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Preface 
 

Remote sensing is an important tool in environmental management, providing up-to-
date, detailed information about the environment condition and use. The integrated 
use of remote sensing with other established technologies or tools, such as GIS, 
provides a complementary capability for cost-effective means of assessing 
characteristics over landscape-scale areas and also periodically updating basic data. 
The combined use of remote sensing with other methods has proved increasingly 
valuable for the analysis and interpretation of the remotely sensed data acquired from 
airborne, space-borne or ground remote sensing sensors. 

This book covers the latest developments in remote sensing theory and applications by 
numerous researchers, experts and collaborators of the Remote Sensing and Geo-
Environment Lab of the Department of Civil Engineering and Geomatics of the 
Cyprus University of Technology. All the Chapter contributions are selected outcomes 
from funded research projects from the Remote Sensing and Geo-Environment Lab. 
Seven chapters have been selected with the objective of exploring the beneficial use of 
remote sensing for environmental monitoring applications. The main highlight of this 
book is the integration of several techniques such as satellite remote sensing, field 
spectroscopy, smart sensors, ground techniques for achieving an integrated method 
for the systematic monitoring of the environment. 

Chapter 1 contains detailed contents of how Earth observation data along with ground 
meteorological data are used for the study of the urban heat island (UHI) phenomenon 
in Cyprus.   

Chapter 2 discusses the implementation of the most widely used models for 
estimating evapotranspiration and irrigation demand using satellite imagery.  

Chapter 3 presents a brief overview of the evolution of remote sensing in 
archaeological research as well as several applications of applied remote sensing 
techniques through different case studies in Cyprus and Greece. In this chapter, 
several techniques of remote sensing have been presented including earth observation 
from satellite, airborne low altitude systems, archived aerial imagery, geophysical 
surveys, 3D terrestrial laser scanners, field spectroscopy and GIS analysis.  



XII Preface

Chapter 4 shows how the integrated use of satellite remote sensing and GIS 
technology can contribute substantially to the sustainable management of a watershed 
basin. Interpretation of multi-spectral satellite sensor data were able to examine the 
development of updated land use and land cover maps and record of the urban 
sprawl phenomenon in a catchment area.  

Chapter 5 describes how remote sensing has been used to monitor water quality in 
inland waters such as dams in Cyprus using spectro-radiometric measurements, 
smart-platforms and satellite imagery. The use of an innovative, energy-autonomous 
floating sensor platform (buoy) is introduced for the wireless monitoring of turbidity 
data. The use of field spectroscopy for defining the appropriate spectral region in 
which water quality parameters are retrieved prior to the use of satellite imagery has 
been introduced. 

Chapter 6 shows how remote sensing techniques are able to detect areas of the 
pipelines with water leakages. Indeed, ground spectro-radiometric data along with the 
low altitude system provided a useful tool for the detection of water leakages. 

Chapter 7 contains detailed contents of how Earth observation, sun-photometric, Lidar 
techniques and particulate matter measurements are integrated to monitor air 
pollution. Finally, this chapter highlights of how model simulation is used to retrieve 
aerosol optical thickness values. 

I would like to express my sincere thanks, gratitude and appreciation to my team 
members at the Remote Sensing and Geo-Environment Lab as well to my collaborators 
who have contributed to this book. Without their strong commitment, this book would 
not have been possible. I am also thankful to InTech editorial team who has provided 
the opportunity to publish this book. 

Diofantos G. Hadjimitsis 
Chair of the Department of Civil Engineering and Geomatics 

Head of the Remote Sensing and Geo-Environment Research Lab 
Faculty of Engineering and Technology 

Cyprus University of Technology 
Cyprus 
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 Chapter 1

Satellite and Ground Measurements
for Studying the Urban Heat Island Effect in Cyprus

Diofantos G. Hadjimitsis, Adrianos Retalis,
Silas Michaelides, Filippos Tymvios,
Dimitrios Paronis, Kyriacos Themistocleous and
Athos Agapiou

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/39313

1. Introduction

An urban heat island (UHI) is a phenomenon whereby an urban area experiences elevated
air temperatures due to anthropogenic modification of the environment and is usually more
evident at night. During heat waves the local effect of an UHI is superimposed on the re‐
gional temperature field and as a result heat stress is enhanced. Both the intensity and the
spatial structure of the observed thermal contrast of the UHI depend on various parameters,
such as the structure of the urban tissue, the population density and its associated heat re‐
lease, the land use patterns, the vegetation cover, the surface topography and relief etc. In
general terms, the UHI is becoming more intense as city sizes increase. Traditional measure‐
ments of the near-surface UHI are based on measurements of the air temperature using ur‐
ban and rural weather stations or air temperature transects. Thermal satellite sensors, which
primarily measure the radiance at the top of the atmosphere in the thermal infrared, retrieve
the so called land surface temperature (LST) which is the temperature measured at the
Earth’s surface and is regarded as its skin temperature. Given that LST is different from the
surface air temperature, a distinction is made in remote sensing studies between surface ur‐
ban heat island (SUHI) and atmospheric heat island (e.g., Nichol, 1996).

Several studies published in the literature have focused on the use of remotely sensed data
for studying the urban heat island effect (Dousset & Gourmelon, 2003; Kato & Yamaguchi,
2005; Lo & Quattrochi, 2003; Streutker, 2002; Tran et al., 2006; Xiao et al., 2007; Yuanbo et al.,
2007). Other relevant studies are focusing on the validation of satellite LST retrievals with

© 2013 Hadjimitsis et al.; licensee InTech. This is an open access article distributed under the terms of the
Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
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distribution, and reproduction in any medium, provided the original work is properly cited.
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ground measurements or on the inter-comparison of LST products from different sensors
(Mostovoy et al., 2005; Nichol et al., 2009; Retalis et al., 2010). The availability of a multitude
of data archives (e.g., from MODIS, ASTER and Landsat TM/ETM+ sensors) with long time-
series has recently raised the scientific interest in the relevant field. As a result, several stud‐
ies have been published on the study of the UHI effect for various cities of the world (Hung
et al. 2006; Imhoff et al., 2010; Peng et al., 2012).

This Chapter discusses the urban heat island effect in Cyprus based on both multi-temporal
satellite and meteorological data. The necessary information of the study area is provided in
Section 2. The description and selection of the heat waves and the analysis of the synoptic
conditions favouring the development of heat waves are discussed in Section 3. The devel‐
opment of a Neural Network for the correlation of satellite derived land surface temperature
(LST) with ground based air surface temperature is examined in Section 4. The analysis of
satellite derived LST for studying the temporal evolution of LST and the deviation of LST
(anomaly) from the mean values during a heat wave event are presented in Section 5, while
Section 6 refers to the calculation of the mean monthly magnitude of urban heat island
(UHI) for the period 2002-2008 and for selected heat wave events.

2. Study area

The island of Cyprus is located in the eastern part of the Mediterranean Basin. The island is
situated between latitudes circles 34° and 36° N, and meridians 32° and 35°E. Cyprus has a
typical eastern Mediterranean climate: the combined temperature–rainfall regime is charac‐
terized by cool-to-mild wet winters and warm-to-hot dry summers (Michaelides et al., 2009).
The climatological annual precipitation of Cyprus is around 500mm. The highest precipita‐
tion is recorded in the mountainous areas with 1100mm, while in the coastal areas precipita‐
tion is limited to 300-350mm.

From a morphological point of view, the island can be divided into five main morphological
regions: (a) The mountainous complex of Troodos located at the center of Cyprus; (b) the
mountain range of the Pentadaktylos at the northern part; (c) the central plain of Mesaoria
located between of these two mountainous ranges; (d) the hilly areas around the mountain‐
ous complex of Troodos; and (e) the coastal plains (see Fig. 1). The coastline of Cyprus is
characterized by numerous capes and bays. The narrow coastal plains in the north are cov‐
ered with olive trees and carob trees, while a short distance from the coast, the northern
mountain range (Pentadaktylos) is found, which is a limestone formation and peaks to a
height of 1024 meters. At the south and the east of the island there are two salt – lakes.

The Troodos mountain range with a peak at 1951 m covers most of the south-western part
and the center of the island. This area is covered almost by forests, mainly pine and other
forest trees such as cypresses, oaks and cedars. It is estimated that forests cover about 19% of
the total area of the island.

Cyprus is divided into six districts: Kyrenia, Famagusta, Larnaca, Limassol, Paphos and
Nicosia (Fig. 2). During the last decade (2000-2010), there has been recorded a dramatic ur‐
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ban expansion (see Fig. 3). As it was found from previous studies (Hadjimitsis et al., 2011),
there has been an increase of urban areas of more than 100% compared to late 1980’s and a
decrease of 20% of rural areas. These results were derived from an analysis of multi-tempo‐
ral satellite image classification.

Figure 1. Main morphological regions of Cyprus

Figure 2. Districts of Cyprus
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Figure 3. Urban areas of Cyprus shown in red

3. Heat wave events and synoptic patterns

A strong relationship exists between large scale circulation patterns and regional surface
variables such as surface pressure, dynamical rainfall, wind and temperature (Tymvios et
al., 2007, 2008, 2010a; Xoplaki et al., 2003). As a consequence, synoptic upper air charts at
certain levels comprise a valuable tool for the operational weather forecaster to qualitatively
predict occurrences of weather phenomena observed on the ground (e.g., heavy rainfall; see
Tymvios et al., 2010a). The height pattern at 500 hPa is often used for this purpose. In order
to take advantage of these semi-empirical methods and to simplify the statistical processing,
stochastic downscaling methods are often applied to the actual weather patterns in order to
generate clusters of synoptic cases with similar characteristics. Weather type classifications
are simple, discrete characterizations of the atmospheric conditions and they are commonly
used in atmospheric sciences. For a review of various classifications, including their applica‐
tions, refer to Key & Crane (1986), El-Kadi & Smithoson (1992), Hewitson & Crane (1996)
and Cannon & Whitfield (2002).

Heat waves have a distinct impact on society through increased mortality, change in the en‐
ergy consumption profile and the diversification of social behavior. The severity of the heat
events may include the local climatological characteristics, the community design and the
individual tolerance to heat. Both the frequency of appearance and the intensity of heat
waves are increasing in the Mediterranean area (Founda & Giannakopoulos, 2009).

The eastern Mediterranean climate is characterized by the succession of a single rainy sea‐
son (November to mid-March) and a single longer dry season (mid-March to October). This

Remote Sensing of Environment: Integrated Approaches4

generalization is modified by the influence of maritime factors, yielding cooler summers and
warmer winters in most of the coastal and low-lying areas. Visibility is generally very good.
However, during spring and early summer, the atmosphere is quite hazy, with dust trans‐
ferred by the prevailing south-easterly to southwesterly winds from the Saharan and Arabi‐
an deserts, usually associated with the development of desert depressions (Michaelides et
al., 1999). The influence of synoptic types on the urban heat island has been investigated by
Mihalakakou et al. (2002) who have also adopted a neural network approach.

The definition for a heat wave recommended by the World Meteorological Organization is
“when the daily maximum temperature of more than five consecutive days exceeds the
maximum temperature normal by 5°C". Nevertheless, in most countries, the definition of ex‐
treme heat events is based on the potential for hot weather conditions to result in an unac‐
ceptable level of adverse health effects, including increased mortality. Also, a threshold in
maximum temperature is in practical use in many countries.

These periods of abnormally and uncomfortably hot and (usually) humid weather are very
common in the eastern Mediterranean during summer and early autumn. Expert examina‐
tion of the synoptic patterns on upper air charts may reveal the potential for a heat wave
event. In this respect, the research presented here attempts to identify height patterns favor‐
able for heat events by using a neural network classification method, namely, Kohonen’s
Self Organizing Maps (see Kohonen, 1990).

3.1. Data

As an indication of a possible heat event, the maximum temperature of Nicosia station in
Cyprus was chosen. This station is located within the urban area of the city of Nicosia
(35°17’N, 33°35’E, 170m, see Fig. 4) and equipped with traditional instrumentation was op‐
erational from 1957 until 2001, when it was upgraded to an automatic station. The database
used in this study comprises the maximum and minimum temperature records from this
station. The maximum monthly temperature measurements are presented in Fig. 5. Also, for
the classification of synoptic patterns, the ERA40 reanalysis for the period of 1958 to 2000
(covering roughly the ERA40 time window) were utilized.

The temperatures database was checked for consistency and homogeneity against measure‐
ments from nearby stations while the maximum temperatures were also checked for normal
distribution fitting.

3.2. Methodology

The maximum daily temperature at Nicosia station was checked against the climatological
monthly average value of the period 1961-1990. If the difference was 5°C or more, then the
period was characterized as “possible heat event”. If the subsequent days were also positive
against this temperature test for more than three days, then the period was considered as
heat event. The heat events were checked against the weather classification patterns in order
to identify a connection among particular patterns and heat events. The same procedure was
adopted for a difference of 3°C, since events with a 5°C difference are rare even during

Satellite and Ground Measurements for Studying the Urban Heat Island Effect in Cyprus
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certain levels comprise a valuable tool for the operational weather forecaster to qualitatively
predict occurrences of weather phenomena observed on the ground (e.g., heavy rainfall; see
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and Cannon & Whitfield (2002).
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ergy consumption profile and the diversification of social behavior. The severity of the heat
events may include the local climatological characteristics, the community design and the
individual tolerance to heat. Both the frequency of appearance and the intensity of heat
waves are increasing in the Mediterranean area (Founda & Giannakopoulos, 2009).

The eastern Mediterranean climate is characterized by the succession of a single rainy sea‐
son (November to mid-March) and a single longer dry season (mid-March to October). This
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generalization is modified by the influence of maritime factors, yielding cooler summers and
warmer winters in most of the coastal and low-lying areas. Visibility is generally very good.
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against this temperature test for more than three days, then the period was considered as
heat event. The heat events were checked against the weather classification patterns in order
to identify a connection among particular patterns and heat events. The same procedure was
adopted for a difference of 3°C, since events with a 5°C difference are rare even during
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summer. Special care was taken when checking the last and the first day of the month

whereby daily maximum temperature values were subtracted from the average climatologi‐

cal value of the two subsequent months.

Figure 4. Location of ground stations used

Figure 5. Box and Whiskers plot of the maximum temperatures in Nicosia (1958 - 2000)
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Details of the Self Organizing Maps methodology used for the classification have been pre‐
sented in Michaelides et al. (2010). The 36-Cluster classification adopted also in the present
study has been recently demonstrated by Tymvios et al. (2010b).

3.3. Results

The distribution of the heat events in consecutive days for 3°C and 5°C difference is illustrat‐
ed in Fig. 6. It is clearly evidenced that more than 75% of the events last for 3 to 5 days. Most
of the identified heat events occur in the transition periods (i.e., Spring and Autumn). This
finding is also supported by the findings in Fig. 5, where the larger variation (the area be‐
tween 25th and 75th percentile) of the average of the maximum temperatures is given for the
same periods. With the exception of the periods 12 to 21 July 1978 (10 days) and 2 to 14 July
2000 (13 days), all incidents lasting more than 10 days for this station occurred in October,
November, March, April and May.

Clusters 5 and 34 share most of the heat event occurrences. They are both transition period
clusters with similar characteristics, exhibiting a distinctive upper level ridge over the east‐
ern Mediterranean and a deep low to the west of this ridge; Cluster 5 belongs to the cold
period and Cluster 34 to the warm period. An example of a Cluster 5 member is illustrated
in Fig. 7.

When these  clusters  appear  during  early  Spring  and late  Autumn,  the  heat  events  last
from 8 to 15 days,  while when they appear just before or after Summer (May and Sep‐
tember)  they  last  around  5  days.  Summertime  appearances  of  heat  events  are  equally
shared between Clusters 12, 19, 24 and 36, all characterized by warm and dry conditions
(Michaelides et al., 2010).

Figure 6. Distribution of the heat events in consecutive days for 3°C and 5°C difference
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Figure 7. The height pattern at 500hPa (Cluster 5) from 24 November 1962

Although it appears that some Clusters are associated with heat events over Cyprus, the
connection between heat events and atmospheric circulation at 500hPa did not give definite
results that any of these patterns dominate heat event occurrences (as it was possible to
demonstrate in previous studies on rainfall and extreme rainfall events). There might be two
reasons for this inadequacy. The first is that the window that was chosen for the classifica‐
tion does not include the synoptic patterns that influence the area sufficiently; the second
reason is that, although upper air patterns at 500hPa contribute significantly to the evolution
of certain surface features (such as dynamical or extreme rainfall), such an association is not
so clear for the temperature field. In the search for associations of the temperature fields
with synoptic patterns in the Mediterranean, it is important to consider also the lower parts
of the atmosphere.

Future research concerning the connection of the weather classification patterns will be fo‐
cused into a new, much larger window that will include Northern Africa and the Middle
East and a combination of classification of patterns at lower levels of the atmosphere (e.g.,
850hPa, 700hPa).

Remote Sensing of Environment: Integrated Approaches8

4. Satellite estimates of temperature versus ground measurements

In this Section, a methodology is presented in which the temperature estimates from the
MODIS sensor onboard the Terra Satellite is contrasted with ground measurements. The
methodology consists of a neural network approach in which measurements on the ground
are used as input to the neural network, whereas, the temperature estimate from the satellite
is considered as the network’s output.

The neural network methodology adopted has successfully been implemented before in
tackling several climatological problems in Cyprus: the prediction of maximum daily total
solar irradiance (Kalogirou et al., 2002), the prediction of the daily average solar radiation
(Tymvios et al., 2002, 2005a), the modeling of photosynthetic radiation (Tymvios et al.,
2005b) and others.

4.1. Data

For the needs of  this  research,  data from MODIS onboard the Terra satellite  have been
used.  More  specifically,  the  level-3  product  MOD11A1  (version  5)  for  the  period
2000-2009  was  exploited,  at  a  resolution  of  about  1km  by  1km  (0.927km).  Using  the
available  Land  Surface  Temperature  (LST)  fields  derived  from  MODIS,  a  time  series
was established corresponding to  the position of  ground stations.  Wan & Dozier  (1996)
have developed the Generalized Split Window (GSW) algorithm for the retrieval of LST,
using the thermal (infrared) channels of MODIS and under different atmospheric condi‐
tions (see  also,  Wan,  1999,  2008).  This  algorithm retrieves  LST on the basis  of  emissivi‐
ties  in  bands  31  and  32  of  MODIS.  The  accuracy  in  estimating  LST  was  found  to  be
better  than  1K,  whereas  in  most  cases  it  was  better  than  0.5K  (Hulley  &  Hook,  2009;
Coll et al.,  2009).

The data base for the surface measurements used in this research consist of the hourly re‐
corded temperature at each of the automatic meteorological stations of the network operat‐
ed by the Cyprus Meteorological Service (see Fig. 4), in the period 2000-2007. Based on these
data, the maximum temperature recorded in the time period 1100 – 1300 UTC (local stand‐
ard time=UTC+2 hours) was considered as the day’s maximum and was subsequently used
in the study.

The training of the neural network implemented requires that there are no missing data in
the time series used, because the data are used in groups and are therefore inter-dependent.
Therefore, the estimated LST (by the neural network implemented) is based on the data of a
whole day and missing values result in the rejection of that day. Following quality control
based on the above constraint, the number of automatic stations that were subsequently
used was reduced to twelve, as shown in Table 1.

4.2. Methodology

Artificial Neural networks (ANN) are small autonomous computational units (algorithms)
with inter-connections which, to a large extent, resemble the functioning of natural compu‐
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tational units, namely, the neurons of the human brain. ANN can be trained and learn
through repeated examples so that they can reach conclusions and results without human
intervention. Since their invention, ANN covered a wide spectrum of research and disci‐
plines and their application has been phenomenal. A few of the numerous examples of
ANN applications are mentioned here: medical systems’ automation for the recognition of
malignant tumors, control of military equipment and aircraft, estimation of environmental
variables, quality verification in production factories, forecasting of financial indices, weath‐
er diagnosis and forecasting etc.

For the implementation of the ANN methodology in the present research, the Multi-Layer
Perceptron (MLP) was adopted (see Haykin, 1998). The input to this network is the surface
temperature recorded at the ground stations and the output is the temperature estimated by
the satellite (LST). Fig. 8 displays the MLP implemented.

Figure 8. The Multi-Layer Perceptron (MLP) network implemented for the prediction of LST

The data from the twelve ground stations and the respective MODIS estimations of LST
were used as follows: 60% were used for Training of the network, 20% for Validation and
the remaining 20% as an independent set for Testing.

4.3. Results

Table 1 displays the errors in the estimation of LST with the neural network, by using the
independent set of data. In this table, the maximum, minimum and average errors along
with the standard deviation are shown for each of the ground stations. Overall, the perform‐
ance of the neural network is considered as very satisfactory. However, there are cases
where the error is unacceptable and this requires further investigation.

The relation between input data (ground temperature) and satellite estimated temperature
LST (target) is shown in Fig. 9. The results are shown for all the data but also separately for
the Training, Validation and Testing data sets. For the Training set, the correlation coeffi‐
cient is R=0.96991, for the Validation set R=0.89692 and for the Testing set R=0.9145, whereas,
for all the data R=0.94747. Based on these findings, the performance of the network in pre‐
dicting LST is considered as satisfactory.
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Ground station
Latitude

(N)

Longitude

(E)

Altitude

Above sea

level (m)

Maximum

(°C)

Minimum

(°C)

Average

(°C)

Standard

deviation

(°C)

Astromeritis 35°03´ 32°26´ 175 6.81 -7.31 0.22 2.35

Athalassa 35°04´ 33°58´ 162 7.14 -7.58 0.63 2.77

Athienou 35°03´ 33°32´ 185 6.45 -5.74 0.23 2.27

Dasaki 35°03´ 33°47´ 50 5.74 -4.52 0.60 2.17

Kannaviou 34°55´ 32°35´ 419 7.03 -6.23 0.48 2.41

Kathikas 34°55´ 32°26´ 650 8.25 -5.30 0.63 2.53

Kato Pyrgos 35°11´ 32°41´ 5 7.19 -10.12 0.62 2.99

Malia 34°49´ 32°47´ 645 7.59 -7.75 -0.11 2.56

Mennogeia 34°51´ 33°26´ 140 7.36 -7.78 0.28 3.07

Paphos 34°47´ 32°26´ 82 8.34 -7.45 0.37 2.83

Paralimni 35°04´ 33°58´ 65 7.51 -8.42 0.68 2.61

Polis 35°03´ 32°26´ 20 6.87 -4.83 0.40 2.40

Table 1. Errors of LST estimation for the independent set of data for each ground station

In this research, an attempt has been made to relate ground measurements of temperature
with the temperature as it is estimated from MODIS and develop a neural network method‐
ology that can be used in the estimation of ground temperatures by using the satellite im‐
agery. Although the methodology performs sufficiently, overall, it seems that further
refinement is needed in order to improve the approach. The adoption of a single network for
all the time series of data seems to limit the application of the methodology. For example,
the present single neural network developed for each station does not take into account the
large seasonal variations in the parameter concerned. It could be more effective if several
neural networks are developed based on seasonally grouped data.
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Figure 9. Neural network performance for the Training, Validation, Test and All data sets
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5. Land surface temperature analysis

The MODIS sensor,  onboard Terra and Aqua polar satellites,  provides one day and one
night image under clear sky conditions. MODIS is particularly suitable for the land sur‐
face temperature (LST) product due to its global coverage, radiometric resolution and dy‐
namic ranges for a variety of land cover types and high calibration accuracy in multiple
thermal bands.

MODIS LST product is based on the generalized split-window (GSW) algorithm (Wan &
Dozier, 1996) using as input the MODIS thermal bands 31 and 32. The parameters in the
MODIS GSW depend on the satellite zenith view angles, column water vapor and also on
the low atmosphere boundary temperature. The band emissivities rely on the classification-
based method (Snyder et al., 1998) according to land cover types in the pixel (Monteiro et al.,
2007). Temperatures are extracted in Kelvin; accuracy of 1 Kelvin is yielded for materials
with known emissivities (Wan, 1999), while a number of studies have also tested the accura‐
cy of the MODIS LST product with favorable results (Wan, 2002; Wan et al., 2004; Coll et al.,
2005; Wan, 2008).

The MODIS Aqua product MYD11A1 (V5) and MODIS Terra product MOD11A1 (V5) –
Land Surface Temperature and Emissivity Daily L3 Global 1 km Grid SIN were used. Terra
and Aqua overpass times for the study area are considered at approximately 1030 and 1330
UTC for day passes, and at approximately 2230 and 0130 UTC for night passes, respectively.

The use of MODIS LST data for examining the temporal evolution and the retrieved temper‐
ature anomaly maps for a heat wave event occurred on 24 June 2007 is presented. Moreover,
MODIS LST data are used for calculating the urban heat island (UHI) at four urban areas of
Cyprus during the extreme heat wave of August 2010.

5.1. MODIS LST temporal evolution and temperature anomaly maps

MODIS LST data were initially used for generating mean monthly climatology LST maps for
June in the period of 2003-2008. The mean and maximum Aqua day and night LST values
for June are presented in Fig. 10 for the period 2003-2008 for two urban areas (Nicosia, Lar‐
naca) and one rural area (Ag. Marina). The curves show that the mean night LST values for
the two urban areas are similar, while for the area of Ag. Marina, the temperature levels are
3-4 °C lower. For all sites, a minimum was observed for year 2005. The situation is different
though regarding day LST values. The coastal site of Larnaca exhibited the lowest values
among the three areas, while Nicosia and Ag. Marina exhibited similar patterns and temper‐
ature levels. The overall trend over time for the three areas showed a positive trend.

The intense heat  wave event  of  24  June 2007 was next  examined in  order  to  study the
LST behavior during such events since satellite  derived LST is  controlled by land cover
and topographic effect factors. In Fig.11, temperature anomaly maps, in terms of temper‐
ature  deviation  from  the  long-term  monthly  mean  values  (calculated  for  the  period
2003-2008), are presented for the heat wave event under consideration and for both night
and day Aqua passes.
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3-4 °C lower. For all sites, a minimum was observed for year 2005. The situation is different
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2003-2008), are presented for the heat wave event under consideration and for both night
and day Aqua passes.
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The spatial patterns observed in the temperature anomaly maps are complex. It can be ob‐
served that day LST anomaly is more intense (up to 15°C) than the night anomaly. Mini‐
mum anomaly is located in the area of the mountain range Troodos (central-eastern part),
while the southern part of Cyprus presents higher anomaly values than the northern part.
The different values of LST increase are attributed to the difference in the emitted radiance
from each land type and/or the urban heat island effect.

Figure 10. Yearly evolution of the mean Aqua MODIS LST for June (2003-2008) as retrieved from Aqua satellite for
three different areas in Cyprus

The amplitude of LST anomaly variation between day and night was examined with the
land cover types based on the CORINE 2000 land cover map (Fig. 12). It was found that the
mean anomaly amplitude was 2.89-4.05°C for artificial surfaces, 2.87-6.01°C for agricultural
areas and 2.81-4.63°C for forest and semi natural areas. However, variations were noticed
even in the same category. For example, for artificial surfaces the higher amplitude was no‐
ticed for airports and the lower for dump sites. For agricultural areas, the higher amplitude
was noticed for pastures and the lower for annual crops associated with permanent crops.
For forest and semi natural areas, the higher amplitude was noticed for beaches, dunes and
sands and the lower for mixed forest.

A close inspection on the Aqua LST image (Fig. 12) acquired on 24 June 2007 (day pass) de‐
picted that the highest LST values are noticed in areas that are recognized as vulnerable to
desertification (Fig. 13). In Cyprus, there are two climatic zones that are considered as sensi‐
tive to desertification: the semi-arid, which extends over the larger part of the island and the
arid sub-humid, which covers the slopes of the Troodos range and the windward side and
higher parts of the Kyrenia range (IACO, 2007).
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Figure 11. Land Surface Temperature anomaly map derived from both day (top) and night (bottom) Aqua MODIS
passes for the selected heat wave event
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Figure 12. Simplified CORINE 2000 Land Cover map of Cyprus

Figure 13. Land Surface Temperature map derived from day Aqua pass for the selected heat wave event

6. Urban heat island analysis

The variation of the UHI magnitude was examined for the four urban areas of Cyprus based
on MODIS Aqua images acquired at night-time (at approximately 0130 local time). The se‐
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lection of the MODIS Aqua data was based on the criterion that the night-time acquired im‐
ages allow a more precise LST calculation since there is no incoming solar radiation to
change the surface radiation balance, while night-time MODIS LST accuracy has been found
to be better than day time (Rigo et al., 2006).

Figure 14. Areas sensitive to desertification, according to the United Nations Convention to Combat Desertification
(IACO, 2007)

The magnitude of the UHI was estimated for each of the four test sites both for the mean
monthly period 2002-2008 (Fig. 14) and for selective days of high temperature records of Au‐
gust 2010 (Fig 15). The UHI magnitude was calculated by subtracting the LST value from a
rural area (as identified from the position of a pre-selected rural meteorological station)
from the respective LST values falling within the urban boundary area of each district on a
pixel-by-pixel basis (Tomlinson et al., 2010).

Fig.14 presents the mean monthly maximum UHI intensity for the period 2002-2008 for the
four urban areas of Cyprus. As noticed, Nicosia, which is located in the centre of Cyprus, is
most vulnerable to UHI during the warm period, when the intensity is recorded above four
degrees. On the contrary, the other urban areas (Larnaca, Limassol and Paphos), which are
close to the coastline, are lesser affected by UHI during the warm period, with intensities
recorded around 1.5 to 3.5°C. These areas also demonstrated high UHI intensities during the
cold period.

Next, the spatio-temporal variation of the UHI intensity for each of the urban areas was ex‐
amined for the period 23 July to 28 August 2010, when high air surface temperatures were
recorded (Fig. 14). The temporal variation of the maximum UHI intensity was estimated
from the available nocturnal Aqua MODIS images for that period. The results revealed that,
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for most of the cases, the UHI magnitude curves follow a similar trend. Two major peaks
were observed, on 31 July and 25 August 2010.
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Figure 15. Mean monthly maximum UHI magnitude estimated from MODIS Aqua nocturnal images for the period
2002-2008 for Nicosia, Larnaca, Limassol and Paphos

The  spatial  variation  of  the  UHI  magnitude  (Fig.  16)  was  examined  for  two  dates  (31
July and 28 August 2010) and was compared to the mean UHI magnitude as calculated
for August for the years 2002-2008. The results derived suggest that,  in almost all  cases,
the spatial  patterns of  the UHI magnitude observed for each urban area are quite simi‐
lar  to each other with a few variations in the magnitude of  intensity due to the severi‐
ty  of  the  heat  wave event.  The highest  intensities  were  noticed within  the  areas  of  the
urban fabric.

The maximum intensities of UHI for each urban area were (a) 31 July 2010: 5.2°C (Nicosia),
3.5°C (Larnaca), 1.9°C (Limassol), and 5.0°C (Paphos) and (b) 25 August 2010: 6.9°C (Nico‐
sia), 3.9°C (Larnaca), 3.1°C (Limassol), and 4.2°C (Paphos). Thus, the deviation form the
mean monthly UHI intensities calculated for July and August, correspondingly, were of
about 0.6°C and 2.7°C for Nicosia, 0.3°C and 0.8°C for Larnaca, -0.4°C and 1.9°C for Limas‐
sol and 3.2°C and 2.8°C for Paphos.
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Figure 16. Temporal variation of maximum UHI intensity for the four urban areas of Cyprus, as derived from the analy-
sis of Aqua nocturnal data for the period 23 July to 28 August 2010

Figure 17. UHI estimated from MODIS Aqua nocturnal images for (a) 31 July and (b) 28 August 2010, for the four
urban areas of Cyprus, separately
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Figure 16. Temporal variation of maximum UHI intensity for the four urban areas of Cyprus, as derived from the analy-
sis of Aqua nocturnal data for the period 23 July to 28 August 2010

Figure 17. UHI estimated from MODIS Aqua nocturnal images for (a) 31 July and (b) 28 August 2010, for the four
urban areas of Cyprus, separately
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7. Concluding remarks

This Chapter commented on the use of Earth observation data along with ground meteoro‐
logical data for the study of the UHI phenomenon in Cyprus. The synoptic conditions favor‐
ing the development of heat wave events were discussed. Neural Network analysis was
used for classifying synoptic patterns and relate them with heat events. The majority of the
heat events have occurred during the transition periods (Spring and Autumn). However,
despite the fact that some clusters can be associated with such phenomena the connection
between these events and atmospheric circulation at 500hPa did not give clear results.

Furthermore, an attempt was made in order to correlate ground temperature measurements
and MODIS LST data. The results have shown that the methodology can perform sufficient‐
ly; however, further refinement is needed in order to improve this approach.

Aqua MODIS retrievals of land surface temperature data were used for studying selective
heat wave events. The analysis of LST data depicted the regions that are more prone to such
events. The spatial variations of the UHI magnitude was also examined for the major cities
of Cyprus, during both mean monthly conditions and for selected events, identifying areas
that are most vulnerable.
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1. Introduction

Evapotranspiration (ETc) is the mean for exploiting irrigation water and constitutes a major
component of the hydrological cycle (Telis et al., 2007; Papadavid, 2011). The ETc is a basic
and crucial parameter for climate studies, weather forecasts and weather modeling, hydro‐
logical surveys, ecological monitoring and water resource management (Hoedjes et al.,
2008). In the past decades, the estimation of ETc combining conventional meteorological
ground measurements with remotely-sensed data, has been widely studied and several
methods have been developed for this purpose (Tsouni, 2003). For hydrological resources
management and irrigation scheduling, an accurate estimation of the ETc is necessary to be
considered (Hoedjes et al., 2008 ; Papadavid et al., 2011). Crop evapotranspiration rate is
highly important in various areas of the agricultural sector such as for identification of crop
stress, water deficiency, for estimating the exact potential needs of crops for best yields. It is
well accepted that water depletion methods, such as lysimeters, are the most accurate meth‐
ods for estimating ETc. Methods that use meteorological parameters in order to estimate the
ETc of different crops are well established and used by various studies (Telis et al., 2007;
Rogers et al., 2007). A number of semi-empirical methods have been also developed in order
to estimate the evapotranspiration from different climatic variables (Courault et al., 2005).
Remotely sensed reflectance values can be used in combination with other detailed informa‐
tion for estimating ETc of different crops. Indeed, the potentiality of remote sensing techni‐
ques in ETc estimation and water resource management has been widely acknowledged
(Papadavid et al., 2010). The possibility for monitoring irrigation demand from space is an
important factor and tool for policy makers. It has been found that saving irrigation water
through remote sensing techniques could diminish farm irrigation cost which reaches 25%
of the total costs and increases the margin of net profit (Papadavid et al., 2011). Several re‐
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searchers such as D’Urso et al., (1992), Bastiaanssen (2000), Ambast et al., (2006) and Papada‐
vid et al., (2011) have highlighted the potentiality of multispectral satellite images for the
appraisal of irrigation management. The integration of remotely sensed data with auxiliary
ground truth data for obtaining better results is common in the literature. (Bastiaanssen et
al., 2003; Ambast et al., 2006; Minaccapili et al., 2008). Ambast et al., (2006) have shown that
the application of remote sensing data in irrigation is of high importance because it supports
management of irrigation and is a powerful tool in the hands of policy makers. It has been
found that research in ETc is directed towards energy balance algorithms that use remote
sensing directly to calculate input parameters and, by combining empirical relationships to
physical models, to estimate the energy budget components (Minaccapili et al., 2008; Papa‐
david et al., 2010; Papadavid et al., 2011). All the remote sensing models of this category are
characterized by several approximations and need detailed experimental validations. Multi‐
spectral images are used to infer ETc, which is the main input for water balance methods-
models. For estimations of ET, ground truth data (Leaf Area Index-LAI, crop height) and
meteorological data (air temperature, wind speed, humidity) is needed to support this ap‐
proach. In nearly every application of water balance model, knowledge of spatial variations
in meteorological conditions is needed (Moran et al., 1997).

The use of remote sensed data is very useful for the deployment of water strategies since it
can offer a huge amount of information in short time, compared to conventional methods.
Besides convenience and time reducing, remotely sensed data lessens the costs for data ac‐
quisition, especially when the area is extended (Thiruvengadachari et al., 1997). Although
remote sensing based ETc models have been shown to have the potential to accurately esti‐
mate regional ETc, there are opportunities to further improve these models testing the equa‐
tions used to estimate LAI and crop height for their accuracy under current agro-
meteorological and soil conditions.

This Chapter discusses the implementation of the most widely used models for estimating
ETc, the ‘SEBAL’ and ‘Penman-Monteith’ which are used with satellite data. Such models
are employed and modified, with semi-emprical models regarding crop canopy factors, to
estimate accurately ETc for specific crops in the Cyprus area under local conditions. Crop
Water Requirements have been determined based on the evapotranspiration values.

2. Study area

The study area is located in the area of Mandria village, in the vicinity of Paphos Interna‐
tional Airport in Paphos District in Cyprus (Figure 1). The study area lying in the southwest
of Cyprus is a coastal strip between Kouklia and Yeroskipou villages. The area is a coastal
plain with seaward slope of about 2% and it consists of deep fertile soils made of old fine
deposits. The area is dissected by three major rivers, the Ezousa, Xeropotamos and Diarizos.
The area is almost at sea level (altitude 15 m) and is characterized by mild climate which
provides the opportunity for early production of leafy and annual crops. The uniform and
moderate temperatures, attributed to the permanent sea breeze of the area, and the relative
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humidity, are conductive to the early production of fruits and vegetables, for which the rep‐
utation of the area is known all over Cyprus. Cereals are also cultivated in the area. A typi‐
cal Mediterranean climate prevails in the area of interest, with hot dry summers from June
to September and cool winters from December to March, during which much of the annual
rainfall occurs with an average record of 425mm. Nevertheless, irrigation is indispensable
for any appreciable agricultural development in the area

The selected area is a traditionally agricultural area with a diversity of annual and perennial
cultivations and is irrigated by Asprokremnos Dam, one of the biggest dams of Cyprus.

Figure 1. Partial Landsat TM image of Mandria Village in the vicinity of Paphos International Airport in Cyprus

3. Resources

3.1. Field spectroradiometer

The GER (Geophysical Environmental Research) 1500 field spectroradiometer (Figure 2,3) is
a light-weight, high performance, single-beam field spectroradiometer. It is a field portable
spectroradiometer covering the ultraviolet, visible and near-infrared wavelengths from 350
nm to 1050 nm. It uses a diffraction grating with a silicon diode array which has 512 discrete
detectors and provides the capability to read 512 spectral bands.

The instrument is very rapidly scanning, acquiring spectra in milliseconds. The spectroradi‐
ometer provides the option for stand-alone operation (single beam hand-held operation)
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moderate temperatures, attributed to the permanent sea breeze of the area, and the relative
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humidity, are conductive to the early production of fruits and vegetables, for which the rep‐
utation of the area is known all over Cyprus. Cereals are also cultivated in the area. A typi‐
cal Mediterranean climate prevails in the area of interest, with hot dry summers from June
to September and cool winters from December to March, during which much of the annual
rainfall occurs with an average record of 425mm. Nevertheless, irrigation is indispensable
for any appreciable agricultural development in the area

The selected area is a traditionally agricultural area with a diversity of annual and perennial
cultivations and is irrigated by Asprokremnos Dam, one of the biggest dams of Cyprus.

Figure 1. Partial Landsat TM image of Mandria Village in the vicinity of Paphos International Airport in Cyprus

3. Resources

3.1. Field spectroradiometer

The GER (Geophysical Environmental Research) 1500 field spectroradiometer (Figure 2,3) is
a light-weight, high performance, single-beam field spectroradiometer. It is a field portable
spectroradiometer covering the ultraviolet, visible and near-infrared wavelengths from 350
nm to 1050 nm. It uses a diffraction grating with a silicon diode array which has 512 discrete
detectors and provides the capability to read 512 spectral bands.

The instrument is very rapidly scanning, acquiring spectra in milliseconds. The spectroradi‐
ometer provides the option for stand-alone operation (single beam hand-held operation)
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and the capability for computer assisted operation through its serial port, which offers near
real-time spectrum display and hard disk data transfer. The maximum number of scans (512
readings), can be stored for subsequent analysis, using a personal computer and GER li‐
censed operating software. The Lens barrel used for the specific spectroradiometer is the
Standard 4 field of view. The data are stored in ASCII format for transfer to other software.

Figure 2. Spectroradiometric measurement over spectralon panel (Papadavid, 2012)

Reflectance factors using a control stable surface with known characteristics as described by
McCloy (1995) have been measured. Many researchers (McCloy, 1995; Beisl, 2001; Anderson
and Milton, 2006; Schaepman, 2007; Papadavid 2012) highlight the advantages of using con‐
trol surfaces in the measurement of reflectance factors (Bruegge et al., 2001). In this study,
the control surface was a commercially available "Labsphere" compressed "Spectralon"
white panel (Figure 2). There is evidence that these types of panels are more consistent and
retain their calibration better than painted panels (Jackson et al., 1992; Beisl, 2001). Spectra‐
lon diffuse reflectance targets are ideal for laboratory and field applications such as field val‐
idation experiments, performed to collect remote sensing data due to the fact are: durable
and washable; have typical reflectance values of 95% to 99% and are spectrally flat over the
UV-VIS-NIR spectrum; are impervious to harsh environmental conditions and chemically
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inactive (Papadavid et al., 2011). Reflectance was calculated as a ratio of the target radiance
to the reference radiance. The target radiance value is the measured value taken on the crops
(Figure 3) and the reference radiance value is the measured value taken on the standard
Spectralon panel (Figure 2), representing the sun radiance, which reaches the earth surface
—without atmospheric influence.

Figure 3. Spectroradiometric measurements over potatoes (target) in Mandria Village in Paphos, Cyprus (Papada-
vid, 2012)

3.2. SunScan canopy analyser system

Leaf Area Index is commonly used for monitoring crop growth. Instead of the tradition‐
al,  direct  and  labor-consuming  method  of  physically  measuring  the  plant  with  a  ruler
(direct method), an optical instrument, SunScan canopy analyser system (Delta-T Devices
Ltd.,  UK)  is  used  (indirect  method).  The  instrument  (Figure  4)  is  indirectly  measuring
LAI  by  measuring  the  ratio  of  transmitted  radiation  through  canopy  to  incident  radia‐
tion (Figure 5). Indirect methods for LAI measurements based on the transmittance of ra‐
diation  through  the  vegetation  have  been  developed  (Lang  et  al.,  1991;  Welles  and
Norman, 1991).
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Figure 4. SunScan (Delta-T) canopy analyser for LAI and crop height measurements

Figure 5. Use of SunScan canopy analyzer for LAI measurements (Papadavid, 2012)
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3.3. Satellite imagery

Spatial, spectral and temporal resolution of satellite images is very important for studies
dealing with crop water requirements. Landsat- 5 TM and -7 ETM+ have been widely used
for hydrological studies due to their relatively good temporal resolution (16 days) which is
important for providing regular snapshots during the crop growth season (Dadhwal et al.,
1996; Song et al., 2001; Alexandridis, 2003). These sensors are suitable for agricultural areas
with medium to big average fields due to their high spatial resolution (60m for thermal
band, 15m for panchromatic and 30m for the rest).

However, the availability of images is highly dependent on weather conditions. The availa‐
bility of cloud free images for operational projects is very important and depends on the
geographical position and the prevailing weather conditions for the area of interest (Kontoes
and Stakenborg, 1990; Hadjimitsis et al., 2000; Hadjimitsis et al., 2010). Countries such as
Greece and Cyprus are characterised by good weather conditions and the availability of
cloud-free images (Hadjimitsis et al., 2000). An advantage of Landsat image for applications
in Cyprus is that of the whole island coverage from a single image which can be inferred on
a regular basis since Landsat satellites overpass Cyprus on a systematic basis (Papadavid,
2011). Remote sensing users or policy makers or governmental officers have the oppotunity
to have remotely sensed data very often which is very important in terms of phenological
cycle monitoring.

D’ Urso (1995) and Minacapilly et al., (2008) explored the importance of using image time
series  due  to  the  high  importance  of  water  requirements  in  the  different  stages  of  the
crops. The same crop in different stage has different water needs, therefore the time ser‐
ies of satellite images is very important in studies regarding ETc and remote sensing. A
time series of Landsat 5 TM and 7 ETM+ imagery acquired in years 2008, 2009 and 2010
are used in this study, as listed in Table 1. The crucial aim is to have satellite images in
all stages of the specific crops. The availability of images is important since these images
will  be  converted  into  ETc  maps  using  an  image  processing  software  such  as  ERDAS
Imagine software.  Hence,  the  more  images  we have the  better  analysis  we get.  All  im‐
ages  were  pre-processed in  order  to  remove atmospheric  and radiometric  effects,  using
the ERDAS Imagine software. ERDAS ‘modeller module’ was used to transform the im‐
ages into maps by applying the ETc algorithms. The same satellite images were also used
for  evaluating  the  statistical  models  found,  regarding  Leaf  Area  Index  (LAI)  or  Crop
Height (CH) to one of the selected Vegetation Indices (VI).

4. Methodology

An attempt has been made to statistically describe the crop canopy factors, namely crop
height (CH) and LAI, through the vegetation indices (VI). Crop canopy factors are vital ele‐
ments in the procedure of estimating ETc. These indices were produced from spectroradio‐
metric measurements using a hand-held field spectroradiometer (GER 1500) and after this
data were filtered through the Relative Spectral Response (RSR) filters of the corresponding
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Landsat TM/ETM+ bands. At the same time LAI and CH direct measurements were taken in
situ. Hence, time series of LAI, CH and VI have been created and were used to model LAI
and CH to VI. After applying the needed regression analysis and evaluating them, the best
model for each crop, based on the determination factor (r2), was used in specific ETc algo‐
rithms in a procedure to adapt and modify the algorithms in the geo-morphological and me‐
teorological conditions of the island of Cyprus as a representative Mediterranean region.

Table 1. Landsat TM/ETM+ images used in this study (Papadavid, 2012)
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Crop water requirements were inferred by applying the algorithms and it was tested to
check if the specific modifications have assisted the algorithms to improve their precision
when estimating ETc.

The overall methodology is described below. The intended purpose is to estimate ETc of
specific crops in the area of interest using remote sensing techniques.

• Spectroradiometric measurements were undertaken for two years (2009-10) in order to
collect spectral signatures of each crop included in the study. For each crop (Potatoes,
Groundnuts, Beans and Chickpeas) the average spectral signature in each phenological
stage was created based on the two cultivating periods (2009-2010). The purpose is to
have the reflectance of each crop during their phenological stages after the data was fil‐
tered through the Relative Spectral Response filters.

• Leaf Area Index (LAI) and Crop Height (CH) measurements were also taken simultane‐
ously to spectroradiometric measurements and following the same phenological cycle of
each crop for the corresponding cultivating periods. The purpose was to create time series
of these two parameters to correlate them to Vegetation Indices (VI).

• Development of vegetation indices (VI). Time series of VI were created based on the re‐
flectance of each crop, in each phenological stage.

• Modeling VI to LAI and CH. Different models were tested in order to identify the best
possible model which better describes LAI and CH through VI.

• Preprocessing of satellite images was applied. Geometric rectification, radiometric correc‐
tion including atmospheric correction of satellite data were applied before main process‐
ing of the data.

• Mapping LAI, CH and albedo was performed. The three crop canopy parameters were
mapped using the ERDAS Imagine v.10 software. The satellite images were transformed
into maps in order firstly to test in practice the models and secondly to be inserted as in‐
puts in ETc algorithms.

• Models verification. After inferring the best model describing LAI or CH using VI, an
evaluation of this procedure was taking place. A priori knowledge of satellite over pass‐
ing over the area of interest has assisted the procedure of taking LAI and CH measure‐
ments in different plots and different cultivating period. These average measurements
were compared to the predicted measurements arising from the models application found
in the previous step.

• Application of ETc algorithms. Original and modified by previous equations, ETc algo‐
rithms have been applied to check, based on the reference method, if and how the models
have boosted accuracy on estimating ETc for each crop.
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5. Ground data

5.1. Spectral signatures of crops

It is well established that the reflectance and transmission spectrum of leaves is a function of
both the concentration of light absorbing compounds (chlorophylls, carotenoids, water, cel‐
lulose, lignin, starch, proteins, etc.) and the internal scattering of light that is not absorbed or
absorbed less efficiently (Newnham and Burt, 2001; Dangel et al., 2003). Each crop has a dif‐
ferent spectral signature depending on the stage of its phenological cycle (Gouranga and
Harsh, 2005; McCloy, 2010; Papadavid et al., 2011). A general view of the vegetation spectral
signature is shown in Figure 6; there is strong absorption in blue and red part of the light
spectrum while at green and infrared part there is light and strong reflectance, respectively.

Figure 6. Vegetation spectral signature: Vegetation has low reflectance in the visible region and high reflectance in
the near infrared (data analysis)

The domain of optical observations extends from 400 nm in the visible region of the electro‐
magnetic spectrum to 2500 nm in the shortwave infrared region. The strong absorption of
light by photosynthetic pigments dominates green leaf properties in the visible spectrum
(400-700nm). Leaf chlorosis causes an increase in visible reflectance and transmission. The
near-infrared region (NIR, 700-1100 nm) is a region where biochemical absorptions are limit‐
ed to the compounds typically found in dry leaves, primarily cellulose, lignin and other
structural carbohydrates (Wang et al., 2005). However, foliar reflection in this region is also
affected by multiple scattering of photons within the leaf, related to the internal structure,
fraction of air spaces, and air-water interfaces that refract light within leaves. The reflectance
and transmittance in the middle-infrared also termed the shortwave-infrared (SWIR, 1100
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nm - 2500 nm) is also a region of strong absorption, primarily by water in green leaves (Mai‐
er, 2000). More specifically, visible blue and red are absorbed by the two main leaf pigments,
chlorophyll a and b in green-leaf chloroplasts. These strong absorption bands induce a re‐
flectance peak in the visible green. Thus most vegetation has a green-leafy color. Chloro‐
phyll pigments are also known as the green pigments.

Apart from chlorophyll, other leaf pigments have a significant effect on the visible spectrum.
Carotene, a yellow to orange-red pigment strongly absorbs radiation in the 350-500 nm
range and is responsible for the color of some flowers and leaves without chlorophyll. Xan‐
thophyll, the red and blue pigment also strongly absorbs radiation in the 350-500 nm range,
giving the distinctive color to the leaves in Autumn. In the near infrared range (700-1000
nm) of the electromagnetic spectrum, there is strong reflectance in the spongy mesophyll
cells that occur at the back of leaves.

5.2. Phenology of the crops

Phenology can be defined as the study of  the timing of  biological  events,  the causes of
their timing with regard to biotic and abiotic forces, and the interrelation among phases
of the same or different species (Shaykewich 1994). As McCloy (2010) mentions the phe‐
nological cycle can be defined as the trace or record of the changes in a variable or attrib‐
ute  over  the  phenological  period  (usually  one  agricultural  year)  and  a  phenophase  is
defined as an observable stage or phase in the seasonal cycle of a plant that can be de‐
fined by start and end points. Crop phenological stages are important indicators in agri‐
cultural  production,  management,  planning,  decision-making  and  irrigation  scheduling
(O’ Leary et  al.,  1985;  Gouranga and Harsh,  2005;  Papadavid et  al.,  2011).  Indeed, Food
and Agriculture Organization (FAO) guidelines of estimating crop evapotranspiration for
irrigation demands, take into account crop characteristics and the phenological stages of a
crop; Crop coefficient (Kc )refers to crop growth stage and the length in time of this stage
(Allen et al., 1998). Moreover crop phenology is difficult to be studied for large areas us‐
ing traditional techniques and methods.

Recently, many studies have been performed in order to derive the crop phenological stages
based on satellite images (Papadavid, 2011). These studies aim to validate vegetation indices for
monitoring the development of the phenological cycle from times series data (Papadavid, 2011).
For example, Sakamoto et al., (2005), Minaccapili et al., (2008) and Papadavid et al., (2011) used
times series of remotely sensed data in order to develop a new systematic method for detecting
the phenological stages of different crops from satellite data while Bradley et al., (2007) in their
study have introduced a curve fitting procedure in order to derive inter-annual phenologies
from time series of noisy satellite NDVI data. Moreover, Funk and Budde (2009) have used an
analogous metric of crop performance based on time series of NDVI satellite imagery. Papada‐
vid et al., (2009; 2010; 2011) and Papadavid (2011) have shown that field spectroscopy and em‐
pirical modelling, when successfully integrated, can develop new models of Leaf Area Index
(LAI) and Crop Height, during the phenological cycle of crops.
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Tables indicating the phenology of each crop can be found in the FAO internet site
(www.fao.org). Table 2 indicates the phenological stages of each crop and the number of in
situ measurements (spectroradiometric and LAI/CH) taken at each stage.

Table 2. Phenological stages of each crop (Papadavid, 2012)

In each sub-table, the phenological stages of each crop can be seen in the first column. In the
‘GER 1500’ column the number of spectroradiometric measurements taken at each stage are
presented. For example, for Potatoes the measurements begun at the stage of ‘closed lines’
and there were 3 measurements during that stage (each measurement in the table is the
average measurement from 25 measurements well spread in the plot. In the third column
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labelled ‘Sunscan measurements’ the LAI measurements are presented for each phenologi‐
cal stage as for the second column which were taken simultaneously. The number of each
spectroradiometric measurement is not random. There should be a change in the reflectance
in the specific phenological stage to have another measurement meaning that the crop re‐
flectance during two consecutive days could be the same so the measurement would not en‐
ter the table as different one.

Changes in the phenological cycles of crops may occur from different parameters, such as
weather  conditions,  soil  and crop characteristics,  and changes  in  the  climate  of  an area
(Minaccapili et al., 2008; Kross et al.,2011). Between years, phenological markers (such as
length of growing season) may respond differently, a phenomenon which can be associat‐
ed  with  short-term  climate  fluctuations  or  anthropogenic  forcing,  such  as  groundwater
extraction, urbanization (Bradley et al., 2007). However, the interpretation of phenological
changes based on a large dataset volume for a period of many years can turn to be very
complicated.

6. Semi-empirical modelling of satellite data (vegetation indices) to
ground data (crop canopy parameters)

The commonly accepted equation for estimating evapotranspiration, according to the sche‐
matization of Monteith (Monteith and Unsworth, 1990), is a function of climate data such as
temperature (T), humidity (RH%), solar radiation (Rs) and wind speed (U) and crop parame‐
ters, such as the surface albedo (a), the leaf area index (LAI) and the crop height (CH):

( ), , , , %, ,ETc f a LAI ch T RH Rs U= (1)

Remote sensing techniques can be used for monitoring these vegetation characteristics. An
analytical elaboration performed on Landsat reflectance values evidenced the possibility of
retrieving the surface albedo (Brest and Goward, 1987), the leaf area index (Price, 1992) and
the crop height (Moran and Jackson, 1991). Since these parameters directly affect the reflec‐
tance of cropped areas, it has been demonstrated that it is possible to establish a correlation
between multispectral measurements of canopy reflectance and the corresponding canopy
parameter’s values (Bausch and Neale, 1987). In this study, the required crop parameters, a,
LAI, CH have been derived from direct measurements and were correlated to reflectance
measurements of the crops in each case.

Many studies have illustrated the need and the know-how for modeling or correlating LAI
and Crop Height to remote sensing data and mainly to the vegetation indices inferred from
handheld sensors. Leaf Area Index is an important structural property of crop canopy. High
correlations were found between reflectance factor and LAI by Ahlrichs et al., (1983). Strong
correlations between spectral data from crops and various characteristics of crops have been
elucidated in numerous studies (Serrano et al, 2000; Goel et al., 2003; Lee et al., 2004). Dar‐
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vishzadeh et al., (2008) examined the utility of hyper spectral remote sensing in predicting
canopy characteristics by using a spectral radiometer. Among the various models investigat‐
ed, they found that canopy chlorophyll content was estimated with the highest accuracy.
Some studies used multispectral image sensor system to measure crop canopy characteris‐
tics (Inoue et al., 2000)

Quantification  of  the  canopy leaf  area  index  (LAI)  and its  spatial  distribution  provides
(Figure 7) an avenue to improve the interpretation of remotely sensed data over vegetat‐
ed areas. The purpose is to test the existing relation between vegetation indices with LAI
and crop height and their prediction from remotely sensed data. It allow us to compare,
on  a  consistent  basis,  the  performance  of  a  set  of  indices  found in  international  litera‐
ture,  in  the  prediction of  LAI and CH which are  basic  parameters  in  the  algorithms of
estimating  ETc.  The  method  for  mapping  LAI  and  Crop  Height  for  specific  crops  is
shown in Figure 8.

Figure 7. Production of LAI (B) and CH (C) maps (in pseudo color) using a Landsat image (A) (Papadavid, 2011)

Remote Sensing of Environment: Integrated Approaches38

Spectroradio-
metric data

Ground 
measurements

Vegetation 
Indices LAI/CH

Modelling

LAI/CH 
MAPS

Evaluation of 
models

Flow Cart of Modelling LAI/CH to Vegetation Indices
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7. Algorithms application and results

7.1. SEBAL algorithm

SEBAL is a thermodynamically based model, using the partitioning of sensible heat flux and
latent heat of vaporization flux as described by Bastiaanssen et al., (1998) who developed the
algorithm. In the SEBAL model, ETc is computed from satellite images and weather data us‐
ing the surface energy balance as illustrated in Figure 9. Remotely sensed data in the visible,
near-infrared and thermal infrared bands are used to derive the energy balance components
along with ground measured solar radiation, if available. The other ground measurements
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that are required as model input are air temperature, relative humidity and wind speed at a
point within the image.

SEBAL has an internal calibration for removing atmospheric effects using a series of itera‐
tion on Sensible Heat Flux (H) (Baastianssen et al., 2000; 2008). Since the satellite image pro‐
vides information for the overpass time only, SEBAL computes an instantaneous ET flux for
the image time. The ET flux is calculated for each pixel of the image as a “residual” of the
surface energy budget equation:

nET R G Hå = å å (2)

where:

• Rn is the instantaneous net radiation (W.m-2)

• G is the instantaneous soil heat flux (W.m-2),

• H is the instantaneous sensible heat flux (W.m-2)

• λΕΤ is the instantaneous latent heat flux (W.m-2)

In this equation, the soil heat flux (G) and sensible heat flux (H) are subtracted from the net
radiation flux at the surface (Rn) to compute the “residual” energy available for evapotrans‐
piration (λET) (Figure 8). Soil heat flux is empirically calculated using vegetation indices,
surface temperature and surface albedo. Sensible heat flux is computed using wind speed
observations, estimated surface roughness and surface to air temperature differences. SE‐
BAL uses an iterative process to correct for atmospheric instability due to the buoyancy ef‐
fects of surface heating. Once the latent heat flux (λET) is computed for each pixel, an
equivalent amount of instantaneous ET (mm/hr) is readily calculated by dividing by the la‐
tent heat of vaporization (λ). Then, daily ETc is inferred.

When all parameters in Equation (2) are known, an instantaneous estimation of ETc can be
conducted. Latent heat flux (λET) in Equation (3) is the rate of latent heat loss from the sur‐
face due to evapotranspiration, at the time of the satellite overpass. An instantaneous value
of ETcinst in equivalent evaporation depth is computed as:

. 3600inst
ETETc å
å

= (3)

where:

• ETcinst is the instantaneous evapotranspiration (mm/hr)

• 3600 is the time conversion from seconds to hours

• λ is the latent heat of vaporization or the heat absorbed when a kilogram of water evapo‐
rates (J/kg)
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The Reference ET Fraction (ETrF) (Equation 4) is defined as the ratio of the computed instan‐
taneous ET (ETinst) for each pixel to the reference ET (ETr) computed only from weather data:

inst
r

r

ET
ET F

ET
= (4)

where:

• ETr is the reference ET at the time of the image from the REF-ET software (mm/hr). ETrF
is also known as crop coefficient, Kc. ETrF is used to extrapolate ET from the image time
to 24-hour or longer periods. ETrF values usually range from 0 to 1.

Figure 9. Energy Balance equilibrium (Source: Waters et al., 2002)

Finally, to get the daily values of ETc which are more useful than the instantaneous ones,
SEBAL computes the ETdaily by assuming that the instantaneous ETrF is the same as the 24-
hour average. The daily ETc (mm/day) is computed from Equation 5:

r rET F x ET (24h)cET = (5)
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where:

• ETr (24h) is the total reference evapotranspiration of the day in mm/day.

Daily ETc is the final ‘product’ of SEBAL algorithm, meaning that satellite images are trans‐
formed into ETc maps where one could retrieve ETc for each pixel, as it is shown in Figure 10.

Figure 10. ETc map of the area of interest (Landsat 5 TM image 2/1/2009) using SEBAL (Papadavid, 2011)

7.2. Penman-Monteith adapted to satellite data algorithm

Penman-Monteith method adapted to satellite data was used to estimate ETc in mm/day
(Equation 6). The specific equation needs both meteorological and remotely sensed data to
be applied. The equation is used to estimate ETc under some assumptions and depends on
the direct application of the Penman-Monteith equation (Monteith, 1965; Rijtema, 1965;
Smith, 1992; Allen et al., 1998) also based on EB theory, with canopy parameters estimated
from satellite imagery (D’Urso et al., 2006; Minaccapili et al., 2008; Papadavid et al., 2010;
2011). Air temperature, atmospheric pressure, wind speed and other necessary meteorologi‐
cal data were collected from a weather station, located at the Paphos International Airport,
very close to our study area. The method also needs empirical equations for describing the
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crop canopy factors (similar to SEBAL), namely albedo, crop height and LAI. It is a method
with strong likelihood of correctly predicting the crop evapotranspiration in a wide range of
locations and climates and has provision for application in data-sparse situations. The equa‐
tion has a strong theoretical basis, combining an energy balance to account for radiation and
sensible heat transfer with an aerodynamic transport function to account for transfer of va‐
por away from the evaporating surface. The method is described as follows:

( )
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or

ETc =
86400
λ

Δ(Rn − G) + cp pa(es − ea) / rah
Δ + γ(1 + rs / rah )

where

• ETc is the crop evapotranspiration (mm/day)

• Δ represents the slope of the saturated vapor pressure temperature relationship (kPa / K1)

• Rn is the net solar radiation (W/m2)

• G Soil Heat flux (W/m2)

• cp is the air specific heat (J/kg K)

• ρa is the air density (kg / m3)

• es is the saturated vapor pressure (kPa)

• ea is the actual vapour pressure (kPa)

• rah is the aerodynamic resistance (s/m)

• rs is the surface resistance (s/m)

• λ is the latent heat of vaporisation of water (J / kg)

• γ is the thermodynamic psychrometric constant (kPa / K)

This equation is valid under conditions of intense solar irradiance (typical summer condi‐
tion in Mediterranean climate) and for 0,5 < LAI < 3, which is the case for Cyprus annual
crops. What is important in the specific model is that of its use without the need of the ther‐
mal band of any satellite, contrary to the other Energy Balanced based models which ther‐
mal band is a prerequisite (Papadavid et al., 2011). Another difference that is rising in this
model compared to SEBAL, is the need of atmospheric corrections where SEBAL and other
models have an internal calibration for compensating atmospheric effects. The parameters
Δ, G, u2, es–ea, Rn and Δ are calculated according to the formulae of the method by the con‐
ventional data of the meteorological station situated in the area of interested. The formulae
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for calculating each parameter can be found extensively in ‘FAO Irrigation and Drainage pa‐
per No. 56’ by FAO (1998). As in all ETc algorithms the final product is an ETc maps (Figure
11) of the area of interest where users can infer the ETc values for specific crops.

Figure 11. ETc map of the area of interest (Landsat 7 TM image 2/1/2009) using P-M (Papadavid, 2011)

The results regarding crop water requirements of the different crops can be found on Table
3. The water needs for each crop is average value, for each month, based on the crop evapo‐
transpiration found employing the two algorithms described above, after applying the
methodology for modeling crop parameters to satellite data.

Crop J F M A M J J A S O N D Total

Potatoes 450 850 1200 1550 1300 5330

Ground nuts 620 1450 1650 300 4020

Beans 450 850 1200 990 3490

Chick peas 200 800 480 1480

Table 3. Crop Water Requirements for the different crops (m3/ha/month)
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8. Use of wireless sensors for supporting evapotranspiration
measurements and smart management of irrigation demand

Wireless  sensors  have  been  used  in  this  study  as  an  extra  tool  for  supporting  evapo‐
transpiration  measurements  in  the  same  area  of  interest  (Hadjimitsis  et  al.,  2008a  &
2008b). Such sensors were used as smart meteorological stations (relative humidity, tem‐
perature,  wind  speed)  as  well  as  tools  for  retrieving  soil  moisture,  soil  temperature
leaves  wetness  and  temperature.  These  information  can  be  used  to  assess  our  evapo‐
transpiration results.

Figure 12. Wireless nodes in the Mandria area in Paphos (Papadavid, 2012)

The Wireless Sensor Network (WSN) consisted of a number of wireless nodes (near to 20
nodes) placed at various locations in the surrounding agriculture fields irrigated from the
Asprokremmos Dam in Paphos District area in Cyprus (see Figure 12). The WSN acts as a
wide area distributed data collection system deployed to collect and reliably transmit soil
and air environmental data to a remote base-station hosted at Cyprus University of Technol‐
ogy (at the Remote Sensing Laboratory), as shown in Figure 13.

The  micro-sensors  were  deployed  using  ad-hoc  multi-hop  communication  protocol  and
transmit their data to a gateway which is responsible to collect,  save and forward them
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wide area distributed data collection system deployed to collect and reliably transmit soil
and air environmental data to a remote base-station hosted at Cyprus University of Technol‐
ogy (at the Remote Sensing Laboratory), as shown in Figure 13.

The  micro-sensors  were  deployed  using  ad-hoc  multi-hop  communication  protocol  and
transmit their data to a gateway which is responsible to collect,  save and forward them
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to a remote database through a GPRS connection. The solar powered gateway, shown in
Figure 14, was equipped with various meteorology sensors required to assist the indeed
research project such as rain, wind, barometric pressure, temperature etc, which give ad‐
ditional information to the system. The gateway also hosts a GPS sensor for identifying
the exact position of the WSN an event-driven smart camera for acquiring real-time pic‐
tures  of  the  area  and  also  a  GPRS  modem  for  communicating  with  the  remote  server
which is deployed tens of thousands of kilometers away. The absence of power and com‐
munication infrastructure was tackled by creating a fully solar operated gateway (autono‐
my of three days without sunshine) and by incorporating a low power GPRS modem for
communication. A multi-parameter decision system running on the remote server would
be able to process the sensor data and produce valuable information about watering dif‐
ferent vegetables and create early notifications and suggestions which are then distribut‐
ed to farmers and water management authorities.  The system was able to process multi
parameter  data  collected  from  different  sensors  such  as  soil  moisture,  soil  temperature
(Figures 15 and 16), leaves wetness and temperature, humidity, rainfall, wind speed and
direction and ambient light.

Figure 13. Wirelesses Sensor Network Schema (Hadjimitsis et al., 2008a & 2008b)
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Figure 14. The WSN Gateway and Meteorology Station (Hadjimitsis et al., 2008a & 2008b)

Figure 15. Soil moisture measurements using micro-sensor technology in agricultural field
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Figure 16. Temperature measurements coming from MSN.

9. Smart management of evapotranspiration using 3G telephony

As ETc is  calculated each night based on that day’s both weather readings and satellite
images  using  the  previously  described  method,  the  ETc  results  from  these  calculations
are  sent  to  farmers  each  morning  giving  them  the  water  balance  (Crop  water  require‐
ments) for their area for the irrigation season until  the previous day. Using the existing
method by combining satellite-derived crop coefficients and the 3G telephony with SMS
delivery service, now offers the potential to provide low cost, site specific and personal‐
ised  (for  crop type  and management  conditions)  irrigation  water  management  informa‐
tion  to  individual  famers  across  an  irrigation  region  (Papadavid  et  al.,  2012).
Automatically  triggered  text  messages  can  be  generated  by  server-based  software  that
combine data and formatting and then send the message out to mobile phones via an In‐
ternet cellular network gateway services. 3G phones can not only send SMS but can also
send extended multimedia.
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High spatial resolution of water management information (approx. 30 m x 30 m using Land‐
sat 5) allows farmers to better manage spatial variability to maximise production, minimise
costs and environmental impacts.

10. Concluding remarks

As a  key  component  in  water  resources  management,  it  is  essential  to  estimate  evapo‐
transpiration accurately for water resources evaluation, drought monitoring and crop pro‐
duction simulation. Accurate estimates of ETc are needed for numerous agricultural and
natural resource management procedures. However, this is difficult to achieve in practice
because actual evapotranspiration cannot be measured directly and varies considerably in
time and space.

Satellite images are collected across Mediterranean areas with frequencies ranging from dai‐
ly to monthly. The clear skies enable the gathering of good quality information and it is now
possible to use satellite remote sensing to estimate the rates of ETc as shown in this chapter.
Research has shown that there is a direct relationship between vegetation cover such as indi‐
ces and ETc. This means that the standard approach of using static crop water requirement
look-up tables can be improved by using the more dynamic and customised information
provided by satellite imagery. Satellite Remote sensing can assist in improving the estima‐
tion of ETc, and consequently water demand in cultivated areas for irrigation purposes and
sustainable water resources management.

In  this  Chapter  remotely  sensed  data  along  with  meteorological  data,  modeling  techni‐
ques  and surface  energy balance algorithms were  combined.  All  these  procedures  com‐
bined  can  provide  the  spatial  distribution  of  ETc  in  maps  where  users  can  derive  the
value  of  ETc  for  each  crop  in  mm/day.  The  methodology  followed  can  be  applied  for
any  place  since  it  can  be  considered  as  ‘algorithm  adaptation’  to  local  conditions.  The
parameters that are required in the empirical equations can be easily evaluated using re‐
mote  sensing  techniques  and  field  spectroscopy.  Modeling  techniques  (for  example,  re‐
gression analysis) are used to correlate and evaluate measured crop canopy factors, such
as Leaf Are Index (LAI) and Crop Height (CH), to remotely sensed data uring the entire
phenological cycle of each crop. The intention is to create semi-empirical models describ‐
ing LAI and CH, which are indispensible parameters in almost all ETc algorithms, using
remotely sensed data. Using these models, users can avoid direct measurements of these
parameters every time there is an application of an ETc algorithm.

The methodology as described in this chapter can support decision makers of Water Au‐
thorities. The methodology was applied for Landsats’ images but it can easily be adapted for
other satellite sensors. The use of field-spectroradiometer can facilitate the procedure since it
provides a spectrum which can be adapted to satellites’ bands by simple transformation, us‐
ing relative spectral response (RSR) filters of each satellite.
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Figure 16. Temperature measurements coming from MSN.

9. Smart management of evapotranspiration using 3G telephony

As ETc is  calculated each night based on that day’s both weather readings and satellite
images  using  the  previously  described  method,  the  ETc  results  from  these  calculations
are  sent  to  farmers  each  morning  giving  them  the  water  balance  (Crop  water  require‐
ments) for their area for the irrigation season until  the previous day. Using the existing
method by combining satellite-derived crop coefficients and the 3G telephony with SMS
delivery service, now offers the potential to provide low cost, site specific and personal‐
ised  (for  crop type  and management  conditions)  irrigation  water  management  informa‐
tion  to  individual  famers  across  an  irrigation  region  (Papadavid  et  al.,  2012).
Automatically  triggered  text  messages  can  be  generated  by  server-based  software  that
combine data and formatting and then send the message out to mobile phones via an In‐
ternet cellular network gateway services. 3G phones can not only send SMS but can also
send extended multimedia.

Remote Sensing of Environment: Integrated Approaches48

High spatial resolution of water management information (approx. 30 m x 30 m using Land‐
sat 5) allows farmers to better manage spatial variability to maximise production, minimise
costs and environmental impacts.

10. Concluding remarks

As a  key  component  in  water  resources  management,  it  is  essential  to  estimate  evapo‐
transpiration accurately for water resources evaluation, drought monitoring and crop pro‐
duction simulation. Accurate estimates of ETc are needed for numerous agricultural and
natural resource management procedures. However, this is difficult to achieve in practice
because actual evapotranspiration cannot be measured directly and varies considerably in
time and space.

Satellite images are collected across Mediterranean areas with frequencies ranging from dai‐
ly to monthly. The clear skies enable the gathering of good quality information and it is now
possible to use satellite remote sensing to estimate the rates of ETc as shown in this chapter.
Research has shown that there is a direct relationship between vegetation cover such as indi‐
ces and ETc. This means that the standard approach of using static crop water requirement
look-up tables can be improved by using the more dynamic and customised information
provided by satellite imagery. Satellite Remote sensing can assist in improving the estima‐
tion of ETc, and consequently water demand in cultivated areas for irrigation purposes and
sustainable water resources management.

In  this  Chapter  remotely  sensed  data  along  with  meteorological  data,  modeling  techni‐
ques  and surface  energy balance algorithms were  combined.  All  these  procedures  com‐
bined  can  provide  the  spatial  distribution  of  ETc  in  maps  where  users  can  derive  the
value  of  ETc  for  each  crop  in  mm/day.  The  methodology  followed  can  be  applied  for
any  place  since  it  can  be  considered  as  ‘algorithm  adaptation’  to  local  conditions.  The
parameters that are required in the empirical equations can be easily evaluated using re‐
mote  sensing  techniques  and  field  spectroscopy.  Modeling  techniques  (for  example,  re‐
gression analysis) are used to correlate and evaluate measured crop canopy factors, such
as Leaf Are Index (LAI) and Crop Height (CH), to remotely sensed data uring the entire
phenological cycle of each crop. The intention is to create semi-empirical models describ‐
ing LAI and CH, which are indispensible parameters in almost all ETc algorithms, using
remotely sensed data. Using these models, users can avoid direct measurements of these
parameters every time there is an application of an ETc algorithm.

The methodology as described in this chapter can support decision makers of Water Au‐
thorities. The methodology was applied for Landsats’ images but it can easily be adapted for
other satellite sensors. The use of field-spectroradiometer can facilitate the procedure since it
provides a spectrum which can be adapted to satellites’ bands by simple transformation, us‐
ing relative spectral response (RSR) filters of each satellite.

Remote Sensing for Determining Evapotranspiration and Irrigation Demand for Annual Crops
http://dx.doi.org/10.5772/39305

49



Acknowledgements

The results presented in this Chapter form part of several research projects as listed below
funded from the Cyprus University of Technology and Cyprus Research Promotion Foun‐
dation (CRPF). Diofantos G. Hadjimitsis (DGH) and Giorgos Papadavid (GP) expressed
their thanks to Cyprus Research Promotion Foundation of Cyprus for the funding of the PE‐
NEK/ENISX/0308/13 as well to the Cyprus University of Technology for funding the ‘Evapo‐
transpiration’ internal research project. GP expressed his thanks to the Cyprus Research
Promotion Foundation of Cyprus for funding the EPIXIRISIS/PROION/0311/51 project.

Author details

Diofantos G. Hadjimitsis1 and Giorgos Papadavid1,2

1 Cyprus University of Technology, Faculty of Engineering and Technology, Department of
Civil Engineering and Geomatics, Remote Sensing and Geo-Environment Laboratory, Cy‐
prus

2 Agricultural Research Institute, Cyprus

References

[1] Ahlrichs, J.S. and M.E. Bauer. 1983. Relation of agronomic and multispectral reflec‐
tance characteristics of spring wheat canopies. Agronomy Journal 75: 987– 993.

[2] Alexandridis T. 2003. Effect of scale on hydrological and vegetation parameters esti‐
mation using remote sensing techniques and GIS, PhD study, Aristotle University of
Thessaloniki, Greece.

[3] Allen R.G., Pereira L.S., Raes D. and Smith M. 1998. Crop evapotranspiration, guide‐
lines for computing crop water requirements. FAO Irrigation and Drainage Paper 56,
Food and Agricultural Organization of United Nations (FAO) Rome, Italy, pp 300.

[4] Ambast S.K., Ashok K, Keshari, Gosain A.K. 2006. Satellite remote sensing to support
management of irrigation systems: concepts and approaches. Irrigation and Drainage
systems 51:p 25-39.

[5] Anderson K., Milton E.J. and Rollin E.M. 2006. Calibration of dual-beam spectrora‐
diometric data. International Journal of Remote Sensing, 27, 975−986.

[6] Bastiaanssen W.G.M. 1995. Regionalization of surface flux densities and moisture in‐
dicators in composite terrain, Doctoral thesis, Agricultural University, Wageningen,
The Netherlands, pp 273.

Remote Sensing of Environment: Integrated Approaches50

[7] Bastiaanssen W.G.M. 2000. SEBAL-based sensible and latent heat fluxes in the irrigat‐
ed Gediz Basin, Turkey. Journal of Hydrology 229:87-100.

[8] Bastiaanssen W.G.M. and Ali S. 2003. A new crop yield forecasting model based on
satellite measurements applied across the Indus Basin, Pakistan. Agriculture, Ecosys‐
tems and Environment, 94:321-340.

[9] Bastiaanssen W.G.M., Brito Bos M.G., Souza K.A., Cavalcanti E.B. and Bakker M.M.
1998. Low cost satellite data for monthly irrigation performance monitoring: Irriga‐
tion and Drainage systems 15 : p 53-79.

[10] Bastiaanssen W.G.M., Menenti M., Feddes R.A. and Holtslag A.A.M. 1998. A remote
sensing surface energy balance algorithm for land (SEBAL), part 1: formulation, Jour‐
nal of Hydrology. 212-213: 198-212.

[11] Bastiaanssen W.G.M., Noordman E.J.M., Pelgrum H., David G., Thoreson B.P. and
Allen R.G. 2005. SEBAL model with remotely sensed data to improve water‐resour‐
ces management under actual field conditions. ASCE J. Irrig. Drain. Eng. 131(1):
85-93.

[12] Bausch, W.C. and Neale, C.M.U. 1987. Crop coefficients derived from reflected cano‐
py radiation: a concept. Transactions American Soc. Agric. Engin. 30 (3): 703-709.

[13] Beisl, U. (2001). Correction of bidirectional effects in imaging spectrometer data. Re‐
mote Sensing Series, Vol. 37. Zürich, Switzerland Remote Sensing Laboratories, Uni‐
versity of Zürich.

[14] Bradley A.B, Jacob W.R., Hermance F.J., Mustard F.J. 2007. A curve fitting procedure
to derive inter-annual phenologies from time series of noisy satellite NDVI data, Re‐
mote Sensing of Environment, 106 (2), 137-145.

[15] Brest, C.L. and Goward, S.N. 1987. Deriving surface albedo measurements from nar‐
row band satellite data. Int. J. Remote Sensing 8 (3): 351-367.

[16] Bruegge C.J., Chrien N. and Haner D. 2001. A Spectralon BRF database for MISR cali‐
bration applications. Remote Sensing of Environment, 76, 354−366.

[17] Courault D., Seguin B. and Olioso A. 2005. Review on estimation of Evapotranspira‐
tion from remote sensing data: from empirical to modeling approaches. Irrigation
and Drainage systems 19: p. 223-249.

[18] D’Urso G., Calera Belmonte A. 2006. Operative approaches to determine crop water
requirements from Earth Observation data: methodologies and applications. In D’Ur‐
so G., Osann Jochum M.A., Moreno J. (Eds.): Earth Observation for vegetation moni‐
toring and water management”, Conference Proceedings Naples. 2005. 9-10 Nov.,
published by American Inst. Physics, Vol. 852: 14-25.

[19] D’Urso G., Querner E.P. and Morabito J.A. 1992. Integration of hydrological simula‐
tion models with remotely sensed data: an application to irrigation management.
Leuven, Belgium , p:463-472.

Remote Sensing for Determining Evapotranspiration and Irrigation Demand for Annual Crops
http://dx.doi.org/10.5772/39305

51



Acknowledgements

The results presented in this Chapter form part of several research projects as listed below
funded from the Cyprus University of Technology and Cyprus Research Promotion Foun‐
dation (CRPF). Diofantos G. Hadjimitsis (DGH) and Giorgos Papadavid (GP) expressed
their thanks to Cyprus Research Promotion Foundation of Cyprus for the funding of the PE‐
NEK/ENISX/0308/13 as well to the Cyprus University of Technology for funding the ‘Evapo‐
transpiration’ internal research project. GP expressed his thanks to the Cyprus Research
Promotion Foundation of Cyprus for funding the EPIXIRISIS/PROION/0311/51 project.

Author details

Diofantos G. Hadjimitsis1 and Giorgos Papadavid1,2

1 Cyprus University of Technology, Faculty of Engineering and Technology, Department of
Civil Engineering and Geomatics, Remote Sensing and Geo-Environment Laboratory, Cy‐
prus

2 Agricultural Research Institute, Cyprus

References

[1] Ahlrichs, J.S. and M.E. Bauer. 1983. Relation of agronomic and multispectral reflec‐
tance characteristics of spring wheat canopies. Agronomy Journal 75: 987– 993.

[2] Alexandridis T. 2003. Effect of scale on hydrological and vegetation parameters esti‐
mation using remote sensing techniques and GIS, PhD study, Aristotle University of
Thessaloniki, Greece.

[3] Allen R.G., Pereira L.S., Raes D. and Smith M. 1998. Crop evapotranspiration, guide‐
lines for computing crop water requirements. FAO Irrigation and Drainage Paper 56,
Food and Agricultural Organization of United Nations (FAO) Rome, Italy, pp 300.

[4] Ambast S.K., Ashok K, Keshari, Gosain A.K. 2006. Satellite remote sensing to support
management of irrigation systems: concepts and approaches. Irrigation and Drainage
systems 51:p 25-39.

[5] Anderson K., Milton E.J. and Rollin E.M. 2006. Calibration of dual-beam spectrora‐
diometric data. International Journal of Remote Sensing, 27, 975−986.

[6] Bastiaanssen W.G.M. 1995. Regionalization of surface flux densities and moisture in‐
dicators in composite terrain, Doctoral thesis, Agricultural University, Wageningen,
The Netherlands, pp 273.

Remote Sensing of Environment: Integrated Approaches50

[7] Bastiaanssen W.G.M. 2000. SEBAL-based sensible and latent heat fluxes in the irrigat‐
ed Gediz Basin, Turkey. Journal of Hydrology 229:87-100.

[8] Bastiaanssen W.G.M. and Ali S. 2003. A new crop yield forecasting model based on
satellite measurements applied across the Indus Basin, Pakistan. Agriculture, Ecosys‐
tems and Environment, 94:321-340.

[9] Bastiaanssen W.G.M., Brito Bos M.G., Souza K.A., Cavalcanti E.B. and Bakker M.M.
1998. Low cost satellite data for monthly irrigation performance monitoring: Irriga‐
tion and Drainage systems 15 : p 53-79.

[10] Bastiaanssen W.G.M., Menenti M., Feddes R.A. and Holtslag A.A.M. 1998. A remote
sensing surface energy balance algorithm for land (SEBAL), part 1: formulation, Jour‐
nal of Hydrology. 212-213: 198-212.

[11] Bastiaanssen W.G.M., Noordman E.J.M., Pelgrum H., David G., Thoreson B.P. and
Allen R.G. 2005. SEBAL model with remotely sensed data to improve water‐resour‐
ces management under actual field conditions. ASCE J. Irrig. Drain. Eng. 131(1):
85-93.

[12] Bausch, W.C. and Neale, C.M.U. 1987. Crop coefficients derived from reflected cano‐
py radiation: a concept. Transactions American Soc. Agric. Engin. 30 (3): 703-709.

[13] Beisl, U. (2001). Correction of bidirectional effects in imaging spectrometer data. Re‐
mote Sensing Series, Vol. 37. Zürich, Switzerland Remote Sensing Laboratories, Uni‐
versity of Zürich.

[14] Bradley A.B, Jacob W.R., Hermance F.J., Mustard F.J. 2007. A curve fitting procedure
to derive inter-annual phenologies from time series of noisy satellite NDVI data, Re‐
mote Sensing of Environment, 106 (2), 137-145.

[15] Brest, C.L. and Goward, S.N. 1987. Deriving surface albedo measurements from nar‐
row band satellite data. Int. J. Remote Sensing 8 (3): 351-367.

[16] Bruegge C.J., Chrien N. and Haner D. 2001. A Spectralon BRF database for MISR cali‐
bration applications. Remote Sensing of Environment, 76, 354−366.

[17] Courault D., Seguin B. and Olioso A. 2005. Review on estimation of Evapotranspira‐
tion from remote sensing data: from empirical to modeling approaches. Irrigation
and Drainage systems 19: p. 223-249.

[18] D’Urso G., Calera Belmonte A. 2006. Operative approaches to determine crop water
requirements from Earth Observation data: methodologies and applications. In D’Ur‐
so G., Osann Jochum M.A., Moreno J. (Eds.): Earth Observation for vegetation moni‐
toring and water management”, Conference Proceedings Naples. 2005. 9-10 Nov.,
published by American Inst. Physics, Vol. 852: 14-25.

[19] D’Urso G., Querner E.P. and Morabito J.A. 1992. Integration of hydrological simula‐
tion models with remotely sensed data: an application to irrigation management.
Leuven, Belgium , p:463-472.

Remote Sensing for Determining Evapotranspiration and Irrigation Demand for Annual Crops
http://dx.doi.org/10.5772/39305

51



[20] Dadhwal V.K., Parihar J.S. and Medhavy T.T. 1996. “Comparative performance of
thematic mapper middle-infrared bands in crop discrimination” Int. J. of Remote
Sensing, 17(9), pp. 1727-1734.

[21] Dangel S., Kneubühler M., Kohler R., Schaepman M., Schopfer J., Schaepman-Strub
G., et al. 2003. Combined Field and Laboratory Goniometer System — FIGOS and
LAGOS. International Geoscience and Remote Sensing Symposium (IGARSS), 7,
4428−4430.

[22] Darvishzadeh, R., A. Skidmore, M. Schlerf, C. Atzberger, F. Corsi and M. Cho. 2008.
LAI and chlorophyll estimation for a heterogeneous grassland using hyperspectral
measurements. ISPRS Journal of Photogrammetry & Remote Sensing 63(4): 409- 426.

[23] Funk C., Budde E.M. 2009. Phenologically-tuned MODIS NDVI-based production
anomaly estimates for Zimbabwe, Remote Sensing of Environment, 113 (1), 115-125.

[24] Goel, P.K., S.O. Prasher, J.A. Landry, R.M. Patel and A.A. Viau. 2003. Estimation of
crop biophysical parameters through airborne and field hyperspectral remote sens‐
ing. Transactions of the ASAE 46(4): 1235–1246.

[25] Gouranga K., Harsh N.V. 2005. Phenology based irrigation scheduling and determi‐
nation of crop coefficient of winter maize in rice fallow of eastern India, Agricultural
Water Management, 75 (3), 169-183.

[26] Hadjimitsis, D.G., Clayton C.R.I., Retalis A. and Spanos K. 2000. Investigating the po‐
tential of using satellite remote sensing for the assessment of water quality in large
dams, and irrigation demand, in Cyprus. Proceedings 26th Annual Conference and
Exhibition of the Remote Sensing Society, RSS2000 , University of Leicester.

[27] Papadavid G., Perdikou S., Hadjimitsis M.G., Hadjimitsis, D.G. 2012. Smart manage‐
ment and monitoring of irrigation demand in Cyprus using remote sensing and 3rd
generation mobile phones, 32nd EARSeL Symposium 2012, Mykonos, Greece.

[28] Hadjimitsis D.G., Hadjimitsis M.G, Toulios L. and. Clayton C.R.I. 2010. Use of space
technology for assisting water quality assessment and monitoring of inland water
bodies, Journal of Physics and Chemistry of the Earth, 35 (1-2), pp. 115-120, DOI:
10.1016/j.pce.2010.03.033

[29] Hadjimitsis D.G.; Papadavid G.; Agapiou A.; Themistocleous K.; Hadjimitsis M.G.;
Retalis A., Michaelides S.; Chrysoulakis N.; Toulios L. and Clayton C.R.I. (2010). At‐
mospheric correction for satellite remotely sensed data intended for agricultural ap‐
plications: impact on vegetation indices, Nat. Hazards Earth Syst. Sci., 10, 89-95, doi:
10.5194/nhess-10-89-2010.

[30] Hadjimitsis D.G., Kounoudes A. and Papapadavid G. 2008a. Integrated Method for
Monitoring Irrigation Demand in Agricultural fields in Cyprus using satellite remote
sensing and wireless sensor network. 4th International Conference HAICTA 2008
Proceedings -'Information and Communication Technologies in Bio & Earth Scien‐

Remote Sensing of Environment: Integrated Approaches52

ces',18-20/9/2008, Agricultural University of Athens, Editor: T. Tsiligiridis, ISBN
978-960-387-725-7, p.10-16.

[31] Hadjimitsis D.G., Papadavid G., Themistocleous K., Kounoudes A., and Toulios L.
Estimating irrigation demand using satellite remote sensing: a case study of Paphos
District area in Cyprus. 2008b. Remote Sensing for Agriculture, Ecosystems, and Hy‐
drology X. Edited by Neale, Christopher M. U.; Owe, Manfred; D'Urso, Guido. Pro‐
ceedings of the SPIE, Volume 7104, pp. 71040I-71040I-11, Proceedings of SPIE Europe
Remote Sensing, 15 - 18 September 2008 University of Wales Institute, Cardiff, UK.
DOI: 10.1117/12.800366

[32] Hoedjes J.C.B., Chehbouni A., Jacob F., Ezzahar J. and Boulet G. 2008. Deriving daily
Evapotranspiration from remotely sensed evaporative fraction over olive orchard in
Morocco. Journal of Hydrology: 53-64.

[33] Inoue, Y., S. Morinaga and A. Tomita. 2000. A blimp–based remote sensing system
for low–altitude monitoring of plant variables: A preliminary experiment for agricul‐
ture and ecological applications. International Journal of Remote Sensing 21(2): 379– 385.

[34] Jackson R.D., Clarke T.R. and Moran M.S. 1992. Bi-directional calibration results for
11 Spectralon and 16 BASO4 reference reflectance panels, Remote Sensing of Envi‐
ronment, 40, 231-239.

[35] Kross A., Fernandes R., Seaquist J., Beaubien E. 2011. The effect of the temporal reso‐
lution of NDVI data on season onset dates and trends across Canadian broadleaf for‐
ests, Remote Sensing of Environment, 115 (6), 1564-1575.

[36] Lang A., McMutrie R., Benson M. 1991. Validity of surface area indices of Pinus Radi‐
ata estimated from transmittance of the sun’s beam. Agric. Forest Meteo. 57: 157-170.

[37] Lee, K.S., W.B. Cohen, R.E. Kennedy, T.K. Maiersperger and S.T. Gower. 2004. Hy‐
perspectral versus multispectral data for estimating leaf area index in four different
biomes. Remote Sensing Environment 91(3-4): 508–520.

[38] Maier S.W. 2000. Modeling the radiative transfer in leaves in the 300 nm to 2.5 µm
wavelength region taking into consideration chlorophyll fluorescence - The leaf mod‐
el SLOPE, PhD Thesis, Deutsches Fernerkundungstagsdatenzentrum, Technische
Universidad München, Oberpfaffenhofen (Germany), 110 pp.

[39] McCloy K.R. 2010. Development and Evaluation of Phenological Change Indices De‐
rived from Time Series of Image Data, Remote Sensing, 2, 2442-2473.

[40] McLoy K.R. 1995. Resource Management information systems, Taylor and Francis,
London, 244-281.

[41] Minacapilli M., Iovino M., D’Urso G. 2008. A distributed agro-hydrological model for
irrigation water demand assessment. Agricul t u r a l water management 95, 123 –
132.

Remote Sensing for Determining Evapotranspiration and Irrigation Demand for Annual Crops
http://dx.doi.org/10.5772/39305

53



[20] Dadhwal V.K., Parihar J.S. and Medhavy T.T. 1996. “Comparative performance of
thematic mapper middle-infrared bands in crop discrimination” Int. J. of Remote
Sensing, 17(9), pp. 1727-1734.

[21] Dangel S., Kneubühler M., Kohler R., Schaepman M., Schopfer J., Schaepman-Strub
G., et al. 2003. Combined Field and Laboratory Goniometer System — FIGOS and
LAGOS. International Geoscience and Remote Sensing Symposium (IGARSS), 7,
4428−4430.

[22] Darvishzadeh, R., A. Skidmore, M. Schlerf, C. Atzberger, F. Corsi and M. Cho. 2008.
LAI and chlorophyll estimation for a heterogeneous grassland using hyperspectral
measurements. ISPRS Journal of Photogrammetry & Remote Sensing 63(4): 409- 426.

[23] Funk C., Budde E.M. 2009. Phenologically-tuned MODIS NDVI-based production
anomaly estimates for Zimbabwe, Remote Sensing of Environment, 113 (1), 115-125.

[24] Goel, P.K., S.O. Prasher, J.A. Landry, R.M. Patel and A.A. Viau. 2003. Estimation of
crop biophysical parameters through airborne and field hyperspectral remote sens‐
ing. Transactions of the ASAE 46(4): 1235–1246.

[25] Gouranga K., Harsh N.V. 2005. Phenology based irrigation scheduling and determi‐
nation of crop coefficient of winter maize in rice fallow of eastern India, Agricultural
Water Management, 75 (3), 169-183.

[26] Hadjimitsis, D.G., Clayton C.R.I., Retalis A. and Spanos K. 2000. Investigating the po‐
tential of using satellite remote sensing for the assessment of water quality in large
dams, and irrigation demand, in Cyprus. Proceedings 26th Annual Conference and
Exhibition of the Remote Sensing Society, RSS2000 , University of Leicester.

[27] Papadavid G., Perdikou S., Hadjimitsis M.G., Hadjimitsis, D.G. 2012. Smart manage‐
ment and monitoring of irrigation demand in Cyprus using remote sensing and 3rd
generation mobile phones, 32nd EARSeL Symposium 2012, Mykonos, Greece.

[28] Hadjimitsis D.G., Hadjimitsis M.G, Toulios L. and. Clayton C.R.I. 2010. Use of space
technology for assisting water quality assessment and monitoring of inland water
bodies, Journal of Physics and Chemistry of the Earth, 35 (1-2), pp. 115-120, DOI:
10.1016/j.pce.2010.03.033

[29] Hadjimitsis D.G.; Papadavid G.; Agapiou A.; Themistocleous K.; Hadjimitsis M.G.;
Retalis A., Michaelides S.; Chrysoulakis N.; Toulios L. and Clayton C.R.I. (2010). At‐
mospheric correction for satellite remotely sensed data intended for agricultural ap‐
plications: impact on vegetation indices, Nat. Hazards Earth Syst. Sci., 10, 89-95, doi:
10.5194/nhess-10-89-2010.

[30] Hadjimitsis D.G., Kounoudes A. and Papapadavid G. 2008a. Integrated Method for
Monitoring Irrigation Demand in Agricultural fields in Cyprus using satellite remote
sensing and wireless sensor network. 4th International Conference HAICTA 2008
Proceedings -'Information and Communication Technologies in Bio & Earth Scien‐

Remote Sensing of Environment: Integrated Approaches52

ces',18-20/9/2008, Agricultural University of Athens, Editor: T. Tsiligiridis, ISBN
978-960-387-725-7, p.10-16.

[31] Hadjimitsis D.G., Papadavid G., Themistocleous K., Kounoudes A., and Toulios L.
Estimating irrigation demand using satellite remote sensing: a case study of Paphos
District area in Cyprus. 2008b. Remote Sensing for Agriculture, Ecosystems, and Hy‐
drology X. Edited by Neale, Christopher M. U.; Owe, Manfred; D'Urso, Guido. Pro‐
ceedings of the SPIE, Volume 7104, pp. 71040I-71040I-11, Proceedings of SPIE Europe
Remote Sensing, 15 - 18 September 2008 University of Wales Institute, Cardiff, UK.
DOI: 10.1117/12.800366

[32] Hoedjes J.C.B., Chehbouni A., Jacob F., Ezzahar J. and Boulet G. 2008. Deriving daily
Evapotranspiration from remotely sensed evaporative fraction over olive orchard in
Morocco. Journal of Hydrology: 53-64.

[33] Inoue, Y., S. Morinaga and A. Tomita. 2000. A blimp–based remote sensing system
for low–altitude monitoring of plant variables: A preliminary experiment for agricul‐
ture and ecological applications. International Journal of Remote Sensing 21(2): 379– 385.

[34] Jackson R.D., Clarke T.R. and Moran M.S. 1992. Bi-directional calibration results for
11 Spectralon and 16 BASO4 reference reflectance panels, Remote Sensing of Envi‐
ronment, 40, 231-239.

[35] Kross A., Fernandes R., Seaquist J., Beaubien E. 2011. The effect of the temporal reso‐
lution of NDVI data on season onset dates and trends across Canadian broadleaf for‐
ests, Remote Sensing of Environment, 115 (6), 1564-1575.

[36] Lang A., McMutrie R., Benson M. 1991. Validity of surface area indices of Pinus Radi‐
ata estimated from transmittance of the sun’s beam. Agric. Forest Meteo. 57: 157-170.

[37] Lee, K.S., W.B. Cohen, R.E. Kennedy, T.K. Maiersperger and S.T. Gower. 2004. Hy‐
perspectral versus multispectral data for estimating leaf area index in four different
biomes. Remote Sensing Environment 91(3-4): 508–520.

[38] Maier S.W. 2000. Modeling the radiative transfer in leaves in the 300 nm to 2.5 µm
wavelength region taking into consideration chlorophyll fluorescence - The leaf mod‐
el SLOPE, PhD Thesis, Deutsches Fernerkundungstagsdatenzentrum, Technische
Universidad München, Oberpfaffenhofen (Germany), 110 pp.

[39] McCloy K.R. 2010. Development and Evaluation of Phenological Change Indices De‐
rived from Time Series of Image Data, Remote Sensing, 2, 2442-2473.

[40] McLoy K.R. 1995. Resource Management information systems, Taylor and Francis,
London, 244-281.

[41] Minacapilli M., Iovino M., D’Urso G. 2008. A distributed agro-hydrological model for
irrigation water demand assessment. Agricul t u r a l water management 95, 123 –
132.

Remote Sensing for Determining Evapotranspiration and Irrigation Demand for Annual Crops
http://dx.doi.org/10.5772/39305

53



[42] Monteith J.L. 1965. Evaporation and the environment. In: The state and movement of
water in living organisms. 19th Symp. Soc. Biol., pp. 205 – 234.

[43] Monteith J.L. and Unsworth M.H. 1990. Principles of Environmental Physics, Second
Edition, Butterworth Heinemann. ISBN 0-7131-2931- X.

[44] Moran M.S., Inoue Y. and Barners E.M. 1997. Opportunities and limitations for im‐
age-based remote sensing in Precision Crop Management: in RS Environment 61, p
319-349.

[45] Newnham G.J. and Burt T. 2001. Validation of a leaf reflectance and transmittance
model for three agricultural crop species, in Proc. International Geoscience and Re‐
mote Sensing Symposium (IGARSS'01), Sydney (Australia), IEEE, Vol. 7, pp. 2976
-2978.

[46] O'Leary G.J., Connort D.J., White D.H. 1985. A Simulation Model of the Develop‐
ment, Growth and Yield of the Wheat Crop, Agricultural Systems 17, 1-26.

[47] Papadavid G., Hadjimitsis D. (2010). An integrated approach of Remote Sensing
techniques and micro-sensor technology for estimating Evapotranspiration in Cy‐
prus. Agricultural Engineering International: CIGR Journal, Manuscript 1528, Vol. 12,
No. 3.

[48] Papadavid G.; Agapiou A.; Michaelides S. and Hadjimitsis D.G. (2009). The integra‐
tion of remote sensing and meteorological data for monitoring irrigation demand in
Cyprus. Nat. Hazards earth syst. Sciences, 9, 2009-2014.

[49] Papadavid G.; Hadjimitsis D.; Toulios L., Michaelides L. (2011). Mapping Potatoes
Crop Height and LAI through Vegetation Indices using Remote Sensing, in Cyprus
Journal of Applied Remote Sensing 5, 053526 (2011), DOI:10.1117/1.3596388.

[50] Papadavid G.; Hadjimitsis D.G., Michaelides S. (2011). Effective irrigation manage‐
ment using the existing network of meteorological stations in Cyprus. Advances in
Geosciences Journal, 9, 7-16, doi:10.5194/adgeo-30-31-2011.

[51] Papadavid G.; Hadjimitsis D.G.; Kurt Fedra and Michaelides S. (2011). Smart man‐
agement and irrigation demand monitoring in Cyprus, using remote sensing and
water resources simulation and optimization. Advances in Geosciences Journal, 9, 1-7,
doi:10.5194/adgeo-9-1-2011.

[52] Papadavid G.; Hadjimitsis D.G.; Perdikou S.; Michaelides S.; Toulios L.; Seraphides
N. (2011). Use of field spectroscopy for exploring the impact of atmospheric effects
on Landsat 5 TM / 7 ETM+ satellite images intended for hydrological purposes in Cy‐
prus, GIScience and Remote Sensing, 48, No 2, p. 280—298, DOI:
10.2747/1548-1603.48.2.280.

[53] Papadavid G.;. (2012). Estimating evapotranspiration for annual crops in Cyprus us‐
ing remote sensing. Phd Thesis, Department of Civil Engineering and Geomatics, Cyprus
University of Technology, Lemesos, Cyprus.

Remote Sensing of Environment: Integrated Approaches54

[54] Price, J.C. 1992. Estimating Leaf Area Index from Remotely Sensed Data. Proc. IGARSS '92
(Houston). Vol. 1. pp. 1500-1502.

[55] Rijtema P.E. 1965. An analysis of actual evapotranspiration. Agric. Res. Rep., 659, Pu‐
doc, Wageningen, pp107.

[56] Rogers D. and Alan M. 2007. An Evapotranspiration Primer. Irrigation Management
Series. Kansas.

[57] Schaepman M.E. 2007. Spectrodirectional remote sensing: From pixels to processes.
International Journal of Applied Earth Observation and Geoinformation, 9(2),
204−223

[58] Serrano, L., I. Filella and J. Penuelas. 2000. Remote sensing of biomass and yield of
winter wheat under different nitrogen supplies. Crop Science 40: 723–731.

[59] Shaykewich C.F. 1994. An appraisal of cereal crop phenology modelling, Canadian
Journal of Plant Science, 329-341.

[60] Smith M. 1992. CROPWAT, a computer program for irrigation planning and man‐
agement. Irrigation and Drainage Paper 46, FAO, Rome, Italy.

[61] Song, J.; Duanjun, L.; Wesely, M.L. 2003. A simplified Atmospheric Correction Proce‐
dure for the Normalized Difference Vegetation Index. Photogrammetric Engineering &
Remote Sensing, 69, 521–528.

[62] Telis A. and Koutsogiannis D. 2007. Estimation of Evapotranspiration in Greece. PhD
Thesis, Athens.

[63] Thiruvengadachari S. and Sakthivadivel K. 1997. Satellite remote sensing for assess‐
ment of irrigation system performance. Research Report 9, IWMI Colombo, Srilanka.

[64] Tsouni A. and Koutsogiannis D. 2003. The contribution of remote sensing techniques
to the estimation of Evapotranspiration : the case of Greece. PhD Thesis, Athens.

[65] Wang L., Wang W., Dorsey J., Yang X., Guo B. and Shum H.Y. 2005. Real-time ren‐
dering of plant leaves, in Proc. ACM SIGGRAPH 2005, Los Angeles (USA), 31 July - 4
August 2005, pp. 167-174.

[66] Welles and Norman. 1991. Instrument for measurement of canopy architecture.
Agron J. 83: 818-825.

Remote Sensing for Determining Evapotranspiration and Irrigation Demand for Annual Crops
http://dx.doi.org/10.5772/39305

55



[42] Monteith J.L. 1965. Evaporation and the environment. In: The state and movement of
water in living organisms. 19th Symp. Soc. Biol., pp. 205 – 234.

[43] Monteith J.L. and Unsworth M.H. 1990. Principles of Environmental Physics, Second
Edition, Butterworth Heinemann. ISBN 0-7131-2931- X.

[44] Moran M.S., Inoue Y. and Barners E.M. 1997. Opportunities and limitations for im‐
age-based remote sensing in Precision Crop Management: in RS Environment 61, p
319-349.

[45] Newnham G.J. and Burt T. 2001. Validation of a leaf reflectance and transmittance
model for three agricultural crop species, in Proc. International Geoscience and Re‐
mote Sensing Symposium (IGARSS'01), Sydney (Australia), IEEE, Vol. 7, pp. 2976
-2978.

[46] O'Leary G.J., Connort D.J., White D.H. 1985. A Simulation Model of the Develop‐
ment, Growth and Yield of the Wheat Crop, Agricultural Systems 17, 1-26.

[47] Papadavid G., Hadjimitsis D. (2010). An integrated approach of Remote Sensing
techniques and micro-sensor technology for estimating Evapotranspiration in Cy‐
prus. Agricultural Engineering International: CIGR Journal, Manuscript 1528, Vol. 12,
No. 3.

[48] Papadavid G.; Agapiou A.; Michaelides S. and Hadjimitsis D.G. (2009). The integra‐
tion of remote sensing and meteorological data for monitoring irrigation demand in
Cyprus. Nat. Hazards earth syst. Sciences, 9, 2009-2014.

[49] Papadavid G.; Hadjimitsis D.; Toulios L., Michaelides L. (2011). Mapping Potatoes
Crop Height and LAI through Vegetation Indices using Remote Sensing, in Cyprus
Journal of Applied Remote Sensing 5, 053526 (2011), DOI:10.1117/1.3596388.

[50] Papadavid G.; Hadjimitsis D.G., Michaelides S. (2011). Effective irrigation manage‐
ment using the existing network of meteorological stations in Cyprus. Advances in
Geosciences Journal, 9, 7-16, doi:10.5194/adgeo-30-31-2011.

[51] Papadavid G.; Hadjimitsis D.G.; Kurt Fedra and Michaelides S. (2011). Smart man‐
agement and irrigation demand monitoring in Cyprus, using remote sensing and
water resources simulation and optimization. Advances in Geosciences Journal, 9, 1-7,
doi:10.5194/adgeo-9-1-2011.

[52] Papadavid G.; Hadjimitsis D.G.; Perdikou S.; Michaelides S.; Toulios L.; Seraphides
N. (2011). Use of field spectroscopy for exploring the impact of atmospheric effects
on Landsat 5 TM / 7 ETM+ satellite images intended for hydrological purposes in Cy‐
prus, GIScience and Remote Sensing, 48, No 2, p. 280—298, DOI:
10.2747/1548-1603.48.2.280.

[53] Papadavid G.;. (2012). Estimating evapotranspiration for annual crops in Cyprus us‐
ing remote sensing. Phd Thesis, Department of Civil Engineering and Geomatics, Cyprus
University of Technology, Lemesos, Cyprus.

Remote Sensing of Environment: Integrated Approaches54

[54] Price, J.C. 1992. Estimating Leaf Area Index from Remotely Sensed Data. Proc. IGARSS '92
(Houston). Vol. 1. pp. 1500-1502.

[55] Rijtema P.E. 1965. An analysis of actual evapotranspiration. Agric. Res. Rep., 659, Pu‐
doc, Wageningen, pp107.

[56] Rogers D. and Alan M. 2007. An Evapotranspiration Primer. Irrigation Management
Series. Kansas.

[57] Schaepman M.E. 2007. Spectrodirectional remote sensing: From pixels to processes.
International Journal of Applied Earth Observation and Geoinformation, 9(2),
204−223

[58] Serrano, L., I. Filella and J. Penuelas. 2000. Remote sensing of biomass and yield of
winter wheat under different nitrogen supplies. Crop Science 40: 723–731.

[59] Shaykewich C.F. 1994. An appraisal of cereal crop phenology modelling, Canadian
Journal of Plant Science, 329-341.

[60] Smith M. 1992. CROPWAT, a computer program for irrigation planning and man‐
agement. Irrigation and Drainage Paper 46, FAO, Rome, Italy.

[61] Song, J.; Duanjun, L.; Wesely, M.L. 2003. A simplified Atmospheric Correction Proce‐
dure for the Normalized Difference Vegetation Index. Photogrammetric Engineering &
Remote Sensing, 69, 521–528.

[62] Telis A. and Koutsogiannis D. 2007. Estimation of Evapotranspiration in Greece. PhD
Thesis, Athens.

[63] Thiruvengadachari S. and Sakthivadivel K. 1997. Satellite remote sensing for assess‐
ment of irrigation system performance. Research Report 9, IWMI Colombo, Srilanka.

[64] Tsouni A. and Koutsogiannis D. 2003. The contribution of remote sensing techniques
to the estimation of Evapotranspiration : the case of Greece. PhD Thesis, Athens.

[65] Wang L., Wang W., Dorsey J., Yang X., Guo B. and Shum H.Y. 2005. Real-time ren‐
dering of plant leaves, in Proc. ACM SIGGRAPH 2005, Los Angeles (USA), 31 July - 4
August 2005, pp. 167-174.

[66] Welles and Norman. 1991. Instrument for measurement of canopy architecture.
Agron J. 83: 818-825.

Remote Sensing for Determining Evapotranspiration and Irrigation Demand for Annual Crops
http://dx.doi.org/10.5772/39305

55



Chapter 3

Remote Sensing for Archaeological Applications:
Management, Documentation and Monitoring

Diofantos G. Hadjimitsis, Athos Agapiou,
Kyriacos Themistocleous, Dimitrios D. Alexakis and
Apostolos Sarris

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/39306

1. Introduction

Archaeology is defined as the systematic approach for uncovering the human past and its
environment. Archaeology involves not only systematic excavations and surveys, but also
analysis of the data collected in the field. In a broader term, archaeology is an interdiscipli‐
nary research. Modern studies in archaeology engage a series of other sciences such as geol‐
ogy, information systems, chemistry, statistics, etc. In recent years, remote sensing has
received considerable attention since it can assist archaeological research, along with other
sciences, in order to extract valuable information to the researchers based only on non-de‐
structive and non-contact techniques.

Remote sensing is the acquisition of information about an object or phenomenon without
making any physical contact with the object (Levin, 1999; Parcak, 2009). According to Sabins
(1997), remote sensing involves all the methods that allow the use of electromagnetic radia‐
tion in order to identify and detect various phenomena. Based on this definition, many tech‐
niques such as satellite remote sensing, aerial photography, geophysical surveys, ground
spectroscopy or even terrestrial laser scanners, are considered as remote sensing techniques
(Johnson, 2006).

Remote sensing has opened up new horizons and possibilities for archaeology. For exam‐
ple, oblique or vertical aerial photography can detect phenomena on the surface associat‐
ed with subsurface relics, while the use of infrared and thermal electromagnetic radiation
can be used in order to detect underground archaeological remains (Bewley et al.,  1999;
McCauley et al., 1982). Moreover, remote sensing as a non-destructive technique can con‐
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tribute  to  the investigation of  an archaeological  site  before,  during and after  excavation
periods. At the micro-level scale, geophysical surveys and ground spectroscopy can pro‐
vide  information  about  subsurface  relics,  while  at  the  macro-scale,  aerial  photographs
and satellite  remote  sensing  can  identify  traces  of  the  human past.  Concurrently,  these
techniques  can  monitor  the  surroundings  of  a  cultural  heritage  site  and  record  any
changes due urban expansion and/or changes of land use (Rowlands & Sarris, 2007; Ma‐
sini  & Lasaponara,  2007;  Hadjimitsis  et  al.,  2009;  Ventera  et  al.,  2006;  Negria  & Leucci,
2006; Cavalli et al., 2007; Altaweel 2005; Aqdus et al., 2008; Bassani et al., 2009).

Satellite remote sensing has become a common tool of investigation, prediction and forecast
of environmental change and scenarios through the development of GIS-based models and
decision-support instruments that have further enhanced and considerably supported deci‐
sion-making (Ayad, 2005; Douglas, 2005; Hadjimitsis et al., 2006; Cavalli et al., 2007). By
blending together satellite remote sensing techniques with GIS, the monitoring process of
archaeological sites can be efficiently supported in a reliable, repetitive, non-invasive, rapid
and cost-effective way (Hadjimitsis and Themistocleous, 2008).

This chapter presents a brief overview of the evolution of remote sensing in archaeologi‐
cal research. Several applications of applied remote sensing techniques, including satellite
remote sensing, GIS, laser scanning, atmospheric pollution, spectroscopy, webGIS and ge‐
ophysical prospection will also be examined through different case studies in Cyprus and
Greece.

2. Satellite remote sensing in archaeology

This section introduces current remote sensing satellite data which are available for archaeo‐
logical research along with a historical background of remote sensing applications in archae‐
ology. As well, satellite sensors, such as Landsat, EO – Hyperion, QuickBird, IKONOS, etc.,
are also briefly outlined.

2.1. Historical review

The first aerial photographs used for archaeological purposes were taken just before the be‐
ginning of World War I in UK and Italy (Capper, 1907; Parcak, 2009; Bewley et al., 1999;
Riley, 1987). Mesopotamia and the Levant were traditionally photographed until the 1940s
(see Keneddy, 1925; Crawford, 1923, Glueck, 1965, Keneddy, 2002). After the end of World
War II, new archaeological sites were explored due to aerial reconnaissance during the war.
The scientific interest has been currently shifted to the Middle and Far East, as well as other
areas in Europe and America (Parcak, 2009). During the Cold War in the 1960's, several sat‐
ellites, including CORONA, Argo, Lanyard and COSMOS, were used for military purposes.
However, these data were only accessible after their declassification in 1995 (Parcak, 2009).

Spatial resolution of CORONA spy images taken during the Cold War could reach up to
0.6m (Lock, 2003). Fowler & Fowler (2005) explored the potentials of CORONA images for
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archaeological purposes and concluded that such images can be used as an alternative way
in many European archaeological sites, where traditional aerial photography is very limited.
Grosse et al., (2005) used CORONA images for mapping geomorphological features in NE
Siberia. The combination of ASTER and CORONA images in northern Mesopotamia was al‐
so studied by Altaweel (2005).

KVR-100 images from the Russian space program have been available since 1987 and have a
high spatial resolution of 2-3 m. Such data are valuable in areas where the landscape has
changed dramatically as a result of human activity, such as urban expansion. Even though
KVR-100 has been used by several researchers (Fowler and Curtis, 1995; Comfort, 1997),
their application is still limited due to their high cost (Parcak, 2009). CORONA and KVR im‐
ages have been also used to monitor cultural heritage sites in Iran (Kostka, 2002).

Since  the  1970s,  the  launch  of  new  satellite  systems  coincided  with  the  technological
progress  of  the sensors.  In  1972,  the Landsat  space program was initiated and was fol‐
lowed by  the  launch  of  other  satellites,  including  the  SPOT satellite  in  France  (Parcak,
2009; Sarris,  2008).  The Landsat sensor has been in continuous orbit since 1972 and pro‐
vides  multispectral  data  for  archaeological  research.  Despite  the  medium spatial  resolu‐
tion (from 15-80m) Landsat images have a relatively low cost while covering a large area
(180 x  180 km) in  both the  visible  -  infrared and thermal  wavelengths.  Landsat  images
were  used  to  study  archaeolandscapes  in  many  archaeological  projects  and  surveys.
Vaughn and Crawford (2009) used predictive models in order to identify new areas with
potential  settlements  of  Mayans.  Barlindhaug  et  al.,  (2007)  found  that  Landsat  satellite
images can be used for monitoring purposes of archaeological sites. Neolithic settlements
in  Greece  were  detected  using  archive  Landsat  images  (Alexakis,  2009;  Agapiou  et  al.,
2012a; 2012b).  Landsat images were also used for monitoring purposes of the surround‐
ings of monuments in Cyprus (Hadjimitsis et al., 2009; 2008).

During the 1980's, thermal and radar sensors were also added to satellite sensors (Bewley et
al., 1999). In the late 1980's, India launched the IRS 1A, 1B, 1C, 1D and IRS P2 sensors (Tripa‐
thi 2005a). Although these data have been used for archaeological purposes in India, such as
the identification of the mythic site Dvaraka (Tripathi 2005b) and the observation of Hampi
site (Raj et al., 2005), their use is very limited in other regions.

From the 1990's, remote sensing and Geographical Information Systems (GIS) have been
used systematically for archaeological research and newer satellites with higher spatial reso‐
lution are now available. Indeed, Quickbird, IKONOS, WorldView and GeoEye are capable
of providing satellite images with spatial resolution up to 0.5 m.

In addition to the above, hyperspectral images, such as those from EO-HYPERION, have re‐
cently made their appearance. Hyperspectral remote sensing analysis is performed over
hundreds of narrow bands. The key characteristics of hyperspectral images are its fine spec‐
tral and radiometric resolution. Hyperspectral data provides a variety of spectral informa‐
tion, which can be used for the identification of archaeological remains. Alexakis et al.,
(2009) stated that these new technologies can support the detection of archaeological sites,
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Satellite remote sensing has become a common tool of investigation, prediction and forecast
of environmental change and scenarios through the development of GIS-based models and
decision-support instruments that have further enhanced and considerably supported deci‐
sion-making (Ayad, 2005; Douglas, 2005; Hadjimitsis et al., 2006; Cavalli et al., 2007). By
blending together satellite remote sensing techniques with GIS, the monitoring process of
archaeological sites can be efficiently supported in a reliable, repetitive, non-invasive, rapid
and cost-effective way (Hadjimitsis and Themistocleous, 2008).

This chapter presents a brief overview of the evolution of remote sensing in archaeologi‐
cal research. Several applications of applied remote sensing techniques, including satellite
remote sensing, GIS, laser scanning, atmospheric pollution, spectroscopy, webGIS and ge‐
ophysical prospection will also be examined through different case studies in Cyprus and
Greece.

2. Satellite remote sensing in archaeology

This section introduces current remote sensing satellite data which are available for archaeo‐
logical research along with a historical background of remote sensing applications in archae‐
ology. As well, satellite sensors, such as Landsat, EO – Hyperion, QuickBird, IKONOS, etc.,
are also briefly outlined.

2.1. Historical review

The first aerial photographs used for archaeological purposes were taken just before the be‐
ginning of World War I in UK and Italy (Capper, 1907; Parcak, 2009; Bewley et al., 1999;
Riley, 1987). Mesopotamia and the Levant were traditionally photographed until the 1940s
(see Keneddy, 1925; Crawford, 1923, Glueck, 1965, Keneddy, 2002). After the end of World
War II, new archaeological sites were explored due to aerial reconnaissance during the war.
The scientific interest has been currently shifted to the Middle and Far East, as well as other
areas in Europe and America (Parcak, 2009). During the Cold War in the 1960's, several sat‐
ellites, including CORONA, Argo, Lanyard and COSMOS, were used for military purposes.
However, these data were only accessible after their declassification in 1995 (Parcak, 2009).

Spatial resolution of CORONA spy images taken during the Cold War could reach up to
0.6m (Lock, 2003). Fowler & Fowler (2005) explored the potentials of CORONA images for
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archaeological purposes and concluded that such images can be used as an alternative way
in many European archaeological sites, where traditional aerial photography is very limited.
Grosse et al., (2005) used CORONA images for mapping geomorphological features in NE
Siberia. The combination of ASTER and CORONA images in northern Mesopotamia was al‐
so studied by Altaweel (2005).

KVR-100 images from the Russian space program have been available since 1987 and have a
high spatial resolution of 2-3 m. Such data are valuable in areas where the landscape has
changed dramatically as a result of human activity, such as urban expansion. Even though
KVR-100 has been used by several researchers (Fowler and Curtis, 1995; Comfort, 1997),
their application is still limited due to their high cost (Parcak, 2009). CORONA and KVR im‐
ages have been also used to monitor cultural heritage sites in Iran (Kostka, 2002).

Since  the  1970s,  the  launch  of  new  satellite  systems  coincided  with  the  technological
progress  of  the sensors.  In  1972,  the Landsat  space program was initiated and was fol‐
lowed by  the  launch  of  other  satellites,  including  the  SPOT satellite  in  France  (Parcak,
2009; Sarris,  2008).  The Landsat sensor has been in continuous orbit since 1972 and pro‐
vides  multispectral  data  for  archaeological  research.  Despite  the  medium spatial  resolu‐
tion (from 15-80m) Landsat images have a relatively low cost while covering a large area
(180 x  180 km) in  both the  visible  -  infrared and thermal  wavelengths.  Landsat  images
were  used  to  study  archaeolandscapes  in  many  archaeological  projects  and  surveys.
Vaughn and Crawford (2009) used predictive models in order to identify new areas with
potential  settlements  of  Mayans.  Barlindhaug  et  al.,  (2007)  found  that  Landsat  satellite
images can be used for monitoring purposes of archaeological sites. Neolithic settlements
in  Greece  were  detected  using  archive  Landsat  images  (Alexakis,  2009;  Agapiou  et  al.,
2012a; 2012b).  Landsat images were also used for monitoring purposes of the surround‐
ings of monuments in Cyprus (Hadjimitsis et al., 2009; 2008).

During the 1980's, thermal and radar sensors were also added to satellite sensors (Bewley et
al., 1999). In the late 1980's, India launched the IRS 1A, 1B, 1C, 1D and IRS P2 sensors (Tripa‐
thi 2005a). Although these data have been used for archaeological purposes in India, such as
the identification of the mythic site Dvaraka (Tripathi 2005b) and the observation of Hampi
site (Raj et al., 2005), their use is very limited in other regions.

From the 1990's, remote sensing and Geographical Information Systems (GIS) have been
used systematically for archaeological research and newer satellites with higher spatial reso‐
lution are now available. Indeed, Quickbird, IKONOS, WorldView and GeoEye are capable
of providing satellite images with spatial resolution up to 0.5 m.

In addition to the above, hyperspectral images, such as those from EO-HYPERION, have re‐
cently made their appearance. Hyperspectral remote sensing analysis is performed over
hundreds of narrow bands. The key characteristics of hyperspectral images are its fine spec‐
tral and radiometric resolution. Hyperspectral data provides a variety of spectral informa‐
tion, which can be used for the identification of archaeological remains. Alexakis et al.,
(2009) stated that these new technologies can support the detection of archaeological sites,
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although it is not always possible to extract a unique archaeological spectral signature due
to the heterogeneous presence of vegetation and soil.

Lasaponara and Masini (2007a) highlighted the potential benefits of high resolution satellite
images in order to detect subsurface monuments through the use of vegetation indices and
edge detection techniques. Cavalli et al., (2007) introduced the use of airborne hyperspectral
scanner Multispectral Infrared Visible Imaging Spectrometer ( MIVIS) for the detection of
subsurface monuments based on spectral anomalies. The study found that the detection of
subsurface monuments is possible employing both visible and near infrared part of electro‐
magnetic radiation, and can concurrently detect anomalies using the thermal infrared spec‐
trum. Using QuickBird satellite imagery, Lasaponara and Masini (2007b) examined the
Metaponto archaeological sites in the South of Italy, using sophisticated spectral techniques
such as the Tasselled Cap Transformation and Principal Component Analysis. The combina‐
tion of hyperspectral data and several remote sensing processing techniques (Principal
Component Analysis, vegetation indices, etc.) for the detection of subsurface monuments in
eastern Scotland was also presented by Aqdus et al., (2009).

Beck (2007) and Beck et al.,  (2007) conducted a detail  study of the archaeological site of
Homs  in  Syria,  using  CORONA  and  IKONOS  images.  The  results  indicated  that  areas
with archaeological interest tend to have different spectral signatures from the surround‐
ing  area.  Rowlands  and  Sarris  (2007)  used  airborne  hyperspectral  scanners  (Airborne
Thematic  Mapper  –ATM and Compact  Airborne  Spectrographic  Imager  -CASI)  and  LI‐
DAR data in order to study the Hellenistic  settlement of  Itanos  in Crete.  The data were
post-processed using object-oriented analysis.  Although the study found several difficul‐
ties in relation to the identification of archaeological remains, the continuing use of such
methods and applications along with other remote sensing techniques such as geophysi‐
cal  surveys  was  recommended.  In  the  ancient  city  Sagalassos,  Laet  et  al.,  (2007)  applied
object-oriented techniques and several satellite images (ASTER, SPOT, IKONOS) in order
to identify archaeological remains. The results from investigations , in the Piramide Nar‐
anjada in Cahuachi  (Peru),  based on high resolution satellite  imagery,  geomagnetic  sur‐
veys  and  Ground  Probing  Radar  was  recently  presented  by  Lasaponara  et  al.,  (2011).
Currently,  several  archaeological  investigations  are  carried  out  using  combined  remote
sensing techniques, such as satellite images, aerial photographs, ground geophysical sur‐
veys, and LIDAR measurements. The next section provides an outline of the characteris‐
tics of the most important satellite data available today for archaeological research.

2.2. Satellite image data

Currently, there is a plethora of satellite images which may be used for supporting archaeo‐
logical research. However, these images have different resolutions depending on the sensor
characteristics. Moreover, many of these satellite systems are nowadays inactive, but their
data can be still be used for research. Table 1 summarizes some of the general characteristics
of several satellite data regarding spatial, spectral and temporal resolution. As indicated in
Table 1, as a result of the space race, satellites have been able to monitor Earth since the
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1960’s. The Landsat program, which began in 1972 and continues to today, is considered a
significant component of remote sensing applications in archaeology.

Prior to the Landsat program, satellite sensors such as CORONA and Zenit 2-8 sensors ac‐
quired only panchromatic photographs. These satellites were characterized by non-perio‐
dicity; therefore, some areas of archaeological interest may not have been photographed by
these sensors. In contrast, the Landsat program has given further capabilities for research
since the sensor is able to recover information in the visible, infrared and thermal part of the
spectrum. Furthermore, the sun-synchronous orbit of the Landsat satellite enables research‐
ers to study many archaeological sites and monuments in a systematic way. From the begin‐
ning of the Landsat program until the end of the century, new multispectral satellite sensors
were launched from different countries, including the USA, USSR, France, and Japan, and
the spatial resolution of the images was significantly improved. In 1999, the first high-reso‐
lution satellite imagery with a spatial resolution of less than 4m was available through the
IKONOS space program. The IKONOS satellite was the first satellite operated by a private
organization (Space Imaging). In 2000, NASA launched the first hyperspectral receiver, the
EO-1 Hyperion, which had the ability to record electromagnetic radiation into 220 different
spectral bands.

In the decade that followed, new satellites with higher spatial resolution were available to
the scientific community and other countries became actively involved in space technology.
Brief descriptions of different satellite sensors characteristics are highlighted in Table 1 and
more specific information related to the most popular satellite platforms used in archaeolog‐
ical research are provided in the paragraphs below.

Landsat (MSS / TM / ETM +): The Landsat program was the result of the combined efforts
of NASA and USGS to monitor Earth from space using remote sensing techniques. The first
satellite launch was performed in 1972 (Landsat 1) and, since then, another 6 satellites were
sent into orbit. According to Parcak (2009), the Landsat satellite program is the most well
known satellite used for archaeological purposes due to its relative low cost, global coverage
of the satellite data and access to archive data since the 1970's. Landsat satellite images cover
an area of about 185 x 185 km. The multispectral bands of the sensor cover both the visible
and infrared region of the spectrum while one sensor is able to produce thermal images. The
panchromatic band of an ETM+ Landsat image has a spatial resolution of 15 m, while for the
rest of the bands the resolution is set to 30 m with the exception of the thermal region (60 m).
Landsat data can be obtained via FTP upon request from USGS (http://glovis.usgs.gov/).

CHRIS Proba: The Proba satellite belongs to a relatively new space program of the Europe‐
an Space Agency (ESA). The Compact High Resolution Imaging Spectrometer (CHRIS) sen‐
sor was launched on 2001 and provides hyperspectral images from 63 separate bands at a
spatial resolution of 18 m. The objective of the CHRIS Proba is to evaluate new technologies
for supporting future satellite sensors (experimental satellite) and to use the data for envi‐
ronmental purposes. The satellite data are acquired in HDF format after approval of ESA
committee. A single satellite image covers an area of 13 x 13 km.
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although it is not always possible to extract a unique archaeological spectral signature due
to the heterogeneous presence of vegetation and soil.

Lasaponara and Masini (2007a) highlighted the potential benefits of high resolution satellite
images in order to detect subsurface monuments through the use of vegetation indices and
edge detection techniques. Cavalli et al., (2007) introduced the use of airborne hyperspectral
scanner Multispectral Infrared Visible Imaging Spectrometer ( MIVIS) for the detection of
subsurface monuments based on spectral anomalies. The study found that the detection of
subsurface monuments is possible employing both visible and near infrared part of electro‐
magnetic radiation, and can concurrently detect anomalies using the thermal infrared spec‐
trum. Using QuickBird satellite imagery, Lasaponara and Masini (2007b) examined the
Metaponto archaeological sites in the South of Italy, using sophisticated spectral techniques
such as the Tasselled Cap Transformation and Principal Component Analysis. The combina‐
tion of hyperspectral data and several remote sensing processing techniques (Principal
Component Analysis, vegetation indices, etc.) for the detection of subsurface monuments in
eastern Scotland was also presented by Aqdus et al., (2009).

Beck (2007) and Beck et al.,  (2007) conducted a detail  study of the archaeological site of
Homs  in  Syria,  using  CORONA  and  IKONOS  images.  The  results  indicated  that  areas
with archaeological interest tend to have different spectral signatures from the surround‐
ing  area.  Rowlands  and  Sarris  (2007)  used  airborne  hyperspectral  scanners  (Airborne
Thematic  Mapper  –ATM and Compact  Airborne  Spectrographic  Imager  -CASI)  and  LI‐
DAR data in order to study the Hellenistic  settlement of  Itanos  in Crete.  The data were
post-processed using object-oriented analysis.  Although the study found several difficul‐
ties in relation to the identification of archaeological remains, the continuing use of such
methods and applications along with other remote sensing techniques such as geophysi‐
cal  surveys  was  recommended.  In  the  ancient  city  Sagalassos,  Laet  et  al.,  (2007)  applied
object-oriented techniques and several satellite images (ASTER, SPOT, IKONOS) in order
to identify archaeological remains. The results from investigations , in the Piramide Nar‐
anjada in Cahuachi  (Peru),  based on high resolution satellite  imagery,  geomagnetic  sur‐
veys  and  Ground  Probing  Radar  was  recently  presented  by  Lasaponara  et  al.,  (2011).
Currently,  several  archaeological  investigations  are  carried  out  using  combined  remote
sensing techniques, such as satellite images, aerial photographs, ground geophysical sur‐
veys, and LIDAR measurements. The next section provides an outline of the characteris‐
tics of the most important satellite data available today for archaeological research.

2.2. Satellite image data

Currently, there is a plethora of satellite images which may be used for supporting archaeo‐
logical research. However, these images have different resolutions depending on the sensor
characteristics. Moreover, many of these satellite systems are nowadays inactive, but their
data can be still be used for research. Table 1 summarizes some of the general characteristics
of several satellite data regarding spatial, spectral and temporal resolution. As indicated in
Table 1, as a result of the space race, satellites have been able to monitor Earth since the
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1960’s. The Landsat program, which began in 1972 and continues to today, is considered a
significant component of remote sensing applications in archaeology.

Prior to the Landsat program, satellite sensors such as CORONA and Zenit 2-8 sensors ac‐
quired only panchromatic photographs. These satellites were characterized by non-perio‐
dicity; therefore, some areas of archaeological interest may not have been photographed by
these sensors. In contrast, the Landsat program has given further capabilities for research
since the sensor is able to recover information in the visible, infrared and thermal part of the
spectrum. Furthermore, the sun-synchronous orbit of the Landsat satellite enables research‐
ers to study many archaeological sites and monuments in a systematic way. From the begin‐
ning of the Landsat program until the end of the century, new multispectral satellite sensors
were launched from different countries, including the USA, USSR, France, and Japan, and
the spatial resolution of the images was significantly improved. In 1999, the first high-reso‐
lution satellite imagery with a spatial resolution of less than 4m was available through the
IKONOS space program. The IKONOS satellite was the first satellite operated by a private
organization (Space Imaging). In 2000, NASA launched the first hyperspectral receiver, the
EO-1 Hyperion, which had the ability to record electromagnetic radiation into 220 different
spectral bands.

In the decade that followed, new satellites with higher spatial resolution were available to
the scientific community and other countries became actively involved in space technology.
Brief descriptions of different satellite sensors characteristics are highlighted in Table 1 and
more specific information related to the most popular satellite platforms used in archaeolog‐
ical research are provided in the paragraphs below.

Landsat (MSS / TM / ETM +): The Landsat program was the result of the combined efforts
of NASA and USGS to monitor Earth from space using remote sensing techniques. The first
satellite launch was performed in 1972 (Landsat 1) and, since then, another 6 satellites were
sent into orbit. According to Parcak (2009), the Landsat satellite program is the most well
known satellite used for archaeological purposes due to its relative low cost, global coverage
of the satellite data and access to archive data since the 1970's. Landsat satellite images cover
an area of about 185 x 185 km. The multispectral bands of the sensor cover both the visible
and infrared region of the spectrum while one sensor is able to produce thermal images. The
panchromatic band of an ETM+ Landsat image has a spatial resolution of 15 m, while for the
rest of the bands the resolution is set to 30 m with the exception of the thermal region (60 m).
Landsat data can be obtained via FTP upon request from USGS (http://glovis.usgs.gov/).

CHRIS Proba: The Proba satellite belongs to a relatively new space program of the Europe‐
an Space Agency (ESA). The Compact High Resolution Imaging Spectrometer (CHRIS) sen‐
sor was launched on 2001 and provides hyperspectral images from 63 separate bands at a
spatial resolution of 18 m. The objective of the CHRIS Proba is to evaluate new technologies
for supporting future satellite sensors (experimental satellite) and to use the data for envi‐
ronmental purposes. The satellite data are acquired in HDF format after approval of ESA
committee. A single satellite image covers an area of 13 x 13 km.
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Satellite Sensor Acquisition period

Spatial resolutions Spectral Resolution

(nm)

(only VIS-VNIR are listed)

Temporal Resolution
Pan VIS-NIR

ALOS PRISM 2006-Today 2.5 10 420 -890 46 days

CBERS HRCC 2003-Today 20 450 - 890 26 days

CORONA 1960-1972 1.8 – 12 Panchromatic

CARTOSAT-1 2005-Today 2.5 Panchromatic 116 days

EO-1 ALI 2000- Today 10 30 433-890 under req.

EO-1 Hyperion 2000-Today 10 356-996 under req.

FORMOSAT-2 2004-Today 2 8 450 -900 under req.

GeoEye-1 2008-Today 0.41 1.65 450 -920 under req.

IKONOS 1999-Today 1 4 450 -950 under req.

IRS
Cartosat-1

(IRS-P5)
2005-Today 2.5 Panchromatic under req.

IRS Cartosat-2B 2010-Today 1 Panchromatic under req.

IRS Resourcesat-1 (IRS-P6) 2003-Today 5.8 23.5 520 -860 under req.

IRS Resourcesat-2 2011-Today 5.8 23.5 520 -860 under req.

IRS 1C / 1D 1996/7-Today 5.8 23.5 520 -860 under req.

KOMPSAT-2 2006-Today 1 4 450 -900 under req.

Kometa KVR-1000 1981-2005 2-3 Panchromatic

Kometa TK-350 1981-2005 2-3 Panchromatic

Landsat 4 MSS 1982-1993 60 520 - 900

Landsat 5 TM 1984-Today 15 30 450 -900 16 days

Landsat 7 ETM+ 1999-Today 15 30 450 -900 16 days

Orbview-3 2003-Today 1 4 450 -900 under req.

Pleiades-1 2011-Today 0.5 2 430-950 under req.

Proba CHIRS 2001-Today 17-34 415-1050 under req.

QuickBird - 2001-Today 0,60 2,4 450 -900 under req.

RapidEye 2008-Today 5 440 - 850 under req.

SPOT-1 HRV 1986-2003 10 20 500-890

SPOT-2 HRV 1990-2009 10 20 500-890

SPOT-3 HRV 1993-1996 10 20 500-890

SPOT-4 HRVIR 1998-Today 10 20 500-890 under req.

SPOT-5 HRG 2002-Today 5 10 500-890 under req.

Terra ASTER 1999-Today 15 520-860 under req.

Kometa KVR-1000 1981-2005 2-3 Panchromatic

TK-350 2-3 Panchromatic

WorldView-1 2007-Today 0.5 Panchromatic under req.

WorldView-2 2009-Today 0.5 1.8 400-1040 under req.

Zenit 2-8 1961-1994 15-2 Panchromatic

Table 1. List of available satellite sensors for archaeological purposes.
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EO-1 HYPERION: HYPERION was the first satellite of a new generation space program
which was launched by NASA in 2000. The satellite's main objective was to collect experi‐
mental data for future receivers. The main feature of the HYEPRION satellite was the ac‐
quisition of hyperspectral data (a total of 220 separate bands) at a spectral range from 356
nm to 2577 nm. The spatial resolution of the data was 30 m. HYPERION data can be ob‐
tained via FTP upon request from USGS (http://glovis.usgs.gov/).

IKONOS: IKONOS is a commercial satellite with high spatial resolution. It was sent into or‐
bit in 1999 and can provide images with spatial resolution up to 1m for panchromatic im‐
ages and 4m in multispectral bands. The spectral resolution of the sensor extends from the
visible to near infrared. Although IKONOS images are widely available to the research com‐
munity, they are not recorded on a regular basis. The radiometric resolution of the satellite
is 11 bit and a single image can cover an area of about 13 x 13 km. IKONOS satellite can
provide stereo images in order to support the production of Digital Terrain Models and Sur‐
face Terrain Models (DEM, DSM). IKONOS data are available from GeoEye upon request
(http://www.satimagingcorp.com/).

QuickBird: Quickbird is owned by the commercial satellite company DigitalGlobe and was
sent into sun-synchronous orbit in 2001. The satellite is currently one of the few satellites
with the highest spatial resolution (e.g. OrbView-2, OrbView-3, WorldView-1, WorldView-2
and GeoEye-1). The spatial resolution is up to 0.60 m in the panchromatic wavelength while
multispectral bands are acquired at a resolution of 2.4 m. The spectral capacity is equivalent
to the IKONOS satellite (visible and near infrared). Moreover, QuickBird images cover a
ground area of 16.5 x 16.5 km. QuickBird data is available from DigitalGlobe after request
(http://www.digitalglobe.com).

WorldView: WorldView satellite were launched in 2007 (WorldView -1) while a second sen‐
sor followed a few years later (WorldView-2). These sensors have a very high spatial resolu‐
tion (0.5m). The WorldView-2 sensor provides a high resolution panchromatic band and
eight Multispectral bands; four standard colors (red, green, blue, and near-infrared) and
four new bands (coastal, yellow, red edge, and near-infrared). WorldView data is available
from DigitalGlobe upon request (http://www.digitalglobe.com).

GeoEye-1: GeoEye is the latest high spatial resolution satellite that was sent into space
(2008). The spatial resolution of the satellite is 0.41 m and 1.65 m (panchromatic / multispec‐
tral bands). The spectral resolution is limited to visible and near infrared wavelength. A Ge‐
oEye-1 image covers an area of 15 x 15 km.

CORONA:  From 1960 until  1972,  the CORONA satellite acquired over 860,000 panchro‐
matic  images  for  US  Intelligence.  The  photographic  capsule  from  the  spy  satellite  was
dropped to earth with the help of parachute and then was collected by a special aircraft
(Figure 1). The CORONA images were declassified in 1995, and are now available in digi‐
tal form upon request.

Remote sensing has been able to assist archaeological research in several ways during the
past years, including detection of subsurface remains, monitoring archaeological sites and
monuments, archaeolandscapes studies, etc. The next section presents recent developments

Remote Sensing for Archaeological Applications: Management, Documentation and Monitoring
http://dx.doi.org/10.5772/39306

63



Satellite Sensor Acquisition period

Spatial resolutions Spectral Resolution

(nm)

(only VIS-VNIR are listed)

Temporal Resolution
Pan VIS-NIR

ALOS PRISM 2006-Today 2.5 10 420 -890 46 days

CBERS HRCC 2003-Today 20 450 - 890 26 days

CORONA 1960-1972 1.8 – 12 Panchromatic

CARTOSAT-1 2005-Today 2.5 Panchromatic 116 days

EO-1 ALI 2000- Today 10 30 433-890 under req.

EO-1 Hyperion 2000-Today 10 356-996 under req.

FORMOSAT-2 2004-Today 2 8 450 -900 under req.

GeoEye-1 2008-Today 0.41 1.65 450 -920 under req.

IKONOS 1999-Today 1 4 450 -950 under req.

IRS
Cartosat-1

(IRS-P5)
2005-Today 2.5 Panchromatic under req.

IRS Cartosat-2B 2010-Today 1 Panchromatic under req.

IRS Resourcesat-1 (IRS-P6) 2003-Today 5.8 23.5 520 -860 under req.

IRS Resourcesat-2 2011-Today 5.8 23.5 520 -860 under req.

IRS 1C / 1D 1996/7-Today 5.8 23.5 520 -860 under req.

KOMPSAT-2 2006-Today 1 4 450 -900 under req.

Kometa KVR-1000 1981-2005 2-3 Panchromatic

Kometa TK-350 1981-2005 2-3 Panchromatic

Landsat 4 MSS 1982-1993 60 520 - 900

Landsat 5 TM 1984-Today 15 30 450 -900 16 days

Landsat 7 ETM+ 1999-Today 15 30 450 -900 16 days

Orbview-3 2003-Today 1 4 450 -900 under req.

Pleiades-1 2011-Today 0.5 2 430-950 under req.

Proba CHIRS 2001-Today 17-34 415-1050 under req.

QuickBird - 2001-Today 0,60 2,4 450 -900 under req.

RapidEye 2008-Today 5 440 - 850 under req.

SPOT-1 HRV 1986-2003 10 20 500-890

SPOT-2 HRV 1990-2009 10 20 500-890

SPOT-3 HRV 1993-1996 10 20 500-890

SPOT-4 HRVIR 1998-Today 10 20 500-890 under req.

SPOT-5 HRG 2002-Today 5 10 500-890 under req.

Terra ASTER 1999-Today 15 520-860 under req.

Kometa KVR-1000 1981-2005 2-3 Panchromatic

TK-350 2-3 Panchromatic

WorldView-1 2007-Today 0.5 Panchromatic under req.

WorldView-2 2009-Today 0.5 1.8 400-1040 under req.

Zenit 2-8 1961-1994 15-2 Panchromatic

Table 1. List of available satellite sensors for archaeological purposes.
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EO-1 HYPERION: HYPERION was the first satellite of a new generation space program
which was launched by NASA in 2000. The satellite's main objective was to collect experi‐
mental data for future receivers. The main feature of the HYEPRION satellite was the ac‐
quisition of hyperspectral data (a total of 220 separate bands) at a spectral range from 356
nm to 2577 nm. The spatial resolution of the data was 30 m. HYPERION data can be ob‐
tained via FTP upon request from USGS (http://glovis.usgs.gov/).
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bit in 1999 and can provide images with spatial resolution up to 1m for panchromatic im‐
ages and 4m in multispectral bands. The spectral resolution of the sensor extends from the
visible to near infrared. Although IKONOS images are widely available to the research com‐
munity, they are not recorded on a regular basis. The radiometric resolution of the satellite
is 11 bit and a single image can cover an area of about 13 x 13 km. IKONOS satellite can
provide stereo images in order to support the production of Digital Terrain Models and Sur‐
face Terrain Models (DEM, DSM). IKONOS data are available from GeoEye upon request
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QuickBird: Quickbird is owned by the commercial satellite company DigitalGlobe and was
sent into sun-synchronous orbit in 2001. The satellite is currently one of the few satellites
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and GeoEye-1). The spatial resolution is up to 0.60 m in the panchromatic wavelength while
multispectral bands are acquired at a resolution of 2.4 m. The spectral capacity is equivalent
to the IKONOS satellite (visible and near infrared). Moreover, QuickBird images cover a
ground area of 16.5 x 16.5 km. QuickBird data is available from DigitalGlobe after request
(http://www.digitalglobe.com).

WorldView: WorldView satellite were launched in 2007 (WorldView -1) while a second sen‐
sor followed a few years later (WorldView-2). These sensors have a very high spatial resolu‐
tion (0.5m). The WorldView-2 sensor provides a high resolution panchromatic band and
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tral bands). The spectral resolution is limited to visible and near infrared wavelength. A Ge‐
oEye-1 image covers an area of 15 x 15 km.

CORONA:  From 1960 until  1972,  the CORONA satellite acquired over 860,000 panchro‐
matic  images  for  US  Intelligence.  The  photographic  capsule  from  the  spy  satellite  was
dropped to earth with the help of parachute and then was collected by a special aircraft
(Figure 1). The CORONA images were declassified in 1995, and are now available in digi‐
tal form upon request.

Remote sensing has been able to assist archaeological research in several ways during the
past years, including detection of subsurface remains, monitoring archaeological sites and
monuments, archaeolandscapes studies, etc. The next section presents recent developments
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and applications of several remote sensing techniques for supporting archaeological re‐
search. The section includes detection of subsurface remains at the Thessalian plain based
on both satellite and ground spectroradiometric measurements. Moreover, remote sensing
and GIS analysis as means for monitoring purposes in the area of Cyprus are also examined.
Geophysical surveys from various archaeological sites are also presented as well as the re‐
sults of a study aiming to analyse the impact of atmospheric pollution on archaeological
sites. The section ends with discussion of low-altitude airborne systems, as well as 3D laser
scanner documentation of cultural heritage site.

Figure 1. Film capsule of the CORONA satellite collected from aircrafts. (Photos from Wikipedia and CSNR collection)

3. Monitoring archaeological sites using satellite remote sensing and GIS
analysis

In many areas of the world, cultural heritage sites and visible monuments are monitored
mostly with on-site observations, including data collection, periodic observations for ar‐
chaeological sites and multi-analysis risk assessments. In this way, on-site observations are
time consuming and not cost-effective.

Hadjimitsis et al., (2011) highlighted the beneficial integrated use of satellite remote sens‐
ing with GIS for exploring the natural and anthropogenic hazard risk of the most signifi‐
cant  cultural  heritage  sites  in  Cyprus.  In  order  to  proceed  to  overall  risk  and
vulnerability assessment of the archaeological  sites in Cyprus due to anthropogenic and
natural impact,  a risk index was attributed to each different factor such as urban activi‐
ty,  minimum distance of  urban activity  in  the vicinity  of  an archaeological  site,  seismic
PGA and air pollution impact.  They found that,  concerning the seismic risk assessment,
that  significant  monuments  are  located  within  the  spatial  limits  of  the  most  seismic
prone areas in Cyprus. Additionally, regarding sea erosion, the study proved that 50% of
the  sites  examined  in  the  study,  are  within  a  distance  of  only  500  m  away  from  the
coastline  making them vulnerable  to  related coastal  hazards  such as  sea  water  erosion.
The  creation  of  buffer  zones  in  GIS  environment  around CH sites  explored the  signifi‐
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cant  problem of  extensive  urbanization in  the  vicinity  of  cultural  heritage  sites.  Almost
50% of  the CH sites  are under severe urban pressure and a percentage of  37.5% of  the
sites are within a radius of 500m from the urban centers. In similar studies, Carlon et al.,
(2002) and (Alexakis and Sarris, 2010) used both anthropogenic and natural factors to cre‐
ate a  risk assessment model  concerning archaeological  monuments in Venice and West‐
ern  Crete  respectively.  Moreover,  Urhus  et  al  (2006)  emphasized  the  human  driven
agents,  such as camping,  hunting and woodcutting,  for  assessing the modern threats  to
heritage  resources  and Lanza  (2003)  addressed the  potential  threat  that  is  posed at  the
historical center of Genoa in the case of failure of the urban drainage system.

This section presents the contribution of remote sensing for monitoring the surroundings of
archaeological sites in order the managing authorities or governmental related bodies to be
able to conduct a risk assessment analysis of cultural heritage sites in Cyprus. Figure 2
presents some of the most indicative threat parameters. Special attention in this section is
given to urban expansion during the past 50 years. Anthropogenic factors, such as urban ex‐
pansion and air pollution contribute significantly to the destruction of cultural heritage sites.
Remote sensing and GIS provide synoptic views of cultural heritage sites which enable poli‐
cy makers to make appropriate decisions regarding the preservation of cultural heritage
sites.

Figure 2. Risk assessment analysis for cultural heritage sites (Hadjimitsis et al., 2011)

3.1. Urban expansion and other hazards as a threat to archaeological sites

In order to study and map urban expansion, a number of significant archaeological sites
of Cyprus were examined. These cultural heritage sites are located in the southern coast‐
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3.1. Urban expansion and other hazards as a threat to archaeological sites
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al part of the island (from west to east):  Tombs of the Kings, Nea Paphos, Palaepaphos (Old
Paphos),  and Amathus.  Urban expansion  was  monitored with  the  extensive  use  of  time-
series multispectral and aerial dataset. All images were both geometrically and radiomet‐
ric corrected in ERDAS Imagine 9.3 software. Moreover, atmospheric correction was also
performed based on the Darkest Pixel algorithm (see Hadjimitsis et al.,  2009, 2002; Aga‐
piou et al., 2011). Post-processing techniques included histogram enhancement, computa‐
tion  of  vegetation  indices,  band  ratios,  principal  component  analysis  and  photo-
interpretation of the results.

The results showed a dramatic increase in urban expansion of main cities of Cyprus (Limas‐
sol and Paphos) during the last 50 years. For example, in the case of the Palaepaphos site
(Figure 3), the entire east area of Kouklia village (Palaepaphos) is still undeveloped, while at
the west area the urban expansion has been increase dramatically (Agapiou et al., 2010a).

Figure 3. Palaepaphos archaeological site in 1963 CORONA image (left) and 2004 QuickBird image (right) (Hadjimitsis
et al., 2010)

Urban sprawl has been recorded also in the broader area of Paphos during the last decades.
Extensive construction and building development has taken place and areas with significant
archaeological interest are now affected from urban expansion. Thus, the land use and land
cover region of the area was examined to monitor and map the size of urban expansion in
the vicinity of the archaeological sites of Tombs of the Kings and Nea Paphos during the last
half century. Aerial photos of the study area, acquired in 1963 and 2008 were provided from
the Department of Lands and Surveys of Cyprus. Initially, aerial photos were georeferenced
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in a GIS environment with the use of ground control points (GCP’s). The digitization of all
the buildings in the broader area of Nea Paphos and Tombs of the Kings was performed for
both time periods. Their direct comparison enabled the researchers to map the extent of ur‐
ban development during the last years and revealed the impact of urbanization on the pres‐
ervation of archaeological sites (Figure 4).

Figure 4. Urban expansion near the archaeological sites of Nea Paphos and Tombs of the Kings during the last 50
years (3D view).

CORONA satellite images have also indicated the growth of the urban activity around the
Amathus archaeological site, including the highway that passes 100 m north of the site (see
Figure 5) (Hadjimitsis et al., 2010). Several satellite images were used to examine the threat
of urban expansion around the Amathus archaeological site located just east from the out‐
skirts of the city (Figure 6). The dataset includes Landsat TM/ETM+ images from 1987 until
2009. As shown in Figure 6, urban expansion is clearly observed though interpretation of the
images.

It is very important for researchers to understand the dramatic changes that have occurred
due to human activity during the last decades. Figure 7 highlights the potential risk of the
archaeological sites due to urban expansion of the city of Limassol. Using archive satellite
images, the researchers can map this expansion with great detail and accuracy based on
classification techniques.
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Figure 5. Amathus archaeological site in 1963 CORONA image (left) and 2010 Google (right).

Figure 6. Landsat images used for mapping the urban expansion of Limassol town during the last 30 years. Amathus
archaeological site is indicated in a square.
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Figure 7. Urban areas of Limassol town in 1987 (red) and in 2009 (pink). The Amathus archaeological site is indicated
in a square.

Vegetation indices are also a key parameters that can be used for monitoring dramatic land
use changes over time (e.g. urban activities). The Normalized Difference Vegetation Index
(NDVI, with range -1 to +1) was applied to the entire dataset (Figure 8). High values of
NDVI (indicated with green in Figure 8) are present vegetated areas while low NDVI values
(indicated with yellow) are recorded for areas with no vegetation. Since NDVI values may
vary throughout time due to the physical phenological changes of the plants, similar periods
of Landsat images were examined.

NDVI values were used along with classifications results in order to record NDVI differen‐
ces in urban classified areas. Figure 9 demonstrates the results of the NDVI difference for the
period 1987-2009. Although many areas have indicated no dramatic changes, some other
areas represented in yellow and red colour (Figure 9) indicate dramatic transformation of
the initial landscape. Indeed, such changes have been recorded in a very close proximity of
the archaeological site of Amathus (see Figure 9 in black square).

Further anthropogenic and natural hazards (e.g. landslides; sea erosion; earthquakes etc)
can be monitored in a systematic basis using remote sensing data and GIS spatial analysis.
Different studies (Hadjimitsis et al., 2010; 2011) have shown the potential of using such
methodologies for cultural heritage risk assessment.

Contemporary technological means such as GIS and satellite remote sensing provide effi‐
cient and detailed maps of the region of CH sites in the island of Cyprus. This specific study
revealed the different kinds of natural and anthropogenic hazards that threaten the preser‐
vation of valuable CH sites.
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Figure 8. NDVI maps produced from Landsat dataset.

Figure 9. NDVI difference from 1987 until 2009.
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3.2. Monitoring air quality in the vicinity of archaeological sites based on satellite and
ground measurements

Although cultural heritage sites are documented and preserved, there has been limited
monitoring and documentation of how cultural heritage sites are affected by air pollution.
Themistocleous et al., (2012a) introduced a new approach for monitoring air pollution near
cultural heritage sites. By using a variety of tools, including satellite images, sun-photome‐
ters, PM10 monitors, and laser scanners, the level of air pollution and its effect on cultural
heritage sites can be determined. The cultural heritage sites were documented, and using
GIS tool, any significant areas of air pollution, including urban areas, industrial areas, and
roads were determined. The algorithm proposed by Themistocleous (2011) was applied to
retrieve the aerosol optical thickness (AOT) from Landsat TM/ETM+ satellite images in or‐
der also to cross-validate the AOT values found from MODIS and sun-photometers.

Spectral variations recorded by satellite sensors are indicators of aerosol particles and, there‐
fore, air pollution. The key parameter for assessing atmospheric pollution in air pollution stud‐
ies is the aerosol optical thickness. Aerosol optical thickness (AOT) is a measure of aerosol
loading in the atmosphere (Retalis et al., 2010). High AOT values suggest high concentration of
aerosols, and therefore air pollution (Retalis et al, 2010). The use of earth observation is based on
the monitoring and determination of AOT either direct or indirect as tool for assessing and
measure air pollution. Several studies have shown that satellite data can be used to monitor air
pollution and air pollution effects. Tømmervik et al., (1995) compared vegetation cover maps
and air pollution emissions data over a 15 year period and found major changes in the environ‐
ment as a result of high air pollution values. Nisantzi et al., (2011) used MODIS satellite data to
analyse the relationship between the aerosol optical thickness (AOT) and the PM10 as indica‐
tors of pollution. Satellite remote sensing can be used to assist in air quality monitoring and
identify the need to protect cultural heritage in urban areas from air pollution (Hadjimitsis et
al., 2002; Kaufman et al, 1990; Retalis, 1998; Retalis et al., 1999). Pollution not only deteriorates
cultural heritage sites but may also cause irreversible damage that prevents the proper salva‐
tion of the monument (Skoulikides, 2000). Therefore, improving air quality is critical for the
preservation and maintenance of cultural heritage sites.

The study area was the Limassol Castle, located in the center of Limassol, Cyprus. The study
utilized a variety of remote sensing tools to measure air pollution. Landsat TM/ETM+ and
MODIS satellite images, as well as the GER 1500 spectro-radiometer, were used to directly or
indirectly retrieve AOT, as were ground measurements using the Microtops II handheld sun‐
photometer and the Cimel sun-photometer located at the Cyprus University of Technology,
which is part of the AERONET program. Air particles‘ measurements were correlated to the
AOT levels to verify the level of pollution. Last, visual observation of the Limassol Castle iden‐
tified the damage caused by air pollution and laser scanning to document and monitor the
damage was conducted. Results from satellite remote sensing identified that the centre of Li‐
massol contains high levels of air pollution, with values of AOT higher than other surrounding
areas. Determination of AOT measurements using MODIS and Landsat satellite images found
that the centre of Limassol, where the Limassol Castle is located, experiences the highest level
of AOT values (Figure 10). A PM10 /PM2.5 in situ measurement campaign in the area of the Li‐
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massol Castle found that for the majority of the time periods, the PM10 readings exceeded the
limit value (50 μg/m3), indicating a high level of air pollution in the area.

Figure 10. AOT levels in the Limassol area. High AOT levels are noted in the area near the Limassol Castle.

A similar approach was followed for the Paphos town using daily MODIS AOT data. The re‐
sults have shown that 54% of the measurements for air quality was above the threshold of AOT
300 (AOT 0.300) (see Figure 11). This analysis suggest that cultural heritage sites near the Pa‐
phos town (e.g. Nea Paphos, Tombs of the Kings etc) are exposed to air pollutants half the time.
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Figure 11. Paphos AOT values (sample = 109 measurements) in blue. In red circle is the threshold air quality limit of
300 (AOT 0.300). In the y-axis, AOT value is multiplied by 1000 (to match MODIS data) (Themistocleous et al., 2012a).
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4. Detection of archaeological sites based on remote sensing techniques

Several Neolithic settlements (“magoules”) are located in the Thessalian plain in central
Greece. These sites are typically found as low hills raised up to 5-10 m. Alexakis et al., (2009;
2011) has recently shown that the detection of several unknown sites is possible based on
remote sensing and GIS analysis. The study aimed to combine several types of remote sens‐
ing data (e.g. Landsat TM/ETM+, ASTER, Hyperion, IKONOS) and DEM in order to im‐
prove the detection of these subsurface remains (Figure 12). The satellite data were
statistically analyzed, together with other environmental parameters, to examine any kind
of correlation between environmental, archaeological and satellite data. Moreover, different
methods were compared for the detection of Neolithic settlements. The results of the study
suggested that the complementary use of different imagery can provide more satisfactory
results.

Further to the Alexakis study, Agapiou et al., (2012a) argued that the detection of the settle‐
ments is possible based on ground spectroradiometric measurements. Several spectroradio‐
metric measurements have indicated that each magoula has its own spectral characteristics
related to its own morphological characteristics. The study has found that the highest peak
of the magoula tends to give high NDVI and SR values (similar to the flat – healthy regions)
while the slope of the magoula has lowest NDVI and SR values (and for the other indices as
well). The extraction of each magoula requires further analysis and enhancement techniques
in cases where the spatial resolution of the satellite image used is low. Local histogram en‐
hancements can identify magoules as a small difference of NDVI values at the same parcel
(Figure 13).

Figure 12. Magoula Neraida using ASTER image (left). Magoula Melissa 1 using IKONOS image (RGB - 321) (right).

Similar results were found following the application of the Tasselled Cap algorithm (Figure
14 to a series of Landsat TM/ETM+ multispectral images. The Tasselled Cap transformation
is used to enhance spectral information for Landsat images, and it was specially developed
for vegetation studies. The first three bands of the Tasseled Cap algorithm result are charac‐
terized as follow: band 1: brightness (measure of soil); band 2: greenness (measure of vegeta‐
tion); band 3: wetness (interrelationship of soil and canopy moisture).
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300 (AOT 0.300). In the y-axis, AOT value is multiplied by 1000 (to match MODIS data) (Themistocleous et al., 2012a).
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4. Detection of archaeological sites based on remote sensing techniques

Several Neolithic settlements (“magoules”) are located in the Thessalian plain in central
Greece. These sites are typically found as low hills raised up to 5-10 m. Alexakis et al., (2009;
2011) has recently shown that the detection of several unknown sites is possible based on
remote sensing and GIS analysis. The study aimed to combine several types of remote sens‐
ing data (e.g. Landsat TM/ETM+, ASTER, Hyperion, IKONOS) and DEM in order to im‐
prove the detection of these subsurface remains (Figure 12). The satellite data were
statistically analyzed, together with other environmental parameters, to examine any kind
of correlation between environmental, archaeological and satellite data. Moreover, different
methods were compared for the detection of Neolithic settlements. The results of the study
suggested that the complementary use of different imagery can provide more satisfactory
results.

Further to the Alexakis study, Agapiou et al., (2012a) argued that the detection of the settle‐
ments is possible based on ground spectroradiometric measurements. Several spectroradio‐
metric measurements have indicated that each magoula has its own spectral characteristics
related to its own morphological characteristics. The study has found that the highest peak
of the magoula tends to give high NDVI and SR values (similar to the flat – healthy regions)
while the slope of the magoula has lowest NDVI and SR values (and for the other indices as
well). The extraction of each magoula requires further analysis and enhancement techniques
in cases where the spatial resolution of the satellite image used is low. Local histogram en‐
hancements can identify magoules as a small difference of NDVI values at the same parcel
(Figure 13).

Figure 12. Magoula Neraida using ASTER image (left). Magoula Melissa 1 using IKONOS image (RGB - 321) (right).

Similar results were found following the application of the Tasselled Cap algorithm (Figure
14 to a series of Landsat TM/ETM+ multispectral images. The Tasselled Cap transformation
is used to enhance spectral information for Landsat images, and it was specially developed
for vegetation studies. The first three bands of the Tasseled Cap algorithm result are charac‐
terized as follow: band 1: brightness (measure of soil); band 2: greenness (measure of vegeta‐
tion); band 3: wetness (interrelationship of soil and canopy moisture).
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Figure 13. NDVI results for Prodromos II site (in green circle). (a) Raw satellite image without any radiometric enhance-
ments, (b) satellite image with a linear max-min enhancement applied to all image, (c) max-min enhancement applied
to the area around Prodromos II and (d) modified max-min enhancement applied to the area around Prodromos II. The
magoula is indicated with the red arrow (Agapiou et al., 2012c).

Figure 14. Tasseled Cap results for Nikaia 16 site (in red circle), (a) Brightness, (b) greenness, (c) wetness and (d) RGB
of the first three components of the T-K algorithm (Agapiou et al., 2012c).
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Phenological studies of crops for the detection of buried archaeological remains were al‐
so evaluated (Agapiou et al., 2012b) It was found that the phenological cycle of crops for
‘archaeological’ and ‘non archaeological areas’ can be used as a “remote” approach in or‐
der to  locate  buried architecture remains.  In Figure 15,  the phenological  cycle  of  an ar‐
chaeological  site  (Almyros  II)  and  the  phenological  cycle  of  a  healthy  site  (Site  3)  are
examined.  A small  NDVI  difference  is  evident  (Case  A,  Figure  15)  which  is  associated
with buried archaeological remains. This is due to the fact that soil over the archaeologi‐
cal remains seems to have a different moisture content compared to their surroundings.
Therefore, although there exist similar climate characteristics and crop cultivation techni‐
ques, there is a difference in amplitude of the NDVI cycle of the archaeological and non-
archaeological areas.

Figure 15. Phenological cycle of the Neolithic settlement (solid line) and the healthy site 3 (dashed line) (Agapiou et
al., 2012b)

5. Documentation of cultural heritage sites using remote sensing
techniques, GIS and laser scanning

Contemporary techniques and methods such as computer graphics, virtual reality, multime‐
dia technology, and information technology can be integrated in Web GIS technologies, in
order to act as a uniform digital tool for documentation, protection and preservation of cul‐
tural heritage (Agapiou et al., 2010c; Hadjimitsis et al., 2006). In order to document and map
known archaeological sites and monuments, several techniques may be used, including la‐
ser scanning, 3D modelling and GIS. In this section, applications from several monuments in
Cyprus are presented.
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5.1. Integrated use of GIS and remote sensing: a pilot application at the archaeological
sites of Paphos

Local cadastral maps were used to support the documentation of cultural heritage sites in
the Paphos district, SW Cyprus. In general, each monument may be located in a different
sheet /plan; therefore, spatial analysis from such data is a very difficult task.

In order to overcome such limitations, a GIS geodatabase was developed using the ArcGIS
10 software. A GIS system is a computer system (software) that collects, stores, manages, an‐
alyzes and visualizes spatial information and upgrades to other information systems. There‐
fore, GIS can be used as a tool for modelling and analysis of complex research and as a
system that supports decision making. Important advantages of GIS include: (a) The data
can be stored in a small digital space, (b) Both the storage and the recovery can be achieved
with lower costs than traditional ways, (c) Analysis can be carried out much faster, (d) GIS
allow synthetic analysis of data without any particular problems and (e) GIS offers the digi‐
tal environment for an integrated process, where the collection, analysis and decision proc‐
ess are in a continuous flow.

Figure 16. Methodology of mapping the archaeological sites

The most important advantage of the GIS environment is that it can connect both spatial in‐
formation (e.g. place, coordinates) along with a-spatial (non-spatial) information (e.g. type
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of the monument, chronology etc). In this way, further spatial analysis can be performed
(Figure 16).

For each monument listed by the Department of Antiquities of Cyprus (200 monuments be‐
longing to the Paphos district), the relative sheet plan was found and digitized. All monu‐
ments were georeferenced in a common geodetic system (WGS 84, 36N) (Figure 17). The
overall map created (Figure 18), can assist risk assessment analysis. Such kind of an integrat‐
ed CHM/GIS system has been recently implemented to be used for the efficient manipula‐
tion of information regarding the ancient monuments and movable antiquities of Cyprus
(Kydonakis et al 2012).

Figure 17. Example of the mapping procedure using the GIS software.

Figure 18. Archaeological sites and monuments of the Paphos District.
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5.2. Terrestrial laser scanning for documentation, reconstruction and cultural heritage
structural integrity

Due to their high data acquisition rate, relatively high accuracy and high spatial data densi‐
ty, terrestrial laser scanners are increasingly being used for cultural heritage recording, ar‐
chitectural documentation studies, research of cultural heritage with photogrammetric
methods and engineering applications that demand high spatial resolution. Terrestrial laser
scanning process can be considered as a part of remote sensing methods. In this section, the
results from three different cases studies are presented: Saint Theodore, Tomb I at the Tombs of
the Kings and the Church of Kyrikos and Ioulitis

For the documentation of the church of Saint Theodore in Idalion village, central Cyprus, the
3D laser scanner Leica C10 was used (Figure 19). Pre-processing of the point clouds was per‐
formed at the Cyclone software. The latest includes the noise removal of the initial point
clouds and the registration using scan targets (Agapiou et al., 2010b).

Figure 19. Data collection from the church of Saint Theodore in Idalion village (left). Registration of the point clouds
for Saint Theodore in Idalion village. All point clouds are transformed into one coordinate system (right) (Agapiou et
al., 2010b).

A single scan station was also used for the interior of the Tomb I, located at the Tombs of the Kings,
archaeological site. The data were then processed at the Cyclone software. The initial point
cloud of the Tomb I was further analysed and a 3D mesh was finally created (Figure 20). Using
the 3D mesh several sections can be drawn in order to study in detail the architecture of Tomb I.

The third example is the Saint Kirikos and Ioulitis church. Specific laser scans were acquired
from the exterior and the interior of the church. The use of laser scanner can provide accu‐
rate geometric documentation of such buildings through time and monitor them. One such
example is the crack presented in the background of fresco of Christ in the church of Saint
Kirikos and Ioulitis (Figure 21). Repeated accurate measurements of the order of magnitude
of a few mm can identify if the crack is gradually increasing in size.

The combination of 3D model and WebGIS applications was also presented by Agapiou
et al., (2010c). The “Digital Atlas of Byzantine and Post Byzantines churches” application
consists of a WebGIS tool, using the ArcGIS Server software. The WebGIS includes a de‐
tail  3D reconstruction  of  the  surrounding  area  of  the  monuments  using  grayscale  high
resolution orthophotos, a digital elevation model (DEM) of a high accuracy of (± 2m) and
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3D digital “light” models of the monuments, produced in Google SketchUp software, af‐
ter  applying  topometric  methods  for  measurements.  Moreover,  the  application  includes
non-spatial  information about  the  monuments,  such as  relevant  bibliography,  photos  of
the interior and exterior of the monuments and also audiovisual data. Finally, this digital
tool  provides  to  the  end-users  a  brief,  time-stamped,  historical  background information
about the Byzantine and post-Byzantine monuments of  central  Cyprus (www.byzantine‐
cyprus.com).

Figure 20. Mesh documentation of the interior of the Tomb I, Tombs of the Kings archaeological site.

Figure 21. Monitoring the crack (see square in the first image from the left) of the background of the fresco at Saint
Kirikos and Ioulitis through Laser Scanners (Agapiou et al., 2010b).
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Figure 22. Models for Byzantine and Post Byzantine churches of Cyprus using topometric measurements and GIS tools
(Agapiou et al., 2010c).

Moreover, laser scanners can be used for monitoring purposes as shown by Themistocleous
et al., (2012a). In order to monitor the effects of air pollution, the Limassol Castle is being
documented every year with the 3D laser scanner. Areas of the castle which show deteriora‐
tion on the 3D laser scanner will have samples taken to determine the chemical analysis of
the surface to establish if the deterioration was caused by air pollution or natural causes.
Photographs of the castle were also taken and applied to the 3D laser scanned point cloud.
A direct visual comparison between the intensity of the laser scanner and close range photo‐
graphs of the cracks in the Limassol Castle indicate that observation of intensity values can
indicate the presence -or not- of possible cracks in the monument. (Figures 23 and 24). Simi‐
lar conclusions can be drawn when laser scanner intensity is compared with ultrasonic
measurements.

Figure 23. Visual comparison of the laser intensity and close range photographs near a crack
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Figure 24. Visual comparison of the ultrasonic measurements and close range photographs. The polygons are drawn
as common areas for each set of figures.

6. Geophysical prospection techniques: From mapping to CRM

In terms of ground based remote sensing, there is a wide range of surveying techniques that are
focus targeted towards the shallow or medium mapping of the subsurface antiquities or even of
the deeper geological layers that may have covered the cultural strata. The various methods, in‐
cluding magnetometry, soil resistance or electromagnetic methods (EM), ground penetrating
radar (GPR), and seismic, are based on the measurement of different physical quantities and
the complementary application of them (the manifold approach) produces datasets that can
match each other and maximize the information content of the geophysical interpretation (Sar‐
ris, 2012). Depending on the method and the configuration of the techniques, it is also possible
to have different penetration depths and operation in diverse environmental settings (rural or
urban) to address a various topics related to the mapping of archaeological sites and archaeo-
environment, the preservation of monuments, e.t.c. Geophysical approaches can be applied in
planned excavations, rescue archaeology, archaeolandscape studies, building conservation
and cultural resources management (Sarris & Jones 2000).

In general, magnetic techniques using the measurement of the total geo-magnetic field in‐
tensity or of the gradient of it or one of its components can be helpful in identifying architec‐
tural relics or residues of habitation and workshop activities. Magnetometry techniques
have been successfully used to map the relics of settlements and reveal the town planning
system. Mud brick foundations of Late Neolithic houses together with pits and other details
were recorded around the tell of Sceghalom-Kovácshalom in E. Hungary. The organic material
gathered in the pits was responsible for the enhancement of the magnetic susceptibility, re‐
sulting in the good registration of the pits from the measurements of the vertical magnetic
gradient. Even stronger was the magnetic signature of the foundations of the fired daub
foundations and walls of the farmsteads that were recorded as thermal targets, but which at
the same time were not able to register to the GPR measurements due to the high conductiv‐
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ity of the soils (Monahan & Sarris 2011, Sarris, 2012) (Figure 25). The same type of thermal
signature is shown in the investigation of workshops and kilns belonging to different chro‐
nological periods. In other cases, such as in Sikyon, Peloponnese (S. Greece), the difference of
the construction materials of the structural remains of the Hellenistic/Roman city in terms of
the magnetic minerals they contained was responsible for providing an accurate plan of the
ancient city. Due to the soil conditions and the preservation of the site, the magnetometry
survey specified the street layout and the city quarters, tracing numerous monuments inside
and outside the agora limits, including temples, porticoes, a basilica, street lines, houses and
industrial installations (Sarris et al., 2009; Gourley et al., 2008).

Similar is the operation of the EM and soil resistance methods, which, together with the
GPR,  are  considered  ideal  to  resolve  features  related  to  structural  remains,  champers,
voids and tombs. These methods are considered to be active measuring techniques.  The
particular methodology has been used successfully in resolving the foundations of build‐
ings, road networks, and funeral residues. Of particular interest is their ability to operate
in different frequencies (EM and GPR) or configurations (soil resistance) allowing a larg‐
er or smaller  penetration depth.  In this  way,  it  is  possible to provide valuable informa‐
tion regarding the subsurface stratigraphy. For example, the decrease of the GPR antenna
frequency can provide a larger penetration to the soil strata. In addition, the multiple re‐
flections  of  the  GPR electromagnetic  signals  originating  from adjacent  (usually  parallel)
transect  can  create  images  of  the  subsurface  layers  (of  various  widths)  by  increasing
depth (depth slices) (Figure 25). In a similar way, vertical electric soundings measure re‐
sistivity variations with depth by increasing gradually current electrode separation while
the  center  of  the  electrode configuration,  remains  stationary.  Based on the  same princi‐
ple,  the  electrical  resistivity  tomography  provides  information  for  both  the  lateral  and
vertical  variations  in  the  resistivity  of  the  soil  and,  based on  2D or  3D inversion  algo‐
rithms; it can produce a 3D reconstruction model of the subsurface (Papadopoulos et al.,
2011, Sarris 2008).

The  use  of  the  EM,  electrical  resistivity  tomography  (ERT)  and  seismic  techniques  is
more appropriate for the deeper mapping and their employment is usually applied in ar‐
chaeolandscape studies. This was the case of Priniatikos Pyrgos,  where the integrated ap‐
plication  of  ERT  and  seismic  tomography  techniques  processed  by  3D  inversion
algorithms were capable to contribute to the archaeoenvironmental reconstruction of the
Priniatikos Pyrgos  at  Istron,  E.  Crete,  providing indications  regarding the  ancient  harbor
of the nearby settlement (Shahrukh et al 2012). The particular methods were the only sol‐
ution to provide information about the deposits that exist in the coastal area of Priniati‐
kos Pyrgos:  carstic  formations of  medium to high permeability  and alluvium deposits  of
variable permeability, probably originating by past landslide episodes and periodic flood‐
ing of the Istron River, have covered the ancient harbour at depths varying from 20-40m
below the current surface. Similarly, electromagnetic and soil resistance measurements re‐
vealed the movement of the older Istron River branches,  which appeared to be directed
to the sea from both sides of the settlement, leaving probably a small path to the main‐
land from the SW direction. The above results were also supported by the sedimentologi‐
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cal  analyses and OSL dating of  cores taken from the region and the use of  geophysical
techniques  in  the  study  of  the  dynamics  of  the  landscape  evolution  (Sarris  et  al  2012)
(Figure 26).

GPR and soil resistance techniques (including ERT) also can be used in an urbanized context
in contrast to the rest of the geophysical approaches (Sarris 2008; Linford 2006). Due to a
high level of ambient noise from the background anthropogenic activities and the high dis‐
turbance of the upper soil layers, the particular techniques can be adapted to resolve a num‐
ber of issues in question (Sarris & Papadopoulos 2011; Papadopoulos et al., 2009). Thus, the
above methodology can be used during the course of private construction activities but also
for even larger civil construction works that can deal with highways, squares, pedestrian
roads, etc. In a number of instances they can even be applied within historical structures and
monuments to conclude on the integrity status of the monuments. The geophysical techni‐
ques can also contribute to a more generalized risk assessment model, since it can provide
information for the tectonic regime and the classification of geological strata either in terms
of their resistivity (ERT), velocity of propagation of acoustical waves (seismic techniques) or
even the seismic amplification factor (micro-noise horizontal to vertical spectral ratio -
HVSR) (Sarris et al., 2010).

Figure 25. Left: Comparison between magnetic and GPR prospection above structural remains of the flat settlement
at Szeghalom site in East Hungary. Even though the foundations of the daub constructions are registered clearly to
the magnetic data (left top), the high conductivity of the soils has attenuated strongly the GPR electromagnetic sig-
nals masking completely the particular area (left bottom) (Sarris 2012). Right: Comparison between magnetic and GPR
prospection at the corner of the Palaeochristian fortifications of Nikopolis, Epirus (Greece). The color maps represent
the GPR horizontal slices of 0.1m width for depths of 0.5 (top right), 1 (bottom left) and 1.5m (bottom right) approxi-
mately. The remains of a structural complex are obvious in the magnetic data. The GPR managed to register reflectors
originating from various depths, such as a curving path at the top layers and a section of decumanus maximus at the
lower bottom of the surveyed area. The latter was not clearly resolved in the magnetic data as the high surface con-
centration of sherds created a uniform magnetic background masking of the area of interest.
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ity of the soils (Monahan & Sarris 2011, Sarris, 2012) (Figure 25). The same type of thermal
signature is shown in the investigation of workshops and kilns belonging to different chro‐
nological periods. In other cases, such as in Sikyon, Peloponnese (S. Greece), the difference of
the construction materials of the structural remains of the Hellenistic/Roman city in terms of
the magnetic minerals they contained was responsible for providing an accurate plan of the
ancient city. Due to the soil conditions and the preservation of the site, the magnetometry
survey specified the street layout and the city quarters, tracing numerous monuments inside
and outside the agora limits, including temples, porticoes, a basilica, street lines, houses and
industrial installations (Sarris et al., 2009; Gourley et al., 2008).

Similar is the operation of the EM and soil resistance methods, which, together with the
GPR,  are  considered  ideal  to  resolve  features  related  to  structural  remains,  champers,
voids and tombs. These methods are considered to be active measuring techniques.  The
particular methodology has been used successfully in resolving the foundations of build‐
ings, road networks, and funeral residues. Of particular interest is their ability to operate
in different frequencies (EM and GPR) or configurations (soil resistance) allowing a larg‐
er or smaller  penetration depth.  In this  way,  it  is  possible to provide valuable informa‐
tion regarding the subsurface stratigraphy. For example, the decrease of the GPR antenna
frequency can provide a larger penetration to the soil strata. In addition, the multiple re‐
flections  of  the  GPR electromagnetic  signals  originating  from adjacent  (usually  parallel)
transect  can  create  images  of  the  subsurface  layers  (of  various  widths)  by  increasing
depth (depth slices) (Figure 25). In a similar way, vertical electric soundings measure re‐
sistivity variations with depth by increasing gradually current electrode separation while
the  center  of  the  electrode configuration,  remains  stationary.  Based on the  same princi‐
ple,  the  electrical  resistivity  tomography  provides  information  for  both  the  lateral  and
vertical  variations  in  the  resistivity  of  the  soil  and,  based on  2D or  3D inversion  algo‐
rithms; it can produce a 3D reconstruction model of the subsurface (Papadopoulos et al.,
2011, Sarris 2008).

The  use  of  the  EM,  electrical  resistivity  tomography  (ERT)  and  seismic  techniques  is
more appropriate for the deeper mapping and their employment is usually applied in ar‐
chaeolandscape studies. This was the case of Priniatikos Pyrgos,  where the integrated ap‐
plication  of  ERT  and  seismic  tomography  techniques  processed  by  3D  inversion
algorithms were capable to contribute to the archaeoenvironmental reconstruction of the
Priniatikos Pyrgos  at  Istron,  E.  Crete,  providing indications  regarding the  ancient  harbor
of the nearby settlement (Shahrukh et al 2012). The particular methods were the only sol‐
ution to provide information about the deposits that exist in the coastal area of Priniati‐
kos Pyrgos:  carstic  formations of  medium to high permeability  and alluvium deposits  of
variable permeability, probably originating by past landslide episodes and periodic flood‐
ing of the Istron River, have covered the ancient harbour at depths varying from 20-40m
below the current surface. Similarly, electromagnetic and soil resistance measurements re‐
vealed the movement of the older Istron River branches,  which appeared to be directed
to the sea from both sides of the settlement, leaving probably a small path to the main‐
land from the SW direction. The above results were also supported by the sedimentologi‐
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cal  analyses and OSL dating of  cores taken from the region and the use of  geophysical
techniques  in  the  study  of  the  dynamics  of  the  landscape  evolution  (Sarris  et  al  2012)
(Figure 26).

GPR and soil resistance techniques (including ERT) also can be used in an urbanized context
in contrast to the rest of the geophysical approaches (Sarris 2008; Linford 2006). Due to a
high level of ambient noise from the background anthropogenic activities and the high dis‐
turbance of the upper soil layers, the particular techniques can be adapted to resolve a num‐
ber of issues in question (Sarris & Papadopoulos 2011; Papadopoulos et al., 2009). Thus, the
above methodology can be used during the course of private construction activities but also
for even larger civil construction works that can deal with highways, squares, pedestrian
roads, etc. In a number of instances they can even be applied within historical structures and
monuments to conclude on the integrity status of the monuments. The geophysical techni‐
ques can also contribute to a more generalized risk assessment model, since it can provide
information for the tectonic regime and the classification of geological strata either in terms
of their resistivity (ERT), velocity of propagation of acoustical waves (seismic techniques) or
even the seismic amplification factor (micro-noise horizontal to vertical spectral ratio -
HVSR) (Sarris et al., 2010).

Figure 25. Left: Comparison between magnetic and GPR prospection above structural remains of the flat settlement
at Szeghalom site in East Hungary. Even though the foundations of the daub constructions are registered clearly to
the magnetic data (left top), the high conductivity of the soils has attenuated strongly the GPR electromagnetic sig-
nals masking completely the particular area (left bottom) (Sarris 2012). Right: Comparison between magnetic and GPR
prospection at the corner of the Palaeochristian fortifications of Nikopolis, Epirus (Greece). The color maps represent
the GPR horizontal slices of 0.1m width for depths of 0.5 (top right), 1 (bottom left) and 1.5m (bottom right) approxi-
mately. The remains of a structural complex are obvious in the magnetic data. The GPR managed to register reflectors
originating from various depths, such as a curving path at the top layers and a section of decumanus maximus at the
lower bottom of the surveyed area. The latter was not clearly resolved in the magnetic data as the high surface con-
centration of sherds created a uniform magnetic background masking of the area of interest.
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Figure 26. Left: A 2-D view of the bedrock depth in the area of the harbour of Priniatikos Pyrgos resulting from the
seismic refraction survey. The bluish colors indicate the deeper level of the bedrock and the dashed lines indicate the
proposed location of the depression of the ancient harbour. Right: The soil resistance survey to the south of the prom-
ontory of Priniatikos Pyrgos indicated a 5m wide high resistance linear anomaly that extends in a SW-NE direction and
is probably related to one of the older branches of the Istron River running towards the east side of the promontory.
(Sarris et al 2012)

Although current  trends  have  emphasized  the  fast  reconnaissance  of  the  archaeological
sites  through  multi-sensor,  multi-electrode  or  multi-antenna  systems,  the  manifold  ap‐
proach, which is the amalgamation of multiple geophysical techniques, as well as the fu‐
sion  of  the  geophysical  data  with  other  types  of  remote  sensing  techniques,  such  as
satellite imagery, LIDAR or laser scanning and orthophotos aiming towards a better and
more  holistic  visualization  of  the  area  and  a  better  reconstruction  of  the  underground
monuments will continue to be of crucial importance in the geophysical prospection of ar‐
chaeological context (Sarris 2012).

7. Low altitude systems for supporting archaeological investigations

Further to satellite and ground investigations, research has indicated the need for a low alti‐
tude airborne imaging systems in order to support archaeological research. This is due to
the fact that such systems of low cost, with a stable platform for imaging sensors and have
the ability to lift a payload equivalent to sensor equipment (Patterson & Brescia, 2008; Voer‐
hoeven, 2009; Kemper, 2012; Nebiker et al., 2008; Bento, 2008; Georgopoulos, 1982; Hailey,
2005). In this study, several technologies were merged to create an innovative low altitude
airborne system supporting remote sensing and photogrammetric applications, which in‐
cludes the ability to conduct spectroscopy and aerial photography using a helium filled bal‐
loon. The complete low altitude airborne system is shown in Figure 27.

Remote Sensing of Environment: Integrated Approaches84

Figure 27. Right- ground control mechanism and aerial platform. Left-Low altitude airborne system including air bal-
loon, spectro-radiometer, and researcher wearing ground control mechanism with harness (Themistocleous et al.,
2012b)

A helium-filled balloon with a 3 m. diameter was used which was able to be raised to a
height up to 200 m with a payload of up to 6kg. The Spectra Vista GER 1500 spectroradi‐
ometer  was  attached  to  the  aerial  platform  and  operated  remotely.  The  balloon  was
raised to varying heights  and spectroradiometric  measurements were taken of  the same
target  at  different  elevations.  Concurrent  to  the spectroradiometric  measurements,  aerial
photographs were taken using two digital cameras, one with infrared filter. The integra‐
tion of  the various techniques was used in order to detect  subsurface archaeological  re‐
mains  by  examining  ground  anomalies  identified  through  spectral  signatures.  Previous
campaigns in Cyprus found that field spectroscopy can support the detection of archaeo‐
logical  crop  marks  based  on  the  retrieved  spectral  signatures  over  agricultural  areas
which are characterized as archeological areas (see Agapiou and Hadjimitsis 2011). Possi‐
ble  identification  of  subsurface  archaeological  remains  is  based  on  spectral  signatures
anomalies. Such anomalies are observed in crops when the vegetation is under stress due
to subsurface relics. Therefore, spectral signatures anomalies are expected in the red and
VNIR part of the spectrum.

The low altitude airborne imaging system was tested at the Agricultural Research Institute
in Paphos, Cyprus, where a simulated archaeological test field was constructed. Spectrora‐
diometric measurements and photographs in the visible and infrared range were taken over
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height up to 200 m with a payload of up to 6kg. The Spectra Vista GER 1500 spectroradi‐
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raised to varying heights  and spectroradiometric  measurements were taken of  the same
target  at  different  elevations.  Concurrent  to  the spectroradiometric  measurements,  aerial
photographs were taken using two digital cameras, one with infrared filter. The integra‐
tion of  the various techniques was used in order to detect  subsurface archaeological  re‐
mains  by  examining  ground  anomalies  identified  through  spectral  signatures.  Previous
campaigns in Cyprus found that field spectroscopy can support the detection of archaeo‐
logical  crop  marks  based  on  the  retrieved  spectral  signatures  over  agricultural  areas
which are characterized as archeological areas (see Agapiou and Hadjimitsis 2011). Possi‐
ble  identification  of  subsurface  archaeological  remains  is  based  on  spectral  signatures
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the target area. Preliminary results found that there were no significant differences in the
spectral signatures in the visible range, while there was a significant difference among the
spectral signatures in the NIR range as the balloon was moving up-wards (Figure 28). The
study found that the spectral signature of the target can changed as a function of altitude,
with higher reflectance indicated as the elevation increased.

Figure 28. Right-Spectral signatures of vegetation at 5, 10 and 20 meters. Left-spectral differences between healthy
and stressed vegetation (Themistocleous et al., 2012b)

8. Conclusions

Remote sensing can contribute in several ways to archaeological research. This chapter
presents some results from different cases studies in Cyprus, Greece and Hungary using
several techniques of remote sensing, including satellite images, archive aerial images, geo‐
physical surveys, 3D terrestrial laser scanners, ground spectroscopy, atmospheric pollution,
WebGIS and GIS analysis for monitoring purposes.

The results have shown the potential use of satellite remote sensing and ground spectrosco‐
py for the identification of buried archaeological remains through crop marks. Moreover,
monitoring archaeological sites and risk assessment can be performed for several threats in‐
cluding urban expansion and air pollution. As demonstrated in this chapter, a dramatic land
use change has taken place in several archaeological sites during the last decades. Such in‐
vestigations are very important for studying archaeolandscapes since can provide valuable
for information for areas that are nowadays vanished. Furthermore, the potential use of
ground geophysical surveys for the detection of subsurface remains was also demonstrated
through several applications in Greece and Hungary, was also demonstrated. Documenta‐
tion, mapping. 3D modelling and WebGIS applications for archaeological sites and monu‐
ments are also demonstrated in this chapter.
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1. Introduction

Due to the highly complex nature of both human and physical systems, the ability to com‐
prehend them and model future conditions using a watershed approach has taken a geo‐
graphic dimension. Satellite remote sensing and Geographic Information Systems (GIS)
technology have played a critical role in all aspects of watershed management, from assess‐
ing watershed conditions through modeling impacts of human activities to visualizing im‐
pacts of alternative scenarios (Tim & Mallavaram, 2003).

The extreme weather phenomena and global warming noted in recent years has demonstrat‐
ed the necessity for effective flood risk management models. According to this paradigm, a
considerable shift has been observed from structural defense against floods to a more com‐
prehensive approach, including appropriate land use, agricultural and forest practices
(Alexakis et al., 2013a, 2013b; Barredo & Engelen, 2010; Lilesand & Kiefer, 2010; Michaelides
et al., 2009). Land cover changes may be used to describe the dynamics of urban settlements
and vegetation patterns as important indicators of urban ecological environments (Yinxin &
Linlin, 2010). Satellite remote sensing provides an excellent source of data from which up‐
dated land use / land cover (LULC) changes can be extracted and analysed in an efficient
way. In addition, effective monitoring and simulating of the urban sprawl phenomenon and
its effects on land-use patterns and hydrological processes within the spatial limits of a wa‐
tershed are essential for effective land-use and water resource planning and management
(Hongga et al., 2010; Hadjimitsis et al., 2004a, 2010a, 2010b). Several techniques have been
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Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
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reported in order to improve classification results in terms of land use discrimination and
accuracy of resulting classes in the processing of remotely sensed data (Agapiou et al., 2011).
As a result of Very High Resolution (VHR) imagery, real world objects that were previously
represented by very few pixels, are now represented by many pixels. Thus, techniques that
take into account the spatial properties of an image region need to be developed and ap‐
plied. One such technique is texture analysis (Zhang & Zhu, 2011). Moreover, during the last
years, spatial metrics have been largely used in landscape studies. According to Haralick et
al. (1973), landscape metrics capture the inherent spatial structure of the environment and
are used to enhance interpretation of spatial pattern of the landscape.

Several techniques have been reported to improve classification results in terms of land use
discrimination and accuracy of resulting classes (Eiumnoh & Shrestha, 2000). However, the
multispectral images acquired from different satellite sensors suffer from serious problems
and errors, such as radiometric distortions, areas with low illumination, physical changes of
the environment, etc. Recent studies have found that the accuracy of classification of remote
sensing imagery does not increase by improving the applied algorithms, since classification
mainly depends upon the physical and chemical parameters of the objects on the ground
(Rongqun & Daolin, 2011).

Soil erosion is considered to be a major environmental problem, as it seriously threatens natu‐
ral resources, agriculture and the environment in a catchment area. Spatial and quantitative
information of soil erosion contributes significantly to the soil conservation management, ero‐
sion control and general catchment area management (Prasannakumar et al., 2011). In recent
years, there has been a growing awareness of the importance of problems directly related to
erosion in the broader Mediterranean region. The widespread occurrence and importance of
accelerated erosion in the Mediterranean region has driven to the development of models at
scales ranging from individual farm fields to vast catchment areas and different types of ad‐
ministrative areas (Bou Kheir et al., 2008). In some parts of the Mediterranean region, erosion
has reached a stage of irreversibility, while in some places there is no more soil left (Kouli et
al., 2009). Although soil erosion is characterized as a natural phenomenon, human activities
such as agriculture can accelerate it further (Karydas et al., 2009).

Recently, space-born microwave active remote sensing, especially Synthetic Aperture Radar
(SAR) with its all-weather capability, can provide useful spatially distributed flood informa‐
tion that may be integrated with flood predictive models in the construction of an effective
watershed management. Radar imagery is useful for the identification, mapping and meas‐
urement of streams, lakes and inundated areas. Most surface water features are detectable
on radar imagery due to the contrast between the smooth water surface and the rough land
surface (Lewis, 1998). The amount of moisture stored in the upper soil layer changes the die‐
lectric constant of the material and thus affects the SAR return. Because the dielectric con‐
stant of water is at least 10 times bigger than that of the dry soil, the presence of water in the
top few centimeters of bare soil can easily be detected through the use of SAR imagery (Lil‐
lesand & Kiefer, 2000). In addition, the differences in the values between the dielectric con‐
stant of water and of dry soil at the microwave part of the spectrum plays a major role in the
soil moisture estimation through the use of microwaves.

Remote Sensing of Environment: Integrated Approaches98

The main aim of this chapter is to integrate all the individual remote sensing methodologies
related to watershed monitoring and management in a holistic approach. Specifically, differ‐
ent approaches such as development of erosion models, use of radar imagery for the detec‐
tion of areas prone to inundation phenomena, construction of Land Use /Land Cover (LULC)
maps, optimization of classification methodologies and calculation of landscape metrics for
the recording of urban sprawl will be presented thoroughly and will highlight the contribu‐
tion of satellite remote sensing to the sustainable management of a catchment area.

2. Study area

Located in the central part of the island of Cyprus, the Yialias basin is about 110 km2 in size
(Fig. 1). This study area is situated between longitudes 33°11´24.28´´ and 33°26´31.52´´ and
latitudes 34°54´36.74´´ and 35°2´52.16´´. Cyprus is located in the Northeastern corner of the
Mediterranean Sea and, therefore, has a typical eastern Mediterranean climate: the com‐
bined temperature–rainfall regime is characterized by cool-to-mild wet winters and warm-
to-hot dry summers (see Michaelides et al., 2009).

Figure 1. The study area
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3. Development of methodology for the optimization of classification
accuracy of Landsat TM/ETM+ imagery in a catchment area in Cyprus

3.1. Introduction

An important tool for the detection and quantification of land cover changes across catch‐
ment areas is the classification of multispectral satellite imagery, as such results are very im‐
portant for hydrological analysis and flood scenarios.

This study aimed at  testing different material  samples in the Yialias region (central  Cy‐
prus)  in  order  to  examine:  a)  their  spectral  behavior  under  different  precipitation  rates
and b) to introduce an alternative methodology to optimize the classification results de‐
rived from single satellite imagery with the combined use of satellite, spectroradiometric
and precipitation data.

3.2. Data and methodology

3.2.1. Ground sample

According to preliminary classification results (Alexakis et al.,  2011),  spectral mixing be‐
tween urban areas and specific geological formations was observed. Thus, samples of re‐
golith  and  construction  material  were  collected  and  tested  for  their  spectral  response
under different conditions of humidity with the use of spectroradiometer in the premises
of  the  Remote  Sensing  and  Geomatics  Laboratory  of  Cyprus  University  of  Technology
(Alexakis et al., 2012).

3.2.2. Satellite and precipitation data

For the purposes of the study, specific tools and data were incorporated:

• Four Landsat TM/ ETM+ multispectral images of medium resolution (30x30 m2 pixel size).

• Precipitation data obtained from the Meteorological Service of Cyprus (Pera Chorio Mete‐
orological Station : Lon - 35° 01’, Latitude - 33° 23’). All of these data were compared with
the satellite imagery data. Selected satellite imagery was retrieved a day after the record‐
ing of substantial scaling amount of precipitation from the Pera-Chorio Metereological
Station.

• Data derived from spectroradiometric field campaigns. For this reason a GER 1500 spec‐
troradiometer was used. This instrument can record electromagnetic radiation between
350 nm up to 1050 nm (Fig. 2).

In order to investigate the different spectral response of each sample under different mois‐
ture conditions, all samples were immersed in water in a step-by-step process and measured
for the rate of their humidity with a soil moisture meter. The specific hand-held instrument
used in this study was able to measure moisture values from 0 to 50% within an accuracy of
0.1%. The final under investigation regolith samples were divided in four different catego‐

Remote Sensing of Environment: Integrated Approaches100

ries, according to their level of humidity: 0% (dry sample); 25%; 50%; > 50%. With regard to
tile and roof specimens, the results were divided into “dry” or “humid” categories due to
the difficulty to measure the scaling levels of humidity in those kinds of materials.

Figure 2. Collection of soil data (left). Spectroradiometric measurements of material samples at the premises of the
Remote Sensing and Geomatics Laboratory of CUT (right)

Based on the results of the scatter-plots, it was found that in the case of dry samples there is
a strong spectral confusion between the chalk A response and the urban fabric (roof and tile)
materials. The “moisture” scatter plot (humidity > 50%) highlights the different spectral re‐
sponse between artificial materials (roof and tile) and natural materials (chalk A, B, C). In
this plot, the spectral difference between different samples is increased and two major clus‐
ters are created with complete contrary spectral response (increase of chalk A spectral re‐
sponse and substantial decrease of tile and house roof -constructed from clay and cement
consecutively- spectral response, see Fig.3).

The results highlighted the different spectral response of materials under different humidity
levels. Specifically, reflectance values of chalk samples (samples A and C) tend to be sepa‐
rated from those of urban samples (tile and roof) as humidity increases.

Figure 3. Scatter-plots of the different targets examined in this study for Band 1 – Band 4 (humidity 0%) (left) and
Band 1 - Band 4 of Landsat (humidity > 50%) (right)
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3.2.3. Satellite imagery data

After the application of all necessary pre-processing steps (radiometric, atmospheric and
geometric corrections,) spectral signature profiles were extracted for all of the different ma‐
terials during the acquisition dates of each satellite imagery (Fig. 4).

Figure 4. Scatter-plots of the different targets examined in this study for Band 1 – Band 4 (left) and Band 3 - Band 4 of
Landsat (right)

The results  of  the  scatter  plots  denoted the  scaling optimization of  spectral  separability
of satellite imagery data, from 0 to 23.7 mm of precipitation. Specifically, concerning the
0 mm precipitation case, a spectral confusion was indicated between the “urban” targets
(roof and tile) and chalk A and C targets.  This conflict was outreached gradually as the
precipitation  level  increased.  The  samples  started  to  have  different  spectral  behaviour,
with the chalk samples (except chalk B) standing gradually away from the “urban” sam‐
ples cluster in the scatter-plot.  It  is  important to mention the quite different spectral  re‐
sponse of chalk C sample in satellite images compared to its  response in the laboratory
specimens.  This  problem occurred due to the medium spatial  resolution of  Landsat  im‐
ages  (30x30  m2  pixel  size)  which  increases  the  likelihood  of  the  common  mixing  pixel
phenomenon.

3.3. Results and verification

The  results  from the  laboratory  and  satellite  imagery  analysis  methods  highlighted  the
different  spectral  response  of  materials  to  different  levels  of  humidity.  For  the  direct
comparison of  the classification accuracy between images,  where different  levels  of  pre‐
cipitation have been recorded, two Landsat TM/ETM+ images acquired on 2 June 2005 (0
mm precipitation – “dry”) and 23 July 2009 (23.7 mm precipitation – “rainy”) were clas‐
sified  and  compared  (Fig.  5).  Both  unsupervised  (ISODATA)  and  supervised  classifica‐
tion  algorithms  (Maximum  Likelihood  -  ML)  were  used.  Initially,  the  ISODATA
classification  technique  was  applied  to  both  images  with  95%  convergence  threshold.
The following 5 classes were used for both the supervised and unsupervised algorithms:
1) urban Fabric, 2) marl - chalk formations, 3) vegetation, 4) bare soil and 5) forest.
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Figure 5. Detail of the “rainy” satellite image after the application of supervised classification algorithm

On the one hand, the results of the unsupervised algorithm performance for both dry and
humid acquisition days could be described as poor and were not considered for further
evaluation (Kappa coefficient of classification accuracy - (Kc) < 60%). On the other hand, the
application of supervised algorithm to “rainy” image provided better accuracy results (Kc =
0.75). The product of “dry” image was substantially better than that of unsupervised case
but with insufficient accuracy to be considered as credential.

3.4. Conclusions

The results noted the importance of imagery acquisition date for optimization of classifi‐
cation results.  Specifically,  the overall  accuracy of classification product was substantial‐
ly increased (more than 30% for supervised classification), especially for urban and marl/
chalk  areas,  during  days  where  high  precipitation  measurements  were  recorded  in  the
broader study area. The results were established either by laboratory or satellite imagery
analysis.
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4. Assessing soil erosion rate in a catchment area in Cyprus using remote
sensing and GIS techniques

4.1. Introduction

The objective of this work was to develop and evaluate two different erosion models in the
catchment area of Yialias in Cyprus. The first was an empirical multi-parametric model
which is mainly based on expert’s knowledge (Analytical Hierarchical Process - AHP) and
the second (Revised Universal Soil Loss Equation - RUSLE) was the model which is consid‐
ered to be a contemporary simple and widely used approach of soil loss assessment.

4.2. Methodology

4.2.1. RUSLE methodology

The RUSLE equation incorporates five different factors concerning rainfall (R), soil erodibili‐
ty (K), slope length and steepness (L and S. respectively), support practice (P) and cover
management (C):

A=R K L S P C (1)

AHP allows interdependences between decision factors to be taken into account and uses
expert opinions as inputs for evaluating decision factors. The final weight of significance for
each factor can be defined by using the eigen-vectors of a square reciprocal matrix of pair‐
wise comparisons between the different factors. Moreover, a specific grade is assigned to all
the different pairs from 1/9, when the factor is “not important at all”, to 9, when the factor is
“extremely important”.

4.2.1.1. Rainfall (R) factor

The rainfall factor R is a measure of the erosive force of a specific rainfall value. For the cal‐
culation of the R factor with the use of the Modified Fournier Index (MFI), the following two
different approaches suggested by Ferro et al. (1991) and Renard & Freimund (1994) for the
areas of Sicily and Morocco were used respectively :

1.56
1R = 0.612 MFI (2)

1.50
2R = 0.264 MFI (3)

According to Kouli et al. (2009), MFI is well correlated with the rainfall erosivity. The specif‐
ic index is considered as an effective estimator of R because it takes into account the rainfall
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seasonal distribution. Therefore the MFI was applied to take into account the monthly rain‐
fall distribution during each year for a period of 20 years, as follows:

N N 12
j ij

f
J=1 J=1 I=1 i

Fa 1 PF = =
N N På å å (4)

where, Ff is the MFI index, pij is the rainfall depth in month / (mm) of the year j and P is the
rainfall total for the same year. After the calculation of R, a continuous surface was pro‐
duced using the ordinary Kriging method based on Gaussian function, which was found to
be the most effective for the production of the final iso-erosivity map. The mean values of R
range from 267 MJ mm ha year-1 in the most flat areas in Yialias watershed to 694 MJ mm ha
year-1 in the mountainous and generally steep areas.

4.2.1.2. Soil erodibility (K)

The soil erodibility factor (K) refers to the average long-term soil and soil profile response to
the erosive power associated with rainfall and runoff. It is also considered to represent the
rate of soil loss per unit of rainfall erosion index for a specific soil.

A digital soil map of the study area was used and the main soil formations were categorized
in three different major classes: coarse sandy loam, sandy loam and silty clay. According to
Prasannakumar et al. (2011) the estimated K values for the textural groups vary from 0.07 t
ha h ha-1 MJ-1 mm-1 for coarse sandy loam, 0.13 t ha h ha-1 MJ-1 mm-1 for sandy loam and 0.26
t ha h ha-1 MJ-1 mm-1 for silty clay.

4.2.1.3. Topographic factor (LS)

The topographic factor is related to the slope steepness factor (S) and slope length factor (L)
and is considered to be a crucial factor for the quantification of erosion due to surface run–off.

The combined topograpfic factor was calculated by means of ArcGIS spatial analyst and Hy‐
drotools extension tools. In this study, the equation derived from Moore & Burch (1986) has
been adoped:

0.4 1.3.Flow Accumulation CellSize sin(Slope).LS
22.13 0.0896

å åå å å åå å= å ÷ å ÷å ÷ å åå å
(5)

4.2.1.4. Practice factor (P)

The practice factor (P) is defined as the ratio of soil loss after a specific support practice to the cor‐
responding soil loss after up and down cultivation. In order to delineate areas with terracing
practices, the two GeoEye-1 satellite images were used and the delineation was accomplished in
GIS environment with extensive monitoring of the study area. Areas with no support practice
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were assigned with a P factor equal to 1. However, the terrace areas which are considered to be
less prone to erosion were assigned a 0.55 value, according to expert’s opinion.

4.2.1.5. Cover management factor (C)

According to Prasannakumar et al. (2011), the C factor represents the effect of soil-disturb‐
ing activities, plants, crop sequence and productivity level, soil cover and subsurface bio-
mass on soil erosion.

The NDVI (Normalised Difference Vegetation Index) extracted from the study area (applied
to GeoEye-1 image) has values that range from -0.65 to 0.99. The NDVI is used along with
the Equation 6 in order to calculate the C factor values of the study area in GIS environment.

NDVIC=exp -a
(b-NDVI)

å å
å å
å å

(6)

where, a and b are non-dimensional parameters that determine the shape of the curve relat‐
ing to NDVI and C factor.

According to the final results, C factor values ranged from 0 to 2.7.

4.2.1.6. Application of RUSLE methodology for soil loss estimation

The annual soil loss was calculated in a GIS environment (Fig. 6), according to Eq. 1. Ac‐
cording to the final results, the estimated soil loss ranges from 0 to 6394 t ha-1 yr-1 with a
mean value of 20.95 t ha-1 yr-1. The maximum value of 6394 t ha-1 yr-1 cannot be considered as
appreciable due to the fact that only one pixel in a total of 1199 was attributed with this val‐
ue. However, the mean value of 20.95 t ha-1 yr-1 is representative of the current soil loss re‐
gime of the basin.

4.3. AHP methodology

In the AHP methodology, interdependencies and feedback between the factors were consid‐
ered. The factors used in this methodology were: rainfall (R), soil erodibility (K), slope
length and steepness (LS), cover management (C), support practice (P) and stream proximi‐
ty. Six out of seven factors had already been analyzed in the RUSLE methodology. The addi‐
tional agent to be analyzed was the proximity to rivers and streams.

4.3.1. Proximity to rivers and streams

According to Nekhay et al. (2009), an area of 50 m around rivers and streams was consid‐
ered to be prone to flooding and, consequently, to the detachment of particles of soil by
floodwaters. Thus, initially with the use of ArcGIS 10 Hydrotools module, the drainage net‐
work of the basin was automatically extracted from the hydrological corrected DEM (Digital

Remote Sensing of Environment: Integrated Approaches106

Elevation Model). Next, a buffer zone of 50m was constructed around each drainage net‐
work segment.

Figure 6. Map of the spatial distribution of soil loss after the application of RUSLE methodology in Yialias catchment
area

According to AHP methodology, a pair-wise comparison of the contribution of each factor
was established. Specifically, answers of several experts were collected on the reciprocal ma‐
trix, and the appropriate eigenvector solution method is then employed to calculate the fac‐
tor weights.

The final soil erosion risk map (Fig. 7) was constructed by summing up (through Boolean
operators)  the product of  each category (that had already been rated accordingly for its
subcategories)  with the corresponding weight  of  significance according to  the  following
equation:

LS=F1 0.025+F2 0.09+F3 0.146+F4 0.059+F5 0.38+F6 0.3 (7)

Where F1, F2,..., FN are the different factors incorporated in the model.

The final erosion risk assessment map was reclassified to three soil erosion severity classes
separated as low (pixel value 1), moderate (pixel value 2) and high risk (pixel value 3). The
results denoted that 77.5% of the study area was classified as low potential erosion risk,
17.5% as moderate potential risk and only a 5% as high risk.
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Figure 7. Final erosion risk map constructed with AHP method

Figure 8. Image indicating the soil erosion severity class differences between AHP and RUSLE method
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4.3.2. Evaluation of AHP and RUSLE

In the same way that the AHP risk assessment map was reclassified, the estimated soil loss
percentage map was separated in 3 different classes according to experts opinion (1st class
0-20 t ha-1 yr-1 for pixel value 1, 2nd class 20-100 t ha-1 yr-1 for pixel value 2, 3rd class 100-6391 t
ha-1 yr-1 for pixel value 3). The two grid images were subtracted in GIS environment. A close
look at the extracted grid image, it is obvious that there is a considerable similarity between
the two methodologies (Fig. 8).

4.4. Conclusions

This research demonstrated the potential for the integration of RS, GIS and precipitation da‐
ta to model soil erosion. The current research found that both RUSLE and AHP methodolo‐
gies can be efficiently applied at a basin scale with quite modest data requirements in a
Mediterranean environment such as Cyprus, providing the end users with reliable quantita‐
tive and spatial information concerning soil loss and erosion risk in general.

5. Flood mapping of Yialias river catchment area in Cyprus using ALOS
PALSAR radar images

5.1. Introduction

ALOS (Advanced Land Observing Satellite) PALSAR data can be used to detect the water sur‐
face due to the L-band wave length. All SAR instruments share the advantages of day-night
operability (as active sensors), cloud penetration, and the ability to calibrate without perform‐
ing atmospheric corrections. The longer L-band (~23.5 cm) SAR wavelength, and, to a certain
extent, the C-band (~5.5 cm), have the ability to penetrate vegetation canopies to various de‐
grees depending on vegetation density and height, dielectric constant (primarily a function of
water content), and SAR incidence angle. Variations in backscattering allow discrimination
among non-vegetated areas (very low to low returns), herbaceous vegetation (low to moder‐
ate returns), and forest (moderate to high returns), and to some degree among different forest
structures and regrowth stages. Where water is present beneath a forest canopy, enhanced re‐
turns caused by specular “double bounce” scattering between water surface and tree trunks
makes it possible to distinguish between flooded and non-flooded forest.

5.2. Data and methodology

5.2.1. Data and methodology

The purpose of this study is to explore the potential of ALOS-PALSAR imagery for observing
flood inundation phenomena in the Yialias catchment area in Cyprus. Two PALSAR images
(polarity: HH, pixel size 50 m) covering the study area before and after an extreme precipita‐
tion incident in 2009 were used (Table 1). A LULC map was also constructed with the use of
high resolution images such as GeoEye -1 covering the study area. To analyze Radar backscat‐
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ter behavior for different land cover types, several regions of interest were selected based on
the land cover classes. A number of land cover classes were found to be sensitive to flooding,
whereas in some other classes backscatter signatures remained almost unchanged.

5.2.2. Data

For the purposes of the study, the following satellite and digital spatial data were incorporated:

• 2 ALOS PALSAR images.

• 2 GeoEye -1 images

• A Digital Elevation Model (DEM) of 25m pixel size provided by the Department of Land
and Surveys of Cyprus, created with the use of orthorectified stereopairs of aerial photos
covering the study area.

The ALOS images were acquired on 30 November 2009 and 6 December 2009 (Fig. 9a). PAL‐
SAR is a fully polarimetric instrument, operating at L-Band with 1270 MHz (23.6 cm) centre
frequency and 28 MHz, alternatively 14 MHz, bandwidth. The antenna consists of 80 trans‐
mit /receive (T/R) modules on four panel segments, with a total size of 3.1 by 8.9m (Table 1).
The two ALOS images were acquired after thorough indexing of Cyprus Meteorological
Service archives of precipitation data. Specifically, the research team searched the precipita‐
tion archives of all the meteorological and climatological gauge stations within the study
area (Analiontas, Pera Chorio, Lythrodontas, Mantra tou Kampiou, Kionia, Mathiatis), as
they are indicated and spatially distributed in Fig. 10. Due to the lack of ALOS imagery data
acquired during recorded flood inundation events, the research team tried to acquire images
before and after extreme precipitation events in order to examine the potential of the image‐
ry to detect soil moisture and flood inundation trends. Thus, the image for 30 November
2009 corresponded to a day where no precipitation had been recorded, while the image for 6
December 2009 corresponded to a day when a mean value of 25mm of precipitation had
been recorded in the rain gauge stations within the study area.

(a) (b) 

Figure 9. (a) ALOS PALSAR image (30 November 2009) and the study area. (b) Mosaic of the two GeoEye -1 images of
the study area (RGB - 321)
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The GeoEye-1 images were used for the land use monitoring of the upstream and down‐
stream of the basin; the two images refer to 12 March 2011 and 11 December 2011, respec‐
tively. GeoEye-1 is a multispectral sensor with four spectral bands. Its spectral range is:
450-510 nm (blue), 510-580 nm (green), 655-690 nm (red) and 780-920 nm (near infrared),
while its spatial resolution is approximately 1.65 m.

Figure 10. Rain gauge stations within the study area or in close vicinity with it and drainage network

ScanSar (WB1)

Resolution 50m

Swath Width 35 km

Polarization HH

Off Nadir –Angle (deg) 18.0-43.3

Incidence Angle (deg) 20.1-36.5

Processing level 4.2

Data Rate (Mbps) 120

Bit quantization (bits) 5

Projection UTM Zone 36 North

Table 1. Technical specifications of ALOS PALSAR images
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5.3. Pre-processing techniques

Initially, geometric corrections were carried out to ALOS PALSAR images using standard
techniques with ground control points and a first order polynomial fit  so asthe two im‐
ages to be co-registered. For this purpose, topographical maps were used to track the po‐
sition  of  ground  control  points  in  conjunction  with  the  digital  shoreline  of  Cyprus
extracted  from  the  provided  DEM.  There  are  ascending  and  descending  observation
modes of PALSAR images and differences in backscattering values,  therefore,  the image
calibration is  an essential  task.  Different  factors  influence backscatter  strength signal  in‐
cluding satellite ground track, incidence angle, radar polarization, surface roughness and
the  surface’s  dielectric  properties  (Yingxin  &  Linlin,  2010).  Different  objects  having  the
same  digital  number  which  may  correspond  to  different  backscatter  values.  Thus,  the
ALOS scenes were subsequently converted from amplitude data format to normalized ra‐
dar cross section (σ°) according to Equation 8:

2
10σ° = 10 log DN  + CF,å å

å å (8)

where, DN is Digital Number and CF is a calibration factor (CF = - 83.0 dB).

In SAR image, the speckle noise is one of obstacles to overcome in data processing, so it
is necessary to take effective steps to filter the image. Several filter algorithms were tried;
the Lee filter  was applied to reduce speckle noise.  This  filter  is  based on the minimum
mean square  root  (MMSE)  and geometric  aspects.  This  is  a  statistical  filter  designed to
eliminate noise, while still maintaining the quality of pixel points and borders of the im‐
age (Hongga et al., 2010).

Atmospheric and geometric corrections were carried out on the GeoEye-1 images. Atmos‐
pheric correction is considered to be one of the most complicated techniques since the distri‐
butions and intensities of these effects are often inadequately known. Despite the variety of
techniques used to estimate the atmospheric effect, the atmospheric correction remains a dif‐
ficult task in the pre-processing of image data. As it is shown by several studies (Hadjimitsis
et al. 2004b, 2010a, 2010b; Agapiou et al., 2011), the darkest pixel (DP) atmospheric correc‐
tion methodology can easily be applied either by using dark targets located in the image or
by conducting in situ measurements.

After  the application of  atmospheric  and geometric  corrections to  GeoEye-1 images,  the
research  team proceeded in  the  construction  of  an  overall  image  mosaic  by  integrating
the  two  individual  images  covering  the  up-  and  down-stream  of  the  watershed  basin
(Fig. 9b).  For this purpose, a histogram matching technique was applied to the common
covered area of the two images in order to secure the radiometric correctness of the final
extracted mosaic. Finally, the research team removed the cloud cover from the mosaic im‐
age in GIS environment.
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5.4. GeoEye-1 Imagery classification and ALOS PALSAR texture analysis

5.4.1. GeoEye-1 Imagery classification technique

After the application of preprocessing techniques to GeoEye-1 images and the development
of an image mosaic, the Maximum Likelihood (ML) algorithm was applied to create a de‐
tailed LULC map of the study area. For this reason 7 major classes were defined (Bare rock,
Forest, Marl, Soil, Trees, Urban Fabric, Agricultural Areas) (Fig. 11). The statistics of the land
use regime of the study area are shown in Table 2. From these statistics, it is clearly seen that
the main part of the catchment area is covered by soil and olive trees.

Classes Area (km2)

Bare Rock 2.52

Forest 3.99

Marl 0.33

Soil 43.86

Trees (mainly olive trees) 47.99

Urban Fabric 8.21

Agricultural Areas 2.99

Table 2. Statistics of the LULC thematic map

Figure 11. LULC map of the study area after the application of ML classification algorithm to GeoEye-1 mosaic

Integrated Remote Sensing and GIS Applications for Sustainable Watershed Management: A Case Study from Cyprus
http://dx.doi.org/10.5772/39307

113



5.3. Pre-processing techniques

Initially, geometric corrections were carried out to ALOS PALSAR images using standard
techniques with ground control points and a first order polynomial fit  so asthe two im‐
ages to be co-registered. For this purpose, topographical maps were used to track the po‐
sition  of  ground  control  points  in  conjunction  with  the  digital  shoreline  of  Cyprus
extracted  from  the  provided  DEM.  There  are  ascending  and  descending  observation
modes of PALSAR images and differences in backscattering values,  therefore,  the image
calibration is  an essential  task.  Different  factors  influence backscatter  strength signal  in‐
cluding satellite ground track, incidence angle, radar polarization, surface roughness and
the  surface’s  dielectric  properties  (Yingxin  &  Linlin,  2010).  Different  objects  having  the
same  digital  number  which  may  correspond  to  different  backscatter  values.  Thus,  the
ALOS scenes were subsequently converted from amplitude data format to normalized ra‐
dar cross section (σ°) according to Equation 8:

2
10σ° = 10 log DN  + CF,å å

å å (8)

where, DN is Digital Number and CF is a calibration factor (CF = - 83.0 dB).

In SAR image, the speckle noise is one of obstacles to overcome in data processing, so it
is necessary to take effective steps to filter the image. Several filter algorithms were tried;
the Lee filter  was applied to reduce speckle noise.  This  filter  is  based on the minimum
mean square  root  (MMSE)  and geometric  aspects.  This  is  a  statistical  filter  designed to
eliminate noise, while still maintaining the quality of pixel points and borders of the im‐
age (Hongga et al., 2010).

Atmospheric and geometric corrections were carried out on the GeoEye-1 images. Atmos‐
pheric correction is considered to be one of the most complicated techniques since the distri‐
butions and intensities of these effects are often inadequately known. Despite the variety of
techniques used to estimate the atmospheric effect, the atmospheric correction remains a dif‐
ficult task in the pre-processing of image data. As it is shown by several studies (Hadjimitsis
et al. 2004b, 2010a, 2010b; Agapiou et al., 2011), the darkest pixel (DP) atmospheric correc‐
tion methodology can easily be applied either by using dark targets located in the image or
by conducting in situ measurements.

After  the application of  atmospheric  and geometric  corrections to  GeoEye-1 images,  the
research  team proceeded in  the  construction  of  an  overall  image  mosaic  by  integrating
the  two  individual  images  covering  the  up-  and  down-stream  of  the  watershed  basin
(Fig. 9b).  For this purpose, a histogram matching technique was applied to the common
covered area of the two images in order to secure the radiometric correctness of the final
extracted mosaic. Finally, the research team removed the cloud cover from the mosaic im‐
age in GIS environment.

Remote Sensing of Environment: Integrated Approaches112

5.4. GeoEye-1 Imagery classification and ALOS PALSAR texture analysis

5.4.1. GeoEye-1 Imagery classification technique

After the application of preprocessing techniques to GeoEye-1 images and the development
of an image mosaic, the Maximum Likelihood (ML) algorithm was applied to create a de‐
tailed LULC map of the study area. For this reason 7 major classes were defined (Bare rock,
Forest, Marl, Soil, Trees, Urban Fabric, Agricultural Areas) (Fig. 11). The statistics of the land
use regime of the study area are shown in Table 2. From these statistics, it is clearly seen that
the main part of the catchment area is covered by soil and olive trees.

Classes Area (km2)

Bare Rock 2.52

Forest 3.99

Marl 0.33

Soil 43.86

Trees (mainly olive trees) 47.99

Urban Fabric 8.21

Agricultural Areas 2.99

Table 2. Statistics of the LULC thematic map

Figure 11. LULC map of the study area after the application of ML classification algorithm to GeoEye-1 mosaic

Integrated Remote Sensing and GIS Applications for Sustainable Watershed Management: A Case Study from Cyprus
http://dx.doi.org/10.5772/39307

113



5.4.2. ALOS PALSAR texture analysis

According to Zhang & Zhu et al. (2011) texture is defined as the spatial variation in gray
value  and is  independent  of  color  or  luminance.  Texture  measures  smoothness,  coarse‐
ness  and regularity  of  a  region  in  an  image.  For  the  description  of  texture  histograms,
gray level co-occurrence matrix (GLCM), local statistics and characteristics of the frequen‐
cy spectrum are used. The GCLM mainly operates by calculating a matrix that is  based
on quantifying the difference between the grey levels of neighboring pixels in an image
window. The main aim of  this  matrix is  the quantification of  the spatial  pixel  structure
within  this  window.  It  was  initially  suggested  as  a  mechanism  for  extracting  texture
measures (Haralick et al., 1973).

In the specific study, through the use of ENVI 4.7 software, 7 different statistical indica‐
tors of texture such as contrast,  angular second moment, homogeneity, entropy, dissimi‐
larity, mean and variance were applied for carrying out the statistical texture analysis of
all  the  typical  ground objects.  From those  textural  indicators,  multiple  RGB composites
were constructed to improve the visual monitoring and interpretation of moisture affect‐
ed areas.

5.5. Results and discussions

As it  is  clearly seen in Figure 12,  in the downward of the catchment area (northeastern
part)  certain  patches  were  inundated  with  water.  Those  patches  are  clearly  observed
with  the  low  backscattering  values  and  their  corresponding  dark  pixels.  However,  in
most  of  the  cases  the  backscattering  values  were  increased  mainly  because  of  volume
scattering due to  the  moisture  effect  in  the  vegetation and plant  cover.  Concerning the
southwestern  part  of  the  watershed where  the  most  forested areas  are  established,  due
to  the  corresponding increase  of  the  moisture  after  the  extreme precipitation event,  the
backscatter values were generally increased due to the effect of double reflection by wa‐
ter (moisture) and tree trunks. Thus, generally the SAR backscattering intensity in forest
areas changes to be higher in cases of inundation events. In addition, in certain areas of
the  southwestern  part  of  the  catchment  area  where  there  are  more  bare  rock  and  soil
patterns,  the  backscattering  values  were  decreased  due  to  the  corresponding  moisture
effect.

The values of radar backscatter coefficient for the different land cover classes as they were
extracted from GeoEye-1 images, are tabulated in Table 3. The results were extracted in GIS
environment (ArcGIS 10 software) through the use of zonal statistics application. According
to Table 3, the backscatter coefficient in most of the classes increased after the precipitation
event. The reason for this phenomenon was the overall moisture increase in the area. The
backscatter of forest and urban areas was significantly increased (4.57 and 6.67dB) after the
precipitation event due to the double reflection phenomenon. On the other hand, in other
classes such as soil and bare rock, dB values declined due to water accumulation and the
corresponding surface scattering effect. In agricultural areas of low vegetation, such as alfafa
or barley crops, the db were slightly increased.
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Figure 12. (a) The catchment area before the precipitation event. (b) The catchment area after the precipitation event

Class Name

Radar Backscatter (dB)

Before Precipitation Event
After

Precipitation Event
Difference

1 Bare Rock -18.83 -24.31 5.48

2 Forest -23.04 -18.13 4.91

3 Soil -25.46 -27.94 1.47

4 Trees -27.94 -22.68 5.26

5 Urban -23.16 -16.49 6.67

6 Vegetation -26.84 -26.34 0.50

7 Marl -31.51 -24.95 6.56

Table 3. Radar Backscatter of ALOS PALSAR images for different land cover types and days
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In order to improve image interpretation for water affected areas, several RGB composites
were constructed, including microwave and textural bands. The optimum ones improved
remarkably the final RGB composites and contributed to the delineation of the moisture af‐
fected areas, as shown in Fig. 13. Specifically, in Fig. 13a, the moisture affected areas are in‐
dicated in green tones. In Fig. 13b where only texture indicators were used the moisture
affected areas are in light cyan color. On the one hand, the combination of speckle reducing
Lee filter band and texture indicators in Fig. 13c, resulted in whitish color for flood prone
areas. On the other hand, concerning the composite Fig. 13d, the combination of Mean, Var‐
iance and Homogeneity bands resulted in a light yellowish color for the moisture affected
areas.

(a) 

(
b
) 

(
c
) 

(b) 

(c) (d) 

Figure 13. a) RGB composite of the catchment area with the ALOS images before and after the precipitation event (R:
Filtered image before precipitation, G: Filtered image after precipitation, B: Filtered image before precipitation - with
green colors the areas where backscattering values were increased due to moisture effect are indicated). (b) Texture
indicators RGB composite (R: Homogeneity, G: Contrast, B: Dissimilarity) (c). Combination of microwave bands and tex-
tural bands (R: Filtered image before precipitation, G: Filtered image after precipitation, B: Mean). (d) Texture indica-
tors RGB composite (R: Mean, G: Variance, B: Homogeneity)

5.6. Conclusions

In this study, ALOS PALSAR imagery data (acquired before and after a certain precipitation
event) proved to be useful for evaluating their potential to detect increased land moisture
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values and to delineate flood prone areas within a catchment area. In the first approach, sig‐
nal intensity statistics (backscattering values) were extracted to correlate moisture values
with certain land cover classes. For this purpose, two high spatial resolution GeoEye-1 im‐
ages were used to create a LULC map to be used as a reference thematic map.

In addition, texture analysis was employed to ALOS PALSAR images for the detection of
flood prone areas. This method is based on the multi-temporal evaluation of the changes
that occur between two ALOS PALSAR overpasses before and after the extreme precipita‐
tion event. The specific approach aims to highlight the changes and separate this informa‐
tion from unchanged backscatter signals. Moreover, the specific approach is used in order to
improve the visual interpretation of SAR images. The visual inspection of filtered ALOS im‐
ages proved that there is a considerable change in radar backscattering when moisture af‐
fects land cover classes. Relative radar backscatter levels sampled in regions of interest and a
LULC cover map indicated that different land cover classes yield different backscatter re‐
turns in response to moisture/flooding.

The results are useful for examining the potential of ALOS PALSAR images in recording soil
moisture regime of an inundated area. However, the research team will continue observa‐
tion in longer time in case of flooding with the use of radar images. Such information is
needed to understand flood mechanism and to better develop water discharge and flood
prevention system.

6. Monitoring urban land cover with the use of satellite remote sensing
techniques as a means of flood risk assessment in Cyprus.

6.1. Introduction

This study uses an integrated approach that combines record of urban sprawl, land use and
landscape metrics. Specifically, a remote sensing approach is applied to Aster satellite im‐
ages to analyze and identify patterns of urban changes within the spatial limits of Yialias
watershed basin in the island of Cyprus. Moreover, there is an effort to optimize the classifi‐
cation products by combining spectral and texture data to the final.

6.2. Data and methodology

6.2.1. Methodology

Αn innovative methodology was developed for improving the classification accuracy of As‐
ter images concerning multi-temporal (2000 – 2010) record of urban land cover within the
spatial limits of Yialias watershed basin in Cyprus. The phenomenon of spectral similarity of
the spectral signatures of urban and marl/chalk formations, identified in the study area,
stimulated the calculation of texture measurements in order to improve the traditional clas‐
sification products derived from spectral bands. Thus, with the use of ENVI 4.7 software 7
indicators of texture information were extracted for the images of 2000 and 2010. These indi‐
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In order to improve image interpretation for water affected areas, several RGB composites
were constructed, including microwave and textural bands. The optimum ones improved
remarkably the final RGB composites and contributed to the delineation of the moisture af‐
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affected areas are in light cyan color. On the one hand, the combination of speckle reducing
Lee filter band and texture indicators in Fig. 13c, resulted in whitish color for flood prone
areas. On the other hand, concerning the composite Fig. 13d, the combination of Mean, Var‐
iance and Homogeneity bands resulted in a light yellowish color for the moisture affected
areas.
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Figure 13. a) RGB composite of the catchment area with the ALOS images before and after the precipitation event (R:
Filtered image before precipitation, G: Filtered image after precipitation, B: Filtered image before precipitation - with
green colors the areas where backscattering values were increased due to moisture effect are indicated). (b) Texture
indicators RGB composite (R: Homogeneity, G: Contrast, B: Dissimilarity) (c). Combination of microwave bands and tex-
tural bands (R: Filtered image before precipitation, G: Filtered image after precipitation, B: Mean). (d) Texture indica-
tors RGB composite (R: Mean, G: Variance, B: Homogeneity)

5.6. Conclusions

In this study, ALOS PALSAR imagery data (acquired before and after a certain precipitation
event) proved to be useful for evaluating their potential to detect increased land moisture
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values and to delineate flood prone areas within a catchment area. In the first approach, sig‐
nal intensity statistics (backscattering values) were extracted to correlate moisture values
with certain land cover classes. For this purpose, two high spatial resolution GeoEye-1 im‐
ages were used to create a LULC map to be used as a reference thematic map.
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6.2. Data and methodology

6.2.1. Methodology

Αn innovative methodology was developed for improving the classification accuracy of As‐
ter images concerning multi-temporal (2000 – 2010) record of urban land cover within the
spatial limits of Yialias watershed basin in Cyprus. The phenomenon of spectral similarity of
the spectral signatures of urban and marl/chalk formations, identified in the study area,
stimulated the calculation of texture measurements in order to improve the traditional clas‐
sification products derived from spectral bands. Thus, with the use of ENVI 4.7 software 7
indicators of texture information were extracted for the images of 2000 and 2010. These indi‐
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cators were evaluated for their separability concerning urban and marl / chalk and the opti‐
mum ones were used either individually or in combination with spectral bands in order to
improve the land use / land cover (LULC) classification accuracy. The Kappa coefficient was
used in order to evaluate the reliability of the classified products. In the final stage, the opti‐
mum LULC products were incorporated in Fragstats tool in order to record the changes in
urban cover structures during the last decade with the use of sophisticated spatial metrics.

6.2.2. Data

For the purposes of the study, the following satellite and digital spatial data were incorporated:

• 2 ASTER Images

• A Digital Elevation Model (DEM) of 25m pixel size provided by the Department of Land
and Surveys of Cyprus and created with the use of orthorectified stereopairs of airphotos
covering the study area.

The acquired ASTER images have a 10 year time interval in order the multi-temporal moni‐
toring of urban sprawl to be guaranteed. For this study, the first three spectral bands were
used (VNIR and SWIR) with spatial resolution of 15 m. The exact acquisition dates of the
images were: 12 May 2000 and 06 April 2010.

6.3. Pre-processing techniques

Geometric corrections were carried out using standard techniques with ground control
points and a first order polynomial fit. For this purpose, topographical maps were used to
track the position of ground control points in conjunction with the digital shoreline of Cy‐
prus extracted from the provided DEM. in the following, the DN values were converted to
radiance values. For both images, the at-satellite radiance values were converted to at–satel‐
lite reflectance values. Finally, the darkest pixel atmospheric correction method was applied
to every image (Hadjimitisis et al., 2004b). It has been found that atmospheric effects con‐
tribute significantly to the classification technique.

6.4. Image classification

In this study, the Iterative Self-Organizing Data Analysis Technique (ISODATA) method
was used. The ISODATA algorithm operates as k-means clustering algorithm by merging
the clusters if the separation distance in a multispectral feature is less than a value specified
by the user and certain rules for splitting a certain cluster into two clusters. Accuracy assess‐
ment, which is an integral part of any image classification process, was calculated to esti‐
mate the accuracy of different methodologies of land cover classifications. An important
statistic generated from the error matrix is the Kappa coefficient that is well suited for accu‐
racy assessment of LULC maps (Vliet, 2009). This statistic takes into account all the values in
the matrix and produces an index that indicates the rate of improvement compared to ran‐
domly allocating pixels to different classes (Congalton & Green, 2008).
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The major issue that this study had to deal with was the similarity of spectral signature re‐
sponse mainly between urban, marl/ chalk and soil features in the Aster images of 2000 and
2010. This problem is clearly denoted in Fig. 14. For this reason different kind of classifica‐
tion methods were used in order to optimize the final results and provide an alternative
way of creating efficient LULC cover maps.

Figure 14. Spectral response curve of typical ground objects

6.4.1. Multispectral image classification

The pixel-based classification is considered to be the most classic way of classifying satellite
imagery. For this reason, the first three bands of Aster image were used covering a spectral
range from visible to near infrared part of spectrum. This process was accomplished in or‐
der to form a standard of comparison with the other classification products such as those of
texture or combination of texture and spectral bands. After proceeding with evaluation ac‐
curacy, it was resulted that the Kappa coefficient for image acquired for 2000 was 0.684 and
for 2010 was 0.695. These accuracies can be described as moderate and were ascribed to ur‐
ban and marl/chalk spectral conflict.

6.4.2. Texture classification

According to Zhang & Zhu (2011), texture is defined as the spatial variation in gray value
and is independent of color or luminance. Texture measures smoothness, coarseness and
regularity of a region in an image (Gonzalez & Woods, 1992). Concerning satellite digital
imagery texture quantifies the way two neighboring pixels relate each other within a small
window centered on one of the pixels. It is generally used to describe the visual homogenei‐
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cators were evaluated for their separability concerning urban and marl / chalk and the opti‐
mum ones were used either individually or in combination with spectral bands in order to
improve the land use / land cover (LULC) classification accuracy. The Kappa coefficient was
used in order to evaluate the reliability of the classified products. In the final stage, the opti‐
mum LULC products were incorporated in Fragstats tool in order to record the changes in
urban cover structures during the last decade with the use of sophisticated spatial metrics.

6.2.2. Data
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• A Digital Elevation Model (DEM) of 25m pixel size provided by the Department of Land
and Surveys of Cyprus and created with the use of orthorectified stereopairs of airphotos
covering the study area.

The acquired ASTER images have a 10 year time interval in order the multi-temporal moni‐
toring of urban sprawl to be guaranteed. For this study, the first three spectral bands were
used (VNIR and SWIR) with spatial resolution of 15 m. The exact acquisition dates of the
images were: 12 May 2000 and 06 April 2010.

6.3. Pre-processing techniques

Geometric corrections were carried out using standard techniques with ground control
points and a first order polynomial fit. For this purpose, topographical maps were used to
track the position of ground control points in conjunction with the digital shoreline of Cy‐
prus extracted from the provided DEM. in the following, the DN values were converted to
radiance values. For both images, the at-satellite radiance values were converted to at–satel‐
lite reflectance values. Finally, the darkest pixel atmospheric correction method was applied
to every image (Hadjimitisis et al., 2004b). It has been found that atmospheric effects con‐
tribute significantly to the classification technique.

6.4. Image classification

In this study, the Iterative Self-Organizing Data Analysis Technique (ISODATA) method
was used. The ISODATA algorithm operates as k-means clustering algorithm by merging
the clusters if the separation distance in a multispectral feature is less than a value specified
by the user and certain rules for splitting a certain cluster into two clusters. Accuracy assess‐
ment, which is an integral part of any image classification process, was calculated to esti‐
mate the accuracy of different methodologies of land cover classifications. An important
statistic generated from the error matrix is the Kappa coefficient that is well suited for accu‐
racy assessment of LULC maps (Vliet, 2009). This statistic takes into account all the values in
the matrix and produces an index that indicates the rate of improvement compared to ran‐
domly allocating pixels to different classes (Congalton & Green, 2008).
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The major issue that this study had to deal with was the similarity of spectral signature re‐
sponse mainly between urban, marl/ chalk and soil features in the Aster images of 2000 and
2010. This problem is clearly denoted in Fig. 14. For this reason different kind of classifica‐
tion methods were used in order to optimize the final results and provide an alternative
way of creating efficient LULC cover maps.

Figure 14. Spectral response curve of typical ground objects

6.4.1. Multispectral image classification

The pixel-based classification is considered to be the most classic way of classifying satellite
imagery. For this reason, the first three bands of Aster image were used covering a spectral
range from visible to near infrared part of spectrum. This process was accomplished in or‐
der to form a standard of comparison with the other classification products such as those of
texture or combination of texture and spectral bands. After proceeding with evaluation ac‐
curacy, it was resulted that the Kappa coefficient for image acquired for 2000 was 0.684 and
for 2010 was 0.695. These accuracies can be described as moderate and were ascribed to ur‐
ban and marl/chalk spectral conflict.

6.4.2. Texture classification

According to Zhang & Zhu (2011), texture is defined as the spatial variation in gray value
and is independent of color or luminance. Texture measures smoothness, coarseness and
regularity of a region in an image (Gonzalez & Woods, 1992). Concerning satellite digital
imagery texture quantifies the way two neighboring pixels relate each other within a small
window centered on one of the pixels. It is generally used to describe the visual homogenei‐
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ty of images and is considered to be a common intrinsic property of all ground objects. For
the description of texture histograms, gray level co-occurrence matrix (GLCM), local statis‐
tics and characteristics of the frequency spectrum are used. The GCLM mainly operates by
calculating a matrix that is based on quantifying the difference between the grey levels of
neighboring pixels in an image window. The main aim of this matrix is the quantification of
the spatial pixel structure within this window. It was initially suggested as a mechanism for
extracting texture measures (Haralick et al., 1973).

Texture Descriptor Equation Description

Contrast ∑
i=0

Ng−1
∑
j=0

Ng−1
(i-j)2 g2 (i,j)

Contrast measures the difference

between the highest and lowest values

of a contiguous set of pixels. Thus, low

contrast image features means low

spatial frequencies.

Homogeneity ∑
i=0

Ng−1
∑
j=0

Ng−1 1
1 + (i + j)2 g(i,j)

Image homogeneity is sensitive to the

presence if near diagonal elements in

GLCM.

Entropy ∑
i=0

Ng−1
∑
j=0

Ng−1
g2(i, j)log(g(i,j))

Calculates the disorder of an image and

gives high values when an image is not

texturally uniform

Angular Second Moment (ASM) ∑
i=0

Ng−1
∑
j=0

Ng−1
g (i, j)2

ASM measures texture uniformity. High

ASM values occur when the distribution

of gray levels values is constant.

Dissimilarity ∑
i=0

Ng−1
∑
j=0

Ng−1
g (i, j) | i − j |

Dissimilarity is similar to Contrast.

However it weights increase linearly

rather than weighting the diagonal

exponentially.

Mean ∑
i=0

Ng−1
∑
j=0

Ng−1
g (i, j)

Measure of similarity in pixel values

(mean pixel value) of the neighborhood

resolution cells in an image block.

Variance ∑
i=0

Ng−1
∑
j=0

Ng−1
(i-u)2 g (i, j)

Variance measures homogeneity and

increases when the grey level values

differ from their mean.

Ng is the number of gray levels, entry (i, j) in the GLCM and u = ∑
i=0

Ng−1
∑
j=0

Ng−1
 g(i, j)

Table 4. Description of the texture parameters

Initially, principal component analysis was applied to both satellite images in order to ex‐
tract the first principal component from each image which would subsequently be used for
texture analysis. Thus, the first component of the two images was imported in ENVI 4.7 soft‐
ware and 7 different statistical indicators of texture such as contrast, angular second mo‐
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ment, homogeneity, entropy, dissimilarity, mean and variance were used for carrying out
the statistical texture analysis of all the typical ground objects (Tables 4, 5 and 6).

Contrast Homogeneity Entropy

Angular

Second

Moment

Dissimilarity Mean Variance

1 Urban 12.186 0.2841 2.082 0.129 2.779 35.591 4.662

2 Vegetation 1 0.5181 0.778 1.138 0.398 0.455 24.828 0

3 Vegetation 2 2.568 0.560 1.538 0.241 1.123 30.604 0.778

4 Forest 1.083 0.694 1.303 0.318 0.690 19.236 0.220

5 Marl/Chalk 24.808 0.198 2.049 0.137 3.882 49.939 3.759

6 Bare Soil 1.139 0.6605 1.269 0.344 0.755 25.799 0.316

Table 5. Analysis of texture features of basic objects for satellite image corresponding to 2010

Contrast Homogeneity Entropy

Angular

Second

Moment

Dissimilarity Mean Variance

1 Urban 6.856 0.422 1.948 0.151 1.875 28.594 2.606

2 Vegetation 1 3.319 0.533 1.528 0.254 1.284 17.77 0.906

3 Vegetation 2 1.867 0.688 1.398 0.299 0.801 26.178 0.948

4 Forest 0.612 0.723 1.223 0.328 0.562 13.248 0.199

5 Marl/Chalk 7.540 0.380 2.114 0.125 2.057 41.463 4.367

6 Bare Soil 0.337 0.831 0.892 0.485 0.337 18.45 0.160

Table 6. Analysis of texture features of basic objects for satellite image corresponding to 2000

It is clearly shown in Table 5 that marl formations and urban classes which cannot be differ‐
entiated (based on spectral features) vary in the means of contrast, homogeneity, dissimilari‐
ty and mean texture regarding the image corresponding to 2010 (Fig. 14). Concerning the
texture bands of 2000 (Table 6) the greatest differences in values between marl and urban
classes are indicated at mean and variance texture classes.

Texture-based classification methodologies give the opportunity to end users to extend the
traditional-based classifiers by incorporating the texture bands into the multispectral bands,
in order to coalesce the spectral and spatial information in the final product. The ISODATA
algorithm was applied to different texture products. Specifically, the algorithm was applied
to the multiband texture images of 2000 and 2010 and to the PCA products (three first com‐
ponents) of 2000 and 2010 with corresponding Kappa coefficients of 0.694, 0.685, 0.710, 0.715
and 0.723.
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ty of images and is considered to be a common intrinsic property of all ground objects. For
the description of texture histograms, gray level co-occurrence matrix (GLCM), local statis‐
tics and characteristics of the frequency spectrum are used. The GCLM mainly operates by
calculating a matrix that is based on quantifying the difference between the grey levels of
neighboring pixels in an image window. The main aim of this matrix is the quantification of
the spatial pixel structure within this window. It was initially suggested as a mechanism for
extracting texture measures (Haralick et al., 1973).

Texture Descriptor Equation Description

Contrast ∑
i=0

Ng−1
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j=0

Ng−1
(i-j)2 g2 (i,j)

Contrast measures the difference

between the highest and lowest values

of a contiguous set of pixels. Thus, low

contrast image features means low

spatial frequencies.

Homogeneity ∑
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Ng−1
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j=0

Ng−1 1
1 + (i + j)2 g(i,j)

Image homogeneity is sensitive to the

presence if near diagonal elements in

GLCM.

Entropy ∑
i=0

Ng−1
∑
j=0

Ng−1
g2(i, j)log(g(i,j))

Calculates the disorder of an image and

gives high values when an image is not

texturally uniform

Angular Second Moment (ASM) ∑
i=0
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∑
j=0

Ng−1
g (i, j)2

ASM measures texture uniformity. High

ASM values occur when the distribution

of gray levels values is constant.

Dissimilarity ∑
i=0

Ng−1
∑
j=0

Ng−1
g (i, j) | i − j |

Dissimilarity is similar to Contrast.

However it weights increase linearly

rather than weighting the diagonal

exponentially.

Mean ∑
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Measure of similarity in pixel values

(mean pixel value) of the neighborhood

resolution cells in an image block.
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∑
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(i-u)2 g (i, j)

Variance measures homogeneity and

increases when the grey level values

differ from their mean.

Ng is the number of gray levels, entry (i, j) in the GLCM and u = ∑
i=0

Ng−1
∑
j=0

Ng−1
 g(i, j)

Table 4. Description of the texture parameters

Initially, principal component analysis was applied to both satellite images in order to ex‐
tract the first principal component from each image which would subsequently be used for
texture analysis. Thus, the first component of the two images was imported in ENVI 4.7 soft‐
ware and 7 different statistical indicators of texture such as contrast, angular second mo‐
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ment, homogeneity, entropy, dissimilarity, mean and variance were used for carrying out
the statistical texture analysis of all the typical ground objects (Tables 4, 5 and 6).

Contrast Homogeneity Entropy

Angular

Second

Moment

Dissimilarity Mean Variance

1 Urban 12.186 0.2841 2.082 0.129 2.779 35.591 4.662

2 Vegetation 1 0.5181 0.778 1.138 0.398 0.455 24.828 0

3 Vegetation 2 2.568 0.560 1.538 0.241 1.123 30.604 0.778

4 Forest 1.083 0.694 1.303 0.318 0.690 19.236 0.220

5 Marl/Chalk 24.808 0.198 2.049 0.137 3.882 49.939 3.759

6 Bare Soil 1.139 0.6605 1.269 0.344 0.755 25.799 0.316

Table 5. Analysis of texture features of basic objects for satellite image corresponding to 2010

Contrast Homogeneity Entropy

Angular

Second

Moment

Dissimilarity Mean Variance

1 Urban 6.856 0.422 1.948 0.151 1.875 28.594 2.606

2 Vegetation 1 3.319 0.533 1.528 0.254 1.284 17.77 0.906

3 Vegetation 2 1.867 0.688 1.398 0.299 0.801 26.178 0.948

4 Forest 0.612 0.723 1.223 0.328 0.562 13.248 0.199

5 Marl/Chalk 7.540 0.380 2.114 0.125 2.057 41.463 4.367

6 Bare Soil 0.337 0.831 0.892 0.485 0.337 18.45 0.160

Table 6. Analysis of texture features of basic objects for satellite image corresponding to 2000

It is clearly shown in Table 5 that marl formations and urban classes which cannot be differ‐
entiated (based on spectral features) vary in the means of contrast, homogeneity, dissimilari‐
ty and mean texture regarding the image corresponding to 2010 (Fig. 14). Concerning the
texture bands of 2000 (Table 6) the greatest differences in values between marl and urban
classes are indicated at mean and variance texture classes.

Texture-based classification methodologies give the opportunity to end users to extend the
traditional-based classifiers by incorporating the texture bands into the multispectral bands,
in order to coalesce the spectral and spatial information in the final product. The ISODATA
algorithm was applied to different texture products. Specifically, the algorithm was applied
to the multiband texture images of 2000 and 2010 and to the PCA products (three first com‐
ponents) of 2000 and 2010 with corresponding Kappa coefficients of 0.694, 0.685, 0.710, 0.715
and 0.723.
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Figure 15. Urban and marl/chalk features as indicated in Angular Second Moment texture indicator (left). Urban and
marl/chalk features as indicated in Contrast texture indicator (right)

6.4.3. Combined spectral and texture methodology

The combined use of spectral and texture methodology function by combining spectral and
texture bands (either original bands or PCA components) and creating a final integrated im‐
age. For this study, the following two combinations were accomplished and the ISODATA
classifier was applied to them:

• Use of all multispectral and texture bands

• Use of all multispectral bands and the first three components after the application of PCA
to texture bands.

The overall accuracy of the methodology was considered as promising compared to the re‐
sults of the previous classification products derived from individual either spectral or tex‐
ture bands. Specifically, the Kappa coefficient values for the 1st category of combined
classification for 2000 and 2010 was 0.702 and 0.732, respectively. In addition, the Kappa co‐
efficient values for the second category were 0.765 and 0.775 concerning 2000 and 2010 im‐
ages. These results led the research team to select these two final LULC cover maps
concerning the period 2000 and 2010 for applying spatial landscape metrics.

6.5. Landscape metrics

Spatial landscape metrics are used in sustainable landscape planning and analysis of urban land
use change (Botequilha et al., 2002). These metrics typically measure spatial configuration of
landscapes, and can be used to enhance the understanding of relationships between spatial pat‐
terns and spatial processes (Herold et al., 2005). In this study, the FRAGSTATS tool was used in
order to measure and analyze the diachronic changes of LULC regime of the study area and re‐
cord the urban sprawl phenomenon within the watershed. Specifically, seven spatial individu‐
al metrics were used for analyzing urban land cover changes and these were (Edge Density,
Largest Patch Index, Class Area, Number of Patches, Area weighted mean patch fractal dimen‐
sion, Euclidean nearest neighbor distance and Contagion) (Table 7).
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As investigated by O’Neil et al. (1988) due to correlation and overlap between landscape
metrics, it is not necessary to calculate all landscape metrics. The specific metrics were se‐
lected because of their simplicity and effectiveness in depicting urban forms evolution (Al‐
berti & Waddel, 2002; Herold et al., 2002). It was found that there was an increase in built up
areas during the period 2000 to 2010. The number of patches used in landscape analysis in‐
dicate the aggregation or disaggregation in the landscape. The considerable increase of the
specific index during the time span 2000 - 2010 suggests urbanization in the study area char‐
acterized by dispersion. Moreover, a development of a number of isolated and fragmented
built up areas occurred at the end of this period. Regarding largest patch index, the small
increase between 2000 and 2010 indicates a corresponding small urban core increase. The in‐
creased urbanization rate is characterized by the appearance of new, dispersed settlements.

No
Landscape

Metrics
Description Comments

1 Edge Density (ED)

Equals the sum of the

lengths of all edge segments

divided by total landscape

area

It is an absolute measure of total edge length on a

per unit area bases that facilitates comparison

among landscapes of different sizes

2 Largest Patch Index

Equals the area of the largest

patch of the corresponding

patch type divided by total

landscape area and

multiplied by 100.

Quantifies the percentage of total landscape area

comprised by the largest patch

3 Class Area

Equals the sum of the areas

of all patches of the

corresponding patch type

Is a measure of landscape composition and

calculates how much of the landscape is comprised

of a particular landscape.

4 Number of Patches

Equals the number of

patches of the corresponding

class

Measurement of the extent of subdivision or

fragmentation of the patch type.

5
Euclidean Nearest Neighbor

Distance

Equals the distance to the

nearest neighboring patch of

the same type

Simple measure of patch context. It is extensively

used for quantification of patch isolation

6 Contagion
Describes the heterogeneity

of a landscape

Measures the extent to which landscapes are

aggregated or clumped

7
Area weighted mean patch

fractal dimension

Area weighted mean value

of the fractal dimension

values of all the patches

It reflects shape complexity across a range of spatial

scales

Table 7. Properties of spatial metrics used in this study

Thus, the increase of edge density value by indicates an increase in the total length of the
edge of the urban patches due to urban land use fragmentation. This finding is also en‐
hanced by the increase in weighted mean patch fractal dimension value indicating the urban
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marl/chalk features as indicated in Contrast texture indicator (right)

6.4.3. Combined spectral and texture methodology

The combined use of spectral and texture methodology function by combining spectral and
texture bands (either original bands or PCA components) and creating a final integrated im‐
age. For this study, the following two combinations were accomplished and the ISODATA
classifier was applied to them:

• Use of all multispectral and texture bands

• Use of all multispectral bands and the first three components after the application of PCA
to texture bands.

The overall accuracy of the methodology was considered as promising compared to the re‐
sults of the previous classification products derived from individual either spectral or tex‐
ture bands. Specifically, the Kappa coefficient values for the 1st category of combined
classification for 2000 and 2010 was 0.702 and 0.732, respectively. In addition, the Kappa co‐
efficient values for the second category were 0.765 and 0.775 concerning 2000 and 2010 im‐
ages. These results led the research team to select these two final LULC cover maps
concerning the period 2000 and 2010 for applying spatial landscape metrics.

6.5. Landscape metrics

Spatial landscape metrics are used in sustainable landscape planning and analysis of urban land
use change (Botequilha et al., 2002). These metrics typically measure spatial configuration of
landscapes, and can be used to enhance the understanding of relationships between spatial pat‐
terns and spatial processes (Herold et al., 2005). In this study, the FRAGSTATS tool was used in
order to measure and analyze the diachronic changes of LULC regime of the study area and re‐
cord the urban sprawl phenomenon within the watershed. Specifically, seven spatial individu‐
al metrics were used for analyzing urban land cover changes and these were (Edge Density,
Largest Patch Index, Class Area, Number of Patches, Area weighted mean patch fractal dimen‐
sion, Euclidean nearest neighbor distance and Contagion) (Table 7).

Remote Sensing of Environment: Integrated Approaches122

As investigated by O’Neil et al. (1988) due to correlation and overlap between landscape
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berti & Waddel, 2002; Herold et al., 2002). It was found that there was an increase in built up
areas during the period 2000 to 2010. The number of patches used in landscape analysis in‐
dicate the aggregation or disaggregation in the landscape. The considerable increase of the
specific index during the time span 2000 - 2010 suggests urbanization in the study area char‐
acterized by dispersion. Moreover, a development of a number of isolated and fragmented
built up areas occurred at the end of this period. Regarding largest patch index, the small
increase between 2000 and 2010 indicates a corresponding small urban core increase. The in‐
creased urbanization rate is characterized by the appearance of new, dispersed settlements.

No
Landscape
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Description Comments

1 Edge Density (ED)

Equals the sum of the

lengths of all edge segments

divided by total landscape

area

It is an absolute measure of total edge length on a

per unit area bases that facilitates comparison

among landscapes of different sizes

2 Largest Patch Index

Equals the area of the largest

patch of the corresponding

patch type divided by total

landscape area and

multiplied by 100.

Quantifies the percentage of total landscape area

comprised by the largest patch

3 Class Area

Equals the sum of the areas

of all patches of the

corresponding patch type

Is a measure of landscape composition and

calculates how much of the landscape is comprised

of a particular landscape.

4 Number of Patches

Equals the number of

patches of the corresponding
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Measurement of the extent of subdivision or

fragmentation of the patch type.

5
Euclidean Nearest Neighbor

Distance

Equals the distance to the

nearest neighboring patch of

the same type

Simple measure of patch context. It is extensively

used for quantification of patch isolation

6 Contagion
Describes the heterogeneity

of a landscape

Measures the extent to which landscapes are

aggregated or clumped

7
Area weighted mean patch

fractal dimension

Area weighted mean value

of the fractal dimension

values of all the patches

It reflects shape complexity across a range of spatial

scales

Table 7. Properties of spatial metrics used in this study

Thus, the increase of edge density value by indicates an increase in the total length of the
edge of the urban patches due to urban land use fragmentation. This finding is also en‐
hanced by the increase in weighted mean patch fractal dimension value indicating the urban
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sprawl phenomenon in the study area. Moreover, the fractal shape dimension value was al‐
ways slightly higher than 1, indicating a moderate shape complexity. In addition, the de‐
crease in Euclidean Nearest Neighbor Distance metric between 2000 and 2010 denoted a
reduction in the distance between the built-up patches, suggesting coalescence (Table 8).

Year

No Metrics 2000 2010

1 Edge Density 0.7014 2.8892

2 Largest Patch Index 0.0003 0.0005

3 Class Area (km2) 6.042 18.123

4 Number of Patches 1794 7894

5 Euclidean Nearest Neighbour Distance 1886.36 593.2545

6 Contagion 54.845 47.8295

7 Area weighted mean patch fractal dimension 1.0021 1.0061

Table 8. Landscape indices

However, it is important to mention that the landscape metrics results can be used as gener‐
al indicators and do not provide the users with absolute answers.

6.6. Results

The impacts of changes in land use patterns on hydrology due to extensive urbanization in
the spatial limits of watershed is a critical issue in water resource management and water‐
shed land use planning. Land use and land cover maps of the study area for the years 2000
and 2010 were obtained using spectral bands, texture bands or combination of both of them.
The major motivation for the use of alternative classification methodologies was the exis‐
tence of similar spectral signatures for urban and marl/chalk geologic formations located in
the study area. These methodologies were evaluated for their accuracy and the optimum
classification products were selected in order to be used to the research of urban land use
regime evolution during the last decade. In both cases (2000 and 2010) the combination of
three spectral bands with the first three principal components extracted from texture bands
led to more accurate and reliable results. In the next stage, landscape spatial metrics were
used to measure the urban sprawl phenomenon in the study area and its changes through
time. Specifically, seven metrics were applied to the two final classified images. The results
from the vast majority of the metrics, besides Euclidean distance measurement, denoted a
steady dispersion of urban settlements within the area of watershed. Although there was
not a significant total urban area increase during this period, a considerable urban sprawl
phenomenon was recorded.

This study denoted that spatial measures, such as texture, can play an important role in the
analysis of satellite imagery. The overall improvement of classification accuracy products
derived from images of medium spatial resolution such as those of Aster highlights the po‐
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tential of use of texture bands in combination with multispectral imagery. Moreover, the ur‐
ban sprawl phenomenon was recorded in detail with the use of landscape metrics
emphasizing to the flood inundation danger in an already flood prone watershed basin such
as Yialias. The research team will continue the specific research by incorporating images of
higher spatial resolution to the classification model.

7. Overall conclusions

This study revealed that the integrated use of satellite remote sensing and GIS technology
can contribute substantially to the sustainable management of a watershed basin. Interpreta‐
tion of multi-spectral satellite sensor data proved to be of great help in the development of
updated LULC maps and record of the LULC regime and urban sprawl phenomenon in a
catchment area. Moreover, a soil erosion model such as RUSLE was found to be efficiently
applied at basin scale with quite modest data requirements in a Mediterranean environ‐
ment. The RUSLE model provides the end users with reliable quantitative and spatial infor‐
mation concerning soil erosion and erosion risk in general. Following, the results denoted
the potential of Radar imagery in recording soil moisture regime of an inundated area as
well its potential to improve classification accuracy.

The overall results pointed out the substantial contribution of satellite remote sensing to the
sustainable management of a catchment area.
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Chapter 5

Remote Sensing for Water Quality Surveillance in Inland
Waters: The Case Study of Asprokremmos Dam in Cyprus

Christiana Papoutsa and Diofantos G. Hadjimitsis

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/39308

1. Introduction

Monitoring, protecting, and improving the quality of water in lakes and reservoirs is critical
for targeting conservation efforts and improving the quality of the environment (Ritchie et al.,
1994; Nellis et al., 1998). The standard traditional mapping and monitoring techniques of lakes
have already become too expensive compared with the information achieved for environ‐
mental use (Östlund et al., 2001).

Sustainable management of freshwater resources has gained importance at regional (e.g.,
European Union, 2000) and global scales (United Nations, 2002, 2006; World Water Council,
2006),  and  ‘Integrated  Water  Resources  Management’  has  become  the  corresponding
scientific paradigm (IPCC, 2007). Water resources, both in terms of quantity and quality,
are  critically  influenced  by  human  activity,  including  agriculture  and  land-use  change,
construction and management of reservoirs, pollutant emissions, and water and wastewa‐
ter treatment (IPCC, 2008).

Traditional  water  quality  monitoring  typically  involves  costly  and  time  consuming  in-
situ  boat  surveys  in  which  in  situ  measurements  or  water  samples  are  collected  and
returned to laboratory for testing of water quality indicators e.g. chlorophyll-a (indicator
of algae) and suspended solids. This method allows accurate measurements within a water
body  but  only  at  discrete  points,  they  can’t  give  the  real-time  spatial  overview  that  is
necessary for the global assessment and monitoring of water quality (Curran et al., 1987;
Wang et al., 2004; Brivio et al., 2001).

The challenge of water-quality management associated with the principle of sustainable
development has been of concern to many researchers and managers in the last decade. A
variety of models have been developed for supporting missions of water-quality management.
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Technologies are becoming more and more important for water-quality management, due to
the rapid development of computational problem-solving tools and the enhancement of
scientific approaches for information support (Huang & Xia, 2001).

The principal benefit of satellite remote sensing for inland water quality monitoring is the
production of synoptic views without the need of costly in-situ sampling. Synoptic, multi-
sensor satellite data products and imagery have become increasingly valuable tools for the
assessment of water quality in inland and nears-shore coastal waters. Remote sensing of lakes
using satellite images has the potential to produce a truly synoptic tool for the monitoring of
water quality variables such as chlorophyll a (chl-a), total suspended sediment (TSS), sus‐
pended minerals (SM), turbidity, Secchi Disk Depth (SDD), particulate organic carbon and
coloured dissolved organic matter (CDOM) (Allan et al., 2011; Hadjimitsis, 1999; Mayo et al.,
1995; Zhang et al., 2002).

Many researchers have attempted to develop algorithms or models for monitoring water
quality in different types of inland water bodies from several satellite sensors such as Landsat
MSS, TM or ETM+ data (Baban, 1993; Mayo et al., 1995; Östlund et al., 2001; Olmanson, Bauer,
& Brezonik, 2008; Lillesand et al., 1983; Wang et al., 2004), SPOT HVR data (Lathrop & Lillesand
1989; Chacon-Torres et al., 1992; Jensen et al., 1993; Bhatti, Suttinon, & Nasu, 2011), MODIS
data (Chen, Hu, & Muller-Karger, 2006; Doxaran et al., 2009; Dall'Olmo et al., 2005), NOAA
AVHRR data (Prangsma & Roozekrans, 1989; Stumpf & Pennock, 1989; Carrick et al., 1994;
Woodruff et al., 1999; Ruhl et al., 2001; Chen et al., 2004), MERIS data (Ruiz-Verdú et al.,
2008; Guanter et al., 2010; Bresciani et al., 2012), ASTER data (Kishino et al., 2005; Nas et al.,
2009), IRS-1C data (Xu et al., 2010; Sheela et al., 2011), Hyperion data (Kutser, 2004; Wang et al.,
2005; Giardino et al., 2007), IKONOS and QuickBird data (Sawaya et al., 2003; Ekercin, 2007;
Oyama et al., 2009). Statistical techniques have been used to investigate the correlation between
spectral wavebands or waveband combinations and the desired water quality parameters.
Predictive equations for water quality parameters have been developed after these correlations
have been determined.

This Chapter describes how remote sensing has been used to monitor water quality in large
dams in Cyprus using spectroradiometric measurements and satellite imagery.

2. Monitoring turbidity in dams in Cyprus using remote sensing

2.1. Water quality monitoring in dams

The climate of Cyprus is typical Mediterranean with hot dry summers and mild wet winters,
with an average precipitation 500mm per year falling mostly in the winter months. In the last
years Cyprus is suffering from water scarcity caused by repeated droughts (Charalambous,
2001; Tsiourtis, 1999; Margat & Vallée, 2000).

The recorded rainfall corresponds to the long-term average of the years 1986 to 2000 gives an
average rainfall which is 14% lower than the long-term average of the years 1916 to 1985. In
the same period the measured inflow to the existing dams was lower than the previous years’
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average by 35-40%. Cyprus as a semi-arid country with a highly variable climate, it is predicted
that there will be increasing water shortages with the growing water demand in the years to
come (Iacovides, 2007; Tsiourtis, 1999). It is important to mention that Cyprus lies heavily on
water storage in dams to satisfy its water needs. Today in Cyprus there are 108 dams varying
from small ponds to major dams. The fact that the storage capacity of surface reservoirs has
reached 304,7 million cubic meters (MCM) of water from a mere 6 MCM in 1960, is a truly
impressive achievement when compared to other countries of the same size and level of
development as Cyprus.

One of the most important challenges for the Cyprus Water Development Department is the
implementation of the European Water Framework Directive (WFD; 2000/60/EC) for inland
surface waters including the 108 existing reservoirs. WFD aims at achieving “good water
status” and establishes a framework for the protection of all waters including inland surface
waters, transitional (estuarine) waters, coastal waters and groundwater by 2015 (Mostert,
2003; Borja et al., 2004). Moreover, WFD sets new objectives for the condition of Europe’s water
and introduces new means and processes for achieving these objectives. Specific details are
also given of the monitoring requirements for different types of water, as well as the assessment
and monitoring performance quality standards that should be achieved. For these reasons,
monitoring is critical to surface water status within the WFD, as it will determine its classifi‐
cation and the necessity for additional measures in order to achieve the objectives in the
Directive (Chen et al., 2004).

Remote sensing technology can become a valuable tool for obtaining information on the
processes  taking  place  in  the  surface  of  inland  water  bodies.  Satellite  remote  sensing
techniques show more important advantages than traditional sampling with emphasis on
the synoptic coverage; it is remarkable that only a single Landsat TM image covers almost
all  the  108  reservoirs  existing  in  Cyprus;  and  the  high  frequency  of  image  captures
(Hadjimitsis, 1999; Hadjimitsis et al., 2004a; Hadjimitsis et al., 2010a). Previous studies of
using satellite remote sensing in the Cyprus region emphasized the importance of using
such  techniques  for  systematic  monitoring  of  water  quality  either  for  coastal  or  inland
water bodies due to the good weather conditions in the island (Hadjimitsis  et  al.,  2000;
Hadjimitsis  et  al.,  2010a).  Moreover  remote  sensing  allows  the  spatial  and  temporal
assessment of various physical, biological and ecological parameters of water bodies giving
the opportunity to examine a large area by applying the suitable algorithm (Hadjimitsis et
al., 2006; Hadjimitsis & Clayton, 2009; Papoutsa et al., 2010). Remotely sensed images can
give an indication of the physical properties in surface water bodies and can be used to
design  or  improve  in-situ  sampling  monitoring  programs  by  locating  appropriate  the
sampling stations  (Dekker  et  al.,  1995).  The  role  of  remote  sensing technology is  there‐
fore  under  scrutiny,  given  its  potential  capacity  for  systematic  observations  at  scales
ranging from local to global and for the provision of data archives extending back over
several decades (Rosenqvist et al., 2003). These issues also highlight a need for the exchange
of information between remote sensing scientists and various organizations.

The storage of surface waters in large dams in Cyprus is of vital importance in supplying the
local areas for irrigation and potable water supply purposes (Hadjimitsis et al., 2007). At the
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current time, the Cyprus Water Development Department takes in-situ samples in every dam
which provides raw water for treatment, so as to ensure that the water meets the required
abstraction standards before it passes to the water treatment works. Previous studies showed
the potential of using Landsat TM and Landsat ETM+ remotely sensed data to monitor
turbidity in dams in Cyprus. Indeed Hadjimitsis et al., (2007) utilized Landsat TM/ETM+ image
data to determine turbidity levels in Kourris Dam, the biggest dam in Cyprus. It is important
to mention that turbidity is a vital monitoring parameter for the Water Development Depart‐
ment, as any high concentrations of suspended solids (i.e more turbid water) may cause serious
problems in water filtration processes as shown from other studies (Hadjimitsis, 1999).

Asprokremmos Dam was selected as a case study for the development of a “monitoring tool”
for the assessment of Cyprus’ inland water quality using remotely sensed data. The concen‐
tration of Total Suspended Solids is one of the most critical parameter for the case of Asprok‐
remmos as the water is pumped from the ‘outlet area’ of the Dam (Deepest point of
Asprokremmos Dam / greater distance from the area where Xeros river flows into the Dam)
to the water treatment plant of Asprokremmos for pre-treatment and then to the water supply
system for the final consumption. High concentrations of suspended particulate matter in
reservoir waters directly affect the water treatment plants by occurring damages to the filters
during the pretreatment.

During sampling campaigns in Asprokremmos Dam both Turbidity (NTU) and Secchi Disk
Depth (SDD) values were determined. Turbidity measures the scattering effect that suspended
solids have on light: the higher the intensity of scattered light, the higher the turbidity).
Turbidity is measured in Nephelometric turbidity units (NTU) or Formazin turbidity units
(FTU), depending on the method and equipment used. Turbidity measured in NTU uses
nephelometric methods that depend on passing specific light of a specific wavelength through
the sample. FTU is considered comparable in value to NTU and is the unit of measurement
when using absorptiometric methods (spectrophotometric equipment) (Wilde & Gibs). SDD
is a measure of water clarity by human eyes and all optically active substances in water affect
it (Secchi depth decreases as the concentration of chl-a, CDOM, and other substances increas‐
es). Secchi Disk Transparency is a commonly used, low-cost technique that measures water
clarity (Specifically, a black and white disk is lowered into the lake until it can no longer be
seen). Water clarity is related to the quantity of phytoplankton in the water, although non-
algal turbidity and tannic acids also can reduce water clarity (Fuller et al., 2004).

2.2. Study area

Asprokremmos Dam is built at an altitude of about 100 meters above sea level and is located
16 kilometers east of the city of Paphos. It was completed in 1982 and is the second largest
reservoir in Cyprus with a capacity of 52,375,000 cubic meters. It is an earthfill dam, 55 meters
high, consisting of the main embankment, spillway, tunnels and galleries and geotechnical
works. Due to poor rainfall the dam rarely overflows; the latest times this happened were in
2004 and in 2011. It is considered an important wetland for endemic and migratory birds. The
Xeros River that flows into the dam runs only during winter and spring. The study area is
shown in Fig 1.
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Figure 1 

Table 1 

Acquisition Band 1 Band 2 Band 3 Band 4 

Date ρλ % ρDP % ρλ % ρDP % ρλ % ρDP % ρλ % ρDP % 

28-Apr-2004 9.45 1.88 6.79 1.50 4.30 1.15 3.60 1.41 

14-May-2004 11.35 1.60 9.03 1.40 7.03 1.78 7.00 3.06 

5-Oct-2004 11.42 3.10 8.76 3.11 5.43 1.82 3.67 1.37 

13-Aug-2008 14.25 4.46 13.67 5.77 10.68 4.15 6.55 2.29 

14-Sep-2008 13.98 3.62 13.08 5.58 10.12 4.42 5.80 1.51 

17-Nov-2008 15.07 5.61 14.04 8.08 10.86 7.22 4.83 1.70 

29-Jun-2009 9.88 1.37 7.88 1.35 5.14 1.51 3.86 1.31 

7-Jul-2009 10.41 1.62 8.54 1.96 5.99 1.17 4.38 1.71 

23-Jul-2009 9.82 0.91 8.02 1.04 5.15 1.02 3.38 2.08 

1-Sep-2009 11.90 2.37 9.95 2.95 6.87 2.63 4.72 1.93 

25-Sep-2009 10.85 3.08 9.92 4.73 6.39 3.80 3.19 2.73 

Figure 1. Landsat TM satellite image of Cyprus. Asprokremmos Dam is highlighted

2.3. Pre-processing of satellite images

Pre-processing refers to those operations that precede the main analysis and include mainly
geometric and radiometric corrections (Teillet, 1986). Pre-processing steps were applied using
the ERDAS Imagine software. All Landsat images were geometrically and radiometrically
corrected.

Geometric correction: geometric correction was carried out using standard techniques with
ground control points and a first order polynomial fit (Mather, 2004). Twenty well-defined
features in the images such as road intersections, airport runway, corners of large buildings
were chosen as ground control points (Hadjimitsis et al., 2006).

Radiometric correction: satellite images were converted from digital numbers to units of
radiance using standard calibration values. Then the at-satellite radiance values were con‐
verted to at-satellite reflectance values using the solar irradiance at the top of the atmosphere,
Sun-Earth distance correction and solar zenith angle (Mather, 2004). The next step consist the
removal of atmospheric effects from satellite imagery. The objective of any atmospheric
correction method is to determine the atmospheric effects. Any sensor that records electro‐
magnetic radiation from the Earth’s surface using visible or near-visible radiation will typically
register a mixture of two kinds of energy. The value recorded at any pixel location on a remotely
sensed image does not represent the true ground-leaving radiance at that point. Part of the
brightness is due to the reflectance of the target of interest and the remainder is derived from
the brightness of the atmosphere itself. The separation of contributions is not known a priori,
so the objective of atmospheric correction is to quantify these two components; in this respect,
the analysis can be based on the corrected target reflectance or radiance values. Many atmos‐
pheric correction methods have been proposed for use with multi-spectral satellite imagery
(Hadjimitsis et al., 2004a). In this study, the darkest pixel atmospheric correction method was
applied to every image (Hadjimitsis et al., 2004; Hadjimitsis et al., 2010c) since it has been found
that DP is a very effective algorithm especially for the visible length. The principle of the DP
approach states that most of the signal reaching a satellite sensor from a dark object is
contributed by the atmosphere at Visible and Near Infra-Red (NIR) wavelength. Therefore,
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verted to at-satellite reflectance values using the solar irradiance at the top of the atmosphere,
Sun-Earth distance correction and solar zenith angle (Mather, 2004). The next step consist the
removal of atmospheric effects from satellite imagery. The objective of any atmospheric
correction method is to determine the atmospheric effects. Any sensor that records electro‐
magnetic radiation from the Earth’s surface using visible or near-visible radiation will typically
register a mixture of two kinds of energy. The value recorded at any pixel location on a remotely
sensed image does not represent the true ground-leaving radiance at that point. Part of the
brightness is due to the reflectance of the target of interest and the remainder is derived from
the brightness of the atmosphere itself. The separation of contributions is not known a priori,
so the objective of atmospheric correction is to quantify these two components; in this respect,
the analysis can be based on the corrected target reflectance or radiance values. Many atmos‐
pheric correction methods have been proposed for use with multi-spectral satellite imagery
(Hadjimitsis et al., 2004a). In this study, the darkest pixel atmospheric correction method was
applied to every image (Hadjimitsis et al., 2004; Hadjimitsis et al., 2010c) since it has been found
that DP is a very effective algorithm especially for the visible length. The principle of the DP
approach states that most of the signal reaching a satellite sensor from a dark object is
contributed by the atmosphere at Visible and Near Infra-Red (NIR) wavelength. Therefore,
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the pixels from dark targets are indicators of the amount of upwelling path radiance in this
band. The atmospheric path radiance is added to the surface radiance of the dark target, thus
giving the target radiance at the sensor.

2.4. Temporal and spatial variations in water quality across the dam

2.4.1. Temporal variations

Eleven (11) Landsat TM/ETM+ satellite images were used in order to investigate how satellite
remotely sensed data can become a valuable tool to monitor and assess the temporal varia‐
tions of water quality in Asprokremmos Dam. All the images were pre-processed including
geometric and atmospheric correction steps. Atmospheric correction was achieved by apply‐
ing the Darkest Pixel method for the selected area of Pafos District where Asprokremmos Dam
is situated. It has been found from previous studies that the darkest pixel atmospheric
correction is the most suitable for inland waters (e.g Hadjimitsis, 1999; Hadjimitsis et al.,
2004b). Satellite image processing and analysis was performed using the image processing
software (ERDAS Imagine). Table 1 shows the changes of the Reflectance values observed
before and after applying the Darkest Pixel algorithm (ρλ % is the reflectance value observed
before applying the AC and ρDP % is the reflectance value observed after applying the AC). It
has been shown that an atmospheric correction must be taken into account in the pre-proc‐
essing of satellite imagery especially where images contain dark targets such as coastal waters
or inland waters (Hadjimitsis et al., 2000; 2010b; 2004b; 2009).

Acquisition

Date

Band 1 Band 2 Band 3 Band 4

% DP % % DP % % DP % % DP %

28-Apr-2004 9.45 1.88 6.79 1.50 4.30 1.15 3.60 1.41

14-May-2004 11.35 1.60 9.03 1.40 7.03 1.78 7.00 3.06

5-Oct-2004 11.42 3.10 8.76 3.11 5.43 1.82 3.67 1.37

13-Aug-2008 14.25 4.46 13.67 5.77 10.68 4.15 6.55 2.29

14-Sep-2008 13.98 3.62 13.08 5.58 10.12 4.42 5.80 1.51

17-Nov-2008 15.07 5.61 14.04 8.08 10.86 7.22 4.83 1.70

29-Jun-2009 9.88 1.37 7.88 1.35 5.14 1.51 3.86 1.31

7-Jul-2009 10.41 1.62 8.54 1.96 5.99 1.17 4.38 1.71

23-Jul-2009 9.82 0.91 8.02 1.04 5.15 1.02 3.38 2.08

1-Sep-2009 11.90 2.37 9.95 2.95 6.87 2.63 4.72 1.93

25-Sep-2009 10.85 3.08 9.92 4.73 6.39 3.80 3.19 2.73

Table 1. Mean reflectance values of Landsat Bands 1 to 4 observed in Asprokremmos Dam, before ( %) and after (DP

%) applying atmospheric correction.

It is obvious in Figure 2 that the maximum reflectance values for Band 2 of Landsat sensor,
after applying the atmospheric correction algorithm, are observed in the winter months for all
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the years examined (2004, 2008 and 2009). This phenomenon is maybe caused due to the fact
that in winter time we have more frequent rain events, and as a result wet deposition of
atmospheric particles are observed after each precipitation event.
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Figure 2. Temporal variations of water quality in Asprokremmos Dam for TM Band 2.

2.4.2. Spatial variations

Three  archived  Landsat  TM  images  acquired  on  7th  July  2009,  23rd  July  2009  and  25th

September 2009 were analysed in order to assess the spatial variations  of water quality in
the  area  of  Asprokremmos  Dam  using  satellite  remotely  sensed  imagery.  The  analysis
included image pre-processing steps (geometric correction and atmospheric correction) and
selection of two areas of the study area (Inlet & Outlet; see Fig. 3) in order to find out the
variation of the reflectance in the two areas. The Inlet area is located at the outfall area of
the Xeros River where water flows into the Dam and the Outlet area is the area where the
water  is  pumped to  the  water  treatment  plant  of  Asprokremmos for  pre-treatment  and
then to the water supply system for the final consumption. Satellite image processing and
analysis  were  performed using the  ERDAS Imagine  image processing software  and the
results are presented in the next section.

The in situ measurements of turbidity have shown that for all the sampling dates the higher
values of turbidity were observed for the sampling station which is positioned in the Inlet Area
(see Fig. 3) which is where the Xeros River flows into the Asprokremmos Dam while the values
reduced along the dam taking the lower turbidity values at the sampling stations which
represent the Outlet area. The results of the mean reflectance values of Inlet & Outlet areas of
Asprokremmos Dam which were calculated in order to find out the variation of the reflectance
in the two areas are presented on Tables 2 and 3. These results are in agreement with the in-
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the pixels from dark targets are indicators of the amount of upwelling path radiance in this
band. The atmospheric path radiance is added to the surface radiance of the dark target, thus
giving the target radiance at the sensor.

2.4. Temporal and spatial variations in water quality across the dam

2.4.1. Temporal variations

Eleven (11) Landsat TM/ETM+ satellite images were used in order to investigate how satellite
remotely sensed data can become a valuable tool to monitor and assess the temporal varia‐
tions of water quality in Asprokremmos Dam. All the images were pre-processed including
geometric and atmospheric correction steps. Atmospheric correction was achieved by apply‐
ing the Darkest Pixel method for the selected area of Pafos District where Asprokremmos Dam
is situated. It has been found from previous studies that the darkest pixel atmospheric
correction is the most suitable for inland waters (e.g Hadjimitsis, 1999; Hadjimitsis et al.,
2004b). Satellite image processing and analysis was performed using the image processing
software (ERDAS Imagine). Table 1 shows the changes of the Reflectance values observed
before and after applying the Darkest Pixel algorithm (ρλ % is the reflectance value observed
before applying the AC and ρDP % is the reflectance value observed after applying the AC). It
has been shown that an atmospheric correction must be taken into account in the pre-proc‐
essing of satellite imagery especially where images contain dark targets such as coastal waters
or inland waters (Hadjimitsis et al., 2000; 2010b; 2004b; 2009).
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5-Oct-2004 11.42 3.10 8.76 3.11 5.43 1.82 3.67 1.37

13-Aug-2008 14.25 4.46 13.67 5.77 10.68 4.15 6.55 2.29

14-Sep-2008 13.98 3.62 13.08 5.58 10.12 4.42 5.80 1.51
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23-Jul-2009 9.82 0.91 8.02 1.04 5.15 1.02 3.38 2.08

1-Sep-2009 11.90 2.37 9.95 2.95 6.87 2.63 4.72 1.93

25-Sep-2009 10.85 3.08 9.92 4.73 6.39 3.80 3.19 2.73

Table 1. Mean reflectance values of Landsat Bands 1 to 4 observed in Asprokremmos Dam, before ( %) and after (DP

%) applying atmospheric correction.

It is obvious in Figure 2 that the maximum reflectance values for Band 2 of Landsat sensor,
after applying the atmospheric correction algorithm, are observed in the winter months for all

Remote Sensing of Environment: Integrated Approaches136

the years examined (2004, 2008 and 2009). This phenomenon is maybe caused due to the fact
that in winter time we have more frequent rain events, and as a result wet deposition of
atmospheric particles are observed after each precipitation event.
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Figure 2. Temporal variations of water quality in Asprokremmos Dam for TM Band 2.

2.4.2. Spatial variations

Three  archived  Landsat  TM  images  acquired  on  7th  July  2009,  23rd  July  2009  and  25th

September 2009 were analysed in order to assess the spatial variations  of water quality in
the  area  of  Asprokremmos  Dam  using  satellite  remotely  sensed  imagery.  The  analysis
included image pre-processing steps (geometric correction and atmospheric correction) and
selection of two areas of the study area (Inlet & Outlet; see Fig. 3) in order to find out the
variation of the reflectance in the two areas. The Inlet area is located at the outfall area of
the Xeros River where water flows into the Dam and the Outlet area is the area where the
water  is  pumped to  the  water  treatment  plant  of  Asprokremmos for  pre-treatment  and
then to the water supply system for the final consumption. Satellite image processing and
analysis  were  performed using the  ERDAS Imagine  image  processing software  and the
results are presented in the next section.

The in situ measurements of turbidity have shown that for all the sampling dates the higher
values of turbidity were observed for the sampling station which is positioned in the Inlet Area
(see Fig. 3) which is where the Xeros River flows into the Asprokremmos Dam while the values
reduced along the dam taking the lower turbidity values at the sampling stations which
represent the Outlet area. The results of the mean reflectance values of Inlet & Outlet areas of
Asprokremmos Dam which were calculated in order to find out the variation of the reflectance
in the two areas are presented on Tables 2 and 3. These results are in agreement with the in-
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situ measurements as for all the bands, before and after atmospheric correction the mean
reflectance values of the Inlet areas are higher than those of the Outlet areas.

 
 
 
 
 

 
 
 
 
 

 
 
 
 
 

 

 

 

Figure 3. Landsat TM Image focused in Asprokremmos Area pointed the two study areas of 
the Dam; Inlet & Outlet areas. 

The in situ measurements of turbidity have shown that for all the sampling dates the higher 
values of turbidity were observed for the sampling station which is positioned in the Inlet 
Area (see Fig. 3) which is where the Xeros River flows into the Asprokremmos Dam while 
the values reduced along the dam taking the lower turbidity values at the sampling stations 
which represent the Outlet area. The results of the mean reflectance values of Inlet & Outlet 
areas of Asprokremmos Dam which were calculated in order to find out the variation of the 
reflectance in the two areas are presented on Tables 2 and 3. These results are in agreement 
with the in-situ measurements as for all the bands, before and after atmospheric correction 
the mean reflectance values of the Inlet areas are higher than those of the Outlet areas. 

Table 2. Spatial variation of mean reflectance values of Inlet & Outlet areas of the 
Asprokremmos Dam for bands 1 and 2 of Landsat TM multispectral scanning radiometer 
before and after applying the atmospheric correction. 

  Band 1  Band 2 
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Figure 3. Landsat TM Image focused in Asprokremmos Area pointed the two study areas of the Dam; Inlet & Outlet
areas.

Band 1 Band 2

Acquisition

Date

% DP % % DP %

Inlet Outlet Inlet Outlet Inlet Outlet Inlet Outlet

7-Jul-09 11.57 10.43 2.78 1.65 10.76 8.61 4.18 2.03

23-Jul-09 11.15 9.85 2.24 0.94 10.75 8.12 3.76 1.13

25-Sep-09 11.40 10.83 3.64 3.06 10.90 9.84 5.71 4.66

Table 2. Spatial variation of mean reflectance values of Inlet & Outlet areas of the Asprokremmos Dam for bands 1
and 2 of Landsat TM multispectral scanning radiometer before and after applying the atmospheric correction.

Band 3 Band 4

Acquisition

Date

% DP % % DP %

Inlet Outlet Inlet Outlet Inlet Outlet Inlet Outlet

7-Jul-09 8.26 6.03 3.44 1.21 5.34 4.41 2.66 1.74

23-Jul-09 7.78 5.19 3.64 1.06 4.27 3.48 2.96 2.17

25-Sep-09 7.82 6.37 5.24 3.79 4.23 3.29 3.77 2.82

*% is the percentage value of the reflectance before the atmospheric correction and DP% is the percentage value of the
reflectance after applying the DP atmospheric correction

Table 3. Spatial variation of mean reflectance values of Inlet & Outlet areas of the Asprokremmos Dam for bands 3
and 4 of Landsat TM multispectral scanning radiometer before and after applying the DP atmospheric correction.
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2.5. Overall methodology

The overall  methodology been applied for the development of an integrated monitoring
tool based on remote sensing techniques is briefly presented below (Papoutsa et al., 2011a;
2011b):

• Design an ideal sampling station network in the area of interest so as to have an adequate
number of sampling stations positioned in all directions for the proper and adequate
coverage of the study area

• Collect field spectroradiometric data over the satellite wavelengths during the satellite
overpass

• Retrieve water quality data such as in-situ turbidity & SDD measurements Correlate water
quality parameters against spectroradiometric measurements. Retrieve the band with the
highest correlation for every inland water quality parameter – extract algorithm

• Correlate water quality parameters against the at-satellite reflectance after atmospheric
correction

• Use the retrieved equations to monitor the inland water quality parameters

• Use data collected using the smart buoy for furthermore calibration of the retrieved
algorithm due to high frequency of measurements collection (every 2 minutes)

• Use smart buoy as a monitoring tool able to trigger email or sms alerts when the measure‐
ments are outside the desired limits

2.6. In-situ turbidity and spectroradiometric measurements

In-situ campaigns in Asprokremmos Dam (Figure 4) were carried out with the collaboration
of Cyprus Water Development Department and the Cyprus University of Technology (Remote
Sensing Lab) using a power engine boat to collect in-situ data (Figure 5). A sampling station
network has been designed in the area of Asprokremmos Dam so as to have an adequate
number of sampling stations positioned in all directions for the proper and adequate coverage
of the study area and a Global Position System Garmin GPS72 (Figure 6a) was used in order
to store and define the preselected sampling stations during the sampling campaigns.

In-situ spectroradiometric data together with in-situ water turbidity readings were collected
during the satellite overpass in order to enhance the statistical analyses for retrieving the cross-
correlation of spectroradiometric data and water turbidity. A handheld GER-1500 field
spectroradiometer (Figure 6b; spectral range covered by the instrument extends from 300 to
1050 nm) equipped with a fibre optic probe was used in order to retrieve the spectral signatures
for certain water depths of the Asprokremmos Dam (see Figure 6c). Reflectance was calculated
as a ratio of the target radiance to the reference radiance. The target radiance value is the
measured value taken 10cm below water surface of the reservoir and the reference radiance
value is the measured value taken on the standard Spectralon panel (Figure 6d) representing
the sun radiance which reaches the earth surface-without atmospheric influence. The in-situ
determination of water turbidity was achieved by using both a portable turbidity meter
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situ measurements as for all the bands, before and after atmospheric correction the mean
reflectance values of the Inlet areas are higher than those of the Outlet areas.
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Figure 3. Landsat TM Image focused in Asprokremmos Area pointed the two study areas of the Dam; Inlet & Outlet
areas.
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Table 2. Spatial variation of mean reflectance values of Inlet & Outlet areas of the Asprokremmos Dam for bands 1
and 2 of Landsat TM multispectral scanning radiometer before and after applying the atmospheric correction.
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*% is the percentage value of the reflectance before the atmospheric correction and DP% is the percentage value of the
reflectance after applying the DP atmospheric correction

Table 3. Spatial variation of mean reflectance values of Inlet & Outlet areas of the Asprokremmos Dam for bands 3
and 4 of Landsat TM multispectral scanning radiometer before and after applying the DP atmospheric correction.
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2.5. Overall methodology

The overall  methodology been applied for the development of an integrated monitoring
tool based on remote sensing techniques is briefly presented below (Papoutsa et al., 2011a;
2011b):

• Design an ideal sampling station network in the area of interest so as to have an adequate
number of sampling stations positioned in all directions for the proper and adequate
coverage of the study area

• Collect field spectroradiometric data over the satellite wavelengths during the satellite
overpass

• Retrieve water quality data such as in-situ turbidity & SDD measurements Correlate water
quality parameters against spectroradiometric measurements. Retrieve the band with the
highest correlation for every inland water quality parameter – extract algorithm

• Correlate water quality parameters against the at-satellite reflectance after atmospheric
correction

• Use the retrieved equations to monitor the inland water quality parameters

• Use data collected using the smart buoy for furthermore calibration of the retrieved
algorithm due to high frequency of measurements collection (every 2 minutes)

• Use smart buoy as a monitoring tool able to trigger email or sms alerts when the measure‐
ments are outside the desired limits

2.6. In-situ turbidity and spectroradiometric measurements

In-situ campaigns in Asprokremmos Dam (Figure 4) were carried out with the collaboration
of Cyprus Water Development Department and the Cyprus University of Technology (Remote
Sensing Lab) using a power engine boat to collect in-situ data (Figure 5). A sampling station
network has been designed in the area of Asprokremmos Dam so as to have an adequate
number of sampling stations positioned in all directions for the proper and adequate coverage
of the study area and a Global Position System Garmin GPS72 (Figure 6a) was used in order
to store and define the preselected sampling stations during the sampling campaigns.

In-situ spectroradiometric data together with in-situ water turbidity readings were collected
during the satellite overpass in order to enhance the statistical analyses for retrieving the cross-
correlation of spectroradiometric data and water turbidity. A handheld GER-1500 field
spectroradiometer (Figure 6b; spectral range covered by the instrument extends from 300 to
1050 nm) equipped with a fibre optic probe was used in order to retrieve the spectral signatures
for certain water depths of the Asprokremmos Dam (see Figure 6c). Reflectance was calculated
as a ratio of the target radiance to the reference radiance. The target radiance value is the
measured value taken 10cm below water surface of the reservoir and the reference radiance
value is the measured value taken on the standard Spectralon panel (Figure 6d) representing
the sun radiance which reaches the earth surface-without atmospheric influence. The in-situ
determination of water turbidity was achieved by using both a portable turbidity meter
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(Palintest Micro950; Figure 7 b & c) and a Secchi Disk (Figure 7a). Secchi disk depth measure‐
ments were taken over the shady side of the boat (Papoutsa et al., 2011a; 2011c).

(a) (b) 

Figure 4. Picture of Asprokremmos focused in the (a) Outlet Area & (b) Inlet Area of the Dam.

Figure 5. Power-engine boat with all the required resources which was used during the sampling campaigns in As-
prokremmos Dam.
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(a) (b) (c) (d) 

Figure 6. Equipments used during field campaigns (a) Global Position System Garmin GPS72; (b) handheld GER-1500
field spectroradiometer; (c) fibre optic probe & (d) standard Spectralon panel.
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(b) handheld GER-1500 field spectroradiometer; (c) fibre optic probe & (d) standard 
Spectralon panel. 

 

                  

 
Figure 7. Measuring the turbidity in Asprokremmos Dam using both (a) the Secchi Disk and 
(b&c) the portable turbidity meter; Palintest Micro950.  

2.7 Smart buoy sensor platform  
The data buoy (Figures 8a&b) consists of a low cost, low-powered, autonomous floating 
sensor platform, data logger and gateway to a remote data server. It utilizes an ultra 
compact powerful embedded system which supports the aggregation of the sensor data, 
their storage in a local database and transmission of the data to the secure remote storage 
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Figure 7. Measuring the turbidity in Asprokremmos Dam using both (a) the Secchi Disk and (b&c) the portable turbidi-
ty meter; Palintest Micro950.

2.7. Smart buoy sensor platform

The data buoy (Figures 8a&b) consists of a low cost, low-powered, autonomous floating sensor
platform, data logger and gateway to a remote data server. It utilizes an ultra compact powerful
embedded system which supports the aggregation of the sensor data, their storage in a local
database and transmission of the data to the secure remote storage server. The Data Buoy is
highly versatile and can be easily deployed in completely isolated environments for various
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Figure 7. Measuring the turbidity in Asprokremmos Dam using both (a) the Secchi Disk and (b&c) the portable turbidi-
ty meter; Palintest Micro950.

2.7. Smart buoy sensor platform

The data buoy (Figures 8a&b) consists of a low cost, low-powered, autonomous floating sensor
platform, data logger and gateway to a remote data server. It utilizes an ultra compact powerful
embedded system which supports the aggregation of the sensor data, their storage in a local
database and transmission of the data to the secure remote storage server. The Data Buoy is
highly versatile and can be easily deployed in completely isolated environments for various
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water monitoring and environmental applications. This robust floating platform can be easily
tailored to the specific application needs by selecting different sensors, data logger, powering
and communication options.

In our case the buoy has been loaded with various water quality sensors (such as thermometer,
turbidity optical sensor - Figure 9a; humidity sensor – Figure 9b etc) and has been deployed
in the Asprokremmos Dam, for real time monitoring of water quality (Papoutsa et al., 2011c).
The buoy has been used to calibrate the retrieved regression models using the reflectance
values as measured at-satellite and turbidity values as measured by the buoy.

(a) (b) 

Figure 8. Real time monitoring in Asprokremmos Dam using a Smart buoy sensor platform loaded with various water
& environmental quality sensors.

(a) (b) 

Figure 9. a) Turbidity optical sensor and (b) humidity sensor located on a floating buoy deployed in Asprokremmos Dam.

3. Results

Spectroradiometric data collected during the field campaigns in two different Areas (Outlet &
Inlet Areas of Asprokremmos Dam) characterized by low and high turbidity values are
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respectively presented in Figures 10a&10b. As we can see examining the typical spectral
signatures collected during the in-situ sampling campaigns either the spectroradiometric
values or the turbidity values are higher in the Inlet Area of Asprokremmos Dam compara‐
tively to those measured in the Outlet Area of Asprokremmos Dam.

Figure 10a&b 
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Figure 10. Typical Spectral signatures of (a) Outlet Area & (b) Inlet Area of Asprokremmos Dam acquired using a
handheld field spectroradiometer GER1500.
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Figure 10. Typical Spectral signatures of (a) Outlet Area & (b) Inlet Area of Asprokremmos Dam acquired using a
handheld field spectroradiometer GER1500.
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Field spectroradiometric data acquired using the GER1500 provide reflectance data covering the
UV, Visible and NIR wavelengths from 350 nm to 1050 nm, with a bandwidth sampling of 1,5nm.
All in-situ reflectance data collected using the field spectroradiometer GER1500 were processed
inordertogetthemean‘in-band’reflectancevaluesforthebands1to4oftheLandsatTMandETM
+ multispectral scanning radiometer and A1 to A62 of the Proba’s CHRIS multispectral scanning
radiometer. As it can be seen in Figures 11a & 11b Landsat TM has only 4 bands that correspond to
the spectral region ranged from 450 to 900 nm against 51 bands (A3 to A53) of Proba / CHRIS and
300 spectral channels of GER1500 field spectroradiometer for the same spectral region.

Figure 11. Corresponding Spectral Bands of (a) Landsat TM / ETM+ multispectral scanning radiometer, (b) Proba /
CHRIS multispectral scanning radiometer and GER1500 field spectroradiometer of a typical water spectral signature
collected during the in-situ sampling campaigns in Asprokremmos Dam – Sampling Station 2.
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The mean ‘in-band’ reflectance value for each sampling point was correlated with the corre‐
sponding turbidity measurements collected using both the Digital Turbidity-meter and the
Secchi Disk for all the bands. This was done in order to identify, the optimal spectral regions for
monitoring the inland water quality using both Landsat and Proba sensors, and the differences
between the two sensors. The methodology adopted in this study is based on the application
of linear regression analysis between the mean reflectance values for each band of both the
Landsat TM / ETM+ and the Proba / CHRIS (measured with the GER1500 field spectroradi‐
ometer) across the spectrum and the water turbidity values acquired at the same time at each
sampling station in Asprokremmos Dam.

Although, the results depicted better correlation between the in-situ mean reflectance values
and the turbidity values taken with the Digital Turbidity Meter than those when the Secchi
Disk was used for both sensors (Landsat, Proba) bands. By applying the linear regression
model, using the mean in-band reflectance values that correspond to Landsat TM (and ETM
+) bands 1-4 as the independent variable and turbidity measurements as the dependent
variable for all the combinations, the highest correlation was established between reflectance
(acquired from GER1500) in Landsat TM/ETM+ Band 3 & Band 4. However, Band 4 cannot be
used for water reflectance measurements because the water absorption coefficient has very
high value (near to 1) after 800nm (approximately) and thus, light is mostly absorbed and not
reflected by water at wavelengths larger than 800nm. As a result the reflectance at Band 4 has
very low values which can be mostly attributed to measurement errors and despite the
apparent high correlation; data corresponding to Band 4 are not relevant and are not used for
the purposes of this study. The very low reflectance values of water at Band 4 do not give the
opportunity for the remote sensing users to retrieve significant aspects regarding water
quality. As a result for the determination of turbidity values using Landsat images the optimal
band is Band 3 with a determination coefficient R2=0.85 (observed significance level=0.05;
equation 1). The same procedure was apply for all 62 bands of Proba / CHRIS A1-A62 and the
highest correlation coefficient was found between reflectance (acquired from GER1500) in
Proba / CHRIS Band A31 (Band-width range from 706,2 to 712,4 nm; λmid=709,3 nm) and
turbidity with determination coefficient R2=0.90 (observed significance level=0.05; equation
2) (Papoutsa et al., 2012).

2y= 0,293x + 0,387 R = 0,85 (1)

2y = 0,197x + 0,008 R = 0,90 (2)

Where y values are the mean in-band reflectance values for Landsat ETM+, equation (1) and
Proba / CHRIS, equation (2), and x values are the turbidity values measured in Nephelometric
Turbidity Units (NTU). The values of R2 indicate the correlation coefficient of the two models
(Papoutsa et al., 2012; Papoutsa, C., 2012).

Such outcomes can assist further the remote sensing users for the design of new satellite sensors
regarding spectral characteristics for turbidity monitoring campaigns in water dams in the
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Mediterranean region. Future work consists of calibration and validation campaigns of the
proposed regression models based on new satellite imagery acquisitions from both sensors.

The development of regression models such as equation 1 and 2, can be used further to
determine turbidity values based on the new satellite acquisitions. Indeed, the authors applied
equation 1 using simultaneous measurements both from Landsat ETM+ images and ground
truth measurements (spectroradiometric and turbidity). It has been found that the determined
turbidity values from satellites after the application of the darkest pixel atmospheric correction,
were very close to those found from field campaign. For example, for the Landsat ETM+ image
acquired on 31st of May 2010, determined turbidity for an area of interest near the Inlet area
was 10,40 NTU (after DP atmospheric correction application) and ground truth turbidity value
was 10,04 NTU.

4. Conclusions

Using archived satellite images, spatial and temporal variations of water quality in the Outlet
and Intlet areas of Asprokremmos Dam were obvious. Such findings were in accordance with
those derived by the in-situ campaigns. It is evident that for all samplings the highest values
correspond to the Inlet area where the outfall of the Xeros River exists. It is the area where the
water flows into the Dam with a result to carry down clay and suspended solids from the Xeros
River resulting in increased values of turbidity accompanied with high reflectance values.

The use of an innovative, energy-autonomous floating sensor platform (buoy) which is
installed in the Asprokremmos Dam is used to transfer turbidity data wireless. This can assist
further to test and calibrate our developed equation as well as to provide alert to the Cyprus
Water Development Department if turbidity values unusually increased.

The use of field spectroscopy assisted the retrieval and definition of the suitable spectral
regions that correspond to satellite sensors, such as Landsat TM/ETM+ and Proba / CHRIS, in
which turbidity can be measured and monitored in water dams in Cyprus. Finally the
application of atmospheric correction such as the darkest pixel is an essential step prior to any
further analysis of satellite imagery.
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1. Introduction

Water leakages have been a major problem for many regions around the world (Weifeng et al.
2011). However, monitoring such leakages is a difficult task since traditional field survey
methods are costly and time consuming (Huang et al. 2010). Researchers from diverse scientific
fields have studied this problem through the development of several techniques including
radar technique, geophones, gas filling, and many others. Different conventional techniques
such as acoustics, radioactive, electromagnetic, ground penetrating radar and linear polariza‐
tion resistance have been used over the years for water pipeline leakage detection (Skolnik,
1990; Heathcote and Nicholas, 1998; Hunaidi and Giamou, 1998; Eyuboglu et al., 2003; Burn et
al., 2001; Hadjimitsis, et al., 2009).

Remote sensing has been used for a wide range of applications including water management.
Studies have shown promising results from its use for water leakage detection (Sheikh
Naimullah, 2007). The uses of remote sensing techniques for water leakage detection are time
and cost effective compared with traditional, intrusive methods, but their use is restricted due
to their spatial resolution. The pipeline leakages occur along the length of the pipeline and the
area affected may not be detectable by the satellite sensor as it depends on the pixel size and
the density of the vegetation developed due to the presence of water.

Vegetation indices (VI) are the main form of satellite spectral data used for several applications.
According to Agapiou et al. (2012a), VIs can be divided into five main categories according to
equation or the use of each index, which include broadband indices, narrowband indices
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Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
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(hyperspectral), leaf pigment indices, stress indices and water stress indices. They reported
that VI can be simply divided according to the wavelength characteristics used in their formula
(broadband and narrowband indices). Using airborne remotely sensed imagery, Pickerill and
Malthus (1998) analyzed two known water leaks and found that different vegetation indices
and single bands were required in order to identify each leak. The spectral profile of one leak
responded best to a ratio of NIR to red reflectance, while in the other, NIR to red reflectance
ratio was not useful in differentiating it from its surroundings.

Huang et al. (2009) used airborne multispectral remote sensing imagery with high-resolution
imaging sensors in the visible, NIR and thermal infrared wavelengths and found that airborne
multispectral imaging is a useful tool in the detection of irrigation canal leakage in distribution
networks. They concluded that the analysis of the processed image data from red, NIR and
thermal bands is highly consistent with the observations from field investigation. Images from
individual bands, particularly from the thermal band, can help detect leakage from irrigation
canals. The NDVI image, which combines the data from the red and the NIR bands, can help
detect and correct errors observed on the thermal imagery.

On-site observation, which consists of data collection, periodical observations, and multivari‐
ate risk assessment analysis, is the most common technique of monitoring the water pipe
network in Cyprus. However, this is difficult to accomplish with traditional methods since it
is time consuming, expensive and monitoring is localized. Furthermore, part of the water
network tends to be located in inaccessible areas, away from the main road network and urban
areas. A complete geoinformation system providing the exact location, characteristics and
relevant data for the water mains does not exist, making the leakage monitoring procedures
even more challenging.

This paper presents the results from a project which combines different remote sensing
technologies for the detection and monitoring of water leakages for water utility systems
located in open fields in Cyprus. Two case studies areas were evaluated using freely distrib‐
uted Landsat 7 ETM+ satellite images and ground spectroradiometric data. In addition, a low
altitude system was deployed to observe these pipelines from different heights.

Finally, different remote sensing techniques have been used evaluated as in the detection of
leakage from a major water pipe in Cyprus (“Southern Conveyor Project”). Although significant
efforts have been made to detect possible water leakages, as shown above, the detection of the
water pipe itself it still problematic . This is because such water pipes networks are commonly
mapped in a digital form (e.g. GIS environment). However, in most cases the digital location
of the water pipe does not fully correspond with the real world, since many obstacles during
the construction can be arise and therefore the route of the proposed pipe can change.

In order to explore further the capabilities of remote sensing –beyond the detection of water
leakages- the authors have applied several algorithms for the detection of buried water pipes.
The detection of buried features is well established procedure in archaeological research since
buried anthropogenic remains can be found using remote sensing techniques (Agapiou et al.,
2010, 2012b; Sarris et al., 2013). Indeed, soil marks or crop marks related with water pipes can
be used, in a similar approach, for mapping the real footprint of a pipe network.
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2. Study areas

In this section, three different case studies are presented. In the first case study, a part of the
“Southern Conveyor Project” is described; following, two case studies for the “Lakatameia “ and
the “Choirokoitia -Frenaros“ water pipes are presented. In the first case study, the authors have
focused to the detection of the actual footprint of the pipe while in the next two case studies,
remote sensing techniques have been evaluated for the detection of water leakages. The
“Lakatameia“is a pipeline which is currently not in use while the “Choirokoitia -Frenaros“ is a
major pipeline of Cyprus where three major leakages have been recorded between 2007 to
2010.

2.1. “Southern Conveyor Project”

Water resources development in Cyprus initially focused on groundwater and, until 1970,
groundwater was the main source of water supply for both drinking and irrigation purposes.
As a result, almost all aquifers were seriously depleted because of over pumping. In addition,
seawater intrusion was observed in most of the coastal aquifers. The increase of population as
well as the increase in the tourist and industrial activities have led to an increase in the demand
for water and have created an acute shortage of potable water.

Under these conditions, the implementation of the “Southern Conveyor Project” was a necessity
and a basic prerequisite for the further agricultural and economic development of the island.
The “Southern Conveyor Project” is the largest water development project ever undertaken by
the Government of Cyprus. The basic objective of the project is to collect and store surplus
water flowing to the sea and convey it to areas for both domestic water supply and irrigation.
Essentially, the project aims to support the agricultural development of the coastal region
between Limassol and Famagusta, as well as to meet the domestic water demand of Limassol,
Larnaca, Famagusta, Nicosia, and a number of villages. In addition it supports the tourist and
industrial demand of the southern, eastern and central areas of the island. The project is able
to supply 33 million cubic metres of water for the irrigation of 13 926 hectares and another 33
million cubic metres of water for domestic purposes (Cyprus Water Development Department,
2000). In this case study, a part in the SE of Cyprus was examined (Figure 1).

2.2. “Lakatameia” pipeline

An existing pipeline in the area of Lakatameia (central Cyprus) was selected to be used for the
pilot study (Figure 2). The existing pipeline, with a length of less than 5 km, has been system‐
atically reported as problematic due to several leakages and is therefore no longer in use by
local authorities. The waterpipe runs through both urban and rural areas (see Figure 2). A
section of the pipeline with a length of over 2km and located in a rural area, has been used to
apply the different remote sensing techniques for the detection of leakages. Since the existing
waterpipe is not currently used, it was necessary to fill the pipe with water periodically in
order to observe the effectiveness of such remote sensing techniques.
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The water pipe is made of UPVC and has 315mm diameter. It is between 1.80m and 2.00m
below the ground surface and runs along the Pediaos river for a large part of its length. It is not
currently being used due to water leakages occurring throughout almost the entire length of
the pipeline. Information regarding the specific dates of the leakages is not available from local
authorities.

Figure 2. The "Lakatameia" waterpipe (dash line) used as the pilot study area.

Figure 1. Map of the SE of Cyprus showing parts of “Southern Conveyor Project” (blue line) (© Google Earth)
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2.3. "Frenaros — Choirokoitia" water pipe

The next area of interest is a major rural pipeline in Cyprus, which runs from the Choirokoitia
area to the Frenaros area (Figure 3). The existing pipeline, which passes through the central and
central-east part of Cyprus, has a length of over 65 km. The pipeline is located 1-3 meters below
ground surface. Various geological formations, including calcaric cambisols, calcaric rego‐
sols, and epipetric calcisols exist in the area. elevation of the pipeline (ground surface) varies
between 10 m and 200 m above sea level (Figure 4). In addition, the waterpipe passes through
different types of land cover, as recorded from the CORINE 2000 land use map (Figure 5).

Figure 3. The "Frenaros - Choirokoitia" water pipe (solid line) used as the case study area.

Figure 4. The elevation profile of the "Frenaros - Choirokoitia " waterpipe.
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Figure 5. CORINE 2000 land use (Level 1) in the area of interest (”Choirokoitia- Frenaros“ waterpipe)

During the period 2007 to 2010, three major leakages were observed along different sections
of the pipe (Figure 6). The locations of these leakages were not detected until 2 months after
the leakage occurred due to the difficulty of the local authorities in identifying the problematic
areas. The leakages occurred during 2007; 2008 and 2010; further details for these events are
presented in Table 1.

Figure 6. The "Frenaros - Choirokoitia " waterpipe (in blue). Points 1-3 indicate the three areas were water leakages
have been reported.
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Point Position Name Date of pipe fixing

Point 1 Km 43.265* Pyla Area 20-07-2007

Point 2 Km 55.346* Avgorou area 18-02-2010

Point 3 Km 12.769* Anglisides area 17-09-2008

* Km positions along the pipeline, starting point Choirokoitia

Table 1. The leakages of the Frenaros – Choirokoitia water pipeline

3. Methodology

The detection of the footpirnt of the “Southern Conveyor Project” was made based on interpre‐
tation techniques. The interpretation was conducted using free data from Google Earth
database and using high resolution satellite images. Several histogram enhancement techni‐
ques were applied along with filters in order to improve the interpretation. As well, Principal
Component Analysis (PCA) and classification techniques were also conducted.

In order to explore the capabilities of remote sensing for the detection of water leakages, two
different methodologies were followed. For the “Lakatameia“waterpipe pilot study, ground
spectroradiometric measurements were taken using a handheld spectroradiometer. A leakage
event was created by filling several sections of the pipeline with water so that ground spectral
signatures could be taken before and after the leakage. Spectroradiometric data were also
recorded from different heights using a low altitude system. In this way, spectral signatures
were able to simulate variation in spatial resolution (pixel size) before any other further
application.

For the "Frenaros - Choirokoitia " water pipe case study, three major leakages have been recorded
(see Table 1). Several Landsat 7 ETM+ medium resolution images, showing each leakage before
and after the day the leakage was repaired, were used. A geometric and radiometric calibration
of the images was performed, following by a multi-temporal analysis of all dataset based on
either false composites or vegetation indices.

4. Resources

In this section, the resources and processing used for each case study are presented. The
resources are grouped into three main categories: (a) high resolution satellite data used for the
“Southern Conveyor Project” area; (b) spectroradiometric ground data used for the ”Lakata‐
meia“ pipeline and (c) medium resolution satellite data used for the ”Choirokoitia- Fre‐
naros“ pipeline.
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4.1. High resolution satellite data

IKONOS high resolution satellite images were used for the detection of the buried water pipe.
The IKONOS sensor, launched in 1999, was the first high-resolution satellite imagery with a
spatial resolution of less than 4m. In addition, free RGB satellite images from the Google Earth
databasewereexploredandanalyzed(23-10-2003;13-06-2004;29-05-2008;30-05-2009)(Figure7).

Figure 7. IKONOS satellite image used for the detection of the buried water pipe (left) and free Google Earth images
of the area (right).

4.2. Spectroradiometric data

Spectroradiometric hyperspectral measurements were carried out using the GER 1500 field
spectroradiometer (Figure 8a). The GER 1500 spectroradiometer records electromagnetic
radiation between 350 nm to 1050 nm (visible and near infrared part of the spectrum) A
calibrated Spectralon panel, with ≈100% reflectance, was also used simultaneously to measure
the incoming solar radiation. The spectralon panel measurement was used as a reference, while
the measurement over the crops as a target. Therefore, reflectance for each measurement can
be calculated using the following equation (1):

( )Reflectance = Target Radiance / Panel Radiance  x Calibration of the panel (1)

In order to avoid any errors due to changes in the prevailing atmospheric conditions (Milton
et al. 2009), the measurements over the panel and the target were taken within minutes of each
other. The coordinates of the measurements were mapped using a Global Navigation Satellite
Systems (GNSS) (Figure 8b).

In addition, spectroradiometric measurements were taken from a low altitude system (Figure
9). The spectroradiometer was attached to the air balloon and raised over the pilot study area.
Measurements were taken at several heights in the pilot study area and also in the surrounding
area in order to compare their spectral signature profiles. As the airborne system was raised,
the pixel size in the ground increased. Table 2 presents some characteristic heights where the
pixel size corresponds to known satellite sensors.
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Figure 9. The low altitude system deployed over the leakage in the “Lakatameia“ waterpipe.

Hyperspectral measurements recorded from the GER 1500 instrument needed to be recalcu‐
lated according to the characteristics of a specific multispectral satellite sensor. The authors
modified these data to mimic Landsat 7 ETM+ satellite imagery based on Relative Spectral
Response (RSR) filters since such data are freely distributed from the USGS. This data were
used for the second case study ("Frenaros - Choirokoitia" waterpipe). RSR filters describe the
instrument relative sensitivity to radiance in various parts of the electromagnetic spectrum
(Wu et al. 2010). These spectral responses have a value of 0 to 1 and have no units since they
are relative to the peak response (Figure 10). Bandpass filters are used in the same way in

(a) (b) 

Figure 8. (a): The GER 1500 spectroradiometer used for the collection of ground measurements and (b): the GNSS
used for mapping the pipeline
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spectroradiometers in order to transmit a certain wavelength band and block others. The
reflectance from the spectroradiometer was calculated based on the wavelength of each sensor
and the RSR filter as follows:

Rband =Σ(Ri * RSRi)/ΣRSRi (2)

Where:

Rband = reflectance at a range of wavelength (e.g. Band 1)

Ri = reflectance at a specific wavelength (e.g R 450 nm)

RSRi = Relative Response value at the specific wavelength

4.3. Medium resolution satellite data

Twelve medium resolution Landsat 7 ETM+ satellite images were used, dated before and after
the local authorities fixed the leaks on the “Frenaros-Choirokoitia“ pipeline (Figure 11; Table
3). ERDAS Imagine v. 10 software was used for the pre- and post-processing of satellite
imagery. Pre-processing included geometric and atmospheric correction correction of the
satellite imagery. Geometric correction of the satellite images was conducted using ground
control points (GCPs), which included environmental features and ground coordinates. The
Darkest Pixel (DP) atmospheric correction method was used, which is the most widely applied
method of atmospheric correction that provides reasonable correction (Hadjimitsis et al.,
2004; Hadjimitsis et al., 2009).

Height from

the ground

4 FOV

(ground pixel - m)

8o FOV

(ground pixel -m)
Satellite sensor

5 0.3 0.7 GeoEye (pan); WorldView-1

10 0.7 1.4 IKONOS (pan)

15 1.0 2.1

20 1.4 2.8 ALOS (pan)

25 1.7 3.5

50 3.5 7.0 IKONOS (multi)

75 5.2 10.5 ALOS (multi)

100 7.0 14.0

150 10.5 21.0 Landsat (pan)

200 14.0 28.0 IKONOS (multi)

Table 2. Pixel size from different heights using the low altitude system. The right column presents active satellite
sensors with similar spatial resolution. Two lens with different field of view (FOV) have been be used in the GER 1500
spectroradiometer
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Figure 11. Landsat 7 ETM+ satellite image (28/07/2008) over the ”Choirokoitia- Frenaros“ water pipe.

After the necessary pre-processing steps, several vegetation indices were evaluated. False

colour composites were also applied in order to detect the water leakages from the entire

dataset. The evaluation was made not only in the three areas of interest (leakage problem) but

Figure 10. Relative Response filters for Bands 1-4 of Landat TM sensor (Alexakis et al. 2012)
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Darkest Pixel (DP) atmospheric correction method was used, which is the most widely applied
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100 7.0 14.0

150 10.5 21.0 Landsat (pan)

200 14.0 28.0 IKONOS (multi)

Table 2. Pixel size from different heights using the low altitude system. The right column presents active satellite
sensors with similar spatial resolution. Two lens with different field of view (FOV) have been be used in the GER 1500
spectroradiometer
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Figure 11. Landsat 7 ETM+ satellite image (28/07/2008) over the ”Choirokoitia- Frenaros“ water pipe.

After the necessary pre-processing steps, several vegetation indices were evaluated. False

colour composites were also applied in order to detect the water leakages from the entire

dataset. The evaluation was made not only in the three areas of interest (leakage problem) but

Figure 10. Relative Response filters for Bands 1-4 of Landat TM sensor (Alexakis et al. 2012)
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also along the entire length of the water pipe. The results were mapped and statistical analysis
was performed.

no Satellite Overpass no Satellite Overpass

1 Landsat ETM+ 07/05/2007 7 Landsat ETM+ 14/09/2008

2 Landsat ETM+ 23/05/2007 8 Landsat ETM+ 30/09/2008

3 Landsat ETM+ 27/08/2007 9 Landsat ETM+ 16/10/2008

4 Landsat ETM+ 28/07/2008 10 Landsat ETM+ 22/12/2009

5 Landsat ETM+ 13/08/2008 11 Landsat ETM+ 07/01/2010

6 Landsat ETM+ 29/08/2008 12 Landsat ETM+ 13/04/2010

Table 3. Satellite images used for this study

 

(a)  (b)  
 

(c)  (d)  

Figure 12. Google Earth satellite image used for the detection of the buried water pipe during different periods: (a):
23-10-2003; (b): 13-06-2004; (c): 29-05-2008; and (d): 30-05-2009.

5. Results

5.1 “Southern Conveyor Project” pipeline

The detection of the buried water pipe was initially performed using the multi-temporal
Google Earth images (Figure 12). As shown, the success rate for the detection of the water pipe
can vary depending on the period of observation. The interpretation could be performed much
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easier in areas with no coverage (bare soil) while in cultivated areas the interpretation was a
difficult task. In addition, images taken just after rainfall or after watering crops, tend to
provide better results since soil marks could be easily spotted.

Moreover, the tree pattern could reveal the footprint of the water pipe (see Figure 13). This
pattern can be used for the detection of buried water pipes or can be used for monitoring
possible problems resulting from tree roots.

Figure 13. The footprint of the water pipe as a result of the tree pattern.

The IKONOS image used for this case study was able to maximize the visible footprint of the
water pipe. Indeed, using the VNIR part of the spectrum and false colour composites (Figure
14) made possible the detection of both soil and crop marks. The IKONOS multispectral image
was able to detect other parts of the water pipe network of the area, as shown in Figure 14
(right arrow). Spatial filter and PCA analysis applied to the image data (Figure 15) were able
further to enhance the interpretation.

In an attempt to evaluate if an automatic detection of such crop marks could be performed
(e.g. classification), spectral profiles were examined. Spectral signatures from the image were
evaluated as shown in Figure 15, which features areas of crop marks and of healthy vegetation.
Scatter plots from these two areas (Figure 16) indicate that a spectral difference exists between
these areas, especially in the VNIR part of the spectrum.
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The IKONOS image used for this case study was able to maximize the visible footprint of the
water pipe. Indeed, using the VNIR part of the spectrum and false colour composites (Figure
14) made possible the detection of both soil and crop marks. The IKONOS multispectral image
was able to detect other parts of the water pipe network of the area, as shown in Figure 14
(right arrow). Spatial filter and PCA analysis applied to the image data (Figure 15) were able
further to enhance the interpretation.

In an attempt to evaluate if an automatic detection of such crop marks could be performed
(e.g. classification), spectral profiles were examined. Spectral signatures from the image were
evaluated as shown in Figure 15, which features areas of crop marks and of healthy vegetation.
Scatter plots from these two areas (Figure 16) indicate that a spectral difference exists between
these areas, especially in the VNIR part of the spectrum.
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5.2. “Lakatameia” pipeline

The results found that water leakages could be monitored using remote sensing techniques.
As shown in Figure 17, the spectral signatures of dry and wet soil is easily recognized in the
visible range of the spectrum (400 -700 nm) and in the very near infrared range (750-900nm).
Wet soil tends to give 20-25% lower reflectance values compare to the dry soil. This difference
is also maximized in the very near infrared range of the spectrum. Similarly, Figure 18 indicates
spectral signature profiles of several targets before (dry) and after (wet) a leakage event. Similar
findings also applied to vegetation. Dry grass tends to give approximately 5% reflectance in

Figure 14. IKONOS VNIR-R-G pseudo colour composite

Figure 15. IKONOS 3 x 3 high pass filter (left) and PCA analysis (right)
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the green part of the spectrum (520-600nm) and 25% in the very near infrared (750-900nm) in
contrast to 12% and 35% respectively for the wet grass.

 
Figure 17: Ground spectral signatures over dry and wet soil in the ’Lakatameia’ pipeline 

 

 
 

Figure 18: Ground spectral signatures of different targets in the ’Lakatameia’ pipeline 
 

Figures 19 and 20 present the spectral signatures over the same areas from different heights, 
using the low altitude system.  Reflectance initially increases as the system is raised above 
ground level  (until 10 meters) while a small decrease of the reflectance is observed 
afterwards (16 meters) which can be associated with the larger area covered from the 
spectroradiometer. However it should be noted that these differences (~5%) are similar to 
the total relative uncertainties of calibration for satellite sensors (within 5%) (Trishchenko et 
al. 2002). 

Dry soil

Wet soil

Figure 17. Ground spectral signatures over dry and wet soil in the ’Lakatameia’ pipeline

Figure 16. Scatter plots from crop marks (red square) and healthy vegetation (yellow square) for Bands 1-3 and Bands
1-4 combinations (left and right respectively).
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Figure 18. Ground spectral signatures of different targets in the ’Lakatameia’ pipeline

Figures 19 and 20 present the spectral signatures over the same areas from different heights,
using the low altitude system. Reflectance initially increases as the system is raised above
ground level (until 10 meters) while a small decrease of the reflectance is observed afterwards
(16 meters) which can be associated with the larger area covered from the spectroradiometer.
However it should be noted that these differences (~5%) are similar to the total relative
uncertainties of calibration for satellite sensors (within 5%) (Trishchenko et al. 2002).

The above results are well supported in the literature. Nocita et al. (2011), Ouillon et al. (2002),
Dobos (2003), Kaleita et al. (2005) and Garcia-Rodriguez (2011) found that moisture affects the
reflectance value of soil. There is a notable decrease in reflectance with increasing moisture in
the ground (Bowers and Hanks, 1965; Baumgardner et al., 1985; Twomey et al., 1986; Ishida et
al., 1991; Whiting et al., 2000; Bogrekci and Lee, 2005; Lesaignoux et al. 2007). However, the rate
of decrease in relative reflectance becomes more moderate with increasing ground moisture,
since at very high moisture contents, the soil is already quite dark and further moisture added
to the soil has less of an effect on the reflectance (Kaleita et al., 2005). Moisture dominates the
spectral reflectance of soils in the 340-2500 nm wavelengths (Somers et al., 2010; Bogrekci and
Lee, 2005). Moisture affects the reflection of shortwave radiation from ground surfaces in the
visible and near-infrared - VNIR (400-1100nm) and shortwave infrared - SWIR (1100-2500nm)
regions of the spectrum (Bowers and Hanks, 1965; Skidmore et al., 1975). It is notable that,
although precipitation affects the reflectance value for each target, it does not change the typical
spectral signature between wet and dry conditions (Philpot, 2010).

The results indicate that the detection of a leakage event is possible using remote sensing
techniques. Indeed, the use of the very near infrared range of the spectrum can be used on areas
with bare soil or with vegetation. The findings from this pipeline were therefore compared with
data from actual cases studies of water leakage in the ’Freanaros-Choirokoitia’ pipeline.
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Figure 19. Spectral signatures of wet soil in the ’Lakatameia’ pipeline at different heights using the low altitude sys-
tem

Figure 20. Spectral signatures of dry soil in the ’Lakatameia’ pipeline at different heights using the low altitude system

5.3. "Frenaros — Choirokoitia " water pipe

Based on the findings of the “Lakatameia” water pipe, satellite images where used for the
detection of known water leakages using archive satellite images. In order to examine the
capabilities of satellite remote sensing images for the detection of water leakages, several
algorithms and analyses were carried out. At first, reflectance values of all datasets (see Table
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Figure 18. Ground spectral signatures of different targets in the ’Lakatameia’ pipeline
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However it should be noted that these differences (~5%) are similar to the total relative
uncertainties of calibration for satellite sensors (within 5%) (Trishchenko et al. 2002).

The above results are well supported in the literature. Nocita et al. (2011), Ouillon et al. (2002),
Dobos (2003), Kaleita et al. (2005) and Garcia-Rodriguez (2011) found that moisture affects the
reflectance value of soil. There is a notable decrease in reflectance with increasing moisture in
the ground (Bowers and Hanks, 1965; Baumgardner et al., 1985; Twomey et al., 1986; Ishida et
al., 1991; Whiting et al., 2000; Bogrekci and Lee, 2005; Lesaignoux et al. 2007). However, the rate
of decrease in relative reflectance becomes more moderate with increasing ground moisture,
since at very high moisture contents, the soil is already quite dark and further moisture added
to the soil has less of an effect on the reflectance (Kaleita et al., 2005). Moisture dominates the
spectral reflectance of soils in the 340-2500 nm wavelengths (Somers et al., 2010; Bogrekci and
Lee, 2005). Moisture affects the reflection of shortwave radiation from ground surfaces in the
visible and near-infrared - VNIR (400-1100nm) and shortwave infrared - SWIR (1100-2500nm)
regions of the spectrum (Bowers and Hanks, 1965; Skidmore et al., 1975). It is notable that,
although precipitation affects the reflectance value for each target, it does not change the typical
spectral signature between wet and dry conditions (Philpot, 2010).

The results indicate that the detection of a leakage event is possible using remote sensing
techniques. Indeed, the use of the very near infrared range of the spectrum can be used on areas
with bare soil or with vegetation. The findings from this pipeline were therefore compared with
data from actual cases studies of water leakage in the ’Freanaros-Choirokoitia’ pipeline.
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Figure 19. Spectral signatures of wet soil in the ’Lakatameia’ pipeline at different heights using the low altitude sys-
tem

Figure 20. Spectral signatures of dry soil in the ’Lakatameia’ pipeline at different heights using the low altitude system

5.3. "Frenaros — Choirokoitia " water pipe

Based on the findings of the “Lakatameia” water pipe, satellite images where used for the
detection of known water leakages using archive satellite images. In order to examine the
capabilities of satellite remote sensing images for the detection of water leakages, several
algorithms and analyses were carried out. At first, reflectance values of all datasets (see Table
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3) were calculated based on the metadata file using equations 3 and 4. Following this, several
vegetation indices were calculated. In addition, different false colour composites were
produced to assess the ability of the system to detect the known leakages from the satellite
images.

For Point 1 at Pyla area, leakage detection was difficult using medium resolution images.
Monitoring of the pipeline using the red and the near infrared part of the spectrum for Point
1 did not reveal any significant changes of reflectance due to the water leakage. Similarly,
vegetation indices (NDVI) did not show any differences for Point 3 (Anglisides area).

However, for Point 2, Landsat 7 ETM+, promising results were found. As shown in Figure
21, the Landsat satellite image dated January 7, 2010, tends to give higher vegetation index
values, prior to the water leakage being repaired on February 18, 2010. However, the above
hypothesis is applicable to other areas of the water pipe as well. The above results have shown
the limitations of using medium resolution satellite images for the detection of water leakages,
especially when these are rare and small.

Point 2: "Frenaros-Choirokoitia" pipeline
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Figure 21. NDVI values using Landsat 7 ETM+ images used over Point 2. The red square highlights the area where the
leakage was observed.

In an effort to explore further the information extracted using satellite data the three pilot areas
were examined separately. Three vegetation indices, the
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Normalized Difference Vegetation Index (NDVI);

Soil Adjusted. Vegetation Index (SAVI) and the

Ratio Vegetation Index (RVI) were calculated based on the formulas shown in equations 5, 6
and 7.

( ) ( )NIR red NIR redp – p  / p + p (3)

( ) ( ) ( )NIR rb NIR red1+0.5  p - p /  p + p +0.5 (4)

red NIRp / p (5)

Where:

pNIR is the near infrared reflectance

pred is the red reflectance

Figure 22 presents the NDVI development during the examined 12 dates of satellite overpasses
(see Table 3). Figure 23 presents the SAVI development during the examined 12 dates of
satellite overpasses.
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Figure 22. NDVI refl. (calculated with Reflectance values) development during the examined 12 dates (Landsat im-
ages) in Points 1, 2 and 3
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vegetation indices were calculated. In addition, different false colour composites were
produced to assess the ability of the system to detect the known leakages from the satellite
images.

For Point 1 at Pyla area, leakage detection was difficult using medium resolution images.
Monitoring of the pipeline using the red and the near infrared part of the spectrum for Point
1 did not reveal any significant changes of reflectance due to the water leakage. Similarly,
vegetation indices (NDVI) did not show any differences for Point 3 (Anglisides area).

However, for Point 2, Landsat 7 ETM+, promising results were found. As shown in Figure
21, the Landsat satellite image dated January 7, 2010, tends to give higher vegetation index
values, prior to the water leakage being repaired on February 18, 2010. However, the above
hypothesis is applicable to other areas of the water pipe as well. The above results have shown
the limitations of using medium resolution satellite images for the detection of water leakages,
especially when these are rare and small.
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In an effort to explore further the information extracted using satellite data the three pilot areas
were examined separately. Three vegetation indices, the
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Normalized Difference Vegetation Index (NDVI);

Soil Adjusted. Vegetation Index (SAVI) and the

Ratio Vegetation Index (RVI) were calculated based on the formulas shown in equations 5, 6
and 7.

( ) ( )NIR red NIR redp – p  / p + p (3)

( ) ( ) ( )NIR rb NIR red1+0.5  p - p /  p + p +0.5 (4)

red NIRp / p (5)

Where:

pNIR is the near infrared reflectance

pred is the red reflectance

Figure 22 presents the NDVI development during the examined 12 dates of satellite overpasses
(see Table 3). Figure 23 presents the SAVI development during the examined 12 dates of
satellite overpasses.
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Points 1,2,3: "Frenaros-Choirokoitia" pipeline
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Figure 23. SAVI refl. (calculated with Reflectance values) development during the examined 12 dates (Landsat im-
ages) in Points 1, 2 and 3

Based on the graphs of Figure 22, the NDVI values present the following pattern: during May
2007, in all 3 points of the known water leakage, NDVI decreases significantly with values
close to -0.8, when almost in all cases NDVI is above zero with similar values. After September
2008, the NDVI values increase until April 2010 when they decline again. Such results indicate
that the vegetation of the area around the study points reflects soil moisture resulting from
rainfall as it can differentiate according to season. Detailed examination of each point related
to the pipeline repair indicates that NDVI in Points 1 and 2, water leakage ceased just after the
2nd and the 11th date in correspondence: (a) Point 1: -0,72 and 0,17 for days 2 and 3 and (b)
Point 2: 0,60 and 0,09 for days 11 and 12 respectively.

For Point 1, there is a significant change of NDVI value before and after the repair date of the
pipeline. In Point 2, the NDVI value decreased significantly (from 0, 60 to 0, 09) following the
repair of the pipeline.

However, in Point 3 there is no significant change of the NDVI value before and after the repair
date of the pipeline. Although there is a slight decrease in NDVI values immediately following
the repair, there is a significant increase within 2 weeks: Point 3: 0,16; 0,13 and 0,42 for days 7
-9 respectively.

The results indicate that only at Point 2 is there a significant decline of NDVI values as a result
of lack of soil moisture around the pipe. Another factor can be that due to the temporal
difference between the two measurements, of 7 January 2010 and 13 April 2010, respectively,
as lack of rainfall may have resulted in moisture evaporation. The same conclusion is reached
with SAVI data (Figure 23). The value of SAVI in Point 2 was 0,35 in January 2010 and declined
to 0,07 just after the pipeline repair.

Figure 24 presents RVI data which were calculated using equation 7. The RVI index indicates
the effect of soil moisture around Point 2. The RVI value in Point 2, in January 2010 was 4,02
and after the pipeline repair, it decreased to 1,21. It seems that the vegetation developed on
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the soil around Point 2, and subsequently dried after the repair of the water pipe and the
evaporation of the soil water.

In addition, meteorological data provided from the Meteorological Service of Cyprus, indi‐
cate that significant rainfall was recorded on 25, 26 and 27 February 2010, after the pipe line
repair date of Point 2 (18 February, 2010). During March and April of 2010, only 1.0 and 2.1 mm
of rain were recorded for the same location. Such information provides additional validation
that the main factor affecting the NDVI, SAVI and RVI values is the presence or absence of
vegetation as a result of soil moisture before and after the pipeline leakage repair. Regarding
Point 3, in the Anglisides area, September precipitation data did not affect the pipe leakage since
no significant rainfall was recorded before and after the pipeline repair (17 September, 2008).

Points 1,2,3: "Frenaros-Choirokoitia" pipeline
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Figure 24. RVI refl. (calculated with Reflectance values) development during the examined 12 dates (Landsat images)
in Points 1, 2 and 3

6. Discussion and remarks

Remote sensing techniques have been found to be effective both for the detection of the water
pipes and for the detection of water leakages. The preliminary results of this study have shown
that remote sensing techniques are able to detect areas of the pipeline with water leakages.
Ground spectroradiometric data along with the low altitude spectroradiometer system
indicate significant differences in the reflectance values in areas where leakage is observed. In
addition, crop and soil marks can be used for mapping the actual footprint of the water pipe.

Although the use of medium resolution satellite images for monitoring extensive pipelines
may be problematic, such as in Points 1 and 3 in the “Franaros - Choirokoitia” pipeline, this may
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ages) in Points 1, 2 and 3

Based on the graphs of Figure 22, the NDVI values present the following pattern: during May
2007, in all 3 points of the known water leakage, NDVI decreases significantly with values
close to -0.8, when almost in all cases NDVI is above zero with similar values. After September
2008, the NDVI values increase until April 2010 when they decline again. Such results indicate
that the vegetation of the area around the study points reflects soil moisture resulting from
rainfall as it can differentiate according to season. Detailed examination of each point related
to the pipeline repair indicates that NDVI in Points 1 and 2, water leakage ceased just after the
2nd and the 11th date in correspondence: (a) Point 1: -0,72 and 0,17 for days 2 and 3 and (b)
Point 2: 0,60 and 0,09 for days 11 and 12 respectively.

For Point 1, there is a significant change of NDVI value before and after the repair date of the
pipeline. In Point 2, the NDVI value decreased significantly (from 0, 60 to 0, 09) following the
repair of the pipeline.

However, in Point 3 there is no significant change of the NDVI value before and after the repair
date of the pipeline. Although there is a slight decrease in NDVI values immediately following
the repair, there is a significant increase within 2 weeks: Point 3: 0,16; 0,13 and 0,42 for days 7
-9 respectively.

The results indicate that only at Point 2 is there a significant decline of NDVI values as a result
of lack of soil moisture around the pipe. Another factor can be that due to the temporal
difference between the two measurements, of 7 January 2010 and 13 April 2010, respectively,
as lack of rainfall may have resulted in moisture evaporation. The same conclusion is reached
with SAVI data (Figure 23). The value of SAVI in Point 2 was 0,35 in January 2010 and declined
to 0,07 just after the pipeline repair.

Figure 24 presents RVI data which were calculated using equation 7. The RVI index indicates
the effect of soil moisture around Point 2. The RVI value in Point 2, in January 2010 was 4,02
and after the pipeline repair, it decreased to 1,21. It seems that the vegetation developed on
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the soil around Point 2, and subsequently dried after the repair of the water pipe and the
evaporation of the soil water.

In addition, meteorological data provided from the Meteorological Service of Cyprus, indi‐
cate that significant rainfall was recorded on 25, 26 and 27 February 2010, after the pipe line
repair date of Point 2 (18 February, 2010). During March and April of 2010, only 1.0 and 2.1 mm
of rain were recorded for the same location. Such information provides additional validation
that the main factor affecting the NDVI, SAVI and RVI values is the presence or absence of
vegetation as a result of soil moisture before and after the pipeline leakage repair. Regarding
Point 3, in the Anglisides area, September precipitation data did not affect the pipe leakage since
no significant rainfall was recorded before and after the pipeline repair (17 September, 2008).
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6. Discussion and remarks

Remote sensing techniques have been found to be effective both for the detection of the water
pipes and for the detection of water leakages. The preliminary results of this study have shown
that remote sensing techniques are able to detect areas of the pipeline with water leakages.
Ground spectroradiometric data along with the low altitude spectroradiometer system
indicate significant differences in the reflectance values in areas where leakage is observed. In
addition, crop and soil marks can be used for mapping the actual footprint of the water pipe.

Although the use of medium resolution satellite images for monitoring extensive pipelines
may be problematic, such as in Points 1 and 3 in the “Franaros - Choirokoitia” pipeline, this may
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be due to the spatial resolution of the specific satellite images. However, promising results
have been also reported (i.e. Point 2 in the “Franaros - Choirokoitia” pipeline), where a major
leakage was observed.

In addition, remote sensing techniques can be used on a systematic basis to monitor specific
problematic areas of a water network by using time-series satellite images. Future research
will investigate additional ground based geophysical methods to provide a competent system
for monitoring existing water pipe networks, such as electrical resistance tomography and
ground penetrating radar. The resulting data can be integrated into a Geographical Informa‐
tion System which can be used by local authorities.
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1. Introduction

The South Eastern Mediterranean region is an atmospheric cross road where aerosols of
different origins can be observed. Atmospheric pollution due to particulate matter from
natural and anthropogenic sources is a continuing problem in many areas of Cyprus. Partic‐
ulate matter (PM) is a major component of urban air pollution and has a significant effect on
human health. High quality PM monitoring with a fine spatial and temporal resolution may
help decision makers to assess the efficiency of control strategies and also may be useful for
informing the general public about air pollution levels and hazards. The AIRSPACE research
project was established with the main aim of combining remote sensing data (mainly MODIS)
with concurrent in-situ observations (sunphotometric, LIDAR and ground level PM measure‐
ments) for monitoring air pollution in an integrated manner. AIRSPACE aims to develop a
novel methodology based on in-situ experimental observations in order to use satellite
retrieval as a tool for monitoring air particulate pollution. This methodology was applied in
Cyprus with an emphasis on urban areas and, to a lesser extent, industrial regions. Observa‐
tions from passive and active ground-based and satellite techniques for Aerosol Optical
Thickness (AOT) retrieval, in combination with PM10 and PM2.5 concentrations at sites near
different PM sources, have been considered. Several factors, such as aerosol vertical distribu‐
tion, that affect the relationship between PM ground measurements and AOT, were consid‐
ered. Data sets from three types of sites (urban, near urban and rural) were used to develop a
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statistical model for the estimating PM mass concentrations using AOT measured from remote
sensing techniques and meteorological parameters. Furthermore, the ground truth observa‐
tions collected within AIRSPACE project were used to assess qualitative and quantitative
performance of a chemical model forecast of PM concentrations throughout Cyprus.

Midletton et al. (2008) reported that in Nicosia, Cyprus for every 10-μg/m3 increase in PM10

daily average concentrations there was a 0.9% (95%CI: 0.6%, 1.2%) increase in all-cause and
1.2% (95%CI: -0.0%, 2.4%) increase in cardiovascular admissions. A recent study regarding
dust storm events in Nicosia, Cyprus, found a 2.43% (95% CI: 0.53, 4.37) increase in daily
cardiovascular mortality associated with each 10-μg/m3 increase in PM10 concentrations on
dust days in comparison with non-dust days (Neophytou et al., 2013).

2. Background

Air pollution in large cities is one of the major issues to be addressed by local and global
communities due to its widespread presence, and deleterious impact on human life (Hadji‐
mitsis, 2009). As air pollution is a major environmental health risk, by reducing the levels of
air pollutants, countries will reduce the incidence of disease from respiratory infections, heart
disease and lung cancer (WHO, 2011). Actions by policy makers and public authorities at the
national, regional and international levels are required in order to control the exposure to air
pollutants (EEA, Air Quality in Europe, 2012 - Report). Transboundary domestic air pollution
is of high concern among the EU member states. In 2010, about 21% of the EU urban population
was exposed to concentrations of PM10 above the limit value established by the European
Environmental Agency (EEA, Air Quality in Europe, 2012 - Report). The WHO, USEPA (U.S.
Environmental Protection Agency) and EEA have established an extensive body of legislation
which establishes standards and objectives for a number of air pollutants such as PM10 (coarse
particles), PM2.5 (fine particles) and O3 (WHO, Fact sheet No 313, 2011; USEPA, NAAQS, 2012;
EEA, AAS, 2012).
Current research focused on the study of regional and intercontinental transport of air
pollutants, such as particulate matter (PM10, 2.5), points to a need for additional data sources to
monitor air pollution in multiple dimensions, both spatially and temporally. To address this
issue, earth observations from satellite sensors can be a valuable tool for monitoring air
pollution due to their ability to provide complete and synoptic views of large areas.
Although air quality monitoring stations have been established in major cities, there is an
increased need to establish mobile stations for additional coverage, as such stations provide a
means for alerting the public regarding air quality. However, measuring stations are localised
and do not provide sufficient geographic coverage, since air quality is highly variable spatially.
The use of earth observations to monitor air pollution in different geographical areas, espe‐
cially cities, has received considerable attention from researchers (see Wald et al., 1999; Grosso
and Paronis, 2012; Hadjimitsis, 2009; Hadjimitsis et al., 2010; Jones and Christopher, 2007;
Michaelides et al., 2011; Nisantzi et al., 2012; Retalis and Sifakis, 2010; Retalis et al., 2003; Retalis
et al., 1999; Vidot et al., 2007). Several researchers (Chudnovsky et al., 2013; Gupta et al.,
2006; Koelemeijer et al., 2006; van Donkelaar et al., 2010) have focused on the use of satellite
sensors on air pollution studies, especially their ability for systematic monitoring and synoptic
coverage. The use of sunphotometers and LIDAR systems are found to be suitable tools for
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assisting the air pollution monitoring studies (Ansmann et al., 2012; Amiridis et al., 2008; Engel-
Cox et al., 2006; Papayannis et al., 2007a,b; Pitari et al., 2013). This study presents the integrated
use of satellite remote sensing, sunphotometers and LIDAR for monitoring air pollution in
Cyprus.

3. Resources

3.1. CIMEL Sunphotometer

At the main study site in Limassol, the sunphotometer observations were performed by a
CIMEL sun-sky radiometer, which is part of the AERONET Global Network (http://aero‐
net.gsfc.nasa.gov). The CIMEL sunphotometer allows for measurements of direct solar
irradiance and sky radiance at 8 wavelengths; 340, 380, 440, 500, 670, 870, 1020 and 1640 nm.
The technical specifications of the instrument are given in detail by Holben et al. (1998).

Figure 1. CUT-TEPAK AERONET station

The instrument is located on the roof of the building of the Department of Civil Engineering
and Geomatics of Cyprus University of Technology (CUT) (34.675ºN, 33.043ºE elevation: 10
m). The CUT_TEPAK AERONET station is located in the center of Limassol, 500m away from
the sea. The sunphotometric station has been in operation since April 2010. Figure 1 features
the CUT-TEPAK AERONET Cimel sun-photometer.

3.2. MICROTOPS Sunphotometer

At the study sites in Nicosia, Larnaka and Paphos where CIMEL’s data were not available a
handheld MICROTOPS II sunphotometer was used in order to retrieve AOT measurements.
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The sun-photometer is equipped with five accurately aligned optical collimators and internal
baffles to eliminate internal reflections. Microtops II provides AOT and water vapor retrievals
at five channels, which are determined using the Bouguer-Lambert-Beer law. In order to
achieve measurements with great accuracy, the sunphotometer was mounted on a tripod at
the same location each time. To avoid cloud contamination, measurements were taken during
cloud-free daylight hours. Figure 2 shows the MICROTOPS II handheld sunphotometer used.

Figure 2. MICROTOPS II handheld sunphotometer

3.3. CUT LIDAR System

For the vertical distribution of aerosols, the LIDAR system located at CUT, in Limassol, Cyprus
(34.675ºN, 33.043ºE, 10 m above sea level) was used. The LIDAR records daily measurements
between 08:00 UTC and 09:00 UTC (consistent with MODIS overpass) and provides continuous
measurements for the retrieval of the aerosol optical properties over Limassol, Cyprus inside
the Planetary Boundary Layer (PBL) and the lower free troposphere, thus providing informa‐
tion for the load, the size and the sphericity of the aerosols.

The LIDAR transmits laser pulses at 532 and 1064 nm simultaneously and collinear with a
repetition rate of 20 Hz. This system is based on a small, rugged, flashlamp-pumped Nd-YAG
laser with pulse energies around 25 and 56 mJ at 1064 and 532 nm, respectively. An achromatic
beam expander reduces the divergence to less than 0.15 mrad. Elastically backscatter signals
at two wavelengths (532nm, 1064nm) are collected with a Newtonian telescope with primary
mirror diameter of 200 mm and an overall focal length of 1000 mm. The field of view (FOV)
of the telescope is 2 mrad. The mirror and cover plate coatings are optimized for the wavelength
range from 532 nm to 1064 nm. A plain cover plate protects the mirrors. Behind the field stop
two plano-convex with a focal length of 80 mm output parallel rays. The LIDAR covers the
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whole range starting at the full overlap of the LIDAR (~300 m) up to tropopause level. Three
channels are detected, one for the wavelength 1064 nm and two for 532 nm. The two polari‐
zation components at 532nm are separated in the receiver by means of polarizing beamsplitter
cubes (PBC). A special optomechanical design allows the manual ±45°-rotation of the whole
depolarization detector module with respect to the laser polarization for evaluating the
depolarization calibration constant of the system. The CUT depolarization LIDAR operates at
532nm and it is possible to rotate the detection box including the polarization beam-splitter
cube in order to calibrate the instrument (Freudenthaler et al., 2009). Firstly, the backscattered
LIDAR signals (P and S) were recorded using the normal orientation of the LIDAR detection
box. For the next two steps, the LIDAR detection box is rotated by ±45º, and the P and S signals
are recorded. The operation principal of this method is based on the fact that same amount of
energy is sent to P and S channels, at “opposite” directions (Freudenthaler et al., 2009).
Photomultiplier tubes (PMTs) are used as detectors at all wavelengths except for the signals
at 1064 nm (avalanche photodiode, APD). A transient recorder that combines a powerful A/D
converter (12 bit at 20 MHz) with a 250 MHz fast photon counting system (Licel, Berlin) is used
for the detection of 532 nm radiation, while only analog detection is used at 1064nm. The raw
signal spatial resolution is 7.5 meters. The CUT LIDAR system is featured in Figure 3.

Figure 3. CUT’s Depolarization Lidar System
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3.4. Surface monitoring

3.4.1. PM10 concentration monitoring

Two approached were used to monitor near-surface levels of particulate matter. DustTrack
monitors were used at all sites to provide continuous monitoring of PM10. Harvard Impac‐
tors were used to collect 24 hour samples of PM10 and PM2.5 which could be analyzed for mass,
elemental composition, and other physical-chemical properties of the aerosol. The surface
monitoringofparticulatematter(PM)concentrations,TheDustTrack(TSI,Model8533)monitors
were located in each of the four sampling sites and were selected to provide weekly monitor‐
ing of PM10 concentrations during morning hours from 08:00 to 13:00 UTC. It records the PM
temporal variability with satisfactory time resolution. DustTrak's nominal flow rate of 1.7 l/min
is obtained by an internal pump integral to the sampler. The monitor is factory calibrated for the
respirable fraction of standard ISO12103-1, A1 test dust (Arizona Test Dust), which is represen‐
tative of a wide variety of aerosols. It measures concentrations in the range of 0.001– 100 mg/m3,
with a resolution of 0.1% of the reading or 0.001 mg/m3. Before each measurement, the instru‐
ment is zeroed and its flow rate is checked. PM10 concentrations have been recorded continuous‐
ly since March 2011. The instrument is located, on the roof of the Cyprus International Institute
(CII) in Limassol, at 10 m above ground level in order to avoid the measurements being affected
by localized pollution such as passing cars. PM10 concentrations were also recorded by Dust‐
Trak (TSI, Model 8520) at Nicosia, Larnaca and Paphos. One TSI DustTrack has been operated
by Frederick University since July 2011 and is located at the top of the Frederick University
librarybuildinginNicosia,at10mabovegroundlevel.ThesecondDustTrackhasbeenoperated
by CUT’s scientific team during 15-day campaigns at Larnaca and Paphos. All sampling points
were selected to ensure exposure to wind and to be free of other obstacles. Figure 4 features the
TSI Dust Trak. Harvard Impactors were operated each third day at the primary sampling site
in Limassol and every sixth day at the other sampling sites.

Figure 4. TSI DUST-Track

3.4.2. PM10 sampling and elemental composition determinations

Under the AIRSPACE project, the Harvard School of Public Health (HSPH) and Cyprus
International Institute for Environmental and Public Health (CII) were responsible for
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providing comprehensive and reliable data on the air pollution throughout Cyprus based on
ground level measurements.

Air pollution near ground level measurement sites were established in the four cities of Cyprus:
Nicosia, Larnaca, Limassol and Paphos. These sites were located at positions thought to be
representative of air pollution in each city. In Nicosia, the site is located on the roof of the
Frederick University library building, on the same site where the DustTrak and sunphotometer
were operated. The Larnaca site is located in the center of the city, on the roof of the tax agency
building. The Limassol site is located on the roof of the CII building in the center of the city
and Paphos site is on the roof of the economics department of Paphos Municipality. In Figure
5 the setup of the Harvard samplers is presented.

Figure 5. Harvard Samplers

3.4.3. Satellite observations

The Moderate Resolution Imaging Spectro-Radiometer (MODIS) observations from the
TERRA and AQUA satellites both measuring spectral radiance in 36 channels (412–14200 nm),
in with resolutions between 250 m and 1 km (at nadir) were used to provide a climatology for
Cyprus. In polar orbit, approximately 700 km above the Earth, MODIS views a swath of
approximately 2300 km resulting in near daily global coverage of Earth’s land/ocean/atmos‐
phere system. The swath is broken into 5-min ‘‘granules’’, each approximately 2,030 km long.
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providing comprehensive and reliable data on the air pollution throughout Cyprus based on
ground level measurements.

Air pollution near ground level measurement sites were established in the four cities of Cyprus:
Nicosia, Larnaca, Limassol and Paphos. These sites were located at positions thought to be
representative of air pollution in each city. In Nicosia, the site is located on the roof of the
Frederick University library building, on the same site where the DustTrak and sunphotometer
were operated. The Larnaca site is located in the center of the city, on the roof of the tax agency
building. The Limassol site is located on the roof of the CII building in the center of the city
and Paphos site is on the roof of the economics department of Paphos Municipality. In Figure
5 the setup of the Harvard samplers is presented.
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Aerosol products are reported at 10 km resolution (at nadir). Details of file specification of
MODIS L2 aerosol products can be found at the website http://modis.gsfc.nasa.gov/.

Figure 6. MODIS image for Eastern Mediterranean region

4. Methodology, study area and data

4.1. Method

The overall methodology is described below (see Fig. 7):

1. Satellite data products from the MODIS sensor: Aerosol optical thickness (AOT) and
aerosol size/type data were collected for the years 2002-2012 over Cyprus.
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2. Vertical profile of the aerosol backscatter: A light detection and ranging (LIDAR) system
was established in Limassol in April 2010, consisting of a laser capable of measuring
aerosol backscatter and aerosol depolarization ratio in the atmosphere as a function of
height. This allows the AOT, and hence the scaling to aerosol concentration, to be
quantified below the boundary layer since this fraction best represents the PM measure‐
ments in a well-mixed boundary layer.

3. Integrated aerosol optical thickness for the entire atmospheric column: A sunphotom‐
eter station was installed in the centre of Limassol (at the CUT premises), where pollution
from both industrial and urban sources exist. This further assists in the calibration and
verification of satellite derived AOT data. Moreover, two hand-held sunphotometers were
used to measure urban, industrial and dust pollution.

4. Measurements of particulate matter (PM) concentration levels: Ground level PM was
monitored using two methods. Continuous measurements of PM10 were taken using
portable monitors (DustTrack model 8533). These continuous measurements were
supplemented with measurements of PM10 and PM2.5 taken using Harvard Impactors. The
material collected by the Harvard Impactor was analyzed for chemical composition.

5. Meteorological data from the entire area of Cyprus: Relative humidity measurements
combined with the AOT fraction below the boundary layers, derived by the LIDAR, were
incorporated into the statistical PM-AOT models, for improving the PM concentration
estimation. Classification of the synoptic situations in Cyprus was also taken into account.

6. Simulation results from dispersion/air pollution model: A modeling system that
incorporates a fully interactive coupling between the chemistry-aerosol and meteorology
(radiation and cloud-physics) portions of the model was created, allowing real-time
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2. Vertical profile of the aerosol backscatter: A light detection and ranging (LIDAR) system
was established in Limassol in April 2010, consisting of a laser capable of measuring
aerosol backscatter and aerosol depolarization ratio in the atmosphere as a function of
height. This allows the AOT, and hence the scaling to aerosol concentration, to be
quantified below the boundary layer since this fraction best represents the PM measure‐
ments in a well-mixed boundary layer.
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simultaneous prediction of air quality (in terms of PM aerosol mass) and weather for 72
hours. The model forecasts have been statistically evaluated against surface observations.

4.1.1. Study areas in Cyprus and general characteristics

An overview of the available instrumentations at the selected sites is given in Figure 8.

Figure 8. Overview of the available instrumentations at the selected sites within AIRSPACE project. Limassol was the
main site (LIDAR, AERONET, PM), Nicosia validation site (MicrotopsII, PM); 15-day campaigns were conducted at Larna-
ca and Paphos.

Meteorological conditions: Cyprus is characterized by a subtropical - Mediterranean climate
with very mild winters (mainly in the coastal areas) and hot summers. Snowfall occurs mainly
in the Troodos Mountains in the centre of the island. Rain occurs mostly during the winter
period, with summer being generally dry. Temperature and rainfall are both correlated with
altitude and, to a lesser extent, distance from the coast. The prevailing weather conditions on
the island are hot, dry summers (from mid-May to mid-September) and rainy, rather change‐
able winters (from November to mid-March). These are separated by short autumn and spring
seasons.

During the summer period (a season of high temperatures with almost cloudless skies), the
island is often under the influence of a shallow trough of low pressure extending from the
great continental depression centred over Western Asia. During winter, Cyprus is mainly
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affected by frequent small depressions traversing the Mediterranean Sea from west to east
between the continental anticyclone of Eurasia and the generally low pressure belt of North
Africa. These depressions result in disturbed weather usually lasting no more than a few days
and producing most of the annual precipitation (the average rainfall from December to
February is typically about 60% of the average annual total precipitation). Relative humidity
averages between 60% and 80% during the winter period and between 40% and 60% during
the summer period. Fog is infrequent and visibility is generally very good. Sunshine is
abundant all year round, particularly from April to September when the average duration of
bright sunshine exceeds 11 hours per day. Winds are generally light to moderate with high
variability when it comes to direction. Gales are infrequent over Cyprus and are mainly
confined to exposed coastal areas as well as areas at high elevation.

Aerosol sources: Two main types of air pollutant sources can be identified: anthropogenic and
natural. Notable natural sources include dust from inland wind erosion, transboundary
sources and sea salt. Cyprus’ arid climate results in large portions of surface area having very
low index of vegetative cover. This, combined with very low levels of moisture for a substantial
part of the year, results in the overall vulnerability to wind erosion. Furthermore, Cyprus
presents a high ratio of shoreline when compared to surface area, with maximum distances
inland from the shore being in the order of 30-40 km and three of the four urban centres located
on the coast. Therefore, sea salt can have a significant effect on the concentrations of particu‐
lates in the majority of the island’s area. Finally, the transportation of dust from the surround‐
ing eastern Mediterranean and African areas (most notably from northern Africa) significantly
affects air quality (Nisantzi et al, 2012).

Local anthropogenic sources also contribute to PM concentrations on the island. The main
anthropogenic PM sources include traffic (both highways and inner city traffic), industrial
zones, urban agglomerations, agriculture, mines and quarries and localized emissions from a
series of activities such as power stations and cement factories.

4.2. The dataset

4.2.1. Ground based measurements

For the purposes of the project, Limassol was selected as the main ground based site for the
development and the application of the AIRSPACE methodology. The main instrumentation
used for the aerosol observation in a daily basis was a backscatter-depolarization LIDAR
system for the study of the vertical aerosol distribution as well as the sunphotometer for the
columnar aerosol information, both located at the premises of CUT, in Limassol (see Figure
9) (34.675ºN, 33.043ºE, 10m above sea level), since 2010. The LIDAR records daily measure‐
ments between 08:00 UTC and 09:00 UTC (consistent with the MODIS overpass) and performs
continuous measurements for the retrieval of the aerosol optical properties such as depolari‐
zation ratio and backscatter coefficient over Limassol, inside the Planetary Boundary Layer
(PBL) and the lower free troposphere. Additionally, the AERONET sun-photometer provides
daily aerosol information including AOT and aerosol size distribution.
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development and the application of the AIRSPACE methodology. The main instrumentation
used for the aerosol observation in a daily basis was a backscatter-depolarization LIDAR
system for the study of the vertical aerosol distribution as well as the sunphotometer for the
columnar aerosol information, both located at the premises of CUT, in Limassol (see Figure
9) (34.675ºN, 33.043ºE, 10m above sea level), since 2010. The LIDAR records daily measure‐
ments between 08:00 UTC and 09:00 UTC (consistent with the MODIS overpass) and performs
continuous measurements for the retrieval of the aerosol optical properties such as depolari‐
zation ratio and backscatter coefficient over Limassol, inside the Planetary Boundary Layer
(PBL) and the lower free troposphere. Additionally, the AERONET sun-photometer provides
daily aerosol information including AOT and aerosol size distribution.
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Figure 9. Satellite image of Limassol

For the purposes of the AIRSPACE project, Nicosia was selected as a validation site (in addition
to the Limassol main site), for ground based measurements of PM10 and AOT. Two locations
in Nicosia were used as test sites: Strovolos municipality building (N35.144°, 33.343° E) during
the period September 2011 to December 2011 and Pallouriotissa Frederick University Research
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Centre building (N35.181°, 33.379° E) during the period February 2012 to June 2012 and the
period October 2012 to January 2012. The Strovolos area is mainly commercial with heavy
traffic at peak hours while the Pallouriotissa site is residential.

For both sites, a TSI Dust Trak model 8520 was used for measuring the mass concentration of
particulate matter of diameter less than 10 micrometers (PM10). The Dust Trak is a light
scattering laser photometer which determines PM10 concentrations by measuring the amount
of scattering light, which is proportional to the volume concentration of aerosols, in order to
determine the mass concentration of aerosols (Nisantzi et al., 2012). The Dust Track features
an integrated pump, internal memory and data-logger for automatic storage of measured
values at programmable intervals. The device was programmed to begin PM10 recordings
every morning at 08:00 UTC for a 5-hour period to coincide with the satellite MODIS TERRA
and AQUA overpass except at weekends.

Adjacent to the Dust Trak, a Microtops II model 540 sunphotometer was set up to measure the
AOT. This is a 5-channel hand-held sunphotometer which measures and stores data at 5
different wavelengths. In addition to the Dust Track and the sunphotometer which were set
up originally at the Strovolos site and then moved to the Pallouriotissa site, the Harvard
Impactors were operated at the Pallouriotissa site only (next to the other two devices) for
chemical analysis of PM10, PM2.5, EC-OC and nitrate concentrations.

The in-situ data were collected in conjunction with satellite data (MODIS) to validate a novel
statistical model developed within AIRSPACE using AOT retrievals to estimate air particulate
pollution.

For Larnaka, two sets of measurements took place: one using the Dust Track along with the
Sun photometer for a period of three weeks in August of 2011 (8th-26th) on a site at the centre
of Larnaka city (34.916° N, 33.630° E), for the first set of measurements: PM10 recordings every
morning at 08:00 UTC for a 5-hour period and subsequent measurements using the MICRO‐
TOPS sun photometer at 08:00 UTC and at 11:00 UTC to coincide with the MODIS TERRA and
AQUA overpasses. A second set of measurements was provided by the Harvard Impactor
situated on top of the tax agency building (34.919° N, 33.631° E) in Larnaka. This station
provided measurements of PM10, PM2.5, EC-OC (elemental & organic carbon) and nitrate
concentrations.

For air pollution ground level measurements, the Harvard Impactor stations were established
by HSPH and CII: Limassol, Nicosia, Larnaca and Paphos. The sampling commenced on 12
January 2012 and ended on 12 January 2013. Samples were collected every six days, on 24-hr
basis from 08:00 to 08:00 next day (UTC), at all sites except Limassol, where the sample
collection was done every three days. Samples were collected for PM2.5, PM10, EC-OC and
nitrates using the Harvard Impactors. For quality assurance and control, collocated and blank
samples were collected for each sample at the Limassol site, according to a predetermined
schedule. Standard Operating Procedure (SOP) was followed for each measurement at each
site. Filters were collected and sent to HSPH for chemical analysis. The parameters measured
included fine particles (PM2.5): mass, reflectance, nitrate, trace elements and EC-OC; and
inhalable particle (PM10): mass, reflectance and trace elements. Chemical analysis included
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Thermal Optical Transmitance (TOT) to measure EC-OC particle concentration, gravimetric
mass determination and X-Ray fluorescence to determine trace elemental composition of
PM2.5 and PM10. Samples up to 19 June 2012 have been completely analyzed. The remaining
samples have undergone chemical process for analysis.

5. Results

As described previously, Limassol was the main site for the development of the AIRSPACE
methodology for the estimation of the PM levels. The ground based data were used to validate
the satellite data. Complementary to the Limassol site, Nicosia’s and Larnaca's site observa‐
tions were used to validate the performance of the models. In this section, the major results
from the AIRSPACE project are analysed in some detail.

5.1. Dataset validation

In the AIRSPACE project, both ground based and satellite observations were used to provide
aerosol related information for South Eastern Mediterranean region. The first goal of the
AIRSPACE project was the validation of the satellite observations in Cyprus, an area affected
by aerosol from a variety of sources and surrounded by sea. The ground based observations
performed over Limassol and Nicosia were used as the main sites for the validation of the
satellite observations.

To incorporate both the spatial and temporal variability of aerosol distribution, the MODIS
retrievals at 10 km x 10 km resolution and the AERONET direct Sun measurements at 15-
minute intervals (Holben et al., 1998) need to be co-located in space and time.

The AERONET data provide the ground truth for the MODIS validation. The global CUT-
TEPAK ground-based AERONET sunphotometer measures aerosol optical thickness in eight
channels (340 to 1640 nm). The instrument takes measurements every 15 minutes. From the
observations taken within ±30 minutes of MODIS overpass time (Ichoku et al., 2002), mean
values  of  the  optical  parameters  were  calculated.  Therefore,  the  maximum  number  of
AERONET observations within the hour of an overpass is 5. Fewer observations within the
hour  indicate  data  have  been  removed  by  the  AERONET  Run-Time  Cloud  Checking
procedure.

The study required at least 2 out of possible 5 AERONET measurements to be within ±30 min
of MODIS overpasses and at least 5 out of possible 25 MODIS retrievals to be within a 25 km
radius centred over the AERONET site. The mean values of the collocated spatial and temporal
ensemble were then used in a linear regression analysis and in calculating RMS errors. The
AERONET level 1.5 data were cloud screened. Though the level 2.0 data provide final
calibration, they are not available for the entire time period of the project. Therefore, the level
1.5 data (instead of level 2.0) were used in the operational MODIS aerosol validation scheme.

A total of 352 points of AERONET site representing the correlated criteria for the MODIS- and
AERONET derived AOT were collected in the period from April 2010 to December 2012.

Remote Sensing of Environment: Integrated Approaches194

Figure 10 features the correlation of the MODIS AQUA and TERRA sensors and CUT_TEPAK
AERONET measurements. The slope of linear regression in the correlation plot between
MODIS and AERONET provides an overview of possible differences. The correlation coeffi‐
cient value of the order of 0.62 for both TERRA and AQUA satellites is due to the coast line of
the Limassol site. Limassol’s CUT-TEPAK AERONET site is a coastal area, thus the surface
inhomogeneity or sub-pixel water contamination has a larger effect than anticipated in
continental coastal regions (Nisantzi et al., 2012). The systematic biases overestimations in
MODIS retrievals are mainly due to aerosol model assumptions (deviation of 0–20%) andin‐
strument calibration (2–5%).
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Figure 10. Comparisons of MODIS and AERONET derived at 0.50 nm wavelength, encompassing 352 points from CUT-
TEPAK AERONET coastal site. The solid line represents the slopes of linear regression both for AQUA and TERRA
MODIS sensors

Using the MICROTOPS II AOT, the procedure was duplicated for the validation of the satellite
observations in Nicosia. The number of collocated and synchronized ground based and
satellite measurements were statistically low in order to provide correlation factor which can
represent a reliable validation study.
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5.2. Satellite climatology

In the present work, the Level 2, 10x10km, MOD04 aerosol products (Collection 051) were
retrieved for the years 2001 to 2011 from NASA's Level 1 and Atmosphere Archive and
Distribution System (LAADS). The AOT fields were extracted from the 'Opti‐
cal_Depth_Land_And_Ocean' parameter which provides the AOT at 550nm derived via the
dark-target algorithms and with best quality data (Remer et al., 2005). According to Remer et
al. (2009), the AOT fields for this product have been respectively validated to within the error
bounds of (0.04+0.05AOT) and ±(0.05+0.15AOT) at 550nm.

Based on the above AOT data, subsets for the area of Cyprus were extracted and mean monthly
climatology maps were constructed for the period 2001-2011. For the area considered, the
number of days with valid TERRA AOT measurements ranged approximately from 1000 to
2300 (which amount to 25%-57% time coverage), as shown in Figure 11. The highest number
of valid measurements was observed over the central area of Cyprus (in the vicinity of Troodos
Mountain), whereas near the coastline, this number decreased.

Figure 11. Number of valid TERA AOT observations for the period 2001-2011

The maps for each month are presented in Figure 12. The seasonal cycle of the aerosol load is
well depicted. Minima are observed during winter months and maxima during spring and
summer when intense phenomena associated with dust transport from Sahara desert are more
frequent. The respective monthly average values for the three urban sites of Nicosia, Larnaca,
and Limassol (marked as LE, LA and LM, respectively, on the maps) and the background site
of Agia Marina, (marked as AM) have been calculated. In general, the background site is
characterised by lower aerosol loads (ranging from 0.1 to 0.28) than those observed at the urban
sites. Limassol (the main port city) presents the highest values for the period January-May and
Nicosia (the capital city) from June to December. For this latter period, Larnaca presents
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intermediate values. The two distinct maxima associated with dust transport phenomena are
observed at all sites in May and August. The value for the first peak in May is approximately
the same for all urban sites (~0.40) but for August, the levels for Nicosia are higher (~0.45)
compared to the other two urban sites (~0.35 for Larnaca and Limassol).

Figure 12. Average monthly AOT. (LE, LA, LM, and AM mark the sites of Nicosia, Larnaca, Limassol and Ag. Marina)

5.3. PM surface analysis

One element of the AIRSPACE program in Cyprus was the measurement of ground level PM
concentrations by Harvard Impactors.
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Statistics for the Limassol site show that for the first six months of observations the mean value
for PM10 is 32.1 μg/m3, for PM2.5 13.4 μg/m3 and for total carbon 2.3 μg/m3 with standard
deviations of 20.9, 4.6 and 1.1 μg/m3, respectively.

PM10 and PM2.5 were analysed, for trace elements such as sulfur, magnesium, aluminum,
sodium, silicon, chlorine, potassium and calcium. Statistics for some of those trace elements
for PM2.5 are shown below, in Table 1.

Mean (μg/m3) SD (μg/m3) Median (μg/m3)

Sodium 0.27 0.15 0.23

Magnesium 0.06 0.08 0.05

Aluminum 0.16 0.29 0.07

Silicon 0.29 0.55 0.13

Sulfur 1.29 0.73 0.99

Chlorine 0.07 0.17 0.02

Potassium 0.11 0.06 0.10

Calcium 0.20 0.37 0.12

Table 1. Trace elements statistics for the first 6 months sampling, for PM2.5

Figure 13 and 14 indicate the 6 month time series of the PM2.5 and PM10 concentrations, as well
as the elemental, organic and total carbon levels from the Limassol filters.

Analysis of these initial samples revealed evidence of a dust storm event recorded on 12 March
2012, with PM10 and PM2.5 concentrations reaching up to 156.6 μg/m3 and 29.4 μg/m3, respec‐
tively. These values are several times higher than the typical values shown during the sampling
period and well above the 24-hour limit value set by EEA, especially for PM10.

PM10 and PM2.5 concentrations show a small increase from the start of the sampling (Janu‐
ary 2012) until June 2012, indicating a temporal relationship.

5.4. Statistical model

Based on the data collected a statistical model was established for estimation of PM concen‐
trations from AOT measurements. Using a general linear regression model, the AOT retrieved
by MODIS was used to predict ground-level PM10 concentrations in Limassol, Cyprus.

The proposed model by Liu et al. (2007) is given in equation 1:

Ln(PM10) =

β0 + β1(logAOT ) + β2(logAE) + β3(WVdep) + β4(ln(T )) + β5(ln(RH )) + β6(ln(WS )) + β7(Wd ) + β8(P) + β9(PBL )
(1)
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Figure 13. Time series of PM10 and PM2.5 at the Limassol site for the first 6 months’ samples

Figure 14. Time series of organic (OC), elemental (EC), and total carbon (TC) at the Limassol site for the first 6 months’
samples.
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Figure 13. Time series of PM10 and PM2.5 at the Limassol site for the first 6 months’ samples

Figure 14. Time series of organic (OC), elemental (EC), and total carbon (TC) at the Limassol site for the first 6 months’
samples.
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Where βi are the regression coefficients, AOT is the Aerosol Optical Thickness, AE is the
Ångström Exponent, WV is the Water Vapour, T is the surface temperature, WS is the wind
speed, Wd the wind direction, P is the pressure at surface level and PBL is the Planetary
boundary layer height.

The available data set in AIRSPACE project are given in Table 3:

Parameters Instrument

Aerosol Optical Depth CIMEL

Angstrom Exponent CIMEL

Total Column Water Vapour CIMEL

PM 10 Dust Track TSI

PBL height LIDAR

Meteorological Data METAR-LCRA

(Akrotiri Air Base, Cyprus)

Table 2. AIRSPACE dataset used for the statistical model

Based on the proposed methodology, the performance of the multi-regression model was
examined by introducing one predictor (Xi) at a time, together with the initial predictor, the
AOT at 500nm (Xi i=0). For each predictor Xi, four transformations (j) were considered

# transformation Type of parameter involved

1 Ln(Xi)

2 Xi

3 Departures from mean value of Xi

4 Ratio of mean value of Xi

Table 3.

From the above options (j=1 to 4), the one with the highest correlation coefficient (CCij) between
predicted and measured PM10 was selected. In each iteration step k, the maximum values of
the CCij = CCik were compared, in order to select the predictor Xik with the highest positive
impact. Due to the limited dataset, no evident seasonal dependence was noted (Cook and
Sanford, 1982).
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Where βi are the regression coefficients, AOT is the Aerosol Optical Thickness, AE is the
Ångström Exponent, WV is the Water Vapour, T is the surface temperature, WS is the wind
speed, Wd the wind direction, P is the pressure at surface level and PBL is the Planetary
boundary layer height.
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Finally, using formula 2 as the best model and the coefficients derived and shown in Table 4,
the relationship between the model’s prediction and the measured PM10 concentrations, is
shown in Figure 16. The residuals, i.e, the differences between the measured and the predicted
values of the PM concentration are shown in Figure 17. The points in the residual plot in Figure
17 are randomly dispersed around the horizontal axis, thus, a linear regression model is
appropriate.

Figure 16. Comparison between predicted and measured PM10 by TSI DUST Track at Limassol (Red line : linear fit )

Figure 17. Differences between the measured and the predicted value of the PM concentration (Residual plots)

Remote Sensing of Environment: Integrated Approaches202

5.5. Chemical model

Within AIRSPACE project, a high resolution atmospheric Chemistry General Circulation
Model (AC-GCM) was used to study the emission, transport and deposition of dust. The
Modular Earth Sub-model System (MESSy version 2.41) (Joeckel et al., 2005; 2006; 2010) is an
earth system model which is capable of running with multiple representations of processes
simultaneously paired to the core atmospheric general circulation model (ECHAM5). The
model configuration used in the present study has a spectral resolution of T255L31 (0.5°, 50km)
and 31 vertical levels up to 10 hPa. Gleser et al. (2012) emphasized the importance of higher
resolution simulations for better dust representation in the model. As this is a global model,
no boundary conditions are necessary. All known emission sources are included, while the
initial conditions originate from the ERA40 reanalysis data (European Centre for Medium-
Range Weather Forecasts - ECMWF) at 0.5-degree resolution. Every 12 hours of operation, the
model fields are moved towards the ERA40 data in order to simulate the meteorological
conditions, as precised as possible. In order to reduce computational time, the model uses a
simplified chemistry module, preserving only the sulfate and NOx interactions which are
considered the most important as far as the aerosols are considered. The model output is
averaged and stored over 5-hour intervals, which provides an entire diurnal cycle after 5 days.
The configuration includes also a simplified sulphate chemistry scheme (Gleser et al., 2012)
allowing the production of sulphuric acid and particulate sulphate, which play an important
role in transforming dust particles from hydrophobic into hydrophilic, thus affecting their
ability to interact with clouds and be removed by precipitation (Astitha et al., 2012). The
ammonia (NH3) reaction with sulphate and corresponding coating with dust (Ginoux et al.,
2012) is also considered in this study. Due to the focus on dust episodes, a reduced version of
the atmospheric chemistry scheme was applied which did not account for secondary inorganic
and organic aerosol species associated with air pollution. The model used ECMWF gridded
meteorological data to represent the actual meteorological conditions. To ensure adequate
representation of the pollutants and dust in the atmosphere, the model runs for 15 days (spin-
off) to create from the meteorology and the emissions the current weather conditions. This
strategy ensures that the existing pollutants not represented in the model are removed from
the atmosphere, while the sources will produce pollutants that will be dispersed in the
atmosphere. After the initial spin-off, the atmospheric conditions represented from the model
fields and the pollutant concentrations are considered as close to reality as possible. The model
simulation was performed over the period of September to October 2011.

The most significant issue for the operational run of a numerical model prediction of the dust
is the complete absence of initial conditions for pollutant and dust concentrations. This
enforces the utilization of global models to simulate the atmosphere with extremely accurate
emission inventories which are absent or not complete for North Africa and Eastern Mediter‐
ranean. The latter is an important source of uncertainty for concentrations. Furthermore, the
sparse coverage of measurements for the spatial validation of the model in the region does not
provide a clear picture for the evaluation assessment of the model.

The use of a global model necessitated the utilization of a large grid due to computational
limitations. The global grid introduced an adequate representation of the topography of the
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models and requires special parameterization of processes that often lead to errors. Another
restriction is the simplified chemistry used for the simulation. The computational power
necessary for the implementation of a full chemistry scheme is not currently available.

The model results were evaluated using the AOT fields provided by the NASA AERONET
available from http://aeronet.gsfc.nasa.gov. The data comparison represents the AOT for all
aerosols simulated in the model as well as those observed in the atmosphere at 550nm
wavelength. The observed AOT was averaged over the 5-hour output intervals in line with
the averaged AOT over the same period from the model. Figure 18 shows the eight AERONET
stations which observational data were available during the simulation period and which were
used in this study. These stations are not necessarily located in dust-dominated regions but
can be more strongly affected by other aerosol types, including air pollution.

The scatter plot between the modeled and observed AOT is shown in Figure 19. Different colors
and symbols are used for each station ID (see legend). As shown, the model is capable of
simulating the AOT in general. However, at some stations (Leipzig, Palencia, Paris) the model
tends to underestimate the observed AOT. This is explained by the use of the reduced
atmospheric chemistry scheme in the model that does not fully account for urban air pollution
in addition to the unresolved physics at small scales in the global models. However, the
comparison of the output of the model for the AOT with the measured values from the
AERONET network indicates that the simulated atmosphere is valid in areas with similar
climatological and industrial characteristics to Cyprus, while for areas with heavy industry,
there is a significant deviation which can be justified from the reduced chemistry module used
for the runs.

Figure 18. AERONET stations used to evaluate the model results
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Figure 19. Scatter plot between modeled and observed AOT for different AERONET stations

Furthermore, model AOT estimations have been compared with the available AOT measure‐
ments from CUT-TEPAK AERONET site. Figure 20 shows the time evolution of the AOT for
the Limassol AERONET station together with the model results. As shown in Figure 20, the
model is generally, in agreement with observations in both magnitude and timing for Limassol
with respect to the average measured values. The comparison between the modeled and
observed AOT indicates the ability of the model to simulate the AOT adequately.

5. Conclusions

An integrated methodology for assessing and studying air pollution in several areas of Cyprus
was presented through the AIRSPACE project. Satellite derived aerosol optical thickness data
along with LIDAR, sun-photometric and in-situ (PM) measurements were analyzed. The
proposed integration of several tools and technologies provides to the user an alternative way
for assessing and monitoring air pollution.

First, a new multiple linear regression model for estimating PM10 using AOT values and some
other auxiliary meteorological atmospheric parameters has been developed for the urban area
of Limassol in Cyprus. AOT can be retrieved by satellite sensors and is validated on the ground
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by using measured values with sunphotometers. Such model can be used for future satellite
acquisitions. The integrated use of several resources and technologies such as satellite image
data, LIDAR measurements, meteorological data and sunphotometric data lead to the
development of new approaches in estimating PM concentrations

Second, an atmospheric chemical simulation model was run for the period September-October
2011. The model results were evaluated using the AOT provided by the NASA AERONET.
AOT estimations have been compared with the available AOT measurements from CUT-
TEPAK AERONET site. It has been found that the modeled and observed AOT values were
in good agreement, except during the periods of peak PM concentrations.
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