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Preface 
 

Today, cancer research is focused on determining how genome and proteome level 
information may be useful as tools in prevention, diagnosis, and prognosis. The 
development of “omics” technologies, such as proteomics and transcriptomics has 
opened new research areas for scientists working on cancer research. This book 
presents the latest advances in cancer genomics and proteomics focused on 
identification of tumoral biomarkers and potential therapeutic targets in the most 
common human neoplasias including glioblastoma, oral squamous cell carcinoma, and 
breast, lung, prostate, and colorectal cancers. In addition, critical reviews of the 
relevant roles of microRNAs, animal models and the application of gene regulatory 
networks to validate potential therapeutic targets in cancer are also included.  

Chapters in “Oncogenomics and Cancer Proteomics - Novel Approaches in 
Biomarkers Discovery and Therapeutic Targets in Cancer” present comprehensive and 
expert perspectives on the most common cancers from bench to bedside applications 
by an international team of experts in the field. This edited collection is subdivided 
into two sections titled: I) Genomic expression profiling in cancer, and II) Proteomic 
expression profiling in cancer. Proteomic technologies based on two-dimensional 
electrophoresis (2DPAGE and 2D-DIGE), or on isotope labeling methods followed by 
mass spectrometry (MS) analysis applied to the identification of differential protein 
expression in cancer are also discussed. This book will contribute greatly to the 
scientific and medical community by providing up-to-date discoveries of 
oncogenomics and their important roles in cancer translational research. It is intended 
for students, scientists, clinicians, oncologists and other health professionals working 
in the field of cancer research. 

 
Dr. César López-Camarillo 

Genomics Sciences Program, Autonomous University of Mexico City,  
Mexico  

 
Dr. Elena Aréchaga-Ocampo  

Cancer Biomedical Research Unit, National Institute of Cancerology,  
Mexico 
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Genomic Expression Profiles: From Molecular 
Signatures to Clinical Oncology Translation 

Norfilza M. Mokhtar, Nor Azian Murad, Then Sue Mian and Rahman Jamal 

Additional information is available at the end of the chapter 

http://dx.doi.org/10.5772/53766 

1. Introduction 

Study related to diseases such as cancer has changed tremendously for a decade. For many 
years, the study was restricted largely to a single gene or a few genes in cancer cells. The 
studies have uncovered the roles of individual genes in the uncontrolled behavior of cancer 
cells. Studying the functional roles of genes in cancer cells has deepened our understanding 
not only the cancer cells as well as normal cells. Since 2003 onwards, the trend of 
publications was focusing on the analysis of thousands of genes with related molecular 
pathways. Steps taken from this analysis is then translated to clinical practice for the 
biological markers for an early detection, monitoring, prognosis of the disease and response 
to therapy. 

The completion of the Human Genome Project in 2003 enabled a new era in biological 
sciences, in particular molecular medicine. The availability of the database of full sequences 
of approximately 3 billion base pairs and approximately 30,000 genes in human DNA will 
lead to a better understanding of physiological and pathophysiological changes in human 
body. Genome-wide expression technology allows the simultenous analysis of thousands of 
genes in a single experiment. The availability of the technology alters the way biological 
experiments can be designed. This has resulted of so called ‘discovery biology’. The large 
amount of data produced by microarray resulted to new and unexpected features of cellular 
functions. 

Since it was first introduced, microarrays are widely used for basic research, the 
development of prognostic tests, target discovery or toxicology researchs. The new form of 
cancer screening utilizes the molecular data generated from microarray studies. We will 
discuss the application of gene profiling data in the clinical screening of cancer. It is 
hopefully will give a broad picture the pipeline required to discover biomarkers of cancer. 

© 2013 Mokhtar et al., licensee InTech. This is a paper distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.
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The chapter is subdivided into a series of sections; each will discuss the scientific evidence 
on the molecular and cellular studies in selected cancers. We will try to critically assess the 
evidence upon which the theory on the cancer was built. The conversion of normal cells into 
cancer cells is a complex process and multistep processes. Scientists for many years tried to 
uncover the causes of cancer and emphasize certain oncogenes, or tumor suppressor genes 
or other groups of genes. Further information on how these findings were translated to the 
clinical settings will be provided. To date, with the massive gene expression profile data 
available to the researchers, there are still major hurdles in validating and reproducing the 
results. We will discuss the major drawbacks associated with the use of molecular 
signatures as the biomarkers or response to treatment. 

2. Molecular signatures in colorectal carcinoma 

Colorectal cancer (CRC) is a type of cancers that develops in the colon or the rectum of the 
human digestive system or gastrointestinal tract (1).Colorectal cancer is the third leading 
cause of death in both men and women in the US with 141,210 new cases and 49,380 death 
expected in 2011 (2). CRC progresses slowly over a period of time usually between 10 to 15 
years (3, 4). The tumor begins with noncancerous polyps where the tissues that form the 
lining of the colon or rectum differentiate into cancerous tissues (5). Approximately, 96% of 
colorectal cancers are adenocarcinomas, which arise from the glandular tissue (6). It can 
grow along the lining of the epithelium into the wall of the colon and rectum and invade the 
digestive system (7). In addition, the cancerous cells can also penetrate into the circulating 
systems, the blood and lymphatic systems which known as metastasis (7). Typically, the 
cancerous cells will first spread into the nearby lymph nodes and subsequently penetrate 
into other organs such as liver, lungs and ovary through blood vessels (8, 9). Colorectal 
cancer can be classified as tumors/nodes/metastasis (TMN) staging and Dukes classification 
(12). The TMN assigns the number based on three categories, T, M and N, which are the 
degree of invasion of the intestinal wall, lymph node involvement and the degree of 
metastasis, respectively (10). The higher number of TNM system indicates the advanced 
stage of colorectal cancer (10).  

Unhealthy lifestyles such as alcohol consumption, high intake of red meat, obesity, smoking 
and lack of physical activities are among the risk factors for CRC (1, 11). Age and gender 
also play significant role in the development of CRC as the risk is higher in male and 
elderly(7). People with inflammatory bowel disease such as ulcerative colitis and Crohn’s 
disease are also at high risk of getting CRC (12). Among the patients with Crohn’s disease, 
approximately, 2%, 8% and 18% of the patients will develop CRC after 10, 20 and 30 years, 
respectively (12). About 20% of patients with ulcerative colitis develop CRC within the first 
10 years (13). Mutations in genes such as KRAS, APC, and MMR are the well-documented 
genetic factor that contributes to colorectal cancer (3, 14, 15). Individual with family history 
of CRC in two or more first degree relatives have 2 or 3-fold greater risk of getting CRC and 
this has accounted for 20% of all cases (7). Examples of CRC involving genetic mutations are 
hereditary nonpolyposis colorectal cancer (HNPCC or Lynch Syndrome), Gardner 
syndrome and Familial adenomatous polyposis (16).  
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Diagnosis of CRC is based on tumor biopsy performed during the sigmoidoscopy or 
colonoscopy (7). CT scan of chest, abdomen and pelvis could be performed to determine the 
metastasis state and in certain cases, PET or MRI may be used to assist in the diagnosis 
(7).Molecular testing for patients with a strong family history can be performed to identify 
mutation, thus initiate early diagnosis and screening in family members. In addition, 
molecular characterization of mutations involved in CRC may help doctors to plan a better 
treatment strategy for the patients. Managing our lifestyles can help us to reduce our risk of 
getting CRC, for example by improving lifestyle through regular exercise, increasing the 
consumption of whole grains, fruits and vegetables and reducing the red meat intake (17). 
The treatments for CRC include surgery, chemotherapy and radiotherapy.  

2.1. Molecular biology of colorectal cancer 

Colorectal cancer is a multistep process that includes accumulation of several genetic and 
epigenetic alterations (18, 19). It is well characterized that the adenoma to carcinoma 
sequence is due to accumulation of the genomic alteration, which is induced by genomic 
instability (4, 20). Genomic instability is an event, which will increase tendency of the 
genome to acquire mutations when several important processes in maintaining and 
replicating the genome are malfunction. It is a hallmark of many human cancers (20). There 
are three well-reported genomic instability pathways that could lead to colorectal cancer, 
which will be discussed in details below.  

a. Chromosomal instability (CIN) 

Chromosomal instability lead to increase rate of losing or gaining chromosomes during 
cell division and accounts for 15% to 20% of sporadic CRC as well as Lynch Syndrome 
(Hereditary Non-Polyposis Colorectal Cancer) (21).There are three mechanisms 
involved in this process that includes structural chromosome instability, the 
chromosome breakage-fusion-bridge (BFB) cycles and numerical instability (22). 
Structural chromosome instability is caused by high incidences of DNA double-strand 
breaks, which may lead to abnormalities in chromosomal segregation during mitosis. 
Chromosomal damage may result in mitotically unstable chromosome, which may 
promote an event known as breakage-fusion-bridge (BFB) (22). An abnormal number of 
centrosome may be caused by abnormal mitotic polarity as well as unequal segregation 
of chromosomes during the anaphase stage (23). CIN promotes cancer progression by 
increasing clonal diversity (21). In the clinical perspective, large meta-analysis has 
shown that CIN is a marker of poor prognosis in colorectal cancer (20).  

b. Microsatelite instability (MIN) 

Microsatellites are repetitive sequences of DNA, which is highly varied between 
individuals (24). The most common microsatellites in human is a dinucleotide repeat of 
CA (25). MIN is a condition, which is manifested by damaged DNA due to defective in 
the DNA repair mechanism. CRC with the presence of MIN have a better prognosis 
compared to CRC with CIN (26). MIN involves the inactivation of the DNA Mismatch 
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Repair (MMR) genes via aberrant methylation or somatic mutation (26). HNPCC or 
Lynch Syndrome is an example of CRC, which is caused by MIN with 15% occurrence 
(27). MIN could cause CRC in 2 mechanisms; 1) mutations in the MMR genes where 
error in the microsatellite repeat replication is unfixed. This leads to the inactivation of 
tumor suppressor genes (TSG), a group of genes which is crucial in maintaining cell 
cycle progression and apoptosis induction (20). Inactivation of these genes may lead to 
tumorigenesis through uncontrolled cell division 2) epigenetic changes that silence the 
MMR genes (20). 

c. CpG Island Methylation and CpG Island Methylator Phenotype (CIMP) 

Hypermethylation of the promoter region of a gene that contains CpG Island (CGI) and 
global DNA hypomethylation are associated with epigenetic instability in colorectal 
cancer (20). CGIs are short sequences rich in the CpG dinucleotides and are observed in 
the 5’ region of almost half of all human genes (28). In-vitro study of BRAF in CRC cell 
lines showed no correlation between BRAF and CIMP (29).  

2.2. Genome Wide Association Study (GWAS) in colorectal cancer 

The completion of Human Genome Project in 2003 and the International HapMap Project in 
2005 have opened up a new era in genetic and phenotype correlation study (30). The 
completion of these two projects has made the Genome wide association study (GWAS) 
possible. GWAS is considered as the most powerful tool to study the association between 
phenotypes and genotypes and also to identify common, low-penetrance susceptibility loci 
in a particular disease. In addition, GWAS can also be employed to investigate gene-
environment interactions and the pooled analyses may also lead to the identification of 
novel modifying genes. Several GWAS studies have been performed in colorectal cancer 
and several loci were identified to be associated with CRC such as 8q24 (128.1-128.7 Mb, 
rs6983267) (31, 32). The C-MYC (MYC) oncogene is located approximately 300 kb from this 
region and is often over-expressed in CRC (33). Validation studies have confirmed that 
rs6983267 loci as the most promising variant in CRC, which has increased the chance of 
getting CRC by approximately 1.2 fold (33, 34). Recent publication has suggested that this 
variant is involved in enhancing the Wnt signaling and MYC regulation, which are known 
pathways in carcinogenesis (35). However, further functional analyses are still needed in 
order to determine the function of this variant. In the Japanese population, this variant leads 
to an increase risk of CRC with an allelic OR=1.22. Even after the adjustment for 
confounders, the OR remains significant (OR = 1.25). In the ARCTIC report, a locus at 9p24 
was identified to be associated with CRC and was confirmed in the Colorectal Cancer 
Family Registry. Several numbers of loci that include 18q21:SMAD7; 15q13.3:CRAC1; 8q23.3: 
E1F3H; 14q22.2:BMP4; 16q22.1: CDH1 and 19q13.1:RHPN2 were also found to be associated 
with CRC. These genes have been shown to be involved in CRC progression. Studies 
conducted in Korean and Japanese patients with CRC have identified a novel susceptible 
locus in SLC22A3, which was significantly associated with distal colon cancer (36). The 
variant, rs7758229, was located on 6q26-q27 with OR=1.28. Three variants, rs7758229, 
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rs6983267 and rs4939827, in SMAD7 together with alcohol consumption may increase the 
risk of CRC by approximately two-fold. Several variants including rs6983267, rs6695584, 
rs11986063, rs3087967, rs2059254 and rs72268855 showed evidence of association with CRC 
in Singaporean Chinese (31). sSNP rs3087967 at 11q23.1 was associated with increased risk 
of CRC in men (OR=1.34) compared to women (OR=1.07). The rs 10318 at locus 15q13 
(GREM1) was also associated with CRC with OD =1.19 (37). 

Almost half of the susceptibility loci in CRC are located nearby the transforming growth 
factor beta gene (TGF-1), which is important in the carcinogenesis (38). An elevated level of 
TGF-1 was linked to tumor progression and recurrence in CRC. Germline mutations in 
components of TGF-1 signaling pathway such as SMAD4 is responsible for the high-
penetrance juvenile polyposis syndrome. Other genes are SMAD4, RHPN2, BMP4, BMP2 
and GREM1.  

2.3. Gene expression profiling in colorectal cancer 

Gene expression profiling was performed to compare between colorectal adenomas and 
CRCs and the result showed that the level of six cancer-related gene sets were increased in 
CRCs compared to adenomas (FDR<0.05). These include genes that involved in 
chromosomal instability, proliferation, differentiation, angiogenesis, stroma activation and 
invasion. Changes in the activity of the chromosomal instability were the most significant 
gene set (FDR=0.004) (39). The key genes that are associated with colorectal adenoma to 
carcinoma progression are AURKA, TPX2 (Chromosomal instability), PLK1 (Proliferation), 
ADRM1 (Differentiation), SSCA1 (Stroma activation), SPARC and PDGFRB (Invasion). The 
expression levels of these genes were significantly higher in CRC compared to adenoma 
(p<1e-5). Overexpression of AURKA induces centrosome amplification, aneupploidy and 
cellular transformation in vitro (40). AURKA interacts with TPX2 and plays a role in 
centrosome maturation and spindle formation (41). The polo-like kinase 1 (PLK1) is 
important in spindle formation and cell cycle progression during the G2 and M phase (42). 

Wu and colleagues showed that the extracellular matrix and metabolic pathways were 
activated and the genes related to cell homeostatsis were downregulated. In this study, they 
compared cancer transcriptome using massive parallel paired-end cDNA sequencing in 3 
different tissues, CRC tissue (stage III), adjacent non-tumor tissue and normal tissue from a 
57 years old female patient. They detected 1660, 1528 and 941 significant differential genes 
(DEGs) between the CRC and adjacent tissue, the CRC and normal tissue; and the adjacent 
and normal tissue respectively. 15-prostaglandin dehydrogenase (15-PGDH) was 
downregulated in cancer compared to normal tisssue, which is common oncogenic event in 
approximately 80% of CRC cases. The transition between adenoma and carcinoma processes 
involved inactivation of TGFBR2, thus progressive inactivation of this gene from cancer-
adjacent and normal tissue was expected. In addition, APC, MYH, CD133, IDH1 and MINT2 
were also dysregulated in CRC. They also identified many genes involved in extracellular 
matrix (ECM) receptor interactions were highly dysregulated in cancer. The findings 
showed that all collagen type proteins were overexpressed up to 1000-fold in cancer tissue. 
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with CRC. These genes have been shown to be involved in CRC progression. Studies 
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locus in SLC22A3, which was significantly associated with distal colon cancer (36). The 
variant, rs7758229, was located on 6q26-q27 with OR=1.28. Three variants, rs7758229, 

 
Genomic Expression Profiles: From Molecular Signatures to Clinical Oncology Translation 7 

rs6983267 and rs4939827, in SMAD7 together with alcohol consumption may increase the 
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of CRC in men (OR=1.34) compared to women (OR=1.07). The rs 10318 at locus 15q13 
(GREM1) was also associated with CRC with OD =1.19 (37). 
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factor beta gene (TGF-1), which is important in the carcinogenesis (38). An elevated level of 
TGF-1 was linked to tumor progression and recurrence in CRC. Germline mutations in 
components of TGF-1 signaling pathway such as SMAD4 is responsible for the high-
penetrance juvenile polyposis syndrome. Other genes are SMAD4, RHPN2, BMP4, BMP2 
and GREM1.  

2.3. Gene expression profiling in colorectal cancer 

Gene expression profiling was performed to compare between colorectal adenomas and 
CRCs and the result showed that the level of six cancer-related gene sets were increased in 
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chromosomal instability, proliferation, differentiation, angiogenesis, stroma activation and 
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expression levels of these genes were significantly higher in CRC compared to adenoma 
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cellular transformation in vitro (40). AURKA interacts with TPX2 and plays a role in 
centrosome maturation and spindle formation (41). The polo-like kinase 1 (PLK1) is 
important in spindle formation and cell cycle progression during the G2 and M phase (42). 

Wu and colleagues showed that the extracellular matrix and metabolic pathways were 
activated and the genes related to cell homeostatsis were downregulated. In this study, they 
compared cancer transcriptome using massive parallel paired-end cDNA sequencing in 3 
different tissues, CRC tissue (stage III), adjacent non-tumor tissue and normal tissue from a 
57 years old female patient. They detected 1660, 1528 and 941 significant differential genes 
(DEGs) between the CRC and adjacent tissue, the CRC and normal tissue; and the adjacent 
and normal tissue respectively. 15-prostaglandin dehydrogenase (15-PGDH) was 
downregulated in cancer compared to normal tisssue, which is common oncogenic event in 
approximately 80% of CRC cases. The transition between adenoma and carcinoma processes 
involved inactivation of TGFBR2, thus progressive inactivation of this gene from cancer-
adjacent and normal tissue was expected. In addition, APC, MYH, CD133, IDH1 and MINT2 
were also dysregulated in CRC. They also identified many genes involved in extracellular 
matrix (ECM) receptor interactions were highly dysregulated in cancer. The findings 
showed that all collagen type proteins were overexpressed up to 1000-fold in cancer tissue. 
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In addition, members of MMP family, which degraded the ECM structures, were also 
induced significantly in tumor. These include MMP1, MMP3, MMP14 and MMP7. Other 
cell-cell adhesion-related molecules for examples laminins (LAMA4, LAMA5, LAMB1, 
LAMB2 and LAMC2) and integrins (ITGA5, ITGB5, ITGA11 and ITGBL1) were elevated in 
cancer tissues. It was suggested that “angiogenesis switch” was activated in tumor tissues 
since vascular endothelial growth factor (VEGF) was found to be upregulated. In conclusion, 
up-regulation of the ECM pathway and the angiogenic growth factors may lead to 
remodelling of the ECM pathways as well as expansion of the new vessel networks, which 
subsequently resulted in CRC progression. Since their results in concordance with previous 
studies that showed the ECM pathway was subjected to intensive epigenetic modification, 
therefore this ECM may be a good candidate as prognostic biomarkers in CRC (43). 

3. Molecular signatures in ovarian cancer 
Ovarian cancer is among the top ten leading cancers among women the United States. In 
this country alone, there are approximately 22,280 new cases and 15,500 estimated death in 
2012 (44). At our local population, approximately 1627 women were diagnosed in 2003 to 
2005 and the figure showed increasing trend in 2007(45).In Japan and Sweeden, the 
incidence of ovarian cancer per 100,000 women is 3.1 cases and 21 cases respectively (Green 
et al., 2012). Due to vague or absence of early signs and symptoms, patients suffer from this 
cancer seek late treatment (46). Therefore, the cancer is normally diagnosed late when the 
disease is not longer confined to the ovary. Based on different morphological characterisitcs 
of the cancer, it is divided into epithelial and nonepithelial types. The epithelial type is 
further subdivided into serous, mucinous, endometrioid and clear cells. On the other hand, 
the nonepithelial is granulosa cells, mixed germ cells tumour, immature teratoma, 
dysgerminoma and teratoma. The risk factor for this cancer is unclear, however the 
European Prospective Investigation into Cancer and Nutrition (EPIC) cohort study has 
recently documented that women who smoke more than 10 cigarettes a day had doubled 
the risk to develop mucinous ovarian cancer (47). This has suggested that the effect of 
smoking differs based on different histological subtypes of ovarian cancer(47). On the other 
hand, a study has shown that long period of breastfeeding seems to have reduced risk of 
ovarian cancer (OR = 0.986, 95% CI 0.978-0.994 per month of breastfeeding) (48).This effect of 
breastfeeding was also varies between histological subtypes as there was no association 
between breastfeeding and borderline serous or mucinous cancer (48). 

Ovarian cancer was initially divided based on molecular pathways involved in the 
development and progression of the subtypes (49). Type I is low-grade serous, low-grade 
endometrioid, mucinous and clear cells. They are believed to arise from benign lesions such 
as ovarian inclusion cyst or endometriotic lesions. These lesions follow the stepwise pattern, 
whereby it evolved from the benign adenoma to borderline and finally to malignant 
tumours (table 1).  

Type II ovarian cancer is high-grade serous, high-grade endometrioid and undifferentiated. 
The common mutations that are found in these subtypes are p53, BRCA1/2, PIK3CA with 
chromosomal instability. They normally involve the peritoneum and grow rapidly.  
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Characteristics of tumour Type I Type II 

Type of tumor Low-grade serous High-grade serous 
 Low-grade endometrioid High-grade endometrioid 
 Mucinous  Undifferentiated 
 Clear cell  
Common mutations and genetic 
modifications 

KRAS 
BRAF 
PTEN 
CTNNB1 
Microsatellite instability 

p53 
BRCA1 
BRCA2 
PIK3CA 
Chromosome instability 

Table 1. Ovarian subtypes based on common mutations and genetic modifications 

In clinical practice, the gyneoncologist still use CA125 as the biomarker to monitor treatment 
of this cancer. However, it is not sensitive and specific to detect the cancer in its early stage 
(46). It is of great demand to find new molecular marker for the ovarian cancer. 

Ovarian cancer is treated by surgery, radiation or platinum-taxane based chemotherapy 
depending on the subtypes and extent of the cancer (50). Patients at stage I and II will 
undergo bilateral salphingo-oophorectomy. While for advanced cases, adjuvant 
chemotherapy combined with surgery is highly recommended. With the latest 
understanding on the mutational types of ovarian cancer, mitogen activated protein kinase 
(MEK) inhibitor such as CI-1040 was used to test the potential therapeutic agent in in vitro 
ovarian cancer cell line (51). This cell lines containing KRAS or BRAF mutations, which are 
known mutations for type I ovarian cancer. The targeted therapy for type II ovarian cancer 
encounters difficulty due to lack of common molecular pathways. In two cohort studies 
involving 16 international centers, women with BRCA1 or BRCA2 mutation were treated 
with two different doses of Olaparib (52). This drug is orally active poly(ADP-ribose) 
polymerase (PARP) inhibitor. The result showed a promising therapeutic indexin ovarian 
cancer patients with mutation of BRCA1 or BRCA2 (52).Based on this study, Olaparib has 
possible as therapeutic agent in type II ovarian cancer. 

3.1. Molecular biology of ovarian cancer 

Ovarian cancer is a heterogenous disease and thus, there is no clear molecular genetics 
involved in the transition of normal ovarian epithelial cells into cancer cells. Approximately 
10 to 15% of ovarian cancer is thought to run in the families (53). It is closely related to 
BRCA1 and BRCA2 mutation (53). It was recently published that suggested screening of 
BRCA1/2 mutation in patients with ovarian cancer prior to chemotherapy treatment (54). 
This is because presence of such mutations may influence the treatment outcomes (54). 
Human DNA repair mismatch genes for example MLH1 and MSH2 accounts for 10% of 
patients with hereditary nonpolyposis colon cancer syndrome (55). Other related genes 
include glutathione S-transferase M1 (GSTM1) is associated with endometrioid or clear cells 
ovarian cancer. 
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recently documented that women who smoke more than 10 cigarettes a day had doubled 
the risk to develop mucinous ovarian cancer (47). This has suggested that the effect of 
smoking differs based on different histological subtypes of ovarian cancer(47). On the other 
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Ovarian cancer was initially divided based on molecular pathways involved in the 
development and progression of the subtypes (49). Type I is low-grade serous, low-grade 
endometrioid, mucinous and clear cells. They are believed to arise from benign lesions such 
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tumours (table 1).  

Type II ovarian cancer is high-grade serous, high-grade endometrioid and undifferentiated. 
The common mutations that are found in these subtypes are p53, BRCA1/2, PIK3CA with 
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Table 1. Ovarian subtypes based on common mutations and genetic modifications 

In clinical practice, the gyneoncologist still use CA125 as the biomarker to monitor treatment 
of this cancer. However, it is not sensitive and specific to detect the cancer in its early stage 
(46). It is of great demand to find new molecular marker for the ovarian cancer. 
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depending on the subtypes and extent of the cancer (50). Patients at stage I and II will 
undergo bilateral salphingo-oophorectomy. While for advanced cases, adjuvant 
chemotherapy combined with surgery is highly recommended. With the latest 
understanding on the mutational types of ovarian cancer, mitogen activated protein kinase 
(MEK) inhibitor such as CI-1040 was used to test the potential therapeutic agent in in vitro 
ovarian cancer cell line (51). This cell lines containing KRAS or BRAF mutations, which are 
known mutations for type I ovarian cancer. The targeted therapy for type II ovarian cancer 
encounters difficulty due to lack of common molecular pathways. In two cohort studies 
involving 16 international centers, women with BRCA1 or BRCA2 mutation were treated 
with two different doses of Olaparib (52). This drug is orally active poly(ADP-ribose) 
polymerase (PARP) inhibitor. The result showed a promising therapeutic indexin ovarian 
cancer patients with mutation of BRCA1 or BRCA2 (52).Based on this study, Olaparib has 
possible as therapeutic agent in type II ovarian cancer. 

3.1. Molecular biology of ovarian cancer 

Ovarian cancer is a heterogenous disease and thus, there is no clear molecular genetics 
involved in the transition of normal ovarian epithelial cells into cancer cells. Approximately 
10 to 15% of ovarian cancer is thought to run in the families (53). It is closely related to 
BRCA1 and BRCA2 mutation (53). It was recently published that suggested screening of 
BRCA1/2 mutation in patients with ovarian cancer prior to chemotherapy treatment (54). 
This is because presence of such mutations may influence the treatment outcomes (54). 
Human DNA repair mismatch genes for example MLH1 and MSH2 accounts for 10% of 
patients with hereditary nonpolyposis colon cancer syndrome (55). Other related genes 
include glutathione S-transferase M1 (GSTM1) is associated with endometrioid or clear cells 
ovarian cancer. 
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Approximately 85% of ovarian cancer is regard as sporadic with no apparent hereditary 
factors. Accumulation of mutagenic genes and deregulation of signaling pathway frequently 
lead to the development of cancer. Different subtypes of ovarian cancer reveal different 
molecular pathways. Coagulation pathway was reported to be disturbed in clear cell 
ovarian carcinoma (56). Genes that stimulate or inhibit coagulation were noted to be 
dysregulated. Angiogenesis and glycolysis are two major activated pathways in clear cell 
ovarian carcinoma (56). Vascular endothelial growth factor (VEGF) and its receptor FLT1 
were upregulated in this type of cancer and involved in angiogenesis. Earlier study by 
Yamaguchi et al 2010, reported molecular pathway related to clear cell ovarian cancer was 
related to hypoxia-inducible factor 1 (HIF1α) (57). HIF1α regulates ADM, which is related to 
angiogenesis. It also regulates genes that are linked to glucose metabolism including 
SLC2A1 in glucose transport and HK1/HK2 and ENO1/ENO2 in glycolysis. Both pathways 
could act as potential therapeutic target based on the small interfering RNA of genes related 
to these pathways combined with antiangiogenic drug, Sunitinib(56). 

3.2. Gene expression profiling in ovarian cancer 

In ovarian cancer study, microarray was used to classify 113 samples from five different 
histopathological subtypes; endometrioid, serous, mucinous, clear cell and mixed type 
according to the gene expression pattern (58). The results showed 95% of all samples were 
clustered within their expected groups. Gene expression profile in this study failed to 
distinguish between high-grade endometrioid and serous ovarian cancer. The result derived 
from the principal component analysis demonstrated the separation of celar cell, mucinous 
and endometrioid with serous ovarian cancer. This can be explained through the origin of 
these types of cancer, which is Mullerian epithelium. In contrast to serous ovarian cancer, 
which most likely arise directly from ovarian surface epithelium (58). Microarray was also 
used to distinguish between various grades of clear cells ovarian cancer from other subtypes 
of ovarian cancer including serous papillary (59). Among genes identified were E-cadherin 
and osteonidogen were detected at high level in clear cells. While discoidin domain receptor 
family member (DDR1), estrogen receptor 1 and cytochrome P450 4B1 were at a low level in 
clear cells ovarian cancer compared to other ovarian cancers (59). 

A separate microarray study was done on 285 of various grades of endometrioid and serous 
ovarian cancer samples that were analysed together with low-grade serous and 
endometroid ovarian cancer (60). The result showed high-grade serous subtype was related 
to overexpression of Wnt/βcatenin and cadherin pathway genes including N-cadherin and 
P-cadherin but low E-cadherin protein expression. This finding demonstrated the high-
grade serous ovarian cancer contained messenchymal expression pattern. Also it has 
suggested there is epithelium-mesenchymal transition in this subtype of ovarian cancer. 
High expression of genes related to proliferation and extracellular matrix-related genes such 
as COL4A5, COL9A1 and CLDN6. Immune cell markers such as CD45, PTPRC and 
lymphocyte markers, CD2, CD3D and CD8A were expressed low in the high-grade serous 
subtype (60).  
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Gene expression profiling was also performed to detect genes that were differentially 
expressed in primary ovarian cells as compared to the neighboring metastatic tissue 
omentum (61). Among significant genes include hepsin (HPN), which is related to epithelial 
cells. Using immunohistochemistry technique, HPN protein was localised in epithelial cells, 
suggestive that it can be a marker of epithelia cells and not cancer (61). In advanced stage of 
ovarian cancer, predictive markers were suggested to be different. For example EZH2, 
PTTN and Lamin-B, were positively detected in primary as well as metastatic omental 
tissue. MGB2 is another biomarker that significantly overexpressed in primary as well as 
ovarian metastatic tissue. To characterize two different cancers; breast and ovarian cancers 
that involve serosal cavities, gene expression profiling was carried out (62). About 288 
differentially expressed genes with at least 3.5-fold up-regulated in breast and 
ovarian/peritoneal serous cancers (62). These groups of genes may potentially used to 
distinguish both cancers for better therapeutic intervention. 

Microarray of the nonepithelial ovarian cancer or type II ovarian cancer is still limited. 
Despite its rare incidence of this subtype of ovarian cancer, we have performed microarray 
assay on the formalin-fixed paraffin embedded tissues (63). About 804 differentially 
expressed genes with at least 2-fold change (P<0.005) (63). Among the significant genes were 
EEF1A2 and E2F2; which were up-regulated in nonepithelial ovarian cancer as compared to 
the normal ovarian cells. EEF1A2 may act as oncogene and play an important role in the 
progression of cancer (64). E2F2 plays a role in cell cycle and positive immunostaining in all 
subtypes of nonepithelial ovarian cancer may suggest its role as an oncogene (63).  

4. Molecular signatures in endometrial cancer  

Cancer of endometrium is cancer arises from the inner lining of the uterus. The cancer 
appears in multiple histologic subtypes as a result of műllerian differentiation. They are 
divided into two broad groups that include endometrioid and non-endometrioid (65). The 
recent surgical staging of endometrial cancer is based on the International Federation of 
Gynecology and Obstetrics in 2008 (66). Endometrial cancer is divided into two types based 
on the underlying pathogical findings and clinical observations. There are endometrioid 
(type I) and nonendometrioid carcinoma (type II). The former is the commonest type (85% 
of total cancer) with history of estrogen exposure with underlying endometrial hyperplasia 
(67).Also the cancer cells expressed estrogen and progesterone receptor and typically of low 
histopathological grade (68). The majority of patients are relatively young with good 
prognosis. While the second type is less common and it is not related to estrogen. It presents 
with high histopathological grade with poor prognosis. The cancer has an underlying 
atrophic endometrium (69). Apart from this classification, there are still cancers that do not 
fit into these two categories, in particular endometrioid carcinoma with high 
histopathological grade (67). 

Endometrial cancer is the most common malignancy of gynecological tract in the United 
States (44). The incidence is relatively high compared with Southeast countries such as 
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Gene expression profiling was also performed to detect genes that were differentially 
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Malaysia where the cancer affects approximately 3.3% of women between the year 2003 to 
2005 (70) and the figure increases to 4.6% in 2007 (45) . Among the main races in Malaysia, 
Chinese has the highest age-standardized incidence rate with 4.5 per 100,000 population, 
followed by Indians and Malays (45). Failure to control overweight problem, manage 
chronic anovulation and increased usage of estrogen, are most likely the reason for 
continued high incidence for this cancer. 

Risk factors associated with endometrioid endometrial cancer include old age, 
unoppossed exposure of estrogen as in estrogen replacement therapy, nulliparity and 
obesity. Also it is seen in diseases associated with high estrogen level, such as polycystic 
ovarian syndrome and estrogen-secreting ovarian cancer (71). Presence of estrogen 
increases the proliferative activity of endometrial cells, therefore causing higher chance to 
cause coding errors and somatic mutations (72). For nonendometrioid type, the risk 
factors are slightly different, which include additional history of primary cancers such as 
breast, colorectal and ovarian cancer (73). Combined oral contraceptives can interruptwith 
the menstrual cycle seems to have good benefits in reducing the risk of endometrial 
cancer (74). The current treatment for the disease is a combination of surgery with or 
without an adjuvant chemotherapy consisting of intravenous cisplatin, doxorubicin and 
cyclophosphamide (75). Diagnosis of this cancer is based on the clinical symptoms with 
underlying risk factors for endometrial cancer. Postmenopausal women under 50 years 
old presented with vaginal bleeding were reported to be free from endometrial cancer 
(76). This was based on the initial screening using transvaginal ultrasound scanning and 
endometrial biopsy procedure. The patients were follow-up between one to five years 
(76). 

4.1. Molecular basis of endometrial cancer 

Endometrial cancer can be divided based on its molecular change. Type 1 or endometrioid 
endometrial cancer was documented to have PTEN mutation(67).However, a recentcase 
control study investigating on the single nucleotide polymorphism in several cancer-
related genes include PTEN, PIK3CA, AKT1, MLH1 and MSH2 failed to show any 
association with endometrial cancer (77).Approximately 20 to 40% of this type displayed 
mircosatellite instability or β-catenin mutations. Additionally, K-ras mutations occur in 15 
to 30% of this cancer. Mutations in p53 and E-cadherin were detected in about 10 to 20% 
of cases and the lowest percentage of genetic alteration is in p16 inactivation. The genetic 
pattern in type II or nonendometrioid endometrial cancer is slightly different from the 
endometrioid type. This small percentage tumour comes from mesenchymal cells.The 
majority of this cancer (80 to 90%) has p53 mutations or E-cadherin alterations (78, 79). 
The type of cancer rarely contains mircosatellite instability, β-catenin or K-ras mutations 
(67).Sporadic endometrial cancer with positive microsatellite instability (MIN) was not 
associated with somatic mutations of mismatch repair genes such as MSH2 and MLH1 
(80). Poor association was also observed between positive MIN with mutations in genes 
with coding region microsatellites repeats (80). 
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Genetic alterations Endometrioid or type I Nonendometrioid or type II 

Microsatellite instability 20 - 40% 0 – 5% 
K-ras mutations 15 - 30% 0 – 5% 
p53 mutations  10 – 20% 90% 
PTEN inactivation 35 – 50% 10% 
β-catenin mutations 25 – 40 % 0 – 5% 
p16 inactivations 10% 40% 
E-cadherin alterations 10 – 20% 80 – 90% 

Table 2. Molecular changes in both subtypes of endometrial cancer (67) 

4.2. Molecular carcinogenesis of endometrial cancer 

Endometrial cancer cells has the ability to proliferate without control or able to spread 
throughout the body following multistep processes. 

 
Figure 1. Figure 1: A model of endometrial cancer development. The genetic alterations at the early 
stage are different from the late stage of endometrial cancer (72). 

4.3. Gene expression profiling in endometrial cancer 

Earlier studies on the microarray in endometrial cancer tried to discriminate between 
different histologic types of endometrial cancer using the genomic expression profiling (81). 
The study analysed 119 endometrial cancer consisted of endometrioid, papillary serous, 
mixed mullerian tumor and normal cells. The result showed 151 genes that were 
significantly expressed with at least 2-fold change among endometrioid as compared to 
papillary serous cancer (P<0.001). Among the genes detected were BUB1, CCNB2 and Myc) 
(81). Comparing between mixed mullerian tumors and endometrioid revealed 1,132 genes 
that were significantly different with at least 2-fold change (81). High expression of IGF2 
(somatomedin A) was reported in mixed mullerian tumor as compared to endometrioid and 
papillary serous tumour (81). Our local data showed low expression of IGF2 in 
endometrioid endometrial cancer compared with normal endometrium (82). Low expression 
of IGF2 was corresponds to an early stage of endometrial cancer (83). All reported results 
from these expression profiling studies have concluded that different histologic types of 
endometrial cancer displayed different expression profiles. 
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The use of microarray when combined with laser capture microdissection (LCM) tissues has 
presented reliable results (84). However, the decision whether to use the LCM technique is 
still relied on the ratio of stromal cells to the surrounding cancer cells. Pathways that are 
closely related to endometrial cancer were identified after isolation of microdissected 
cancerous cells was used (82). Among the significant pathways comprise of Wnt-β catenin, 
insulin action, cell cycle and NOTCH and B-cell pathways (82). The malignant potential of 
endometrial cancer cells was studied to identify gene signatures of vascular invasion (85). 
Total of 18-gene signatures were differentially expressed with at least fold change of 2. 
Among the genes were IL8, MMP3, COL8A1 and ANGPTL4, which were closely related to 
invasiveness, vascular biology and matrix remodelling (85). Microarray was also used to 
discrimate between different genetic backgrounds. As an example, molecular profiling was 
used to differentiate between self-described African-American with self-described 
Caucasian women (86). The result failed to differentiate the racial group using molecular 
background. This was probably due to limited sample size to represent the whole 
population. 

5. Molecular signatures in breast cancer 

Breast cancer is the most frequent cancer in women in most parts of the world (87). 
Approximately 1.1 million of women in the world were diagnosed with breast cancer every 
year and 410,100 died from the disease. Breast cancer can be divided into two main types; 
ductal carcinoma and lobularcarcinoma (88). The most common type is ductal carcinoma, 
which starts in the tubes or ducts that move milk from the breast to the nipple. Lobular 
carcinoma originates from lobules in the breast that produce milk. Breast cancer could 
become invasive where the cancerous cells may acquire the properties to escape from its 
primary sites into other tissues in the breast. Noninvasive or also known as ‘in situ’ indicates 
that the cancerous cells have not yet invaded other tissues within the breast. There are 
several grading systems used to classify breast cancer, which include histopathology, grade, 
stage and receptor status (89). Breast cancer staging uses TNM system, which is based on the 
size, the spreading and metastatic properties of the tumor to the other organs. There are 3 
receptors on the surface as well as in the cytoplasm and nucleus of the breast cancer cells 
(90). The receptors are estrogen receptor (ER), progesteron receptor (PR) and HER2 receptor 
(90). Immunohistochemistry technique may be employed to differentiate whether the tumor 
has positive or negative ER, PR and HER2 receptors (90).  

Risk factors of getting breast cancer in women include age and gender. The risk of getting 
breast cancer is increased in elderly (88). Women are 100 times more likely to get breast 
cancer compared to men. Genetic factors may also play a role in the development of breast 
cancer, although it is estimated that only 5-6% of breast cancer are hereditary (91). 
Mutations in the BRCA1 and BRCA2 genes account for 80% of hereditary breast cancer (92). 
Patient’s positive for BRCA1 and/or BRCA2 may have 50% to 80% lifetime risk of 
developing breast cancer and 15% to 65% risk of developing ovarian cancer (92, 93). Other 
risk factors are high-fat-diet, alcohol intake, environmental factors such as tobacco smoking 
and radiation (94).  
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The diagnosis of breast cancer is based on the microscopic analysis of breast biopsy, 
mammography and clinical breast exam (95). However, if the test is inconclusive, then Fine 
Needle Aspiration and Cytology (FNAC) may be used (96).Stage 1 breast cancer is treated 
with lumpectomy to remove a small part in the breast and usually have high prognosis. 
Stage 2 and 3 cancers are treated with lumpectomy or mastectomy, chemotherapy and 
radiation and usually have poor prognosis and high risk of recurrence. Stage 4 has poor 
prognosis and is treated by various combination of all treatments. Drugs used to treat breast 
cancer include hormone-blocking therapy for ER+ patients (tamoxifen, aromatase 
inhibitors), chemotherapy (cyclophosphamide and doxorubicin) and monoclonal antibodies 
(trastuzumab) for HER2+ breast patients (97).  

5.1. Genome wide association study (GWAS) in breast cancer 

A single nucleotide polymorphism (rs2046210, A/G allele) at 6q25.1 was identified in 
Chinese women. In a pooled analysis study performed in the East Asian, European, and 
African ancestries, this variant was also found to be associated with breast cancer risk in 
Chinese women (OR=1.3), Japanese women (OR=1.31), European (OR=1.07), and American 
women (OR=1.18) (98). However, there was no association observed in African American 
women (OR=0.81). This variant was found to be associated with increased breast cancer risk 
in all Chinese in Tianjin, Nanjing, Taiwan and Hong Kong. This was also in agreement with 
three studies conducted in Japanese women (Nagoya, MEC and Nagano) as well as studies 
performed in European women (NBHS, CBCS and LIBCSP). A putative functional variant, 
rs6913578 was identified at 1,440 downstream of rs2046210, which was associated with 
breast cancer risk in Chinese (r2=0.91) and European ancestry (r2=0.83), but not in Africans 
(r2=0.57). Genes located at rs2046210 are PLEKHG1, MTHFD1L, AKAP12, ZBTB2, RMND1, 
C6Orf211, C6orf97, ESR1, C6orf98, SYNE1 and NANOGP11. In vitro functional analysis on 
rs6913578 altered luciferase reporter activity hence may influence the DNA binding protein 
interactions, which subsequently lead to alteration of their neighboring genes expression. 
Electrophoretic mobility shift assay confirmed that the C allele of rs6913578 alter the DNA-
nuclear protein interaction and could modify the expression of neighboring genes.  

There was an association between an increased breast cancer risk with rs9397435 at the 
6q25.1 locus in European, Chinese and African populations. This variant was located at 
2,854 bp downstream of rs2046210 and 1,414 downstream of rs6913578. However, this 
variant was weakly correlated with rs2046210 in Europeans (r2=0.087) and African (r2=0.039) 
(99). Turnbull and colleagues conducted a GWAS in 3,659 European ancestry cases and 
4,897 controls. They found that SNP rs3757318, which was located at 200kb upstream of 
ESR1 and 34,253bp of upstream of rs2046210 has the most significant association with breast 
cancer risk (OR=1.21). It was strongly correlated with rs2046210 in Chinese populations 
(r2=0.48) but weakly correlated in Europeans (r2=0.181) (100). 

In Ashkenazi Jews population, Gold and colleagues performed three phases of GWAS in 249 
familial breast cancer cases and 299 controls. In the first phase, they compared the allele 
frequencies of 150,080 SNPs in 249 high-risk, BRCA1-BRCA2 mutation-negative AJ familial 
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cases with control cases. In phase II, 343 SNPs were genotyped from 123 regions, which were 
most significantly associated with breast cancer including 4 SNPs in FGFR2 region in other sets 
of 950 consecutive breast cancer cases. Major associations were replicated in third independent 
set of 243 breast cancer cases and 187 controls. The results showed a significant association at 
rs1078806 in the FGFR2 region of chromosome 6q22.33 with OD=1.26 for all cases combined. 
Candidate genes in this locus such as ECHDC1 and RNF146, which encode for mitochondrial 
fatty acid oxidation and ubiquitin protein ligase were among the known pathways in the 
pathogenesis of breast cancer (101). It is well known that results reported from GWAS could 
not be applied across all ethnicities. This is not surprising since most all variants are tagging 
SNPs, therefore they exist differently in the genetic make-up of different ethnic groups. Hence, 
it is important to determine the SNPs in breast cancer or any particular diseases in different 
populations to identify the risk of developing the disease in an individual.  

5.2. Gene expression profiling in breast cancer 

A research done to study bimodal gene expression profiles in breast cancer using 5 studies 
that used different microarray platforms including cDNA arrays, Affymetrix and Agilent 
(102). Bimodality is a conditional expression property of a particular gene and is associated 
with certain physiological conditions such as disease state and normal. They found 866 
bimodal genes shared across all platforms. These genes were enriched in breast cancer-
associated genes and involved in pathways related to carcinogenesis for example: ERBB2, 
ESR1, CEACAM5 and AR. They also examined the close neighbor group and the analysis 
showed that 15 out of 23 bimodal genes were known and have been reported as breast 
cancer associated genes. These include TCAP, PSMD3, GRB7 and CXCL10 (PMC2822536). 

Microarray was also used to classify the differential gene expression in ER+ve and ER-ve 
breast cancer patients. A study showed that 67 genes were overexpressed in ER+ve tumors 
while 17 were overexpressed in ER-ve breast cancer. ADCY1, ACOT4 AR, ATP2A3, DNAJA4 
were examples of genes that overexpressed in ER+ve breast cancer. An example of genes 
that were overexpressed in ER –ve were ACN9, EGFR, LYN and MALL (103). 

Gene expression profiling of tumor-associated stroma in breast cancer showed large changes 
during cancer progression (104). In this study, laser capture microdissection was used to 
dissect the normal epithelium, stroma, tumor epithelium and tumor-associated stroma 
samples followed by microarray and gene ontology analyses. Tumor-associated stroma 
undergoes massive changes in the expression profile of genes composed of the extracellular 
matrix, matrix metalloproteases and cell cycle-related protein. An increased in the 
mitochondrial ribosomal proteins and decreased in cytoplasmic ribosomal proteins were 
also observed in both, the tumor epithelium and stroma. The changes in expression profiles 
of the tumor-associated stroma were somewhat similar to tumor epithelium, which 
indicated that the tumorigenesis occured even before the tumor cells invaded into the 
stroma.  

Gene expression profiling using whole genome oligonucleotide microarrays to catalog 
molecular variation in 52 widely used breast cancer cell lines. The cell lines were divided 
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into different categories including luminal with ER positive, basal and ER-ve, which 
subdivided into basal A (established at UT Southwestern including 2 BRCA1 mutant lines) 
and basal B (non-tumorigenic lines and several highly invasive cell lines). They identified 80 
loci of high level of amplification in 35 different cell lines. These include increased 
expression of known oncogenes involved in breast cancer, for example MYC (8q24), CCND1 
(11q13) and ERBB2 (17q12). Gain or losses resulting in increased or decreased expression of 
oncogenes or tumor supressor genes, which subsequently led to breast cancer. Using DR-
Correlate, 3,511 genes were differentially expressed and correlated significantly with altered 
gene copy number (FDR<0.05). In total, 487 genes were resided in loci of high-amplitude 
CNA including known breast cancer genes such as EGFR, FGFR1, ERBB2, PPMID and 
ZNF217. In addition, several genes involved in oncogenesis such as cell proliferation, 
survival, migration/invasion, ER-signaling, maintenance of genome integrity were also 
upregulated in cancer cell lines. These include E1F3H, CDC6, GAB2 (cell proliferation), 
MCL1, APIP, MAP3K3 (survival), ADAM9, CDD4 (migration/invasion), MUC1, NCOA3 (ER-
signaling), RAD21, RAD9A and RAD51C (maintanence of genome integrity) (105). 

Gene expression profiling study was carried out on peripheral blood cells for an early 
detection of breast cancer in 121 females referred for mammography. Genome Survey 
Microarrays v2.0 that contains 32,878 probes representing 29,098 genes was used to 
determine the differentially expressed genes in breast cancer compared to normal. Genes 
that expressed higher in blood of breast cancer patients were EEF1G, RPL14, RPLL15 
(translation), ATP5E, ETF1, ATP6V0B (cellular biosynthetic process), TIRAP, DEFA3 and 
ANXA1 (response to external stimulus). Several genes involved in cellular lipid metabolic 
process, steroid metabolic process, catecholamine metabolic process and phenole metabolic 
processes were downregulated in breast cancer compared to normal control. These include 
HDC, PEMT, HEXA, ACAT and SULT1A4 (106).  

6. From lab to bedside: FDA approval 

Advances in genomic research resulting in new molecular tools that serves as prognostic 
and predictive markers in cancer treatment. Particularly in breast cancer, surgeons know 
that early detection is one of the keys to successful treatment. If breast cancer is caught early, 
the tumor can be surgically removed and with an appropriate treatment, most patients can 
recover. However, within 5 to 10 years, 30% increase number of patients with early stage 
breast cancer develops metastases. The identification of patients with high risk of distant 
recurrence is essential for systematic adjuvant therapy to be most effective. At the same 
time, adjuvant therapies such as chemotherapy and hormonal therapy (e.g. Tamoxifen or 
aromatase inhibitors) may reduce the risk of distant metastases by approximately one-third 
for some patients. It is estimated that more than 70% of patients receiving such therapy may 
have survived without it –and may have safely avoided the harmful side effects (107-109).  

Commercially available multigene molecular tests such as Oncotype DX® (Genomic Health, 
USA) and MammaPrint® (Agendia, Netherlands) have revolutionized the predictive and 
prognostic tools in clinic. Using the patients’ own genetic expression patterns, it can provide 
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cases with control cases. In phase II, 343 SNPs were genotyped from 123 regions, which were 
most significantly associated with breast cancer including 4 SNPs in FGFR2 region in other sets 
of 950 consecutive breast cancer cases. Major associations were replicated in third independent 
set of 243 breast cancer cases and 187 controls. The results showed a significant association at 
rs1078806 in the FGFR2 region of chromosome 6q22.33 with OD=1.26 for all cases combined. 
Candidate genes in this locus such as ECHDC1 and RNF146, which encode for mitochondrial 
fatty acid oxidation and ubiquitin protein ligase were among the known pathways in the 
pathogenesis of breast cancer (101). It is well known that results reported from GWAS could 
not be applied across all ethnicities. This is not surprising since most all variants are tagging 
SNPs, therefore they exist differently in the genetic make-up of different ethnic groups. Hence, 
it is important to determine the SNPs in breast cancer or any particular diseases in different 
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A research done to study bimodal gene expression profiles in breast cancer using 5 studies 
that used different microarray platforms including cDNA arrays, Affymetrix and Agilent 
(102). Bimodality is a conditional expression property of a particular gene and is associated 
with certain physiological conditions such as disease state and normal. They found 866 
bimodal genes shared across all platforms. These genes were enriched in breast cancer-
associated genes and involved in pathways related to carcinogenesis for example: ERBB2, 
ESR1, CEACAM5 and AR. They also examined the close neighbor group and the analysis 
showed that 15 out of 23 bimodal genes were known and have been reported as breast 
cancer associated genes. These include TCAP, PSMD3, GRB7 and CXCL10 (PMC2822536). 

Microarray was also used to classify the differential gene expression in ER+ve and ER-ve 
breast cancer patients. A study showed that 67 genes were overexpressed in ER+ve tumors 
while 17 were overexpressed in ER-ve breast cancer. ADCY1, ACOT4 AR, ATP2A3, DNAJA4 
were examples of genes that overexpressed in ER+ve breast cancer. An example of genes 
that were overexpressed in ER –ve were ACN9, EGFR, LYN and MALL (103). 

Gene expression profiling of tumor-associated stroma in breast cancer showed large changes 
during cancer progression (104). In this study, laser capture microdissection was used to 
dissect the normal epithelium, stroma, tumor epithelium and tumor-associated stroma 
samples followed by microarray and gene ontology analyses. Tumor-associated stroma 
undergoes massive changes in the expression profile of genes composed of the extracellular 
matrix, matrix metalloproteases and cell cycle-related protein. An increased in the 
mitochondrial ribosomal proteins and decreased in cytoplasmic ribosomal proteins were 
also observed in both, the tumor epithelium and stroma. The changes in expression profiles 
of the tumor-associated stroma were somewhat similar to tumor epithelium, which 
indicated that the tumorigenesis occured even before the tumor cells invaded into the 
stroma.  

Gene expression profiling using whole genome oligonucleotide microarrays to catalog 
molecular variation in 52 widely used breast cancer cell lines. The cell lines were divided 
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into different categories including luminal with ER positive, basal and ER-ve, which 
subdivided into basal A (established at UT Southwestern including 2 BRCA1 mutant lines) 
and basal B (non-tumorigenic lines and several highly invasive cell lines). They identified 80 
loci of high level of amplification in 35 different cell lines. These include increased 
expression of known oncogenes involved in breast cancer, for example MYC (8q24), CCND1 
(11q13) and ERBB2 (17q12). Gain or losses resulting in increased or decreased expression of 
oncogenes or tumor supressor genes, which subsequently led to breast cancer. Using DR-
Correlate, 3,511 genes were differentially expressed and correlated significantly with altered 
gene copy number (FDR<0.05). In total, 487 genes were resided in loci of high-amplitude 
CNA including known breast cancer genes such as EGFR, FGFR1, ERBB2, PPMID and 
ZNF217. In addition, several genes involved in oncogenesis such as cell proliferation, 
survival, migration/invasion, ER-signaling, maintenance of genome integrity were also 
upregulated in cancer cell lines. These include E1F3H, CDC6, GAB2 (cell proliferation), 
MCL1, APIP, MAP3K3 (survival), ADAM9, CDD4 (migration/invasion), MUC1, NCOA3 (ER-
signaling), RAD21, RAD9A and RAD51C (maintanence of genome integrity) (105). 

Gene expression profiling study was carried out on peripheral blood cells for an early 
detection of breast cancer in 121 females referred for mammography. Genome Survey 
Microarrays v2.0 that contains 32,878 probes representing 29,098 genes was used to 
determine the differentially expressed genes in breast cancer compared to normal. Genes 
that expressed higher in blood of breast cancer patients were EEF1G, RPL14, RPLL15 
(translation), ATP5E, ETF1, ATP6V0B (cellular biosynthetic process), TIRAP, DEFA3 and 
ANXA1 (response to external stimulus). Several genes involved in cellular lipid metabolic 
process, steroid metabolic process, catecholamine metabolic process and phenole metabolic 
processes were downregulated in breast cancer compared to normal control. These include 
HDC, PEMT, HEXA, ACAT and SULT1A4 (106).  

6. From lab to bedside: FDA approval 

Advances in genomic research resulting in new molecular tools that serves as prognostic 
and predictive markers in cancer treatment. Particularly in breast cancer, surgeons know 
that early detection is one of the keys to successful treatment. If breast cancer is caught early, 
the tumor can be surgically removed and with an appropriate treatment, most patients can 
recover. However, within 5 to 10 years, 30% increase number of patients with early stage 
breast cancer develops metastases. The identification of patients with high risk of distant 
recurrence is essential for systematic adjuvant therapy to be most effective. At the same 
time, adjuvant therapies such as chemotherapy and hormonal therapy (e.g. Tamoxifen or 
aromatase inhibitors) may reduce the risk of distant metastases by approximately one-third 
for some patients. It is estimated that more than 70% of patients receiving such therapy may 
have survived without it –and may have safely avoided the harmful side effects (107-109).  

Commercially available multigene molecular tests such as Oncotype DX® (Genomic Health, 
USA) and MammaPrint® (Agendia, Netherlands) have revolutionized the predictive and 
prognostic tools in clinic. Using the patients’ own genetic expression patterns, it can provide 
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clinicians with more information on the treatment outcomes of using chemotherapy, 
endocrine therapy or combination therapies by stratifying the risk of recurrence for patients. 
Oncotype DX® and MammaPrint® provide clinical judgment as opposed to laboratory 
results that requireinterpretation by a clinician. Moreover, the algorithm used to reach this 
judgment is proprietary and thus inaccessible to the clinician. Therefore the arrival of the 
first generation of multigene molecular test involved a need for a paradigm shift in the 
configurations of persons and tools that marry genomic techniques to market, legal, and 
regulatory strategies in ways that reframe conceptions of risk, diagnosis, prognosis, therapy, 
discovery, utility, and validity. In addition, regulatory bodies need to handle these new 
advances without sacrificing patient’s safety. These first generation multigene molecular 
tests are considered the first regulatory-scientific hybrid products (110).  

The Oncotype DX® is a multigene panel which has been clinically validated to predict the 
risk of recurrence for those women with early stage (I, II, IIIa) invasive breast cancer that are 
estrogen-receptor positive (ER+), human epidermal growth factor receptor negative (Her2-), 
lymph node negative or positive, and predict who may or may not significantly benefit from 
adjuvant chemotherapy. While MammaPrint® analyzes 70 genes from an early-stage breast 
cancer tissue sample to determine if the cancer has a low or high risk of recurrence within 10 
years after diagnosis. They claimed to be the first and only FDA-cleared IVDMIA breast 
cancer recurrence assay in their official website, http://www.agendia.com/pages/ 
mammaprint/21.php (110). The researchers at the Netherlands Cancer Institute (NKI) who 
discovered it, established a company to commercialize it as a test (111). Oncotype DXbegan 
as a commercial platform; the company (Genomics Health) that produced it did not discover 
a signature but rather constructed it by asking users at every step what clinical question 
they wanted the signature to answer and what data would be credible in that regard. The 
test has been designed to minimally disrupt existing clinical workflows (110, 112). 
MammaPrint requires a change in pathologists’ and clinicians’ routines in terms of specimen 
storage. MammaPrint requires specimen to be stored in RNARetain®, a proprietary RNA 
storage liquid instead of the standard FFPE block. Breast cancer classification was based on 
genomic signature instead of histopathology diagnosis as well as clinical judgement on the 
decision for chemotherapy treatment (113). Thus, while these two trials signify a new 
departure for clinical cancer trials on a number of levels – they both incorporate new models 
of interaction between biotech companies and public research. They also aim to establish the 
clinical relevance of genomic markers and also embody a different socio-technical direction. 
One attempts to accommodate established routines, while the other openly challenges 
prevailing evidential hierarchies and existing biomedical configurations (110).  

The legal statute of the USA gives the US Food and Drug Administration (FDA) the power 
to regulate drugs and devices, with the multigene molecular tests fall under the less 
rigorous medical devices statute. The FDA has traditionally exercised ‘enforcement 
discretion’ by leaving the actual performance of ‘in-house’ tests to be regulated by a 
different mechanism defined by the Clinical Laboratory Improvement Amendments (CLIA). 
It is a set of federal regulatory standards that falls under the authority of the Centers for 
Medicare and Medicaid Services (114). The intention was to ensure the reliability and 
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accuracy of clinical laboratory testing. FDA regulators have suggested the development of 
translational medicine tests such as Oncotype DXand MammaPrint might constitute an 
entirely new regulatory category. In 2006 and 2007, the FDA published two versions of ‘Draft 
Guidance’, signaling the Agency’s inclination to step in and take direct responsibility for the 
novel test category. In 2007, MammaPrint was submitted to the FDA and successfully obtained 
FDA clearance after only 30 days. An ‘FDA cleared’ button promptly appeared on all 
commercial MammaPrint material (http://www.agendia.com/pages/mammaprint/ 21.php). 
Given the non-binding nature of the FDA draft guidance, Genomic Health chose not to pursue 
this regulatory route. Instead they try to gain ‘official’ recognition from the clinicians via 
inclusion in the clinical practice guidelines of professional oncology organizations. The 
company viewed the pursuit of FDA clearance as much more costly and time-consuming than 
simply lobbying professional organizations of clinicians – many of whom the founders already 
knew through their previous works at Genentech (110). The American Society of Clinical 
Oncology (ASCO) included Oncotype in its 2007 guidelines and the US National 
Comprehensive Cancer Network (NCCN) followed suit in its 2008 guidelines.  

6.1. Study design of the multigenes panel 

In cancer epidemiology, both retrospective case – control studies and prospective cohort 
studies are observational, rather than experimental, studies. Neither type of study involves 
random assignment of exposure hence; observed associations between exposures and 
disease do not provide as strong a basis for claims of causality as in experimental studies. 
The most serious limitation of epidemiological studies is their non-experimental nature, not 
whether they are retrospective or prospective. In therapeutics, many retrospective analyses 
are also non-experimental, with treatment selection based on patient factors and referral 
pattern rather than on randomization. Such studies are also often conducted without a 
written protocol and are unfocused, with numerous patient subsets and endpoints 
compared without control for the overall chance of a false-positive conclusion. In contrast, 
prospective randomized clinical trials contain internal control of treatment assignment, 
careful and proscribed data collection (including outcomes and endpoints), and a focused 
analysis plan that is developed before the data are examined (112). 

Many biomarker studies are conducted with convenience samples of specimens, which just 
happen to be available and are assayed for the marker. They have not prospectively 
determined subject eligibility, power calculations, marker cut-point specification, or 
analytical plans. Such studies are more likely resulting in highly biased conclusions and 
truly deserved to be pejoratively labeled as “retrospective.” However, if a “retrospective” 
study is designed to use archived specimens from a previously conducted prospective trial, 
and if certain conditions are prospectively delineated in a written protocol before the marker 
study is performed, it might be considered as a “prospective – retrospective” study. Such a 
study should carry considerably more weight toward determination of clinical utility of the 
marker than a simple study of convenience, in which specimens and assays were happened 
to be available. Multiple studies of different candidate biomarkers based on archived tissues 
from the same prospective trial would present a greater opportunity for false-positive 
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clinicians with more information on the treatment outcomes of using chemotherapy, 
endocrine therapy or combination therapies by stratifying the risk of recurrence for patients. 
Oncotype DX® and MammaPrint® provide clinical judgment as opposed to laboratory 
results that requireinterpretation by a clinician. Moreover, the algorithm used to reach this 
judgment is proprietary and thus inaccessible to the clinician. Therefore the arrival of the 
first generation of multigene molecular test involved a need for a paradigm shift in the 
configurations of persons and tools that marry genomic techniques to market, legal, and 
regulatory strategies in ways that reframe conceptions of risk, diagnosis, prognosis, therapy, 
discovery, utility, and validity. In addition, regulatory bodies need to handle these new 
advances without sacrificing patient’s safety. These first generation multigene molecular 
tests are considered the first regulatory-scientific hybrid products (110).  

The Oncotype DX® is a multigene panel which has been clinically validated to predict the 
risk of recurrence for those women with early stage (I, II, IIIa) invasive breast cancer that are 
estrogen-receptor positive (ER+), human epidermal growth factor receptor negative (Her2-), 
lymph node negative or positive, and predict who may or may not significantly benefit from 
adjuvant chemotherapy. While MammaPrint® analyzes 70 genes from an early-stage breast 
cancer tissue sample to determine if the cancer has a low or high risk of recurrence within 10 
years after diagnosis. They claimed to be the first and only FDA-cleared IVDMIA breast 
cancer recurrence assay in their official website, http://www.agendia.com/pages/ 
mammaprint/21.php (110). The researchers at the Netherlands Cancer Institute (NKI) who 
discovered it, established a company to commercialize it as a test (111). Oncotype DXbegan 
as a commercial platform; the company (Genomics Health) that produced it did not discover 
a signature but rather constructed it by asking users at every step what clinical question 
they wanted the signature to answer and what data would be credible in that regard. The 
test has been designed to minimally disrupt existing clinical workflows (110, 112). 
MammaPrint requires a change in pathologists’ and clinicians’ routines in terms of specimen 
storage. MammaPrint requires specimen to be stored in RNARetain®, a proprietary RNA 
storage liquid instead of the standard FFPE block. Breast cancer classification was based on 
genomic signature instead of histopathology diagnosis as well as clinical judgement on the 
decision for chemotherapy treatment (113). Thus, while these two trials signify a new 
departure for clinical cancer trials on a number of levels – they both incorporate new models 
of interaction between biotech companies and public research. They also aim to establish the 
clinical relevance of genomic markers and also embody a different socio-technical direction. 
One attempts to accommodate established routines, while the other openly challenges 
prevailing evidential hierarchies and existing biomedical configurations (110).  

The legal statute of the USA gives the US Food and Drug Administration (FDA) the power 
to regulate drugs and devices, with the multigene molecular tests fall under the less 
rigorous medical devices statute. The FDA has traditionally exercised ‘enforcement 
discretion’ by leaving the actual performance of ‘in-house’ tests to be regulated by a 
different mechanism defined by the Clinical Laboratory Improvement Amendments (CLIA). 
It is a set of federal regulatory standards that falls under the authority of the Centers for 
Medicare and Medicaid Services (114). The intention was to ensure the reliability and 
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accuracy of clinical laboratory testing. FDA regulators have suggested the development of 
translational medicine tests such as Oncotype DXand MammaPrint might constitute an 
entirely new regulatory category. In 2006 and 2007, the FDA published two versions of ‘Draft 
Guidance’, signaling the Agency’s inclination to step in and take direct responsibility for the 
novel test category. In 2007, MammaPrint was submitted to the FDA and successfully obtained 
FDA clearance after only 30 days. An ‘FDA cleared’ button promptly appeared on all 
commercial MammaPrint material (http://www.agendia.com/pages/mammaprint/ 21.php). 
Given the non-binding nature of the FDA draft guidance, Genomic Health chose not to pursue 
this regulatory route. Instead they try to gain ‘official’ recognition from the clinicians via 
inclusion in the clinical practice guidelines of professional oncology organizations. The 
company viewed the pursuit of FDA clearance as much more costly and time-consuming than 
simply lobbying professional organizations of clinicians – many of whom the founders already 
knew through their previous works at Genentech (110). The American Society of Clinical 
Oncology (ASCO) included Oncotype in its 2007 guidelines and the US National 
Comprehensive Cancer Network (NCCN) followed suit in its 2008 guidelines.  

6.1. Study design of the multigenes panel 

In cancer epidemiology, both retrospective case – control studies and prospective cohort 
studies are observational, rather than experimental, studies. Neither type of study involves 
random assignment of exposure hence; observed associations between exposures and 
disease do not provide as strong a basis for claims of causality as in experimental studies. 
The most serious limitation of epidemiological studies is their non-experimental nature, not 
whether they are retrospective or prospective. In therapeutics, many retrospective analyses 
are also non-experimental, with treatment selection based on patient factors and referral 
pattern rather than on randomization. Such studies are also often conducted without a 
written protocol and are unfocused, with numerous patient subsets and endpoints 
compared without control for the overall chance of a false-positive conclusion. In contrast, 
prospective randomized clinical trials contain internal control of treatment assignment, 
careful and proscribed data collection (including outcomes and endpoints), and a focused 
analysis plan that is developed before the data are examined (112). 

Many biomarker studies are conducted with convenience samples of specimens, which just 
happen to be available and are assayed for the marker. They have not prospectively 
determined subject eligibility, power calculations, marker cut-point specification, or 
analytical plans. Such studies are more likely resulting in highly biased conclusions and 
truly deserved to be pejoratively labeled as “retrospective.” However, if a “retrospective” 
study is designed to use archived specimens from a previously conducted prospective trial, 
and if certain conditions are prospectively delineated in a written protocol before the marker 
study is performed, it might be considered as a “prospective – retrospective” study. Such a 
study should carry considerably more weight toward determination of clinical utility of the 
marker than a simple study of convenience, in which specimens and assays were happened 
to be available. Multiple studies of different candidate biomarkers based on archived tissues 
from the same prospective trial would present a greater opportunity for false-positive 
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conclusions than a single fully prospective trial focused on a specific biomarker. 
Consequently, independent confirmation of findings for specific biomarkers in multiple 
prospective – retrospective study (115). 

6.2. Oncotype DX breast cancer assay 

The Oncotype DX® analyzes the expression of 21 genes (16 cancer-related and 5 reference 
genes) within a tumor to determine a recurrence score (RS) using reverse transcription PCR 
(RT-PCR) in formalin-fixed, paraffin-embedded (FFPE) breast cancer tissue samples. In the 
earlier stage, the researchers has to show that RNA extracted from FFPE tissues could match 
fresh tissue results in terms of producing a high concordance in the RT-PCR results (116, 
117).To interpret the result, Oncotype DX test results assign a Recurrence Score (RS) – a 
number between 0 and 100 – to the early-stage breast cancer or DCIS as stated below: 

 RS lower than 18: The cancer or DCIS has a low risk of recurrence. The benefit of 
chemotherapy for early-stage breast cancer or radiation therapy for DCIS is likely to be 
small and will not outweigh the risks of side effects. 

 RS between 18 and 31: The cancer or DCIS has an intermediate risk of recurrence. It’s 
unclear whether the benefits of chemotherapy for early-stage breast cancer or radiation 
therapy for DCIS outweigh the risks of side effects. 

 RS greater than 31: The cancer or DCIS has a high risk of recurrence, and the benefits of 
chemotherapy for early-stage breast cancer or radiation therapy for DCIS are likely to 
be greater than the risks of side effects. 

The RS corresponds to a specific likelihood of breast cancer recurrence within 10 years of the 
initial diagnosis, as well as response to adjuvant treatment. Using recurrence score, it may 
be possible for healthcare providers and patients to determine whether adjuvant 
chemotherapy is needed following primary therapy for breast cancer (118, 119).  

i. NSABP Study B-14 

The Oncotype DX was developed and clinically validated on the basis of a retrospective 
analysis of the existing material from two randomized clinical trials (NSABP-B-20 and 
NSABP-B-14). The signature is based on the expression of genes that are associated with 
proliferation, ER signaling, HER2, and invasion (118). The 21 multigene chosen were 
always at the top of the list in published literature. The developers used the samples 
from 447 patients as the ‘discovery’ or ‘training’ set to select the 21 genes eventually 
included in the Oncotype test. Company researchers then applied an algorithm to the 
results of the tests and developed the aforementioned RS score. They believe the score is 
one of the strengths of the Oncotype test: as a single number on a continuous 0–100 scale 
and not a category (that is, yes/no, good/poor). It is supposed to provide clinicians with 
‘useful’ information as a basis on which to act, while preserving clinical decision-
making as a clinician’s prerogative, since by not providing a categorical answer it does 
not entail a specific intervention (110). Results from this study demonstrated that 
Oncotype DX is an accurate and reliable predictor of breast cancer recurrence. (120). The 
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study also concluded that the RS has been validated as quantifying the likelihood of 
distant recurrence in tamoxifen-treated patients with node-negative, estrogen receptor-
positive breast cancer (118). 

ii. NSABP Study B-20 

About 668 samples of cancer tissue from a clinical trial called NSABP B-20 (“A Clinical 
Trial to Assess Tamoxifen in Patients with Primary Breast Cancer and Negative Axillary 
Nodes Whose Tumors Are Positive for Estrogen Receptors) were used to show that 
Oncotype DX can predict chemotherapy benefit (119). The study concluded that the RS 
of the assay not only quantifies the likelihood of breast cancer recurrence in women 
with node-negative, estrogen receptor-positive breast cancer, but also predicts the 
magnitude of chemotherapy benefit (118). 

iii. Kaiser Permanente study 

A large clinical study of 234 cases and 631 controls available for pathology studies (after 
screening of 4964 patients) conducted by Kaiser Permanente confirmed in a community 
setting that Oncotype DX helps to predict the likelihood of breast cancer survival at 10 
years (121). The primary objective of this study was to determine whether the proportion 
of patients who were free of a distant recurrence for more than 10 years after surgery was 
significantly greater in the low-risk group than in the high-risk group. The second 
primary objective was to determine whether there was a statistically significant relation 
between the RS and the risk of distant recurrence. The cutoff points were prespecified to 
classify patients into the following categories: low risk, intermediate risk and high risk. 
The cutoff points were chosen on the basis of the results of NSABP trial B-20. The study 
concluded that in a large, population-based study of lymph node-negative patients not 
treated with chemotherapy, the RS value was strongly associated with risk of breast 
cancer death among ER-positive, tamoxifen-treated and -untreated patients. 

iv. SWOG 8814 study 

SWOG-8814 was a randomized phase III clinical trial of 1,477 postmenopausal women, 
all of whom had estrogen receptor-positive (ER+) breast cancer that had spread to the 
axillary lymph nodes. All women in the trial got daily tamoxifen for up to five years, 
longer than the standard therapy for treating ER+ breast cancer. One arm of 361 patients 
got only tamoxifen. The rest got tamoxifen plus a three-drug chemotherapy regimen of 
cyclophosphamide, Adriamycin®, and 5-fluorouracil, a combination known as CAF. 
Investigators retrospectively analyzed tumor specimens from this trial using the 
Oncotype DX® in 367 women with ER-positive, mainly tamoxifen-treated lymph node-
positive, the RS assay quantified the likelihood of breast cancer recurrence and also 
predicted the magnitude of chemotherapy benefit (122).  

v. Oncotype DX TAILORx Trial 

Following the development of the specialized translational research program from 
National Cancer Institute (NCI), the Program for the Assessment of Clinical Cancer 
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conclusions than a single fully prospective trial focused on a specific biomarker. 
Consequently, independent confirmation of findings for specific biomarkers in multiple 
prospective – retrospective study (115). 

6.2. Oncotype DX breast cancer assay 

The Oncotype DX® analyzes the expression of 21 genes (16 cancer-related and 5 reference 
genes) within a tumor to determine a recurrence score (RS) using reverse transcription PCR 
(RT-PCR) in formalin-fixed, paraffin-embedded (FFPE) breast cancer tissue samples. In the 
earlier stage, the researchers has to show that RNA extracted from FFPE tissues could match 
fresh tissue results in terms of producing a high concordance in the RT-PCR results (116, 
117).To interpret the result, Oncotype DX test results assign a Recurrence Score (RS) – a 
number between 0 and 100 – to the early-stage breast cancer or DCIS as stated below: 

 RS lower than 18: The cancer or DCIS has a low risk of recurrence. The benefit of 
chemotherapy for early-stage breast cancer or radiation therapy for DCIS is likely to be 
small and will not outweigh the risks of side effects. 

 RS between 18 and 31: The cancer or DCIS has an intermediate risk of recurrence. It’s 
unclear whether the benefits of chemotherapy for early-stage breast cancer or radiation 
therapy for DCIS outweigh the risks of side effects. 

 RS greater than 31: The cancer or DCIS has a high risk of recurrence, and the benefits of 
chemotherapy for early-stage breast cancer or radiation therapy for DCIS are likely to 
be greater than the risks of side effects. 

The RS corresponds to a specific likelihood of breast cancer recurrence within 10 years of the 
initial diagnosis, as well as response to adjuvant treatment. Using recurrence score, it may 
be possible for healthcare providers and patients to determine whether adjuvant 
chemotherapy is needed following primary therapy for breast cancer (118, 119).  

i. NSABP Study B-14 

The Oncotype DX was developed and clinically validated on the basis of a retrospective 
analysis of the existing material from two randomized clinical trials (NSABP-B-20 and 
NSABP-B-14). The signature is based on the expression of genes that are associated with 
proliferation, ER signaling, HER2, and invasion (118). The 21 multigene chosen were 
always at the top of the list in published literature. The developers used the samples 
from 447 patients as the ‘discovery’ or ‘training’ set to select the 21 genes eventually 
included in the Oncotype test. Company researchers then applied an algorithm to the 
results of the tests and developed the aforementioned RS score. They believe the score is 
one of the strengths of the Oncotype test: as a single number on a continuous 0–100 scale 
and not a category (that is, yes/no, good/poor). It is supposed to provide clinicians with 
‘useful’ information as a basis on which to act, while preserving clinical decision-
making as a clinician’s prerogative, since by not providing a categorical answer it does 
not entail a specific intervention (110). Results from this study demonstrated that 
Oncotype DX is an accurate and reliable predictor of breast cancer recurrence. (120). The 
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study also concluded that the RS has been validated as quantifying the likelihood of 
distant recurrence in tamoxifen-treated patients with node-negative, estrogen receptor-
positive breast cancer (118). 

ii. NSABP Study B-20 

About 668 samples of cancer tissue from a clinical trial called NSABP B-20 (“A Clinical 
Trial to Assess Tamoxifen in Patients with Primary Breast Cancer and Negative Axillary 
Nodes Whose Tumors Are Positive for Estrogen Receptors) were used to show that 
Oncotype DX can predict chemotherapy benefit (119). The study concluded that the RS 
of the assay not only quantifies the likelihood of breast cancer recurrence in women 
with node-negative, estrogen receptor-positive breast cancer, but also predicts the 
magnitude of chemotherapy benefit (118). 

iii. Kaiser Permanente study 

A large clinical study of 234 cases and 631 controls available for pathology studies (after 
screening of 4964 patients) conducted by Kaiser Permanente confirmed in a community 
setting that Oncotype DX helps to predict the likelihood of breast cancer survival at 10 
years (121). The primary objective of this study was to determine whether the proportion 
of patients who were free of a distant recurrence for more than 10 years after surgery was 
significantly greater in the low-risk group than in the high-risk group. The second 
primary objective was to determine whether there was a statistically significant relation 
between the RS and the risk of distant recurrence. The cutoff points were prespecified to 
classify patients into the following categories: low risk, intermediate risk and high risk. 
The cutoff points were chosen on the basis of the results of NSABP trial B-20. The study 
concluded that in a large, population-based study of lymph node-negative patients not 
treated with chemotherapy, the RS value was strongly associated with risk of breast 
cancer death among ER-positive, tamoxifen-treated and -untreated patients. 

iv. SWOG 8814 study 

SWOG-8814 was a randomized phase III clinical trial of 1,477 postmenopausal women, 
all of whom had estrogen receptor-positive (ER+) breast cancer that had spread to the 
axillary lymph nodes. All women in the trial got daily tamoxifen for up to five years, 
longer than the standard therapy for treating ER+ breast cancer. One arm of 361 patients 
got only tamoxifen. The rest got tamoxifen plus a three-drug chemotherapy regimen of 
cyclophosphamide, Adriamycin®, and 5-fluorouracil, a combination known as CAF. 
Investigators retrospectively analyzed tumor specimens from this trial using the 
Oncotype DX® in 367 women with ER-positive, mainly tamoxifen-treated lymph node-
positive, the RS assay quantified the likelihood of breast cancer recurrence and also 
predicted the magnitude of chemotherapy benefit (122).  

v. Oncotype DX TAILORx Trial 

Following the development of the specialized translational research program from 
National Cancer Institute (NCI), the Program for the Assessment of Clinical Cancer 
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Tests (PACCT) launched the TAILORx trial (123).Since the validation of the Oncotype 
DX Breast Cancer Assay Recurrence Score were able to clearly show that the multigene 
panel were able to predict chemotherapy with hormonal treatment benefit for patients 
with high Recurrence Score while patients with low Recurrence Score do not benefit 
from chemotherapy. However as high as 37% of patients fall into the intermediate 
range, which do not show a clear outcome of the benefit of chemotherapy (122). A 
randomized prospective clinical trial is currently ongoing to further validate a group of 
node-negative, ER+ breast cancer patients with a RS in the intermediate range, which is 
known as Trial Assigning IndividuaLized Options for Treatment (Rx) TAILORx 
conducted by the North American Breast Cancer Group (http://www.cancer.gov/ 
clinicaltrials/noteworthy-trials/tailorx). Since 2006, the trial enrolled 10,000 patients (of 
which 4500 were to be in the randomized arm) in 900 participating centers (110). 
Patients with mid-range RS will be randomized for chemotherapy while patients with 
low and high RS will not be randomized as the outcome has been clearly defined in 
previous studies. 

6.3. Recommendation of use as tumor marker 

Because Oncotype DX was able to achieve level II evidence to support it’s prognostic role, 
Oncotype DX has received approval from the American Society of Clinical Oncology 
(ASCO) in the2007 guidelines (124). It was included in the National Comprehensive Cancer 
Network (NCCN) 2008 guidelines (Breast Cancer version 1.2011 [http://www.nccn.org].) as 
an option to evaluate prognosis and as a complement to clinicopathological features to 
predict response to chemotherapy for patients with ER-positive, node-negative breast 
cancer. None of the microarray-based prognostic signatures has been endorsed by these 
professional bodies. 

6.4. MammaPrint 

MammaPrint (initially known as the 70 Gene Amsterdam Signature) was originally 
developed as an academic/scientific endeavor using whole genome microarray technology. 
The objective was to develop a gene expression signature that could accurately identify 
early stage breast cancer patients who were either at high risk or at low risk of recurrence 
and, therefore, enable more individualized treatment. The MammaPrint investigators from 
the NKI-AVL in collaboration with the Rosetta Inpharmatics (a Seattle company) procured 
and analyzed 78 tumors with the whole-genome microarray. Out of the 25,000 genes in the 
human genome, 231 genes were selected according to its association with the disease 
outcome. Further bioinformatic analysis using 2-D cluster analysis followed by a leave-one-
out cross validation procedure produced 70 critical genes that were shown to correlate best 
with the likelihood of distant recurrence. These 70 genes affect all steps known to be 
important for metastasis including cell cycle regulation, angiogenesis, invasion, cell 
migration and signal transduction (111).The resulting 70-gene signature profile classifies 
tumors as either high risk or low risk of recurrence. If it is used in conjunction with other 
risk factors, it helps to identify patients who will benefit from the adjuvant therapy. The 70-
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gene signature was constructed as a dichotomy as the discussions between the research 
team and clinicians, who insisted that the main goal of the test should be to avoid 
overtreatment of the disease. To accomplish this end, the low-risk group had to be defined 
inclusively. At the same time, the test developers felt that clinicians expected a clear answer 
(good/poor signature) from the test, hence the dichotomy (111). This position, once again, 
contrasts with the Genomic Health’s decision to report their Oncotype DX data analysis as a 
continuous variable that leaves room for clinical judgment (110).  

With this 70-gene signature, further validation was needed on a larger, independent patient 
population. The primary validation was thus carried out via another retrospective study 
that used samples from 295 patients held in the same NKI bio-bank. The first validation for 
the 70-gene signature was undertaken in a series of 295 consecutive women with breast 
cancer. The proportion of patients who remained free from distant metastases at ten years 
was 87% in the low-risk group and 44% in the high-risk group. The profile was a statistically 
independent predictor and added to the power of standard clinico-pathologic parameters 
(125). A research network team called TRANSBIG, an abbreviation for “Translating 
molecular knowledge into early breast cancer management: building on the BIG network for 
improved treatment tailoring”, used the 70-gene signature as retrospective study in 2006 
using 307 pa54tient samples from five European institutions. The results showed that the 
proportion of patients who remained free from distant metastases at 10 years was 90% in the 
low-risk group and 71% in the high-risk group. The 70-gene signature was found to provide 
prognostic information more than what could be determined from patient age, tumor grade, 
tumor size, and ER status in a population of lymph node negative patients without adjuvant 
chemotherapy (113). Although they initially favored licensing the technology, the NKI team 
found no viable taker. So, in 2003 the original researchers, in consultation with the NKI 
board of directors, established a spin-off company using private venture capital and 
European Union (EU) funding, and convinced the director of oncology at a leading 
diagnostic company, Agendia, for Amsterdam Genetic Diagnostics Amersham (110). The 
Agendia team had a signature but they did not have a test. In other words, it was not 
immediately obvious how to convert the 70-gene signature into what eventually became 
MammaPrint, a ‘high-throughput diagnostic test’ (126). The original signature had been 
developed using microarrays containing 25,000 oligonucleotides, a highly impractical 
platform for routine use. The company therefore developed a customized microarray 
containing a reduced set of probes, whose production was entrusted to Agilent, to whom 
Rosetta had, in the meantime, sold its technology. 

The TRANSBIG Consortium performed another independent validation study of 302 
adjuvantly untreated patients with at least ten years of follow-up. For the NKI researchers, 
the problem was less RNA extraction than the microarray analysis itself. Compared with 
RT-PCR, microarray analysis was a relatively novel, non-standardized technology and as 
such, it raised a number of logistic and statistical challenges (127, 128). As a result, in 
addition to the validation studies of the signature per se, researchers conducted a number of 
other studies to show that sample collection for the test (as distinct from the centrally 



Oncogenomics and Cancer Proteomics –  
Novel Approaches in Biomarkers Discovery and Therapeutic Targets in Cancer 22 

Tests (PACCT) launched the TAILORx trial (123).Since the validation of the Oncotype 
DX Breast Cancer Assay Recurrence Score were able to clearly show that the multigene 
panel were able to predict chemotherapy with hormonal treatment benefit for patients 
with high Recurrence Score while patients with low Recurrence Score do not benefit 
from chemotherapy. However as high as 37% of patients fall into the intermediate 
range, which do not show a clear outcome of the benefit of chemotherapy (122). A 
randomized prospective clinical trial is currently ongoing to further validate a group of 
node-negative, ER+ breast cancer patients with a RS in the intermediate range, which is 
known as Trial Assigning IndividuaLized Options for Treatment (Rx) TAILORx 
conducted by the North American Breast Cancer Group (http://www.cancer.gov/ 
clinicaltrials/noteworthy-trials/tailorx). Since 2006, the trial enrolled 10,000 patients (of 
which 4500 were to be in the randomized arm) in 900 participating centers (110). 
Patients with mid-range RS will be randomized for chemotherapy while patients with 
low and high RS will not be randomized as the outcome has been clearly defined in 
previous studies. 

6.3. Recommendation of use as tumor marker 

Because Oncotype DX was able to achieve level II evidence to support it’s prognostic role, 
Oncotype DX has received approval from the American Society of Clinical Oncology 
(ASCO) in the2007 guidelines (124). It was included in the National Comprehensive Cancer 
Network (NCCN) 2008 guidelines (Breast Cancer version 1.2011 [http://www.nccn.org].) as 
an option to evaluate prognosis and as a complement to clinicopathological features to 
predict response to chemotherapy for patients with ER-positive, node-negative breast 
cancer. None of the microarray-based prognostic signatures has been endorsed by these 
professional bodies. 

6.4. MammaPrint 

MammaPrint (initially known as the 70 Gene Amsterdam Signature) was originally 
developed as an academic/scientific endeavor using whole genome microarray technology. 
The objective was to develop a gene expression signature that could accurately identify 
early stage breast cancer patients who were either at high risk or at low risk of recurrence 
and, therefore, enable more individualized treatment. The MammaPrint investigators from 
the NKI-AVL in collaboration with the Rosetta Inpharmatics (a Seattle company) procured 
and analyzed 78 tumors with the whole-genome microarray. Out of the 25,000 genes in the 
human genome, 231 genes were selected according to its association with the disease 
outcome. Further bioinformatic analysis using 2-D cluster analysis followed by a leave-one-
out cross validation procedure produced 70 critical genes that were shown to correlate best 
with the likelihood of distant recurrence. These 70 genes affect all steps known to be 
important for metastasis including cell cycle regulation, angiogenesis, invasion, cell 
migration and signal transduction (111).The resulting 70-gene signature profile classifies 
tumors as either high risk or low risk of recurrence. If it is used in conjunction with other 
risk factors, it helps to identify patients who will benefit from the adjuvant therapy. The 70-
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gene signature was constructed as a dichotomy as the discussions between the research 
team and clinicians, who insisted that the main goal of the test should be to avoid 
overtreatment of the disease. To accomplish this end, the low-risk group had to be defined 
inclusively. At the same time, the test developers felt that clinicians expected a clear answer 
(good/poor signature) from the test, hence the dichotomy (111). This position, once again, 
contrasts with the Genomic Health’s decision to report their Oncotype DX data analysis as a 
continuous variable that leaves room for clinical judgment (110).  

With this 70-gene signature, further validation was needed on a larger, independent patient 
population. The primary validation was thus carried out via another retrospective study 
that used samples from 295 patients held in the same NKI bio-bank. The first validation for 
the 70-gene signature was undertaken in a series of 295 consecutive women with breast 
cancer. The proportion of patients who remained free from distant metastases at ten years 
was 87% in the low-risk group and 44% in the high-risk group. The profile was a statistically 
independent predictor and added to the power of standard clinico-pathologic parameters 
(125). A research network team called TRANSBIG, an abbreviation for “Translating 
molecular knowledge into early breast cancer management: building on the BIG network for 
improved treatment tailoring”, used the 70-gene signature as retrospective study in 2006 
using 307 pa54tient samples from five European institutions. The results showed that the 
proportion of patients who remained free from distant metastases at 10 years was 90% in the 
low-risk group and 71% in the high-risk group. The 70-gene signature was found to provide 
prognostic information more than what could be determined from patient age, tumor grade, 
tumor size, and ER status in a population of lymph node negative patients without adjuvant 
chemotherapy (113). Although they initially favored licensing the technology, the NKI team 
found no viable taker. So, in 2003 the original researchers, in consultation with the NKI 
board of directors, established a spin-off company using private venture capital and 
European Union (EU) funding, and convinced the director of oncology at a leading 
diagnostic company, Agendia, for Amsterdam Genetic Diagnostics Amersham (110). The 
Agendia team had a signature but they did not have a test. In other words, it was not 
immediately obvious how to convert the 70-gene signature into what eventually became 
MammaPrint, a ‘high-throughput diagnostic test’ (126). The original signature had been 
developed using microarrays containing 25,000 oligonucleotides, a highly impractical 
platform for routine use. The company therefore developed a customized microarray 
containing a reduced set of probes, whose production was entrusted to Agilent, to whom 
Rosetta had, in the meantime, sold its technology. 

The TRANSBIG Consortium performed another independent validation study of 302 
adjuvantly untreated patients with at least ten years of follow-up. For the NKI researchers, 
the problem was less RNA extraction than the microarray analysis itself. Compared with 
RT-PCR, microarray analysis was a relatively novel, non-standardized technology and as 
such, it raised a number of logistic and statistical challenges (127, 128). As a result, in 
addition to the validation studies of the signature per se, researchers conducted a number of 
other studies to show that sample collection for the test (as distinct from the centrally 
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performed test itself) was feasible and reproducible in community-based settings (129). 
Additional studies demonstrated that the MammaPrint classifies greater than 95% of ER-
negative cancers as poor prognosis and there was a strong correlation between 70-gene 
signature-defined poor prognosis and high histological grade (130, 131). Furthermore, the 
studies demonstrated that the 70-gene signature would outperform the current methods 
based on clinicopathological parameters for chemotherapy use. 

One study revealed that MammaPrint validates in older American breast cancer patients 
(132). While another study demonstrated that MammaPrint has strong prognostic value in 
patients with 1-3 positive lymph nodes (133). With more than 14,000 patient results reported 
to date, the technical robustness and reliability of MammaPrint is well established. 
MammaPrint is a considerable a step forward in the advancement of personalized cancer 
treatment. Several other prognostic signatures including the 76-gene signature (134, 135) 
and genomic grade index (136-139) were also shown to be independent predictors for the 
cancer outcomes.  

i. MicroarRAy PrognoSTics in Breast CancER (RASTER) study 

To evaluate whether the prognostic signature is suitable for the use in clinical practice, 
the MammaPrint was used to assess feasibility of implementation of the test as a 
diagnostic test in community hospitals in the Netherlands. The study aimed to test the 
effect of the signature on the use of adjuvant systemic treatment; proportion of patients 
with “poor” versus “good” prognosis in a series of unselected patients with node-
negative breast cancer; and finally to examine the concordance between risk predicted 
by the prognosis signature and risk predicted by commonly used clinicopathological 
guidelines. The findings of this study show that implementation of the 70-gene 
prognosis signature as a diagnostic test is feasible in community hospitals in the 
Netherlands (129).  

ii. MINDACT Trials 

MammaPrint is currently being tested in the MINDACT (Microarray In Node-negative 
and 1-3 positive lymph-node Disease may Avoid ChemoTherapy) trial (140). This is to 
determine whether this signature can actually replace clinicopathological parameters 
for the identification of patients who could be spared from the use of chemotherapy. 
The more ‘confrontational attitude’ of the MINDACT leaders toward traditional clinico-
pathological tools has resulted in a very different trial design compared to the Oncotype 
DX TAILORx Trial.In the MINDACT trial, women recruited into the trial are assigned 
to high- and low-risk categories using both standard clinical-pathological features and 
the 70-gene MammaPrint test results. An open-access computer program, Adjuvant! 
Online, developed in the US and widely used by breast cancer clinicians to estimate the 
outcome in terms of relapse and survival with or without chemotherapy. By 
confronting the predictions of MammaPrint and Adjuvant! Online, the trial directly 
compares between these two prognostic tools: women whose Adjuvant! Online and 
MammaPrint results are discordant (when clinical/pathological features indicate high 
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risk of recurrence and when MammaPrint indicates low risk, or vice versa) are then 
randomized for chemotherapy. 

6.5. Conclusion 

Based on the recommendation by the Evaluation of Genomic Applications in Practice and 
Prevention (EGAPP) Working Group, the general consensus was that retrospective study of 
samples and data from prospective studies were insufficient, although these studies were 
superior to studies using ‘convenience samples’, such as those contained in a general-purpose 
bio-bank. However, potential for patient selection bias cannot be excluded (141), therefore the 
working group recommend prospective studies such as TAILORx and MINDACT as the gold 
standard for testing the value of a multigene molecular test such as Oncotype or MammaPrint. 
From their review on these multigene molecular tests, they found insufficient evidence to 
make a recommendation for or against the use of tumor gene expression profiles to improve 
outcomes indefined populations of women with breast cancer. The working group found 
preliminary evidence on the potential benefit of the Oncotype DX testing results to some 
women who face decisions about treatment options (reduced adverse events due to low risk 
women avoiding chemotherapy) but could not rule out the potential harm for others (breast 
cancer recurrence that might have been prevented). The evidence is insufficient to assess the 
balance of benefits and harms of the proposed uses of the tests. The working group therefore 
encourages further development and evaluation of these technologies. There are still 
limitations that prevent these multigene molecular test such as the Oncotype DX, 
MammaPrint and other genomic prognostic markers from replacing the microscope for 
diagnosis, prognosis and treatment of an early breast cancer. However, additional important 
clinical information from this test has added to traditional histology and IHC determination of 
ER, PR and HER2 in terms of prognostic and predictive power. 

7. Challenges associated with the clinical translation  

Advances in laboratory and clinical science has propelled to a transitional period, which 
requires a redefinition of biology, genomics, and medicine in relation to one another. 
“Molecular gene signatures” is a new buzz word within the field of personalized medicine in 
the treatment of breast cancer (111, 118), thyroid cancer (142), endometrial cancer (143), 
ovarian cancer (144) and other cancers as well. However, the road from the scientific discovery 
of molecular signatures associated with cancer until it can be translated to clinical application 
is long and arduous. A recent review on the current status of translational research in cancer 
genetics has analyzed the extramural grant portfolio of the National Cancer Institute (NCI) 
from Fiscal Year of 2007. From the study, the funded grants and publications were classified as 
follows: T0 as discovery research; T1 as research to develop a candidate health application (e.g., 
test or therapy); T2 as research that evaluates a candidate application and develops evidence-
based recommendations; T3 as research that assesses how to integrate an evidence-based 
recommendation into cancer care and prevention; and T4 as research that assesses health 
outcomes and population impact (145). An “explosion” in gene expression research during the 
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performed test itself) was feasible and reproducible in community-based settings (129). 
Additional studies demonstrated that the MammaPrint classifies greater than 95% of ER-
negative cancers as poor prognosis and there was a strong correlation between 70-gene 
signature-defined poor prognosis and high histological grade (130, 131). Furthermore, the 
studies demonstrated that the 70-gene signature would outperform the current methods 
based on clinicopathological parameters for chemotherapy use. 

One study revealed that MammaPrint validates in older American breast cancer patients 
(132). While another study demonstrated that MammaPrint has strong prognostic value in 
patients with 1-3 positive lymph nodes (133). With more than 14,000 patient results reported 
to date, the technical robustness and reliability of MammaPrint is well established. 
MammaPrint is a considerable a step forward in the advancement of personalized cancer 
treatment. Several other prognostic signatures including the 76-gene signature (134, 135) 
and genomic grade index (136-139) were also shown to be independent predictors for the 
cancer outcomes.  

i. MicroarRAy PrognoSTics in Breast CancER (RASTER) study 

To evaluate whether the prognostic signature is suitable for the use in clinical practice, 
the MammaPrint was used to assess feasibility of implementation of the test as a 
diagnostic test in community hospitals in the Netherlands. The study aimed to test the 
effect of the signature on the use of adjuvant systemic treatment; proportion of patients 
with “poor” versus “good” prognosis in a series of unselected patients with node-
negative breast cancer; and finally to examine the concordance between risk predicted 
by the prognosis signature and risk predicted by commonly used clinicopathological 
guidelines. The findings of this study show that implementation of the 70-gene 
prognosis signature as a diagnostic test is feasible in community hospitals in the 
Netherlands (129).  

ii. MINDACT Trials 

MammaPrint is currently being tested in the MINDACT (Microarray In Node-negative 
and 1-3 positive lymph-node Disease may Avoid ChemoTherapy) trial (140). This is to 
determine whether this signature can actually replace clinicopathological parameters 
for the identification of patients who could be spared from the use of chemotherapy. 
The more ‘confrontational attitude’ of the MINDACT leaders toward traditional clinico-
pathological tools has resulted in a very different trial design compared to the Oncotype 
DX TAILORx Trial.In the MINDACT trial, women recruited into the trial are assigned 
to high- and low-risk categories using both standard clinical-pathological features and 
the 70-gene MammaPrint test results. An open-access computer program, Adjuvant! 
Online, developed in the US and widely used by breast cancer clinicians to estimate the 
outcome in terms of relapse and survival with or without chemotherapy. By 
confronting the predictions of MammaPrint and Adjuvant! Online, the trial directly 
compares between these two prognostic tools: women whose Adjuvant! Online and 
MammaPrint results are discordant (when clinical/pathological features indicate high 
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risk of recurrence and when MammaPrint indicates low risk, or vice versa) are then 
randomized for chemotherapy. 

6.5. Conclusion 

Based on the recommendation by the Evaluation of Genomic Applications in Practice and 
Prevention (EGAPP) Working Group, the general consensus was that retrospective study of 
samples and data from prospective studies were insufficient, although these studies were 
superior to studies using ‘convenience samples’, such as those contained in a general-purpose 
bio-bank. However, potential for patient selection bias cannot be excluded (141), therefore the 
working group recommend prospective studies such as TAILORx and MINDACT as the gold 
standard for testing the value of a multigene molecular test such as Oncotype or MammaPrint. 
From their review on these multigene molecular tests, they found insufficient evidence to 
make a recommendation for or against the use of tumor gene expression profiles to improve 
outcomes indefined populations of women with breast cancer. The working group found 
preliminary evidence on the potential benefit of the Oncotype DX testing results to some 
women who face decisions about treatment options (reduced adverse events due to low risk 
women avoiding chemotherapy) but could not rule out the potential harm for others (breast 
cancer recurrence that might have been prevented). The evidence is insufficient to assess the 
balance of benefits and harms of the proposed uses of the tests. The working group therefore 
encourages further development and evaluation of these technologies. There are still 
limitations that prevent these multigene molecular test such as the Oncotype DX, 
MammaPrint and other genomic prognostic markers from replacing the microscope for 
diagnosis, prognosis and treatment of an early breast cancer. However, additional important 
clinical information from this test has added to traditional histology and IHC determination of 
ER, PR and HER2 in terms of prognostic and predictive power. 

7. Challenges associated with the clinical translation  

Advances in laboratory and clinical science has propelled to a transitional period, which 
requires a redefinition of biology, genomics, and medicine in relation to one another. 
“Molecular gene signatures” is a new buzz word within the field of personalized medicine in 
the treatment of breast cancer (111, 118), thyroid cancer (142), endometrial cancer (143), 
ovarian cancer (144) and other cancers as well. However, the road from the scientific discovery 
of molecular signatures associated with cancer until it can be translated to clinical application 
is long and arduous. A recent review on the current status of translational research in cancer 
genetics has analyzed the extramural grant portfolio of the National Cancer Institute (NCI) 
from Fiscal Year of 2007. From the study, the funded grants and publications were classified as 
follows: T0 as discovery research; T1 as research to develop a candidate health application (e.g., 
test or therapy); T2 as research that evaluates a candidate application and develops evidence-
based recommendations; T3 as research that assesses how to integrate an evidence-based 
recommendation into cancer care and prevention; and T4 as research that assesses health 
outcomes and population impact (145). An “explosion” in gene expression research during the 
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last few years has already led to the development of several genetic classifiers in the genomic 
discovery (T0) stage and T1 stage (which bridges discovery to candidate health application, or 
“bench to bedside”). However, less genomic research was conducted and published in T2 and 
above, with only 1.8% of the grant portfolio and 0.6% of the published literatures in these 
categories. In addition to discovery research in cancer genetics, a translational research 
infrastructure is urgently needed to methodically evaluate and translate gene discoveries for 
cancer care and prevention (146, 147). 
 

Table 3. Systemic therapy options for the treatment of invasive breast cancer in the adjuvant and 
advanced disease settings. Among solid tumors, breast cancer treatment arguably has made some of the 
greatest advances during the previous 3 decades (148). Advances in laboratories and clinical science 
have propelled us into the current transitional period and how clinical trials must evolve to lead us into 
the era of personalized oncology (148) 

7.1. Challenges of gene expression profiling studies 

In order to understand challenges associated with the clinical translation of molecular gene 
signature obtained from microarray studies, we must understand the challenges and 
limitations of gene expression profiling. Although gene expression profiling seems to have 
value in the discovery of molecular markers for potential use in diagnosis or as a therapeutic 
target, translating this technology into genomic medicine is still a work in progress. For a 
better understanding in terms of strengths and limitations of gene expression profiling 
techniques, we need to understand biological, technological, statistical, and informatics 
challenges and caveats. 

7.2. Biological challenges 

A microarray experiment presents a snapshot of the gene expression of the biological system 
that is dynamic and constantly changing at a given time point, which may not provide the 
complete picture or accurately depict of what is really happening at cellular level. Thus, the 
presence of mRNA does not explicitly mean that it was just synthesized. Likewise, the 
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inability to detect an unstable transcript may be due to its high degradation rate (149). The 
expression of some genes (“housekeeping genes”) is thought to be more stable, and these 
genes are often used as controls for the normalization of expression levels of other genes. 
However, the expression of traditionally used controls such as ribosomal RNA genes, also 
changes across different tissues and experimental conditions making it difficult to select 
“gold standards” (150). Sampling issues such as biopsy method (151), contamination from 
neighboring tissues may seriously affect in different expression profiles as microarray 
technology is very sensitive to such variations (152). RNA quality is a critical issue in 
genome-wide analysis of gene expression. RNA is less stable than DNA and care should be 
taken and adequate protocols followed to preserve the quality of biological material. This is 
particularly important in clinical setting. Another limitation in prognostic or predictive 
markers from gene expression profiling is that microarray covers only part of the whole 
picture. Most of cellular functions are performed by proteins and physiological changes can 
be modulated by not only changes in protein levels but also by protein modifications such 
as glycosalation, methylation, acethylation, and phosphorylation. These modifications could 
change protein conformation and lead to changes in activity, which is not detectable by gene 
expression profiling (152). 

7.3. Technological challenges 

All of the microarray platforms available in the market are proprietary, a general concern for 
the inter-platform variability in the gene expression profiles has been addressed by the 
MicroArray Quality Consortium II (MAQC) (153). Despite the high variability in gene 
expression attributed to differences in microarray platforms, studies have demonstrated that 
reproducibility across platforms can be dramatically improved when standardized protocols 
are implemented for RNA labeling, hybridization, data processing, data acquisition, and 
data normalization. When these technical variables are standardized, different microarray 
platforms can produce comparable outcomes (154, 155). Nevertheless, the results from 
comparison across different platforms can be misleading and should be interpreted with 
great caution (156). Technicalities of the microarray platforms deals with binding efficiency 
of labeled target to the respective probe as well as technical variation during experiments 
also may affect the reproducibility of the gene expression profiles (152). With regards to 
prospective experiments, the uniformity of experimental conduct will help to minimize 
potential bias and thus improve the validity of a study. The establishment of the Microarray 
Quality Control (MAQC) project in 2005 to develop procedural guidelines and quality 
control metrics in the first phase and the second phase aims to evaluate various data 
analysis method and predictive models (153). One of the serious problems has been a wide 
diversity of data formats used in microarray experiments. As a result, the Microarray 
GeneExpression Database Society (MGED) was created in 1999 to develop a common 
standard for data input and reporting that could be shared among scientists in the 
microarray field. In 2001, the MGED created the Minimum Information About a Microarray 
Experiment (MIAME) guidelines, which serve as a template for researchers to report an 
adequate description of how microarray data were obtained (157). 
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last few years has already led to the development of several genetic classifiers in the genomic 
discovery (T0) stage and T1 stage (which bridges discovery to candidate health application, or 
“bench to bedside”). However, less genomic research was conducted and published in T2 and 
above, with only 1.8% of the grant portfolio and 0.6% of the published literatures in these 
categories. In addition to discovery research in cancer genetics, a translational research 
infrastructure is urgently needed to methodically evaluate and translate gene discoveries for 
cancer care and prevention (146, 147). 
 

Table 3. Systemic therapy options for the treatment of invasive breast cancer in the adjuvant and 
advanced disease settings. Among solid tumors, breast cancer treatment arguably has made some of the 
greatest advances during the previous 3 decades (148). Advances in laboratories and clinical science 
have propelled us into the current transitional period and how clinical trials must evolve to lead us into 
the era of personalized oncology (148) 

7.1. Challenges of gene expression profiling studies 

In order to understand challenges associated with the clinical translation of molecular gene 
signature obtained from microarray studies, we must understand the challenges and 
limitations of gene expression profiling. Although gene expression profiling seems to have 
value in the discovery of molecular markers for potential use in diagnosis or as a therapeutic 
target, translating this technology into genomic medicine is still a work in progress. For a 
better understanding in terms of strengths and limitations of gene expression profiling 
techniques, we need to understand biological, technological, statistical, and informatics 
challenges and caveats. 

7.2. Biological challenges 

A microarray experiment presents a snapshot of the gene expression of the biological system 
that is dynamic and constantly changing at a given time point, which may not provide the 
complete picture or accurately depict of what is really happening at cellular level. Thus, the 
presence of mRNA does not explicitly mean that it was just synthesized. Likewise, the 
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inability to detect an unstable transcript may be due to its high degradation rate (149). The 
expression of some genes (“housekeeping genes”) is thought to be more stable, and these 
genes are often used as controls for the normalization of expression levels of other genes. 
However, the expression of traditionally used controls such as ribosomal RNA genes, also 
changes across different tissues and experimental conditions making it difficult to select 
“gold standards” (150). Sampling issues such as biopsy method (151), contamination from 
neighboring tissues may seriously affect in different expression profiles as microarray 
technology is very sensitive to such variations (152). RNA quality is a critical issue in 
genome-wide analysis of gene expression. RNA is less stable than DNA and care should be 
taken and adequate protocols followed to preserve the quality of biological material. This is 
particularly important in clinical setting. Another limitation in prognostic or predictive 
markers from gene expression profiling is that microarray covers only part of the whole 
picture. Most of cellular functions are performed by proteins and physiological changes can 
be modulated by not only changes in protein levels but also by protein modifications such 
as glycosalation, methylation, acethylation, and phosphorylation. These modifications could 
change protein conformation and lead to changes in activity, which is not detectable by gene 
expression profiling (152). 

7.3. Technological challenges 

All of the microarray platforms available in the market are proprietary, a general concern for 
the inter-platform variability in the gene expression profiles has been addressed by the 
MicroArray Quality Consortium II (MAQC) (153). Despite the high variability in gene 
expression attributed to differences in microarray platforms, studies have demonstrated that 
reproducibility across platforms can be dramatically improved when standardized protocols 
are implemented for RNA labeling, hybridization, data processing, data acquisition, and 
data normalization. When these technical variables are standardized, different microarray 
platforms can produce comparable outcomes (154, 155). Nevertheless, the results from 
comparison across different platforms can be misleading and should be interpreted with 
great caution (156). Technicalities of the microarray platforms deals with binding efficiency 
of labeled target to the respective probe as well as technical variation during experiments 
also may affect the reproducibility of the gene expression profiles (152). With regards to 
prospective experiments, the uniformity of experimental conduct will help to minimize 
potential bias and thus improve the validity of a study. The establishment of the Microarray 
Quality Control (MAQC) project in 2005 to develop procedural guidelines and quality 
control metrics in the first phase and the second phase aims to evaluate various data 
analysis method and predictive models (153). One of the serious problems has been a wide 
diversity of data formats used in microarray experiments. As a result, the Microarray 
GeneExpression Database Society (MGED) was created in 1999 to develop a common 
standard for data input and reporting that could be shared among scientists in the 
microarray field. In 2001, the MGED created the Minimum Information About a Microarray 
Experiment (MIAME) guidelines, which serve as a template for researchers to report an 
adequate description of how microarray data were obtained (157). 
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7.4. Statistical and and bioinformatic challenges 

The experimental design of the microarray studies is of paramount importance, as it should 
have a clear goal and a specific hypothesis to test. In the design of a microarray experiment, 
all potential sources of variation should be taken into account to avoid any systematic bias. 
Researchers should adhere to the sound principles of study and match the experimental 
variables of cases and controls to the fullest extent possible. It is important to select 
biologically homogenous sample populations, balancing a design with respect to all factors 
that can confound results among the comparison groups, and handling samples uniformly 
through the course of the entire experiment when designing a microarray study (158). 
Randomization of samples will assure baseline equality between the groups being 
compared. Violation of these principles will lead to biased results and can cause a loss in 
power. It should be pointed out that statistical analysis of data couldn’t solve fundamental 
problems of study design. Significantly, the validity of gene expression profiles depends on 
the characteristics of samples and selection bias, eligible criteria of participation and other 
confounding factors. An adequate sample size is necessary to achieve sufficient power to 
demonstrate significance of findings, especially in microarray studies where thousands of 
genes are tested simultaneously (159). Appropriate preprocessing of microarray data, 
known as “normalization” prior to analysis is critical for identifying differentially expressed 
genes. Normalization attempts to remove variability among chips and other systematic 
biases that are unrelated to biological variation so that a meaningful biological comparison 
can be made. Transformation is used for multiple purposes, including stabilizing variance in 
data so that underlying assumptions required for the statistical analysis method are met. 
Although it is expected that the choice of a preprocessing procedure does not affect the core 
results of microarray data, different normalization and/or transformation methods may 
result in different outcomes (160).  

Application of appropriate analysis methods to the microarray data, for example 
classification and cluster analysis are typical analytical approaches to categorized 
microarray data into manageable classes. However, there is no standard ‘method’ to how to 
best analyze the genomic data and it’s very tempting to present / published the best-looking 
result, leading to biased evaluation of the statistical prediction rule. Another issue of 
classification is “overfitting”, which occurs when a classifier is made to perfectly fit a set of 
data that was used in the model development, but has no discriminatory power so that the 
results cannot be reproduced in a set of completely independent samples (161). This may 
lead to insufficient evidence of accuracy and reproducibility of multigene signature from 
gene expression profiles for clinical use, although it showed initial promising and 
reproducible results in class discovery studies and preclinical analysis (162). An adequate 
sample size is essential for any cross-validation technique to be effective. Another significant 
challenge for researchers is to reconstruct network structure from available expression data. 
Many different methods for network inference have been proposed (163). A common 
problem of such models is exponential complexity: the number of parameters increases 
exponentially with the number of variables. Thus, many alternative and equally probable 
network structures may be constructed from a given dataset. Dupuy and Simon (164) 
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reviewed the cancer literature of studies relating gene expression profiles to patient 
outcome, either response to treatment, survival or disease-free survival and found that 50% 
of the publications had at least one flaw so serious as to raise questions about the validity of 
the conclusions. The three most common serious flaws they found were: misleading use of 
cluster analysis, lack of adjustment for the multiplicity of analyzing thousands of genes, and 
erroneous use of partial cross-validation. They pointed out that cluster analysis rarely has a 
valid role in the development of predictive classifiers. Its wide use in the literature reflects a 
lack of proper statistical guidance or collaboration in the conduct of expression profiling 
studies (164).Therefore, cancer research organization need to better appreciate the 
fundamental changes occurring in the nature of biomedical research and make major 
commitments to departments for providing professional biostatistical collaboration as an 
integral part of translational research.  

7.5. Challenges in incorporating molecular profiling assays into routine clinical 
practice 

While the first-generation prognostic multigene classifiers, such as the MammaPrint assay 
and the Oncotype DX breast cancer assay, are the closest to clinical practice, the second-
generation prognostic multigene assays have not been commercialized. This includes the 
assessment of breast cancer microenvironment or host immune response. The assay requires 
further external validation studies to determine their clinical utilities (165). Despite several 
studies, the translation of predictive multigene classifiers into the clinic is even more 
challenging than that of prognostic multigene classifiers (166). Most of the predictive assays 
are derived mainly from cell lines. Microarray as the assay platform is not as quantitative as 
using a qRT-PCR assay. Therefore, subtle changes in gene expression may not be reflected in 
microarray-based assays, although these subtle differences may be sufficient to cause 
resistance to chemotherapeutics. Furthermore, resistance may occur due to low penetrance 
of the drug being administered and may be unrelated to tumor tissue. To incorporate 
prognostic and/or predictive multigene classifiers into clinical practice, the following key 
criteria need to be fulfilled: 

First, the platform on which the classifier is based should be suitable for broad clinical 
application and ensure that the classifier is stable under a variety of operating conditions. If 
not, the classifier needs to be translated to a clinically applicable platform (167). The assay 
protocols should be standardized to achieve satisfactory inter-laboratory and intra-
laboratory reproducibility, thereby establishing analytic validity. Assay standardization 
includes pre-analytic parameters, such as sample storage and preparation, and analytic 
performance parameters, such as the sensitivity and specificity of the system as well as 
assay reproducibility. The Clinical Laboratory Improvement Amendments of 1988 (CLIA) 
requires laboratories to independently establish analytic validity and improve assay 
standardization. To venture from scientific discovery to the beginning of clinical 
translational research is a challenge as academic scientist are usually funded and rewarded 
for discovery, rather than to pursue focused translational research as members of a large 
interdisciplinary team. Funding agencies may not be experience in funding and monitoring 
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7.4. Statistical and and bioinformatic challenges 

The experimental design of the microarray studies is of paramount importance, as it should 
have a clear goal and a specific hypothesis to test. In the design of a microarray experiment, 
all potential sources of variation should be taken into account to avoid any systematic bias. 
Researchers should adhere to the sound principles of study and match the experimental 
variables of cases and controls to the fullest extent possible. It is important to select 
biologically homogenous sample populations, balancing a design with respect to all factors 
that can confound results among the comparison groups, and handling samples uniformly 
through the course of the entire experiment when designing a microarray study (158). 
Randomization of samples will assure baseline equality between the groups being 
compared. Violation of these principles will lead to biased results and can cause a loss in 
power. It should be pointed out that statistical analysis of data couldn’t solve fundamental 
problems of study design. Significantly, the validity of gene expression profiles depends on 
the characteristics of samples and selection bias, eligible criteria of participation and other 
confounding factors. An adequate sample size is necessary to achieve sufficient power to 
demonstrate significance of findings, especially in microarray studies where thousands of 
genes are tested simultaneously (159). Appropriate preprocessing of microarray data, 
known as “normalization” prior to analysis is critical for identifying differentially expressed 
genes. Normalization attempts to remove variability among chips and other systematic 
biases that are unrelated to biological variation so that a meaningful biological comparison 
can be made. Transformation is used for multiple purposes, including stabilizing variance in 
data so that underlying assumptions required for the statistical analysis method are met. 
Although it is expected that the choice of a preprocessing procedure does not affect the core 
results of microarray data, different normalization and/or transformation methods may 
result in different outcomes (160).  

Application of appropriate analysis methods to the microarray data, for example 
classification and cluster analysis are typical analytical approaches to categorized 
microarray data into manageable classes. However, there is no standard ‘method’ to how to 
best analyze the genomic data and it’s very tempting to present / published the best-looking 
result, leading to biased evaluation of the statistical prediction rule. Another issue of 
classification is “overfitting”, which occurs when a classifier is made to perfectly fit a set of 
data that was used in the model development, but has no discriminatory power so that the 
results cannot be reproduced in a set of completely independent samples (161). This may 
lead to insufficient evidence of accuracy and reproducibility of multigene signature from 
gene expression profiles for clinical use, although it showed initial promising and 
reproducible results in class discovery studies and preclinical analysis (162). An adequate 
sample size is essential for any cross-validation technique to be effective. Another significant 
challenge for researchers is to reconstruct network structure from available expression data. 
Many different methods for network inference have been proposed (163). A common 
problem of such models is exponential complexity: the number of parameters increases 
exponentially with the number of variables. Thus, many alternative and equally probable 
network structures may be constructed from a given dataset. Dupuy and Simon (164) 
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reviewed the cancer literature of studies relating gene expression profiles to patient 
outcome, either response to treatment, survival or disease-free survival and found that 50% 
of the publications had at least one flaw so serious as to raise questions about the validity of 
the conclusions. The three most common serious flaws they found were: misleading use of 
cluster analysis, lack of adjustment for the multiplicity of analyzing thousands of genes, and 
erroneous use of partial cross-validation. They pointed out that cluster analysis rarely has a 
valid role in the development of predictive classifiers. Its wide use in the literature reflects a 
lack of proper statistical guidance or collaboration in the conduct of expression profiling 
studies (164).Therefore, cancer research organization need to better appreciate the 
fundamental changes occurring in the nature of biomedical research and make major 
commitments to departments for providing professional biostatistical collaboration as an 
integral part of translational research.  

7.5. Challenges in incorporating molecular profiling assays into routine clinical 
practice 

While the first-generation prognostic multigene classifiers, such as the MammaPrint assay 
and the Oncotype DX breast cancer assay, are the closest to clinical practice, the second-
generation prognostic multigene assays have not been commercialized. This includes the 
assessment of breast cancer microenvironment or host immune response. The assay requires 
further external validation studies to determine their clinical utilities (165). Despite several 
studies, the translation of predictive multigene classifiers into the clinic is even more 
challenging than that of prognostic multigene classifiers (166). Most of the predictive assays 
are derived mainly from cell lines. Microarray as the assay platform is not as quantitative as 
using a qRT-PCR assay. Therefore, subtle changes in gene expression may not be reflected in 
microarray-based assays, although these subtle differences may be sufficient to cause 
resistance to chemotherapeutics. Furthermore, resistance may occur due to low penetrance 
of the drug being administered and may be unrelated to tumor tissue. To incorporate 
prognostic and/or predictive multigene classifiers into clinical practice, the following key 
criteria need to be fulfilled: 

First, the platform on which the classifier is based should be suitable for broad clinical 
application and ensure that the classifier is stable under a variety of operating conditions. If 
not, the classifier needs to be translated to a clinically applicable platform (167). The assay 
protocols should be standardized to achieve satisfactory inter-laboratory and intra-
laboratory reproducibility, thereby establishing analytic validity. Assay standardization 
includes pre-analytic parameters, such as sample storage and preparation, and analytic 
performance parameters, such as the sensitivity and specificity of the system as well as 
assay reproducibility. The Clinical Laboratory Improvement Amendments of 1988 (CLIA) 
requires laboratories to independently establish analytic validity and improve assay 
standardization. To venture from scientific discovery to the beginning of clinical 
translational research is a challenge as academic scientist are usually funded and rewarded 
for discovery, rather than to pursue focused translational research as members of a large 
interdisciplinary team. Funding agencies may not be experience in funding and monitoring 
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focus translational research. In some other developing countries, to fund such large 
interdisciplinary and multicenter translational research is prohibitively expensive. Because 
of these limitations in conducting and funding focused translational research, a defined 
discovery to a product for use in a defined medical context goes untranslated unless they 
are of interest to the industry (168, 169). 

Second, it is critical to classify studies as developmental or validation studies in order to 
increase the clinical validity of the classifier. For assays that purport to elucidate predictive 
significance, this strategy needs to be applied to determine the clinical utility of the classifier 
(167, 170). Developmental studies need to include internal clinical validation; this can be 
accomplished either by splitting the study population into two populations (the training 
model and the testing model or by cross-validation based on repeated model development 
and testing on random data partitions. These approaches will increase the accuracy of the 
classifier, which in turn makes its further development possible. Independent validation 
studies are critical to further evaluate the predictive accuracy and usefulness of the classifier 
in clinical practice. The studies should be prospectively designed, and should verify both 
clinical validity and clinical utility. Pusztai et al (171) identified out of the 939 publications 
over twenty years period on prognostic factors for patients with breast cancer, only estrogen 
receptor, progesterone receptor and HER2 amplification and Oncotype DX RS were included 
alongside the traditional staging variables recommended by the ASCO guidelines. The 
pitfall for most of these genomics discovery researches is that only a few of the markers 
studied were properly validated in a cohort. However, most of the studies were performed 
using convenience sampling of heterogenous collection of patients and difficult to use such 
results in therapeutic decision making for individual patients. Finally, most of the 
publications were based on research assays without demonstration of robustness or 
analytical validity. Without a diagnostic company to develop a robust assay for a test with a 
clear and important medical application, the publication is unlikely to be part of successful 
translational research (169).  

Third, does the classifier only assess prognosis? Or does it help with selection of a certain 
type of therapy? What is the therapeutic relevance of the classifier? Prognostic multigene 
classifiers assess the likelihood of disease recurrence, whereas predictive multigene 
classifiers evaluate the potential benefit from certain types of chemotherapy or anti-estrogen 
therapy. However, a prognostic classifier may also exhibit predictive significance. If a 
classifier is a predictive classifier, the bar for utility is often quite low. For example, 
approximately half of patients with HER2 positivity respond to trastuzumab. However, if 
the assay assesses low likelihood for recurrence or metastases (a prognostic assay), patients 
classified as low risk need to have such a low risk that they can be spared from adjuvant 
therapy without affecting their long-term prognosis (172).  

Fourth, the incorporation of the classifier into the clinic might be more beneficial if it 
outperforms or adds predictive power to existing prognostic methods; this would help 
justify the money and time invested in its external validation in a trial of a much larger scale. 
In other words, it is important to determine cost-effectiveness. The “intrinsic” classification 
was the first assay to use modern molecular tools to classify breast cancers. MammaPrint 
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(111) and the Oncotype DX(118) have been tested in more than one validation cohort and are 
being tested for further clinical utility in large prospective trials in Europe (MINDACT; 
MammaPrint assay) (140) and in the United States (TAILORx; Oncotype DX assay)(173). Both 
assays have completed a cost-benefit analysis on the utility of the assay in clinical practice 
(174-178). Both assays demonstrate cost effectiveness in guiding adjuvant chemotherapy 
treatment in patients with early-stage breast cancer. Another assay in an advanced stage of 
development is a 50-gene assay (PAM50) (179), although the clinically applicable platform 
of intrinsic subtype classification is still a long away from clinical application. 

The Evaluation of Genomic Applications in Practice and Prevention (EGAPP) Working 
Group (EWG) assessed the value of the Oncotype DX and MammaPrint assay. The EWG 
found insufficient evidence to make a recommendation for or against the use of tumor gene 
expression profiles to improve outcomes in defined populations of women with breast 
cancer (180). The EWG encouraged further development and evaluation of these 
technologies. It is clear that the molecular profiling tests have a great potential to improve 
clinical decision making, since they address the complexity of breast cancer. It was 
suggested that the combinatorial use of these assays with the existing traditional 
clinicopathologic parameters to be more favorable, as clinicians are hesitant to do away with 
the existing clinicopathologic parameters. Indeed, a recent study used a similar 
combinatorial approach in which the Oncotype DX RS was integrated with 
clinicopathological parameters to develop a tool, the RS-Pathology-Clinical (RSPC) 
assessment (181). This model although requires validation, might have the greatest 
predictive and/or prognostic utility in cases classified as “intermediate risk” by the Oncotype 
DX (182).These studies highlight the difficulties in prognostication in patients with breast 
cancer and the need to use anatomical, histological, and biological approaches to assist with 
clinical decision-making. It is indisputable that multigene classifiers cannot replace, but 
rather strengthen, prognostication and prediction in combination with clinicopathological 
parameters. They do not have a role in cases in which the patient (or the clinician) has 
already made the decision to proceed with systemic adjuvant therapy. However, these tests 
have a role to play in those patients who are undecided or for whom a definite decision 
cannot be made based on clinicopathological findings. No test should be ordered if its 
results are not going to influence clinical decisions (168). 

i. Problems related to early detection 

Scientists postulate the basic underlying prognostic microarray studies is that all 
tumors acquire a metastasis phenotype through the same unique mechanism, and that 
gene expression data in tumor tissue obtained at resection of the primary tumor can be 
used to clearly distinguish between tumors that will relapse or will not relapse. The 
results of the pioneering prognostic microarray study concerning breast cancer (111) are 
considered proof of concept and have led to general acceptance of the postulate. 
However, the performances of microarray studies are poorer than initially thought and 
published gene signature lists are unstable (161). Some of the multi-biomarker scores do 
show consistent prognostic value such as in breast cancer, but until the recent advent of 
large validation studies, microarray studies are not significantly better prognostic 



Oncogenomics and Cancer Proteomics –  
Novel Approaches in Biomarkers Discovery and Therapeutic Targets in Cancer 30 

focus translational research. In some other developing countries, to fund such large 
interdisciplinary and multicenter translational research is prohibitively expensive. Because 
of these limitations in conducting and funding focused translational research, a defined 
discovery to a product for use in a defined medical context goes untranslated unless they 
are of interest to the industry (168, 169). 

Second, it is critical to classify studies as developmental or validation studies in order to 
increase the clinical validity of the classifier. For assays that purport to elucidate predictive 
significance, this strategy needs to be applied to determine the clinical utility of the classifier 
(167, 170). Developmental studies need to include internal clinical validation; this can be 
accomplished either by splitting the study population into two populations (the training 
model and the testing model or by cross-validation based on repeated model development 
and testing on random data partitions. These approaches will increase the accuracy of the 
classifier, which in turn makes its further development possible. Independent validation 
studies are critical to further evaluate the predictive accuracy and usefulness of the classifier 
in clinical practice. The studies should be prospectively designed, and should verify both 
clinical validity and clinical utility. Pusztai et al (171) identified out of the 939 publications 
over twenty years period on prognostic factors for patients with breast cancer, only estrogen 
receptor, progesterone receptor and HER2 amplification and Oncotype DX RS were included 
alongside the traditional staging variables recommended by the ASCO guidelines. The 
pitfall for most of these genomics discovery researches is that only a few of the markers 
studied were properly validated in a cohort. However, most of the studies were performed 
using convenience sampling of heterogenous collection of patients and difficult to use such 
results in therapeutic decision making for individual patients. Finally, most of the 
publications were based on research assays without demonstration of robustness or 
analytical validity. Without a diagnostic company to develop a robust assay for a test with a 
clear and important medical application, the publication is unlikely to be part of successful 
translational research (169).  

Third, does the classifier only assess prognosis? Or does it help with selection of a certain 
type of therapy? What is the therapeutic relevance of the classifier? Prognostic multigene 
classifiers assess the likelihood of disease recurrence, whereas predictive multigene 
classifiers evaluate the potential benefit from certain types of chemotherapy or anti-estrogen 
therapy. However, a prognostic classifier may also exhibit predictive significance. If a 
classifier is a predictive classifier, the bar for utility is often quite low. For example, 
approximately half of patients with HER2 positivity respond to trastuzumab. However, if 
the assay assesses low likelihood for recurrence or metastases (a prognostic assay), patients 
classified as low risk need to have such a low risk that they can be spared from adjuvant 
therapy without affecting their long-term prognosis (172).  

Fourth, the incorporation of the classifier into the clinic might be more beneficial if it 
outperforms or adds predictive power to existing prognostic methods; this would help 
justify the money and time invested in its external validation in a trial of a much larger scale. 
In other words, it is important to determine cost-effectiveness. The “intrinsic” classification 
was the first assay to use modern molecular tools to classify breast cancers. MammaPrint 
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(111) and the Oncotype DX(118) have been tested in more than one validation cohort and are 
being tested for further clinical utility in large prospective trials in Europe (MINDACT; 
MammaPrint assay) (140) and in the United States (TAILORx; Oncotype DX assay)(173). Both 
assays have completed a cost-benefit analysis on the utility of the assay in clinical practice 
(174-178). Both assays demonstrate cost effectiveness in guiding adjuvant chemotherapy 
treatment in patients with early-stage breast cancer. Another assay in an advanced stage of 
development is a 50-gene assay (PAM50) (179), although the clinically applicable platform 
of intrinsic subtype classification is still a long away from clinical application. 

The Evaluation of Genomic Applications in Practice and Prevention (EGAPP) Working 
Group (EWG) assessed the value of the Oncotype DX and MammaPrint assay. The EWG 
found insufficient evidence to make a recommendation for or against the use of tumor gene 
expression profiles to improve outcomes in defined populations of women with breast 
cancer (180). The EWG encouraged further development and evaluation of these 
technologies. It is clear that the molecular profiling tests have a great potential to improve 
clinical decision making, since they address the complexity of breast cancer. It was 
suggested that the combinatorial use of these assays with the existing traditional 
clinicopathologic parameters to be more favorable, as clinicians are hesitant to do away with 
the existing clinicopathologic parameters. Indeed, a recent study used a similar 
combinatorial approach in which the Oncotype DX RS was integrated with 
clinicopathological parameters to develop a tool, the RS-Pathology-Clinical (RSPC) 
assessment (181). This model although requires validation, might have the greatest 
predictive and/or prognostic utility in cases classified as “intermediate risk” by the Oncotype 
DX (182).These studies highlight the difficulties in prognostication in patients with breast 
cancer and the need to use anatomical, histological, and biological approaches to assist with 
clinical decision-making. It is indisputable that multigene classifiers cannot replace, but 
rather strengthen, prognostication and prediction in combination with clinicopathological 
parameters. They do not have a role in cases in which the patient (or the clinician) has 
already made the decision to proceed with systemic adjuvant therapy. However, these tests 
have a role to play in those patients who are undecided or for whom a definite decision 
cannot be made based on clinicopathological findings. No test should be ordered if its 
results are not going to influence clinical decisions (168). 

i. Problems related to early detection 

Scientists postulate the basic underlying prognostic microarray studies is that all 
tumors acquire a metastasis phenotype through the same unique mechanism, and that 
gene expression data in tumor tissue obtained at resection of the primary tumor can be 
used to clearly distinguish between tumors that will relapse or will not relapse. The 
results of the pioneering prognostic microarray study concerning breast cancer (111) are 
considered proof of concept and have led to general acceptance of the postulate. 
However, the performances of microarray studies are poorer than initially thought and 
published gene signature lists are unstable (161). Some of the multi-biomarker scores do 
show consistent prognostic value such as in breast cancer, but until the recent advent of 
large validation studies, microarray studies are not significantly better prognostic 
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classification than conventional prognostic models (113, 122). In addition, it has been 
shown that almost all first-generation gene signatures in breast cancer provide a 
quantitative read-out of the same biological pathway of proliferation (183, 184). As of 
today we are still in need of a precise estimation of the incremental value (185-187). 
Moreover, by assuming a unique mechanism for the metastasis phenotype, the 
postulation contradicts with the concept of cancer heterogeneity and consequently with 
personalized treatments. The potential interest of microarrays could not be rejected 
provided true critical consideration, incorporating, and not opposed to, full clinical 
evidence is now necessary.  

ii. Problems related to prognosis indicator 

The validation of “first-generation” prognostic signatures, usually based exclusively on 
gene expression profiling, has proven particularly challenging (188). It has been even 
more difficult to identify and validate predictors of response to nontargeted therapies 
(radiotherapy and chemotherapy), although analysis of large sample sets from clinical 
trials have already provided preliminary evidence of novel markers (189).  

Limitations to the current prognostic multigene signatures 

The ability of the Oncotype Dx and MammaPrint, to determine prognosis seems to be 
directly correlated to the assessment of proliferation/cell cycle-related genes (183, 190). 
The fact that these multigene signatures are mere surrogates of proliferation poses some 
important problems for their uses. First, given that proliferation has been shown to be 
prognostic in ER-positive disease and not in ER-negative cancers, first-generation 
signatures are applicable only for the prognostication of patients with ER-positive and 
HER2-negative breast cancers (190, 191). As the expression level of proliferation related 
genes in ER-positive cancers has been demonstrated to follow a continuum rather than 
a bimodal distribution, the subdivision of ER-positive cancers into good-prognosis 
(luminal A) and poor-prognosis (luminal B) groups is considered artificial (183, 190). In 
fact, the continuous nature of the Oncotype DX RS is more representative of the ranges 
of prognosis of patients with ER-positive disease. It should be noted, however, that this 
approach for clinical decision-making might be problematic. For instance, the 
prognostication and management of patients with an intermediate RS remain unclear, 
and up to 40% to 60% of clinically intermediate-risk patients (that is, breast cancers 
combining ER-positive, HER2-negative, and grade II status) are allocated to the 
intermediate-risk RS group (175). Therefore, the actual contribution of Oncotype DX to 
the management of this particular group of patients remains to be elucidated, and is 
currently being examined in the TAILORx trial (173, 175). Lack of prognostic power of 
first-generation prognostic signatures in ER-negative breast cancer and their 
associations with proliferation in ER-positive breast cancer have brought to the 
forefront of cancer research the limitations of histological grading. Classical histological 
grade is not prognostic in ER-negative disease and is strongly associated with 
proliferation (190, 192). It should be noted, however, that the levels of intra- and inter-
observer agreement of histological grade remain suboptimal, despite the numerous 
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efforts to implement a standardized histological grading system (192). It could be 
argued, on the basis of the above observations that the major contribution of first-
generation prognostic gene signatures is to provide a standardized proliferation assay 
for breast cancer. A second limitation of the first-generation prognostic signatures stems 
from the fact that most of them were developed to predict short-term distant recurrence 
(<5 years) and were shown to have a strong ‘time dependence’ and a reduced 
prognostic value after 5 to 10 years of follow-up (113, 193). Hence, these signatures may 
represent merely early distant recurrence surrogates and are unable to predict late 
relapses with the same accuracy. Thus, there is still a need to develop signatures that 
could identify patients who have a higher risk of late relapse and who may benefit from 
prolonged therapy. 

iii. Problems related to therapeutic response 

There is also increasing evidence that better classifiers and improved prognostication 
can be derived from combined analysis that profile both tumour DNA and RNA (194-
196). Neoadjuvant therapy trials hold great promise as the right framework to identify 
these predictive biomarkers for chemotherapy (and targeted therapies) response. ER 
and Her2 are predictors of a lack of benefit from targeted therapies, hormone therapy 
and anti-Her2-targeted agents, when the cancers do not express the markers. These 
predictors, however, fail to identify tumours that despite expressing the biomarkers still 
fail to respond to the targeted therapies (197). 

7.6. Gene expression signatures and response to chemotherapy 

With the clinical need for predictive markers for specific chemotherapy agents and 
multidrug regimens, several groups have developed multigene signatures specifically 
designed to predict response in patients receiving either chemotherapy or endocrine 
therapy. Using supervised approaches, several studies have attempted to identify multigene 
signatures of response to chemotherapy by comparing gene expression profiles between 
high sensitivity and low-responsiveness tumors (198-201). The majority of the studies 
focused on neoadjuvant chemotherapy and analyzed tumor samples obtained from biopsies 
taken at diagnosis before initiation of chemotherapy by microarrays or RT-PCR. 
Chemotherapy sensitivity usually was estimated with rate of pathological complete 
response to neoadjuvant therapy (pCR) as a surrogate of long-term benefit from the 
treatment. For example, a 30-gene signature was developed by the MD Anderson Cancer 
Center group in 82 breast cancer patients receiving T/FAC chemotherapy (paclitaxel, 
fluorouracil, doxorubicin, cyclophosphamide). This predictor signature was then validated 
in 51 independent patients and predicted pCR probability with higher sensitivity and 
negative predictive value than clinical variables based on age, grade, and ER status (198, 
200), which were later confirmed in an independent study (202). Despite these interesting 
preliminary results, the accuracy of the 30-gene predictor was not found in a recent study in 
which it was not an independent predictor of pCR after multivariate analysis and did not 
perform better than clinical variables (203). A similar 78-gene signature to MammaPrint that 
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classification than conventional prognostic models (113, 122). In addition, it has been 
shown that almost all first-generation gene signatures in breast cancer provide a 
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today we are still in need of a precise estimation of the incremental value (185-187). 
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signatures are applicable only for the prognostication of patients with ER-positive and 
HER2-negative breast cancers (190, 191). As the expression level of proliferation related 
genes in ER-positive cancers has been demonstrated to follow a continuum rather than 
a bimodal distribution, the subdivision of ER-positive cancers into good-prognosis 
(luminal A) and poor-prognosis (luminal B) groups is considered artificial (183, 190). In 
fact, the continuous nature of the Oncotype DX RS is more representative of the ranges 
of prognosis of patients with ER-positive disease. It should be noted, however, that this 
approach for clinical decision-making might be problematic. For instance, the 
prognostication and management of patients with an intermediate RS remain unclear, 
and up to 40% to 60% of clinically intermediate-risk patients (that is, breast cancers 
combining ER-positive, HER2-negative, and grade II status) are allocated to the 
intermediate-risk RS group (175). Therefore, the actual contribution of Oncotype DX to 
the management of this particular group of patients remains to be elucidated, and is 
currently being examined in the TAILORx trial (173, 175). Lack of prognostic power of 
first-generation prognostic signatures in ER-negative breast cancer and their 
associations with proliferation in ER-positive breast cancer have brought to the 
forefront of cancer research the limitations of histological grading. Classical histological 
grade is not prognostic in ER-negative disease and is strongly associated with 
proliferation (190, 192). It should be noted, however, that the levels of intra- and inter-
observer agreement of histological grade remain suboptimal, despite the numerous 
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from the fact that most of them were developed to predict short-term distant recurrence 
(<5 years) and were shown to have a strong ‘time dependence’ and a reduced 
prognostic value after 5 to 10 years of follow-up (113, 193). Hence, these signatures may 
represent merely early distant recurrence surrogates and are unable to predict late 
relapses with the same accuracy. Thus, there is still a need to develop signatures that 
could identify patients who have a higher risk of late relapse and who may benefit from 
prolonged therapy. 

iii. Problems related to therapeutic response 

There is also increasing evidence that better classifiers and improved prognostication 
can be derived from combined analysis that profile both tumour DNA and RNA (194-
196). Neoadjuvant therapy trials hold great promise as the right framework to identify 
these predictive biomarkers for chemotherapy (and targeted therapies) response. ER 
and Her2 are predictors of a lack of benefit from targeted therapies, hormone therapy 
and anti-Her2-targeted agents, when the cancers do not express the markers. These 
predictors, however, fail to identify tumours that despite expressing the biomarkers still 
fail to respond to the targeted therapies (197). 

7.6. Gene expression signatures and response to chemotherapy 

With the clinical need for predictive markers for specific chemotherapy agents and 
multidrug regimens, several groups have developed multigene signatures specifically 
designed to predict response in patients receiving either chemotherapy or endocrine 
therapy. Using supervised approaches, several studies have attempted to identify multigene 
signatures of response to chemotherapy by comparing gene expression profiles between 
high sensitivity and low-responsiveness tumors (198-201). The majority of the studies 
focused on neoadjuvant chemotherapy and analyzed tumor samples obtained from biopsies 
taken at diagnosis before initiation of chemotherapy by microarrays or RT-PCR. 
Chemotherapy sensitivity usually was estimated with rate of pathological complete 
response to neoadjuvant therapy (pCR) as a surrogate of long-term benefit from the 
treatment. For example, a 30-gene signature was developed by the MD Anderson Cancer 
Center group in 82 breast cancer patients receiving T/FAC chemotherapy (paclitaxel, 
fluorouracil, doxorubicin, cyclophosphamide). This predictor signature was then validated 
in 51 independent patients and predicted pCR probability with higher sensitivity and 
negative predictive value than clinical variables based on age, grade, and ER status (198, 
200), which were later confirmed in an independent study (202). Despite these interesting 
preliminary results, the accuracy of the 30-gene predictor was not found in a recent study in 
which it was not an independent predictor of pCR after multivariate analysis and did not 
perform better than clinical variables (203). A similar 78-gene signature to MammaPrint that 
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was developed from a dataset of metastatic breast cancerpatients who did and did not 
respond to tamoxifen treatment was identified as truly predictive of tamoxifen response. 
They found that their signatures seemed to be more predictive than prognostic compared 
with the RS in an independent set of tamoxifen-treated ER-positive metastatic breast cancer 
patients (204). Whilst the metastatic setting may be the most logical way to investigate the 
true predictive ability of a biomarker, it remains plausible that metastatic breast cancer 
patients have different disease biology compared with those having early-stage disease. 
Miller et al (205) used the neoadjuvant or preoperative setting to uncover gene profiles for 
which baseline expression and relative change with 14 days of treatment differed between 
breast cancers that were clinically responsive or resistant toletrozole therapy. The advantage 
of the neoadjuvant settingis that it allows multiple ways of assessment of response to 
therapy, eg, monitoring of changes in tumor size during the first months of treatment and 
sequential tumor biopsiesbefore and after neoadjuvant treatment with letrozole. Gene 
expression profiles were then related to clinical responses as assessed from tumor volume 
measurements after three months of treatment. This study underscores the potential of the 
neoadjuvant setting for high-level correlative science, but also supports the need for 
biologically driven hypotheses and stratification of luminal subtypes, and also highlights 
the difficulties of serial analyses using high-dimensional data. 

An alternative attempt to predict chemosensitivity to specific chemotherapy regimens was 
developed with the use of in vitro models. Using a combination of in vitro signatures 
associated with drug sensitivity in cell lines, a composite signatures that could predict 
response to multidrug regimens were derived and translated to patients receiving 
multidrug chemotherapy (206). These ‘regimen-specific’ signatures tested in patients who, 
as participants in the European Organization for Research and Treatment of Cancer 
(EORTC) BIG00-01 clinical trial, received TET (docetaxel, epirubicin-docetaxel) or FEC 
(fluorouracil, epirubicin, and cyclophosphamide) chemotherapy resulted in a validation 
study (207). Importantly, problems with the methodology of these studies have been 
identified (208) and serious concerns about the validity of the published results were raised. 
Subsequently, after a series of investigations, the findings derived from in vitro studies were 
considered invalid, and this led to the discontinuation of the clinical trials based on these 
prediction models (166, 209). 

Another method to develop multigene classifiers of chemosensitivity is based on the use of 
metagenes, groups of co-expressed genes associated with a small number of biological 
processes. A retrospective microarray analysis of prospectively collected ER-negative breast 
cancer samples demonstrated that increased stromal gene expression predicted resistance to 
FEC chemotherapy, which was subsequently validated in two independent cohorts (210). 
Despite the promising initial results, the signatures of chemotherapy sensitivity have so far 
had limited use in clinical practice. Most of them have been developed in small, convenience 
cohorts and require further external validation. None of the different predictors of 
chemosensitivity is commercially available, and additional evidence is still required before 
they can be implemented in clinical practice. A recent review has discussed the reasons for 
the limited success of the predictive signatures available to date (166). On the basis of the 
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design employed in most of the studies, the predictive signatures for multidrug regimens 
are likely to capture the transcriptomic features of sensitivity/resistance to cytotoxic agents 
in general. These mechanisms may constitute convergent phenotypes, that are multiple 
genetic/epigenetic aberrations that may lead to resistance to cytoxic agents (211). 

8. Conclusion 

Cancer is a multi-factorial disease that involves multiple genes and distinct pathways. The 
ultimate objective in the high throughput gene expression study approach is to fill the gap 
in the early biomarker detection, prognostication improvement and gene-targetted therapy. 
Outcomes from these studies can be obtained from the literatures and some are available as 
open public databases. Scientists have taken steps forward by using the data either as a 
single gene studies or multiple genes with related molecular pathways to investigate further 
on an individual cancer. However, there is a great challenge to devise the suitable gene lists 
from heterogenous data especially for drug discovery studies. With a great amount of 
genomic data avaiable, nearly all cancers faced the same setbacks of unable to pick the right 
genes for the right cancer. Among all cancer, breast cancer has the most advance experience 
in translating the lab findings into the clinical practice with the emergence of multigene 
signatures. The current array data can provide a platform for future scientists to explain the 
complexity of cancer in combination with the latest advancement in deep sequencing 
technology, 
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of the neoadjuvant settingis that it allows multiple ways of assessment of response to 
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identified (208) and serious concerns about the validity of the published results were raised. 
Subsequently, after a series of investigations, the findings derived from in vitro studies were 
considered invalid, and this led to the discontinuation of the clinical trials based on these 
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metagenes, groups of co-expressed genes associated with a small number of biological 
processes. A retrospective microarray analysis of prospectively collected ER-negative breast 
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FEC chemotherapy, which was subsequently validated in two independent cohorts (210). 
Despite the promising initial results, the signatures of chemotherapy sensitivity have so far 
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cohorts and require further external validation. None of the different predictors of 
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design employed in most of the studies, the predictive signatures for multidrug regimens 
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in general. These mechanisms may constitute convergent phenotypes, that are multiple 
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1. Introduction 

Lung cancer remains as one of the most aggressive cancer types with nearly 1.6 million new 
cases worldwide each year. There are an estimated 222,520 new cases and 157,300 deaths 
from lung cancer in the United States in 2010 [1]. Non-small cell lung cancer (NSCLC) is the 
most common subtype of lung cancer, comprising three major histological subtypes: 
adenocarcinoma, squamous cell carcinoma, and large cell carcinoma. Chronic exposure to 
carcinogens drives genetic and epigenetic damage that can result in lung epithelial cells 
progressively acquiring growth and/or survival advantages, giving as a result the generation 
of tumor cells. Studies have shown that some specific molecules contribute to sporadic tumors 
of lung cancer; even now, they are useful as predictive biomarkers. Mutations in at least one of 
the established lung cancer driver genes including egfr, kras, braf, her2, akt1, nras, pik3ca, mek1, 
eml4-alk and met amplification are found in approximately 60% of tumor specimens, and 
greater than 90% were “exclusive”: only one mutation was found in a particular tumor [2]. 
Epidermal growth factor receptor (EGFR) exhibits overexpression or aberrant activation by 
mutations in 50 to 90% of NSCLC. Much effort has been focused on the development of 
targeted molecular inhibitors for this molecule, but it has become clear that molecular-targeted 
cancer therapies can only reach their full potential through appropriate patient selection. 
Conventional therapies as chemo- and radiotherapy continue being the first option of 
treatment for lung cancer patients, even their mutation status of NSCLC driver genes. 
Radiotherapy, alone or in combination with surgery, chemotherapy or biological therapies, 
play a critical role in the management of lung cancer. Currently, there are several clinical 
studies in radiation response of NSCLC tumors, which exhibit a wide spectrum of response to 
this modality treatment. Thus, a successful radiation sensitivity assay to calculate individual 
tumor radioresponse is central for the development of personalized strategies in radio-
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oncology. Some research groups have done effort in radiogenomics and proteomics in lung 
cancer with the purpose of finding specific molecules to predict resistance or sensibility to 
radiotherapy. NSCLC tumors with mutations in well-known molecular markers as EGFR and 
KRAS represent two molecularly distinct tumor entities, with different clinical behaviors. In 
this chapter we focus on the biomarkers used as biological therapy targets in lung cancer and 
their impact on resistance to therapeutic interventions. Moreover, we highlight genomic and 
proteomic data in radiation response to lung cancer.  

2. Lung cancer  

Lung cancer remains as one of the most aggressive cancer types with nearly 1.6 million new 
cases worldwide each year. In 2010, in the United States were estimated 222,520 new cases 
and 157,300 deaths from lung cancer [1]. Non-small cell lung cancer (NSCLC) subtype 
represents 85% of all cases of lung cancer, while small cell lung cancer (SCLC) subtype 
comprises 15%. Histologically, NSCLC is classified as adenocarcinoma, squamous cell 
carcinoma, and large cell carcinoma. This classification has important implications for the 
clinical management and prognosis of the disease [3]. Yet early detection methods are not 
extensively used in the wider population, malignancy is most commonly diagnosed at a late 
stage resulting in poor patient survival. Overall 5-year survival rates for lung cancer vary 
globally but are consistently low (7.5-16%) [1]. Approximately 40% of patients with 
advanced unresectable disease at the time of diagnosis have a poor prognosis. At present, no 
single chemo-radiation therapy regimen can be considered standard; despite the treatment 
choice for unresectable stage III NSCLC, a platinum-based chemotherapy regimen and 
thoracic radiation are concurrently administered. Chemotherapy concurrently with chest 
radiation therapy significantly improves the survival of patients with unresectable stage 
IIIA and IIIB disease. Decades of research have increased understanding the lung cancer as a 
multistep process involving genetic and epigenetic alterations, through which, resulting 
DNA damage transforms normal epithelial cells that progressively acquire growth and/or 
survival advantages until cancer arises [2,4-7]. Malignant transformation of lung epithelial 
cells is characterized by genetic instability, which can exist at the chromosomal level (with 
large-scale loss or gain of genomic material, translocations, and microsatellite instability) or 
at the nucleotide level (with single or several nucleotide base changes). Moreover, lung 
cancer is also related to genomic and epigenomic changes at the transcriptome (with altered 
gene and microRNA expression) and proteome [8-11] level. As many kinds of tumors, 
molecular abnormalities in lung cancer cells are typically targeted to proto-oncogenes, 
tumor suppressor genes, DNA repair genes, and other genes that can promote outgrowth 
and immortality of affected cells [12,13]. It is accepted that the successful discovery, 
validation and implementation of specific molecular markers for early diagnosis, clinical 
surveillance and determination of tumor response to therapeutic intervention could 
improve survival rates for patients, but only few biomarkers turned out to be useful in the 
clinic. egfr and kras gene mutations are prognosis markers in NSCLC [2,12,14]. Because of the 
importance of EGFR as a prognostic factor in NSCLC, mutated EGFR has been the target for 
development of biological therapies; at present, these therapies are being used in treatment 
of a certain group of patients [15]. In this context, current research focuses on identifying other 
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potential molecular targets for the development of new agents and the assessment of better 
combinations of established therapies. Intensive research has originated numerous potential 
lung carcinoma molecular biomarkers related to therapy response in order to establish an 
appropriate molecular selection of patients, with focus on personalized medicine. 

3. Genome biomarkers: The opening to personalized medicine in lung 
cancer 
Nowadays, molecular and genetic studies have shown that some specific molecules 
contribute to sporadic tumors of lung cancer; they are useful as therapeutic targets and 
predictive biomarkers [16]. Recently, the National Cancer Institute’s lung cancer mutation 
consortium (NCI´s LCMC) performed such a study on more than 800 lung adenocarcinoma 
tumor specimens, examining mutations in established lung cancer driver genes (egfr, kras, 
braf, her2, akt1, pik3ca, mek1, eml4-alk, met amplification) [2]. Mutations in at least one of these 
genes were found in approximately 60% of tumor specimens, and greater than 90% were 
“exclusive”, namely, only one mutation was found in a particular tumor. EGFR regulates 
important tumorigenic processes, including proliferation, apoptosis, angiogenesis, and 
invasion. EGFR, along with its ligands, is frequently overexpressed during the development 
and progression of NSCLC. egfr gene are amplified and over-expressed in 6% of NSCLC. 
However, activating mutations in exons 18 to 21 comprised in the kinase domain of EGFR 
(Figure 1) occur early in the development of adenocarcinomas with clinic characteristics like 
never-smoking, female sex and Asian ethnicity [7,15].  

 
Figure 1. EGFR and KRAS mutations in NSCLC. Mutations in extracellular domain of EGFR have been 
implicated in resistance to treatment with mAb against EGFR. Mutations in TK domain are most 
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common in NSCLC, including L858R and E746-A750 deletion in exon 19. These mutations are target for 
small molecules inhibitors of tyrosine kinases domain (TKI). T790M is a mutation related to resistance 
to TKI treatment. Mutations in codon 12 or 13 of kras gene can lead to constantly union of GTP to KRAS 
protein, this represent the activate state of KRAS. GTP/KRAS induces activation of signaling depending 
to KRAS, permitting uncontrolled cell proliferation.  

Mutated EGFR are present in 10-15% of NSCLC tumors [2,17]. Mutant EGFRs (either by 
exon 19 deletion or punctual mutation in exon 21 known as L858R) show an increased 
amount and duration of EGFR activation compared with wild-type receptors [18]. Mutated 
EGFR can activate RAS/RAF/MEK/MAPK and phosphoinositide 3-kinase (PI3K)/AKT and 
STAT3/STAT5 pathways [19-21]. Beside the importance of EGFR on lung carcinogenesis, 
some other molecules have been described as molecular markers for prognosis and 
therapeutic targets. Gene amplification and mutations in the kinase domain of C-erbB2 
(HER-2/neu), a member of EGFR family, have been identified in patients with lung 
adenocarcinomas with a frequency of less than 5% and 5 to 10% respectively, and its 
overexpression are involved in 25% of NSCLC cases [22]. EGFR and HER-2 kinase domain 
mutations have similar associations with female sex, non-smoking status and Asian 
background in patients with adenocarcinoma [15,22]. RAS/RAF/MEK/MAPK pathway is 
involved in signaling downstream from EGFR leading the growth and tumor progression in 
NSCLC. Activating kras gene mutation occurs in 30% of cases of NSCLC, mostly 
adenocarcinomas. KRAS mutations are localized in exon 12 (in 90% of patients) or exon 13, 
and they are smoking-related G→T transversion and nonsmoking-related G→A transition 
[23]. KRAS mutations appear to be an early event in smoking-related lung adenocarcinoma, 
representing a poor prognosis in these patients. Another promising predictive markers in 
NSCLC are BRAF [24] and the oncogenic fusion gene of EML4-ALK [25]. BRAF, an effector 
molecule of RAS pathway, is mutated in about 2% of adenocarcinomas that does not show 
kras gene mutations. While eml4-alk is present in 2% to 7% of NSCLC cases; essentially, this 
fusion gene is present in young patients with adenocarcinoma and no exposure to smoking 
[26] (Figure 2). 

Some other molecules have been identified based on expression and genomic data such as 
MYC and Cyclin D1 which are amplified and over-expressed in 2.5–10% and 5% of NSCLC 
respectively, while BCL-2 over-expression is involved in 25% of cases of NSCLC [8,16]. 
Recent data have shown that methylation of the promoter regions of genes is a common 
event in NSCLC, which contributes to oncogenes over-expression or tumor genes 
suppressors silenced. These epigenetic changes may be an early event in NSCLC, since that 
promoter region of p16 gene is frequently methylated in smokers and premalignant lesion of 
lung cancer [27]. PI3K-AKT-mTOR pathway is altered in NSCLC. AKT overexpression has 
been described in a subgroup of NSCLC tumors jointly with mutations or amplification of 
PIK3CA gene. These genomic modifications are related with enhanced activity of PI3-K 
pathway mainly in squamous cell carcinoma tumors [28]. On the other hand, tissues of 
smoker patients show higher levels of angiogenic factors such as VEGF. VEGF expression 
increases in relationship with tumoral grade, which in turn, correlates with increased 
microvessel density, development and poor prognosis of lung cancer. Tumoral angiogenesis 
and angiogenic factors are regulated by hypoxic inductor factor (HIF) 1 and 2 or through 
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oncogenes as egfr, kras and p53 [29]. Genomics and proteomics tools have permitted the 
identification of molecules associated with a specific phenotype in cancer. Gene, microRNA 
and protein-expression signatures in lung cancer have allowed for the identification of 
molecules that show promise as biomarkers or therapeutic target for diagnosis, prognosis 
and therapeutic treatments [review 11,30]. The research focused on improving anti-tumor 
treatments in lung cancer has focused on genomic and proteomic study of tumors with 
specific genetic background, such as tumors with mutations in EGFR and KRAS. This 
molecular classification has had an influence on the response to biological therapies based 
on monoclonal antibodies (mAb) and tyrosine kinase inhibitors (TKIs) in lung cancer 
patients [15, 31-32], but now, we also know that the genetic background of lung tumors has 
an impact on the response to chemotherapy [33] and radiotherapy [34,35].  

 
Figure 2. EGFR pathway in NSCLC. Mutations, amplification or overexpression of growth factors 
receptors such as EGFR, HER-2 and C-MET are most frequent in NSCLC tumors from non-smokers 
patients. All these genetic alterations have been observed commonly in adenocarcinomas, women and 
Asiatic ethnicity. EML4/ALK fusion gene is associated to NSCLC from young and non-smokers 
patients. KRAS mutations and signaling pathway depending to KRAS are most frequent in smoker 
patients. PI3K signaling pathway modifications are most frequently observed in squamous cell 
carcinomas.  
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4. Molecular and radiology therapies in lung cancer  

4.1. Molecular therapy: Response and biological resistance 

EGFR exhibits overexpression or aberrant activation in 50 to 90% of NSCLC. Mutations in 
EGFR allow sustained activation of EGF signaling for tumor cell survival, therefore, has 
been development targeted inhibitors for this molecule [16]. mAbs target the extracellular 
domain of EGFR and small molecules that inhibit intracellular EGFR tyrosine kinase domain 
function. In 2004, a significant advancement in the treatment of NSCLC was made following 
the observation that somatic mutations in the kinase domain of EGFR strongly correlated 
with sensitivity to EGFR TKIs [31, 32]. EGFR mutations are particularly prevalent in a 
patient subgroups with specific characteristics as adenocarcinoma histology, women, never 
smokers, and East Asian ethnicity [36]. This subgroup shows an exquisite sensitivity and 
marked tumor response to TKIs treatment. Despites the results obtained with biological 
therapies, there is a group of patients who do not respond to molecular therapy. Moreover, 
there is another group of patients with EGFR mutant lung cancer who initially respond to 
TKI treatment, but subsequently develop disease progression after a median of 10 to 14 
months on treatment with biological therapy [37,38]. Hence, no optimal therapy thereafter 
has yet been established. Presumably, tumors do not respond because their molecular 
lesions are downstream of the therapeutic target [39]. Resistance to biologic therapy in 
NSCLC has been associated with EGFR exon-20 insertions [40] or a secondary T790M 
mutation [41], KRAS mutation [42], or amplification of the MET proto-oncogene [43,44], 
where MET is a transmembrane receptor with a tyrosine kinase domain, which activates 
signaling survival depending to PI3K and MAPK pathways. Of importance, Some reports 
showed that inhibition of MET signaling can restore sensitivity to TKIs [45]. HER-2 kinase 
domain mutations are associated with resistance to EGFR TKIs, but also with sensitivity to 
HER-2-targeted therapy [46]. 

Genomics data have provided information for developing targeted therapies in lung cancer 
patients based upon identification of cancer-specific vulnerabilities and set the stage for 
molecular biomarkers that provide information on clinical outcome and response to 
treatment. It has become clear that molecular-targeted cancer therapies can only reach their 
full potential through appropriate patient selection. In addition, there are now large clinical 
studies of lung cancer showing distinct chemotherapy and radiation responses. The majority 
of patients with lung cancer display advanced disease, these patients have obtained modest 
improvements in overall survival and quality of life through the use of systemic 
chemotherapy; however, the survival is still low, getting a median survival of 8 to 10 
months [1]. Once recurred or metastasized, the disease is essentially incurable with survival 
rates at 5 years of less than 5%, and this has improved only marginally during the past 25 
years [1]. The substantial genetic heterogeneity inherent to human cancers as an indicator of 
distinct phenotypes makes the identification of patients most likely to benefit from a given 
anticancer agent challenging. The description of molecules associated with resistance or 
sensitivity to cytotoxic treatments will improve personalized therapy for lung cancer. 
Radiotherapy, alone or in combination with surgery or chemotherapy, plays a critical role in 
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the management of lung cancer. More than 60% of lung cancer patients receive radiotherapy 
at least once during the course of their disease [47].  

4.2. Role of EGFR pathways in resistance and sensibility to radiotherapy  

NSCLC tumors exhibit a wide response spectrum to radiation therapy but the molecular 
basis for this responsiveness is unknown. Some patients with NSCLC have a good response 
to radiation therapy with long-term local control while others relapse even with high dose 
treatment [48]. Many factors are involved in biological process of lung damage induced by 
radiation. At the molecular level, it is established that ionizing radiation causes various 
types of cellular damage; the creation of DNA breaks represents the principal damage 
induced by direct action of ionizing radiation or indirect action provoked by reactive species 
oxygen (ROS). Inadequately repaired DNA breaks leads to loss of cell clonogenicity via the 
generation of lethal chromosomal aberrations or the direct induction of apoptosis [49]. In 
addition to DNA breaks, ROS rapidly triggers the production of cytokines, growth factors, 
and more ROS, ultimately leading to chronic oxidative stress, hypoxia and the nonhealing 
tissue response in the lung [50,51]. Tumor radioresistance, including intrinsic resistance 
before treatments and acquired resistance during radiotherapy, is one of the main obstacles 
for radiotherapy efficiency for NSCLC. Some of the most important mechanisms associated 
with radioresistance in cancer including checkpoint pathway, mismatch repair process, and 
DNA damage repair [52-54]. Accumulating evidence suggests that radioresistance is often 
correlated with some genes, such as p53 [55] and EGFR [56]. In this regard, targeting EGFR 
pathway activation radiosensitizes human cancer cells [57-59], suggesting that the presence 
of overexpressed or activated oncogenes such as EGFR or RAS may be a mechanism for 
increased cellular resistance to radiation. In some models, it has been demonstrated that 
EGFR/Ras/Raf/MEK/ERK signaling may be activated in response to radiation, promoting 
cancer cell survival and proliferation [52-54,60] (Figure 3). 

Variations in NSCLC responses to radiotherapy alone or in combination with chemotherapy 
or biological therapy are most likely due in the majority of cases to the genetic and 
epigenetic constitution of tumors [61,62]. In NSCLC, EGFR and KRAS oncogenes play an 
important role as prognostic factors; therefore, their role in radioresistance has been 
documented [63]. NSCLC cell lines harboring EGFR with mutations in tyrosine kinase 
domain were many folds more sensitive to radiation compared to cell lines with wild type 
EGFR. Radiosensitivity of NSCLC cell lines with mutant EGFR and human bronchial 
epithelial cells stably expressing mutant forms of EGFR was attributed to delayed DNA 
repair kinetics, defective radiation-induced arrest during DNA synthesis or mitosis, and 
pronounced increases in apoptosis or the occurrence of micronuclei [63]. Apparently, 
mutant EGFR is unable to translocate into the nucleus, which hinders its interaction with 
DNA-dependent protein kinase (DNA-PK), which is a fundamental enzyme for repair 
radiation-induced double strand breaks [63]. Besides of the promising role of mutant EGFR 
in radiosensitivity, the effort by blocking EGFR pathway to induce better response to 
radiotherapy has been limited. Inhibition of the EGFR by TKI or mAb, has been shown to  
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4. Molecular and radiology therapies in lung cancer  
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the management of lung cancer. More than 60% of lung cancer patients receive radiotherapy 
at least once during the course of their disease [47].  

4.2. Role of EGFR pathways in resistance and sensibility to radiotherapy  

NSCLC tumors exhibit a wide response spectrum to radiation therapy but the molecular 
basis for this responsiveness is unknown. Some patients with NSCLC have a good response 
to radiation therapy with long-term local control while others relapse even with high dose 
treatment [48]. Many factors are involved in biological process of lung damage induced by 
radiation. At the molecular level, it is established that ionizing radiation causes various 
types of cellular damage; the creation of DNA breaks represents the principal damage 
induced by direct action of ionizing radiation or indirect action provoked by reactive species 
oxygen (ROS). Inadequately repaired DNA breaks leads to loss of cell clonogenicity via the 
generation of lethal chromosomal aberrations or the direct induction of apoptosis [49]. In 
addition to DNA breaks, ROS rapidly triggers the production of cytokines, growth factors, 
and more ROS, ultimately leading to chronic oxidative stress, hypoxia and the nonhealing 
tissue response in the lung [50,51]. Tumor radioresistance, including intrinsic resistance 
before treatments and acquired resistance during radiotherapy, is one of the main obstacles 
for radiotherapy efficiency for NSCLC. Some of the most important mechanisms associated 
with radioresistance in cancer including checkpoint pathway, mismatch repair process, and 
DNA damage repair [52-54]. Accumulating evidence suggests that radioresistance is often 
correlated with some genes, such as p53 [55] and EGFR [56]. In this regard, targeting EGFR 
pathway activation radiosensitizes human cancer cells [57-59], suggesting that the presence 
of overexpressed or activated oncogenes such as EGFR or RAS may be a mechanism for 
increased cellular resistance to radiation. In some models, it has been demonstrated that 
EGFR/Ras/Raf/MEK/ERK signaling may be activated in response to radiation, promoting 
cancer cell survival and proliferation [52-54,60] (Figure 3). 

Variations in NSCLC responses to radiotherapy alone or in combination with chemotherapy 
or biological therapy are most likely due in the majority of cases to the genetic and 
epigenetic constitution of tumors [61,62]. In NSCLC, EGFR and KRAS oncogenes play an 
important role as prognostic factors; therefore, their role in radioresistance has been 
documented [63]. NSCLC cell lines harboring EGFR with mutations in tyrosine kinase 
domain were many folds more sensitive to radiation compared to cell lines with wild type 
EGFR. Radiosensitivity of NSCLC cell lines with mutant EGFR and human bronchial 
epithelial cells stably expressing mutant forms of EGFR was attributed to delayed DNA 
repair kinetics, defective radiation-induced arrest during DNA synthesis or mitosis, and 
pronounced increases in apoptosis or the occurrence of micronuclei [63]. Apparently, 
mutant EGFR is unable to translocate into the nucleus, which hinders its interaction with 
DNA-dependent protein kinase (DNA-PK), which is a fundamental enzyme for repair 
radiation-induced double strand breaks [63]. Besides of the promising role of mutant EGFR 
in radiosensitivity, the effort by blocking EGFR pathway to induce better response to 
radiotherapy has been limited. Inhibition of the EGFR by TKI or mAb, has been shown to  
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Figure 3. Role of EGFR pathway in radioresistance and radiosensibility in NSCLC. Aberrantly 
activation of EGFR pathways, including receptor mutations, KRAS activation, PI3K/AKT/mTOR 
pathway activation allows expression of specific genes for to regulate apoptosis, DNA repair, cell cycle 
and cell proliferation in order to get resistance to radiation.  

radiosensitize a limited number of NSCLC cell lines in vitro and in vivo [34,35,63-65]. In 
NSCLC cell lines with wild-type or mutant p53, cell proliferation and clonogenic survival 
could be disturbed by senescence induced by EGFR inhibition and double strand breaks 
(DSB) produced by radiation. Apparently, radiosensitization by EGFR inhibitors is due to an 
increase in the levels of non-repairable DSB and disturbance of the MEK-ERK pathway [66]. 
Although a variety of signaling pathways downstream of EGFR have been implicated in 
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radioresistance, including PI3K-AKT, MEK-ERK, and PLC-PKC [67-69], no evidence of a 
common molecular pathway of radiosensitization, and cellular mechanisms by which EGFR 
TKI and mAb may cause radiosensitization remained largely elusive. Activating KRAS 
mutations is a marker for worse prognosis in NSCLC [23, 26]. Sun et al. evaluated whether 
the presence of mutation could be a potential factor for radioresistance. The results showed 
a reduced level of apoptosis in response to radiation in lung cancer cell line HCC2429 
transfected with mutant KRAS 12V (mutation in codon 12). The authors suggested that 
phosphorylation of ERK could contribute to the low levels of apoptosis induced by 
radiotherapy in mutated KRAS lung cancer cells. This work suggests that KRAS mutation 
status is one potential factor associated with increased resistance to radiation-induced 
apoptosis in lung cancer cells [70]. The same group has recently shown that the specific 
inhibition of JAK2 by the novel molecule TG101209, induces radiosensibility through 
inhibition of phosphorylation of STAT3 and reduced expression of survivin in HCC2429 
lung cancer cells. Moreover, the inhibition of survivin by treatment with TG101209 in 
experiments in vivo, was related to increased apoptosis, reducing tumor proliferation and 
vascular density [70]. Lu et al. demonstrated that overexpression of survivin leads to 
radioresistance in H460 lung cancer cells by inhibiting apoptosis and promoting cell 
survival, however, when survivin is inhibited by antisense oligonucleotides the cytotoxic 
effect of radiation is enhanced [71]. These results suggested that survivin might be a 
molecular marker for prognostic response to radiotherapy in NSCLC. While inhibition of 
survivin expression in HCC2429 and H460 cells were related to radiosensibility, both cell 
lines showed different apoptosis levels which were related to radioresistance depending on 
KRAS mutation status.  

5. Lung cancer radiogenomics 

Radiotherapy has played a key role in the control of tumor growth in many cancer patients, 
including lung cancer. Studies that originated more than 40 years ago [72,73] have indicated 
that tumors respond to radiotherapy by initiating a process called accelerated repopulation. 
In this process, the few surviving cells that escaped death after exposure to radiotherapy or 
chemotherapy can rapidly repopulate the badly damaged tumor by proliferating at a 
markedly faster pace. This phenomenon suggested that tumoral heterogeneity permits a cell 
population in the tumor to have advantages to avoid cell death induced by radiation. 
Cellular senescence, DNA repair and cell cycle checkpoint are cellular mechanisms that 
influence the resistance to radiotherapy. However, the molecular mechanisms that regulate 
the radioresistance phenotype have not been clear in cancer. For this reason, some research 
groups have focused in the study of biological models to obtain genomic and proteomic 
signatures in order to find genes and proteins that could predict radiosensitivity or 
radioresistance in lung tumors (Table 1). Although such researches have contributed to a 
partial understanding of the mechanisms underlying cellular radioresistance, the 
comprehensive functional mechanisms remain largely elusive. This may be quite reasonable 
since the mechanisms of radioresistance are a complex multigene interaction. In this sense, 
Torres-Roca et al. [74] in 2005, hypothesized that a radiation sensitivity classifier or predictor 
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radioresistance, including PI3K-AKT, MEK-ERK, and PLC-PKC [67-69], no evidence of a 
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the presence of mutation could be a potential factor for radioresistance. The results showed 
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lung cancer cells. Moreover, the inhibition of survivin by treatment with TG101209 in 
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vascular density [70]. Lu et al. demonstrated that overexpression of survivin leads to 
radioresistance in H460 lung cancer cells by inhibiting apoptosis and promoting cell 
survival, however, when survivin is inhibited by antisense oligonucleotides the cytotoxic 
effect of radiation is enhanced [71]. These results suggested that survivin might be a 
molecular marker for prognostic response to radiotherapy in NSCLC. While inhibition of 
survivin expression in HCC2429 and H460 cells were related to radiosensibility, both cell 
lines showed different apoptosis levels which were related to radioresistance depending on 
KRAS mutation status.  
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Radiotherapy has played a key role in the control of tumor growth in many cancer patients, 
including lung cancer. Studies that originated more than 40 years ago [72,73] have indicated 
that tumors respond to radiotherapy by initiating a process called accelerated repopulation. 
In this process, the few surviving cells that escaped death after exposure to radiotherapy or 
chemotherapy can rapidly repopulate the badly damaged tumor by proliferating at a 
markedly faster pace. This phenomenon suggested that tumoral heterogeneity permits a cell 
population in the tumor to have advantages to avoid cell death induced by radiation. 
Cellular senescence, DNA repair and cell cycle checkpoint are cellular mechanisms that 
influence the resistance to radiotherapy. However, the molecular mechanisms that regulate 
the radioresistance phenotype have not been clear in cancer. For this reason, some research 
groups have focused in the study of biological models to obtain genomic and proteomic 
signatures in order to find genes and proteins that could predict radiosensitivity or 
radioresistance in lung tumors (Table 1). Although such researches have contributed to a 
partial understanding of the mechanisms underlying cellular radioresistance, the 
comprehensive functional mechanisms remain largely elusive. This may be quite reasonable 
since the mechanisms of radioresistance are a complex multigene interaction. In this sense, 
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could be developed based on gene expression profiles derived from DNA microarrays. This 
hypothesis was based in the fact of three main biological mechanisms partially correlated 
with clinical failure to radiotherapy, which are: hypoxia, intrinsic radiosensitivity and 
proliferation. These mechanisms, in turn, are handled by changes in gene expression. 
 

Radiosensibility

c-Jun* [75] 
HDAC-1  
RELA (p65 subunit NFkB  
PKC-beta  
Sumo1  
c-Ab1  
STAT1  
AR  
CDK1  
IRF1  
Innate Radioresistance
Up-regulated in basal condition [76] 
XRCC5  
ERCC5  
ERCC1  
RAD9A  
ERCC4  
Up-regulated after radiation [76] 
MDM2*  
BCL-2  
PKC-2  
PIM2   
Acquired Radioresistance 
Up-regulated [77] 
DDB2  
LOX  
CDH2  
CR4AB  
Livin * [79] 
Down-regulated [77] 
GBP-1  
CD83  
TNNC1  
TP53I3* [78] 

* Validated genes 

Table 1. Genes associated to radiation response in NSCLC from genomics data  

 
Biomarkers in Lung Cancer: Integration with Radiogenomics Data 

 

59 

The authors developed a radiation classifier to calculate the radiosensitivity of tumor cell 
lines based on basal gene expression profiles obtained from the literature. They predicted 
the survival fraction to 2 Gy (SF2) value in 22 of 35 cell lines from the National Cancer 
Institute, a result significantly different from chance (P = 0.0002). In their approach, radiation 
sensitivity as a continuous variable, significance analysis of microarrays is used for gene 
selection, and a multivariate linear regression model is used for radiosensitivity prediction. 
In gene selection, they identified three novel genes: RbAp48, RGS19, and R5PIA, whose 
expression values correlated with radiation sensitivity. Exogenous overexpression of 
RbAp48 into three cancer cell lines (HS-578T, MALME-3M, and MDA-MB-231) induced 
radiosensitization (1.5- to 2-fold), moreover, higher proportion of transfected cells with 
RbAp48 were in G2-M phase of the cell cycle (27% versus 5%). Finally, RbAp48 
overexpression is correlated with dephosphorylation of Akt, suggesting that RbAp48 might 
be exerting its effect radiosensitized by antagonizing the Ras pathway, but it could also do 
so through PI3K. The authors establish that radiation sensitivity can be predicted based on 
gene expression profiles and they introduce a genomic approach to the identification of 
novel molecular markers of radiation sensitivity. Despite of results in different tumor cell 
lines, this work included only four NSCLC cell lines and they were able to predict correct 
SF2 values for only two of them [74]. So, the study should be performed on a broader panel 
of NSCLC cell lines. In lung cancer, multiple studies have identified a wide array of genetic 
and epigenetic alterations, including mutations in DNA sequence, DNA copy number 
changes, aberrant DNA promoter methylation, changes in mRNA, microRNAs and protein 
expression [8], revealing many potential determinants and signaling pathways governing 
lung tumorigenesis and progression. Gene expression profiling analysis allows for an 
increase in the understanding of the molecular mechanisms and pathways that involve 
radioresistance. Thus, the strategy followed by Torres-Roca and collaborators can be applied 
to gene expression data reported in lung cancer, in order to identify new molecular targets 
for radiotherapy response. In this sense, we know that the response of tumor cells to 
radiation is accompanied by complex changes in the gene expression pattern. Based on 
mRNA expression profiles and systems-biology approach, Eschrich et al. [75] applied a 
linear regression algorithm that integrates gene expression with biological variables, 
including RAS and p53 status (mut/wt), and tissue of origin, with the aim of understanding 
radiosensitivity and identifying radiation specific markers. The modeling of radiosensitivity 
represented for the survival fraction at 2 Gy of 48 human cancer cell lines reported a direct 
correlation between gene expression and radiosensitivity of the lung cancer cell lines. The 
authors developed a model that classified four different clusters of genes that were markers 
for radiosensitivity. They identified 10 gene networks comprised by c-Jun, HDAC1, RELA 
(p65 subunit of NFKB), PKC-beta, SUMO-1, c-Abl, STAT1, AR, CDK1 and IRF1. 
Interestingly, RAS was a dominant variable in the analysis, as was the tissue of origin (lung), 
and their interaction with gene expression but not with p53. Moreover, when they knocked-
down c-Jun in eight different cancer cell lines (lung, colon and breast cancer) there was an 
overall trend toward radioresistance, predominantly in lung cancers, but not in breast or 
colon cancers, implying that the origin of the tissue was important [75]. 
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The authors developed a radiation classifier to calculate the radiosensitivity of tumor cell 
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expression values correlated with radiation sensitivity. Exogenous overexpression of 
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radiosensitization (1.5- to 2-fold), moreover, higher proportion of transfected cells with 
RbAp48 were in G2-M phase of the cell cycle (27% versus 5%). Finally, RbAp48 
overexpression is correlated with dephosphorylation of Akt, suggesting that RbAp48 might 
be exerting its effect radiosensitized by antagonizing the Ras pathway, but it could also do 
so through PI3K. The authors establish that radiation sensitivity can be predicted based on 
gene expression profiles and they introduce a genomic approach to the identification of 
novel molecular markers of radiation sensitivity. Despite of results in different tumor cell 
lines, this work included only four NSCLC cell lines and they were able to predict correct 
SF2 values for only two of them [74]. So, the study should be performed on a broader panel 
of NSCLC cell lines. In lung cancer, multiple studies have identified a wide array of genetic 
and epigenetic alterations, including mutations in DNA sequence, DNA copy number 
changes, aberrant DNA promoter methylation, changes in mRNA, microRNAs and protein 
expression [8], revealing many potential determinants and signaling pathways governing 
lung tumorigenesis and progression. Gene expression profiling analysis allows for an 
increase in the understanding of the molecular mechanisms and pathways that involve 
radioresistance. Thus, the strategy followed by Torres-Roca and collaborators can be applied 
to gene expression data reported in lung cancer, in order to identify new molecular targets 
for radiotherapy response. In this sense, we know that the response of tumor cells to 
radiation is accompanied by complex changes in the gene expression pattern. Based on 
mRNA expression profiles and systems-biology approach, Eschrich et al. [75] applied a 
linear regression algorithm that integrates gene expression with biological variables, 
including RAS and p53 status (mut/wt), and tissue of origin, with the aim of understanding 
radiosensitivity and identifying radiation specific markers. The modeling of radiosensitivity 
represented for the survival fraction at 2 Gy of 48 human cancer cell lines reported a direct 
correlation between gene expression and radiosensitivity of the lung cancer cell lines. The 
authors developed a model that classified four different clusters of genes that were markers 
for radiosensitivity. They identified 10 gene networks comprised by c-Jun, HDAC1, RELA 
(p65 subunit of NFKB), PKC-beta, SUMO-1, c-Abl, STAT1, AR, CDK1 and IRF1. 
Interestingly, RAS was a dominant variable in the analysis, as was the tissue of origin (lung), 
and their interaction with gene expression but not with p53. Moreover, when they knocked-
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A problem in radiogenomics research is the difficulty to determine what fraction of the 
tumor cell population is radioresistant after a course of radiotherapy. For understand the 
radiation-mediated changes in gene expression that might result in different responses to 
radiation, Guo W et al. in 2005 [76] designed an oligonucleotide microarray to analyze the 
expression of 143 genes in lung cancer cell lines that differed in radiosensitivity. In the 
radioresistant A549 cells, 8 genes were significantly up-regulated and 10 genes were down-
regulated compared to radiosensitivity NCI-H446 cells. When the lung cancer cell lines were 
irradiated with 5Gy of  rays, they identified genes showing altered expression and potential 
candidate genes that might confer radioresistance. In A549 cells, 19 up-regulated and 3 
down-regulated genes, and 8 up-regulated and 18 down-regulated genes were found 6 and 
24 h after irradiation, respectively. In NCI-H446 cells, the expression of 9 up-regulated and 8 
down-regulated genes, and 8 up-regulated and 12 down-regulated genes was altered 6 and 
24 h after irradiation, respectively. They found that MDM2, BCL2, PKCZ and PIM2 
expression levels were increased in A549 cells and decreased in NCI-H446 cells after 
irradiation. Whereas, XRCC5, ERCC5, ERCC1, RAD9A, ERCC4 and the gene encoding 
DNA-PK were found to be increased to a higher level in A549 cells than in NCI-H446 cells. 
Inhibition of MDM2 by an antisense oligonucleotide in A549 cells resulted in increased 
radiosensitivity. The authors demonstrate the possibility that a group of genes involved in 
DNA repair, regulation of the cell cycle, cell proliferation and apoptosis are responsible for 
the different endogenous radioresistance between these two lung cancer cell lines [76]. To 
continue searching for new molecular evidences for radioresistance, Qing-Yong et al. in 2008 
identified gene expression profiles in lung adenocarcinoma cell line Anip973 and obtained 
radioresistant phenotype cells (Anip973R). Expression profiles were obtained by 
oligonucleotide microarrays consisting of 21,522 human genes, while radioresistant cells 
Anip973R were obtained by fractionated ionizing radiation treatment of 4 Gy until a total 
dose of 60 Gy. In Anip973R cells, the authors reported 59 up-regulated genes associated 
with DNA damage repair (DDB2), extracellular matrix (LOX), cell adhesion (CDH2), and 
apoptosis (CRYAB); and 43 down-regulated genes associated with angiogenesis (GBP-1), 
immune response (CD83), and calcium signaling pathway (TNNC1). Validation of the 
selected eleven genes, including CD24, DDB2, IGFBP3, LOX, CDH2, CRYAB, PROCR, 
ANXA1 DCN, GBP-1 and CD83 by Q-RT-PCR was consistent with microarray analysis [77]. 
In 2010, Lee et al.. analyzed expression profiles of H460 NSCLC radiosensitive cell lines and 
their radioresistant counterpart (H460R) cells established by fractionated irradiation. By 
utilizing a cDNA microarray, they identified 1,463 genes altered more than 1.5-fold in 
H460R compared with parental H460. Tumor protein p53-inducible protein 3 (TP53I3) gene 
was significantly down-regulated in radioresistant H460R cells predicting a link to p53-
dependent cell death signaling. Interestingly, mRNA expression of TP53I3 differed in X-ray–
irradiated H460 and H460R cells, and overexpression of TP53I3 significantly affected the 
cellular radiosensitivity of H460R cells [78]. These works showed that fractionated ionizing 
radiation can lead to the development of acquired radiation resistance across altered gene 
profiles. Genomic profile using in vivo models of radioresistance may provide new insights 
into mechanisms underlying the promotion of clinical resistance for NSCLC. Some other  
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researches have been focused in describing specific molecules that revert the radioresistant 
phenotype. It is well known that there is a large amount of cell death during cytotoxic 
cancer therapy such as radiotherapy; therefore, radioresistance is associated with 
deregulation of apoptosis proteins. Sun et al. in 2011 reported the role of livin in 
radioresistance of lung adenocarcinomas cell lines A549 and SPC-A1. Livin is a IAPs family 
member whose expression is related with apoptosis inhibition, in some studies, it has been 
suggested that livin may be of clinical significance [79]. This work showed that A549 lung 
adenocarcinoma cells do not express livin in basal condition, but it is expressed after cells were 
irradiated. Moreover, gene silencing of livin by siRNA in SPC-A1 lung cell line induced a 
remarkable sensibility to radiation. Additionally, the authors showed that the isoform livin  
had more impact on radioresistance that livin  had. These results suggested that livin 
expression in lung adenocarcinoma cells could be a radioresistance mechanism through down-
regulation of apoptosis. The cytotoxicity of oncological therapies is highly dependent on the 
cell cycle phase. G2/M phase is the one most sensitive to ionizing radiation. A work published 
in 2010 determined that arresting time on G2/M cell cycle phase is different between NSCLC 
cell lines sensitive and resistance to ionizing radiation. Radiosensitive H460 NSCLC cell line 
showed a significant G2/M arrest after 12 h of irradiation with 5 Gy of  rays, while 
radioresistant A549 cell lines showed a significant G2/M arrest after 12 h of radiation. 
Interestingly, the arrest in A549 completely disappeared after 24 h of radiation. The arrest on 
G2/M correlated with higher methylated CpG sites of PTEN gene and consequently, reducing 
expression of the protein. PTEN negatively regulate pAKT which regulate negatively to p53. 
Therefore, radioresistance of A549 may depend to over activation of p53 signaling pathways. 
Epigenetic gene modification may be a way for regulating genes that participate in radiation 
response [80]. Signal transduction pathways depending to STAT have been explored. In A549 
and SK-MES-1 cells, the exogenous over-expression of STAT3 was evaluated for its role in 
radioresponse. STAT3 over-expression enhanced the sensitivity to ionizing radiation in vitro 
and in vivo. Apparently, the radiosensibility may induce through STAT3-dependent inhibition 
of growth and induction of apoptosis [81]. These works showed that the regulation of 
signaling molecules that control apoptosis, cell growth and cell cycle has an important role in 
positive or negative radiation response. 

6. Proteomics of radiation response in lung cancer  

Despite proteomics being useful to find molecular markers associated to lung cancer cells 
[82], in radiation resistance research there are very few studies focused on applying 
proteomics to find new markers associated to radiotherapy response in lung cancer. 
Recently, Wei R et al. [83] in 2012 evaluated the multidrug resistance (MDR) effect on the 
radioresistance (RDR) in human lung adenocarcinoma cell lines and tissues. In this work, 
the authors screen MDR- and RDR-related proteins after irradiation of A549 and A549/DDP 
(resistant to cisplatin) human lung adenocarcinoma cells. The cell lines were analyzed by 
colony-forming assay and flow cytometry. Two-dimensional electrophoresis (2-DE) and 
matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-
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TOF–MS) were utilized to identify differentially expressed proteins between irradiated 
A549 and A549/DDP. The SF2 value increased and the mean percentage of G2 phase and 
apoptosis rate decreased significantly in A549/DDP cells compared with A549 cells. Forty 
spots were found, and among them, 27 were identified through proteomics. Four up-
regulated proteins (HSPB1, Vimentin, Cofilin-1, and Annexin A4) were confirmed by 
Western blot in MDR cells as compared with non-MDR cells. Immunohistochemistry 
showed that they were also over-expressed in MDR tissues compared with non-MDR 
counterparts of human lung adenocarcinomas. These results proved that the MDR in lung 
adenocarcinoma cells and tissues increased the radioresistance. HSPB1, Vimentin, Cofilin-
1, and Annexin A4 are potential biomarkers for predicting lung adenocarcinomas 
response to chemo- and radiotherapy, as well as novel targets for treatment of lung 
adenocarcinomas [83]. 

7. Conclusion 

One of the most important problems in lung oncology is lack of suitable biomarkers as 
therapeutic targets or the absence of predictors of therapy response. The genetic 
heterogeneity of the lung tumors influences the initial molecular resistance to therapies, but 
also in the development of resistance during treatment. The molecular mechanisms that 
influence the resistance to biological or radiological treatments, referring to the resistance 
mechanisms occurring naturally because of the carcinogenic process, or those developing as 
a result of evolutionary pressure that tumor cells undergoing during the treatment 
administration, is a barrier that has not been fully elucidated. With current genomics and 
proteomics studies in lung cancer focused on solving the mystery of therapeutic resistance, 
it has been possible to identify molecules that may serve as prognostic markers of response 
to radiological and molecular therapy resistance. Genes and proteins that regulate cell 
proliferation and survival, including signaling molecules and transcription factors such as 
KRAS, BRAF, PI3K, MAPK, mTOR, JAK2, STAT, survivin and others have demonstrated to 
be part of the molecular machinery that regulates therapeutic resistance. Moreover, gene 
and protein expression profiling of lung cancer has focused specifically on searching 
predictive markers to radiotherapy. Some studies have generated data on molecules 
involved in radioresistance or radiosensitivity either natural or acquired. Using 
therapeutic doses of radiation in in vitro models, it have described proteins implicated in 
DNA repair, cell cycle checkpoint and cell death. Mutations in EGFR pathway have 
played an important role as therapeutic targets for development of new therapies, 
moreover, mutations in this pathway represent a mechanism of radioresistance, 
suggesting that aberrant activation of EGFR pathway, including activated mutations in 
EGFR and KRAS might be an innate radioresistance mechanism in NSCLC. Despite 
advances in proteomics and radiogenomics in lung cancer, an enormous need to 
implement in vivo and clinical models for identification of effective biomarkers predictive 
in radio-oncology has also became evident. This is currently a promising field of cancer 
research in which genomics, tumor molecular biology and clinical experience interact to 
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achieve more effective combination therapies adjusted to the patient profile. 
Understanding the mechanisms of radioresistance of cells from solid tumors is of prime 
importance for further improvement of radiotherapy. 
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1. Introduction 

Cancer is a complex group of diseases characterized by the presence of cells with 
uncontrolled growth, and high proliferation capacity. The complexity of cancer properties 
was outlined as the “hallmarks of cancer” a decade ago by Hanahan and Weinberg [1], and 
it comprises six alterations in cell physiology that dictate malignant growth including: (i) 
self-sufficiency in growth signals and uncontrolled growth of cells; (ii) insensitivity to anti-
growth signals; (iii) evasion of apoptosis; 4 (iv) limitless replicative potential; (v) sustained 
angiogenesis; and (vi) acquisition of invasive properties to adjacent tissues and organs [1, 2]. 
These processes are regulated by protein-encoding genes whose expression switches-on or -
off during development and in response to cellular environment. Altered versions of the 
genes (tumor-suppressor genes and proto-oncogenes) which control the normal cellular 
processes arise from mutations, or expression deregulation in a multistep process resulting 
in cancer [3]. At the end of the transformation process, the malignant cells acquire growth 
independence, invasiveness and resistance to senescence and apoptosis. The acquired 
capabilities of cells to metastasize to other tissues and organs represent the most deadly 
hallmark of cancer [4-6]. 

Recently it has been noted that the level of complexity in the mechanisms leading to 
tumorigenesis has increased as new molecular players in cancer have been identified. 
Particularly, it has been reported that an abundant class of small non-coding single-stranded 
RNAs of ~22 nucleotides including microRNAs, and long non-coding RNAs may have 
relevant roles in cancer. It has been well documented that the expression of microRNAs is 
strongly deregulated in almost all human malignancies. Functional characterization of these 
aberrantly expressed microRNAs indicates that they might also function as oncogenes and 
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1. Introduction 

Cancer is a complex group of diseases characterized by the presence of cells with 
uncontrolled growth, and high proliferation capacity. The complexity of cancer properties 
was outlined as the “hallmarks of cancer” a decade ago by Hanahan and Weinberg [1], and 
it comprises six alterations in cell physiology that dictate malignant growth including: (i) 
self-sufficiency in growth signals and uncontrolled growth of cells; (ii) insensitivity to anti-
growth signals; (iii) evasion of apoptosis; 4 (iv) limitless replicative potential; (v) sustained 
angiogenesis; and (vi) acquisition of invasive properties to adjacent tissues and organs [1, 2]. 
These processes are regulated by protein-encoding genes whose expression switches-on or -
off during development and in response to cellular environment. Altered versions of the 
genes (tumor-suppressor genes and proto-oncogenes) which control the normal cellular 
processes arise from mutations, or expression deregulation in a multistep process resulting 
in cancer [3]. At the end of the transformation process, the malignant cells acquire growth 
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capabilities of cells to metastasize to other tissues and organs represent the most deadly 
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Recently it has been noted that the level of complexity in the mechanisms leading to 
tumorigenesis has increased as new molecular players in cancer have been identified. 
Particularly, it has been reported that an abundant class of small non-coding single-stranded 
RNAs of ~22 nucleotides including microRNAs, and long non-coding RNAs may have 
relevant roles in cancer. It has been well documented that the expression of microRNAs is 
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© 2013 López-Camarillo et al., licensee InTech. This is a paper distributed under the terms of the Creative 
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



Oncogenomics and Cancer Proteomics –  
Novel Approaches in Biomarkers Discovery and Therapeutic Targets in Cancer 72 

tumor suppressors, thus they have been collectively named as “oncomiRs” [5]. Deregulation 
of microRNAs expression strongly alters key events leading to cancer, including 
differentiation, proliferation, apoptosis, migration, invasion and metastasis, and 
chemotherapy resistance. In consequence, the identification of deregulated microRNAs in 
cancer and their respective targets may provide potential diagnostic and prognostic tumor 
biomarkers and represent new therapeutic targets for cancer therapy. 

2. MicroRNAs biogenesis  

MicroRNAs are a class of small non-coding single-stranded RNAs around 21-23 nucleotides 
length which inhibit gene expression through transcriptional repression and degradation of 
protein-coding messenger RNAs, in animals, plants and unicellular eukaryotes [7, 8]. The 
process of microRNAs biosynthesis involves a transcription of hairpin-shaped long transcripts 
generated by RNA polymerase II (RNA pol II), followed by the endonucleolytic cleavage, 
mediated by two type III ribonucleases enzymes (RNAse III) known as Drosha (in nuclei) and 
Dicer (in cytoplasm). The first microRNA (lin-4) was discovered in 1993 in the nematode 
Caenorhabditis elegans. Since it has been estimated the existence of around 17,341 mature 
microRNAs in 142 species and it has been estimated 1,223 human microRNAs by 
computational predictions [9, 10]. Analysis of complete genomes sequences from diverse 
species indicates that most microRNAs genes are located in intergenic non-coding regions, 
but they are also found within exonic or intronic regions in either sense or antisense 
orientation and are independently transcribed from their own promoters. The microRNAs 
localized within introns of protein-encoding or -non-encoding genes (pseudo-genes) have 
been denominated “mirtrons” [11]. These mirtrons are co-transcribed with their host genes. 
MicroRNAs genes can be grouped into families by their sequence similarity and function, 
and they can be localized as single units or grouped in clusters in the genome. It has been 
estimated that a single microRNA can negatively regulate hundreds or even thousands of 
target genes indicating that about 30% of human genes could be regulated by microRNAs 
[12]. However, the functions and cellular targets of most of microRNAs remain to be 
determined. 

The first step in canonical microRNAs biogenesis pathway in animals begins with the 
transcription of the microRNA gene by the RNA pol II producing a long primary transcript 
denominated as primary miRNA (pri-miRNA). Clustered microRNAs might be transcribed 
from a single transcription unit as a polycistronic pri-miRNA. Primary microRNAs contain 
both 5′-cap structure (7MGpppG) as well as 3′-end polyadenylated tails [13]. After the 
synthesis of pri-miRNA, the molecule is folded itself into a specific secondary structure of 
stem-loop that is recognized and cleaved by the microprocessor complex comprised of the 
RNAse III enzyme Drosha and the DiGeorge syndrome critical region protein 8 (DGCR8). 
The DGCR8 protein interacts with the pri-miRNA and function as a molecular driver to 
determine the precise cleavage site. After cleavage of primary microRNA a molecule of 70-
100 nucleotides length with a stem-loop structure called precursor microRNA (pre-
microRNA) is produced [14, 15]. This post-transcriptional maturation of microRNAs 
precursors is regulated in response to diverse cellular stimuli. In non-canonical microRNAs 
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biogenesis pathway, mirtrons are produced without the intervention of the microprocessor 
complex. Like canonical microRNAs, these ‘‘mirtrons’’ are encoded within short stem–loop 
structures. However, these stem–loops are located within short introns of protein-coding 
genes, which are released upon pre-mRNA splicing mechanism [16]. The pre-miRNA 
excised by splicing exhibits a lariat intron form which is subsequently linearized by the 
debranching enzyme DBR1. Today, it has been described in humans about 13 different 
mirtrons [17]. These pre-microRNAs are transported to cytoplasm by exportin 5 and Ran-
GTP. Pre-miRNAs present a short stem plus a ~2-nt 3′ overhang, which is recognized by the 
nuclear export factor exportin 5 (Figure 1).  

Once in the cytoplasm the pre-miRNAs are processed by DICER enzyme (dicing process), 
another RNAse III enzyme, which together with the dsRNA-binding protein TRBP2 cuts out 
of the loop and generates an imperfect double stranded RNA formed by the guide (miRNA) 
and transient strand (miRNA*) which is degraded by AGO2. However, it has been recently 
established that miRNA* strand is also functional. Subsequently, TRBP2 recruits the protein 
Argonaut 2 (AGO2) to the complex microRNA/DICER forming the silencing complex induced 
by RNA (RISC), which preferentially includes the mature single-stranded miRNA molecule 
and AGO proteins (AGO2-4), acting as guiding molecules to deliver the complex to target 
mRNA[18]. The mature microRNA then hybridizes to nearly complementary sites in the 3′ 
untranslated region (3′-UTR) of mRNA targets. Negative gene expression regulation mediated 
by microRNAs depends on the degree of complementarity between the microRNA and its 
target mRNA. Translational repression of transcripts is driven when microRNA binds to target 
with imperfect complementarity. This imperfect miRNA:miRNA interaction means that a 
single microRNA can potentially target tens to hundreds of mRNAs. When microRNAs binds 
to its mRNA targets with a high complementarity, the degradation of the messenger is 
induced [19]. Notably, the microRNAs mediated-decay of mRNA targets is initiated by 
shortening of poly(A+) transcripts by the canonical deadenylation machinery that includes the 
CAF1 deadenylase.  

Importantly, translation repression and/or degradation of mRNA targets by microRNAs 
occurs in cytoplasmic foci denoted as mRNA processing bodies (P-bodies) which are 
enriched in mRNA decay factors and pools of stored messenger ribonucleoproteins [20]. P-
bodies are mRNA processing centers within which non-translating transcripts are sorted 
and either silenced or degraded. Although the protein inventory of P-bodies has not been 
defined in detail, around 25 different factors have been detected within these cytoplasmic 
foci. The P-bodies observed in yeast, insect, nematode and mammalian cells have critical 
roles in mRNA degradation, mRNA storage, mRNA surveillance and RNA-based gene 
silencing mechanisms [21]. Moreover, it has been demonstrated that P-bodies have high 
concentration of target transcripts and the AGO2, DICER, and GW182 proteins involved in 
RNA interference by microRNAs and small interfering RNAs [22, 23]. 

Although the main function of microRNAs is the gene regulation at the post-transcriptional 
level, it has been observed that microRNAs can also activate or repress gene expression at 
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tumor suppressors, thus they have been collectively named as “oncomiRs” [5]. Deregulation 
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target genes indicating that about 30% of human genes could be regulated by microRNAs 
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both 5′-cap structure (7MGpppG) as well as 3′-end polyadenylated tails [13]. After the 
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The DGCR8 protein interacts with the pri-miRNA and function as a molecular driver to 
determine the precise cleavage site. After cleavage of primary microRNA a molecule of 70-
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transcriptional level. Recently, it has been evidenced that mature microRNAs may also be 
localized in nucleus, through a specific hexanucleotide (AGUGUU) sequence which acts as a 
transferable nuclear localization element [24]. An example of this is the positive regulatory 
effect on transcriptional level of mir-122 in liver cells [25]. Moreover, it has been shown that 
vesicles of endocytic origin known as exosomes may contain both mRNA and microRNAs, 
which can be delivered to adjacent cells, and can be functional therein. These novel RNA 
molecules are known as exosomal shuttle RNAs as they mediate exchange of microRNAs 
with other cells which represents a exciting mechanism of genetic exchange [26]. 

 

 
Figure 1. MicroRNAs biogenesis in mammals. The activation of microRNAs transcription by 
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activating type I receptors, which in turn activate R-Smads receptors and Smad signaling is depicted. 
MicroRNAs are transcribed by RNA Pol II in nuclei to generate the primary microRNA (pri-miRNA). 
These large non-coding RNAs are processed by the endoribonuclease Drosha and DGCR8 proteins 
(microprocessor complex) to produce the precursor microRNA (pre-miRNA). Mirtrons are alternatively 
produced during splicing of introns of messenger RNAs. Then, pre-miRNA is exported to cytoplasm by 
exportin 5/Ran-GTP system. In cytosol, pre-miRNA is processed by Dicer and TRBP2 complex to generate 
the mature microRNA which then binds to Argonaute family of proteins (AGO1-4) forming the RNA 
induced silencing complex (RISC). Finally, microRNAs may either inhibit the translation of mRNA or 
promote mRNA degradation. These events occur in discrete cytoplasmic structures denoted as P-bodies.  
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2.1. Regulation of microRNAs biogenesis 

The biosynthesis of the microRNAs can be regulated at different levels. It has been defined 
that microRNAs are transcribed by RNA pol II. Primary transcripts present the same 
characteristics of the mRNAs, including 7-methylguanylate cap structure at the 5’-end, and 
poly (A) tail at the 3’-end. The majority of DNA-binding elements and transcription factors 
binding sites in microRNAs promoters largely overlap with those that control protein-
coding genes, such as c-myc or p53. On the other hand, transcription of primary miRNA 
transcripts can be dynamically regulated in response to growth factor stimulation, including 
platelet-derived growth factor (PDGF), transforming growth factor beta (TGF-β) and Smad 
[27]. Epigenetic control of microRNAs expression is another regulation level which includes 
DNA methylation and histones modifications. For example, the expression of miRNA-127 is 
reduced due to promoter hypermethylation in bladder cancer [28]. Another example is the 
regulation of miRNA-1 by inhibition of histone deacetylase (HDAC) enzyme in breast and 
lung cancers [29]. In addition, it has been reported that mutations in genes coding for 
Drosha and Dicer occurs in a variety of cancers. 

3. MicroRNAs and cancer: OncomiRs 

Deregulation of microRNAs expression is common in all types of human cancer. Early 
studies showed a differential microRNAs expression profiles between tumors and normal 
tissues [30-32]. Moreover, alterations in microRNAs expression correlate with severity of 
disease, as they regulate key transcripts involved in initiation and progression of tumors. 
However, these observations does not imply that deregulated microRNAs are directly 
involved in tumor development and progression, as they could be indirectly altered by the 
genetic and epigenomic changes that arise during carcinogenesis. MicroRNAs can act as 
truly oncogenes or tumor suppressors to inhibit or exacerbate the expression of cancer-
related target genes, and to promote or suppress tumorigenesis, thus they have been 
denominated as oncomiRs [33]. Those microRNAs whose expression is increased in tumors 
may be considered as oncogenes, as they usually promote tumor development by inhibiting 
tumor suppressor genes and/or genes that control cell cycle, cell differentiation and 
apoptosis [34]. Contrarily, when the expression of microRNAs is diminished in cancer cells, 
they are considered as tumor suppressor genes. Tumor suppressor microRNAs usually 
prevent tumor development by inhibiting oncogenes and/or genes that control cell 
differentiation or apoptosis [33]. Deregulation of microRNAs expression frequently arises 
from genetic or epigenetic alterations, represented by deletions, amplifications, point 
mutations and aberrant DNA methylation events. Remarkably, about half of the human 
microRNAs are located within fragile regions of chromosomes, which are domains of the 
genome that are frequently lost in various human cancers [35]. 

Of clinical interest, the large high-throughput studies in patients revealed that microRNAs 
profiling has the potential to classify tumors and predict patient outcome with high 
accuracy [31, 32, 36]. For example, it was shown that high levels of miR-155 and low let-7a-2 
expression correlate with poor survival in patients with lung adenocarcinoma [37]. In 
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addition, microRNA profiling in lung cancer identified five microRNAs important for 
prognosis. Results showed that high levels of miR-221 and let-7a appeared to be protective, 
while high levels of miR-137, miR-372, and miR-182 were correlated with worse clinical 
outcome [38].  Another study in colorectal cancer showed that high miR-21 expression was 
associated with poor survival and poor therapeutic outcome [39]. Moreover, components of 
the microRNA-based gene silencing machinery have also been implicated in tumorigenesis.  
Reduced expression of Dicer has been shown to be down-regulated in lung cancer and 
associated with poor prognosis [40]. These findings are in agreement with previous reports 
of Dicer loss in some tumors. In addition, other reports showed that low expression levels of 
Drosha were significantly associated with advanced tumor stage in ovarian cancer [41]. 
Other components of the microRNA machinery that have been implicated in cancer include 
Argonaute family members Ago1, Ago3, and Ago4 which cluster on the 1p34-35 
chromosomal region, that is often lost in in human cancers such as Wilms tumors, 
neuroblastoma and breast, liver and colon carcinomas [42]. In summary, emerging evidence 
suggests that oncomiRs play important roles in human cancers. Several microRNAs may be 
directly involved in cancer development by controlling cell differentiation and apoptosis, 
while others may be involved in cancer by targeting cancer oncogenes and/or tumor 
suppressors. Next, we will discuss the roles of microRNAs in metastasis, the more deadly 
hallmark in cancer. 

4. MetastamiRs: microRNAs driving invasion and metastasis 

4.1. Mechanisms of invasion and metastasis 

The ability of cancer cells to metastasize is a hallmark of malignant tumors. Metastatic 
development from primary tumor to a secondary organ or tissue should be successfully 
complete in multiple sequential steps that include spreading of tumoral cells from primary 
tumor, enhanced motility, intravasation, extravasation and colonization in a secondary site to 
form a distant tumor [43, 44]. Each step in this complex cellular process represents a 
physiological barrier that must be overcome by the tumor cells for successful metastasis [45].  
These events are regulated by genetic and epigenetic programs that are acquired during 
tumor progression [46]. However, it remains unclear if oncogenic transformation is sufficient 
for metastatic competence. The long latency period of certain tumor types suggests a further 
evolution of malignant cells in the microenvironments of particular organs [47]. Metastasis 
initiation genes allow cancer cells to invade the surrounding tissues, attract a supportive 
stroma and facilitate cellular dispersion and infiltration in distant tissues [6]. These genes 
participate in the regulation of motility, epithelial-mesenchymal transition (EMT), adhesion 
and proteolysis. They determine tumor cells interactions with other cells and with the 
extracellular matrix, and activate migration, angiogenesis and survival [48]. These genes 
codified for transcription factors, growth factors receptors, protein kinases and importantly 
microRNAs [49, 50]. Tumor cells interactions with the extracellular matrix are mediated by 
integrins which trigger invasion and spread. These proteins promote invasion and 
proliferation and they determine whether cells migrate and proliferate in response to 
cytokines and growth factors [51]. Metastatic cells loss their adherent junctions, which, in 
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epithelial cells, are constituted primarily by E-cadherin. E-cadherin is replaced by N-
cadherin, which plays an important role in invasion by regulating fibroblast growth factor 
receptor (FGFR) function [52]. This process, known as the cadherin switch, is associated 
with EMT, allowing the conversion of epithelial cells to motile fibroblast-like cells that 
express mesenchymal rather than epithelial cell markers [53]. The communication of 
epitheliai cell with their microenvironment is regulated by E-cadherin-mediated cell-cell 
interaction and β1-integrin-mediated adhesion to the basement membrane (BM), which is the 
first barrier to invasion by carcinoma cells. Other proteins involved in the metastatic process 
include the matrix metalloproteinases (MMP), COX2 and cytokines. MMP can degrade the 
components of the BM such as collagen IV. Importantly, MMP promotes angiogenesis, one of 
the prerequisites for metastatic tumor growth by degradation of the fibrin matrix that 
surrounds newly formed blood vessels, facilitating endothelial cell penetration of tumor 
tissues [54]. 

In the “omics” era, the genomic profiling, second-generation sequencing, proteomics and 
other global level analytical techniques have dramatically accelerated the efforts to 
comprehensively characterize metastatic tumour cells and to understand their natural 
history of evolution from primary tumors [55]. Discovered gene signatures in metastatic 
tumors have been applied to identify functional drivers of metastasis. Comparing the 
expression profiles of highly metastatic cells with their weakly metastatic counterparts from 
an isogenic background allowed for the identification of metastasis-promoting [56-58] and 
metastasis-suppressing genes [59-61]. In addition, gain-of-function or loss-of-function 
genomic screens, cross-species integrated genomic analyses and computational reanalysis of 
genomic profiling data have also led to the identification of functional mediators of 
metastasis with direct clinical relevance [61]. However, despite great advancements in the 
knowledge of metastasis biology, the molecular mechanisms are still not completely 
understood. Remarkably, a regulatory role for microRNAs in metastasis has been established, 
thus they have been denominated metastamiRs, as they have pro- and anti-metastatic effects 
[62]. The term metastamiRs was recently introduced by Welch and colleagues to refer to those 
regulatory microRNAs which promote or suppress various steps in migration and metastasis 
of cancer cells [63]. It seems that these metastamiRs regulate key steps in the metastatic 
program and processes, such as EMT and angiogenesis. Most commonly, metastamiRs 
promoting cell migration and invasion have been described [62]. Next, we will review some of 
the identified microRNAs with a relevant role in metastasis in   human cancers. 

4.2. MetastamiRs in prostate cancer 

Prostate cancer is the second more lethal cancer type in men in America [64]. Once it has 
progressed to metastasis (manly to bone) the disease is currently incurable, since metastatic 
cells are highly resistant to conventional therapies. The involvement of microRNAs in 
human prostate cancer has been well documented and some aberrantly expressed 
microRNAs with critical roles in the progression and metastasis of prostate cancer have been 
discovered [65]. For example, miR-21 expression levels significantly correlate with advanced 
clinical stage, metastasis and poor prognosis in prostate cancer. In these studies it has been 
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addition, microRNA profiling in lung cancer identified five microRNAs important for 
prognosis. Results showed that high levels of miR-221 and let-7a appeared to be protective, 
while high levels of miR-137, miR-372, and miR-182 were correlated with worse clinical 
outcome [38].  Another study in colorectal cancer showed that high miR-21 expression was 
associated with poor survival and poor therapeutic outcome [39]. Moreover, components of 
the microRNA-based gene silencing machinery have also been implicated in tumorigenesis.  
Reduced expression of Dicer has been shown to be down-regulated in lung cancer and 
associated with poor prognosis [40]. These findings are in agreement with previous reports 
of Dicer loss in some tumors. In addition, other reports showed that low expression levels of 
Drosha were significantly associated with advanced tumor stage in ovarian cancer [41]. 
Other components of the microRNA machinery that have been implicated in cancer include 
Argonaute family members Ago1, Ago3, and Ago4 which cluster on the 1p34-35 
chromosomal region, that is often lost in in human cancers such as Wilms tumors, 
neuroblastoma and breast, liver and colon carcinomas [42]. In summary, emerging evidence 
suggests that oncomiRs play important roles in human cancers. Several microRNAs may be 
directly involved in cancer development by controlling cell differentiation and apoptosis, 
while others may be involved in cancer by targeting cancer oncogenes and/or tumor 
suppressors. Next, we will discuss the roles of microRNAs in metastasis, the more deadly 
hallmark in cancer. 

4. MetastamiRs: microRNAs driving invasion and metastasis 
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The ability of cancer cells to metastasize is a hallmark of malignant tumors. Metastatic 
development from primary tumor to a secondary organ or tissue should be successfully 
complete in multiple sequential steps that include spreading of tumoral cells from primary 
tumor, enhanced motility, intravasation, extravasation and colonization in a secondary site to 
form a distant tumor [43, 44]. Each step in this complex cellular process represents a 
physiological barrier that must be overcome by the tumor cells for successful metastasis [45].  
These events are regulated by genetic and epigenetic programs that are acquired during 
tumor progression [46]. However, it remains unclear if oncogenic transformation is sufficient 
for metastatic competence. The long latency period of certain tumor types suggests a further 
evolution of malignant cells in the microenvironments of particular organs [47]. Metastasis 
initiation genes allow cancer cells to invade the surrounding tissues, attract a supportive 
stroma and facilitate cellular dispersion and infiltration in distant tissues [6]. These genes 
participate in the regulation of motility, epithelial-mesenchymal transition (EMT), adhesion 
and proteolysis. They determine tumor cells interactions with other cells and with the 
extracellular matrix, and activate migration, angiogenesis and survival [48]. These genes 
codified for transcription factors, growth factors receptors, protein kinases and importantly 
microRNAs [49, 50]. Tumor cells interactions with the extracellular matrix are mediated by 
integrins which trigger invasion and spread. These proteins promote invasion and 
proliferation and they determine whether cells migrate and proliferate in response to 
cytokines and growth factors [51]. Metastatic cells loss their adherent junctions, which, in 
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epithelial cells, are constituted primarily by E-cadherin. E-cadherin is replaced by N-
cadherin, which plays an important role in invasion by regulating fibroblast growth factor 
receptor (FGFR) function [52]. This process, known as the cadherin switch, is associated 
with EMT, allowing the conversion of epithelial cells to motile fibroblast-like cells that 
express mesenchymal rather than epithelial cell markers [53]. The communication of 
epitheliai cell with their microenvironment is regulated by E-cadherin-mediated cell-cell 
interaction and β1-integrin-mediated adhesion to the basement membrane (BM), which is the 
first barrier to invasion by carcinoma cells. Other proteins involved in the metastatic process 
include the matrix metalloproteinases (MMP), COX2 and cytokines. MMP can degrade the 
components of the BM such as collagen IV. Importantly, MMP promotes angiogenesis, one of 
the prerequisites for metastatic tumor growth by degradation of the fibrin matrix that 
surrounds newly formed blood vessels, facilitating endothelial cell penetration of tumor 
tissues [54]. 

In the “omics” era, the genomic profiling, second-generation sequencing, proteomics and 
other global level analytical techniques have dramatically accelerated the efforts to 
comprehensively characterize metastatic tumour cells and to understand their natural 
history of evolution from primary tumors [55]. Discovered gene signatures in metastatic 
tumors have been applied to identify functional drivers of metastasis. Comparing the 
expression profiles of highly metastatic cells with their weakly metastatic counterparts from 
an isogenic background allowed for the identification of metastasis-promoting [56-58] and 
metastasis-suppressing genes [59-61]. In addition, gain-of-function or loss-of-function 
genomic screens, cross-species integrated genomic analyses and computational reanalysis of 
genomic profiling data have also led to the identification of functional mediators of 
metastasis with direct clinical relevance [61]. However, despite great advancements in the 
knowledge of metastasis biology, the molecular mechanisms are still not completely 
understood. Remarkably, a regulatory role for microRNAs in metastasis has been established, 
thus they have been denominated metastamiRs, as they have pro- and anti-metastatic effects 
[62]. The term metastamiRs was recently introduced by Welch and colleagues to refer to those 
regulatory microRNAs which promote or suppress various steps in migration and metastasis 
of cancer cells [63]. It seems that these metastamiRs regulate key steps in the metastatic 
program and processes, such as EMT and angiogenesis. Most commonly, metastamiRs 
promoting cell migration and invasion have been described [62]. Next, we will review some of 
the identified microRNAs with a relevant role in metastasis in   human cancers. 

4.2. MetastamiRs in prostate cancer 

Prostate cancer is the second more lethal cancer type in men in America [64]. Once it has 
progressed to metastasis (manly to bone) the disease is currently incurable, since metastatic 
cells are highly resistant to conventional therapies. The involvement of microRNAs in 
human prostate cancer has been well documented and some aberrantly expressed 
microRNAs with critical roles in the progression and metastasis of prostate cancer have been 
discovered [65]. For example, miR-21 expression levels significantly correlate with advanced 
clinical stage, metastasis and poor prognosis in prostate cancer. In these studies it has been 
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evidenced that miR-21 targets myristoylated alanine rich protein kinase c substrate 
(MARCKS), which is involved in cellular processes, such as cell adhesion and cell motility 
through regulation of the actin cytoskeleton [66]. In another study, Watahiki and coworkers 
discovered differentially expressed known and novel microRNAs from a transplantable 
metastatic compared with non-metastatic prostate cancer xenograft line, both derived via 
subrenal capsule grafting, and from one patient’s primary cancer tissue [67]. These 
microRNAs seem to have specific roles in the metastasis of prostate cancer. In another 
report, Gandellini and coworkers showed that miR-205 is overexpressed in normal prostate 
tissue and RWPE-1 cells, whereas it was almost undetectable in both androgen-dependent and 
androgen-independent prostate cancer cells [68]. Authors showed that overexpression of 
miR-205 in prostate cancer cells promotes up-regulation of E-cadherin and reduction of cell 
locomotion and invasion, suggesting a relation with EMT. Peng and colleagues reported 
that the expression of five microRNAs (miRs-508-5p, -145, -143, -33a and -100) was 
significantly decreased in bone metastasis when compared with primary tumor prostate 
[69]. Notably, miRs-143 and -145, were up-regulated, and they were able to repress 
migration and invasion in vitro, tumor development and bone invasion in vivo, as well as 
EMT of PC-3 derived from metastatic cells. Since the principal problem arising from 
prostate cancer is its propensity to metastasize to bone, these findings could be important 
for the understanding of organ specific metastasis in this neoplasia [69]. 

4.3. MetastamiRs in colorectal cancer 

Colorectal cancer is the third most common malignant disease and the fourth leading cause 
of cancer-related deaths worldwide. Metastases have occurred in about 25% of patients at 
the time of diagnosis, and an additional 40% to 50% develop secondary metastases during 
the course of their disease after diagnosis. Currently about 100 miRNAs have been implicated 
in colorectal cancer [70]. The most up-regulated miRNAs are miR-21, miR 17-92 cluster, miR-
135a/b, miR-471 and miR-675, whereas miR-143, miR-14, let-7 and miR-101 showed a 
decreased expression in colorectal cancer. The main targets of these miRNAs include 
transcription factors like c-MYC, STAT, OCT4, SOX, E2F1, ZEB1, ZEB2, NFIB and some 
kinases, such as ERK and YES1, and proteins involved in matrix metalloproteinases regulation 
like RECK and TIMP3 that functions as metastasis suppressors [71]. It has been reported that 
up-regulation of miR-21 in colorectal cancer cells increases their migratory and invasive 
abilities, through regulation of RECK and TIMP3 genes., Dews and coworkers used a mouse 
model of colon cancer to demonstrate that the angiogenic activity of  c-MYC is due at least in 
part to downstream activation of the miR-17-92 cluster. Authors showed that vascularization 
of tumors can be induced by expression of either c-MYC or the miR-17-92 cluster [72]. 

4.4. MetastamiRs in breast cancer 

Because of the availability of robust metastasis models, the vast majority of these 
metastamirs have been identified in breast and/or mammary tumor cell lines [62]. Ma and 
coworkers from Robert Weinberg’s group evidenced that up-regulation of miR-10b 
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suppressed homeobox D10 (HOXD10) expression, allowing the activation of the pro-
metastatic gene RHOC and initiation of breast cancer invasion and metastasis [73]. They 
showed that miR-10b was overexpressed in metastatic MDA-MB-231 cell line, in comparison 
with tumorigenic non-metastatic MCF7 cells. Interestingly, the ectopic expression of miR-
10b results in increased migration and invasion properties in two different human breast cell 
lines. In contrast, silencing of miR-10b using antisense inhibitor oligonucleotides led to a 10-
fold reduction of the invasive properties from transfected cells. Importantly, overexpression 
of miR-10b in non-metastatic tumorigenic cell lines promoted robust invasion, and lung 
distant micro-metastases in vivo. Moreover, Ma and coworkers evidenced that TWIST1 [74], 
a metastasis promoting transcription factor specifically binds to the putative promoter of 
mir-10b gene activating its expression. This induces the inhibition of homeobox HOXD10 
transcription [75], leading to an increased expression of the pro-metastatic gene RHOC, a 
signaling GTPase-protein involved in metastasis. Importantly, it has been described that 
HOXD10 expression is lost in breast tumors [76]. Finally, Ma and coworkers showed that 
silencing of RHOC by small interfering RNAs caused repression of miR-10b induced cell 
migration and invasion. In another outstanding study it was reported that systemic 
therapeutic silencing of miR-10b in tumor-bearing mice significantly suppressed breast 
cancer metastasis and increased the levels of its target HOXD10 [77]. In another study it was 
established that miR-373 and miR-520c promote tumor invasion and metastasis by 
regulating the cell-surface glycoprotein encoding gene CD44 (cell surface receptor for 
hyaluronan) [78]. Huang and coworkers  from Agami’s group set up a genetic screen using 
the non-metastatic MCF7 cell line, and found that miR-373 and miR-520c stimulated cell 
migration and invasion both in vitro and in vivo. Interestingly, authors evidenced that miR-
373 and miR-520c “seed” sequences were similar and both CD44 target mRNA. Moreover, 
enhanced expression of a CD44 gene that was unresponsive to  miR-373/miR-520c, inhibited 
the migratory activity of MCF7 cells overexpressing miR-373 and miR-520c.  

The team led by Joan Massague performed an array-based miRNA profiling in MDA-MB-
231 breast cancer cell derivatives highly metastatic to bone and lung, and found a signature of 
six genes (miR-335, miR-126, miR-206, miR-122a, miR-199a*, and miR-489) whose expression 
was highly decreased in metastatic cells [79]. Restoring the expression of miR-335, miR-126 
or miR-206 in LM2 cells decreased the lung colonizing activity of these cells by more than 
fivefold. Interestingly, miR-126 restoration reduced overall tumor growth and proliferation, 
whereas miR-335 inhibited metastatic cell invasion. In addition, low expression of miR-335 
or miR-126 in primary tumors from patients was associated with poor distal metastasis-free 
survival. In addition they profiled LM2 cells overexpressing miR-335 and identified 756 
genes whose expression was decreased including genes previously implicated in 
extracellular matrix and cytoskeleton control (type 1 collagen COL1A1) and signal 
transduction (receptor-type tyrosine protein phosphatase PTPRN2, c-Mer tyrosine kinase 
(MERTK) 21 and phospholipase PLCB1), as well as in cell migration, such as the tenascin C 
(TNC), an extracellular matrix glycoprotein of stem cells niches [80] and the SRY-box containing 
transcription factor SOX4. Knockdown of SOX4 and TNC using RNA interference diminished 
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suppressed homeobox D10 (HOXD10) expression, allowing the activation of the pro-
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showed that miR-10b was overexpressed in metastatic MDA-MB-231 cell line, in comparison 
with tumorigenic non-metastatic MCF7 cells. Interestingly, the ectopic expression of miR-
10b results in increased migration and invasion properties in two different human breast cell 
lines. In contrast, silencing of miR-10b using antisense inhibitor oligonucleotides led to a 10-
fold reduction of the invasive properties from transfected cells. Importantly, overexpression 
of miR-10b in non-metastatic tumorigenic cell lines promoted robust invasion, and lung 
distant micro-metastases in vivo. Moreover, Ma and coworkers evidenced that TWIST1 [74], 
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mir-10b gene activating its expression. This induces the inhibition of homeobox HOXD10 
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signaling GTPase-protein involved in metastasis. Importantly, it has been described that 
HOXD10 expression is lost in breast tumors [76]. Finally, Ma and coworkers showed that 
silencing of RHOC by small interfering RNAs caused repression of miR-10b induced cell 
migration and invasion. In another outstanding study it was reported that systemic 
therapeutic silencing of miR-10b in tumor-bearing mice significantly suppressed breast 
cancer metastasis and increased the levels of its target HOXD10 [77]. In another study it was 
established that miR-373 and miR-520c promote tumor invasion and metastasis by 
regulating the cell-surface glycoprotein encoding gene CD44 (cell surface receptor for 
hyaluronan) [78]. Huang and coworkers  from Agami’s group set up a genetic screen using 
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migration and invasion both in vitro and in vivo. Interestingly, authors evidenced that miR-
373 and miR-520c “seed” sequences were similar and both CD44 target mRNA. Moreover, 
enhanced expression of a CD44 gene that was unresponsive to  miR-373/miR-520c, inhibited 
the migratory activity of MCF7 cells overexpressing miR-373 and miR-520c.  

The team led by Joan Massague performed an array-based miRNA profiling in MDA-MB-
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six genes (miR-335, miR-126, miR-206, miR-122a, miR-199a*, and miR-489) whose expression 
was highly decreased in metastatic cells [79]. Restoring the expression of miR-335, miR-126 
or miR-206 in LM2 cells decreased the lung colonizing activity of these cells by more than 
fivefold. Interestingly, miR-126 restoration reduced overall tumor growth and proliferation, 
whereas miR-335 inhibited metastatic cell invasion. In addition, low expression of miR-335 
or miR-126 in primary tumors from patients was associated with poor distal metastasis-free 
survival. In addition they profiled LM2 cells overexpressing miR-335 and identified 756 
genes whose expression was decreased including genes previously implicated in 
extracellular matrix and cytoskeleton control (type 1 collagen COL1A1) and signal 
transduction (receptor-type tyrosine protein phosphatase PTPRN2, c-Mer tyrosine kinase 
(MERTK) 21 and phospholipase PLCB1), as well as in cell migration, such as the tenascin C 
(TNC), an extracellular matrix glycoprotein of stem cells niches [80] and the SRY-box containing 
transcription factor SOX4. Knockdown of SOX4 and TNC using RNA interference diminished 
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in vitro invasive ability and in vivo metastatic potential, evidencing that both genes are key 
effectors of metastasis.  

It has been reported that miR-146a and b inhibited invasion and migration of breast cancer 
cells by down-regulating NFκB through IRAK1 and TRAF6 targeting [81]. Both miR-146a 
and b suppressed metastasis through targeting of EGF receptor and ROCK1 which are 
involved in promoting invasion and metastasis. In another study, Hurst and coworkers 
showed that breast cancer metastasis suppressor 1 (BRMS1), a protein that regulates 
expression of multiple genes leading to suppression of metastasis, significantly up-regulates 
miR-146a and miR-146b in metastatic breast cancer cells. Moreover, transduction of miR-146a 
or miR-146b into MDA-MB-231 down-regulated expression of epidermal growth factor 
receptor, inhibited invasion and migration in vitro, and suppressed experimental lung 
metastasis [82].  

In a seminal paper, it was reported that miR-31 inhibited multiple steps of metastasis 
including invasion, anoikis, and colonization leading to almost a complete reduction in lung 
metastasis [83]. Clinically, miR-31 levels were lower in breast cancer patients with 
metastasis. In another study, it was reported that suppression of miR-21 in metastatic MDA-
MB-231 breast cancer cells significantly reduced invasion and lung metastasis, by targeting 
programmed cell death 4 (PDCD4) and maspin, which have been involved in invasion and 
metastasis. Li and coworkers reported that down-regulation of miR-193b contributes to enhance 
urokinase-type plasminogen activator expression and tumor progression and invasion in 
human breast cancer [84]. In other study, it was evidenced that overexpression of miR-
200, which promotes a mesenchymal to epithelial cell transition by inhibiting Zeb2 
expression, unexpectedly enhances macroscopic metastases in mouse breast cancer cell 
lines [85]. Vetter and coworkers showed that miR-661 expression in MCF7 breast cancer 
cells conditionally overexpressing the EMT master regulator SNAI1, contributes to breast 
cancer cell invasion by targeting cell-cell adhesion Nectin-1 and the lipid transferase 
StarD10 messengers [86].  

5. MicroRNAs and angiogenesis 

5.1. Regulation of angiogenesis 

The term angiogenesis refers to the growth of new blood vessels from pre-existing vessels. It 
normally occurs during embryonic development, wound healing, and the menstruation 
cycle. During angiogenesis, quiescent endothelial cells are activated by angiogenic factors 
and start to migrate, proliferate and organize themselves in tubular structures [87].  
Angiogenesis is a physiological process during development, and plays essential roles in the 
recovery of blood flow in ischemic tissues. Unregulated angiogenesis is seen in pathological 
conditions, such as cancer and is a fundamental step in tumor growth. During tumor 
growth, angiogenesis is required for proper nourishment and removal of metabolic wastes 
from tumor sites. Inhibition of tumor angiogenesis leads to repression of tumor growth and 
has been identified as a potential therapeutic strategy. 
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Angiogenesis is induced by hypoxia as a result of the expression of pro-angiogenic factors 
through hypoxia-inducible factor-H1 (HIF-1). HIF-1 is the major oxygen homeostasis 
regulator. It has a key role as transcriptional regulator, orchestrating the expression of a 
wide variety of genes thought to be critical for adaptation to low oxygen.  Under normoxic 
conditions, HIF-1 is rapidly degraded by the proteasome. However, under hypoxic conditions, 
HIF-1 is stabilized and activates a highly complex transcription program, comprising 
hundreds of genes that regulate processes such as angiogenesis (vascular endothelial growth 
factor (VEGF), endothelial growth factor receptor 1, plasminogen inhibitor 1), glucose 
metabolism (lactate dehydrogenase A, aldolase A and C, and phosphofructo-kinase L), 
survival and death (BNIP3, p21, Nip-3 like protein) [88-90]. When pro-angiogenic factors are in 
excess in comparison with of anti-angiogenic factors, the switch to an angiogenic phenotype 
can occurs. 

6. MicroRNAs and hypoxia 

Hypoxia has recently been shown to induce the expression of a number of microRNAs, 
which have been termed “hypoxamirs” [89, 94]. Members of this group seem to affect 
apoptotic signaling in a hypoxic environment and are also predicted to target genes of 
critical importance for tumor biology. Interestingly, most hypoxia-induced microRNAs are 
also overexpressed in human cancers, suggesting their role in tumorigenesis [92, 94]. Using 
miRNA expression arrays different hypoxia-regulated microRNAs (HRMs) were 
determined to be induced in response to hypoxia in breast and colon cancer cells. These 
HRM were miR-21, miR-23a, miR-23b, miR-24, miR-26a, miR-26b, miR-27a, miR-30b, miR-
93, miR-103, miR-106a, miR-107, miR-125b, miR-181a, miR-181b, miR-181c, miR-192, miR-
195, miR-210 and miR-213. In silico analysis revealed a highly complex spectrum of 
candidate targets, including genes involved in proliferation, apoptosis, DNA repair, 
chromatin remodeling, metabolism, and migration. For example, component of the 
apoptotic machinery were found to be potentially targeted by HRMs: BID (miR-23), BIM 
(miR-24); CASP3 (miR-30), CASP 7 (miR-23), APAF1 (miR-27), BAK1 (miR-26), Bnip3L 
(miR-23) [91]. Recently experimentally data confirmed an important regulatory role in HIF-1 
for miR-210, 26 and 181 hypoxia-induced microRNAs [91, 92] 

In addition to the microRNAs that respond to hypoxia by up-regulation of their expression, 
the following microRNAs were identified as downregulated in hypoxic cells: miR-122a, 
miR-565, miR-195, miR-30e-5p, miR-374, 19a, miR-101, miR-424, miR-29b, miR-186, miR-141, 
miR-320, miR-422b, and miR-197 in SCC cells; miR-15b, miR-16, miR-20a, miR-20b, 30b and 
miR-224 in CNE cells, and miR-424 in trophoblasts [93]. In addition it has been reported that 
several microRNAs, including miR-16, miR-20a, miR-20b and miR-320, control expression of 
VEGF[92, 93].  

6.1. Relationships among HIFs and hypoxamirs 

The response to hypoxia generates hypoxamirs that can be grouped into three clusters 
(Table 1):  
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programmed cell death 4 (PDCD4) and maspin, which have been involved in invasion and 
metastasis. Li and coworkers reported that down-regulation of miR-193b contributes to enhance 
urokinase-type plasminogen activator expression and tumor progression and invasion in 
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200, which promotes a mesenchymal to epithelial cell transition by inhibiting Zeb2 
expression, unexpectedly enhances macroscopic metastases in mouse breast cancer cell 
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cells conditionally overexpressing the EMT master regulator SNAI1, contributes to breast 
cancer cell invasion by targeting cell-cell adhesion Nectin-1 and the lipid transferase 
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cycle. During angiogenesis, quiescent endothelial cells are activated by angiogenic factors 
and start to migrate, proliferate and organize themselves in tubular structures [87].  
Angiogenesis is a physiological process during development, and plays essential roles in the 
recovery of blood flow in ischemic tissues. Unregulated angiogenesis is seen in pathological 
conditions, such as cancer and is a fundamental step in tumor growth. During tumor 
growth, angiogenesis is required for proper nourishment and removal of metabolic wastes 
from tumor sites. Inhibition of tumor angiogenesis leads to repression of tumor growth and 
has been identified as a potential therapeutic strategy. 
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regulator. It has a key role as transcriptional regulator, orchestrating the expression of a 
wide variety of genes thought to be critical for adaptation to low oxygen.  Under normoxic 
conditions, HIF-1 is rapidly degraded by the proteasome. However, under hypoxic conditions, 
HIF-1 is stabilized and activates a highly complex transcription program, comprising 
hundreds of genes that regulate processes such as angiogenesis (vascular endothelial growth 
factor (VEGF), endothelial growth factor receptor 1, plasminogen inhibitor 1), glucose 
metabolism (lactate dehydrogenase A, aldolase A and C, and phosphofructo-kinase L), 
survival and death (BNIP3, p21, Nip-3 like protein) [88-90]. When pro-angiogenic factors are in 
excess in comparison with of anti-angiogenic factors, the switch to an angiogenic phenotype 
can occurs. 

6. MicroRNAs and hypoxia 

Hypoxia has recently been shown to induce the expression of a number of microRNAs, 
which have been termed “hypoxamirs” [89, 94]. Members of this group seem to affect 
apoptotic signaling in a hypoxic environment and are also predicted to target genes of 
critical importance for tumor biology. Interestingly, most hypoxia-induced microRNAs are 
also overexpressed in human cancers, suggesting their role in tumorigenesis [92, 94]. Using 
miRNA expression arrays different hypoxia-regulated microRNAs (HRMs) were 
determined to be induced in response to hypoxia in breast and colon cancer cells. These 
HRM were miR-21, miR-23a, miR-23b, miR-24, miR-26a, miR-26b, miR-27a, miR-30b, miR-
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195, miR-210 and miR-213. In silico analysis revealed a highly complex spectrum of 
candidate targets, including genes involved in proliferation, apoptosis, DNA repair, 
chromatin remodeling, metabolism, and migration. For example, component of the 
apoptotic machinery were found to be potentially targeted by HRMs: BID (miR-23), BIM 
(miR-24); CASP3 (miR-30), CASP 7 (miR-23), APAF1 (miR-27), BAK1 (miR-26), Bnip3L 
(miR-23) [91]. Recently experimentally data confirmed an important regulatory role in HIF-1 
for miR-210, 26 and 181 hypoxia-induced microRNAs [91, 92] 

In addition to the microRNAs that respond to hypoxia by up-regulation of their expression, 
the following microRNAs were identified as downregulated in hypoxic cells: miR-122a, 
miR-565, miR-195, miR-30e-5p, miR-374, 19a, miR-101, miR-424, miR-29b, miR-186, miR-141, 
miR-320, miR-422b, and miR-197 in SCC cells; miR-15b, miR-16, miR-20a, miR-20b, 30b and 
miR-224 in CNE cells, and miR-424 in trophoblasts [93]. In addition it has been reported that 
several microRNAs, including miR-16, miR-20a, miR-20b and miR-320, control expression of 
VEGF[92, 93].  

6.1. Relationships among HIFs and hypoxamirs 

The response to hypoxia generates hypoxamirs that can be grouped into three clusters 
(Table 1):  
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a. Hypoxamirs induced by HIF: Among the HIF-dependent hypoxamirs are miR-210 and 
miR-373. The most robustly induced hypoxamir, miR-210, is induced by HIF-1α and 
suppresses expression of the cell-cycle regulator E2F transcription factor 3 (E2F3), the 
receptor tyrosine kinase ligand ephrin A3, and the DNA repair protein RAD52. In 
addition, recently it was shown that miR-210 has an important role in  suppression of 
mitochondrial metabolism in hypoxic states by decreasing expression of the iron-sulfur 
cluster assembly proteins ISCU1/2, thereby limiting cytochrome assembly and ROS 
generation from inefficient mitochondrial electron transport under low oxygen tensions 
[94]. 

b. Hypoxamirs that affect HIF: These hypoxamirs are induced by hypoxia and have an 
effect on HIF expression [94]. Three hypoxamirs have been shown to affect HIF 
expression: miR20b, miR-199a, and, most recently, miR-424. The miR-20b targets HIF-
1α and suppresses its expression in MCF-7 breast cancer cells, and downregulation of 
miR-199a derepresses HIF-1α in cardiomyocytes. miR-424 regulates HIF-α isoforms in 
endothelial cells by targeting cullin 2 (CUL2), the scaffolding protein on which the 
ubiquitin ligase system assembles, thereby stabilizing HIF-α isoforms by impairing 
their prolyl hydroxylation [94]. 

c. MicroRNAs that affect HIF independently of hypoxia. At least four microRNAs have 
been shown to influence HIF expression independently of hypoxia. Induced by p53, 
miR-107 decreases the expression of HIF-β. Induced by c-MYC, the miR17-92 cluster 
suppresses the expression of HIF-1α. Suppressed by hepatocyte growth factor, miR-
519c suppresses the expression of HIF-1α. In contrast, miR-31, by decreasing expression 
of the HIF regulatory factor factor-inhibiting HIF (FIH), increases the expression of HIF-
1α [94]. 

 

Hypoxamirs induced by HIF Hypoxamirs that affect HIF MicroRNAs that affect HIF 
independent of hypoxia 

miR-210 miR-20b miR-107 
miR-373 miR-199a miR-17-92 cluster 
 miR-424 miR-31 
  miR-519c 

Based on [94].  

Table 1. MicroRNAs regulated by hypoxia 

6.2. Transcriptional regulation of hypoxamirs 

The expression of microRNAs requires the basic transcription machinery used for protein-
encoding genes transcription. Most of the microRNAs transcription depends on RNA 
polymerase II. Such resemblances hinted to the possibility that microRNA 
induction/repression could also be controlled by transcription factors. Delineating the 
promoter regions of microRNAs is a necessary step for an expanded understanding of 
microRNA expression control. The main challenge comes from the fact that only few 
microRNA promoters have been identified experimentally [95].  Kulshereshtha and 
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coworkers analyzed a set of promoters for all the predicted microRNAs in human genome; 
they predicted HIF-binding sites by position weight matrix approach. The results showed 
that approximately 6% of the human microRNAs exhibit significantly conserved HIF sites, 
which could reflect their functional importance.  Additional candidate sites for Oct-C, AP2, 
PPAR γ and E2F transcription factors were also identified in the miR-210 promoter.[96]. 
These sequences could potentially regulate its expression as part of the hypoxia response. 
Finally, several studies have shown that microRNA biogenesis machinery is not altered in 
response to hypoxia. Expression of microRNA processing proteins like Ago2, Drosha, Exp5, 
Dicer and DP103 does not suffer any expression changes during hypoxia.  Additionally 
Dicer impairs angiogenesis in vitro and in vivo [97].  

6.3. Hypoxamirs expression and cellular context 

In the case of hypoxia-regulated microRNAs, in silico searches reveal a highly complex 
spectrum of candidate targets, including genes involved in proliferation, apoptosis, DNA 
repair, chromatin remodeling, metabolism and migration. One set of targets are cell death 
regulators, given the importance of this process in a stressful environment, such as hypoxia. 
Using PicTar, Target-Scan and MirBase prediction programs, a number of core component 
genes of the apoptotic machinery were found to be potentially targeted by hypoxamirs:: 
BID (miR-23), BIM (miR-24); CASP3 (miR-30), CASP 7 (miR-23), APAF1 (miR-27), BAK1 
(miR-26), Bnip3L (miR-23). Additionally, Bcl2 is also an experimentally confirmed target of 
miR15 and 16, which were found to respond to hypoxia by down-regulation, at least in CNE 
cells. 

Another process known to be affected by hypoxia is proliferation, since many cell types 
undergo cell cycle slowdown or arrest during oxygen deprivation. A plethora of cell cycle 
genes are identified as putative HRMs targets, such as: cdc25A (miR-21, miR-103/107), cyclin 
D2 (miR-26, miR-103/107), cyclin E1 (miR-26), cyclin H (miR-23), cdk6 (miR-26, miR-103/107) 
[92]. An additional gene of relevance for this subject is VEGF for which a group of 
regulatory microRNAs have been identified, including miR-16, miR-20a, miR-20b, let-7b, 
miR-17-5p, miR-27a, miR-106a, miR-106b, miR-107, miR-193a, miR-210, and miR-320. 
Interestingly, most of these microRNAs have been identified by at least one of the recent 
studies as responsive to hypoxia, either by induction or by repression, which could lead to 
an extra layer of complexity in the angiogenic response. Targeting microRNAs involved in 
hypoxia control could be applied in clinical oncology, as the majority microRNA identified 
are overexpressed in some tumor subtypes, suggesting that hypoxia represents a 
contributing element for microRNA alterations in cancer. Moreover, manipulation of select 
microRNAs could synergize with conventional therapies.  

7. Conclusions 

The recent discovery of the role of microRNAs as tumor-suppressor genes or oncogenes has 
added an additional level of complexity to the mechanisms leading to tumorigenesis. In 
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endothelial cells by targeting cullin 2 (CUL2), the scaffolding protein on which the 
ubiquitin ligase system assembles, thereby stabilizing HIF-α isoforms by impairing 
their prolyl hydroxylation [94]. 
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been shown to influence HIF expression independently of hypoxia. Induced by p53, 
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PPAR γ and E2F transcription factors were also identified in the miR-210 promoter.[96]. 
These sequences could potentially regulate its expression as part of the hypoxia response. 
Finally, several studies have shown that microRNA biogenesis machinery is not altered in 
response to hypoxia. Expression of microRNA processing proteins like Ago2, Drosha, Exp5, 
Dicer and DP103 does not suffer any expression changes during hypoxia.  Additionally 
Dicer impairs angiogenesis in vitro and in vivo [97].  
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In the case of hypoxia-regulated microRNAs, in silico searches reveal a highly complex 
spectrum of candidate targets, including genes involved in proliferation, apoptosis, DNA 
repair, chromatin remodeling, metabolism and migration. One set of targets are cell death 
regulators, given the importance of this process in a stressful environment, such as hypoxia. 
Using PicTar, Target-Scan and MirBase prediction programs, a number of core component 
genes of the apoptotic machinery were found to be potentially targeted by hypoxamirs:: 
BID (miR-23), BIM (miR-24); CASP3 (miR-30), CASP 7 (miR-23), APAF1 (miR-27), BAK1 
(miR-26), Bnip3L (miR-23). Additionally, Bcl2 is also an experimentally confirmed target of 
miR15 and 16, which were found to respond to hypoxia by down-regulation, at least in CNE 
cells. 

Another process known to be affected by hypoxia is proliferation, since many cell types 
undergo cell cycle slowdown or arrest during oxygen deprivation. A plethora of cell cycle 
genes are identified as putative HRMs targets, such as: cdc25A (miR-21, miR-103/107), cyclin 
D2 (miR-26, miR-103/107), cyclin E1 (miR-26), cyclin H (miR-23), cdk6 (miR-26, miR-103/107) 
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Interestingly, most of these microRNAs have been identified by at least one of the recent 
studies as responsive to hypoxia, either by induction or by repression, which could lead to 
an extra layer of complexity in the angiogenic response. Targeting microRNAs involved in 
hypoxia control could be applied in clinical oncology, as the majority microRNA identified 
are overexpressed in some tumor subtypes, suggesting that hypoxia represents a 
contributing element for microRNA alterations in cancer. Moreover, manipulation of select 
microRNAs could synergize with conventional therapies.  

7. Conclusions 

The recent discovery of the role of microRNAs as tumor-suppressor genes or oncogenes has 
added an additional level of complexity to the mechanisms leading to tumorigenesis. In 
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particular, the review presented here evidences that metastamiRs have emerged as new 
molecular players that regulate growth, angiogenesis, invasion, and metastasis events in 
cancer. Understanding how metastamiRs are involved in regulating tumor invasion and 
metastasis process will provide a promising strategy for the identification of molecular 
markers of progression and prognosis, for response to chemotherapy, early biomarkers of 
aggressive tumors, and the development of new metastamiRs-based treatments. In addition, 
we highlight the prominent roles of hypoxamirs in cancer. Targeting microRNAs involved 
in hypoxia control could be applied in clinical oncology. However, further investigations 
about the role of microRNAs in cancer are required in order to use them as targets for 
therapy, prognosis and diagnosis in the near future. 
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particular, the review presented here evidences that metastamiRs have emerged as new 
molecular players that regulate growth, angiogenesis, invasion, and metastasis events in 
cancer. Understanding how metastamiRs are involved in regulating tumor invasion and 
metastasis process will provide a promising strategy for the identification of molecular 
markers of progression and prognosis, for response to chemotherapy, early biomarkers of 
aggressive tumors, and the development of new metastamiRs-based treatments. In addition, 
we highlight the prominent roles of hypoxamirs in cancer. Targeting microRNAs involved 
in hypoxia control could be applied in clinical oncology. However, further investigations 
about the role of microRNAs in cancer are required in order to use them as targets for 
therapy, prognosis and diagnosis in the near future. 
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1. Introduction 

Glioblastoma multiforme (GBM) is the most common primary brain tumors and remains 
one of the deadliest of human cancers [1]. The incidence of this cancer is fairly low, with 2-3 
cases per 100,000 people in Europe and North America. GBM is slightly more common in 
whites than in blacks, Latinos, and Asians, with a slight male predominance - M:F ratio of 
3:2 [2]. The overall prognosis for GBM has changed little in the past two decades, despite 
major improvements in neuroimaging, neurosurgery, radiation treatment techniques, 
adjuvant chemotherapy, and supportive care.  Without treatment, the median survival is 
approximately 3 months [3]. The current standard of care involves maximal surgical 
resection followed by concurrent radiation and chemotherapy with the DNA alkylating 
agent temozolomide [4]. Despite this aggressive regimen, the median survival remains 
approximately 14 months. Thus, meaningful strategies for therapeutic intervention are 
desperately needed. 

The most reliable evidence suggests that glioblastomas originate from cells that give rise to 
glial cells [5, 6]. The World Health Organization (WHO) classifies these glial-derived tumors 
into four major categories, namely WHO grade I-IV. The higher grade signifies patho-
histologic features of increased malignancy. WHO grade IV glioma is synonymous with 
glioblastoma [7].  

Rigorous scientific investigations over the past three decades indicate that glioblastomas, 
similar to other cancers, are the stem from collection of genetic alterations. These alterations 
can present in a variety of forms, including epigenetic alterations, point mutations, 
translocations, amplification or deletions – resulting in gene modifications. The genetic 
alteration results in either activation or inactivation of specific gene functions that may 
contribute to the process of carcinogenesis [8]. Those genes, that when activated, contribute 
to the development of cancer are often termed proto-oncogenes. The mutated forms of these 
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glial cells [5, 6]. The World Health Organization (WHO) classifies these glial-derived tumors 
into four major categories, namely WHO grade I-IV. The higher grade signifies patho-
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Rigorous scientific investigations over the past three decades indicate that glioblastomas, 
similar to other cancers, are the stem from collection of genetic alterations. These alterations 
can present in a variety of forms, including epigenetic alterations, point mutations, 
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genes are referred to as oncogenes. Conversely, genes that when inactivated contribute to 
carcinogenesis are generally termed tumor suppressor genes. Although it is well established 
that central nervous system (CNS) carcinogenesis requires multiple deregulations of the 
normal cellular circuitry, the exact number and nature of genetic alterations and deregulated 
signaling pathways required for tumorigenesis remains subject of ongoing scientific 
investigations [9].  

1.1. Cancer genomic era 

The current decade will likely be remembered, in the history of cancer research, as the 
decade of cancer genomics. The marriage of technology and annotated specimen collection 
has culminated to provide us with a glimpse of the complex genomic landscape that 
underlies cancer pathogenesis. Remarkably, these efforts have demonstrated true 
collaborative spirits between clinicians and basic science researchers with common goals of 
furthering translational science. 

The Cancer Genome Atlas (TCGA) constitutes the largest of the genomic efforts. It is a 
comprehensive and coordinated effort to accelerate our understanding of the molecular 
basis of cancer through the application of genome analysis technologies, including large-
scale genome sequencing. This is accomplished via cataloguing the genetic and epigenetic 
changes in the cancer genome, with goals of identifying those responsible for 
carcinogenesis. The project represents a joint effort of the National Human Genome 
Research Institute (NHGRI), National Cancer Institute (NCI), the U.S. Department of Health 
and Human Services, and collects of tumor specimen from major cancer centers spanning 
across the continental USA. The project aims to provide the genomic profile of 500 
specimens of various cancer types using state-of-the-art platforms for sequencing, 
microRNA, mRNA, single- nucleotide polymorphisms (SNPs), and methylation profiling. 
TCGA started as a pilot project in 2006 with focus on glioblastoma as the first cancer type for 
study. With the success of the pilot project, TCGA has committed to expand its efforts to 
aggressively pursue 20 or more additional cancers. While acknowledging the importance of 
the TCGA in cancer research, one cannot neglect the value of the pioneering genomic efforts 
that, in many ways, laid the groundwork for the TCGA [10]. The knowledge to sequence the 
entire genomes of human tumors including glioblastoma, helps formulating new concepts 
and principles in tumor cell biology, and enables potential exploitation of these major 
advances for personalized disease management in oncology.  

With advances in genomic profiling and sequencing technology, we are beginning to 
understand the landscape of the genetic events that accumulate during the neoplastic 
process. The insights gleamed from these genomic profiling has been instrumental to 
advancing therapeutic strategy. This chapter will aim to review the existing data with 
regards to chromosomal aberration, mutations, non-doing sequences, over-expressed 
mRNA, miRNA dysregulation and will explore the opportunities for major therapeutic 
developments in the cancer gemonic era.  
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2. Chromosomal aberration 

Chromosomal aberration refers to an abnormality in the structure or number of 
chromosomal content of a cell. Increasingly, cancer is recognized as a heterogeneous 
collection of diseases whose initiation and progression are prompted by the aberrant 
function of genes that govern DNA repair, genome stability, cell proliferation, cell death, 
adhesion, invasion, angiogenesis in complex cell and tissue microenvironment [11, 12]. In 
addition to high-resolution chromosome banding and advanced chromosomal imaging 
technologies, chromosome aberrations in cancer cells can be analyzed with an increasing 
number of large-scale, comprehensive genomic and molecular genetic technologies. These 
growing technologies include fluorescence in situ hybridization (FISH) [13, 14], spectral 
karyotyping (SKY) [13], comparative genomic hybrizidation (CGH) [15, 16], and other high-
throughput methods that detects loss of heterzygosity (LOH) [17, 18], in cancer cells such as 
a new single nucleotide polymorphism arrays (SNP Chips) [19] that detect comprehensive 
genome-wide copy number changes. With the use of comprehensive molecular 
technologies, the discovery of the recurrent chromosomal aberrations in cancer is 
proceeding at a very promising pace. To date, glioblastoma has been subjected to the most 
extensive genomic profiling of any cancer [20]. Studies carried out over the past three 
decades suggest that glioblastomas, like other cancers, arise secondary to the accumulation 
of genetic alterations. These alterations can present as epigenetic modifications, point 
mutations, translocations, amplifications, or deletions, and modify gene function in ways 
that dysregulate cellular signaling pathways leading to the cancer phenotype [11, 21]. While 
the exact number and nature of genetic alterations and deregulated signaling pathways 
required for tumorigenesis remains an issue of debate, [9] it is now well understood that 
central nervous system (CNS) carcinogenesis requires multiple disruptions to the normal 
cellular circuitry [22, 23].  

Amongst chromosomal aberrations, amplifications and deletions can be distinguished when 
considering glioblastoma genesis [24]. Conversely, the reports of incidental translocation are 
rare in glioblastoma [25]. Thus we will mainly focus our review on chromosomal 
aberrations that present as amplification or deletion and discuss their contribution in the 
development of glioblastoma. 

2.1. Amplification 

Amplification of the epidermal growth factor receptor (EGFR) gene is a distinguishing 
feature in primary glioblastoma [26-28] Moreover, it is now evident that the type of genetic 
alterations involving EGFR in glioblastoma are distinct from those observed in other EGFR-
altered cancers, such as non-small-cell lung cancer (NSCLC). In glioma, focal EGFR 
amplification occurs at an extremely high level (>20 copies) [20]. Focal (limited to a few Mb) 
and broader (from several Mbs to entire chromosomes) copy number alterations (CNAs) 
that include the EGFR gene may have different molecular consequences [27]. Focal 
amplification of EGFR correlates with EGFR over-expression or mutations and deletions in 
the EGFR gene, and subsequent activation of the PI3K/AKT pathway [27, 29]. Up-regulated 
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comprehensive and coordinated effort to accelerate our understanding of the molecular 
basis of cancer through the application of genome analysis technologies, including large-
scale genome sequencing. This is accomplished via cataloguing the genetic and epigenetic 
changes in the cancer genome, with goals of identifying those responsible for 
carcinogenesis. The project represents a joint effort of the National Human Genome 
Research Institute (NHGRI), National Cancer Institute (NCI), the U.S. Department of Health 
and Human Services, and collects of tumor specimen from major cancer centers spanning 
across the continental USA. The project aims to provide the genomic profile of 500 
specimens of various cancer types using state-of-the-art platforms for sequencing, 
microRNA, mRNA, single- nucleotide polymorphisms (SNPs), and methylation profiling. 
TCGA started as a pilot project in 2006 with focus on glioblastoma as the first cancer type for 
study. With the success of the pilot project, TCGA has committed to expand its efforts to 
aggressively pursue 20 or more additional cancers. While acknowledging the importance of 
the TCGA in cancer research, one cannot neglect the value of the pioneering genomic efforts 
that, in many ways, laid the groundwork for the TCGA [10]. The knowledge to sequence the 
entire genomes of human tumors including glioblastoma, helps formulating new concepts 
and principles in tumor cell biology, and enables potential exploitation of these major 
advances for personalized disease management in oncology.  

With advances in genomic profiling and sequencing technology, we are beginning to 
understand the landscape of the genetic events that accumulate during the neoplastic 
process. The insights gleamed from these genomic profiling has been instrumental to 
advancing therapeutic strategy. This chapter will aim to review the existing data with 
regards to chromosomal aberration, mutations, non-doing sequences, over-expressed 
mRNA, miRNA dysregulation and will explore the opportunities for major therapeutic 
developments in the cancer gemonic era.  
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2. Chromosomal aberration 

Chromosomal aberration refers to an abnormality in the structure or number of 
chromosomal content of a cell. Increasingly, cancer is recognized as a heterogeneous 
collection of diseases whose initiation and progression are prompted by the aberrant 
function of genes that govern DNA repair, genome stability, cell proliferation, cell death, 
adhesion, invasion, angiogenesis in complex cell and tissue microenvironment [11, 12]. In 
addition to high-resolution chromosome banding and advanced chromosomal imaging 
technologies, chromosome aberrations in cancer cells can be analyzed with an increasing 
number of large-scale, comprehensive genomic and molecular genetic technologies. These 
growing technologies include fluorescence in situ hybridization (FISH) [13, 14], spectral 
karyotyping (SKY) [13], comparative genomic hybrizidation (CGH) [15, 16], and other high-
throughput methods that detects loss of heterzygosity (LOH) [17, 18], in cancer cells such as 
a new single nucleotide polymorphism arrays (SNP Chips) [19] that detect comprehensive 
genome-wide copy number changes. With the use of comprehensive molecular 
technologies, the discovery of the recurrent chromosomal aberrations in cancer is 
proceeding at a very promising pace. To date, glioblastoma has been subjected to the most 
extensive genomic profiling of any cancer [20]. Studies carried out over the past three 
decades suggest that glioblastomas, like other cancers, arise secondary to the accumulation 
of genetic alterations. These alterations can present as epigenetic modifications, point 
mutations, translocations, amplifications, or deletions, and modify gene function in ways 
that dysregulate cellular signaling pathways leading to the cancer phenotype [11, 21]. While 
the exact number and nature of genetic alterations and deregulated signaling pathways 
required for tumorigenesis remains an issue of debate, [9] it is now well understood that 
central nervous system (CNS) carcinogenesis requires multiple disruptions to the normal 
cellular circuitry [22, 23].  

Amongst chromosomal aberrations, amplifications and deletions can be distinguished when 
considering glioblastoma genesis [24]. Conversely, the reports of incidental translocation are 
rare in glioblastoma [25]. Thus we will mainly focus our review on chromosomal 
aberrations that present as amplification or deletion and discuss their contribution in the 
development of glioblastoma. 

2.1. Amplification 

Amplification of the epidermal growth factor receptor (EGFR) gene is a distinguishing 
feature in primary glioblastoma [26-28] Moreover, it is now evident that the type of genetic 
alterations involving EGFR in glioblastoma are distinct from those observed in other EGFR-
altered cancers, such as non-small-cell lung cancer (NSCLC). In glioma, focal EGFR 
amplification occurs at an extremely high level (>20 copies) [20]. Focal (limited to a few Mb) 
and broader (from several Mbs to entire chromosomes) copy number alterations (CNAs) 
that include the EGFR gene may have different molecular consequences [27]. Focal 
amplification of EGFR correlates with EGFR over-expression or mutations and deletions in 
the EGFR gene, and subsequent activation of the PI3K/AKT pathway [27, 29]. Up-regulated 
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PI3K/ AKT signaling has been associated with poor prognosis [30]. Evidence of 
RTK/RAS/PI3K activation has been reported in 88% of tumors, including contributions from 
unexpected mutations or deletions in NF1 (18%) and PIK3R1, which encodes the p85a 
regulatory subunit of PIK3CA [20].  

Furthermore, amplification of the entire chromosome 7 containing EGFR, MET [22] and its 
ligand HGF has been found to correlate with activation of the MET axis [20, 27].  EGFR 
amplification is reported to appear as double minutes (small fragments of extra-
chromosomal DNA), and extra copies of EGFR have also been found inserted into different 
loci on chromosome 7 [31].  Additionally ~50% of EGFR-amplified cells harbor the EGFRvIII 
mutant, which is an intragenic gene rearrangement generated by an in-frame deletion of 
exons 2–7 that encode part of the extracellular region [20]. Remarkably, gain of chromosome 
7 and amplification of EGFR have been found more frequently in short-term survivors [26, 
32], however to date EGFR alterations are not thought to be of prognostic importance in 
glioblastoma [28, 32, 33].  

Amplification of 12q13-15, where the oncogenes CDK4 and MDM2 are located, results in the 
disruption of both the retinoblastoma (RB) and p53 pathways [22, 27, 34, 35] Specifically, 
p53 signaling pathway has been reported to be impaired in 87% of the samples through 
CDKN2A deletion (49%), MDM2 (14%) and MDM4 (7%) amplification, and mutation and 
deletion of TP53 (35%) [20]. Pathway inactivating mutations in the RB pathway were 
described in glioblastomas prior to the large-scale genomic efforts [23, 36, 37] and the TCGA 
validated these results and demonstrated that mutations and gene amplifications disrupting 
RB function are found in approximately 68–80% of glioblastomas, signifying the critical 
importance of evading anti-growth signals [21]. RB signaling has been reported to be 
impaired in 78% of the samples through CDKN2 family deletion; amplification of CDK4 
(18%), CDK6 (1%), and CCND2 (2%); and mutation or deletion of RB1 (11%) [20]. 
Additionally, Genome-Wide Association Studies (GWAS) revealed that single nucleotide 
polymorphisms (SNPs) in the CDKN2A and CDKN2B have been identified as risk factors 
for glioma growth [21] [38, 39]. Moreover, the genes encoding the receptor tyrosine kinases 
KIT, KDR, and PDGFRA, adjacently located on chromosome 4q12, are frequently found to 
be (co)amplified [40].  Nearly 30% of human gliomas show expression patterns that are 
correlated with PDGFR signaling [41]. For instance, PDGFRA amplification is found in 15% 
of all tumors [30, 42]. Of those PDGFRA amplified tumors harboring gene amplification, 
40% harbor an intragenic deletion, termed PDGFRAD8, 9 [43], in which an in-frame deletion 
of 243 base pairs (bp) of exons 8 and 9 leads to a truncated extracellular domain [44]. Point 
mutations in PDGFRA are associated with amplification but, unlike EGFR, happen rarely. 
Elevated AKT phosphorylation has been observed in up to 85% of glioblastoma cell lines 
and patient samples [45]. RTK-independent activation of this pathway in glioblastoma can 
occur via mutation or amplification of PIK3CA (p110a) [46, 47], and PIK3CD (p110d) is also 
overexpressed in some gliomas [48]. Other amplified regions containing oncogenes, for 
example AKT3 [22, 49] and CCND2 [22, 27]. 

Over-expression of c-Myc is frequently observed in different tumor types, including 
glioblastoma, and usually results from chromosome translocation involving the c-Myc genes 
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in addition to gene amplification [50]. In a study it was reported that during multistep 
carcinogenesis using fibroblast lineages transfected with SV40 LT, expression levels of c-
Myc and Sp1 associate with the levels of telomerase activity in different stages of 
transformation [51]. Transcriptional regulation of hTERT is thought to be the chief 
mechanism of telomerase regulation. Cooperative action of c-Myc and Sp1 is required for 
full activation of hTERT promoter. Sp1 is also a key molecule that binds to GC-rich sites on 
the core promoter and activates hTERT transcription [51]. In the core promoter, multiple E-
boxes and Sp1 binding sites are located. C-Myc binds to these E-boxes through heterodimer 
formation with Max proteins and activates transcription of hTERT [52, 53]. This is a direct 
effect of c-myc that does not require de novo protein synthesis. Mad proteins are antagonists 
of c-Myc and switching from Myc/Max binding to Mad/Max binding decreases promoter 
activity of hTERT [51, 54-56]. Thus, up-regulation of these critical transcription factors may, 
at least in part, be involved in telomerase activation during carcinogenesis [57]. 
 

Amplified Region Gene of Interest References 
1q AKT3 [22, 49] 
3q PIK3CA [22, 23, 27] 
4q PDGFR [22, 34] 
7p EGFR, MET, HGF, CDK6 [22, 23, 27, 34, 35] 
8q c-MYC [50] 
12q CDK4, MDM2 [22, 27, 35] 

Table 1. Genes frequently identified to be amplified in glioblastoma 

2.2. Deletions 

Loss of heterozygosity LOH of chromosome 10q is the most common genomic alteration 
found in both primary and secondary glioblastomas [28, 35] and is associated with poor 
prognosis [26, 28]. Different regions are frequently lost at chromosome 10, including the 
regions containing PTEN, MGMT [28, 58], and ANXA7, an EGFR inhibitor [59]. PTEN 
directly antagonizes PI3K signaling and is one of the most frequently altered genes in 
cancer. It undergoes genomic loss, mutation, or epigenetic inactivation in 40%–50% of 
gliomas, resulting in high levels of PI3K activity and downstream signaling [60]. In addition, 
AKT activation due to PTEN loss likely contributes to RTK inhibitor insensitivity in 
glioblastoma [29, 61]. Another frequently deleted inhibitor of EGFR signaling is NFKBIA, 
which is located on chromosome 14; this deletion is also linked to poor survival [62]. 
Furthermore, loss of chromosome 9p, which contains a variety of tumor-suppressor genes, 
including CDKN2A, CDKN2B, and PTPRD, is frequently seen [28, 34, 63], especially in 
short-term survivors [26, 32]. CDKN2A and CDKN2B encode three important cell cycle 
proteins, p14ARF and p16INK4A, and p15INK4B [26-28, 34, 64], which are involved in the 
RB and P53 pathways. Deletion of CDKN2A and CDKN2B is often accompanied by deletion 
of CDKN2C on chromosome 1p32, which encodes another cell cycle protein p18INK4C [64]. 
LOH of chromosome 1p is found in both primary and secondary glioblastomas [65]. 
Longstanding hypothesis about the location of tumor suppressor gene at 1p has recently 
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PI3K/ AKT signaling has been associated with poor prognosis [30]. Evidence of 
RTK/RAS/PI3K activation has been reported in 88% of tumors, including contributions from 
unexpected mutations or deletions in NF1 (18%) and PIK3R1, which encodes the p85a 
regulatory subunit of PIK3CA [20].  

Furthermore, amplification of the entire chromosome 7 containing EGFR, MET [22] and its 
ligand HGF has been found to correlate with activation of the MET axis [20, 27].  EGFR 
amplification is reported to appear as double minutes (small fragments of extra-
chromosomal DNA), and extra copies of EGFR have also been found inserted into different 
loci on chromosome 7 [31].  Additionally ~50% of EGFR-amplified cells harbor the EGFRvIII 
mutant, which is an intragenic gene rearrangement generated by an in-frame deletion of 
exons 2–7 that encode part of the extracellular region [20]. Remarkably, gain of chromosome 
7 and amplification of EGFR have been found more frequently in short-term survivors [26, 
32], however to date EGFR alterations are not thought to be of prognostic importance in 
glioblastoma [28, 32, 33].  

Amplification of 12q13-15, where the oncogenes CDK4 and MDM2 are located, results in the 
disruption of both the retinoblastoma (RB) and p53 pathways [22, 27, 34, 35] Specifically, 
p53 signaling pathway has been reported to be impaired in 87% of the samples through 
CDKN2A deletion (49%), MDM2 (14%) and MDM4 (7%) amplification, and mutation and 
deletion of TP53 (35%) [20]. Pathway inactivating mutations in the RB pathway were 
described in glioblastomas prior to the large-scale genomic efforts [23, 36, 37] and the TCGA 
validated these results and demonstrated that mutations and gene amplifications disrupting 
RB function are found in approximately 68–80% of glioblastomas, signifying the critical 
importance of evading anti-growth signals [21]. RB signaling has been reported to be 
impaired in 78% of the samples through CDKN2 family deletion; amplification of CDK4 
(18%), CDK6 (1%), and CCND2 (2%); and mutation or deletion of RB1 (11%) [20]. 
Additionally, Genome-Wide Association Studies (GWAS) revealed that single nucleotide 
polymorphisms (SNPs) in the CDKN2A and CDKN2B have been identified as risk factors 
for glioma growth [21] [38, 39]. Moreover, the genes encoding the receptor tyrosine kinases 
KIT, KDR, and PDGFRA, adjacently located on chromosome 4q12, are frequently found to 
be (co)amplified [40].  Nearly 30% of human gliomas show expression patterns that are 
correlated with PDGFR signaling [41]. For instance, PDGFRA amplification is found in 15% 
of all tumors [30, 42]. Of those PDGFRA amplified tumors harboring gene amplification, 
40% harbor an intragenic deletion, termed PDGFRAD8, 9 [43], in which an in-frame deletion 
of 243 base pairs (bp) of exons 8 and 9 leads to a truncated extracellular domain [44]. Point 
mutations in PDGFRA are associated with amplification but, unlike EGFR, happen rarely. 
Elevated AKT phosphorylation has been observed in up to 85% of glioblastoma cell lines 
and patient samples [45]. RTK-independent activation of this pathway in glioblastoma can 
occur via mutation or amplification of PIK3CA (p110a) [46, 47], and PIK3CD (p110d) is also 
overexpressed in some gliomas [48]. Other amplified regions containing oncogenes, for 
example AKT3 [22, 49] and CCND2 [22, 27]. 

Over-expression of c-Myc is frequently observed in different tumor types, including 
glioblastoma, and usually results from chromosome translocation involving the c-Myc genes 

 
Genetic Profiling: Searching for Novel Genetic Aberrations in Glioblastoma 95 

in addition to gene amplification [50]. In a study it was reported that during multistep 
carcinogenesis using fibroblast lineages transfected with SV40 LT, expression levels of c-
Myc and Sp1 associate with the levels of telomerase activity in different stages of 
transformation [51]. Transcriptional regulation of hTERT is thought to be the chief 
mechanism of telomerase regulation. Cooperative action of c-Myc and Sp1 is required for 
full activation of hTERT promoter. Sp1 is also a key molecule that binds to GC-rich sites on 
the core promoter and activates hTERT transcription [51]. In the core promoter, multiple E-
boxes and Sp1 binding sites are located. C-Myc binds to these E-boxes through heterodimer 
formation with Max proteins and activates transcription of hTERT [52, 53]. This is a direct 
effect of c-myc that does not require de novo protein synthesis. Mad proteins are antagonists 
of c-Myc and switching from Myc/Max binding to Mad/Max binding decreases promoter 
activity of hTERT [51, 54-56]. Thus, up-regulation of these critical transcription factors may, 
at least in part, be involved in telomerase activation during carcinogenesis [57]. 
 

Amplified Region Gene of Interest References 
1q AKT3 [22, 49] 
3q PIK3CA [22, 23, 27] 
4q PDGFR [22, 34] 
7p EGFR, MET, HGF, CDK6 [22, 23, 27, 34, 35] 
8q c-MYC [50] 
12q CDK4, MDM2 [22, 27, 35] 

Table 1. Genes frequently identified to be amplified in glioblastoma 

2.2. Deletions 

Loss of heterozygosity LOH of chromosome 10q is the most common genomic alteration 
found in both primary and secondary glioblastomas [28, 35] and is associated with poor 
prognosis [26, 28]. Different regions are frequently lost at chromosome 10, including the 
regions containing PTEN, MGMT [28, 58], and ANXA7, an EGFR inhibitor [59]. PTEN 
directly antagonizes PI3K signaling and is one of the most frequently altered genes in 
cancer. It undergoes genomic loss, mutation, or epigenetic inactivation in 40%–50% of 
gliomas, resulting in high levels of PI3K activity and downstream signaling [60]. In addition, 
AKT activation due to PTEN loss likely contributes to RTK inhibitor insensitivity in 
glioblastoma [29, 61]. Another frequently deleted inhibitor of EGFR signaling is NFKBIA, 
which is located on chromosome 14; this deletion is also linked to poor survival [62]. 
Furthermore, loss of chromosome 9p, which contains a variety of tumor-suppressor genes, 
including CDKN2A, CDKN2B, and PTPRD, is frequently seen [28, 34, 63], especially in 
short-term survivors [26, 32]. CDKN2A and CDKN2B encode three important cell cycle 
proteins, p14ARF and p16INK4A, and p15INK4B [26-28, 34, 64], which are involved in the 
RB and P53 pathways. Deletion of CDKN2A and CDKN2B is often accompanied by deletion 
of CDKN2C on chromosome 1p32, which encodes another cell cycle protein p18INK4C [64]. 
LOH of chromosome 1p is found in both primary and secondary glioblastomas [65]. 
Longstanding hypothesis about the location of tumor suppressor gene at 1p has recently 
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been advanced by identification of the suggested candidate genes CIC and FUPB1 [66]. Co-
deletion of 1p and 19q is frequently seen in oligodendrogliomas and is, in those, associated 
with prolonged survival [32] and translocations [67]. Although this co-deletion has been 
observed in glioblastomas, no similar association has been identified elsewhere. Isolated 
LOH 19q is frequently observed in secondary glioblastoma [26, 65] and may be a marker of 
longer survival [26]. Moreover >50% of oligodendrogliomas has been reported to display 
loss of heterozygosity (LOH) at chromosomes 1p and 19q [68], although the targets of these 
deletions are still unclear. 

Frequent allelic losses on 22q indicating the presence of tumor suppressor genes have been 
found in primary and secondary glioblastomas [69]. LOH of 22q identified two sites of 
minimally deleted regions at 22q12.3–13.2 and 22q13.31 in primary glioblastomas and in 
most of the secondary glioblastomas. The affected shared deletion of 22q12.3 is the region in 
which the human tissue inhibitor of metalloproteinases-3 (TIMP-3) is located.  As its name 
implies, expression of TIMP-3 inhibits metalloprotease activity and impair glioblastoma 
migration and invasiveness [70]. Expectedly, deletion of TIMP-3 enhances glioblastoma 
invasiveness [69].  

It is important to note that the various deletions and amplifications do not exist in isolation. 
For instance, NFKBIA deletions and EGFR amplifications are essentially mutually exclusive 
events, suggesting that these events serve redundant functions in glioblastoma pathogenesis 
[62]. Systematic analysis of the patterns of co-occurrence of the various deletions and 
amplifications revealed genomic regions with synergistic tumor-promoting relationships 
[71]. Analysis of the general patterns of co-occurring and mutually exclusive regions in 
glioblastomas suggests common pathways that are disrupted during carcinogenesis. 
Targeting these pathways in the context of the genetic landscape of the glioblastoma 
constitutes one therapeutic strategy. 
 

Deleted Region Gene of Interest References 
9p CDKN2A, 2B [22, 27, 35] 
10q PTEN, MGMT, ANXA7 [22, 23, 34, 35] 
13q RB [22, 34] 
17p P53, NF1 [22, 23, 34] 
19q BAX [34, 65] 
22q TIMP3 [69] 

Table 2. Genes frequently identified to be deleted in glioblastoma 

3. Mutations  

The abnormal behaviors demonstrated by cancer cells are thought to be the result of a series 
of mutations in key regulatory genes. A detailed understanding of the genomic lesions 
underlying cancer will facilitate the identification of the cellular pathways and networks 
perturbed by genomic mutations, improve cancer diagnosis through molecular 
classification, enhance the selection of therapeutic targets for drug development, promote 
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the development of faster and more efficient clinical trials using agents targeted to specific 
genomic abnormalities, and create markers for early detection and prevention. Results from 
the genomic profiling efforts and a number of studies over the past three decades have 
revealed that nearly all glioblastomas harbor activating mutations in genes that play 
instrumental role in growth signaling cascades, evading apoptosis, insensitivity to 
antigrowth signals. In addition to amplifications and deletions, genes implicated in 
glioblastoma can be affected by somatic mutations. Point mutations include base 
substitutions, deletions, or insertions in coding regions and splice sites. Large-scale mutation 
analysis has identified mutations activating oncogenes and others inactivating tumor-
suppressor genes in glioblastoma.  

It was previously thought that glioblastoma arises from the acquisition of a defined set of 
mutations that occur in a particular temporal order. This model is largely grounded on the 
framework established in colon cancer, where a series of genetic alterations characterizes 
different phases of neoplastic progression [72]. This hypothesis is supported by the 
observation that Grade II astrocytomas typically harbor mutations in p53; Grade III 
astrocytomas harbor activating mutations/amplifications of CDKN2A (p16Ink4a); and 
Grade IV astrocytomas harbor mutations in PTEN and EGFR [73]. This data was interpreted 
to suggest that glioblastoma results from sequential inactivation of the p53, RB, and 
RTK/PI3K axes. While such a paradigm may hold true for a subset of the secondary 
glioblastomas, the picture emerging from the genomic characterization of primary 
glioblastomas reveals a much more dynamic process [22, 23]. The profile of somatic 
mutations in different glioblastomas is highly variable. These results suggest that most 
glioblastomas, primary or secondary, evolve along a multitude of pathways in response to 
differing selective pressures to achieve the phenotypes described by Hanahan and Weinberg 
[74]. 

Aberrant centrosome behavior, such as centrosome amplification, has been associated with 
mutation of TP53 and has been proposed as a primary source of genetic instability in human 
tumors. Mutations in ‘‘common’’ cancer genes, for example TP53 and PTEN, are very 
frequent in glioblastomas, but are not of prognostic importance [22, 23, 28, 32, 33, 75]. On the 
other hand PTEN loss has been shown clinically to confer resistance to EGFR inhibitors in 
patients harboring EGFRvIII expressing glioblastoma in part due to its activation of 
downstream AKT [29, 76] as well as loss of its RTK degradation function [76]. 

There are several lines of evidence that point to the importance of the p53 axis in 
glioblastoma pathogenesis. There is a body of literature associating p53 pathway 
inactivation to glioblastoma genesis [37, 77]. It must be noted that these studies implicate 
p53 pathway inactivation only in a subset of glioblastomas. The TCGA effort and the effort 
by Parsons et al. [22, 23] enhanced the literature by demonstrating that the p53 axis is more 
broadly impaired in glioblastomas than previously thought. Mutations that inactivate this 
axis are found in greater than 70% of all glioblastoma specimens as reported by both studies. 
This understanding has led to more accurate modeling of glioblastoma by combined 
inactivation of p53 and PTEN [78]. 
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been advanced by identification of the suggested candidate genes CIC and FUPB1 [66]. Co-
deletion of 1p and 19q is frequently seen in oligodendrogliomas and is, in those, associated 
with prolonged survival [32] and translocations [67]. Although this co-deletion has been 
observed in glioblastomas, no similar association has been identified elsewhere. Isolated 
LOH 19q is frequently observed in secondary glioblastoma [26, 65] and may be a marker of 
longer survival [26]. Moreover >50% of oligodendrogliomas has been reported to display 
loss of heterozygosity (LOH) at chromosomes 1p and 19q [68], although the targets of these 
deletions are still unclear. 

Frequent allelic losses on 22q indicating the presence of tumor suppressor genes have been 
found in primary and secondary glioblastomas [69]. LOH of 22q identified two sites of 
minimally deleted regions at 22q12.3–13.2 and 22q13.31 in primary glioblastomas and in 
most of the secondary glioblastomas. The affected shared deletion of 22q12.3 is the region in 
which the human tissue inhibitor of metalloproteinases-3 (TIMP-3) is located.  As its name 
implies, expression of TIMP-3 inhibits metalloprotease activity and impair glioblastoma 
migration and invasiveness [70]. Expectedly, deletion of TIMP-3 enhances glioblastoma 
invasiveness [69].  

It is important to note that the various deletions and amplifications do not exist in isolation. 
For instance, NFKBIA deletions and EGFR amplifications are essentially mutually exclusive 
events, suggesting that these events serve redundant functions in glioblastoma pathogenesis 
[62]. Systematic analysis of the patterns of co-occurrence of the various deletions and 
amplifications revealed genomic regions with synergistic tumor-promoting relationships 
[71]. Analysis of the general patterns of co-occurring and mutually exclusive regions in 
glioblastomas suggests common pathways that are disrupted during carcinogenesis. 
Targeting these pathways in the context of the genetic landscape of the glioblastoma 
constitutes one therapeutic strategy. 
 

Deleted Region Gene of Interest References 
9p CDKN2A, 2B [22, 27, 35] 
10q PTEN, MGMT, ANXA7 [22, 23, 34, 35] 
13q RB [22, 34] 
17p P53, NF1 [22, 23, 34] 
19q BAX [34, 65] 
22q TIMP3 [69] 

Table 2. Genes frequently identified to be deleted in glioblastoma 

3. Mutations  

The abnormal behaviors demonstrated by cancer cells are thought to be the result of a series 
of mutations in key regulatory genes. A detailed understanding of the genomic lesions 
underlying cancer will facilitate the identification of the cellular pathways and networks 
perturbed by genomic mutations, improve cancer diagnosis through molecular 
classification, enhance the selection of therapeutic targets for drug development, promote 
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the development of faster and more efficient clinical trials using agents targeted to specific 
genomic abnormalities, and create markers for early detection and prevention. Results from 
the genomic profiling efforts and a number of studies over the past three decades have 
revealed that nearly all glioblastomas harbor activating mutations in genes that play 
instrumental role in growth signaling cascades, evading apoptosis, insensitivity to 
antigrowth signals. In addition to amplifications and deletions, genes implicated in 
glioblastoma can be affected by somatic mutations. Point mutations include base 
substitutions, deletions, or insertions in coding regions and splice sites. Large-scale mutation 
analysis has identified mutations activating oncogenes and others inactivating tumor-
suppressor genes in glioblastoma.  

It was previously thought that glioblastoma arises from the acquisition of a defined set of 
mutations that occur in a particular temporal order. This model is largely grounded on the 
framework established in colon cancer, where a series of genetic alterations characterizes 
different phases of neoplastic progression [72]. This hypothesis is supported by the 
observation that Grade II astrocytomas typically harbor mutations in p53; Grade III 
astrocytomas harbor activating mutations/amplifications of CDKN2A (p16Ink4a); and 
Grade IV astrocytomas harbor mutations in PTEN and EGFR [73]. This data was interpreted 
to suggest that glioblastoma results from sequential inactivation of the p53, RB, and 
RTK/PI3K axes. While such a paradigm may hold true for a subset of the secondary 
glioblastomas, the picture emerging from the genomic characterization of primary 
glioblastomas reveals a much more dynamic process [22, 23]. The profile of somatic 
mutations in different glioblastomas is highly variable. These results suggest that most 
glioblastomas, primary or secondary, evolve along a multitude of pathways in response to 
differing selective pressures to achieve the phenotypes described by Hanahan and Weinberg 
[74]. 

Aberrant centrosome behavior, such as centrosome amplification, has been associated with 
mutation of TP53 and has been proposed as a primary source of genetic instability in human 
tumors. Mutations in ‘‘common’’ cancer genes, for example TP53 and PTEN, are very 
frequent in glioblastomas, but are not of prognostic importance [22, 23, 28, 32, 33, 75]. On the 
other hand PTEN loss has been shown clinically to confer resistance to EGFR inhibitors in 
patients harboring EGFRvIII expressing glioblastoma in part due to its activation of 
downstream AKT [29, 76] as well as loss of its RTK degradation function [76]. 

There are several lines of evidence that point to the importance of the p53 axis in 
glioblastoma pathogenesis. There is a body of literature associating p53 pathway 
inactivation to glioblastoma genesis [37, 77]. It must be noted that these studies implicate 
p53 pathway inactivation only in a subset of glioblastomas. The TCGA effort and the effort 
by Parsons et al. [22, 23] enhanced the literature by demonstrating that the p53 axis is more 
broadly impaired in glioblastomas than previously thought. Mutations that inactivate this 
axis are found in greater than 70% of all glioblastoma specimens as reported by both studies. 
This understanding has led to more accurate modeling of glioblastoma by combined 
inactivation of p53 and PTEN [78]. 
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There are a number of mutations that are thought be glioblastoma specific, even though they 
may be seen in only a subgroup of tumor cells. The EGFRvIII mutant lacks 267 amino acids 
in the extracellular part, resulting in a constitutively activated receptor that no longer 
requires its ligand EGF to signal downstream [79]. Despite the well-recognized 
proproliferative functions of EGFRvIII, its expression in human glioblastoma is 
heterogeneous and is most often observed only in a subpopulation of cells [80]. Recent 
observations support a model of functional heterogeneity in which a minority of EGFRvIII-
expressing cells not only drive their own intrinsic growth, but also potentiate the 
proliferation of adjacent wild-type EGFR-expressing cells in a paracrine fashion through the 
cytokine co-receptor gp130 [81]. EGFRvIII expression may be linked to differentiation and/ 
or development. EGFR point mutations have also been identified in glioblastoma, in the 
extracellular domain, whereas they are predominantly found in the kinase domain in other 
tumor types, such as lung cancer [82]. EGFR mutations have recently been identified as 
clinically significant, due to their association with striking responses in subsets of patients 
treated with targeted therapeutic agents. [83, 84].  

The PI3K signaling pathway is dysregulated in many cancers [85], including glioblastomas. 
A number of investigations have reported activating mutations in the RTK–PI3K pathway 
[43, 86], validating the importance of this pathway in glioblastoma pathogenesis. Mutations 
in PIK3CA and PIK3R1, coding for the PI3K catalytic subunit p110a and regulatory subunit 
P85a, have been described [22, 23]. RTK-independent activation of this pathway in 
glioblastoma can occur via mutation of PIK3CA (p110a) [46, 47] or through recurrent 
mutations in the gene encoding the p85a regulatory subunit PIK3R1. This will likely drive 
PIK3CA activation through decreased SH2 domain-mediated inhibition [87]. In the TCGA 
report [22] activating mutations in the RTK–PI3K pathways are reported in 88% of the 206 
glioblastomas sequenced.  

Although mutations in the RAS genes constitute a fairly rare phenomenon in glioblastoma 
(>5%) [88], inactivating mutations and deletions have been identified in their inhibitory 
tumor suppressor gene NF1 [22]. The protein encoded by neurofibromatosis 1 (NF1) 
functions to catalyze the exchange of GTP for GDP in Ras - preventing cell proliferation. 
While it is reported that NF1 patients are predisposed to gliomagenesis [89], inactivating 
mutations in NF1 was not discovered in glioblastoma until recently [22, 23, 90, 91]. The 
TCGA results indicated that approximately 20% of glioblastomas harbor loss of function 
mutations in NF1 [22, 23] and more significantly, mutations in NF1 appear to define a 
particular subtype of glioblastoma.  

The majority of malignant brain tumors, including glioblastoma, demonstrate inactivating 
mutations in either the p53 and/or retinoblastoma (RB) pathways [92-95]. In addition to their 
adverse cellular functions, these two pathways are most directly involved in cell cycling 
regulations during times of cell repair or cell growth.  

The TP53 tumor suppressor gene, located on 17p13, is frequently mutated or deleted in 
gliomas [96, 97]. P53 is a short-lived transcription factor that can execute diverse cellular 
programs, such as cell cycle arrest, DNA repair, apoptosis, autophagy, differentiation, 
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senescence and self- renewal [98, 99]. It facilitates DNA repair by halting the cell cycle for 
repair enzymes to work, or if the damage is too great, it induces cell death. The 
retinoblastoma (Rb, 13q14) pathway is also a key cell cycle regulatory complex at the G1 
checkpoint. CDKN2A, located on 9p21 and deleted in many cancers, encodes the p16 
protein, a key inhibitor of the cell cycle via Rb pathway signaling. Homozygous deletion of 
p16 has been reported to be associated with WHO grade III or IV gliomas [7, 100]. Gliomas 
often display mutations in the ARF- MDM2-p53 and p16INK4A-CDK4-RB tumor 
suppressor pathways [101, 102]. Primary glioblastoma often exhibits loss of the INK4A/ARF 
tumor suppressor gene locus along with PTEN mutation and EGFR amplification/mutation, 
and secondary glioblastoma shows frequent mutations of TP53 [58].  

The relevance of p53 to the treatment and outcome of patients with high-grade glioma has 
remained controversial. Some studies have shown that p53 status, assayed either by 
expression or mutation analysis, is correlated with relatively good outcome [103, 104], while 
others have demonstrated no prognostic impact in anaplastic gliomas and GBM [105, 106]. 
Also, MDM2 amplification, although infrequent, has been shown by some to be predictive 
of poor outcome [103, 107], whereas others have observed no prognostic value [108]. P53 
status might cooperate with other prognostic variables; for example, TP53 mutation has 
been linked to low MGMT mRNA expression [109], although this does not correlate with 
MGMT promoter methylation [110]. Loss of CDKN2A, CDKN2B, or RB or CDK4 
amplification, disrupting the Rb pathway, has been shown in anaplastic astrocytoma to 
associate with decreased survival [111, 112]. Conversely, p16 appears to be associated with 
improved survival in patients treated with chemotherapy and radiation [113]. Overall, it 
appears that the prognostic impact of p53 and Rb aberrations is at best marginal.  

Comprehensive analysis of genomic data in glioblastoma revealed recurrent mutations in 
the R132 residue of isocitrate dehydrogenase 1 (IDH1) and is involved in energy metabolism 
[23]. IDH1/2 is mutated in grade II and III gliomas as well as the secondary glioblastomas 
that arise from prior low-grade tumors, with most mutations found in the IDH1 gene. IDH1 
mutations have been predominantly identified in secondary glioblastomas and low-grade 
gliomas, with mutations in more than 70% of cases [23, 114-118]. Patients with IDH1 
mutated primary glioblastomas are generally younger and have longer median survival and 
wild-type EGFR. Because these are characteristics of secondary glioblastomas, it is 
hypothesized that these are in fact secondary glioblastomas for which no histological 
evidence of evolution from a less malignant glioma is found. Significantly, these mutations 
usually occur at conserved residues and are virtually never homozygous. While only 3%–7% 
of primary glioblastomas harbor IDH1 mutations, the majority (50%–80%) of secondary 
glioblastomas express mutant IDH1. Thus, IDH1 could be used to differentiate primary 
from secondary glioblastomas [116]. In addition, 3% of the tumors that express wild-type 
IDH1 were found to express IDH2 R172 mutations [117-120], although this mutation in 
IDH2 has only been documented in a single glioblastoma in the literature [121].  

Studies on the downstream biological effects of IDH1/2 mutation expression have focused 
largely on the inhibition of α-KG-dependent dioxygenases by 2-HG, as IDH mutations 
result in a novel function to catalyze α-ketoglutarate (α-KG) to 2-hydroxyglutarate (2-HG) 
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IDH2 has only been documented in a single glioblastoma in the literature [121].  

Studies on the downstream biological effects of IDH1/2 mutation expression have focused 
largely on the inhibition of α-KG-dependent dioxygenases by 2-HG, as IDH mutations 
result in a novel function to catalyze α-ketoglutarate (α-KG) to 2-hydroxyglutarate (2-HG) 



Oncogenomics and Cancer Proteomics –  
Novel Approaches in Biomarkers Discovery and Therapeutic Targets in Cancer 100 

[122]. The wild-type IDH1 normally functions as a homodimer that converts isocitrate to α-
ketoglutarate [120]. Biochemical depiction of the R132 mutated IDH1 revealed that it functions 
to inhibit the process. Thus, glioblastoma harboring the R132 IDH1 mutation harbor decreased 
levels of α-KG. It is imperative to note that α-KG dependent dioxygenases is a diverse group 
of enzymes controls a broad range of physiological processes, including hypoxic sensing, 
histone demethylation, demethylation of hypermethylated DNA, fatty acid metabolism, and 
collagen modification, among others [123]. Several studies have provided evidence to 
demonstrate that several of these functions are influenced by IDH1/2 mutation expression.  

Mutational and epigenetic profiling of patients specimen has revealed that IDH1 mutations 
closely associated with a specific hyper-methylation signature. The hyper-methylation state 
may be caused in part by the 2-HG-mediated inhibition of the α-KG-dependent TET2 
enzyme [124, 125]; the resultant decrease in 5-hydroxymethylcytosine was also observed in 
glioblastoma specimens [124]. Moreover, expression of IDH1 mutations is thought to induce 
global DNA hyper-methylation [126]. Thus it is suggested that IDH1 mutations may lead to 
dysregulated epigenetic processes. 2-HG inhibits histone demethylases and TET 5-
methylcytosine hydroxylases, thought to be involved in epigenetic control. This suggests 
that mutations in IDH1 change the expression of a potentially large number of genes [124].   

Most lower-grade gliomas harbor IDH1 mutations; although grade I pilocytic astrocytomas 
usually express wild-type IDH1; 60%–80% of grade II and III astrocytomas, 
oligodendrogliomas, and oligoastrocytomas express mutant IDH1, with the R132H mutation 
representing the majority of mutations observed. Given that mutations in IDH1 are an early 
event in gliomagenesis [127], this may suggest widespread modification of epigenetic 
regulator as the key mechanism in gliomagenesis in IDH1 mutated tumors. Furthermore, it 
might explain the extensive and fundamental differences between mutated and wild-type 
IDH1 glioblastoma. It has been reported that global expression profiles of IDH1 mutant 
glioblastomas more closely resembled lineage-committed neural precursors, whereas wild-
type counterparts appear to resemble neural stem cells [128].  

Independent glioblastoma studies have pointed to IDH1 mutations as an objective positive 
prognostic marker [23, 114, 115, 120]. Reports of the association between IDH1 mutations 
and favorable prognosis hold promise for biomarker development [23, 42, 120], although 
these correlations await validation in prospective clinical trials. Thorough understanding of 
mutant IDH biology and the mutant status of the IDH1/2 genes may serve as a key 
prognostic indicator. Specifically, patients with anaplastic astrocytoma [23, 115, 120, 121] 
and glioblastoma harboring mutant IDH1 demonstrate a significantly longer overall 
survival compared with wild-type IDH1 counterparts and are younger at presentation. 
Similar survival benefit has also been observed in grade II gliomas. [115] Furthermore, a 
comprehensive genomic and clinical analysis of glioblastomas harboring mutant and wild-
type IDH1 suggests that, while histo-pathologically similar, these tumors may represent 
disease processes far more unique than has been appreciated. Specifically, IDH1 mutant 
tumors display less contrast enhancement, less peritumoral edema, larger initial size, greater 
cystic components, and a greater likelihood of frontal lobe involvement compared with 
wild-type tumors [128]. 
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A frequently encountered critique of genomic sequencing effort involves the following. The 
first generation sequencing used to characterize the glioblastoma landscape captures the 
most prevalent mutations. They did not analyze the deeper heterogeneity of low prevalence 
mutations that have been found in several tumor types, including colon cancer [129]. Efforts 
to examine whether such sub-clonal diversity exist in glioblastoms using highly sensitive 
techniques [130] have not identified the presence of low-prevalence mutations. These results 
suggest that clonal expansion of select mutation in glioblastoma constitute a major 
mechanism of tumor expansion and that random mutagenesis through mutator phenotype 
does not contribute significantly to glioblastoma pathogenesis. The insights gained from the 
TCGA and other sequencing efforts should be viewed in this light.  

4. Non-coding DNA sequences 

While the identification of nucleotide alterations within the coding sequence of 
protooncogenes or tumor suppressor genes has significantly contributed to our 
understanding of carcinogenesis, there is an emerging appreciation that alterations in non-
coding sequences similarly contribute to development of cancer [131]. Non-coding DNA 
describes components of DNA arrangements that do not participate in the coding of protein 
sequences. These DNA sequences may present in different forms including non-coding 
functional RNA, cis- and trans-regulatory elements, introns, pseudogenes, repeat sequences, 
transposons, and telomeres. A notable example involves the regulation of gene transcription 
by reversible modification of gene promoter regions a phenomenon often referred to as 
‘epigenetic regulation’ [132]. The term ‘epigenetic regulation’ describes the phenomenon in 
which heritable changes in gene expression can occur in the absence of changes in the DNA 
sequences encoding for gene function. Understanding the concept that non-coding 
sequences play critical roles in glioblastoma pathogenesis and resistance to chemotherapy 
offers novel strategies for biomarker development and therapy.  

The mechanism underlying epigenetic involves cytosine methylation [133] or histone 
modifications that, in turn, modulate the accessibility of gene promoter regions to 
transcriptional factors [134]. Cytosine methylation often occurs in the context of CpG di-
nucleotide repeats, or CpG islands [133]. Thus promoters that harbor heavily methylated 
CpG islands are typically transcriptionally silenced. There are two types of promoter 
methylation that are particularly pertinent to glioblastoma therapy: methylation in the 
promoter region of the DNA repair gene, methyl-guanine methyl transferase (MGMT) and 
the glioma-CpG island methylator (G-CIMP) phenotype [135]. 

MGMT encodes an enzyme that removes alkyl adducts at the O6 position of guanine [136]. 
Because alkyl modification at this position is highly toxic and constitutes the primary 
mechanism for the tumoricidal activity of the chemotherapeutic agent TMZ, MGMT 
expression level correlates well with TMZ response in patients with glioblastoma [137]. The 
human MGMT gene possesses a CpG island that spans approximately 1000 bases around 
the transcriptional start site. Detailed analysis of this region revealed 108 CpG sites [138] 
that are methylated. Methylation of a subset of these CpGs has been associated with 
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transcriptional silencing of MGMT [139, 140] and is associated with improved clinical 
outcome in patients with glioblastoma receiving TMZ therapy. Interestingly, MGMT 
promoter methylation is also associated with improved survival in patients who did not 
receive TMZ therapy [141, 142]. While the mechanism underlying this observation remains 
unclear, it seems likely that MGMT may participate in detoxifying the accumulation of 
endogenous DNA damage that is typically associated with the oncogenic state [143]. 
Glioblastoma cells accumulate endogenous DNA damage in the absence of DNA damaging 
agents [143]. These endogenous DNA damages are not unlike those induce by 
temozolomide or radiation in that they could trigger cell death if unrepaired. Thus, tumors 
with high levels of MGMT may grow more robustly since MGMT is capable of detoxifying 
these endogenous DNA damages. If the tumor cells grow more robustly, the patient will 
survive for a shorter duration. In contrast, the glioblastoma cells with low MGMT may be 
more susceptible to the deleterious effects of the endogenous DNA damages. These tumors 
may grow less robustly, resulting in longer patient survival. 

The G-CIMP phenotype refers to the observation that a subset of glioblastomas exhibits 
concerted CpG island methylation at a large number of loci [144]. Since genes required for 
tumour growth are located at many of these loci, glioblastomas harboring the G-CIMP 
phenotype tend to be more benign. Correspondingly, patients with G-CIMP glioblastomas 
experienced significantly improved outcome. Understanding the concept that the patterns of 
CpG island methylation directly impact outcomes in patients with glioblastoma open the 
door to therapeutic strategies aimed at enhancing promoter methylation at select promoter 
loci. Importantly, recent studies suggest that promoter methylation at distinct loci may be 
affected by specific chromatin-modulating factors [135, 145]. 

While much of cellular DNA has no known biological function, many types of non-coding 
DNA sequences do have recognized biological functions, including the transcriptional and 
translational regulation of protein-coding sequences. These governing functions may 
include genetic switches, regulation of gene expression, transcription factors, operators, 
enhancers, promoters, and insulators [146-148]. Genome-wide association (GWA’s) studies 
have uncovered a large number of cancer susceptibility regions that do not overlap protein-
coding genes but rather map to non-coding intervals [132, 135]. The concept that non-coding 
DNA sequences regulate gene function and impact carcinogenesis has significantly 
expanded the repertoire of strategies available for glioblastoma therapeutics [135]. 
Integrating the biology of non-coding sequences in the context of mutational profile is 
critical in understanding tumor physiology and meaningful therapeutic development. 

5. Over-expressed mRNA 

Over-expression or under-expression of genes in glioblastoma compared with that in a 
normal brain or in low-grade gliomas may serve as an indication of genes that are involved 
in gliomagenesis [24]. While glioblastoma has been conceptualized as a single disease, it is 
widely appreciated that the term captures significant histologic heterogeneity. This 
heterogeneity suggests distinct subtypes with differing physiologic states that are captured 
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under the umbrella term ‘‘glioblastoma’’ [21]. In fact, the genome-wide analysis of mRNA 
expression to identify molecular subclasses (Golub et al. 1999) has led to a fundamental shift 
in our understanding of glioblastoma subtypes. In fact, the identification of multiple 
subtypes within glioblastoma has highlighted the heterogeneity of diseases that are in the 
same group based on the WHO histo-pathological grade.  

Primary and secondary glioblastoma subtypes are histo-pathologically indistinguishable, 
but differences can be demonstrated by molecular markers at the epigenetic [69], genetic [28, 
35, 58], expression [149], and proteomic [150] levels. Primary glioblastomas have a greater 
prevalence of EGFR alterations, MDM2 duplications, PTEN mutations, and homozygous 
deletions of CDKN2A [28, 58]. MET amplification [35], over-expression of PDGFRA, and 
mutations in IDH1 and TP53 are more prevalent in secondary glioblastomas [23, 29, 58, 75, 
114, 116, 118]. Moreover, the large-scale analysis has revealed the highly structured nature 
of glioma transcriptome and has shown correlation of tumor histology and molecular 
alterations with patient outcome [10, 24, 42]. While expression profiling of glioblastoma has 
been widely used, two fundamental studies have provided the groundwork for the 
classification of glioblastoma subtypes [30, 42]. The first subtype initially reported by 
Phillips et al. [30] and subsequently confirmed by the TCGA mRNA [42] and microRNA 
profiling [151]. The transcript signature resembles those of neuro-blasts and 
oligodendrocytes derived from fetal and adult brain cells [30]. The subtype harbors 
transcriptomal and clinical features that emulate those previously classified as secondary 
glioblastomas. Molecularly, proneural glioblastomas harbor mutations classically associated 
with the secondary glioblastomas [42]. Hence, grade II and III gliomas harbor 
transcriptomal signatures most reminiscent of the proneural subtype [30]. Clinically, this 
subtype typically affects younger patients, is associated with improved overall survival [30], 
and responds poorly to concurrent radiation/temozolomide treatment upon disease 
progression [42]. 

The second subtype that has emerged is characterized by a gene expression signature that 
illustrates those observed in the neural stem cells of the forebrain [30], cultured astroglial 
cells [152], and tissue of mesenchymal origin [30]. Thus, the subtype is termed 
‘‘mesenchymal’’ for the latter correlation. Similar to the proneural subtype, this second 
subtype was initially identified by Phillips et al. [30] and subsequently confirmed by the 
TCGA [42]. This subtype is highly enriched for mutations inactivating NF1, suggesting a 
common genetic etiology. The mesenchymal signature appear driven a common 
transcriptional network, as expression of two key critical factors (STAT3 and CEBPb) 
enhance tumor aggressiveness in murine models [153].  

Benefiting from unsupervised hierarchical clustering analysis, Verhaak et al. (2010) 
classified 200 TCGA glioblastoma samples into four subtypes, which were subsequently 
validated using previously published data from 260 independent samples. Large-scale 
expression studies are validated by reverse transcription (RT)-PCR for individual genes. 
Bioinformatics analysis revealed that three of the four subtypes were found to harbor 
distinct molecular aberrations. In particular, the proneural subtype was enriched for 
amplifications of PDGFRA, CDK6, CDK4, and MET; 11 out of 12 IDH1 mutations found in 
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transcriptional silencing of MGMT [139, 140] and is associated with improved clinical 
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under the umbrella term ‘‘glioblastoma’’ [21]. In fact, the genome-wide analysis of mRNA 
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the TCGA samples; PIK3CA/ PIK3R1mutations; and mutation or LOH of TP53. While the 
mesenchymal subtype carries mutations and/or loss of NF1, TP53, and CDKN2A, the 
classical subtype shows amplification for EGFR and loss of PTEN. On the other hand, to 
date no distinguishing genetic alterations have been indicated to define the neural class 
from the other classes [20]. It is imperative to keep in mind that interpretations of these 
results are difficult due to methodological differences in profiling platforms, bioinformatic 
extrapolation, and specimen collection.  

While the number of subtypes identified by the Verhaak et al. (2010) and Phillips et al. 
(2006) studies differs, the proneural and mesenchymal classifications identified using 
distinct methodologies and sample sets are the most robust and concordant [10]. For 
instance, both groups identified proneural class expression of DLL3 and OLIG2 and 
mesenchymal class expression of CD40 and CHI3L1/YKL-40, the latter of which appears to 
be a potential serum protein marker of prognosis in glioblastoma patients [154]. Both studies 
share the observation that patients afflicted with the mesenchymal subtype exhibit poorer 
clinical prognosis relative to the proneural subtype. A high level of expression of insulin-like 
growth factor binding proteins, for example IGFBP-2/3 [155], angiogenesic factors, such as 
vascular endothelial growth factor A (VEGFA) [156], and mesenchymal markers, like YKL-
40/CHI3L1, are frequently seen in glioblastoma and have been associated with poor 
prognosis [157-159]. In contrast, NOTCH signaling genes, for example DLL3, are indicative 
of better survival [160]. 

Hence, the collection of data suggests at least two distinct subtypes that reflect essential 
biologic behavior [10, 30, 42] and have been validated by independent studies. In addition to 
promising improvement in the grading of glioblastoma, gene expression profiling has 
shown great promise in prognosis of this deadly tumor, as the genes represented in these 
subtypes could help to predict outcome in glioblastoma. For example, increased expression 
of mesenchymal genes such as CHI3L1/YKL-40 and LGALS3 combined with decreased 
expression of a proneural gene, OLIG2, are associated with typical short-termsurvival 
compared with longer-termsurvivors [161]. Additional studies have extended the utility of 
mRNA profiling by using computational network analysis to uncover the causal regulatory 
modules underlying particular transcriptomically defined subtypes. It is important to note 
that most of these subtypes have not been as rigorously validated as the proneural and the 
mesenchymal. The emerging literature suggests that the proneural and mesenchymal 
subtypes define the two poles in the spectrum of molecular glioblastoma physiology [10, 30, 
42]. It remains unclear whether the other proposed subtypes constitute a ‘‘forced fit’’ of a set 
of truly heterogeneous biology, a gradation of phenotypes between the two extreme poles, 
or a genuine subtype whose biologic basis remains to be understood.  

With genomics approaches, discoveries of common features of different types of tumor may 
lead to new therapeutic targets and drugs for other tumor types also. The discovery of 
overexpression of VEGFA and its correlation with poor prognosis in glioblastomas [156] led 
to trials with the angiogenesis inhibitor bevacizumab.  
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6. Micro-RNA (miRNA) dysregulation 

Micro-RNAs (miRNA or miR) are a class of small non-coding RNAs, approximately 22 
nucleotides long that are involved in post-transcriptional gene regulation [162]. Through 
imperfect pairing, miRNA’s bind to untranslated regions of protein-coding mRNAs and 
function mainly as negative regulators of gene expression. Binding of miRNA often leads to 
mRNA degredation or inhibition of protein translation – resulting in suppression of the 
target proteins. A number of cellular processes are regulated by miRNAs including 
development, proliferation, and differentiation. Micro-RNAs play an important role in 
many different disorders, particularly in cancer [163]. Bioinformatic analysis predicts that a 
single miRNA can potentially regulate hundreds of target oncogenes or tumour suppressor 
proteins. The association of miRNA deregulation with pathogenesis and progression of 
malignant disease illustrates great potential of utilizing miRNAs as targets for therapeutic 
intervention. Thus, modulation of miRNA expression provides great hope for potential 
cancer therapy. Furthermore, since each miRNA may have more than one target, miRNA-
based gene therapy offers the therapeutic appeal of targeting multiple gene networks that 
are controlled by a single miRNA [164]. Over 1000 miRNAs have been described in humans 
[165]. Bioinformatics analysis has recently revealed that miRNAs are differentially 
expressed in glioblastoma tissues compared to normal brain tissue [166-169]. For example, 
while primary glioblastomas and cell lines over-express miR-221 and miR-222, which are 
thought to target cell cyclin-dependent kinase inhibitors p27 and p57, set of brain-enriched 
miRNAs (miR-128, miR-181a, miR-181b, and miR-181c) show reduced expression [170, 171].  

 
Figure 1. Gene regulation by non-coding RNAs. Figure is adapted with permission from reference 
[135].  

Frequently up-regulated miRNAs are called onco-miRNAs and are thought to contribute to 
carcinogenesis. As an example miRNA-10b is known to be highly expressed in glioblastoma 
samples [170], suggesting an important role for miR-10b in glioblastoma tumorigenesis. 
Furthermore, a recent study revealed that miR-10b expression is inversely correlated with 
glioblastoma patient survival [172]. Notably, miR-10b was also found to be up-regulated in 
breast cancer, leukemia, and pancreatic cancer and promote tumor invasion and metastasis 
in breast cancer [173-175]. These results suggest that some miRNAs, such as miR-10b, may 
function as a global oncogene to trigger tumorigenesis in multiple tissues. Another example 
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of onco-miRNA in glioblastoma is miR-26a, which is thought to target PTEN [176]. PTEN 
has been reported to be down-regulated in 70% of human cancers, and there are several 
indications that it functions as a haplo-insufficient tumor suppressor gene [177]. PTEN 
expression is down-regulated by several different miRNAs, and it is thought that post-
transcriptional regulation is an essential player in determining PTEN abundance in cancer 
cells. By targeting the tumor suppressor PTEN, overexpression of miR-26a facilitates 
tumorigenesis [168, 176]. Furthermore, miR-26 cooperates with oncogenes CDK4 and 
CENTG1, forming an onco-miRNA/oncogene cluster, targeting the RB, PI3K/AKT, and JNK 
pathways and increasing aggressiveness in glioblastoma [168]. Over-expressed oncogenic 
miRNAs may be targeted by antagomirs or miRNA sponges, because over-expression of the 
onco-miRNAs miR-26a, miR-196, and miR-451 has been correlated with poorer survival 
[167].  

In contrast with the onco-miRNA’s, frequently down-regulated miRNA’s in glioblastoma 
are considered tumor-suppressor miRNA’s. Reduced miR-128 expression in glioblastoma 
and consequent reduced cell proliferation in vitro and in xenografts [178]. Furthermore, miR-
128 regulates the expression of the complex protein Bmi-1 through binding at the BMI-1 3′-
UTR, resulting in decreased Bmi-1 and H3K27me3 levels. In GBM-derived neurosphere 
cells, miR-128 over-expression has been reported to block stem cell self-renewal, indicating 
that miR-128 can govern the stem cell-like capabilities of a subset of GBM cells [132]. 
Glioblastoma tumor tissue profiling has revealed that miRNA-124 is down-regulated in 
glioblastoma tissue [163, 170].  Notably, miR-124 is also frequently down-regulated in other 
cancers, such as medulloblastoma, hepatocellular carcinoma, and oral squamous carcinoma 
[179, 180], suggesting that it may function as a general tumor suppressor. Moreover, 
miRNA-137 and miRNA-451 exhibit reduced expression in malignant glioblastoma tissues 
relative to normal brain tissues [181, 182].  

Despite advances in biomedical science, the prognosis of glioblastoma patients remains 
poor. Biomarkers for this disease are needed for early detection of tumor progression. 
Clinical significance of miRNA expression profiles in glioblastoma has not been explored 
extensively. Nevertheless, 16 candidate miRNAs have been described to associate with 
malignant behavior of gliomas (miR-196a, miR-15b, miR-105, miR-367, miR-184, miR-196b, 
miR-363, miR-504, miR-302b, miR-128b, miR-601, miR-21, miR-517c, miR-302d, miR-383, 
miR-135b). Among them, miR-196a and miR-196b indicated the highest level of significance) 
[183]. Both miRNAs showed increased expression levels in glioblastomas relative to 
anaplastic astrocytomas and normal brain tissues. Higher level of miR-196 transcript 
significantly correlated with poorer survival [167, 183]. Treatment of malignant gliomas 
remains one of the greatest challenges facing oncologists today through a frequent 
resistance to both chemo- and radiotherapeutic agents [184]. Important question for 
management of glioblastoma patients is the possibility of predicting therapeutic outcome. 
The miRNA expression profiles of glioblastoma tissues have shown association of miR-181b 
and miR-181c with response to concomitant chemoradiotherapy with temozolomide 
(RT/RMZ). MiR-181b and miR-181c were significantly down-regulated in glioblastoma 
tissue of patients who responded to RT/TMZ in comparison to patients with progressive 
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disease [183, 185]. In a recent study by Zhang et al. [186] genome-wide miRNA profiling of 
82 glioblastomas demonstrated that miR-181d was inversely associated with patient overall 
survival and temozolomide (TMZ) treatment. Bioinformatics analysis of potential genes 
regulated by miR-181d revealed methyl-guanine-methyl-transferase (MGMT) as a 
downstream target. Together, these results suggest that miR-181d is a predictive biomarker 
for TMZ response and that its role is mediated, in part, by post-transcriptional regulation of 
MGMT. 

The basic strategy of current miRNA-based treatment studies is either to antagonize the 
expression of target miRNAs with antisense technology or to restore or strengthen the 
function of given miRNAs to inhibit the expression of certain protein-coding gene.  
Unfortunately, several major challenges have to be addressed before the application of 
miRNA-based treatment. First, the multi-targeting nature of miRNAs gives the risk of 
unintended off-target effects that need to be carefully evaluated. Moreover, the expression 
of target gene may be governed by several different miRNAs, which may compromise the 
effect of miRNA-based treatment. Finally, there is still lack of miRNA delivery system with 
enough specificity and efficacy [183].  
 

 
Figure 2. TCGA revealed genes that are known to contribute to the cancer phenotype, as proposed by 
Hanahan and Weinberg (2011). Figure is adapted with permission from reference [8].  
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of onco-miRNA in glioblastoma is miR-26a, which is thought to target PTEN [176]. PTEN 
has been reported to be down-regulated in 70% of human cancers, and there are several 
indications that it functions as a haplo-insufficient tumor suppressor gene [177]. PTEN 
expression is down-regulated by several different miRNAs, and it is thought that post-
transcriptional regulation is an essential player in determining PTEN abundance in cancer 
cells. By targeting the tumor suppressor PTEN, overexpression of miR-26a facilitates 
tumorigenesis [168, 176]. Furthermore, miR-26 cooperates with oncogenes CDK4 and 
CENTG1, forming an onco-miRNA/oncogene cluster, targeting the RB, PI3K/AKT, and JNK 
pathways and increasing aggressiveness in glioblastoma [168]. Over-expressed oncogenic 
miRNAs may be targeted by antagomirs or miRNA sponges, because over-expression of the 
onco-miRNAs miR-26a, miR-196, and miR-451 has been correlated with poorer survival 
[167].  

In contrast with the onco-miRNA’s, frequently down-regulated miRNA’s in glioblastoma 
are considered tumor-suppressor miRNA’s. Reduced miR-128 expression in glioblastoma 
and consequent reduced cell proliferation in vitro and in xenografts [178]. Furthermore, miR-
128 regulates the expression of the complex protein Bmi-1 through binding at the BMI-1 3′-
UTR, resulting in decreased Bmi-1 and H3K27me3 levels. In GBM-derived neurosphere 
cells, miR-128 over-expression has been reported to block stem cell self-renewal, indicating 
that miR-128 can govern the stem cell-like capabilities of a subset of GBM cells [132]. 
Glioblastoma tumor tissue profiling has revealed that miRNA-124 is down-regulated in 
glioblastoma tissue [163, 170].  Notably, miR-124 is also frequently down-regulated in other 
cancers, such as medulloblastoma, hepatocellular carcinoma, and oral squamous carcinoma 
[179, 180], suggesting that it may function as a general tumor suppressor. Moreover, 
miRNA-137 and miRNA-451 exhibit reduced expression in malignant glioblastoma tissues 
relative to normal brain tissues [181, 182].  

Despite advances in biomedical science, the prognosis of glioblastoma patients remains 
poor. Biomarkers for this disease are needed for early detection of tumor progression. 
Clinical significance of miRNA expression profiles in glioblastoma has not been explored 
extensively. Nevertheless, 16 candidate miRNAs have been described to associate with 
malignant behavior of gliomas (miR-196a, miR-15b, miR-105, miR-367, miR-184, miR-196b, 
miR-363, miR-504, miR-302b, miR-128b, miR-601, miR-21, miR-517c, miR-302d, miR-383, 
miR-135b). Among them, miR-196a and miR-196b indicated the highest level of significance) 
[183]. Both miRNAs showed increased expression levels in glioblastomas relative to 
anaplastic astrocytomas and normal brain tissues. Higher level of miR-196 transcript 
significantly correlated with poorer survival [167, 183]. Treatment of malignant gliomas 
remains one of the greatest challenges facing oncologists today through a frequent 
resistance to both chemo- and radiotherapeutic agents [184]. Important question for 
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The miRNA expression profiles of glioblastoma tissues have shown association of miR-181b 
and miR-181c with response to concomitant chemoradiotherapy with temozolomide 
(RT/RMZ). MiR-181b and miR-181c were significantly down-regulated in glioblastoma 
tissue of patients who responded to RT/TMZ in comparison to patients with progressive 
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disease [183, 185]. In a recent study by Zhang et al. [186] genome-wide miRNA profiling of 
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survival and temozolomide (TMZ) treatment. Bioinformatics analysis of potential genes 
regulated by miR-181d revealed methyl-guanine-methyl-transferase (MGMT) as a 
downstream target. Together, these results suggest that miR-181d is a predictive biomarker 
for TMZ response and that its role is mediated, in part, by post-transcriptional regulation of 
MGMT. 

The basic strategy of current miRNA-based treatment studies is either to antagonize the 
expression of target miRNAs with antisense technology or to restore or strengthen the 
function of given miRNAs to inhibit the expression of certain protein-coding gene.  
Unfortunately, several major challenges have to be addressed before the application of 
miRNA-based treatment. First, the multi-targeting nature of miRNAs gives the risk of 
unintended off-target effects that need to be carefully evaluated. Moreover, the expression 
of target gene may be governed by several different miRNAs, which may compromise the 
effect of miRNA-based treatment. Finally, there is still lack of miRNA delivery system with 
enough specificity and efficacy [183].  
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7. Conclusion 

In this chapter, we have reviewed and discussed key molecular participants glioblastoma, 
including chromosomal aberration, mutations, non-coding DNA sequences, over-expressed 
mRNA, and miRNA dysregulation. We placed our focus to explore the opportunities for 
major therapeutic developments in the cancer genomic era, where a more comprehensive 
mechanistic insight into glioblastoma pathogenesis and biology is arguably the most 
promising approach to discoveries of innovative treatment strategies. 

Future development of tools for subtyping, biomarker development, and therapeutic 
strategies grounded in the genomic landscape of the particular glioblastoma will facilitate 
clinical trial designs. Ultimately, robust therapeutic gain can be achieved only when agents 
are directed toward the most vulnerable features inherent within the distinct physiologies of 
different glioblastoma. 
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promising approach to discoveries of innovative treatment strategies. 

Future development of tools for subtyping, biomarker development, and therapeutic 
strategies grounded in the genomic landscape of the particular glioblastoma will facilitate 
clinical trial designs. Ultimately, robust therapeutic gain can be achieved only when agents 
are directed toward the most vulnerable features inherent within the distinct physiologies of 
different glioblastoma. 
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1. Introduction 

Despite advances in diagnosis and treatment, the morbidity and mortality of lung cancer 
remains to mount up. The key factor of cancer associated morbidity and mortality is 
principally attributable to the development of metastases. Cancer cells depart their normal 
microenvironment from the primary tumor site through complicated and multistep 
processes disseminate and colonize distant organs [1]. However, the cellular and molecular 
machinery underlying metastasis is relatively poorly understood so far. In order to resist 
cancer dissemination, more effective therapeutic strategies are clearly required. 

Cellular migration and invasion mechanism are commonly thought to be associated with 
Rho family GTPases [2-4], JAK-STAT [5-7], MAPK [8-10], Wnt [11-13], Notch pathway [14-
16]. Recently, epithelial–mesenchymal transition (EMT) programs have become the focus of 
the mechanism of metastasis [1, 17-20]. EMT is an embryologically conserved genetic 
program by which epithelial cells down regulate intercellular tight junctions, loose polarity, 
express mesenchymal markers, and manifest a migratory phenotype [1]. In the EMT 
process, Rho family GTPases [21], JAK-STAT [22], MAPK [23], Wnt [24] and Notch [25] 
pathways may also play an important role. In recent years, emerging studies have 
highlighted the critical role of these pathways and their regulation by microRNAs 
(miRNAs) in cancer invasion and metastasis. 

MiRNAs, short (18-24 nucleotides) non-coding RNAs, are derived from long transcripts pri-
miRNAs and pre-miRNAs [26-30]. By targeting 3’ untranslated regions (3’UTRs) of cognate 
mRNAs, miRNAs post-transcriptionally regulate gene expression and induce translational 
repression [29, 30]. Their specificity is determined by nucleotides 2–8 at the 5′ end, termed the 
miRNA “seed sequence”. To date, 1527 human miRNAs have been identified (Sanger miRBase 
18 http://www.miRbase.org/index. shtml), forming less than 1% of all human genes, 
potentially regulating more than 10% of all protein coding genes [1]. Recently, miRNAs have 
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been discovered to play important roles in the invasion and metastasis of malignant tumors. 
[31-33]. Understanding specific characteristics of miRNAs would probably serve as predictive 
markers and as therapeutic strategies for patients with metastasis.  

In light of these recent discoveries, the present article discusses how invasion and EMT 
pathways are regulated by miRNAs. We have classified invasion programs and key proteins 
involved in EMT according to the signaling pathway showed above and point out validated 
miRNAs regulating their expression and highlight critical knowledge gaps that remain to be 
addressed to enable improved understanding of the molecular mechanisms behind EMT 
and metastasis. A list of experimentally validated miRNAs regulating key proteins involved 
in invasion–metastasis programs or participating in some principal pathways can be found 
in Figure 1.  

 
Figure 1. The experimentally validated miRNAs regulate key proteins involved in invasion–metastasis 
programs or participating in some principal pathways. 

2. Rho family of GTPases 

The Rho family of GTPases, a family of small (~21 kDa) signaling G protein, is a subfamily 
of the Ras superfamily [34]. In mammals, the Rho family is made of 20 members distributed 
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into eight subfamilies: Rho, Rac, Cdc42, Rnd, RhoU/V, RhoBTB, RhoH and RhoD/F. Almost 
all research involves the three most common members of the Rho family: Cdc42, Rac1 and 
RhoA [35]. Over expression of Rho GTPases is associated with reorganization of actin 
cytoskeleton, which plays an important role in cell migration, invasion and metastasis that 
are important aspects of cancer progression [36].  

Emerging studies have indicated that miRNAs participate in the Rho GTPases signaling 
pathway. Among the tested miRNAs, the present articles demonstrated that miR-155, miR-
185, miR-31 and miR-133a are associated with RhoA in cell migration and invasion. MiR-155 
may play an important role in TGF-β-induced EMT and cell migration and invasion by 
targeting RhoA [37]. MiR-185 is a negative regulator of RhoA and Cdc42, and could inhibit 
proliferation and invasion of colorectal cancer cells [38]. The Effects of miR-31 on metastasis 
may be associated with concurrent suppression of integrin alpha 5, radixin, and RhoA 
phenocopies [39]. Chiba and his colleagues reported that RhoA expression is negatively 
regulated by miR-133a in bronchial smooth muscle cells [40].  

Moreover, some studies discussed the regulation of cell migration and invasion by miRNA 
may be attribute to Rho-associated serine-threonine protein kinase (ROCK), one of the best 
characterized downstream effectors of Rho, that is activated when it selectively binds to the 
active GTP-bound form of Rho [41, 42]. As with Rho, ROCK has been implicated in altering 
cell migration and invasion during tumor cell metastasis [43, 44]. Yu and his colleagues 
indicate that downregulation of miR-205 resulted in an increase in Rho-ROCKI activity, 
phosphorylation of the actin severing protein cofilin, and a corresponding diminution of 
filamentous actin [45]. 

A number of articles reported that some miRNAs regulate cell migration and invasion by 
targeting Rac and Cdc42. Recently, microRNA-142-3p, a new regulator of Rac1, suppresses 
the migration and invasion of hepatocellular carcinoma cells [46]. The regulation of cancer 
cell migration by MiR-10b may be attribute to activate Rac by targets Tiam1 [47]. MiR-151 
exerts this function by directly targeting RhoGDIA, a putative metastasis suppressor in 
hepatocellular carcinoma (HCC), thus leading to the activation of Rac1, Cdc42 and Rho 
GTPases [48]. Liu and his colleagues have found that miR-137 may have a tumor suppressor 
function by directly targeting Cdc42 to inhibit the proliferation and invasion activities of 
colorectal cancer cells [49, 50]. MiR-206 may suppress invasion and migration of MDA-MB-
231 cells in vitro partly via regulating actin cytoskeleton remodelling by downregulating 
Cdc42 [51]. MiR-29 activates p53 by targeting p85 alpha and Cdc42 [52]. 

In addition, MiR-21 targets the tumor suppressor Rho B and regulates proliferation, 
invasion positively in colorectal cancer cells [53, 54]. Jiang and his colleagues have indicated 
that miR-138 plays an important role in tongue squamous cell carcinoma cell migration and 
invasion by concurrently targeting Rho C and ROCK2 [36]. Studies on the association of Rho 
with miRNAs highlight the importance of miRNAs in invasion and metastasis of malignant 
tumors. 
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3. JAK-STAT 

The JAK-STAT signaling pathway transmits information from chemical signals outside the 
cell, through the cell membrane, and into gene promoters on the DNA in the cell nucleus, 
which causes DNA transcription and activity in the cell. JAK, short for Janus Kinase, is a 
family of intracellular, nonreceptor tyrosine kinases that transduce cytokine-mediated 
signals via the JAK-STAT pathway. As a key component of the JAK/STAT pathway, Signal 
Transducer and Activator of Transcription, an important transcription factors, is activated 
by JAK [55, 56]. In JAK and STAT family, emerging studies have indicated that JAK2/STAT3 
pathway is well-established regulators of cell migration, and has been implicated in the 
process of tumor cell invasion and metastasis [57].  

Some studies have indicated that miRNAs participate in the JAK-STAT signaling pathway. 
MiR-375 may function as a tumor suppressor to regulate gastric cancer cell proliferation 
potentially by targeting the JAK2 oncogene [58]. MiR-125b suppresses the proliferation and 
migration of osteosarcoma cells through downregulation of STAT3 [59]. Transfection of 
precursor miR-199a-3p into osteosarcoma cell lines significantly decreased cell growth and 
migration. Duan and his colleagues observed decreased mTOR and STAT3 expression in 
miR-199a-3p transfected cells [60]. Yan and his colleagues indicated that miR-20a regulates 
STAT3 at the post-transcriptional level, resulting in inhibition of cell proliferation and 
invasion of pancreatic carcinoma [61].  

4. MAPK pathway 

The Mitogen Activated Protein Kinase (MAPK) pathway is a frequent event in 
tumorigenesis. MAPKs have been implicated in cell migration, proteinase induction, 
apoptosis, and angiogenesis, events that are essential for successful completion of metastasis 
[8]. The presence of at least six MAPK in yeast suggests that there are more in mammals: 
extracellular signal-regulated kinases (ERK1, ERK2), c-Jun N-terminal kinases (JNKs), p38 
isoforms, ERK5, ERK3/4, ERK7/8. In vivo and in vitro studies have confirmed that three 
major subgroups of MAPK including ERK1/2, JNK, and p38, are specifically involved in 
invasion and metastasis [9, 10, 62].  

Mounting studies have indicated that miRNAs participate in the MAPK signaling pathway. 
MiR-143 plays an important role in prostate cancer proliferation, migration and 
chemosensitivity by suppressing KRAS and subsequent inactivation of MAPK pathway [63]. 
MiR-17-5p significantly activates the p38 kinase pathway [64]. Raf kinase inhibitory protein 
suppresses a cascade of metastasis signalling involving LIN28 and let-7 [65]. Zhu and his 
colleagues found that miR-101 targets MAPK phosphatase 1 to regulate the activation of 
MAPKs in macrophages [66]. MiR-146a suppresses tumor growth and progression by 
targeting EGFR pathway and in a p-ERK-dependent manner in castration-resistant prostate 
cancer [67]. Liu and his colleagues indicated that miR-21 induces tumor angiogenesis 
through targeting PTEN, leading to activate AKT and ERK1/2 signaling pathways [68,69]. 
EGFR promotes lung tumorigenesis by activating miR-7 through a Ras/ERK/Myc pathway 
that targets the ETS2 transcriptional repressor ERF [70].  
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5. Wnt signaling pathway 

Wnt signaling pathway controls tissue polarity and cell movement through the activation of 
RhoA, JNK, and nemo-like kinase (NLK) signaling cascades. The Wnt gene family is a group 
of developmental genes that encode cysteine-rich glycosylated proteins [71]. Aberrant 
activation of Wnt signaling pathway in human cancer leads to more malignant phenotypes, 
such as abnormal tissue polarity, invasion, and metastasis [72].  

A number of studies have indicated that miRNAs participate in the Wnt signaling pathway. 
MiR-200a is a new tumor suppressor that can regulate the activity of the Wnt/β-catenin 
signaling pathway [73]. MiR-371-373 expression is induced by lithium chloride and is 
positively correlated with Wnt/β-catenin-signaling activity in several human cancer cell 
lines [74]. MiR-27 directly targeted and inhibited adenomatous polyposis coli (APC) gene 
expression, and activated Wnt signaling through accumulation of β-catenin [75]. Kapinas 
and his colleagues reported that miR-29 modulates Wnt signaling in human osteoblasts 
through a positive feedback loop [76]. MiR-17-5p plays an important role in breast cancer 
cell invasion and migration by suppressing HBP1 and subsequent activation of Wnt/β-
catenin [77]. Kennell and his colleagues demonstrated that miR-8 family members play an 
evolutionarily conserved role in regulating the Wnt signaling pathway [78].  

6. Notch signaling pathway 

The Notch signaling pathway is a conserved ligand–receptor signaling pathway. Notch 
genes encode single-pass transmembrane proteins that can be activated by interacting with a 
family of its ligands. To date, four Notch receptors have been identified in mammals, 
including human, such as Notch-1-4. It has been well known that Notch signaling plays 
important roles in maintaining the balance involved in cell proliferation, survival, apoptosis, 
and differentiation which affects the development and function of many organs [79]. 
Therefore, dysfunction of Notch prevents differentiation, ultimately guiding 
undifferentiated cells toward malignant transformation. Indeed, many observations suggest 
that alterations in Notch signaling are associated with invasion and metastasis in many 
human cancers [14-16]. 

Mounting studies have indicated that miRNAs participate in the Notch signaling pathway. 
MicroRNA-23b is capable of inducing tolerogenic properties of dendritic cells in vitro 
through the inhibition of the Notch1 and NF-κB signalling pathways [80]. MicroRNA-181 
promotes natural killer (NK) cell development by regulating Notch signaling [81]. MiR-124a 
mediates stroke-induced neurogenesis by targeting the JAG-Notch signaling pathway [82]. 
Pang and his colleagues demonstrated that miR-34a affected cell invasion by regulating 
expression of urokinase plasminogen activator through Notch [83]. MiR-206 targets Notch 3, 
activates apoptosis, and inhibits tumor cell migration and focus formation [84]. MiR-1 
influences cardiac differentiation in Drosophila and regulates Notch signaling [85]. Some 
studies indicated that the ZEB1/miR-200 feedback loop controls Notch signalling in cancer 
cells [86, 87].  
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7. EMT 

Several oncogenic pathways (Rho GTPases, JAK-STAT, MAPK, Wnt and Notch) may induce 
EMT [21-25]. In particular, the association of those pathways with EMT has been shown to 
activate EMT-inducing transcriptional regulators such as the members of the Snail family, 
the zinc finger transcription factors (ZEB), Transforming growth factor beta (TGF-β), Twist 
and Slug.  

Members of the Snail family of transcriptional regulators, namely Snail 1 and Snail 2, have 
emerged as a key regulatory factor of EMT. The zinc finger transcription factors ZEB1 and 
ZEB2 also make a pivotal contribution to this regulation. TGF-β, a major inducer of EMT, 
exists in at least three isoforms called TGF-β1, TGF-β2 and TGF-β3. It cooperates with stem 
cell pathways like Wnt, Ras and Notch to induce EMT [88, 89]. Twist, a basic helix-loop-
helix transcription factor, exists in at least two isoforms called Twist 1 and Twist 2. Twist 
proteins promote EMT by turning-down the expression of epithelial specific proteins, such 
as the E-cadherin and by up-regulating the expression of mesenchymal markers such as the 
N-cadherin, the vimentin and the smooth-muscle actin [90]. Slug, a zinc finger transcription 
factor, whose product belongs to the Snail family of developmental regulatory proteins, is 
transcriptional repressors of E-cadherin and induces EMT [1].  

Emerging studies have indicated that miRNAs participate in the EMT. The miR-106b-25 
cluster targets Smad7, activates TGF-β signaling, and induces EMT in human breast cancer 
[91]. MiR-27 promoted EMT by activating the Wnt pathway [92]. MiR-221/222 targeting of 
trichorhinophalangeal 1 (TRPS1) promotes EMT in breast cancer [93]. MiR-194 inhibits EMT 
of endometrial cancer cells by targeting oncogene BMI-1 [94]. Let-7d negatively modulates 
EMT expression and also plays a role in regulating chemo-resistant ability in oral cancer 
[95]. MiR-200b and miR-15b regulate chemotherapy-induced EMT in human tongue cancer 
cells by targeting BMI-1 [96]. Kumarswamy and his colleagues found that miR-30a targets 
Snai1, inhibits invasion and metastasis, and is downregulated in non-small cell lung cancer 
(NSCLC) [97]. Vetter and his colleagues indicated that miR-661 expression in Snail 1-
induced EMT contributes to breast cancer cell invasion by targeting Nectin-1 and StarD10 
messengers [98]. Some studies indicated that the miR-200 family and miR-205 regulate EMT 
by targeting ZEB1 and SIP1 [99, 100].  

8. MicroRNAs in invasion and metastasis in lung cancer  

Lung cancer is the leading cause of death among the malignant tumors worldwide, and the 
incidence of lung cancer is increasing. Tumor invasion and metastasis are the critical steps in 
determining the aggressive phenotype of human cancers. Mortality of tumor patients results 
mainly from cancer cells spreading to distant organs. In order to resist cancer dissemination, 
more effective therapeutic strategies are clearly required. However, the cellular and 
molecular machinery, underlying invasion and metastasis by miRNA in lung cancer, is 
relatively poorly understood. In light of these recent discoveries, we have classified the 
experimentally validated miRNAs regulating the invasion and metastasis of lung cancer and 
showed in Figure 2.  
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Figure 2. The experimentally validated miRNAs regulate the invasion and metastasis in lung cancer. 

In light of these recent discoveries, the present article indicated that miRNAs participate in 
invasion and metastasis in lung cancer. Zhu and his colleagues indicated that MTA1 
functions in regulating the invasive phenotype of lung cancer cells and this regulation may 
be through altered miRNA expression, such as miR-125b, miR-210, miR-103, miR-194 and 
miR-500 [101]. Hu and his colleagues reported that MiR-193b modulated proliferation, 
migration, and invasion of NSCLC [102]. A p53/miR-34 axis has been found that it regulates 
Snail1-dependent cancer cell EMT [103]. MiR-378 is associated with NSCLC brain metastasis 
by promoting cell migration, invasion and tumor angiogenesis [104]. MiR-30a targets Snai1, 
inhibits invasion and metastasis, and is downregulated in NSCLC [105]. Expression level of 
miR-206 was inversely correlated with metastatic potential of lung cancer [106]. Roybal and 
his colleagues demonstrated that miR-200 Inhibits lung adenocarcinoma cell invasion and 
metastasis by targeting Flt1 [107]. Loss of miR-200c expression induces an aggressive, 
invasive, and chemoresistant phenotype in NSCLC [108]. In our previous studies, we found 
that hsa-miR-125a-3p and hsa-miR-125a-5p are downregulated in NSCLC and have inverse 
effects on invasion and migration of lung cancer cells [109]. Zhang and his colleagues 
reported that miR-21 post-transcriptionally downregulates the expression of tumor 
suppressor PTEN and stimulates growth and invasion in NSCLC [110]. Crawford and his 
colleagues indicated that MiR-126 alters lung cancer cell phenotype by inhibiting adhesion, 
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migration, and invasion and the effects on invasion may be partially mediated through Crk 
regulation [111]. The deep mechanisms of miRNAs in invasion and metastasis which 
contribute to lung cancer are worthy of further investigation. 

9. Conclusion and future perspective 

Despite recent advances in diagnosis and treatment, lung cancer remains a leading cause of 
death among the malignant tumors worldwide, and the incidence of lung cancer is 
increasing. Even so, no improvement in prognosis has been observed if the patient presents 
with metastases at diagnosis. A better understanding of the mechanism of tumor cell 
invasion is critical for the development of more effective treatments for metastatic cancer. In 
recent years, emerging studies have attested to the association between miRNAs and the 
mechanism in critical processes during cancer dissemination, and we have summarized 
many of these in the present manuscript. Here, we have condensed much of this early work, 
and highlight key deregulated miRNAs targeting molecules involved in Rho family 
GTPases, JAK-STAT, MAPK, Wnt, Notch pathway and transcriptional control of EMT. In 
the future, a more complete dissection of the pathways controlled by miRNAs may offer 
new insights on metastasis, and highlight promising areas for the development of novel 
anti-cancer therapies.  
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9. Conclusion and future perspective 

Despite recent advances in diagnosis and treatment, lung cancer remains a leading cause of 
death among the malignant tumors worldwide, and the incidence of lung cancer is 
increasing. Even so, no improvement in prognosis has been observed if the patient presents 
with metastases at diagnosis. A better understanding of the mechanism of tumor cell 
invasion is critical for the development of more effective treatments for metastatic cancer. In 
recent years, emerging studies have attested to the association between miRNAs and the 
mechanism in critical processes during cancer dissemination, and we have summarized 
many of these in the present manuscript. Here, we have condensed much of this early work, 
and highlight key deregulated miRNAs targeting molecules involved in Rho family 
GTPases, JAK-STAT, MAPK, Wnt, Notch pathway and transcriptional control of EMT. In 
the future, a more complete dissection of the pathways controlled by miRNAs may offer 
new insights on metastasis, and highlight promising areas for the development of novel 
anti-cancer therapies.  
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1. Introduction 
Cancer is a molecularly heterogeneous disease [1] and one of the major causes of death 
worldwide. The existence of various types of tumours with different histopathologies, 
genetic and epigenetic variations, and clinical outcomes [2], difficult the understanding of 
this disease, the mechanisms of action of chemotherapeutics and the creation of novel 
therapies.  

The advances in the cancer pathobiology study has its origin on the availability of different 
types of experimental model systems that review the various forms of this disease [2], 
allowing the knowledge of genetics and epigenetics alterations and anticancer drugs testing. 
Studies of cancer rely on the use of primary tumours [1, 3], paraffin-embedded samples [1], 
cancer cell lines [1, 3, 4], xenografts [2, 5, 6], tumour primary cell cultures [3, 4] and/or 
genetically engineered mice [2]. Each of these diverse models are used for different studies, 
mainly because certain types of manipulations for the genetic and DNA methylation 
analysis and drug testing are ethically, and in practice, difficult to perform in animals. Cell 
lines emerge as a feasible alternative to overcome these issues, being at the same time easy 
to manipulate [3] and molecularly characterize (e.g. genetic and/or epigenetically). This cell 
model is exceptional for the fundamental study of the cellular pathways and for disclosing 
critical genes involved in cancer. Nevertheless, a detailed characterization is fundamental 
before its use. This characterization provides important insights about the complexity of the 
polygenetic etiology of cancer and the biological mechanisms involved in this disease [1] 
reinforcing its value as models for its study [1, 7]. Also the characterization of cancer cell 
lines is essential for the development of new anticancer drugs, understanding the action 
mechanisms and the resistance/sensitivity patterns of chemotherapeutics already in use in 
cancer treatment and the development of more targeted anticancer drugs.  
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2. Cancer cell lines as a model for cancer study 

Cancer cell lines have been widely used for research purposes and proved to be a useful tool 
in the genetic approach, and its characterization shows that they are, in fact, an excellent 
model for the study of the biological mechanisms involved in cancer [1]. Examples are 
shown in table 1. The use of cancer cell lines allowed an increment of the information about 
the deregulated genes and signalling pathways in this disease [2, 8]. Furthermore, the use of 
the cell model was in the origin of the development and testing of anticancer drugs 
presently used [8-10], and in the development of new therapies [1, 10, 11], but also as an 
alternative to transplantable animal tumours in chemotherapeutics testing [12]. In fact, the 
use of the appropriate in vitro model in cancer research is crucial for the investigation of 
genetic, epigenetic and cellular pathways [1], for the study of proliferation deregulation, 
apoptosis and cancer progression [2], to define potential molecular markers [3] and for the 
screening and characterization of cancer therapeutics [10, 13]. The results of the research in 
cancer cell lines are usually extrapolated to in vivo human tumours [3] and its importance as 
models for drug testing and translational study have been recognized by many biomedical 
and pharmaceutical companies [8].  
 

Cancer cell line Species  Morphology 
HeLa Homo sapiens Cervix adenocarcinoma Epithelial 

MCF-7 Homo sapiens Breast adenocarcinoma Epithelial 
U87MG Homo sapiens Glioblastoma-astrocytoma Epithelial 
HT-29 Homo sapiens Colon adenocarcinoma Epithelial 
A549 Homo sapiens Lung carcinoma Epithelial 

HEP-G2 Homo sapiens Hepatocellular carcinoma Epithelial 
K-562 Homo sapiens Chronic myeloid leukaemia Lymphoblast 
Cos7 Cercopithecus aethiops SV40 transformed - kidney Fibroblast 
PC3 Homo sapiens Prostate adenocarcinoma Epithelial 
A375 Homo sapiens Malignant melanoma Epithelial 

Table 1. Examples of some widely used cancer cell lines with origin in different cell types. These data 
were obtained from the European Collection of Cell Cultures (ECCC) and American Type Culture 
Collection (ATCC).  

In spite of the essential role of cancer cell lines in biomedical research, there is a debate 
among the scientific community on the fact whether they are or not representative of the 
original tumour [5, 14]. Some authors agree with the idea that there is a high, but not 
perfect, genomic similarity between the original tumour and the cancer cell line derived 
from it [8, 13, 15-17]. Cancer cell lines maintain the tumour-specific chromosome 
abnormalities in the first passages [15], show the same morphologic and molecular 
characteristics of the primary tumour [16] and, in general, maintain the expression of the 
“hallmarks of cancer”, with exception of angiogenesis that requires the presence of stromal 
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tissues [8]. As an example, Tomlinson and colleagues (1998) compared a breast primary 
tumour and a cell line originated from that tumour. These authors reported the same BRCA1 
mutation and an identical pattern of allelic loss in multiple loci, indicating that the cell line 
preserves numerous characteristics of the original tumour [17]. Also the data from Finlay 
and Bagulay (1984) demonstrated that the cancer cell lines have a similar response to 
anticancer drugs when compared to the original tumour [18].  

The fact that a large number of long-established cancer cell lines were originated from 
aggressive and metastatic tumours [4, 5], restrict the study of cancer progression and of 
drug therapies development. Cancer cell lines derived from earlier stage and lower grade 
disease seems to be the more promising models. In comparative studies made between 
cancer cell lines derived from earlier stage tumours and the original tumour tissues showed 
good concordance in several parameters, including the state of P53 (100%) and ERBB2 (93%) 
[4]. This shows that this type of cells are more representative of the original tumour [4], 
reflecting more accurately the events that occur in cancer cells in vivo [5].  

While cancer cell lines retain many genetic, epigenetic and gene expression features [3], they 
are genetically more complex than the tumour itself [13]. The differences between cancer cell 
lines and the respective tumours may be explained by the prior selection of initial cells and 
the in vitro Darwinian evolution [3]. Cancer cell lines typically present extensive 
chromosomal rearrangements, oncogene mutations, allelic loss and gene amplifications. 
This can lead to a loss of phenotypic properties and additional molecular changes during 
the cell culturing for long times [14], including modifications in some cellular pathways [3].  

There are numerous reasons for the use of cancer cell lines as an experimental model for the 
study of cancer [2]. They have many intrinsic advantages for cancer research and for new 
therapeutic approaches, increasing their value [8]. Some of the advantages (table 2) of this 
model are listed below: 

- Easiness to handle and manipulate [2-4]. This is an important and, in some cases an 
exclusive characteristic of this model [8]. Cell lines can be genetically/epigenetically 
manipulated using demethylation agents [1, 19], siRNA [20], expression vectors [10] 
and pharmacologically manipulated using cytostatics [13].  

- High homogeneity [2-4]. The heterogeneity of solid tumours difficult their analysis and 
cancer cell lines allow the analysis of a homogeneous population of tumour cells [21]. 
This homogeneity can be seen as a disadvantage because of the natural heterogeneity of 
the tumour. However, this can be overcome using a panel of cancer cell lines 
representative of the heterogeneity observed in the primary tumours [2]. 

- High degree of similarity with the initial tumour [17]. Cancer cell lines are pure 
populations of tumour cells and they represent these cells without the complexity of the 
in vivo environment (stromal and inflammatory cells). This can be seen also as a 
disadvantage [8]. 

- Large number and variety of cancer cell lines available [8], although poorly 
characterized [5].  

- Immediate accessibility to the scientific community [1, 8]. 



Oncogenomics and Cancer Proteomics –  
Novel Approaches in Biomarkers Discovery and Therapeutic Targets in Cancer 140 

2. Cancer cell lines as a model for cancer study 

Cancer cell lines have been widely used for research purposes and proved to be a useful tool 
in the genetic approach, and its characterization shows that they are, in fact, an excellent 
model for the study of the biological mechanisms involved in cancer [1]. Examples are 
shown in table 1. The use of cancer cell lines allowed an increment of the information about 
the deregulated genes and signalling pathways in this disease [2, 8]. Furthermore, the use of 
the cell model was in the origin of the development and testing of anticancer drugs 
presently used [8-10], and in the development of new therapies [1, 10, 11], but also as an 
alternative to transplantable animal tumours in chemotherapeutics testing [12]. In fact, the 
use of the appropriate in vitro model in cancer research is crucial for the investigation of 
genetic, epigenetic and cellular pathways [1], for the study of proliferation deregulation, 
apoptosis and cancer progression [2], to define potential molecular markers [3] and for the 
screening and characterization of cancer therapeutics [10, 13]. The results of the research in 
cancer cell lines are usually extrapolated to in vivo human tumours [3] and its importance as 
models for drug testing and translational study have been recognized by many biomedical 
and pharmaceutical companies [8].  
 

Cancer cell line Species  Morphology 
HeLa Homo sapiens Cervix adenocarcinoma Epithelial 

MCF-7 Homo sapiens Breast adenocarcinoma Epithelial 
U87MG Homo sapiens Glioblastoma-astrocytoma Epithelial 
HT-29 Homo sapiens Colon adenocarcinoma Epithelial 
A549 Homo sapiens Lung carcinoma Epithelial 

HEP-G2 Homo sapiens Hepatocellular carcinoma Epithelial 
K-562 Homo sapiens Chronic myeloid leukaemia Lymphoblast 
Cos7 Cercopithecus aethiops SV40 transformed - kidney Fibroblast 
PC3 Homo sapiens Prostate adenocarcinoma Epithelial 
A375 Homo sapiens Malignant melanoma Epithelial 

Table 1. Examples of some widely used cancer cell lines with origin in different cell types. These data 
were obtained from the European Collection of Cell Cultures (ECCC) and American Type Culture 
Collection (ATCC).  

In spite of the essential role of cancer cell lines in biomedical research, there is a debate 
among the scientific community on the fact whether they are or not representative of the 
original tumour [5, 14]. Some authors agree with the idea that there is a high, but not 
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tissues [8]. As an example, Tomlinson and colleagues (1998) compared a breast primary 
tumour and a cell line originated from that tumour. These authors reported the same BRCA1 
mutation and an identical pattern of allelic loss in multiple loci, indicating that the cell line 
preserves numerous characteristics of the original tumour [17]. Also the data from Finlay 
and Bagulay (1984) demonstrated that the cancer cell lines have a similar response to 
anticancer drugs when compared to the original tumour [18].  

The fact that a large number of long-established cancer cell lines were originated from 
aggressive and metastatic tumours [4, 5], restrict the study of cancer progression and of 
drug therapies development. Cancer cell lines derived from earlier stage and lower grade 
disease seems to be the more promising models. In comparative studies made between 
cancer cell lines derived from earlier stage tumours and the original tumour tissues showed 
good concordance in several parameters, including the state of P53 (100%) and ERBB2 (93%) 
[4]. This shows that this type of cells are more representative of the original tumour [4], 
reflecting more accurately the events that occur in cancer cells in vivo [5].  

While cancer cell lines retain many genetic, epigenetic and gene expression features [3], they 
are genetically more complex than the tumour itself [13]. The differences between cancer cell 
lines and the respective tumours may be explained by the prior selection of initial cells and 
the in vitro Darwinian evolution [3]. Cancer cell lines typically present extensive 
chromosomal rearrangements, oncogene mutations, allelic loss and gene amplifications. 
This can lead to a loss of phenotypic properties and additional molecular changes during 
the cell culturing for long times [14], including modifications in some cellular pathways [3].  

There are numerous reasons for the use of cancer cell lines as an experimental model for the 
study of cancer [2]. They have many intrinsic advantages for cancer research and for new 
therapeutic approaches, increasing their value [8]. Some of the advantages (table 2) of this 
model are listed below: 

- Easiness to handle and manipulate [2-4]. This is an important and, in some cases an 
exclusive characteristic of this model [8]. Cell lines can be genetically/epigenetically 
manipulated using demethylation agents [1, 19], siRNA [20], expression vectors [10] 
and pharmacologically manipulated using cytostatics [13].  

- High homogeneity [2-4]. The heterogeneity of solid tumours difficult their analysis and 
cancer cell lines allow the analysis of a homogeneous population of tumour cells [21]. 
This homogeneity can be seen as a disadvantage because of the natural heterogeneity of 
the tumour. However, this can be overcome using a panel of cancer cell lines 
representative of the heterogeneity observed in the primary tumours [2]. 

- High degree of similarity with the initial tumour [17]. Cancer cell lines are pure 
populations of tumour cells and they represent these cells without the complexity of the 
in vivo environment (stromal and inflammatory cells). This can be seen also as a 
disadvantage [8]. 

- Large number and variety of cancer cell lines available [8], although poorly 
characterized [5].  

- Immediate accessibility to the scientific community [1, 8]. 
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- Unlimited auto-replicative source, in continuous cell lines [4].  
- Easy substitution of contaminated cultures for the respective frozen cell lines [4]. 
- Reproducibility of results in the correct conditions [3]. 

Nevertheless, some disadvantages or limitations (table 2) must be taken into account: 

- Some cell lines may have cross contamination with HeLa cells. A large number of 
cancer cell lines in the cell banks (the most used) have been reported as contaminated 
with HeLa cells [3, 4, 8].   

- Genomic instability [3, 4] which may cause differences between the original tumour and 
the respective cell line [3]. The genotypic and phenotypic drift is more common in 
continuous cultures, especially the ones deposited in cell banks for many years. The 
phenotypic changes can occur by the appearance of subpopulations selected from more 
competitive clones [3, 4]. This can be partially solved (in more recent cancer cell lines) 
limiting the number of passages and using frozen cells with few passages [3].  

- Culture conditions, that can change the morphology, the gene expression and several 
cellular pathways [3].  

- Infections with mycoplasma that can change the culture properties [3]. 
- Difficulty in the establishment of long-term cancer cell lines of certain types of tumours 

[22]. 
- Cell culture environment is different from that of the original tumour [2]. 
- Loss of the natural heterogeneity of the tumour [2]. 
 
Advantages of the use of cancer cell lines Disadvantages of the use of cancer cell lines 
 Easy to handle and manipulate [2-4]. 
 High homogeneity [2-4].  
 High degree of similarity with the 

initial tumour [17].  
 High variety available [8]. 
 Immediate accessibility [1, 8]. 
 Unlimited auto-replicative source [4].  
 Easy substitution [4]. 
 Reproducibility of results [3]. 

 Cross contamination with HeLa cells [3, 
4, 8]. 

 Loss of heterogeneity [2]. 
 Genomic instability [3, 4]. 
 Possibility of modifying the 

characteristics of the cells [3]. 
 Infections with mycoplasma [3]. 
 Difficulty in the establishment of long-

term cancer cell lines [22]. 
 Different environment of the tumour [2]. 

Table 2. Advantages and disadvantages of the use of cancer cell lines as models in cancer research. 

Some of these problems can be solved by the conjugation with other type of models. 
Primary cell cultures (derived directly from the tumours) are a viable tool as they maintain 
some of the heterogeneity of the original tumour. However, the tissue environment is lost 
and some studies cannot be performed in this model, as those that need several passages [3, 
4]. Fresh tumour samples obtained by surgery [3] or tumour samples embedded in paraffin 
[1] can also be used for the study of cancer biology. These models represent the state of the 
tumour in vivo with its heterogeneity, but only at a specific evolutionary moment of the 
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tumour. This sample is limited in amount and the genetic manipulation is almost impossible 
[3]. The xenografts models (nude mice) are used for testing the tumorigenicity and 
metastatic ability of cancer cell lines. They constitute a model for drug testing, providing the 
in vivo microenvironment for human tumour original cells [2, 3]. However, the 
immunocompromised mice have a limitation per se by the important role of inflammation in 
cancer [2, 3]. Animal models, with spontaneous or induced tumours [3], have the advantage 
of providing a historical sequence of the tumour and have been used in the pathobiology 
research of cancer and for testing new therapeutics in vivo. Besides the ethical problem, this 
model also holds the difficulty in extrapolating the data to the human counterpart [22]. 
Another animal model is the genetically engineered mice for cancer that may reproduce 
human in vivo models [3]. This model is important for elucidating the regulatory 
mechanisms of cancer initiation and progression, however it cannot recapitulate all the 
aspects of the cancer [2] and also have limitations regarding genetic manipulation.   

In fact, all the experimental models for cancer research present advantages and 
disadvantages and none of them is completely representative of the phenotype of the 
tumour [2, 3]. Nevertheless, cancer cell lines are adequate models for the research of this 
disease. They provide adequate models for the study of the origin of cancers by the presence 
of initiating cells or cancer stem cells [2, 3] and for drug testing in a first approach [2]. Some 
cancer cell lines can be used for screening RNAi (RNA interference) libraries and other small 
molecules as a way to study interacting pathways in the initiation and survival of the 
tumour [2]. The phenotype and genotype evolutionary study, under selective pressure, can 
be done in cancer cell lines, to understand the cancer progression until metastasis [3]. The 
use of a panel of various subtypes of cancer cell lines increases the importance of this model 
in disclosing the signalling pathways involved in therapeutic response [2]. Cancer cell lines 
are also an excellent tool for the genetic and epigenetic study of cancer, being the genomic 
and methylomic profiling of each cancer cell line crucial for cancer research and their use in 
anticancer drug testing.  

2.1. The importance of the molecular characterization of cancer cell lines 

A cancer cell line is more valuable as an in vitro model for cancer research if it is properly 
molecularly characterized [1, 7]. In Figure 1 this aspect is patent as we can observe an 
increasing of works regarding cell lines characterization which is accompanied by an 
increasing number of papers published concerning the use of cancer cell lines as models for 
cancer research. This type of analysis will allow a more detailed study of the 
genetic/epigenetic events (e.g. disclose critical cancer genes and DNA methylation 
alterations) and cellular pathways associated with oncogenesis [21], in the understanding of 
the microevolutionary progression of the tumour [1] (when the molecular profiling is done 
in different passages [15]) and unveil the molecular patterns associated with 
resistance/sensitivity to anticancer drugs [10, 15]. Specifically, the tumour transcriptional 
profiling and the DNA methylation patterns (i.e. that result in gene expression alterations) can 
be useful as a first approach in the development of new anticancer targeted therapeutics [9].  
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tumour. This sample is limited in amount and the genetic manipulation is almost impossible 
[3]. The xenografts models (nude mice) are used for testing the tumorigenicity and 
metastatic ability of cancer cell lines. They constitute a model for drug testing, providing the 
in vivo microenvironment for human tumour original cells [2, 3]. However, the 
immunocompromised mice have a limitation per se by the important role of inflammation in 
cancer [2, 3]. Animal models, with spontaneous or induced tumours [3], have the advantage 
of providing a historical sequence of the tumour and have been used in the pathobiology 
research of cancer and for testing new therapeutics in vivo. Besides the ethical problem, this 
model also holds the difficulty in extrapolating the data to the human counterpart [22]. 
Another animal model is the genetically engineered mice for cancer that may reproduce 
human in vivo models [3]. This model is important for elucidating the regulatory 
mechanisms of cancer initiation and progression, however it cannot recapitulate all the 
aspects of the cancer [2] and also have limitations regarding genetic manipulation.   

In fact, all the experimental models for cancer research present advantages and 
disadvantages and none of them is completely representative of the phenotype of the 
tumour [2, 3]. Nevertheless, cancer cell lines are adequate models for the research of this 
disease. They provide adequate models for the study of the origin of cancers by the presence 
of initiating cells or cancer stem cells [2, 3] and for drug testing in a first approach [2]. Some 
cancer cell lines can be used for screening RNAi (RNA interference) libraries and other small 
molecules as a way to study interacting pathways in the initiation and survival of the 
tumour [2]. The phenotype and genotype evolutionary study, under selective pressure, can 
be done in cancer cell lines, to understand the cancer progression until metastasis [3]. The 
use of a panel of various subtypes of cancer cell lines increases the importance of this model 
in disclosing the signalling pathways involved in therapeutic response [2]. Cancer cell lines 
are also an excellent tool for the genetic and epigenetic study of cancer, being the genomic 
and methylomic profiling of each cancer cell line crucial for cancer research and their use in 
anticancer drug testing.  

2.1. The importance of the molecular characterization of cancer cell lines 

A cancer cell line is more valuable as an in vitro model for cancer research if it is properly 
molecularly characterized [1, 7]. In Figure 1 this aspect is patent as we can observe an 
increasing of works regarding cell lines characterization which is accompanied by an 
increasing number of papers published concerning the use of cancer cell lines as models for 
cancer research. This type of analysis will allow a more detailed study of the 
genetic/epigenetic events (e.g. disclose critical cancer genes and DNA methylation 
alterations) and cellular pathways associated with oncogenesis [21], in the understanding of 
the microevolutionary progression of the tumour [1] (when the molecular profiling is done 
in different passages [15]) and unveil the molecular patterns associated with 
resistance/sensitivity to anticancer drugs [10, 15]. Specifically, the tumour transcriptional 
profiling and the DNA methylation patterns (i.e. that result in gene expression alterations) can 
be useful as a first approach in the development of new anticancer targeted therapeutics [9].  
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Figure 1. Number of publications regarding: cancer cell lines as models for cancer research (blue line) 
and cancer cell lines characterization (red line). These data were obtained from the papers indexed in 
the free resource PubMed (National Center for Biotechnology Information, at the U.S. National Library 
of Medicine, located at the National Institutes of Health). 

The molecular characterization of cell lines molecular characterization can be done at 
different and complementary platforms - cytogenomic [1, 5, 15], genomic [1, 8], epigenomic 
[1, 15], transcriptomic [1, 13, 23] and proteomic [24]. In addition, the characterization of the 
cells morphology [21, 25], the growth rate by the doubling time measurement [25, 26], the 
growth curve [25] and the tumorigenic capacity in athymic nude mice by transplantation of 
cancer cells to the mice (xenotransplant) [21, 25, 26] should be held. It is also important to 
characterize cancer cell lines regarding their anchorage independency (soft agarose assay) 
[11, 26, 27] that can be significant for studying the interaction of drugs with the cells [28] and 
at their metastatic migration potential and invasiveness capacity, that can be useful for 
determining the genes and pathways involved in metastasis [26, 29].  

The identification and characterization of chromosomal rearrangements allows the detection 
of breakpoints and chromosome abnormalities that can be related with deregulation of 
cancer genes. The characterization of chromosomal instability is also crucial because it can 
be caused by errors in the DNA damage checkpoints, in the DNA repair pathways and in 
the mitotic segregation [1]. 

Also the characterization of DNA amplification is important, as the overexpression of genes 
can be involved in the oncogenic process, as ERBB2 in some types of breast cancer [1] or 
other genes that can be druggable targets like kinases [13].  

Cell lines molecular profiling that disclose alterations in the cell cycle regulators and other 
signalling molecules is important [15, 28] and can be useful for targeting anticancer drugs 
for cell cycle defects. The fact that tumour cells with these alterations are more sensitive to 
anticancer agents highlight the importance of the characterization of cancer cell lines to 
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molecules as P53, RB, MDM-2, CDKs, cyclins, apoptotic regulator proteins [28] and the 
respective genes.  

Recently, Louzada and colleagues (2012) performed a genetic and cytogenetic 
characterization of two rat sister cancer cell lines commercially available, at the levels of 
morphology, ploidy and identification of clonal chromosome rearrangements and 
breakpoint regions. They also analysed the expression profile of two oncogenes and the 
influence of global demethylation in the expression of these genes [1], and realized that 
these two sister cell lines are a good in vitro cell model for Erbb2.  

As referred, the molecular characterization of cancer cell lines is important for anticancer 
drug testing [16], for the definition of chemosensitivity and resistance pattern [10] and their 
correlation with candidate cancer genes [10]. As an example, a research from Hakazaki and 
colleagues (2006) on the characterization of a cancer cell line (FPS-1) derived from an 
undifferentiated pleomorphic sarcoma (UPS) reported upregulation of the Epidermal 
growth factor receptor (EGFR) and cyclooxygenase-2 (COX-2) genes, indicating the use of 
this cell line for the development of drugs that act on these genes or in its cellular pathways 
[16]. Fang and colleagues (2009), when characterizing cell lines derived from malignant 
peripheral nerve sheath tumours (MPNST) from patients with metastatic and recurrent 
disease, identified genes associated with the metastatic potential, indicating some 
therapeutic approaches targeted for these genes [15]. Finally, a pharmacological and 
molecular characterization was made in a panel of 60 different types of human cancer cell 
lines (NCI60) created for the development of anticancer drugs and included DNA, RNA, 
proteins, chromosome and functional profiling, allowing a better interpretation of the 
results of anticancer drug tests [30]. 

The molecular profiling of cancer cell lines also enables an easier assessment of cancer types 
and subtypes, defining which cell lines are more suitable for the different investigations [13], 
which in turn, enhances the screening and study of anticancer drugs. Recently, Kao and 
colleagues (2009) did a characterization of commercially available breast cancer cell lines at 
the gene expression levels and respective gene copy number variation. They were  
able to correlate the cancer cell lines with recognized molecular subtypes of breast  
cancer, concluding which is the most adequate cell line for the study of each tumour 
subtype [13].  

Cancer cell lines must be characterized not only in the first passages, but also during their 
progression, in different passages [15]. The use of cancer cell lines that were characterized 
many years ago [4, 31] and the contamination of the cell lines deposited in cell banks with 
HeLa cells are a problem in cancer research [4, 8] that requires efforts in their molecular 
profiling. The problem of the lack of characterization of cancer cell lines that are used for 
many years [4] was highlighted by Osborne and colleagues (1987) in a study that 
demonstrated that one of the most used breast cancer cell line (MCF-7) showed different 
molecular characteristics according to the lab origin [31]. This fact shows the importance of 
the characterization of these models, that are in cell banks for many years, accumulating, in 
the meantime, a high number of mutations [4, 8]. The existence of a large number of cell 
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other genes that can be druggable targets like kinases [13].  
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molecules as P53, RB, MDM-2, CDKs, cyclins, apoptotic regulator proteins [28] and the 
respective genes.  

Recently, Louzada and colleagues (2012) performed a genetic and cytogenetic 
characterization of two rat sister cancer cell lines commercially available, at the levels of 
morphology, ploidy and identification of clonal chromosome rearrangements and 
breakpoint regions. They also analysed the expression profile of two oncogenes and the 
influence of global demethylation in the expression of these genes [1], and realized that 
these two sister cell lines are a good in vitro cell model for Erbb2.  

As referred, the molecular characterization of cancer cell lines is important for anticancer 
drug testing [16], for the definition of chemosensitivity and resistance pattern [10] and their 
correlation with candidate cancer genes [10]. As an example, a research from Hakazaki and 
colleagues (2006) on the characterization of a cancer cell line (FPS-1) derived from an 
undifferentiated pleomorphic sarcoma (UPS) reported upregulation of the Epidermal 
growth factor receptor (EGFR) and cyclooxygenase-2 (COX-2) genes, indicating the use of 
this cell line for the development of drugs that act on these genes or in its cellular pathways 
[16]. Fang and colleagues (2009), when characterizing cell lines derived from malignant 
peripheral nerve sheath tumours (MPNST) from patients with metastatic and recurrent 
disease, identified genes associated with the metastatic potential, indicating some 
therapeutic approaches targeted for these genes [15]. Finally, a pharmacological and 
molecular characterization was made in a panel of 60 different types of human cancer cell 
lines (NCI60) created for the development of anticancer drugs and included DNA, RNA, 
proteins, chromosome and functional profiling, allowing a better interpretation of the 
results of anticancer drug tests [30]. 

The molecular profiling of cancer cell lines also enables an easier assessment of cancer types 
and subtypes, defining which cell lines are more suitable for the different investigations [13], 
which in turn, enhances the screening and study of anticancer drugs. Recently, Kao and 
colleagues (2009) did a characterization of commercially available breast cancer cell lines at 
the gene expression levels and respective gene copy number variation. They were  
able to correlate the cancer cell lines with recognized molecular subtypes of breast  
cancer, concluding which is the most adequate cell line for the study of each tumour 
subtype [13].  

Cancer cell lines must be characterized not only in the first passages, but also during their 
progression, in different passages [15]. The use of cancer cell lines that were characterized 
many years ago [4, 31] and the contamination of the cell lines deposited in cell banks with 
HeLa cells are a problem in cancer research [4, 8] that requires efforts in their molecular 
profiling. The problem of the lack of characterization of cancer cell lines that are used for 
many years [4] was highlighted by Osborne and colleagues (1987) in a study that 
demonstrated that one of the most used breast cancer cell line (MCF-7) showed different 
molecular characteristics according to the lab origin [31]. This fact shows the importance of 
the characterization of these models, that are in cell banks for many years, accumulating, in 
the meantime, a high number of mutations [4, 8]. The existence of a large number of cell 
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lines deposited in cell banks contaminated with HeLa cells, the first established cancer cell 
line, is a serious problem [4, 8] verified after the appearance of molecular methods as DNA 
fingerprinting, that showed cross-contaminations in about 18% of the cell lines deposited in 
the German Cell Line Bank [4, 8, 32]. The generation of databases with the molecular 
characterization of cell lines and with the identification of its contaminants [8] is essential for 
the use of cell lines as credible models. Also the scientific journals, at medium-term, should 
require the profiling of these lines before the publication of any data [4, 8].  

2.2. Methodologies for cancer cell lines molecular profiling 

Several methodologies can be used for a proper molecular characterization of cancer cell 
lines, therefore, the selection and combination of the appropriate methods is essential.  

For the cytogenetic profiling, the study of imbalances or rearrangements at the 
chromosomal level is initially done using G-banding karyotyping [1, 7, 15, 16, 33]. The 
identification of breakpoint regions and/or clonal chromosome rearrangements can be 
further achieved by FISH (Fluorescent in situ Hybridization), usually using chromosome 
painting and BAC/PAC clones [1]. FISH can also be used for the identification of oncogenes 
amplification [1, 34, 35]. Nevertheless, the resolution of such analyses in the detection of 
DNA gains and losses might be increased using CGH (Comparative Genomic 
Hybridization) that allows detecting from 10-20 Mb with metaphase chromosomes down to 
200 bp with high-density array-CGH using BAC or oligonucleotide arrays [5, 15, 34, 36, 37]. 
CGH can be useful in detecting gene imbalances allowing the identification of new 
important genes that can then be up or downregulated in cancer cell lines [34].  

The DNA molecular profiling is possible with the use of DNA fingerprinting [4, 21], RFLP 
(Restriction Fragment Length Polymorphism), probes chromosome-specific [15, 21], STR 
(short tandem repeats) profiling [4] or gene sequencing [36]. Techniques such as RT-qPCR 
(Real-Time Reverse Transcriptase Quantitative PCR) [1, 16, 33, 38, 39], RNA-FISH [1], cDNA 
microarrays and whole genome DNA microarrays [5, 10, 13, 34, 40] can be used for gene 
expression profiling of cancer cell lines. RT-qPCR and RNA-FISH (allows single cell 
analysis) are complementary methods that permit the expression quantification of cancer 
genes [1]. Whole-genome DNA microarrays techniques are useful for the analysis of the 
expression profile genome-wide [10, 13] and copy number variations [13] or for the 
expression analysis of a specific fraction of the genome like promoters, codifying regions, 
SNPs (Single Nucleotide Polymorphisms), spliced exons or a panel of pre-selected genes 
related with specific diseases as cancer. For the study of the protein expression level, the 
most widely used methods are immunohistochemistry [11, 13, 15, 16, 35, 38, 41] and western 
blotting [13, 16]. 

2.2.1. Next generation sequencing technologies in cancer cell lines 

Although the referred methodologies have been successfully used in the characterization of 
cancer cell lines, recently, new promising strategies for analysis of genetic and epigenetic 
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alterations have emerged, providing a large amount of information at low cost. These are 
based in Next Generation Sequencing (NGS), which allows the sequencing of almost all 
coding regions (and at a low-extension, non-coding sequences) of both the genome and the 
methylome [42, 43]. The NGS platforms have the power of sequencing massively-parallel 
short-read DNA [42] with a high-throughput at a low cost [44], substituting some techniques 
as the Sanger traditional sequencing [45] and microarrays [42]. Incredibly, NGS can produce 
up to 1 billion of sequences per instrument in four days. However, these results are highly 
dependent on the analysis with refined bioinformatics programs, and the large amount of 
information makes the data treatment sometimes difficult [42, 45]. 

NGS is responsible for the recent increase of epigenetic studies, transforming the resolution 
of the characterization at the epigenetic level [42, 43, 46], and have allowed the construction 
of the first map of the human methylome [43]. The genome-wide DNA methylation 
profiling can be done by array-based or sequencing-based (NGS) with the combination of 
bisulfite conversion (that transforms the unmethylated cytosines into uracil, preserving the 
methylated cytosines) or immunoprecipitation of the methylated DNA (MeDIP) [42, 47]. The 
single-nucleotide resolution of these platforms provides information about the methylation 
of each cytosine, which is an important mark in oncogenesis. An example of the use of 
genome-wide DNA methylation immunoprecipitation-sequencing for the methylome 
profiling in cancer cell lines was made recently by Ruike and colleagues (2010) and their 
data indicate breast cancer cell lines as being globally hypomethylated and with numerous 
hypermethylated sequences [48]. For the study of epigenetics genome-wide, a technology 
that combines chromatin-immunoprecipitation (ChIP) and NGS technologies has been used 
[42]. The ChIP methodology is based on DNA and proteins interactions and together with 
NGS platforms (ChIP-Seq) is used to analyse histones’ modifications genome-wide, as 
methylation [42,43].  

The development of high-throughput DNA sequencing and whole-genome platforms for 
the analysis of the transcriptome, methylome, microRNAs and copy number changes is 
essential for the advance in cancer cell lines profiling. While the use of these platforms for 
cancer cell lines profiling is only at the beginning, these techniques have already proved its 
value in the identification of copy number alterations, mutations detection or different 
methylation patterns of genes [8].  

3. Methylome analysis in cancer 

Besides the genetic alterations (as point mutations, deletions, translocations or 
amplifications), it is now settled that imbalances in the DNA methylation patterns are key 
processes in tumour formation and progression [1, 49]. Thus, the profiling of cancer cell line 
models must also be done at the epigenetic level, and more particularly, at the DNA 
methylation level [5], that leads to heritable alterations of gene expression that do not 
involve alterations in the sequence of DNA [5, 50, 51]. As can be observed in Figure 2, the 
methylation analysis in cancer cell lines is still very scarce. 
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lines deposited in cell banks contaminated with HeLa cells, the first established cancer cell 
line, is a serious problem [4, 8] verified after the appearance of molecular methods as DNA 
fingerprinting, that showed cross-contaminations in about 18% of the cell lines deposited in 
the German Cell Line Bank [4, 8, 32]. The generation of databases with the molecular 
characterization of cell lines and with the identification of its contaminants [8] is essential for 
the use of cell lines as credible models. Also the scientific journals, at medium-term, should 
require the profiling of these lines before the publication of any data [4, 8].  

2.2. Methodologies for cancer cell lines molecular profiling 

Several methodologies can be used for a proper molecular characterization of cancer cell 
lines, therefore, the selection and combination of the appropriate methods is essential.  

For the cytogenetic profiling, the study of imbalances or rearrangements at the 
chromosomal level is initially done using G-banding karyotyping [1, 7, 15, 16, 33]. The 
identification of breakpoint regions and/or clonal chromosome rearrangements can be 
further achieved by FISH (Fluorescent in situ Hybridization), usually using chromosome 
painting and BAC/PAC clones [1]. FISH can also be used for the identification of oncogenes 
amplification [1, 34, 35]. Nevertheless, the resolution of such analyses in the detection of 
DNA gains and losses might be increased using CGH (Comparative Genomic 
Hybridization) that allows detecting from 10-20 Mb with metaphase chromosomes down to 
200 bp with high-density array-CGH using BAC or oligonucleotide arrays [5, 15, 34, 36, 37]. 
CGH can be useful in detecting gene imbalances allowing the identification of new 
important genes that can then be up or downregulated in cancer cell lines [34].  

The DNA molecular profiling is possible with the use of DNA fingerprinting [4, 21], RFLP 
(Restriction Fragment Length Polymorphism), probes chromosome-specific [15, 21], STR 
(short tandem repeats) profiling [4] or gene sequencing [36]. Techniques such as RT-qPCR 
(Real-Time Reverse Transcriptase Quantitative PCR) [1, 16, 33, 38, 39], RNA-FISH [1], cDNA 
microarrays and whole genome DNA microarrays [5, 10, 13, 34, 40] can be used for gene 
expression profiling of cancer cell lines. RT-qPCR and RNA-FISH (allows single cell 
analysis) are complementary methods that permit the expression quantification of cancer 
genes [1]. Whole-genome DNA microarrays techniques are useful for the analysis of the 
expression profile genome-wide [10, 13] and copy number variations [13] or for the 
expression analysis of a specific fraction of the genome like promoters, codifying regions, 
SNPs (Single Nucleotide Polymorphisms), spliced exons or a panel of pre-selected genes 
related with specific diseases as cancer. For the study of the protein expression level, the 
most widely used methods are immunohistochemistry [11, 13, 15, 16, 35, 38, 41] and western 
blotting [13, 16]. 

2.2.1. Next generation sequencing technologies in cancer cell lines 

Although the referred methodologies have been successfully used in the characterization of 
cancer cell lines, recently, new promising strategies for analysis of genetic and epigenetic 
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alterations have emerged, providing a large amount of information at low cost. These are 
based in Next Generation Sequencing (NGS), which allows the sequencing of almost all 
coding regions (and at a low-extension, non-coding sequences) of both the genome and the 
methylome [42, 43]. The NGS platforms have the power of sequencing massively-parallel 
short-read DNA [42] with a high-throughput at a low cost [44], substituting some techniques 
as the Sanger traditional sequencing [45] and microarrays [42]. Incredibly, NGS can produce 
up to 1 billion of sequences per instrument in four days. However, these results are highly 
dependent on the analysis with refined bioinformatics programs, and the large amount of 
information makes the data treatment sometimes difficult [42, 45]. 

NGS is responsible for the recent increase of epigenetic studies, transforming the resolution 
of the characterization at the epigenetic level [42, 43, 46], and have allowed the construction 
of the first map of the human methylome [43]. The genome-wide DNA methylation 
profiling can be done by array-based or sequencing-based (NGS) with the combination of 
bisulfite conversion (that transforms the unmethylated cytosines into uracil, preserving the 
methylated cytosines) or immunoprecipitation of the methylated DNA (MeDIP) [42, 47]. The 
single-nucleotide resolution of these platforms provides information about the methylation 
of each cytosine, which is an important mark in oncogenesis. An example of the use of 
genome-wide DNA methylation immunoprecipitation-sequencing for the methylome 
profiling in cancer cell lines was made recently by Ruike and colleagues (2010) and their 
data indicate breast cancer cell lines as being globally hypomethylated and with numerous 
hypermethylated sequences [48]. For the study of epigenetics genome-wide, a technology 
that combines chromatin-immunoprecipitation (ChIP) and NGS technologies has been used 
[42]. The ChIP methodology is based on DNA and proteins interactions and together with 
NGS platforms (ChIP-Seq) is used to analyse histones’ modifications genome-wide, as 
methylation [42,43].  

The development of high-throughput DNA sequencing and whole-genome platforms for 
the analysis of the transcriptome, methylome, microRNAs and copy number changes is 
essential for the advance in cancer cell lines profiling. While the use of these platforms for 
cancer cell lines profiling is only at the beginning, these techniques have already proved its 
value in the identification of copy number alterations, mutations detection or different 
methylation patterns of genes [8].  

3. Methylome analysis in cancer 

Besides the genetic alterations (as point mutations, deletions, translocations or 
amplifications), it is now settled that imbalances in the DNA methylation patterns are key 
processes in tumour formation and progression [1, 49]. Thus, the profiling of cancer cell line 
models must also be done at the epigenetic level, and more particularly, at the DNA 
methylation level [5], that leads to heritable alterations of gene expression that do not 
involve alterations in the sequence of DNA [5, 50, 51]. As can be observed in Figure 2, the 
methylation analysis in cancer cell lines is still very scarce. 
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Figure 2. Number of publications regarding cancer cell lines characterization at the DNA methylation 
level (green line). These data were obtained from the papers indexed in the free resource PubMed 
(National Center for Biotechnology Information, at the U.S. National Library of Medicine, located at the 
National Institutes of Health).  

The methylation of DNA is a chemical modification catalyzed by DNA methyltransferases 
(DNMT1, DNMT3A, DNMT3B) [51-53], involving the covalent addiction of a methyl group 
(CH3) to the carbon in the 5-position of the cytosine ring [50-52], normally in a CpG 
dinucleotide context. CpG dinucleotide can be grouped in CpG islands in the promoter 
region of the genes [50, 53].  

DNA methylation plays a crucial role in several epigenetic events of normal cells, as 
genomic imprinting, X chromosome inactivation, retroelement silencing, etc [53], being at 
the same time important in DNA repair, genomic stability and in the regulation of 
chromatin structure [50].  

Recently, the role of DNA methylation in cancer has been an important subject of research 
[47, 51, 54], because we are now aware that the disruption of the methylome is an important 
hallmark of the oncogenic process [54], both the initiation and progression [47]. Depending 
on the pattern of the modification, the genome damage can result in the (over)expression or 
silencing of a gene [51, 53], predisposing cells to cancer [51]. The aberrant methylation can 
begin early in tumorigenesis and can induce most of the pathways modifications in cancer, 
as loss of cell cycle control and apoptosis signalling, alteration of transcription factors 
function, disruption of cell-cell or cell-substratum interaction, among others [55]. This 
deregulation can affect different types of genes as tumour suppressor genes, oncogenes and 
cancer-associated viral genes [50]. The cancer genome is characterized by a global genomic 
hypomethylation and a dense hypermethylation of CpG islands in the regulator regions of 
genes [50, 51, 54].  

DNA hypermethylation is the most studied epigenetic alteration in cancer [51]. It can be 
important as a tool for cancer diagnostic, as a biomarker of malignant cells, as a prognostic 
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factor [49, 54], and it may represent a good target for future therapy [54]. When aberrant 
methylation occurs in the promoter region of tumour suppressor genes, it may lead to its 
silencing [50, 51, 56] and loss of protein function [1]. Thus, the role of aberrant 
hypermethylation in cancer is easily understood for the transcriptional silencing of 
important genes in the cancer prevention [49]. The methylation profile is different for 
different types of tumours, suggesting specificity [54, 56]. However, it is unknown how this 
framework acts to “decide” which genes and when are they methylated [51, 56]. This 
profiling can be vital for the premature detection of cancer in sensitive and specific 
methylation markers and for the identification of important pathways as therapeutic targets 
[56]. The hypermethylation profiling was already done in different types of tumours, in 
cancer cell lines (table 3) and in fresh tumours leading to the identification of methylated 
genes cancer-specific and in different types of cancer [56]. A high concordance was observed 
between the fresh tumours and the respective cell lines, making them good models for the 
study of cancer methylome. Hypermethylation can influence the development and 
preservation of a cell-specific phenotype for the specific silencing of gene sets [5]. The genes 
that are most susceptible to hypermethylation include genes involved in all the cellular 
pathways [54]: in cell cycle regulation (P16INK4a [51, 52, 54, 56], P15INK4a [51, 53], PRB [51, 
52], P14ARF [51, 54]), in DNA repair (MLH1 [53, 54] BRCA1 [47, 51, 54, 56], MGMT [51, 52, 
54]), in apoptosis (APAF-1 [53, 54], DAPK [51, 54]), and in differentiation, angiogenesis, 
metastasis and drug resistance [51]. For instance, the hypermethylation can affect the 
P16INK4α/PRB/CDK4 pathway by the hypermethylation of P16INK4a which is an inhibitor 
of the cell cycle, allowing the cell to escape from cellular senescence and continue to 
proliferate [54]. There are other genes that have shown to be hypermethylated across 
different types of cancer as RASSF1A (tumour suppressor gene Ras association domain 
family member 1) [47, 51, 56-58] and P16INK4a (cyclin-dependent kinase inhibitor) [51, 52, 
56, 59-61] and genes that are hypermethylated in specific types of cancers, such as GSTP1 
that is methylated in 90% of prostate cancer but unmethylated in other types [51, 56], or 
BRCA1 hypermethylated in breast and ovarian cancers [47, 51, 56, 62], among others.  
 

Gene Methylation 
status in cancer 

Disease Cancer Cell Line Reference 

P16INK4a hypermethylated Variety of cancers 
(e.g. Colon, Breast, 
Renal, Prostate 
and Lung cancers, 
Leukaemia and 
Melanoma) 

Variety of cancer cell 
lines from Colon 
cancer, Breast cancer, 
Renal cancer, Prostate 
cancer, Lung cancer 
Leukaemia and 
Melanoma 

[63, 64] 

RASSF1A hypermethylated Variety of cancers 
(e.g. Leukaemia, 
Colon, Breast, 
Ovarian, Lung, 
Prostate, Renal 

Variety of cancer cell 
lines from 
Leukaemia, Colon 
cancer, Breast cancer, 
Ovarian cancer, Lung 

[57, 58, 
63, 64] 
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the same time important in DNA repair, genomic stability and in the regulation of 
chromatin structure [50].  

Recently, the role of DNA methylation in cancer has been an important subject of research 
[47, 51, 54], because we are now aware that the disruption of the methylome is an important 
hallmark of the oncogenic process [54], both the initiation and progression [47]. Depending 
on the pattern of the modification, the genome damage can result in the (over)expression or 
silencing of a gene [51, 53], predisposing cells to cancer [51]. The aberrant methylation can 
begin early in tumorigenesis and can induce most of the pathways modifications in cancer, 
as loss of cell cycle control and apoptosis signalling, alteration of transcription factors 
function, disruption of cell-cell or cell-substratum interaction, among others [55]. This 
deregulation can affect different types of genes as tumour suppressor genes, oncogenes and 
cancer-associated viral genes [50]. The cancer genome is characterized by a global genomic 
hypomethylation and a dense hypermethylation of CpG islands in the regulator regions of 
genes [50, 51, 54].  

DNA hypermethylation is the most studied epigenetic alteration in cancer [51]. It can be 
important as a tool for cancer diagnostic, as a biomarker of malignant cells, as a prognostic 
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factor [49, 54], and it may represent a good target for future therapy [54]. When aberrant 
methylation occurs in the promoter region of tumour suppressor genes, it may lead to its 
silencing [50, 51, 56] and loss of protein function [1]. Thus, the role of aberrant 
hypermethylation in cancer is easily understood for the transcriptional silencing of 
important genes in the cancer prevention [49]. The methylation profile is different for 
different types of tumours, suggesting specificity [54, 56]. However, it is unknown how this 
framework acts to “decide” which genes and when are they methylated [51, 56]. This 
profiling can be vital for the premature detection of cancer in sensitive and specific 
methylation markers and for the identification of important pathways as therapeutic targets 
[56]. The hypermethylation profiling was already done in different types of tumours, in 
cancer cell lines (table 3) and in fresh tumours leading to the identification of methylated 
genes cancer-specific and in different types of cancer [56]. A high concordance was observed 
between the fresh tumours and the respective cell lines, making them good models for the 
study of cancer methylome. Hypermethylation can influence the development and 
preservation of a cell-specific phenotype for the specific silencing of gene sets [5]. The genes 
that are most susceptible to hypermethylation include genes involved in all the cellular 
pathways [54]: in cell cycle regulation (P16INK4a [51, 52, 54, 56], P15INK4a [51, 53], PRB [51, 
52], P14ARF [51, 54]), in DNA repair (MLH1 [53, 54] BRCA1 [47, 51, 54, 56], MGMT [51, 52, 
54]), in apoptosis (APAF-1 [53, 54], DAPK [51, 54]), and in differentiation, angiogenesis, 
metastasis and drug resistance [51]. For instance, the hypermethylation can affect the 
P16INK4α/PRB/CDK4 pathway by the hypermethylation of P16INK4a which is an inhibitor 
of the cell cycle, allowing the cell to escape from cellular senescence and continue to 
proliferate [54]. There are other genes that have shown to be hypermethylated across 
different types of cancer as RASSF1A (tumour suppressor gene Ras association domain 
family member 1) [47, 51, 56-58] and P16INK4a (cyclin-dependent kinase inhibitor) [51, 52, 
56, 59-61] and genes that are hypermethylated in specific types of cancers, such as GSTP1 
that is methylated in 90% of prostate cancer but unmethylated in other types [51, 56], or 
BRCA1 hypermethylated in breast and ovarian cancers [47, 51, 56, 62], among others.  
 

Gene Methylation 
status in cancer 

Disease Cancer Cell Line Reference 

P16INK4a hypermethylated Variety of cancers 
(e.g. Colon, Breast, 
Renal, Prostate 
and Lung cancers, 
Leukaemia and 
Melanoma) 

Variety of cancer cell 
lines from Colon 
cancer, Breast cancer, 
Renal cancer, Prostate 
cancer, Lung cancer 
Leukaemia and 
Melanoma 

[63, 64] 

RASSF1A hypermethylated Variety of cancers 
(e.g. Leukaemia, 
Colon, Breast, 
Ovarian, Lung, 
Prostate, Renal 

Variety of cancer cell 
lines from 
Leukaemia, Colon 
cancer, Breast cancer, 
Ovarian cancer, Lung 

[57, 58, 
63, 64] 
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Gene Methylation 
status in cancer 

Disease Cancer Cell Line Reference 

and CNS (central 
nervous system) 
cancers and 
Melanoma)  

cancer, Prostate 
cancer, Renal cancer, 
CNS cancer and 
Melanoma.  

P15INK4a hypermethylated Leukaemia, Lung 
and Breast cancers 

Cancer cell lines from 
Leukaemia, Lung 
cancer and Breast 
cancer

[63, 64] 

P14ARF hypermethylated Colon, Breast and 
Renal cancers and 
Leukaemia 

Cancer cell lines from 
Colon cancer, Breast 
cancer, Renal cancer 
and Leukaemia 

[63, 64] 

MLH1 hypermethylated Colon cancer Colon cancer cell lines [63, 64] 
BRCA1 hypermethylated Breast cancer Breast cancer cell 

lines
[65] 

MGMT hypermethylated Leukaemia, 
Colon, Renal, 
Breast and Lung 
cancers and 
Melanoma, CNS 
cancer

Cancer cell lines from 
Leukaemia, Colon 
cancer, Renal cancer, 
Breast cancer, Lung 
cancer, Melanoma 
and CNS cancer 

[63, 64] 

DAPK hypermethylated Leukaemia, Lung, 
Colon, CNS, 
Prostate and 
Breast cancer and 
Melanoma  

Cancer cell lines from 
Leukemia, Lung 
cancer, Colon cancer, 
CNS cancer, Prostate 
cancer, Breast cancer 
and Melanoma

[63, 64] 

GSTP1 hypermethylated Prostate, Breast 
and Lung cancers 

Cancer cell lines from 
Prostate cancer, 
Breast cancer and 
Lung cancer

[64, 66] 

NM23-H1 hypermethylated MPNST MPNST cancer cell 
lines

[15] 

DSC3 hypermethylated Breast cancer Breast cancer cell 
lines

[67] 

MASPIN hypermethylated Breast cancer Breast cancer cell 
lines

[67] 

c-MYC hypomethylated Gastric and Colon 
cancer

Gastric and Colon 
cancer cell lines

[68] 

Table 3. Examples of genes displaying an alterated methylation status in cancer cell lines. 
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The information available about hypermethylation in cancer is much higher than the one 
concerning hypomethylation [51]. However, both conditions may lead to loss of cell cycle 
control and apoptosis signals, change in the function of transcription factors, genomic 
instability, among many other effects [55]. Unlike the hypermethylation, the global 
hypomethylation in cancer occurs more frequently in highly and moderately repeated DNA 
sequences but can also be seen in single-copy sequences [49]. These single copy-sequences 
can be oncogenes, like c-MYC [49, 51, 54] (table 3), and these can be also associated with 
tumour initiation and/or progression [49]. But generally, the global genome 
hypomethylation promotes cancer progression by the induction of chromosome instability 
[51, 54, 56], loss of imprinting [54, 56] and reactivation of transposable elements [51, 54]. 
Thus, the aberrant hypomethylation pattern, which occurs early in tumorigenesis, can be 
also used as a biomarker [49], highlighting the importance of its analysis in cancer cells. 

Unlike the genetic, the methylation modifications are reversible [3, 50], making this event 
excellent for analysis in cancer cell lines and a promising target for therapy. The study of 
DNA methylation in cancer cell lines has been accomplished using demethylating agents, 
such as 5-Azacytidine (5-AZA) and its deoxy derivative 5-Aza-2’deoxycytidine (decitabine), 
that cause global genome demethylation [1, 5, 19, 51, 67]. These demethylating agents are 
used in epigenetic therapy, restoring the hypomethylation state by the inversion of the gene 
silencing induced by hypermethylation [1, 51]. These drugs are based in a cytosine analogue 
that are incorporated in the DNA (decitabine) after phosphorylation or in both the DNA and 
RNA (5-AZA), inhibiting DNMTs (DNA methyltransferases) to methylate the DNA, leading 
to a decrease of the DNA methylation level [51, 53]. Although the numerous studies on 
these demethylating agents, their exact mechanism of action and effects in tumour cells 
remains arguable [1, 52, 69, 70].  

These drugs, used as chemotherapeutic agents in certain types of cancers [50, 52-54, 69], are 
also used to screen for changes in gene expression thought to be regulated by methylation in 
cell lines [1, 5, 15, 53, 54, 56]. These demethylating agents that act as DNMTs inhibitors have 
shown the ability to reactivate epigenetically silenced tumour suppressor genes in cancer 
cell lines. Thus, these drugs can also be used as molecular research tools for the induction of 
DNA demethylation in cancer cell lines [53, 69]. In fact, they have been used in many 
research works for the analysis of the methylation profile before and after cells treatment, 
allowing the identification of epigenetically altered genes [1, 15, 53]. For instance, the 
transcriptional profile of cancer cell lines of esophageal squamous cell carcinoma (ESCC) 
treated with 5-azacytidine allowed the identification of various putative tumour suppressor 
genes that are hypermethylated in these cells [53]. Fang and colleagues (2009) proved that 
the loss of expression of NM23-H1, which is related with metastatic progression, in cell lines 
from MPNST, can be associated with the methylation of CpG islands in the promoter region 
of this gene, making this a reversible process by the use of demethylation agents as 
anticancer drugs [15]. Another study of demethylation in breast cancer cell lines verified the 
transcriptional reactivation of desmocollin 3 (DSC3) and MASPIN, that are tumour 
suppressor genes frequently silenced in breast cancer [67]. Louzada and colleagues (2012), 
alternatively, analysed the effect of decitabine in the expression of two genes in rat breast 
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Gene Methylation 
status in cancer 

Disease Cancer Cell Line Reference 

and CNS (central 
nervous system) 
cancers and 
Melanoma)  

cancer, Prostate 
cancer, Renal cancer, 
CNS cancer and 
Melanoma.  

P15INK4a hypermethylated Leukaemia, Lung 
and Breast cancers 

Cancer cell lines from 
Leukaemia, Lung 
cancer and Breast 
cancer

[63, 64] 

P14ARF hypermethylated Colon, Breast and 
Renal cancers and 
Leukaemia 

Cancer cell lines from 
Colon cancer, Breast 
cancer, Renal cancer 
and Leukaemia 

[63, 64] 

MLH1 hypermethylated Colon cancer Colon cancer cell lines [63, 64] 
BRCA1 hypermethylated Breast cancer Breast cancer cell 

lines
[65] 

MGMT hypermethylated Leukaemia, 
Colon, Renal, 
Breast and Lung 
cancers and 
Melanoma, CNS 
cancer

Cancer cell lines from 
Leukaemia, Colon 
cancer, Renal cancer, 
Breast cancer, Lung 
cancer, Melanoma 
and CNS cancer 

[63, 64] 

DAPK hypermethylated Leukaemia, Lung, 
Colon, CNS, 
Prostate and 
Breast cancer and 
Melanoma  

Cancer cell lines from 
Leukemia, Lung 
cancer, Colon cancer, 
CNS cancer, Prostate 
cancer, Breast cancer 
and Melanoma

[63, 64] 

GSTP1 hypermethylated Prostate, Breast 
and Lung cancers 

Cancer cell lines from 
Prostate cancer, 
Breast cancer and 
Lung cancer

[64, 66] 

NM23-H1 hypermethylated MPNST MPNST cancer cell 
lines

[15] 

DSC3 hypermethylated Breast cancer Breast cancer cell 
lines

[67] 

MASPIN hypermethylated Breast cancer Breast cancer cell 
lines

[67] 

c-MYC hypomethylated Gastric and Colon 
cancer

Gastric and Colon 
cancer cell lines

[68] 

Table 3. Examples of genes displaying an alterated methylation status in cancer cell lines. 

The Importance of Cancer Cell Lines as in vitro Models in  
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The information available about hypermethylation in cancer is much higher than the one 
concerning hypomethylation [51]. However, both conditions may lead to loss of cell cycle 
control and apoptosis signals, change in the function of transcription factors, genomic 
instability, among many other effects [55]. Unlike the hypermethylation, the global 
hypomethylation in cancer occurs more frequently in highly and moderately repeated DNA 
sequences but can also be seen in single-copy sequences [49]. These single copy-sequences 
can be oncogenes, like c-MYC [49, 51, 54] (table 3), and these can be also associated with 
tumour initiation and/or progression [49]. But generally, the global genome 
hypomethylation promotes cancer progression by the induction of chromosome instability 
[51, 54, 56], loss of imprinting [54, 56] and reactivation of transposable elements [51, 54]. 
Thus, the aberrant hypomethylation pattern, which occurs early in tumorigenesis, can be 
also used as a biomarker [49], highlighting the importance of its analysis in cancer cells. 

Unlike the genetic, the methylation modifications are reversible [3, 50], making this event 
excellent for analysis in cancer cell lines and a promising target for therapy. The study of 
DNA methylation in cancer cell lines has been accomplished using demethylating agents, 
such as 5-Azacytidine (5-AZA) and its deoxy derivative 5-Aza-2’deoxycytidine (decitabine), 
that cause global genome demethylation [1, 5, 19, 51, 67]. These demethylating agents are 
used in epigenetic therapy, restoring the hypomethylation state by the inversion of the gene 
silencing induced by hypermethylation [1, 51]. These drugs are based in a cytosine analogue 
that are incorporated in the DNA (decitabine) after phosphorylation or in both the DNA and 
RNA (5-AZA), inhibiting DNMTs (DNA methyltransferases) to methylate the DNA, leading 
to a decrease of the DNA methylation level [51, 53]. Although the numerous studies on 
these demethylating agents, their exact mechanism of action and effects in tumour cells 
remains arguable [1, 52, 69, 70].  

These drugs, used as chemotherapeutic agents in certain types of cancers [50, 52-54, 69], are 
also used to screen for changes in gene expression thought to be regulated by methylation in 
cell lines [1, 5, 15, 53, 54, 56]. These demethylating agents that act as DNMTs inhibitors have 
shown the ability to reactivate epigenetically silenced tumour suppressor genes in cancer 
cell lines. Thus, these drugs can also be used as molecular research tools for the induction of 
DNA demethylation in cancer cell lines [53, 69]. In fact, they have been used in many 
research works for the analysis of the methylation profile before and after cells treatment, 
allowing the identification of epigenetically altered genes [1, 15, 53]. For instance, the 
transcriptional profile of cancer cell lines of esophageal squamous cell carcinoma (ESCC) 
treated with 5-azacytidine allowed the identification of various putative tumour suppressor 
genes that are hypermethylated in these cells [53]. Fang and colleagues (2009) proved that 
the loss of expression of NM23-H1, which is related with metastatic progression, in cell lines 
from MPNST, can be associated with the methylation of CpG islands in the promoter region 
of this gene, making this a reversible process by the use of demethylation agents as 
anticancer drugs [15]. Another study of demethylation in breast cancer cell lines verified the 
transcriptional reactivation of desmocollin 3 (DSC3) and MASPIN, that are tumour 
suppressor genes frequently silenced in breast cancer [67]. Louzada and colleagues (2012), 
alternatively, analysed the effect of decitabine in the expression of two genes in rat breast 
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cancer cell lines and their results showed a decrease of Erbb2 expression (initially 
overexpressed in these cells), showing that this gene is epigenetically regulated [1]. 
Although these demethylation agents are excellent tools for the methylome profiling of 
cancer cell lines, another kind of methylation studies have been done using antisense RNA 
[35, 54] and interference RNA for depleting DNMTs [20, 67].  

The DNA methylation profiling is difficult to perform in the majority of models, but it is 
extremely simple to perform in cancer cell lines, enhancing their value as cell models for the 
study of the methylome and to understand the relationship between the genetic and the 
epigenetic profiles with the effectiveness of anticancer drugs. The use of cancer cell lines as 
models for the methylome analysis was highlighted in a work comparing the transcriptional 
profiling after the treatment with decitabine in in vitro and in vivo revealing similar results, 
what validates the use of this model [53]. Other methylome studies performed in cancer cell 
lines in an epigenome-wide way were performed through the use of recent technologies as 
NGS. In 2010, Ruike and colleagues made a methylation profiling in breast cancer cell lines 
using MeDIP-seq that revealed important insights about the aberrant patterns of DNA 
methylation in these cell lines, allowing a more extensive study about the methylome during 
carcinogenesis and the correlation between the morphological changes and the observed 
methylome alterations [48]. These recent technologies allow the study of the methylome in 
cancer in an unprecedented way [47], but this type of studies are still in the beginning [47].  

The methylome profiling is essential for the early cancer detection, prognostic and treatment 
[50, 51, 55], for the development of new epigenetic therapies [54], for distinguishing tumour 
types and subtypes using molecular biomarkers and predict the chemotherapy response [51, 
54, 55]. But the use of cancer cell lines for the study of DNA methylation alterations in 
cancer is controversial. Although some authors consider it a good model, that have shown 
similar results in the methylome profile when comparing the results in vivo and in vitro [53]; 
there are others, instead, believing that this type of studies should be made in non-cultured 
cells due to the in vitro culture environment [49, 50]. Nevertheless, the problems in the 
association of the epigenetic profiles with cancer, when using other models (difficulties in 
manipulation, sample selection, sample size, data integration, among others [50]), can be, in 
part, solved with the use of cancer cell lines. Thus, it is crucial to analyse the relationship 
between methylation in cancer and the resistance/sensitivity to anticancer drugs in well-
characterized cancer cell lines, making possible the detection of potential drug targets and 
drug resistance markers [47].  

4. Drug testing in cancer cell lines 

Drug testing in cancer cell lines is usually one of the initial steps in drug development. It 
allows the access of a large number of potential drugs before committing to large scale 
expensive in vivo clinical trials. 

The use of cancer cell lines for cytotoxicity evaluation has been made by many researchers 
for many years, having clinical predictive value [2, 18], consistent with the expected from 
the original tumour. Different cancer cell lines display diverse responses to cytotoxic 
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anticancer drugs, as colon cancer cell lines are more resistant to DNA intercalating-drugs 
and breast cancer or leukaemia cell lines are more sensitive [18]. Copeland and colleagues 
(2007) tested the cytotoxicity of an anticancer drug in different prostate cancer cell lines 
derived from prostate cancer subtypes, and confirmed that this drug is more efficient for 
prostate androgen-independent cancer. In this study they proposed this chemotherapeutic 
drug for the treatment of metastatic prostate cancer [71], that should, however, be more 
studied in cancer cell lines for the determination of the action mechanism.  

The testing of anticancer drugs using cancer cell lines over other models presents other 
advantages than just cytotoxicity evaluation tests, because it permits to analyse the action of 
drugs, combinations of them and the screening for resistance/sensitivity [72], with the 
concomitant discovery of specific markers [10]. The identification of epigenetic or genetic 
alterations in specific sequences allows to specifically target the drug in order to achieve a 
therapeutic outcome and identify new potential druggable targets.  

The fact that cancer cells have the oncogenic pathway activated makes these cells less 
dependent of extracellular regulators. Cancer cell lines also have this pathway activated [3], 
retaining the genomic deregulation of transcription of the primary tumour [24], but, at the 
same time, also have a more simple transcriptome by the loss of unneeded functions [3], 
making this one of the best models for anticancer drug testing (single drugs or in 
combination) [2, 3, 6, 10, 18, 24, 71]. This is valid not only in a first approach, but also for 
understanding drugs’ mechanisms of action [10, 73], the resistance/sensitivity of some types 
of cancer to different drugs [10, 24, 72, 74], for the discovery of biomarkers for anticancer 
drugs response (resistance/sensitivity markers) [10, 75, 76], or for the research of signalling 
pathways associated with the therapeutic response [2, 24], among others. Nevertheless, even 
if a cancer cell line comes from the same subtype of tumour, it must be well-characterized 
before its use in anticancer drug testing due to the fact that similar cell lines may present 
different signatures from each other, although retaining the same signature of the original 
tumour [3, 24]. An example are cancer cell lines derived from the same subtype of tumour as 
thyroid papillary carcinomas B-CPAP and TPC-1, displaying different oncogenic pathways 
modified, maintaining that from the original tumour [3]. Others than cancer cell line models, 
will always be needed for the validation of the data, being the clinical trials mandatory 
before the use of any drug in a clinical approach.  

The use of cell line panels is a useful tool for anticancer drug testing. The development of  
these cancer cell lines panels was initiated for the panel NCI60 (panel US National Cancer 
Institute with 60 cancer cell lines) in order to overcome the use of animal models for the test 
of antineoplastic drugs [12]. Afterwards, Nakatsu and colleagues (2005) established a panel 
of 45 cancer cell lines (JFCR-45) from different origins (breast, liver and stomach) to 
determine genes related with chemosensitivity to anticancer drugs. They also tried to 
understand the mechanisms of action of these drugs for their classification. This research, 
that involved an integrated bioinformatic approach using cDNA arrays, revealed many 
candidate genes associated with sensitivity to chemotherapeutic drugs. For the correct 
identification of these genes, they transfected each one in the different cell lines and discover 
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cancer cell lines and their results showed a decrease of Erbb2 expression (initially 
overexpressed in these cells), showing that this gene is epigenetically regulated [1]. 
Although these demethylation agents are excellent tools for the methylome profiling of 
cancer cell lines, another kind of methylation studies have been done using antisense RNA 
[35, 54] and interference RNA for depleting DNMTs [20, 67].  

The DNA methylation profiling is difficult to perform in the majority of models, but it is 
extremely simple to perform in cancer cell lines, enhancing their value as cell models for the 
study of the methylome and to understand the relationship between the genetic and the 
epigenetic profiles with the effectiveness of anticancer drugs. The use of cancer cell lines as 
models for the methylome analysis was highlighted in a work comparing the transcriptional 
profiling after the treatment with decitabine in in vitro and in vivo revealing similar results, 
what validates the use of this model [53]. Other methylome studies performed in cancer cell 
lines in an epigenome-wide way were performed through the use of recent technologies as 
NGS. In 2010, Ruike and colleagues made a methylation profiling in breast cancer cell lines 
using MeDIP-seq that revealed important insights about the aberrant patterns of DNA 
methylation in these cell lines, allowing a more extensive study about the methylome during 
carcinogenesis and the correlation between the morphological changes and the observed 
methylome alterations [48]. These recent technologies allow the study of the methylome in 
cancer in an unprecedented way [47], but this type of studies are still in the beginning [47].  

The methylome profiling is essential for the early cancer detection, prognostic and treatment 
[50, 51, 55], for the development of new epigenetic therapies [54], for distinguishing tumour 
types and subtypes using molecular biomarkers and predict the chemotherapy response [51, 
54, 55]. But the use of cancer cell lines for the study of DNA methylation alterations in 
cancer is controversial. Although some authors consider it a good model, that have shown 
similar results in the methylome profile when comparing the results in vivo and in vitro [53]; 
there are others, instead, believing that this type of studies should be made in non-cultured 
cells due to the in vitro culture environment [49, 50]. Nevertheless, the problems in the 
association of the epigenetic profiles with cancer, when using other models (difficulties in 
manipulation, sample selection, sample size, data integration, among others [50]), can be, in 
part, solved with the use of cancer cell lines. Thus, it is crucial to analyse the relationship 
between methylation in cancer and the resistance/sensitivity to anticancer drugs in well-
characterized cancer cell lines, making possible the detection of potential drug targets and 
drug resistance markers [47].  

4. Drug testing in cancer cell lines 

Drug testing in cancer cell lines is usually one of the initial steps in drug development. It 
allows the access of a large number of potential drugs before committing to large scale 
expensive in vivo clinical trials. 

The use of cancer cell lines for cytotoxicity evaluation has been made by many researchers 
for many years, having clinical predictive value [2, 18], consistent with the expected from 
the original tumour. Different cancer cell lines display diverse responses to cytotoxic 
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anticancer drugs, as colon cancer cell lines are more resistant to DNA intercalating-drugs 
and breast cancer or leukaemia cell lines are more sensitive [18]. Copeland and colleagues 
(2007) tested the cytotoxicity of an anticancer drug in different prostate cancer cell lines 
derived from prostate cancer subtypes, and confirmed that this drug is more efficient for 
prostate androgen-independent cancer. In this study they proposed this chemotherapeutic 
drug for the treatment of metastatic prostate cancer [71], that should, however, be more 
studied in cancer cell lines for the determination of the action mechanism.  

The testing of anticancer drugs using cancer cell lines over other models presents other 
advantages than just cytotoxicity evaluation tests, because it permits to analyse the action of 
drugs, combinations of them and the screening for resistance/sensitivity [72], with the 
concomitant discovery of specific markers [10]. The identification of epigenetic or genetic 
alterations in specific sequences allows to specifically target the drug in order to achieve a 
therapeutic outcome and identify new potential druggable targets.  

The fact that cancer cells have the oncogenic pathway activated makes these cells less 
dependent of extracellular regulators. Cancer cell lines also have this pathway activated [3], 
retaining the genomic deregulation of transcription of the primary tumour [24], but, at the 
same time, also have a more simple transcriptome by the loss of unneeded functions [3], 
making this one of the best models for anticancer drug testing (single drugs or in 
combination) [2, 3, 6, 10, 18, 24, 71]. This is valid not only in a first approach, but also for 
understanding drugs’ mechanisms of action [10, 73], the resistance/sensitivity of some types 
of cancer to different drugs [10, 24, 72, 74], for the discovery of biomarkers for anticancer 
drugs response (resistance/sensitivity markers) [10, 75, 76], or for the research of signalling 
pathways associated with the therapeutic response [2, 24], among others. Nevertheless, even 
if a cancer cell line comes from the same subtype of tumour, it must be well-characterized 
before its use in anticancer drug testing due to the fact that similar cell lines may present 
different signatures from each other, although retaining the same signature of the original 
tumour [3, 24]. An example are cancer cell lines derived from the same subtype of tumour as 
thyroid papillary carcinomas B-CPAP and TPC-1, displaying different oncogenic pathways 
modified, maintaining that from the original tumour [3]. Others than cancer cell line models, 
will always be needed for the validation of the data, being the clinical trials mandatory 
before the use of any drug in a clinical approach.  

The use of cell line panels is a useful tool for anticancer drug testing. The development of  
these cancer cell lines panels was initiated for the panel NCI60 (panel US National Cancer 
Institute with 60 cancer cell lines) in order to overcome the use of animal models for the test 
of antineoplastic drugs [12]. Afterwards, Nakatsu and colleagues (2005) established a panel 
of 45 cancer cell lines (JFCR-45) from different origins (breast, liver and stomach) to 
determine genes related with chemosensitivity to anticancer drugs. They also tried to 
understand the mechanisms of action of these drugs for their classification. This research, 
that involved an integrated bioinformatic approach using cDNA arrays, revealed many 
candidate genes associated with sensitivity to chemotherapeutic drugs. For the correct 
identification of these genes, they transfected each one in the different cell lines and discover 
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that the overexpression of HSPA1A and JUN genes increased the sensitivity to mitomycin C, 
suggesting that these genes play a role in the response to this anticancer drug. The genes 
discovered in this study can be used as predictive markers of sensitivity to 
chemotherapeutic drugs, which is crucial for a higher effectiveness of the treatment [10]. 
Recently, Garnett and colleagues (2012) screened a panel of several hundred cancer cell lines 
(representing much of the tissue-type and genetic diversity of human cancers) with 130 
drugs under clinical and preclinical investigation and verified that the cancer genes mutated 
are related with the cellular response to the most commonly used drugs, making this 
systematic pharmacogenomic profiling in cancer cell lines a powerful biomarker discovery 
platform to guide rational cancer therapeutic strategies [75]. The use of a cell line panel with 
subtypes of cancer cell lines for studying the signalling pathways involved in the 
therapeutic response was made by Neve and colleagues (2006) that used Herceptin® 
(Trastuzumab) immunotherapy in a system of cancer cell lines ERBB2+, that do not respond 
to this therapy, to identify the molecular signature associated with this phenotype [24]. 
Thus, the use of cancer cell line panels seems to be a powerful system for underlying the 
molecular mechanisms of anticancer drug response [2].  

The existence of databases with detailed genetic and pharmacologic information from 
cancer cell lines allows the generation of genetic predictions of drug response in the 
preclinical setting. An example is Cancer Cell Line Encyclopedia (CCLE, launched by 
Novartis), a database that contains genes’ expression profiling, massively parallel 
sequencing and chromosomal copy number data from almost a thousand human cancer cell 
lines. The integration of the pharmacologic profiles of anticancer drugs with the data from 
the cell lines deposited in CCLE allowed Barrentina and colleagues (2012) to identify 
genetic, lineage, and gene-expression-based predictors of drug sensitivity [76]. However, the 
problem of working with cancer cell lines characterized too many years ago or not 
characterized at all, will definitely difficult data interpretation or even lead to 
misinterpretations.  

The availability of molecular modelling tools, such as QSAR (Quantitative Structure - 
Activity Relationships), giving insights about the molecular interactions of the compounds 
studied with proteins involved in signalling pathways [77], or docking methods that predict 
the strength of association or binding affinity between a drug to a particular target [78], are 
also fundamental tools that should be considered in drug testing studies.  

The characterization of cancer cell lines about the state of cell cycle checkpoints [15, 28], 
regulatory cell cycle proteins [28] and the presence of Multidrug Resistance Domains (MDR) 
[72], are also essential in anticancer drug testing. The effect of anticancer drugs in cancer cell 
lines must be screened on cell cycle progression, checkpoint signalling pathways and cell 
proliferation, making important the characterization of these parameters in cancer cell lines 
before their use as models. For instance, the characterization of several cell lines from head 
and neck squamous cell carcinoma (HNSCC) allowed to disclose that most of them lack the 
checkpoint function by loss of P53 and RB functions and their upstream and downstream 
regulation pathways (e.g. MDM2 and CDK6, respectively) [28]. Cell cycle profiling 
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(progression and checkpoints regulators) of cancer cell lines is thus a valuable tool in the 
development of chemotherapeutic agents as therapeutic targets [28, 79]. In the case of 
antimitotic drugs, the analysis of Microtubules (MTs) and centrosomal proteins [72] should 
also be considered. 

One of the more successful anticancer drug targets are microtubules. These form a highly 
dynamic structure constituted by polymers of α and β-tubulin essential for the development 
and maintenance of cellular morphology, protein trafficking in the cell, cell signalling and 
proper chromosome segregation during mitosis [72, 80]. Their importance in mitosis by their 
mitotic spindle assembly and dynamics required for proper chromosome segregation make 
the microtubules an excellent target for antimitotic therapy [72]. At the moment, three 
different groups of MT-targeted anticancer drugs are widely used for chemotherapy: Vinca 
alkaloids (e.g. vinblastine) [72, 73], taxanes (e.g. paclitaxel - Taxol®) [10, 28, 72] and 
colchicine [72]. These antimitotic drugs bind to different binding sites in β-tubulin, exhibit 
different behaviours and are used for different types of cancer. These drugs act by 
suppression of the MT dynamics, leading to mitotic blocking and cell death by apoptosis 
[72]. However, the exact mechanism of action of these drugs, the resistance/sensitivity 
mechanisms and the combination of these drugs with others is an incomplete research field, 
and cancer cell lines can be excellent models for the study of these drugs as long as they are 
well-characterized.  

Coleman and colleagues (2002) used cancer cell lines from HNSCC for determination of 
the mechanism of action of two drugs combination, paclitaxel and carboplatin. They 
concluded that the paclitaxel activity is related with the increase of cyclin B1/CDC2 
activity, BCL-2 phosphorylation and mitotic block, affecting the cells in mitosis. However, 
their study proved that the efficiency in the inhibition of cell proliferation was higher 
when combining these two drugs, allowing the use of this combination in other models 
[28]. In other work, the sensitivity of tumour cells to paclitaxel in the absence of PLK1 
(polo-like kinase 1) was studied in breast cancer cell lines [81]. PLK1 play a key role in 
different stages of mitosis and its overexpression is a negative prognostic indicator [81, 
82]. The use of antisense oligonucleotides for PLK1 depletion leaded to the conclusion that 
the presence of these antisense oligos increase the response to paclitaxel [81]. Huang and 
colleagues (2004) studied the apoptosis induction of Vinca alkaloids in cancer cell lines. 
The type of analysis performed by these authors, as the use of glucocorticoids to inhibit 
mitotic arrest caused by Vinca alkaloids or transfection with antisense oligonucleotides are 
difficult to perform in other types of models. Moreover, this study revealed another 
signalling pathway (NF-κB/IκB) that might be related with apoptosis induction by this 
antimitotic drug [73].  

As referred, drug resistance is a major problem in cancer chemotherapy [80, 83]. The study 
of the mechanisms that lead to a resistant cell can involve a diversity of molecules. Although 
there is no complete understanding about what leads to cell resistance to certain types of 
drugs, some of them are already known. Multidrug Resistance is a mechanism of drug 
efflux that can be caused by the upregulation of MDR1 gene, leading to an increase of 
membrane transporters as p-glycoprotein (P-GP) [40, 72, 83]. However, it is not completely 
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that the overexpression of HSPA1A and JUN genes increased the sensitivity to mitomycin C, 
suggesting that these genes play a role in the response to this anticancer drug. The genes 
discovered in this study can be used as predictive markers of sensitivity to 
chemotherapeutic drugs, which is crucial for a higher effectiveness of the treatment [10]. 
Recently, Garnett and colleagues (2012) screened a panel of several hundred cancer cell lines 
(representing much of the tissue-type and genetic diversity of human cancers) with 130 
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are related with the cellular response to the most commonly used drugs, making this 
systematic pharmacogenomic profiling in cancer cell lines a powerful biomarker discovery 
platform to guide rational cancer therapeutic strategies [75]. The use of a cell line panel with 
subtypes of cancer cell lines for studying the signalling pathways involved in the 
therapeutic response was made by Neve and colleagues (2006) that used Herceptin® 
(Trastuzumab) immunotherapy in a system of cancer cell lines ERBB2+, that do not respond 
to this therapy, to identify the molecular signature associated with this phenotype [24]. 
Thus, the use of cancer cell line panels seems to be a powerful system for underlying the 
molecular mechanisms of anticancer drug response [2].  

The existence of databases with detailed genetic and pharmacologic information from 
cancer cell lines allows the generation of genetic predictions of drug response in the 
preclinical setting. An example is Cancer Cell Line Encyclopedia (CCLE, launched by 
Novartis), a database that contains genes’ expression profiling, massively parallel 
sequencing and chromosomal copy number data from almost a thousand human cancer cell 
lines. The integration of the pharmacologic profiles of anticancer drugs with the data from 
the cell lines deposited in CCLE allowed Barrentina and colleagues (2012) to identify 
genetic, lineage, and gene-expression-based predictors of drug sensitivity [76]. However, the 
problem of working with cancer cell lines characterized too many years ago or not 
characterized at all, will definitely difficult data interpretation or even lead to 
misinterpretations.  

The availability of molecular modelling tools, such as QSAR (Quantitative Structure - 
Activity Relationships), giving insights about the molecular interactions of the compounds 
studied with proteins involved in signalling pathways [77], or docking methods that predict 
the strength of association or binding affinity between a drug to a particular target [78], are 
also fundamental tools that should be considered in drug testing studies.  

The characterization of cancer cell lines about the state of cell cycle checkpoints [15, 28], 
regulatory cell cycle proteins [28] and the presence of Multidrug Resistance Domains (MDR) 
[72], are also essential in anticancer drug testing. The effect of anticancer drugs in cancer cell 
lines must be screened on cell cycle progression, checkpoint signalling pathways and cell 
proliferation, making important the characterization of these parameters in cancer cell lines 
before their use as models. For instance, the characterization of several cell lines from head 
and neck squamous cell carcinoma (HNSCC) allowed to disclose that most of them lack the 
checkpoint function by loss of P53 and RB functions and their upstream and downstream 
regulation pathways (e.g. MDM2 and CDK6, respectively) [28]. Cell cycle profiling 
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(progression and checkpoints regulators) of cancer cell lines is thus a valuable tool in the 
development of chemotherapeutic agents as therapeutic targets [28, 79]. In the case of 
antimitotic drugs, the analysis of Microtubules (MTs) and centrosomal proteins [72] should 
also be considered. 

One of the more successful anticancer drug targets are microtubules. These form a highly 
dynamic structure constituted by polymers of α and β-tubulin essential for the development 
and maintenance of cellular morphology, protein trafficking in the cell, cell signalling and 
proper chromosome segregation during mitosis [72, 80]. Their importance in mitosis by their 
mitotic spindle assembly and dynamics required for proper chromosome segregation make 
the microtubules an excellent target for antimitotic therapy [72]. At the moment, three 
different groups of MT-targeted anticancer drugs are widely used for chemotherapy: Vinca 
alkaloids (e.g. vinblastine) [72, 73], taxanes (e.g. paclitaxel - Taxol®) [10, 28, 72] and 
colchicine [72]. These antimitotic drugs bind to different binding sites in β-tubulin, exhibit 
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suppression of the MT dynamics, leading to mitotic blocking and cell death by apoptosis 
[72]. However, the exact mechanism of action of these drugs, the resistance/sensitivity 
mechanisms and the combination of these drugs with others is an incomplete research field, 
and cancer cell lines can be excellent models for the study of these drugs as long as they are 
well-characterized.  

Coleman and colleagues (2002) used cancer cell lines from HNSCC for determination of 
the mechanism of action of two drugs combination, paclitaxel and carboplatin. They 
concluded that the paclitaxel activity is related with the increase of cyclin B1/CDC2 
activity, BCL-2 phosphorylation and mitotic block, affecting the cells in mitosis. However, 
their study proved that the efficiency in the inhibition of cell proliferation was higher 
when combining these two drugs, allowing the use of this combination in other models 
[28]. In other work, the sensitivity of tumour cells to paclitaxel in the absence of PLK1 
(polo-like kinase 1) was studied in breast cancer cell lines [81]. PLK1 play a key role in 
different stages of mitosis and its overexpression is a negative prognostic indicator [81, 
82]. The use of antisense oligonucleotides for PLK1 depletion leaded to the conclusion that 
the presence of these antisense oligos increase the response to paclitaxel [81]. Huang and 
colleagues (2004) studied the apoptosis induction of Vinca alkaloids in cancer cell lines. 
The type of analysis performed by these authors, as the use of glucocorticoids to inhibit 
mitotic arrest caused by Vinca alkaloids or transfection with antisense oligonucleotides are 
difficult to perform in other types of models. Moreover, this study revealed another 
signalling pathway (NF-κB/IκB) that might be related with apoptosis induction by this 
antimitotic drug [73].  

As referred, drug resistance is a major problem in cancer chemotherapy [80, 83]. The study 
of the mechanisms that lead to a resistant cell can involve a diversity of molecules. Although 
there is no complete understanding about what leads to cell resistance to certain types of 
drugs, some of them are already known. Multidrug Resistance is a mechanism of drug 
efflux that can be caused by the upregulation of MDR1 gene, leading to an increase of 
membrane transporters as p-glycoprotein (P-GP) [40, 72, 83]. However, it is not completely 
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understood, and the apoptotic pathway also has influence in the resistance to anticancer 
drugs [28, 40, 83]. The resistance to paclitaxel was related with upregulation of antiapoptotic 
BCL-2 family members as BCL-2 e BCL-XL [40]. The resistance of tumour cells to paclitaxel 
and also to other antimitotic drugs can also be attributed to differences in the expression of 
tubulin isotypes, point mutations or post-translational modifications in β-tubulin residues 
that modify the binding site [40, 72, 80], binding of MT-regulatory proteins [72], decrease of 
CDK (cyclin-dependent kinase) level, which cause a mitotic delay, overexpression of the 
microtubule associated protein tau mRNA and decrease in affinity of targeted drugs to the 
target (MTs) [40]. Anticancer drug resistance can also be related with other tubulin forms or 
other proteins in the centrosome in interphase or mitotic spindle poles in mitosis, but it 
clearly exists a need for much more research in this field [72]. The use of cancer cell lines for 
resistance/sensitivity studies is imperative, neverless, their poor characterization can lead to 
problems in the data interpretation. Nakayama and colleagues (2009) used breast cancer cell 
lines and xenograft models for the discovery of characteristics related with the sensitivity or 
resistance to paclitaxel. They deduced that the in vitro response to paclitaxel do not predict 
exactly the sensitivity to this drug in vivo (80%) [40]. However they used cancer cell lines like 
MCF7 that were established many years ago and need to be properly characterized, as 
already mentioned. An altered response to certain compounds can also occur by the clonal 
variants of cancer cell lines and the xenograft may exhibit a cellular environment that can 
modify the response [5]. More importantly, they concluded that the decrease of CDK1 
(cyclin-dependent kinase) is related with tumour cells’ resistance and that the increase of 
CDK2 is required for the increase of sensitivity. Thus, analysis of CDKs can predict clinically 
the sensitivity to paclitaxel [40]. Nakatsu and colleagues (2005) also used cancer cell lines for 
the identification of genes related with the sensitivity to paclitaxel (and other anticancer 
drugs). With their work, they found that the genes related with tubulin-binder and 
cytoskeleton-related as VIL2 (encoding ezrin) and ACTB (encoding h-actin) are related with 
the paclitaxel chemosensitivity, proposing these genes as predictor markers for anticancer 
drug efficacy [10]. In other work using cancer cell lines as models for paclitaxel resistance 
analysis, the cells were transformed into resistant by the progressive increase of the drug 
[80]. The profiling of cancer cell lines paclitaxel-resistants’ can allow the identification of 
resistance mechanisms [72].  

The knowledge of the specific composition of MT regulatory proteins or other regulatory 
proteins and different tubulin isotypes of cancer cell lines, and the way these interfere with 
the effectiveness of MT-targeted drugs, can be helpful for a better clinical application of 
these drugs and for the development of molecularly targeted drugs by its combination, 
overcoming the MDR [72, 83] and the side effects as neuropathy. For this, it is essential to 
understand the exact mechanism of action of antimitotic drugs, the relation of drug-induced 
mitotic block and cell death and the interaction of these drugs with centrosomes and the 
mitotic spindle pole (where other types of tubulin exist). Another question is why some 
antimitotic drugs as taxanes are efficient in some tumours as breast, ovarian and lung, but 
are inefficient in kidney, colon cancers, sarcomas and others of the same group of MT-
targeted drugs, like Vinca alkaloids are more efficient in hematologic malignancies and 
ineffective against solid tumours [72]. 
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The use of different types of well-characterized cancer cell lines at the genome and 
methylome levels can allow the study of the mechanisms of antimitotic drugs and if the 
mechanism of resistance are related with the methylation pattern. Thus, the characterization 
of cancer cell lines at the DNA methylation level and the combination of these antimitotic 
drugs with 5'AZA may be a straightforward strategy to understand the mechanism of action 
of such drugs and testing their combination.  

The profiling of cancer cell lines at the DNA methylation level is also important for the 
prediction of chemotherapeutic response [51]. Hypermethylation of the promoter regions of 
some genes, as of the DNA repair gene MGMT that happens in glioma, increases the 
sensitivity to alkylating agents as carmustine (BiCNU®) [51, 54]. Arnold and colleagues 
(2003) analysed hypermethylated colorectal cancer cell lines after exposure to a 
demethylating drug and found that the hypermethylation of the gene MLH1 was reverted 
by these type of drugs, decreasing the resistance to the anticancer drug fluorouracil (5-FU) 
[84]. Shen and colleagues (2007) in a work performed in the NCI60 panel of cancer cell lines 
were able to elaborate a list of methylation markers to predict the anticancer drug response 
[63]. These works highlight the fact that methylation/demethylation studies performed in 
cell lines definitely provide a powerful system model for the definition of new candidate 
strategies to overcome the problem of drug resistance in the treatment of cancer. The exact 
mechanism of action of demethylating agents or the patterns of resistance and sensitivity are 
unclear and it is extremely important to understand the molecular changes induced by these 
drugs to increase their effectiveness [69, 85].   

As already mentioned, in cell lines, demethylating drugs, as azacytidine and decitabine 
cause global demethylation of DNA by the inhibition of DNMTs, reverting the gene 
silencing induced by hypermethylation [51-53, 69]. The use of such demethylating drugs can 
cause inhibition of cell proliferation and G2 arrest [85] but can also lead to the 
reestablishment of proliferation control and apoptotic sensitivity [69]. In spite of the 
oversight of information about the azanucleosides, these anticancer drugs are currently used 
in the treatment of myelodysplastic syndrome (MDS) and other types of leukaemia [51-53, 
85]. However, it is essential an improved knowledge on the mechanisms of action of these 
epigenetic drugs at the molecular level and the cellular pathways that they influence, as well 
as the identification and validation of response predictor markers [69] for the application of 
these drugs in more cancer types and with conjugation with other anticancer drugs.  

The development of treatments that accomplish a specific reversion of DNA methylation 
modifications without interfering in the normal epigenetic events required for the cellular 
function [53] has stimulated the research of other inhibitors of DNMTs [51, 53]. The use of 
cancer cell lines allows the testing of other potential demethylating agents with the purpose 
to observe the effect of such drugs in tumour cells. Other demethylating agents as 
hydralazine and procainamide (cardiovascular drugs) in breast cancer cell lines cause 
demethylation and expression reestablishment of ER, RARβ, and P16INK4a [86]. Alternative 
inhibitors of DNMTs that have focused the researchers attention are DNMT antisense and 
siRNA [51, 53]. It was proved in colon and bladder cancer cell lines that an antisense 
oligodeoxynucleotide as MG98 is a DNMT1 antisense inhibitor that cleaves its mRNA 
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understood, and the apoptotic pathway also has influence in the resistance to anticancer 
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microtubule associated protein tau mRNA and decrease in affinity of targeted drugs to the 
target (MTs) [40]. Anticancer drug resistance can also be related with other tubulin forms or 
other proteins in the centrosome in interphase or mitotic spindle poles in mitosis, but it 
clearly exists a need for much more research in this field [72]. The use of cancer cell lines for 
resistance/sensitivity studies is imperative, neverless, their poor characterization can lead to 
problems in the data interpretation. Nakayama and colleagues (2009) used breast cancer cell 
lines and xenograft models for the discovery of characteristics related with the sensitivity or 
resistance to paclitaxel. They deduced that the in vitro response to paclitaxel do not predict 
exactly the sensitivity to this drug in vivo (80%) [40]. However they used cancer cell lines like 
MCF7 that were established many years ago and need to be properly characterized, as 
already mentioned. An altered response to certain compounds can also occur by the clonal 
variants of cancer cell lines and the xenograft may exhibit a cellular environment that can 
modify the response [5]. More importantly, they concluded that the decrease of CDK1 
(cyclin-dependent kinase) is related with tumour cells’ resistance and that the increase of 
CDK2 is required for the increase of sensitivity. Thus, analysis of CDKs can predict clinically 
the sensitivity to paclitaxel [40]. Nakatsu and colleagues (2005) also used cancer cell lines for 
the identification of genes related with the sensitivity to paclitaxel (and other anticancer 
drugs). With their work, they found that the genes related with tubulin-binder and 
cytoskeleton-related as VIL2 (encoding ezrin) and ACTB (encoding h-actin) are related with 
the paclitaxel chemosensitivity, proposing these genes as predictor markers for anticancer 
drug efficacy [10]. In other work using cancer cell lines as models for paclitaxel resistance 
analysis, the cells were transformed into resistant by the progressive increase of the drug 
[80]. The profiling of cancer cell lines paclitaxel-resistants’ can allow the identification of 
resistance mechanisms [72].  

The knowledge of the specific composition of MT regulatory proteins or other regulatory 
proteins and different tubulin isotypes of cancer cell lines, and the way these interfere with 
the effectiveness of MT-targeted drugs, can be helpful for a better clinical application of 
these drugs and for the development of molecularly targeted drugs by its combination, 
overcoming the MDR [72, 83] and the side effects as neuropathy. For this, it is essential to 
understand the exact mechanism of action of antimitotic drugs, the relation of drug-induced 
mitotic block and cell death and the interaction of these drugs with centrosomes and the 
mitotic spindle pole (where other types of tubulin exist). Another question is why some 
antimitotic drugs as taxanes are efficient in some tumours as breast, ovarian and lung, but 
are inefficient in kidney, colon cancers, sarcomas and others of the same group of MT-
targeted drugs, like Vinca alkaloids are more efficient in hematologic malignancies and 
ineffective against solid tumours [72]. 
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some genes, as of the DNA repair gene MGMT that happens in glioma, increases the 
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(2003) analysed hypermethylated colorectal cancer cell lines after exposure to a 
demethylating drug and found that the hypermethylation of the gene MLH1 was reverted 
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mechanism of action of demethylating agents or the patterns of resistance and sensitivity are 
unclear and it is extremely important to understand the molecular changes induced by these 
drugs to increase their effectiveness [69, 85].   
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cause global demethylation of DNA by the inhibition of DNMTs, reverting the gene 
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reestablishment of proliferation control and apoptotic sensitivity [69]. In spite of the 
oversight of information about the azanucleosides, these anticancer drugs are currently used 
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85]. However, it is essential an improved knowledge on the mechanisms of action of these 
epigenetic drugs at the molecular level and the cellular pathways that they influence, as well 
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resulting in the demethylation and replacement of the normal expression of P16INK4a [87]. 
The siRNA can be designed as an inhibitor of DNMTs, but can also be used as a target for 
the proteins involved in the regulation of the methylated gene [51].  

So, the characterization of both the genome and methylome of cancer cell lines allows the 
discovery of targets to anticancer drugs and to create more targeted drugs for certain types 
of cancer, providing the development of new therapies [35], as the use of siRNA, or the 
combination of new or already existing ones. 

The use of siRNA in cancer therapy is a new research field and promises to silence critical 
cancer genes, as oncogenes [88]. The use of cell lines was essential for the discovery of this 
potential specific gene cancer therapy by the suppression of expression of these genes [89] 
and blocking of the biological processes that comprise the hallmarks of cancer [88]. The 
major problem of using siRNAs as anticancer therapeutics does not rely in their design or 
mechanism of action, but in their delivery. To overcome this problem, nanoparticles [88, 90] 
(lipid, organic or inorganic) have been used for degradation protection, facilitating the cell 
transfection and allowing the delivery in the right place [88]. Presently, some siRNAs that 
use nanoparticles as delivery vehicles are in clinical trials [88, 90], however, at the moment, 
none have been approved [88]. A siRNA against PLK1 is in conclusion of phase I of clinical 
trials in different types of cancer [88] (http://www.clinicaltrials.gov/ct2/show/ 
record/NCT01437007) and good results are expected because of the importance  
of this protein in mitosis and in the maintenance of genome stability [82]. Another siRNA 
that is in a clinical trial phase with successful results is a siRNA for the depletion  
of M2 subunit of Ribonuclease reductase (RRM2) in solid tumours [88, 90, 91] 
(http://www.clinicaltrials.gov/ct2/show/NCT00689065), decreasing the proliferation of 
cancer cells in vitro and in vivo [91]. The mutation of K-RAS is associated with one third of 
the human cancers and is a resistance factor of many cancers to therapy. The depletion of 
this protein is an excellent target for cancer treatment, leading cancer cells to apoptosis. A 
phase I of a clinical trial is being carried out for this target (siG12D LODER (Local Drug 
EluteR)) in patients with pancreas adenocarcinoma, since most of the pancreas cancer cells 
have K-RAS mutated [88] (http://www.clinicaltrials.gov/ct2/show/NCT01188785). Although 
none siRNAs are yet available for cancer treatment, it is expected that in the near future they 
could be used as cancer therapeutic agents.   

The identification of more cancer-type related genes, DNA methylation profiles and altered 
cellular pathways in cancer cell lines is crucial for understanding drugs’ mechanisms of 
action and its resistance patterns, and for developing and testing new targeted anticancer 
drugs. 

5. Conclusion 

In conclusion, well-characterized cancer cell lines at the molecular level are excellent models 
for the study of the altered cellular pathways, critical genes and methylome in cancer, and 
for anticancer drug testing. Although we have now a reasonable knowledge of the genome 
of this model, we are still in the beginning of knowing its methylome. The recent 
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technologies are very useful for this molecular profiling, which is absolutely required before 
the use of any cancer cell line in a research program. The study of the methylome in cancer 
using cell models is essential, since epigenetic modifications can occur early in oncogenesis, 
being the DNA methylation pattern a good target for chemotherapy. The molecular cancer 
cell lines profiling is also essential for the development of new anticancer drugs and for 
understanding the mechanism of action and the patterns involved in cell resistance to 
chemotherapeutics already used in the treatment of cancer. Moreover, cancer cell lines 
profiling can be a powerful tool for the identification of genes’ alterations or pathways 
cancer-related and for the discovery of putative drug targets.  

Nomenclature 

In the present work the nomenclature for human genes and proteins was the one 
recommended by HGNC (HUGO Gene Nomenclature Committee). For mouse and rat, we 
followed the one suggested by MGI (Mouse Genome Informatics).   
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resulting in the demethylation and replacement of the normal expression of P16INK4a [87]. 
The siRNA can be designed as an inhibitor of DNMTs, but can also be used as a target for 
the proteins involved in the regulation of the methylated gene [51].  

So, the characterization of both the genome and methylome of cancer cell lines allows the 
discovery of targets to anticancer drugs and to create more targeted drugs for certain types 
of cancer, providing the development of new therapies [35], as the use of siRNA, or the 
combination of new or already existing ones. 

The use of siRNA in cancer therapy is a new research field and promises to silence critical 
cancer genes, as oncogenes [88]. The use of cell lines was essential for the discovery of this 
potential specific gene cancer therapy by the suppression of expression of these genes [89] 
and blocking of the biological processes that comprise the hallmarks of cancer [88]. The 
major problem of using siRNAs as anticancer therapeutics does not rely in their design or 
mechanism of action, but in their delivery. To overcome this problem, nanoparticles [88, 90] 
(lipid, organic or inorganic) have been used for degradation protection, facilitating the cell 
transfection and allowing the delivery in the right place [88]. Presently, some siRNAs that 
use nanoparticles as delivery vehicles are in clinical trials [88, 90], however, at the moment, 
none have been approved [88]. A siRNA against PLK1 is in conclusion of phase I of clinical 
trials in different types of cancer [88] (http://www.clinicaltrials.gov/ct2/show/ 
record/NCT01437007) and good results are expected because of the importance  
of this protein in mitosis and in the maintenance of genome stability [82]. Another siRNA 
that is in a clinical trial phase with successful results is a siRNA for the depletion  
of M2 subunit of Ribonuclease reductase (RRM2) in solid tumours [88, 90, 91] 
(http://www.clinicaltrials.gov/ct2/show/NCT00689065), decreasing the proliferation of 
cancer cells in vitro and in vivo [91]. The mutation of K-RAS is associated with one third of 
the human cancers and is a resistance factor of many cancers to therapy. The depletion of 
this protein is an excellent target for cancer treatment, leading cancer cells to apoptosis. A 
phase I of a clinical trial is being carried out for this target (siG12D LODER (Local Drug 
EluteR)) in patients with pancreas adenocarcinoma, since most of the pancreas cancer cells 
have K-RAS mutated [88] (http://www.clinicaltrials.gov/ct2/show/NCT01188785). Although 
none siRNAs are yet available for cancer treatment, it is expected that in the near future they 
could be used as cancer therapeutic agents.   

The identification of more cancer-type related genes, DNA methylation profiles and altered 
cellular pathways in cancer cell lines is crucial for understanding drugs’ mechanisms of 
action and its resistance patterns, and for developing and testing new targeted anticancer 
drugs. 

5. Conclusion 

In conclusion, well-characterized cancer cell lines at the molecular level are excellent models 
for the study of the altered cellular pathways, critical genes and methylome in cancer, and 
for anticancer drug testing. Although we have now a reasonable knowledge of the genome 
of this model, we are still in the beginning of knowing its methylome. The recent 
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technologies are very useful for this molecular profiling, which is absolutely required before 
the use of any cancer cell line in a research program. The study of the methylome in cancer 
using cell models is essential, since epigenetic modifications can occur early in oncogenesis, 
being the DNA methylation pattern a good target for chemotherapy. The molecular cancer 
cell lines profiling is also essential for the development of new anticancer drugs and for 
understanding the mechanism of action and the patterns involved in cell resistance to 
chemotherapeutics already used in the treatment of cancer. Moreover, cancer cell lines 
profiling can be a powerful tool for the identification of genes’ alterations or pathways 
cancer-related and for the discovery of putative drug targets.  
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1. Introduction 

With more than 1 million annual deaths, among both females and males, lung cancer is the 
world leading cause of cancer-related death (1). The most important risk factor for lung 
cancer is smoking, with smokers presenting a 10 fold risk increase compared to non-
smokers. Lung cancers are usually divided into two categories: small-cell lung cancer 
(SCLC), representing approximately 15% of cases, and non-small cell lung cancer (NSCLC). 
This sub-division represents around 85% of all lung cancer cases and includes the 
histological sub-types adenocarcinoma, large-cell carcinoma and squamous cell carcinoma 
(2). The lung cancer 5-year survival rate is one of the lowest at 10-15% and treatment 
depends on the extent of the disease at the time of diagnosis (3). Approximately 30% of 
patients have early stage lung cancer when diagnosed and those tumours can be surgically 
removed, 20% have local and/or regionally advanced tumours and are treated with chemo 
and radiotherapy, and almost half of the patients have advanced metastatic disease when 
only palliative treatments are available (4). Consequently there is a pressing need for new 
screening and early diagnostic techniques that are specific and non-invasive, and also for 
tools that can predict prognosis, optimize treatments and identify new therapeutic targets. 
Genomic approaches have been used to that end in the last years. Nonetheless, given the 
importance of proteins to a cells’ phenotype, post-translational modifications, and the poor 
correlation between mRNA and protein expression levels (5, 6), proteomic analyses may 
enlighten the pathogenesis of lung cancer. A variety of techniques such as two dimensional 
gel electrophoresis (2D-PAGE, 2D-DIGE), protein arrays, protein labelling and tagging 
(ICAT, iTRAQ, SILAC), are being used in cancer research (7, 8) and have the potential to aid 
clinical practice as a complement to histopathology, as a selection method for individualized 
therapy, and in the assessment of drug efficacy, resistance, and toxicity (9). 
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2. Lung cancer 

In the beginning of the 20th century, lung cancer was a rare disease. Nowadays it has the 
highest incidence and mortality rates in the world with lifestyle and environmental factors 
thought to be the major contributors to the development of this disease (10).  
Epidemiological evidence has shown that two to three decades after a peak in smoking 
prevalence in a given population, there is a peak in lung cancer deaths, making tobacco 
smoking the main cause of lung cancer development. This relationship was established in 
the 1950’s and 60’s (10-12). Other causes include environmental tobacco smoking, air 
pollution, indoor radon, occupational exposure to respiratory carcinogens, asbestos, and 
fumes from cooking stoves and fires (10). Even though smoking is undeniably the major 
cause of lung cancer, making it the leading cause of preventable death in the world, it is 
important to recognize that the majority of smokers will not develop this neoplasia over 
time and that this is probably due to individual variation in the susceptibility to respiratory 
carcinogens and the existence of a previous lung disease (13, 14). Tobacco components can 
induce DNA damage through several mechanisms including gene point mutations, 
deletions, insertions, recombinations, rearrangements, and chromosomal alterations, which 
drive the development of the disease (15). Nonetheless, the current classification of lung 
cancer does not emphasize the important of specific molecular and genetic alterations that 
can differentiate between SCLC and NSCLC. This is also true for the NSCLC subtypes 
adenocarcinoma, large cell carcinoma, and squamous cell carcinoma, that were until 
recently, treated similarly, regardless of their biological heterogeneity (16). Lung cancer is 
characterized by genetic instability of the chromosomes, nucleotides, and the transcriptome. 
These abnormalities are usually targeted to proto-oncogenes, tumour suppressor genes, 
DNA repair genes, among others. The silencing of telomerase is present in normal cells, but 
in almost all SCLC and over 80% of NSCLC, telomerase is activated, promoting cell 
immortalization (17). The epidermal growth factor receptor (EGFR) is overexpressed or 
abnormally activated by mutation in 50-90% of all NSCLC, especially in squamous cell 
carcinomas, leading to increased cell proliferation and survival through the 
RAS/RAF/MEK/MAPK and PI3K/AKT pathways (18). Activating mutations of the KRAS 
gene from the RAS proto-oncogene family are present in 20% of all NSCLS and between 30-
50% of lung adenocarcinomas (19). The fusion of the echinoderm microtubule-associated 
protein-like 4 (EML4) and the anaplastic lymphoma kinase (ALK) genes occurs in 
approximately 7% of NSCLC and is associated with a persistent mitogenic signal. The 
EML4-ALK, EGFR, and KRAS mutations are almost always mutually exclusive (19). Tumour 
suppressor genes are also affected in lung cancer. Mutations in TP53 are the most common 
genetic alterations found in human cancers and occur in approximately 75% of SCLC and in 
50% of NSCLC (17). Alterations in the PI3K/AKT pathway, the CDKN2A/RB1 pathway, 
VEGF, and epigenetic changes are also present in lung cancer (19). Several drugs have been 
developed to target these alterations and improve survival of lung cancer patients, such as 
tyrosine kinase inhibitors and monoclonal antibodies, revealing the importance of the 
molecular characterization of tumours in order to improve detection, diagnosis, treatment 
and prognosis of lung cancer. 
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2. Lung cancer 
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4. Two dimensional gel electrophoresis 2D-PAGE 

2D-PAGE is the most used proteomic technique for studying the proteome as well as to 
search for cancer biomarkers (20, 21). In this methodology intact proteins are firstly 
separated by their isoelectric point (pI) and then according to their molecular weight. This 
procedure generates protein spots that are separated from the gel and digested into peptides 
for MS identification. Multidimensional separation of peptides may also be required given 
that, although the digestion step facilitates the identification process, it increases sample 
complexity, decreasing the sensitivity and coverage of the technique. Disadvantages of 2D-
PAGE include the separation of low abundant proteins and of membrane proteins. The use 
of fractioning methods or higher protein concentrations for less detectable proteins and the 
use of mild detergents to increase the solubility of membrane proteins may be a solution for 
the aforementioned issues (22, 23). Other problems include co-migration of different 
proteins, the separation of a protein with different post-translational modifications, proteins 
with pI values below 4 or above 9, or the separation of very small or very large proteins. 
Differential gel electrophoresis (2D-DIGE), a modification of 2D-PAGE with fluorescent 
dyes (Cy3, Cy5 and Cy2), is able to increase reproducibility and throughput and also allows 
the accurate quantitation of protein expression difference (24). Differential analysis software 
can recognize the differentially expressed proteins and these can later be trypsin digested 
into peptides generating peptide mass fingerprints (PMF). The absolute masses of these 
peptides can be measured by matrix assisted laser desorption ionization time-of-flight mass 
spectrometry (MALDI-TOF MS), a technique that is both relatively easy to use and 
reasonably sensitive for identifying proteins. Additionally other MS techniques, such as 
electrospray ionization (ESI-MS/MS), are capable of providing amino acid sequence 
information on peptide fragments of the initial protein (25). Liquid chromatography coupled 
to tandem mass spectrometry workflow (LC-MS/MS) has become a standard method to 
identify proteins from complex biological samples. Also, direct MS analysis of tissue, known 
as MALDI imaging, is a method that has been used to elucidate proteome features 
characterizing histological differences in lung cancer between adenocarcinoma and 
squamous- cell carcinoma (26). Another example of a novel way to generate proteomic data 
is presented in the study of dynamic proteome changes on lung cancer cells (H1299) treated 
with the cytotoxic drug camptothecin using single-protein labelling on large scale (27). 

5. Isotope-labelled mass spectrometry 

Isotope-labelling methods, as seen on Figure 2, are gel-free procedures that introduce stable 
isotope tags to proteins through chemical reactions using isotope-coded affinity tags (ICAT) 
(28) and isobaric tag for relative and absolute quantitation (iTRAQ) (29), or through 
metabolic labelling with isotope labelled amino acids in cell culture (SILAC) (30). 

ICAT is used to analyse pairs of protein samples, such as a treated sample and its control. 
Extracted proteins from both samples are labelled with a light or heavy ICAT reagent by 
reacting with a specific amino acid (cysteine). Samples are then mixed, trypsin digested, 
fractioned, and analysed by LC-MS/MS (31). Isotope peak ratios for each peptide determine 
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the differential protein expression. The drawback of this technique is that it can only analyse 
cysteine containing proteins, two samples, and it can only identify 300-400 peptides. 

 
Figure 2. Basic workflow of gel-free quantitative approaches in proteomics. In SILAC, one cellular 
culture is grown in normal medium and the other with a growth medium with heavy labelled amino-
acids. In ICAT, one protein extract is labelled with a light ICAT reagent and the other with a heavy 
ICAT reagent. In both techniques, samples are mixed, digested, separated and analysed by MS to 
determine protein identity and differential expression. In iTRAQ, special isobaric tags are applied in 4 
to 8 samples up for comparison. They are then pooled together, fractionated and analysed by MS, 
allowing protein identification and quantitation among studied samples. 

iTRAQ is another labelling technique first developed by Ross and co-workers (32) which 
uses isobaric tags to label and compare proteins extracted from samples. iTRAQ contains a 
set of four or eight isobaric reagents and therefore can analyse up to four or eight protein 
samples at one time. After trypsin digestion samples are labelled with four or eight (4-plex 
or 8-plex) independent iTRAQ reagents. The reporter groups of the iTRAQ reagents 
separate from the peptides and generate small fragments for each sample with mass-to-
charge (m/z) of 114, 115, 116, and 117 for 4-plex, plus 113, 118, 119, and 121 for 8-plex. The 
intensity of each peak correlates with the quantity of each reporter group and thus with the 
quantity of the peptide. This method allows the analysis of various samples at a time and 
also, given that most peptides are suitable to be labelled by iTRAQ, it minimizes 
information loss and allows the identification of proteins with different post-translational 
modifications. Disadvantages of iTRAQ include a separate lengthy sample processing, that 
increases the chances of experimental errors, and the generation of chemical side products 
during the labelling process that can reduce the sensitivity of the method (33). 

SILAC, first developed by Mann and co-workers, is based on the metabolic incorporation of 
“heavy” and “light” forms of amino acids into the proteins of living cultured cells (34) . 
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Typically, heavy (13C or 15N) arginine or lysine are used in the culture medium of a cell 
culture while the other cell culture is supplied with regular amino acids. After several 
division rounds, these amino acids are incorporated into the newly synthesized proteins. 
Following trypsin digestion, peptides are analysed by MS and the light and heavy peptides 
appear in two distinct peaks and, by comparing the signal intensities differences, relative 
quantitation can be performed. This technique has been widely used for cancer biomarker 
discovery (35), and cell signalling dynamics (36).  

6. Label-free mass spectrometry 

Multidimensional Protein Identification Technology (MudPIT) is a generic label-free LC-MS 
shotgun screening method (36). It separates peptides according to two independent 
physicochemical properties using liquid chromatography (LC/LC) online with the ion 
source of a mass spectrometer, allowing the separation and identification of peptides 
without labelling. The success of this technique depends on the experimental workflow, 
from protein extraction to sample stability, given that the reproducibility of technical 
replicates is better than that of experimental replicates. Drawbacks of this method include 
the fact that not all peptides are equally detectable given the competition between ions, 
dynamic range limitations and MS sensitivity (37). With time and improvements, label-free 
MS could be widely used for biomarker discovery and validation. 

7. Detection of post-translational modifications (PTMs) 

PTMs are the chemical alterations that occur to a protein after translation. They include 
proteolytic cleavage, glycosylation, phosphorylation, acetylation, ubiquitination, 
farnesylation, methylation, sialylation, oxidation, prolyl isomerization and hydroxylation 
(38). Glycosylation and phosphorylation are two of the most biologically relevant PTMs and 
appear to be key processes in tumour progression in many types of cancers including lung 
cancer (39, 40) 

Glycosylation, the process of adding saccharides to proteins, plays a fundamental role in 
protein stabilization, molecular and cellular recognition, growth and cellular 
communication, and can also be a part of immune responses and cancer progression (41). 
The comparative study of the carbohydrate chains of glycoproteins may provide useful 
information for the diagnosis, prognosis, and immunotherapy of tumours (42). The 
proteomic analysis of glycoproteins starts with the enrichment of these molecules from a 
complex protein sample by the use lectins. This step is followed by a separation of 
glycoproteins by procedures such as 2D-PAGE and 2D-DIGE coupled with glycoprotein 
staining methods, for example Pro-Q Emerald 488 glycoprotein stain (43), lectin fluorescence 
stain (44), and isotope labelling (45). Identification of separated glycoproteins and their 
glycan structures can be accomplished by chromatographic methods (nano-LC with 
hydrophilic columns, nano-LC with graphitized carbon packing, anion-exchange 
chromatography), electromigration approaches (capillary electrophoresis, capillary 
electrochromatography), capillary LC/MALDI-TOF/TOF MS & tandem MS (MS/MS), and 
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chip-based approaches (46). Although there are some difficulties when analysing lung 
tumours, one study has identified 34 glycoproteins with significant differences between 
lung adenocarcinomas and healthy controls. The α1,6-fucosylation levels were incremented 
in the lung cancer group in comparison with healthy group (47). 

Phosphorylation is the addition of a phosphate group to a protein and is a key regulatory 
mechanism of cellular signalling processes. Phosphoproteomics and the characterization of 
phosphorylation sites, which less than 2% are currently known, are some of the most 
challenging tasks in current proteomic research (48). To isolate and identify phosphorylated 
proteins one must use immunoaffinity or immunoprecipitation with a specific antibody, 
chromatofocusing, ion exchange chromatography and affinity chromatography, such as 
immobilized metal ion affinity chromatography (IMAC) (49). Separation methods include 
electrophoresis, 2D-PAGE or 2D-DIGE coupled with phosphoprotein staining (Pro-Q 
Diamond phosphoprotein gel stain) or isotope labelling (ICAT, SILAC) (50, 51). Analysis 
and identification methods of phosphoproteins and phosphopeptides are mass 
spectrometry-based approaches, such MALDI-TOF MS, LC-ESI-MS and MS/MS (52). Given 
that the key regulators of signalling cascades are kinases and phosphatases, lung cancer 
phosphoproteomics might reveal the correlation between phosphorylation and cancer 
mechanisms.  

8. Samples in lung cancer proteomics 

The lung is a heterogeneous organ composed by several highly differentiated cells 
(bronchial, alveolar, inflammatory) and vascular structures. Its main function is to 
perform gas exchanges between the atmosphere and the bloodstream. When studying 
lung cancer with proteomic tools, several different samples can be used: tumour tissue, 
blood, pleural effusions, among others (53). The accessibility of blood makes for a great 
sample for oncoproteomic studies. Moreover, it contains many circulating molecules 
secreted by the tumour that can be used as biomarkers. Nonetheless, due to the 
abundance of plasma proteins, depletion of these proteins is necessary to reveal the 
presence of less abundant ones. Tumour tissue samples, fresh-frozen or formalin-fixed 
and paraffin-embedded, are the ideal for any oncoproteomic study. However, adjacent 
normal tissue, inflammatory cells, stromal components, and others might also be present. 
This will result in non-tumour derived protein contamination. To compensate tumour 
heterogeneity careful sample cell content analysis and the increase of sample numbers is 
required to obtain relevant results. The pleura is a thin double-layered tissue that 
surrounds the lung and it is filled with pleural fluid. This liquid is constantly produced 
and reabsorbed, and its main function is to facilitate respiratory movements and reduce 
attrition between the lungs and the thorax wall. Pleural effusion is the pathological 
accumulation of fluid that occurs in inflammatory conditions and lung cancer. In the latter 
case, pleural effusion is often drained to search for cancer cell infiltration. Its protein 
composition is similar to plasma, but its proximity to tumour cells makes it useful for lung 
cancer biomarker detection by proteomic techniques. 



Oncogenomics and Cancer Proteomics –  
Novel Approaches in Biomarkers Discovery and Therapeutic Targets in Cancer 174 

Typically, heavy (13C or 15N) arginine or lysine are used in the culture medium of a cell 
culture while the other cell culture is supplied with regular amino acids. After several 
division rounds, these amino acids are incorporated into the newly synthesized proteins. 
Following trypsin digestion, peptides are analysed by MS and the light and heavy peptides 
appear in two distinct peaks and, by comparing the signal intensities differences, relative 
quantitation can be performed. This technique has been widely used for cancer biomarker 
discovery (35), and cell signalling dynamics (36).  

6. Label-free mass spectrometry 

Multidimensional Protein Identification Technology (MudPIT) is a generic label-free LC-MS 
shotgun screening method (36). It separates peptides according to two independent 
physicochemical properties using liquid chromatography (LC/LC) online with the ion 
source of a mass spectrometer, allowing the separation and identification of peptides 
without labelling. The success of this technique depends on the experimental workflow, 
from protein extraction to sample stability, given that the reproducibility of technical 
replicates is better than that of experimental replicates. Drawbacks of this method include 
the fact that not all peptides are equally detectable given the competition between ions, 
dynamic range limitations and MS sensitivity (37). With time and improvements, label-free 
MS could be widely used for biomarker discovery and validation. 

7. Detection of post-translational modifications (PTMs) 

PTMs are the chemical alterations that occur to a protein after translation. They include 
proteolytic cleavage, glycosylation, phosphorylation, acetylation, ubiquitination, 
farnesylation, methylation, sialylation, oxidation, prolyl isomerization and hydroxylation 
(38). Glycosylation and phosphorylation are two of the most biologically relevant PTMs and 
appear to be key processes in tumour progression in many types of cancers including lung 
cancer (39, 40) 

Glycosylation, the process of adding saccharides to proteins, plays a fundamental role in 
protein stabilization, molecular and cellular recognition, growth and cellular 
communication, and can also be a part of immune responses and cancer progression (41). 
The comparative study of the carbohydrate chains of glycoproteins may provide useful 
information for the diagnosis, prognosis, and immunotherapy of tumours (42). The 
proteomic analysis of glycoproteins starts with the enrichment of these molecules from a 
complex protein sample by the use lectins. This step is followed by a separation of 
glycoproteins by procedures such as 2D-PAGE and 2D-DIGE coupled with glycoprotein 
staining methods, for example Pro-Q Emerald 488 glycoprotein stain (43), lectin fluorescence 
stain (44), and isotope labelling (45). Identification of separated glycoproteins and their 
glycan structures can be accomplished by chromatographic methods (nano-LC with 
hydrophilic columns, nano-LC with graphitized carbon packing, anion-exchange 
chromatography), electromigration approaches (capillary electrophoresis, capillary 
electrochromatography), capillary LC/MALDI-TOF/TOF MS & tandem MS (MS/MS), and 

 
Oncoproteomic Approaches in Lung Cancer Research 175 

chip-based approaches (46). Although there are some difficulties when analysing lung 
tumours, one study has identified 34 glycoproteins with significant differences between 
lung adenocarcinomas and healthy controls. The α1,6-fucosylation levels were incremented 
in the lung cancer group in comparison with healthy group (47). 

Phosphorylation is the addition of a phosphate group to a protein and is a key regulatory 
mechanism of cellular signalling processes. Phosphoproteomics and the characterization of 
phosphorylation sites, which less than 2% are currently known, are some of the most 
challenging tasks in current proteomic research (48). To isolate and identify phosphorylated 
proteins one must use immunoaffinity or immunoprecipitation with a specific antibody, 
chromatofocusing, ion exchange chromatography and affinity chromatography, such as 
immobilized metal ion affinity chromatography (IMAC) (49). Separation methods include 
electrophoresis, 2D-PAGE or 2D-DIGE coupled with phosphoprotein staining (Pro-Q 
Diamond phosphoprotein gel stain) or isotope labelling (ICAT, SILAC) (50, 51). Analysis 
and identification methods of phosphoproteins and phosphopeptides are mass 
spectrometry-based approaches, such MALDI-TOF MS, LC-ESI-MS and MS/MS (52). Given 
that the key regulators of signalling cascades are kinases and phosphatases, lung cancer 
phosphoproteomics might reveal the correlation between phosphorylation and cancer 
mechanisms.  

8. Samples in lung cancer proteomics 

The lung is a heterogeneous organ composed by several highly differentiated cells 
(bronchial, alveolar, inflammatory) and vascular structures. Its main function is to 
perform gas exchanges between the atmosphere and the bloodstream. When studying 
lung cancer with proteomic tools, several different samples can be used: tumour tissue, 
blood, pleural effusions, among others (53). The accessibility of blood makes for a great 
sample for oncoproteomic studies. Moreover, it contains many circulating molecules 
secreted by the tumour that can be used as biomarkers. Nonetheless, due to the 
abundance of plasma proteins, depletion of these proteins is necessary to reveal the 
presence of less abundant ones. Tumour tissue samples, fresh-frozen or formalin-fixed 
and paraffin-embedded, are the ideal for any oncoproteomic study. However, adjacent 
normal tissue, inflammatory cells, stromal components, and others might also be present. 
This will result in non-tumour derived protein contamination. To compensate tumour 
heterogeneity careful sample cell content analysis and the increase of sample numbers is 
required to obtain relevant results. The pleura is a thin double-layered tissue that 
surrounds the lung and it is filled with pleural fluid. This liquid is constantly produced 
and reabsorbed, and its main function is to facilitate respiratory movements and reduce 
attrition between the lungs and the thorax wall. Pleural effusion is the pathological 
accumulation of fluid that occurs in inflammatory conditions and lung cancer. In the latter 
case, pleural effusion is often drained to search for cancer cell infiltration. Its protein 
composition is similar to plasma, but its proximity to tumour cells makes it useful for lung 
cancer biomarker detection by proteomic techniques. 



Oncogenomics and Cancer Proteomics –  
Novel Approaches in Biomarkers Discovery and Therapeutic Targets in Cancer 176 

9. Proteomics in the discovery and validation of lung cancer biomarkers 

9.1. Diagnostic biomarkers 

To discover a lung cancer diagnostic biomarker, a molecule that is specific and directly 
correlates with the presence of this disease, the majority of studies perform a comparison 
between the protein profiles of tumour samples and normal lung tissue. The ideal would be 
to study the development of the carcinogenic process from normal tissue, to metaplasia, to 
dysplasia, and finally to invasive cancer, in order to discover early markers of disease before 
the onset of clinical features. 

In response to inflammation, a cancer enabling characteristic, acute-phase reactant proteins 
(APRPs) are produced. Recent proteomic studies have shown that APRPs haptoglobin (Hp) 
β chain (54), serum amyloid A (SAA) (55), and apolipoprotein A-1 (Apo A-1) (56) proteins 
are potential lung cancer diagnostic biomarkers. SAA proteins are involved in the transport 
of cholesterol to the liver, the recruitment of immune cells, and the induction extracellular 
matrix degrading enzymes. SAA1 and SAA2, which are synthesised in response to activated 
monocytes/macrophages, were recently identified, by LC-MS/MS, ELISA and 
immunohistochemistry analyses, as lung cancer biomarkers given their higher expression 
levels in blood and tissue from lung cancer patients when compared to healthy subjects and 
patients with other cancers and respiratory diseases (55). In another related study, serum 
and pleural effusions from NSCLC patients were compared by 2D-DIGE to those from 
patients with benign lung diseases. Gelsolin, possibly involved in cancer invasion, 
metalloproteinase inhibitor 2 (TIMP2), involved in lung parenchyma disorganization, and 
pigment epithelium derived factor (PEDF), an angiogenesis inhibitor, were among the 
candidate biomarkers (57). A study by Patz and co-workers, that aimed to test the diagnostic 
performance of four lung cancer biomarkers (carcinoembryonic antigen and squamous-cell 
carcinoma antigen, and 2D-PAGE and MALDI-MS discovered retinol binding protein – RBP 
- and α-1 antitrypsin), demonstrated that the four markers have inadequate diagnostic 
power when tested independently but proved useful when used in combination (58). A 
glycoproteomic study revealed plasma kallikrein (KLKB1), pleural effusion periostin, 
multimerin-2, CD166 and lysosome-associated membrane glycoprotein-2 (LAMP-2) as 
potential lung cancer biomarkers (59).  

9.2. Prognostic biomarkers 

Prognostic biomarkers, those that have expression levels correlating with the natural history 
of the disease, have the potential to influence survival by identifying high-risk patients and 
thus improve their management. The study of prognostic biomarkers in lung cancer has 
been made by correlating the expression of a molecule to the patient survival. An alternative 
approach is to compare groups of patients with different clinical stages of disease, based on 
the assumption that a more advanced tumour is more aggressive and may express proteins 
that drive the metastatic process. Proteomic studies have aimed at discovering altered 
protein levels and subsequently validating those differences using immunohistochemistry 
on archive samples. Using 2D-PAGE, Chen and co-workers associated 11 components of the 
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glycolysis pathway to poor survival in lung adenocarcinoma (39) and also demonstrated 
their prognostic role in lung cancer at the mRNA level. Nonetheless, glycolysis involved 
enzyme phosphoglycerate kinase 1 was found to limit tumour growth in mice 
subcutaneously injected with the Lewis lung carcinoma cell line, by promoting antitumor 
immunity (60). A study using 2D-DIGE, MS, western blot, and immunohistochemistry 
correlated the up-regulation of annexin A3, a protein associated with cancer metastasis by 
angiogenic promotion, with advanced clinical stage, lymph node metastasis, increased 
relapse time, and overall decreased survival in lung adenocarcinoma, indicating that 
annexin A3 might be a prognostic lung cancer biomarker (61). The involvement of S100A11, 
a small calcium-binding protein implicated in the prognosis and metastasis in several 
tumours, has also been evaluated in lung cancer. Comparative proteomic analysis of two 
NSCLC cell lines, the non-metastatic CL1-0 and highly metastatic CL1-5, revealed that 
S100A11 was up-regulated in metastatic CL1-5 cells (62). Moreover, immunohistochemical 
analyses in NSCLC tissues showed that the up-regulation of S100A11 was significantly 
associated with a higher TNM stage and a positive lymph node status, indicating its 
importance in promoting invasion and metastasis of NSCLC. Altered expression of S100A6 
was also implicated in NSCLC progression: elevated levels of this protein were associated 
with longer survival compared to S100A6-negative cases (63). Cytoskeletal reorganization is 
a central process regulating cell migration and metastasis and cytokeratins (CKs), a family of 
cytoskeletal intermediate filaments, have been suggested to play a role in carcinogenesis, by 
promoting cellular architecture reorganization during tumour development and 
progression. A 2D-PAGE and MS analysis has revealed that isoforms of CK7, 8, 18, and 19 
were found in higher levels in adenocarcinoma samples than in adjacent tissues (64). 
Specific isoforms of the CKs were associated with unfavourable prognosis, CYFRA21-1 was 
a more accurate diagnostic marker, and CK18 was a stronger prognostic factor (65). Other 
cytoskeletal proteins found to be correlated with a poor prognosis in lung adenocarcinoma 
are non-muscle myosin IIA and vimentin proteins, involved in epithelial-mesenchymal 
transition, a process at the basis of invasive and metastatic behaviour (66). Phosphohistidine 
phosphatase (PHP14) was proposed to be another lung cancer prognostic biomarker, 
regulating cell migration and invasion by cytoskeleton rearrangement. Indeed, it has been 
shown that PHP14 knockdown in highly metastatic lung cancer cells (CL1-5) inhibited 
migration and invasion, whereas its over-expression in NCI H1299 cells enhanced these 
processes (67). Calmodulin, a protein implicated in cytoskeletal alterations during cell death, 
thymosin β4, a regulator of actin polymerization whose over-expression seems to stimulate 
lung tumour metastasis, thymosin β10 and cofilin proteins, regulators of actin dynamics,  
were identified and their expression and prognostic role validated on cohort of 188 lung 
cancer cases (68). 

9.3. Predictive biomarkers  

The discovery of predictive biomarkers, those on which the efficacy of a specific treatment 
can be foreseen, has been based on studying clinical samples from responding and non-
responding patients and then validating results on selected cohorts. This type of biomarker 
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been made by correlating the expression of a molecule to the patient survival. An alternative 
approach is to compare groups of patients with different clinical stages of disease, based on 
the assumption that a more advanced tumour is more aggressive and may express proteins 
that drive the metastatic process. Proteomic studies have aimed at discovering altered 
protein levels and subsequently validating those differences using immunohistochemistry 
on archive samples. Using 2D-PAGE, Chen and co-workers associated 11 components of the 
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correlated the up-regulation of annexin A3, a protein associated with cancer metastasis by 
angiogenic promotion, with advanced clinical stage, lymph node metastasis, increased 
relapse time, and overall decreased survival in lung adenocarcinoma, indicating that 
annexin A3 might be a prognostic lung cancer biomarker (61). The involvement of S100A11, 
a small calcium-binding protein implicated in the prognosis and metastasis in several 
tumours, has also been evaluated in lung cancer. Comparative proteomic analysis of two 
NSCLC cell lines, the non-metastatic CL1-0 and highly metastatic CL1-5, revealed that 
S100A11 was up-regulated in metastatic CL1-5 cells (62). Moreover, immunohistochemical 
analyses in NSCLC tissues showed that the up-regulation of S100A11 was significantly 
associated with a higher TNM stage and a positive lymph node status, indicating its 
importance in promoting invasion and metastasis of NSCLC. Altered expression of S100A6 
was also implicated in NSCLC progression: elevated levels of this protein were associated 
with longer survival compared to S100A6-negative cases (63). Cytoskeletal reorganization is 
a central process regulating cell migration and metastasis and cytokeratins (CKs), a family of 
cytoskeletal intermediate filaments, have been suggested to play a role in carcinogenesis, by 
promoting cellular architecture reorganization during tumour development and 
progression. A 2D-PAGE and MS analysis has revealed that isoforms of CK7, 8, 18, and 19 
were found in higher levels in adenocarcinoma samples than in adjacent tissues (64). 
Specific isoforms of the CKs were associated with unfavourable prognosis, CYFRA21-1 was 
a more accurate diagnostic marker, and CK18 was a stronger prognostic factor (65). Other 
cytoskeletal proteins found to be correlated with a poor prognosis in lung adenocarcinoma 
are non-muscle myosin IIA and vimentin proteins, involved in epithelial-mesenchymal 
transition, a process at the basis of invasive and metastatic behaviour (66). Phosphohistidine 
phosphatase (PHP14) was proposed to be another lung cancer prognostic biomarker, 
regulating cell migration and invasion by cytoskeleton rearrangement. Indeed, it has been 
shown that PHP14 knockdown in highly metastatic lung cancer cells (CL1-5) inhibited 
migration and invasion, whereas its over-expression in NCI H1299 cells enhanced these 
processes (67). Calmodulin, a protein implicated in cytoskeletal alterations during cell death, 
thymosin β4, a regulator of actin polymerization whose over-expression seems to stimulate 
lung tumour metastasis, thymosin β10 and cofilin proteins, regulators of actin dynamics,  
were identified and their expression and prognostic role validated on cohort of 188 lung 
cancer cases (68). 

9.3. Predictive biomarkers  

The discovery of predictive biomarkers, those on which the efficacy of a specific treatment 
can be foreseen, has been based on studying clinical samples from responding and non-
responding patients and then validating results on selected cohorts. This type of biomarker 
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aims at individualizing therapies in lung cancer but relies on extremely well characterized 
samples from cohorts of patients receiving a uniform treatment and closely monitored 
therapeutic responses. A recent MALDI-TOF-MS study that profiled serum from patients 
treated with cisplatin-gemcitabine in combination with the proteasome inhibitor 
bortezomib,  revealed a 13-peptide signature that was able to distinguish with high 
accuracy, sensitivity, and specificity, patients with short and long progression-free survival 
(69). The epidermal growth factor receptor (EGFR) tyrosine kinase is an important target for 
treatment of NSCLC, and EGFR-inhibitor-based therapies have showed promising results. 
The serum MALDI-MS study conducted by Taguchi and co-workers in NSCLC patients  
 

Type of Biomarker Proteins Techniques 

Diagnostic 

Hp β chain (54) LC-ESI-MS/MS, ELISA 
SAA1

SAA2 (55) LC-MS/MS, ELISA, IHC 

Apo A1 (56) 2D-PAGE, MALDI-TOF 
Gelsolin
TIMP2 

PEDF (57) 
2D-DIGE 

RBP
α-1 antitrypsin (58) 2D-DIGE, MALDI-TOF-MS 

KLKB1
Periostin 

Multimerin-2 
CD166 

LAMP-2 (59) 

LC-MS/MS 

Prognostic 

Glycolysis
(11 components) (39) 2D-PAGE 

Annexin A3 (61) 2D-DIGE, MS, IHC* 
S100A11 (62) 2D-PAGE, MALDI-TOF-MS/MS, IHC 
S100A6 (63) SELDI-TOF-MS 

CK 7, 8, 9 and 19 (64) 2D-PAGE, MS 
CYFRA21-1
CK18 (65) ELISA 

Myosin IIA
Vimentin (66) LC-MS/MS 

PHP14 (67) 2D-PAGE, ESI-TOF-MS/MS 
Calmodulin

Thymosin β4 
Thymosin β10 (68)

MALDI-MS, IHC 

Predictive 13-peptide signature (69) MALDI-TOF-MS 
8-peak signature (70) MALDI-MS 

* Immunohistochemistry 

Table 1. Potential lung cancer biomarkers discovered by the use of proteomic tools 
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treated with gefitinib and erlotinib revealed an 8-peak profile predictive of outcome (70). 
This 8-peak signature was commercially launched as a commercial product (Veristrat ®, 
Biodesix, Broom field, CO, US) and its clinical relevance is being validated in the context of a 
randomized phase III clinical trial where patients with advanced NSCLC progressing after 
first-line treatment, stratified according to serum MALDI-MS profiling, are subsequently 
randomly allocated to receive either erlotinib or chemotherapy as second-line therapy 
(PROSE, Proteomics Stratified Erlotinib trial). To the best of our knowledge, this is the only 
clinical trial investigating the predictive role of a proteomics biomarker in lung cancer 
patients. A summary of all mentioned biomarkers can be found on Table 1. 

10. Conclusions 

Proteomic approaches are improving rapidly and the development of high-throughput 
platforms is showing promising results as the list of candidate biomarkers for lung cancer is 
continuously growing. However, there is a great need for careful interpretation of this 
intricate data in order to generate biologically relevant hypotheses. The proteome is highly 
complex and current tools cannot yet provide a definitive solution for its exploration. In 
addition, cancer is a multifactorial disease so diverse that a great deal of time and effort will 
be necessary to define its associated proteome modifications and to translate these into 
practical clinical applications. In fact for many of the identified proteins, their functional role 
in lung cancer development is not yet known and a solid clinical validation is still lacking. 
Nonetheless, it is likely that some of these candidate biomarkers will serve to identify new 
possible therapeutic strategies. 
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1. Introduction 

Signal transduction systems regulate complex biological events such as cell proliferation and 
differentiation via phosphorylation/dephosphorylation kinetic reactions. Therefore, 
dysregulation of these systems lead to a variety of diseases such as diabetes, abnormal bone 
metabolism, autoimmune disease and cancer [1-4]. Above all, cancer is well-known to be 
caused by aberrant regulation of signaling pathways. Although a large number of studies 
regarding phosphorylation events in cancer cell networks were performed, a global view of 
these complex systems has not been fully elucidated.  Recent technological advances in mass 
spectrometry-based proteomics have enabled us to identify thousands of proteins in a single 
project [5-7] and, in combination with relative quantitation techniques such as Stable Isotope 
Labeling by Amino acids in Cell culture (SILAC), quantitative analysis regarding signaling-
related molecules can also be performed [8,9]. Recently, establishment of phosphorylation-
directed peptide/protein enrichment technology has led us to capture the comprehensive 
status of phosphorylated cellular signaling molecules in a time-resolved manner [10-12]. 
Tyrosine-phosphoproteome analysis conducted by utilizing anti-phosphotyrosine 
antibodies unveils key regulatory signaling dynamics triggered by tyrosine kinases such as 
epidermal growth factor receptor (EGFR) in various contexts of cancer cell signaling. 
Furthermore, chemistry-based phosphopeptide enrichment technologies such as 
immobilized metal affinity chromatography (IMAC) [13,14] and metal oxide 
chromatography (MOC) including titanium dioxide (TiO2) allows us to describe a 
serine/threonine/tyrosine-phosphorylation dependent global landscape of cellular signaling 
at the network level [15,16]. In this chapter, we introduce recent technological development 
regarding quantitative phosphoproteomics and discuss the future direction of cancer 
research toward exploration of drug targets in complex signaling networks from a system-
level point of view. 
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2. Shotgun proteomics technology  

2.1. Mass spectrometry-based proteomics methodology 

Recent progress in mass spectrometry-based proteomics technique has greatly contributed 
to elucidation of the regulatory networks constituted by a small amount of signaling-related 
molecules [17]. Especially, modern mass spectrometers termed linear ion trap (LTQ)  
Orbitrap instrument coupled to nano-flow liquid chromatography (nanoLC) enables us to 
identify and quantify thousands of signaling factors, leading to characterize diverse aspects 
of biological processes [18,19]. This system is made up of LTQ [20] and Orbitrap [21], which 
permits reliable peptide identification with high sensitivity, high mass resolution and high 
mass accuracy. In principle, there are two methodologies (in-gel digestion and in-solution 
digestion) for mass spectrometric sample preparation (Figure 1). Recently, liquid-
fractionation entrapment technology has also been developed to improve 
comprehensiveness as well as sensitivity.  

 
Figure 1. Experimental workflow for advanced mass spectrometry-based proteomics. Two standard 
methodologies (in-gel digestion and in-solution digestion) are usually applied to sample preparation. 

2.2. In-solution fractionation techniques  

In order to achieve peptide identification more comprehensively, in-solution fractionation 
techniques including two dimensional (2D) nanoLC system, Gelfree 8100 Fractionation 
System (Protein Discovery) [22] and 3100 OFFGEL Fractionator (Agilent) [23] have been 
developed for further sample separation. 2D nanoLC system consists of on-line strong 
cation exchange (SCX) and reversed-phase (RP) columns (Figure 2A), whereas off-line 
fractionation systems such as Gelfree 8100 Fractionation System and 3100 OFFGEL 
Fractionator separate proteins by molecular weight and isoelectric point, respectively 
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(Figure 2B, 2C). These systems enable us not only to reduce the complexity of samples but 
also to minimize the amount of starting materials compared with in-gel digestion. 
 

 
Figure 2. Schematic illustrations for in-solution protein/peptide separation techniques based on 
fractionation A) using SCX and RP columns (2D nanoLC system), B) by molecular weight (Gelfree 8100 
Fractionation System) and C) by isoelectric point (3100 OFFGEL Fractionator). 

3. Quantitative proteomics  

Quantitative description based on mass spectrometry is not readily available because of the 
principle that ionization efficiency for mass spectrometric detection depends on the 
chemical property of each peptide. In recent years, several methods have been intensively 
developed for absolute and relative quantification [24]. The former methodology enables us 
to determine the absolute amount of proteins using standard peptides or proteins that are 
labeled by stable isotopes [25-27]. Meanwhile, the latter can provide information on the 
relative change in protein/peptide amount. There are two major approaches for relative 
quantification termed label-free and stable isotope-based methods.  

3.1. Label-free methods 

The label-free methods that utilize spectral counting or signal intensity for relative 
quantitation (Figure 3) are simple and economical but less accurate than isotope-based 
methods [28,29]. 
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Figure 1. Experimental workflow for advanced mass spectrometry-based proteomics. Two standard 
methodologies (in-gel digestion and in-solution digestion) are usually applied to sample preparation. 
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(Figure 2B, 2C). These systems enable us not only to reduce the complexity of samples but 
also to minimize the amount of starting materials compared with in-gel digestion. 
 

 
Figure 2. Schematic illustrations for in-solution protein/peptide separation techniques based on 
fractionation A) using SCX and RP columns (2D nanoLC system), B) by molecular weight (Gelfree 8100 
Fractionation System) and C) by isoelectric point (3100 OFFGEL Fractionator). 
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Figure 3. Representative chromatograms acquired under two different conditions. Relative quantitation 
can be performed by comparing these chromatograms. The red rectangle indicates the peak intensities 
increased in condition 2 compared with condition 1. 

3.2. Stable isotope-based methods 

Stable isotope-based methods allow us to distinguish the status of protein/peptide amount 
of even post translational modifications (PTMs) in a more accurate manner. Stable isotope-
labeled reagents were incorporated into specific amino acids by chemical derivatization or 
metabolic labeling. Isotope-Coded Affinity Tag (ICAT) [30,31], isobaric Tag for Relative and 
Absolute Quantitation (iTRAQ) [32-34] and Tandem Mass Tag (TMT) [35,36] belong to the 
former chemical derivatization techniques. As for metabolic labeling strategies, Stable 
Isotope Labeling by Amino acids in Cell culture (SILAC) technique [37,38] is known as the 
most useful and accurate for relative quantitation.  

3.2.1. ICAT 

The chemical structure of the ICAT reagent consists of three regions: a reactive group with 
cysteine, an isotopically coded linker and a biotin tag (Figure 4). In order to perform a 
quantitative analysis, the cellular proteomes in two different conditions are labeled with 
light and heavy ICAT reagents, respectively. After the two samples are combined, they are 
proteolytically digested and purified with avidin affinity chromatography. The differential 
analyses are sequentially performed by detecting mass shift using liquid chromatography 
combined with tandem mass spectrometry (LC-MS/MS).  
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Figure 4. Peptide quantitation using cleavable ICAT. Differentially labeled peptides with ICAT tag at 
cysteine residues are preferentially enriched and analysed by LC-MS/MS. The ratio of heavy (red peak) 
to light (green peak) area indicates relative abundance of each peptide. 

3.2.2. Isobaric reagents (iTRAQ and TMT) 

The isobaric reagents such as iTRAQ and TMT contain an isobaric tag and an amine specific 
peptide reactive group. This strategy enables us to label all peptides derived from samples. 
Relative quantification of the mixed sample is performed at the MS/MS fragmentation stage 
(Figure 5).  

 
Figure 5. Peptide quantitation using iTRAQ. Peptides labeled by isobaric tags on the N-termini and 
lysine side chains are mixed and analyzed by LC-MS/MS. After fragmentation, MS/MS spectra of 
reporter ions are observed in the low mass region. The ratio of these peaks represents a relative amount 
of each peptide. 
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3.2.3. SILAC 

As for metabolic labeling, Stable Isotope Labeling by Amino acids in Cell culture (SILAC) 
technique has widely been used to quantify protein abundance or PTM status in different 
conditions (Figure 6). Two cell populations are grown in different culture media including 
light or heavy stable isotopes of arginine and/or lysine. The lysates from these cell 
populations are equally combined, proteolytically digested and analyzed by LC-MS/MS. 
Regarding each mass pair detected, the ratio of the peak intensities corresponds to the 
relative peptide abundance.   

 
Figure 6. Peptide quantitation using SILAC. Proteins metabolically labeled by differential stable 
isotopes are combined, proteolytically digested and subjected to nanoLC-MS/MS analysis. The ratio of 
heavy to light peak area accounts for a relative amount of each peptide. 

4. Analytical methodologies for enrichment of phosphorylated molecules 

The mechanistic principles for transmitting signals within cellular networks rely greatly on 
PTMs such as phosphorylation, ubiquitination and acetylation. Although reversible 
phosphorylation events are well-studied in signal transduction research, a global landscape 
of phosphorylation-dependent signaling networks remains almost unclear. Here we 
introduce several phosphoprotein/phosphopeptide enrichment methods for mass 
spectrometry-based global phosphoproteome analysis. 

4.1. Immunoprecipitation using anti-phosphotyrosine antibodies 

Anti-phosphotyrosine antibodies are frequently used to enrich tyrosine-phosphorylated 
proteins (Figure 7A) for analyzing phosphotyrosine-based biological networks using mass 
spectrometry. These are some previous studies in which this methodology was successfully 
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applied for phosphotyrosine-related signaling networks in leukemia cells [39] and human 
HeLa cells [10]. Salomon et al. identified 64 phosphorylation sites on 32 distinct proteins in 
leukemia cells by treatment with STI571 (Gleevec) [39]. Blagoev et al. showed that 81 
signaling related molecules including 31 novel effectors were activated in response to 
epidermal growth factor (EGF) stimulation in a time-dependent manner [10]. These 
researches provided the key aspects of cellular regulation in each signaling context.          

 
Figure 7. Overview of the affinity status of phosphorylated molecules with A) anti-phosphotyrosine 
antibody, B) IMAC, C) Phos-Tag and D) TiO2 

4.2. IMAC 

Immobilized Metal Affinity Chromatography (IMAC) is based on the notion that phosphate 
groups can chelate with metal ions such as iron, zinc or gallium (Figure 7B). Stensballe et al. 
showed that some phosphopeptides could be unambiguously identified using only low-
picomole of samples by Fe(III)-IMAC technique [13]. This approach is also known to be 
suitable for identification of multiply phosphorylated peptides rather than singly modified 
ones. 

4.3. Phos-Tag 

Phos-Tag has a vacancy on two metal ions that is accessible for phosphomonoester dianion 
(Figure 7C). The peptides with phosphorylated serine, threonine and tyrosine residues can 
be all captured by the chemical structure [40,41].  

4.4. TiO2  

Titanium dioxide (TiO2)-based method is one of the most frequently used technique for 
phosphopeptide enrichment (Figure 7D) [15,16].  Olsen et al. detected 6,600 phosphorylation 
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sites on 2,244 proteins in human HeLa cells and showed that 14 % of the identified 
phosphorylation sites were altered by at least 2-fold in response to EGF stimulation [16]. The 
unbiased large-scale phosphoproteome data provided more extensive insights regarding 
phosphorylation-dependent cellular processes.   

5. Proteomics-driven computational analysis  

In recent years, several functional annotation and network analysis tools have been 
developed to understand cellular processes from a system-level point of view. Here we 
introduce two representative computational tools for analyzing large-scale proteome data. 
Database for Annotation, Visualization and Integrated Discovery (DAVID) [42] 
(http://david.abcc.ncifcrf.gov/home.jsp), which consists of an integrated biological 
knowledgebase and some analytical tools, enables extraction of the related information from 
the functional annotation databases (Figure 8). 
 

 
Figure 8. DAVID-based functional description of DNA replication (KEGG pathway). Red symbols 
indicate the molecules detected by the shotgun proteome analysis of glioblastoma stem cells [43]. 

Ingenuity Pathways Analysis (IPA) software (http://www.ingenuity.com) (Ingenuity 
Systems) is used to find networks in relation to experimental proteome data using the 
Ingenuity Knowledge Base derived from thousands of peer-reviewed journals (Figure 9). 
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Figure 9. Representative description using IPA software. A) Statistical classification of canonical 
pathways extracted from experimental data. B) Pathway analysis based on quantitative proteome data.  
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6. Proteomics-based description of cancer signaling networks   

6.1. Phosphoproteome dynamics in cancer cells 

Signal transduction systems regulated by tyrosine phosphorylation events are widely 
known to play a crucial role in fundamental biological processes such as cell proliferation, 
differentiation and migration. Thus, phosphoproteomics-based approaches have first been 
applied to reveal the molecular mechanisms governed by tyrosine phosphorylation in 
response to external growth factors such as EGF [10,11,44,45], fibroblast growth factor (FGF) 
[46] or heregulin (HRG) [47]. Schulze et al. identified interaction partners of the four 
members belonging to the ErbB receptor family (EGFR, ErbB2, ErbB3 and ErbB4) using the 
corresponding synthetic peptides as baits in an unbiased proteomic manner [45]. They 
revealed that most interaction partners to tyrosine residues were located at the C-terminal 
end outside the kinase domain of each ErbB family member. Hinsby et al. demonstrated that 
28 components were induced by basic fibroblast growth factor (bFGF) stimulation in FGFR-1 
expressing cells [46]. The effect of EGF stimulation on human epithelial carcinoma A431 
cells was also examined in a time-resolved manner [11] (Figure 10A). Among a total of 136 
proteins identified, 56 molecules were quantified by more than 1.5-fold changes upon EGF 
stimulation.  Moreover, the temporal perturbation effects of the Src-family kinase inhibitor, 
PP2, on the prolonged activation phase were also evaluated regarding various cellular 
proteins including Src-family kinase substrates. Consequently, the effect of PP2 on the 
molecules which belong to cell adhesion such as Catenin δ showed significant down-
regulation, whereas the impact on the factors related to classical cascades such as EGFR was 
modest (Figure 10B). IPA analysis was then performed to elucidate the PP2 effects on the 
EGF-induced A431 cells at the network level (Figure 11). These results clearly showed the 
differences in tyrosine-phosphorylation levels in the presence or absence of PP2. Thus, these 
data provide further insight into how such complex biological systems would function in 
response to external perturbation. 

By combining quantitative phosphoproteome and transcriptome data in silico, Oyama et al. 
performed a system-level analysis regarding cellular information networks in wild-type 
(WT) and tamoxifen-resistant (TamR) human breast adenocarcinoma MCF-7 cells in 
response to HRG and 17β-estradiol (E2) stimulation [47] (Figure 12). The integrative analysis of 
phosphoproteome and transcriptome in MCF-7 cells revealed that activation of glycogen-
synthase kinase 3β (GSK3β) and mitogen-activated protein kinase (MAPK) 1/3 signaling might 
be associated with altered activation of CREB and AP-1 transcription factors in TamR MCF-7 
cells, which potentially defines drug-resistance properties against tamoxifen (Figure 13).  

6.2. Large-scale proteomic characterization of cancer stem/initiating cells 

Cancer cells are widely known to be heterogeneous, even though they were derived from a 
single transformed cell [48]. Some of them show resistance to anti-cancer drugs and 
radiation therapies [49,50] and recent studies also demonstrated the existence of cancer stem 
cells (CSCs) in various types of cancer cells including leukemia [51], breast cancer [52], 
glioma [53,54] and colon cancer [55,56]. Moreover, it has been getting clear that CSCs have  
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Figure 10. Schematic procedures for identification and SILAC-based quantitation of tyrosine-
phosphoproteome in A431 cells [11]. A) The experimental procedure using three different SILAC media 
to describe tyrosine-phosphoproteome dynamics in response to EGF stimulation. B) Comparative 
analysis using two distinct SILAC media for evaluation of the perturbation effects by Src-family kinase 
inhibitor, PP2.  Green lines show EGF activation profiles ,whereas red ones indicate temporal 
perturbation effects by PP2.       
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Figure 11. Network analysis of the quantitative phosphoproteome data on A431 cells A) upon EGF 
stimulation and B) subsequently perturbed by PP2, respectively. Red and green nodes indicate up- and 
down-regulated signalling molecules, respectively. 
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Figure 12. A schematic procedure for identification and quantitation of large-scale phosphoproteome in 
ligand-stimulated MCF7 cells [47]. The phosphorylated molecules captured by anti-pTyr antibodies or 
Phos-tag agarose were analysed by nanoLC-MS/MS. 

the ability of treatment refractory [57-60] as well as biological properties similar to normal 
stem cells such as self-renewal and differentiation potency [61]. Recent studies also pointed 
out the possibility that CSCs were derived from normal stem cells and any non-CSCs might 
also convert to CSCs [62]. Therefore, comprehensive elucidation of signaling networks in 
CSCs is considered to be one of the most important steps in cancer research. Thus, we 
applied mass spectrometry-based shotgun proteomics technology to characterize protein 
expression profiles [43] and global phosphorylation-dependent signaling networks [63] in 
glioblastoma stem/initiating cells derived from brain tissues (Figure 14). 

In order to gain a comprehensive overview of protein expression in glioblastoma 
stem/initiating cells, we conducted a shotgun proteome analysis, leading to identification of 
2,089 proteins in total [43]. The DAVID-based pathway analysis showed the expressed 
proteome were enriched in ribosome (Figure 15), spliceosome and proteasome to a high 
degree. Thus, global protein expression analysis using advanced mass spectrometry offers 
novel viewpoints for characterization of key factors besides other methodologies such as 
fluorescence-activated cell sorting (FACS) and gene expression analyses.    

The global phosphoproteome analysis of these glioblastoma stem cells also enabled us to 
determine 6,073 phosphopeptides derived from 2,282 proteins using two fragmentation 
methodologies of collision induced dissociation and higher energy C-trap dissociation [63]. 
The IPA analysis of the phosphoproteome data unveiled a variety of canonical pathways 
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that have been reported to play a crucial role in cancer cells and normal stem cells (Figure 
16). Among them, mTOR signaling, which is known to play an important part in stem cell 
regulation [64,65], was found to be one of the most highly enriched pathways. Very 
interestingly, the phosphorylation status of EIF4EBP1 and RPS6, which enhance mRNA 
translation, were up-regulated by EGF stimulation (Figure 17). The analysis also led to 
identification of various novel phosphorylation sites on the molecules with stem cell-like 
and glioma properties such as nestin and vimentin [66]. More intriguingly, some novel 
phosphopeptides derived from undefined regions within the human transcript sequences 
were also determined from the large-scale phosphoproteome data and the phosphorylation 
status of the peptide encoded by supervillin-like (LOC645954) was found to be altered upon 
EGF stimulation (Figure 18). 

 
 
 
 

 
 
 
Figure 13. Integrative network analyses of quantitative phosphoproteome and transcriptome data 
obtained from MCF7 cells A) after HRG stimulation and B) after E2 stimulation. Red and green nodes 
indicate up- and down-regulated signaling molecules, respectively. 
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Figure 14. Schematic procedures for identification and quantitation of the expressed proteome and 
phosphoproteome in glioblastoma stem cells. The whole proteome and phosphoproteome were 
analysed by nanoLC-MS/MS. 

 
Figure 15. DAVID-based functional description of Ribosome pathway (KEGG pathway). Red symbols 
indicate the molecules detected in the proteomic analysis of glioblastoma stem cells [43]. 
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that have been reported to play a crucial role in cancer cells and normal stem cells (Figure 
16). Among them, mTOR signaling, which is known to play an important part in stem cell 
regulation [64,65], was found to be one of the most highly enriched pathways. Very 
interestingly, the phosphorylation status of EIF4EBP1 and RPS6, which enhance mRNA 
translation, were up-regulated by EGF stimulation (Figure 17). The analysis also led to 
identification of various novel phosphorylation sites on the molecules with stem cell-like 
and glioma properties such as nestin and vimentin [66]. More intriguingly, some novel 
phosphopeptides derived from undefined regions within the human transcript sequences 
were also determined from the large-scale phosphoproteome data and the phosphorylation 
status of the peptide encoded by supervillin-like (LOC645954) was found to be altered upon 
EGF stimulation (Figure 18). 
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Figure 16. Representative canonical pathways enriched in the phophoproteome of glioblastoma stem 
cells. Red and green bars indicate up- and down-regulation of phosphorylation levels in response to 
EGF stimulation, respectively. Orange dots denote –log(p-value) by Fisher’s Exact test, indicating the 
statistical significance of the molecules in each criterion. 

  
Figure 17. IPA-based network description of mTOR signaling extracted from the large-scale 
phosphoproteome data on glioblastoma stem cells. Red and green nodes indicate up- and down-
regulated signaling effectors in response to EGF stimulation, respectively.     
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Figure 18. Mass spectra of the novel phosphopeptide encoded by supervillin-like (LOC645954) in 
HeLa-derived cells and glioblastoma stem cells upon EGF stimulation [63]. 

7. Conclusion 

Advanced mass spectrometry-based proteomics has become a powerful tool for 
comprehensive understanding of signal transduction networks at the system level. In this 
chapter, we introduced recent proteomics technologies regarding relative quantitation and 
enrichment of phosphorylated proteins/peptides for large-scale description of signaling 
network dynamics. Utilizing these approaches, thousands of phosphorylation sites on 
diverse signaling-related molecules can now be identified in an unbiased fashion. 
Quantitative information on the effects of ligand stimulation and inhibitor perturbation also 
proved beneficial to understand the phosphorylation dynamics at the network level. 
Furthermore, extensive in silico analyses based on comprehensive proteome data enabled us 
to describe a system-level view of biological networks in a statistical manner. Consequently, 
mass-spectrometry-based proteomics will pave the way to evaluate molecular hubs in 
signaling systems and to develop novel targets for treatment of various diseases caused by 
signaling aberration [67,68].   
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1. Introduction 

Breast cancer is the most commonly diagnosed cancer in women worldwide and 
consequently has been extensively investigated in terms of histopathology, 
immunochemistry and familial history [1]. Fortunately, technological advances have 
enabled characterization of the molecular subtypes of breast cancer [2, 3] and this in turn has 
facilitated the development of molecularly targeted therapeutics for this disease.  

Profiling breast cancer with expression arrays has become common, and it has been 
suggested that the results from early studies will lead to understanding the molecular 
differences between clinical cases and allow individualization of care. Breast cancer may 
now be subclassified into luminal, basal, and ErbB2/HER2 subtypes with distinct differences 
in prognosis and response to therapy. These groups of tumors confirmed long-recognized 
clinical differences in phenotype, but added new knowledge regarding breast cancer 
biology. For example, the gene expression profiling revealed that within the estrogen 
receptor (ER)-positive tumors at least two subtypes, luminal A and luminal B, could be 
distinguished that vary markedly in gene expression and prognosis [3]. Conversely, 
hormone receptor–negative breast cancer comprised two distinct subtypes, the ErbB2 
subtype and the basal-like subtype [3, 4]. These subtypes differ in biology and behavior, and 
both show a poor outcome. Importantly a very similar classification of breast cancers has 
now been characterized using immunohistochemistry to analyze patterns of protein 
expression in tumor sections and suggesting that a few protein biomarkers can be used to 
stratify breast cancers into different groups that can be mapped to the subtypes outlined 
below [5-8]. 

Luminal breast cancers are the most common subtype of breast cancer. The luminal 
subtypes make up the hormone receptor–expressing breast cancers, and have expression 
patterns reminiscent of the luminal epithelial component of the breast [2]. These patterns 
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now be subclassified into luminal, basal, and ErbB2/HER2 subtypes with distinct differences 
in prognosis and response to therapy. These groups of tumors confirmed long-recognized 
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include expression of luminal cytokeratins 8/18, ER and genes associated with ER activation 
such as LIV1 and CCND1 (also known as cyclin D1) [2, 9]. Fewer than 20% of luminal 
tumors have mutations in TP53, and these tumors are often grade I [3, 9]. Within the luminal 
cluster there are at least two subtypes, luminal A and luminal B. Although both are 
hormone receptor expressing, these two luminal subtypes have distinguishing 
characteristics. Luminal A has, in general, higher expression of ER-related genes and lower 
expression of proliferative genes than luminal B [3, 4].  

The basal-like subtype of breast cancer was so named because the expression pattern of this 
subtype mimicked that of the basal epithelial cells of other parts of the body and normal 
breast myoepithelial cells [2]. These similarities include lack of expression of ER and related 
genes; low expression of ErbB2; strong expression of basal cytokeratins 5, 6, and 17; and 
expression of proliferation-related genes [2, 9]. Immunohistochemical profiling using tissue 
microarrays has identified that a group of tumors characterized by basal cytokeratin 
expression are also characterized by low expression of BRCA1 [10]. Basal-like tumors are 
more likely to have aggressive features such as TP53 mutations and a markedly higher 
likelihood of being grade III (P < 0.0001) than luminal A breast cancers (P < 0.0001) [3]. 

Finally, the other breast cancer subtype that has been identified is distinguished by 
amplification of the gene encoding the human epidermal growth factor receptor 2 
(ErbB2/HER2). The human ErbB/HER receptor family comprises four tyrosine kinase 

receptors (HER1/ErbB1, also termed the epidermal growth factor receptor (EGFR), 

HER2/ErbB2, HER3/ErbB3, and HER4/ErbB4) that play important roles in the progression of 
various types of cancers, including breast, prostate, and colon cancer [11]. Deregulation of 
ErbB receptor signaling leads to enhanced cell proliferation, migration, and malignant 
transformation. Overexpression, amplification, or mutation of the ERBB2 gene occurs in 
approximately 20–30% of invasive breast cancers, and is associated with disease progression, 
poor prognosis, increased risk of metastases and shorter overall survival [12]. 

ErbB2-mediated signal transduction is believed to depend largely on heterodimerization 
with EGFR or ErbB3, and these heterodimers activate a signaling program that drives cell 
proliferation, resistance to apoptosis, loss of polarity, and increased motility and 
invasiveness [13, 14]. Trastuzumab is a humanized monoclonal antibody targeted against 
the extracellular portion of ErbB2. This is the first ErbB2-targeted agent to be approved by 
the United States Food and Drug Administration (FDA) for the treatment of both early stage 
and metastatic ErbB2-overexpressing (ErbB2 positive) breast cancers [15, 16]. Subsequently, 
lapatinib, an orally bioavailable small molecule dual ErbB2- and EGFR/HER1-specific 
tyrosine kinase inhibitor (TKI), received FDA approval in combination with capecitabine for 
patients with advanced ErbB2 positive breast cancer [17]. 

Although ErbB2-targeted therapies have had a significant impact on patient outcomes, 
resistance to these agents is common. In clinical trials, 74% of patients with ErbB2 positive 
metastatic breast cancer did not have a tumor response to first-line trastuzumab 
monotherapy [18] and 50% did not respond to trastuzumab in combination with 
chemotherapy [15]. These examples illustrate the problem that inherent (de novo) resistance 
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to ErbB2-targeted agents poses for effective treatment of ErbB2 positive breast cancer. 
Moreover, only approximately one-quarter of patients with ErbB2 positive metastatic breast 
cancer who were previously treated with trastuzumab achieved a response with lapatinib 
plus capecitabine [17]. These limitations have led to efforts to better understand the 
underlying cellular networks that confer resistance to these agents in order to better select 
patients who are most likely to benefit from specific therapies and to develop new agents 
that can overcome resistance.  

The goal of this review is to give a concise overview of current approaches in the field of 
phosphoproteomics and to show how a combination of several approaches can be used to 
obtain a more comprehensive understanding of a given signaling pathway. A number of 
proteomic approaches have been developed over the years to identify aberrantly activated 
kinases and their downstream substrates. Most often, phosphorylation is used as a surrogate 
for monitoring kinase activity in cells. In the past, kinases and their activities were generally 
studied on an individual basis using biochemical approaches. However, technological 
advances in the recent past have led to development of several high-throughput strategies to 
study the phosphoproteome. High-throughput technologies for monitoring phosphorylation 
events include array-based technologies such as peptide arrays [19-21], antibody arrays [22] 
and mass spectrometry [23, 24]. Quantitative phosphoproteomic profiling allows researchers 
to investigate aberrantly activated signaling pathways and therapeutic targets in cancers. 
Finally, phosphoproteomic approaches can not only assist in determining the appropriate 
therapeutic targets but also elucidate mechanisms such as off-target effects resulting from 
binding of inhibitors to unintended kinases/non-kinase proteins. Here, we will discuss some 
of the popular approaches to characterize the kinome and the phosphoproteome along with 
illustrative examples where such approaches have been employed for global analysis of 
breast cancer. 

2. Challenges of phosphoproteomics 
Phosphoproteomic analysis is plagued by the same challenges facing all proteomic 
experiments: complexity, dynamic range, and temporal dynamics. The true complexity of 
the phosphoproteome has yet to be determined, but the Phosphosite database 
(http://www.phosphosite.org) now lists 30 000 phosphorylation sites on 17 000 proteins, and 
this number is steadily increasing as each large-scale phosphorylation analysis continues to 
identify a large number of novel sites. With so many of the proteins in the cell being 
phosphorylated, the dynamic range of the phosphoproteome is similar to that of the 
proteome (i.e., 1x109), but is further increased by substoichiometric modification. In 
addition, the temporal dynamics of protein phosphorylation regulate the rapid activation 
and deactivation of cellular signaling networks, further complicating analysis of the 
phosphoproteome. So the challenge is not simply to identify and catalog all of the 
phosphorylation sites, but rather to identify the site, quantify the stoichiometry, and 
monitor the temporal change in phosphorylation in response to a variety of cellular 
perturbations. Performing this task on a large number of phosphorylation sites across a 
broad swath of the signaling network is especially challenging, but is required to 
understand the mechanisms by which protein phosphorylation controls cell biology 
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to ErbB2-targeted agents poses for effective treatment of ErbB2 positive breast cancer. 
Moreover, only approximately one-quarter of patients with ErbB2 positive metastatic breast 
cancer who were previously treated with trastuzumab achieved a response with lapatinib 
plus capecitabine [17]. These limitations have led to efforts to better understand the 
underlying cellular networks that confer resistance to these agents in order to better select 
patients who are most likely to benefit from specific therapies and to develop new agents 
that can overcome resistance.  

The goal of this review is to give a concise overview of current approaches in the field of 
phosphoproteomics and to show how a combination of several approaches can be used to 
obtain a more comprehensive understanding of a given signaling pathway. A number of 
proteomic approaches have been developed over the years to identify aberrantly activated 
kinases and their downstream substrates. Most often, phosphorylation is used as a surrogate 
for monitoring kinase activity in cells. In the past, kinases and their activities were generally 
studied on an individual basis using biochemical approaches. However, technological 
advances in the recent past have led to development of several high-throughput strategies to 
study the phosphoproteome. High-throughput technologies for monitoring phosphorylation 
events include array-based technologies such as peptide arrays [19-21], antibody arrays [22] 
and mass spectrometry [23, 24]. Quantitative phosphoproteomic profiling allows researchers 
to investigate aberrantly activated signaling pathways and therapeutic targets in cancers. 
Finally, phosphoproteomic approaches can not only assist in determining the appropriate 
therapeutic targets but also elucidate mechanisms such as off-target effects resulting from 
binding of inhibitors to unintended kinases/non-kinase proteins. Here, we will discuss some 
of the popular approaches to characterize the kinome and the phosphoproteome along with 
illustrative examples where such approaches have been employed for global analysis of 
breast cancer. 

2. Challenges of phosphoproteomics 
Phosphoproteomic analysis is plagued by the same challenges facing all proteomic 
experiments: complexity, dynamic range, and temporal dynamics. The true complexity of 
the phosphoproteome has yet to be determined, but the Phosphosite database 
(http://www.phosphosite.org) now lists 30 000 phosphorylation sites on 17 000 proteins, and 
this number is steadily increasing as each large-scale phosphorylation analysis continues to 
identify a large number of novel sites. With so many of the proteins in the cell being 
phosphorylated, the dynamic range of the phosphoproteome is similar to that of the 
proteome (i.e., 1x109), but is further increased by substoichiometric modification. In 
addition, the temporal dynamics of protein phosphorylation regulate the rapid activation 
and deactivation of cellular signaling networks, further complicating analysis of the 
phosphoproteome. So the challenge is not simply to identify and catalog all of the 
phosphorylation sites, but rather to identify the site, quantify the stoichiometry, and 
monitor the temporal change in phosphorylation in response to a variety of cellular 
perturbations. Performing this task on a large number of phosphorylation sites across a 
broad swath of the signaling network is especially challenging, but is required to 
understand the mechanisms by which protein phosphorylation controls cell biology 
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3. Mass Spectometry (MS)-based approaches 

Currently, the most powerful tool to interrogate the phosphoproteome is enrichment for 
phosphopeptides followed by reverse-phase liquid chromatography combined with tandem 
mass spectrometry (LC-MS/MS). When sample preparation and instrumentation are chosen 
appropriately, thousands of phosphorylation sites can be identified (Figure 1). Some 
research groups have already taken advantage of these methodologies for identifying 
proteins that could be useful therapeutic targets or novel molecular markers in breast cancer 
specimens. Many of these analyses have focused in tyrosine phosphorylation profiles due to 
the fact that approximately half of the tyrosine kinase complement of the human kinome is 
implicated in human cancers [4], and provides important targets for cancer treatment, as 
well as biomarkers for patient stratification. Recently, Chen et al. adapted LC-MS/MS 
technology to assess the tyrosine phosphorylation profile in the MCF10AT model of breast 
cancer progression [25]. This study identified and validated seven proteins, termed SPAG9, 
CYFIP1, RPS2, TOLLIP, SLC4A7, WBP2, and NSFLC1, to be authentic tyrosine kinase 
substrates. In addition, SPAG9, WBP2, TOLLIP, and NSFL1C were demonstrated to be 
authentic tyrosine phosphorylation targets of EGFR signaling, and differential expression of 
TOLLIP and SLC4A7 was subsequently validated in clinical breast cancer samples. 
Consistent with the MCF10AT model, more than 30% of the human breast cancer samples 
analyzed in this study displayed reduced expression of SLC4A7 compared with normal 
tissues. In contrast, only 25% of the samples showed increased levels of TOLLIP when 
normal cells become cancerous.  Moreover detection of aberrant expression of TOLLIP and 
SLC4A7 in pre-neoplastic lesions suggests that they represent potential biomarkers that 
could complement mammography and histopathology for screening and early detection of 
breast cancer [25]. 

Most recently, a number of reports have demonstrated the importance of EGFR signaling in 
breast cancer [26-28]. Hochgrafe et al. characterized the tyrosine kinase signaling networks 
associated with different breast cancer subgroups [27]. By using this approach in a panel of 
15 different breast cancer cell lines, the authors identified 544 phosphotyrosine sites in 
peptide sequences derived form 295 non redundant proteins, interestingly, 31 of these are 
novel tyrosine phosphorylation sites. Upon unsupervised hierarchical clustering using data 
for all tyrosine phosphorylated proteins, the 15 cell lines were clustered into two groups 
previously characterized as “basal” or “luminal” by transcript profiling [29]. Increased 
phosphorylation of several tyrosine kinases (i.e. Met, Lyn/Hck, EphA2, EGFR, and FAK) 
was characteristic of basal lines. In contrast, IGF1R/INSR, ErbB2, and ACK1 exhibited 
increased phosphorylation in luminal breast cancer cells. For all of the differentially 
phosphorylated kinases, increased phosphorylation was detected on sites that positively 
regulate kinase activity and downstream signaling. For example, Met Y1234, Lyn Y397, and 
FAK Y577 are activation loop sites [30], and phosphorylation of Y588 and Y594 in the 
juxtamembrane region of EphA2 is required for kinase activity [31]. In the case of EGFR and 
ErbB2, differential phosphorylation was predominantly on sites in the COOH-terminal tail 
that promote activation of the Ras/Raf/MEK/ERK pathway [32, 33]. A deeper analysis of the 
tyrosine phosphoproteome revealed a signature that characterizes the basal phenotype, and 
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identified a prominent Src family kinase (SFK) signaling network in basal breast cancer cells 
that extends not only downstream to canonical SFK substrates regulating cell adhesion and 
migration but also upstream to specific RTKs such as EGFR, ErbB2 and Met among others. 
Subsequent functional analyses determined that SFKs transmit pro-proliferative, pro-
survival and pro-mitogenic signals in these cells, and that Lyn is an important regulator of 
cell invasion. In addition, SFKs promoted tyrosine phosphorylation of specific RTKs in these 
cells, and this may attenuate cellular sensitivity to therapies directed against these receptors. 
Consequently, these findings provide important insights into the biology of basal breast 
cancers and have significant implications for the development of therapeutic strategies that 
target this subtype of breast cancer [27].  

A very elegant study performed by Zhang et al. analyzed the EGF induced protein 
phosphorylation events in the Human Mammary Epithelial Cell (HMMC) 184A1 [26]. In this 
report, a time course phosphorylation profile of 78 tyrosine phosphorylation sites on 58 
proteins was generated. For each phosphorylation site, a quantitative temporal 
phosphorylation profile was generated by comparing the relative ratios of peak areas for the 
iTRAQ marker ions in the MS/MS spectrum. Of the 58 proteins identified in this analysis, 52 
have been already associated with the EGFR signaling network, whereas the other six 
proteins have not been previously identified in either proteomic or biochemical analyses of 
EGFR signaling.  Contained in this group are phosphorylation sites on hypothetical protein 
FLJ00269, hypothetical protein FLJ21610, target of myb1-like 2 protein, and chromosome 3 
open reading frame 6. In addition to the six proteins that had not been previously 
characterized in the EGFR signaling network, the authors also identified several novel 
phosphorylation sites on proteins known to be in the network. The bioinformatic analysis of 
the data generated by this method self-organize into clusters of phosphorylation sites that 
correlate with well known signaling nodes reported in the literature (i.e. the 
Ras/Raf/MEK/ERK and PI3K/AKT signaling pathways). In a related study, the same 
research group analyzed the EGF- and heregulin (HRG)-induced protein phosphorylation 
events that control cell migration and proliferation in the context of ErbB2 overexpression in 
HMMCs [34]. As a result of these analyses, 332 phosphorylated peptides from 175 proteins 
were identified, including 289 singly (tyrosine) phosphorylated peptides, 42 doubly 
phosphorylated peptides (21 tyrosine/tyrosine, 18 serine/tyrosine, and three 
threonine/tyrosine), and one triply phosphorylated peptide (tyrosine/tyrosine/tyrosine). A 
total of 20 phosphorylation sites were identified on EGFR, ErbB2, and ErbB3, including nine 
tyrosine and two serine sites on EGFR, eight tyrosine phosphorylation sites on ErbB2, and 
one tyrosine phosphorylation site on ErbB3. Of the 20 phosphorylation sites on EGFR family 
members, Y1114 on EGFR and Y1005 and Y1127 on ErbB2 represent novel sites that have not 
been previously described in the literature. To correlate signals with cell response, the 
authors also quantified proliferation and migration rates for these same cell states and 
stimulation conditions. Phenotypically, ErbB2 overexpression promoted increased cell 
migration, but had minimal effect on cell proliferation. More specifically, EGF stimulation of 
ErbB2-overexpressing cells promoted migration by the phosphorylation of proteins from 
multiple pathways (e.g., PI3K, MAPK, catenins, and FAK), whereas HRG stimulation of 
ErbB2-overexpressing cells activated only a very specific subset of proteins in the canonical 
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substrates. In addition, SPAG9, WBP2, TOLLIP, and NSFL1C were demonstrated to be 
authentic tyrosine phosphorylation targets of EGFR signaling, and differential expression of 
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analyzed in this study displayed reduced expression of SLC4A7 compared with normal 
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normal cells become cancerous.  Moreover detection of aberrant expression of TOLLIP and 
SLC4A7 in pre-neoplastic lesions suggests that they represent potential biomarkers that 
could complement mammography and histopathology for screening and early detection of 
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Most recently, a number of reports have demonstrated the importance of EGFR signaling in 
breast cancer [26-28]. Hochgrafe et al. characterized the tyrosine kinase signaling networks 
associated with different breast cancer subgroups [27]. By using this approach in a panel of 
15 different breast cancer cell lines, the authors identified 544 phosphotyrosine sites in 
peptide sequences derived form 295 non redundant proteins, interestingly, 31 of these are 
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for all tyrosine phosphorylated proteins, the 15 cell lines were clustered into two groups 
previously characterized as “basal” or “luminal” by transcript profiling [29]. Increased 
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was characteristic of basal lines. In contrast, IGF1R/INSR, ErbB2, and ACK1 exhibited 
increased phosphorylation in luminal breast cancer cells. For all of the differentially 
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regulate kinase activity and downstream signaling. For example, Met Y1234, Lyn Y397, and 
FAK Y577 are activation loop sites [30], and phosphorylation of Y588 and Y594 in the 
juxtamembrane region of EphA2 is required for kinase activity [31]. In the case of EGFR and 
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that promote activation of the Ras/Raf/MEK/ERK pathway [32, 33]. A deeper analysis of the 
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identified a prominent Src family kinase (SFK) signaling network in basal breast cancer cells 
that extends not only downstream to canonical SFK substrates regulating cell adhesion and 
migration but also upstream to specific RTKs such as EGFR, ErbB2 and Met among others. 
Subsequent functional analyses determined that SFKs transmit pro-proliferative, pro-
survival and pro-mitogenic signals in these cells, and that Lyn is an important regulator of 
cell invasion. In addition, SFKs promoted tyrosine phosphorylation of specific RTKs in these 
cells, and this may attenuate cellular sensitivity to therapies directed against these receptors. 
Consequently, these findings provide important insights into the biology of basal breast 
cancers and have significant implications for the development of therapeutic strategies that 
target this subtype of breast cancer [27].  

A very elegant study performed by Zhang et al. analyzed the EGF induced protein 
phosphorylation events in the Human Mammary Epithelial Cell (HMMC) 184A1 [26]. In this 
report, a time course phosphorylation profile of 78 tyrosine phosphorylation sites on 58 
proteins was generated. For each phosphorylation site, a quantitative temporal 
phosphorylation profile was generated by comparing the relative ratios of peak areas for the 
iTRAQ marker ions in the MS/MS spectrum. Of the 58 proteins identified in this analysis, 52 
have been already associated with the EGFR signaling network, whereas the other six 
proteins have not been previously identified in either proteomic or biochemical analyses of 
EGFR signaling.  Contained in this group are phosphorylation sites on hypothetical protein 
FLJ00269, hypothetical protein FLJ21610, target of myb1-like 2 protein, and chromosome 3 
open reading frame 6. In addition to the six proteins that had not been previously 
characterized in the EGFR signaling network, the authors also identified several novel 
phosphorylation sites on proteins known to be in the network. The bioinformatic analysis of 
the data generated by this method self-organize into clusters of phosphorylation sites that 
correlate with well known signaling nodes reported in the literature (i.e. the 
Ras/Raf/MEK/ERK and PI3K/AKT signaling pathways). In a related study, the same 
research group analyzed the EGF- and heregulin (HRG)-induced protein phosphorylation 
events that control cell migration and proliferation in the context of ErbB2 overexpression in 
HMMCs [34]. As a result of these analyses, 332 phosphorylated peptides from 175 proteins 
were identified, including 289 singly (tyrosine) phosphorylated peptides, 42 doubly 
phosphorylated peptides (21 tyrosine/tyrosine, 18 serine/tyrosine, and three 
threonine/tyrosine), and one triply phosphorylated peptide (tyrosine/tyrosine/tyrosine). A 
total of 20 phosphorylation sites were identified on EGFR, ErbB2, and ErbB3, including nine 
tyrosine and two serine sites on EGFR, eight tyrosine phosphorylation sites on ErbB2, and 
one tyrosine phosphorylation site on ErbB3. Of the 20 phosphorylation sites on EGFR family 
members, Y1114 on EGFR and Y1005 and Y1127 on ErbB2 represent novel sites that have not 
been previously described in the literature. To correlate signals with cell response, the 
authors also quantified proliferation and migration rates for these same cell states and 
stimulation conditions. Phenotypically, ErbB2 overexpression promoted increased cell 
migration, but had minimal effect on cell proliferation. More specifically, EGF stimulation of 
ErbB2-overexpressing cells promoted migration by the phosphorylation of proteins from 
multiple pathways (e.g., PI3K, MAPK, catenins, and FAK), whereas HRG stimulation of 
ErbB2-overexpressing cells activated only a very specific subset of proteins in the canonical 
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migration pathway, in particular FAK, Src, paxillin, and p130Cas. In contrast, proliferation 
was primarily driven by EGF stimulation, and was not affected by ErbB2 expression levels 
[34]. Finally, Kumar et al. significantly extend their previous analysis of ErbB2-mediated 
signaling and cell function by using a model that predicts ErbB2 effects on HMMCs 
behavior by using MS phosphotyrosine data sets [28]. The results of this research showed 
that ErbB2 overexpression in the presence of EGF, as discussed above, produced interesting 
signal network changes and increased cell migration but did not affect cell proliferation [34]. 
These findings both highlight previously identified elements in the ErbB2 signaling 
network, and suggest new pathways and targets critically implicated in ErbB2-mediated 
signaling and its effect on migration and proliferation. 

Although MS has proven to be an extraordinary tool for protein characterization, 
measurement of peptide intensities alone does not immediately provide quantitative 
information. There are several approaches to overcome this problem. Stable isotopes are 
incorporated either by metabolic labeling, as in the SILAC (stable isotope labeling with 
amino acids in cell culture) method, or by chemical derivatization (Figure 1) [35].  SILAC 
relies on metabolic incorporation of an isotopically labeled amino acid. Two groups of cells 
are grown in culture media that are identical except in one respect: the first media contains 
the ‘‘light’’ and the other a ‘‘heavy’’ form of a particular amino acid (for e.g. L-leucine or 
deuterated L-leucine). Through the use of special cell culture medium lacking the modified 
amino acids, the cells are forced to use the particular labeled or unlabeled form of the amino 
acid previously added to the medium. In each cell doubling, the cell population replaces at 
least half of the original form of the amino acid, eventually incorporating 100% of a given 
light or heavy form of the amino acid. A variety of amino acids are suitable in SILAC, 
including arginine, leucine, lysine, serine, methionine and tyrosine. The different cell line 
conditioned media can then be combined and run together in a single MS run. The 
advantages of SILAC include the fact that the labeling process is highly efficient, it does not 
require additional purifications to remove excess labeling reagent, nor does it involve multi-
step labeling protocols and the sample preparation bias introduced by the comparison of 
two separate preparation steps is avoided. As well, SILAC allows the experimenter to use 
any method of protein or peptide purification (after enzymatic digestion) without 
introducing error into the final quantitative analysis. In one study, SILAC was utilized to 
examine differential membrane expression between normal and malignant breast cancer 
cells [36]. Approximately 1,000 proteins were identified with more than 800 of these proteins 
being classified as membrane or membrane-associated. Although the majority of the 
proteins remained unchanged when compared with the corresponding normal cells, a 
number of proteins were found upregulated or down-regulated by greater than 3-fold. 

A few years ago, Bose et al. described a quantitative proteomic analysis to study ErbB2 
signaling by using SILAC in 3T3 cells ectopically expressing ErbB2 [37]. By using this 
methodology, the authors identified a panel of 198 proteins that displayed increased 
phosphorylation levels and a group of 81 proteins that showed decreased phosphorylation 
levels merely by ErbB2 overexpression. The list of proteins that showed high 
phosphorylation levels included several well known ErbB2 downstream effectors and 
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modulators of pro-survival, anti-apoptotic and proliferative pathways, such as PLCγ1, the 
regulatory and catalytic subunits of PI3K (p85β, p85α, and p110β), the Src family member 
Fyn, RasGAP, and HSP90. Importantly, several known EGFR signaling proteins, which had 
not been previously implicated in ErbB2 signaling, were also identified, including Stat1, 
Dok1, and δ-catenin. The 81 proteins that displayed decreased phosphorylation levels in 
3T3-ErbB2 cells included FAK, p130-Cas/BCAR1, and caveolin 1 among others.  In this 
study, the effect of the EGFR and ErbB2 selective tyrosine kinase inhibitor (TKI), PD168393, 
was also quantified, the results showed that 83 of the 198 proteins that displayed increased 
phosphorylation when ErbB2 was overexpressed were inhibited by 100 nM of PD168393 
(>1.5-fold), and 27 proteins showed a smaller degree of inhibition (1.3- to 1.5-fold), 
suggesting that 110 of these 198 proteins are affected by this TKI. Under these conditions, 79 
proteins were not affected by PD168393, including Fyn and three subunits of PI3K. This 
observation raises the question of whether different arms of the ErbB2 signaling pathway 
have differential inhibitor sensitivity. To validate the relevance of these proteins to ErbB2 
signaling in a more realistic setting, the authors used the ErbB2 positive breast cancer cell 
line BT-474. As expected, PD168393 also inhibited the phosphorylation of PLCγ1 and Stat1 
in BT-474 cells, supporting the idea that phosphoproteins identified by performing SILAC 
on 3T3-ErbB2 cells may be applicable to other ErbB2-overexpressing cell lines. 

Although SILAC has proven to be a very powerful method to dissect signaling in tumor cell 
lines, metabolic labeling has a major limitation. Whereas proteins in cultured cells can be 
readily labeled, those in living organisms cannot. Approaches have been developed to 
metabolically label worms, flies [38] and even mice [39] and rats [40], but human tissues 
have to this day remained 'unlabelable'. When applying proteomics to tumor biology, it is 
imperative to quantify a representative number of proteins, to obtain reproducible results 
and to study cancer-relevant proteins of low abundance. Ishihama et al. have tried to solve 
this problem by adding labeled cultured cells to the tissue samples [41]. However the 
comparison of a single cell line with a whole tissue context has several limitations. More 
recently, Geiger et al. mixed labeled protein lysates from several previously established 
cancer-derived cell lines, which together are more representative of the full complexity of a 
tissue proteome than a single cell line, thereby increasing accuracy [42]. Initially, they 
SILAC-labeled the breast cancer cell line HCC1599 and mixed the lysate with the lysate of 
mammary carcinoma tissue from an individual with grade II lobular carcinoma. Although 
they were able to quantify 4,438 proteins at least once in triplicate analysis, the ratio 
distribution was broad and bimodal, containing 755 proteins with more than fourfold higher 
expression in the tumor compared to the cell line. Next, they selected four breast cancer cell 
lines differing in origin, stage, ER and ErbB2 expression; and this superset of SILAC-labeled 
cell lines that more accurately representing the tissue was used for further analysis. The 
comparison of the tumor proteome with this “super-SILAC” mix, drastically improved the 
quantification accuracy. The distribution was unimodal and 90% of quantified proteins were 
within a fourfold ratio between the tumor and the super-SILAC mix (3,837 of 4,286 
quantified protein groups). Furthermore, the quantitative distribution was much narrower, 
with 76% of the proteins in the carcinoma and the super-SILAC mix differing by only 
twofold or less. Although super-SILAC has not been used to analyze the tumor 
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modulators of pro-survival, anti-apoptotic and proliferative pathways, such as PLCγ1, the 
regulatory and catalytic subunits of PI3K (p85β, p85α, and p110β), the Src family member 
Fyn, RasGAP, and HSP90. Importantly, several known EGFR signaling proteins, which had 
not been previously implicated in ErbB2 signaling, were also identified, including Stat1, 
Dok1, and δ-catenin. The 81 proteins that displayed decreased phosphorylation levels in 
3T3-ErbB2 cells included FAK, p130-Cas/BCAR1, and caveolin 1 among others.  In this 
study, the effect of the EGFR and ErbB2 selective tyrosine kinase inhibitor (TKI), PD168393, 
was also quantified, the results showed that 83 of the 198 proteins that displayed increased 
phosphorylation when ErbB2 was overexpressed were inhibited by 100 nM of PD168393 
(>1.5-fold), and 27 proteins showed a smaller degree of inhibition (1.3- to 1.5-fold), 
suggesting that 110 of these 198 proteins are affected by this TKI. Under these conditions, 79 
proteins were not affected by PD168393, including Fyn and three subunits of PI3K. This 
observation raises the question of whether different arms of the ErbB2 signaling pathway 
have differential inhibitor sensitivity. To validate the relevance of these proteins to ErbB2 
signaling in a more realistic setting, the authors used the ErbB2 positive breast cancer cell 
line BT-474. As expected, PD168393 also inhibited the phosphorylation of PLCγ1 and Stat1 
in BT-474 cells, supporting the idea that phosphoproteins identified by performing SILAC 
on 3T3-ErbB2 cells may be applicable to other ErbB2-overexpressing cell lines. 

Although SILAC has proven to be a very powerful method to dissect signaling in tumor cell 
lines, metabolic labeling has a major limitation. Whereas proteins in cultured cells can be 
readily labeled, those in living organisms cannot. Approaches have been developed to 
metabolically label worms, flies [38] and even mice [39] and rats [40], but human tissues 
have to this day remained 'unlabelable'. When applying proteomics to tumor biology, it is 
imperative to quantify a representative number of proteins, to obtain reproducible results 
and to study cancer-relevant proteins of low abundance. Ishihama et al. have tried to solve 
this problem by adding labeled cultured cells to the tissue samples [41]. However the 
comparison of a single cell line with a whole tissue context has several limitations. More 
recently, Geiger et al. mixed labeled protein lysates from several previously established 
cancer-derived cell lines, which together are more representative of the full complexity of a 
tissue proteome than a single cell line, thereby increasing accuracy [42]. Initially, they 
SILAC-labeled the breast cancer cell line HCC1599 and mixed the lysate with the lysate of 
mammary carcinoma tissue from an individual with grade II lobular carcinoma. Although 
they were able to quantify 4,438 proteins at least once in triplicate analysis, the ratio 
distribution was broad and bimodal, containing 755 proteins with more than fourfold higher 
expression in the tumor compared to the cell line. Next, they selected four breast cancer cell 
lines differing in origin, stage, ER and ErbB2 expression; and this superset of SILAC-labeled 
cell lines that more accurately representing the tissue was used for further analysis. The 
comparison of the tumor proteome with this “super-SILAC” mix, drastically improved the 
quantification accuracy. The distribution was unimodal and 90% of quantified proteins were 
within a fourfold ratio between the tumor and the super-SILAC mix (3,837 of 4,286 
quantified protein groups). Furthermore, the quantitative distribution was much narrower, 
with 76% of the proteins in the carcinoma and the super-SILAC mix differing by only 
twofold or less. Although super-SILAC has not been used to analyze the tumor 
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phosphoproteome yet, the results of this research accurately quantified more than a 
hundred protein kinases despite their low abundance. Among them were ErbB2, EGFR, 
AKT, Pak1 and Pak2 and nine members of the MAPK cascade, all representing pathways 
central to malignancy. At first view, this new method has great potential to expand the use 
of accurate relative proteomic quantitation methods to study molecular aspects of tumor 
biology and perhaps as a tool for candidate biomarker discovery, so it is conceivable that it 
will likely become a valuable tool for understanding the molecular and mechanistic aspects 
of phosphorylation in tumor samples.  

As described above, quantitative MS-based phosphoproteomics has been applied to identify 
oncogenic kinases which may serve as potential drug targets. To validate this hypothesis, 
cells are often treated with selected kinase inhibitors with the goal of altering cellular 
phenotype, but it is often difficult to establish whether the effect was due to on or off-target 
effects of the compound. In order to determine the mechanism of action, it may be necessary 
to quantify the specificity of the inhibitor. Two groups have pioneered the use of 
immobilized kinase inhibitors with broad specicity to enrich a substantial subset of protein 
kinases from total cell lysates followed by quantitative mass spectrometry. Daub et al. 
developed a kinase inhibitor pull-down technique in combination with phosphoproteomics 
to map and quantify more than one thousand phosphorylation sites on human protein 
kinases arrested in S- and M-phase of the cell cycle [43]. Researchers at Cellzome employed 
KinobeadsTM to enrich protein kinases and then performed competition-based assays using 
specic kinase inhibitor drugs such as imatinib (Gleevec), dasatinib (Sprycel) and bosutinib 
in BCR-Abl positive K562 cells [44]. Recently, Zhang et al. modified this approach in order 
to develop more potent inhibitors of the kinase AXL, which has an important role in 
mediating breast cancer cell motility and invasivity [45]. In this study, the authors used a 
chemical library of kinase inhibitors in order to identify small molecular inhibitors with 
selective activity on the AXL tyrosine kinase, the chemical compound NA80x1which has 
previously been reported to have inhibitory activity against Src kinase [46], inhibited AXL 
kinase activity in a dose-dependent manner, with an IC50 of 12.67 ± 0.45 μmol/L. Then, 
NA80x1 and a structurally similar, but much more potent inhibitor of Src and Abl kinases 
termed SKI-606, were chemically modified and attached to an affinity purification resin. To 
identify the specific targets (and some other off-targets) of these inhibitor derivatives, SILAC 
labeled proteins from the breast cancer cell line Hs578T were used for in vitro association 
experiments with the immobilized chemical compounds. The protein eluates from the 
respective affinity purifications were mixed and digested, and the resulting peptide 
fractions were analyzed by MS. In total, 146 different proteins were identified with at least 
two unique peptides in the MS experiments. Among them, 43 proteins were found to 
specifically bind to the immobilized compounds and 32 were kinases. In addition to known 
targets such as Src/Abl family kinases Src, Lyn, Arg, and the RTK AXL, which was 
functionally characterized as a cellular target in this study, a variety of other inhibitor-
interacting proteins were identified, including eight more tyrosine kinases (such as FAK and 
four Eph receptor kinase family members) as well as nine members from the STE group of 
kinases involved in mitogen-activated protein kinase (MAPK) signaling (including six 
MAP4K/STE20 kinase family members and two MAP2K family members). This study is a 
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clear example of how MS can help to identify off-targets of small molecular kinase inhibitors 
in order to develop more specific and potent chemicals for cancer therapies.   

 
Figure 1. Mass Spectometry based approaches. The upper panel shows the pipelines of a prototypical 
proteomics experiment. Proteins are extracted from a biopsy or tumor sample and digested with trypsin 
to obtain peptides. The resulting peptides are resolved by reverse phase liquid chromatography (LC) 
and subsequently, analyzed by tandem mass spectrometry (MS/MS). Finally, the matched peptides 
allow the identification of the proteins using databases. The lower panel shows the schematic outline of 
the SILAC method. Separate cultures of cells are grown in normal medium (12C6-arginine) or in 
medium containing arginine labeled at all six carbons with 13C (13C6-arginine). The cells in normal 
medium are left unstimulated whereas cells in the 13C-arginine medium are stimulated with an agent 
that activates signaling. The cells are harvested and equal amounts of lysate protein mixed together. In 
most cases, steps to enrich phosphoproteins and/or phosphopeptides after trypsin digestion are needed 
to detect low-abundance phosphopeptides. The peptides are resolved by LC-MS/MS and the data are 
used for automated database searching to identify peptides (and their corresponding protein) and to 
detect phosphopeptides. 
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Phosphoproteomics for the Mapping of Altered Cell Signaling Networks in Breast Cancer 215 

clear example of how MS can help to identify off-targets of small molecular kinase inhibitors 
in order to develop more specific and potent chemicals for cancer therapies.   

 
Figure 1. Mass Spectometry based approaches. The upper panel shows the pipelines of a prototypical 
proteomics experiment. Proteins are extracted from a biopsy or tumor sample and digested with trypsin 
to obtain peptides. The resulting peptides are resolved by reverse phase liquid chromatography (LC) 
and subsequently, analyzed by tandem mass spectrometry (MS/MS). Finally, the matched peptides 
allow the identification of the proteins using databases. The lower panel shows the schematic outline of 
the SILAC method. Separate cultures of cells are grown in normal medium (12C6-arginine) or in 
medium containing arginine labeled at all six carbons with 13C (13C6-arginine). The cells in normal 
medium are left unstimulated whereas cells in the 13C-arginine medium are stimulated with an agent 
that activates signaling. The cells are harvested and equal amounts of lysate protein mixed together. In 
most cases, steps to enrich phosphoproteins and/or phosphopeptides after trypsin digestion are needed 
to detect low-abundance phosphopeptides. The peptides are resolved by LC-MS/MS and the data are 
used for automated database searching to identify peptides (and their corresponding protein) and to 
detect phosphopeptides. 



Oncogenomics and Cancer Proteomics –  
Novel Approaches in Biomarkers Discovery and Therapeutic Targets in Cancer 216 

4. Protein microarray approaches (non-MS) 

To monitor previously identified phosphorylation sites, the combination of phosphospecific 
antibodies and western blotting has been the gold standard. However, until recently the 
limited throughput of this approach, with only one phosphorylation site investigated at a 
time, has driven the development of other, high-throughput approaches.  

Arrays using phosphospecific antibodies to investigate phosphorylation sites have been 
developed [47, 48] and used to interrogate dozens of phosphorylation sites simultaneously 
[49]. As this technology requires antibodies with high-affinity and specificity, currently only 
a limited number of phosphorylation sites can be analyzed [50]. However, further 
development might lead to an even broader application of microarray technology for 
phosphoprotein studies. 

Protein microarray formats can be divided into two major classes: forward phase arrays and 
reverse phase arrays (Figure 2) [51]. In a forward phase array, each spot contains one type of 
immobilized capture molecule, usually an antibody. Each array is incubated with one test  

 
Figure 2. Protein microarray platforms. Forward phase arrays (top) immobilize a bait molecule such as 
an antibody designed to capture specific biotynilated proteins representing a specific treatment or 
condition. In this specific case, the bound analytes are detected by fluorescently labeled biotin. Reverse 
phase arrays immobilize the test sample analytes on the solid phase. An analyte specific labeled ligand 
(e.g., antibody; lower left) is applied in solution phase. Bound antibodies are detected by signal 
amplification (lower right). 
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sample such as a cellular lysate or serum sample representing a specific treatment condition, 
and multiple analytes from that sample are measured simultaneously. In contrast, the 
reverse phase array format immobilizes an individual test sample in each array spot, in a 
way that this array is comprised of hundreds of different patient samples or cellular lysates. 
In the reverse phase array format, each array is incubated with one detection protein (e.g., 
antibody), and a single analyte endpoint is measured and directly compared across multiple 
samples [47, 51-55].  

5. Forward phase protein arrays 

The most popular class of forward phase protein arrays in cancer research is the antibody 
array. A common application of antibody arrays is the identification of biomarkers or 
molecules that are potentially valuable for diagnosis or prognosis or as surrogate markers of 
drug response. The multiplex capability of antibody arrays allows the efficient screening of 
many marker candidates to reveal associations between proteins and disease states or 
experimental conditions. Multiplexed measurements also allow the evaluation of the use of 
multiple markers in combination. The use of combinations of proteins for disease 
diagnostics may produce fewer false positive and false negative results as compared with 
tests based on single proteins. Antibody microarrays, by increasing the number of proteins 
that can be conveniently measured in clinical samples, could more significantly take 
advantage of the benefit of using combined markers in diagnostics. Other example 
applications of antibody microarrays in cancer research are to evaluate the coordinated 
changes of members of signaling pathways or to measure changes in expression levels of a 
class of proteins, such as angiogenesis factors. 

Only a few studies using antibody arrays for breast cancer research have been reported. One 
of the first studies was performed by Hudelist et al., who employed a high-throughput 
protein microarray system which contains 378 well characterized monoclonal antibodies 
printed at high density on a glass slide in duplicate in order to compare the gene expression 
pattern of malignant and adjacent normal breast tissue in a patient with primary breast 
cancer [56]. Using this technique, the authors identified a number of proteins that show 
increased expression levels in malignant breast tissues such as casein kinase Iε, p53, annexin 
XI, CDC25C, eIF-4E and MAP kinase 7. The expression of other proteins, such as the 
multifunctional regulator 14-3-3e was found to be decreased in malignant breast tissue, 
whereas the majority of proteins remained unchanged when compared to the corresponding 
non-malignant samples. Moreover, the protein expression pattern was corroborated by 
immunohistochemistry, in which antibodies against 8 representative proteins known to be 
involved in carcinogenesis were employed in paraffin-embedded normal and malignant 
tissue sections deriving from the same patient. In each case, the results obtained by IHC 
matched the data obtained by antibody microarray system.  In another report [57], 224 
antibodies revealed proteins that are related to doxorubicin therapy resistance in breast 
cancer cell lines. A decrease in the expression of MAP kinase-activated 
monophosphotyrosine, cyclin D2, cytokeratin 18, cyclin B1 and heterogeneous nuclear 
ribonucleoprotein m3-m4 was found to be associated with doxorubicin resistance. Other 
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sample such as a cellular lysate or serum sample representing a specific treatment condition, 
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way that this array is comprised of hundreds of different patient samples or cellular lysates. 
In the reverse phase array format, each array is incubated with one detection protein (e.g., 
antibody), and a single analyte endpoint is measured and directly compared across multiple 
samples [47, 51-55].  

5. Forward phase protein arrays 

The most popular class of forward phase protein arrays in cancer research is the antibody 
array. A common application of antibody arrays is the identification of biomarkers or 
molecules that are potentially valuable for diagnosis or prognosis or as surrogate markers of 
drug response. The multiplex capability of antibody arrays allows the efficient screening of 
many marker candidates to reveal associations between proteins and disease states or 
experimental conditions. Multiplexed measurements also allow the evaluation of the use of 
multiple markers in combination. The use of combinations of proteins for disease 
diagnostics may produce fewer false positive and false negative results as compared with 
tests based on single proteins. Antibody microarrays, by increasing the number of proteins 
that can be conveniently measured in clinical samples, could more significantly take 
advantage of the benefit of using combined markers in diagnostics. Other example 
applications of antibody microarrays in cancer research are to evaluate the coordinated 
changes of members of signaling pathways or to measure changes in expression levels of a 
class of proteins, such as angiogenesis factors. 

Only a few studies using antibody arrays for breast cancer research have been reported. One 
of the first studies was performed by Hudelist et al., who employed a high-throughput 
protein microarray system which contains 378 well characterized monoclonal antibodies 
printed at high density on a glass slide in duplicate in order to compare the gene expression 
pattern of malignant and adjacent normal breast tissue in a patient with primary breast 
cancer [56]. Using this technique, the authors identified a number of proteins that show 
increased expression levels in malignant breast tissues such as casein kinase Iε, p53, annexin 
XI, CDC25C, eIF-4E and MAP kinase 7. The expression of other proteins, such as the 
multifunctional regulator 14-3-3e was found to be decreased in malignant breast tissue, 
whereas the majority of proteins remained unchanged when compared to the corresponding 
non-malignant samples. Moreover, the protein expression pattern was corroborated by 
immunohistochemistry, in which antibodies against 8 representative proteins known to be 
involved in carcinogenesis were employed in paraffin-embedded normal and malignant 
tissue sections deriving from the same patient. In each case, the results obtained by IHC 
matched the data obtained by antibody microarray system.  In another report [57], 224 
antibodies revealed proteins that are related to doxorubicin therapy resistance in breast 
cancer cell lines. A decrease in the expression of MAP kinase-activated 
monophosphotyrosine, cyclin D2, cytokeratin 18, cyclin B1 and heterogeneous nuclear 
ribonucleoprotein m3-m4 was found to be associated with doxorubicin resistance. Other 
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recent investigations helped identify a marker involved in invasion (interleukin (IL)-8) [58]. 
Studying the serum proteome from metastatic breast cancer patients and healthy controls 
with recombinant single-chain variable fragment (scFv) microarrays [59], breast cancer was 
identified with a specificity and sensitivity of 85% on the basis of 129 serum analytes. 

Although a number of companies have already developed phospho-antibody arrays for 
breast cancer research, there are only a few reports of the use of this technology in breast 
cancer. In 2008, Eckestein et al. [60], studied the cellular mechanisms of resistance to 
cisplatin using MCF-7 cells as a model system.  Cisplatin-resistant MCF-7 breast cancer cells 
were selected by exposure to sequential cycles of cisplatin that mimic the way the drug is 
used in the clinic. To investigate the phosphorylation status of the EGFR receptor family, a 
phosphoreceptor tyrosine kinase (phospho-RTK) array was used. In this assay, monoclonal 
capture antibodies, specific for a variety of RTKs, were spotted in an array format, and 
phosphorylation of EGFR family members was subsequently detected by a pan anti-
phosphotyrosine antibody conjugated to horseradish peroxidase. In nonresistant cells the 
EGFR was phosphorylated at a low level. In contrast, in cisplatin resistant MCF-7 cells both the 
EGFR and ERBB2 receptors were strongly phosphorylated. The phospho-RTK array detected 
very low ErbB3 and ErbB4 phosphorylation in both MCF-7 and cisplatin resistant MCF-7 cells, 
suggesting, that these receptor subtypes are not activated in cisplatin-resistant breast cancer 
cells. By using similar arrays, the authors examined the Ras/Raf/MEK/ERK, PI3K/AKT, JNK 
and p38 signaling pathways, which are downstream effectors of EGFR in a number of cell 
systems. The analysis of these pathways showed that the Ras/Raf/MEK/ERK and PI3K/AKT 
pathways are hyperactive in the cisplatin-resistant breast cancer cells, whereas the JNK and 
p38 pathways were not affected. Similarly, this study shows that cisplatin-resistant breast 
cancer cells have an inactivation of the p53 pathway and display high levels of BCL-2. A 
transcriptional profile of the cisplatin-resistant breast cancer cells also showed that these cells 
have an upregulation of the amphiregulin gene, the expression and secretion of this protein is 
also elevated and this mechanism creates an autocrine loop that confers resistance to cisplatin.  

A more recent study using this technology showed that activation of the PI3K-AKT pathway 
in tumors is modulated by negative feedback, including mTORC1-mediated inhibition of 
upstream signaling [61]. The authors clearly demonstrate that AKT inhibition induces the 
expression and phosphorylation of multiple receptor tyrosine kinases in a panel of different 
breast cancer cell lines. The results of this research suggest that receptor activation of PI3K-
AKT causes AKT-dependent phosphorylation of FOXO proteins, which downregulate the 
expression of some of the receptors that are tightly coupled to PI3K, including ErbB3, IGF1R, 
and IR. In addition, AKT activation leads to activation of TORC1 and S6K, which feedback 
inhibits IRS1 expression and other non defined regulators of receptor signaling, resulting in 
down modulation of the signaling pathway. Thus, AKT inhibition will result in activation of 
FOXO-dependent transcription of receptors and inhibition of S6K-dependent inhibition of 
signaling with resultant activation of multiple receptors. The downstream effects of AKT 
will be suppressed, but other RTK-driven signaling pathways will be activated. In contrast, 
TORC1 inhibition blocks S6K-dependent feedback, activates IGF and ErbB kinases, but not 
their expression, and, thus, activates both AKT and ERK signaling. These findings have 
important basic and therapeutic implications.  
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6. Reverse phase protein arrays 

Probing multiple arrays spotted with the same lysate concomitantly with different 
phosphospecific antibodies provides the effect of generating a multiplex readout. The utility 
of reverse phase protein microarrays lies in their ability to provide a map of known cell 
signaling proteins. Identification of critical nodes, or interactions, within the network is a 
potential starting point for drug development and/or the design of individual therapy 
regimens [62, 63]. The array format is also amenable to extremely sensitive analyte detection 
with detection levels approaching attogram amounts of a given protein and variances of less 
than 10% [51, 64]. Detection ranges could be substantially lower in a complex mixture such as 
a cellular lysate; however, the sensitivity of the reverse phase arrays is such that low 
abundance phosphorylated isoforms can still be measured from a spotted lysate amount of 
less than 10 cell equivalents. This level of sensitivity combined with analytical robustness is 
critical if the starting input material is only a few hundred cells from a biopsy specimen. Due 
to all this advantages, the reverse phase protein array has demonstrated a unique ability to 
analyze signaling pathways using small numbers of cultured cells or cells isolated by laser 
capture microdissection from human tissue procured during clinical trials [47, 53, 54, 65]. 

In a landmark study, Boyd et al. investigated how signaling pathways are differentially 
activated in different breast cancer subtypes [66]. In this study, the phosphorylation status of 
100 proteins was examined in a panel of 30 different breast cancer cell lines. These cell lines 
have previously been classified into the three major molecular subtypes using a combination 
of gene expression data and ErbB2 status [67]. Briefly, cell lines were assigned to luminal or 
basal-like classes using gene expression data, and ErbB2 amplification status was assigned 
by means of quantitative reverse transcription to identify cell lines with more than four 
copies of the 17q12-q21 locus. Then, the phosphorylated protein status from the 30 breast 
cancer cell lines was analyzed by reverse phase protein arrays. In order to reduce 
dimensionality of the data and find patterns that might be related to the differential activity 
of signaling pathways in particular subtypes of breast cancer, the principle component 
analysis (or PCA, which convert a set of observations of possibly correlated variables into a 
set of values of linearly uncorrelated variables called principal components) was used. The 
results of this analysis showed that the global proteomic signature determined by this 
method largely separates basal-like cell lines from ErbB2 amplified and luminal cell lines 
along the second principal component. Also, with the exception of the ErbB2-amplified line 
BT474, the majority of the luminal lines are separated from the ErbB2 lines. This analysis 
suggests that the phosphorylated protein end points in this analysis are significantly 
correlated because the first three principal components can account for 61% of the variance 
in the data and also that distinct pathways may be activated in the different 
subtypes. Moreover, this analysis suggests that specific pathway activation events may be 
present in the different molecular subtypes. In particular, basal-like lines were found to be 
distinct from luminal and ErbB2-amplified lines in having low levels of pPTEN and high 
levels of total EGFR, pPyk2 Y402, and pPKC-α S567. ErbB2-amplified cell lines were distinct 
from the other subtypes in having high levels of pERBB3, pFAK, and pEGFR Y1173, and 
luminal cell lines were distinct in having higher levels of phosphorylation of p70S6K S371 
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and A-RAF S299. In addition, this analysis revealed patterns of pathway activation that are 
not obvious from published gene expression analyses. In particular, basal-like cell lines were 
found to have high levels of phosphorylation of non-receptor tyrosine kinases, such as c-Abl 
and Pyk2, and in addition showed generally high levels of ERK1/2 phosphorylation and 
high total EGFR expression. In contrast, ErbB2-amplified cell lines were found to have high 
levels of phosphorylation of components of the EGFR pathway (e.g., Shc, ErbB3, EGFR), as 
well as other receptor tyrosine kinases (e.g., c-MET). Finally, luminal cell lines that do not 
have apparent amplification of ErbB2 showed generally higher levels of activation of 
downstream signaling pathway components in the AKT/mTOR pathway (e.g., p70S6K). 

A potentially important application of reverse phase protein array technology is the more 
personalized administration of targeted therapies based on the signaling status of a given 
patient's tumor. The assumption is that if a patient's tumor is addicted to the continued 
activation of a particular pathway for continued growth and survival [68], then 
phosphorylation at key nodes in that pathway may serve as hallmarks, indicating the 
presence of an activated pathway and the potential for therapeutic intervention with 
inhibitors targeting that pathway. Similarly, PI3K is a key transducer of growth factor 
signals from receptor tyrosine kinases, as well as a frequently mutated oncogene, suggesting 
that PI3K inhibitors might have beneficial effects in treating cancers driven by pathologic 
alterations of this pathway [69]. The results reported by Boyd et al., suggest that activation 
of these pathway modules occur in a subtype-specific manner and can provide the basis for 
therapeutic intervention. If this is true, basal tumors, which display high levels of EGFR, 
activated ERK1/2, and phosphorylation of Src-activated effector kinases, such as c-Abl and 
Pyk2 would be potential candidates for combined therapies with antibodies and/or small 
molecule inhibitors used in clinical trials. These findings also highlight the potential utility of 
reverse phase protein arrays in confirming pathway modulation upon therapeutic intervention 
and applications in examining pharmacodynamic biomarkers of drug response. For example, 
it is well documented that an inhibitor of all isoforms of the class I catalytic subunit of PI3K, 
GDC-0941, results in potent and selective inhibition of multiple nodes in the PI3K/AKT 
pathway and, thus, that reverse phase protein arrays might have utility monitoring surrogate 
markers of compound activity. Conversely, the results of this study also showed that a 
selective MEK inhibitor results in potent down-regulation of pERK1/2 and actually increases 
signaling through the PI3K/AKT axis. This result highlights the fact that signaling pathways 
are dynamically linked networks and that perturbations in one pathway may have unforeseen 
consequences on interacting pathways that may affect response to therapeutic agents [70].  

In a more recent study, Iadevaia et al. used a reverse-phase protein array to measure the 
transient response of the MDA-MB-231 breast cancer cell line after stimulation by insulin-
like growth factor (IGF-1) [71]. The experimental results showed that when active, IGFR 
propagates the signal downstream through the Ras/Raf/MEK/ERK (MAPK) and 
phosphoinositide-3-kinase/AKT (PI3K) signaling pathways. The signals from the MAPK and 
PI3K cascades are routed to the mTOR pathway through tuberous sclerosis (TSC2) 
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7. Clinical implications 

Cancer is among the leading causes of death worldwide. Therefore, the design of effective 
strategies to successfully implement personalized cancer medicine in clinical practice needs 
to face substantial challenges in the future. One of the biggest challenges in cancer research 
is the fact there is currently an insufficient number of effective rationally targeted drugs to 
implement this strategy broadly, at the time of this review, at least 50 distinct selective 
kinase inhibitors had been developed to the level of a phase I clinical trial, some of them 
have already been tested in breast cancer patients and it is expected that many more will be 
developed as cancer phosphoproteome analysis efforts continue to identify additional 
potential targets (Table 1).  
 

Kinase Alteration Therapeutic Agent Reference 
Receptor Tyrosine Kinases   
EGFR Amplification, mutations gefitinib, erlotinib [72] 
ErbB2/Her2 Amplification lapatinib, trastuzumab [73] 

MET Amplification 
PF2341066, XL184, 
SU11274 

[74] 

FGFR2 Amplification, mutations PKC412, BIF1120 [75] 
AXL Increased activation R428 [76] 
IGF1R/INSR Overexpression BMS-754807 [77] 
EphA2 Overexpression None available  
Non Receptor Tyrosine 
Kinases 

   

Ack1 Increased activation None available  
FAK Overexpression None available  
Src/Lyn/Hck Overexpression dasatinib, AZD05030 [78] 
Serine/Threonine Kinases    
PI3K Mutations BEZ235 [79] 
mTOR Increased activation everolimus [80] 
PLK Overexpression GSK461364 [81] 
Aurora Kinases A and B Overexpression MK5108 [82] 
Raf Increased activation sorafenib [83] 
MEK Increased activation PD0325901 [84] 
ERK1/2 Increased activation None available  

Pak1 
Amplification, 
overexpression 

None available  

Table 1. Oncogenic Kinases as Therapeutic Targets in Breast Cancer.   

The current phosphoproteomic goals imply the identification of phosphoproteins, mapping 
of phosphorylation sites, quantitation of phosphorylation under different conditions, and 
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the determination of the stoichiometry of the phosphorylation. In addition, knowing when a 
protein is phosphorylated, which kinase/s is-are involved, and how each phosphorylation 
fits into the signaling network, are also important challenges for researchers in order to 
understand the significance of different biological events. The new phosphoproteomic 
technologies are fundamental for cataloguing all this information, and it is heading towards 
the collection of accurate data on phosphopeptides on a global scale. In addition, the 
possible difficulties to get sufficient amount of specific phosphorylated proteins of specific 
low abundant protein-kinases in vivo which might limit the usability of the 
phosphoproteome analysis, must be pointed out. The concept of personalized cancer 
medicine also has significant implications for the drug development industry, which is 
beginning to recognize and appreciate the need to alter the current business model for drug 
development and clinical testing. Moreover, the clinical success of such kinase inhibitors as 
imatinib, erlotinib, and lapatinib has validated this strategy and has prompted a virtual 
explosion in the development of additional kinase inhibitors for cancer therapy. 
Importantly, though, with these successes has also come the realization that these agents are 
generally effective for a relatively small subset of treated patients, often defined by a 
common genomic, proteomic and/or phosphoproteomic denominator present within the 
tumor cells. Such findings have highlighted the potential importance of identifying dened 
patient subpopulations before treatment with kinase inhibitors to optimize clinical 
outcomes. 

Finally, it is important to state that to develop clinical proteomic applications using the 
identified proteins and phosphoproteins, collaboration between research scientists, 
clinicians and diagnostic companies, and proteomic experts is essential, particularly in the 
early phases of the biomarker development projects. The proteomics modalities currently 
available have the potential to lead to the development of clinical applications, and 
channeling the wealth of the information produced towards concrete and specific clinical 
purposes is urgent. 

8. Concluding remarks 

Cancer has been described as both a proteomic and a genomic disease [66]. Only those 
genetic defects creating a survival advantage increase the tumorigenic potential and are 
reflected in an altered functional state [19, 67]. Thus, the current challenges of cancer 
treatment, e.g. why do some patients respond to cancer drugs, while others do not, can only 
be answered with comprehensive efforts and by integrating knowledge on genetic and 
chromosomal aberrations, clinical data, IHC, and quantitative protein profiling. 

Phosphoproteomics has played a significant role in our ability to understand molecular 
mechanisms that govern human cancers. Various technological platforms are now available 
for phosphoproteomic studies enabling us to address different aspects of tumor biology 
governed by phosphorylation-mediated signaling pathways. These studies have clearly 
taken us beyond looking at mutations or other genetic variations commonly observed in 
cancers and are providing us insights into functional consequences of these changes in 
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conferring survival advantages to cancer cells. Such studies are already being used as the 
basis for determining therapeutic options. With an ever increasing list of kinase inhibitors 
being developed by pharmaceutical companies, such strategies have become vital not only 
to determine the targets of these inhibitors but also to study their off-target effects. We 
foresee phosphoproteomics emerging as a vital technique in clinical research to assist in 
diagnosis, prognosis and treatment of cancers. The major challenge ahead is to develop this 
technology further to make it amenable for use in the clinic with as few sample processing 
steps as possible. 

There are several issues, however, that must be carefully and promptly addressed if we are 
going to fulfill the dream of bringing individualized cancer care closer to reality. First of all, 
we must acknowledge the value of long-term research and provide the appropriate legal 
and ethical framework to encourage the collaboration among all the stakeholders in the 
cancer ordeal. Bridging the gap between basic and clinical research, facilitating the 
engagement of the industry, creating new infrastructures and bio banks, as well as the 
creation of innovative clinical trials are among the items that require urgent action. The aim 
of cancer research is to improve the life expectancy and quality of life of patients and we 
must make every effort to coordinate current activities in order to achieve this goal. 
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