textures are much sharper in Fig. 1(c) than in Fig. 1(a) and can be seen as
clear as in Fig. 1(b). This means that the fusion method can improve the spatial quality of the
LRMI during the fusion process.

3.2. Fusing TM and SPOT images using multivalued wavelet transform

In this section, three TM images (TM3=Red, TM4=near Infrared, TM5=Infrared) with 171×171
pixels and one SPOT image with 5120×5120 m2 are fused using the MWT. For the MWT fuser,
the three TM images are interpolated to 10 m pixel size in advance, the SPOT image, the TM
image and their feature sequences are decomposed with RWT into three levels, and then the
voting and electing fuser is fulfilled from the first to the third level. Figure 2(a), 2(b), and 2(c)
exhibit the original TM image as a colour composite where TM3, TM4 and TM5 are coded in
blue, green and red, the SPOT image, the fused image, respectively.

(a) (b) 

(c) 

Figure 2. (a) The original TM images at 30 m resolution. (b) The SPOT image at 10 m resolution. (c) The fused images
at 10 m resolution.
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Compared visually with the original TM image, the spatial discernment of the fused images
for the pair of fusers is undoubtedly better. Some small features, such as edges and lines, which
are not interpretable in the original TM image can be identified individually in the fused
images. Other large features, such as lakes, rivers and blocks, are much sharper than those in
the original TM image. These signify that the fuser can assimilate spatial information from the
SPOT image. Figure 2(c) shows less retained colours than figure 2(d), and recovery of the
original colours is necessary for correct thematic mapping (Chibani and Houacine 2002). For
instance, in figure 2(c), all of the green colours shown in the lower left part of figure 2(a)
disappear. Second, with regard to clarity, a field of ‘spider-web’ shape in the left-of-centre part
of figure 2(c) displays a ‘salt-and-granule’ face.
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Image Fusion Based on Shearlets
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1. Introduction

Image decomposition is important to image fusion and affects the information extraction
quality, even the whole fusion quality. Wavelet theory has been developed since the begin‐
ning of the last century. It was first applied to signal processing in the 1980’s[1], and over
the past decade it has been recognized as having great potential in image processing appli‐
cations, as well as in image fusion[2]. Wavelet transforms are more useful than Fourier
transforms, and it is efficient in dealing with one-dimensional point-wise smooth signal
[3-5]. However the limitations of the direction make it not perform well for multidimension‐
al data. Images contain sharp transition such as edges, and wavelet transforms are not opti‐
mally efficient in representing them.

Recently, a theory for multidimensional data called multi-scale geometric analysis (MGA)
has been developed. Many MGA tools were proposed, such as ridgelet, curvelet, bandelet,
contourlet, etc [6-9]. The new MGA tools provide higher directional sensitivity than wave‐
lets. Shearlets, a new approach provided in 2005, possess not only all above properties, but
equipped with a rich mathematical structure similar to wavelets, which are associated to a
multiresolution analysis. The shearlets form a tight frame at various scales and directions,
and are optimally sparse in representing images with edges. Only the curvelets has the simi‐
lar properties with shearlets [10-14]. But the construction of curvelets is not built directly in
the discrete domain and it does not provide a multiresolution representation of the geome‐
try. The decomposition of shearlets is similar to contourlets, while the contourlet transform
consists of an application of the Laplacian pyramid followed by directional filtering, for
shearlets, the directional filtering is replaced by a shear matrix. An important advantage of
the shearlet transform over the contourlet transform is that there are no restrictions on the
direction numbers. [15-19]
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Image Fusion Based on Shearlets

Miao Qiguang, Shi Cheng and Li Weisheng

Additional information is available at the end of the chapter
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1. Introduction

Image decomposition is important to image fusion and affects the information extraction
quality, even the whole fusion quality. Wavelet theory has been developed since the begin‐
ning of the last century. It was first applied to signal processing in the 1980’s[1], and over
the past decade it has been recognized as having great potential in image processing appli‐
cations, as well as in image fusion[2]. Wavelet transforms are more useful than Fourier
transforms, and it is efficient in dealing with one-dimensional point-wise smooth signal
[3-5]. However the limitations of the direction make it not perform well for multidimension‐
al data. Images contain sharp transition such as edges, and wavelet transforms are not opti‐
mally efficient in representing them.

Recently, a theory for multidimensional data called multi-scale geometric analysis (MGA)
has been developed. Many MGA tools were proposed, such as ridgelet, curvelet, bandelet,
contourlet, etc [6-9]. The new MGA tools provide higher directional sensitivity than wave‐
lets. Shearlets, a new approach provided in 2005, possess not only all above properties, but
equipped with a rich mathematical structure similar to wavelets, which are associated to a
multiresolution analysis. The shearlets form a tight frame at various scales and directions,
and are optimally sparse in representing images with edges. Only the curvelets has the simi‐
lar properties with shearlets [10-14]. But the construction of curvelets is not built directly in
the discrete domain and it does not provide a multiresolution representation of the geome‐
try. The decomposition of shearlets is similar to contourlets, while the contourlet transform
consists of an application of the Laplacian pyramid followed by directional filtering, for
shearlets, the directional filtering is replaced by a shear matrix. An important advantage of
the shearlet transform over the contourlet transform is that there are no restrictions on the
direction numbers. [15-19]

© 2013 Qiguang et al.; licensee InTech. This is a paper distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



In recent years, the theory of the shearlets, which is used in image processing, has been stud‐
ied gradually. Now the applications of shearlets are mainly in image denoising, sparse im‐
age representation [20] and edge detection [21, 22]. Its applications in image fusion are still
under exploring.

2. Shearlets [12, 20]

2.1. The theory of Shearlets

In dimension n =2, the affine systems with composite dilations are defined as follows.

/2 2
, ,( ) { ( ) | det | (S ) : , , }y y y= = - Î Îj l j

AS j l kA x A A x k j l k¢ ¢ (1)

Where ψ∈ L 2(ℝ2), A, S  are both 2×2 invertible matrices, and |detS | =1, the elements of
this system are called composite wavelet if AAS (ψ) forms a tight frame for L 2(ℝ2).

∑
j,l ,k

| < f , ψ j ,l ,k > | 2 = f 2

Let A denote the parabolic scaling matrix and S denote the shear matrix. For each a >0 and
s ∈ℝ,

A=(a 0
0 a

),S =(1 s
0 1).

The matrices described above have the special roles in shearlet transform. The first matrix

(a 0
0 a

) controls the ‘scale’ of the shearlets, by applying a fine dilation faction along the two

axes, which ensures that the frequency support of the shearlets becomes increasingly elon‐

gated at finer scales. The second matrix (1 s
0 1), on the other hand, is not expansive, and only

controls the orientation of the shearlets. The size of frequency support of the shearlets is il‐
lustrated in Fig. 1 for some particular values of a and s.

ψ j ,l ,k  for different values of a and s.

In references [12], assume a =4, s =1, where A= A0 is the anisotropic dilation matrix and S =S0

is the shear matrix, which are given by

A0 = (4 0
0 2), S0 = (1 1

0 1)
For ∀ξ =(ξ1, ξ2)∈ℝ̂2, ξ1 ≠0, let ψ̂(0)(ξ) be given by
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Where ψ̂1∈C ∞(ℝ) is a wavelet, and suppψ̂1⊂ −1/2, −1/16 ∪ 1/16, 1/2 ; ψ̂2∈C ∞(ℝ), and

suppψ̂2⊂ −1,1 . This implies ψ̂(0)∈C ∞(ℝ), and suppψ̂(0)⊂ −1/2, 1/2 2.

In addition, we assume that
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There are several examples of functions ψ1, ψ2 satisfying the properties described above.

Eq. (3) and (4) imply that
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Figure 1. frequency support of the shearlets
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for any (ξ1, ξ2)∈D0, where D0 = {(ξ1, ξ2)∈ℝ̂
2 : |ξ1 | ≥1/8, |ξ2 | ≤1}, the functions

{ψ̂(0)(ξA0
− jS0

−l)} form a tiling of D0. This is illustrated in Fig.2 (a). This property described
above implies that the collection

3
(0) (0) 22

0 0, ,{ ( ) 2 ( ) : 0, 2 2 1, }y y= - ³ - £ £ - Î
j

l j j j
j l k x S A x k j l k ¢ (6)

is a Parseval frame for L 2(D0)∨={ f ∈ L 2(ℝ2) : supp f̂ ⊂D0}. And from the conditions on the
support of ψ̂1 and ψ̂2 one can easily observe that the function ψ j ,l ,k  have frequency support,

(0)
j,k,l

2 1 2 4 2 4 2 1 2
1 2 1

1
ˆsupp {( , ) : [ 2 , 2 ] [2 ,2 ],| 2 | 2 }xy x x x

x
- - - - - -Ì Î - - + £j j j j j jlU (7)

That is, each element ψ
⌢

j ,l ,k  is support on a pair of trapezoids, of approximate size 22 j ×2 j,
oriented along lines of slope l2− j.(see Fig.2 (b)).

Figure 2. (a) The tiling of the frequency by the shearlets; (b) The size of the frequency support of a shearlet ψ j ,l ,k .

Similarly we can construct a Parseval frame for L 2(D1)∨, where D1 is the vertical cone,

2 1
1 1 2 2

2

ˆ{( , ) :| | 1/8,| | 1},xx x x
x

= Î ³ £D ¡ (8)

Let

A1 = (2 0
0 4), S1 = (1 0

1 1)
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and ψ̂(1)(ξ)= ψ̂(1)(ξ1, ξ2)= ψ̂1(ξ2)ψ̂2(
ξ1
ξ2

), where ψ̂1 and ψ̂2 are defined as (2) and (3), then the

Parseval frame for L 2(D1)∨ is as follows,

3
(1) (1) 22

1 1, ,{ ( ) 2 ( ) : 0, 2 2 1, }.y y= - ³ - £ £ - Î
j

l j j j
j l k x S A x k j l k ¢ (9)

To make this discussion more rigorous, it will be useful to examine this problem from the
point of view of approximation theory. If F ={ψμ :μ ∈ I } is a bas is or, more generally, a tight

frame for L 2(R 2), then an image f can be approximated by the partial sums

, ,m m
m

y y
Î

= < >å
M

M
I

f f (10)

Where IM  is the index set of the M  largest inner products | < f , ψμ > | . The resulting ap‐
proximation error is

22|| || | , | ,m
m

e y
Ï

= - = å
M

M M
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f f f (11)

and this quantity approaches asymptotically zero as M  increases.

The approximation error of Fourier approximations is εM ≤CM −1/2, of the Wavelet is

εM ≤CM −1, and the approximation error of Shearlets is εM ≤C(logM )3M −2, which is better
than Fourier and Wavelet approximations.

2.2. Discrete Shearlets

It will be convenient to describe the collection of shearlets presented above in a way which
is more suitable to derive numerical implementation. For ξ =(ξ1, ξ2)∈ R̂2, j ≥0 and

l = −2 j, ⋯ , 2 j −1, Let
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Where ψ2, D0, D1 are defined in section 2. For −2 j ≤ l ≤2 j −2, each term W j ,l
(d )(ξ) is a window

function localized on a pair of trapezoids, as illustrated in fig.1a. When l = −2 j or l =2 j −1, at
the junction of the horizontal cone D0 and the vertical cone, W j ,l

(d )(ξ) is the superposition of
two such function.

Using this notation, for j ≥0, −2 j + 1≤ l ≤2 j −2, k∈Z 2, d =0, 1, we can write the Fourier
transform of the Shearlets in the compact form
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(ξ1, ξ2).

The Shearlet transform of f ∈ L 2(R 2) can be computed by
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3. Multi-focus image fusion based on Shearlets

3.1. Algorithm framework of multi-focus image fusion using Shearlets

3.1.1. Image decomposition

Image decomposition based on shearlet transform is composed by two parts, decomposition
of multi-direction and multi-scale.

1. Multi-direction decomposition of image using shear matrix S0 or S1.

2. Multi-scale decompose of each direction using wavelet packets decomposition.

In step (1), if the image is decomposed only by S0, or by S1, the number of the directions is
2(l + 1) + 1. If the image is decomposed both by S0 and S1, the number of the directions is
2(l + 2) + 2. The framework of Image decomposition with shearlets is shown in Fig. 3.

Figure 3. Image decomposition framework with shearlets

3.1.2. Image fusion

Image fusion framework based on shearlets is shown in Fig. 4. The following steps of image
fusion are adopted.

1. The two images taking part in the fusion are geometrically reg is tered to each other.

2. Transform the original images using shearlets. Both horizontal and vertical cones are
adopted in this method. The number of the directions is 6. Then the wavelet packets are
used in multi-scale decomposition with j =5.
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3. Fusion rule based on regional absolute value is adopted in this algorithem.

a. The choice of low frequency coefficients.

Low frequency coefficients of the fused image are replaced by the average of low frequency
coefficients of the two source images.

b. The choice of high frequency coefficients.

,
( , ) | ( , ) |, ,

£ £
= =åX X

i M j N
D i j Y i j X A B (18)

Calculate the absolute value of high frequency coefficients in the neighborhood by Eq.(18)
Where M = N =3 is the size of the neighborhood, X  denotes the two source images, DX (i, j)
is the regional absolute value of X  image within 3 neighborhood with the center at (i, j),
YX (i, j) means the pixel value at (i, j) from X .

Select the high frequency coefficients from the two source images.

( , ) ( , ) ( , )
( , )

( , ) ( , ) ( , )
³ì
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A i j D i j D i j
F i j

B i j D i j D i j
(19)

Where F  is the high frequency coefficients of the fused image.

Finally the region consistency check is done based on the fuse-decision map, which is shown
in Eq.(20).

1 ( , ) ( , )
( , )

0 ( , ) ( , )
³ì

= í <î
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D i j D i j
Map i j

D i j D i j
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According to Eq.(20), if the certain coefficient in the fused image is to come from source im‐
age A, but with the majority of its surrounding neighbors from B, this coefficient will be
switched to come from B.

4. The fused image is gotten using the inverse shearlet transform.

3.2. Simulation experiments

1. Multi-focus image of Bottle

The following group images are selected to prove the validity proposed in this section.

The two source images, Fig.5.(a) and (b), are the multi-focus images, which focus on the dif‐
ferent parts. The fusion methods of these experiments are shearlets, contourlets, Haar, Dau‐
bechies, PCA and Laplacian Pyramid (LP). Fusion rule mentioned above is used in this
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Fig.5. (c) is the ideal image, Fig.5.(d) ~Fig.5.(i) are the fused images with different methods.
From the subjective evaluation of Fig.6 and objective metrics from Table 1, we can see that
shearlet transform have more detail information, disperse the gray level and higher sharp‐
ness of the fused image than other methods do.

shearlet contourlet Haar Daubechies PCA LP

STD

DEN

OCE

EN

SP

PSNR

MSE

Q

43.3322

0.0021

0.0107

6.9628

19.1502

40.8004

5.0067

0.9042

43.3313

0.0227

0.0125

6.9577

18.7049

39.3935

7.0625

0.8703

41.3589

0.0150

0.0442

6.9499

15.3007

31.4881

45.8016

0.8954

41.2225

0.0144

0.0470

6.9493

14.8401

31.188

49.0528

0.9010

41.3253

0.0113

0.0484

6.9462

12.9532

31.1887

49.4549

0.9131

44.1356

0.0354

0.0179

6.9703

19.4853

40.3666

5.9761

0.8809

Table 1. Comparison of multi-focus image fusion

2. Multi-focus Images of CT and MRI

The source images are the CT (Computer Tomography) and MRI (Magnetic Resonance
Imaging) images. And Entropy (EN), Sharpness (SP), Standard deviation (STD) and Q is
used to evaluate the effect of the fused images.

Fig.6 (a) is a CT image, whose brightness has relation with tissue density and the bone is
shown clearly, but soft tissue is invisible. Fig.6 (b) is a MRI image, whose brightness has re‐
lation with the number of hydrogen atoms in t issue, so the soft t issue is shown clearly, but
the bone is invisible. The CT image and the MRI image are complementary, the advantages
could be fused into one image. The desired standard image cannot be acquired, thus only
entropy and sharpness are adopted to evaluate the fusion result. Fusion rule mentioned
above is used in this experiment.

Shearlet Contourlet Haar Daubechies PCA Average

EN

SP

STD

Q

6.1851

20.5271

45.0704

0.6881

5.9189

24.8884

50.4706

0.3022

5.9870

16.9938

35.8754

0.4960

5.9784

14.8810

35.1490

0.4994

5.8792

17.2292

45.3889

0.6847

5.9868

16.9935

34.9141

0.4943

Table 2. Comparison of medical image fusion
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Figure 6. Fusion results on experiment images

4. Remote sensing image fusion based on Shearlets and PCNN

4.1. Theory of PCNN

PCNN, called the third generation artificial neural network, is feedback network formed by
the connection of lots of neurons, according to the inspiration of biologic v is ual cortex pat‐
tern. Every neuron is made up of three sections: receptive section, modulation and pulse
generator section, which can be described by discrete equation [23-25].

The receptive field receives the input from the other neurons or external environment, and
transmits them in two channels: F -channel and L -channel. In the modulation on field, add
a positive offset on signal L j from L -channel; use the result to multiply modulation with
signal Fj from F -channel. When the neuron threshold θj ≥Uj, the pulse generator is turned
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4. Remote sensing image fusion based on Shearlets and PCNN

4.1. Theory of PCNN

PCNN, called the third generation artificial neural network, is feedback network formed by
the connection of lots of neurons, according to the inspiration of biologic v is ual cortex pat‐
tern. Every neuron is made up of three sections: receptive section, modulation and pulse
generator section, which can be described by discrete equation [23-25].

The receptive field receives the input from the other neurons or external environment, and
transmits them in two channels: F -channel and L -channel. In the modulation on field, add
a positive offset on signal L j from L -channel; use the result to multiply modulation with
signal Fj from F -channel. When the neuron threshold θj ≥Uj, the pulse generator is turned
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off; otherwise, the pulse generator is turned on, and output a pulse. The mathematic model
of PCNN is described below [26-30].
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Where αF , αL  is the constant time of decay, αθ is the threshold constant time of decay, Vθ is
the threshold amplitude coefficient, VF , VL  are the link amplitude coefficients, β is the val‐
ue of link strength, and mijkl , wijkl  are the link weight matrix.
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Figure 7. The model of PCNN neuron 
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4.2. Algorithm framework of remote sensing image fusion using Shearlts and PCNN

When PCNN is used for image processing, it is a single two-dimensional network. The num‐
ber of the neurons is equal to the number of pixels. There is a one-to-one correspondence
between the image pixels and the network neurons.

In this paper, Shearlets and PCNN are used to fuse images. The steps are described below:

1. Decompose the original images A and B respectively into many different directions
f NA, f̂ NA, f NB, f̂ NB (N =1, ..., n) via Shear matrixs (In this chapter, n =3).

New Advances in Image Fusion124

2. Calculate the gradient features in every direction to form feature maps,
Grad f NA, Grad f̂ NA, Grad f NB, Grad f̂ NB.

3. Decompose feature map of all directions using DWT, DG f NA, DG f̂ NA, DG f NBDG f̂ NB

are high frequency coefficients after the decomposition.

4. Take DG f NA, DG f̂ NA, DG f NBDG f̂ NB into PCNN, and fire maps in all directions

fire f NA, fire f̂ NA, fire f NB, fire f̂ NB are obtained.

5. Take the Shearlets on original images A and B, the high frequency coefficients in all di‐

rections are f NA
h , f̂ NA

h , f NB
h  and f̂ NB

h , and the low are f NA
l , f̂ NA

l , f NB
l  and f̂ NB

l . The fused

high frequency coefficients in all directions can be selected as follow:

f N
h ={ f NA

h , fire f NA ≥ fire f NB

f NB
h , fire f NA < fire f NB

, f̂ N
h ={ f̂ NA

h , fire f̂ NA ≥ fire f̂ NB

f̂ NB
h , fire f̂ NA < fire f̂ NB

.

The fusion rule of the low frequency coefficients in any direction is described below:

f N
l ={ f NA

l , Var f NA
l ≥Var f NB

l

f NB
l , Var f NA

l <Var f NB
l , f̂ N

l ={ f̂ NA
l , Var f̂ NA

l ≥Var f̂ NB
l

f̂ NB
l , Var f̂ NA

l <Var f̂ NB
l

Where Varf  is the variance of f .

6. The fused image is obtained using the inverse Shearlet transform.
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Figure 8. Image fusion framework with Shearlets and PCNN
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off; otherwise, the pulse generator is turned on, and output a pulse. The mathematic model
of PCNN is described below [26-30].
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4.2. Algorithm framework of remote sensing image fusion using Shearlts and PCNN

When PCNN is used for image processing, it is a single two-dimensional network. The num‐
ber of the neurons is equal to the number of pixels. There is a one-to-one correspondence
between the image pixels and the network neurons.

In this paper, Shearlets and PCNN are used to fuse images. The steps are described below:

1. Decompose the original images A and B respectively into many different directions
f NA, f̂ NA, f NB, f̂ NB (N =1, ..., n) via Shear matrixs (In this chapter, n =3).
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2. Calculate the gradient features in every direction to form feature maps,
Grad f NA, Grad f̂ NA, Grad f NB, Grad f̂ NB.

3. Decompose feature map of all directions using DWT, DG f NA, DG f̂ NA, DG f NBDG f̂ NB

are high frequency coefficients after the decomposition.

4. Take DG f NA, DG f̂ NA, DG f NBDG f̂ NB into PCNN, and fire maps in all directions

fire f NA, fire f̂ NA, fire f NB, fire f̂ NB are obtained.
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rections are f NA
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4.3. Simulation experiments

In this section, three different examples, Optical and SAR images, remote sensing image and
hyperspectral image, are provided to demonstrate the effectiveness of the proposed method.
Many different methods, including Average, Laplacian Pyramid (LP), Gradient Pyramid
(GP), Contrast Pyramid (CP), Contourlet-PCNN (C-P), and Wavelet-PCNN (W-P), are used
to compare with our proposed approach. The subjective v is ual perception gives us direct
Comparisons, and some objective image quality assessments are also used to evaluate the
performance of the proposed approach. The following image quality metrics are used in this
paper: Entropy (EN), Overall cross entropy (OCE), Standard deviation (STD), Average gra‐
dient (Ave-grad), Q, and QAB/F .

In these three different experiments, the parameters of values of PCNN are showing as fol‐
lows:

Experiment 1: αL =0.03, αθ =0.1, VL =1, Vθ =10, β =0.2, W =(1 / 2 1 1 / 2
1 1 1

1 / 2 1 1 / 2
), and the itera‐

tive number is n =100.

Experiment 2: αL =0.02, αθ =0.05, VL =1, Vθ =15, β =0.7, W =(1 / 2 1 1 / 2
1 1 1

1 / 2 1 1 / 2
), and the iter‐

ative number is n =100.

Experiment 3: αL =0.03, αθ =0.1, VL =1, Vθ =15, β =0.5, W =(1 / 2 1 1 / 2
1 1 1

1 / 2 1 1 / 2
), and the itera‐

tive number is n =100.

As optical and SAR images, remote sensing image and hyperspectral image are widely used
in military, so the study of these images in image fusion are of very important.

Fig.9-11 gives the fused images with Shearlet-PCNN and some other different  methods.
From Fig.9-11 and Table3,  we can see that  image fusion based on Shearlets  and PCNN
can get  more  information  and less  distortion  than  other  methods.  In  experiment  1,  the
edge feature from Fig. 9(a) and spectral information from Fig. 9(b) are kept in the fused
image by using the proposed method, which is showing in Fig.9(c). In Fig.9 (d), the spec‐
tral  character  in  the  fused image,  fused by Contourlet  and PCNN, is  distorted and the
from visual point of view, the color of image is too prominent. From Fig.9 (e)-(f), spectral
information of the fused images is  lost  and the edge features are vague. Fig.  10 are the
fused Remote sensing image, which is able to provide more new information since it can
penetrate clouds, rain, and even vegetation. With different imaging modalities and differ‐
ent bands, its features are different in each image. In Fig.10(c) and (d), band 8 has more
river characteristics but less city information, while band 4 has opposite imaging features.
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Fig.10 (c)  is  the fused image using Shearlets  and PCNN. The numerical  results  in  Fig.5
and Table 1 show that the fused image based on Shearlets and PCNN keep better river
information,  and even involve excellent city features.  In Fig 10.(d),  in the middle of  the
fused  image  using  Contourlet  and  PCNN,  has  obvious  splicing  effect.  Fig.11(c)  is  the
fused Hyperspectral image. Fig.11(a) and (b) are the two original images, The track of the
airport is clear in Fig.11(a),  however,  some planes information are lost.  Fig.  11(b) shows
the different information. In the fused image, the track information is more clearly,  and
aircrafts  characters are more obvious.  But lines on the runways are not clear enough in
the fused images using other methods. From Table 3 we can see that most metric values
using the proposed method are better than other methods do.
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Experiment 2 Average

LP

GP

CP

C-P

W-P

proposed

0.4016

0.5219

0.4736

0.5120

0.5658

0.4283

0.6212

0.7581

0.7530

0.7599

0.7475

0.7516

0.7547

0.7775

6.1975

6.9594

6.9024

6.9237

7.3332

6.8543

7.1572

46.1587

49.2283

47.0888

48.9839

54.3504

47.3304

56.2993

0.0236

0.0399

0.0342

0.0392

0.0390

0.0346

0.0381

2.9600

3.3738

3.6190

3.3812

3.0628

3.2436

2.9046

Experiment 3 Average

LP

GP

CP

C-P

W-P

proposed

0.5021
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0.5720

0.5909

0.5838

0.5319

0.6230

0.7955

0.7728

0.7898

0.7469

0.7435

0.7788

0.7502

6.5011

6.8883

6.5649

6.7499

6.9451

6.5847

7.0791

41.0552

47.4990

41.3974

43.4631

46.5294

41.6623

55.9533

0.0161

0.0274

0.0223

0.0318

0.0262

0.0231

0.0246

1.0939

0.9959

1.0249

0.9834

1.1745

1.5318

0.5246

Table 3. Comparison of image quality metrics

5. Conclusion

The theory of Shearlets is introduced in this chapter. As a novel MGA tool, shearlets offer
more advantages over other MGA tools. The main advangtage of shearlets is that it can be
studied within the framework of a generalized Multi-Resolution Analysis and with direc‐
tional subdivision schemes generalizing those of traditional wavelets. This is very relevant
for the development of fast algorithmic implementations of the many directional representa‐
tion systems proved in the last decade.

In this chapter, we have succeed in demonstrations that shearlets are very competitive for‐
multi-focus image and remote sensing image fusion. As a new MGA tool, Shearlet is equip‐
ped with a rich mathematical structure similar to wavelet and can capture the information
in any direction. And the edge and orientation information are more sensitive than gray ac‐
cording to human visibility. We take full advantage of multidirection of Shearlets and gradi‐
ent information to fuse image. Moreover, PCNN is selected as a fusion rule to select the
fusion coefficients. Because the character is tics of directional and gradient facilitate motivat‐
ing PCNN neurons, the more precise image fusion results are gotten. Several different kinds
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of images, shown in the experiments, prove that the new algorithm we proposed in this
chapter is effective.

After development in recent years, the theory of Shearlets is gradually improving. But the
time complexity of Shearlets decomposition has been the focus of the study. Which need fur‐
ther study, especially in its theory and applications. We will focus on other image process‐
ing methods using shearlets in our future work.
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