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This book describes the classical smoothing, filtering and prediction techniques together 
with some more recently developed embellishments for improving performance within 
applications. It aims to present the subject in an accessible way, so that it can serve as a 

practical guide for undergraduates and newcomers to the field. The material is organised as 
a ten-lecture course. The foundations are laid in Chapters 1 and 2, which explain minimum-

mean-square-error solution construction and asymptotic behaviour. Chapters 3 and 4 
introduce continuous-time and discrete-time minimum-variance filtering. Generalisations 

for missing data, deterministic inputs, correlated noises, direct feedthrough terms, 
output estimation and equalisation are described. Chapter 5 simplifies the minimum-
variance filtering results for steady-state problems. Observability, Riccati equation 

solution convergence, asymptotic stability and Wiener filter equivalence are discussed. 
Chapters 6 and 7 cover the subject of continuous-time and discrete-time smoothing. The 
main fixed-lag, fixed-point and fixed-interval smoother results are derived. It is shown 

that the minimum-variance fixed-interval smoother attains the best performance. 
Chapter 8 attends to parameter estimation. As the above-mentioned approaches all rely 

on knowledge of the underlying model parameters, maximum-likelihood techniques 
within expectation-maximisation algorithms for joint state and parameter estimation are 
described. Chapter 9 is concerned with robust techniques that accommodate uncertainties 
within problem specifications. An extra term within Riccati equations enables designers 
to trade-off average error and peak error performance. Chapter 10 rounds off the course 
by applying the afore-mentioned linear techniques to nonlinear estimation problems. It 
is demonstrated that step-wise linearisations can be used within predictors, filters and 

smoothers, albeit by forsaking optimal performance guarantees.
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Scientists, engineers and the like are a strange lot. Unperturbed by societal norms, 
they direct their energies to finding better alternatives to existing theories and con-
cocting solutions to unsolved problems. Driven by an insatiable curiosity, they record 
their observations and crunch the numbers. This tome is about the science of crunch-
ing. It’s about digging out something of value from the detritus that others tend to 
leave behind. The described approaches involve constructing models to process the 
available data. Smoothing entails revisiting historical records in an endeavour to un-
derstand something of the past. Filtering refers to estimating what is happening cur-
rently, whereas prediction is concerned with hazarding a guess about what might hap-
pen next. 

The basics of smoothing, filtering and prediction were worked out by Norbert Wie-
ner, Rudolf E. Kalman and Richard S. Bucy et al over half a century ago. This book 
describes the classical techniques together with some more recently developed embel-
lishments for improving performance within applications. Its aims are threefold. First, 
to present the subject in an accessible way, so that it can serve as a practical guide for 
undergraduates and newcomers to the field. Second, to differentiate between tech-
niques that satisfy performance criteria versus those relying on heuristics. Third, to 
draw attention to Wiener’s approach for optimal non-causal filtering (or smoothing).

Optimal estimation is routinely taught at a post-graduate level while not necessar-
ily assuming familiarity with prerequisite material or backgrounds in an engineering 
discipline. That is, the basics of estimation theory can be taught as a standalone sub-
ject. In the same way that a vehicle driver does not need to understand the workings of 
an internal combustion engine or a computer user does not need to be acquainted with 
its inner workings, implementing an optimal filter is hardly rocket science. Indeed, 
since the filter recursions are all known – its operation is no different to pushing a but-
ton on a calculator. The key to obtaining good estimator performance is developing in-
timacy with the application at hand, namely, exploiting any available insight, expertise 
and a priori knowledge to model the problem. If the measurement noise is negligible, 
any number of solutions may suffice. Conversely, if the observations are dominated by 
measurement noise, the problem may be too hard. Experienced practitioners are able 
recognise those intermediate sweet-spots where cost-benefits can be realised. 

Systems employing optimal techniques pervade our lives. They are embedded within 
medical diagnosis equipment, communication networks, aircraft avionics, robotics 
and market forecasting – to name a few. When tasked with new problems, in which 

Preface



XII Preface

information is to be extracted from noisy measurements, one can be faced with a pleth-
ora of algorithms and techniques. Understanding the performance of candidate ap-
proaches may seem unwieldy and daunting to novices. Therefore, the philosophy here 
is to present the linear-quadratic-Gaussian results for smoothing, filtering and predic-
tion with accompanying proofs about performance being attained, wherever this is 
appropriate. Unfortunately, this does require some maths which trades off accessibil-
ity. The treatment is little repetitive and may seem trite, but hopefully it contributes an 
understanding of the conditions under which solutions can value-add. 

Science is an evolving process where what we think we know is continuously updated 
with refashioned ideas. Although evidence suggests that Babylonian astronomers were 
able to predict planetary motion, a bewildering variety of Earth and universe models 
followed. According to lore, ancient Greek philosophers such as Aristotle assumed a 
geocentric model of the universe and about two centuries later Aristarchus developed 
a heliocentric version. It is reported that Eratosthenes arrived at a good estimate of the 
Earth’s circumference, yet there was a revival of flat earth beliefs during the middle 
ages. Not all ideas are welcomed - Galileo was famously incarcerated for knowing 
too much. Similarly, newly-appearing signal processing techniques compete with old 
favourites. An aspiration here is to publicise that the oft forgotten approach of Wiener, 
which in concert with Kalman’s, leads to optimal smoothers. The ensuing results con-
trast with traditional solutions and may not sit well with more orthodox practitioners.

Kalman’s optimal filter results were published in the early 1960s and various tech-
niques for smoothing in a state-space framework were developed shortly thereafter. 
Wiener’s optimal smoother solution is less well known, perhaps because it was framed 
in the frequency domain and described in the archaic language of the day. His work of 
the 1940s was borne of an analog world where filters were made exclusively of lumped 
circuit components. At that time, computers referred to people labouring with an aba-
cus or an adding machine – Alan Turing’s and John von Neumann’s ideas had yet to be 
realised. In his book, Extrapolation, Interpolation and Smoothing of Stationary Time 
Series, Wiener wrote with little fanfare and dubbed the smoother “unrealisable”. The 
use of the Wiener-Hopf factor allows this smoother to be expressed in a time-domain 
state-space setting and included alongside other techniques within the designer’s 
toolbox.

A model-based approach is employed throughout where estimation problems are de-
fined in terms of state-space parameters. I recall attending Michael Green’s robust con-
trol course, where he referred to a distillation column control problem competition, in 
which a student’s robust low-order solution out-performed a senior specialist’s optimal 
high-order solution. It is hoped that this text will equip readers to do similarly, namely: 
make some simplifying assumptions, apply the standard solutions and back-off from 
optimality if uncertainties degrade performance. 

Both continuous-time and discrete-time techniques are presented. Sometimes the state 
dynamics and observations may be modelled exactly in continuous-time. In the major-
ity of applications, some discrete-time approximations and processing of sampled data 
will be required. The material is organised as a ten-lecture course.
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• Chapter 1 introduces some standard continuous-time fare such as the Laplace
Transform, stability, adjoints and causality. A completing-the-square approach
is then used to obtain the minimum-mean-square error (or Wiener) filtering
solutions.

• Chapter 2 deals with discrete-time minimum-mean-square error filtering. The
treatment is somewhat brief since the developments follow analogously from
the continuous-time case.

• Chapter 3 describes continuous-time minimum-variance (or Kalman-Bucy)
filtering. The filter is found using the conditional mean or least-mean-square-
error formula. It is shown for time-invariant problems that the Wiener and Kal-
man solutions are the same.

• Chapter 4 addresses discrete-time minimum-variance (or Kalman) predic-
tion and filtering. Once again, the optimum conditional mean estimate may be
found via the least-mean-square-error approach. Generalisations for missing
data, deterministic inputs, correlated noises, direct feedthrough terms, output
estimation and equalisation are described.

• Chapter 5 simplifies the discrete-time minimum-variance filtering results for
steady-state problems. Discrete-time observability, Riccati equation solution
convergence, asymptotic stability and Wiener filter equivalence are discussed.

• Chapter 6 covers the subject of continuous-time smoothing. The main fixed-lag,
fixed-point and fixed-interval smoother results are derived. It is shown that the
minimum-variance fixed-interval smoother attains the best performance.

• Chapter 7 is about discrete-time smoothing. It is observed that the fixed-point
fixed-lag, fixed-interval smoothers outperform the Kalman filter. Once again,
the minimum-variance smoother attains the best-possible performance, pro-
vided that the underlying assumptions are correct.

• Chapter 8 attends to parameter estimation. As the above-mentioned approach-
es all rely on knowledge of the underlying model parameters, maximum-like-
lihood techniques within expectation-maximisation algorithms for joint state
and parameter estimation are described.

• Chapter 9 is concerned with robust techniques that accommodate uncertainties
within problem specifications. An extra term within the design Riccati equa-
tions enables designers to trade-off average error and peak error performance.

• Chapter 10 rounds off the course by applying the afore-mentioned linear tech-
niques to nonlinear estimation problems. It is demonstrated that step-wise lin-
earisations can be used within predictors, filters and smoothers, albeit by for-
saking optimal performance guarantees.



XIV Preface

The foundations are laid in Chapters 1 – 2, which explain minimum-mean-square-
error solution construction and asymptotic behaviour. In single-input-single-output 
cases, finding Wiener filter transfer functions may have appeal. In general, designing 
Kalman filters is more tractable because solving a Riccati equation is easier than pole-
zero cancellation. Kalman filters are needed if the signal models are time-varying. The 
filtered states can be updated via a one-line recursion but the gain may require to be re-
evaluated at each step in time. Extended Kalman filters are contenders if nonlinearities 
are present. Smoothers are advocated when better performance is desired and some 
calculation delays can be tolerated. 

This book elaborates on ten articles published in IEEE journals and I am grateful to the 
anonymous reviewers who have improved my efforts over the years. The great people 
at the CSIRO, such as David Hainsworth and George Poropat generously make them-
selves available to anglicise my engineering jargon. Sometimes posing good questions 
is helpful, for example, Paul Malcolm once asked “is it stable?” which led down to 
fruitful paths. During a seminar at HSU, Udo Zoelzer provided the impulse for me 
to undertake this project. My sources of inspiration include interactions at the CDC 
meetings - thanks particularly to Dennis Bernstein whose passion for writing has mo-
tivated me along the way.

Garry Einicke 
CSIRO Australia
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1 

Continuous-Time Minimum- 
Mean-Square-Error Filtering 

1.1 Introduction  
Optimal filtering is concerned with designing the best linear system for recovering data 
from noisy measurements. It is a model-based approach requiring knowledge of the signal 
generating system. The signal models, together with the noise statistics are factored into the 
design in such a way to satisfy an optimality criterion, namely, minimising the square of the 
error.  

A prerequisite technique, the method of least-squares, has its origin in curve fitting. Amid 
some controversy, Kepler claimed in 1609 that the planets move around the Sun in elliptical 
orbits [1]. Carl Freidrich Gauss arrived at a better performing method for fitting curves to 
astronomical observations and predicting planetary trajectories in 1799 [1]. He formally 
published a least-squares approximation method in 1809 [2], which was developed 
independently by Adrien-Marie Legendre in 1806 [1]. This technique was famously used by 
Giusseppe Piazzi to discover and track the asteroid Ceres using a least-squares analysis 
which was easier than solving Kepler’s complicated nonlinear equations of planetary 
motion [1]. Andrey N. Kolmogorov refined Gauss’s theory of least-squares and applied it 
for the prediction of discrete-time stationary stochastic processes in 1939 [3]. Norbert 
Wiener, a faculty member at MIT, independently solved analogous continuous-time 
estimation problems. He worked on defence applications during the Second World War and 
produced a report entitled Extrapolation, Interpolation and Smoothing of Stationary Time Series 
in 1943. The report was later published as a book in 1949 [4].  

Wiener derived two important results, namely, the optimum (non-causal) minimum-mean-
square-error solution and the optimum causal minimum-mean-square-error solution [4] – 
[6]. The optimum causal solution has since become known at the Wiener filter and in the 
time-invariant case is equivalent to the Kalman filter that was developed subsequently. 
Wiener pursued practical outcomes and attributed the term “unrealisable filter” to the 
optimal non-causal solution because “it is not in fact realisable with a finite network of 
resistances, capacities, and inductances” [4]. Wiener’s unrealisable filter is actually the 
optimum linear smoother. 

The optimal Wiener filter is calculated in the frequency domain. Consequently, Section 1.2 
touches on some frequency-domain concepts. In particular, the notions of spaces, state-space 
systems, transfer functions, canonical realisations, stability, causal systems, power spectral 
density and spectral factorisation are introduced. The Wiener filter is then derived by 
minimising the square of the error. Three cases are discussed in Section 1.3. First, the 

“All men by nature desire to know.” Aristotle 



Smoothing, Filtering and Prediction:
Estimating the Past, Present and Future2

solution to general estimation problem is stated. Second, the general estimation results are 
specialised to output estimation. The optimal input estimation or equalisation solution is 
then described. An example, demonstrating the recovery of a desired signal from noisy 
measurements, completes the chapter. 
 

1.2 Prerequisites  
 

1.2.1 Signals 
Consider two continuous-time, real-valued stochastic (or random) signals ( )Tv t  = 

1[ ( ),Tv t 2 ( ),
Tv t  …, ( )]T

nv t , ( )Tw t  = 1[ ( ),Tw t 2 ( ),
Tw t  …, ( )]T

nw t , with ( )iv t , ( )iw t    , i = 1, … 
n, which are said to belong to the space n , or more concisely v(t), w(t)  n . Let w denote 
the set of w(t) over all time t, that is, w = { w(t), t  ( , )  }.  
 

1.2.2 Elementary Functions Defined on Signals 
The inner product ,v w  of two continuous-time signals v and w is defined by 

, Tv w v w dt



  . (1) 

The 2-norm or Euclidean norm of a continuous-time signal w, 
2

w , is defined as  
2

w  = 

,w w  = Tw wdt


 .  The square of the 2-norm, that is, 2

2
w  = Tw w  = Tw w dt



  is 

commonly known as energy of the signal w.  
 

1.2.3 Spaces 
The Lebesgue 2-space, defined as the set of continuous-time signals having finite 2-norm, is 
denoted by 2. Thus, w  2 means that the energy of w is bounded. The following 
properties hold for 2-norms. 

(i) 
2

0 0v v   . 

(ii) 
2 2

v v  . 

(iii) 
2 2 2

v w v w   , which is known as the triangle inequality. 

(iv) 
2 2 2

vw v w . 

(v) 
2 2

,v w v w , which is known as the Cauchy-Schwarz inequality. 

See [8] for more detailed discussions of spaces and norms. 
 
 

                                                                 

“Scientific discovery consists in the interpretation for our own convenience of a system of existence 
which has been made with no eye to our convenience at all.” Norbert Wiener 

1.2.4 Linear Systems 
A linear system is defined as having an output vector which is equal to the value of a linear 
operator applied to an input vector. That is, the relationships between the output and input 
vectors are described by linear equations, which may be algebraic, differential or integral. 
Linear time-domain systems are denoted by upper-case script fonts. Consider two linear 
systems  , : p    q , that is, they operate on an input w   p  and produce outputs 
w , w   q . The following properties hold. 

( + ) w  = w + w , 
( ) w  =  ( w ), 
( ) w =  ( w ), 

(2) 
 

(3) 
 

(4) 
 

where     . An interpretation of (2) is that a parallel combination of   and   is 
equivalent to the system   +  . From (3), a series combination of   and   is 
equivalent to the system  . Equation (4) states that scalar amplification of a system is 
equivalent to scalar amplification of a system’s output. 
 

1.2.5 Polynomial Fraction Systems 
The Wiener filtering results [4] – [6] were originally developed for polynomial fraction 
descriptions of systems which are described below. Consider an nth-order linear, time-
invariant system   that operates on an input w(t)    and produces an output y(t)   , 
that is,  : :     . Suppose that the differential equation model for this system is 

    
1

1 1 01

( ) ( ) ( )... ( )
n n

n nn n

d y t d y t dy ta a a a y t
dt dt dt



      

                               
1

1 1 01

( ) ( ) ( )... ( )
m m

m mm n

d w t d w t dw tb b b b w t
dt dt dt



      , 
(5) 

where a0, … an and b0, … bm are real-valued constant coefficients, 0na , with zero initial 
conditions. This differential equation can be written in the more compact form 

     
1

1 1 01 ... ( )
n n

n nn n

d d da a a a y t
dt dt dt



 

 
    

 
 

                                  
1

1 1 01 ... ( )
m m

m mm n

d d db b b b w t
dt dt dt



 

 
     

 
. 

(6) 

 

1.2.6 The Laplace Transform of a Signal 
The two-sided Laplace transform of a continuous-time signal y(t)    is denoted by Y(s) 
and defined by 

( ) ( ) stY s y t e dt
 


  , (7) 

                                                                 

“Science is a way of thinking much more than it is a body of knowledge.” Carl Edward Sagan 
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solution to general estimation problem is stated. Second, the general estimation results are 
specialised to output estimation. The optimal input estimation or equalisation solution is 
then described. An example, demonstrating the recovery of a desired signal from noisy 
measurements, completes the chapter. 
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vectors are described by linear equations, which may be algebraic, differential or integral. 
Linear time-domain systems are denoted by upper-case script fonts. Consider two linear 
systems  , : p    q , that is, they operate on an input w   p  and produce outputs 
w , w   q . The following properties hold. 

( + ) w  = w + w , 
( ) w  =  ( w ), 
( ) w =  ( w ), 

(2) 
 

(3) 
 

(4) 
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where s = σ + jω is the Laplace transform variable, in which σ, ω    and j = 1 . Given a 
signal y(t) with Laplace transform Y(s), y(t) can be calculated from Y(s) by taking the inverse 
Laplace Transform of Y(s), which is defined by 
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The above theorem is attributed to Parseval whose original work [7] concerned the sums of 
trigonometric series. An interpretation of (9) is that the energy in the time domain equals the 
energy in the frequency domain. 
 

1.2.7 Polynomial Fraction Transfer Functions 
The steady-state response y(t) = Y(s)est  can be found by applying the complex-exponential 
input w(t) = W(s)est  to the terms of (6), which results in 
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is known as the transfer function of the system. It can be seen from (6) and (12) that the 
polynomial transfer function coefficients correspond to the system’s differential equation 
coefficients.  Thus, knowledge of a system’s differential equation is sufficient to identify its 
transfer function. 
 

1.2.8 Poles and Zeros 
The numerator and denominator polynomials of (12) can be factored into m and n linear 
factors, respectively, to give  

1 2

1 2
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The numerator of G(s) is zero when s = βi, i = 1 … m. These values of s are called the zeros of 
G(s). Zeros in the left-hand-plane are called minimum-phase whereas zeros in the right-
hand-plane are called non-minimum phase. The denominator of G(s) is zero when s = αi, i = 
1 … n. These values of s are called the poles of G(s). 

Example 1.  Consider a system described by the differential equation ( )y t = – y(t) + w(t), in 
which y(t) is the output arising from the input w(t). From (6) and (12), it follows that the 
corresponding transfer function is given by G(s) = (s + 1)-1, which possesses a pole at s = - 1. 

The system in Example 1 operates on a single input and produces a single output, which is 
known as single-input-single-output (SISO) system. Systems operating on multiple inputs and 
producing multiple outputs, for example, : p  → q , are known as multiple-input-multiple-
output (MIMO). The corresponding transfer function matrices can be written as equation (14), 
where the components Gij(s) have the polynomial transfer function form within (12) or (13).  
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factors, respectively, to give  

1 2

1 2

( )( )...( )( )
( )( )...( )

m m

n n

b s s sG s
a s s s

  
  

  


  
. (13) 

The numerator of G(s) is zero when s = βi, i = 1 … m. These values of s are called the zeros of 
G(s). Zeros in the left-hand-plane are called minimum-phase whereas zeros in the right-
hand-plane are called non-minimum phase. The denominator of G(s) is zero when s = αi, i = 
1 … n. These values of s are called the poles of G(s). 

Example 1.  Consider a system described by the differential equation ( )y t = – y(t) + w(t), in 
which y(t) is the output arising from the input w(t). From (6) and (12), it follows that the 
corresponding transfer function is given by G(s) = (s + 1)-1, which possesses a pole at s = - 1. 

The system in Example 1 operates on a single input and produces a single output, which is 
known as single-input-single-output (SISO) system. Systems operating on multiple inputs and 
producing multiple outputs, for example, : p  → q , are known as multiple-input-multiple-
output (MIMO). The corresponding transfer function matrices can be written as equation (14), 
where the components Gij(s) have the polynomial transfer function form within (12) or (13).  

11 12 1

21 22

1

( ) ( ) .. ( )

( ) ( )
( )

: :
( ) .. ( )

p

q qp

G s G s G s
G s G s

G s

G s G s

 
 
   
 
  


. (14) 

 

     

 

 

 
Figure 1.  Continuous-time state-space system. 

                                                                 

“Nature laughs at the difficulties of integration.” Pierre-Simon Laplace  
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1.2.9 State-Space Systems 
A system : p  → q  having a state-space realisation is written in the form 

( ) ( ) ( )x t Ax t Bw t  , 

( ) ( ) ( )y t Cx t Dw t  , 

(15) 

(16) 
where A  n n , B   p m , C  q n  and D  q q , in which w   p  is an input, x  n  is 
a state vector and y  q  is an output. A is known as the state matrix and D is known as the 
direct feed-through matrix. The matrices B and C are known as the input mapping and the 
output mapping, respectively. This system is depicted in Fig. 1. 
 

1.2.10 Euler’s Method for Numerical Integration  
Differential equations of the form (15) could be implemented directly by analog circuits. 
Digital or software implementations require a method for numerical integration. A first-
order numerical integration technique, known as Euler’s method, is now derived. Suppose 
that x(t) is infinitely differentiable and consider its Taylor series expansion in the 
neighbourhood of t0 

2 2 3 3
0 0 0 0 0 0

0 2 3

( ) ( ) ( ) ( ) ( ) ( )( ) ( )
1! 2! 3!

t t dx t t t d x t t t d x tx t x t
dt dt dt

  
      

              2 3
0 0 0

0 0 0 0
( ) ( ) ( )( ) ( ) ( ) ( )
1! 2! 3!

t t t t t tx t x t x t x t  
         

(17) 

Truncating the series after the first order term yields the approximation x(t) = x(t0) + 
0 0( ) ( )t t x t  . Defining tk = tk-1 + δt leads to 

1 0 0( ) ( ) ( )tx t x t x t    

2 1 1( ) ( ) ( )tx t x t x t    

  
1( ) ( ) ( )k k t kx t x t x t    . 

(18)  

Thus, the continuous-time linear system (15) could be approximated in discrete-time by 
iterating 

1( ) ( ) ( )k k kx t Ax t Bw t    (19)  

and (18) provided that δt is chosen to be suitably small. Applications of (18) – (19) appear in 
[9] and in the following example. 

                                                                 

“It is important that students bring a certain ragamuffin, barefoot irreverence to their studies; they are 
not here to worship what is known, but to question it.” Jacob Bronowski 
 

Example 2. In respect of the continuous-time state evolution (15), consider A = −1, B = 1 
together with the deterministic input w(t)  = sin(t) + cos(t). The states can be calculated from 
the known w(t) using (19) and the difference equation (18). In this case, the state error is 
given by e(tk) = sin(tk) – x(tk). In particular, root-mean-square-errors of 0.34, 0.031, 0.0025 and 
0.00024, were observed for δt = 1, 0.1, 0.01 and 0.001, respectively. This demonstrates that the 
first order approximation (18) can be reasonable when δt is sufficiently small. 
 

1.2.11 State-Space Transfer Function Matrix  
The transfer function matrix of the state-space system (15) - (16) is defined by 

1( ) ( )G s C sI A B D   , (20) 

in which s again denotes the Laplace transform variable. 

Example 3.  For a state-space model with A = −1, B = C = 1 and D = 0, the transfer function is 
G(s) = (s + 1)-1. 

Example 4. For state-space parameters 
3 2
1 0

A
  

  
 

,  
1
0

B
 

  
 

, 2 5C      and D = 0, the use 

of Cramer’s rule, that is, 
1a b

c d


 
 
 

   1 d b
c aad bc

 
   

, yields the transfer function G(s) = 

(2 5)
( 1)( 2)


 
s

s s
   1 1

( 1) ( 2)s s


 
. 

Example 5. Substituting 
1 0
0 2

A
 

   
 and 

1 0
0 1

B C D
 

    
 

 into (20) results in the transfer 

function matrix  

2 0
1( )

30
2

s
sG s

s
s

 
  

 
  

. 

 

1.2.12 Canonical Realisations 
The mapping of a polynomial fraction transfer function (12) to a state-space representation 
(20) is not unique. Two standard state-space realisations of polynomial fraction transfer 
functions are described below. Assume that: the transfer function has been expanded into 
the sum of a direct feed-though term plus a strictly proper transfer function, in which the 
order of the numerator polynomial is less than the order of the denominator polynomial; 
and the strictly proper transfer function has been normalised so that an = 1. Under these 
assumptions, the system can be realised in the controllable canonical form which is 
parameterised by [10] 

                                                                 

“Science is everything we understand well enough to explain to a computer. Art is everything else.” 
David Knuth 
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1.2.9 State-Space Systems 
A system : p  → q  having a state-space realisation is written in the form 

( ) ( ) ( )x t Ax t Bw t  , 

( ) ( ) ( )y t Cx t Dw t  , 

(15) 

(16) 
where A  n n , B   p m , C  q n  and D  q q , in which w   p  is an input, x  n  is 
a state vector and y  q  is an output. A is known as the state matrix and D is known as the 
direct feed-through matrix. The matrices B and C are known as the input mapping and the 
output mapping, respectively. This system is depicted in Fig. 1. 
 

1.2.10 Euler’s Method for Numerical Integration  
Differential equations of the form (15) could be implemented directly by analog circuits. 
Digital or software implementations require a method for numerical integration. A first-
order numerical integration technique, known as Euler’s method, is now derived. Suppose 
that x(t) is infinitely differentiable and consider its Taylor series expansion in the 
neighbourhood of t0 

2 2 3 3
0 0 0 0 0 0

0 2 3

( ) ( ) ( ) ( ) ( ) ( )( ) ( )
1! 2! 3!

t t dx t t t d x t t t d x tx t x t
dt dt dt

  
      

              2 3
0 0 0

0 0 0 0
( ) ( ) ( )( ) ( ) ( ) ( )
1! 2! 3!

t t t t t tx t x t x t x t  
         

(17) 

Truncating the series after the first order term yields the approximation x(t) = x(t0) + 
0 0( ) ( )t t x t  . Defining tk = tk-1 + δt leads to 

1 0 0( ) ( ) ( )tx t x t x t    

2 1 1( ) ( ) ( )tx t x t x t    

  
1( ) ( ) ( )k k t kx t x t x t    . 

(18)  

Thus, the continuous-time linear system (15) could be approximated in discrete-time by 
iterating 

1( ) ( ) ( )k k kx t Ax t Bw t    (19)  

and (18) provided that δt is chosen to be suitably small. Applications of (18) – (19) appear in 
[9] and in the following example. 

                                                                 

“It is important that students bring a certain ragamuffin, barefoot irreverence to their studies; they are 
not here to worship what is known, but to question it.” Jacob Bronowski 
 

Example 2. In respect of the continuous-time state evolution (15), consider A = −1, B = 1 
together with the deterministic input w(t)  = sin(t) + cos(t). The states can be calculated from 
the known w(t) using (19) and the difference equation (18). In this case, the state error is 
given by e(tk) = sin(tk) – x(tk). In particular, root-mean-square-errors of 0.34, 0.031, 0.0025 and 
0.00024, were observed for δt = 1, 0.1, 0.01 and 0.001, respectively. This demonstrates that the 
first order approximation (18) can be reasonable when δt is sufficiently small. 
 

1.2.11 State-Space Transfer Function Matrix  
The transfer function matrix of the state-space system (15) - (16) is defined by 

1( ) ( )G s C sI A B D   , (20) 

in which s again denotes the Laplace transform variable. 

Example 3.  For a state-space model with A = −1, B = C = 1 and D = 0, the transfer function is 
G(s) = (s + 1)-1. 

Example 4. For state-space parameters 
3 2
1 0

A
  

  
 

,  
1
0

B
 

  
 

, 2 5C      and D = 0, the use 

of Cramer’s rule, that is, 
1a b

c d


 
 
 

   1 d b
c aad bc

 
   

, yields the transfer function G(s) = 

(2 5)
( 1)( 2)


 
s

s s
   1 1

( 1) ( 2)s s


 
. 

Example 5. Substituting 
1 0
0 2

A
 

   
 and 

1 0
0 1

B C D
 

    
 

 into (20) results in the transfer 

function matrix  

2 0
1( )

30
2

s
sG s

s
s

 
  

 
  

. 

 

1.2.12 Canonical Realisations 
The mapping of a polynomial fraction transfer function (12) to a state-space representation 
(20) is not unique. Two standard state-space realisations of polynomial fraction transfer 
functions are described below. Assume that: the transfer function has been expanded into 
the sum of a direct feed-though term plus a strictly proper transfer function, in which the 
order of the numerator polynomial is less than the order of the denominator polynomial; 
and the strictly proper transfer function has been normalised so that an = 1. Under these 
assumptions, the system can be realised in the controllable canonical form which is 
parameterised by [10] 
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1.2.9 State-Space Systems 
A system : p  → q  having a state-space realisation is written in the form 

( ) ( ) ( )x t Ax t Bw t  , 

( ) ( ) ( )y t Cx t Dw t  , 

(15) 

(16) 
where A  n n , B   p m , C  q n  and D  q q , in which w   p  is an input, x  n  is 
a state vector and y  q  is an output. A is known as the state matrix and D is known as the 
direct feed-through matrix. The matrices B and C are known as the input mapping and the 
output mapping, respectively. This system is depicted in Fig. 1. 
 

1.2.10 Euler’s Method for Numerical Integration  
Differential equations of the form (15) could be implemented directly by analog circuits. 
Digital or software implementations require a method for numerical integration. A first-
order numerical integration technique, known as Euler’s method, is now derived. Suppose 
that x(t) is infinitely differentiable and consider its Taylor series expansion in the 
neighbourhood of t0 

2 2 3 3
0 0 0 0 0 0

0 2 3

( ) ( ) ( ) ( ) ( ) ( )( ) ( )
1! 2! 3!

t t dx t t t d x t t t d x tx t x t
dt dt dt

  
      

              2 3
0 0 0

0 0 0 0
( ) ( ) ( )( ) ( ) ( ) ( )
1! 2! 3!

t t t t t tx t x t x t x t  
         

(17) 

Truncating the series after the first order term yields the approximation x(t) = x(t0) + 
0 0( ) ( )t t x t  . Defining tk = tk-1 + δt leads to 

1 0 0( ) ( ) ( )tx t x t x t    

2 1 1( ) ( ) ( )tx t x t x t    

  
1( ) ( ) ( )k k t kx t x t x t    . 

(18)  

Thus, the continuous-time linear system (15) could be approximated in discrete-time by 
iterating 

1( ) ( ) ( )k k kx t Ax t Bw t    (19)  

and (18) provided that δt is chosen to be suitably small. Applications of (18) – (19) appear in 
[9] and in the following example. 

                                                                 

“It is important that students bring a certain ragamuffin, barefoot irreverence to their studies; they are 
not here to worship what is known, but to question it.” Jacob Bronowski 
 

Example 2. In respect of the continuous-time state evolution (15), consider A = −1, B = 1 
together with the deterministic input w(t)  = sin(t) + cos(t). The states can be calculated from 
the known w(t) using (19) and the difference equation (18). In this case, the state error is 
given by e(tk) = sin(tk) – x(tk). In particular, root-mean-square-errors of 0.34, 0.031, 0.0025 and 
0.00024, were observed for δt = 1, 0.1, 0.01 and 0.001, respectively. This demonstrates that the 
first order approximation (18) can be reasonable when δt is sufficiently small. 
 

1.2.11 State-Space Transfer Function Matrix  
The transfer function matrix of the state-space system (15) - (16) is defined by 

1( ) ( )G s C sI A B D   , (20) 

in which s again denotes the Laplace transform variable. 

Example 3.  For a state-space model with A = −1, B = C = 1 and D = 0, the transfer function is 
G(s) = (s + 1)-1. 

Example 4. For state-space parameters 
3 2
1 0

A
  

  
 

,  
1
0

B
 

  
 

, 2 5C      and D = 0, the use 

of Cramer’s rule, that is, 
1a b

c d


 
 
 

   1 d b
c aad bc

 
   

, yields the transfer function G(s) = 

(2 5)
( 1)( 2)


 
s

s s
   1 1

( 1) ( 2)s s


 
. 

Example 5. Substituting 
1 0
0 2

A
 

   
 and 

1 0
0 1

B C D
 

    
 

 into (20) results in the transfer 

function matrix  

2 0
1( )

30
2

s
sG s

s
s

 
  

 
  

. 

 

1.2.12 Canonical Realisations 
The mapping of a polynomial fraction transfer function (12) to a state-space representation 
(20) is not unique. Two standard state-space realisations of polynomial fraction transfer 
functions are described below. Assume that: the transfer function has been expanded into 
the sum of a direct feed-though term plus a strictly proper transfer function, in which the 
order of the numerator polynomial is less than the order of the denominator polynomial; 
and the strictly proper transfer function has been normalised so that an = 1. Under these 
assumptions, the system can be realised in the controllable canonical form which is 
parameterised by [10] 

                                                                 

“Science is everything we understand well enough to explain to a computer. Art is everything else.” 
David Knuth 
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1 2 1 0... 1
1 0 ... 0 0

,0 1 :
0 0 0

0 0 ... 1 0 0

n na a a a

A B

       
   
   
    
   
   
      

 
 and 1 1 0...m mC b b b b    . 

The system can be also realised in the observable canonical form which is parameterised by 

1

2 1

1 1

0 0

1 0 ... 0
0 1 0

0 ,
0 1

0 ... 0 0

n m

n m

a b
a b

A B
a b
a b



 

   
      
    
   
   

      

    and 1 0 ... 0 0 .C      

 

1.2.13 Asymptotic Stability 
Consider a continuous-time, linear, time-invariant nth-order system   that operates on an 
input w and produces an output y. The system   is said to be asymptotically stable if the 
output remains bounded, that is, y  2, for any w  2. This is also known as bounded-
input-bounded-output stability. Two equivalent conditions for   to be asymptotically 
stable are: 

 The real part of the eigenvalues of the system’s state matrix are in the left-hand-
plane, that is, for A of (20), Re{ ( )} 0i A  , i = 1 …n. 

 The real part of the poles of the system’s transfer function are in the left-hand-
plane, that is, for αi of (13), Re{ }i  < 0, i = 1 …n. 

Example 6. A state-space system having A = – 1, B = C = 1 and D = 0 is stable, since λ(A) = – 
1 is in the left-hand-plane. Equivalently, the corresponding transfer function G(s) = (s + 1)-1  
has a pole at s = – 1 which is in the left-hand-plane and so the system is stable. Conversely, 
the transfer function GT(-s) = (1 – s)-1 is unstable because it has a singularity at the pole s = 1  
which is in the right hand side of the complex plane. GT(-s) is known as the adjoint of G(s) 
which is discussed below. 
 

1.2.14 Adjoint Systems 
An important concept in the ensuing development of filters and smoothers is the adjoint of a 
system. Let : p  → q  be a linear system operating on the interval [0, T]. Then : H q → 
 p , the adjoint of  , is the unique linear system such that <y, w> = < H y, w>, for all y  
q  and w   p . The following derivation is a simplification of the time-varying version 
that appears in [11]. 

                                                                 

“Science might almost be redefined as the process of substituting unimportant questions which can be 
answered for important questions which cannot.” Kenneth Ewart Boulding 

Lemma 1 (State-space representation of an adjoint system): Suppose that a continuous-time 
linear time-invariant system   is described by  

( ) ( ) ( )x t Ax t Bw t  , 

( ) ( ) ( )y t Cx t Dw t  , 

(21) 

(22) 
with x(t0) = 0. The adjoint H is the linear system having the realisation 

( ) ( ) ( )    T Tt A t C u t , 

( ) ( ) ( ) T Tz t B t D u t , 

(23) 

(24) 
with ζ(T) = 0. 

Proof: The system (21) – (22) can be written equivalently 

0( )( )
( )( )

d tx tI A B
dt y tw tC D

                  

 (25) 

with x(t0) = 0. Thus 

            <y,  w> = ,
d xI A B
dtu wC D

                

 

                   
0 0

( ) ( )
T T TT T T

o

dx dt Ax Bw dt u Cx Dw dt
dt

       
    . 

(26) 

Integrating the last term by parts gives 

<y,  w>
0 0

( ) ( ) ( )
TT TT TdT x T x dt Ax Bw dt

dt
 

 
    

 
  . 

                                       
0

( )
T Tu Cx Dw dt   

                       , ( ) ( )
T T

T

T T

d I A C x
T x Tdt

u w
B D




                      

 

                       , ,  Hy w  

(27) 

where H  is given by (23) – (24).                                                                                                         □ 

                                                                 

“If you thought that science was certain—well, that is just an error on your part.” Richard Phillips 
Feynman 
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1.2.13 Asymptotic Stability 
Consider a continuous-time, linear, time-invariant nth-order system   that operates on an 
input w and produces an output y. The system   is said to be asymptotically stable if the 
output remains bounded, that is, y  2, for any w  2. This is also known as bounded-
input-bounded-output stability. Two equivalent conditions for   to be asymptotically 
stable are: 

 The real part of the eigenvalues of the system’s state matrix are in the left-hand-
plane, that is, for A of (20), Re{ ( )} 0i A  , i = 1 …n. 

 The real part of the poles of the system’s transfer function are in the left-hand-
plane, that is, for αi of (13), Re{ }i  < 0, i = 1 …n. 

Example 6. A state-space system having A = – 1, B = C = 1 and D = 0 is stable, since λ(A) = – 
1 is in the left-hand-plane. Equivalently, the corresponding transfer function G(s) = (s + 1)-1  
has a pole at s = – 1 which is in the left-hand-plane and so the system is stable. Conversely, 
the transfer function GT(-s) = (1 – s)-1 is unstable because it has a singularity at the pole s = 1  
which is in the right hand side of the complex plane. GT(-s) is known as the adjoint of G(s) 
which is discussed below. 
 

1.2.14 Adjoint Systems 
An important concept in the ensuing development of filters and smoothers is the adjoint of a 
system. Let : p  → q  be a linear system operating on the interval [0, T]. Then : H q → 
 p , the adjoint of  , is the unique linear system such that <y, w> = < H y, w>, for all y  
q  and w   p . The following derivation is a simplification of the time-varying version 
that appears in [11]. 

                                                                 

“Science might almost be redefined as the process of substituting unimportant questions which can be 
answered for important questions which cannot.” Kenneth Ewart Boulding 

Lemma 1 (State-space representation of an adjoint system): Suppose that a continuous-time 
linear time-invariant system   is described by  

( ) ( ) ( )x t Ax t Bw t  , 

( ) ( ) ( )y t Cx t Dw t  , 

(21) 

(22) 
with x(t0) = 0. The adjoint H is the linear system having the realisation 

( ) ( ) ( )    T Tt A t C u t , 

( ) ( ) ( ) T Tz t B t D u t , 

(23) 
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with ζ(T) = 0. 
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(27) 

where H  is given by (23) – (24).                                                                                                         □ 

                                                                 

“If you thought that science was certain—well, that is just an error on your part.” Richard Phillips 
Feynman 
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where H  is given by (23) – (24).                                                                                                         □ 

                                                                 

“If you thought that science was certain—well, that is just an error on your part.” Richard Phillips 
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Thus, the adjoint of a system having the parameters 
A B
C D
 
 
 

 is a system with 
T T

T T

A C
B D

  
 
 

. 

Adjoint systems have the property ( )H H     . The adjoint of the transfer function 
matrix G(s) is denoted as GH(s) and is defined by the transfer function matrix  

GH(s)   GT(-s). (28) 

Example 7.  Suppose that a system   has state-space parameters A = −1 and B = C = D = 1. 
From (23) – (24), an adjoint system has the state-space parameters A = 1, B = D = 1 and C = 
−1 and the corresponding transfer function is GH(s) = 1 – (s – 1)-1 = (- s + 2)(- s + 1)-1  = (s - 2)(s 
- 1)-1 , which is unstable and non-minimum-phase. Alternatively, the adjoint of  G(s) = 1 + (s 
+ 1)-1  = (s + 2)(s + 1)-1 can be obtained using (28), namely GH(s) = GT(-s) = (- s + 2)(- s + 1)-1. 
 

1.2.15 Causal and Noncausal  Systems 
A causal system is a system that depends exclusively on past and current inputs. 

Example 8. The differential of x(t) with respect to t is defined by 
0

( ) ( )( ) lim
dt

x t dt x t
dt

x t


 
 . 

Consider  
( ) ( ) ( )x t Ax t Bw t   (29)  

with Re{ ( )} 0i A  , i = 1, …, n. The positive sign of ( )x t  within (29) denotes a system that 
proceeds forward in time. This is called a causal system because it depends only on past and 
current inputs. 

Example 9. The negative differential of ξ(t) with respect to t is defined by 

0

( ) ( )( ) lim
dt

t t dt
dt

t  


 
  . Consider  

( ) ( ) ( )T Tt A t C u t     (30) 

with Re{ ( )} Re{ ( )} 0T
i iA A   , i = 1 …n. The negative sign of ( )t  within (30) denotes a 

system that proceeds backwards in time. Since this system depends on future inputs, it is 
termed noncausal. Note that Re{ ( )} 0i A   implies Re{ ( )} 0i A   . Hence, if causal system 
(21) – (22) is stable, then its adjoint (23) – (24) is unstable. 
 

1.2.16 Realising Unstable System Components 
Unstable systems are termed unrealisable because their outputs are not in 2 that is, they 
are unbounded. In other words, they cannot be implemented as forward-going systems. It 
follows from the above discussion that an unstable system component can be realised as a 
stable noncausal or backwards system.  

Suppose that the time domain system   is stable. The adjoint  system  Hz u  can be 
realised by the following three-step procedure. 
                                                                 

“We haven't the money, so we've got to think.” Baron Ernest Rutherford 

 Time-reverse the input signal u(t), that is, construct u(τ), where τ = T - t is a time-to-
go variable (see [12]). 

 Realise the stable system  T  

( ) ( ) ( )T TA C u      , 

( ) ( ) ( )T Tz B D u     , 

(31) 

(32) 
with ( ) 0T  . 

 Time-reverse the output signal z(τ), that is, construct z(t). 

The above procedure is known as noncausal filtering or smoothing; see the discrete-time 
case described in [13]. Thus, a combination of causal and non-causal system components can 
be used to implement an otherwise unrealisable system. This approach will be exploited in 
the realisation of smoothers within subsequent sections. 

Example 10. Suppose that it is required to realise the unstable system 2 1( ) ( ) ( )HG s G s G s  over 
an interval [0, T], where 1

1( ) ( 1)G s s    and 1
2 ( ) ( 2)G s s   . This system can be realised 

using the processes shown in Fig. 2.  

 

 
 

Figure 2. Realising an unstable 2 1( ) ( ) ( )HG s G s G s . 
 

1.2.17 Power Spectral Density 
The power of a voltage signal applied to a 1-ohm load is defined as the squared value of the 
signal and is expressed in watts. The power spectral density is expressed as power per unit 
bandwidth, that is, W/Hz. Consider again a linear, time-invariant system y =  w  and its 
corresponding transfer function matrix G(s). Assume that w is a zero-mean, stationary, white 
noise process with { ( ) ( )}TE w t w  = ( ) Q t , in which δ denotes the Dirac delta function. 
Then ( )yy s , the power spectral density of y, is given by 

( ) ( )  H
yy s GQG s , (33) 

which has the property ( )yy s  = ( ) yy s .  

The total energy of a signal is the integral of the power of the signal over time and is expressed 
in watt-seconds or joules. From Parseval’s theorem (9), the average total energy of y(t) is 

2 2

2
( ) ( ) ( ) { ( ) ( )}

 

  
    

j T
yyj

s ds y t dt y t E y t y t , (34) 

which is equal to the area under the power spectral density curve. 

                                                                 

“Time is what prevents everything from happening at once.”  John Archibald Wheeler 

Time-
reverse 
transpose 

Time-
reverse 
transpose 

1 ( )y z

Y1(s) W(s) Y2(s) 
1( )G s  

2 ( )
TG s

2 ( )TY s  1 ( )TY s  
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Adjoint systems have the property ( )H H     . The adjoint of the transfer function 
matrix G(s) is denoted as GH(s) and is defined by the transfer function matrix  

GH(s)   GT(-s). (28) 

Example 7.  Suppose that a system   has state-space parameters A = −1 and B = C = D = 1. 
From (23) – (24), an adjoint system has the state-space parameters A = 1, B = D = 1 and C = 
−1 and the corresponding transfer function is GH(s) = 1 – (s – 1)-1 = (- s + 2)(- s + 1)-1  = (s - 2)(s 
- 1)-1 , which is unstable and non-minimum-phase. Alternatively, the adjoint of  G(s) = 1 + (s 
+ 1)-1  = (s + 2)(s + 1)-1 can be obtained using (28), namely GH(s) = GT(-s) = (- s + 2)(- s + 1)-1. 
 

1.2.15 Causal and Noncausal  Systems 
A causal system is a system that depends exclusively on past and current inputs. 

Example 8. The differential of x(t) with respect to t is defined by 
0

( ) ( )( ) lim
dt

x t dt x t
dt

x t


 
 . 

Consider  
( ) ( ) ( )x t Ax t Bw t   (29)  

with Re{ ( )} 0i A  , i = 1, …, n. The positive sign of ( )x t  within (29) denotes a system that 
proceeds forward in time. This is called a causal system because it depends only on past and 
current inputs. 

Example 9. The negative differential of ξ(t) with respect to t is defined by 

0

( ) ( )( ) lim
dt

t t dt
dt

t  


 
  . Consider  

( ) ( ) ( )T Tt A t C u t     (30) 

with Re{ ( )} Re{ ( )} 0T
i iA A   , i = 1 …n. The negative sign of ( )t  within (30) denotes a 

system that proceeds backwards in time. Since this system depends on future inputs, it is 
termed noncausal. Note that Re{ ( )} 0i A   implies Re{ ( )} 0i A   . Hence, if causal system 
(21) – (22) is stable, then its adjoint (23) – (24) is unstable. 
 

1.2.16 Realising Unstable System Components 
Unstable systems are termed unrealisable because their outputs are not in 2 that is, they 
are unbounded. In other words, they cannot be implemented as forward-going systems. It 
follows from the above discussion that an unstable system component can be realised as a 
stable noncausal or backwards system.  

Suppose that the time domain system   is stable. The adjoint  system  Hz u  can be 
realised by the following three-step procedure. 
                                                                 

“We haven't the money, so we've got to think.” Baron Ernest Rutherford 

 Time-reverse the input signal u(t), that is, construct u(τ), where τ = T - t is a time-to-
go variable (see [12]). 

 Realise the stable system  T  

( ) ( ) ( )T TA C u      , 

( ) ( ) ( )T Tz B D u     , 

(31) 

(32) 
with ( ) 0T  . 

 Time-reverse the output signal z(τ), that is, construct z(t). 

The above procedure is known as noncausal filtering or smoothing; see the discrete-time 
case described in [13]. Thus, a combination of causal and non-causal system components can 
be used to implement an otherwise unrealisable system. This approach will be exploited in 
the realisation of smoothers within subsequent sections. 

Example 10. Suppose that it is required to realise the unstable system 2 1( ) ( ) ( )HG s G s G s  over 
an interval [0, T], where 1

1( ) ( 1)G s s    and 1
2 ( ) ( 2)G s s   . This system can be realised 

using the processes shown in Fig. 2.  

 

 
 

Figure 2. Realising an unstable 2 1( ) ( ) ( )HG s G s G s . 
 

1.2.17 Power Spectral Density 
The power of a voltage signal applied to a 1-ohm load is defined as the squared value of the 
signal and is expressed in watts. The power spectral density is expressed as power per unit 
bandwidth, that is, W/Hz. Consider again a linear, time-invariant system y =  w  and its 
corresponding transfer function matrix G(s). Assume that w is a zero-mean, stationary, white 
noise process with { ( ) ( )}TE w t w  = ( ) Q t , in which δ denotes the Dirac delta function. 
Then ( )yy s , the power spectral density of y, is given by 

( ) ( )  H
yy s GQG s , (33) 

which has the property ( )yy s  = ( ) yy s .  

The total energy of a signal is the integral of the power of the signal over time and is expressed 
in watt-seconds or joules. From Parseval’s theorem (9), the average total energy of y(t) is 

2 2

2
( ) ( ) ( ) { ( ) ( )}

 

  
    

j T
yyj

s ds y t dt y t E y t y t , (34) 

which is equal to the area under the power spectral density curve. 

                                                                 

“Time is what prevents everything from happening at once.”  John Archibald Wheeler 

Time-
reverse 
transpose 

Time-
reverse 
transpose 

1 ( )y z

Y1(s) W(s) Y2(s) 
1( )G s  

2 ( )
TG s

2 ( )TY s  1 ( )TY s  
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1.2.18 Spectral Factorisation 
Suppose that noisy measurements 

( ) ( ) ( ) z t y t v t  (35) 

of a linear, time-invariant system  , described by (21) - (22), are available, where v(t)  q  
is an independent, zero-mean, stationary white noise process with { ( ) ( )}TE v t v  = ( ) R t . 
Let  

( ) ( )  H
zz s GQG s R  (36) 

denote the spectral density matrix of the measurements z(t). Spectral factorisation was 
pioneered by Wiener (see [4] and [5]). It refers to the problem of decomposing a spectral 
density matrix into a product of a stable, minimum-phase matrix transfer function and its 
adjoint. In the case of the output power spectral density (36), a spectral factor ( ) s  satisfies 
( ) ( ) Hs s  = ( )zz s . 

The problem of spectral factorisation within continuous-time Wiener filtering problems is 
studied in [14]. The roots of the transfer function polynomials need to be sorted into those 
within the left-hand-plane and the right-hand plane. This is an eigenvalue decomposition 
problem – see the survey of spectral factorisation methods detailed in [11]. 

Example 11. In respect of the observation spectral density (36), suppose that G(s) = (s + 1)-1 
and Q = R = 1, which results in ( )zz s  = (- s2 + 2)(- s2 + 1)-1. By inspection, the spectral factor 

( ) s  = 1( 2 )( 1) s s  is stable, minimum-phase and satisfies ( ) ( ) Hs s  =  ( )zz s . 
 

1.3 Minimum-Mean-Square-Error Filtering  
 

1.3.1 Filter Derivation 
Now that some underlying frequency-domain concepts have been introduced, the Wiener 
filter [4] – [6] can be described. A Wiener-Hopf derivation of the Wiener filter appears in [4], 
[6]. This section describes a simpler completing-the-square approach (see [14], [16]). 
Consider a stable linear time-invariant system having a transfer function matrix G2(s) = C2(sI 
– A)-1 B + D2. Let Y2(s), W(s), V(s) and Z(s) denote the Laplace transforms of the system’s 
output, measurement noise, process noise and observations, respectively, so that 

2( ) ( ) ( ) Z s Y s V s . (37) 

Consider also a fictitious reference system having the transfer function G1(s) = C1(sI – A)-1B + 
D1 as shown in Fig. 3. The problem is to design a filter transfer function H(s) to calculate 

estimates 1̂( )Y s  = H(s)Z(s) of Y1(s) so that the energy ( ) ( )


 
j H

j
E s E s ds  of the estimation error 

E(s) = Y1(s) – 1̂( )Y s  (38) 

is minimised. 
                                                                 

“Science may be described as the art of systematic over-simplification.” Karl Raimund Popper 

 

 
 
 

 
Figure 3. The s-domain general filtering problem. 

It follows from Fig. 3 that E(s) is generated by 

2 1

( )
( ) ( ) ( ) ( )

( )
 

     
 

V s
E s H s HG s G s

W s
. (39) 

The error power spectrum density matrix is denoted by ( )ee s  and given by the covariance 
of E(s), that is, 

       ( ) ( ) ( )  H
ee s E s E s  

                  2 1
2 1

0 ( )
( ) ( ) ( )

0 ( ) ( )
  

          

H

H H H

R H s
H s HG s G s

Q G H s G s
 

                  1 1 1 2 2 1( ) ( ) ( ) ( )    H H H H H HG QG s G QG H s HG QG s H H z , 

(40) 

where 

2 2( ) ( )H Hs G QG s R    (41) 

is the spectral density matrix of the measurements. The quantity ( )s  is a spectral factor, 
which is unique up to the product of an inner matrix. Denote 1( ) ( ) ( )H Hs s    . Completing 
the square within (40) yields 

1
1 1 1 2 2 1( ) ( ) ( ) ( )H H H H

ee s G QG s G QG G QG s     

                                           + 1 2 1 2( ( ) ( ))( ( ) ( ))H H H H HH s G QG s H s G QG s       . 

(42) 

It follows that the total energy of the error signal is given by 

                    1
1 1 1 2 2 1( ) ( ) ( ) ( )

j j H H H H
eej j

s ds G QG s G QG G QG s ds
  

   
      

                                            1 2 1 2( ( ) ( ))( ( ) ( ))
j H H H H H

j
H s G QG s H s G QG s ds

  

 
       . 

(43) 

                                                                 

“Science is what you know. Philosophy is what you don't know.” Earl Bertrand Arthur William Russell 
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Suppose that noisy measurements 

( ) ( ) ( ) z t y t v t  (35) 

of a linear, time-invariant system  , described by (21) - (22), are available, where v(t)  q  
is an independent, zero-mean, stationary white noise process with { ( ) ( )}TE v t v  = ( ) R t . 
Let  

( ) ( )  H
zz s GQG s R  (36) 

denote the spectral density matrix of the measurements z(t). Spectral factorisation was 
pioneered by Wiener (see [4] and [5]). It refers to the problem of decomposing a spectral 
density matrix into a product of a stable, minimum-phase matrix transfer function and its 
adjoint. In the case of the output power spectral density (36), a spectral factor ( ) s  satisfies 
( ) ( ) Hs s  = ( )zz s . 

The problem of spectral factorisation within continuous-time Wiener filtering problems is 
studied in [14]. The roots of the transfer function polynomials need to be sorted into those 
within the left-hand-plane and the right-hand plane. This is an eigenvalue decomposition 
problem – see the survey of spectral factorisation methods detailed in [11]. 

Example 11. In respect of the observation spectral density (36), suppose that G(s) = (s + 1)-1 
and Q = R = 1, which results in ( )zz s  = (- s2 + 2)(- s2 + 1)-1. By inspection, the spectral factor 

( ) s  = 1( 2 )( 1) s s  is stable, minimum-phase and satisfies ( ) ( ) Hs s  =  ( )zz s . 
 

1.3 Minimum-Mean-Square-Error Filtering  
 

1.3.1 Filter Derivation 
Now that some underlying frequency-domain concepts have been introduced, the Wiener 
filter [4] – [6] can be described. A Wiener-Hopf derivation of the Wiener filter appears in [4], 
[6]. This section describes a simpler completing-the-square approach (see [14], [16]). 
Consider a stable linear time-invariant system having a transfer function matrix G2(s) = C2(sI 
– A)-1 B + D2. Let Y2(s), W(s), V(s) and Z(s) denote the Laplace transforms of the system’s 
output, measurement noise, process noise and observations, respectively, so that 

2( ) ( ) ( ) Z s Y s V s . (37) 

Consider also a fictitious reference system having the transfer function G1(s) = C1(sI – A)-1B + 
D1 as shown in Fig. 3. The problem is to design a filter transfer function H(s) to calculate 

estimates 1̂( )Y s  = H(s)Z(s) of Y1(s) so that the energy ( ) ( )


 
j H

j
E s E s ds  of the estimation error 

E(s) = Y1(s) – 1̂( )Y s  (38) 
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“Science may be described as the art of systematic over-simplification.” Karl Raimund Popper 

 

 
 
 

 
Figure 3. The s-domain general filtering problem. 

It follows from Fig. 3 that E(s) is generated by 

2 1

( )
( ) ( ) ( ) ( )

( )
 

     
 

V s
E s H s HG s G s

W s
. (39) 

The error power spectrum density matrix is denoted by ( )ee s  and given by the covariance 
of E(s), that is, 

       ( ) ( ) ( )  H
ee s E s E s  

                  2 1
2 1

0 ( )
( ) ( ) ( )

0 ( ) ( )
  

          

H

H H H

R H s
H s HG s G s

Q G H s G s
 

                  1 1 1 2 2 1( ) ( ) ( ) ( )    H H H H H HG QG s G QG H s HG QG s H H z , 

(40) 

where 

2 2( ) ( )H Hs G QG s R    (41) 

is the spectral density matrix of the measurements. The quantity ( )s  is a spectral factor, 
which is unique up to the product of an inner matrix. Denote 1( ) ( ) ( )H Hs s    . Completing 
the square within (40) yields 

1
1 1 1 2 2 1( ) ( ) ( ) ( )H H H H

ee s G QG s G QG G QG s     

                                           + 1 2 1 2( ( ) ( ))( ( ) ( ))H H H H HH s G QG s H s G QG s       . 

(42) 

It follows that the total energy of the error signal is given by 

                    1
1 1 1 2 2 1( ) ( ) ( ) ( )

j j H H H H
eej j

s ds G QG s G QG G QG s ds
  

   
      

                                            1 2 1 2( ( ) ( ))( ( ) ( ))
j H H H H H

j
H s G QG s H s G QG s ds

  

 
       . 

(43) 

                                                                 

“Science is what you know. Philosophy is what you don't know.” Earl Bertrand Arthur William Russell 
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1.2.18 Spectral Factorisation 
Suppose that noisy measurements 

( ) ( ) ( ) z t y t v t  (35) 

of a linear, time-invariant system  , described by (21) - (22), are available, where v(t)  q  
is an independent, zero-mean, stationary white noise process with { ( ) ( )}TE v t v  = ( ) R t . 
Let  

( ) ( )  H
zz s GQG s R  (36) 

denote the spectral density matrix of the measurements z(t). Spectral factorisation was 
pioneered by Wiener (see [4] and [5]). It refers to the problem of decomposing a spectral 
density matrix into a product of a stable, minimum-phase matrix transfer function and its 
adjoint. In the case of the output power spectral density (36), a spectral factor ( ) s  satisfies 
( ) ( ) Hs s  = ( )zz s . 

The problem of spectral factorisation within continuous-time Wiener filtering problems is 
studied in [14]. The roots of the transfer function polynomials need to be sorted into those 
within the left-hand-plane and the right-hand plane. This is an eigenvalue decomposition 
problem – see the survey of spectral factorisation methods detailed in [11]. 

Example 11. In respect of the observation spectral density (36), suppose that G(s) = (s + 1)-1 
and Q = R = 1, which results in ( )zz s  = (- s2 + 2)(- s2 + 1)-1. By inspection, the spectral factor 

( ) s  = 1( 2 )( 1) s s  is stable, minimum-phase and satisfies ( ) ( ) Hs s  =  ( )zz s . 
 

1.3 Minimum-Mean-Square-Error Filtering  
 

1.3.1 Filter Derivation 
Now that some underlying frequency-domain concepts have been introduced, the Wiener 
filter [4] – [6] can be described. A Wiener-Hopf derivation of the Wiener filter appears in [4], 
[6]. This section describes a simpler completing-the-square approach (see [14], [16]). 
Consider a stable linear time-invariant system having a transfer function matrix G2(s) = C2(sI 
– A)-1 B + D2. Let Y2(s), W(s), V(s) and Z(s) denote the Laplace transforms of the system’s 
output, measurement noise, process noise and observations, respectively, so that 

2( ) ( ) ( ) Z s Y s V s . (37) 

Consider also a fictitious reference system having the transfer function G1(s) = C1(sI – A)-1B + 
D1 as shown in Fig. 3. The problem is to design a filter transfer function H(s) to calculate 

estimates 1̂( )Y s  = H(s)Z(s) of Y1(s) so that the energy ( ) ( )


 
j H

j
E s E s ds  of the estimation error 

E(s) = Y1(s) – 1̂( )Y s  (38) 

is minimised. 
                                                                 

“Science may be described as the art of systematic over-simplification.” Karl Raimund Popper 

 

 
 
 

 
Figure 3. The s-domain general filtering problem. 

It follows from Fig. 3 that E(s) is generated by 

2 1

( )
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( )
 
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 

V s
E s H s HG s G s

W s
. (39) 

The error power spectrum density matrix is denoted by ( )ee s  and given by the covariance 
of E(s), that is, 

       ( ) ( ) ( )  H
ee s E s E s  

                  2 1
2 1

0 ( )
( ) ( ) ( )

0 ( ) ( )
  

          

H

H H H

R H s
H s HG s G s

Q G H s G s
 

                  1 1 1 2 2 1( ) ( ) ( ) ( )    H H H H H HG QG s G QG H s HG QG s H H z , 

(40) 

where 

2 2( ) ( )H Hs G QG s R    (41) 

is the spectral density matrix of the measurements. The quantity ( )s  is a spectral factor, 
which is unique up to the product of an inner matrix. Denote 1( ) ( ) ( )H Hs s    . Completing 
the square within (40) yields 

1
1 1 1 2 2 1( ) ( ) ( ) ( )H H H H

ee s G QG s G QG G QG s     

                                           + 1 2 1 2( ( ) ( ))( ( ) ( ))H H H H HH s G QG s H s G QG s       . 

(42) 

It follows that the total energy of the error signal is given by 

                    1
1 1 1 2 2 1( ) ( ) ( ) ( )

j j H H H H
eej j

s ds G QG s G QG G QG s ds
  

   
      

                                            1 2 1 2( ( ) ( ))( ( ) ( ))
j H H H H H

j
H s G QG s H s G QG s ds

  

 
       . 

(43) 

                                                                 

“Science is what you know. Philosophy is what you don't know.” Earl Bertrand Arthur William Russell 
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The first term on the right-hand-side of (43) is independent of H(s) and represents a lower 

bound of ( )
j

eej
s ds



 
 . The second term on the right-hand-side of (43) may be minimised by 

a judicious choice for H(s). 

Theorem 2: The above linear time-invariant filtering problem with by the measurements (37) and 
estimation error (38) has the solution 

1
1 2( ) ( )H HH s G QG s    . (44) 

which minimises  ( )
j

eej
s ds



 
 . 

Proof: The result follows by setting 1 2( ) ( )H HH s G QG s    = 0 within (43).                                     □ 

By Parseval’s theorem, the minimum mean-square-error solution (44) also minimises 2

2
( )e t . 

The solution (44) is unstable because the factor 1
2 ( ) ( )H HG s  possesses right-hand-plane 

poles. This optimal noncausal solution is actually a smoother, which can be realised by a 
combination of forward and backward processes. Wiener called (44) the optimal 
unrealisable solution because it cannot be realised by a memory-less network of capacitors, 
inductors and resistors [4]. 

The transfer function matrix of a realisable filter is given by 

 1 1
1 2( ) ( ) ( )H HH s G QG s 


   , (45) 

in which { }+ denotes the causal part. A procedure for finding the causal part of a transfer 
function is described below. 
 

1.3.2 Finding the Causal Part of a Transfer Function 
The causal part of transfer function can be found by carrying out the following three steps. 

 If the transfer function is not strictly proper, that is, if the order of the numerator is 
not less than the degree of the denominator, then perform synthetic division to 
isolate the constant term.  

 Expand out the (strictly proper) transfer function into the sum of stable and 
unstable partial fractions. 

 The causal part is the sum of the constant term and the stable partial fractions.  

Incidentally, the noncausal part is what remains, namely the sum of the unstable partial 
fractions. 

Example 12.  Consider G(s)   2 2 2 2 1( )( )s s     with α, β < 0. Since G2(s) possesses equal 
order numerator and denominator polynomials, synthetic division is required, which yields 
G2(s)   1 + 2 2 2 2 1( )( )s     . A partial fraction expansion results in  

                                                                 

“There is an astonishing imagination, even in the science of mathematics.” Francois-Marie Arouet de 
Voltaire 

2 2

2 2

( )
( )s
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1.3.3 Minimum-Mean-Square-Error Output Estimation 
In output estimation, the reference system is the same as the generating system, as depicted 
in Fig. 4. The simplification of the optimal noncausal solution (44) of Theorem 2 for the case 
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The optimal causal solution for output estimation is 
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When the measurement noise becomes negligibly small, the output estimator approaches a 
short circuit, that is,  
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
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The first term on the right-hand-side of (43) is independent of H(s) and represents a lower 

bound of ( )
j

eej
s ds



 
 . The second term on the right-hand-side of (43) may be minimised by 

a judicious choice for H(s). 

Theorem 2: The above linear time-invariant filtering problem with by the measurements (37) and 
estimation error (38) has the solution 

1
1 2( ) ( )H HH s G QG s    . (44) 

which minimises  ( )
j

eej
s ds



 
 . 

Proof: The result follows by setting 1 2( ) ( )H HH s G QG s    = 0 within (43).                                     □ 

By Parseval’s theorem, the minimum mean-square-error solution (44) also minimises 2

2
( )e t . 

The solution (44) is unstable because the factor 1
2 ( ) ( )H HG s  possesses right-hand-plane 

poles. This optimal noncausal solution is actually a smoother, which can be realised by a 
combination of forward and backward processes. Wiener called (44) the optimal 
unrealisable solution because it cannot be realised by a memory-less network of capacitors, 
inductors and resistors [4]. 

The transfer function matrix of a realisable filter is given by 

 1 1
1 2( ) ( ) ( )H HH s G QG s 


   , (45) 

in which { }+ denotes the causal part. A procedure for finding the causal part of a transfer 
function is described below. 
 

1.3.2 Finding the Causal Part of a Transfer Function 
The causal part of transfer function can be found by carrying out the following three steps. 
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not less than the degree of the denominator, then perform synthetic division to 
isolate the constant term.  

 Expand out the (strictly proper) transfer function into the sum of stable and 
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The optimal causal solution for output estimation is 
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When the measurement noise becomes negligibly small, the output estimator approaches a 
short circuit, that is,  
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The observation (48) can be verified by substituting ( )H s    2 2 ( )
HG QG s  into (46). This 

observation is consistent with intuition, that is, when the measurements are perfect, filtering 
will be superfluous. 
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Figure 5. Sample trajectories for Example 13: (a) measurement, (b) system output (dotted 
line) and filtered signal (solid line). 

Example 13. Consider a scalar output estimation problem, where G2(s) =  1( )s   ,   = - 1, 
Q = 1 and R = 0.0001. Then 2 2 ( )

HG QG s    2 2 1( )Q s     and ( )H s  = – (Rs2 + Rα2 + Q) 

2 2 1( )s    , which leads to ( )s    1/ 2 (R s  + 2 1)( )Q R s    . Therefore, 

1
2 2 ( ) ( )H HG QG s  = 

1/ 2 2

( )
( )( ) ( )

Q s
s s R s Q R


  

 
     

= 
1/ 2 2( )( )

Q
R s s Q R    

, in 

which a common pole and zero were cancelled. Expanding into partial fractions and taking 
the causal part results in 

1
2 2{ ( ) ( )}H HG QG s

  = 
1/ 2 2( )

( )
s

Q
R s Q R

s







  


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and 

( )OEH s  = 1
2 2{ } ( )H HG QG s 

   = 
2

2

)

)

Q R

s Q R

 



 

 
. 

Substituting 1   , Q = 1 and R = 0.0001 yields H(s) = 199( 100)s  . By inspection, 
lim 99( )

0 100
H s

s



, which illustrates the low measurement noise asymptote (48). Some 

sample trajectories from a simulation conducted with δt = 0.001 s are shown in Fig. 5. The 
input measurements are shown in Fig. 5(a). It can be seen that the filtered signal (the solid 
line of Fig. 5 (b)) estimates the system output (the dotted line of Fig. 5(b)). 
 

1.3.4 Minimum-Mean-Square-Error Input Estimation 
In input estimation problems, it is desired to estimate the input process w(t), as depicted in 
Fig. 6. This is commonly known as an equalisation problem, in which it is desired to 
mitigate the distortion introduced by a communication channel G2(s). The simplification of 
the general noncausal solution (44) of Theorem 2 for the case of G2(s) = I results in 

1
2( ) ( )H H

IEH s QG s    . (49) 

Equation (49) is known as the optimum minimum-mean-square-error noncausal equaliser 
[12]. Assume that: G2(s) is proper, that is, the order of the numerator is the same as the order 
of the denominator, and the zeros of G2(s) are in the left-hand-plane. Under these conditions, 
when the measurement noise becomes negligibly small, the equaliser estimates the inverse 
of the system model, that is,  

1
2

lim
( ) ( )

0 IEH s G s
R




. (50) 

The observation (50) can be verified by substituting ( )H s    2 2 ( )
HG QG s  into (49). In other 

words, if the channel model is invertible and signal to noise ratio is sufficiently high, the 
equaliser will estimate w(t). When measurement noise is present the equaliser no longer 
approximates the channel inverse because some filtering is also required. In the limit, when 
the signal to noise ratio is sufficiently low, the equaliser approaches an open circuit, namely, 

lim
( ) 0

0, 0 IEH s
Q s


 

. (51) 

The observation (51) can be verified by substituting Q = 0 into (49). Thus, when the 
equalisation problem is dominated by measurement noise, the estimation error is minimised 
by ignoring the data. 
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The observation (48) can be verified by substituting ( )H s    2 2 ( )
HG QG s  into (46). This 

observation is consistent with intuition, that is, when the measurements are perfect, filtering 
will be superfluous. 
 

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

−0.02

−0.01

0

0.01

0.02

Time, s

A
m

pl
itu

de

(a)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

−0.02

−0.01

0

0.01

0.02

Time, s

A
m

pl
itu

de

(b)

 
Figure 5. Sample trajectories for Example 13: (a) measurement, (b) system output (dotted 
line) and filtered signal (solid line). 

Example 13. Consider a scalar output estimation problem, where G2(s) =  1( )s   ,   = - 1, 
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sample trajectories from a simulation conducted with δt = 0.001 s are shown in Fig. 5. The 
input measurements are shown in Fig. 5(a). It can be seen that the filtered signal (the solid 
line of Fig. 5 (b)) estimates the system output (the dotted line of Fig. 5(b)). 
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The observation (48) can be verified by substituting ( )H s    2 2 ( )
HG QG s  into (46). This 

observation is consistent with intuition, that is, when the measurements are perfect, filtering 
will be superfluous. 
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Figure 5. Sample trajectories for Example 13: (a) measurement, (b) system output (dotted 
line) and filtered signal (solid line). 
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sample trajectories from a simulation conducted with δt = 0.001 s are shown in Fig. 5. The 
input measurements are shown in Fig. 5(a). It can be seen that the filtered signal (the solid 
line of Fig. 5 (b)) estimates the system output (the dotted line of Fig. 5(b)). 
 

1.3.4 Minimum-Mean-Square-Error Input Estimation 
In input estimation problems, it is desired to estimate the input process w(t), as depicted in 
Fig. 6. This is commonly known as an equalisation problem, in which it is desired to 
mitigate the distortion introduced by a communication channel G2(s). The simplification of 
the general noncausal solution (44) of Theorem 2 for the case of G2(s) = I results in 

1
2( ) ( )H H

IEH s QG s    . (49) 

Equation (49) is known as the optimum minimum-mean-square-error noncausal equaliser 
[12]. Assume that: G2(s) is proper, that is, the order of the numerator is the same as the order 
of the denominator, and the zeros of G2(s) are in the left-hand-plane. Under these conditions, 
when the measurement noise becomes negligibly small, the equaliser estimates the inverse 
of the system model, that is,  

1
2

lim
( ) ( )

0 IEH s G s
R




. (50) 

The observation (50) can be verified by substituting ( )H s    2 2 ( )
HG QG s  into (49). In other 

words, if the channel model is invertible and signal to noise ratio is sufficiently high, the 
equaliser will estimate w(t). When measurement noise is present the equaliser no longer 
approximates the channel inverse because some filtering is also required. In the limit, when 
the signal to noise ratio is sufficiently low, the equaliser approaches an open circuit, namely, 

lim
( ) 0

0, 0 IEH s
Q s


 

. (51) 

The observation (51) can be verified by substituting Q = 0 into (49). Thus, when the 
equalisation problem is dominated by measurement noise, the estimation error is minimised 
by ignoring the data. 

 

                                                                 

“All of the biggest technological inventions created by man - the airplane, the automobile, the computer 
- says little about his intelligence, but speaks volumes about his laziness.” Mark Raymond Kennedy 
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Thus, knowledge of a system’s differential equation is sufficient to identify its transfer 
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Table 1. Main results for the continuous-time general filtering problem. 
 

1.5 Problems 
Problem 1. Find the transfer functions and comment on stability of the systems having the 
following polynomial fractions. 
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“The important thing in science is not so much to obtain new facts as to discover new ways of thinking 
about them.” William Henry Bragg 



Smoothing, Filtering and Prediction:
Estimating the Past, Present and Future18

                  
 
 
 

Figure 6. The s-domain input estimation problem. 
 

1.4 Conclusion 
Continuous-time, linear, time-invariant systems can be described via either a differential 
equation model or as a state-space model. Signal models can be written in the time-domain 
as 

1

1 1 01 ... ( )
n n

n nn n

d d da a a a y t
dt dt dt



 

 
    

 

1

1 1 01 ... ( )
m m

m mm n

d d db b b b w t
dt dt dt



 

 
     

 
. 

Under the time-invariance assumption, the system transfer function matrices exist, which 
are written as polynomial fractions in the Laplace transform variable 

1
1 1 0

1
1 1 0

...( ) ( ) ( ) ( ).
...

m m
m m

n n
n n

b s b s b s bY s W s G s W s
a s a s a s a







    
      

 

Thus, knowledge of a system’s differential equation is sufficient to identify its transfer 
function. If the poles of a system’s transfer function are all in the left-hand-plane then the 
system is asymptotically stable. That is, if the input to the system is bounded then the 
output of the system will be bounded. 

The optimal solution minimises the energy of the error in the time domain. It is found in the 
frequency domain by minimising the mean-square-error. The main results are summarised 
in Table 1. The optimal noncausal solution has unstable factors. It can only be realised by a 
combination of forward and backward processes, which is known as smoothing. The 
optimal causal solution is also known as the Wiener filter. 

In output estimation problems, C1 = C2, D1 = D2, that is, G1(s) = G2(s) and when the 
measurement noise becomes negligible, the solution approaches a short circuit. In input 
estimation or equalisation, C1 = 0, D1 = I, that is, G1(s) = I and when the measurement noise 
becomes negligible, the optimal equaliser approaches the channel inverse, provided the 
inverse exists. Conversely, when the problem is dominated by measurement noise then the 
equaliser approaches an open circuit. 

 

 
 

                                                                 

“Read Euler, read Euler, he is our master in everything.” Pierre-Simon Laplace 

 

 

HIE(s) 
 

G2(s) Σ 
W(s) 

 Σ 

+ 

+ 

_ + 

Y2(s) 

V(s) 

E(s) 

ˆ ( )W s  Z(s) 

 ASSUMPTIONS MAIN RESULTS 
Si

gn
al

s 
an

d 
sy

st
em

s 

E{w(t)} = E{W(s)} =  E{v(t)} = E{V(s)} 
= 0. E{w(t)wT(t)} = E{W(s)WT(s)} = Q 
> 0 and E{v(t)vT(t)} = E{V(s)VT(s)} = 
R > 0 are known. A, B, C1, C2, D1 and 
D2 are known. G1(s) and G2(s) are 
stable, i.e., Re{λi(A)} < 0. 
 

1
1 1 1( ) ( )G s C sI A B D    

1
2 2 2( ) ( )G s C sI A B D    

Sp
ec

tr
al

 
fa

ct
or

is
at

io
n 

Δ(s) and Δ-1(s) are stable, i.e., the 
poles and zeros of  Δ(s) are in the 
left-half-plane. 

 2 2( ) ( )H Hs G QG s R    
 

 

 

N
on

-c
au

sa
l 

so
lu

tio
n 

 1 1
1 2( ) ( ) ( )H HH s G QG s     

C
au

sa
l 

so
lu

tio
n   1 1

1 2( ) ( ) ( )H HH s G QG s 


    

Table 1. Main results for the continuous-time general filtering problem. 
 

1.5 Problems 
Problem 1. Find the transfer functions and comment on stability of the systems having the 
following polynomial fractions. 

(a) 7 12 2y y y w w w        . 

(b) 1 20 5 6y y y w w w       . 

(c) 11 30 7 12y y y w w w        . 

(d) 13 42 9 20y y y w w w        . 

(e) 15 56 11 30y y y w w w        . 

Problem 2. Find the transfer functions and comment on the stability for systems having the 
following state-space parameters. 

(a) 
7 12
1 0

A
  

  
 

, 
1
0

B
 

  
 

, 6 14C       and 1D  . 

                                                                 

“The important thing in science is not so much to obtain new facts as to discover new ways of thinking 
about them.” William Henry Bragg 

Continuous-Time Minimum-Mean-Square-Error Filtering 19

                  
 
 
 

Figure 6. The s-domain input estimation problem. 
 

1.4 Conclusion 
Continuous-time, linear, time-invariant systems can be described via either a differential 
equation model or as a state-space model. Signal models can be written in the time-domain 
as 

1

1 1 01 ... ( )
n n

n nn n

d d da a a a y t
dt dt dt



 

 
    

 

1

1 1 01 ... ( )
m m

m mm n

d d db b b b w t
dt dt dt



 

 
     

 
. 

Under the time-invariance assumption, the system transfer function matrices exist, which 
are written as polynomial fractions in the Laplace transform variable 

1
1 1 0

1
1 1 0

...( ) ( ) ( ) ( ).
...

m m
m m

n n
n n

b s b s b s bY s W s G s W s
a s a s a s a







    
      

 

Thus, knowledge of a system’s differential equation is sufficient to identify its transfer 
function. If the poles of a system’s transfer function are all in the left-hand-plane then the 
system is asymptotically stable. That is, if the input to the system is bounded then the 
output of the system will be bounded. 

The optimal solution minimises the energy of the error in the time domain. It is found in the 
frequency domain by minimising the mean-square-error. The main results are summarised 
in Table 1. The optimal noncausal solution has unstable factors. It can only be realised by a 
combination of forward and backward processes, which is known as smoothing. The 
optimal causal solution is also known as the Wiener filter. 

In output estimation problems, C1 = C2, D1 = D2, that is, G1(s) = G2(s) and when the 
measurement noise becomes negligible, the solution approaches a short circuit. In input 
estimation or equalisation, C1 = 0, D1 = I, that is, G1(s) = I and when the measurement noise 
becomes negligible, the optimal equaliser approaches the channel inverse, provided the 
inverse exists. Conversely, when the problem is dominated by measurement noise then the 
equaliser approaches an open circuit. 

 

 
 

                                                                 

“Read Euler, read Euler, he is our master in everything.” Pierre-Simon Laplace 

 

 

HIE(s) 
 

G2(s) Σ 
W(s) 

 Σ 

+ 

+ 

_ + 

Y2(s) 

V(s) 

E(s) 

ˆ ( )W s  Z(s) 

 ASSUMPTIONS MAIN RESULTS 
Si

gn
al

s 
an

d 
sy

st
em

s 

E{w(t)} = E{W(s)} =  E{v(t)} = E{V(s)} 
= 0. E{w(t)wT(t)} = E{W(s)WT(s)} = Q 
> 0 and E{v(t)vT(t)} = E{V(s)VT(s)} = 
R > 0 are known. A, B, C1, C2, D1 and 
D2 are known. G1(s) and G2(s) are 
stable, i.e., Re{λi(A)} < 0. 
 

1
1 1 1( ) ( )G s C sI A B D    

1
2 2 2( ) ( )G s C sI A B D    

Sp
ec

tr
al

 
fa

ct
or

is
at

io
n 

Δ(s) and Δ-1(s) are stable, i.e., the 
poles and zeros of  Δ(s) are in the 
left-half-plane. 

 2 2( ) ( )H Hs G QG s R    
 

 

 

N
on

-c
au

sa
l 

so
lu

tio
n 

 1 1
1 2( ) ( ) ( )H HH s G QG s     

C
au

sa
l 

so
lu

tio
n   1 1

1 2( ) ( ) ( )H HH s G QG s 


    

Table 1. Main results for the continuous-time general filtering problem. 
 

1.5 Problems 
Problem 1. Find the transfer functions and comment on stability of the systems having the 
following polynomial fractions. 

(a) 7 12 2y y y w w w        . 

(b) 1 20 5 6y y y w w w       . 

(c) 11 30 7 12y y y w w w        . 

(d) 13 42 9 20y y y w w w        . 

(e) 15 56 11 30y y y w w w        . 

Problem 2. Find the transfer functions and comment on the stability for systems having the 
following state-space parameters. 

(a) 
7 12
1 0

A
  

  
 

, 
1
0

B
 

  
 

, 6 14C       and 1D  . 

                                                                 

“The important thing in science is not so much to obtain new facts as to discover new ways of thinking 
about them.” William Henry Bragg 



Smoothing, Filtering and Prediction:
Estimating the Past, Present and Future20

(b) 
7 20
1 0

A
 

  
 

, 
1
0

B
 

  
 

, 2 26C      and 1D  . 

(c) 
11 30
1 0

A
  

  
 

, 
1
0

B
 

  
 

, 18 18C       and 1D  . 

(d) 
13 42
1 0

A
 

  
 

, 
1
0

B
 

  
 

, 22 22C      and 1D  . 

(e) 
15 56
1 0

A
  

  
 

, 
1
0

B
 

  
 

, 4 26C       and 1D  . 

Problem 3. Calculate the spectral factors for ( ) ( )H
zz s GQG s R    having the following 

models and noise statistics. 

(a) 1( ) ( 1)G s s   , Q = 2 and R = 1. 

(b) 1( ) ( 2)G s s   , Q = 5 and R = 1. 

(c) 1( ) ( 3)G s s   , Q = 7 and R = 1. 

(d) 1( ) ( 4)G s s   , Q = 9 and R = 1. 

(e) 1( ) ( 5)G s s   , Q = 11 and R = 1. 

Problem 4. Calculate the optimal causal output estimators for Problem 3. 

Problem 5. Consider the error spectral density matrix 
1 1

1 2 1 2( ) [ ( ) ][ ( ) ] ( )H H H H H
ee s H G QG H G QG s          

                                                 1
1 1 1 2 2 1[ ( ) ]( )H H H HG QG G QG G QG s   . 

(a) Derive the optimal output estimator.  

(b) Derive the optimal causal output estimator. 

(c) Derive the optimal input estimator. 

                                                                 

“Nothing shocks me. I'm a scientist.” Harrison Ford 

Problem 6 [16]. In respect of the configuration in Fig. 2, suppose that 
1 0 0
0 2 0
0 0 3
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25
25
25

B
 
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  

, 2 1 2 1C     , 1 1 1 1C     , D = 0, Q = 1 and R = 1. Show that the optimal 

causal filter is given by 2 3 2 1( ) (16.9 86.5 97.3)( 8.64 30.3 50.3)H s s s s s s        . 

Problem 7 [18]. Suppose that 2 2 2 2

3600( )
(169 )

HG QG s
s s





 and R(s) = 1. Show that the optimal 

causal filter for output estimation is given by 2 1( ) (4 60)( 17 60)OEH s s s s     . 
 

1.6 Glossary 
The following terms have been introduced within this section. 

  The space of real numbers. 

n  The space of real-valued n-element column vectors. 
t The real-valued continuous-time variable. For example, t  ( , )   

and t  [0, )  denote −∞ < t < ∞ and 0 ≤ t < ∞, respectively. 

w(t) n  A continuous-time, real-valued, n-element stationary stochastic input 
signal. 

w The set of w(t) over a prescribed interval. 

 : p  q  A linear system that operates on a p-element input signal and 
produces a q-element output signal.  

y w  The output of a linear system   that operates on an input signal w.  

A, B, C, D Time-invariant state space matrices of appropriate dimension. The 
system   is assumed to have the realisation ( )x t  = Ax(t) + Bw(t),  
y(t) = Cx(t) + Dw(t) in which w(t) is known as the process noise or 
input signal. 

v(t) A stationary stochastic measurement noise signal. 
δ(t)  The Dirac delta function. 
Q and R Time-invariant covariance matrices of stochastic signals w(t) and v(t), 

respectively. 
s The Laplace transform variable. 
Y(s) The Laplace transform of a continuous-time signal y(t). 
G(s) The transfer function matrix of a system  . For example, the 

transfer function matrix of the system ( )x t  = Ax(t) + Bw(t),  y(t) = 

                                                                 

“Facts are not science - as the dictionary is not literature.” Martin Henry Fischer 
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 

  
 

, 
1
0

B
 

  
 

, 22 22C      and 1D  . 

(e) 
15 56
1 0

A
  

  
 

, 
1
0

B
 

  
 

, 4 26C       and 1D  . 

Problem 3. Calculate the spectral factors for ( ) ( )H
zz s GQG s R    having the following 

models and noise statistics. 

(a) 1( ) ( 1)G s s   , Q = 2 and R = 1. 

(b) 1( ) ( 2)G s s   , Q = 5 and R = 1. 

(c) 1( ) ( 3)G s s   , Q = 7 and R = 1. 

(d) 1( ) ( 4)G s s   , Q = 9 and R = 1. 

(e) 1( ) ( 5)G s s   , Q = 11 and R = 1. 

Problem 4. Calculate the optimal causal output estimators for Problem 3. 

Problem 5. Consider the error spectral density matrix 
1 1

1 2 1 2( ) [ ( ) ][ ( ) ] ( )H H H H H
ee s H G QG H G QG s          

                                                 1
1 1 1 2 2 1[ ( ) ]( )H H H HG QG G QG G QG s   . 

(a) Derive the optimal output estimator.  

(b) Derive the optimal causal output estimator. 

(c) Derive the optimal input estimator. 
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Problem 6 [16]. In respect of the configuration in Fig. 2, suppose that 
1 0 0
0 2 0
0 0 3

A
 
   
  

, 

25
25
25

B
 
   
  

, 2 1 2 1C     , 1 1 1 1C     , D = 0, Q = 1 and R = 1. Show that the optimal 

causal filter is given by 2 3 2 1( ) (16.9 86.5 97.3)( 8.64 30.3 50.3)H s s s s s s        . 

Problem 7 [18]. Suppose that 2 2 2 2

3600( )
(169 )

HG QG s
s s





 and R(s) = 1. Show that the optimal 

causal filter for output estimation is given by 2 1( ) (4 60)( 17 60)OEH s s s s     . 
 

1.6 Glossary 
The following terms have been introduced within this section. 

  The space of real numbers. 

n  The space of real-valued n-element column vectors. 
t The real-valued continuous-time variable. For example, t  ( , )   

and t  [0, )  denote −∞ < t < ∞ and 0 ≤ t < ∞, respectively. 

w(t) n  A continuous-time, real-valued, n-element stationary stochastic input 
signal. 

w The set of w(t) over a prescribed interval. 

 : p  q  A linear system that operates on a p-element input signal and 
produces a q-element output signal.  

y w  The output of a linear system   that operates on an input signal w.  

A, B, C, D Time-invariant state space matrices of appropriate dimension. The 
system   is assumed to have the realisation ( )x t  = Ax(t) + Bw(t),  
y(t) = Cx(t) + Dw(t) in which w(t) is known as the process noise or 
input signal. 

v(t) A stationary stochastic measurement noise signal. 
δ(t)  The Dirac delta function. 
Q and R Time-invariant covariance matrices of stochastic signals w(t) and v(t), 

respectively. 
s The Laplace transform variable. 
Y(s) The Laplace transform of a continuous-time signal y(t). 
G(s) The transfer function matrix of a system  . For example, the 

transfer function matrix of the system ( )x t  = Ax(t) + Bw(t),  y(t) = 
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  
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Problem 3. Calculate the spectral factors for ( ) ( )H
zz s GQG s R    having the following 

models and noise statistics. 

(a) 1( ) ( 1)G s s   , Q = 2 and R = 1. 

(b) 1( ) ( 2)G s s   , Q = 5 and R = 1. 

(c) 1( ) ( 3)G s s   , Q = 7 and R = 1. 

(d) 1( ) ( 4)G s s   , Q = 9 and R = 1. 

(e) 1( ) ( 5)G s s   , Q = 11 and R = 1. 

Problem 4. Calculate the optimal causal output estimators for Problem 3. 

Problem 5. Consider the error spectral density matrix 
1 1

1 2 1 2( ) [ ( ) ][ ( ) ] ( )H H H H H
ee s H G QG H G QG s          

                                                 1
1 1 1 2 2 1[ ( ) ]( )H H H HG QG G QG G QG s   . 

(a) Derive the optimal output estimator.  

(b) Derive the optimal causal output estimator. 

(c) Derive the optimal input estimator. 
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, 2 1 2 1C     , 1 1 1 1C     , D = 0, Q = 1 and R = 1. Show that the optimal 

causal filter is given by 2 3 2 1( ) (16.9 86.5 97.3)( 8.64 30.3 50.3)H s s s s s s        . 

Problem 7 [18]. Suppose that 2 2 2 2

3600( )
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 and R(s) = 1. Show that the optimal 

causal filter for output estimation is given by 2 1( ) (4 60)( 17 60)OEH s s s s     . 
 

1.6 Glossary 
The following terms have been introduced within this section. 

  The space of real numbers. 

n  The space of real-valued n-element column vectors. 
t The real-valued continuous-time variable. For example, t  ( , )   

and t  [0, )  denote −∞ < t < ∞ and 0 ≤ t < ∞, respectively. 

w(t) n  A continuous-time, real-valued, n-element stationary stochastic input 
signal. 

w The set of w(t) over a prescribed interval. 

 : p  q  A linear system that operates on a p-element input signal and 
produces a q-element output signal.  

y w  The output of a linear system   that operates on an input signal w.  

A, B, C, D Time-invariant state space matrices of appropriate dimension. The 
system   is assumed to have the realisation ( )x t  = Ax(t) + Bw(t),  
y(t) = Cx(t) + Dw(t) in which w(t) is known as the process noise or 
input signal. 

v(t) A stationary stochastic measurement noise signal. 
δ(t)  The Dirac delta function. 
Q and R Time-invariant covariance matrices of stochastic signals w(t) and v(t), 

respectively. 
s The Laplace transform variable. 
Y(s) The Laplace transform of a continuous-time signal y(t). 
G(s) The transfer function matrix of a system  . For example, the 

transfer function matrix of the system ( )x t  = Ax(t) + Bw(t),  y(t) = 
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Cx(t) + Dw(t) is given by G(s) = C(sI − A)−1B + D. 

,v w  The inner product of two continuous-time signals v and w which is 

defined by , Tv w v w dt



  . 

2
w  The 2-norm of the continuous-time signal w which is defined by 

2
w  = ,w w  = Tw wdt



 . 

2 The set of continuous-time signals having finite 2-norm, which is 
known as the Lebesgue 2-space. 

λi(A) The i eigenvalues of A. 
Re{ λi(A)} The real part of the eigenvalues of A. 
Asymptotic stability A linear system   is said to be asymptotically stable if its output y  

2 for any w  2. If Re{λi(A)} are in the left-hand-plane or 
equivalently if the real part of transfer function’s poles are in the left-
hand-plane then the system is stable. 

H  The adjoint of  . The adjoint of a system having the state-space 
parameters {A, B, C, D} is a system parameterised by {– AT, – CT, BT, 
DT}. 

GH(s) The adjoint (or Hermitian transpose) of the transfer function matrix 
G(s). 

( )zz s  The spectral density matrix of the measurements z. 

( )s  The spectral factor of ( )zz s  which satisfies ( )H s  = ( )HGQG s  + R 
and ( )H s  = 1( ) ( )H s . 

G–1(s) Inverse of the transfer function matrix G(s). 
G–H(s) Inverse of the adjoint transfer function matrix GH(s). 
{G(s)}+ Causal part of the transfer function matrix G(s). 
H(s) Transfer function matrix of the minimum mean-square-error 

solution. 
HOE(s) Transfer function matrix of the minimum mean-square-error solution 

specialised for output estimation. 
HIE(s) Transfer function matrix of the minimum mean-square-error solution 

specialised for input estimation. 
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Cx(t) + Dw(t) is given by G(s) = C(sI − A)−1B + D. 

,v w  The inner product of two continuous-time signals v and w which is 

defined by , Tv w v w dt



  . 

2
w  The 2-norm of the continuous-time signal w which is defined by 

2
w  = ,w w  = Tw wdt



 . 

2 The set of continuous-time signals having finite 2-norm, which is 
known as the Lebesgue 2-space. 

λi(A) The i eigenvalues of A. 
Re{ λi(A)} The real part of the eigenvalues of A. 
Asymptotic stability A linear system   is said to be asymptotically stable if its output y  

2 for any w  2. If Re{λi(A)} are in the left-hand-plane or 
equivalently if the real part of transfer function’s poles are in the left-
hand-plane then the system is stable. 

H  The adjoint of  . The adjoint of a system having the state-space 
parameters {A, B, C, D} is a system parameterised by {– AT, – CT, BT, 
DT}. 

GH(s) The adjoint (or Hermitian transpose) of the transfer function matrix 
G(s). 

( )zz s  The spectral density matrix of the measurements z. 

( )s  The spectral factor of ( )zz s  which satisfies ( )H s  = ( )HGQG s  + R 
and ( )H s  = 1( ) ( )H s . 

G–1(s) Inverse of the transfer function matrix G(s). 
G–H(s) Inverse of the adjoint transfer function matrix GH(s). 
{G(s)}+ Causal part of the transfer function matrix G(s). 
H(s) Transfer function matrix of the minimum mean-square-error 

solution. 
HOE(s) Transfer function matrix of the minimum mean-square-error solution 

specialised for output estimation. 
HIE(s) Transfer function matrix of the minimum mean-square-error solution 

specialised for input estimation. 
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Cx(t) + Dw(t) is given by G(s) = C(sI − A)−1B + D. 

,v w  The inner product of two continuous-time signals v and w which is 

defined by , Tv w v w dt

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2
w  The 2-norm of the continuous-time signal w which is defined by 

2
w  = ,w w  = Tw wdt
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2 The set of continuous-time signals having finite 2-norm, which is 
known as the Lebesgue 2-space. 

λi(A) The i eigenvalues of A. 
Re{ λi(A)} The real part of the eigenvalues of A. 
Asymptotic stability A linear system   is said to be asymptotically stable if its output y  

2 for any w  2. If Re{λi(A)} are in the left-hand-plane or 
equivalently if the real part of transfer function’s poles are in the left-
hand-plane then the system is stable. 

H  The adjoint of  . The adjoint of a system having the state-space 
parameters {A, B, C, D} is a system parameterised by {– AT, – CT, BT, 
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GH(s) The adjoint (or Hermitian transpose) of the transfer function matrix 
G(s). 

( )zz s  The spectral density matrix of the measurements z. 

( )s  The spectral factor of ( )zz s  which satisfies ( )H s  = ( )HGQG s  + R 
and ( )H s  = 1( ) ( )H s . 

G–1(s) Inverse of the transfer function matrix G(s). 
G–H(s) Inverse of the adjoint transfer function matrix GH(s). 
{G(s)}+ Causal part of the transfer function matrix G(s). 
H(s) Transfer function matrix of the minimum mean-square-error 

solution. 
HOE(s) Transfer function matrix of the minimum mean-square-error solution 

specialised for output estimation. 
HIE(s) Transfer function matrix of the minimum mean-square-error solution 

specialised for input estimation. 

                                                                 

“Facts are stupid things.” Ronald Wilson Reagan 

 

1.7 References 
[1] O. Neugebauer, A history of ancient mathematical astronomy, Springer, Berlin and New 

York, 1975. 
[2] C. F. Gauss, Theoria Motus Corporum Coelestium in Sectionibus Conicis Solem Ambientum, 

Hamburg, 1809 (Translated: Theory of the Motion of the Heavenly Bodies, Dover, New 
York, 1963). 

[3] A. N. Kolmogorov, “Sur l’interpolation et extrapolation des suites stationaires”, Comptes 
Rendus. de l’Academie des Sciences, vol. 208, pp. 2043 – 2045, 1939. 

[4] N. Wiener, Extrapolation, interpolation and smoothing of stationary time series with 
engineering applications, The MIT Press, Cambridge Mass.; Wiley, New York; Chapman 
& Hall, London, 1949. 

[5] P. Masani, “Wiener’s Contributions to Generalized Harmonic Analysis, Prediction 
Theory and Filter Theory”, Bulletin of the American Mathematical Society, vol. 72, no. 1, pt. 
2, pp. 73 – 125, 1966. 

[6] T. Kailath, Lectures on Wiener and Kalman Filtering, Springer Verlag, Wien; New York, 1981. 
[7] M.-A. Parseval Des Chênes, Mémoires présentés à l’Institut des Sciences, Lettres et Arts, par 

divers savans, et lus dans ses assemblées. Sciences mathématiques et physiques (Savans 
étrangers), vol. 1, pp. 638 – 648, 1806. 

[8] C. A. Desoer and M. Vidyasagar, Feedback Systems : Input  Output Properties, Academic 
Press, N.Y., 1975. 

[9] G. A. Einicke, “Asymptotic Optimality of the Minimum-Variance Fixed-Interval 
Smoother”, IEEE Transactions on Signal Processing, vol. 55, no. 4, pp. 1543 – 1547, Apr. 2007. 

[10] T. Kailath, Linear Systems, Prentice-Hall Inc., Englewood Cliffs, New Jersey, 1980. 
[11] D. J. N. Limebeer, B. D. O. Anderson, P. Khargonekar and M. Green, “A Game 

Theoretic Approach to H   Control for Time-varying Systems”, SIAM Journal of Control 
and Optimization, vol. 30, no. 2, pp. 262 – 283, 1992. 

[12] M. Green and D. J. N. Limebeer, Linear Robust Control, Prentice-Hall Inc, Englewood 
Cliffs, New Jersey, 1995.  

[13] C. S. Burrus, J. H. McClellan, A. V. Oppenheim, T. W. Parks, R. W. Schafer and H. W. 
Schuessler, Computer-Based Exercises for Signal Processing Using Matlab, Prentice-Hall, 
Englewood Cliffs, New Jersey, 1994. 

[14] U. Shaked, “A general transfer function approach to linear stationary filtering and 
steady state optimal control problems”, International Journal of Control, vol. 24, no. 6, pp. 
741 – 770, 1976. 

[15] A. H. Sayed and T. Kailath, “A Survey of Spectral Factorization Methods”, Numerical 
Linear Algebra with Applications, vol. 8, pp. 467 – 496, 2001. 

[16] U. Shaked, “H∞–Minimum Error State Estimation of Linear Stationary Processes”, IEEE 
Transactions on Automatic Control, vol. 35, no. 5, pp. 554 – 558, May 1990.  

[17] S. A. Kassam and H. V. Poor, “Robust Techniques for Signal Processing: A Survey”, 
Proceedings of the IEEE, vol. 73, no. 3, pp. 433 – 481, Mar. 1985. 

[18] A. P. Sage and J. L. Melsa, Estimation Theory with Applications to Communications and 
Control, McGraw-Hill Book Company, New York, 1971. 

                                                                 

“All science is either physics or stamp collecting.” Baron William Thomson Kelvin 





Discrete-Time Minimum-Mean-Square-Error Filtering 25

2 
 

Discrete-Time  
Minimum-Mean-Square-Error Filtering 

 
2.1 Introduction 
This chapter reviews the solutions for the discrete-time, linear stationary filtering problems 
that are attributed to Wiener [1] and Kolmogorov [2]. As in the continuous-time case, a 
model-based approach is employed. Here, a linear model is specified by the coefficients of 
the input and output difference equations. It is shown that the same coefficients appear in 
the system’s (frequency domain) transfer function. In other words, frequency domain model 
representations can be written down without background knowledge of z-transforms.  

In the 1960s and 1970s, continuous-time filters were implemented on analogue computers. 
This practice has been discontinued for two main reasons. First, analogue multipliers and op 
amp circuits exhibit poor performance whenever (temperature-sensitive) calibrations 
become out of date. Second, updated software releases are faster to turn around than 
hardware design iterations. Continuous-time filters are now routinely implemented using 
digital computers, provided that the signal sampling rates and data processing rates are 
sufficiently high. Alternatively, continuous-time model parameters may be converted into 
discrete-time and differential equations can be transformed into difference equations. The 
ensuing discrete-time filter solutions are then amenable to more economical 
implementation, namely, employing relatively lower processing rates. 

The discrete-time Wiener filtering problem is solved in the frequency domain. Once again, it 
is shown that the optimum minimum-mean-square-error solution is found by completing 
the square. The optimum solution is noncausal, which can only be implemented by forward 
and backward processes. This solution is actually a smoother and the optimum filter is 
found by taking the causal part. 

The developments rely on solving a spectral factorisation problem, which requires pole-zero 
cancellations. Therefore, some pertinent discrete-time concepts are introduced in Section 2.2 
prior to deriving the filtering results. The discussion of the prerequisite concepts is 
comparatively brief since it mirrors the continuous-time material introduced previously. In 
Section 2.3 it is shown that the structure of the filter solutions is unchanged – only the 
spectral factors are calculated differently. 

 

 

                                                                 

“If we value the pursuit of knowledge, we must be free to follow wherever that search may lead us. The 
free mind is not a barking dog, to be tethered on a ten foot-chain.” Adlai Ewing Stevenson Jr. 



Smoothing, Filtering and Prediction:
Estimating the Past, Present and Future26

11 ( )
2

jwT

jwT

e k
k e

y Y z z dz
j




  . (4) 

Theorem 1 Parseval’s Theorem:  

2 21 ( )
2

jwT

jwT

e

k e
y dk Y z dz

j


 
  . (5) 

That is, the energy in the time domain equals the energy in the frequency domain. 
 

2.2.4 Polynomial Fraction Transfer Functions 
In the continuous-time case, a system’s differential equations lead to a transfer function in 
the Laplace transform variable. Here, in discrete-time, a system’s difference equations lead 
to a transfer function in the z-transform variable. Applying the z-transform to both sides of 
(2) yields the difference equation 
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is known as the transfer function of the system. It can be seen that knowledge of the system 
difference equation (2) is sufficient to identify its transfer function (8). 
 

2.2.5 Poles and Zeros 
The numerator and denominator polynomials of (8) can be factored into m and n linear 
factors, respectively, to give  

1 2

1 2

( )( )...( )( )
( )( )...( )

m m

n n

b z z zG z
a z z z

  
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  


  
. (9) 

The numerator of G(z) is zero when z = βi, i = 1 … m. These values of z are called the zeros of 
G(z). Zeros inside the unit circle are called minimum-phase whereas zeros outside the unit 

                                                                 

“There is no philosophy which is not founded upon knowledge of the phenomena, but to get any profit 
from this knowledge it is absolutely necessary to be a mathematician.” Daniel Bernoulli 

2.2 Prerequisites 
 

2.2.1 Spaces 
Discrete-time real-valued stochastic processes are denoted as T

kv  = 1,[ ,T
kv 2, ,

T
kv  …, , ]

T
n kv  and 

T
kw  = 1,[ ,T

kw 2, ,
T

kw  …, , ]
T
n kw , where vi,k, wi,k   , i = 1, … n and k  (–∞, ∞). The vk and wk are 

said to belong to the space n . In this chapter, the vector w denotes the set of wk over all 
time k, that is, w = {wk, k  (–∞,∞)}. The inner product ,v w  of two discrete-time vector 
processes v and w is defined by 
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k k

k
v w v w
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  . (1) 

The 2-norm or Euclidean norm of a discrete-time vector process w, 
2
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= ,w w  = T
k k
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w w

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 .  The square of the 2-norm, that is, 2

2
w  = Tw w  = T

k k
k

w w

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  is 

commonly known as energy of the signal w. The Lebesgue 2-space is denoted by 2  and is 
defined as the set of discrete-time processes having a finite 2-norm. Thus, w  2  means that 
the energy of w is bounded.  See [3] for more detailed discussions of spaces and norms. 
 

2.2.2 Discrete-time Polynomial Fraction Systems 
Consider a linear, time-invariant system   that operates on an input process wk    and 
produces an output process yk   , that is, :  →  . Suppose that the difference 
equation for this system is  

1 1 1 1 0...n k n n k n k ka y a y a y a y        1 1 1 1 0...m k m m k m k kb w b w b w b w         , (2) 
where a0, …, an and b0, …, bn are real-valued constant coefficients, with an ≠ 0 and zero initial 
conditions.  

Example 1. The difference equation yk = 0.1xk + 0.2 xk-1 + 0.3yk-1 specifies a system in which 
the coefficients are a0 = 1, a1 = – 0.3, b0 = 0.2 and b1 = 0.3. Note that yk is known as the current 
output and yk-1 is known as a past output. 
 

2.2.3 The Z-Transform of a Discrete-time Sequence 
The two-sided z-transform of a discrete-time process, yk, is denoted by Y(z) and is defined by 

( ) k
k

k
Y z y z






  , (3) 

where z = ejωt and j =  1 . Given a process yk with z-transform Y(z), yk can be calculated 
from Y(z) by taking the inverse z-transform of y(z),  

                                                                 

“To live effectively is to live with adequate information.” Norbert Wiener 
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Figure 1. Discrete-time state-space system. 
 

2.2.8 State-Space Realisation 
The state-space transfer function matrix (11) can be realised as a discrete-time system :m  

→  p  

1k k kx Ax Bw   , 

k k ky Cx Dw  , 

(12) 
 

(13) 
where wk  m  is an input sequence, xk  n  is a state vector and yk   p  is an output. This 
system is depicted in Fig. 1. It is assumed that wk is a zero-mean, stationary process with 

{ }T
j kE w w  = jkQ , where 

1 if
0 ifjk

j k
j k




  
 is the Kronecker delta function. In most 

applications, discrete-time implementations are desired, however, the polynomial fraction 
transfer function or state-space transfer function parameters may be known in continuous-
time. Therefore, two methods for transforming continuous-time parameters to discrete-time 
are set out below. 
 

2.2.9 The Bilinear Approximation  
Transfer functions in the z-plane can be mapped exactly to the s-plane by substituting ssTz e , 
where s = jw and TS is the sampling period. Conversely, the substitution  

                              
1 log( )
S

s z
T

  

3 5 72 1 1 1 1 1 1 1
1 3 1 5 1 7 1s

z z z z
T z z z z
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  

(14) 

can be used to map s-plane transfer functions into the z-plane. The bilinear transform is a 
first order approximation to (14), namely,  

                                                                 

“I do not like it, and I am sorry I ever had anything to do with it.” Erwin Rudolf Josef Alexander 
Schrödinger 
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circle are called non-minimum phase. The denominator of G(z)  is zero when z = αi, i = 1 … 
n. These values of z are called the poles of G(z). 

Example 2.  Consider a system described by the difference equation yk + 0.3yk-1 + 0.04yk-2 = wk 
+ 0.5wk-1. It follows from (2) and (8) that the corresponding transfer function is given by  
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1 2
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z z
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z z
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which possesses poles at z = 0.1, − 0.4 and zeros at z = 0, − 0.5.  
 

2.2.6 Polynomial Fraction Transfer Function Matrix  
In the single-input-single-output case, it is assumed that w(z), G(z) and y(z)   . In the 
multiple-input-multiple-output case, G(z) is a transfer function matrix. For example, 
suppose that w(z)  m , y(z)  p , then G(z)  p m , namely 

11 12 1

21 22

1

( ) ( ) .. ( )
( ) ( )

( )
: :
( ) .. ( )

m

p pm

G z G s G z
G z G s

G z

G z G z

 
 
   
 
  


, (10) 

where the components Gij(z) have the polynomial transfer function form within (8) or (9). 
 

2.2.7 State-Space Transfer Function Matrix  
The polynomial fraction transfer function matrix (10) can be written in the state-space 
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Figure 1. Discrete-time state-space system. 
 

2.2.8 State-Space Realisation 
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(13) 
where wk  m  is an input sequence, xk  n  is a state vector and yk   p  is an output. This 
system is depicted in Fig. 1. It is assumed that wk is a zero-mean, stationary process with 
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applications, discrete-time implementations are desired, however, the polynomial fraction 
transfer function or state-space transfer function parameters may be known in continuous-
time. Therefore, two methods for transforming continuous-time parameters to discrete-time 
are set out below. 
 

2.2.9 The Bilinear Approximation  
Transfer functions in the z-plane can be mapped exactly to the s-plane by substituting ssTz e , 
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can be used to map s-plane transfer functions into the z-plane. The bilinear transform is a 
first order approximation to (14), namely,  
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The τ within the definite integral (24) varies from kTs to (k+1)Ts. For a change of variable λ = 
(k+1)Ts – τ, the limits of integration become λ = Ts and λ = 0, which results in the 
simplification 
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Denoting { }T
j kE w w  = D jkQ   and using (25) it can be shown that [4] 
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It is common practice ([4] – [6]) to truncate the above series after terms linear in Ts. Some 
higher order terms can be retained in applications where parameter accuracy is critical. 
Since the limit as N → ∞ of / !N

sT N  is 0, the above series are valid for any value of Ts. 
However, the sample period needs to be sufficiently small, otherwise the above 
discretisations will be erroneous. According to the Nyquist-Shannon sampling theorem, the 
sampling rate is required to be at least twice the highest frequency component of the 
continuous-time signal. In respect of (17), the output map may be written as 

( ) ( ) ( )s C s C sy kT C x kT D w kT   (31) 
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Example 5. Consider the continuous-time transfer function H(s) = (s + 2)-1 with TS = 2. 
Substituting (15) yields the discrete-time transfer function H(z) = (3z + 1)-1. The higher order 
terms within the series of (14) can be included to improve the accuracy of converting a 
continuous-time model to discrete time. 
 

2.2.10 Discretisation of Continuous-time Systems 
The discrete-time state-space parameters, denoted here by {AD, BD, CD, DD, QD, RD}, can be 
obtained by discretising the continuous-time system 
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is a solution to the differential equation (16). Suppose that x(t) is available at integer k 
multiples of Ts. Assuming that w(t) is constant during the sampling interval and substituting 
t0 = kTs, t = (k+1)Ts into (21) yields 
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With the identifications xk = x(kTs) and wk = w(kTs) in (22), it can be seen that 
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However, the sample period needs to be sufficiently small, otherwise the above 
discretisations will be erroneous. According to the Nyquist-Shannon sampling theorem, the 
sampling rate is required to be at least twice the highest frequency component of the 
continuous-time signal. In respect of (17), the output map may be written as 

( ) ( ) ( )s C s C sy kT C x kT D w kT   (31) 

                                                                 

“We are more easily persuaded, in general, by the reasons we ourselves discover than by those which 
are given to us by others.” Blaise Pascal 

2 1
1S

zs
T z

    
. (15) 

Example 5. Consider the continuous-time transfer function H(s) = (s + 2)-1 with TS = 2. 
Substituting (15) yields the discrete-time transfer function H(z) = (3z + 1)-1. The higher order 
terms within the series of (14) can be included to improve the accuracy of converting a 
continuous-time model to discrete time. 
 

2.2.10 Discretisation of Continuous-time Systems 
The discrete-time state-space parameters, denoted here by {AD, BD, CD, DD, QD, RD}, can be 
obtained by discretising the continuous-time system 

( ) ( ) ( )C Cx t A t B w t  , 

( ) ( ) ( )C Cy t C x t D w t  , 

( ) ( ) ( )z t y t v t  , 

(16) 

(17) 

(18) 

where { ( ) ( )}TE w t w   = ( )CQ t   and { ( ) ( )}TE v t v   = ( )CR t  . Premultiplying (16) by 

CA te  and recognising that  ( ( ))CA td e x t
dt

   = ( )CA te x t   – ( )CA t
Ce A x t  yields 

( ( )) ( )C CA t A t
C

d e x t e B w t
dt

  . (19)  

Integrating (19) results in 

0

0
0( ) ( ) ( )C C

tA t A t F
Ct

e x t e x t e B w d        (20)  
and hence 

0

0

( )
0( ) ( ) ( )C C

tA t t A t F
Ct

x t e x t e e B w d       

                                               0

0

( ) ( )
0( ) ( )C

tA t t F t
Ct

e x t e B w d       

(21) 

is a solution to the differential equation (16). Suppose that x(t) is available at integer k 
multiples of Ts. Assuming that w(t) is constant during the sampling interval and substituting 
t0 = kTs, t = (k+1)Ts into (21) yields 

( 1) (( 1) )(( 1) ) ( ) ( )s
C s C s

s

k TA T A k T
s s C skT

x k T e x kT e B d w kT 
      . (22)  

With the identifications xk = x(kTs) and wk = w(kTs) in (22), it can be seen that 

 

                                                                 

“In the fields of observation, chance favours only the mind that is prepared.” Louis Pasteur 
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Lemma 1 (State-space representation of an adjoint system): Suppose that a discrete-time linear 
time-invariant system   is described by  

1k k kx Ax Bw   , 

k k ky Cx Dw  , 

(35) 

(36) 

with x0 = 0. The adjoint H is the linear system having the realisation 

1
T T

k k kA C     , 
T T

k k kB D     , 

(37) 

(38) 
with 0T  . 

Proof: The system (35) – (36) can be written equivalently 

0( )( )
( )( )
tzI A B x t

y tC D w t
      

     
     

 (39) 

with x0 = 0.  Thus 

                    <y,  w> ,
zI A B x

C D w



      
      

     
 

                       1
1 1 1

( ) ( )
N N N

T T T
k k k k k k k k

k k k
x Ax Bw Cx Dw  

  

        

                         
1

,
T T

T T

xz I A C
wB D




     
           

 

                         ,  H w  

(40) 

 

 

 

 

(41) 

where H  is given by (37) – (38).                                                                                                        � 

 

Thus, the adjoint of a discrete-time system having the parameters 
 
 
 

A B
C D

 is a system with 

parameters 
T T

T T

A C
B D

 
 
 

. Adjoint systems have the property ( )H H  =  . The adjoint of 

                                                                 

“There is something fascinating about science.  One gets such wholesale returns of conjecture out of 
such a trifling investment of fact.”  Samuel Langhorne Clemens aka. Mark Twain 

and thus  

D CC C , 
D CD D . 

(32) 

(33) 
Following the approach of [7], it is assumed that the continuous-time signals are integrated 
between samples, for example, the discretised measurement noise is 

( 1)1( ) ( )s

s

k T

s kT
s

v kT v d
T

 


  . Then the corresponding measurement noise covariance is  

( 1)

2

1 1s

s

k T

D C CkT
s s

R R d R
T T




  . (34)  

In some applications, such as inertial and satellite navigation [8], the underlying dynamic 
equations are in continuous-time, whereas the filters are implemented in discrete-time. In 
this case, any underlying continuous-time equations together with (28) – (30) can be 
calculated within a high rate foreground task, so that the discretised state-space parameters 
will be sufficiently accurate. The discrete-time filter recursions can then be executed within a 
lower rate background task.  
 

2.2.11 Asymptotic Stability 
Consider a discrete-time, linear, time-invariant system   that operates on an input process 
w and produces an output process y. The system   is said to be asymptotically stable if the 
output remains bounded, that is, y  ℓ2, for any input w  ℓ2. Two equivalent conditions for 
  to be asymptotically stable are as follows. 

(i) The i eigenvalues of the system’s state matrix are inside the unit circle, that is, for Ai 
of (11), ( ) 1i A  . 

(ii) The i poles of the system’s transfer function are inside the unit circle, that is, for αi  
of (9), i  < 1. 

 

Example 6. A state-space system having A = - 0.5, B = C = 1 and D = 0 is stable, since λ(A) = 
0.5 is in the unit circle. Equivalently, the corresponding transfer function G(z) = (z + 0.5)-1 
has a pole at z = - 0.5 which is inside the unit circle and so the system is stable. 
 

2.2.12 Adjoint Systems 
Let  : p  → q  be a linear system operating on the interval [0, T]. Then :H q  →  p , 
the adjoint of  , is the unique linear system such that, for all α  q  and w   p , <α, 
 w> =< H α, w>.  The following derivation is a simplification of the time-varying version 
that appears in [9]. 
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Lemma 1 (State-space representation of an adjoint system): Suppose that a discrete-time linear 
time-invariant system   is described by  

1k k kx Ax Bw   , 

k k ky Cx Dw  , 

(35) 

(36) 

with x0 = 0. The adjoint H is the linear system having the realisation 

1
T T

k k kA C     , 
T T

k k kB D     , 

(37) 

(38) 
with 0T  . 

Proof: The system (35) – (36) can be written equivalently 

0( )( )
( )( )
tzI A B x t

y tC D w t
      

     
     

 (39) 

with x0 = 0.  Thus 

                    <y,  w> ,
zI A B x

C D w



      
      

     
 

                       1
1 1 1

( ) ( )
N N N

T T T
k k k k k k k k

k k k
x Ax Bw Cx Dw  

  

        

                         
1

,
T T

T T

xz I A C
wB D




     
           

 

                         ,  H w  

(40) 

 

 

 

 

(41) 

where H  is given by (37) – (38).                                                                                                        � 

 

Thus, the adjoint of a discrete-time system having the parameters 
 
 
 

A B
C D

 is a system with 

parameters 
T T

T T

A C
B D

 
 
 

. Adjoint systems have the property ( )H H  =  . The adjoint of 

                                                                 

“There is something fascinating about science.  One gets such wholesale returns of conjecture out of 
such a trifling investment of fact.”  Samuel Langhorne Clemens aka. Mark Twain 

and thus  

D CC C , 
D CD D . 

(32) 

(33) 
Following the approach of [7], it is assumed that the continuous-time signals are integrated 
between samples, for example, the discretised measurement noise is 

( 1)1( ) ( )s

s

k T

s kT
s

v kT v d
T

 


  . Then the corresponding measurement noise covariance is  

( 1)

2

1 1s

s

k T

D C CkT
s s

R R d R
T T




  . (34)  

In some applications, such as inertial and satellite navigation [8], the underlying dynamic 
equations are in continuous-time, whereas the filters are implemented in discrete-time. In 
this case, any underlying continuous-time equations together with (28) – (30) can be 
calculated within a high rate foreground task, so that the discretised state-space parameters 
will be sufficiently accurate. The discrete-time filter recursions can then be executed within a 
lower rate background task.  
 

2.2.11 Asymptotic Stability 
Consider a discrete-time, linear, time-invariant system   that operates on an input process 
w and produces an output process y. The system   is said to be asymptotically stable if the 
output remains bounded, that is, y  ℓ2, for any input w  ℓ2. Two equivalent conditions for 
  to be asymptotically stable are as follows. 

(i) The i eigenvalues of the system’s state matrix are inside the unit circle, that is, for Ai 
of (11), ( ) 1i A  . 

(ii) The i poles of the system’s transfer function are inside the unit circle, that is, for αi  
of (9), i  < 1. 

 

Example 6. A state-space system having A = - 0.5, B = C = 1 and D = 0 is stable, since λ(A) = 
0.5 is in the unit circle. Equivalently, the corresponding transfer function G(z) = (z + 0.5)-1 
has a pole at z = - 0.5 which is inside the unit circle and so the system is stable. 
 

2.2.12 Adjoint Systems 
Let  : p  → q  be a linear system operating on the interval [0, T]. Then :H q  →  p , 
the adjoint of  , is the unique linear system such that, for all α  q  and w   p , <α, 
 w> =< H α, w>.  The following derivation is a simplification of the time-varying version 
that appears in [9]. 
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Lemma 1 (State-space representation of an adjoint system): Suppose that a discrete-time linear 
time-invariant system   is described by  

1k k kx Ax Bw   , 

k k ky Cx Dw  , 

(35) 

(36) 

with x0 = 0. The adjoint H is the linear system having the realisation 

1
T T

k k kA C     , 
T T

k k kB D     , 

(37) 

(38) 
with 0T  . 

Proof: The system (35) – (36) can be written equivalently 

0( )( )
( )( )
tzI A B x t

y tC D w t
      

     
     

 (39) 

with x0 = 0.  Thus 

                    <y,  w> ,
zI A B x

C D w



      
      

     
 

                       1
1 1 1

( ) ( )
N N N

T T T
k k k k k k k k

k k k
x Ax Bw Cx Dw  

  
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1

,
T T

T T

xz I A C
wB D



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           

 

                         ,  H w  

(40) 

 

 

 

 

(41) 

where H  is given by (37) – (38).                                                                                                        � 

 

Thus, the adjoint of a discrete-time system having the parameters 
 
 
 

A B
C D

 is a system with 

parameters 
T T

T T

A C
B D

 
 
 

. Adjoint systems have the property ( )H H  =  . The adjoint of 

                                                                 

“There is something fascinating about science.  One gets such wholesale returns of conjecture out of 
such a trifling investment of fact.”  Samuel Langhorne Clemens aka. Mark Twain 

and thus  

D CC C , 
D CD D . 

(32) 

(33) 
Following the approach of [7], it is assumed that the continuous-time signals are integrated 
between samples, for example, the discretised measurement noise is 

( 1)1( ) ( )s

s

k T

s kT
s

v kT v d
T

 


  . Then the corresponding measurement noise covariance is  

( 1)

2

1 1s

s

k T

D C CkT
s s

R R d R
T T




  . (34)  

In some applications, such as inertial and satellite navigation [8], the underlying dynamic 
equations are in continuous-time, whereas the filters are implemented in discrete-time. In 
this case, any underlying continuous-time equations together with (28) – (30) can be 
calculated within a high rate foreground task, so that the discretised state-space parameters 
will be sufficiently accurate. The discrete-time filter recursions can then be executed within a 
lower rate background task.  
 

2.2.11 Asymptotic Stability 
Consider a discrete-time, linear, time-invariant system   that operates on an input process 
w and produces an output process y. The system   is said to be asymptotically stable if the 
output remains bounded, that is, y  ℓ2, for any input w  ℓ2. Two equivalent conditions for 
  to be asymptotically stable are as follows. 

(i) The i eigenvalues of the system’s state matrix are inside the unit circle, that is, for Ai 
of (11), ( ) 1i A  . 

(ii) The i poles of the system’s transfer function are inside the unit circle, that is, for αi  
of (9), i  < 1. 

 

Example 6. A state-space system having A = - 0.5, B = C = 1 and D = 0 is stable, since λ(A) = 
0.5 is in the unit circle. Equivalently, the corresponding transfer function G(z) = (z + 0.5)-1 
has a pole at z = - 0.5 which is inside the unit circle and so the system is stable. 
 

2.2.12 Adjoint Systems 
Let  : p  → q  be a linear system operating on the interval [0, T]. Then :H q  →  p , 
the adjoint of  , is the unique linear system such that, for all α  q  and w   p , <α, 
 w> =< H α, w>.  The following derivation is a simplification of the time-varying version 
that appears in [9]. 
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Example 10. Suppose that it is desired to realise the system 2 1( ) ( ) ( )HG z G z G z , in which G1(z) 
= (z + 0.6)-1 1

2 ( ) (0.9 1)HG z z z   , that is, 1
2 ( ) ( 0.9)G z z   . This system can be realised using 

the processes shown in Fig. 2.  
 

 
 

Figure 2. Realising an unstable 2 1( ) ( ) ( )HG z G z G z . 
 

2.2.15 Power Spectral Density 
Consider again a linear, time-invariant system y =  w and its corresponding transfer 
function matrix G(z). Then ( )yy z , the power spectral density of y, is given by 

( ) ( )  H
yy z GQG z , (45) 

which has the property ( )yy z  = 1( )yy z . From Parseval’s Theorem (5), the average total 
energy of y(t) is given by  

2 2

2
( ) ( ) { ( ) ( )}

jwT

jwT

e T
yy ke

z dz y dk y t E y t y t


 
     , (46) 

which equals the area under the power spectral density curve. 
 

2.2.16 Spectral Factorisation 
To avoid confusion with the z-transform variable, denote the noisy measurements of y(z) = 
G(z)w(z) by 

( ) ( ) ( )u z y z v z  , (47) 

where v(z)   p  is the z-transform of an independent, zero-mean, stationary, white 
measurement noise process with { }T

j kE v v  =  jkR . Let  

( ) ( )H
uu z GQG z R    (48) 

denote the spectral density matrix of the measurements u(t). A discrete-time transfer 
function is said to be minimum phase if its zeros lies inside the unit circle. Conversely, 
transfer functions having outside-unit-circle-zeros are known as non-minimum phase. 

Suppose that Фuu(z) is a spectral density matrix of transfer functions possessing equal order 
numerator and denominator polynomials that do not have roots on the unit circle. Then the 
spectral factor matrix Δ(z) satisfies the following. 

                                                                 

“Knowledge advances by steps, and not by leaps.” Baron Thomas Macaulay 

Time-
reverse 
transpose 

Time-
reverse 
transpose 

1 ( )y z

Y1(z) W(z) Y2(z) 
1( )G z  

2 ( )
TG z

1
2 ( )TY z  1

1 ( )TY z  

the transfer function matrix G(z) is denoted as GH(z) and is defined by the transfer function 
matrix  

( )HG z    1( )TG z . (42) 

Example 7.  Suppose that a system   has the state-space parameters  A = - 0.5 and B = C = 
D = 1. From Lemma 1, an adjoint system has the state-space parameters A = −0.5, B = C = −1, 
D = 1 and the corresponding transfer function is GH(z) = 1 + (z-1 + 0.5)-1 = (3z + 2)(z + 2)-1, 
which is unstable and non-minimum-phase. Alternatively, the adjoint of G(z) = 1 + (z + 0.5)-1 
= (z + 1.5)(z + 0.5)-1  can be obtained using (42), namely, GH(z) = GT(z-1) = (3z + 2)(z + 2)-1. 
 

2.2.13 Causal  Systems 
A causal system is a system whose output depends exclusively on past and current inputs 
and outputs. 
 

Example 8. Consider xk+1 = 0.3xk + 0.4xk-1 + wk. Since the output xk+1 depends only on past 
states xk, xk-1, and past inputs wk, this system is causal. 
 

Example 9. Consider xk = 0.3xk+1 + 0.4xk + wk+1. Since the output xk depends on future outputs 
xk+1 and future wk+1 inputs, this system is non-causal.  
 

2.2.14 Realising Unstable System Components 
Unstable system components are termed unrealisable because their outputs are not in ℓ2, 
that is, they are unbounded. In other words, unstable systems cannot produce a useful 
output. However, an unstable causal component can be realised as a stable non-causal or 
backwards component. Consider the system   (35) – (36) in which the eigenvalues of A all 
lie outside the unit circle. In this case, a stable adjoint system β = H α can be realised by the 
following three-step procedure. 

(i) Time-reverse the input signal αk, that is, construct ατ, where τ = N - k is a time-to-go 
variable. 

(ii) Realise the stable system T  

1
T TA C       , 

T TB D      , 

(43) 

(44) 

with 0 T . 
(iii) Time-reverse the output signal  , that is, construct k . 

Thus if a system consists of a cascade of stable and unstable components, it can be realised 
by a combination of causal and non-causal components. This approach will be exploited in 
the realisation of smoothers subsequently. 
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Example 10. Suppose that it is desired to realise the system 2 1( ) ( ) ( )HG z G z G z , in which G1(z) 
= (z + 0.6)-1 1

2 ( ) (0.9 1)HG z z z   , that is, 1
2 ( ) ( 0.9)G z z   . This system can be realised using 

the processes shown in Fig. 2.  
 

 
 

Figure 2. Realising an unstable 2 1( ) ( ) ( )HG z G z G z . 
 

2.2.15 Power Spectral Density 
Consider again a linear, time-invariant system y =  w and its corresponding transfer 
function matrix G(z). Then ( )yy z , the power spectral density of y, is given by 

( ) ( )  H
yy z GQG z , (45) 

which has the property ( )yy z  = 1( )yy z . From Parseval’s Theorem (5), the average total 
energy of y(t) is given by  
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yy ke

z dz y dk y t E y t y t

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     , (46) 

which equals the area under the power spectral density curve. 
 

2.2.16 Spectral Factorisation 
To avoid confusion with the z-transform variable, denote the noisy measurements of y(z) = 
G(z)w(z) by 

( ) ( ) ( )u z y z v z  , (47) 

where v(z)   p  is the z-transform of an independent, zero-mean, stationary, white 
measurement noise process with { }T

j kE v v  =  jkR . Let  

( ) ( )H
uu z GQG z R    (48) 

denote the spectral density matrix of the measurements u(t). A discrete-time transfer 
function is said to be minimum phase if its zeros lies inside the unit circle. Conversely, 
transfer functions having outside-unit-circle-zeros are known as non-minimum phase. 

Suppose that Фuu(z) is a spectral density matrix of transfer functions possessing equal order 
numerator and denominator polynomials that do not have roots on the unit circle. Then the 
spectral factor matrix Δ(z) satisfies the following. 
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the transfer function matrix G(z) is denoted as GH(z) and is defined by the transfer function 
matrix  

( )HG z    1( )TG z . (42) 

Example 7.  Suppose that a system   has the state-space parameters  A = - 0.5 and B = C = 
D = 1. From Lemma 1, an adjoint system has the state-space parameters A = −0.5, B = C = −1, 
D = 1 and the corresponding transfer function is GH(z) = 1 + (z-1 + 0.5)-1 = (3z + 2)(z + 2)-1, 
which is unstable and non-minimum-phase. Alternatively, the adjoint of G(z) = 1 + (z + 0.5)-1 
= (z + 1.5)(z + 0.5)-1  can be obtained using (42), namely, GH(z) = GT(z-1) = (3z + 2)(z + 2)-1. 
 

2.2.13 Causal  Systems 
A causal system is a system whose output depends exclusively on past and current inputs 
and outputs. 
 

Example 8. Consider xk+1 = 0.3xk + 0.4xk-1 + wk. Since the output xk+1 depends only on past 
states xk, xk-1, and past inputs wk, this system is causal. 
 

Example 9. Consider xk = 0.3xk+1 + 0.4xk + wk+1. Since the output xk depends on future outputs 
xk+1 and future wk+1 inputs, this system is non-causal.  
 

2.2.14 Realising Unstable System Components 
Unstable system components are termed unrealisable because their outputs are not in ℓ2, 
that is, they are unbounded. In other words, unstable systems cannot produce a useful 
output. However, an unstable causal component can be realised as a stable non-causal or 
backwards component. Consider the system   (35) – (36) in which the eigenvalues of A all 
lie outside the unit circle. In this case, a stable adjoint system β = H α can be realised by the 
following three-step procedure. 

(i) Time-reverse the input signal αk, that is, construct ατ, where τ = N - k is a time-to-go 
variable. 

(ii) Realise the stable system T  

1
T TA C       , 

T TB D      , 

(43) 

(44) 

with 0 T . 
(iii) Time-reverse the output signal  , that is, construct k . 

Thus if a system consists of a cascade of stable and unstable components, it can be realised 
by a combination of causal and non-causal components. This approach will be exploited in 
the realisation of smoothers subsequently. 
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Example 10. Suppose that it is desired to realise the system 2 1( ) ( ) ( )HG z G z G z , in which G1(z) 
= (z + 0.6)-1 1

2 ( ) (0.9 1)HG z z z   , that is, 1
2 ( ) ( 0.9)G z z   . This system can be realised using 
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Figure 2. Realising an unstable 2 1( ) ( ) ( )HG z G z G z . 
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transfer function is zero at z = 0. Thus, the non-causal part of G(z), denoted by {G(z)}− , is 
obtained as 

{G(z)}− = Goucp(z) − Goucp(0) (50) 
and the causal part of G(z), denoted by {G(z)}+ ,is whatever remains, that is,  

{G(z)}+ = G(z) − {G(z)}− 

                                                                    = c0 + Giucp(z) + Goucp(0). 

(51) 

Hence, the causal part of transfer function can be found by carrying out the following three 
steps. 

(i) If the transfer function is not strictly proper, that is, if the order of the numerator 
not less than the degree of the denominator, perform synthetic division to extract 
the constant term.  

(ii) Expand out the (strictly proper) transfer function into the sum of partial fractions 
(49). 

(iii) Obtain the causal part from (51), namely, take the sum of the constant term, the 
partial fractions with inside-unit-circle-poles and the partial fractions with outside-
unit-circle-poles evaluated at z = 0.  

 

Example 13. Consider the strictly proper transfer function G(z) = 2
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{G(z)}+ + {G(z)}−. 
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, respectively. 
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(i) Δ(z) ΔH(z) = Фuu(z). 
(ii) Δ(z) is causal, that is, the poles of Δ(z) are inside the unit circle. 
(iii) Δ-1(z) is causal, that is, the zeros of Δ(z) which are the poles of Δ-1(z) are inside the 

unit circle.    

The problem of spectral factorisation within discrete-time Wiener filtering problems is 
studied in [10]. The roots of the transfer function polynomials need to be sorted into those 
inside the unit circle and those outside the unit circle. Spectral factors can be found using 
Levinson-Durbin and Schur algorithms, Cholesky decomposition, Riccati equation solution 
[11] and Newton-Raphson iteration [12]. 

Example 11.  Applying the Bilinear Transform (15) to the continuous-time low-pass plant 
G(s) = (s + 1)-1 for a sample frequency of 2 Hz yields G(z) = 0.2(z+1)(z-0.6)-1. With Q = R = 1, 

the measurement spectral density (48) is (1.08 0.517) ( 0.517 1.08)( )
( 0.6) ( 0.6 1.0)uu

z zz
z z
  

  
  

. By 

inspection, Δ(z) = (1.08z − 0.517)(z − 0.6)-1 has inside-unit-circle-poles and zeros that satisfy 
Δ(z)ΔH(z) = Фuu(z). 

Example 12.  Consider the high-pass plant G(z) = 4.98(z − 0.6)(z + 0.99)-1 and Q = R = 1. The 

spectral density is (5.39 2.58) ( 2.58 5.39)( )
( 0.99) (0.99 1.0)uu

z zz
z z

  
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 
. Thus the stable, minimum phase 

spectral factor is Δ(z) = (5.39z − 2.58)(z + 0.99)-1, since it has inside-unit-circle-poles and 
zeros.  
 

2.2.17 Calculating Causal Parts 
Suppose that a discrete-time transfer function has the form 

G(z) = c0 + 
1, 1i

n
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d
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                                               = c0 + Giucp(z) + Goucp(z),  

(49) 

where c0, di, ej    , Giucp(z) = 
1, 1i

n
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i a i

d
z a    is the sum of partial fractions having inside-unit-

circle-poles and Goucp(z) = 
1, 1j

m
j

jj b

e
z b    is the sum of partial fractions having outside-unit-

circle-poles. Assume that the roots of G(z) are distinct and do not lie on the unit circle. In this 
case the partial fraction coefficients di and ei within (49) can be calculated from the 
numerator and denominator polynomials of G(z) via ( ) ( )

i
i i z a

d z a G z


   and 

( ) ( )
j

j j z b
e z b G z


  . Previously, in continuous-time, the convention was to define constants 

to be causal. This is consistent with ensuring that the non-causal part of the discrete-time 
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to be causal. This is consistent with ensuring that the non-causal part of the discrete-time 

                                                                 

“Knowledge rests not upon truth alone, but on error also.”  Carl Gustav Jung 
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where 

2 2( ) ( )H Hz G QG z R    (56) 

is the spectral density matrix of the measurements. Completing the square within (55) yields 

1
1 1 1 2 2 1( ) ( ) ( ) ( )H H H H

ee z G QG z G QG G QG z     
                             + 1 2 1 2( ( ) ( ))( ( ) ( ))H H H H HH z G QG z H z G QG z       , 

(57) 

in which 1( ) ( ) ( )H Hz z    . It follows that the total energy of the error signal can be 
expressed as 

        1
1 1 1 2 2 1( ) ( ) ( ) ( )

jwT jwT

jwT jwT

e e H H H H
eee e

z dz G QG z G QG G QG z dz
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(58) 

The first term on the right-hand-side of (58) is independent of H(z) and represents a lower 

bound of ( )
jwT

jwT

e

eee
z dz


 . The second term on the right-hand-side of (58) may be minimised 

by a judicious choice for H(z).  

Theorem 1: The optimal solution for the above linear time-invariant estimation problem with 
measurements (52) and error (53) is 

1
1 2( ) ( )H HH z G QG z    , (59) 

which minimises  ( )
jwT

jwT

e

eee
z dz


 . 

Proof: The result follows by setting 1 2( ) ( )H HH z G QG z    equal to the zero matrix within (58).   � 

By Parseval’s theorem, the minimum mean-square-error solution (59) also minimises 
2

2
( )e z . The solution (59) is non-causal because the factor 1

2 ( ) ( )H HG z  possesses outside-
unit-circle poles. This optimal non-causal solution is actually a smoother, which can be 
realised by a combination of forward and backward processes.  

                                                                 

“I think anybody who doesn't think I'm smart enough to handle the job is underestimating.” George 
Walker Bush 
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The error power spectrum density matrix is given by the covariance of E(z), that is,  

( ) ( ) ( )H
ee z E z E z   (55) 

                                                                 

“I shall try to correct errors when shown to be errors; and I shall adopt new views so fast as they shall 
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1( ) (0) ( )H
OEH z I R z     , (65) 

which eliminates the need for calculating causal parts. 

Example 15. Consider G2(z) = (z + 0.2)(z + 0.5)-1 together with R = Q = 1. The spectral factor is Δ(z) 
= (1.43z + 0.489)(z + 0.5)-1, which leads to 2 2 ( )H HG QG z  = (0.2z2 + 1.04z + 0.2)(0.489z2 + 1.67z + 
0.716)-1 and 2 2{ ( )}H HG QG z

  = (0.734z + 0.14)(z + 0.5)-1. Hence, from (63), HOE(z) = (0.513z + 
0.098)(z + 0.341)-1. The same solution can be calculated using Δ-H(0) = 0.698 within (65). 

When the measurement noise becomes negligibly small, the output estimator approaches a 
short circuit, that is,   

0, 0
lim ( )

jwT OE
R e

H z I
 

 , (66) 

The above observation can be verified by substituting R = 0 into (65). This asymptote is 
consistent with intuition, that is, when the measurements are perfect, output estimation will 
be superfluous. 

Example 16. Substituting R = 0.001 within Example 15 yields the filter H(z) = (0.999z + 0.2)(z 
+ 0.2)-1, which illustrates the low measurement noise asymptote (66).  
 

2.3.3 Input Estimation 
In input estimation or equalisation problems, G2(z) is known as the channel model and it is 
desired to estimate the input process w(t), as depicted in Fig. 5. The simplification of the 
optimum non-causal solution (59) for the case of G1(z) = I is 

1
2( ) ( )H H

IEH z QG z    , (67) 

Assume that: the channel model G2(z) is proper, that is, the order of the numerator is the 
same as the order of the denominator; and that the channel model G2(z) is stable and 
minimum phase, that is, its poles and zeros are inside the unit circle. The causal equaliser for 
proper, stable, minimum-phase channels is obtained by substituting G1(z) = I  into (60) 

         1
2( ) { } ( )H H

IEH z QG z 
    

                                                                 1
2 (0) (0) ( )H HQG z    . 

(68) 

Under the above assumptions, the causal equaliser may be written equivalently as 
1 1

2 2 2( ) { } ( )H H
IEH z G G QG z  

    

                                   1 1
2{ ( ) } ( )H HG R z  

      
                                   1 1

2 ( { } ( ))HG I R z  
     

(69) 

 
(70) 

                                                                 

“He who knows nothing is closer to the truth than he whose mind is filled with falsehoods and errors.” 
Thomas Jefferson. 

The transfer function matrix of the optimal causal solution or filter is obtained by setting the 
setting the causal part of 1 2( ) ( )H HH z G QG z    equal to the zero matrix, resulting in 

1{ ( ) ( )}H z z
  = 1

1 2{ ( ) }H HG QG 
 , that is 1( ) ( )H z z  = 1

1 2{ ( ) }H HG QG 
 , which implies 

 1 1
1 2( ) ( ) ( )H HH z G QG z 


   . (60) 

 

 
 
 
 
Figure 4. The z-domain output estimation problem. 
 

2.3.2 Output Estimation 
In output estimation, it is desired to estimate the output Y2(z) from the measurements U(z), 
in which case the reference system is the same as the generating system, as shown in Fig. 4. 
The optimal non-causal solution (59) with G1(z) = G2(z) becomes 

1
2 2( ) ( )   H H

OEH z G QG z . (61) 

Substituting 2 2 ( )
HG QG z  = ( )H z  − R into (61) leads to the alternative form 

1( ) ( )( ) ( )H H
OEH z R z     

                                                        1( )    HI R z . 
(62) 

The solutions (61) and (62) are non-causal since GH(z) and Δ-H(z) are non-causal. The optimal 
smoother or non-causal filter for output estimation is obtained by substituting G1(z) = G2(z) 
into (60), namely, 

  1
2 2( ) ( )H H

OEH z G QG z 


   . (63) 

An alternative form arises by substituting GQGH(z) = ΔΔH(z) − R into (63), which results in 

1( ) { ( ) } ( )H
OEH z z R z 

      
                                                        1{ } ( )HI R z 

    .    

(64) 

In [10], it is recognised that {ΔH(z)}+ = lim ( )



z

z , which is equivalent to {ΔH(z)}+ = ΔH(0). It 

follows that 

                                                                 

“There is much pleasure to be gained from useless knowledge.” Bertrand Arthur William Russell 
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In output estimation, it is desired to estimate the output Y2(z) from the measurements U(z), 
in which case the reference system is the same as the generating system, as shown in Fig. 4. 
The optimal non-causal solution (59) with G1(z) = G2(z) becomes 
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1( ) (0) ( )H
OEH z I R z     , (65) 

which eliminates the need for calculating causal parts. 
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“He who knows nothing is closer to the truth than he whose mind is filled with falsehoods and errors.” 
Thomas Jefferson. 
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D2 are known. G1(z) and G2(z) are 
stable, i.e., |λi(A)| < 1. 
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Table 1. Main results for the discrete‐time general filtering problem. 
 

2.4 Conclusion 
Systems are written in the time-domain as difference equations 
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which can expressed as polynomial transfer functions in the z-transform variable 
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It can be seen that knowledge of a system’s differential equation is sufficient to identify its 
transfer function. The optimal Wiener solution minimises the energy of the error and the 
mean-square-error and the main results are summarised in Table 1. The noncausal (or 
smoother) solution has unstable factors and can only be realised by a combination of 
forward and backward processes. 

It is noted that { ( )}H z   = lim ( )
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  = (0)H , which can simplify calculating causal parts. For 

example, in output estimation problems where G1(z) = G2(z), the minimum-mean-square-
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Thus, the equaliser is equivalent to a product of the channel inverse and the output 
estimator. It follows that when the measurement noise becomes negligibly small, the 
equaliser estimates the inverse of the system model, that is,   
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
 , (71) 

The above observation follows by substituting R = 0 into (69). In other words, if the channel 
model is invertible and signal to noise ratio is sufficiently high, the equaliser will estimate 
w(t). When measurement noise is present then the solution trades off channel inversion and 
filtering. In the high measurement noise case, the equaliser approaches an open circuit, that 
is,   
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The above observation can be verified by substituting ΔΔH = R into (70). Thus, when the 
equalisation problem is dominated by measurement noise, the estimation error is minimised 
by ignoring the data. 
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Example 17.  Consider the high-pass plant G2(s) = 100(s + 0.1)(s + 10)-1 . Application of the 
bilinear transform for a sample frequency of 2 Hz yields G2(z) = (29.2857z − 27.8571)(z + 
0.4286)-1. With Q = 1 and R = 0.001, the spectral factor is Δ(z) = (29.2861z + − 27.8568)(z + 
0.4286)-1. From (67), HIE(z) = (z + 0.4286)(29.2861z − 27.8568)-1, which is high-pass and 
illustrates (71). 

Example 18. Applying the bilinear transform for a sample frequency of 2 Hz to the low-pass 
plant G2(z) = (s + 10)(s + 0.1)-1 results in G2(z) = (3.4146z − 1.4634)(z − 0.9512)-1. With Q = 1 
and R = 0.001, the spectral factor is Δ(z) = (3.4151z +1.4629)(z − 0.9512)-1. From (67), HIE(z) = 
(z − 0.9512)(3.4156z + 1.4631)-1, which is low pass and is consistent with (71). 
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Problem 4. In respect of the input estimation problem with G(z) = (z − β)(z − α)-1 , α = – 0.9, 
β = – 0.1 and Q=1, verify the following.  

(a) R = 10 yields H(z) = (z + 0.1)(11.5988z + 1.9000)-1. 
(b) R = 1 yields H(z) = (z + 0.1)(2.4040z + 1.0000)-1. 
(b) R = 0.1 yields H(z) = (z + 0.1)(1.2468z + 0.9100)-1. 
(d) R = 0.01 yields H(z) = (z + 0.1)(1.0381z + 0.9010)-1. 
(e) R = 0.001 yields H(z) = (z + 0.1)(1.043z + 0.9001)-1. 
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A, B, C, D Time-invariant state space matrices of appropriate dimension. The 

system   is assumed to have the realisation xk+1 = Axk + Bwk,  yk = Cxk 
+ Dwk in which wk is known as the process noise or input signal. 

vk A stationary stochastic measurement noise signal. 
δjk The Kronecker delta function. 
Q and R Time-invariant covariance matrices of stochastic signals wk and vk, 

respectively. 
Y(z) The z-transform of a continuous-time signal yk. 
G(z) The transfer function matrix of the system  . For example, the 
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known as the Lebesgue 2-space (see [3]). 
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equaliser is given by HIE(z) 1
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IEH z QG z    . When the measurement noise 

becomes negligible, that is, 1
2( ) ( )Hz G z  , the optimal equaliser approaches the channel 
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“One of the greatest discoveries a man makes, one of his greatest surprises, is to find he can do what he 
was afraid he couldn’t.” Henry Ford 

Asymptotic 
stability 

A linear discrete-time system   is said to be asymptotically stable if 
its output y  2  for any w  2 . If the real parts of the state matrix 
eigenvalues are inside the unit circle or equivalently if the real part of 
transfer function’s poles are inside the unit circle then the system is 
stable. 

Ts Sample period. 
H  The adjoint of  . The adjoint of a system having the state-space 

parameters {A, B, C, D} is a system parameterised by { AT, –CT, –BT, 
DT}. 

GH(z) The adjoint (or Hermitian transpose) of the transfer function matrix 
G(z). 

Фee(z) The spectral density matrix of the measurements e. 
Δ(z) The spectral factor of Фuu(z) which satisfies ΔΔH(z) = GQGH(z) + R. For 

brevity denote Δ-H(z)  = (ΔH)-1 (z). 
G–1(z) The inverse of the transfer function matrix G(z). 
G–H(z) The inverse of the adjoint transfer function matrix GH(z). 
{G(z)}+ The causal part of the transfer function matrix G(z). 
H(z) Transfer function matrix of the minimum mean-square-error solution. 
HOE(z) Transfer function matrix of the minimum mean-square-error solution 

specialised for output estimation. 
HIE(z) Transfer function matrix of the minimum mean-square-error solution 

specialised for input estimation. 
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Continuous-Time Minimum-Variance Filtering 
 
3.1 Introduction 
Rudolf E. Kalman studied discrete-time linear dynamic systems for his master’s thesis at 
MIT in 1954. He commenced work at the Research Institute for Advanced Studies (RIAS) in 
Baltimore during 1957 and nominated Richard S. Bucy to join him in 1958 [1]. Bucy 
recognised that the nonlinear ordinary differential equation studied by an Italian 
mathematician, Count Jacopo F. Riccati, in around 1720, now called the Riccati equation, is 
equivalent to the Wiener-Hopf equation for the case of finite dimensional systems [1], [2]. In 
November 1958, Kalman recasted the frequency domain methods developed by Norbert 
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1960 paper [3] that generalising the Wiener solution to nonstationary problems was difficult, 
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generalisation in 1963 [5]. Bucy later investigated the monotonicity and stability of the 
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commonly attributed to both Kalman and Bucy. 

Compared to the Wiener Filter, Kalman’s state-space approach has the following 
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 It is applicable to time-varying problems. 
 As noted in [7], [8], the state-space parameters can be linearisations of nonlinear 

models. 
 The burdens of spectral factorisation and pole-zero cancelation are replaced by the 

easier task of solving a Riccati equation. 
 It is a more intuitive model-based approach in which the estimated states 

correspond to those within the signal generation process. 

Kalman’s research at the RIAS was concerned with estimation and control for aerospace 
systems which was funded by the Air Force Office of Scientific Research. His explanation of 
why the dynamics-based Kalman filter is more important than the purely stochastic Wiener 
filter is that “Newton is more important than Gauss” [1]. The continuous-time Kalman filter 
produces state estimates ˆ( )x t  from the solution of a simple differential equation 

 ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( ) ( )x t A t x t K t z t C t x t   , 
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in which it is tacitly assumed that the model is correct, the noises are zero-mean, white and 
uncorrelated. It is straightforward to include nonzero means, coloured and correlated 
noises. In practice, the true model can be elusive but a simple (low-order) solution may 
return a cost benefit.  

The Kalman filter can be derived in many different ways. In an early account [3], a quadratic 
cost function was minimised using orthogonal projections. Other derivation methods 
include deriving a maximum a posteriori estimate, using Itô’s calculus, calculus-of-variations, 
dynamic programming, invariant imbedding and from the Wiener-Hopf equation [6] - [17]. 
This chapter provides a brief derivation of the optimal filter using a conditional mean (or 
equivalently, a least mean square error) approach.  

The developments begin by introducing a time-varying state-space model. Next, the state 
transition matrix is defined, which is used to derive a Lyapunov differential equation. The 
Kalman filter follows immediately from a conditional mean formula. Its filter gain is 
obtained by solving a Riccati differential equation corresponding to the estimation error 
system. Generalisations for problems possessing deterministic inputs, correlated process 
and measurement noises, and direct feedthrough terms are described subsequently. Finally, 
it is shown that the Kalman filter reverts to the Wiener filter when the problems are time-
invariant. 
 

 

               

 

 

 

Figure 1. The continuous-time system   operates on the input signal w(t)  m  and 
produces the output signal y(t)   p . 
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:m  →  p  is assumed to have the state-space representation 
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where A(t)  n n , B(t)  n m , C(t)   p n , D(t)   p p  and w(t) is a zero-mean white 
process noise with E{w(t)wT(τ)} = Q(t)δ(t – τ), in which δ(t) is the Dirac delta function. This 
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system in depicted in Fig. 1. In many problems of interest, signals are band-limited, that is, 
the direct feedthrough matrix, D(t), is zero. Therefore, the simpler case of D(t) = 0 is 
addressed first and the inclusion of a nonzero D(t) is considered afterwards.  
 

3.2.2 The State Transition Matrix 
The state transition matrix is introduced below which concerns the linear differential 
equation (1). 

Lemma 1: The equation (1) has the solution 

0
0 0( ) ( , ) ( ) ( , ) ( ) ( )

t

t
x t t t x t t s B s w s ds    , (3) 

where the state transition matrix, 0( , )t t , satisfies 

0
0 0

( , )( , ) ( ) ( , )d t tt t A t t t
dt


    , (4) 

with boundary condition 

( , )t t  = I. (5) 

Proof: Differentiating both sides of (3) and using Leibnitz’s rule, that is, 
( )

( )
( , )

t

t
f t d

t



 

   = 

( )

( )

( , )t

t

f t d
t









  − ( )( , ) d tf t

dt
  + ( )( , ) d tf t
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 , gives  

0
0 0( ) ( , ) ( ) ( , ) ( ) ( ) ( , ) ( ) ( )

t

t
x t t t x t t B w d t t B t w t         . (6) 

Substituting (4) and (5) into the right-hand-side of (6) results in 

 
0

0 0( ) ( ) ( , ) ( ) ( , ) ( ) ( ) ( ) ( )
t

t
x t A t t t x t t B w d B t w t        . 

(7) 

� 
 

3.2.3 The Lyapunov Differential Equation 
The mathematical expectation, E{x(t)xT(τ)} of x(t)xT(τ), is required below, which is defined as 

{ ( ) ( )} ( ) ( ) ( ) ( )) ( )T T T
xxE x t x x t x f x t x dx t  




  ,                       (8) 

where ( ( ) ( ))T
xxf x t x   is the probability density function of x(t)xT(τ). A useful property of 

expectations is demonstrated in the following example. 
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system in depicted in Fig. 1. In many problems of interest, signals are band-limited, that is, 
the direct feedthrough matrix, D(t), is zero. Therefore, the simpler case of D(t) = 0 is 
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Example 1. Suppose that x(t) is a stochastic random variable and h(t) is a continuous 
function, then 

 ( ) ( ) ( ) ( ) { ( ) ( )}
b bT T

a a
E h t x t x dt h t E x t x dt   .       (9) 

To verify this, expand the left-hand-side of (9) to give 

  T T( ) ( ) ( ) ( ) ( ) ( ) ( ( ) ( )) ( )
b bT

xxa a
E h t x t x dt h t x t x dt f x t x dx t  




    

                                                     T T( ) ( ) ( ) ( ( ) ( ) ( )
b

xxa
h t x t x f x t x dtdx t 




   . 

(10) 

Using Fubini’s theorem, that is, ( , )
d b

c a
g x y dxdy   = ( , )

b d

a c
g x y dydx  , within (10) results in 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ( ) ( )) ( )
b bT T T

xxa a
E h t x t x dt h t x t x f x t x dx t dt  




    

                                                      ( ) ( ) ( ) ( ( ) ( )) ( )
b T T

xxa
h t x t x f x t x dx t dt 




   . 

(11) 

The result (9) follows from the definition (8) within (11). 

The Dirac delta function, 
0

( )
0 0

t
t

t


 
  

, satisfies the identity ( ) 1t dt



 . In the 

foregoing development, use is made of the partitioning 
0

0
( ) ( ) 0.5t dt t dt 




   . (12)   

Lemma 2: In respect of equation (1), assume that w(t) is a zero-mean white process with 
E{w(t)wT(τ)} = Q(t)δ(t – τ) that is uncorrelated with x(t0), namely, E{w(t)xT(t0)} = 0. Then the 

covariances P(t,τ) = E{x(t)xT(τ)} and ( , )P t   = { ( ) ( )}Td E x t x
dt

  satisfy the Lyapunov differential 

equation 
( , ) ( ) ( , ) ( , ) ( ) ( ) ( ) ( )T TP t A t P t P t A B t Q t B t      .         (13)  

Proof: Using (1) within { ( ) ( )}Td E x t x
dt

  = { ( ) ( )TE x t x   + ( ) ( )}Tx t x   yields  

            
( , ) { ( ) ( ) ( ) ( ) ( ) ( )} { ( ) ( ) ( ) ( ) ( ) ( )}          T T T T T TP t E A t x t x B t w t x E x t x A x t w B  

           ( ) ( , ) ( , ) ( ) { ( ) ( ) ( )} { ( ) ( ) ( )}T T T TA t P t P t A E B t w t x E x t w B         . 

(14)  

                                                                 

“It is a mathematical fact that the casting of this pebble from my hand alters the centre of gravity of the 
universe.” Thomas Carlyle 

  

It follows from (1) and (3) that 

 
0

{ ( ) ( ) ( )} ( ) { ( ) (0) ( ,0)} ( ) ( ) ( ) ( ) ( , )
tT T T T

t
E B t w t x B t E w t x t B t E w t w B t d         

                            
0

( ) { ( ) (0) ( ,0)} ( ) { ( ) ( )} ( ) ( , )
tT T T

t
B t E w t x t B t E w t w B t d       . 

(15)  

The assumptions E{w(t)xT(t0)} = 0 and E{w(t)wT(τ)} = Q(t)δ(t – τ) together with (15) lead to 

0
{( ( ) ( ) ( )} ( ) ( ) ( ) ( ) ( , )

tT T

t
E B t w t x B t Q t t B t d         

                                                        0.5 ( ) ( ) ( )TB t Q t B t . 

(16)  

The above Lyapunov differential equation follows by substituting (16) into (14).                                � 

In the case τ = t, denote P(t,t) = E{x(t)xT(t)} and ( , )P t t  = { ( ) ( )}Td E x t x t
dt

. Then the 

corresponding Lyapunov differential equation is written as 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )T TP t A t P t P t A t B t Q t B t   . (17)  
 

3.2.4 Conditional Expectations 
The minimum-variance filter derivation that follows employs a conditional expectation 
formula, which is set out as follows. Consider a stochastic vector [xT(t)  yT(t)]T having means 
and covariances 

( )
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x t x
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y t y
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y t y
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 . (19)  

respectively, where T
yx xy   . Suppose that it is desired to obtain an estimate of x(t) given 

y(t), denoted by { ( ) | ( )}E x t y t , which minimises ( ( )E x t  − { ( ) | ( )})( ( )E x t y t x t  − 

{ ( ) | ( )})TE x t y t . A standard approach (e.g., see [18]) is to assume that the solution for 

{ ( ) | ( )}E x t y t  is affine to y(t), namely, 

{ ( ) | ( )} ( ) ,E x t y t Ay t b   (20)  

                                                                 

“As far as the laws of mathematics refer to reality, they are not certain; and as far as they are certain, 
they do not refer to reality.” Albert Einstein  
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Example 1. Suppose that x(t) is a stochastic random variable and h(t) is a continuous 
function, then 

 ( ) ( ) ( ) ( ) { ( ) ( )}
b bT T

a a
E h t x t x dt h t E x t x dt   .       (9) 

To verify this, expand the left-hand-side of (9) to give 
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xxa
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(10) 

Using Fubini’s theorem, that is, ( , )
d b

c a
g x y dxdy   = ( , )

b d

a c
g x y dydx  , within (10) results in 
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The result (9) follows from the definition (8) within (11). 

The Dirac delta function, 
0
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0 0

t
t

t


 
  

, satisfies the identity ( ) 1t dt



 . In the 

foregoing development, use is made of the partitioning 
0

0
( ) ( ) 0.5t dt t dt 




   . (12)   

Lemma 2: In respect of equation (1), assume that w(t) is a zero-mean white process with 
E{w(t)wT(τ)} = Q(t)δ(t – τ) that is uncorrelated with x(t0), namely, E{w(t)xT(t0)} = 0. Then the 

covariances P(t,τ) = E{x(t)xT(τ)} and ( , )P t   = { ( ) ( )}Td E x t x
dt

  satisfy the Lyapunov differential 

equation 
( , ) ( ) ( , ) ( , ) ( ) ( ) ( ) ( )T TP t A t P t P t A B t Q t B t      .         (13)  

Proof: Using (1) within { ( ) ( )}Td E x t x
dt

  = { ( ) ( )TE x t x   + ( ) ( )}Tx t x   yields  
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(14)  

                                                                 

“It is a mathematical fact that the casting of this pebble from my hand alters the centre of gravity of the 
universe.” Thomas Carlyle 

  

It follows from (1) and (3) that 
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The assumptions E{w(t)xT(t0)} = 0 and E{w(t)wT(τ)} = Q(t)δ(t – τ) together with (15) lead to 
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The above Lyapunov differential equation follows by substituting (16) into (14).                                � 

In the case τ = t, denote P(t,t) = E{x(t)xT(t)} and ( , )P t t  = { ( ) ( )}Td E x t x t
dt

. Then the 

corresponding Lyapunov differential equation is written as 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )T TP t A t P t P t A t B t Q t B t   . (17)  
 

3.2.4 Conditional Expectations 
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respectively, where T
yx xy   . Suppose that it is desired to obtain an estimate of x(t) given 

y(t), denoted by { ( ) | ( )}E x t y t , which minimises ( ( )E x t  − { ( ) | ( )})( ( )E x t y t x t  − 
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Example 1. Suppose that x(t) is a stochastic random variable and h(t) is a continuous 
function, then 
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respectively, where T
yx xy   . Suppose that it is desired to obtain an estimate of x(t) given 
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“As far as the laws of mathematics refer to reality, they are not certain; and as far as they are certain, 
they do not refer to reality.” Albert Einstein  



Smoothing, Filtering and Prediction:
Estimating the Past, Present and Future54

  

where A and b are unknowns to be found. It follows from (20)  that 

                                  {( ( ) { ( ) | ( )})( ( ) { ( ) | ( )}) }  TE x t E x t y t x t E x t y t  

                                          { ( ) ( ) ( ) ( ) ( ) ( ) ( )   T T T T TE x t x t x t y t A x t b Ay t x t  

                                               ( ) ( ) ( ) ( ) ( ) }T T T T T T TAy t y t A Ay t b bx t by t A bb     .                     (21) 

Substituting E{x(t)xT(t)} = Txx  + xx , E{x(t)yT(t)} = Txy  + xy , E{y(t)xT(t)} = Tyx  + yx , 

E{y(t)yT(t)} = Tyy  + yy  into (21) and completing the  squares yields 

            ( ( ) { ( ) | ( )})( ( ) { ( ) | ( )})TE x t E x t y t x t E x t y t   

                                         ( )( )
xx xyT

T
yx yy

I
x Ay b x Ay b I A
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                  
. 

(22)  

The second term on the right-hand-side of (22) can be rearranged as 

1 1 1( ) ( )
xx xy T

xy yy yy xy yy xx xy yy yxT
yx yy
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I A A A

A
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. 

Thus, the choice A = 1
xy yy

   and b = x Ay  minimises (22), which gives 

 1{ ( ) | ( )} ( )xy yyE x t y t x y t y      (23)  

and  
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xx xy yy yxE x t E x t y t x t E x t y t         . (24)  

The conditional mean estimate (23) is also known as the linear least mean square estimate 
[18]. An important property of the conditional mean estimate is established below. 

Lemma 3 (Orthogonal projections): In respect of the conditional mean estimate (23), in which the 
mean and covariances are respectively defined in (18) and (19), the error vector 

( ) ( ) { ( ) | ( )}x t x t E x t y t  . (25)  

is orthogonal to y(t), that is, { ( ) ( )}TE x t y t    0. 

 

 

                                                                 

“Statistics: The only science that enables different experts using the same figures to draw different 
conclusions." Evan Esar 

  

Proof [8],[18]: From (23) and (25), it can be seen that 
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                                                            0 . 

� 

Sufficient background material has now been introduced for the finite-horizon filter (for 
time-varying systems) to be derived. 
 

3.3 The Continuous-time Minimum-Variance Filter 
 

3.3.1 Derivation of the Optimal Filter 
Consider again the linear time-varying system : m  →  p  having the state-space 
realisation  

( ) ( ) ( ) ( ) ( )x t A t x t B t w t  , 
( ) ( ) ( )y t C t x t , 

(26) 

(27) 

where A(t), B(t), C(t) are of appropriate dimensions and w(t) is a white process with  
E{w(t)} =0,  E{w(t)wT(τ)} = Q(t)δ(t – τ). (28)  

Suppose that observations 

z(t) = y(t) + v(t) (29) 

are available, where v(t)   p  is a white measurement noise process with  
E{v(t)} =0, E{v(t)vT(τ)} = R(t)δ(t – τ) (30) 

and 
E{w(t)vT(τ)}  = 0. (31) 

The objective is to design a linear system   that operates on the measurements z(t) and 
produces an estimate ˆ( | )y t t  = ˆ( ) ( | )C t x t t  of y(t) = C(t)x(t) given measurements at time t, so 
that the covariance { ( | ) ( | )}TE e t t e t t  is minimised, where ( | )e t t  = x(t) – ˆ( | )x t t . This output 
estimation problem is depicted in Fig. 2. 
 

 

 
 
Figure 2. The continuous-time output estimation problem. The objective is to find an 
estimate ˆ( | )y t t  of y(t) which minimises ˆ ˆ{( ( ) ( | ))( ( ) ( | )) }TE y t y t t y t y t t  . 

                                                                 

“Art has a double face, of expression and illusion, just like science has a double face: the reality of error 
and the phantom of truth.” René Daumal 
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[18]. An important property of the conditional mean estimate is established below. 

Lemma 3 (Orthogonal projections): In respect of the conditional mean estimate (23), in which the 
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Sufficient background material has now been introduced for the finite-horizon filter (for 
time-varying systems) to be derived. 
 

3.3 The Continuous-time Minimum-Variance Filter 
 

3.3.1 Derivation of the Optimal Filter 
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where A(t), B(t), C(t) are of appropriate dimensions and w(t) is a white process with  
E{w(t)} =0,  E{w(t)wT(τ)} = Q(t)δ(t – τ). (28)  

Suppose that observations 

z(t) = y(t) + v(t) (29) 

are available, where v(t)   p  is a white measurement noise process with  
E{v(t)} =0, E{v(t)vT(τ)} = R(t)δ(t – τ) (30) 

and 
E{w(t)vT(τ)}  = 0. (31) 

The objective is to design a linear system   that operates on the measurements z(t) and 
produces an estimate ˆ( | )y t t  = ˆ( ) ( | )C t x t t  of y(t) = C(t)x(t) given measurements at time t, so 
that the covariance { ( | ) ( | )}TE e t t e t t  is minimised, where ( | )e t t  = x(t) – ˆ( | )x t t . This output 
estimation problem is depicted in Fig. 2. 
 

 

 
 
Figure 2. The continuous-time output estimation problem. The objective is to find an 
estimate ˆ( | )y t t  of y(t) which minimises ˆ ˆ{( ( ) ( | ))( ( ) ( | )) }TE y t y t t y t y t t  . 

                                                                 

“Art has a double face, of expression and illusion, just like science has a double face: the reality of error 
and the phantom of truth.” René Daumal 

  Σ 
w(t) 

 Σ 

+ 

+ 

_ + 

y(t) 

v(t) 

e(t|t) 

ˆ( | )y t t  z(t) 

Continuous-Time Minimum-Variance Filtering 55
  

where A and b are unknowns to be found. It follows from (20)  that 
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It is desired that ˆ( | )x t t  and the estimate ˆ( | )x t t  of ( )x t  are unbiased, namely 

ˆ{ ( ) ( | )} 0E x t x t t  , 

ˆ{ ( | ) ( | )} 0E x t t x t t  . 

(32) 

(33) 

If ˆ( | )x t t  is a conditional mean estimate, from Lemma 3, criterion (32) will be met. Criterion 

(33) can be satisfied if it is additionally assumed that ˆ{ ( | )}E x t t  = ˆ( ) ( | )A t x t t , since this 

yields { ( | )E x t t  − ˆ( | )}x t t  = ( )( { ( )A t E x t  − ˆ( | )}x t t  = 0. Thus, substituting 

ˆ( ) ( | )ˆ( | )
ˆ( ) ( | )( )

A t x t tx t tE
C t x t tz t

          
      


 into (23), yields the conditional mean estimate 

 ˆ ˆ ˆ( | ) ( ) ( | ) ( ) ( ) ( ) ( | )x t t A t x t t K t z t C t x t t    

           ˆ( ) ( ) ( ) ( | ) ( ) ( )A t K t C t x t t K t z t   ,   

(34)  

where K(t) = E{x(t)zT(t)}E{z(t)zT(t)}-1. Equation (34) is known as the continuous-time Kalman 
filter (or the Kalman-Bucy filter) and is depicted in Fig. 3. This filter employs the state matrix 
A(t) akin to the signal generating model  , which Kalman and Bucy call the message 
process [4]. The matrix K(t) is known as the filter gain, which operates on the error residual, 
namely the difference between the measurement z(t) and the estimated output C t x tˆ( ) ( ) . The 
calculation of an optimal gain is addressed in the next section. 

 

 

 
 

 

 

Figure 3. The continuous-time Kalman filter which is also known as the Kalman-Bucy filter. 
The filter calculates conditional mean estimates ˆ( | )x t t  from the measurements z(t). 
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Denote the state estimation error by ( | )x t t  = x(t) – ˆ( | )x t t . It is shown below that the filter 
minimises the error covariance { ( | ) ( | )}TE x t t x t t   if the gain is calculated as 

1( ) ( ) ( ) ( )TK t P t C t R t , (35)  
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in which P(t) = { ( | ) ( | )}TE x t t x t t   is the solution of the Riccati differential equation 

1( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )T T TP t A t P t P t A t P t C t R t C t P t B t Q t B t    . (36)  

Lemma 4: In respect of the state estimation problem defined by (26) - (31), suppose that there exists a 
solution 

P(t) = PT(t) ≥ 0 (37)  

for the algebratic Riccati equation (36) satisfying 

( ) ( ) ( ) 0TA t P t C t   (38)  

for all t in the interval [0,T]. Then the filter (34) having the gain (35) minimises P(t) = 
{ ( | ) ( | )}TE x t t x t t  . 

Proof: Subtracting (34) from (26) results in 

 ( | ) ( ) ( ) ( ) ( | ) ( ) ( ) ( ) ( )x t t A t K t C t x t t B t w t K t v t     . (39) 

Applying Lemma 2 to the error system (39) gives 

 ( ) ( ) ( ) ( ) ( ) ( )( ( ) ( ) ( )) ( ) ( ) ( ) ( ) ( ) ( )T T TP t A t K t C t P t P t A t K t C t K t R t K t B t Q t B t        (40) 

which can be rearranged as 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ))T TP t A t P t P t A t B t Q t B t    

        1 1 1( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )T T T TK t P t C t R t R t K t R t C t P t P t C t R t C t P t      . 
(41)  

Setting ( )P t  equal to the zero matrix results in a stationary point at (35) which leads to (40). From 
the differential of (40)  

   1 1( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )T T TP t A t P t C t R t C t P t P t A t P t C t R t C t        (42)  

and it can be seen that ( )P t  ≥ 0 provided that the assumptions (37) - (38) hold. Therefore, P(t) = 
{ ( | ) ( | )}TE x t t x t t   is minimised at (35).                                                                                                 � 

The above development is somewhat brief and not very rigorous. Further discussions 
appear in [4] – [17]. It is tendered to show that the Kalman filter minimises the error 
covariance, provided of course that the problem assumptions are correct. In the case that it 
is desired to estimate an arbitrary linear combination C1(t) of states, the optimal filter is 
given by the system 

 ˆ ˆ ˆ( | ) ( ) ( | ) ( ) ( ) ( ) ( | )x t t A t x t t K t z t C t x t t   , 

1 1ˆ ˆ( ) ( ) ( )y t C t x t . 

(43) 
(44)  
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for all t in the interval [0,T]. Then the filter (34) having the gain (35) minimises P(t) = 
{ ( | ) ( | )}TE x t t x t t  . 

Proof: Subtracting (34) from (26) results in 

 ( | ) ( ) ( ) ( ) ( | ) ( ) ( ) ( ) ( )x t t A t K t C t x t t B t w t K t v t     . (39) 

Applying Lemma 2 to the error system (39) gives 

 ( ) ( ) ( ) ( ) ( ) ( )( ( ) ( ) ( )) ( ) ( ) ( ) ( ) ( ) ( )T T TP t A t K t C t P t P t A t K t C t K t R t K t B t Q t B t        (40) 

which can be rearranged as 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ))T TP t A t P t P t A t B t Q t B t    

        1 1 1( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )T T T TK t P t C t R t R t K t R t C t P t P t C t R t C t P t      . 
(41)  

Setting ( )P t  equal to the zero matrix results in a stationary point at (35) which leads to (40). From 
the differential of (40)  

   1 1( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )T T TP t A t P t C t R t C t P t P t A t P t C t R t C t        (42)  

and it can be seen that ( )P t  ≥ 0 provided that the assumptions (37) - (38) hold. Therefore, P(t) = 
{ ( | ) ( | )}TE x t t x t t   is minimised at (35).                                                                                                 � 

The above development is somewhat brief and not very rigorous. Further discussions 
appear in [4] – [17]. It is tendered to show that the Kalman filter minimises the error 
covariance, provided of course that the problem assumptions are correct. In the case that it 
is desired to estimate an arbitrary linear combination C1(t) of states, the optimal filter is 
given by the system 

 ˆ ˆ ˆ( | ) ( ) ( | ) ( ) ( ) ( ) ( | )x t t A t x t t K t z t C t x t t   , 

1 1ˆ ˆ( ) ( ) ( )y t C t x t . 

(43) 
(44)  

                                                                 

“The worst wheel of the cart makes the most noise.” Benjamin Franklin 
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This filter minimises the error covariance 1 1( ) ( ) ( )TC t P t C t . The generalisation of the Kalman 
filter for problems possessing deterministic inputs, correlated noises, and a direct feed-
through term is developed  below. 
 

3.3.3 Including Deterministic Inputs 
Suppose that the signal model is described by 

( ) ( ) ( ) ( ) ( ) ( )x t A t x t B t w t t    

( ) ( ) ( ) ( )y t C t x t t  , 

(45) 
(46)  

where μ(t) and π(t) are deterministic (or known) inputs. In this case, the filtered state 
estimate can be obtained by including the deterministic inputs as follows 

 ˆ ˆ ˆ( | ) ( ) ( | ) ( ) ( ) ( ) ( | ) ( ) ( )x t t A t x t t K t z t C t x t t t t       

ˆ ˆ( ) ( ) ( ) ( )y t C t x t t  . 

(47) 
(48)  

It is easily verified that subtracting (47) from (45) yields the error system (39) and therefore, 
the Kalman filter’s differential Riccati equation remains unchanged. 

Example 2. Suppose that an object is falling under the influence of a gravitational field and it is 
desired to estimate its position over [0, t] from noisy measurements. Denote the object’s vertical 
position, velocity and acceleration by x(t), ( )x t  and ( )x t , respectively. Let g denote the 
gravitational constant. Then ( )x t  = −g implies ( )x t  = (0)x  − gt , so the model may be written as 

( ) ( )
( )

( ) ( )
x t x t

A t
x t x t


   

    
   


  , 

( )
( ) ( )

( )
x t

z t C v t
x t
 

  
  , 

(49)  

where A = 
0 1
0 0
 
 
 

 is the state matrix, µ(t) = 
(0)x gt

g
 

  


 is a deterministic input and C = 

1 0    is the output mapping. Thus, the Kalman filter has the form 

ˆ ˆ( | ) ( | )ˆ( | )
( ) ( )

ˆ ˆ( | ) ( | )ˆ( | )

x t t x t tx t t
A K z t C t

x t t x t tx t t


      
                    



  , 

ˆ ˆ( | ) ( ) ( | )y t t C t x t t , 

(50) 

 

(51)  

where the gain K is calculated from (35) and (36), in which BQBT = 0. 
 

 

 

                                                                 

“These, Gentlemen, are the opinions upon which I base my facts.” Winston Leonard Spencer-Churchill 

  

3.3.4 Including Correlated Process and Measurement Noise 
Suppose that the process and measurement noises are correlated, that is, 

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )
T T

T

w t Q t S t
E w v t

v t S t R t
   

                  
. (52)  

The equation for calculating the optimal state estimate remains of the form (34), however, 
the differential Riccati equation and hence the filter gain are different. The generalisation of 
the optimal filter that takes into account (52) was published by Kalman in 1963 [5]. Kalman’s 
approach was to first work out the corresponding discrete-time Riccati equation and then 
derive the continuous-time version.  

The correlated noises can be accommodated by defining the signal model equivalently as 

( ) ( ) ( ) ( ) ( ) ( )x t A t x t B t w t t   , (53) 

where 

1( ) ( ) ( ) ( ) ( ) ( )A t A t B t S t R t C t   (54)   

 is a new state matrix,  
1( ) ( ) ( ) ( ) ( )w t w t S t R t v t   (55)   

is a new stochastic input that is uncorrelated with v(t), and  
1( ) ( ) ( ) ( ) ( )t B t S t R t y t   (56)   

is a deterministic signal. It can easily be verified that the system (53) with the parameters 
(54) – (56), has the structure (26) with E{w(t)vT(τ)} = 0. It is convenient to define 

( ) ( ) { ( ) ( )}TQ t t E w t w     

                     1 1{ ( ) ( )} { ( ) ( ) ( ) ( ) ( ) ( ) { ( ) ( )T T T TE w t w E w t v R t S t S t R t E v t w       

                        1 1( ) ( ) { ( ) ( )} ( ) ( )T TS t R t E v t v R t S t   

                      1( ) ( ) ( ) ( ) ( )TQ t S t R t S t t    . 

(57)   

 

 

 

                                                                 

“I am tired of all this thing called science here. We have spent millions in that sort of thing for the last 
few years, and it is time it should be stopped.” Simon Cameron  
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This filter minimises the error covariance 1 1( ) ( ) ( )TC t P t C t . The generalisation of the Kalman 
filter for problems possessing deterministic inputs, correlated noises, and a direct feed-
through term is developed  below. 
 

3.3.3 Including Deterministic Inputs 
Suppose that the signal model is described by 

( ) ( ) ( ) ( ) ( ) ( )x t A t x t B t w t t    

( ) ( ) ( ) ( )y t C t x t t  , 

(45) 
(46)  

where μ(t) and π(t) are deterministic (or known) inputs. In this case, the filtered state 
estimate can be obtained by including the deterministic inputs as follows 

 ˆ ˆ ˆ( | ) ( ) ( | ) ( ) ( ) ( ) ( | ) ( ) ( )x t t A t x t t K t z t C t x t t t t       

ˆ ˆ( ) ( ) ( ) ( )y t C t x t t  . 

(47) 
(48)  

It is easily verified that subtracting (47) from (45) yields the error system (39) and therefore, 
the Kalman filter’s differential Riccati equation remains unchanged. 

Example 2. Suppose that an object is falling under the influence of a gravitational field and it is 
desired to estimate its position over [0, t] from noisy measurements. Denote the object’s vertical 
position, velocity and acceleration by x(t), ( )x t  and ( )x t , respectively. Let g denote the 
gravitational constant. Then ( )x t  = −g implies ( )x t  = (0)x  − gt , so the model may be written as 

( ) ( )
( )

( ) ( )
x t x t

A t
x t x t


   

    
   


  , 

( )
( ) ( )

( )
x t

z t C v t
x t
 

  
  , 

(49)  

where A = 
0 1
0 0
 
 
 

 is the state matrix, µ(t) = 
(0)x gt

g
 

  


 is a deterministic input and C = 

1 0    is the output mapping. Thus, the Kalman filter has the form 

ˆ ˆ( | ) ( | )ˆ( | )
( ) ( )

ˆ ˆ( | ) ( | )ˆ( | )

x t t x t tx t t
A K z t C t

x t t x t tx t t


      
                    



  , 

ˆ ˆ( | ) ( ) ( | )y t t C t x t t , 

(50) 

 

(51)  

where the gain K is calculated from (35) and (36), in which BQBT = 0. 
 

 

 

                                                                 

“These, Gentlemen, are the opinions upon which I base my facts.” Winston Leonard Spencer-Churchill 

  

3.3.4 Including Correlated Process and Measurement Noise 
Suppose that the process and measurement noises are correlated, that is, 

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )
T T

T

w t Q t S t
E w v t

v t S t R t
   

                  
. (52)  

The equation for calculating the optimal state estimate remains of the form (34), however, 
the differential Riccati equation and hence the filter gain are different. The generalisation of 
the optimal filter that takes into account (52) was published by Kalman in 1963 [5]. Kalman’s 
approach was to first work out the corresponding discrete-time Riccati equation and then 
derive the continuous-time version.  

The correlated noises can be accommodated by defining the signal model equivalently as 

( ) ( ) ( ) ( ) ( ) ( )x t A t x t B t w t t   , (53) 

where 

1( ) ( ) ( ) ( ) ( ) ( )A t A t B t S t R t C t   (54)   

 is a new state matrix,  
1( ) ( ) ( ) ( ) ( )w t w t S t R t v t   (55)   

is a new stochastic input that is uncorrelated with v(t), and  
1( ) ( ) ( ) ( ) ( )t B t S t R t y t   (56)   

is a deterministic signal. It can easily be verified that the system (53) with the parameters 
(54) – (56), has the structure (26) with E{w(t)vT(τ)} = 0. It is convenient to define 

( ) ( ) { ( ) ( )}TQ t t E w t w     

                     1 1{ ( ) ( )} { ( ) ( ) ( ) ( ) ( ) ( ) { ( ) ( )T T T TE w t w E w t v R t S t S t R t E v t w       

                        1 1( ) ( ) { ( ) ( )} ( ) ( )T TS t R t E v t v R t S t   

                      1( ) ( ) ( ) ( ) ( )TQ t S t R t S t t    . 

(57)   

 

 

 

                                                                 

“I am tired of all this thing called science here. We have spent millions in that sort of thing for the last 
few years, and it is time it should be stopped.” Simon Cameron  
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This filter minimises the error covariance 1 1( ) ( ) ( )TC t P t C t . The generalisation of the Kalman 
filter for problems possessing deterministic inputs, correlated noises, and a direct feed-
through term is developed  below. 
 

3.3.3 Including Deterministic Inputs 
Suppose that the signal model is described by 

( ) ( ) ( ) ( ) ( ) ( )x t A t x t B t w t t    

( ) ( ) ( ) ( )y t C t x t t  , 

(45) 
(46)  

where μ(t) and π(t) are deterministic (or known) inputs. In this case, the filtered state 
estimate can be obtained by including the deterministic inputs as follows 

 ˆ ˆ ˆ( | ) ( ) ( | ) ( ) ( ) ( ) ( | ) ( ) ( )x t t A t x t t K t z t C t x t t t t       

ˆ ˆ( ) ( ) ( ) ( )y t C t x t t  . 

(47) 
(48)  

It is easily verified that subtracting (47) from (45) yields the error system (39) and therefore, 
the Kalman filter’s differential Riccati equation remains unchanged. 

Example 2. Suppose that an object is falling under the influence of a gravitational field and it is 
desired to estimate its position over [0, t] from noisy measurements. Denote the object’s vertical 
position, velocity and acceleration by x(t), ( )x t  and ( )x t , respectively. Let g denote the 
gravitational constant. Then ( )x t  = −g implies ( )x t  = (0)x  − gt , so the model may be written as 

( ) ( )
( )

( ) ( )
x t x t

A t
x t x t


   

    
   


  , 

( )
( ) ( )

( )
x t

z t C v t
x t
 

  
  , 

(49)  

where A = 
0 1
0 0
 
 
 

 is the state matrix, µ(t) = 
(0)x gt

g
 

  


 is a deterministic input and C = 

1 0    is the output mapping. Thus, the Kalman filter has the form 

ˆ ˆ( | ) ( | )ˆ( | )
( ) ( )

ˆ ˆ( | ) ( | )ˆ( | )

x t t x t tx t t
A K z t C t

x t t x t tx t t


      
                    



  , 

ˆ ˆ( | ) ( ) ( | )y t t C t x t t , 

(50) 

 

(51)  

where the gain K is calculated from (35) and (36), in which BQBT = 0. 
 

 

 

                                                                 

“These, Gentlemen, are the opinions upon which I base my facts.” Winston Leonard Spencer-Churchill 

  

3.3.4 Including Correlated Process and Measurement Noise 
Suppose that the process and measurement noises are correlated, that is, 

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )
T T

T

w t Q t S t
E w v t

v t S t R t
   

                  
. (52)  

The equation for calculating the optimal state estimate remains of the form (34), however, 
the differential Riccati equation and hence the filter gain are different. The generalisation of 
the optimal filter that takes into account (52) was published by Kalman in 1963 [5]. Kalman’s 
approach was to first work out the corresponding discrete-time Riccati equation and then 
derive the continuous-time version.  

The correlated noises can be accommodated by defining the signal model equivalently as 

( ) ( ) ( ) ( ) ( ) ( )x t A t x t B t w t t   , (53) 

where 

1( ) ( ) ( ) ( ) ( ) ( )A t A t B t S t R t C t   (54)   

 is a new state matrix,  
1( ) ( ) ( ) ( ) ( )w t w t S t R t v t   (55)   

is a new stochastic input that is uncorrelated with v(t), and  
1( ) ( ) ( ) ( ) ( )t B t S t R t y t   (56)   

is a deterministic signal. It can easily be verified that the system (53) with the parameters 
(54) – (56), has the structure (26) with E{w(t)vT(τ)} = 0. It is convenient to define 

( ) ( ) { ( ) ( )}TQ t t E w t w     

                     1 1{ ( ) ( )} { ( ) ( ) ( ) ( ) ( ) ( ) { ( ) ( )T T T TE w t w E w t v R t S t S t R t E v t w       

                        1 1( ) ( ) { ( ) ( )} ( ) ( )T TS t R t E v t v R t S t   

                      1( ) ( ) ( ) ( ) ( )TQ t S t R t S t t    . 

(57)   

 

 

 

                                                                 

“I am tired of all this thing called science here. We have spent millions in that sort of thing for the last 
few years, and it is time it should be stopped.” Simon Cameron  
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The corresponding Riccati differential equation is obtained by substituting ( )A t  for A(t) and 
( )Q t  for Q(t) within (36), namely, 

1( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )T T TP t A t P t P t A t P t C t R t C t P t B t Q t B t    . (58) 

This can be rearranged to give 

1( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )T T TP t A t P t P t A t K t t R t K t B t Q t B t    , (59) 

in which the gain is now calculated as  

  1( ) ( ) ( ) ( ) ( ) ( )TK t P t C t B t S t R t  . (60)  
 

3.3.5 Including a Direct Feedthrough Matrix 
The approach of the previous section can be used to address signal models that possess a 
direct feedthrough matrix, namely, 

( ) ( ) ( ) ( ) ( )x t A t x t B t w t  , 

( ) ( ) ( ) ( ) ( )y t C t x t D t w t  . 

(61) 

(62) 

As before, the optimal state estimate is given by 

 ˆ ˆ ˆ( | ) ( ) ( | ) ( ) ( ) ( ) ( | )x t t A t x t t K t z t C t x t t   , (63)  

where the gain is obtained by substituting S(t) = Q(t)DT(t) into (60),  

  1( ) ( ) ( ) ( ) ( ) ( ) ( )T TK t P t C t B t Q t D t R t  , (64) 

in which P(t) is the solution of the Riccati differential equation 

  1( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )TP t A t B t Q t D t R t C t P t   

               1 1( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
TT T TP t A t B t Q t D t R t C t B t Q t Q t D t R t D t Q t B t     . 

 

Note that the above Riccati equation simplifies to 

1( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )T T TP t A t P t P t A t K t t R t K t B t Q t B t    . (65)  
 

 
                                                                 

“No human investigation can be called real science if it cannot be demonstrated mathematically.” 
Leonardo di ser Piero da Vinci 

  

3.4 The Continuous-time Steady-State Minimum-Variance Filter 
 

3.4.1 Riccati Differential Equation Monotonicity 
This section sets out the simplifications for the case where the signal model is stationary (or 
time-invariant). In this situation the structure of the Kalman filter is unchanged but the gain 
is fixed and can be pre-calculated. Consider the linear time-invariant system  

( ) ( ) ( )x t Ax t Bw t  , 

( ) ( )y t Cx t , 

(66) 

(67) 

together with the observations 

( ) ( ) ( )z t y t v t  , (68) 

assuming that Re{λi(A)} < 0, E{w(t)} = 0, E{w(t)wT(τ)} = Q (t)δ(t – τ), E{v(t)} = 0, E{v(t)vT(τ)} = R 
and E{w(t)vT(τ)} = 0. It follows from the approach of Section 3 that the Riccati differential 
equation for the corresponding Kalman filter is given by 

1( ) ( ) ( ) ( ) ( )T T TP t AP t P t A P t C R CP t BQB    . (69)  

It will be shown that the solution for P(t) monotonically approaches a steady-state 
asymptote, in which case the filter gain can be calculated before running the filter. The 
following result is required to establish that the solutions of the above Riccati differential 
equation are monotonic. 

Lemma 5 [11], [19], [20]: Suppose that X(t) is a solution of the Lyapunov differential equation 

( ) ( ) ( ) TX t AX t X t A   (70)  

over an interval t  [0, T]. Then the existence of a solution X(t0) ≥ 0 implies  X(t) ≥ 0 for all t  [0, T].  

Proof: Denote the transition matrix of ( )x t  = - A(t)x(t) by ( , )T t  , for which ( , )t   = 
( ) ( , )TA t t    and ( , )T t   = ( , ) ( )T t A t . Let P(t) = ( , ) ( ) ( , )T t X t t   , then from (70) 

        0 ( , ) ( ) ( ) ( ) ( , )T Tt X t AX t X t A t       

          ( , ) ( ) ( , ) ( , ) ( ) ( , ) ( , ) ( ) ( , )T T Tt X t t t X t t t X t t                

          ( )P t  . 

Therefore, a solution  X(t0) ≥ 0 of (70) implies that  X(t) ≥ 0 for all t  [0, T].                                     � 

The monotonicity of Riccati differential equations has been studied by Bucy [6], Wonham 
[23], Poubelle et al [19] and Freiling [20]. The latter’s simple proof is employed below. 
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The corresponding Riccati differential equation is obtained by substituting ( )A t  for A(t) and 
( )Q t  for Q(t) within (36), namely, 

1( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )T T TP t A t P t P t A t P t C t R t C t P t B t Q t B t    . (58) 

This can be rearranged to give 

1( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )T T TP t A t P t P t A t K t t R t K t B t Q t B t    , (59) 

in which the gain is now calculated as  

  1( ) ( ) ( ) ( ) ( ) ( )TK t P t C t B t S t R t  . (60)  
 

3.3.5 Including a Direct Feedthrough Matrix 
The approach of the previous section can be used to address signal models that possess a 
direct feedthrough matrix, namely, 

( ) ( ) ( ) ( ) ( )x t A t x t B t w t  , 

( ) ( ) ( ) ( ) ( )y t C t x t D t w t  . 

(61) 

(62) 

As before, the optimal state estimate is given by 

 ˆ ˆ ˆ( | ) ( ) ( | ) ( ) ( ) ( ) ( | )x t t A t x t t K t z t C t x t t   , (63)  

where the gain is obtained by substituting S(t) = Q(t)DT(t) into (60),  

  1( ) ( ) ( ) ( ) ( ) ( ) ( )T TK t P t C t B t Q t D t R t  , (64) 

in which P(t) is the solution of the Riccati differential equation 

  1( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )TP t A t B t Q t D t R t C t P t   

               1 1( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
TT T TP t A t B t Q t D t R t C t B t Q t Q t D t R t D t Q t B t     . 

 

Note that the above Riccati equation simplifies to 

1( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )T T TP t A t P t P t A t K t t R t K t B t Q t B t    . (65)  
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3.4 The Continuous-time Steady-State Minimum-Variance Filter 
 

3.4.1 Riccati Differential Equation Monotonicity 
This section sets out the simplifications for the case where the signal model is stationary (or 
time-invariant). In this situation the structure of the Kalman filter is unchanged but the gain 
is fixed and can be pre-calculated. Consider the linear time-invariant system  

( ) ( ) ( )x t Ax t Bw t  , 

( ) ( )y t Cx t , 

(66) 

(67) 

together with the observations 

( ) ( ) ( )z t y t v t  , (68) 

assuming that Re{λi(A)} < 0, E{w(t)} = 0, E{w(t)wT(τ)} = Q (t)δ(t – τ), E{v(t)} = 0, E{v(t)vT(τ)} = R 
and E{w(t)vT(τ)} = 0. It follows from the approach of Section 3 that the Riccati differential 
equation for the corresponding Kalman filter is given by 

1( ) ( ) ( ) ( ) ( )T T TP t AP t P t A P t C R CP t BQB    . (69)  

It will be shown that the solution for P(t) monotonically approaches a steady-state 
asymptote, in which case the filter gain can be calculated before running the filter. The 
following result is required to establish that the solutions of the above Riccati differential 
equation are monotonic. 

Lemma 5 [11], [19], [20]: Suppose that X(t) is a solution of the Lyapunov differential equation 

( ) ( ) ( ) TX t AX t X t A   (70)  

over an interval t  [0, T]. Then the existence of a solution X(t0) ≥ 0 implies  X(t) ≥ 0 for all t  [0, T].  

Proof: Denote the transition matrix of ( )x t  = - A(t)x(t) by ( , )T t  , for which ( , )t   = 
( ) ( , )TA t t    and ( , )T t   = ( , ) ( )T t A t . Let P(t) = ( , ) ( ) ( , )T t X t t   , then from (70) 
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          ( , ) ( ) ( , ) ( , ) ( ) ( , ) ( , ) ( ) ( , )T T Tt X t t t X t t t X t t                

          ( )P t  . 

Therefore, a solution  X(t0) ≥ 0 of (70) implies that  X(t) ≥ 0 for all t  [0, T].                                     � 

The monotonicity of Riccati differential equations has been studied by Bucy [6], Wonham 
[23], Poubelle et al [19] and Freiling [20]. The latter’s simple proof is employed below. 
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3.4.1 Riccati Differential Equation Monotonicity 
This section sets out the simplifications for the case where the signal model is stationary (or 
time-invariant). In this situation the structure of the Kalman filter is unchanged but the gain 
is fixed and can be pre-calculated. Consider the linear time-invariant system  

( ) ( ) ( )x t Ax t Bw t  , 

( ) ( )y t Cx t , 

(66) 

(67) 

together with the observations 

( ) ( ) ( )z t y t v t  , (68) 

assuming that Re{λi(A)} < 0, E{w(t)} = 0, E{w(t)wT(τ)} = Q (t)δ(t – τ), E{v(t)} = 0, E{v(t)vT(τ)} = R 
and E{w(t)vT(τ)} = 0. It follows from the approach of Section 3 that the Riccati differential 
equation for the corresponding Kalman filter is given by 

1( ) ( ) ( ) ( ) ( )T T TP t AP t P t A P t C R CP t BQB    . (69)  

It will be shown that the solution for P(t) monotonically approaches a steady-state 
asymptote, in which case the filter gain can be calculated before running the filter. The 
following result is required to establish that the solutions of the above Riccati differential 
equation are monotonic. 

Lemma 5 [11], [19], [20]: Suppose that X(t) is a solution of the Lyapunov differential equation 

( ) ( ) ( ) TX t AX t X t A   (70)  

over an interval t  [0, T]. Then the existence of a solution X(t0) ≥ 0 implies  X(t) ≥ 0 for all t  [0, T].  

Proof: Denote the transition matrix of ( )x t  = - A(t)x(t) by ( , )T t  , for which ( , )t   = 
( ) ( , )TA t t    and ( , )T t   = ( , ) ( )T t A t . Let P(t) = ( , ) ( ) ( , )T t X t t   , then from (70) 

        0 ( , ) ( ) ( ) ( ) ( , )T Tt X t AX t X t A t       

          ( , ) ( ) ( , ) ( , ) ( ) ( , ) ( , ) ( ) ( , )T T Tt X t t t X t t t X t t                

          ( )P t  . 

Therefore, a solution  X(t0) ≥ 0 of (70) implies that  X(t) ≥ 0 for all t  [0, T].                                     � 

The monotonicity of Riccati differential equations has been studied by Bucy [6], Wonham 
[23], Poubelle et al [19] and Freiling [20]. The latter’s simple proof is employed below. 
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Lemma 6 [19], [20]: Suppose for a t ≥ 0 and a δt > 0 there exist solutions P(t) ≥ 0 and P(t + δt) ≥ 0 of 
the Riccati differential equations 

1( ) ( ) ( ) ( ) ( )T T TP t AP t P t A P t C R CP t BQB     (71)  

and 

1( ) ( ) ( ) ( ) ( )T T T
t t t t tP t AP t P t A P t C R CP t BQB             , (72)  

respectively, such that P(t) − P(t + δt ) ≥ 0. Then the sequence of matrices P(t) is monotonic 
nonincreasing, that is, 

P(t) − P(t + δt ) ≥ 0,  for all t ≥ δt. (73)  

Proof: The conditions of the Lemma are the initial step of an induction argument. For the induction 
step, denote ( )tP   = ( )P t  − ( )tP t  , ( )tP   = P(t) − ( )tP t   and A  = 

1( ) 0.5 ( )T
t tAP t C R C P   . Then 

1 1( ) ( ) ( ) ( ) ( ) ( ) ( )T T T
t t t t tP AP P A P t C R CP t P t C R CP t            

                                   ( ) ( ) T
t tAP P A   , 

which is of the form (70), and so the result (73) follows.                                                                       � 

A monotonic nondecreasing case can be established similarly – see [20]. 
 

3.4.2 Observability 
The continuous-time system (66) – (67) is termed completely observable if the initial states, 
x(t0), can be uniquely determined from the inputs and outputs, w(t) and y(t), respectively, 
over an interval [0, T]. A simple test for observability is is given by the following lemma. 

Lemma 7 [10], [21]. Suppose that A  n n  and C   p n . The system is observable if and only if 
the observability matrix O  np n  is of rank n, where 

2

1n

C
CA

O CA

CA 

 
 
 
 
 
 
  


. (74)  

 

 

 

                                                                 

“You can observe a lot by just watching.” Lawrence Peter (Yogi) Berra 

  

Proof: Recall from Chapter 2 that the solution of (66) is  

0

( )
0( ) ( ) ( )

tAt A t

t
x t e x t e Bw d     . (75)  

Since the input signal w(t) within (66) is known, it suffices to consider the unforced system 
( ) ( )x t Ax t  and y(t) = Cx(t), that is, Bw(t) = 0, which leads to  

0( ) ( )Aty t Ce x t . (76)  

The exponential matrix is defined as 
2 2

2 !

N N
At A t A te I At

N
      

                                                
1

0
( )

N
k

k
k

t A




  , 

(77)  

where  ( ) !k
k t t k  . Substituting (77) into (76) gives 

                    
1

0
0

( ) ( ) ( )
N

k
k

k
y t t CA x t





   

                            1
0 0 1 0 1 0( ) ( ) ( ) ( ) ... ( ) ( )N

Nt Cx t t CAx t t CA x t   
    . 

                            2
0 1 1 0

1

( ) ( ) ( ) ( )N

N

C
CA

t t t x tCA

CA

   



 
 
 
     
 
  




. 

(78)  

From the Cayley-Hamilton Theorem [22], 

rank  2

1N

C
CA
CA

CA 

  
  
  
  
  
  
    


= rank  2

1

  
  
  
  
  
  
    


n

C
CA
CA

CA

 

for all N ≥ n. Therefore, we can take N = n within (78). Thus, equation (78) uniquely determines x(t0) 
if and only if O has full rank n.                                                                                                              � 

A system that does not satisfy the above criterion is said to be unobservable. An alternate 
proof for the above lemma is provided in [10]. If a signal model is not observable then a 
Kalman filter cannot estimate all the states from the measurements.  
                                                                 

“Who will observe the observers ?” Arthur Stanley Eddington 



Smoothing, Filtering and Prediction:
Estimating the Past, Present and Future62

  

Lemma 6 [19], [20]: Suppose for a t ≥ 0 and a δt > 0 there exist solutions P(t) ≥ 0 and P(t + δt) ≥ 0 of 
the Riccati differential equations 

1( ) ( ) ( ) ( ) ( )T T TP t AP t P t A P t C R CP t BQB     (71)  

and 

1( ) ( ) ( ) ( ) ( )T T T
t t t t tP t AP t P t A P t C R CP t BQB             , (72)  

respectively, such that P(t) − P(t + δt ) ≥ 0. Then the sequence of matrices P(t) is monotonic 
nonincreasing, that is, 

P(t) − P(t + δt ) ≥ 0,  for all t ≥ δt. (73)  

Proof: The conditions of the Lemma are the initial step of an induction argument. For the induction 
step, denote ( )tP   = ( )P t  − ( )tP t  , ( )tP   = P(t) − ( )tP t   and A  = 

1( ) 0.5 ( )T
t tAP t C R C P   . Then 
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t tAP P A   , 
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A monotonic nondecreasing case can be established similarly – see [20]. 
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Proof: Recall from Chapter 2 that the solution of (66) is  
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Since the input signal w(t) within (66) is known, it suffices to consider the unforced system 
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for all N ≥ n. Therefore, we can take N = n within (78). Thus, equation (78) uniquely determines x(t0) 
if and only if O has full rank n.                                                                                                              � 

A system that does not satisfy the above criterion is said to be unobservable. An alternate 
proof for the above lemma is provided in [10]. If a signal model is not observable then a 
Kalman filter cannot estimate all the states from the measurements.  
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Lemma 6 [19], [20]: Suppose for a t ≥ 0 and a δt > 0 there exist solutions P(t) ≥ 0 and P(t + δt) ≥ 0 of 
the Riccati differential equations 

1( ) ( ) ( ) ( ) ( )T T TP t AP t P t A P t C R CP t BQB     (71)  

and 

1( ) ( ) ( ) ( ) ( )T T T
t t t t tP t AP t P t A P t C R CP t BQB             , (72)  

respectively, such that P(t) − P(t + δt ) ≥ 0. Then the sequence of matrices P(t) is monotonic 
nonincreasing, that is, 
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1( ) 0.5 ( )T
t tAP t C R C P   . Then 

1 1( ) ( ) ( ) ( ) ( ) ( ) ( )T T T
t t t t tP AP P A P t C R CP t P t C R CP t            

                                   ( ) ( ) T
t tAP P A   , 

which is of the form (70), and so the result (73) follows.                                                                       � 

A monotonic nondecreasing case can be established similarly – see [20]. 
 

3.4.2 Observability 
The continuous-time system (66) – (67) is termed completely observable if the initial states, 
x(t0), can be uniquely determined from the inputs and outputs, w(t) and y(t), respectively, 
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 
 
 
 
 
  


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“You can observe a lot by just watching.” Lawrence Peter (Yogi) Berra 

  

Proof: Recall from Chapter 2 that the solution of (66) is  

0

( )
0( ) ( ) ( )

tAt A t

t
x t e x t e Bw d     . (75)  

Since the input signal w(t) within (66) is known, it suffices to consider the unforced system 
( ) ( )x t Ax t  and y(t) = Cx(t), that is, Bw(t) = 0, which leads to  

0( ) ( )Aty t Ce x t . (76)  

The exponential matrix is defined as 
2 2
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k
k
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



  , 

(77)  

where  ( ) !k
k t t k  . Substituting (77) into (76) gives 

                    
1

0
0

( ) ( ) ( )
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k
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
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                            1
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                            2
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(78)  

From the Cayley-Hamilton Theorem [22], 

rank  2

1N
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  
  
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  
  
    


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  
  
  
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  
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n

C
CA
CA

CA

 

for all N ≥ n. Therefore, we can take N = n within (78). Thus, equation (78) uniquely determines x(t0) 
if and only if O has full rank n.                                                                                                              � 

A system that does not satisfy the above criterion is said to be unobservable. An alternate 
proof for the above lemma is provided in [10]. If a signal model is not observable then a 
Kalman filter cannot estimate all the states from the measurements.  
                                                                 

“Who will observe the observers ?” Arthur Stanley Eddington 
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Example 3. The pair A = 
1 0
0 1
 
 
 

, C = 1 0    is expected to be unobservable because one of 

the two states appears as a system output whereas the other is hidden. By inspection, the 

rank of the observability matrix, 
C

CA
 
 
 

= 
1 0
1 0
 
 
 

, is 1. Suppose instead that C = 
1 0
0 1
 
 
 

, 

namely measurements of both states are available. Since the observability matrix 
C

CA
 
 
 

= 

1 0
0 1
1 0
0 1

 
 
 
 
 
  

 is of rank 2, the pair (A, C) is observable, that is, the states can be uniquely 

reconstructed from the measurements. 
 

3.4.3 The Algebraic Riccati Equation 
Some pertinent facts concerning the Riccati differential equation (69) are: 

 Its solutions correspond to the covariance of the state estimation error. 
 From Lemma 6, if it is suitably initialised then its solutions will be monotonically 

nonincreasing. 
 If the pair (A, C) is observable then the states can be uniquely determined from the 

outputs. 

In view of the above, it is not surprising that if the states can be estimated uniquely, in the 
limit as t approaches infinity, the Riccati differential equation will have a unique steady 
state solution. 

Lemma 8 [20], [23], [24]: Suppose that Re{λi(A)} < 0, the pair (A, C) is observable, then the solution 
of the Riccati differential equation (69) satisfies 

lim ( )
t

P t P


 , (79)  

where P is the solution of the algebraic Riccati equation 
10 T T TAP PA PC R CP BQB    . (80)  

A proof that the solution P is in fact unique appears in [24]. A standard way for calculating 
solutions to (80) arises by finding an appropriate set of Schur vectors for the Hamiltonian 

matrix 
1T

T T

A C R CH
BQB A

 
  

 
, see [25] and the Hamiltonian solver within MatlabTM. 
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t P(t) ( )P t  

1 0.9800 −2.00 

10 0.8316 −1.41 

100 0.4419 −8.13*10-2 

1000 0.4121 −4.86*10-13 

Table 1. Solutions of (69) for Example 4. 

Example 4. Suppose that A = −1 and B = C = Q = R = 1, for which the solution of the 
algebraic Riccati equation (80) is P = 0.4121. Using Euler’s integration method (see Chapter 
1) with δt = 0.01 and P(0) = 1, the calculated solutions of the Riccati differential equation (69) 
are listed in Table 1. The data in the table demonstrate that the Riccati differential equation 
solution converges to the algebraic Riccati equation solution and lim ( ) 0

t
P t


 . 

The so-called infinite-horizon (or stationary) Kalman filter is obtained by substituting time-
invariant state-space parameters into (34) - (35) to give 

ˆ ˆ( | ) ( ) ( | ) ( )x t t A KC x t t Kz t   , 
ˆ ˆ( | ) ( | )y t t Cx t t , 

(81) 
(82)  

where  
1TK PC R , (83)  

in which P is calculated by solving the algebraic Riccati equation (80). The output estimation 
filter (81) – (82) has the transfer function 

1( ) ( )OEH s C sI A KC K   . (84)  

Example 5. Suppose that a signal y(t)    is generated by the system 
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This system’s transfer function is 
1
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...( )
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m m
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b s b s b s bG s
a s a s a s a


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   
, 

which can be realised in the controllable canonical form [10] 
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reconstructed from the measurements. 
 

3.4.3 The Algebraic Riccati Equation 
Some pertinent facts concerning the Riccati differential equation (69) are: 

 Its solutions correspond to the covariance of the state estimation error. 
 From Lemma 6, if it is suitably initialised then its solutions will be monotonically 
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outputs. 

In view of the above, it is not surprising that if the states can be estimated uniquely, in the 
limit as t approaches infinity, the Riccati differential equation will have a unique steady 
state solution. 
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A proof that the solution P is in fact unique appears in [24]. A standard way for calculating 
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Example 4. Suppose that A = −1 and B = C = Q = R = 1, for which the solution of the 
algebraic Riccati equation (80) is P = 0.4121. Using Euler’s integration method (see Chapter 
1) with δt = 0.01 and P(0) = 1, the calculated solutions of the Riccati differential equation (69) 
are listed in Table 1. The data in the table demonstrate that the Riccati differential equation 
solution converges to the algebraic Riccati equation solution and lim ( ) 0
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The so-called infinite-horizon (or stationary) Kalman filter is obtained by substituting time-
invariant state-space parameters into (34) - (35) to give 
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which can be realised in the controllable canonical form [10] 
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reconstructed from the measurements. 
 

3.4.3 The Algebraic Riccati Equation 
Some pertinent facts concerning the Riccati differential equation (69) are: 

 Its solutions correspond to the covariance of the state estimation error. 
 From Lemma 6, if it is suitably initialised then its solutions will be monotonically 
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outputs. 

In view of the above, it is not surprising that if the states can be estimated uniquely, in the 
limit as t approaches infinity, the Riccati differential equation will have a unique steady 
state solution. 

Lemma 8 [20], [23], [24]: Suppose that Re{λi(A)} < 0, the pair (A, C) is observable, then the solution 
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where P is the solution of the algebraic Riccati equation 
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A proof that the solution P is in fact unique appears in [24]. A standard way for calculating 
solutions to (80) arises by finding an appropriate set of Schur vectors for the Hamiltonian 
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Example 4. Suppose that A = −1 and B = C = Q = R = 1, for which the solution of the 
algebraic Riccati equation (80) is P = 0.4121. Using Euler’s integration method (see Chapter 
1) with δt = 0.01 and P(0) = 1, the calculated solutions of the Riccati differential equation (69) 
are listed in Table 1. The data in the table demonstrate that the Riccati differential equation 
solution converges to the algebraic Riccati equation solution and lim ( ) 0
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The so-called infinite-horizon (or stationary) Kalman filter is obtained by substituting time-
invariant state-space parameters into (34) - (35) to give 

ˆ ˆ( | ) ( ) ( | ) ( )x t t A KC x t t Kz t   , 
ˆ ˆ( | ) ( | )y t t Cx t t , 
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where  
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in which P is calculated by solving the algebraic Riccati equation (80). The output estimation 
filter (81) – (82) has the transfer function 
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Example 5. Suppose that a signal y(t)    is generated by the system 

1

1 1 01

1

1 1 01

...
( ) ( )

...



 



 

 
    

 
     
 

m m

m mm n

n n

n nn n

d d db b b b
dt dt dty t w t
d d da a a a
dt dt dt

. 

This system’s transfer function is 
1

1 1 0
1

1 1 0

...( )
...

m m
m m

n n
n n

b s b s b s bG s
a s a s a s a







   


   
, 

which can be realised in the controllable canonical form [10] 
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   
   
    
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      

 
 

 and 1 1 0...m mC b b b b    . 

The optimal filter for estimating y(t) from noisy measurements (29) is obtained by using the 
above state-space parameters within (81) – (83). It has the structure depicted in Figs. 3 and 4. 
These figures illustrate two features of interest. First, the filter’s model matches that within 
the signal generating process. Second, designing the filter is tantamount to finding an 
optimal gain. 

 
 
 
 

 

Figure 4. The optimal filter for Example 5. 
 

3.4.4 Equivalence of the Wiener and Kalman Filters 
When the model parameters and noise statistics are time-invariant, the Kalman filter reverts 
to the Wiener filter. The equivalence of the Wiener and Kalman filters implies that spectral 
factorisation is the same as solving a Riccati equation. This observation is known as the 
Kalman-Yakubovich-Popov Lemma (or Positive Real Lemma) [15], [26], which assumes 
familiarity with the following Schur complement formula. 

For any matrices 11 , 12  and 22 , where 11  and 22  are symmetric, the following are 
equivalent. 

(i)  11 12

12 22

0
  

   
T . 

(ii)  11  ≥ 0, 22  ≥ 1
12 11 12

  T . 

(iii)  22  ≥ 0, 11  ≥ 1
12 22 12

  T . 
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The Kalman-Yakubovich-Popov Lemma is set out below. Further details appear in [15] and 
a historical perspective is provided in [26]. A proof of this Lemma makes use of the identity 

( ) ( )      T TPA AP P sI A sI A P . (85)  

Lemma 9 [15], [26]: Consider the spectral density matrix 

1
1 0 ( )

( ) ( )
0

T T
H Q sI A Cs C sI A I

R I


                

. (86) 

Then the following statements are equivalent: 

(i)  ( )H j  ≥ 0 for all ω  (−∞,∞). 

(ii) 0
T T TBQB AP PA PC

CP R
  

 
 

. 

(iii) There exists a nonnegative solution P of the algebraic Riccati equation (80). 
 

Proof: To establish equivalence between (i) and (iii), use (85) within (80) to obtain 

( ) ( )T T TP sI A sI A P BQB PC RCP      . (87)  

Premultiplying and postmultiplying (87) by 1( )C sI A   and 1( )T TsI A C  , respectively, results in 

1 1 1 1( ) ( ) ( ) ( )( )T T T T T T TC sI A PC CP sI A C C sI A BQB PC RCP sI A C            .  (88) 

Hence, 

( ) ( )s GQG s R    

           
1 1( ) ( )T T TC sI A BQB sI A C R       

         1 1 1 1( ) ( ) ( ) ( )T T T T T TC sI A PC RCP sI A C C sI A PC CP sI A C R              

             1 1/ 2 1/ 2 1/ 2 1 1/ 2( ) ( )T T TC sI A KR R R K sI A C R         

          0 . 

 

(89) 

  

The Schur complement formula can be used to verify the equivalence of (ii) and (iii).                          � 

In Chapter 1, it is shown that the transfer function matrix of the optimal Wiener solution for 
output estimation is given by 

1/ 2 1( ) ( )OEH s I R s   , (90) 

where s = jω and 
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The optimal filter for estimating y(t) from noisy measurements (29) is obtained by using the 
above state-space parameters within (81) – (83). It has the structure depicted in Figs. 3 and 4. 
These figures illustrate two features of interest. First, the filter’s model matches that within 
the signal generating process. Second, designing the filter is tantamount to finding an 
optimal gain. 

 
 
 
 

 

Figure 4. The optimal filter for Example 5. 
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The Kalman-Yakubovich-Popov Lemma is set out below. Further details appear in [15] and 
a historical perspective is provided in [26]. A proof of this Lemma makes use of the identity 
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is the spectral density matrix of the measurements. It follows from (91) that  
1 1/ 2 1/ 2( ) ( )s C sI A KR R    . (92)  

The Wiener filter (90) requires the spectral factor inverse, 1( )s , which can be found from 
(92) and using [I + C(sI − A)-1K]-1 = I + C(sI − A + KC)-1K to obtain  

1 1/ 2 1/ 2 1( ) ( )s R R C sI A KC K        . (93)  

Substituting (93) into (90) yields 
1( ) ( )OEH s C sI A KC K   , (94) 

which is identical to the minimum-variance output estimator (84).  

Example 5. Consider a scalar output estimation problem where G(s) = (s + 1)- 1, Q = 1, R = 
0.0001 and the Wiener filter transfer function is  

1( ) 99( 100)H s s   . (95) 

Applying the bilinear transform yields A = −1, B = C = 1, for which the solution of (80) is P = 
0.0099. By substituting K = PCTR-1 = 99 into (90), one obtains (95). 
 

3.5 Conclusion 
The Kalman-Bucy filter which produces state estimates ˆ( | )x t t  and output estimates ˆ ( | )y t t  
from the measurements z(t) = y(t) + v(t) at time t is summarised in Table 2. This filter 
minimises the variances of the state estimation error, {( ( )E x t  − ˆ( | ))( ( )x t t x t  − ˆ( | )) }Tx t t  = 
P(t) and the output estimation error, {( ( )E y t  − ˆ( | ))( ( )y t t y t  − ˆ ( | )) }Ty t t  = C(t)P(t)CT(t). 

When the model parameters and noise covariances are time-invariant, the gain is also time-
invariant and can be precalculated. The time-invariant filtering results are summarised in 
Table 3. In this stationary case, spectral factorisation is equivalent to solving a Riccati 
equation and the transfer function of the output estimation filter, HOE(s) = 

1( )C sI A KC K  , is identical to that of the Wiener filter. It is not surprising that the Wiener 
and Kalman filters are equivalent since they are both derived by completing the square of 
the error covariance.  
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Table 3. Main results for time-invariant output estimation. 

                                                                 

“There are two ways to do great mathematics. The first is to be smarter than everybody else. The second 
way is to be stupider than everybody else - but persistent." Raoul Bott 



Smoothing, Filtering and Prediction:
Estimating the Past, Present and Future70

  

3.6 Problems 
Problem 1. Show that ( ) ( ) ( )x t A t x t  has the solution x(t) = ( ,0) (0)t x  where ( ,0)t  = 
( ) ( ,0)A t t  and ( , )t t  = I. Hint: use the approach of [13] and integrate both sides of 
( ) ( ) ( )x t A t x t .  

Problem 2. Given that:  

(i) the Lyapunov differential equation for the system ( )x t  = F(t)x(t) + G(t)w(t) is 

{ ( ) ( )}Td E x t x t
dt

   ( ) { ( ) ( )}TA t E x t x t  + { ( ) ( )} ( )T TE x t x t F t  + ( ) ( ) ( )TG t Q t G t ;  

(ii) the Kalman filter for the system ( ) ( ) ( )x t A t x t  + B(t)w(t), z(t) = C(t)x(t) + v(t) has 

the structure ˆ ˆ ˆ( | ) ( ) ( | ) ( )( ( ) ( ) ( | ))x t t A t x t t K t z t C t x t t   ; 

write a Riccati differential equation for the evolution of the state error covariance and 
determine the optimal gain matrix K(t). 

Problem 3. Derive the Riccati differential equation for the model ( ) ( ) ( )x t A t x t  + B(t)w(t), 
z(t) = C(t)x(t) + v(t) with E{w(t)wT(τ)} = Q(t)δ(t − τ), E{v(t)vT(τ)} = R(t)δ(t − τ) and E{w(t)vT(τ)} 
= S(t)δ(t − τ). Hint: consider ( ) ( ) ( )x t A t x t  + B(t)w(t) + B(t)S(t)R-1(t)(z(t) − C(t)x(t) − v(t)).  

Problem 4. For output estimation problems with B = C = R = 1, calculate the algebraic 
Riccati equation solution, filter gain and transfer function for the following. 

(a)  A = −1 and Q = 8.  (b)  A = −2 and Q = 12. 
(c)   A = −3 and Q = 16. (d)  A = −4 and Q = 20. 
(e)   A = −5 and Q = 24.  (f)  A = −6 and Q = 28. 
(g)   A = −7 and Q = 32.  (h)  A = −8 and Q = 36. 
(i)   A = −9 and Q = 40.  (j)  A = −10 and Q = 44. 

Problem 5. Prove the Kalman-Yakubovich-Popov Lemma for the case of 

( )
( ) ( ) ( )

( )
T T

T

w t Q S
E w v t

v t S R
   

                  
, i.e., show 

1
1 ( )

( ) ( )
T T

H Q S sI A Cs C sI A I
S R I


                

. 

Problem 6. Derive a state space formulation for minimum-mean-square-error equaliser 
using 1 1/ 2 1/ 2 1( ) ( )s R R C sI A KC K        . 
 

 

 

 

 

 

                                                                 

“Mathematics is a game played according to certain simple rules with meaningless marks on paper.” 
David Hilbert 

  

3.7 Glossary  
In addition to the terms listed in Section 1.6, the following have been used herein. 

: p  q  A linear system that operates on a p-element input signal and 
produces a q-element output signal.  

A(t), B(t), 
C(t), D(t) 

Time-varying state space matrices of appropriate dimension. The 
system   is assumed to have the realisation ( )x t  = A(t)x(t) + 
B(t)w(t),  y(t) = C(t)x(t) + D(t)w(t). 

Q(t) and R(t) Covariance matrices of the nonstationary stochastic signals w(t)and 
v(t), respectively. 

( ,0)t  State transition matrix which satisfies ( ,0) t  = ( ,0)d t
dt

  = ( ) ( ,0)A t t  

with the boundary condition ( , )t t  = I. 
H  Adjoint of  . The adjoint of a system having the state-space 

parameters {A(t), B(t), C(t), D(t)} is a system parameterised by {– AT(t), 
– CT(t), BT(t), DT(t)}. 

{.}E , { ( )}E x t  Expectation operator, expected value of x(t). 

{ ( ) | ( )}E x t y t  Conditional expectation, namely the estimate of x(t) given y(t). 

ˆ( | )x t t  Conditional mean estimate of the state x(t) given data at time t. 

( | )x t t  State estimation error which is defined by ( | )x t t  = x(t) – ˆ( | )x t t . 

K(t) Time-varying filter gain matrix. 
P(t) Time-varying error covariance, i.e., { ( ) ( )}TE x t x t  , which is the solution 

of a Riccati differential equation. 
A, B, C, D Time-invariant state space matrices of appropriate dimension. 
Q and R Time-invariant covariance matrices of the stationary stochastic 

signals w(t) and v(t), respectively. 
O Observability matrix. 
SNR Signal to noise ratio. 
K Time-invariant filter gain matrix. 
P Time-invariant error covariance which is the solution of an algebraic 

Riccati equation. 
H Hamiltonian matrix. 
G(s) Transfer function matrix of the signal model. 
H(s) Transfer function matrix of the minimum-variance solution. 
HOE(s) Transfer function matrix of the minimum-variance solution 

specialised for output estimation. 
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4.1 Introduction 
Kalman filters are employed wherever it is desired to recover data from the noise in an 
optimal way, such as satellite orbit estimation, aircraft guidance, radar, communication 
systems, navigation, medical diagnosis and finance. Continuous-time problems that possess 
differential equations may be easier to describe in a state-space framework, however, the 
filters have higher implementation costs because an additional integration step and higher 
sampling rates are required. Conversely, although discrete-time state-space models may be 
less intuitive, the ensuing filter difference equations can be realised immediately. 
The discrete-time Kalman filter calculates predicted states via the linear recursion 

1/ 1/ 1/ˆ ˆ ˆ( )k k k k k k k k k kx A x K z C x     , 

where the predictor gain, Kk, is a function of the noise statistics and the model parameters. 
The above formula was reported by Rudolf E. Kalman in the 1960s [1], [2]. He has since 
received many awards and prizes, including the National Medal of Science, which was 
presented to him by President Barack Obama in 2009. 

The Kalman filter calculations are simple and well-established. A possibly troublesome 
obstacle is expressing problems at hand within a state-space framework. This chapter 
derives the main discrete-time results to provide familiarity with state-space techniques and 
filter application. The continuous-time and discrete-time minimum-square-error Wiener 
filters were derived using a completing-the-square approach in Chapters 1 and 2, 
respectively. Similarly for time-varying continuous-time signal models, the derivation of the 
minimum-variance Kalman filter, presented in Chapter 3, relied on a least-mean-square (or 
conditional-mean) formula. This formula is used again in the solution of the discrete-time 
prediction and filtering problems. Predictions can be used when the measurements are 
irregularly spaced or missing at the cost of increased mean-square-error. 

This chapter develops the prediction and filtering results for the case where the problem is 
nonstationary or time-varying. It is routinely assumed that the process and measurement 
noises are zero mean and uncorrelated. Nonzero mean cases can be accommodated by 
including deterministic inputs within the state prediction and filter output updates. 
Correlated noises can be handled by adding a term within the predictor gain and the 
underlying Riccati equation. The same approach is employed when the signal model 
                                                                 

“Man will occasionally stumble over the truth, but most of the time he will pick himself up and 
continue on.” Winston Leonard Spencer-Churchill 
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possesses a direct-feedthrough term. A simplification of the generalised regulator problem 
from control theory is presented, from which the solutions of output estimation, input 
estimation (or equalisation), state estimation and mixed filtering problems follow 
immediately. 

 

 

 

 

 

 

Figure 1. The discrete-time system   operates on the input signal wk  m  and produces 
the output yk   p . 
 

4.2 The Time-varying Signal Model 
A discrete-time time-varying system : m  →  p  is assumed to have the state-space 
representation 

1k k k k kx A x B w   , 

k k k k ky C x D w  , 

(1) 

(2) 

where Ak  n n , Bk  n m , Ck   p n  and Dk   p p  over a finite interval k   [0, N]. The 
wk is a stochastic white process with 

{ }kE w  = 0, { }T
j kE w w  = k jkQ  , (3)  

in which 
1 if
0 ifjk

j k
j k




  
 is the Kronecker delta function. This system is depicted in Fig. 1, 

in which z-1 is the unit delay operator. It is interesting to note that, at time k the current state 

xk = Ak-1xk-1 + Bk-1wk-1, (4)  
does not involve wk. That is, unlike continuous-time systems, here there is a one-step delay 
between the input and output sequences. The simpler case of Dk = 0, namely, 

yk = Ckxk, (5) 
is again considered prior to the inclusion of a nonzero Dk. 

                                                                 

“Rudy Kalman applied the state-space model to the filtering problem, basically the same problem 
discussed by Wiener. The results were astonishing. The solution was recursive, and the fact that the 
estimates could use only the past of the observations posed no difficulties.” Jan. C. Willems 
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4.3 The State Prediction Problem 
Suppose that observations of (5) are available, that is, 

zk = yk + vk, (6)  
where vk is a white measurement noise process with 

E{vk} = 0, { }T
j kE v v  = Rkδjk and { }T

j kE w v =0.  (7)  
 

 
 
 
 

 

Figure 2. The state prediction problem. The objective is to design a predictor   which 
operates on the measurements and produces state estimates such that the variance of the 
error residual ek/k-1 is minimised. 

It is noted above for the state recursion (4), there is a one-step delay between the current 
state and the input process. Similarly, it is expected that there will be one-step delay 
between the current state estimate and the input measurement. Consequently, it is 
customary to denote / 1ˆ k kx   as the state estimate at time k, given measurements at time k – 1. 
The / 1ˆ k kx   is also known as the one-step-ahead state prediction. The objective here is to 
design a predictor   that operates on the measurements zk and produces an estimate, 

/ 1ˆ k ky   = / 1ˆk k kC x  , of yk = Ckyk, so that the covariance, / 1 / 1{ }T
k k k kE e e  , of the error residual, ek/k-1 

= yk – / 1ˆ k ky  , is minimised. This problem is depicted in Fig. 2 
 

4.4 The Discrete-time Conditional Mean Estimate 
The predictor derivation that follows relies on the discrete-time version of the conditional-
mean or least-mean-square estimate derived in Chapter 3, which is set out as follows. 
Consider a stochastic vector [ ]TT T

k k   having means and covariances 

k

k

E
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 

          
      

 (8)  

 

 

                                                                 

“Prediction is very difficult, especially if it’s about the future.” Niels Henrik David Bohr 
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possesses a direct-feedthrough term. A simplification of the generalised regulator problem 
from control theory is presented, from which the solutions of output estimation, input 
estimation (or equalisation), state estimation and mixed filtering problems follow 
immediately. 
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k k k k

k T T
k k
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   


 



                      
. (9)  

respectively, where 
k k k k

T
      . An estimate of  k  given k , denoted by { | }k kE   , which 

minimises ( kE   − { | })(k k kE     − { | })T
k kE   , is given by 

1{ | } ( )
k k k kk k kE             . (10)  

The above formula is developed in [3] and established for Gaussian distributions in [4]. A 
derivation is requested in the problems. If αk and βk are scalars then (10) degenerates to the 
linear regression formula as is demonstrated below.  

Example 1 (Linear regression [5]). The least-squares estimate ˆk  = ka  + b of k  given data 

αk, βk    over [1, N], can be found by minimising the performance objective J = 
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for b and using the definitions (8) – (9), results in a = 1
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4.5 Minimum-Variance Prediction 
It follows from (1), (6), together with the assumptions E{wk} = 0, E{vk} = 0, that E{xk+1} = 
E{Akxk}  and E{zk} = E{Ckxk}. It is assumed that similar results hold in the case of predicted 
state estimates, that is,  
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. (11)  

Substituting (11) into (10) and denoting 1/ˆ k kx   = 1ˆ{ | }k kE x z  yields the predicted state 

1/ / 1 / 1ˆ ˆ ˆ( )k k k k k k k k k kx A x K z C x     , (12)  

where Kk   1
1ˆ{ } { }T T

k k k kE x z E z z 
  is known as the predictor gain, which is designed in the next 

section. Thus, the optimal one-step-ahead predictor follows immediately from the least-
mean-square (or conditional mean) formula. A more detailed derivation appears in [4]. The 
structure of the optimal predictor is shown in Fig. 3. It can be seen from the figure that   
produces estimates / 1ˆ k ky   = / 1ˆk k kC x   from the measurements zk. 

 

                                                                 

“I admired Bohr very much. We had long talks together, long talks in which Bohr did practically all the 
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Figure 3. The optimal one-step-ahead predictor which produces estimates 1/ˆ
k kx  of  xk+1  

given measurements zk. 

Let / 1k kx 
  = xk – / 1ˆ k kx   denote the state prediction error. It is shown below that the 

expectation of the prediction error is zero, that is, the predicted state estimate is unbiased. 

Lemma 1: Suppose that  0 / 0x̂  = x0, then 

1/{ }k kE x 
  = 0 (13)  

for all k  [0, N]. 

Proof: The condition 0 / 0x̂  = x0 is equivalent to 0 / 0x  = 0, which is the initialisation step for an 
induction argument. Subtracting (12) from (1) gives 
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From assumptions (3) and (7), the last two terms of the right-hand-side of (15) are zero. Thus, (13) 
follows by induction.                                                                                                                              � 
 

4.6 Design of the Predictor Gain 
It is shown below that the optimum predictor gain is that which minimises the prediction 
error covariance / 1 / 1{ }T

k k k kE x x 
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Lemma 2: In respect of the estimation problem defined by (1), (3), (5) - (7), suppose there exist 
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“When it comes to the future, there are three kinds of people: those who let it happen, those who make 
it happen, and those who wondered what happened.” John M. Richardson Jr. 
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Proof: Constructing 1/k kP     1/ 1/{ }T
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(19)  

By inspection of (19), the predictor gain (17) minimises 1/k kP  .                                                         � 
 

4.7 Minimum-Variance Filtering 
It can be seen from (12) that the predicted state estimate / 1ˆ k kx   is calculated using the 
previous measurement zk-1 as opposed to the current data zk. A state estimate, given the data 
at time k, which is known as the filtered state, can similarly be obtained using the linear least 
squares or conditional-mean formula. In Lemma 1 it was shown that the predicted state 
estimate is unbiased. Therefore, it is assumed that the expected value of the filtered state 
equals the expected value of the predicted state, namely, 
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Substituting (20) into (10) and denoting /ˆ k kx  = ˆ{ | }k kE x z  yields the filtered estimate 
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where Lk = 1ˆ{ } { }T T
k k k kE x z E z z   is known as the filter gain, which is designed subsequently. Let 

/k kx  = xk – /ˆ k kx  denote the filtered state error. It is shown below that the expectation of the 
filtered error is zero, that is, the filtered state estimate is unbiased. 

Lemma 3: Suppose that  0 / 0x̂  = x0, then 

/{ }k kE x  = 0 (22)  

for all k  [0, N].  

 

 

                                                                 

“To be creative you have to contribute something different from what you've done before. Your results 
need not be original to the world; few results truly meet that criterion. In fact, most results are built on 
the work of others.” Lynne C. Levesque 

  

Proof: Following the approach of [6], combining (4) - (6) results in zk = CkAk-1xk-1 + CkBk-1wk-1 + vk, 
which together with (21) yields 

/ 1 1/ 1 1 1( ) ( )k k k k k k k k k k k k kx I L C A x I L C B w L v          . (23)  

From (23) and the assumptions (3), (7), it follows that 
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(24)  

Hence, with the initial condition 0 / 0x̂  = x0, /{ }k kE x  = 0.                                                                     � 
 

4.8 Design of the Filter Gain 
It is shown below that the optimum filter gain is that which minimises the covariance 

/ /{ }T
k k k kE x x  , where /k kx  = xk – /ˆ k kx  is the filter error. 
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Proof: Subtracting /ˆ k kx  from xk yields /k kx  = xk –  /ˆ k kx  = xk − / 1ˆ k kx  − (k kL Cx  + vk − / 1ˆ )k kCx  , that is,  

/ / 1( )k k k k k k k kx I L C x L v     (27)  

and 
/ / 1( ) ( )T T

k k k k k k k k k k kP I L C P I L C L R L    , (28)  

which can be rearranged as7 
1

/ / 1 / 1 / 1 / 1( )T T
k k k k k k k k k k k k k k kP P P C C P C R C P

       

     1 1
/ 1 / 1 / 1 / 1 / 1( ( ) )( )( ( ) )T T T T T T

k k k k k k k k k k k k k k k k k k k k k k kL P C C P C R C P C R L P C C P C R 
              (29) 

By inspection of (29), the filter gain (26) minimises /k kP .                                                                   � 

Example 2 (Data Fusion). Consider a filtering problem in which there are two measurements of 

the same state variable (possibly from different sensors), namely Ak, Bk, Qk   , Ck = 
1
1
 
 
 

 and Rk 

= 1,

2,

0
0

k

k

R
R

 
 
 

, with R1,k, R2,k   . Let Pk/k-1 denote the solution of the Riccati difference equation 

(25). By applying Cramer’s rule within (26) it can be found that the filter gain is given by 

                                                                 

“A professor is one who can speak on any subject - for precisely fifty minutes.” Norbert Wiener 
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Proof: Constructing 1/k kP     1/ 1/{ }T
k k k kE x x 
   using (3), (7), (14), / 1{ }T

k k kE x w
  = 0 and / 1{ }T

k k kE x v
  

= 0 yields 

1/ / 1( ) ( )     T T T
k k k k k k k k k k k k k k k kP A K C P A K C B Q B K R K , (18)  

which can be rearranged to give 
1

1/ / 1 / 1 / 1 / 1( )T T T T T
k k k k k k k k k k k k k k k k k k k k k kP A P A A P C C P C R C P A B Q B
         

                         1
/ 1 / 1 / 1( ( ) )( )T T T

k k k k k k k k k k k k k k kK A P C C P C R C P C R
       

                         1
/ 1 / 1( ( ) )T T T

k k k k k k k k k kK A P C C P C R 
    , 

(19)  

By inspection of (19), the predictor gain (17) minimises 1/k kP  .                                                         � 
 

4.7 Minimum-Variance Filtering 
It can be seen from (12) that the predicted state estimate / 1ˆ k kx   is calculated using the 
previous measurement zk-1 as opposed to the current data zk. A state estimate, given the data 
at time k, which is known as the filtered state, can similarly be obtained using the linear least 
squares or conditional-mean formula. In Lemma 1 it was shown that the predicted state 
estimate is unbiased. Therefore, it is assumed that the expected value of the filtered state 
equals the expected value of the predicted state, namely, 

/ / 1

/ 1

ˆ ˆ
ˆ

k k k k

k k k k

x x
E

z C x




          
     

. (20) 

Substituting (20) into (10) and denoting /ˆ k kx  = ˆ{ | }k kE x z  yields the filtered estimate 

/ / 1 / 1ˆ ˆ ˆ( )k k k k k k k k kx x L z C x    , (21)  

where Lk = 1ˆ{ } { }T T
k k k kE x z E z z   is known as the filter gain, which is designed subsequently. Let 

/k kx  = xk – /ˆ k kx  denote the filtered state error. It is shown below that the expectation of the 
filtered error is zero, that is, the filtered state estimate is unbiased. 

Lemma 3: Suppose that  0 / 0x̂  = x0, then 

/{ }k kE x  = 0 (22)  

for all k  [0, N].  

 

 

                                                                 

“To be creative you have to contribute something different from what you've done before. Your results 
need not be original to the world; few results truly meet that criterion. In fact, most results are built on 
the work of others.” Lynne C. Levesque 

  

Proof: Following the approach of [6], combining (4) - (6) results in zk = CkAk-1xk-1 + CkBk-1wk-1 + vk, 
which together with (21) yields 

/ 1 1/ 1 1 1( ) ( )k k k k k k k k k k k k kx I L C A x I L C B w L v          . (23)  

From (23) and the assumptions (3), (7), it follows that 

/ 1 1/ 1{ } ( ) { }k k k k k k kE x I L C A E x      
                                    1 1 1 0 0 / 0( ) ( ) { }k k kI L C A I L C A E x    . 

(24)  

Hence, with the initial condition 0 / 0x̂  = x0, /{ }k kE x  = 0.                                                                     � 
 

4.8 Design of the Filter Gain 
It is shown below that the optimum filter gain is that which minimises the covariance 

/ /{ }T
k k k kE x x  , where /k kx  = xk – /ˆ k kx  is the filter error. 

Lemma 4: In respect of the estimation problem defined by (1), (3), (5) - (7), suppose there exists a 
solution /k kP  = /

T
k kP  ≥ 0 to the Riccati difference equation 

1
/ / 1 / 1 / 1 / 1( )T T

k k k k k k k k k k k k k k kP P P C C P C R C P
      , (25)  

over [0, N], then the filter gain 
1

/ 1 / 1( )T T
k k k k k k k k kL P C C P C R 

   , (26)  
within (21) minimises  /k kP    / /{ }T

k k k kE x x  . 

Proof: Subtracting /ˆ k kx  from xk yields /k kx  = xk –  /ˆ k kx  = xk − / 1ˆ k kx  − (k kL Cx  + vk − / 1ˆ )k kCx  , that is,  

/ / 1( )k k k k k k k kx I L C x L v     (27)  

and 
/ / 1( ) ( )T T

k k k k k k k k k k kP I L C P I L C L R L    , (28)  

which can be rearranged as7 
1

/ / 1 / 1 / 1 / 1( )T T
k k k k k k k k k k k k k k kP P P C C P C R C P

       

     1 1
/ 1 / 1 / 1 / 1 / 1( ( ) )( )( ( ) )T T T T T T

k k k k k k k k k k k k k k k k k k k k k k kL P C C P C R C P C R L P C C P C R 
              (29) 

By inspection of (29), the filter gain (26) minimises /k kP .                                                                   � 

Example 2 (Data Fusion). Consider a filtering problem in which there are two measurements of 

the same state variable (possibly from different sensors), namely Ak, Bk, Qk   , Ck = 
1
1
 
 
 

 and Rk 

= 1,

2,

0
0

k

k

R
R

 
 
 

, with R1,k, R2,k   . Let Pk/k-1 denote the solution of the Riccati difference equation 

(25). By applying Cramer’s rule within (26) it can be found that the filter gain is given by 
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Proof: Constructing 1/k kP     1/ 1/{ }T
k k k kE x x 
   using (3), (7), (14), / 1{ }T

k k kE x w
  = 0 and / 1{ }T

k k kE x v
  

= 0 yields 

1/ / 1( ) ( )     T T T
k k k k k k k k k k k k k k k kP A K C P A K C B Q B K R K , (18)  

which can be rearranged to give 
1

1/ / 1 / 1 / 1 / 1( )T T T T T
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                         1
/ 1 / 1 / 1( ( ) )( )T T T

k k k k k k k k k k k k k k kK A P C C P C R C P C R
       

                         1
/ 1 / 1( ( ) )T T T

k k k k k k k k k kK A P C C P C R 
    , 

(19)  

By inspection of (19), the predictor gain (17) minimises 1/k kP  .                                                         � 
 

4.7 Minimum-Variance Filtering 
It can be seen from (12) that the predicted state estimate / 1ˆ k kx   is calculated using the 
previous measurement zk-1 as opposed to the current data zk. A state estimate, given the data 
at time k, which is known as the filtered state, can similarly be obtained using the linear least 
squares or conditional-mean formula. In Lemma 1 it was shown that the predicted state 
estimate is unbiased. Therefore, it is assumed that the expected value of the filtered state 
equals the expected value of the predicted state, namely, 

/ / 1

/ 1

ˆ ˆ
ˆ

k k k k

k k k k

x x
E

z C x




          
     

. (20) 

Substituting (20) into (10) and denoting /ˆ k kx  = ˆ{ | }k kE x z  yields the filtered estimate 

/ / 1 / 1ˆ ˆ ˆ( )k k k k k k k k kx x L z C x    , (21)  

where Lk = 1ˆ{ } { }T T
k k k kE x z E z z   is known as the filter gain, which is designed subsequently. Let 

/k kx  = xk – /ˆ k kx  denote the filtered state error. It is shown below that the expectation of the 
filtered error is zero, that is, the filtered state estimate is unbiased. 

Lemma 3: Suppose that  0 / 0x̂  = x0, then 

/{ }k kE x  = 0 (22)  

for all k  [0, N].  
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Proof: Following the approach of [6], combining (4) - (6) results in zk = CkAk-1xk-1 + CkBk-1wk-1 + vk, 
which together with (21) yields 

/ 1 1/ 1 1 1( ) ( )k k k k k k k k k k k k kx I L C A x I L C B w L v          . (23)  

From (23) and the assumptions (3), (7), it follows that 

/ 1 1/ 1{ } ( ) { }k k k k k k kE x I L C A E x      
                                    1 1 1 0 0 / 0( ) ( ) { }k k kI L C A I L C A E x    . 

(24)  

Hence, with the initial condition 0 / 0x̂  = x0, /{ }k kE x  = 0.                                                                     � 
 

4.8 Design of the Filter Gain 
It is shown below that the optimum filter gain is that which minimises the covariance 

/ /{ }T
k k k kE x x  , where /k kx  = xk – /ˆ k kx  is the filter error. 

Lemma 4: In respect of the estimation problem defined by (1), (3), (5) - (7), suppose there exists a 
solution /k kP  = /

T
k kP  ≥ 0 to the Riccati difference equation 

1
/ / 1 / 1 / 1 / 1( )T T

k k k k k k k k k k k k k k kP P P C C P C R C P
      , (25)  

over [0, N], then the filter gain 
1

/ 1 / 1( )T T
k k k k k k k k kL P C C P C R 

   , (26)  
within (21) minimises  /k kP    / /{ }T

k k k kE x x  . 

Proof: Subtracting /ˆ k kx  from xk yields /k kx  = xk –  /ˆ k kx  = xk − / 1ˆ k kx  − (k kL Cx  + vk − / 1ˆ )k kCx  , that is,  

/ / 1( )k k k k k k k kx I L C x L v     (27)  

and 
/ / 1( ) ( )T T

k k k k k k k k k k kP I L C P I L C L R L    , (28)  

which can be rearranged as7 
1

/ / 1 / 1 / 1 / 1( )T T
k k k k k k k k k k k k k k kP P P C C P C R C P

       

     1 1
/ 1 / 1 / 1 / 1 / 1( ( ) )( )( ( ) )T T T T T T

k k k k k k k k k k k k k k k k k k k k k k kL P C C P C R C P C R L P C C P C R 
              (29) 

By inspection of (29), the filter gain (26) minimises /k kP .                                                                   � 

Example 2 (Data Fusion). Consider a filtering problem in which there are two measurements of 

the same state variable (possibly from different sensors), namely Ak, Bk, Qk   , Ck = 
1
1
 
 
 

 and Rk 

= 1,

2,

0
0

k

k

R
R

 
 
 

, with R1,k, R2,k   . Let Pk/k-1 denote the solution of the Riccati difference equation 

(25). By applying Cramer’s rule within (26) it can be found that the filter gain is given by 
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2, / 1 1, / 1

2, / 1 1, / 1 1, 2, 2, / 1 1, / 1 1, 2,

k k k k k k
k

k k k k k k k k k k k k k k k k

R P R P
L

R P R P R R R P R P R R
 

   

 
  

     
, 

from which it follows that 
1, 2,0 0
lim 1 0

k k
kR R

L
 

     and 
2, 1,0 0
lim 0 1

k k
kR R

L
 

    . That is, when the 

first measurement is noise free, the filter ignores the second measurement and vice versa. 
Thus, the Kalman filter weights the data according to the prevailing measurement qualities. 
 

4.9 The Predictor-Corrector Form 
The Kalman filter may be written in the following predictor-corrector form. The corrected 
(or filtered) error covariances and states are respectively given  by 

1
/ / 1 / 1 / 1 / 1( )T T

k k k k k k k k k k k k k k kP P P C C P C R C P
       

                                      1
/ 1 / 1( )T T

k k k k k k k k kP L C P C R L
     

                                      / 1( )k k k kI L C P   , 

/ / 1 / 1ˆ ˆ ˆ( )k k k k k k k k kx x L z C x     

                                                    / 1ˆ( )k k k k k kI L C x L z   , 

(30)  

 

 

 

(31) 
where Lk = / 1 / 1(T T

k k k k k k kP C C P C   + Rk)-1. Equation (31) is also known as the measurement 
update. The predicted state and error covariances are respectively given by 

1/ /ˆ ˆk k k k kx A x   
                                                                   / 1ˆ( )k k k k k k kA K C x K z   , 

                        1/ /
T T

k k k k k k k k kP A P A B Q B   , 

(32)  

 
(33) 

where Kk = / 1 / 1(T T
k k k k k k k kA P C C P C  + Rk)-1. It can be seen from (31) that the corrected estimate, 

/ˆ k kx , is obtained using measurements up to time k. This contrasts with the prediction at time 
k + 1 in (32), which is based on all previous measurements. The output estimate is given by 

/ /ˆ ˆk k k k ky C x  

                                                    / 1 / 1ˆ ˆ( )k k k k k k k k kC x C L z C x     

                                                    / 1ˆ( )k k k k k k k kC I L C x C L z   . 

(34)  

                                                                 

“Before the advent of the Kalman filter, most mathematical work was based on Norbert Wiener's ideas, 
but the 'Wiener filtering' had proved difficult to apply. Kalman's approach, based on the use of state 
space techniques and a recursive least-squares algorithm, opened up many new theoretical and 
practical possibilities. The impact of Kalman filtering on all areas of applied mathematics, engineering, 
and sciences has been tremendous.” Eduardo Daniel Sontag  

  

4.10 The A Posteriori Filter  
The above predictor-corrector form is used in the construction of extended Kalman filters 
for nonlinear estimation problems (see Chapter 10). When state predictions are not explicitly 
required, the following one-line recursion for the filtered state can be employed. 
Substituting / 1ˆ k kx   = 1 1/ 1ˆk k kA x    into /ˆ k kx  = / 1ˆ( )k k k kI L C x  + Lkzk yields /ˆ k kx  = (I – 

1 1/ 1ˆ)k k k k kL C A x    + Lkzk. Hence, the output estimator may be written as 

1/ 1/ 1

/

ˆ ˆ( )
ˆ

k k k kk k k k

kk k k

I L C A Lx x
Cy z

      
    
    

, (35)  

This form is called the a posteriori filter within [7], [8] and [9]. The absence of a direct feed-
through matrix above reduces the complexity of the robust filter designs described in [7], [8] 
and [9]. 
 

4.11 The Information Form 
Algebraically equivalent recursions of the Kalman filter can be obtained by propagating a 
so-called corrected information state 

1
/ / /ˆ ˆk k k k k kx P x , (36)  

and a predicted information state 
1

1/ 1/ 1/ˆ ˆk k k k k kx P x
   . (37)  

The expression 
1 1 1 1 1 1 1( ) ( )A BCD A A B C DA B DA          , (38)  

which is variously known as the Matrix Inversion Lemma, the Sherman-Morrison formula 
and Woodbury’s identity, is used to derive the  information filter, see [3], [4], [11], [14] and 
[15]. To confirm the above identity, premultiply both sides of (38) by 1( )A BD C  to obtain 

1 1 1 1 1 1 1 1 1 1( ) ( )I I BCDA B C DA B DA BCDA B C DA B DA                

                        1 1 1 1 1 1 1( ) ( )I BCDA B I CDA B C DA B DA            

                1 1 1 1 1 1 1 1( ) ( )I BCDA BC C DA B C DA B DA            , 
 

 

                                                                 

“I have been aware from the outset that the deep analysis of something which is now called Kalman 
filtering was of major importance. But even with this immodesty I did not quite anticipate all the 
reactions to this work.” Rudolf Emil Kalman 
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from which it follows that 
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L
 

     and 
2, 1,0 0
lim 0 1

k k
kR R

L
 

    . That is, when the 

first measurement is noise free, the filter ignores the second measurement and vice versa. 
Thus, the Kalman filter weights the data according to the prevailing measurement qualities. 
 

4.9 The Predictor-Corrector Form 
The Kalman filter may be written in the following predictor-corrector form. The corrected 
(or filtered) error covariances and states are respectively given  by 

1
/ / 1 / 1 / 1 / 1( )T T

k k k k k k k k k k k k k k kP P P C C P C R C P
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                                      1
/ 1 / 1( )T T

k k k k k k k k kP L C P C R L
     

                                      / 1( )k k k kI L C P   , 
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                                                    / 1ˆ( )k k k k k kI L C x L z   , 
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(31) 
where Lk = / 1 / 1(T T

k k k k k k kP C C P C   + Rk)-1. Equation (31) is also known as the measurement 
update. The predicted state and error covariances are respectively given by 

1/ /ˆ ˆk k k k kx A x   
                                                                   / 1ˆ( )k k k k k k kA K C x K z   , 

                        1/ /
T T

k k k k k k k k kP A P A B Q B   , 

(32)  

 
(33) 

where Kk = / 1 / 1(T T
k k k k k k k kA P C C P C  + Rk)-1. It can be seen from (31) that the corrected estimate, 

/ˆ k kx , is obtained using measurements up to time k. This contrasts with the prediction at time 
k + 1 in (32), which is based on all previous measurements. The output estimate is given by 

/ /ˆ ˆk k k k ky C x  

                                                    / 1 / 1ˆ ˆ( )k k k k k k k k kC x C L z C x     

                                                    / 1ˆ( )k k k k k k k kC I L C x C L z   . 

(34)  

                                                                 

“Before the advent of the Kalman filter, most mathematical work was based on Norbert Wiener's ideas, 
but the 'Wiener filtering' had proved difficult to apply. Kalman's approach, based on the use of state 
space techniques and a recursive least-squares algorithm, opened up many new theoretical and 
practical possibilities. The impact of Kalman filtering on all areas of applied mathematics, engineering, 
and sciences has been tremendous.” Eduardo Daniel Sontag  

  

4.10 The A Posteriori Filter  
The above predictor-corrector form is used in the construction of extended Kalman filters 
for nonlinear estimation problems (see Chapter 10). When state predictions are not explicitly 
required, the following one-line recursion for the filtered state can be employed. 
Substituting / 1ˆ k kx   = 1 1/ 1ˆk k kA x    into /ˆ k kx  = / 1ˆ( )k k k kI L C x  + Lkzk yields /ˆ k kx  = (I – 

1 1/ 1ˆ)k k k k kL C A x    + Lkzk. Hence, the output estimator may be written as 

1/ 1/ 1

/

ˆ ˆ( )
ˆ

k k k kk k k k

kk k k

I L C A Lx x
Cy z

      
    
    

, (35)  

This form is called the a posteriori filter within [7], [8] and [9]. The absence of a direct feed-
through matrix above reduces the complexity of the robust filter designs described in [7], [8] 
and [9]. 
 

4.11 The Information Form 
Algebraically equivalent recursions of the Kalman filter can be obtained by propagating a 
so-called corrected information state 

1
/ / /ˆ ˆk k k k k kx P x , (36)  

and a predicted information state 
1

1/ 1/ 1/ˆ ˆk k k k k kx P x
   . (37)  

The expression 
1 1 1 1 1 1 1( ) ( )A BCD A A B C DA B DA          , (38)  

which is variously known as the Matrix Inversion Lemma, the Sherman-Morrison formula 
and Woodbury’s identity, is used to derive the  information filter, see [3], [4], [11], [14] and 
[15]. To confirm the above identity, premultiply both sides of (38) by 1( )A BD C  to obtain 

1 1 1 1 1 1 1 1 1 1( ) ( )I I BCDA B C DA B DA BCDA B C DA B DA                

                        1 1 1 1 1 1 1( ) ( )I BCDA B I CDA B C DA B DA            

                1 1 1 1 1 1 1 1( ) ( )I BCDA BC C DA B C DA B DA            , 
 

 

                                                                 

“I have been aware from the outset that the deep analysis of something which is now called Kalman 
filtering was of major importance. But even with this immodesty I did not quite anticipate all the 
reactions to this work.” Rudolf Emil Kalman 
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 
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  
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from which it follows that 
1, 2,0 0
lim 1 0

k k
kR R

L
 

     and 
2, 1,0 0
lim 0 1

k k
kR R

L
 

    . That is, when the 

first measurement is noise free, the filter ignores the second measurement and vice versa. 
Thus, the Kalman filter weights the data according to the prevailing measurement qualities. 
 

4.9 The Predictor-Corrector Form 
The Kalman filter may be written in the following predictor-corrector form. The corrected 
(or filtered) error covariances and states are respectively given  by 
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(31) 
where Lk = / 1 / 1(T T
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T T
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(32)  

 
(33) 

where Kk = / 1 / 1(T T
k k k k k k k kA P C C P C  + Rk)-1. It can be seen from (31) that the corrected estimate, 

/ˆ k kx , is obtained using measurements up to time k. This contrasts with the prediction at time 
k + 1 in (32), which is based on all previous measurements. The output estimate is given by 

/ /ˆ ˆk k k k ky C x  
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(34)  
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but the 'Wiener filtering' had proved difficult to apply. Kalman's approach, based on the use of state 
space techniques and a recursive least-squares algorithm, opened up many new theoretical and 
practical possibilities. The impact of Kalman filtering on all areas of applied mathematics, engineering, 
and sciences has been tremendous.” Eduardo Daniel Sontag  

  

4.10 The A Posteriori Filter  
The above predictor-corrector form is used in the construction of extended Kalman filters 
for nonlinear estimation problems (see Chapter 10). When state predictions are not explicitly 
required, the following one-line recursion for the filtered state can be employed. 
Substituting / 1ˆ k kx   = 1 1/ 1ˆk k kA x    into /ˆ k kx  = / 1ˆ( )k k k kI L C x  + Lkzk yields /ˆ k kx  = (I – 

1 1/ 1ˆ)k k k k kL C A x    + Lkzk. Hence, the output estimator may be written as 
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    
    

, (35)  

This form is called the a posteriori filter within [7], [8] and [9]. The absence of a direct feed-
through matrix above reduces the complexity of the robust filter designs described in [7], [8] 
and [9]. 
 

4.11 The Information Form 
Algebraically equivalent recursions of the Kalman filter can be obtained by propagating a 
so-called corrected information state 

1
/ / /ˆ ˆk k k k k kx P x , (36)  

and a predicted information state 
1

1/ 1/ 1/ˆ ˆk k k k k kx P x
   . (37)  

The expression 
1 1 1 1 1 1 1( ) ( )A BCD A A B C DA B DA          , (38)  

which is variously known as the Matrix Inversion Lemma, the Sherman-Morrison formula 
and Woodbury’s identity, is used to derive the  information filter, see [3], [4], [11], [14] and 
[15]. To confirm the above identity, premultiply both sides of (38) by 1( )A BD C  to obtain 

1 1 1 1 1 1 1 1 1 1( ) ( )I I BCDA B C DA B DA BCDA B C DA B DA                
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from which the result follows. From the above Matrix Inversion Lemma and (30) it follows 
that 

1 1 1
/ / 1 / 1 / 1 / 1( ( ) )T T

k k k k k k k k k k k k k k kP P P C C P C R C P  
       

                                  1 1
/ 1

T
k k k k kP C R C 

  , 

(39)  

assuming that 1
/ 1k kP
  and 1

kR  exist. An expression for 1
1/k kP

  can be obtained from the 
Matrix Inversion Lemma and (33), namely, 

1 1
1/ /( )T T

k k k k k k k k kP A P A B Q B 
    

                                                      1 1( )T
k k k kF B Q B   , 

(40)  

where Fk = 1
/( )T

k k k kA P A    = 1 1
/

T
k k k kA P A   , which gives 

1 1 1
1/ ( ( ) )T T

k k k k k k k k k kP I F B B F B Q B F  
    .  (41)  

Another useful identity is 
1 1 1 1( ) ( )A BCD BC A I BCDA BC       

                                                               1 1 1( )A B I CDA B C     

                                                               1 1 1 1( )A B C DA B     . 

(42)  

From (42) and (39), the filter gain can be expressed as  
1

/ 1 / 1( )T T
k k k k k k k k kL P C C P C R 

    

                                                1 1 1 1
/ 1( )T T

k k k k k k kP C R C C R   
   

                                                1
/

T
k k k kP C R . 

(43)  

Premultiplying (39) by /k kP  and rearranging gives 

1
/ / 1k k k k k kI L C P P

  . (44)  

It follows from (31), (36) and (44) that the corrected information state is given by 

1
/ / /ˆ ˆk k k k k kx P x  

                                          1 1
/ / 1 /ˆ( )k k k k k k k k k kP I L C x P L z 

    

                                          1
/ 1ˆ T

k k k k kx C R z
  . 

(45) 

 
                                                                 

“Information is the oxygen of the modern age. It seeps through the walls topped by barbed wire, it 
wafts across the electrified borders.” Ronald Wilson Reagan 

  

The predicted information state follows from (37), (41) and the definition of Fk, namely,  
1

1/ 1/ 1/ˆ ˆk k k k k kx P x
    

                                                                1
1/ /ˆk k k k kP A x

  

                                                                1 1
/ˆ( ( ) )T T

k k k k k k k k k k kI F B B F B Q B F A x     

                                                                1 1
/ˆ( ( ) )T T T

k k k k k k k k k kI F B B F B Q B A x     . 

(46)  

Recall from Lemma 1 and Lemma 3 that 1/ˆ{ }k k kE x x   = 0 and /ˆ{ }k k kE x x  = 0, provided 

0 / 0x̂  = x0. Similarly, with 0 / 0x̂  = 1
0 / 0 0P x , it follows that 1/ 1/ˆ{ }k k k k kE x P x   = 0 and 

/ /ˆ{ }k k k k kE x P x  = 0. That is, the information states (scaled by the appropriate covariances) 
will be unbiased, provided that the filter is suitably initialised. The calculation cost and 
potential for numerical instability can influence decisions on whether to implement the 
predictor-corrector form (30) - (33) or the information form (39) - (46) of the Kalman filter. 
The filters have similar complexity, both require a p × p matrix inverse in the measurement 
updates (31) and (45). However, inverting the measurement covariance matrix for the 
information filter may be troublesome when the measurement noise is negligible. 
 

4.12 Comparison with Recursive Least Squares 
The recursive least squares (RLS) algorithm is equivalent to the Kalman filter designed with 
the simplifications Ak = I and Bk = 0; see the derivations within [10], [11]. For convenience, 
consider a more general RLS algorithm that retains the correct Ak but relies on the simplifying 
assumption Bk = 0. Under these conditions, denote the RLS algorithm’s predictor gain by 

1
/ 1 / 1( )T T

k k k k k k k k k kK A P C C P C R 
   , (47)  

where / 1k kP   is obtained from the Riccati difference equation 

                1
1/ / 1 / 1 / 1 / 1( )T T T T

k k k k k k k k k k k k k k k k k k kP A P A A P C C P C R C P A
       . (48)  

It is argued below that the cost of the above model simplification is an increase in mean-
square-error. 

Lemma 5: Let 1/k kP   denote the predicted error covariance within (33) for the optimal filter. Under 

the above conditions, the predicted error covariance, / 1k kP  , exhibited by the RLS algorithm satisfies 

/ 1 / 1k k k kP P  . (49)  

 

 

                                                                 

“All of the books in the world contain no more information than is broadcast as video in a single large 
American city in a single year. Not all bits have equal value.” Carl Edward Sagan 
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from which the result follows. From the above Matrix Inversion Lemma and (30) it follows 
that 

1 1 1
/ / 1 / 1 / 1 / 1( ( ) )T T

k k k k k k k k k k k k k k kP P P C C P C R C P  
       

                                  1 1
/ 1

T
k k k k kP C R C 

  , 

(39)  

assuming that 1
/ 1k kP
  and 1

kR  exist. An expression for 1
1/k kP

  can be obtained from the 
Matrix Inversion Lemma and (33), namely, 

1 1
1/ /( )T T

k k k k k k k k kP A P A B Q B 
    

                                                      1 1( )T
k k k kF B Q B   , 

(40)  

where Fk = 1
/( )T

k k k kA P A    = 1 1
/

T
k k k kA P A   , which gives 

1 1 1
1/ ( ( ) )T T

k k k k k k k k k kP I F B B F B Q B F  
    .  (41)  

Another useful identity is 
1 1 1 1( ) ( )A BCD BC A I BCDA BC       

                                                               1 1 1( )A B I CDA B C     

                                                               1 1 1 1( )A B C DA B     . 

(42)  

From (42) and (39), the filter gain can be expressed as  
1

/ 1 / 1( )T T
k k k k k k k k kL P C C P C R 

    

                                                1 1 1 1
/ 1( )T T

k k k k k k kP C R C C R   
   

                                                1
/

T
k k k kP C R . 

(43)  

Premultiplying (39) by /k kP  and rearranging gives 

1
/ / 1k k k k k kI L C P P

  . (44)  

It follows from (31), (36) and (44) that the corrected information state is given by 

1
/ / /ˆ ˆk k k k k kx P x  

                                          1 1
/ / 1 /ˆ( )k k k k k k k k k kP I L C x P L z 

    

                                          1
/ 1ˆ T

k k k k kx C R z
  . 

(45) 
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The predicted information state follows from (37), (41) and the definition of Fk, namely,  
1

1/ 1/ 1/ˆ ˆk k k k k kx P x
    

                                                                1
1/ /ˆk k k k kP A x

  

                                                                1 1
/ˆ( ( ) )T T

k k k k k k k k k k kI F B B F B Q B F A x     

                                                                1 1
/ˆ( ( ) )T T T

k k k k k k k k k kI F B B F B Q B A x     . 

(46)  

Recall from Lemma 1 and Lemma 3 that 1/ˆ{ }k k kE x x   = 0 and /ˆ{ }k k kE x x  = 0, provided 

0 / 0x̂  = x0. Similarly, with 0 / 0x̂  = 1
0 / 0 0P x , it follows that 1/ 1/ˆ{ }k k k k kE x P x   = 0 and 

/ /ˆ{ }k k k k kE x P x  = 0. That is, the information states (scaled by the appropriate covariances) 
will be unbiased, provided that the filter is suitably initialised. The calculation cost and 
potential for numerical instability can influence decisions on whether to implement the 
predictor-corrector form (30) - (33) or the information form (39) - (46) of the Kalman filter. 
The filters have similar complexity, both require a p × p matrix inverse in the measurement 
updates (31) and (45). However, inverting the measurement covariance matrix for the 
information filter may be troublesome when the measurement noise is negligible. 
 

4.12 Comparison with Recursive Least Squares 
The recursive least squares (RLS) algorithm is equivalent to the Kalman filter designed with 
the simplifications Ak = I and Bk = 0; see the derivations within [10], [11]. For convenience, 
consider a more general RLS algorithm that retains the correct Ak but relies on the simplifying 
assumption Bk = 0. Under these conditions, denote the RLS algorithm’s predictor gain by 

1
/ 1 / 1( )T T

k k k k k k k k k kK A P C C P C R 
   , (47)  

where / 1k kP   is obtained from the Riccati difference equation 

                1
1/ / 1 / 1 / 1 / 1( )T T T T

k k k k k k k k k k k k k k k k k k kP A P A A P C C P C R C P A
       . (48)  

It is argued below that the cost of the above model simplification is an increase in mean-
square-error. 

Lemma 5: Let 1/k kP   denote the predicted error covariance within (33) for the optimal filter. Under 

the above conditions, the predicted error covariance, / 1k kP  , exhibited by the RLS algorithm satisfies 

/ 1 / 1k k k kP P  . (49)  
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from which the result follows. From the above Matrix Inversion Lemma and (30) it follows 
that 

1 1 1
/ / 1 / 1 / 1 / 1( ( ) )T T

k k k k k k k k k k k k k k kP P P C C P C R C P  
       

                                  1 1
/ 1

T
k k k k kP C R C 

  , 

(39)  

assuming that 1
/ 1k kP
  and 1

kR  exist. An expression for 1
1/k kP

  can be obtained from the 
Matrix Inversion Lemma and (33), namely, 
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    
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where Fk = 1
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T
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From (42) and (39), the filter gain can be expressed as  
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(43)  

Premultiplying (39) by /k kP  and rearranging gives 

1
/ / 1k k k k k kI L C P P

  . (44)  

It follows from (31), (36) and (44) that the corrected information state is given by 

1
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                                          1 1
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(45) 

 
                                                                 

“Information is the oxygen of the modern age. It seeps through the walls topped by barbed wire, it 
wafts across the electrified borders.” Ronald Wilson Reagan 

  

The predicted information state follows from (37), (41) and the definition of Fk, namely,  
1

1/ 1/ 1/ˆ ˆk k k k k kx P x
    

                                                                1
1/ /ˆk k k k kP A x

  

                                                                1 1
/ˆ( ( ) )T T

k k k k k k k k k k kI F B B F B Q B F A x     

                                                                1 1
/ˆ( ( ) )T T T

k k k k k k k k k kI F B B F B Q B A x     . 

(46)  

Recall from Lemma 1 and Lemma 3 that 1/ˆ{ }k k kE x x   = 0 and /ˆ{ }k k kE x x  = 0, provided 

0 / 0x̂  = x0. Similarly, with 0 / 0x̂  = 1
0 / 0 0P x , it follows that 1/ 1/ˆ{ }k k k k kE x P x   = 0 and 

/ /ˆ{ }k k k k kE x P x  = 0. That is, the information states (scaled by the appropriate covariances) 
will be unbiased, provided that the filter is suitably initialised. The calculation cost and 
potential for numerical instability can influence decisions on whether to implement the 
predictor-corrector form (30) - (33) or the information form (39) - (46) of the Kalman filter. 
The filters have similar complexity, both require a p × p matrix inverse in the measurement 
updates (31) and (45). However, inverting the measurement covariance matrix for the 
information filter may be troublesome when the measurement noise is negligible. 
 

4.12 Comparison with Recursive Least Squares 
The recursive least squares (RLS) algorithm is equivalent to the Kalman filter designed with 
the simplifications Ak = I and Bk = 0; see the derivations within [10], [11]. For convenience, 
consider a more general RLS algorithm that retains the correct Ak but relies on the simplifying 
assumption Bk = 0. Under these conditions, denote the RLS algorithm’s predictor gain by 

1
/ 1 / 1( )T T

k k k k k k k k k kK A P C C P C R 
   , (47)  

where / 1k kP   is obtained from the Riccati difference equation 

                1
1/ / 1 / 1 / 1 / 1( )T T T T

k k k k k k k k k k k k k k k k k k kP A P A A P C C P C R C P A
       . (48)  

It is argued below that the cost of the above model simplification is an increase in mean-
square-error. 

Lemma 5: Let 1/k kP   denote the predicted error covariance within (33) for the optimal filter. Under 

the above conditions, the predicted error covariance, / 1k kP  , exhibited by the RLS algorithm satisfies 

/ 1 / 1k k k kP P  . (49)  

 

 

                                                                 

“All of the books in the world contain no more information than is broadcast as video in a single large 
American city in a single year. Not all bits have equal value.” Carl Edward Sagan 
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Proof: From the approach of Lemma 2, the RLS algorithm’s predicted error covariance is given by 

1
1/ / 1 / 1 / 1 / 1( )T T T T T

k k k k k k k k k k k k k k k k k k k k k kP A P A A P C C P C R C P A B Q B
         

                         1
/ 1 / 1 / 1( ( ) )( )T T T

k k k k k k k k k k k k k k kK A P C C P C R C P C R
       

                         1
/ 1 / 1( ( ) )T T T

k k k k k k k k k kK A P C C P C R 
    . 

(50)  

The last term on the right-hand-side of (50) is nonzero since the above RLS algorithm relies on the 
erroneous assumption T

k k kB Q B = 0. Therefore (49) follows.                                                                   � 
 

4.13 Repeated Predictions 
When there are gaps in the data record, or the data is irregularly spaced, state predictions can 
be calculated an arbitrary number of steps ahead. The one-step-ahead prediction is given by 
(32). The two, three and j-step-ahead predictions, given data at time k, are calculated as 

2 / 1 1/ˆ ˆk k k k kx A x    

3 / 2 2 /ˆ ˆk k k k kx A x    

  

/ 1 1/ˆ ˆk j k k j k j kx A x     , 

(51) 

(52) 

 

(53) 

see also [4], [12]. The corresponding predicted error covariances are given by 

2 / 1 1/ 1 1 1 1
T T

k k k k k k k k kP A P A B Q B         

3 / 2 2 / 2 2 2 2
T T

k k k k k k k k kP A P A B Q B         

  

/ 1 1/ 1 1 1 1
T T

k j k k j k j k k j k j k j k jP A P A B Q B              . 

(54) 

(55) 

 
(56)  

Another way to handle missing measurements at time i is to set Ci = 0, which leads to the 
same predicted states and error covariances. However, the cost of relying on repeated 
predictions is an increased mean-square-error which is demonstrated below. 

Lemma 6: 
(i) /k kP  ≤ / 1k kP  . 
(ii) Suppose that 

T T
k k k k kA A B Q B I   (57)  

for all k  [0, N], then /k j kP    ≥  1/k j kP     for all (j+k)  [0, N] .  

                                                                 

“Where a calculator on the ENIAC is equipped with 18,000 vacuum tubes and weighs 30 tones, 
computers in the future may have only 1,000 vacuum tubes and perhaps weigh 1.5 tons.” Popular 
Mechanics, 1949 

Proof:  

(i) The claim follows by inspection of (30) since 1 1 1/ 2 1 1 1( )T T
k k k k k k kL C P C R L        ≥ 0. 

Thus, the filter outperforms the one-step-ahead predictor. 
(ii) For 1/k j kP    ≥ 0, condition (57) yields 1 1/ 1

T
k j k j k k jA P A       + 1 1 1

T
k j k j k jB Q B       ≥ 

1/k j kP    which together with (56) results in /k j kP    ≥  1/k j kP   .                                � 
 

Example 3. Consider a filtering problem where A = 0.9 and B = C = Q = R = 1, for which AAT 
+ BQBT = 1.81 > 1. The predicted error covariances, /k j kP  , j = 1 … 10, are plotted in Fig. 4. 
The monotonically increasing sequence of error variances shown in the figure demonstrates 
that degraded performance occurs during repeated predictions. Fig. 5 shows some sample 
trajectories of the model output (dotted line), filter output (crosses) and predictions (circles) 
assuming that z3 … z8 are unavailable. It can be seen from the figure that the prediction error 
increases with time k, which illustrates Lemma 6. 
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,ŷ

k
+

j
/
k

 
Figure 4.  Predicted error variances for Example 3. Figure 5.  Sample trajectories for Example 3: yk 

(dotted line), /ˆ k ky  (crosses) and /ˆ k j ky   (circles). 

 

4.14 Accommodating Deterministic Inputs 
Suppose that the signal model is described by 

1k k k k k kx A x B w     , 

k k k ky C x   , 

(58) 

(59)  

where µk and πk are deterministic inputs (such as known non-zero means). The 
modifications to the Kalman recursions can be found by assuming 1/ˆ k kx   = /ˆk k kA x  + μk and 

/ 1ˆ k ky   = / 1ˆk k kC x   + πk. The filtered and predicted states are then given by 

/ / 1 / 1ˆ ˆ ˆ( )k k k k k k k k k kx x L z C x       (60)   

                                                                 

“I think there is a world market for maybe five computers.” Thomas John Watson 
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Proof: From the approach of Lemma 2, the RLS algorithm’s predicted error covariance is given by 

1
1/ / 1 / 1 / 1 / 1( )T T T T T

k k k k k k k k k k k k k k k k k k k k k kP A P A A P C C P C R C P A B Q B
         

                         1
/ 1 / 1 / 1( ( ) )( )T T T

k k k k k k k k k k k k k k kK A P C C P C R C P C R
       

                         1
/ 1 / 1( ( ) )T T T

k k k k k k k k k kK A P C C P C R 
    . 

(50)  

The last term on the right-hand-side of (50) is nonzero since the above RLS algorithm relies on the 
erroneous assumption T

k k kB Q B = 0. Therefore (49) follows.                                                                   � 
 

4.13 Repeated Predictions 
When there are gaps in the data record, or the data is irregularly spaced, state predictions can 
be calculated an arbitrary number of steps ahead. The one-step-ahead prediction is given by 
(32). The two, three and j-step-ahead predictions, given data at time k, are calculated as 

2 / 1 1/ˆ ˆk k k k kx A x    

3 / 2 2 /ˆ ˆk k k k kx A x    

  

/ 1 1/ˆ ˆk j k k j k j kx A x     , 

(51) 

(52) 

 

(53) 

see also [4], [12]. The corresponding predicted error covariances are given by 

2 / 1 1/ 1 1 1 1
T T

k k k k k k k k kP A P A B Q B         

3 / 2 2 / 2 2 2 2
T T

k k k k k k k k kP A P A B Q B         

  

/ 1 1/ 1 1 1 1
T T

k j k k j k j k k j k j k j k jP A P A B Q B              . 

(54) 

(55) 

 
(56)  

Another way to handle missing measurements at time i is to set Ci = 0, which leads to the 
same predicted states and error covariances. However, the cost of relying on repeated 
predictions is an increased mean-square-error which is demonstrated below. 

Lemma 6: 
(i) /k kP  ≤ / 1k kP  . 
(ii) Suppose that 

T T
k k k k kA A B Q B I   (57)  

for all k  [0, N], then /k j kP    ≥  1/k j kP     for all (j+k)  [0, N] .  

                                                                 

“Where a calculator on the ENIAC is equipped with 18,000 vacuum tubes and weighs 30 tones, 
computers in the future may have only 1,000 vacuum tubes and perhaps weigh 1.5 tons.” Popular 
Mechanics, 1949 

Proof:  

(i) The claim follows by inspection of (30) since 1 1 1/ 2 1 1 1( )T T
k k k k k k kL C P C R L        ≥ 0. 

Thus, the filter outperforms the one-step-ahead predictor. 
(ii) For 1/k j kP    ≥ 0, condition (57) yields 1 1/ 1

T
k j k j k k jA P A       + 1 1 1

T
k j k j k jB Q B       ≥ 

1/k j kP    which together with (56) results in /k j kP    ≥  1/k j kP   .                                � 
 

Example 3. Consider a filtering problem where A = 0.9 and B = C = Q = R = 1, for which AAT 
+ BQBT = 1.81 > 1. The predicted error covariances, /k j kP  , j = 1 … 10, are plotted in Fig. 4. 
The monotonically increasing sequence of error variances shown in the figure demonstrates 
that degraded performance occurs during repeated predictions. Fig. 5 shows some sample 
trajectories of the model output (dotted line), filter output (crosses) and predictions (circles) 
assuming that z3 … z8 are unavailable. It can be seen from the figure that the prediction error 
increases with time k, which illustrates Lemma 6. 
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Figure 4.  Predicted error variances for Example 3. Figure 5.  Sample trajectories for Example 3: yk 

(dotted line), /ˆ k ky  (crosses) and /ˆ k j ky   (circles). 

 

4.14 Accommodating Deterministic Inputs 
Suppose that the signal model is described by 

1k k k k k kx A x B w     , 

k k k ky C x   , 

(58) 

(59)  

where µk and πk are deterministic inputs (such as known non-zero means). The 
modifications to the Kalman recursions can be found by assuming 1/ˆ k kx   = /ˆk k kA x  + μk and 

/ 1ˆ k ky   = / 1ˆk k kC x   + πk. The filtered and predicted states are then given by 
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Proof: From the approach of Lemma 2, the RLS algorithm’s predicted error covariance is given by 

1
1/ / 1 / 1 / 1 / 1( )T T T T T

k k k k k k k k k k k k k k k k k k k k k kP A P A A P C C P C R C P A B Q B
         

                         1
/ 1 / 1 / 1( ( ) )( )T T T

k k k k k k k k k k k k k k kK A P C C P C R C P C R
       

                         1
/ 1 / 1( ( ) )T T T

k k k k k k k k k kK A P C C P C R 
    . 

(50)  

The last term on the right-hand-side of (50) is nonzero since the above RLS algorithm relies on the 
erroneous assumption T

k k kB Q B = 0. Therefore (49) follows.                                                                   � 
 

4.13 Repeated Predictions 
When there are gaps in the data record, or the data is irregularly spaced, state predictions can 
be calculated an arbitrary number of steps ahead. The one-step-ahead prediction is given by 
(32). The two, three and j-step-ahead predictions, given data at time k, are calculated as 

2 / 1 1/ˆ ˆk k k k kx A x    

3 / 2 2 /ˆ ˆk k k k kx A x    

  

/ 1 1/ˆ ˆk j k k j k j kx A x     , 

(51) 

(52) 

 

(53) 

see also [4], [12]. The corresponding predicted error covariances are given by 

2 / 1 1/ 1 1 1 1
T T

k k k k k k k k kP A P A B Q B         

3 / 2 2 / 2 2 2 2
T T

k k k k k k k k kP A P A B Q B         

  

/ 1 1/ 1 1 1 1
T T

k j k k j k j k k j k j k j k jP A P A B Q B              . 

(54) 

(55) 

 
(56)  

Another way to handle missing measurements at time i is to set Ci = 0, which leads to the 
same predicted states and error covariances. However, the cost of relying on repeated 
predictions is an increased mean-square-error which is demonstrated below. 

Lemma 6: 
(i) /k kP  ≤ / 1k kP  . 
(ii) Suppose that 

T T
k k k k kA A B Q B I   (57)  

for all k  [0, N], then /k j kP    ≥  1/k j kP     for all (j+k)  [0, N] .  

                                                                 

“Where a calculator on the ENIAC is equipped with 18,000 vacuum tubes and weighs 30 tones, 
computers in the future may have only 1,000 vacuum tubes and perhaps weigh 1.5 tons.” Popular 
Mechanics, 1949 

Proof:  

(i) The claim follows by inspection of (30) since 1 1 1/ 2 1 1 1( )T T
k k k k k k kL C P C R L        ≥ 0. 

Thus, the filter outperforms the one-step-ahead predictor. 
(ii) For 1/k j kP    ≥ 0, condition (57) yields 1 1/ 1

T
k j k j k k jA P A       + 1 1 1

T
k j k j k jB Q B       ≥ 

1/k j kP    which together with (56) results in /k j kP    ≥  1/k j kP   .                                � 
 

Example 3. Consider a filtering problem where A = 0.9 and B = C = Q = R = 1, for which AAT 
+ BQBT = 1.81 > 1. The predicted error covariances, /k j kP  , j = 1 … 10, are plotted in Fig. 4. 
The monotonically increasing sequence of error variances shown in the figure demonstrates 
that degraded performance occurs during repeated predictions. Fig. 5 shows some sample 
trajectories of the model output (dotted line), filter output (crosses) and predictions (circles) 
assuming that z3 … z8 are unavailable. It can be seen from the figure that the prediction error 
increases with time k, which illustrates Lemma 6. 
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Figure 4.  Predicted error variances for Example 3. Figure 5.  Sample trajectories for Example 3: yk 

(dotted line), /ˆ k ky  (crosses) and /ˆ k j ky   (circles). 

 

4.14 Accommodating Deterministic Inputs 
Suppose that the signal model is described by 

1k k k k k kx A x B w     , 

k k k ky C x   , 

(58) 

(59)  

where µk and πk are deterministic inputs (such as known non-zero means). The 
modifications to the Kalman recursions can be found by assuming 1/ˆ k kx   = /ˆk k kA x  + μk and 

/ 1ˆ k ky   = / 1ˆk k kC x   + πk. The filtered and predicted states are then given by 

/ / 1 / 1ˆ ˆ ˆ( )k k k k k k k k k kx x L z C x       (60)   
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and 

                                        1/ /ˆ ˆk k k k k kx A x     

                                                   / 1 / 1ˆ ˆ( )k k k k k k k k k kA x K z C x        , 

(61) 

(62)  

respectively. Subtracting (62) from (58) gives 

1/ / 1 / 1( )k k k k k k k k k k k k k k k kx A x K C x v B w                

                              / 1( )k k k k k k k k kA K C x B w K v    , 
(63)  

where / 1k kx 
  = xk – / 1ˆ k kx  . Therefore, the predicted error covariance, 

1/ / 1( ) ( )T T T
k k k k k k k k k k k k k k k kP A K C P A K C B Q B K R K       

                                / 1 / 1( )T T T T
k k k k k k k k k k k k k kA P A K C P C R K B Q B     , 

(64)  

is unchanged. The filtered output is given by 

/ /ˆ ˆk k k k k ky C x   . (65)   
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Figure 6. Measurements (dotted line) and filtered states (solid line) for Example 4. 

Example 4. Consider a filtering problem where A = diag(0.1, 0.1), B = C = diag(1, 1), Q = R = 

diag(0.001, 0.001), with µk = 
sin(2 )
cos(3 )

k
k

 
 
 

. The filtered states calculated from (60) are shown in 

Fig. 6. The resulting Lissajous figure illustrates that states having nonzero means can be 
modelled using deterministic inputs. 

 
 

                                                                 

“There is no reason anyone would want a computer in their home.” Kenneth Harry Olson 

  

4.15 Correlated Process and Measurement Noises 
Consider the case where the process and measurement noises are correlated 

j k kT T
k k jkT

k kj

w Q S
E w v

S Rv


                  
. (66)  

The generalisation of the optimal filter that takes the above into account was published by 
Kalman in 1963 [2]. The expressions for the state prediction 

1/ / 1 / 1ˆ ˆ ˆ( )k k k k k k k k k kx A x K z C x      (67)  

and the state prediction error  

1/ / 1( )k k k k k k k k k k kx A K C x B w K v       (68)  

remain the same. It follows from (68) that 

1/ / 1

{ }
{ } ( ) { }

{ }
k

k k k k k k k k k
k

E w
E x A K C E x B K

E v 

 
      

 
  . (69)  

As before, the optimum predictor gain is that which minimises the prediction error 
covariance / 1 / 1{ }T

k k k kE x x 
  . 

Lemma 7: In respect of the estimation problem defined by (1), (5), (6) with noise covariance (66), 
suppose there exist solutions / 1k kP   = / 1

T
k kP   ≥ 0 to the Riccati difference equation 

1
1/ / 1 / 1 / 1 / 1( )( ) ( )T T T T T T

k k k k k k k k k k k k k k k k k k k k k k k k k kP A P A B Q B A P C B S C P C R A P C B S
                   (70) 

over [0, N], then the state prediction (67) with the gain 
1

/ 1 / 1( )( )T T
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Figure 6. Measurements (dotted line) and filtered states (solid line) for Example 4. 

Example 4. Consider a filtering problem where A = diag(0.1, 0.1), B = C = diag(1, 1), Q = R = 

diag(0.001, 0.001), with µk = 
sin(2 )
cos(3 )

k
k

 
 
 

. The filtered states calculated from (60) are shown in 

Fig. 6. The resulting Lissajous figure illustrates that states having nonzero means can be 
modelled using deterministic inputs. 
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4.15 Correlated Process and Measurement Noises 
Consider the case where the process and measurement noises are correlated 
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Expanding (72) and denoting / 1k kP   = / 1 / 1{ }T
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By inspection of (73), the predictor gain (71) minimises 1/k kP  .                                                           � 

Thus, the predictor gain is calculated differently when wk and vk are correlated. The 
calculation of the filtered state and filtered error covariance are unchanged, viz.  

/ / 1ˆ ˆ( )k k k k k k k kx I L C x L z   , 

/ / 1( ) ( )T T
k k k k k k k k k k kP I L C P I L C L R L    , 

(74)  

(75)  

where 
1

/ 1 / 1( )T T
k k k k k k k k kL P C C P C R 

   . (76)  

However, / 1k kP   is now obtained from the Riccati difference equation (70). 
 

4.16 Including a Direct-Feedthrough Matrix 
Suppose now that the signal model possesses a direct-feedthrough matrix, Dk, namely 
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The approach of the previous section may be used to obtain the minimum-variance 
predictor for the above system. Using (80) within Lemma 7 yields the predictor gain 
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4.17 Solution of the General Filtering Problem 
The general filtering problem is shown in Fig. 7, in which it is desired to develop a filter   
that operates on noisy measurements of   and estimates the output of  . Frequency 
domain solutions for time-invariant systems were developed in Chapters 1 and 2. Here, for 
the time-varying case, it is assumed that the system   has the state-space realisation 

1k k k k kx A x B w   , 

2, 2, 2,k k k k ky C x D w  . 

(84) 

(85) 

 
 
 
 
 
Figure 7. The general filtering problem. The objective is to estimate the output of   from 
noisy measurements of  . 

Suppose that the system   has the realisation (84) and 

1, 1, 1,k k k k ky C x D w  . (86) 

The objective is to produce estimates 1, /ˆ k ky  of 1,ky  from the measurements 

2,k k k kz C x v  , (87)  
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(74)  

(75)  

where 
1

/ 1 / 1( )T T
k k k k k k k k kL P C C P C R 

   . (76)  

However, / 1k kP   is now obtained from the Riccati difference equation (70). 
 

4.16 Including a Direct-Feedthrough Matrix 
Suppose now that the signal model possesses a direct-feedthrough matrix, Dk, namely 

1k k k k kx A x B w   , 

k k k k ky C x D w  . 

(77) 

(78) 

Let the observations be denoted by 

k k k kz C x v  , (79)   

where k k k kv D w v  , under the assumptions (3) and (7). It follows that 

T
j T T k k k

k k jkT
j k k k k k k

w Q Q D
E w v

v D Q D Q D R


                   
. (80)  

The approach of the previous section may be used to obtain the minimum-variance 
predictor for the above system. Using (80) within Lemma 7 yields the predictor gain 

1
/ 1( )T T

k k k k k k k k kK A P C B Q D 
   , (81)  

 
 

                                                                 

“Everything that can be invented has been invented.” Charles Holland Duell 

  

where 

/ 1
T T

k k k k k k k k kC P C D Q D R     (82)  

and / 1k kP   is the solution of the Riccati difference equation 

1/ / 1
T T T

k k k k k k k k k k k kP A P A K K B Q B     . (83)  

The filtered states can be calculated from (74) , (82), (83) and Lk = 1
/ 1

T
k k k kP C 

  . 
 

4.17 Solution of the General Filtering Problem 
The general filtering problem is shown in Fig. 7, in which it is desired to develop a filter   
that operates on noisy measurements of   and estimates the output of  . Frequency 
domain solutions for time-invariant systems were developed in Chapters 1 and 2. Here, for 
the time-varying case, it is assumed that the system   has the state-space realisation 

1k k k k kx A x B w   , 

2, 2, 2,k k k k ky C x D w  . 

(84) 

(85) 

 
 
 
 
 
Figure 7. The general filtering problem. The objective is to estimate the output of   from 
noisy measurements of  . 

Suppose that the system   has the realisation (84) and 

1, 1, 1,k k k k ky C x D w  . (86) 

The objective is to produce estimates 1, /ˆ k ky  of 1,ky  from the measurements 

2,k k k kz C x v  , (87)  

 

                                                                 

“He was a multimillionaire. Wanna know how he made all of his money? He designed the little 
diagrams that tell which way to put batteries on.” Stephen Wright 
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where 2,k k k kv D w v  , so that the variance of the estimation error, 

/ 1, 1, /ˆk k k k ke y y  , (88)  

is minimised. The predicted state follows immediately from the results of the previous 
sections, namely, 

1/ / 1 2, / 1ˆ ˆ ˆ( )k k k k k k k k k kx A x K z C x      

                                                  2, / 1ˆ( )k k k k k k kA K C x K z    

(89)  

where 
1

/ 1 2, 2,( )T T
k k k k k k k k kK A P C B Q D 

    (90)  

and 

2, / 1 2, 2, 2,
T T

k k k k k k k k kC P C D Q D R    , (91)  

in which / 1k kP   evolves from 

1/ / 1    T T T
k k k k k k k k k k k kP A P A K K B Q B . (92) 

In view of the structure (89), an output estimate of the form  

1, / 1, / 1 2, / 1ˆ ˆ ˆ( )k k k k k k k k k ky C x L z C x     

                                                 1, 2, / 1ˆ( )k k k k k k kC L C x L z   , 

(93)  

is sought, where Lk is a filter gain to be designed. Subtracting (93) from (86) gives 

                                         / 1, 1, /ˆk k k k ke y y   

                                                1, 2, / 1 1,( ) k
k k k k k k k

k

w
C L C x D L

v

 
       

 
 . 

(94)  

It is shown below that an optimum filter gain can be found by minimising the output error 
covariance / /{ }T

k k k kE e e . 

Lemma 8: In respect of the estimation problem defined by (84) - (88), the output estimate 1, /ˆ k ky  with 
the filter gain 

1
1, / 1 2, 1, 2,( )T T

k k k k k k k k kL C P C D Q D 
    (95)  

minimises  / /{ }T
k k k kE e e . 

                                                                 

“This ‘telephone’ has too many shortcomings to be seriously considered as a means of communication. 
The device is inherently of no value to us.” Western Union memo, 1876 

  

Proof: It follows from (94) that 

/ / 1, 2, / 1 1, 2,{ } ( ) ( )T T T T
k k k k k k k k k k k kE e e C L C P C C L    

                                                     2, 1,
1,

2, 2, 2,

T T
k k k k

k k T T T
k k k k k k k

Q Q D D
D L

D Q D Q D R L
   

             
 

                                                           1, / 1 1 2, 2,
T T T

k k k k k k k k kC P C C L L C   , 

(96)  

which can be expanded to give 
1

/ / 1, / 1 1, 2, 2, 1, / 1 1, 2, 1, / 1 2, 1, 2,{ } ( 2, ) ( )T T T T T T T T
k k k k k k k k k k k k k k k k k k k k k k k k k kE e e C P C D Q D C P C D Q D C P C D Q D

         

                     1
1, / 1 1, 2, 1, / 1 2, 1, 2,( 2, ) ( )T T T T T

k k k k k k k k k k k k k k kC P C D Q D C P C D Q D
      

                     1
1, / 1 2, 1, 2,( ( ) )T T

k k k k k k k k k kL C P C D Q D 
      

                      1
1, / 1 2, 1, 2,( ( ) )T T T

k k k k k k k k kL C P C D Q D 
    .                                                                     (97) 

By inspection of (97), the filter gain (95) minimises / /{ }T
k k k kE e e .                                                        �     

The filter gain (95) has been generalised to include arbitrary C1,k, D1,k, and D2,k. For state 
estimation, C2 = I and D2 = 0, in which case (95) reverts to the simpler form (26). The 
problem (84) – (88) can be written compactly in the following generalised regulator 
framework from control theory [13].  

1 1,1,

/ 1,1, 1,1, 1,2,

2,1, 2,1,
1, /

0

0
ˆ

k
k k k

k
k k k k k

k
k k k

k k

x
x A B

v
e C D D

w
z C D

y



 
    

            
           

, (98)   

where 1,1, 0k kB B    , 1,1, 1,k kC C , 2,1, 2,k kC C  1,1, 1,0k kD D    , 1,2,kD I  and 

2,1, 2,k kD I D    . With the above definitions, the minimum-variance solution can be written 

as 

1/ / 1 2,1, / 1ˆ ˆ ˆ( )k k k k k k k k k kx A x K z C x     , 

1, / 1,1, / 1 2,1, / 1ˆ ˆ ˆ( )k k k k k k k k k ky C x L z C x    , 

(99)  

(100) 
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where 2,k k k kv D w v  , so that the variance of the estimation error, 

/ 1, 1, /ˆk k k k ke y y  , (88)  

is minimised. The predicted state follows immediately from the results of the previous 
sections, namely, 

1/ / 1 2, / 1ˆ ˆ ˆ( )k k k k k k k k k kx A x K z C x      

                                                  2, / 1ˆ( )k k k k k k kA K C x K z    

(89)  

where 
1

/ 1 2, 2,( )T T
k k k k k k k k kK A P C B Q D 

    (90)  

and 

2, / 1 2, 2, 2,
T T

k k k k k k k k kC P C D Q D R    , (91)  

in which / 1k kP   evolves from 

1/ / 1    T T T
k k k k k k k k k k k kP A P A K K B Q B . (92) 

In view of the structure (89), an output estimate of the form  

1, / 1, / 1 2, / 1ˆ ˆ ˆ( )k k k k k k k k k ky C x L z C x     

                                                 1, 2, / 1ˆ( )k k k k k k kC L C x L z   , 

(93)  

is sought, where Lk is a filter gain to be designed. Subtracting (93) from (86) gives 

                                         / 1, 1, /ˆk k k k ke y y   

                                                1, 2, / 1 1,( ) k
k k k k k k k

k

w
C L C x D L

v

 
       

 
 . 

(94)  

It is shown below that an optimum filter gain can be found by minimising the output error 
covariance / /{ }T

k k k kE e e . 

Lemma 8: In respect of the estimation problem defined by (84) - (88), the output estimate 1, /ˆ k ky  with 
the filter gain 

1
1, / 1 2, 1, 2,( )T T

k k k k k k k k kL C P C D Q D 
    (95)  

minimises  / /{ }T
k k k kE e e . 
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Proof: It follows from (94) that 

/ / 1, 2, / 1 1, 2,{ } ( ) ( )T T T T
k k k k k k k k k k k kE e e C L C P C C L    

                                                     2, 1,
1,

2, 2, 2,

T T
k k k k

k k T T T
k k k k k k k

Q Q D D
D L

D Q D Q D R L
   

             
 

                                                           1, / 1 1 2, 2,
T T T

k k k k k k k k kC P C C L L C   , 

(96)  

which can be expanded to give 
1

/ / 1, / 1 1, 2, 2, 1, / 1 1, 2, 1, / 1 2, 1, 2,{ } ( 2, ) ( )T T T T T T T T
k k k k k k k k k k k k k k k k k k k k k k k k k kE e e C P C D Q D C P C D Q D C P C D Q D

         

                     1
1, / 1 1, 2, 1, / 1 2, 1, 2,( 2, ) ( )T T T T T

k k k k k k k k k k k k k k kC P C D Q D C P C D Q D
      

                     1
1, / 1 2, 1, 2,( ( ) )T T

k k k k k k k k k kL C P C D Q D 
      

                      1
1, / 1 2, 1, 2,( ( ) )T T T

k k k k k k k k kL C P C D Q D 
    .                                                                     (97) 

By inspection of (97), the filter gain (95) minimises / /{ }T
k k k kE e e .                                                        �     

The filter gain (95) has been generalised to include arbitrary C1,k, D1,k, and D2,k. For state 
estimation, C2 = I and D2 = 0, in which case (95) reverts to the simpler form (26). The 
problem (84) – (88) can be written compactly in the following generalised regulator 
framework from control theory [13].  

1 1,1,

/ 1,1, 1,1, 1,2,

2,1, 2,1,
1, /

0

0
ˆ

k
k k k

k
k k k k k

k
k k k

k k

x
x A B

v
e C D D

w
z C D

y



 
    

            
           

, (98)   

where 1,1, 0k kB B    , 1,1, 1,k kC C , 2,1, 2,k kC C  1,1, 1,0k kD D    , 1,2,kD I  and 

2,1, 2,k kD I D    . With the above definitions, the minimum-variance solution can be written 

as 

1/ / 1 2,1, / 1ˆ ˆ ˆ( )k k k k k k k k k kx A x K z C x     , 

1, / 1,1, / 1 2,1, / 1ˆ ˆ ˆ( )k k k k k k k k k ky C x L z C x    , 

(99)  

(100) 
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where 2,k k k kv D w v  , so that the variance of the estimation error, 

/ 1, 1, /ˆk k k k ke y y  , (88)  

is minimised. The predicted state follows immediately from the results of the previous 
sections, namely, 

1/ / 1 2, / 1ˆ ˆ ˆ( )k k k k k k k k k kx A x K z C x      

                                                  2, / 1ˆ( )k k k k k k kA K C x K z    

(89)  

where 
1

/ 1 2, 2,( )T T
k k k k k k k k kK A P C B Q D 

    (90)  

and 

2, / 1 2, 2, 2,
T T

k k k k k k k k kC P C D Q D R    , (91)  

in which / 1k kP   evolves from 

1/ / 1    T T T
k k k k k k k k k k k kP A P A K K B Q B . (92) 

In view of the structure (89), an output estimate of the form  

1, / 1, / 1 2, / 1ˆ ˆ ˆ( )k k k k k k k k k ky C x L z C x     

                                                 1, 2, / 1ˆ( )k k k k k k kC L C x L z   , 

(93)  

is sought, where Lk is a filter gain to be designed. Subtracting (93) from (86) gives 

                                         / 1, 1, /ˆk k k k ke y y   

                                                1, 2, / 1 1,( ) k
k k k k k k k

k

w
C L C x D L

v

 
       

 
 . 

(94)  

It is shown below that an optimum filter gain can be found by minimising the output error 
covariance / /{ }T

k k k kE e e . 

Lemma 8: In respect of the estimation problem defined by (84) - (88), the output estimate 1, /ˆ k ky  with 
the filter gain 

1
1, / 1 2, 1, 2,( )T T

k k k k k k k k kL C P C D Q D 
    (95)  

minimises  / /{ }T
k k k kE e e . 
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Proof: It follows from (94) that 

/ / 1, 2, / 1 1, 2,{ } ( ) ( )T T T T
k k k k k k k k k k k kE e e C L C P C C L    
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k k k k

k k T T T
k k k k k k k

Q Q D D
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D Q D Q D R L
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             
 

                                                           1, / 1 1 2, 2,
T T T

k k k k k k k k kC P C C L L C   , 

(96)  

which can be expanded to give 
1

/ / 1, / 1 1, 2, 2, 1, / 1 1, 2, 1, / 1 2, 1, 2,{ } ( 2, ) ( )T T T T T T T T
k k k k k k k k k k k k k k k k k k k k k k k k k kE e e C P C D Q D C P C D Q D C P C D Q D

         
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1, / 1 1, 2, 1, / 1 2, 1, 2,( 2, ) ( )T T T T T

k k k k k k k k k k k k k k kC P C D Q D C P C D Q D
      

                     1
1, / 1 2, 1, 2,( ( ) )T T

k k k k k k k k k kL C P C D Q D 
      

                      1
1, / 1 2, 1, 2,( ( ) )T T T

k k k k k k k k kL C P C D Q D 
    .                                                                     (97) 

By inspection of (97), the filter gain (95) minimises / /{ }T
k k k kE e e .                                                        �     

The filter gain (95) has been generalised to include arbitrary C1,k, D1,k, and D2,k. For state 
estimation, C2 = I and D2 = 0, in which case (95) reverts to the simpler form (26). The 
problem (84) – (88) can be written compactly in the following generalised regulator 
framework from control theory [13].  
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, (98)   

where 1,1, 0k kB B    , 1,1, 1,k kC C , 2,1, 2,k kC C  1,1, 1,0k kD D    , 1,2,kD I  and 

2,1, 2,k kD I D    . With the above definitions, the minimum-variance solution can be written 

as 

1/ / 1 2,1, / 1ˆ ˆ ˆ( )k k k k k k k k k kx A x K z C x     , 

1, / 1,1, / 1 2,1, / 1ˆ ˆ ˆ( )k k k k k k k k k ky C x L z C x    , 

(99)  

(100) 
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where  
1

/ 1 2,1, 1,1, 2,1, 2,1, / 1 2,1, 2,1, 2,1,

0 0
0 0

k kT T T T
k k k k k k k k k k k k k

k k

R R
K A P C B D C P C D D

Q Q



 

     
              

,  

1

1,1, / 1 2,1, 1,1, 2,1, 2,1, / 1 2,1, 2,1, 2,1,

0 0
0 0

k kT T T T
k k k k k k k k k k k k k

k k

R R
L C P C D D C P C D D

Q Q



 

     
              

,  
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The application of the solution (99) – (100) to output estimation, input estimation (or 
equalisation), state estimation and mixed filtering problems is demonstrated in the example 
below.  
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the cascaded system     (see Problem 7), the minimum-variance solution 

can be found by setting Ak = 2, 2, 1,
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2, 1,k kI D D   . 
 

4.18 Hybrid Continuous-Discrete Filtering 
Often a system’s dynamics evolve continuously but measurements can only be observed in 
discrete time increments. This problem is modelled in [20] as 

( ) ( ) ( ) ( ) ( )x t A t x t B t w t  , 

k k k kz C x v  , 

(104) 

(105) 

where E{w(t)} = 0, E{w(t)wT(τ)} = Q(t)δ(t – τ), E{vk} = 0, { }T
j kE v v  = Rkδjk and xk = x(kTs), in 

which Ts is the sampling interval. Following the approach of [20], state estimates can be 
obtained from a hybrid of continuous-time and discrete-time filtering equations. The 
predicted states and error covariances are obtained from 

ˆ ˆ( ) ( ) ( )x t A t x t , 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )T TP t A t P t P t A t B t Q t B t   . 
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Define / 1ˆ k kx   = ˆ( )x t  and Pk/k-1 = P(t) at t = kTs. The corrected states and error covariances are 
given by 
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where Lk = 1
/ 1 / 1( )T T

k k k k k k k kP C C P C R 
   . The above filter is a linear system having jumps at the 

discrete observation times. The states evolve according to the continuous-time dynamics 
(106) in-between the sampling instants. This filter is applied in [20] for recovery of cardiac 
dynamics from medical image sequences. 
 

4.19 Conclusion 
A linear, time-varying system   is assumed to have the realisation xk+1 = Akxk + Bkwk and 
y2,k = C2,kxk + D2,kwk. In the general filtering problem, it is desired to estimate the output of a 
second reference system   which is modelled as y1,k = C1,kxk + D1,kwk. The Kalman filter 
which estimates y1,k from the measurements zk = y2,k + vk at time k is listed in Table 1.  
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The application of the solution (99) – (100) to output estimation, input estimation (or 
equalisation), state estimation and mixed filtering problems is demonstrated in the example 
below.  
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the cascaded system     (see Problem 7), the minimum-variance solution 

can be found by setting Ak = 2, 2, 1,
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4.18 Hybrid Continuous-Discrete Filtering 
Often a system’s dynamics evolve continuously but measurements can only be observed in 
discrete time increments. This problem is modelled in [20] as 

( ) ( ) ( ) ( ) ( )x t A t x t B t w t  , 
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where E{w(t)} = 0, E{w(t)wT(τ)} = Q(t)δ(t – τ), E{vk} = 0, { }T
j kE v v  = Rkδjk and xk = x(kTs), in 

which Ts is the sampling interval. Following the approach of [20], state estimates can be 
obtained from a hybrid of continuous-time and discrete-time filtering equations. The 
predicted states and error covariances are obtained from 
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Define / 1ˆ k kx   = ˆ( )x t  and Pk/k-1 = P(t) at t = kTs. The corrected states and error covariances are 
given by 
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discrete observation times. The states evolve according to the continuous-time dynamics 
(106) in-between the sampling instants. This filter is applied in [20] for recovery of cardiac 
dynamics from medical image sequences. 
 

4.19 Conclusion 
A linear, time-varying system   is assumed to have the realisation xk+1 = Akxk + Bkwk and 
y2,k = C2,kxk + D2,kwk. In the general filtering problem, it is desired to estimate the output of a 
second reference system   which is modelled as y1,k = C1,kxk + D1,kwk. The Kalman filter 
which estimates y1,k from the measurements zk = y2,k + vk at time k is listed in Table 1.  
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The application of the solution (99) – (100) to output estimation, input estimation (or 
equalisation), state estimation and mixed filtering problems is demonstrated in the example 
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the cascaded system     (see Problem 7), the minimum-variance solution 
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4.18 Hybrid Continuous-Discrete Filtering 
Often a system’s dynamics evolve continuously but measurements can only be observed in 
discrete time increments. This problem is modelled in [20] as 

( ) ( ) ( ) ( ) ( )x t A t x t B t w t  , 
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where E{w(t)} = 0, E{w(t)wT(τ)} = Q(t)δ(t – τ), E{vk} = 0, { }T
j kE v v  = Rkδjk and xk = x(kTs), in 

which Ts is the sampling interval. Following the approach of [20], state estimates can be 
obtained from a hybrid of continuous-time and discrete-time filtering equations. The 
predicted states and error covariances are obtained from 

ˆ ˆ( ) ( ) ( )x t A t x t , 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )T TP t A t P t P t A t B t Q t B t   . 

(106) 

(107) 
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discrete observation times. The states evolve according to the continuous-time dynamics 
(106) in-between the sampling instants. This filter is applied in [20] for recovery of cardiac 
dynamics from medical image sequences. 
 

4.19 Conclusion 
A linear, time-varying system   is assumed to have the realisation xk+1 = Akxk + Bkwk and 
y2,k = C2,kxk + D2,kwk. In the general filtering problem, it is desired to estimate the output of a 
second reference system   which is modelled as y1,k = C1,kxk + D1,kwk. The Kalman filter 
which estimates y1,k from the measurements zk = y2,k + vk at time k is listed in Table 1.  
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If the state-space parameters are known exactly then this filter minimises the predicted and 
corrected error covariances {( kE x  − / 1ˆ )(k k kx x  − / 1ˆ ) }T

k kx   and {( kE x  − /ˆ )(k k kx x  − /ˆ ) }T
k kx , 

respectively. When there are gaps in the data record, or the data is irregularly spaced, state 
predictions can be calculated an arbitrary number of steps ahead, at the cost of increased 
mean-square-error. 
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Table 1.1. Main results for the general filtering problem. 

The filtering solution is specialised to output estimation with C1,k = C2,k and D1,k = D2,k. 

In the case of input estimation (or equalisation), C1,k = 0  and D1,k = I, which results in /ˆ k kw  = 

2, / 1ˆk k k kL C x   + Lkzk, where the filter gain is instead calculated as Lk = 2, 2, / 1 2,(T T
k k k k k kQ D C P C  + 

1
2, 2, )T

k k k kD Q D R  . 

For problems where C1,k = I (state estimation) and D1,k = D2,k = 0, the filtered state calculation 
simplifies to /ˆ k kx  = (I – 2, / 1ˆ)k k k kL C x   + Lkzk, where / 1ˆ k kx   = 1/ 1ˆk k kA x    and Lk = 
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/ 1 2, 2, / 1 2,(T T
k k k k k k kP C C P C   + 1)kR  . This predictor-corrector form is used to obtain robust, hybrid 

and extended Kalman filters. When the predicted states are not explicitly required, the state 
corrections can be calculated from the one-line recursion /ˆ k kx  = (I – 2, 1 1/ 1ˆ)   k k k k kL C A x  + Lkzk. 

If the simplifications Bk = D2,k = 0 are assumed and the pair (Ak, C2,k) is retained, the Kalman 
filter degenerates to the RLS algorithm. However, the cost of this model simplification is an 
increase in mean-square-error. 
 

4.20 Problems 

Problem 1. Suppose that k

k

E


 

          
      

 and k T T
k k

k

E


 


           
 = k k k k

k k k k

   

   

  
 
   

. Show that 

an estimate of  k  given k , which minimises ( kE   − { | })(k k kE     − { | })T
k kE   , is 
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measurements zk = yk + vk. 

Problem 3. Assuming the state correction /ˆ k kx  = / 1ˆ k kx   + (k kL z  −  / 1ˆ )k k kC x   , show that the 
corrected error covariance is given by /k kP  =  / 1k kP   − / 1( T
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k kR L . 

Problem 4 [11], [14], [17], [18], [19]. Consider the standard discrete-time filter equations 

/ 1ˆ k kx   = 1/ 1ˆk k kA x   , 
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If the state-space parameters are known exactly then this filter minimises the predicted and 
corrected error covariances {( kE x  − / 1ˆ )(k k kx x  − / 1ˆ ) }T

k kx   and {( kE x  − /ˆ )(k k kx x  − /ˆ ) }T
k kx , 

respectively. When there are gaps in the data record, or the data is irregularly spaced, state 
predictions can be calculated an arbitrary number of steps ahead, at the cost of increased 
mean-square-error. 
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Table 1.1. Main results for the general filtering problem. 

The filtering solution is specialised to output estimation with C1,k = C2,k and D1,k = D2,k. 

In the case of input estimation (or equalisation), C1,k = 0  and D1,k = I, which results in /ˆ k kw  = 

2, / 1ˆk k k kL C x   + Lkzk, where the filter gain is instead calculated as Lk = 2, 2, / 1 2,(T T
k k k k k kQ D C P C  + 

1
2, 2, )T

k k k kD Q D R  . 

For problems where C1,k = I (state estimation) and D1,k = D2,k = 0, the filtered state calculation 
simplifies to /ˆ k kx  = (I – 2, / 1ˆ)k k k kL C x   + Lkzk, where / 1ˆ k kx   = 1/ 1ˆk k kA x    and Lk = 
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/ 1 2, 2, / 1 2,(T T
k k k k k k kP C C P C   + 1)kR  . This predictor-corrector form is used to obtain robust, hybrid 

and extended Kalman filters. When the predicted states are not explicitly required, the state 
corrections can be calculated from the one-line recursion /ˆ k kx  = (I – 2, 1 1/ 1ˆ)   k k k k kL C A x  + Lkzk. 

If the simplifications Bk = D2,k = 0 are assumed and the pair (Ak, C2,k) is retained, the Kalman 
filter degenerates to the RLS algorithm. However, the cost of this model simplification is an 
increase in mean-square-error. 
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measurements zk = yk + vk. 

Problem 3. Assuming the state correction /ˆ k kx  = / 1ˆ k kx   + (k kL z  −  / 1ˆ )k k kC x   , show that the 
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Problem 4 [11], [14], [17], [18], [19]. Consider the standard discrete-time filter equations 

/ 1ˆ k kx   = 1/ 1ˆk k kA x   , 

/ˆ k kx  = / 1ˆ k kx   + (k kL z  −  / 1ˆ )k k kC x  , 

/ 1k kP   =  1/ 1
T

k k k kA P A    + T
k k kB Q B , 

/k kP  =  / 1k kP   − / 1( T
k k k k kL C P C  + ) T

k kR L , 

where 1
/ 1 / 1( )T T

k k k k k k k k kL P C C P C R 
   . Derive the continuous-time filter equations, namely 
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If the state-space parameters are known exactly then this filter minimises the predicted and 
corrected error covariances {( kE x  − / 1ˆ )(k k kx x  − / 1ˆ ) }T

k kx   and {( kE x  − /ˆ )(k k kx x  − /ˆ ) }T
k kx , 

respectively. When there are gaps in the data record, or the data is irregularly spaced, state 
predictions can be calculated an arbitrary number of steps ahead, at the cost of increased 
mean-square-error. 
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Table 1.1. Main results for the general filtering problem. 

The filtering solution is specialised to output estimation with C1,k = C2,k and D1,k = D2,k. 

In the case of input estimation (or equalisation), C1,k = 0  and D1,k = I, which results in /ˆ k kw  = 

2, / 1ˆk k k kL C x   + Lkzk, where the filter gain is instead calculated as Lk = 2, 2, / 1 2,(T T
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For problems where C1,k = I (state estimation) and D1,k = D2,k = 0, the filtered state calculation 
simplifies to /ˆ k kx  = (I – 2, / 1ˆ)k k k kL C x   + Lkzk, where / 1ˆ k kx   = 1/ 1ˆk k kA x    and Lk = 
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/ 1 2, 2, / 1 2,(T T
k k k k k k kP C C P C   + 1)kR  . This predictor-corrector form is used to obtain robust, hybrid 

and extended Kalman filters. When the predicted states are not explicitly required, the state 
corrections can be calculated from the one-line recursion /ˆ k kx  = (I – 2, 1 1/ 1ˆ)   k k k k kL C A x  + Lkzk. 

If the simplifications Bk = D2,k = 0 are assumed and the pair (Ak, C2,k) is retained, the Kalman 
filter degenerates to the RLS algorithm. However, the cost of this model simplification is an 
increase in mean-square-error. 
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. Show that 

an estimate of  k  given k , which minimises ( kE   − { | })(k k kE     − { | })T
k kE   , is 
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Problem 2. Derive the predicted error covariance 
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measurements zk = yk + vk. 

Problem 3. Assuming the state correction /ˆ k kx  = / 1ˆ k kx   + (k kL z  −  / 1ˆ )k k kC x   , show that the 
corrected error covariance is given by /k kP  =  / 1k kP   − / 1( T
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Problem 4 [11], [14], [17], [18], [19]. Consider the standard discrete-time filter equations 

/ 1ˆ k kx   = 1/ 1ˆk k kA x   , 

/ˆ k kx  = / 1ˆ k kx   + (k kL z  −  / 1ˆ )k k kC x  , 

/ 1k kP   =  1/ 1
T

k k k kA P A    + T
k k kB Q B , 

/k kP  =  / 1k kP   − / 1( T
k k k k kL C P C  + ) T

k kR L , 

where 1
/ 1 / 1( )T T

k k k k k k k k kL P C C P C R 
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where K(tk) = P(tk)C(tk)R-1(tk). (Hint: Introduce the quantities Ak = (I + A(tk))Δt, B(tk) = Bk, C(tk) 

= Ck, /k kP , Q(tk) = Qk/Δt, R(tk) = RkΔt, ˆ( )kx t  = /ˆ k kx , ( )kP t  = /k kP , ˆ( )kx t  = / 1/ 1

0

ˆ ˆ
lim k k k k
t

x x
t
 

 




, 

( )kP t  = 1/ / 1

0
lim  

 




k k k k
t

P P
t

 and Δt = tk – tk-1.)  

Problem 5. Derive the two-step-ahead predicted error covariance 2 /k kP   = 1 1/ 1
T

k k k kA P A    + 

1 1 1
T

k k kB Q B   . 

Problem 6. Verify that the Riccati difference equation 1/k kP   = / 1
T

k k k kA P A  − / 1( T
k k k kK C P C  + 

) T
k kR K  + T

k k kB Q B , where kK  = / 1( k k k kA P C  + / 1)( T
k k k k k kB S C P C + 1)kR  , is equivalent to 1/k kP   

= ( kA  − / 1) (k k k k kK C P A  − )T
k kK C  + T

k k kK R K  + T
k k kB Q B  − T

k k kB S K  − T
k k kK S B . 

Problem 7 [16]. Suppose that the systems y1,k =  wk and y2,k =  wk have the state-space  
realisations  

1, 1 1, 1, 1,

1, 1, 1,

k k k k

k k k k

x A B x
y C D w

     
     
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 and 2, 1 2, 2, 2,

2, 2, 2,

k k k k

k k k k

x A B x
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    
. 

Show that the system y3,k =     wk is  given by25 

1, 1, 1,
1, 1

2, 1, 2, 2, 1, 2,
3,

2, 1, 2, 2, 1,

0k k k
k

k k k k k k
k

k k k k k k

A B x
x

B C A B D x
y

D C C D D w


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          
       

. 

 

4.21 Glossary  
In addition to the notation listed in Section 2.6, the following nomenclature has been used herein. 

  A system that is assumed to have the realisation xk+1 = Akxk + Bkwk and 
yk = Ckxk + Dkwk where Ak, Bk, Ck and Dk are time-varying matrices of 
appropriate dimension. 

Qk, Rk Time-varying covariance matrices of stochastic signals wk and vk, 
respectively. 

H  Adjoint of  . The adjoint of a system having the state-space 
parameters {Ak, Bk, Ck, Dk} is a system parameterised by { T

kA , 
T
kC , T

kB , T
kD }. 

/ˆ k kx  Filtered estimate of the state xk given measurements at time k. 

/k kx  Filtered state estimation error which is defined by /k kx  = xk – /ˆ k kx . 
Pk/k Corrected error covariance matrix at time k given measurements at 

time k. 
                                                                 

“What sir, would you make a ship sail against the wind and currents by lighting a bonfire under her 
deck? I pray you excuse me. I have no time to listen to such nonsense.”  Napoléon Bonaparte 

  

Lk Time-varying filter gain matrix. 
1/ˆ k kx   Predicted estimate of the state xk+1 given measurements at time k. 

1/k kx 
  Predicted state estimation error which is defined by 1/k kx 

  = xk+1 – 

1/ˆ k kx  . 
Pk+1/k Predicted error covariance matrix at time k + 1 given measurements at 

time k. 
Kk Time-varying predictor gain matrix. 
RLS Recursive Least Squares. 
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where K(tk) = P(tk)C(tk)R-1(tk). (Hint: Introduce the quantities Ak = (I + A(tk))Δt, B(tk) = Bk, C(tk) 
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Problem 5. Derive the two-step-ahead predicted error covariance 2 /k kP   = 1 1/ 1
T

k k k kA P A    + 

1 1 1
T

k k kB Q B   . 

Problem 6. Verify that the Riccati difference equation 1/k kP   = / 1
T

k k k kA P A  − / 1( T
k k k kK C P C  + 

) T
k kR K  + T

k k kB Q B , where kK  = / 1( k k k kA P C  + / 1)( T
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k k kK S B . 

Problem 7 [16]. Suppose that the systems y1,k =  wk and y2,k =  wk have the state-space  
realisations  

1, 1 1, 1, 1,

1, 1, 1,

k k k k

k k k k

x A B x
y C D w

     
     

    
 and 2, 1 2, 2, 2,

2, 2, 2,

k k k k

k k k k

x A B x
y C D w

     
     

    
. 
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4.21 Glossary  
In addition to the notation listed in Section 2.6, the following nomenclature has been used herein. 

  A system that is assumed to have the realisation xk+1 = Akxk + Bkwk and 
yk = Ckxk + Dkwk where Ak, Bk, Ck and Dk are time-varying matrices of 
appropriate dimension. 

Qk, Rk Time-varying covariance matrices of stochastic signals wk and vk, 
respectively. 

H  Adjoint of  . The adjoint of a system having the state-space 
parameters {Ak, Bk, Ck, Dk} is a system parameterised by { T

kA , 
T
kC , T

kB , T
kD }. 

/ˆ k kx  Filtered estimate of the state xk given measurements at time k. 

/k kx  Filtered state estimation error which is defined by /k kx  = xk – /ˆ k kx . 
Pk/k Corrected error covariance matrix at time k given measurements at 

time k. 
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Lk Time-varying filter gain matrix. 
1/ˆ k kx   Predicted estimate of the state xk+1 given measurements at time k. 

1/k kx 
  Predicted state estimation error which is defined by 1/k kx 

  = xk+1 – 

1/ˆ k kx  . 
Pk+1/k Predicted error covariance matrix at time k + 1 given measurements at 

time k. 
Kk Time-varying predictor gain matrix. 
RLS Recursive Least Squares. 
 

4.22 References 
[1] R. E. Kalman, “A New Approach to Linear Filtering and Prediction Problems”, 

Transactions of the ASME, Series D, Journal of Basic Engineering, vol 82, pp. 35 – 45, 1960. 
[2] R. E. Kalman, “New Methods in Wiener Filtering Theory”, Proc. First Symposium on 

Engineering Applications of Random Function Theory and Probability, Wiley, New York, pp. 
270 – 388, 1963. 

[3] T. Söderström, Discrete-time Stochastic Systems: Estimation and Control, Springer-Verlag 
London Ltd., 2002. 

[4] B. D. O. Anderson and J. B. Moore, Optimal Filtering, Prentice-Hall Inc,Englewood Cliffs, 
New Jersey, 1979. 

[5] G. S. Maddala, Introduction to Econometrics, Second Edition, Macmillan Publishing Co., 
New York, 1992. 

[6] C. K. Chui and G. Chen, Kalman Filtering with Real-Time Applications, 3rd Ed., Springer-
Verlag, Berlin, 1999. 

[7] I. Yaesh and U. Shaked, “H∞-Optimal Estimation – The Discrete Time Case”, Proceedings 
of the MTNS, pp. 261 – 267, Jun. 1991. 

[8] U. Shaked and Y. Theodor, “H∞ Optimal Estimation: A Tutorial”, Proceedings 31st IEEE 
Conference on Decision and Control, pp. 2278 – 2286, Tucson, Arizona, Dec. 1992. 

[9] F. L. Lewis, L. Xie and D. Popa, Optimal and Robust Estimation: With an Introduction to 
Stochastic Control Theory, Second Edition, Series in Automation and Control 
Engineering, Taylor & Francis Group, LLC, 2008. 

[10] T. Kailath, A. H. Sayed and B. Hassibi, Linear Estimation, Prentice-Hall, Inc., Upper 
Saddle River, New Jersey, 2000. 

[11] D. Simon, Optimal State Estimation, Kalman H∞ and Nonlinear Approaches, John Wiley & 
Sons, Inc., Hoboken, New Jersey, 2006. 

[12] P. J. Brockwell and R. A. Davis, Time Series: Theory and Methods, Second Edition,  
Springer-Verlag New York, Inc., 1991. 

[13] D. J. N. Limebeer, M. Green and D. Walker, "Discrete-time H  Control", Proceedings 28th 
IEEE Conference on Decision and Control, Tampa, pp. 392 – 396, Dec., 1989. 

[14] R. G. Brown and P. Y. C. Hwang, Introduction to Random Signals and Applied Kalman 
Filtering, Second Edition, John Wiley & Sons, Inc., New York, 1992. 

                                                                 

“The horse is here today, but the automobile is only a novelty - a fad.” President of Michigan Savings 
Bank 

Discrete-Time Minimum-Variance Prediction and Filtering 99
  

where K(tk) = P(tk)C(tk)R-1(tk). (Hint: Introduce the quantities Ak = (I + A(tk))Δt, B(tk) = Bk, C(tk) 

= Ck, /k kP , Q(tk) = Qk/Δt, R(tk) = RkΔt, ˆ( )kx t  = /ˆ k kx , ( )kP t  = /k kP , ˆ( )kx t  = / 1/ 1

0

ˆ ˆ
lim k k k k
t

x x
t
 

 




, 

( )kP t  = 1/ / 1

0
lim  

 




k k k k
t

P P
t

 and Δt = tk – tk-1.)  

Problem 5. Derive the two-step-ahead predicted error covariance 2 /k kP   = 1 1/ 1
T

k k k kA P A    + 

1 1 1
T

k k kB Q B   . 

Problem 6. Verify that the Riccati difference equation 1/k kP   = / 1
T

k k k kA P A  − / 1( T
k k k kK C P C  + 

) T
k kR K  + T

k k kB Q B , where kK  = / 1( k k k kA P C  + / 1)( T
k k k k k kB S C P C + 1)kR  , is equivalent to 1/k kP   

= ( kA  − / 1) (k k k k kK C P A  − )T
k kK C  + T

k k kK R K  + T
k k kB Q B  − T

k k kB S K  − T
k k kK S B . 

Problem 7 [16]. Suppose that the systems y1,k =  wk and y2,k =  wk have the state-space  
realisations  

1, 1 1, 1, 1,

1, 1, 1,

k k k k

k k k k

x A B x
y C D w

     
     

    
 and 2, 1 2, 2, 2,

2, 2, 2,

k k k k

k k k k

x A B x
y C D w

     
     

    
. 

Show that the system y3,k =     wk is  given by25 

1, 1, 1,
1, 1

2, 1, 2, 2, 1, 2,
3,

2, 1, 2, 2, 1,

0k k k
k

k k k k k k
k

k k k k k k

A B x
x

B C A B D x
y

D C C D D w



   
          
       

. 

 

4.21 Glossary  
In addition to the notation listed in Section 2.6, the following nomenclature has been used herein. 

  A system that is assumed to have the realisation xk+1 = Akxk + Bkwk and 
yk = Ckxk + Dkwk where Ak, Bk, Ck and Dk are time-varying matrices of 
appropriate dimension. 

Qk, Rk Time-varying covariance matrices of stochastic signals wk and vk, 
respectively. 

H  Adjoint of  . The adjoint of a system having the state-space 
parameters {Ak, Bk, Ck, Dk} is a system parameterised by { T

kA , 
T
kC , T

kB , T
kD }. 

/ˆ k kx  Filtered estimate of the state xk given measurements at time k. 

/k kx  Filtered state estimation error which is defined by /k kx  = xk – /ˆ k kx . 
Pk/k Corrected error covariance matrix at time k given measurements at 

time k. 
                                                                 

“What sir, would you make a ship sail against the wind and currents by lighting a bonfire under her 
deck? I pray you excuse me. I have no time to listen to such nonsense.”  Napoléon Bonaparte 

  

Lk Time-varying filter gain matrix. 
1/ˆ k kx   Predicted estimate of the state xk+1 given measurements at time k. 

1/k kx 
  Predicted state estimation error which is defined by 1/k kx 

  = xk+1 – 

1/ˆ k kx  . 
Pk+1/k Predicted error covariance matrix at time k + 1 given measurements at 

time k. 
Kk Time-varying predictor gain matrix. 
RLS Recursive Least Squares. 
 

4.22 References 
[1] R. E. Kalman, “A New Approach to Linear Filtering and Prediction Problems”, 

Transactions of the ASME, Series D, Journal of Basic Engineering, vol 82, pp. 35 – 45, 1960. 
[2] R. E. Kalman, “New Methods in Wiener Filtering Theory”, Proc. First Symposium on 

Engineering Applications of Random Function Theory and Probability, Wiley, New York, pp. 
270 – 388, 1963. 

[3] T. Söderström, Discrete-time Stochastic Systems: Estimation and Control, Springer-Verlag 
London Ltd., 2002. 

[4] B. D. O. Anderson and J. B. Moore, Optimal Filtering, Prentice-Hall Inc,Englewood Cliffs, 
New Jersey, 1979. 

[5] G. S. Maddala, Introduction to Econometrics, Second Edition, Macmillan Publishing Co., 
New York, 1992. 

[6] C. K. Chui and G. Chen, Kalman Filtering with Real-Time Applications, 3rd Ed., Springer-
Verlag, Berlin, 1999. 

[7] I. Yaesh and U. Shaked, “H∞-Optimal Estimation – The Discrete Time Case”, Proceedings 
of the MTNS, pp. 261 – 267, Jun. 1991. 

[8] U. Shaked and Y. Theodor, “H∞ Optimal Estimation: A Tutorial”, Proceedings 31st IEEE 
Conference on Decision and Control, pp. 2278 – 2286, Tucson, Arizona, Dec. 1992. 

[9] F. L. Lewis, L. Xie and D. Popa, Optimal and Robust Estimation: With an Introduction to 
Stochastic Control Theory, Second Edition, Series in Automation and Control 
Engineering, Taylor & Francis Group, LLC, 2008. 

[10] T. Kailath, A. H. Sayed and B. Hassibi, Linear Estimation, Prentice-Hall, Inc., Upper 
Saddle River, New Jersey, 2000. 

[11] D. Simon, Optimal State Estimation, Kalman H∞ and Nonlinear Approaches, John Wiley & 
Sons, Inc., Hoboken, New Jersey, 2006. 

[12] P. J. Brockwell and R. A. Davis, Time Series: Theory and Methods, Second Edition,  
Springer-Verlag New York, Inc., 1991. 

[13] D. J. N. Limebeer, M. Green and D. Walker, "Discrete-time H  Control", Proceedings 28th 
IEEE Conference on Decision and Control, Tampa, pp. 392 – 396, Dec., 1989. 

[14] R. G. Brown and P. Y. C. Hwang, Introduction to Random Signals and Applied Kalman 
Filtering, Second Edition, John Wiley & Sons, Inc., New York, 1992. 

                                                                 

“The horse is here today, but the automobile is only a novelty - a fad.” President of Michigan Savings 
Bank 



Smoothing, Filtering and Prediction:
Estimating the Past, Present and Future100

  

[15] K. Ogata, Discrete-time Control Systems, Prentice-Hall, Inc., Englewood Cliffs, New 
Jersey, 1987. 

[16] M. Green and D. J. N. Limebeer, Linear Robust Control, Prentice-Hall Inc. Englewood 
Cliffs, New Jersey, 1995. 

[17] A. H. Jazwinski, Stochastic Processes and Filtering Theory, Academic Press, Inc., New 
York, 1970. 

[18] A. P. Sage and J. L. Melsa, Estimation Theory with Applications to Communications and 
Control, McGraw-Hill Book Company, New York,  1971. 

[19] A. Gelb, Applied Optimal Estimation, The Analytic Sciences Corporation, USA, 197 
[20] S. Tong and P. Shi, “Sampled-Data Filtering Framework for Cardiac Motion Recovery: 

Optimal Estimation of Continuous Dynamics From Discrete Measurements”, IEEE 
Transactions on Biomedical Engineering, vol. 54, no. 10, pp. 1750 – 1761, Oct. 2007. 

 

 

 

                                                                 

“Airplanes are interesting toys but of no military value.” Marechal Ferdinand Foch 



Smoothing, Filtering and Prediction:
Estimating the Past, Present and Future100

  

[15] K. Ogata, Discrete-time Control Systems, Prentice-Hall, Inc., Englewood Cliffs, New 
Jersey, 1987. 

[16] M. Green and D. J. N. Limebeer, Linear Robust Control, Prentice-Hall Inc. Englewood 
Cliffs, New Jersey, 1995. 

[17] A. H. Jazwinski, Stochastic Processes and Filtering Theory, Academic Press, Inc., New 
York, 1970. 

[18] A. P. Sage and J. L. Melsa, Estimation Theory with Applications to Communications and 
Control, McGraw-Hill Book Company, New York,  1971. 

[19] A. Gelb, Applied Optimal Estimation, The Analytic Sciences Corporation, USA, 197 
[20] S. Tong and P. Shi, “Sampled-Data Filtering Framework for Cardiac Motion Recovery: 

Optimal Estimation of Continuous Dynamics From Discrete Measurements”, IEEE 
Transactions on Biomedical Engineering, vol. 54, no. 10, pp. 1750 – 1761, Oct. 2007. 

 

 

 

                                                                 

“Airplanes are interesting toys but of no military value.” Marechal Ferdinand Foch 

Discrete-Time Steady-State Minimum-Variance Prediction and Filtering 101

Chapter title

Author Name

  

5 
 

Discrete-Time Steady-State  
Minimum-Variance Prediction and Filtering 

 

 
5.1 Introduction 
This chapter presents the minimum-variance filtering results simplified for the case when 
the model parameters are time-invariant and the noise processes are stationary. The filtering 
objective remains the same, namely, the task is to estimate a signal in such as way to 
minimise the filter error covariance. 

A somewhat naïve approach is to apply the standard filter recursions using the time-
invariant problem parameters. Although this approach is valid, it involves recalculating the 
Riccati difference equation solution and filter gain at each time-step, which is 
computationally expensive. A lower implementation cost can be realised by recognising that 
the Riccati difference equation solution asymptotically approaches the solution of an 
algebraic Riccati equation. In this case, the algebraic Riccati equation solution and hence the 
filter gain can be calculated before running the filter.    

The steady-state discrete-time Kalman filtering literature is vast and some of the more 
accessible accounts [1] – [14] are canvassed here. The filtering problem and the application 
of the standard time-varying filter recursions are described in Section 2. An important 
criterion for checking whether the states can be uniquely reconstructed from the 
measurements is observability. For example, sometimes states may be internal or sensor 
measurements might not be available, which can result in the system having hidden modes. 
Section 3 describes two common tests for observability, namely, checking that an 
observability matrix or an observability gramian are of full rank. The subject of Riccati 
equation monotonicity and convergence has been studied extensively by Chan [4], De Souza 
[5], [6], Bitmead [7], [8], Wimmer  [9] and Wonham [10], which is discussed in Section 4. 
Chan, et al [4] also showed that if the underlying system is stable and observable then the 
minimum-variance filter is stable. Section 6 describes a discrete-time version of the Kalman-
Yakubovich-Popov Lemma, which states for time-invariant systems that solving a Riccati 
equation is equivalent to spectral factorisation. In this case, the Wiener and Kalman filters 
are the same. 

 

                                                                 

“Science is nothing but trained and organized common sense differing from the latter only as a veteran 
may differ from a raw recruit: and its methods differ from those of common sense only as far as the 
guardsman's cut and thrust differ from the manner in which a savage wields his club.” Thomas Henry 
Huxley 
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5.2 Time-Invariant Filtering Problem  
 

5.2.1 The Time-Invariant Signal Model  
A discrete-time time-invariant system (or plant) :m  →  p  is assumed to have the state-
space representation 

1k k kx Ax Bw   , 

k k ky Cx Dw  , 

(1) 

(2)  

where A  n n , B  n m , C   p n , D   p p , wk is a stationary process with { }kE w  = 0 
and { }T

j kE w w  = jkQ . For convenience, the simplification D = 0 is initially assumed within 
the developments. A nonzero feedthrough matrix, D, can be accommodated as described in 
Chapter 4. Observations zk of the system output yk are again modelled as 

k k kz y v  , (3)  

where vk is a stationary measurement noise sequence over an interval k  [1, N], with { }kE v  
= 0, { }T

j kE w v  = 0, { }T
j kE v v  = jkR . An objective is to design a filter   that operates on the 

above measurements and produces an estimate, /ˆ k ky    /ˆk k kC x , of yk so that the covariance, 

/ /{ }T
k k k kE y y  , of the filter error, /k ky  = yk   /ˆ k ky , is minimised. 

 

5.2.2 Application of the Time-Varying Filter Recursions  
A naïve but entirely valid approach to state estimation is to apply the standard minimum-
variance filter recursions of Section 4 for the problem (1) – (3). The predicted and corrected 
state estimates are given by 

1/ / 1ˆ ˆ( )k k k k k k k kx A K C x K z    , 

/ / 1ˆ ˆ( )k k k k k k k kx I L C x L z   , 

(4) 

(5)  

where Lk = / 1 / 1(T
k k k kP C CP C   + 1)R   is the filter gain, Kk = / 1 / 1(T

k k k kAP C CP C   + 1)R   is the 
predictor gain, in which / 1k kP   = / 1 / 1{ }T

k k k kE x x 
   is obtained from the Riccati difference 

equation 
1

1 ( )T T T T T
k k k k kP AP A AP C CP C R CP A BQB
     . (6)  

As before, the above Riccati equation is iterated forward at each time k from an initial 
condition P0. A necessary condition for determining whether the states within (1) can be 
uniquely estimated is observability which is discussed below.  

 

                                                                 

“We can understand almost anything, but we can’t understand how we understand.” Albert Einstein 

  

5.3 Observability 
 

5.3.1 The Discrete-time Observability Matrix  
Observability is a fundamental concept in system theory. If a system is unobservable then it 
will not be possible to recover the states uniquely from the measurements. The pair (A, C) 
within the discrete-time system (1) – (2) is defined to be completely observable if the initial 
states, x0, can be uniquely determined from the known inputs wk and outputs yk over an 
interval k  [0, N]. A test for observability is to check whether an observability matrix is of 
full rank. The discrete-time observability matrix, which is defined in the lemma below, is the 
same the continuous-time version. The proof is analogous to the presentation in Chapter 3. 

Lemma 1 [1], [2]: The discrete-time system (1) – (2) is completely observable if the observability 
matrix  

2
N

N

C
CA

O CA

CA

 
 
 
 
 
 
  


, N ≥ n – 1, (7)  

is of rank n . 

Proof: Since the input wk is assumed to be known, it suffices to consider the unforced system 

1k kx Ax  , 

k ky Cx . 

(8) 

(9)   

It follows from (8) – (9) that  

0 0y Cx  

1 1 0y Cx CAx   

2
2 2 0y Cx CA x   

  

0
N

N Ny Cx CA x  , 

(10)  

 

 

 

 

 

                                                                 

“What happens depends on our way of observing it or the fact that we observe it.” Werner Heisenberg 
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As before, the above Riccati equation is iterated forward at each time k from an initial 
condition P0. A necessary condition for determining whether the states within (1) can be 
uniquely estimated is observability which is discussed below.  
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5.2 Time-Invariant Filtering Problem  
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which can be written as 
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2 0

N
N

y I
y A
yy C xA

y A

   
   
   
    
   
   
     

 
. (11)  

From the Cayley-Hamilton Theorem, Ak, for k ≥ n, can be expressed as a linear combination of A0, A1, 
..., An-1 . Thus, with N ≥ n – 1, equation (11) uniquely determines x0 if ON has full rank n.           �  

Thus, if ON is of full rank then its inverse exists and so x0 can be uniquely recovered as x0 = 
1

NO y . Observability is a property of the deterministic model equations (8) – (9). Conversely, 
if the observability matrix is not rank n then the system (1) – (2) is termed unobservable and 
the unobservable states are called unobservable modes.  
 

5.3.2 Discrete-time Observability Gramians  
Alternative tests for observability arise by checking the rank of one of the observability 
gramians that are described below.  

Lemma 2: The pair (A, C) is completely observable if the observability gramian 

0
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T T k T k

N N N
k

W O O A C CA


   , N ≥ n-1 (12)  

is of  full rank. 

Proof: It follows from (8) – (9) that 

2 2
0 0( ) ( )T T T T T N T
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I
A

y y x I A A A C C xA

A

 
 
 
      
 
  




. (13)  

From the Cayley-Hamilton Theorem, Ak, for k ≥ n, can be expressed as a linear combination of  
A0, A1, ..., An-1 . Thus, with N = n – 1, 
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0 0 0 0 0 0
0
( )

n
T T T T T T k T k

N N N
k

y y x O O x x W x x A C CA x




 
    

 
  (14)  

is unique provided that WN is of full rank.                                                                                             � 
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It is shown below that an equivalent observability gramian can be found from the solution 
of a Lyapunov equation. 

Lemma 3: Suppose that the system (8) – (9) is stable, that is, |λi(A)| < 1, i = 1 to n, then the pair 
(A, C) is completely observable if the nonnegative symmetric solution of the Lyapunov equation 

T TW A WA C C  . 
(15)  

is of full rank. 

Proof: Pre-multiplying CTC = W – ATWA by (AT)k, post-multiplying by Ak and summing from k = 
0 to N results in  

1 1

0 0 0
( ) ( ) ( )

N N N
T k T k T k k T k k

k k k
A C CA A WA A WA 

  

     

                                                      1 1( )T k k
N NW A W A   . 

(16)  

Since 1 1lim( )T k k
Nk

A W A 


 = 0, by inspection of (16), lim Nk

W W


  is a solution of the Lyapunov 

equation (15). Observability follows from Lemma 2.                                                                             � 

It is noted below that observability is equivalent to asymptotic stability. 

Lemma 4 [3]: Under the conditions of Lemma 3, x0   2  implies y  2 . 

Proof: It follows from (16) that 
0
( )

N
T k T k

k
A C CA


  ≤ WN and therefore 

2
0 0 0 02

0 0
( )

N N
T T T k T k T
k k N

k k
y y y x A C CA x x W x

 

 
   

 
  , 

from which the claim follows.                                                                                                                 � 

Another criterion that is encountered in the context of filtering and smoothing is 
detectability. A linear time-invariant system is said to be detectable when all its modes and 
in particular its unobservable modes are stable. An observable system is alsodetectable. 

Example 1. (i) Consider a stable second-order system with A   
0.1 0.2
0 0.4

 
 
 

 and C   1 1   . 

The observability matrix from (7) and the observability gramian from (12) are 1O  = 
C

CA
 
 
 

 = 

1 1
0.1 0.6
 
 
 

 and W1 = 1 1
TO O  = 

1.01 1.06
1.06 1.36
 
 
 

, respectively. It can easily be verified that the 
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solution of the Lyapunov equation (15) is W = 
1.01 1.06
1.06 1.44
 
 
 

 = W4 to three significant figures. 

Since rank(O1) = rank(W1)  = rank(W4)   2, the pair (A, C) is observable. 

(ii) Now suppose that measurements of the first state are not available, that is, C = 0 1   . 

Since O1 = 
0 1
0 0.4
 
 
 

 and W1 = 
0 0
0 1.16
 
 
 

 are of rank 1, the pair (A, C) is unobservable. This 

system is detectable because the unobservable mode is stable. 
 

5.4 Riccati Equation Properties 
 

5.4.1 Monotonicity 
It will be shown below that the solution 1/k kP   of the Riccati difference equation (6) 
monotonically approaches a steady-state asymptote, in which case the gain is also time-
invariant and can be precalculated. Establishing monotonicity requires the following result.  
It is well known that the difference between the solutions of two Riccati equations also 
obeys a Riccati equation, see Theorem 4.3 of [4], (2.12)  of [5], Lemma 3.1 of [6], (4.2) of [7], 
Lemma 10.1 of [8], (2.11) of [9] and (2.4) of [10]. 

Theorem 1: Riccati Equation Comparison Theorem [4] – [10]: Suppose for a t ≥ 0 and for all k ≥ 
0 the two Riccati difference equations 

1
1 1 1 1( )T T T T T

t k t k t k t k t kP AP A AP C CP C R CP A BQB
            , 

1
1 ( )T T T T T

t k t k t k t k t kP AP A AP C CP C R CP A BQB
         , 

(17) 

(18)  

have solutions t kP   ≥ 0 and 1t kP    ≥ 0, respectively. Then 1t k t k t kP P P      satisfies 

1
1 1 1 1( )T T T T

t k t k t k t k t k t k t k k t k t kP A P A A P C CP C R CP A
               , (19)  

where 1t kA    = A − 1 1(T T
t k t kAP C CP C     + 1

1)t k t kR C
    and t kR   = T

t kCP C  + R. 

The above result can be verified by substituting 1t kA    and 1t kR    into (19). The above 
theorem is used below to establish Riccati difference equation monotonicity. 

Theorem 2 [6], [9], [10], [11]: Under the conditions of Theorem 1, suppose that the solution of the 
Riccati difference equation (19) has a solution t kP   ≥ 0 for a t ≥ 0 and k = 0. Then  t kP   ≥ 1t kP    for 
all k ≥ 0.  

                                                                 

“We follow abstract assumptions to see where they lead, and then decide whether the detailed 
differences from the real world matter.” Clinton Richard Dawkins  

  

Proof: The assumption t kP   ≥ 0 is the initial condition for an induction argument. For the induction 

step, it follows from (T T
t k t kCP C CP C   + 1)kR   ≤ I that t kP   ≤ (T T

t k t kP C CP C   + 1)k t kR CP
 , which 

together with Theorem 1 implies t kP   ≥ 0.                                                                                            ⁪ � 

The above theorem serves to establish conditions under which a Riccati difference equation 
solution monotonically approaches its steady state solution. This requires a Riccati equation 
convergence result which is presented below. 

5.4.2 Convergence 
When the model parameters and second-order noise statistics are constant then the 
predictor gain is also time-invariant andpre-calculated as 

1( )T TK APC CPC R   , (20)  

where P is the symmetric positive definite solution of the algebraic Riccati equation 
1( )T T T T TP APA APC CPC R CPA BQB     

                                       ( ) ( )T T TA KC P A KC BQB KRK     . 

(21) 

(22)  

A real symmetric nonnegative definite solution of the Algebraic Riccati equation (21) is said 
to be a strong solution if the eigenvalues of (A – KC) lie inside or on the unit circle [4], [5]. If 
there are no eigenvalues on the unit circle then the strong solution is termed the stabilising 
solution. The following lemma by Chan, Goodwin and Sin [4] sets out conditions for the 
existence of7 solutions for the algebraic Riccati equation (21). 

Lemma 5 [4]: Provided that the pair (A, C) is detectable, then 

i) the strong solution of the algebraic Riccati equation (21) exists and is unique; 

ii) if A has no modes on the unit circle then the strong solution coincides with the stabilising 
solution. 

A detailed proof is presented in [4]. If the linear time-invariant system (1) – (2) is stable and 
completely observable and the solution Pk of the Riccati difference equation (6) is suitably 
initialised, then in the limit as k approaches infinity, Pk will asymptotically converge to the 
solution of the algebraic Riccati equation. This convergence property is formally restated 
below.  

Lemma 6 [4]: Subject to: 

i) the pair (A, C) is observable; 

ii) |λi(A)| ≤ 1, i = 1 to n; 

iii) (P0 − P) ≥ 0; 
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solution of the Lyapunov equation (15) is W = 
1.01 1.06
1.06 1.44
 
 
 

 = W4 to three significant figures. 

Since rank(O1) = rank(W1)  = rank(W4)   2, the pair (A, C) is observable. 

(ii) Now suppose that measurements of the first state are not available, that is, C = 0 1   . 

Since O1 = 
0 1
0 0.4
 
 
 

 and W1 = 
0 0
0 1.16
 
 
 

 are of rank 1, the pair (A, C) is unobservable. This 

system is detectable because the unobservable mode is stable. 
 

5.4 Riccati Equation Properties 
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It will be shown below that the solution 1/k kP   of the Riccati difference equation (6) 
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Lemma 10.1 of [8], (2.11) of [9] and (2.4) of [10]. 
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1 ( )T T T T T
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t k t kAP C CP C     + 1

1)t k t kR C
    and t kR   = T

t kCP C  + R. 

The above result can be verified by substituting 1t kA    and 1t kR    into (19). The above 
theorem is used below to establish Riccati difference equation monotonicity. 

Theorem 2 [6], [9], [10], [11]: Under the conditions of Theorem 1, suppose that the solution of the 
Riccati difference equation (19) has a solution t kP   ≥ 0 for a t ≥ 0 and k = 0. Then  t kP   ≥ 1t kP    for 
all k ≥ 0.  
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Proof: The assumption t kP   ≥ 0 is the initial condition for an induction argument. For the induction 

step, it follows from (T T
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 , which 

together with Theorem 1 implies t kP   ≥ 0.                                                                                            ⁪ � 

The above theorem serves to establish conditions under which a Riccati difference equation 
solution monotonically approaches its steady state solution. This requires a Riccati equation 
convergence result which is presented below. 

5.4.2 Convergence 
When the model parameters and second-order noise statistics are constant then the 
predictor gain is also time-invariant andpre-calculated as 

1( )T TK APC CPC R   , (20)  

where P is the symmetric positive definite solution of the algebraic Riccati equation 
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(21) 

(22)  

A real symmetric nonnegative definite solution of the Algebraic Riccati equation (21) is said 
to be a strong solution if the eigenvalues of (A – KC) lie inside or on the unit circle [4], [5]. If 
there are no eigenvalues on the unit circle then the strong solution is termed the stabilising 
solution. The following lemma by Chan, Goodwin and Sin [4] sets out conditions for the 
existence of7 solutions for the algebraic Riccati equation (21). 

Lemma 5 [4]: Provided that the pair (A, C) is detectable, then 

i) the strong solution of the algebraic Riccati equation (21) exists and is unique; 

ii) if A has no modes on the unit circle then the strong solution coincides with the stabilising 
solution. 

A detailed proof is presented in [4]. If the linear time-invariant system (1) – (2) is stable and 
completely observable and the solution Pk of the Riccati difference equation (6) is suitably 
initialised, then in the limit as k approaches infinity, Pk will asymptotically converge to the 
solution of the algebraic Riccati equation. This convergence property is formally restated 
below.  

Lemma 6 [4]: Subject to: 
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It will be shown below that the solution 1/k kP   of the Riccati difference equation (6) 
monotonically approaches a steady-state asymptote, in which case the gain is also time-
invariant and can be precalculated. Establishing monotonicity requires the following result.  
It is well known that the difference between the solutions of two Riccati equations also 
obeys a Riccati equation, see Theorem 4.3 of [4], (2.12)  of [5], Lemma 3.1 of [6], (4.2) of [7], 
Lemma 10.1 of [8], (2.11) of [9] and (2.4) of [10]. 

Theorem 1: Riccati Equation Comparison Theorem [4] – [10]: Suppose for a t ≥ 0 and for all k ≥ 
0 the two Riccati difference equations 

1
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t kCP C  + R. 

The above result can be verified by substituting 1t kA    and 1t kR    into (19). The above 
theorem is used below to establish Riccati difference equation monotonicity. 

Theorem 2 [6], [9], [10], [11]: Under the conditions of Theorem 1, suppose that the solution of the 
Riccati difference equation (19) has a solution t kP   ≥ 0 for a t ≥ 0 and k = 0. Then  t kP   ≥ 1t kP    for 
all k ≥ 0.  
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The above theorem serves to establish conditions under which a Riccati difference equation 
solution monotonically approaches its steady state solution. This requires a Riccati equation 
convergence result which is presented below. 

5.4.2 Convergence 
When the model parameters and second-order noise statistics are constant then the 
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(22)  

A real symmetric nonnegative definite solution of the Algebraic Riccati equation (21) is said 
to be a strong solution if the eigenvalues of (A – KC) lie inside or on the unit circle [4], [5]. If 
there are no eigenvalues on the unit circle then the strong solution is termed the stabilising 
solution. The following lemma by Chan, Goodwin and Sin [4] sets out conditions for the 
existence of7 solutions for the algebraic Riccati equation (21). 

Lemma 5 [4]: Provided that the pair (A, C) is detectable, then 

i) the strong solution of the algebraic Riccati equation (21) exists and is unique; 

ii) if A has no modes on the unit circle then the strong solution coincides with the stabilising 
solution. 

A detailed proof is presented in [4]. If the linear time-invariant system (1) – (2) is stable and 
completely observable and the solution Pk of the Riccati difference equation (6) is suitably 
initialised, then in the limit as k approaches infinity, Pk will asymptotically converge to the 
solution of the algebraic Riccati equation. This convergence property is formally restated 
below.  

Lemma 6 [4]: Subject to: 

i) the pair (A, C) is observable; 

ii) |λi(A)| ≤ 1, i = 1 to n; 

iii) (P0 − P) ≥ 0; 
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then the solution of the Riccati difference equation (6) satisfies 
lim kk

P P


 . (23)  

A proof appears in [4]. This important property is used in [6], which is in turn cited within 
[7] and [8]. Similar results are reported in [5], [13] and [14]. Convergence can occur 
exponentially fast which is demonstrated by the following numerical example. 

Example 2. Consider an output estimation problem where A = 0.9 and B = C = Q = R = 1. 
The solution to the algebraic Riccati equation (21) is P = 1.4839. Some calculated solutions of 
the Riccati difference equation (6) initialised with P0 = 10P are shown in Table 1. The data in 
the table demonstrate that the Riccati difference equation solution converges to the algebraic 
Riccati equation solution, which illustrates the Lemma. 
 

k 
kP  1k kP P   

1 1.7588 13.0801 

2 1.5164 0.2425 

5 1.4840 4.7955*10-4 

10 1.4839 1.8698*10-8 

Table. 1.  Solutions of (21) for Example 2. 
 

5.5 The Steady-State Minimum-Variance Filter 
 

5.5.1 State Estimation  
The formulation of the steady-state Kalman filter (which is also known as the limiting 
Kalman filter) follows by allowing k to approach infinity and using the result of Lemma  
That is, the filter employs fixed gains that are calculated using the solution of the algebraic 
Riccati equation (21) instead of the Riccati difference equation (6). The filtered state is 
calculated as 

/ / 1 / 1ˆ ˆ ˆ( )k k k k k k kx x L z Cx     

                                                     / 1ˆ( ) k k kI LC x Lz   , 
(24) 

where L = (T TPC CPC  + 1)R   is the time-invariant filter gain, in which P is the solution of 
the algebraic Riccati equation (21). The predicted state is given by 

1/ /ˆ ˆk k k kx Ax   

                                                                    / 1ˆ( ) k k kA KC x Kz   , 
(25)  

where the time-invariant predictor gain, K, is calculated from (20). 

                                                                 

“Great is the power of steady misrepresentation - but the history of science shows how, fortunately, this 
power does not endure long”. Charles Robert Darwin 

  

5.5.2 Asymptotic Stability  
The asymptotic stability of the filter (24) – (25) is asserted in two ways. First, recall from 
Lemma 4 (ii) that if |λi(A)| < 1, i = 1 to n, and the pair (A, C) is completely observable, then 
|λi(A − KC)| < 1, i = 1 to n. That is, since the eigenvalues of the filter’s state matrix are 
within the unit circle, the filter is asymptotically stable. Second, according to the Lyapunov 
stability theory [1], the unforced system (8) is asymptotically stable if there exists a scalar 
continuous function V(x), satisfying the following.  

(i) V(x) > 0 for x ≠ 0. 

(ii) V(xk+1) – V(xk) ≤  0 for xk ≠ 0. 

(iii) V(0) = 0. 

(iv) V(x) → ∞ as 
2

x  → ∞. 

Consider the function ( )kV x  = T
k kx Px  where P is a real positive definite symmetric matrix. 

Observe that 1( )kV x   – ( )kV x  = 1 1
T
k kx Px   – T

k kx Px  = (T T
kx A PA  – ) kP x  ≤ 0. Therefore, the 

above stability requirements are satisfied if for a real symmetric positive definite Q, there 
exists a real symmetric positive definite P solution to the Lyapunov equation 

TAPA P Q   . (26) 

By inspection, the design algebraic Riccati equation (22) is of the form (26) and so the filter is 
said to be stable in the sense of Lyapunov. 
 

5.5.3 Output Estimation  
For output estimation problems, the filter gain, L, is calculated differently. The output 
estimate  is given by 

/ /ˆ ˆk k k ky Cx  

                                                                        / 1 / 1ˆ ˆ( )k k k k kCx L z Cx     

                                                                        / 1ˆ( ) k k kC LC x Lz   , 

(27)  

where the filter gain is now obtained by  L = (T TCPC CPC  + 1)R  . The output estimation 
filter (24) – (25) can be written compactly as  

1/ / 1

/

ˆ ˆ( )
ˆ ( )
k k k k

k k k

x A KC K x
y C LC L z
      

        
, (28)  

from which its transfer function is 
1( ) ( )( )OEH z C LC zI A KC K L     . (29)  

                                                                 
“The scientists of today think deeply instead of clearly. One must be sane to think clearly, but one can 
think deeply and be quite insane.”  Nikola Tesla 



Smoothing, Filtering and Prediction:
Estimating the Past, Present and Future108

  

then the solution of the Riccati difference equation (6) satisfies 
lim kk

P P


 . (23)  

A proof appears in [4]. This important property is used in [6], which is in turn cited within 
[7] and [8]. Similar results are reported in [5], [13] and [14]. Convergence can occur 
exponentially fast which is demonstrated by the following numerical example. 

Example 2. Consider an output estimation problem where A = 0.9 and B = C = Q = R = 1. 
The solution to the algebraic Riccati equation (21) is P = 1.4839. Some calculated solutions of 
the Riccati difference equation (6) initialised with P0 = 10P are shown in Table 1. The data in 
the table demonstrate that the Riccati difference equation solution converges to the algebraic 
Riccati equation solution, which illustrates the Lemma. 
 

k 
kP  1k kP P   

1 1.7588 13.0801 

2 1.5164 0.2425 

5 1.4840 4.7955*10-4 

10 1.4839 1.8698*10-8 

Table. 1.  Solutions of (21) for Example 2. 
 

5.5 The Steady-State Minimum-Variance Filter 
 

5.5.1 State Estimation  
The formulation of the steady-state Kalman filter (which is also known as the limiting 
Kalman filter) follows by allowing k to approach infinity and using the result of Lemma  
That is, the filter employs fixed gains that are calculated using the solution of the algebraic 
Riccati equation (21) instead of the Riccati difference equation (6). The filtered state is 
calculated as 

/ / 1 / 1ˆ ˆ ˆ( )k k k k k k kx x L z Cx     

                                                     / 1ˆ( ) k k kI LC x Lz   , 
(24) 

where L = (T TPC CPC  + 1)R   is the time-invariant filter gain, in which P is the solution of 
the algebraic Riccati equation (21). The predicted state is given by 

1/ /ˆ ˆk k k kx Ax   

                                                                    / 1ˆ( ) k k kA KC x Kz   , 
(25)  

where the time-invariant predictor gain, K, is calculated from (20). 

                                                                 

“Great is the power of steady misrepresentation - but the history of science shows how, fortunately, this 
power does not endure long”. Charles Robert Darwin 

  

5.5.2 Asymptotic Stability  
The asymptotic stability of the filter (24) – (25) is asserted in two ways. First, recall from 
Lemma 4 (ii) that if |λi(A)| < 1, i = 1 to n, and the pair (A, C) is completely observable, then 
|λi(A − KC)| < 1, i = 1 to n. That is, since the eigenvalues of the filter’s state matrix are 
within the unit circle, the filter is asymptotically stable. Second, according to the Lyapunov 
stability theory [1], the unforced system (8) is asymptotically stable if there exists a scalar 
continuous function V(x), satisfying the following.  

(i) V(x) > 0 for x ≠ 0. 

(ii) V(xk+1) – V(xk) ≤  0 for xk ≠ 0. 

(iii) V(0) = 0. 

(iv) V(x) → ∞ as 
2

x  → ∞. 

Consider the function ( )kV x  = T
k kx Px  where P is a real positive definite symmetric matrix. 

Observe that 1( )kV x   – ( )kV x  = 1 1
T
k kx Px   – T

k kx Px  = (T T
kx A PA  – ) kP x  ≤ 0. Therefore, the 

above stability requirements are satisfied if for a real symmetric positive definite Q, there 
exists a real symmetric positive definite P solution to the Lyapunov equation 

TAPA P Q   . (26) 

By inspection, the design algebraic Riccati equation (22) is of the form (26) and so the filter is 
said to be stable in the sense of Lyapunov. 
 

5.5.3 Output Estimation  
For output estimation problems, the filter gain, L, is calculated differently. The output 
estimate  is given by 

/ /ˆ ˆk k k ky Cx  

                                                                        / 1 / 1ˆ ˆ( )k k k k kCx L z Cx     

                                                                        / 1ˆ( ) k k kC LC x Lz   , 

(27)  

where the filter gain is now obtained by  L = (T TCPC CPC  + 1)R  . The output estimation 
filter (24) – (25) can be written compactly as  

1/ / 1

/

ˆ ˆ( )
ˆ ( )
k k k k

k k k

x A KC K x
y C LC L z
      

        
, (28)  

from which its transfer function is 
1( ) ( )( )OEH z C LC zI A KC K L     . (29)  

                                                                 
“The scientists of today think deeply instead of clearly. One must be sane to think clearly, but one can 
think deeply and be quite insane.”  Nikola Tesla 
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then the solution of the Riccati difference equation (6) satisfies 
lim kk

P P


 . (23)  

A proof appears in [4]. This important property is used in [6], which is in turn cited within 
[7] and [8]. Similar results are reported in [5], [13] and [14]. Convergence can occur 
exponentially fast which is demonstrated by the following numerical example. 

Example 2. Consider an output estimation problem where A = 0.9 and B = C = Q = R = 1. 
The solution to the algebraic Riccati equation (21) is P = 1.4839. Some calculated solutions of 
the Riccati difference equation (6) initialised with P0 = 10P are shown in Table 1. The data in 
the table demonstrate that the Riccati difference equation solution converges to the algebraic 
Riccati equation solution, which illustrates the Lemma. 
 

k 
kP  1k kP P   

1 1.7588 13.0801 

2 1.5164 0.2425 

5 1.4840 4.7955*10-4 

10 1.4839 1.8698*10-8 

Table. 1.  Solutions of (21) for Example 2. 
 

5.5 The Steady-State Minimum-Variance Filter 
 

5.5.1 State Estimation  
The formulation of the steady-state Kalman filter (which is also known as the limiting 
Kalman filter) follows by allowing k to approach infinity and using the result of Lemma  
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/ / 1 / 1ˆ ˆ ˆ( )k k k k k k kx x L z Cx     

                                                     / 1ˆ( ) k k kI LC x Lz   , 
(24) 
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1/ /ˆ ˆk k k kx Ax   

                                                                    / 1ˆ( ) k k kA KC x Kz   , 
(25)  

where the time-invariant predictor gain, K, is calculated from (20). 

                                                                 

“Great is the power of steady misrepresentation - but the history of science shows how, fortunately, this 
power does not endure long”. Charles Robert Darwin 

  

5.5.2 Asymptotic Stability  
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2

x  → ∞. 

Consider the function ( )kV x  = T
k kx Px  where P is a real positive definite symmetric matrix. 

Observe that 1( )kV x   – ( )kV x  = 1 1
T
k kx Px   – T

k kx Px  = (T T
kx A PA  – ) kP x  ≤ 0. Therefore, the 

above stability requirements are satisfied if for a real symmetric positive definite Q, there 
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TAPA P Q   . (26) 
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5.5.3 Output Estimation  
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/ /ˆ ˆk k k ky Cx  

                                                                        / 1 / 1ˆ ˆ( )k k k k kCx L z Cx     

                                                                        / 1ˆ( ) k k kC LC x Lz   , 

(27)  

where the filter gain is now obtained by  L = (T TCPC CPC  + 1)R  . The output estimation 
filter (24) – (25) can be written compactly as  

1/ / 1

/

ˆ ˆ( )
ˆ ( )
k k k k

k k k

x A KC K x
y C LC L z
      

        
, (28)  

from which its transfer function is 
1( ) ( )( )OEH z C LC zI A KC K L     . (29)  

                                                                 
“The scientists of today think deeply instead of clearly. One must be sane to think clearly, but one can 
think deeply and be quite insane.”  Nikola Tesla 
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5.6 Equivalence of the Wiener and Kalman Filters 
As in continuous-time, solving a discrete-time algebraic Riccati equation is equivalent to 
spectral factorisation and the corresponding Kalman-Yakubovich-Popov Lemma (or 
Positive Real Lemma) is set out below. A proof of this Lemma makes use of the following 
identity 

1 1( ) ( ) ( ) ( )T T T TP APA zI A P z I A AP z I A zI A PA         . (30)  

Lemma 7. Consider the spectral density matrix 

1 1
1 0 ( )

( ) ( )
0

T T
H Q z I A Cz C zI A I

R I

 
               

. (31) 

Then the following statements are equivalent. 

(i) ( )jH e   ≥ 0, for all ω  (−π, π ). 

(ii)  0
T T T

T T

BQB P APA APC
CPA CPC R

  
 

 
. 

(iii) There exists a nonnegative solution P of the algebraic Riccati equation (21). 

Proof: Following the approach of [12], to establish equivalence between (i) and (iii), use (21) within 
(30) to obtain 

1 1( ) ( ) ( ) ( ) ( )T T T T T T TBQB APC CPC R CPA zI A P z I A AP z I A zI A PA          . (32)  

Premultiplying and postmultiplying (32) by 1( )C zI A   and 1 1( )T Tz I A C  , respectively, results 
in 

1 1 1 1 1( ) ( )( ) ( ) ( )T T T T T T T T T TC zI A BQB APC CPA z I A C CPC C zI A APC CPA z I A C             , 

where TCPC R   . Hence,  

( ) ( )H Hz GQG z R    

             1 1 1( ) ( )T T TC zI A BQB z I A C R       

             1 1 1 1 1 1( ) ( ) ( ) ( )T T T T T T T TC zI A APC CPA z I A C C zI A APC CPA z I A C                

                1 1 1( ) ( )T T TC zI A K I K z I A C I                                                                          (33) 

             0 . 

The Schur complement formula can be used to verify the equivalence of (ii) and (iii).                          � 

                                                                 

“Any intelligent fool can make things bigger and more complex... It takes a touch of genius - and a lot of courage 
to move in the opposite direction.” Albert Einstein 

  

In Chapter 2, it is shown that the transfer function matrix of the optimal Wiener solution for 
output estimation is given by 

1( ) { } ( )H
OEH z I R z 

    , (34) 

where { }+ denotes the causal part. This filter produces estimates /ˆ k ky  from measurements zk. 
By inspection of (33) it follows that the spectral factor is 

1 1/ 2 1/ 2( ) ( )z C zI A K      . (35)  

The Wiener output estimator (34) involves 1( )z  which can be found using (35) and a 
special case of the matrix inversion lemma, namely, [I + C(zI − A)-1K]-1 = I − C(zI − A + KC)-

1K. Thus, the spectral factor inverse is  
1 1/ 2 1/ 2 1( ) ( )z C zI A KC K         . (36)  

It can be seen from (36) that { }H
  =  1/ 2 . Recognising that 1I R    = (CPCT + R)(CPCT + 

R)-1 − R(CPCT + R)-1 = CPCT(CPCT + R)-1 = L, the Wiener filter (34) can be written equivalently 

                           1 1( ) ( )OEH z I R z      

                                        1 1 1( )I R R C zI A KC K          

                                        1( )( )L C LC zI A KC K     , 

(37) 

which is identical to the transfer function matrix of the Kalman filter for output estimation 
(29). In Chapter 2, it is shown that the transfer function matrix of the input estimator (or 
equaliser) for proper, stable, minimum-phase plants is 

1 1( ) ( )( { } ( ))H
IEH z G z I R z  

    . (38) 

Substituting (35) into (38) gives  
1( ) ( ) ( )IE OEH z G z H z . (39) 

The above Wiener equaliser transfer function matrices require common poles and zeros to 
be cancelled. Although the solution (39) is not minimum-order (since some pole-zero 
cancellations can be made), its structure is instructive. In particular, an estimate of wk can be 
obtained by operating the plant inverse on /ˆ k ky , provided the inverse exists. It follows 
immediately from L = (T TCPC CPC  + 1)R   that  

0
lim
R

L I


 . (40) 

By inspectionof (34) and (40), it follows that 

0 { , }
lim sup ( )j

OER
H e I

    
 . (41) 

Thus, under conditions of diminishing measurement noise, the output estimator will be 
devoid of dynamics and its maximum magnitude will approach the identity matrix. 
                                                                 

“It is not the possession of truth, but the success which attends the seeking after it, that enriches the 
seeker and brings happiness to him.” Max Karl Ernst Ludwig Planck 
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As in continuous-time, solving a discrete-time algebraic Riccati equation is equivalent to 
spectral factorisation and the corresponding Kalman-Yakubovich-Popov Lemma (or 
Positive Real Lemma) is set out below. A proof of this Lemma makes use of the following 
identity 

1 1( ) ( ) ( ) ( )T T T TP APA zI A P z I A AP z I A zI A PA         . (30)  

Lemma 7. Consider the spectral density matrix 

1 1
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( ) ( )
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T T
H Q z I A Cz C zI A I

R I
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(iii) There exists a nonnegative solution P of the algebraic Riccati equation (21). 

Proof: Following the approach of [12], to establish equivalence between (i) and (iii), use (21) within 
(30) to obtain 
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In Chapter 2, it is shown that the transfer function matrix of the optimal Wiener solution for 
output estimation is given by 

1( ) { } ( )H
OEH z I R z 

    , (34) 

where { }+ denotes the causal part. This filter produces estimates /ˆ k ky  from measurements zk. 
By inspection of (33) it follows that the spectral factor is 
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The Wiener output estimator (34) involves 1( )z  which can be found using (35) and a 
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It can be seen from (36) that { }H
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(37) 

which is identical to the transfer function matrix of the Kalman filter for output estimation 
(29). In Chapter 2, it is shown that the transfer function matrix of the input estimator (or 
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The above Wiener equaliser transfer function matrices require common poles and zeros to 
be cancelled. Although the solution (39) is not minimum-order (since some pole-zero 
cancellations can be made), its structure is instructive. In particular, an estimate of wk can be 
obtained by operating the plant inverse on /ˆ k ky , provided the inverse exists. It follows 
immediately from L = (T TCPC CPC  + 1)R   that  

0
lim
R

L I


 . (40) 

By inspectionof (34) and (40), it follows that 
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lim sup ( )j
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Thus, under conditions of diminishing measurement noise, the output estimator will be 
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In Chapter 2, it is shown that the transfer function matrix of the optimal Wiener solution for 
output estimation is given by 

1( ) { } ( )H
OEH z I R z 

    , (34) 

where { }+ denotes the causal part. This filter produces estimates /ˆ k ky  from measurements zk. 
By inspection of (33) it follows that the spectral factor is 
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(29). In Chapter 2, it is shown that the transfer function matrix of the input estimator (or 
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1 1( ) ( )( { } ( ))H
IEH z G z I R z  
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obtained by operating the plant inverse on /ˆ k ky , provided the inverse exists. It follows 
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lim
R

L I


 . (40) 

By inspectionof (34) and (40), it follows that 

0 { , }
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OER
H e I
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Thus, under conditions of diminishing measurement noise, the output estimator will be 
devoid of dynamics and its maximum magnitude will approach the identity matrix. 
                                                                 

“It is not the possession of truth, but the success which attends the seeking after it, that enriches the 
seeker and brings happiness to him.” Max Karl Ernst Ludwig Planck 



Smoothing, Filtering and Prediction:
Estimating the Past, Present and Future112

  

Therefore, for proper, stable, minimum-phase plants, the equaliser asymptotically 
approaches the plant inverse as the measurement noise becomes negligible, that is, 

1

0
lim ( ) ( )IER

H z G z


 . (42) 

Time-invariant output and input estimation are demonstrated below.  

 

 
 
 
 
 
 
 
 
 

 

 

Figure 1. Fragment of Matlab® script for Example 3. 12 
Example 3. Consider a time-invariant input estimation problem in which the plant is given 
by 

                                          G(z) = (z + 0.9)2(z + 0.1)−2 

                                                   = (z2 + 1.8z + 0.81)(z2 + 0.2z + 0.01) −1 

                                                    = (1.6z + 0.8)(z2 + 0.2z + 0.01) −1 + 1, 

together with Q = 1 and R = 0.0001. The controllable canonical form (see Chapter 1) yields 

the parameters A =  
0.2 0.1
1 0

  
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corresponding algebraic Riccati equation is P = APAT − KΩKT + BQBT, where K = (APCT + 
BQDT)Ω-1 and Ω =  CPCT +R + DQDT. The minimum-variance output estimator is calculated 
as 
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experiment.” Leonardo di ser Piero da Vinci 
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 for the algebraic Riccati 

equation was found using the Hamiltonian solver within Matlab®.  

Figure 2.  Sample trajectories for Example 5: (i) measurement sequence (dotted line); (ii) 
actual and estimated process noise sequences (superimposed solid lines). 

The resulting transfer function of the output estimator is  

HOE(z) = (z + 0.9)2(z + 0.9)−2, 

which illustrates the low-measurement noise asymptote (41). The minimum-variance input 
estimator is calculated as 
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Therefore, for proper, stable, minimum-phase plants, the equaliser asymptotically 
approaches the plant inverse as the measurement noise becomes negligible, that is, 

1

0
lim ( ) ( )IER

H z G z


 . (42) 

Time-invariant output and input estimation are demonstrated below.  
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HIE(z) = (z + 0.1) 2 (z + 0.9) −2, 

which corresponds to the inverse of the plant and illustrates the asymptote (42). A 
simulation was generated based on the fragment of Matlab® script shown in Fig. 1 and some 
sample trajectories are provided in Fig. 2. It can be seen from the figure that the actual and 
estimated process noise sequences are superimposed, which demonstrates that an equaliser 
can be successful when the plant is invertible and the measurement noise is sufficiently low. 
In general, when measurement noise is not insignificant, the asymptotes (41) – (42) will not 
apply, as the minimum-variance equaliser solution will involve a trade-off between 
inverting the plant and filtering the noise. 
 

Table 2. Main results for time-invariant output estimation. 
 

5.7 Conclusion 
In the linear time-invariant case, it is assumed that the signal model and observations can be 
described by xk+1 = Axk + Bwk, yk = Cxk, and zk = yk + vk, respectively, where the matrices A, B, 
C, Q and R are constant. The Kalman filter for this problem is listed in Table 2. If the pair (A, 
C) is completely observable, the solution of the corresponding Riccati difference equation 
monotonically converges to the unique solution of the algebraic Riccati  equation that 
appears in the table. 

The implementation cost is lower than for time-varying problems because the gains can be 
calculated before running the filter. If |λi(A)| < 1, i = 1 to n, and the pair (A, C) is completely 
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Q > 0, R > 0 and TCPC  + Rk  > 0. 
The pair (A, C) is observable. 

1( )T TK APC CPC R    

1( )T TL CPC CPC R    

( )T T T TP APA K CPC R K BQB     

 

  

observable, then |λi(A – KC)| < 1, that is, the steady-state filter is asymptotically stable. The 
output estimator has the transfer function 

1( ) ( )( )OEH z C I LC zI A KC K CL     . 

Since the task of solving an algebraic Riccati equation is equivalent to spectral factorisation, 
the transfer functions of the minimum-mean-square error and steady-state minimum-
variance solutions are the same. 
 

5.8 Problems 
Problem 1. Calculate the observability matrices and comment on the observability of the 
following pairs. 

(i) 
1 2
3 4

A
 

  
 

, 2 4C     .  (ii) 
1 2
3 4

A
 

    
, 2 4C     . 

Problem 2. Generalise the proof of Lemma 1 (which addresses the unforced system xk+1 = 
Axk and yk = Cxk) for the system xk+1 = Axk + Bwk and yk = Cxk + Dwk. 

Problem 3. Consider the two Riccati difference equations 

1
1 1 1 1( )T T T T T

t k t k t k t k t kP AP A AP C CP C R CP A BQB
             

1
1 ( )T T T T T

t k t k t k t k t kP AP A AP C CP C R CP A BQB
         . 

Show that a Riccati difference equation for 1t k t k t kP P P      is given by 

1
1 ( )T T T T

t k k t k k k t k t k k t k kP A P A A P C CP C R CP A
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t kCP C  + R. 

Problem 4. Suppose that measurements are generated by the single-input-single-output 
system xk+1  = kax  + wk, zk = xk + vk, where  a  ,  { }kE v  = 0, { }T

j kE w w  = 2(1 ) jka  , { }T
j kE v v  

= jk , { }T
j kE w v  = 0.  

(a) Find the predicted error variance. 
(b) Find the predictor gain. 

(c) Verify that the one-step-ahead minimum-variance predictor is realised by 

1/ˆ k kx   = / 12
ˆ

1 1
k k

a x
a


 

 + 
2

2

1
1 1

k
a a z

a


 
. 

(d) Find the filter gain. 
(e) Write down the realisation of the minimum-variance filter.  
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simulation was generated based on the fragment of Matlab® script shown in Fig. 1 and some 
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estimated process noise sequences are superimposed, which demonstrates that an equaliser 
can be successful when the plant is invertible and the measurement noise is sufficiently low. 
In general, when measurement noise is not insignificant, the asymptotes (41) – (42) will not 
apply, as the minimum-variance equaliser solution will involve a trade-off between 
inverting the plant and filtering the noise. 
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observable, then |λi(A – KC)| < 1, that is, the steady-state filter is asymptotically stable. The 
output estimator has the transfer function 

1( ) ( )( )OEH z C I LC zI A KC K CL     . 

Since the task of solving an algebraic Riccati equation is equivalent to spectral factorisation, 
the transfer functions of the minimum-mean-square error and steady-state minimum-
variance solutions are the same. 
 

5.8 Problems 
Problem 1. Calculate the observability matrices and comment on the observability of the 
following pairs. 

(i) 
1 2
3 4

A
 

  
 

, 2 4C     .  (ii) 
1 2
3 4

A
 

    
, 2 4C     . 

Problem 2. Generalise the proof of Lemma 1 (which addresses the unforced system xk+1 = 
Axk and yk = Cxk) for the system xk+1 = Axk + Bwk and yk = Cxk + Dwk. 

Problem 3. Consider the two Riccati difference equations 

1
1 1 1 1( )T T T T T

t k t k t k t k t kP AP A AP C CP C R CP A BQB
             

1
1 ( )T T T T T

t k t k t k t k t kP AP A AP C CP C R CP A BQB
         . 

Show that a Riccati difference equation for 1t k t k t kP P P      is given by 

1
1 ( )T T T T

t k k t k k k t k t k k t k kP A P A A P C CP C R CP A
         

where t kA   = t kA   − (T T
t k t k t kA P C CP C    + 1)t k t kR C

   and t kR   = T
t kCP C  + R. 

Problem 4. Suppose that measurements are generated by the single-input-single-output 
system xk+1  = kax  + wk, zk = xk + vk, where  a  ,  { }kE v  = 0, { }T

j kE w w  = 2(1 ) jka  , { }T
j kE v v  

= jk , { }T
j kE w v  = 0.  

(a) Find the predicted error variance. 
(b) Find the predictor gain. 

(c) Verify that the one-step-ahead minimum-variance predictor is realised by 

1/ˆ k kx   = / 12
ˆ

1 1
k k

a x
a


 

 + 
2

2

1
1 1

k
a a z

a


 
. 

(d) Find the filter gain. 
(e) Write down the realisation of the minimum-variance filter.  
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Problem 5. Assuming that a system G has the realisation xk+1 = Akxk + Bkwk, yk = Ckxk + Dkwk, 
expand ΔΔH(z) =  GQG(z) + R to obtain Δ(z) and the optimal output estimation filter. 
 

5.9 Glossary  
In addition to the terms listed in Section 2.6, the notation has been used herein. 

A, B, C, D A linear time-invariant system is assumed to have the realisation xk+1 = 
Axk + Bwk and yk = Cxk + Dwk in which A, B, C, D are constant state 
space matrices of appropriate dimension. 

Q, R Time-invariant covariance matrices of stationary stochastic signals wk 
and vk, respectively. 

O Observability matrix. 
W Observability gramian. 
P Steady-state error covariance matrix. 
K Time-invariant predictor gain matrix. 
L Time-invariant filter gain matrix. 

Δ(z) Spectral factor. 
HOE(z) Transfer function matrix of output estimator. 
HIE(z) Transfer function matrix of input estimator. 
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Continuous-Time Smoothing 
 

 
6.1 Introduction 
The previously-described minimum-mean-square-error and minimum-variance filtering 
solutions operate on measurements up to the current time. If some processing delay can be 
tolerated then improved estimation performance can be realised through the use of 
smoothers. There are three state-space smoothing technique categories, namely, fixed-point, 
fixed-lag and fixed-interval smoothing. Fixed-point smoothing refers to estimating some 
linear combination of states at a previous instant in time. In the case of fixed-lag smoothing, 
a fixed time delay is assumed between the measurement and on-line estimation processes. 
Fixed-interval smoothing is for retrospective data analysis, where measurements recorded 
over an interval are used to obtain the improved estimates. Compared to filtering, 
smoothing has a higher implementation cost, as it has increased memory and calculation 
requirements.    

A large number of smoothing solutions have been reported since Wiener’s and Kalman’s 
development of the optimal filtering results – see the early surveys [1] – [2]. The minimum-
variance fixed-point and fixed-lag smoother solutions are well known. Two fixed-interval 
smoother solutions, namely the maximum-likelihood smoother developed by Rauch, Tung 
and Striebel [3], and the two-filter Fraser-Potter formula [4], have been in widespread use 
since the 1960s. However, the minimum-variance fixed-interval smoother is not well known. 
This smoother is simply a time-varying state-space generalisation of the optimal Wiener 
solution. 

The main approaches for continuous-time fixed-point, fixed-lag and fixed-interval 
smoothing are canvassed here. It is assumed throughout that the underlying noise processes 
are zero mean and uncorrelated. Nonzero means and correlated processes can be handled 
using the approaches of Chapters 3 and 4. It is also assumed here that the noise statistics and 
state-space model parameters are known precisely. Note that techniques for estimating 
parameters and accommodating uncertainty are addressed subsequently. 

Some prerequisite concepts, namely time-varying adjoint systems, backwards differential 
equations, Riccati equation comparison and the continuous-time maximum-likelihood 
method are covered in Section 6.2. Section 6.3 outlines a derivation of the fixed-point 
smoother by Meditch [5]. The fixed-lag smoother reported by Sage et al [6] and Moore [7], is 
the subject of Section 6.4. Section 6.5 deals with the Rauch-Tung-Striebel [3], Fraser-Potter [4] 
and minimum-variance fixed-interval smoother solutions [8] - [10]. As before, the approach 

                                                                 

“Life has got a habit of not standing hitched. You got to ride it like you find it. You got to change with 
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to milk a dead cow.” Woodrow Wilson Guthrie 
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here is to accompany the developments, where appropriate, with proofs about performance 
being attained. Smoothing is not a panacea for all ills. If the measurement noise is negligible 
then smoothing (and filtering) may be superfluous. Conversely, if measurement noise 
obliterates the signals then data recovery may not be possible. Therefore, estimator 
performance is often discussed in terms of the prevailing signal-to-noise ratio. 
 

6.2 Prerequisites 
 

6.2.1 Time-varying Adjoint Systems 
Since fixed-interval smoothers employ backward processes, it is pertinent to introduce the 
adjoint of a time-varying continuous-time system. Let : p  → q  denote a linear time-
varying system  

( ) ( ) ( ) ( ) ( )x t A t x t B t w t  , 

( ) ( ) ( ) ( ) ( )y t C t x t D t w t  , 

(1) 

(2) 

operating on the interval [0, T]. Let w denote the set of w(t) over all time t, that is, w = {w(t), t 
 [0, T]}. Similarly, let y =  w  denote {y(t), t  [0, T]}. The adjoint of  , denoted by 

: H q  →  p , is the unique linear system satisfying 

<y,  w> =< H y, w> (3)  

for all y  q  and w   p . 

Lemma 1: The adjoint  H  of the system   described by (1) – (2), with x(t0) = 0, having the 
realisation 

( ) ( ) ( ) ( ) ( )T Tt A t t C t u t    , 

( ) ( ) ( ) ( ) ( )T Tz t B t t D t u t  , 

(4) 

(5) 

with ( ) 0T  , satisfies (3). 

The proof follows mutatis mutandis from that of Lemma 1 of Chapter 3 and is set out in [11]. 
The original system (1) – (2) needs to be integrated forwards in time, whereas the adjoint 
system (4) – (5) needs to be integrated backwards in time. Some important properties of 
backward systems are discussed in the next section. The simplification D(t) = 0 is assumed 
below unless stated otherwise. 
 

6.2.2 Backwards Differential Equations 
The adjoint state evolution (4) is rewritten as 

( ) ( ) ( ) ( ) ( )T Tt A t t C t u t    . (6)  

                                                                 

“The simple faith in progress is not a conviction belonging to strength, but one belonging to 
acquiescence and hence to weakness.” Norbert Wiener 

  

The negative sign of the derivative within (6) indicates that this differential equation 
proceeds backwards in time. The corresponding state transition matrix is defined below. 

Lemma 2: The differential equation (6) has the solution 

0
0 0( ) ( , ) ( ) ( , ) ( ) ( )

tH H T

t
t t t t s t C s u s ds     , (7) 

where the adjoint state transition matrix, 0( , )H t t , satisfies 

0
0 0

( , )( , ) ( ) ( , )
H

H T Hd t tt t A t t t
dt


     , (8) 

with boundary condition 

( , )H t t  = I. (9) 

Proof: Following the proof of Lemma 1 of Chapter 3, by differentiating (7) and substituting (4) – (5), 
it is easily verified that (7) is a solution of (6).                                                                                      �  

The Lyapunov equation corresponding to (6) is described next because it is required in the 
development of backwards Riccati equations. 

Lemma 3: In respect of the backwards differential equation (6), assume that u(t) is a zero-mean white 
process with E{u(t)uT(τ)} = U(t)δ(t – τ) that is uncorrelated with 0( )t , namely, 0{ ( ) ( )}TE u t t  = 0. 

Then the covariances P(t, τ) = { ( ) ( )}TE t t   and ( , )P t   = { ( ) ( )}TdE t t
dt

   satisfy the Lyapunov 

differential equation 

( , ) ( ) ( , ) ( , ) ( ) ( ) ( ) ( )T TP t A t P t P t A t C t U t C t      .                (10)  

Proof: The backwards Lyapunov differential equation (10) can be obtained by using (6) and (7) 

within { ( ) ( )}TdE t t
dt

   = { ( ) ( )TE t t   + ( ) ( )}T k    (see the proof of Lemma 2 in Chapter 3).         � 

 

6.2.3 Comparison of Riccati Equations 
The following Riccati Equation comparison theorem is required subsequently to compare 
the performance of filters and smoothers. 

Theorem 1 (Riccati Equation Comparison Theorem) [12], [8]: Let P1(t) ≥ 0 and P2(t) ≥ 0 denote 
solutions of the Riccati differential equations 

1 1 1 1 1 1 1 1 1 1 1( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )T T TP t A t P t P t A t P t S t P t B t Q t B t B t Q t B t      (11)  

and 
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Lemma 2: The differential equation (6) has the solution 

0
0 0( ) ( , ) ( ) ( , ) ( ) ( )

tH H T

t
t t t t s t C s u s ds     , (7) 

where the adjoint state transition matrix, 0( , )H t t , satisfies 

0
0 0

( , )( , ) ( ) ( , )
H

H T Hd t tt t A t t t
dt


     , (8) 

with boundary condition 

( , )H t t  = I. (9) 

Proof: Following the proof of Lemma 1 of Chapter 3, by differentiating (7) and substituting (4) – (5), 
it is easily verified that (7) is a solution of (6).                                                                                      �  

The Lyapunov equation corresponding to (6) is described next because it is required in the 
development of backwards Riccati equations. 

Lemma 3: In respect of the backwards differential equation (6), assume that u(t) is a zero-mean white 
process with E{u(t)uT(τ)} = U(t)δ(t – τ) that is uncorrelated with 0( )t , namely, 0{ ( ) ( )}TE u t t  = 0. 

Then the covariances P(t, τ) = { ( ) ( )}TE t t   and ( , )P t   = { ( ) ( )}TdE t t
dt

   satisfy the Lyapunov 

differential equation 

( , ) ( ) ( , ) ( , ) ( ) ( ) ( ) ( )T TP t A t P t P t A t C t U t C t      .                (10)  

Proof: The backwards Lyapunov differential equation (10) can be obtained by using (6) and (7) 

within { ( ) ( )}TdE t t
dt

   = { ( ) ( )TE t t   + ( ) ( )}T k    (see the proof of Lemma 2 in Chapter 3).         � 

 

6.2.3 Comparison of Riccati Equations 
The following Riccati Equation comparison theorem is required subsequently to compare 
the performance of filters and smoothers. 

Theorem 1 (Riccati Equation Comparison Theorem) [12], [8]: Let P1(t) ≥ 0 and P2(t) ≥ 0 denote 
solutions of the Riccati differential equations 
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and 
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here is to accompany the developments, where appropriate, with proofs about performance 
being attained. Smoothing is not a panacea for all ills. If the measurement noise is negligible 
then smoothing (and filtering) may be superfluous. Conversely, if measurement noise 
obliterates the signals then data recovery may not be possible. Therefore, estimator 
performance is often discussed in terms of the prevailing signal-to-noise ratio. 
 

6.2 Prerequisites 
 

6.2.1 Time-varying Adjoint Systems 
Since fixed-interval smoothers employ backward processes, it is pertinent to introduce the 
adjoint of a time-varying continuous-time system. Let : p  → q  denote a linear time-
varying system  
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(1) 

(2) 

operating on the interval [0, T]. Let w denote the set of w(t) over all time t, that is, w = {w(t), t 
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The proof follows mutatis mutandis from that of Lemma 1 of Chapter 3 and is set out in [11]. 
The original system (1) – (2) needs to be integrated forwards in time, whereas the adjoint 
system (4) – (5) needs to be integrated backwards in time. Some important properties of 
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below unless stated otherwise. 
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with S1(t) = 1
1 1 1( ) ( ) ( )TC t R t C t , S2(t) = 1

2 2 2( ) ( ) ( )TC t R t C t , where A1(t), B1(t), C1(t), Q1(t) ≥ 0, R1(t) ≥ 
0, A2(t), B2(t), C2(t), Q2(t) ≥ 0 and R2(t) ≥ 0 are of appropriate dimensions. If 

(i) P1(t0) ≥ P2(t0) for a t0 ≥ 0 and 

(ii) 1 1

1 1

( ) ( )
( ) ( )T

Q t A t
A t S t
 
  

 ≥ 2 2

2 2

( ) ( )
( ) ( )T

Q t A t
A t S t
 
  

 for all t ≥ t0. 

Then  

P1(t) ≥ P2(t) (13) 

for all t ≥ t0. 

Proof: Condition (i) of the theorem is the initial step of an induction argument. For the induction 
step, denote 3( )P t  = 1( )P t  − 2 ( )P t , P3(t) = P1(t) − P2(t) and ( )A t    1 ( )

TA t  + 1 2( ) ( )S t P t  − 

1 30.5 ( ) ( )S t P t . Then 

         1 1 2 2
3 3 3 2

1 1 2 2 2

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
T
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Q t A t Q t A t I
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A t S t A t S t P t
      

                   
  

which together with condition (ii) yields  

3 3 3( ) ( ) ( ) ( ) ( )TP t A t P t P t A t  . (14)  

Lemma  5 of Chapter 3 and (14) imply 3( )P t  ≥ 0 and the claim (13) follows.                                       � 
 

6.2.4 The Maximum-Likelihood Method 
Rauch, Tung and Streibel famously derived their fixed-interval smoother [3] using a 
maximum-likelihood technique which is outlined as follows. Let x(t) ~ ( ,  Rxx) denote a 
continuous random variable having a Gaussian (or normal) distribution within mean E{x(t)} 
= μ and covariance E{(x(t) – μ)(x(t) – μ)T} = Rxx. The continuous-time Gaussian probability 
density function of x(t)  n  is defined by 

 1
1/ 2/ 2

1( ( )) exp 0.5( ( ) ) ( ( ) )
(2 )

T
xxn

xx

p x t x t R x t
R

 


    , (15)  

in which |Rxx| denotes the determinant of Rxx.  The probability that the continuous random 
variable x(t) with a given probability density function p(x(t)) lies within an interval [a, b] is 
given by the likelihood function (which is also known as the cumulative distribution 
function) 
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( ( ) ) ( ( ))
b

a
P a x t b p x t dx    . (16)  

The Gaussian likelihood function for x(t) is calculated from (15) and (16) as  

 1
1/ 2/ 2

1( ( )) exp 0.5( ( ) ) ( ( ) )
(2 )

T
xxn

xx

f x t x t R x t dx
R

 


 


    . (17)  

It is often more convenient to work with the log-probability density function 
1/ 2/ 2 1log ( ( )) log (2 ) 0.5( ( ) ) ( )n T

xx xxp x t R x t R x dx        (18)  

and the log-likelihood function 

1/ 2/ 2 1log ( ( )) log (2 ) 0.5 ( ( ) ) ( ) .n T
xx xxf x t R x t R x dx  

 


      (19)  

Suppose that a given record of x(t) is assumed to be belong to a Gaussian distribution that is 
a function of an unknown quantity θ. A statistical approach for estimating the unknown θ is 
the method of maximum likelihood. This typically involves finding an estimate ̂  that 
either maximises the log-probability density function 

ˆ arg max log ( | ( ))p x t


   (20)  

or maximises the log-likelihood function 

ˆ arg max log ( | ( ))f x t


  . (21)  

So-called maximum likelihood estimates can be found by setting either log ( | ( ))p x t





 or 

log ( | ( ))f x t





 to zero and solving for the unknown θ. Continuous-time maximum 

likelihood estimation is illustrated by the two examples that follow. 

Example 1. Consider the first-order autoregressive system 

0( ) ( ) ( )x t a x t w t   , (22)  

where ( )x t  = ( )dx t
dt

, w(t) is a zero-mean Gaussian process and a0 is unknown. It follows 

from (22) that ( )x t   ~ 0( ( ),a x t  2 )w , namely,  

 2 2
0/ 2 0

1( ( )) exp 0.5( ( ) ( ))
(2 )

T

wn
w

f x t x t a x t dt
 

    . (23)  

                                                                 

“Faced with the choice between changing one’s mind and proving that there is no need to do so, almost 
everyone gets busy on the proof.” John Kenneth Galbraith 



Smoothing, Filtering and Prediction:
Estimating the Past, Present and Future122

  

2 2 2 2 2 2 2 2 2 2 2( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )T T TP t A t P t P t A t P t S t P t B t Q t B t B t Q t B t      (12)  

with S1(t) = 1
1 1 1( ) ( ) ( )TC t R t C t , S2(t) = 1

2 2 2( ) ( ) ( )TC t R t C t , where A1(t), B1(t), C1(t), Q1(t) ≥ 0, R1(t) ≥ 
0, A2(t), B2(t), C2(t), Q2(t) ≥ 0 and R2(t) ≥ 0 are of appropriate dimensions. If 

(i) P1(t0) ≥ P2(t0) for a t0 ≥ 0 and 

(ii) 1 1

1 1

( ) ( )
( ) ( )T

Q t A t
A t S t
 
  

 ≥ 2 2

2 2

( ) ( )
( ) ( )T

Q t A t
A t S t
 
  

 for all t ≥ t0. 

Then  

P1(t) ≥ P2(t) (13) 

for all t ≥ t0. 

Proof: Condition (i) of the theorem is the initial step of an induction argument. For the induction 
step, denote 3( )P t  = 1( )P t  − 2 ( )P t , P3(t) = P1(t) − P2(t) and ( )A t    1 ( )

TA t  + 1 2( ) ( )S t P t  − 

1 30.5 ( ) ( )S t P t . Then 

         1 1 2 2
3 3 3 2

1 1 2 2 2

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
T

t t

Q t A t Q t A t I
P t A t P t P t A t I P t

A t S t A t S t P t
      

                   
  

which together with condition (ii) yields  

3 3 3( ) ( ) ( ) ( ) ( )TP t A t P t P t A t  . (14)  

Lemma  5 of Chapter 3 and (14) imply 3( )P t  ≥ 0 and the claim (13) follows.                                       � 
 

6.2.4 The Maximum-Likelihood Method 
Rauch, Tung and Streibel famously derived their fixed-interval smoother [3] using a 
maximum-likelihood technique which is outlined as follows. Let x(t) ~ ( ,  Rxx) denote a 
continuous random variable having a Gaussian (or normal) distribution within mean E{x(t)} 
= μ and covariance E{(x(t) – μ)(x(t) – μ)T} = Rxx. The continuous-time Gaussian probability 
density function of x(t)  n  is defined by 

 1
1/ 2/ 2

1( ( )) exp 0.5( ( ) ) ( ( ) )
(2 )

T
xxn

xx

p x t x t R x t
R

 


    , (15)  

in which |Rxx| denotes the determinant of Rxx.  The probability that the continuous random 
variable x(t) with a given probability density function p(x(t)) lies within an interval [a, b] is 
given by the likelihood function (which is also known as the cumulative distribution 
function) 

                                                                 

“The price of doing the same old thing is far higher than the price of change.” William Jefferson (Bill) 
Clinton 

  

( ( ) ) ( ( ))
b

a
P a x t b p x t dx    . (16)  

The Gaussian likelihood function for x(t) is calculated from (15) and (16) as  

 1
1/ 2/ 2

1( ( )) exp 0.5( ( ) ) ( ( ) )
(2 )

T
xxn

xx

f x t x t R x t dx
R

 


 


    . (17)  

It is often more convenient to work with the log-probability density function 
1/ 2/ 2 1log ( ( )) log (2 ) 0.5( ( ) ) ( )n T

xx xxp x t R x t R x dx        (18)  

and the log-likelihood function 

1/ 2/ 2 1log ( ( )) log (2 ) 0.5 ( ( ) ) ( ) .n T
xx xxf x t R x t R x dx  

 


      (19)  

Suppose that a given record of x(t) is assumed to be belong to a Gaussian distribution that is 
a function of an unknown quantity θ. A statistical approach for estimating the unknown θ is 
the method of maximum likelihood. This typically involves finding an estimate ̂  that 
either maximises the log-probability density function 

ˆ arg max log ( | ( ))p x t


   (20)  

or maximises the log-likelihood function 

ˆ arg max log ( | ( ))f x t


  . (21)  

So-called maximum likelihood estimates can be found by setting either log ( | ( ))p x t





 or 

log ( | ( ))f x t





 to zero and solving for the unknown θ. Continuous-time maximum 

likelihood estimation is illustrated by the two examples that follow. 

Example 1. Consider the first-order autoregressive system 

0( ) ( ) ( )x t a x t w t   , (22)  

where ( )x t  = ( )dx t
dt

, w(t) is a zero-mean Gaussian process and a0 is unknown. It follows 

from (22) that ( )x t   ~ 0( ( ),a x t  2 )w , namely,  

 2 2
0/ 2 0

1( ( )) exp 0.5( ( ) ( ))
(2 )

T

wn
w

f x t x t a x t dt
 

    . (23)  

                                                                 

“Faced with the choice between changing one’s mind and proving that there is no need to do so, almost 
everyone gets busy on the proof.” John Kenneth Galbraith 

Continuous-Time Smoothing 123
  

2 2 2 2 2 2 2 2 2 2 2( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )T T TP t A t P t P t A t P t S t P t B t Q t B t B t Q t B t      (12)  

with S1(t) = 1
1 1 1( ) ( ) ( )TC t R t C t , S2(t) = 1

2 2 2( ) ( ) ( )TC t R t C t , where A1(t), B1(t), C1(t), Q1(t) ≥ 0, R1(t) ≥ 
0, A2(t), B2(t), C2(t), Q2(t) ≥ 0 and R2(t) ≥ 0 are of appropriate dimensions. If 

(i) P1(t0) ≥ P2(t0) for a t0 ≥ 0 and 

(ii) 1 1

1 1

( ) ( )
( ) ( )T

Q t A t
A t S t
 
  

 ≥ 2 2

2 2

( ) ( )
( ) ( )T

Q t A t
A t S t
 
  

 for all t ≥ t0. 

Then  

P1(t) ≥ P2(t) (13) 

for all t ≥ t0. 

Proof: Condition (i) of the theorem is the initial step of an induction argument. For the induction 
step, denote 3( )P t  = 1( )P t  − 2 ( )P t , P3(t) = P1(t) − P2(t) and ( )A t    1 ( )

TA t  + 1 2( ) ( )S t P t  − 

1 30.5 ( ) ( )S t P t . Then 

         1 1 2 2
3 3 3 2

1 1 2 2 2

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
T

t t

Q t A t Q t A t I
P t A t P t P t A t I P t

A t S t A t S t P t
      

                   
  

which together with condition (ii) yields  

3 3 3( ) ( ) ( ) ( ) ( )TP t A t P t P t A t  . (14)  

Lemma  5 of Chapter 3 and (14) imply 3( )P t  ≥ 0 and the claim (13) follows.                                       � 
 

6.2.4 The Maximum-Likelihood Method 
Rauch, Tung and Streibel famously derived their fixed-interval smoother [3] using a 
maximum-likelihood technique which is outlined as follows. Let x(t) ~ ( ,  Rxx) denote a 
continuous random variable having a Gaussian (or normal) distribution within mean E{x(t)} 
= μ and covariance E{(x(t) – μ)(x(t) – μ)T} = Rxx. The continuous-time Gaussian probability 
density function of x(t)  n  is defined by 

 1
1/ 2/ 2

1( ( )) exp 0.5( ( ) ) ( ( ) )
(2 )

T
xxn

xx

p x t x t R x t
R

 


    , (15)  

in which |Rxx| denotes the determinant of Rxx.  The probability that the continuous random 
variable x(t) with a given probability density function p(x(t)) lies within an interval [a, b] is 
given by the likelihood function (which is also known as the cumulative distribution 
function) 

                                                                 

“The price of doing the same old thing is far higher than the price of change.” William Jefferson (Bill) 
Clinton 

  

( ( ) ) ( ( ))
b

a
P a x t b p x t dx    . (16)  

The Gaussian likelihood function for x(t) is calculated from (15) and (16) as  

 1
1/ 2/ 2

1( ( )) exp 0.5( ( ) ) ( ( ) )
(2 )

T
xxn

xx

f x t x t R x t dx
R

 


 


    . (17)  

It is often more convenient to work with the log-probability density function 
1/ 2/ 2 1log ( ( )) log (2 ) 0.5( ( ) ) ( )n T

xx xxp x t R x t R x dx        (18)  

and the log-likelihood function 

1/ 2/ 2 1log ( ( )) log (2 ) 0.5 ( ( ) ) ( ) .n T
xx xxf x t R x t R x dx  

 


      (19)  

Suppose that a given record of x(t) is assumed to be belong to a Gaussian distribution that is 
a function of an unknown quantity θ. A statistical approach for estimating the unknown θ is 
the method of maximum likelihood. This typically involves finding an estimate ̂  that 
either maximises the log-probability density function 

ˆ arg max log ( | ( ))p x t


   (20)  

or maximises the log-likelihood function 

ˆ arg max log ( | ( ))f x t


  . (21)  

So-called maximum likelihood estimates can be found by setting either log ( | ( ))p x t





 or 

log ( | ( ))f x t





 to zero and solving for the unknown θ. Continuous-time maximum 

likelihood estimation is illustrated by the two examples that follow. 

Example 1. Consider the first-order autoregressive system 

0( ) ( ) ( )x t a x t w t   , (22)  

where ( )x t  = ( )dx t
dt

, w(t) is a zero-mean Gaussian process and a0 is unknown. It follows 

from (22) that ( )x t   ~ 0( ( ),a x t  2 )w , namely,  

 2 2
0/ 2 0

1( ( )) exp 0.5( ( ) ( ))
(2 )

T

wn
w

f x t x t a x t dt
 

    . (23)  

                                                                 

“Faced with the choice between changing one’s mind and proving that there is no need to do so, almost 
everyone gets busy on the proof.” John Kenneth Galbraith 



Smoothing, Filtering and Prediction:
Estimating the Past, Present and Future124

  

Taking the logarithm of both sides gives 

/ 2 2 2
00

log ( ( )) log (2 ) 0.5 ( ( ) ( ))
Tn

w wf x t x t a x t dt        . (24)  

Setting 
0

log ( ( ))f x t
a





 = 0 results in 00

( ( ) ( )) ( )
T

x t a x t x t dt   = 0 and hence 

  1
2

0 0 0
ˆ ( ( ) ( ) ( )

T T
a x t dt x t x t dt



     . (25)  

Example 2. Consider the third-order autoregressive system 

2 1 0( ) ( ) ( ) ( ) ( )x t a x t a x t a x t w t       (26)  

where ( )x t  = 
3

3

( )d x t
dt

 and ( )x t  = 
2

2

( )d x t
dt

. The above system can be written in a controllable 

canonical form as 

1 2 1 0 1

2 2

3 3

( ) ( ) ( )
( ) 1 0 0 ( ) 0
( ) 0 1 0 ( ) 0

x t a a a x t w t
x t x t
x t x t

         
               
              





. (27)  

Assuming 1( )x t  ~ 2 1 1 2 0 3( ( ) ( ) ( ),a x t a x t a x t    2 )w , taking logarithms, setting to zero the 
partial derivatives with respect to the unknown coefficients, and rearranging yields 

1
2
3 2 3 1 3 1 30 0 0 0

0
2

1 2 3 2 2 1 1 20 0 0 0

2 2
1 3 2 1 1 1 10 0 0 0

ˆ
ˆ
ˆ

T T T T

T T T T

T T T T

x dt x x dt x x dt x x dt
a
a x x dt x dt x x dt x x dt
a

x x dt x x dt x dt x x dt


   
    
           
         
   

   
   
   







, (28)  

in which state time dependence is omitted for brevity. 
 

6.3 Fixed-Point Smoothing 
 

6.3.1 Problem Definition 
In continuous-time fixed-point smoothing, it is desired to calculate state estimates at one 
particular time of interest, τ, 0 ≤ τ ≤ t, from measurements z(t) over the interval t  [0, T]. For 
example, suppose that a continuous measurement stream of a tennis ball’s trajectory is 
available and it is desired to determine whether it bounced within the court boundary. In 
this case, a fixed-point smoother could be employed to estimate the ball position at the time 
of the bounce from the past and future measurements.  

                                                                 

“When a distinguished but elderly scientist states that something is possible, he is almost certainly 
right. When he states that something is impossible, he is probably wrong.” Arthur Charles Clarke 

  

A solution for the continuous-time fixed-point smoothing problem can be developed from 
first principles, for example, see [5] -  [6]. However, it is recognised in [13] that a simpler 
solution derivation follows by transforming the smoothing problem into a filtering problem 
that possesses an augmented state. Following the nomenclature of [14], consider an 

augmented state vector having two components, namely, x(a)(t) = 
( )
( )

x t
t

 
 
 

. The first 

component, x(t)  n , is the state of the system ( )x t  = A(t)x(t) + B(t)w(t) and y(t) = C(t)x(t). 
The second component, ( ) t   n , equals x(t) at time t = τ, that is, ( ) t  = x(τ). The 
corresponding signal model may be written as  

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )a a a ax t A t x t B t w t   

( ) ( )( ) ( ) ( ) ( )a az t C t x t v t  , 

(29) 

(30) 

where A(a) = 
( ) 0
0 ( )t

A t
A t

 
 
 

, B(a)(t) = 
( )
( )t

B t
B t

 
 
 

 and C(a)(t) = [C(t)  0], in which 

1 if
0 ift

t
t







  
 is the Kronecker delta function. Note that the simplifications A(a) = 

( ) 0
0 0

A t 
 
 

 and B(a)(t) = 
( )
0

B t 
 
 

 arise for t > τ. The smoothing objective is to produce an 

estimate ˆ( )t  of ( ) t  from the measurements z(t) over t  [0, T].  
 

6.3.2 Solution Derivation 
Employing the Kalman-Bucy filter recursions for the system (29) – (30) results in  

 ( ) ( ) ( ) ( ) ( )ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( ) ( | )a a a a ax t A t x t K t z t C t x t t    
                              ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )a a a a aA t K t C t x t K t z t   , 

(31)  

where 
( ) ( ) ( ) 1( ) ( )( ) ( ) ( )a a a TK t P t C t R t , (32)  

in which P(a)(t)   2 2 n n  is to be found. Consider the partitioning ( ) ( )aK t  = 
( )
( )

K t
K t
 
 
 

, then 

for t  > τ, (31) may be written as 

ˆ( | ) ˆ( ) ( ) ( ) 0 ( )( | )
( )ˆ ( ) ( ) 0 ( )( )( )

x t t A t K t C t K tx t t
z t

K t C t K ttt 

       
              

. (33)  

                                                                 

“Don’t be afraid to take a big step if one is indicated. You can’t cross a chasm in two small jumps.” 
David Lloyd George 
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Taking the logarithm of both sides gives 

/ 2 2 2
00

log ( ( )) log (2 ) 0.5 ( ( ) ( ))
Tn

w wf x t x t a x t dt        . (24)  

Setting 
0

log ( ( ))f x t
a





 = 0 results in 00

( ( ) ( )) ( )
T

x t a x t x t dt   = 0 and hence 

  1
2

0 0 0
ˆ ( ( ) ( ) ( )

T T
a x t dt x t x t dt



     . (25)  

Example 2. Consider the third-order autoregressive system 

2 1 0( ) ( ) ( ) ( ) ( )x t a x t a x t a x t w t       (26)  

where ( )x t  = 
3

3

( )d x t
dt

 and ( )x t  = 
2

2

( )d x t
dt

. The above system can be written in a controllable 

canonical form as 

1 2 1 0 1

2 2

3 3

( ) ( ) ( )
( ) 1 0 0 ( ) 0
( ) 0 1 0 ( ) 0

x t a a a x t w t
x t x t
x t x t

         
               
              





. (27)  

Assuming 1( )x t  ~ 2 1 1 2 0 3( ( ) ( ) ( ),a x t a x t a x t    2 )w , taking logarithms, setting to zero the 
partial derivatives with respect to the unknown coefficients, and rearranging yields 

1
2
3 2 3 1 3 1 30 0 0 0

0
2

1 2 3 2 2 1 1 20 0 0 0

2 2
1 3 2 1 1 1 10 0 0 0

ˆ
ˆ
ˆ

T T T T

T T T T

T T T T

x dt x x dt x x dt x x dt
a
a x x dt x dt x x dt x x dt
a

x x dt x x dt x dt x x dt


   
    
           
         
   

   
   
   







, (28)  

in which state time dependence is omitted for brevity. 
 

6.3 Fixed-Point Smoothing 
 

6.3.1 Problem Definition 
In continuous-time fixed-point smoothing, it is desired to calculate state estimates at one 
particular time of interest, τ, 0 ≤ τ ≤ t, from measurements z(t) over the interval t  [0, T]. For 
example, suppose that a continuous measurement stream of a tennis ball’s trajectory is 
available and it is desired to determine whether it bounced within the court boundary. In 
this case, a fixed-point smoother could be employed to estimate the ball position at the time 
of the bounce from the past and future measurements.  

                                                                 

“When a distinguished but elderly scientist states that something is possible, he is almost certainly 
right. When he states that something is impossible, he is probably wrong.” Arthur Charles Clarke 

  

A solution for the continuous-time fixed-point smoothing problem can be developed from 
first principles, for example, see [5] -  [6]. However, it is recognised in [13] that a simpler 
solution derivation follows by transforming the smoothing problem into a filtering problem 
that possesses an augmented state. Following the nomenclature of [14], consider an 

augmented state vector having two components, namely, x(a)(t) = 
( )
( )

x t
t

 
 
 

. The first 

component, x(t)  n , is the state of the system ( )x t  = A(t)x(t) + B(t)w(t) and y(t) = C(t)x(t). 
The second component, ( ) t   n , equals x(t) at time t = τ, that is, ( ) t  = x(τ). The 
corresponding signal model may be written as  

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )a a a ax t A t x t B t w t   

( ) ( )( ) ( ) ( ) ( )a az t C t x t v t  , 

(29) 

(30) 

where A(a) = 
( ) 0
0 ( )t

A t
A t

 
 
 

, B(a)(t) = 
( )
( )t

B t
B t

 
 
 

 and C(a)(t) = [C(t)  0], in which 

1 if
0 ift

t
t







  
 is the Kronecker delta function. Note that the simplifications A(a) = 

( ) 0
0 0

A t 
 
 

 and B(a)(t) = 
( )
0

B t 
 
 

 arise for t > τ. The smoothing objective is to produce an 

estimate ˆ( )t  of ( ) t  from the measurements z(t) over t  [0, T].  
 

6.3.2 Solution Derivation 
Employing the Kalman-Bucy filter recursions for the system (29) – (30) results in  

 ( ) ( ) ( ) ( ) ( )ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( ) ( | )a a a a ax t A t x t K t z t C t x t t    
                              ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )a a a a aA t K t C t x t K t z t   , 

(31)  

where 
( ) ( ) ( ) 1( ) ( )( ) ( ) ( )a a a TK t P t C t R t , (32)  

in which P(a)(t)   2 2 n n  is to be found. Consider the partitioning ( ) ( )aK t  = 
( )
( )

K t
K t
 
 
 

, then 

for t  > τ, (31) may be written as 

ˆ( | ) ˆ( ) ( ) ( ) 0 ( )( | )
( )ˆ ( ) ( ) 0 ( )( )( )

x t t A t K t C t K tx t t
z t

K t C t K ttt 

       
              

. (33)  

                                                                 

“Don’t be afraid to take a big step if one is indicated. You can’t cross a chasm in two small jumps.” 
David Lloyd George 
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Taking the logarithm of both sides gives 
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w wf x t x t a x t dt        . (24)  

Setting 
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
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Example 2. Consider the third-order autoregressive system 

2 1 0( ) ( ) ( ) ( ) ( )x t a x t a x t a x t w t       (26)  

where ( )x t  = 
3

3

( )d x t
dt

 and ( )x t  = 
2

2

( )d x t
dt

. The above system can be written in a controllable 

canonical form as 

1 2 1 0 1

2 2

3 3

( ) ( ) ( )
( ) 1 0 0 ( ) 0
( ) 0 1 0 ( ) 0

x t a a a x t w t
x t x t
x t x t
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. (27)  

Assuming 1( )x t  ~ 2 1 1 2 0 3( ( ) ( ) ( ),a x t a x t a x t    2 )w , taking logarithms, setting to zero the 
partial derivatives with respect to the unknown coefficients, and rearranging yields 

1
2
3 2 3 1 3 1 30 0 0 0

0
2

1 2 3 2 2 1 1 20 0 0 0

2 2
1 3 2 1 1 1 10 0 0 0

ˆ
ˆ
ˆ

T T T T

T T T T

T T T T

x dt x x dt x x dt x x dt
a
a x x dt x dt x x dt x x dt
a

x x dt x x dt x dt x x dt


   
    
           
         
   

   
   
   






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in which state time dependence is omitted for brevity. 
 

6.3 Fixed-Point Smoothing 
 

6.3.1 Problem Definition 
In continuous-time fixed-point smoothing, it is desired to calculate state estimates at one 
particular time of interest, τ, 0 ≤ τ ≤ t, from measurements z(t) over the interval t  [0, T]. For 
example, suppose that a continuous measurement stream of a tennis ball’s trajectory is 
available and it is desired to determine whether it bounced within the court boundary. In 
this case, a fixed-point smoother could be employed to estimate the ball position at the time 
of the bounce from the past and future measurements.  

                                                                 

“When a distinguished but elderly scientist states that something is possible, he is almost certainly 
right. When he states that something is impossible, he is probably wrong.” Arthur Charles Clarke 

  

A solution for the continuous-time fixed-point smoothing problem can be developed from 
first principles, for example, see [5] -  [6]. However, it is recognised in [13] that a simpler 
solution derivation follows by transforming the smoothing problem into a filtering problem 
that possesses an augmented state. Following the nomenclature of [14], consider an 

augmented state vector having two components, namely, x(a)(t) = 
( )
( )

x t
t
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. The first 

component, x(t)  n , is the state of the system ( )x t  = A(t)x(t) + B(t)w(t) and y(t) = C(t)x(t). 
The second component, ( ) t   n , equals x(t) at time t = τ, that is, ( ) t  = x(τ). The 
corresponding signal model may be written as  

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )a a a ax t A t x t B t w t   
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 arise for t > τ. The smoothing objective is to produce an 

estimate ˆ( )t  of ( ) t  from the measurements z(t) over t  [0, T].  
 

6.3.2 Solution Derivation 
Employing the Kalman-Bucy filter recursions for the system (29) – (30) results in  
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(31)  

where 
( ) ( ) ( ) 1( ) ( )( ) ( ) ( )a a a TK t P t C t R t , (32)  

in which P(a)(t)   2 2 n n  is to be found. Consider the partitioning ( ) ( )aK t  = 
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, then 

for t  > τ, (31) may be written as 
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“Don’t be afraid to take a big step if one is indicated. You can’t cross a chasm in two small jumps.” 
David Lloyd George 
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Define the augmented error state as ( ) ( )ax t  = ( ) ( )ax t  − ( )ˆ ( )ax t , that is,  

ˆ( | )( | ) ( )
ˆ( )( ) ( )

x t tx t t x t
t t  

    
      

       


 . (34)  

 Differentiating (34) and using z(t) = ( ) ( | )C t x t t + v(t) gives 

                     ˆ( | ) ( | )( | )
0 ˆ( ) ( )

x t t x t tx t t

t t 

                  

 
 

 

                              ( | )( ) ( ) ( ) 0 ( ) ( ) ( )
( ) ( ) 0 0 ( ) ( )( )

x t tA t K t C t B t K t w t
K t C t K t v tt

       
               


 . 

(35)  

Denote P(a)(t) = ( ) ( )
( ) ( )

TP t t
t t

 
 
  

, where P(t) = E{[x(t) − ˆ( | )][( ( )x t t x t − ˆ( | )] }Tx t t , ( )t  = {[ ( )E t  

− ˆ( )][ ( )t t  − ˆ( )] }Tt  and ( )t  = {[ ( )E t  − ˆ( )][ ( )t x t − ˆ( | )] }Tx t t . Applying Lemma 2 of 
Chapter 3 to (35) yields the Lyapunov differential equation 

( ) ( ) ( ) 0( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) 0 ( ) ( ) ( ) ( ) 0 0( ) ( )

T T T T T T T TA t K t C tP t t P t t P t t A t C t K t C t K t
K t C t t t t tt t

             
                        

 


 

                           ( ) ( ) ( ) 0 ( ) 0
0 ( ) 0 ( ) ( ) ( )

T

T T

B t K t Q t B t
K t R t K t K t

    
            

. 

Simplifying the above differential equation yields 

1( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )T T TP t A t P t P t A t P t C t R t C t P t B t Q t B t    , 

 ( ) ( ) ( ) ( ) ( )T T Tt t A t C t K t    , 

1( ) ( ) ( ) ( ) ( ) ( )T Tt t C t R t C t t    . 

(36) 

(37) 

(38) 

Equations(37) – (38) can be initialised with 

( ) ( )P   . (39)  

 Thus, the fixed-point smoother estimate is given by 

 1ˆ ˆ( ) ( ) ( ) ( ) ( ) ( ) ( | )Tt t C t R t z t C t x t t    , (40)  
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which is initialised with ˆ( )   = ˆ( )x  . Alternative derivations of (40) are presented in [5], [8], 
[15]. The smoother (40) and its associated error covariances (36) – (38) are also discussed in 
[16], [17]. 
 

6.3.3 Performance 
It can be seen that the right-hand-side of the smoother error covariance (38) is non-positive 
and therefore Ω(t) must be monotonically decreasing. That is, the smoothed estimates 
improve with time. However, since the right-hand-side of (36) varies inversely with R(t), the 
improvement reduces with decreasing signal-to-noise ratio. It is shown below the fixed-
point smoother improves on the performance of the minimum-variance filter. 

Lemma 4: In respect of the fixed-point smoother (40),  

( ) ( )P t t  . (41)  

Proof: The initialisation (39) accords with condition (i) of Theorem 1. Condition (ii) of the theorem is 
satisfied since 

1

1

( ) ( ) ( ) ( ) ( )0 0
( ) ( ) ( ) ( ) 0 0

T

T T

Q t A t C t R t C t
A t C t R t C t





   
      

 

and hence the claim (41) follows.                                                                                                            � 
 

6.4 Fixed-Lag Smoothing 
 

6.4.1 Problem Definition 
For continuous-time estimation problems, as usual, it assumed that the observations are 
modelled by ( )x t  = A(t)x(t) + B(t)w(t), z(t) = C(t)x(t) + v(t), with { ( ) ( )}TE w t w   = ( ) ( )Q t t   
and { ( ) ( )}TE v t v   = ( ) ( )R t t  . In fixed-lag smoothing, it is desired to calculate state 
estimates at a fixed time lag behind the current measurements. That is, smoothed state 
estimates, ˆ( | )x t t  , are desired at time t, given data at time t + τ, where τ is a prescribed 
lag. In particular, fixed-lag smoother estimates are sought which minimise E{[x(t) − 
ˆ( | )][ ( )x t t x t  − ˆ( | )] }Tx t t  . It is found in [18] that the smoother yields practically all the 

improvement over the minimum-variance filter when the smoothing lag equals several time 
constants associated with the minimum-variance filter for the problem. 
 

6.4.2 Solution Derivation 
Previously, augmented signal models together with the application of the standard Kalman 
filter recursions were used to obtain the smoother results. However, as noted in [19], it is 
difficult to derive the optimal continuous-time fixed-lag smoother in this way because an 
ideal delay operator cannot easily be included within an asymptotically stable state-space 
system. Consequently, an alternate derivation based on that in [6] is outlined in the 
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Define the augmented error state as ( ) ( )ax t  = ( ) ( )ax t  − ( )ˆ ( )ax t , that is,  

ˆ( | )( | ) ( )
ˆ( )( ) ( )

x t tx t t x t
t t  

    
      

       


 . (34)  

 Differentiating (34) and using z(t) = ( ) ( | )C t x t t + v(t) gives 

                     ˆ( | ) ( | )( | )
0 ˆ( ) ( )

x t t x t tx t t

t t 

                  

 
 

 

                              ( | )( ) ( ) ( ) 0 ( ) ( ) ( )
( ) ( ) 0 0 ( ) ( )( )

x t tA t K t C t B t K t w t
K t C t K t v tt

       
               


 . 

(35)  

Denote P(a)(t) = ( ) ( )
( ) ( )

TP t t
t t

 
 
  

, where P(t) = E{[x(t) − ˆ( | )][( ( )x t t x t − ˆ( | )] }Tx t t , ( )t  = {[ ( )E t  

− ˆ( )][ ( )t t  − ˆ( )] }Tt  and ( )t  = {[ ( )E t  − ˆ( )][ ( )t x t − ˆ( | )] }Tx t t . Applying Lemma 2 of 
Chapter 3 to (35) yields the Lyapunov differential equation 

( ) ( ) ( ) 0( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) 0 ( ) ( ) ( ) ( ) 0 0( ) ( )

T T T T T T T TA t K t C tP t t P t t P t t A t C t K t C t K t
K t C t t t t tt t

             
                        

 


 

                           ( ) ( ) ( ) 0 ( ) 0
0 ( ) 0 ( ) ( ) ( )

T

T T

B t K t Q t B t
K t R t K t K t

    
            

. 

Simplifying the above differential equation yields 

1( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )T T TP t A t P t P t A t P t C t R t C t P t B t Q t B t    , 

 ( ) ( ) ( ) ( ) ( )T T Tt t A t C t K t    , 

1( ) ( ) ( ) ( ) ( ) ( )T Tt t C t R t C t t    . 

(36) 

(37) 

(38) 

Equations(37) – (38) can be initialised with 

( ) ( )P   . (39)  

 Thus, the fixed-point smoother estimate is given by 

 1ˆ ˆ( ) ( ) ( ) ( ) ( ) ( ) ( | )Tt t C t R t z t C t x t t    , (40)  
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which is initialised with ˆ( )   = ˆ( )x  . Alternative derivations of (40) are presented in [5], [8], 
[15]. The smoother (40) and its associated error covariances (36) – (38) are also discussed in 
[16], [17]. 
 

6.3.3 Performance 
It can be seen that the right-hand-side of the smoother error covariance (38) is non-positive 
and therefore Ω(t) must be monotonically decreasing. That is, the smoothed estimates 
improve with time. However, since the right-hand-side of (36) varies inversely with R(t), the 
improvement reduces with decreasing signal-to-noise ratio. It is shown below the fixed-
point smoother improves on the performance of the minimum-variance filter. 

Lemma 4: In respect of the fixed-point smoother (40),  

( ) ( )P t t  . (41)  

Proof: The initialisation (39) accords with condition (i) of Theorem 1. Condition (ii) of the theorem is 
satisfied since 

1

1

( ) ( ) ( ) ( ) ( )0 0
( ) ( ) ( ) ( ) 0 0

T

T T

Q t A t C t R t C t
A t C t R t C t





   
      

 

and hence the claim (41) follows.                                                                                                            � 
 

6.4 Fixed-Lag Smoothing 
 

6.4.1 Problem Definition 
For continuous-time estimation problems, as usual, it assumed that the observations are 
modelled by ( )x t  = A(t)x(t) + B(t)w(t), z(t) = C(t)x(t) + v(t), with { ( ) ( )}TE w t w   = ( ) ( )Q t t   
and { ( ) ( )}TE v t v   = ( ) ( )R t t  . In fixed-lag smoothing, it is desired to calculate state 
estimates at a fixed time lag behind the current measurements. That is, smoothed state 
estimates, ˆ( | )x t t  , are desired at time t, given data at time t + τ, where τ is a prescribed 
lag. In particular, fixed-lag smoother estimates are sought which minimise E{[x(t) − 
ˆ( | )][ ( )x t t x t  − ˆ( | )] }Tx t t  . It is found in [18] that the smoother yields practically all the 

improvement over the minimum-variance filter when the smoothing lag equals several time 
constants associated with the minimum-variance filter for the problem. 
 

6.4.2 Solution Derivation 
Previously, augmented signal models together with the application of the standard Kalman 
filter recursions were used to obtain the smoother results. However, as noted in [19], it is 
difficult to derive the optimal continuous-time fixed-lag smoother in this way because an 
ideal delay operator cannot easily be included within an asymptotically stable state-space 
system. Consequently, an alternate derivation based on that in [6] is outlined in the 
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Define the augmented error state as ( ) ( )ax t  = ( ) ( )ax t  − ( )ˆ ( )ax t , that is,  

ˆ( | )( | ) ( )
ˆ( )( ) ( )

x t tx t t x t
t t  

    
      

       


 . (34)  

 Differentiating (34) and using z(t) = ( ) ( | )C t x t t + v(t) gives 

                     ˆ( | ) ( | )( | )
0 ˆ( ) ( )

x t t x t tx t t

t t 

                  

 
 

 

                              ( | )( ) ( ) ( ) 0 ( ) ( ) ( )
( ) ( ) 0 0 ( ) ( )( )

x t tA t K t C t B t K t w t
K t C t K t v tt

       
               


 . 

(35)  

Denote P(a)(t) = ( ) ( )
( ) ( )

TP t t
t t

 
 
  

, where P(t) = E{[x(t) − ˆ( | )][( ( )x t t x t − ˆ( | )] }Tx t t , ( )t  = {[ ( )E t  

− ˆ( )][ ( )t t  − ˆ( )] }Tt  and ( )t  = {[ ( )E t  − ˆ( )][ ( )t x t − ˆ( | )] }Tx t t . Applying Lemma 2 of 
Chapter 3 to (35) yields the Lyapunov differential equation 

( ) ( ) ( ) 0( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) 0 ( ) ( ) ( ) ( ) 0 0( ) ( )

T T T T T T T TA t K t C tP t t P t t P t t A t C t K t C t K t
K t C t t t t tt t

             
                        

 


 

                           ( ) ( ) ( ) 0 ( ) 0
0 ( ) 0 ( ) ( ) ( )

T

T T

B t K t Q t B t
K t R t K t K t

    
            

. 

Simplifying the above differential equation yields 

1( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )T T TP t A t P t P t A t P t C t R t C t P t B t Q t B t    , 

 ( ) ( ) ( ) ( ) ( )T T Tt t A t C t K t    , 

1( ) ( ) ( ) ( ) ( ) ( )T Tt t C t R t C t t    . 

(36) 

(37) 

(38) 

Equations(37) – (38) can be initialised with 

( ) ( )P   . (39)  

 Thus, the fixed-point smoother estimate is given by 

 1ˆ ˆ( ) ( ) ( ) ( ) ( ) ( ) ( | )Tt t C t R t z t C t x t t    , (40)  

                                                                 

“If you don’t like change, you’re going to like irrelevance even less.” General Eric Shinseki 

  

which is initialised with ˆ( )   = ˆ( )x  . Alternative derivations of (40) are presented in [5], [8], 
[15]. The smoother (40) and its associated error covariances (36) – (38) are also discussed in 
[16], [17]. 
 

6.3.3 Performance 
It can be seen that the right-hand-side of the smoother error covariance (38) is non-positive 
and therefore Ω(t) must be monotonically decreasing. That is, the smoothed estimates 
improve with time. However, since the right-hand-side of (36) varies inversely with R(t), the 
improvement reduces with decreasing signal-to-noise ratio. It is shown below the fixed-
point smoother improves on the performance of the minimum-variance filter. 

Lemma 4: In respect of the fixed-point smoother (40),  

( ) ( )P t t  . (41)  

Proof: The initialisation (39) accords with condition (i) of Theorem 1. Condition (ii) of the theorem is 
satisfied since 
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1

( ) ( ) ( ) ( ) ( )0 0
( ) ( ) ( ) ( ) 0 0

T

T T

Q t A t C t R t C t
A t C t R t C t





   
      

 

and hence the claim (41) follows.                                                                                                            � 
 

6.4 Fixed-Lag Smoothing 
 

6.4.1 Problem Definition 
For continuous-time estimation problems, as usual, it assumed that the observations are 
modelled by ( )x t  = A(t)x(t) + B(t)w(t), z(t) = C(t)x(t) + v(t), with { ( ) ( )}TE w t w   = ( ) ( )Q t t   
and { ( ) ( )}TE v t v   = ( ) ( )R t t  . In fixed-lag smoothing, it is desired to calculate state 
estimates at a fixed time lag behind the current measurements. That is, smoothed state 
estimates, ˆ( | )x t t  , are desired at time t, given data at time t + τ, where τ is a prescribed 
lag. In particular, fixed-lag smoother estimates are sought which minimise E{[x(t) − 
ˆ( | )][ ( )x t t x t  − ˆ( | )] }Tx t t  . It is found in [18] that the smoother yields practically all the 

improvement over the minimum-variance filter when the smoothing lag equals several time 
constants associated with the minimum-variance filter for the problem. 
 

6.4.2 Solution Derivation 
Previously, augmented signal models together with the application of the standard Kalman 
filter recursions were used to obtain the smoother results. However, as noted in [19], it is 
difficult to derive the optimal continuous-time fixed-lag smoother in this way because an 
ideal delay operator cannot easily be included within an asymptotically stable state-space 
system. Consequently, an alternate derivation based on that in [6] is outlined in the 
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following. Recall that the gain of the minimum-variance filter is calculated as K(t) = 
1( ) ( ) ( )TP t C t R t , where P(t) is the solution of the Riccati equation (3.36). Let ( , )t  denote 

the transition matrix of the filter error system ( | )x t t  = (A(t) – ( ) ( )) ( | )K t C t x t t  + ( ) ( )B t w t − 
( ) ( )K t v t , that is,  

 ( , ) ( ) ( ) ( ) ( , )t s A K C t s       (42)  

and ( , )s s  = I. It is assumed in [6], [17], [18], [20] that a smoothed estimate ˆ( | )x t t   of x(t) 
is obtained as 

ˆ ˆ( | ) ( ) ( ) ( , )x t t x t P t t     , (43)  

where 

 1 ˆ( , ) ( , ) ( ) ( ) ( ) ( ) ( | )
t T T

t
t t t C R z C x d


         

     . (44)  

The formula (43) appears in the development of fixed interval smoothers [21] - [22], in which 
case ξ(t) is often called an adjoint variable. From the use of Leibniz’ rule, that is, 

( ) ( )

( ) ( )

( ) ( )( , ) ( , ( )) ( , ( )) ( , )
b t b t

a t a t

d db t da tf t s ds f t b t f t a t f t s ds
dt dt dt t


  

  , 

it can be found that 

 1 ˆ( , ) ( ) ( ) ( ) ( ) ( ) ( ) | )T Tt t t C t R t z t C t x t t                    

                      1 ˆ( ) ( ) ( ) ( ) ( | ) ( ) ( ) ( ) ( , )TTC t R t z t C t x t t A t K t C t t t      . 

(45)  

Differentiating  (43) with respect to t gives 
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6.4.3 Performance 
Lemma 5 [18]: 

P(t) – E{[x(t) − ˆ( | )][ ( )x t t x t  − ˆ( | )] }Tx t t   > 0. (48)  
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Thus, (48) follows by inspection of (49).                                                                                                � 

That is to say, the minimum-variance filter error covariance is greater than fixed-lag 
smoother error covariance. It is also argued in [18] that (48) implies the error covariance 
decreases monotonically with the smoother lag τ. 
 

6.5 Fixed-Interval Smoothing 
 

6.5.1 Problem Definition 
Many data analyses occur off-line. In medical diagnosis for example, reviews of ultra-sound 
or CAT scan images are delayed after the time of measurement. In principle, smoothing 
could be employed instead of filtering for improving the quality of an image sequence. 

Fixed-lag smoothers are elegant – they can provide a small performance improvement over 
filters at moderate increase in implementation cost. The best performance arises when the 
lag is sufficiently large, at the expense of increased complexity. Thus, the designer needs to 
trade off performance, calculation cost and delay. 

Fixed-interval smoothers are a brute-force solution for estimation problems. They provide 
improved performance without having to fine tune a smoothing lag, at the cost of 
approximately twice the filter calculation complexity. Fixed interval smoothers involve two 
passes. Typically, a forward process operates on the measurements. Then a backward 
system operates on the results of the forward process. 

The plants are again assumed to have state-space realisations of the form ( )x t  = A(t)x(t) + 
B(t)w(t) and y(t) = C(t)x(t) + D(t)w(t). Smoothers are considered which operate on 
measurements z(t) = y(t) + v(t) over a fixed interval t  [0, T]. The performance criteria 
depend on the quantity being estimated, viz.,  

 in input estimation, the objective is to calculate a ˆ ( | )w t T  that minimises E{[w(t) − 
ˆ ( | )][ ( )w t T w t  − ˆ ( | )] }Tw t T ; 

 in state estimation, ˆ( | )x t T  is calculated which achieves the minimum E{[x(t) − 
ˆ( | )][ ( )x t T x t  − ˆ( | )] }Tx t T ; and 

 in output estimation, ˆ( | )y t T  is produced such that E{[y(t) − ˆ( | )][ ( )y t T y t  − 
ˆ ( | )] }Ty t T  is minimised. 
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following. Recall that the gain of the minimum-variance filter is calculated as K(t) = 
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 ( , ) ( ) ( ) ( ) ( , )t s A K C t s       (42)  

and ( , )s s  = I. It is assumed in [6], [17], [18], [20] that a smoothed estimate ˆ( | )x t t   of x(t) 
is obtained as 

ˆ ˆ( | ) ( ) ( ) ( , )x t t x t P t t     , (43)  

where 
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The formula (43) appears in the development of fixed interval smoothers [21] - [22], in which 
case ξ(t) is often called an adjoint variable. From the use of Leibniz’ rule, that is, 
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approximately twice the filter calculation complexity. Fixed interval smoothers involve two 
passes. Typically, a forward process operates on the measurements. Then a backward 
system operates on the results of the forward process. 
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This section focuses on three continuous-time fixed-interval smoother formulations; the 
maximum-likelihood smoother derived by Rauch, Tung and Streibel [3], the Fraser-Potter 
smoother [4] and a generalisation of Wiener’s optimal unrealisable solution [8] – [10]. Some 
additional historical background to [3] – [4] is described within [1], [2], [17]. 

6.5.2 The Maximum Likelihood Smoother 
 

6.5.2.1 Solution Derivation 
Rauch, Tung and Streibel [3] employed the maximum-likelihood method to develop a 
discrete-time smoother for state estimation and then used a limiting argument to obtain a 
continuous-time version. A brief outline of this derivation is set out here. Suppose that a 
record of filtered estimates, ˆ( | )x   , is available over a fixed interval τ  [0, T]. Let ˆ( | )x T  
denote smoothed state estimates at time 0 ≤ τ ≤ T to be evolved backwards in time from 
filtered states ˆ( | )x   . The smoother development is based on two assumptions. First, it is 

assumed that ˆ( | )x T   is normally distributed with mean ˆ( ) ( | )A x T   and covariance 

B(τ)Q(τ)BT(τ), that is,  ˆ( | )x T   ~ ˆ( ( ) ( | ),A x T   B(τ)Q(τ)BT(τ)). The probability density 

function of ˆ( | )x T   is 

1/ 2/ 2

1ˆ ˆ( ( | ) | ( | ))
(2 ) ( ) ( ) ( )n T

p x T x T
B Q B

 
   

   

                    1ˆ ˆ ˆ ˆexp 0.5( ( | ) ( ) ( | )) ( ( ) ( ) ( )) ( ( | ) ( ) ( | ))T Tx T A x T B Q B x T A x T                

Second, it is assumed that ˆ( | )x T  is normally distributed with mean ˆ( | )x    and covariance 
P(τ), namely, ˆ( | )x T  ~ ˆ( ( | )N x   , P(τ)). The corresponding probability density function is 

 1
1/ 2/ 2

1ˆ ˆ ˆ ˆ ˆ ˆ( ( | ) | ( | )) exp 0.5( ( | ) ( | )) ( )( ( | ) ( | ))
(2 ) ( )

T
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p x T x x T x P t x T x
P
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 

     . 

From the approach of [3] and the further details in [6], 

0 = 
ˆ ˆ ˆ ˆlog ( ( | ) | ( | )) ( ( | ) | ( | ))

ˆ( | )
p x T x T p x T x

x T
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
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


 

                                            = 
ˆ ˆlog ( ( | ) | ( | ))
ˆ( | )

p x T x T
x T
 


 



 + 

ˆ ˆlog ( ( | ) | ( | ))
ˆ( | )

p x t T x t t
x t T




 

results in 

1 1ˆ ˆ( ( | ) ( ) ( | )) ˆ ˆ ˆ ˆ0 ( ( ) ( ) ( )) ( ( | ) ( ) ( | )) ( )( ( | ) ( | ))
ˆ( | )

T
Tx T A x T B Q B x T A x T P x t T x

x T
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
   

    


  . 

                                                                 

“The soft-minded man always fears change. He feels security in the status quo, and he has an almost 
morbid fear of the new. For him, the greatest pain is the pain of a new idea.” Martin Luther King Jr. 

  

 

Hence, the solution is given by 

 ˆ ˆ ˆ ˆ( | ) ( ) ( | ) ( ) ( | ) ( | )x T A x T G x T x          , (50)  
where  

1ˆ ˆ( ( | ) ( ) ( | ))( ) ( ) ( ) ( ) ( )
ˆ( | )

T
T x T A x TG B Q B P

x T
      


  

 



 (51)  

is the smoother gain. Suppose that ˆ( | )x T , A(τ), B(τ), Q(τ), P−1(τ) are sampled at integer k 
multiples of Ts and are constant during the sampling interval. Using the Euler 

approximation ˆ( | )sx kT T   = 
ˆ ˆ(( 1) | ) ( | )s s

s

x k T T x kT T
T

  , the sampled gain may be written as 

1 1( ) ( ) ( ) ( )( ) ( )T
s s s s s s sG kT B kT T Q kT B kT I AT P kT   . (52)  

Recognising that 1 ( )s sT Q kT  = Q(τ), see [23], and taking the limit as Ts → 0 and yields 

1( ) ( ) ( ) ( ) ( )TG B Q B P     . (53)  

To summarise, the above fixed-interval smoother is realised by the following two-pass 
procedure. 

(i) In the first pass, the (forward) Kalman-Bucy filter operates on measurements z(τ) to 
obtain state estimates ˆ( | )x   .  

(ii) In the second pass, the differential equation (50) operates on the filtered state 
estimates ˆ( | )x    to obtain smoothed state estimates ˆ( | )x T . Equation (50) is 
integrated backwards in time from the initial condition ˆ( | )x T  = ˆ( | )x    at τ = T. 

Alternative derivations of this smoother appear in [6], [20], [23], [24].  
 

6.5.2.2 Alternative Form  
For the purpose of developing an alternate form of the above smoother found in the 
literature, consider a fictitious forward version of (50), namely, 

 1ˆ ˆ ˆ ˆ( | ) ( ) ( | ) ( ) ( ) ( ) ( ) ( | ) ( | )Tx t T A t x t T B t Q t B t P t x t T x t t    
                     ˆ( ) ( | ) ( ) ( ) ( ) ( | )TA t x t T B t Q t B t t T  , 

(54)  

where 
1 ˆ ˆ( | ) ( )( ( | ) ( | ))t T P t x t T x t t    (55)  

                                                                 

“There is a certain relief in change, even though it be from bad to worse. As I have often found in 
travelling in a stagecoach that it is often a comfort to shift one’s position, and be bruised in a new 
place.” Washington Irving 
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maximum-likelihood smoother derived by Rauch, Tung and Streibel [3], the Fraser-Potter 
smoother [4] and a generalisation of Wiener’s optimal unrealisable solution [8] – [10]. Some 
additional historical background to [3] – [4] is described within [1], [2], [17]. 

6.5.2 The Maximum Likelihood Smoother 
 

6.5.2.1 Solution Derivation 
Rauch, Tung and Streibel [3] employed the maximum-likelihood method to develop a 
discrete-time smoother for state estimation and then used a limiting argument to obtain a 
continuous-time version. A brief outline of this derivation is set out here. Suppose that a 
record of filtered estimates, ˆ( | )x   , is available over a fixed interval τ  [0, T]. Let ˆ( | )x T  
denote smoothed state estimates at time 0 ≤ τ ≤ T to be evolved backwards in time from 
filtered states ˆ( | )x   . The smoother development is based on two assumptions. First, it is 

assumed that ˆ( | )x T   is normally distributed with mean ˆ( ) ( | )A x T   and covariance 

B(τ)Q(τ)BT(τ), that is,  ˆ( | )x T   ~ ˆ( ( ) ( | ),A x T   B(τ)Q(τ)BT(τ)). The probability density 

function of ˆ( | )x T   is 

1/ 2/ 2

1ˆ ˆ( ( | ) | ( | ))
(2 ) ( ) ( ) ( )n T

p x T x T
B Q B

 
   

   

                    1ˆ ˆ ˆ ˆexp 0.5( ( | ) ( ) ( | )) ( ( ) ( ) ( )) ( ( | ) ( ) ( | ))T Tx T A x T B Q B x T A x T                

Second, it is assumed that ˆ( | )x T  is normally distributed with mean ˆ( | )x    and covariance 
P(τ), namely, ˆ( | )x T  ~ ˆ( ( | )N x   , P(τ)). The corresponding probability density function is 

 1
1/ 2/ 2

1ˆ ˆ ˆ ˆ ˆ ˆ( ( | ) | ( | )) exp 0.5( ( | ) ( | )) ( )( ( | ) ( | ))
(2 ) ( )

T
n

p x T x x T x P t x T x
P

        
 

     . 

From the approach of [3] and the further details in [6], 

0 = 
ˆ ˆ ˆ ˆlog ( ( | ) | ( | )) ( ( | ) | ( | ))

ˆ( | )
p x T x T p x T x

x T
    


 




 

                                            = 
ˆ ˆlog ( ( | ) | ( | ))
ˆ( | )

p x T x T
x T
 


 



 + 

ˆ ˆlog ( ( | ) | ( | ))
ˆ( | )

p x t T x t t
x t T




 

results in 

1 1ˆ ˆ( ( | ) ( ) ( | )) ˆ ˆ ˆ ˆ0 ( ( ) ( ) ( )) ( ( | ) ( ) ( | )) ( )( ( | ) ( | ))
ˆ( | )

T
Tx T A x T B Q B x T A x T P x t T x

x T
           


   

    


  . 

                                                                 

“The soft-minded man always fears change. He feels security in the status quo, and he has an almost 
morbid fear of the new. For him, the greatest pain is the pain of a new idea.” Martin Luther King Jr. 

  

 

Hence, the solution is given by 

 ˆ ˆ ˆ ˆ( | ) ( ) ( | ) ( ) ( | ) ( | )x T A x T G x T x          , (50)  
where  

1ˆ ˆ( ( | ) ( ) ( | ))( ) ( ) ( ) ( ) ( )
ˆ( | )

T
T x T A x TG B Q B P

x T
      


  

 



 (51)  

is the smoother gain. Suppose that ˆ( | )x T , A(τ), B(τ), Q(τ), P−1(τ) are sampled at integer k 
multiples of Ts and are constant during the sampling interval. Using the Euler 

approximation ˆ( | )sx kT T   = 
ˆ ˆ(( 1) | ) ( | )s s

s

x k T T x kT T
T

  , the sampled gain may be written as 

1 1( ) ( ) ( ) ( )( ) ( )T
s s s s s s sG kT B kT T Q kT B kT I AT P kT   . (52)  

Recognising that 1 ( )s sT Q kT  = Q(τ), see [23], and taking the limit as Ts → 0 and yields 

1( ) ( ) ( ) ( ) ( )TG B Q B P     . (53)  

To summarise, the above fixed-interval smoother is realised by the following two-pass 
procedure. 

(i) In the first pass, the (forward) Kalman-Bucy filter operates on measurements z(τ) to 
obtain state estimates ˆ( | )x   .  

(ii) In the second pass, the differential equation (50) operates on the filtered state 
estimates ˆ( | )x    to obtain smoothed state estimates ˆ( | )x T . Equation (50) is 
integrated backwards in time from the initial condition ˆ( | )x T  = ˆ( | )x    at τ = T. 

Alternative derivations of this smoother appear in [6], [20], [23], [24].  
 

6.5.2.2 Alternative Form  
For the purpose of developing an alternate form of the above smoother found in the 
literature, consider a fictitious forward version of (50), namely, 

 1ˆ ˆ ˆ ˆ( | ) ( ) ( | ) ( ) ( ) ( ) ( ) ( | ) ( | )Tx t T A t x t T B t Q t B t P t x t T x t t    
                     ˆ( ) ( | ) ( ) ( ) ( ) ( | )TA t x t T B t Q t B t t T  , 

(54)  

where 
1 ˆ ˆ( | ) ( )( ( | ) ( | ))t T P t x t T x t t    (55)  

                                                                 

“There is a certain relief in change, even though it be from bad to worse. As I have often found in 
travelling in a stagecoach that it is often a comfort to shift one’s position, and be bruised in a new 
place.” Washington Irving 
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This section focuses on three continuous-time fixed-interval smoother formulations; the 
maximum-likelihood smoother derived by Rauch, Tung and Streibel [3], the Fraser-Potter 
smoother [4] and a generalisation of Wiener’s optimal unrealisable solution [8] – [10]. Some 
additional historical background to [3] – [4] is described within [1], [2], [17]. 

6.5.2 The Maximum Likelihood Smoother 
 

6.5.2.1 Solution Derivation 
Rauch, Tung and Streibel [3] employed the maximum-likelihood method to develop a 
discrete-time smoother for state estimation and then used a limiting argument to obtain a 
continuous-time version. A brief outline of this derivation is set out here. Suppose that a 
record of filtered estimates, ˆ( | )x   , is available over a fixed interval τ  [0, T]. Let ˆ( | )x T  
denote smoothed state estimates at time 0 ≤ τ ≤ T to be evolved backwards in time from 
filtered states ˆ( | )x   . The smoother development is based on two assumptions. First, it is 

assumed that ˆ( | )x T   is normally distributed with mean ˆ( ) ( | )A x T   and covariance 

B(τ)Q(τ)BT(τ), that is,  ˆ( | )x T   ~ ˆ( ( ) ( | ),A x T   B(τ)Q(τ)BT(τ)). The probability density 

function of ˆ( | )x T   is 
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Second, it is assumed that ˆ( | )x T  is normally distributed with mean ˆ( | )x    and covariance 
P(τ), namely, ˆ( | )x T  ~ ˆ( ( | )N x   , P(τ)). The corresponding probability density function is 
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From the approach of [3] and the further details in [6], 
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results in 

1 1ˆ ˆ( ( | ) ( ) ( | )) ˆ ˆ ˆ ˆ0 ( ( ) ( ) ( )) ( ( | ) ( ) ( | )) ( )( ( | ) ( | ))
ˆ( | )

T
Tx T A x T B Q B x T A x T P x t T x

x T
           


   

    


  . 

                                                                 

“The soft-minded man always fears change. He feels security in the status quo, and he has an almost 
morbid fear of the new. For him, the greatest pain is the pain of a new idea.” Martin Luther King Jr. 

  

 

Hence, the solution is given by 

 ˆ ˆ ˆ ˆ( | ) ( ) ( | ) ( ) ( | ) ( | )x T A x T G x T x          , (50)  
where  
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
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is the smoother gain. Suppose that ˆ( | )x T , A(τ), B(τ), Q(τ), P−1(τ) are sampled at integer k 
multiples of Ts and are constant during the sampling interval. Using the Euler 

approximation ˆ( | )sx kT T   = 
ˆ ˆ(( 1) | ) ( | )s s

s

x k T T x kT T
T

  , the sampled gain may be written as 

1 1( ) ( ) ( ) ( )( ) ( )T
s s s s s s sG kT B kT T Q kT B kT I AT P kT   . (52)  

Recognising that 1 ( )s sT Q kT  = Q(τ), see [23], and taking the limit as Ts → 0 and yields 

1( ) ( ) ( ) ( ) ( )TG B Q B P     . (53)  

To summarise, the above fixed-interval smoother is realised by the following two-pass 
procedure. 

(i) In the first pass, the (forward) Kalman-Bucy filter operates on measurements z(τ) to 
obtain state estimates ˆ( | )x   .  

(ii) In the second pass, the differential equation (50) operates on the filtered state 
estimates ˆ( | )x    to obtain smoothed state estimates ˆ( | )x T . Equation (50) is 
integrated backwards in time from the initial condition ˆ( | )x T  = ˆ( | )x    at τ = T. 

Alternative derivations of this smoother appear in [6], [20], [23], [24].  
 

6.5.2.2 Alternative Form  
For the purpose of developing an alternate form of the above smoother found in the 
literature, consider a fictitious forward version of (50), namely, 

 1ˆ ˆ ˆ ˆ( | ) ( ) ( | ) ( ) ( ) ( ) ( ) ( | ) ( | )Tx t T A t x t T B t Q t B t P t x t T x t t    
                     ˆ( ) ( | ) ( ) ( ) ( ) ( | )TA t x t T B t Q t B t t T  , 

(54)  

where 
1 ˆ ˆ( | ) ( )( ( | ) ( | ))t T P t x t T x t t    (55)  

                                                                 

“There is a certain relief in change, even though it be from bad to worse. As I have often found in 
travelling in a stagecoach that it is often a comfort to shift one’s position, and be bruised in a new 
place.” Washington Irving 
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is an auxiliary variable. An expression for the evolution of ( | )t T  is now developed. 
Writing (55) as  

ˆ ˆ( | ) ( | ) ( ) ( | )x T x t t P t t T    (56)  

and taking the time differential results in 

ˆ ˆ( | ) ( | ) ( ) ( | ) ( ) ( | )x t T x t t P t t T P t t T       . (57)  

Substituting ˆ( | )x t t  = ˆ( ) ( | )A t x t t  + 1( ) ( ) ( ( )TP t C t R z t  − ˆ( ) ( | ))C t x t t  into (57) yields  

1 1( ) ( | ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ).T T TP t t T P t C t R C t P t C t R z t A t P t t B t Q t B t P t t          (58) 

Using ˆ( | )x t t  = ˆ( | )x t T  – ( ) ( | )P t t T , ( ) ( )TP t A t  = ( ) ( )A t P t  – 1( ) ( ) ( ) ( ) ( ) ( | )TP t C t R t C t P t t T  
+ ( ) ( ) ( )TB t Q t B t  –  ( )P t  within (58) and rearranging gives 

1 1ˆ( | ) ( ) ( ) ( ) ( | ) ( ) ( ) ( ) ( ) ( )T T Tt T C t R t C t x t T A t t C t R t z t       . (59)  

The filter (54) and smoother (57) may be collected together as 

11

ˆˆ 0( | )( | ) ( ) ( ) ( ) ( )
( ) ( ) ( )( | )( ) ( ) ( ) ( )( | )

T

TT T

x t Tx t T A t B t Q t B t
C t R t z tt TC t R t C t A tt T 



       
              




. (60)  

Equation (60) is known as the Hamiltonian form of the Rauch-Tung-Striebel smoother [17].  
 

6.5.2.3 Performance 
In order to develop an expression for the smoothed error state, consider the backwards 
signal model 

( ) ( ) ( ) ( ) ( )x A x B w       . (61) 

Subtracting (50) from (61) results in 

ˆ ˆ ˆ( ) ( | ) ( ( ) ( ))( ( ) ( | )) ( )( ( ) ( | )) ( ) ( )x x T A G x x T G x x B w                   . (62) 

Let ( | )x T  = ( )x   − ˆ( | )x T  denote the smoothed error state and ( | )x    = ( )x   − ˆ( | )x    
denote the filtered error state. Then the differential equation (62) can simply be written as 

( | ) ( ( ) ( ))( ( | ) ( ) ( | ) ( ) ( )x T A G x T G x B w               , (63) 

where ( | )x T   = ˆ( ( | )x T   ˆ( ))x   . Applying Lemma 3 to (63) and using ˆ{ ( | )E x   , 
( )}Tw   = 0 gives 

( | ) ( ( ) ( )) ( | ) ( | )( ( ) ( )) ( ) ( ) ( )T TT A G T T A G B Q B                 , (64) 

                                                                 

“That which comes into the world to disturb nothing deserves neither respect nor patience.” Rene Char 

  

where ( | )T  = ˆ{ ( | )E x T , ˆ ( | )}Tx T  is the smoother error covariance and ( | )T  = 
( | )d T
d



 . The smoother error covariance differential equation (64) is solved backwards in 

time from the initial condition 

( | ) ( | )T P t t   (65) 

at t = T, where ( | )P t t  is the solution of the Riccati differential equation 

( ) ( ( ) ( ) ( )) ( ) ( )( ( ) ( ) ( )) ( ) ( ) ( ) ( ) ( ) ( )T T T T TP t A t K t C t P t P t A t C t K t K t R t K t B t Q t B t       

        ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )T T TA t P t P t A t K t R t K t B t Q t B t                                                            (66) 

It is shown below that this smoother outperforms the minimum-variance filter. For the 
purpose of comparing the solutions of forward Riccati equations, consider a fictitious 
forward version of (64), namely, 

( | ) ( ( ) ( )) ( | ) ( | )( ( ) ( )) ( ) ( ) ( )T Tt T A t G t t T t T A t G t B t Q t B t         (67) 

initialised with 

0 0 0( | ) ( | ) 0t T P t t   . (68) 

Lemma 6: In respect of the fixed-interval smoother (50),  

( | ) ( | )P t t t T  . (69)  

Proof: The initialisation (68) satisfies condition (i) of Theorem 1. Condition (ii) of the theorem is met 
since 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) 0 ( ) ( ) 0

T T T

T T T T T

B t Q t B t K t R t K t A t K t C t B t Q t B t A t G t
A t C t K t A t G t

      
   

    
 

for all t ≥ t0 and hence the claim (69) follows.                                                                                        �        
 

6.5.3 The Fraser-Potter Smoother 
The Central Limit Theorem states that the mean of a sufficiently large sample of 
independent identically distributed random variables will be approximately normally 
distributed [25]. The same is true of partial sums of random variables. The Central Limit 
Theorem is illustrated by the first part of the following lemma. A useful generalisation 
appears in the second part of the lemma. 

Lemma 7: Suppose that y1, y2, …, yn are independent random variables and W1, W2, … Wn are 
independent positive definite weighting matrices. Let  μ = E{y}, u = y1 + y2 + … + yn and 

v = (W1y1 + W2y2 + … + Wnyn) (W1 + W2 + … Wn)-1. (70) 

                                                                 

“Today every invention is received with a cry of triumph which soon turns into a cry of fear.” Bertolt 
Brecht 
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is an auxiliary variable. An expression for the evolution of ( | )t T  is now developed. 
Writing (55) as  

ˆ ˆ( | ) ( | ) ( ) ( | )x T x t t P t t T    (56)  

and taking the time differential results in 

ˆ ˆ( | ) ( | ) ( ) ( | ) ( ) ( | )x t T x t t P t t T P t t T       . (57)  

Substituting ˆ( | )x t t  = ˆ( ) ( | )A t x t t  + 1( ) ( ) ( ( )TP t C t R z t  − ˆ( ) ( | ))C t x t t  into (57) yields  

1 1( ) ( | ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ).T T TP t t T P t C t R C t P t C t R z t A t P t t B t Q t B t P t t          (58) 

Using ˆ( | )x t t  = ˆ( | )x t T  – ( ) ( | )P t t T , ( ) ( )TP t A t  = ( ) ( )A t P t  – 1( ) ( ) ( ) ( ) ( ) ( | )TP t C t R t C t P t t T  
+ ( ) ( ) ( )TB t Q t B t  –  ( )P t  within (58) and rearranging gives 

1 1ˆ( | ) ( ) ( ) ( ) ( | ) ( ) ( ) ( ) ( ) ( )T T Tt T C t R t C t x t T A t t C t R t z t       . (59)  

The filter (54) and smoother (57) may be collected together as 
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. (60)  

Equation (60) is known as the Hamiltonian form of the Rauch-Tung-Striebel smoother [17].  
 

6.5.2.3 Performance 
In order to develop an expression for the smoothed error state, consider the backwards 
signal model 

( ) ( ) ( ) ( ) ( )x A x B w       . (61) 

Subtracting (50) from (61) results in 

ˆ ˆ ˆ( ) ( | ) ( ( ) ( ))( ( ) ( | )) ( )( ( ) ( | )) ( ) ( )x x T A G x x T G x x B w                   . (62) 

Let ( | )x T  = ( )x   − ˆ( | )x T  denote the smoothed error state and ( | )x    = ( )x   − ˆ( | )x    
denote the filtered error state. Then the differential equation (62) can simply be written as 

( | ) ( ( ) ( ))( ( | ) ( ) ( | ) ( ) ( )x T A G x T G x B w               , (63) 

where ( | )x T   = ˆ( ( | )x T   ˆ( ))x   . Applying Lemma 3 to (63) and using ˆ{ ( | )E x   , 
( )}Tw   = 0 gives 

( | ) ( ( ) ( )) ( | ) ( | )( ( ) ( )) ( ) ( ) ( )T TT A G T T A G B Q B                 , (64) 

                                                                 

“That which comes into the world to disturb nothing deserves neither respect nor patience.” Rene Char 

  

where ( | )T  = ˆ{ ( | )E x T , ˆ ( | )}Tx T  is the smoother error covariance and ( | )T  = 
( | )d T
d



 . The smoother error covariance differential equation (64) is solved backwards in 

time from the initial condition 

( | ) ( | )T P t t   (65) 

at t = T, where ( | )P t t  is the solution of the Riccati differential equation 
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        ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )T T TA t P t P t A t K t R t K t B t Q t B t                                                            (66) 

It is shown below that this smoother outperforms the minimum-variance filter. For the 
purpose of comparing the solutions of forward Riccati equations, consider a fictitious 
forward version of (64), namely, 

( | ) ( ( ) ( )) ( | ) ( | )( ( ) ( )) ( ) ( ) ( )T Tt T A t G t t T t T A t G t B t Q t B t         (67) 

initialised with 

0 0 0( | ) ( | ) 0t T P t t   . (68) 

Lemma 6: In respect of the fixed-interval smoother (50),  

( | ) ( | )P t t t T  . (69)  

Proof: The initialisation (68) satisfies condition (i) of Theorem 1. Condition (ii) of the theorem is met 
since 
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for all t ≥ t0 and hence the claim (69) follows.                                                                                        �        
 

6.5.3 The Fraser-Potter Smoother 
The Central Limit Theorem states that the mean of a sufficiently large sample of 
independent identically distributed random variables will be approximately normally 
distributed [25]. The same is true of partial sums of random variables. The Central Limit 
Theorem is illustrated by the first part of the following lemma. A useful generalisation 
appears in the second part of the lemma. 

Lemma 7: Suppose that y1, y2, …, yn are independent random variables and W1, W2, … Wn are 
independent positive definite weighting matrices. Let  μ = E{y}, u = y1 + y2 + … + yn and 

v = (W1y1 + W2y2 + … + Wnyn) (W1 + W2 + … Wn)-1. (70) 
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(i) If yi ~ ( ,  R), i = 1 to n, then u ~ ( ,n nR ); 
(ii) If yi ~ (0,  I), i = 1 to n, then v ~ (0,  I). 

Proof:  

(i) E{u} = E{y1} + E(y2) + … + E{yn} = nμ. E{(u − μ)(u − μ)T} =  E{(y1 − μ)(y1 − μ)T} + E{(y2 
− μ)(y2 − μ)T} + … + E{(yn − μ)(yn − μ)T} = nR. 

(ii) E{v} = W1(W1 + W2 + … + Wn)-1E{y1} + W2(W1 + W2 + … + Wn)-1E(y2) + … + Wn(W1 + 
W2 + … Wn)-1E{yn}) = 0. E{vvT} = 1{( TE W  + 2

TW  + … + 1
1 1 1 1 1) (T T T

nW W y y W W  + 2W  + 
… 1) }NW   + 1{( TE W  + 2

TW  + … + 1
2 2 2 2 1) (T T T

nW W y y W W  + 2W  + … 1) }NW    + … + 

1{( TE W  + 2
TW  + … + 1

1) (T T T
n n n n nW W y y W W  + 2W  + … 1) }NW   = 1( TW  + 2

TW  + … + 
1

1 1) (T T
nW W W  + 2 2

TW W  + … 1)(T
n nW W W  + 2W  + … 1)nW   = I.                                  � 

Fraser and Potter reported a smoother in 1969 [4] that combined state estimates from 
forward and backward filters using a formula similar to (70) truncated at n = 2. The inverses 
of the forward and backward error covariances, which are indicative of the quality of the 
respective estimates, were used as weighting matrices. The combined filter and Fraser-
Potter smoother equations are  

1ˆ ˆ ˆ( | ) ( ) ( | ) ( | ) ( ) ( )( ( ) ( ) ( | ))Tx t t A t x t t P t t C t R t z t C t x t t   , 

1( | ) ( ) ( | ) ( | ) ( ) ( )( ( ) ( ) ( | ))Tt t A t t t t t C t R t z t C t t t       , 

1 1 1 1 1ˆ ˆ( | ) ( ( | ) ( | )) ( ( | ) ( | ) ( | ) ( | ))x t T P t t t t P t t x t t t t t t         , 

(71) 

(72) 

(73) 

where ( | )P t t  is the solution of the forward Riccati equation ( | )P t t  = ( ) ( | )A t P t t  + 
( | ) ( )TP t t A t  − 1( | ) ( ) ( ) ( ) ( | )TP t t C t R t C t P t t  + ( ) ( ) ( )TB t Q t B t  and ( | )t t  is the solution of the 

backward Riccati equation ( | )t t  = ( ) ( | )A t t t  + ( | ) ( )Tt t A t  − 
1( | ) ( ) ( ) ( ) ( | )Tt t C t R t C t t t   + ( ) ( ) ( )TB t Q t B t . 

It can be seen from (72) that the backward state estimates, ζ(t), are obtained by simply 
running a Kalman filter over the time-reversed measurements. Fraser and Potter’s approach 
is pragmatic: when the data is noisy, a linear combination of two filtered estimates is likely 
to be better than one filter alone. However, this two-filter approach to smoothing is ad hoc 
and is not a minimum-mean-square-error design. 

 

                                                                 

“If there is dissatisfaction with the status quo, good. If there is ferment, so much the better. If there is 
restlessness, I am pleased. Then let there be ideas, and hard thought, and hard work.” Hubert Horatio 
Humphrey. 

  

6.5.4 The Minimum-Variance Smoother 
 

6.5.4.1 Problem Definition 
The previously described smoothers are focussed on state estimation. A different signal 
estimation problem shown in Fig. 1 is considered here. Suppose that observations z = y + v 
are available, where y2 = w is the output of a linear time-varying system and v is 
measurement noise. A solution   is desired which produces estimates 1ŷ  of a second 
reference system y1 =w in such a way to meet a performance objective. Let e = y1 – 1ŷ  
denote the output estimation error. The optimum minimum-variance filter can be obtained 
by finding the solution that minimises 

2

Tee . Here, in the case of smoothing, the 

performance objective is to minimise 
2

Hee .  

 
 
 
 
 
 

Figure 1. The general estimation problem. The objective is to produce estimates 1ŷ  of y1 
from measurements z. 
 

6.5.4.2 Optimal Unrealisable Solutions 
The minimum-variance smoother is a more recent innovation [8] - [10] and arises by 
generalising Wiener’s optimal noncausal solution for the above time-varying problem. The 
solution is obtained using the same completing-the-squares technique that was previously 
employed in the frequency domain (see Chapters 1 and 2). It can be seen from Fig. 1 that the 
output estimation error is generated by eie i� , where 

2 1ei          (74) 

is a linear system that operates on the inputs i = 
v
w
 
 
 

.  

Consider the factorisation 

2 2
H HQ R    , (75) 

                                                                 

“Restlessness and discontent are the first necessities of progress. Show me a thoroughly satisfied man 
and I will show you a failure.” Thomas Alva Edison 
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(i) If yi ~ ( ,  R), i = 1 to n, then u ~ ( ,n nR ); 
(ii) If yi ~ (0,  I), i = 1 to n, then v ~ (0,  I). 

Proof:  

(i) E{u} = E{y1} + E(y2) + … + E{yn} = nμ. E{(u − μ)(u − μ)T} =  E{(y1 − μ)(y1 − μ)T} + E{(y2 
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reference system y1 =w in such a way to meet a performance objective. Let e = y1 – 1ŷ  
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(i) If yi ~ ( ,  R), i = 1 to n, then u ~ ( ,n nR ); 
(ii) If yi ~ (0,  I), i = 1 to n, then v ~ (0,  I). 

Proof:  

(i) E{u} = E{y1} + E(y2) + … + E{yn} = nμ. E{(u − μ)(u − μ)T} =  E{(y1 − μ)(y1 − μ)T} + E{(y2 
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Fraser and Potter reported a smoother in 1969 [4] that combined state estimates from 
forward and backward filters using a formula similar to (70) truncated at n = 2. The inverses 
of the forward and backward error covariances, which are indicative of the quality of the 
respective estimates, were used as weighting matrices. The combined filter and Fraser-
Potter smoother equations are  

1ˆ ˆ ˆ( | ) ( ) ( | ) ( | ) ( ) ( )( ( ) ( ) ( | ))Tx t t A t x t t P t t C t R t z t C t x t t   , 

1( | ) ( ) ( | ) ( | ) ( ) ( )( ( ) ( ) ( | ))Tt t A t t t t t C t R t z t C t t t       , 

1 1 1 1 1ˆ ˆ( | ) ( ( | ) ( | )) ( ( | ) ( | ) ( | ) ( | ))x t T P t t t t P t t x t t t t t t         , 

(71) 

(72) 

(73) 

where ( | )P t t  is the solution of the forward Riccati equation ( | )P t t  = ( ) ( | )A t P t t  + 
( | ) ( )TP t t A t  − 1( | ) ( ) ( ) ( ) ( | )TP t t C t R t C t P t t  + ( ) ( ) ( )TB t Q t B t  and ( | )t t  is the solution of the 

backward Riccati equation ( | )t t  = ( ) ( | )A t t t  + ( | ) ( )Tt t A t  − 
1( | ) ( ) ( ) ( ) ( | )Tt t C t R t C t t t   + ( ) ( ) ( )TB t Q t B t . 

It can be seen from (72) that the backward state estimates, ζ(t), are obtained by simply 
running a Kalman filter over the time-reversed measurements. Fraser and Potter’s approach 
is pragmatic: when the data is noisy, a linear combination of two filtered estimates is likely 
to be better than one filter alone. However, this two-filter approach to smoothing is ad hoc 
and is not a minimum-mean-square-error design. 

 

                                                                 

“If there is dissatisfaction with the status quo, good. If there is ferment, so much the better. If there is 
restlessness, I am pleased. Then let there be ideas, and hard thought, and hard work.” Hubert Horatio 
Humphrey. 

  

6.5.4 The Minimum-Variance Smoother 
 

6.5.4.1 Problem Definition 
The previously described smoothers are focussed on state estimation. A different signal 
estimation problem shown in Fig. 1 is considered here. Suppose that observations z = y + v 
are available, where y2 = w is the output of a linear time-varying system and v is 
measurement noise. A solution   is desired which produces estimates 1ŷ  of a second 
reference system y1 =w in such a way to meet a performance objective. Let e = y1 – 1ŷ  
denote the output estimation error. The optimum minimum-variance filter can be obtained 
by finding the solution that minimises 

2

Tee . Here, in the case of smoothing, the 

performance objective is to minimise 
2

Hee .  

 
 
 
 
 
 

Figure 1. The general estimation problem. The objective is to produce estimates 1ŷ  of y1 
from measurements z. 
 

6.5.4.2 Optimal Unrealisable Solutions 
The minimum-variance smoother is a more recent innovation [8] - [10] and arises by 
generalising Wiener’s optimal noncausal solution for the above time-varying problem. The 
solution is obtained using the same completing-the-squares technique that was previously 
employed in the frequency domain (see Chapters 1 and 2). It can be seen from Fig. 1 that the 
output estimation error is generated by eie i� , where 

2 1ei          (74) 

is a linear system that operates on the inputs i = 
v
w
 
 
 

.  

Consider the factorisation 

2 2
H HQ R    , (75) 

                                                                 

“Restlessness and discontent are the first necessities of progress. Show me a thoroughly satisfied man 
and I will show you a failure.” Thomas Alva Edison 
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in which the time-dependence of Q(t) and R(t) is omitted for notational brevity. Suppose 
that Δ: p  → p  is causal, namely Δ and its inverse,  Δ−1, are bounded systems that proceed 
forward in time. The system Δ is known as a Wiener-Hopf factor. 
 

Lemma 8: Assume that the Wiener-Hopf factor inverse, Δ-1, exists over t  [0, T]. Then the smoother 
solution 

1
1 2

H HQ        
                                      1

1 2 ( )H HQ     
              1

1 2 2 2( )H HQ Q R      . 

(76)  

minimises 
2

Hee  = 
2

H
ei ei . 

Proof: It follows from (74) that H
ei ei  =  1 2

HQ   −  1 2
H HQ    −  2 1

HQ   + H H  . 
Completing the square leads to H

ei ei  = 1 1
H

ei ei   + 2 2
H

ei ei  , where 

2 2 1 2 1 2( )( )H H H H H H
ei ei Q Q                (77)  

and 
1

1 1 1 1 1 2 2 1( )H H H H H
ei ei Q Q Q          . (78)  

By inspection of (77), the solution (76) achieves 

2 2 2

H
ei ei  =0. (79)  

Since 1 1 2

H
ei ei   excludes the estimator solution  , this quantity defines the lower bound for 

2

H
ei ei .                                                                                                                                               � 

Example 3. Consider the output estimation case where 1  = 2  and 

1
2 2 2 2( )H H

OE Q Q R       , (80) 

which is of order n4 complexity. Using 2 2
HQ   = H  − R leads to the n2-order solution 

1  H
OE I R ( ) .  (81) 

                                                                 

“Whatever has been done before will be done again. There is nothing new under the sun.” Ecclesiastes 
1:9 

  

It is interesting to note from (81) and 
1

1 1 2 2 2 2 2 2 2 2( )H H H H H
ei ei Q Q Q R Q             (82)  

that 
0

lim
R

I


  and 
0

lim 0H
ei eiR

 . That is, output estimation is superfluous when 

measurement noise is absent. Let { }H
ei ei    = 1 1{ }H

ei ei    +  2 2{ }H
ei ei    denote the causal 

part of H
ei ei  . It is shown below that minimum-variance filter solution can be found using 

the above completing-the squares technique and taking causal parts.  

Lemma 9: The filter solution 

1
1 2{ } { }H HQ  

       
        1

1 2{ }H HQ  
     

(83)   

minimises 
2

{ }Hee   = 
2

{ }H
ei ei  , provided that the inverses exist. 

Proof: It follows from (77) that 

2 2 1 2 1 2{ } {( )( ) }H H H H H H
ei ei Q Q 

               . (84)  

By inspection of (84), the solution (83) achieves 

2 2 2
{ }H

ei ei   = 0. (85) � 

It is worth pausing at this juncture to comment on the significance of the above results. 
 The formulation (76) is an optimal solution for the time-varying smoother problem 

since it can be seen from (79) that it achieves the best-possible performance.  
 Similarly, (83) is termed an optimal solution because it achieves the best-possible 

filter performance (85).  
 By inspection of (79) and (85) it follows that the minimum-variance smoother 

outperforms the minimum-variance filter. 
 In general, these optimal solutions are not very practical because of the difficulty in 

realising an exact Wiener-Hopf factor.  

Practical smoother (and filter) solutions that make use of an approximate Wiener-Hopf 
factor are described below. 
 

6.5.4.3 Optimal Realisable Solutions 
 

Output Estimation 
The Wiener-Hopf factor is modelled on the structure of the spectral factor which is 
described Section 3.4.4. Suppose that R(t) > 0 for all t  [0, T] and there exist R1/2(t)  > 0 such 

                                                                 

“There is nothing more difficult to take in hand, more perilous to conduct, or more uncertain in its 
success, than to take the lead in the introduction of a new order of things.” Niccolo Di Bernado dei 
Machiavelli 
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in which the time-dependence of Q(t) and R(t) is omitted for notational brevity. Suppose 
that Δ: p  → p  is causal, namely Δ and its inverse,  Δ−1, are bounded systems that proceed 
forward in time. The system Δ is known as a Wiener-Hopf factor. 
 

Lemma 8: Assume that the Wiener-Hopf factor inverse, Δ-1, exists over t  [0, T]. Then the smoother 
solution 
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(76)  

minimises 
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H
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Proof: It follows from (74) that H
ei ei  =  1 2
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H HQ    −  2 1

HQ   + H H  . 
Completing the square leads to H

ei ei  = 1 1
H

ei ei   + 2 2
H

ei ei  , where 

2 2 1 2 1 2( )( )H H H H H H
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and 
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ei ei Q Q Q          . (78)  

By inspection of (77), the solution (76) achieves 

2 2 2

H
ei ei  =0. (79)  

Since 1 1 2

H
ei ei   excludes the estimator solution  , this quantity defines the lower bound for 

2

H
ei ei .                                                                                                                                               � 

Example 3. Consider the output estimation case where 1  = 2  and 

1
2 2 2 2( )H H

OE Q Q R       , (80) 

which is of order n4 complexity. Using 2 2
HQ   = H  − R leads to the n2-order solution 
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OE I R ( ) .  (81) 

                                                                 

“Whatever has been done before will be done again. There is nothing new under the sun.” Ecclesiastes 
1:9 

  

It is interesting to note from (81) and 
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ei ei Q Q Q R Q             (82)  

that 
0

lim
R

I


  and 
0

lim 0H
ei eiR

 . That is, output estimation is superfluous when 

measurement noise is absent. Let { }H
ei ei    = 1 1{ }H

ei ei    +  2 2{ }H
ei ei    denote the causal 

part of H
ei ei  . It is shown below that minimum-variance filter solution can be found using 

the above completing-the squares technique and taking causal parts.  

Lemma 9: The filter solution 

1
1 2{ } { }H HQ  
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1 2{ }H HQ  
     

(83)   

minimises 
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ei ei  , provided that the inverses exist. 

Proof: It follows from (77) that 

2 2 1 2 1 2{ } {( )( ) }H H H H H H
ei ei Q Q 

               . (84)  

By inspection of (84), the solution (83) achieves 

2 2 2
{ }H

ei ei   = 0. (85) � 

It is worth pausing at this juncture to comment on the significance of the above results. 
 The formulation (76) is an optimal solution for the time-varying smoother problem 

since it can be seen from (79) that it achieves the best-possible performance.  
 Similarly, (83) is termed an optimal solution because it achieves the best-possible 

filter performance (85).  
 By inspection of (79) and (85) it follows that the minimum-variance smoother 

outperforms the minimum-variance filter. 
 In general, these optimal solutions are not very practical because of the difficulty in 

realising an exact Wiener-Hopf factor.  

Practical smoother (and filter) solutions that make use of an approximate Wiener-Hopf 
factor are described below. 
 

6.5.4.3 Optimal Realisable Solutions 
 

Output Estimation 
The Wiener-Hopf factor is modelled on the structure of the spectral factor which is 
described Section 3.4.4. Suppose that R(t) > 0 for all t  [0, T] and there exist R1/2(t)  > 0 such 

                                                                 

“There is nothing more difficult to take in hand, more perilous to conduct, or more uncertain in its 
success, than to take the lead in the introduction of a new order of things.” Niccolo Di Bernado dei 
Machiavelli 
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in which the time-dependence of Q(t) and R(t) is omitted for notational brevity. Suppose 
that Δ: p  → p  is causal, namely Δ and its inverse,  Δ−1, are bounded systems that proceed 
forward in time. The system Δ is known as a Wiener-Hopf factor. 
 

Lemma 8: Assume that the Wiener-Hopf factor inverse, Δ-1, exists over t  [0, T]. Then the smoother 
solution 

1
1 2

H HQ        
                                      1

1 2 ( )H HQ     
              1

1 2 2 2( )H HQ Q R      . 

(76)  

minimises 
2

Hee  = 
2

H
ei ei . 

Proof: It follows from (74) that H
ei ei  =  1 2

HQ   −  1 2
H HQ    −  2 1

HQ   + H H  . 
Completing the square leads to H

ei ei  = 1 1
H

ei ei   + 2 2
H

ei ei  , where 
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By inspection of (77), the solution (76) achieves 

2 2 2

H
ei ei  =0. (79)  

Since 1 1 2

H
ei ei   excludes the estimator solution  , this quantity defines the lower bound for 

2

H
ei ei .                                                                                                                                               � 

Example 3. Consider the output estimation case where 1  = 2  and 

1
2 2 2 2( )H H

OE Q Q R       , (80) 

which is of order n4 complexity. Using 2 2
HQ   = H  − R leads to the n2-order solution 

1  H
OE I R ( ) .  (81) 

                                                                 

“Whatever has been done before will be done again. There is nothing new under the sun.” Ecclesiastes 
1:9 

  

It is interesting to note from (81) and 
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0

lim
R

I
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  and 
0

lim 0H
ei eiR
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2
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2

{ }H
ei ei  , provided that the inverses exist. 

Proof: It follows from (77) that 

2 2 1 2 1 2{ } {( )( ) }H H H H H H
ei ei Q Q 
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By inspection of (84), the solution (83) achieves 

2 2 2
{ }H

ei ei   = 0. (85) � 

It is worth pausing at this juncture to comment on the significance of the above results. 
 The formulation (76) is an optimal solution for the time-varying smoother problem 

since it can be seen from (79) that it achieves the best-possible performance.  
 Similarly, (83) is termed an optimal solution because it achieves the best-possible 

filter performance (85).  
 By inspection of (79) and (85) it follows that the minimum-variance smoother 

outperforms the minimum-variance filter. 
 In general, these optimal solutions are not very practical because of the difficulty in 

realising an exact Wiener-Hopf factor.  

Practical smoother (and filter) solutions that make use of an approximate Wiener-Hopf 
factor are described below. 
 

6.5.4.3 Optimal Realisable Solutions 
 

Output Estimation 
The Wiener-Hopf factor is modelled on the structure of the spectral factor which is 
described Section 3.4.4. Suppose that R(t) > 0 for all t  [0, T] and there exist R1/2(t)  > 0 such 

                                                                 

“There is nothing more difficult to take in hand, more perilous to conduct, or more uncertain in its 
success, than to take the lead in the introduction of a new order of things.” Niccolo Di Bernado dei 
Machiavelli 
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that R(t) = R1/2(t) R1/2(t). An approximate Wiener-Hopf factor ˆ :  p  →  p  is defined by the 
system 

1/ 2

1/ 2

( ) ( )( ) ( ) ( )
( ) ( )( ) ( )

x t x tA t K t R t
t z tC t R t

    
     

    


, (86) 

where K(t) = 1( ) ( ) ( )TP t C t R t  is the Kalman gain in which P(t) is the solution of the Riccati 
differential equation 

1( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )T T TP t A t P t P t A t P t C t R t C t P t B t Q t B t    . (87)  

The output estimation smoother (81) can be approximated as 

1  H
OE I R ˆ ˆ( )  

                                                             1    ˆ ˆHI R . 

 (88) 

An approximate Wiener-Hopf factor inverse, 1ˆ  , within (88) is obtained from (86) and the 
Matrix Inversion Lemma, namely,  

1/ 2 1/ 2

( ) ( ) ( ) ( ) ( )ˆ( )
( ) ( ) ( ) ( )( )

A t K t C t K t x tx t
R t C t R t z tt  

     
           


, (89) 

where ˆ( )x t   n  is an estimate of the state within 1ˆ  . From Lemma 1, the adjoint of 1ˆ  , 

which is denoted by ˆ H , has the realisation 

1/ 2

1/ 2

( )( ) ( ) ( ) ( ) ( )( )
( )( ) ( )( )

T T T T

T

tA t C t K t C t R tt
tK t R tt








      
     

     


. (90) 

where ( )t    p  is an estimate of the state within ˆ H . Thus, the smoother (88) is realised 
by (89), (90) and 

ˆ( | ) ( ) ( ) ( )y t T z t R t t  . (91) 

Procedure 1. The above output estimator can be implemented via the following three steps. 
Step 1. Operate 1ˆ   on the measurements z(t) using (89) to obtain α(t). 
Step 2. In lieu of the adjoint system (90), operate (89) on the time-reversed transpose of 

α(t). Then take the time-reversed transpose of the result to obtain β(t). 
Step 3. Calculate the smoothed output estimate from (91).  

                                                                 

“If I have a thousand ideas and only one turns out to be good, I am satisfied.” Alfred Bernhard Nobel 

  

Example 4. Consider an estimation problem parameterised by a = – 1, b = 2 , c = 1, d = 0, 
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Employing (89) within (92) leads to the standard minimum-variance filter, namely, 

ˆ ˆ( | ) ( ( ) ( ) ( )) ( | ) ( ) ( )x t t A t K t C t x t t K t z t    
ˆ ˆ( | ) ( ) ( | )y t t C t x t t . 

(93) 
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Input Estimation 

As discussed in Chapters 1 and 2, input estimates can be found using 1  = I, and 

substituting ̂  for Δ within (76) yields the solution 

1 1 1 1
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As expected, the low-measurement-noise-asymptote of this equaliser is given by 
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  . That is, at high signal-to-noise-ratios the equaliser approaches 1
2
 , provided 

the inverse exists. 

The development of a differential equation for the smoothed input estimate, ˆ ( | )w t T , makes 
use of the following formula [27] for the cascade of two systems. Suppose that two linear 
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that R(t) = R1/2(t) R1/2(t). An approximate Wiener-Hopf factor ˆ :  p  →  p  is defined by the 
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where K(t) = 1( ) ( ) ( )TP t C t R t  is the Kalman gain in which P(t) is the solution of the Riccati 
differential equation 
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The output estimation smoother (81) can be approximated as 
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 (88) 

An approximate Wiener-Hopf factor inverse, 1ˆ  , within (88) is obtained from (86) and the 
Matrix Inversion Lemma, namely,  
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where ˆ( )x t   n  is an estimate of the state within 1ˆ  . From Lemma 1, the adjoint of 1ˆ  , 

which is denoted by ˆ H , has the realisation 
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where ( )t    p  is an estimate of the state within ˆ H . Thus, the smoother (88) is realised 
by (89), (90) and 

ˆ( | ) ( ) ( ) ( )y t T z t R t t  . (91) 

Procedure 1. The above output estimator can be implemented via the following three steps. 
Step 1. Operate 1ˆ   on the measurements z(t) using (89) to obtain α(t). 
Step 2. In lieu of the adjoint system (90), operate (89) on the time-reversed transpose of 

α(t). Then take the time-reversed transpose of the result to obtain β(t). 
Step 3. Calculate the smoothed output estimate from (91).  

                                                                 

“If I have a thousand ideas and only one turns out to be good, I am satisfied.” Alfred Bernhard Nobel 

  

Example 4. Consider an estimation problem parameterised by a = – 1, b = 2 , c = 1, d = 0, 
2
w  = 2

v  = 1, which leads to p = k = 3  – 1 [26].  Smoothed output estimates may be 
obtained by evolving 

ˆ ˆ( ) 3 ( ) 3 ( )x t x t z t  , ˆ( ) ( ) ( )t x t z t    , 

time-reversing the ( )t  and evolving 

( ) 3 ( ) 3 ( )t t t    , ( ) ( ) ( )t t t     , 
then time-reversing ( )t  and calculating 

ˆ( | ) ( ) ( )y t T z t t  . 
Filtering 

The causal part { }OE  of the minimum-variance smoother (88) is given by  

1 
    ˆ ˆ{ } { }H

OE I R  

                                                             1 2 1   / ˆI RR  

                                                  1 2 1  / ˆI R . 

(92) 

Employing (89) within (92) leads to the standard minimum-variance filter, namely, 

ˆ ˆ( | ) ( ( ) ( ) ( )) ( | ) ( ) ( )x t t A t K t C t x t t K t z t    
ˆ ˆ( | ) ( ) ( | )y t t C t x t t . 

(93) 

(94) 

Input Estimation 

As discussed in Chapters 1 and 2, input estimates can be found using 1  = I, and 

substituting ̂  for Δ within (76) yields the solution 

1 1 1 1
2 2
        ˆ ˆ ˆ ˆ( )H H

IE Q Q   . (95) 
As expected, the low-measurement-noise-asymptote of this equaliser is given by 

1
20




lim IER

  . That is, at high signal-to-noise-ratios the equaliser approaches 1
2
 , provided 

the inverse exists. 

The development of a differential equation for the smoothed input estimate, ˆ ( | )w t T , makes 
use of the following formula [27] for the cascade of two systems. Suppose that two linear 

                                                                 

“Ten geographers who think the world is flat will tend to reinforce each others errors….Only a sailor 
can set them straight.” John Ralston Saul 

Continuous-Time Smoothing 139
  

that R(t) = R1/2(t) R1/2(t). An approximate Wiener-Hopf factor ˆ :  p  →  p  is defined by the 
system 

1/ 2

1/ 2

( ) ( )( ) ( ) ( )
( ) ( )( ) ( )

x t x tA t K t R t
t z tC t R t

    
     

    


, (86) 

where K(t) = 1( ) ( ) ( )TP t C t R t  is the Kalman gain in which P(t) is the solution of the Riccati 
differential equation 

1( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )T T TP t A t P t P t A t P t C t R t C t P t B t Q t B t    . (87)  

The output estimation smoother (81) can be approximated as 

1  H
OE I R ˆ ˆ( )  

                                                             1    ˆ ˆHI R . 

 (88) 

An approximate Wiener-Hopf factor inverse, 1ˆ  , within (88) is obtained from (86) and the 
Matrix Inversion Lemma, namely,  

1/ 2 1/ 2

( ) ( ) ( ) ( ) ( )ˆ( )
( ) ( ) ( ) ( )( )

A t K t C t K t x tx t
R t C t R t z tt  

     
           


, (89) 

where ˆ( )x t   n  is an estimate of the state within 1ˆ  . From Lemma 1, the adjoint of 1ˆ  , 

which is denoted by ˆ H , has the realisation 

1/ 2

1/ 2

( )( ) ( ) ( ) ( ) ( )( )
( )( ) ( )( )

T T T T

T

tA t C t K t C t R tt
tK t R tt








      
     

     


. (90) 

where ( )t    p  is an estimate of the state within ˆ H . Thus, the smoother (88) is realised 
by (89), (90) and 

ˆ( | ) ( ) ( ) ( )y t T z t R t t  . (91) 

Procedure 1. The above output estimator can be implemented via the following three steps. 
Step 1. Operate 1ˆ   on the measurements z(t) using (89) to obtain α(t). 
Step 2. In lieu of the adjoint system (90), operate (89) on the time-reversed transpose of 

α(t). Then take the time-reversed transpose of the result to obtain β(t). 
Step 3. Calculate the smoothed output estimate from (91).  

                                                                 

“If I have a thousand ideas and only one turns out to be good, I am satisfied.” Alfred Bernhard Nobel 

  

Example 4. Consider an estimation problem parameterised by a = – 1, b = 2 , c = 1, d = 0, 
2
w  = 2

v  = 1, which leads to p = k = 3  – 1 [26].  Smoothed output estimates may be 
obtained by evolving 

ˆ ˆ( ) 3 ( ) 3 ( )x t x t z t  , ˆ( ) ( ) ( )t x t z t    , 

time-reversing the ( )t  and evolving 

( ) 3 ( ) 3 ( )t t t    , ( ) ( ) ( )t t t     , 
then time-reversing ( )t  and calculating 

ˆ( | ) ( ) ( )y t T z t t  . 
Filtering 

The causal part { }OE  of the minimum-variance smoother (88) is given by  

1 
    ˆ ˆ{ } { }H

OE I R  

                                                             1 2 1   / ˆI RR  

                                                  1 2 1  / ˆI R . 

(92) 

Employing (89) within (92) leads to the standard minimum-variance filter, namely, 

ˆ ˆ( | ) ( ( ) ( ) ( )) ( | ) ( ) ( )x t t A t K t C t x t t K t z t    
ˆ ˆ( | ) ( ) ( | )y t t C t x t t . 

(93) 

(94) 

Input Estimation 

As discussed in Chapters 1 and 2, input estimates can be found using 1  = I, and 

substituting ̂  for Δ within (76) yields the solution 

1 1 1 1
2 2
        ˆ ˆ ˆ ˆ( )H H

IE Q Q   . (95) 
As expected, the low-measurement-noise-asymptote of this equaliser is given by 

1
20




lim IER

  . That is, at high signal-to-noise-ratios the equaliser approaches 1
2
 , provided 

the inverse exists. 

The development of a differential equation for the smoothed input estimate, ˆ ( | )w t T , makes 
use of the following formula [27] for the cascade of two systems. Suppose that two linear 

                                                                 

“Ten geographers who think the world is flat will tend to reinforce each others errors….Only a sailor 
can set them straight.” John Ralston Saul 



Smoothing, Filtering and Prediction:
Estimating the Past, Present and Future140

  

systems 1  and 2  have state-space parameters  1 1

1 1

A B
C D
 
 
 

 and 2 2

2 2

A B
C D
 
 
 

, respectively. 

Then 2 1   is parameterised by 
1 1

2 1 2 2 1

2 1 2 2 1

0A B
B C A B D
D C C D D

 
 
 
  

. It follows that ˆ ( | )w t T  = ̂ ( )H HQ t  

is realised by 

1/ 2

1/ 2

1/ 2

( ) ( ) ( ) ( ) 0 ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )

ˆ ( | ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

T T T T

T T T T

T T T T

t A t C t K t C t R t t
t C t K t A t C t R t t

w t T Q t D t K t Q t B t Q t D t R t t

 
 









       
            
         



 . (96) 

in which ( )t   n  is an auxiliary state. 

Procedure 2. Input estimates can be calculated via the following two steps. 
Step 1. Operate 1ˆ   on the measurements z(t) using (89) to obtain α(t).  
Step 2. In lieu of (96), operate the adjoint of (96) on the time-reversed transpose of α(t). 

Then take the time-reversed transpose of the result.  
 

State Estimation 

Smoothed state estimates can be obtained by defining the reference system 1  within (76) 
as 

ˆ ˆ ˆ( | ) ( ) ( | ) ( ) ( | )x t T A t x t T B t w t T  . (97)  

That is, a smoother for state estimation is given by (89), (96) and (97). In frequency-domain 
estimation problems, minimum-order solutions are found by exploiting pole-zero 
cancellations, see Example 1.13 of Chapter 1. Here in the time-domain, (89), (96), (97) is not a 
minimum-order solution and some numerical model order reduction may be required.  

Suppose that C(t) is of rank n and D(t) = 0. In this special case, an n2-order solution for state 
estimation can be obtained from (91) and 

#ˆ ˆ( | ) ( ) ( | )x t T C t y t T , (98)  

where 

  1# ( ) ( ) ( ) ( )T TC t C t C t C t


  (99) 

denotes the Moore-Penrose pseudoinverse. 
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6.5.4.4 Performance 
An analysis of minimum-variance smoother performance requires an identity which is 
described after introducing some additional notation. Let α = 0 w  denote the output of 
linear time-varying system having the realisation  

( ) ( ) ( ) ( )x t A t x t w t   

( ) ( )t x t  , 

(100) 

(101) 

where w(t)  n  and A(t)  n n . By inspection of (100) – (101), the output of the inverse 
system w = 1

0 y  is given by 

( ) ( ) ( ) ( )w t t A t t   . (102)  

Similarly, let β = 0
Hu  denote the output of the adjoint system 0

H , which from Lemma 1 
has the realisation 

( ) ( ) ( ) ( )Tt A t t u t     

( ) ( )t t  . 

(103) 

(104) 

It follows that the output of the inverse system u = 0
H  is given by  

( ) ( ) ( ) ( )Tu t t A t t    . (105)  

The following identity is required in the characterisation of smoother performance 
1

0 0( ) ( ) ( ) ( ) ( ) ( )T HP t A t A t P t P t P t      , (106)  

where P(t) is an arbitrary matrix of compatible dimensions. The above equation can be 
verified by using (102) and (105) within (106). Using the above notation, the exact Wiener-
Hopf factor satisfies 

0 0  ( ) ( ) ( ) ( ) ( ) ( )H T H TC t B t Q t B t C t R t  . (107)  

It is observed below that the approximate Wiener-Hopf factor (86) approaches the exact 
Wiener Hopf-factor whenever the problem is locally stationary, that is, whenever A(t), B(t), 
C(t), Q(t) and R(t) change sufficiently slowly, so that ( )P t  of (87) approaches the zero 
matrix. 

Lemma 10 [8]: In respect of the signal model (1) – (2) with D(t) = 0, E{w(t)} = E{v(t)} = 0, 
E{w(t)wT(t)} = Q(t), E{v(t)vT(t)} = R(t), E{w(t)vT(t)} = 0 and the quantities defined above, 

0 0    H H H TC t P t C tˆ ˆ ( ) ( ) ( )  . (108) 
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Hopf factor satisfies 

0 0  ( ) ( ) ( ) ( ) ( ) ( )H T H TC t B t Q t B t C t R t  . (107)  

It is observed below that the approximate Wiener-Hopf factor (86) approaches the exact 
Wiener Hopf-factor whenever the problem is locally stationary, that is, whenever A(t), B(t), 
C(t), Q(t) and R(t) change sufficiently slowly, so that ( )P t  of (87) approaches the zero 
matrix. 

Lemma 10 [8]: In respect of the signal model (1) – (2) with D(t) = 0, E{w(t)} = E{v(t)} = 0, 
E{w(t)wT(t)} = Q(t), E{v(t)vT(t)} = R(t), E{w(t)vT(t)} = 0 and the quantities defined above, 

0 0    H H H TC t P t C tˆ ˆ ( ) ( ) ( )  . (108) 

                                                                 

“Every great advance in natural knowledge has involved the absolute rejection of authority.” Thomas 
Henry Huxley 
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systems 1  and 2  have state-space parameters  1 1

1 1

A B
C D
 
 
 

 and 2 2

2 2

A B
C D
 
 
 

, respectively. 
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1 1

2 1 2 2 1
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D C C D D
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

 . (96) 

in which ( )t   n  is an auxiliary state. 

Procedure 2. Input estimates can be calculated via the following two steps. 
Step 1. Operate 1ˆ   on the measurements z(t) using (89) to obtain α(t).  
Step 2. In lieu of (96), operate the adjoint of (96) on the time-reversed transpose of α(t). 
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State Estimation 
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ˆ ˆ ˆ( | ) ( ) ( | ) ( ) ( | )x t T A t x t T B t w t T  . (97)  
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#ˆ ˆ( | ) ( ) ( | )x t T C t y t T , (98)  
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  1# ( ) ( ) ( ) ( )T TC t C t C t C t


  (99) 

denotes the Moore-Penrose pseudoinverse. 

 
                                                                 

“In questions of science, the authority of a thousand is not worth the humble reasoning of a single 
individual.” Galileo Galilei 

  

6.5.4.4 Performance 
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where P(t) is an arbitrary matrix of compatible dimensions. The above equation can be 
verified by using (102) and (105) within (106). Using the above notation, the exact Wiener-
Hopf factor satisfies 

0 0  ( ) ( ) ( ) ( ) ( ) ( )H T H TC t B t Q t B t C t R t  . (107)  

It is observed below that the approximate Wiener-Hopf factor (86) approaches the exact 
Wiener Hopf-factor whenever the problem is locally stationary, that is, whenever A(t), B(t), 
C(t), Q(t) and R(t) change sufficiently slowly, so that ( )P t  of (87) approaches the zero 
matrix. 

Lemma 10 [8]: In respect of the signal model (1) – (2) with D(t) = 0, E{w(t)} = E{v(t)} = 0, 
E{w(t)wT(t)} = Q(t), E{v(t)vT(t)} = R(t), E{w(t)vT(t)} = 0 and the quantities defined above, 

0 0    H H H TC t P t C tˆ ˆ ( ) ( ) ( )  . (108) 

                                                                 

“Every great advance in natural knowledge has involved the absolute rejection of authority.” Thomas 
Henry Huxley 
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Proof: The approximate Wiener-Hopf factor may be written as ̂  = 1 2
0

/( ) ( ) ( )C t K t R t  + 1 2R t/ ( ) . 

It is easily shown that Hˆ ˆ  = 0 0
( ) ( HC t P   + 1

0
 P  + 0( ) ( ) ( )) ( )T H TK t R t K t C t  and using (106) 

gives Hˆ ˆ  = 0( ) ( ( ) ( ) ( )TC t B t Q t B t    0
( ) ( )H TP t C t  + R(t). The result follows by comparing 

ˆ ˆ H  and (107).                                                                                                                                      □ 

Consequently, the minimum-variance smoother (88) achieves the best-possible estimator 
performance, namely 2 2 2

H
ei ei   = 0, whenever the problem is locally stationary. 

Lemma 11 [8]: The output estimation smoother (88) satisfies 

1 1
2 0 0

      H H H T
ei R t C t P t C t( )[( ) ( ( ) ( ) ( )) ]   . (109) 

Proof: Substituting (88) into (77) yields 

1 1
2

     ˆ ˆ( )[( ) ( ) ]H H
ei R t . (110) 

The result is now immediate from (108) and (110).                                                                               □ 

Conditions for the convergence of the Riccati difference equation solution (87) and hence the 
asymptotic optimality of the smoother (88) are set out below. 

Lemma 12 [8]: Let S(t) =CT(t)R−1(t)C(t). If( i) there exist solutions P(t) ≥ P(t+δt) of (87) for a t > δt 
> 0; and 

   (ii) 
( ) ( )
( ) ( )T

Q t A t
A t S t
 
  

≥
( ) ( )
( ) ( )

t t
T

t t

Q t A t
A t S t

 
 

  
    

 
(111) 

for all t > δt then 

2 2 2
0


lim H

ei eit
  . (112) 

Proof: Conditions (i) and (ii) together with Theorem 1 imply P(t) ≥ P(t+δt) for all t > δt  and 


lim ( )

t
P t  = 0. The claim (112) is now immediate from Lemma 11.                                                     □ 

 

6.5.5 Performance Comparison 
The following scalar time-invariant examples compare the performance of the minimum-
variance filter (92), maximum-likelihood smoother (50), Fraser-Potter smoother (73) and 
minimum-variance smoother (88) under Gaussian and nongaussian noise conditions. 

Example 5 [9]. Suppose that A = – 1 and B = C = Q = 1. Simulations were conducted using T 
= 100 s, dt = 1 ms and 1000 realisations of Gaussian noise processes. The mean-square-error 
(MSE) exhibited by the filter and smoothers as a function of the input signal-to-noise ratio 

                                                                 

“The definition of insanity is doing the same thing over and over again and expecting different results.” 
Albert Einstein 

  

(SNR) is shown in Fig. 2. As expected, it can be seen that the smoothers outperform the 
filter. Although the minimum-variance smoother exhibits the lowest mean-square error, the 
performance benefit diminishes at high signal-to-noise ratios. 
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Example 6 [9]. Suppose instead that the process noise is the unity-variance deterministic 
signal w(t) = 1 

sin( )sin( ) tt , where 2 sin( )t  denotes the sample variance of sin(t). The results of 
simulations employing the sinusoidal process noise and Gaussian measurement noise are 
shown in Fig. 3. Once again, the smoothers exhibit better performance than the filter. It can 
be seen that the minimum-variance smoother provides the best mean-square-error 
performance. The minimum-variance smoother appears to be less perturbed by nongaussian 
noises because it does not rely on assumptions about the underlying distributions. 
 

6.6 Conclusion 
The fixed-point smoother produces state estimates at some previous point in time,  that is, 

 1ˆ ˆ( ) ( ) ( ) ( ) ( ) ( ) ( | )Tt t C t R t z t C t x t t    , 

where Σ(t) is the smoother error covariance. 

In fixed-lag smoothing, state estimates are calculated at a fixed time delay τ behind  the 
current measurements. This smoother has the form 

 1ˆ ˆ ˆ ˆ( | ) ( ) ( | ) ( ) ( ) ( ) ( ) ( | ) ( | )Tx t t A t x t t B t Q t B t P t x t t x t t          

                                               1 ˆ( ) ( , ) ( ) ( ) ( ) ( ) ( )T TP t t t C t R t z t C t x t              ,   

where Ф(t + τ, t) is the transition matrix of the minimum-variance filter. 
                                                                 

“He who rejects change is the architect of decay. The only human institution which rejects progress is 
the cemetery.” James Harold Wilson 

Figure 2. MSE versus SNR for Example 4: (i) 
minimum-variance smoother, (ii) Fraser-Potter 
smoother, (iii) maximum-likelihood smoother and 
(iv) minimum-variance filter.  

Figure 3. MSE versus SNR for Example 5: (i) 
minimum-variance smoother, (ii) Fraser-Potter 
smoother, (iii) maximum-likelihood smoother 
and (iv) minimum-variance filter.  
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Proof: The approximate Wiener-Hopf factor may be written as ̂  = 1 2
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( ) ( HC t P   + 1

0
 P  + 0( ) ( ) ( )) ( )T H TK t R t K t C t  and using (106) 

gives Hˆ ˆ  = 0( ) ( ( ) ( ) ( )TC t B t Q t B t    0
( ) ( )H TP t C t  + R(t). The result follows by comparing 

ˆ ˆ H  and (107).                                                                                                                                      □ 

Consequently, the minimum-variance smoother (88) achieves the best-possible estimator 
performance, namely 2 2 2

H
ei ei   = 0, whenever the problem is locally stationary. 

Lemma 11 [8]: The output estimation smoother (88) satisfies 

1 1
2 0 0
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1 1
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     ˆ ˆ( )[( ) ( ) ]H H
ei R t . (110) 

The result is now immediate from (108) and (110).                                                                               □ 

Conditions for the convergence of the Riccati difference equation solution (87) and hence the 
asymptotic optimality of the smoother (88) are set out below. 

Lemma 12 [8]: Let S(t) =CT(t)R−1(t)C(t). If( i) there exist solutions P(t) ≥ P(t+δt) of (87) for a t > δt 
> 0; and 
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for all t > δt then 
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Proof: Conditions (i) and (ii) together with Theorem 1 imply P(t) ≥ P(t+δt) for all t > δt  and 


lim ( )

t
P t  = 0. The claim (112) is now immediate from Lemma 11.                                                     □ 

 

6.5.5 Performance Comparison 
The following scalar time-invariant examples compare the performance of the minimum-
variance filter (92), maximum-likelihood smoother (50), Fraser-Potter smoother (73) and 
minimum-variance smoother (88) under Gaussian and nongaussian noise conditions. 

Example 5 [9]. Suppose that A = – 1 and B = C = Q = 1. Simulations were conducted using T 
= 100 s, dt = 1 ms and 1000 realisations of Gaussian noise processes. The mean-square-error 
(MSE) exhibited by the filter and smoothers as a function of the input signal-to-noise ratio 
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(SNR) is shown in Fig. 2. As expected, it can be seen that the smoothers outperform the 
filter. Although the minimum-variance smoother exhibits the lowest mean-square error, the 
performance benefit diminishes at high signal-to-noise ratios. 
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Example 6 [9]. Suppose instead that the process noise is the unity-variance deterministic 
signal w(t) = 1 

sin( )sin( ) tt , where 2 sin( )t  denotes the sample variance of sin(t). The results of 
simulations employing the sinusoidal process noise and Gaussian measurement noise are 
shown in Fig. 3. Once again, the smoothers exhibit better performance than the filter. It can 
be seen that the minimum-variance smoother provides the best mean-square-error 
performance. The minimum-variance smoother appears to be less perturbed by nongaussian 
noises because it does not rely on assumptions about the underlying distributions. 
 

6.6 Conclusion 
The fixed-point smoother produces state estimates at some previous point in time,  that is, 

 1ˆ ˆ( ) ( ) ( ) ( ) ( ) ( ) ( | )Tt t C t R t z t C t x t t    , 

where Σ(t) is the smoother error covariance. 

In fixed-lag smoothing, state estimates are calculated at a fixed time delay τ behind  the 
current measurements. This smoother has the form 

 1ˆ ˆ ˆ ˆ( | ) ( ) ( | ) ( ) ( ) ( ) ( ) ( | ) ( | )Tx t t A t x t t B t Q t B t P t x t t x t t          
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where Ф(t + τ, t) is the transition matrix of the minimum-variance filter. 
                                                                 

“He who rejects change is the architect of decay. The only human institution which rejects progress is 
the cemetery.” James Harold Wilson 

Figure 2. MSE versus SNR for Example 4: (i) 
minimum-variance smoother, (ii) Fraser-Potter 
smoother, (iii) maximum-likelihood smoother and 
(iv) minimum-variance filter.  

Figure 3. MSE versus SNR for Example 5: (i) 
minimum-variance smoother, (ii) Fraser-Potter 
smoother, (iii) maximum-likelihood smoother 
and (iv) minimum-variance filter.  
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Proof: The approximate Wiener-Hopf factor may be written as ̂  = 1 2
0

/( ) ( ) ( )C t K t R t  + 1 2R t/ ( ) . 

It is easily shown that Hˆ ˆ  = 0 0
( ) ( HC t P   + 1

0
 P  + 0( ) ( ) ( )) ( )T H TK t R t K t C t  and using (106) 

gives Hˆ ˆ  = 0( ) ( ( ) ( ) ( )TC t B t Q t B t    0
( ) ( )H TP t C t  + R(t). The result follows by comparing 

ˆ ˆ H  and (107).                                                                                                                                      □ 

Consequently, the minimum-variance smoother (88) achieves the best-possible estimator 
performance, namely 2 2 2

H
ei ei   = 0, whenever the problem is locally stationary. 

Lemma 11 [8]: The output estimation smoother (88) satisfies 

1 1
2 0 0

      H H H T
ei R t C t P t C t( )[( ) ( ( ) ( ) ( )) ]   . (109) 

Proof: Substituting (88) into (77) yields 
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2

     ˆ ˆ( )[( ) ( ) ]H H
ei R t . (110) 

The result is now immediate from (108) and (110).                                                                               □ 

Conditions for the convergence of the Riccati difference equation solution (87) and hence the 
asymptotic optimality of the smoother (88) are set out below. 

Lemma 12 [8]: Let S(t) =CT(t)R−1(t)C(t). If( i) there exist solutions P(t) ≥ P(t+δt) of (87) for a t > δt 
> 0; and 
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for all t > δt then 
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Proof: Conditions (i) and (ii) together with Theorem 1 imply P(t) ≥ P(t+δt) for all t > δt  and 


lim ( )

t
P t  = 0. The claim (112) is now immediate from Lemma 11.                                                     □ 

 

6.5.5 Performance Comparison 
The following scalar time-invariant examples compare the performance of the minimum-
variance filter (92), maximum-likelihood smoother (50), Fraser-Potter smoother (73) and 
minimum-variance smoother (88) under Gaussian and nongaussian noise conditions. 

Example 5 [9]. Suppose that A = – 1 and B = C = Q = 1. Simulations were conducted using T 
= 100 s, dt = 1 ms and 1000 realisations of Gaussian noise processes. The mean-square-error 
(MSE) exhibited by the filter and smoothers as a function of the input signal-to-noise ratio 
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(SNR) is shown in Fig. 2. As expected, it can be seen that the smoothers outperform the 
filter. Although the minimum-variance smoother exhibits the lowest mean-square error, the 
performance benefit diminishes at high signal-to-noise ratios. 
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Example 6 [9]. Suppose instead that the process noise is the unity-variance deterministic 
signal w(t) = 1 

sin( )sin( ) tt , where 2 sin( )t  denotes the sample variance of sin(t). The results of 
simulations employing the sinusoidal process noise and Gaussian measurement noise are 
shown in Fig. 3. Once again, the smoothers exhibit better performance than the filter. It can 
be seen that the minimum-variance smoother provides the best mean-square-error 
performance. The minimum-variance smoother appears to be less perturbed by nongaussian 
noises because it does not rely on assumptions about the underlying distributions. 
 

6.6 Conclusion 
The fixed-point smoother produces state estimates at some previous point in time,  that is, 

 1ˆ ˆ( ) ( ) ( ) ( ) ( ) ( ) ( | )Tt t C t R t z t C t x t t    , 

where Σ(t) is the smoother error covariance. 

In fixed-lag smoothing, state estimates are calculated at a fixed time delay τ behind  the 
current measurements. This smoother has the form 
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where Ф(t + τ, t) is the transition matrix of the minimum-variance filter. 
                                                                 

“He who rejects change is the architect of decay. The only human institution which rejects progress is 
the cemetery.” James Harold Wilson 

Figure 2. MSE versus SNR for Example 4: (i) 
minimum-variance smoother, (ii) Fraser-Potter 
smoother, (iii) maximum-likelihood smoother and 
(iv) minimum-variance filter.  

Figure 3. MSE versus SNR for Example 5: (i) 
minimum-variance smoother, (ii) Fraser-Potter 
smoother, (iii) maximum-likelihood smoother 
and (iv) minimum-variance filter.  
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Three common fixed-interval smoothers are listed in Table 1, which are for retrospective (or 
off-line) data analysis. The Rauch-Tung-Streibel (RTS) smoother and Fraser-Potter (FP) 
smoother are minimum-order solutions. The RTS smoother differential equation evolves 
backward in time, in which ( )G   = 1( ) ( ) ( ) ( )TB Q B P     is the smoothing gain. The FP 
smoother employs a linear combination of forward state estimates and backward state 
estimates obtained by running a filter over the time-reversed measurements. The optimum 
minimum-variance solution, in which ( )A t  = ( ) ( ) ( )A t K t C t , where K(t) is the predictor 
gain, involves a cascade of forward and adjoint predictions. It can be seen that the optimum 
minimum-variance smoother is the most complex and so any performance benefits need to 
be reconciled with the increased calculation cost.  
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Table 1. Continuous-time fixed-interval smoothers. 

The output estimation error covariance for the general estimation problem can be written as 
H
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ei ei  , where 1 1
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ei ei   specifies a lower performance bound and 
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Fields 

  

2 2
H

ei ei   is a function of the estimator solution. The optimal smoother solution achieves 

2 2 2
{ }H

ei ei    = 0 and provides the best mean-square-error performance, provided of course 

that the problem assumptions are correct. The minimum-variance smoother solution also 
attains best-possible performance whenever the problem is locally stationary, that is, when 
A(t), B(t), C(t), Q(t) and R(t) change sufficiently slowly. 
 

6.7 Problems 
Problem 1. Write down augmented state-space matrices A(a)(t), B(a)(t) and C(a)(t) for the 
continuous-time fixed-point smoother problem. 
(i) Substitute the above matrices into ( ) ( )aP t  = ( ) ( )( ) ( )a aA t P t  + ( ) ( )( )( ) ( )a a TP t A t  − 

( ) ( ) 1 ( ) ( )( )( ) ( ) ( ) ( ) ( )a a T a aP t C t R t C t P t  + ( ) ( )( ) ( )( ( ))a a TB t Q t B t  to obtain the component 
Riccati differential equations. 

(ii)  Develop expressions for the continuous-time fixed-point smoother estimate and the 
smoother gain. 

Problem 2. The Hamiltonian equations (60) were derived from the forward version of the 
maximum likelihood smoother (54). Derive the alternative form  
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from the backward smoother (50). Hint: use the backward Kalman-Bucy filter and the 
backward Riccati equation.  

Problem 3. It is shown in [6] and [17] that the intermediate variable within the Hamiltonian 
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“It is not the strongest of the species that survive, nor the most intelligent, but the most responsive to 
change.” Charles Robert Darwin 



Smoothing, Filtering and Prediction:
Estimating the Past, Present and Future144

  

Three common fixed-interval smoothers are listed in Table 1, which are for retrospective (or 
off-line) data analysis. The Rauch-Tung-Streibel (RTS) smoother and Fraser-Potter (FP) 
smoother are minimum-order solutions. The RTS smoother differential equation evolves 
backward in time, in which ( )G   = 1( ) ( ) ( ) ( )TB Q B P     is the smoothing gain. The FP 
smoother employs a linear combination of forward state estimates and backward state 
estimates obtained by running a filter over the time-reversed measurements. The optimum 
minimum-variance solution, in which ( )A t  = ( ) ( ) ( )A t K t C t , where K(t) is the predictor 
gain, involves a cascade of forward and adjoint predictions. It can be seen that the optimum 
minimum-variance smoother is the most complex and so any performance benefits need to 
be reconciled with the increased calculation cost.  
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ei ei   is a function of the estimator solution. The optimal smoother solution achieves 
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ei ei    = 0 and provides the best mean-square-error performance, provided of course 

that the problem assumptions are correct. The minimum-variance smoother solution also 
attains best-possible performance whenever the problem is locally stationary, that is, when 
A(t), B(t), C(t), Q(t) and R(t) change sufficiently slowly. 
 

6.7 Problems 
Problem 1. Write down augmented state-space matrices A(a)(t), B(a)(t) and C(a)(t) for the 
continuous-time fixed-point smoother problem. 
(i) Substitute the above matrices into ( ) ( )aP t  = ( ) ( )( ) ( )a aA t P t  + ( ) ( )( )( ) ( )a a TP t A t  − 

( ) ( ) 1 ( ) ( )( )( ) ( ) ( ) ( ) ( )a a T a aP t C t R t C t P t  + ( ) ( )( ) ( )( ( ))a a TB t Q t B t  to obtain the component 
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from the backward smoother (50). Hint: use the backward Kalman-Bucy filter and the 
backward Riccati equation.  
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Three common fixed-interval smoothers are listed in Table 1, which are for retrospective (or 
off-line) data analysis. The Rauch-Tung-Streibel (RTS) smoother and Fraser-Potter (FP) 
smoother are minimum-order solutions. The RTS smoother differential equation evolves 
backward in time, in which ( )G   = 1( ) ( ) ( ) ( )TB Q B P     is the smoothing gain. The FP 
smoother employs a linear combination of forward state estimates and backward state 
estimates obtained by running a filter over the time-reversed measurements. The optimum 
minimum-variance solution, in which ( )A t  = ( ) ( ) ( )A t K t C t , where K(t) is the predictor 
gain, involves a cascade of forward and adjoint predictions. It can be seen that the optimum 
minimum-variance smoother is the most complex and so any performance benefits need to 
be reconciled with the increased calculation cost.  
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ei ei    = 0 and provides the best mean-square-error performance, provided of course 

that the problem assumptions are correct. The minimum-variance smoother solution also 
attains best-possible performance whenever the problem is locally stationary, that is, when 
A(t), B(t), C(t), Q(t) and R(t) change sufficiently slowly. 
 

6.7 Problems 
Problem 1. Write down augmented state-space matrices A(a)(t), B(a)(t) and C(a)(t) for the 
continuous-time fixed-point smoother problem. 
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Riccati differential equations. 

(ii)  Develop expressions for the continuous-time fixed-point smoother estimate and the 
smoother gain. 

Problem 2. The Hamiltonian equations (60) were derived from the forward version of the 
maximum likelihood smoother (54). Derive the alternative form  
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Problem 3. It is shown in [6] and [17] that the intermediate variable within the Hamiltonian 
equations (60) is given by 

1 ˆ( | ) ( , ) ( ) ( )( ( ) ( ) ( | ))
T T T

t
t T s t C s R s z s C s x s s ds    , 
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Problem 5. Suppose 0  is a system parameterised by 
( )

0
A t I

I
 
 
 

, show that ( ) ( )TP t A t  -  

( ) ( )A t P t  = 0( ) HP t   + 1
0 ( )P t . 

Problem 6. The optimum minimum-variance smoother was developed by finding the 
solution that minimises 2 2 2

Hy y  . Use the same completing-the-square approach to find the 

optimum minimum-variance filter. (Hint: Find the solution that minimises 2 2 2

Ty y  .) 

Problem 7 [9]. Derive the output estimation minimum-variance filter by finding a solution 
Let  a   , b = 1, c    and d = 0 denote the time-invariant state-space parameters of the 
plant  . Denote the error covariance, gain of the Kalman filter and gain of the maximum-
likelihood smoother by p, k and g, respectively. Show that 

H1(s) =  k(s–a+kc)-1, 

H2(s) =  cgk(–s–a+g)-1(s–a+kc)-1, 

H3(s) =  kc(–a + kc)(s a + kc)-1(–s –a + kc)-1, 

H4(s) = ((–a + kc)2 – (–a + kc – k)2)(s – a + kc)-1(–s –a + kc)-1     

are the transfer functions of the Kalman filter, maximum-likelihood smoother, the Fraser-
Potter smoother and the minimum variance smoother, respectively.  

Problem 8.  

(i) Develop a state-space formulation of an approximate Wiener-Hopf factor for the 
case when the plant includes a nonzero direct feedthrough matrix (that is, D(t) ≠ 0). 

(ii) Use the matrix inversion lemma to obtain the inverse of the approximate Wiener-
Hopf factor for the minimum-variance smoother. 

 

6.8 Glossary  
 

p(x(t)) Probability density function of a continuous random variable x(t). 

( ) ~ ( , )xxx t R  The random variable x(t) has a normal distribution with mean μ 
and covariance Rxx. 

f(x(t)) Cumulative distribution function or likelihood function of x(t). 

ˆ( | )x t t   Estimate of x(t) at time t given data at fixed time lag τ. 

ˆ( | )x t T  Estimate of x(t) at time t given data over a fixed interval T. 

ˆ ( | )w t T  Estimate of w(t) at time t given data over a fixed interval T. 

 

                                                                 

“Once a new technology rolls over you, if you’re not part of the steamroller, you’re part of the road.” 
Stewart Brand 

  

G(t) Gain of the minimum-variance smoother developed by Rauch, 
Tung and Striebel. 

 

ei  A linear system that operates on the inputs i = 
TT Tv w    and 

generates the output estimation error e. 
# ( )C t  Moore-Penrose pseudoinverse of C(t). 

Δ The Wiener-Hopf factor which satisfies H  = HQ   + R. 

̂  Approximate Wiener-Hopf factor. 

ˆ H  The adjoint of ̂ . 

ˆ H  The inverse of ˆ H . 

ˆ{ }H
  The causal part of ˆ H . 
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Problem 5. Suppose 0  is a system parameterised by 
( )

0
A t I

I
 
 
 

, show that ( ) ( )TP t A t  -  

( ) ( )A t P t  = 0( ) HP t   + 1
0 ( )P t . 

Problem 6. The optimum minimum-variance smoother was developed by finding the 
solution that minimises 2 2 2

Hy y  . Use the same completing-the-square approach to find the 

optimum minimum-variance filter. (Hint: Find the solution that minimises 2 2 2

Ty y  .) 

Problem 7 [9]. Derive the output estimation minimum-variance filter by finding a solution 
Let  a   , b = 1, c    and d = 0 denote the time-invariant state-space parameters of the 
plant  . Denote the error covariance, gain of the Kalman filter and gain of the maximum-
likelihood smoother by p, k and g, respectively. Show that 

H1(s) =  k(s–a+kc)-1, 

H2(s) =  cgk(–s–a+g)-1(s–a+kc)-1, 

H3(s) =  kc(–a + kc)(s a + kc)-1(–s –a + kc)-1, 

H4(s) = ((–a + kc)2 – (–a + kc – k)2)(s – a + kc)-1(–s –a + kc)-1     

are the transfer functions of the Kalman filter, maximum-likelihood smoother, the Fraser-
Potter smoother and the minimum variance smoother, respectively.  

Problem 8.  

(i) Develop a state-space formulation of an approximate Wiener-Hopf factor for the 
case when the plant includes a nonzero direct feedthrough matrix (that is, D(t) ≠ 0). 

(ii) Use the matrix inversion lemma to obtain the inverse of the approximate Wiener-
Hopf factor for the minimum-variance smoother. 

 

6.8 Glossary  
 

p(x(t)) Probability density function of a continuous random variable x(t). 

( ) ~ ( , )xxx t R  The random variable x(t) has a normal distribution with mean μ 
and covariance Rxx. 

f(x(t)) Cumulative distribution function or likelihood function of x(t). 

ˆ( | )x t t   Estimate of x(t) at time t given data at fixed time lag τ. 

ˆ( | )x t T  Estimate of x(t) at time t given data over a fixed interval T. 

ˆ ( | )w t T  Estimate of w(t) at time t given data over a fixed interval T. 

 

                                                                 

“Once a new technology rolls over you, if you’re not part of the steamroller, you’re part of the road.” 
Stewart Brand 

  

G(t) Gain of the minimum-variance smoother developed by Rauch, 
Tung and Striebel. 

 

ei  A linear system that operates on the inputs i = 
TT Tv w    and 

generates the output estimation error e. 
# ( )C t  Moore-Penrose pseudoinverse of C(t). 

Δ The Wiener-Hopf factor which satisfies H  = HQ   + R. 

̂  Approximate Wiener-Hopf factor. 

ˆ H  The adjoint of ̂ . 

ˆ H  The inverse of ˆ H . 

ˆ{ }H
  The causal part of ˆ H . 
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Problem 5. Suppose 0  is a system parameterised by 
( )

0
A t I

I
 
 
 

, show that ( ) ( )TP t A t  -  

( ) ( )A t P t  = 0( ) HP t   + 1
0 ( )P t . 

Problem 6. The optimum minimum-variance smoother was developed by finding the 
solution that minimises 2 2 2

Hy y  . Use the same completing-the-square approach to find the 

optimum minimum-variance filter. (Hint: Find the solution that minimises 2 2 2

Ty y  .) 

Problem 7 [9]. Derive the output estimation minimum-variance filter by finding a solution 
Let  a   , b = 1, c    and d = 0 denote the time-invariant state-space parameters of the 
plant  . Denote the error covariance, gain of the Kalman filter and gain of the maximum-
likelihood smoother by p, k and g, respectively. Show that 

H1(s) =  k(s–a+kc)-1, 

H2(s) =  cgk(–s–a+g)-1(s–a+kc)-1, 

H3(s) =  kc(–a + kc)(s a + kc)-1(–s –a + kc)-1, 

H4(s) = ((–a + kc)2 – (–a + kc – k)2)(s – a + kc)-1(–s –a + kc)-1     

are the transfer functions of the Kalman filter, maximum-likelihood smoother, the Fraser-
Potter smoother and the minimum variance smoother, respectively.  

Problem 8.  

(i) Develop a state-space formulation of an approximate Wiener-Hopf factor for the 
case when the plant includes a nonzero direct feedthrough matrix (that is, D(t) ≠ 0). 

(ii) Use the matrix inversion lemma to obtain the inverse of the approximate Wiener-
Hopf factor for the minimum-variance smoother. 

 

6.8 Glossary  
 

p(x(t)) Probability density function of a continuous random variable x(t). 

( ) ~ ( , )xxx t R  The random variable x(t) has a normal distribution with mean μ 
and covariance Rxx. 

f(x(t)) Cumulative distribution function or likelihood function of x(t). 

ˆ( | )x t t   Estimate of x(t) at time t given data at fixed time lag τ. 

ˆ( | )x t T  Estimate of x(t) at time t given data over a fixed interval T. 

ˆ ( | )w t T  Estimate of w(t) at time t given data over a fixed interval T. 

 

                                                                 

“Once a new technology rolls over you, if you’re not part of the steamroller, you’re part of the road.” 
Stewart Brand 

  

G(t) Gain of the minimum-variance smoother developed by Rauch, 
Tung and Striebel. 

 

ei  A linear system that operates on the inputs i = 
TT Tv w    and 

generates the output estimation error e. 
# ( )C t  Moore-Penrose pseudoinverse of C(t). 

Δ The Wiener-Hopf factor which satisfies H  = HQ   + R. 

̂  Approximate Wiener-Hopf factor. 

ˆ H  The adjoint of ̂ . 

ˆ H  The inverse of ˆ H . 

ˆ{ }H
  The causal part of ˆ H . 
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7 
 

Discrete-Time Smoothing 

1 
7.1. Introduction 
Observations are invariably accompanied by measurement noise and optimal filters are the 
usual solution of choice. Filter performances that fall short of user expectations motivate the 
pursuit of smoother solutions. Smoothers promise useful mean-square-error improvement 
at mid-range signal-to-noise ratios, provided that the assumed model parameters and noise 
statistics are correct. 

In general, discrete-time filters and smoothers are more practical than the continuous-time 
counterparts. Often a designer may be able to value-add by assuming low-order discrete-
time models which bear little or no resemblance to the underlying processes. Continuous-
time approaches may be warranted only when application-specific performance 
considerations outweigh the higher overheads. 

This chapter canvasses the main discrete-time fixed-point, fixed-lag and fixed interval 
smoothing results [1] – [9]. Fixed-point smoothers [1] calculate an improved estimate at a 
prescribed past instant in time. Fixed-lag smoothers [2] – [3] find application where small 
end-to-end delays are tolerable, for example, in press-to-talk communications or receiving 
public broadcasts. Fixed-interval smoothers [4] – [9] dispense with the need to fine tune the 
time of interest or the smoothing lags. They are suited to applications where processes are 
staggered such as delayed control or off-line data analysis. For example, in underground 
coal mining, smoothed position estimates and control signals can be calculated while a 
longwall shearer is momentarily stationary at each end of the face [9]. Similarly, in 
exploration drilling, analyses are typically carried out post-data acquisition. 

The smoother descriptions are organised as follows. Section 7.2 sets out two prerequisites: 
time-varying adjoint systems and Riccati difference equation comparison theorems. Fixed-
point, fixed-lag and fixed-interval smoothers are discussed in Sections 7.3, 7.4 and 7.5, 
respectively. It turns out that the structures of the discrete-time smoothers are essentially the 
same as those of the previously-described continuous-time versions. Differences arise in the 
calculation of Riccati equation solutions and the gain matrices. Consequently, the treatment 

                                                                 

“An inventor is simply a person who doesn't take his education too seriously. You see, from the time a 
person is six years old until he graduates from college he has to take three or four examinations a year. 
If he flunks once, he is out. But an inventor is almost always failing. He tries and fails maybe a thousand 
times. If he succeeds once then he's in. These two things are diametrically opposite. We often say that 
the biggest job we have is to teach a newly hired employee how to fail intelligently. We have to train 
him to experiment over and over and to keep on trying and failing until he learns what will work.” 
Charles Franklin Kettering 
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is somewhat condensed. It is reaffirmed that the above-mentioned smoothers outperform 
the Kalman filter and the minimum-variance smoother provides the best performance. 
 

7.2. Prerequisites 
 

7.2.1 Time-varying Adjoint Systems 
Consider a linear time-varying system,  , operating on an input, w, namely, y =  w. 
Here, w denotes the set of wk over an interval k  [0, N]. It is assumed that : p  → q  has 
the state-space realisation  

1k k k k kx A x B w   , 

k k k k ky C x D w  . 

(1) 

(2) 

As before, the adjoint system, H , satisfies 

<y,  w> =< H y, w> (3)  

for all y  q  and w   p . 

Lemma 1: In respect of the system   described by (1) – (2), with x0 = 0, the adjoint system H  
having the realisation 

1
T T

k k k k kA C u    , 
T T

k k k k kz B D u   , 

(4) 

(5) 

with 0N  , satisfies (3). 

A proof appears in [7] and proceeds similarly to that within Lemma 1 of Chapter 2. The 
simplification Dk = 0 is assumed below unless stated otherwise. 
 

7.2.2  Riccati Equation Comparison 
The ensuing performance comparisons of filters and smoothers require methods for 
comparing the solutions of Riccati difference equations which are developed below. 
Simplified Riccati difference equations which do not involve the Bk and measurement noise 
covariance matrices are considered initially. A change of variables for the more general case 
is stated subsequently. 

Suppose there exist 1t kA     n n , 1t kC  
    p n , 1t kQ  

  = 1
T
t kQ  
   n n  and 1t kP    = 1

T
t kP    

 n n  for a t ≥ 0 and k ≥ 0. Following the approach of Wimmer [10], define the Riccati 
operator 

       1 1 1 1 1 1 1 1( , , , ) T
t k t k t k t k t k t k t k t kP A C Q A P A Q                     

                                             1
1 1 1 1 1 1 1 1 1( )T T T

t k t k t k t k t k t k t k t k t kA P C I C P C C P A
                      . 

(6) 

                                                                 

“If you’re not failing every now and again, it’s a sign you’re not doing anything very innovative.” 
(Woody) Allen Stewart Konigsberg 

  

Let 1t k   = 1 1 1

1 1

T
t k t k t k

T
t k t k

A C C

Q A
     

   

 
 
   

 

  denote the Hamiltonian matrix corresponding to 

1 1 1 1( , , , )t k t k t k t kP A C Q           and define 
0

0
I

J
I

 
  
 

, in which I is an identity matrix of 

appropriate dimensions. It is known that solutions of (6) are monotonically dependent on 

1kJ   = 1 1

1 1 1

T
t k t k

T
t k t k t k

Q A

A C C
   

     

 
 

  



  . Consider a second Riccati operator employing the same 

initial solution 1t kP    but different state-space parameters 

         1 1( , , , ) T
t k t k t k t k t k t k t k t kP A C Q A P A Q               

                                                     1
1 1 1( )T T T

t k t k t k t k t k t k t k t k t kA P C I C P C C P A
                . 

(7) 

The following theorem, which is due to Wimmer [10], compares the above two Riccati 
operators. 

Theorem 1: [10]: Suppose that 

1 1

1 1 1

T T
t k t k t k t k

T T
t k t k t k t k t k t k

Q A Q A

A C C A C C
     

        

   
   

       

 

     

for a t ≥ 0 and for all k ≥ 0. Then 

1 1 1 1 1( , , , ) ( , , , )t k t k t k t k t k t k t k t kP A C Q P A C Q                   (8)  

for all k ≥ 0. 

The above result underpins the following more general Riccati difference equation 
comparison theorem.  

Theorem 2: [11], [8]: With the above definitions, suppose for a t ≥ 0 and for all k ≥ 0 that: 

(i) there exists a tP  ≥ 1tP   and 

(ii) 1 1

1 1 1

T T
t k t k t k t k

T T
t k t k t k t k t k t k

Q A Q A

A C C A C C
     

        

   
   

       

 

    . 

Then t kP   ≥ 1t kP     for all k ≥ 0. 

Proof: Assumption (i) is the k = 0 case for an induction argument.  For the inductive step, denote 

t kP   = 1 1 1 1( , , , )t k t k t k t kP A C Q           and 1t kP    = ( , , , )t k t k t k t kP A C Q      . Then 
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is somewhat condensed. It is reaffirmed that the above-mentioned smoothers outperform 
the Kalman filter and the minimum-variance smoother provides the best performance. 
 

7.2. Prerequisites 
 

7.2.1 Time-varying Adjoint Systems 
Consider a linear time-varying system,  , operating on an input, w, namely, y =  w. 
Here, w denotes the set of wk over an interval k  [0, N]. It is assumed that : p  → q  has 
the state-space realisation  

1k k k k kx A x B w   , 

k k k k ky C x D w  . 

(1) 

(2) 

As before, the adjoint system, H , satisfies 

<y,  w> =< H y, w> (3)  

for all y  q  and w   p . 

Lemma 1: In respect of the system   described by (1) – (2), with x0 = 0, the adjoint system H  
having the realisation 

1
T T

k k k k kA C u    , 
T T

k k k k kz B D u   , 

(4) 

(5) 

with 0N  , satisfies (3). 

A proof appears in [7] and proceeds similarly to that within Lemma 1 of Chapter 2. The 
simplification Dk = 0 is assumed below unless stated otherwise. 
 

7.2.2  Riccati Equation Comparison 
The ensuing performance comparisons of filters and smoothers require methods for 
comparing the solutions of Riccati difference equations which are developed below. 
Simplified Riccati difference equations which do not involve the Bk and measurement noise 
covariance matrices are considered initially. A change of variables for the more general case 
is stated subsequently. 

Suppose there exist 1t kA     n n , 1t kC  
    p n , 1t kQ  

  = 1
T
t kQ  
   n n  and 1t kP    = 1

T
t kP    

 n n  for a t ≥ 0 and k ≥ 0. Following the approach of Wimmer [10], define the Riccati 
operator 

       1 1 1 1 1 1 1 1( , , , ) T
t k t k t k t k t k t k t k t kP A C Q A P A Q                     

                                             1
1 1 1 1 1 1 1 1 1( )T T T

t k t k t k t k t k t k t k t k t kA P C I C P C C P A
                      . 

(6) 
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Let 1t k   = 1 1 1

1 1

T
t k t k t k

T
t k t k

A C C

Q A
     

   

 
 
   

 

  denote the Hamiltonian matrix corresponding to 

1 1 1 1( , , , )t k t k t k t kP A C Q           and define 
0

0
I

J
I

 
  
 

, in which I is an identity matrix of 

appropriate dimensions. It is known that solutions of (6) are monotonically dependent on 

1kJ   = 1 1

1 1 1

T
t k t k

T
t k t k t k

Q A

A C C
   

     

 
 

  



  . Consider a second Riccati operator employing the same 

initial solution 1t kP    but different state-space parameters 

         1 1( , , , ) T
t k t k t k t k t k t k t k t kP A C Q A P A Q               

                                                     1
1 1 1( )T T T

t k t k t k t k t k t k t k t k t kA P C I C P C C P A
                . 

(7) 

The following theorem, which is due to Wimmer [10], compares the above two Riccati 
operators. 

Theorem 1: [10]: Suppose that 

1 1

1 1 1

T T
t k t k t k t k

T T
t k t k t k t k t k t k

Q A Q A

A C C A C C
     

        

   
   

       

 

     

for a t ≥ 0 and for all k ≥ 0. Then 

1 1 1 1 1( , , , ) ( , , , )t k t k t k t k t k t k t k t kP A C Q P A C Q                   (8)  

for all k ≥ 0. 

The above result underpins the following more general Riccati difference equation 
comparison theorem.  

Theorem 2: [11], [8]: With the above definitions, suppose for a t ≥ 0 and for all k ≥ 0 that: 

(i) there exists a tP  ≥ 1tP   and 

(ii) 1 1

1 1 1

T T
t k t k t k t k

T T
t k t k t k t k t k t k

Q A Q A

A C C A C C
     

        

   
   

       

 

    . 

Then t kP   ≥ 1t kP     for all k ≥ 0. 

Proof: Assumption (i) is the k = 0 case for an induction argument.  For the inductive step, denote 

t kP   = 1 1 1 1( , , , )t k t k t k t kP A C Q           and 1t kP    = ( , , , )t k t k t k t kP A C Q      . Then 
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is somewhat condensed. It is reaffirmed that the above-mentioned smoothers outperform 
the Kalman filter and the minimum-variance smoother provides the best performance. 
 

7.2. Prerequisites 
 

7.2.1 Time-varying Adjoint Systems 
Consider a linear time-varying system,  , operating on an input, w, namely, y =  w. 
Here, w denotes the set of wk over an interval k  [0, N]. It is assumed that : p  → q  has 
the state-space realisation  

1k k k k kx A x B w   , 

k k k k ky C x D w  . 

(1) 

(2) 

As before, the adjoint system, H , satisfies 

<y,  w> =< H y, w> (3)  

for all y  q  and w   p . 

Lemma 1: In respect of the system   described by (1) – (2), with x0 = 0, the adjoint system H  
having the realisation 

1
T T

k k k k kA C u    , 
T T

k k k k kz B D u   , 

(4) 

(5) 

with 0N  , satisfies (3). 

A proof appears in [7] and proceeds similarly to that within Lemma 1 of Chapter 2. The 
simplification Dk = 0 is assumed below unless stated otherwise. 
 

7.2.2  Riccati Equation Comparison 
The ensuing performance comparisons of filters and smoothers require methods for 
comparing the solutions of Riccati difference equations which are developed below. 
Simplified Riccati difference equations which do not involve the Bk and measurement noise 
covariance matrices are considered initially. A change of variables for the more general case 
is stated subsequently. 

Suppose there exist 1t kA     n n , 1t kC  
    p n , 1t kQ  

  = 1
T
t kQ  
   n n  and 1t kP    = 1

T
t kP    

 n n  for a t ≥ 0 and k ≥ 0. Following the approach of Wimmer [10], define the Riccati 
operator 

       1 1 1 1 1 1 1 1( , , , ) T
t k t k t k t k t k t k t k t kP A C Q A P A Q                     

                                             1
1 1 1 1 1 1 1 1 1( )T T T

t k t k t k t k t k t k t k t k t kA P C I C P C C P A
                      . 

(6) 
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Let 1t k   = 1 1 1

1 1

T
t k t k t k

T
t k t k

A C C

Q A
     

   

 
 
   

 

  denote the Hamiltonian matrix corresponding to 

1 1 1 1( , , , )t k t k t k t kP A C Q           and define 
0

0
I

J
I

 
  
 

, in which I is an identity matrix of 

appropriate dimensions. It is known that solutions of (6) are monotonically dependent on 

1kJ   = 1 1

1 1 1

T
t k t k

T
t k t k t k

Q A

A C C
   

     

 
 

  



  . Consider a second Riccati operator employing the same 

initial solution 1t kP    but different state-space parameters 

         1 1( , , , ) T
t k t k t k t k t k t k t k t kP A C Q A P A Q               

                                                     1
1 1 1( )T T T

t k t k t k t k t k t k t k t k t kA P C I C P C C P A
                . 

(7) 

The following theorem, which is due to Wimmer [10], compares the above two Riccati 
operators. 

Theorem 1: [10]: Suppose that 

1 1

1 1 1

T T
t k t k t k t k

T T
t k t k t k t k t k t k

Q A Q A

A C C A C C
     

        

   
   

       

 

     

for a t ≥ 0 and for all k ≥ 0. Then 

1 1 1 1 1( , , , ) ( , , , )t k t k t k t k t k t k t k t kP A C Q P A C Q                   (8)  

for all k ≥ 0. 

The above result underpins the following more general Riccati difference equation 
comparison theorem.  

Theorem 2: [11], [8]: With the above definitions, suppose for a t ≥ 0 and for all k ≥ 0 that: 

(i) there exists a tP  ≥ 1tP   and 

(ii) 1 1

1 1 1

T T
t k t k t k t k

T T
t k t k t k t k t k t k

Q A Q A

A C C A C C
     

        

   
   

       

 

    . 

Then t kP   ≥ 1t kP     for all k ≥ 0. 

Proof: Assumption (i) is the k = 0 case for an induction argument.  For the inductive step, denote 

t kP   = 1 1 1 1( , , , )t k t k t k t kP A C Q           and 1t kP    = ( , , , )t k t k t k t kP A C Q      . Then 
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1 1 1 1 1 1( ( , , , ) ( , , , ))t k t k t k t k t k t k t k t k t k t kP P P A C Q P A C Q                       

         1( ( , , , ) ( , , , ))t k t k t k t k t k t k t k t kP A C Q P A C Q               

(9) 

The first term on the right-hand-side of (9) is non-negative by virtue of Assumption (ii) and Theorem 
1. By appealing to Theorem 2 of Chapter 5, the second term on the right-hand-side of (9) is non-
negative and thus t kP   − 1t kP    ≥ 0.                                                                                                      � 

A change of variables [8] kC  = 1/ 2
k kR C  and kQ  = T

k k kB Q B , allows the application of Theorem 
2 to the more general forms of Riccati differential equations.   
 

7.3  Fixed-Point Smoothing 
 

7.3.1  Solution Derivation 
The development of a discrete-time fixed-point smoother follows the continuous-time case. 
An innovation by Zachrisson [12] involves transforming the smoothing problem into a 
filtering problem that possesses an augmented state. Following the approach in [1], consider 

an augmented state vector ( )a
kx  = k

k

x

 
 
 

 for the signal model 

( ) ( ) ( ) ( )
1

a a a a
k k k k kx A x B w   , 

( ) ( )a a
k k k kz C x v  , 

(10) 
 

(11) 

where ( )a
kA  = 

0
0

kA
I

 
 
 

, ( )a
kB  = 

0
kB 

 
 

 and ( )a
kC  = [Ck  0]. It can be seen that the first component 

of ( )a
kx  is xk, the state of the system xk+1 = Akxk + Bkwk, yk = Ckxk + vk. The second component, 

k , equals xk at time k = τ, that is, k  = xτ. The objective is to calculate an estimate k̂  of k  at 
time k = τ from measurements zk over k  [0, N]. A solution that minimises the variance of 
the estimation error is obtained by employing the standard Kalman filter recursions for the 
signal model (10) – (11). The predicted and corrected states are respectively obtained from 

( ) ( ) ( ) ( ) ( )
/ / 1ˆ ˆ( )a a a a a

k k k k k k k kx I L C x L z   , 

( ) ( ) ( )
1/ /ˆ ˆa a a

k k k k kx A x   

                                                                   ( ) ( ) ( ) ( ) ( )
/ 1ˆ( )a a a a a

k k k k k k kA K C x K z   , 

(12) 

(13) 

(14) 

where Kk = ( ) ( )a a
k kA L  is the predictor gain, ( )a

kL  = ( ) ( ) ( ) ( )
/ 1 / 1( ) ( ( )a a T a a a T

k k k k k k kP C C P C   + Rk)-1 is the filter 
gain, 
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( ) ( ) ( ) ( ) ( )
/ / 1 / 1( ) ( )a a a a T a T

k k k k k k k kP P P C L    (15) 

is the corrected error covariance and 

                             ( ) ( ) ( ) ( ) ( ) ( )
1/ / ( ) ( )a a a a T a a T

k k k k k k k k kP A P A B Q B    

                                       ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
/ 1 / 1( ) ( ) ( ) ( )a a a T a a a T a T a a T

k k k k k k k k k k k kA P A A P C K B Q B     

                                        ( ) ( ) ( ) ( ) ( ) ( ) ( )
/ 1 ( ) ( ) ( ) ( )a a a T a T a T a a T

k k k k k k k k kA P A C K B Q B    

(16) 

 

(17) 

is the predicted error covariance. The above Riccati difference equation is written in the 
partitioned form 

           ( ) 1/ 1/
1/

1/ 1/

T
a k k k k

k k
k k k k

P
P  


 

 
  

  
 

                     / 1 / 1

/ 1 / 1

0
0

T
k k k k k

k k k k

A P
I

 

 

   
        

                          

1
/ 1

0
( )

0 0

T T
T T Tk k
k k k k k k k

A C K K C P C R
I




    
              

0
0

k T
k k

B
Q B

        
,  

(18)  

in which the gains are given by 

( ) 1/ 1 / 1
/ 1

/ 1 / 1

0
( )

0 0

T T
ka Tk k k kk k

k k k k k k
k k k k k

K PA CK C P C R
L I

 


 

      
               

 

                          1/ 1
/ 1

/ 1

( )
T

Tk k k k
k k k k kT

k k k

A P C
C P C R

C





 
  

 
, 

(19)  

see also [1]. The predicted error covariance components can be found from (18), viz., 

1/ /
T T

k k k k k k k k kP A P A B Q B   , 

1/ / 1( )T T T
k k k k k k kA C K     , 

1/ / 1 / 1
T T

k k k k k k k kC L       . 

(20) 

(21) 

(22) 

The sequences (21) – (22) can be initialised with 1/   = /P   and 1/   = /P  . The state 
corrections are obtained from (12), namely, 

/ / 1 / 1ˆ ˆ ˆ( )k k k k k k k k kx x L z C x    , 

/ / 1 / 1
ˆ ˆ ˆ( )k k k k k k k k kL z C x      . 

(23) 

(24) 

Similarly, the state predictions follow from (13), 
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(9) 

The first term on the right-hand-side of (9) is non-negative by virtue of Assumption (ii) and Theorem 
1. By appealing to Theorem 2 of Chapter 5, the second term on the right-hand-side of (9) is non-
negative and thus t kP   − 1t kP    ≥ 0.                                                                                                      � 

A change of variables [8] kC  = 1/ 2
k kR C  and kQ  = T

k k kB Q B , allows the application of Theorem 
2 to the more general forms of Riccati differential equations.   
 

7.3  Fixed-Point Smoothing 
 

7.3.1  Solution Derivation 
The development of a discrete-time fixed-point smoother follows the continuous-time case. 
An innovation by Zachrisson [12] involves transforming the smoothing problem into a 
filtering problem that possesses an augmented state. Following the approach in [1], consider 

an augmented state vector ( )a
kx  = k

k

x

 
 
 

 for the signal model 

( ) ( ) ( ) ( )
1

a a a a
k k k k kx A x B w   , 

( ) ( )a a
k k k kz C x v  , 

(10) 
 

(11) 

where ( )a
kA  = 

0
0

kA
I

 
 
 

, ( )a
kB  = 

0
kB 

 
 

 and ( )a
kC  = [Ck  0]. It can be seen that the first component 

of ( )a
kx  is xk, the state of the system xk+1 = Akxk + Bkwk, yk = Ckxk + vk. The second component, 

k , equals xk at time k = τ, that is, k  = xτ. The objective is to calculate an estimate k̂  of k  at 
time k = τ from measurements zk over k  [0, N]. A solution that minimises the variance of 
the estimation error is obtained by employing the standard Kalman filter recursions for the 
signal model (10) – (11). The predicted and corrected states are respectively obtained from 

( ) ( ) ( ) ( ) ( )
/ / 1ˆ ˆ( )a a a a a

k k k k k k k kx I L C x L z   , 

( ) ( ) ( )
1/ /ˆ ˆa a a

k k k k kx A x   

                                                                   ( ) ( ) ( ) ( ) ( )
/ 1ˆ( )a a a a a

k k k k k k kA K C x K z   , 

(12) 

(13) 

(14) 

where Kk = ( ) ( )a a
k kA L  is the predictor gain, ( )a

kL  = ( ) ( ) ( ) ( )
/ 1 / 1( ) ( ( )a a T a a a T

k k k k k k kP C C P C   + Rk)-1 is the filter 
gain, 
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( ) ( ) ( ) ( ) ( )
/ / 1 / 1( ) ( )a a a a T a T

k k k k k k k kP P P C L    (15) 

is the corrected error covariance and 

                             ( ) ( ) ( ) ( ) ( ) ( )
1/ / ( ) ( )a a a a T a a T

k k k k k k k k kP A P A B Q B    

                                       ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
/ 1 / 1( ) ( ) ( ) ( )a a a T a a a T a T a a T

k k k k k k k k k k k kA P A A P C K B Q B     

                                        ( ) ( ) ( ) ( ) ( ) ( ) ( )
/ 1 ( ) ( ) ( ) ( )a a a T a T a T a a T

k k k k k k k k kA P A C K B Q B    

(16) 

 

(17) 

is the predicted error covariance. The above Riccati difference equation is written in the 
partitioned form 

           ( ) 1/ 1/
1/

1/ 1/

T
a k k k k

k k
k k k k

P
P  


 

 
  

  
 

                     / 1 / 1

/ 1 / 1

0
0

T
k k k k k

k k k k

A P
I

 

 

   
        

                          

1
/ 1

0
( )

0 0

T T
T T Tk k
k k k k k k k

A C K K C P C R
I




    
              

0
0

k T
k k

B
Q B

        
,  

(18)  

in which the gains are given by 

( ) 1/ 1 / 1
/ 1

/ 1 / 1

0
( )

0 0

T T
ka Tk k k kk k

k k k k k k
k k k k k

K PA CK C P C R
L I

 


 

      
               

 

                          1/ 1
/ 1

/ 1

( )
T

Tk k k k
k k k k kT

k k k

A P C
C P C R

C





 
  

 
, 

(19)  

see also [1]. The predicted error covariance components can be found from (18), viz., 

1/ /
T T

k k k k k k k k kP A P A B Q B   , 

1/ / 1( )T T T
k k k k k k kA C K     , 

1/ / 1 / 1
T T

k k k k k k k kC L       . 

(20) 

(21) 

(22) 

The sequences (21) – (22) can be initialised with 1/   = /P   and 1/   = /P  . The state 
corrections are obtained from (12), namely, 

/ / 1 / 1ˆ ˆ ˆ( )k k k k k k k k kx x L z C x    , 

/ / 1 / 1
ˆ ˆ ˆ( )k k k k k k k k kL z C x      . 

(23) 

(24) 

Similarly, the state predictions follow from (13), 
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(9) 

The first term on the right-hand-side of (9) is non-negative by virtue of Assumption (ii) and Theorem 
1. By appealing to Theorem 2 of Chapter 5, the second term on the right-hand-side of (9) is non-
negative and thus t kP   − 1t kP    ≥ 0.                                                                                                      � 

A change of variables [8] kC  = 1/ 2
k kR C  and kQ  = T

k k kB Q B , allows the application of Theorem 
2 to the more general forms of Riccati differential equations.   
 

7.3  Fixed-Point Smoothing 
 

7.3.1  Solution Derivation 
The development of a discrete-time fixed-point smoother follows the continuous-time case. 
An innovation by Zachrisson [12] involves transforming the smoothing problem into a 
filtering problem that possesses an augmented state. Following the approach in [1], consider 

an augmented state vector ( )a
kx  = k

k

x

 
 
 

 for the signal model 

( ) ( ) ( ) ( )
1

a a a a
k k k k kx A x B w   , 

( ) ( )a a
k k k kz C x v  , 

(10) 
 

(11) 

where ( )a
kA  = 

0
0

kA
I

 
 
 

, ( )a
kB  = 

0
kB 

 
 

 and ( )a
kC  = [Ck  0]. It can be seen that the first component 

of ( )a
kx  is xk, the state of the system xk+1 = Akxk + Bkwk, yk = Ckxk + vk. The second component, 

k , equals xk at time k = τ, that is, k  = xτ. The objective is to calculate an estimate k̂  of k  at 
time k = τ from measurements zk over k  [0, N]. A solution that minimises the variance of 
the estimation error is obtained by employing the standard Kalman filter recursions for the 
signal model (10) – (11). The predicted and corrected states are respectively obtained from 

( ) ( ) ( ) ( ) ( )
/ / 1ˆ ˆ( )a a a a a

k k k k k k k kx I L C x L z   , 

( ) ( ) ( )
1/ /ˆ ˆa a a

k k k k kx A x   

                                                                   ( ) ( ) ( ) ( ) ( )
/ 1ˆ( )a a a a a

k k k k k k kA K C x K z   , 

(12) 

(13) 

(14) 

where Kk = ( ) ( )a a
k kA L  is the predictor gain, ( )a

kL  = ( ) ( ) ( ) ( )
/ 1 / 1( ) ( ( )a a T a a a T

k k k k k k kP C C P C   + Rk)-1 is the filter 
gain, 
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( ) ( ) ( ) ( ) ( )
/ / 1 / 1( ) ( )a a a a T a T

k k k k k k k kP P P C L    (15) 

is the corrected error covariance and 

                             ( ) ( ) ( ) ( ) ( ) ( )
1/ / ( ) ( )a a a a T a a T

k k k k k k k k kP A P A B Q B    

                                       ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
/ 1 / 1( ) ( ) ( ) ( )a a a T a a a T a T a a T

k k k k k k k k k k k kA P A A P C K B Q B     

                                        ( ) ( ) ( ) ( ) ( ) ( ) ( )
/ 1 ( ) ( ) ( ) ( )a a a T a T a T a a T

k k k k k k k k kA P A C K B Q B    

(16) 

 

(17) 

is the predicted error covariance. The above Riccati difference equation is written in the 
partitioned form 

           ( ) 1/ 1/
1/

1/ 1/

T
a k k k k

k k
k k k k

P
P  


 

 
  

  
 

                     / 1 / 1

/ 1 / 1

0
0

T
k k k k k

k k k k

A P
I

 

 

   
        

                          

1
/ 1

0
( )

0 0

T T
T T Tk k
k k k k k k k

A C K K C P C R
I




    
              

0
0

k T
k k

B
Q B

        
,  

(18)  

in which the gains are given by 

( ) 1/ 1 / 1
/ 1

/ 1 / 1

0
( )

0 0

T T
ka Tk k k kk k

k k k k k k
k k k k k

K PA CK C P C R
L I

 


 

      
               

 

                          1/ 1
/ 1

/ 1

( )
T

Tk k k k
k k k k kT

k k k

A P C
C P C R

C





 
  

 
, 

(19)  

see also [1]. The predicted error covariance components can be found from (18), viz., 

1/ /
T T

k k k k k k k k kP A P A B Q B   , 

1/ / 1( )T T T
k k k k k k kA C K     , 

1/ / 1 / 1
T T

k k k k k k k kC L       . 

(20) 

(21) 

(22) 

The sequences (21) – (22) can be initialised with 1/   = /P   and 1/   = /P  . The state 
corrections are obtained from (12), namely, 

/ / 1 / 1ˆ ˆ ˆ( )k k k k k k k k kx x L z C x    , 

/ / 1 / 1
ˆ ˆ ˆ( )k k k k k k k k kL z C x      . 

(23) 

(24) 

Similarly, the state predictions follow from (13), 
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1/ /ˆ ˆk k k k kx A x  , 

1/ /
ˆ ˆ
k k k k   . 

(25) 

(26) 

In summary, the fixed-point smoother estimates for k ≥ τ are given by (24), which is 
initialised by /̂   = /x̂  . The smoother gain is calculated as 1

/ 1 / 1( )T T
k k k k k k k k kL C C P C R 

    , 
where / 1k k  is given by (21). 
 

7.3.2  Performance 
It follows from the above that 1/ /k k k k    and so 

1/ 1 / / 1
T T

k k k k k k k kC L       . (27)  

Next, it is argued that the discrete-time fixed-point smoother provides a performance 
improvement over the filter. 

Lemma 2 [1]: In respect of the fixed point smoother (24),  

/ /k kP    . (28)  
Proof: The recursion (22) may be written as the sum 

1
1/ 1 / / 1 / 1 / 1( )

k
T T

k k i i i i i i i i i i
i

C C P C R C 



    



       , (29) 

where /   = /P  . Hence, /P   − 1/ 1k k   = / 1 / 1(
k

T T
i i i i i i i

i
C C P C


 



 + 1
/ 1) i i iR C
  ≥ 0.                

Example 1. Consider a first-order time-invariant plant, in which A = 0.9, B = 1, C = 0.1 and Q 
= 1. An understanding of a fixed-point smoother’s performance can be gleaned by 
examining the plots of the /k k  and /k k  sequences shown in Fig. 1(a) and (b), respectively. 
The bottom lines of the figures correspond to measurement noise covariances of R = 0.01 
and the top lines correspond to R = 5. It can be seen for this example, that the /k k  have 
diminishing impact after about 15 samples beyond the point of interest. From Fig. 1(b), it 
can be seen that smoothing appears most beneficial at mid-range measurement noise power, 
such as R = 0.2, since the plots of /k k  become flatter for R ≥ 1 andR ≤ 0.05. 
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Figure 1(a). Smoother estimation variances /k k

versus k for Example 1. 

Figure 1(b). Smoother estimation variances 

1/ 1 k k  versus k for Example 1.  
 

7.4  Fixed-Lag Smoothing 
 

7.4.1  High-order Solution 
Discrete-time fixed-lag smoothers calculate state estimates, /ˆ k N kx  , at time k given a delay of 
N steps. The objective is to minimise {( k NE x   − / / 1ˆ )(k N k k Nx x   − /ˆ ) }T

k N kx  . A common 
solution approach is to construct an augmented signal model that includes delayed states 
and then apply the standard Kalman filter recursions, see [1] – [3] and the references therein. 
Consider the signal model  

1

1

1 2

1

0 0
0 0
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0 0 0 0

k kk k
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k N N k N
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x xI
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x I x
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


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 (30) 

and 

1

20 0 0

k

k

k k k k

k N

x
x

z C x v

x







 
 
 
     
 
  




. (31)  
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In summary, the fixed-point smoother estimates for k ≥ τ are given by (24), which is 
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Example 1. Consider a first-order time-invariant plant, in which A = 0.9, B = 1, C = 0.1 and Q 
= 1. An understanding of a fixed-point smoother’s performance can be gleaned by 
examining the plots of the /k k  and /k k  sequences shown in Fig. 1(a) and (b), respectively. 
The bottom lines of the figures correspond to measurement noise covariances of R = 0.01 
and the top lines correspond to R = 5. It can be seen for this example, that the /k k  have 
diminishing impact after about 15 samples beyond the point of interest. From Fig. 1(b), it 
can be seen that smoothing appears most beneficial at mid-range measurement noise power, 
such as R = 0.2, since the plots of /k k  become flatter for R ≥ 1 andR ≤ 0.05. 
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k N kx  . A common 
solution approach is to construct an augmented signal model that includes delayed states 
and then apply the standard Kalman filter recursions, see [1] – [3] and the references therein. 
Consider the signal model  

1

1

1 2

1

0 0
0 0

0 0

0 0 0 0

k kk k

k kN

k kN

k N N k N

x xA B
x xI

x xI

x I x





 

  

       
       
       
        
       
       
             




   

 (30) 

and 

1

20 0 0

k

k

k k k k

k N

x
x

z C x v

x







 
 
 
     
 
  




. (31)  

                                                                 

“If the only tool you have is a hammer, you tend to see every problem as a nail.” Abraham Maslow 

Discrete-Time Smoothing 155
  

1/ /ˆ ˆk k k k kx A x  , 

1/ /
ˆ ˆ
k k k k   . 

(25) 

(26) 
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The bottom lines of the figures correspond to measurement noise covariances of R = 0.01 
and the top lines correspond to R = 5. It can be seen for this example, that the /k k  have 
diminishing impact after about 15 samples beyond the point of interest. From Fig. 1(b), it 
can be seen that smoothing appears most beneficial at mid-range measurement noise power, 
such as R = 0.2, since the plots of /k k  become flatter for R ≥ 1 andR ≤ 0.05. 
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By applying the Kalman filter recursions to the above signal model, the predicted states are 
obtained as 
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, (32)  

where K0,k, K1,k, K2,k, …, KN,k denote the submatrices of the predictor gain. Two important 
observations follow from the above equation. First, the desired smoothed estimates 1/ˆ k kx   
… 1/ˆ k N kx    are contained within the one-step-ahead prediction (32). Second, the fixed lag-
smoother (32) inherits the stability properties of the original Kalman filter. 
 

7.4.2  Reduced-order Solution 
Equation (32) is termed a high order solution because the dimension of the above 
augmented state matrix is ( 2) ( 2)N n N n   . Moore [1] – [3] simplified (32) to obtain 
elegant reduced order solution structures as follows. Let  
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denote the predicted error covariance matrix. For 0 ≤ i ≤ N, the smoothed states within (32) 
are given by 

/ / 1 1, / 1ˆ ˆ ˆ( )k i k k i k i k k k k kx x K z C x       , (33) 

where 
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Recursions for the error covariance submatrices of interest are 
( 1,0) ( ,0)
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(36) 

Another rearrangement of (33) − (34) to reduce the calculation cost further is described in 
[1]. 
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7.4.3 Performance 
Two facts that stem from (36) are stated below. 

Lemma 3: In respect of the fixed-lag smoother (33) – (36), the following applies.  
(i) The error-performance improves with increasing smoothing lag. 
(ii) The fixed-lag smoothers outperform the Kalman filter. 

Proof:   
(i) The claim follows by inspection of (34) and (36). 
(ii) The observation follows by recognising that (1,1)

1/k kP   = {( kE x  − /ˆ )(k k kx x  − /ˆ ) }T
k kx  

within (i).                                                                                                                        

It can also be seen from the term ( ,0) (0,0)
1/ 1/(i T T

k k k k k k kP C C P C   + 1 ( ,0)
1/) i
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benefit of smoothing diminishes as Rk becomes large. 
 

7.5  Fixed-Interval Smoothing 
 

7.5.1  The Maximum-Likelihood Smoother 
 

7.5.1.1  Solution Derivation 
The most commonly used fixed-interval smoother is undoubtedly the solution reported by 
Rauch [5] in 1963 and two years later with Tung and Striebel [6]. Although this smoother 
does not minimise the error variance, it has two desirable attributes. First, it is a low-
complexity state estimator. Second, it can provide close to optimal performance whenever 
the accompanying assumptions are reasonable.  

The smoother involves two passes. In the first (forward) pass, filtered state estimates, /ˆ k kx , 
are calculated from  
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where Lk = / 1 / 1(T T
k k k k k k kP C C P C   + Rk)-1 is the filter gain, Kk = AkLk is the predictor gain, in 

which Pk/k = Pk/k-1  − / 1 / 1(T T
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/ 1)k k k kR C P
  and Pk+1/k = /

T
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k k kB Q B . In 
the second backward pass, Rauch, Tung and Striebel calculate smoothed state estimates, 

/ˆ k Nx , from the beautiful one-line recursion 
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is the smoother gain. The above sequence is initialised by /ˆ k Nx  = /ˆ k kx  at k = N. In the first 
public domain appearance of (39), Rauch [5] referred to a Lockheed Missile and Space 
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By applying the Kalman filter recursions to the above signal model, the predicted states are 
obtained as 
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where K0,k, K1,k, K2,k, …, KN,k denote the submatrices of the predictor gain. Two important 
observations follow from the above equation. First, the desired smoothed estimates 1/ˆ k kx   
… 1/ˆ k N kx    are contained within the one-step-ahead prediction (32). Second, the fixed lag-
smoother (32) inherits the stability properties of the original Kalman filter. 
 

7.4.2  Reduced-order Solution 
Equation (32) is termed a high order solution because the dimension of the above 
augmented state matrix is ( 2) ( 2)N n N n   . Moore [1] – [3] simplified (32) to obtain 
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denote the predicted error covariance matrix. For 0 ≤ i ≤ N, the smoothed states within (32) 
are given by 

/ / 1 1, / 1ˆ ˆ ˆ( )k i k k i k i k k k k kx x K z C x       , (33) 

where 
( ,0) (0,0) 1

1, 1/ 1/( )i T T
i k k k k k k k k kK P C C P C R 
    . (34) 

Recursions for the error covariance submatrices of interest are 
( 1,0) ( ,0)

1/ 1/ 0,( )i i T
k k k k k k kP P A K C
   , 

( 1, 1) ( , ) ( ,0)
1/ 1/ 1/ 1,

i i i i i T
k k k k k k k i kP P P C K 
     . 

(35) 

(36) 

Another rearrangement of (33) − (34) to reduce the calculation cost further is described in 
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7.4.3 Performance 
Two facts that stem from (36) are stated below. 

Lemma 3: In respect of the fixed-lag smoother (33) – (36), the following applies.  
(i) The error-performance improves with increasing smoothing lag. 
(ii) The fixed-lag smoothers outperform the Kalman filter. 

Proof:   
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(ii) The observation follows by recognising that (1,1)
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does not minimise the error variance, it has two desirable attributes. First, it is a low-
complexity state estimator. Second, it can provide close to optimal performance whenever 
the accompanying assumptions are reasonable.  

The smoother involves two passes. In the first (forward) pass, filtered state estimates, /ˆ k kx , 
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By applying the Kalman filter recursions to the above signal model, the predicted states are 
obtained as 
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where K0,k, K1,k, K2,k, …, KN,k denote the submatrices of the predictor gain. Two important 
observations follow from the above equation. First, the desired smoothed estimates 1/ˆ k kx   
… 1/ˆ k N kx    are contained within the one-step-ahead prediction (32). Second, the fixed lag-
smoother (32) inherits the stability properties of the original Kalman filter. 
 

7.4.2  Reduced-order Solution 
Equation (32) is termed a high order solution because the dimension of the above 
augmented state matrix is ( 2) ( 2)N n N n   . Moore [1] – [3] simplified (32) to obtain 
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denote the predicted error covariance matrix. For 0 ≤ i ≤ N, the smoothed states within (32) 
are given by 

/ / 1 1, / 1ˆ ˆ ˆ( )k i k k i k i k k k k kx x K z C x       , (33) 

where 
( ,0) (0,0) 1

1, 1/ 1/( )i T T
i k k k k k k k k kK P C C P C R 
    . (34) 

Recursions for the error covariance submatrices of interest are 
( 1,0) ( ,0)

1/ 1/ 0,( )i i T
k k k k k k kP P A K C
   , 

( 1, 1) ( , ) ( ,0)
1/ 1/ 1/ 1,

i i i i i T
k k k k k k k i kP P P C K 
     . 

(35) 

(36) 

Another rearrangement of (33) − (34) to reduce the calculation cost further is described in 
[1]. 
 

                                                                 

“You have to seek the simplest implementation of a problem solution in order to know when you’ve 
reached your limit in that regard. Then it’s easy to make tradeoffs, to back off a little, for performance 
reasons.” Stephen Gary Wozniak 

  

7.4.3 Performance 
Two facts that stem from (36) are stated below. 

Lemma 3: In respect of the fixed-lag smoother (33) – (36), the following applies.  
(i) The error-performance improves with increasing smoothing lag. 
(ii) The fixed-lag smoothers outperform the Kalman filter. 

Proof:   
(i) The claim follows by inspection of (34) and (36). 
(ii) The observation follows by recognising that (1,1)

1/k kP   = {( kE x  − /ˆ )(k k kx x  − /ˆ ) }T
k kx  

within (i).                                                                                                                        

It can also be seen from the term ( ,0) (0,0)
1/ 1/(i T T

k k k k k k kP C C P C   + 1 ( ,0)
1/) i

k k k kR C P
  within (36) that the 

benefit of smoothing diminishes as Rk becomes large. 
 

7.5  Fixed-Interval Smoothing 
 

7.5.1  The Maximum-Likelihood Smoother 
 

7.5.1.1  Solution Derivation 
The most commonly used fixed-interval smoother is undoubtedly the solution reported by 
Rauch [5] in 1963 and two years later with Tung and Striebel [6]. Although this smoother 
does not minimise the error variance, it has two desirable attributes. First, it is a low-
complexity state estimator. Second, it can provide close to optimal performance whenever 
the accompanying assumptions are reasonable.  

The smoother involves two passes. In the first (forward) pass, filtered state estimates, /ˆ k kx , 
are calculated from  

/ / 1 / 1ˆ ˆ ˆ( )k k k k k k k k kx x L z C x    , 

1/ /ˆ ˆk k k k kx A x  , 

(37) 

(38) 

where Lk = / 1 / 1(T T
k k k k k k kP C C P C   + Rk)-1 is the filter gain, Kk = AkLk is the predictor gain, in 

which Pk/k = Pk/k-1  − / 1 / 1(T T
k k k k k k kP C C P C   + 1

/ 1)k k k kR C P
  and Pk+1/k = /

T
k k k kA P A  + T

k k kB Q B . In 
the second backward pass, Rauch, Tung and Striebel calculate smoothed state estimates, 

/ˆ k Nx , from the beautiful one-line recursion 

/ / 1/ 1/ˆ ˆ ˆ ˆ( )k N k k k k N k kx x G x x    , (39) 

where  
1

/ 1 1/
T

k k k k k kG P A P
   (40) 

is the smoother gain. The above sequence is initialised by /ˆ k Nx  = /ˆ k kx  at k = N. In the first 
public domain appearance of (39), Rauch [5] referred to a Lockheed Missile and Space 
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Company Technical Report co-authored with Tung and Striebel. Consequently, (39) is 
commonly known as the Rauch-Tung-Striebel smoother. This smoother was derived in [6] 
using the maximum-likelihood method and an outline is provided below. 

The notation xk ~ ( ,  Rxx) means that a discrete-time random variable xk with mean μ 
and covariance Rxx has the normal (or Gaussian) probability density function   

 1
1/ 2/ 2

1( ) exp 0.5( ) ( )
(2 )

T
k k xx kn

xx

p x x R x
R

 


    . (41) 

Rauch, Tung and Striebel assumed that [6]:  

1/ /ˆ ˆ~ ( , ).T
k N k k N k k kx A x B Q B   

/ / /ˆ ˆ~ ( , ).k N k k k kx x P  

(42) 

(43) 

From the approach of [6], setting the partial derivative of the logarithm of the joint density 
function to zero results in 

 
1 11/ / / /

1/ / / / /
/ /

ˆ ˆ ˆ ˆ( ) ! ( )ˆ ˆ ˆ ˆ0 ( ) ( ) ( )
ˆ ˆ! !

T T
T Tk N k k N k N k N

k k k k N k k N k k k N k N
k N k N

x A x n x xB Q B x A x P x x
x r n r x

 


   
   

  
. 

Rearranging the above equation leads to 
1 1 1

/ / / / /ˆ ˆ ˆ( ( ) ) ( ) )T T T T T
k N k k k k k k k k N k k k k k k k Nx I P A B Q B A x P A B Q B x     . (44) 

From the Matrix Inversion Lemma  
1 1

/( ( ) )T T
k k k k k k k k kI P A B Q B A I G A    . (45) 

The solution (39) is found by substituting (45) into (44). Some further details of Rauch, Tung 
and Striebel’s derivation appear in [13].  
 

7.5.1.2  Alternative Forms 
The smoother gain (40) can be calculated in different ways. Assuming that Ak is non-
singular, it follows from 1/k kP   = /

T
k k k kA P A  + T

k k kB Q B  that 1
/ 1 1/

T
k k k k kP A P

   =  1(kA I  − 
1
1/ )

T
k k k k kB Q B P

  and 

1 1
1/( )T

k k k k k k kG A I B Q B P 
  . (46) 

In applications where difficulties exist with inverting 1/k kP  , it may be preferable to calculate  

1 1 1
/ 1 /

T
k k k k k k kP P C R C  

   . (47) 

It is shown in [15] that the filter (37) – (38) and the smoother (39) can be written in the 
following Hamiltonian form 

                                                                 

“Error is the discipline through which we advance.” William Ellery Channing 

  

1/ /
11

/ 1/

ˆ ˆ 0T
k N k Nk k k k

TT T
k k kk N k Nk k k k

x xA B Q B
C R zC R C A 






      
             

, 
(48) 

(49) 

where λk/N   n  is an auxiliary variable that proceeds backward in time k. The form (48) – 
(49) avoids potential numerical difficulties that may be associated with calculating 1

/ 1k kP
 . 

To confirm the equivalence of (39) and (48) – (49), use the Bryson-Frazier formula [15] 

1/ 1/ 1 1/ 1/ˆ ˆ      k N k k k k k Nx x P , (50) 

and (46) within (48) to obtain 
1 1

/ 1/ 1 1/ 1/ˆ ˆ ˆ 
     T

k N k k k k k k k k k k kx G x A B Q B P x . (51) 

Employing (46) within (51) and rearranging leads to (39). 

In time-invariant problems, steady state solutions for /k kP  and 1/k kP   can be used to 
precalculate the gain (40) before running the smoother. For example, the application of a 
time-invariant version of the Rauch-Tung-Striebel smoother for the restoration of blurred 
images is described in [14]. 
 

7.5.1.3  Performance 
An expression for the smoother error covariance is developed below following the approach 
of [6], [13]. Define the smoother and filter error states as /k Nx  = xk – /ˆ k Nx  and /k kx  = xk – 

/ˆ k kx , respectively. It is assumed that  

/ /ˆ{ } 0T
k k k kE x x  , 

1/ 1/ˆ{ } 0T
k N k NE x x   , 

1/ /ˆ{ } 0T
k N k NE x x  . 

(52) 

(53) 

(54) 

It is straightforward to show that (52) implies 

1/ 1/ 1 1 1/ˆ ˆ{ } { }T T
k k k k k k k kE x x E x x P      . (55) 

Denote Σk/N = 1/ 1/ˆ ˆ{ }T
k N k NE x x  . The assumption (53) implies 

1/ 1/ 1 1 1/ˆ ˆ{ } { }T T
k N k N k k k NE x x E x x       . (56) 

Subtracting xk from both sides of (39) gives  

/ 1/ / /ˆ ˆk N k k N k k k k k kx G x x G A x    . (57) 

By simplifying 
                                                                 

“Great thinkers think inductively, that is, they create solutions and then seek out the problems that the 
solutions might solve; most companies think deductively, that is, defining a problem and then 
investigating different solutions.” Joey Reiman 
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Company Technical Report co-authored with Tung and Striebel. Consequently, (39) is 
commonly known as the Rauch-Tung-Striebel smoother. This smoother was derived in [6] 
using the maximum-likelihood method and an outline is provided below. 

The notation xk ~ ( ,  Rxx) means that a discrete-time random variable xk with mean μ 
and covariance Rxx has the normal (or Gaussian) probability density function   

 1
1/ 2/ 2

1( ) exp 0.5( ) ( )
(2 )

T
k k xx kn

xx

p x x R x
R

 


    . (41) 

Rauch, Tung and Striebel assumed that [6]:  

1/ /ˆ ˆ~ ( , ).T
k N k k N k k kx A x B Q B   

/ / /ˆ ˆ~ ( , ).k N k k k kx x P  

(42) 

(43) 

From the approach of [6], setting the partial derivative of the logarithm of the joint density 
function to zero results in 

 
1 11/ / / /

1/ / / / /
/ /

ˆ ˆ ˆ ˆ( ) ! ( )ˆ ˆ ˆ ˆ0 ( ) ( ) ( )
ˆ ˆ! !

T T
T Tk N k k N k N k N

k k k k N k k N k k k N k N
k N k N

x A x n x xB Q B x A x P x x
x r n r x

 


   
   

  
. 

Rearranging the above equation leads to 
1 1 1

/ / / / /ˆ ˆ ˆ( ( ) ) ( ) )T T T T T
k N k k k k k k k k N k k k k k k k Nx I P A B Q B A x P A B Q B x     . (44) 

From the Matrix Inversion Lemma  
1 1

/( ( ) )T T
k k k k k k k k kI P A B Q B A I G A    . (45) 

The solution (39) is found by substituting (45) into (44). Some further details of Rauch, Tung 
and Striebel’s derivation appear in [13].  
 

7.5.1.2  Alternative Forms 
The smoother gain (40) can be calculated in different ways. Assuming that Ak is non-
singular, it follows from 1/k kP   = /

T
k k k kA P A  + T

k k kB Q B  that 1
/ 1 1/

T
k k k k kP A P

   =  1(kA I  − 
1
1/ )

T
k k k k kB Q B P

  and 

1 1
1/( )T

k k k k k k kG A I B Q B P 
  . (46) 

In applications where difficulties exist with inverting 1/k kP  , it may be preferable to calculate  

1 1 1
/ 1 /

T
k k k k k k kP P C R C  

   . (47) 

It is shown in [15] that the filter (37) – (38) and the smoother (39) can be written in the 
following Hamiltonian form 
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1/ /
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/ 1/

ˆ ˆ 0T
k N k Nk k k k

TT T
k k kk N k Nk k k k

x xA B Q B
C R zC R C A 






      
             

, 
(48) 

(49) 

where λk/N   n  is an auxiliary variable that proceeds backward in time k. The form (48) – 
(49) avoids potential numerical difficulties that may be associated with calculating 1

/ 1k kP
 . 

To confirm the equivalence of (39) and (48) – (49), use the Bryson-Frazier formula [15] 

1/ 1/ 1 1/ 1/ˆ ˆ      k N k k k k k Nx x P , (50) 

and (46) within (48) to obtain 
1 1

/ 1/ 1 1/ 1/ˆ ˆ ˆ 
     T

k N k k k k k k k k k k kx G x A B Q B P x . (51) 

Employing (46) within (51) and rearranging leads to (39). 

In time-invariant problems, steady state solutions for /k kP  and 1/k kP   can be used to 
precalculate the gain (40) before running the smoother. For example, the application of a 
time-invariant version of the Rauch-Tung-Striebel smoother for the restoration of blurred 
images is described in [14]. 
 

7.5.1.3  Performance 
An expression for the smoother error covariance is developed below following the approach 
of [6], [13]. Define the smoother and filter error states as /k Nx  = xk – /ˆ k Nx  and /k kx  = xk – 

/ˆ k kx , respectively. It is assumed that  

/ /ˆ{ } 0T
k k k kE x x  , 

1/ 1/ˆ{ } 0T
k N k NE x x   , 

1/ /ˆ{ } 0T
k N k NE x x  . 

(52) 

(53) 

(54) 

It is straightforward to show that (52) implies 

1/ 1/ 1 1 1/ˆ ˆ{ } { }T T
k k k k k k k kE x x E x x P      . (55) 

Denote Σk/N = 1/ 1/ˆ ˆ{ }T
k N k NE x x  . The assumption (53) implies 

1/ 1/ 1 1 1/ˆ ˆ{ } { }T T
k N k N k k k NE x x E x x       . (56) 

Subtracting xk from both sides of (39) gives  

/ 1/ / /ˆ ˆk N k k N k k k k k kx G x x G A x    . (57) 

By simplifying 
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Company Technical Report co-authored with Tung and Striebel. Consequently, (39) is 
commonly known as the Rauch-Tung-Striebel smoother. This smoother was derived in [6] 
using the maximum-likelihood method and an outline is provided below. 

The notation xk ~ ( ,  Rxx) means that a discrete-time random variable xk with mean μ 
and covariance Rxx has the normal (or Gaussian) probability density function   

 1
1/ 2/ 2

1( ) exp 0.5( ) ( )
(2 )

T
k k xx kn

xx

p x x R x
R

 


    . (41) 

Rauch, Tung and Striebel assumed that [6]:  

1/ /ˆ ˆ~ ( , ).T
k N k k N k k kx A x B Q B   

/ / /ˆ ˆ~ ( , ).k N k k k kx x P  

(42) 

(43) 

From the approach of [6], setting the partial derivative of the logarithm of the joint density 
function to zero results in 

 
1 11/ / / /

1/ / / / /
/ /

ˆ ˆ ˆ ˆ( ) ! ( )ˆ ˆ ˆ ˆ0 ( ) ( ) ( )
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T Tk N k k N k N k N

k k k k N k k N k k k N k N
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x A x n x xB Q B x A x P x x
x r n r x

 


   
   
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. 

Rearranging the above equation leads to 
1 1 1

/ / / / /ˆ ˆ ˆ( ( ) ) ( ) )T T T T T
k N k k k k k k k k N k k k k k k k Nx I P A B Q B A x P A B Q B x     . (44) 

From the Matrix Inversion Lemma  
1 1

/( ( ) )T T
k k k k k k k k kI P A B Q B A I G A    . (45) 

The solution (39) is found by substituting (45) into (44). Some further details of Rauch, Tung 
and Striebel’s derivation appear in [13].  
 

7.5.1.2  Alternative Forms 
The smoother gain (40) can be calculated in different ways. Assuming that Ak is non-
singular, it follows from 1/k kP   = /

T
k k k kA P A  + T

k k kB Q B  that 1
/ 1 1/

T
k k k k kP A P

   =  1(kA I  − 
1
1/ )

T
k k k k kB Q B P

  and 

1 1
1/( )T

k k k k k k kG A I B Q B P 
  . (46) 

In applications where difficulties exist with inverting 1/k kP  , it may be preferable to calculate  

1 1 1
/ 1 /

T
k k k k k k kP P C R C  

   . (47) 

It is shown in [15] that the filter (37) – (38) and the smoother (39) can be written in the 
following Hamiltonian form 
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(48) 

(49) 

where λk/N   n  is an auxiliary variable that proceeds backward in time k. The form (48) – 
(49) avoids potential numerical difficulties that may be associated with calculating 1

/ 1k kP
 . 

To confirm the equivalence of (39) and (48) – (49), use the Bryson-Frazier formula [15] 

1/ 1/ 1 1/ 1/ˆ ˆ      k N k k k k k Nx x P , (50) 

and (46) within (48) to obtain 
1 1

/ 1/ 1 1/ 1/ˆ ˆ ˆ 
     T

k N k k k k k k k k k k kx G x A B Q B P x . (51) 

Employing (46) within (51) and rearranging leads to (39). 

In time-invariant problems, steady state solutions for /k kP  and 1/k kP   can be used to 
precalculate the gain (40) before running the smoother. For example, the application of a 
time-invariant version of the Rauch-Tung-Striebel smoother for the restoration of blurred 
images is described in [14]. 
 

7.5.1.3  Performance 
An expression for the smoother error covariance is developed below following the approach 
of [6], [13]. Define the smoother and filter error states as /k Nx  = xk – /ˆ k Nx  and /k kx  = xk – 

/ˆ k kx , respectively. It is assumed that  

/ /ˆ{ } 0T
k k k kE x x  , 

1/ 1/ˆ{ } 0T
k N k NE x x   , 

1/ /ˆ{ } 0T
k N k NE x x  . 

(52) 

(53) 

(54) 

It is straightforward to show that (52) implies 

1/ 1/ 1 1 1/ˆ ˆ{ } { }T T
k k k k k k k kE x x E x x P      . (55) 

Denote Σk/N = 1/ 1/ˆ ˆ{ }T
k N k NE x x  . The assumption (53) implies 

1/ 1/ 1 1 1/ˆ ˆ{ } { }T T
k N k N k k k NE x x E x x       . (56) 

Subtracting xk from both sides of (39) gives  

/ 1/ / /ˆ ˆk N k k N k k k k k kx G x x G A x    . (57) 

By simplifying 
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/ 1/ / 1/ / / / /ˆ ˆ ˆ ˆ{( )( ) } {( )( ) }T T
k N k k N k N k k N k k k k k k k k k k k kE x G x x G x E x G A x x G A x          (58) 

and using (52), (54) – (56) yields 

/ / 1/ 1/( ) T
k N k k k k k k N kP G P G      . (59) 

It can now be shown that the smoother performs better than the Kalman filter. 

Lemma 4: Suppose that the sequence (59) is initialised with 

1/ 1/N N N NP   , (60) 

Then /k N  ≤ /k kP  for 1 ≤ k ≤ N.  

Proof: The condition (60) implies /N N  = /N NP , which is the initial step for an induction argument. 
For the induction step, (59) is written as 

/ / 1 / 1 / 1 / 1 1/ 1/( ) ( )T T T
k N k k k k k k k k k k k k k k k k N kP P C C P C R C P G P G             (61) 

and thus 1/k N  ≤ 1/k kP  implies /k N  ≤ / 1k kP   and /k N  ≤ /k kP .                                                     � 
 

7.5.2  The Fraser-Potter Smoother 
Forward and backward estimates may be merged using the data fusion formula described in 
Lemma 7 of Chapter 6. A variation of the Fraser-Potter discrete-time fixed-interval smoother 
[4] derived by Monzingo [16] is advocated below. 

In the first pass, a Kalman filter produces corrected state estimates /ˆ k kx  and corrected error 
covariances /k kP  from the measurements. In the second pass, a Kalman filter is employed to 
calculate predicted “backward” state estimates 1/k k   and predicted “backward” error 
covariances 1/k k  from the time-reversed measurements. The smoothed estimate is given 
by [16] 
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Alternatively, Kalman filters could be used to derive predicted quantities, / 1ˆ k kx   and / 1k kP  , 
from the measurements, and backward corrected quantities /k k  and /k k . Smoothed 
estimates may then be obtained from the linear combination 
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It is observed that the fixed-point smoother (24), the fixed-lag smoother (32), maximum-
likelihood smoother (39), the smoothed estimates (62) − (63) and the minimum-variance 
smoother (which is described subsequently) all use each measurement zk once. 

Note that Fraser and Potter’s original smoother solution [4] and Monzingo’s variation [16] 
are ad hoc and no claims are made about attaining a prescribed level of performance. 
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7.5.3.1  Optimal Unrealisable Solutions 
Consider again the estimation problem depicted in Fig. 1 of Chapter 6, where w and v are 
now discrete-time inputs. As in continuous-time, it is desired to construct a solution   is 
that produces output estimates 1ŷ  of a reference system y1 = 1w  from observations z = y2 + 
v, where y2 = 2w . The objective is to minimise the energy of the output estimation error e = 
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Suppose that the time-varying linear system 2  has the realisation (1) – (2). An approximate 

Wiener-Hopf factor ˆ :  p  →  p  is introduced in [7], [13] and defined by 

1/ 2
1

1/ 2
k kk k k

k kk k

x xA K
zC

     
         

, (65) 

                                                                 

“Life is pretty simple. You do stuff. Most fails. Some works. You do more of what works. If it works big, 
others quickly copy it. Then you do something else. The trick is the doing something else.” Leonardo da 
Vinci 



Smoothing, Filtering and Prediction:
Estimating the Past, Present and Future160

  

/ 1/ / 1/ / / / /ˆ ˆ ˆ ˆ{( )( ) } {( )( ) }T T
k N k k N k N k k N k k k k k k k k k k k kE x G x x G x E x G A x x G A x          (58) 

and using (52), (54) – (56) yields 

/ / 1/ 1/( ) T
k N k k k k k k N kP G P G      . (59) 
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Alternatively, Kalman filters could be used to derive predicted quantities, / 1ˆ k kx   and / 1k kP  , 
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are ad hoc and no claims are made about attaining a prescribed level of performance. 

                                                                 

“No great discovery was ever made without a bold guess.” Isaac Newton 

  

 

7.5.3  Minimum-Variance Smoothers 
 

7.5.3.1  Optimal Unrealisable Solutions 
Consider again the estimation problem depicted in Fig. 1 of Chapter 6, where w and v are 
now discrete-time inputs. As in continuous-time, it is desired to construct a solution   is 
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The following discussion is perfunctory since it is a regathering of the results from Chapter 
6. Recall that the output estimation error is generated by eie i �, where ei  = 

2 1       and i = 
v
w
 
 
 

. It has been shown previously that 
H

ei ei = 1 1

H

ei ei   + 

2 2

H

ei ei  where 

2 1 2
H H

ei Q        , (64) 

in which :  p  →  p , is known as the Wiener-Hopf factor, which satisfies H  = 
H

Q   
+ R. From Lemma 8 of Chapter 6, the smoother solution   = 1

2 2 ( )H HQ    achieves the 

best-possible performance, namely, it minimises 
2

Hee  = 
2

H
ei ei . For example, in output 

estimation problems 1  = 2  and the optimal smoother simplifies to OE  = I − 1( )HR  . 
From Lemma 9 of Chapter 6, the (causal) filter solution OE  = 1

2 2{ }H HQ  
    = 

1
2 2{ }H HQ  

    achieves the best-possible filter performance, that is, it minimises 

2 2 2
{ }Hy y 
   = 

2
{ }H

ei ei  . The optimal smoother outperforms the optimal filter since 

2
{ }H

ei ei   ≥ 
2

H
ei ei . The above solutions are termed unrealisable because of the 

difficulty in obtaining Δ when 1  and 2  are time-varying systems. Realisable solutions 
that use an approximate Wiener-Hopf factor in place of  Δ  are presented below. 
 

7.5.3.2  Non-causal Output Estimation 
Suppose that the time-varying linear system 2  has the realisation (1) – (2). An approximate 

Wiener-Hopf factor ˆ :  p  →  p  is introduced in [7], [13] and defined by 

1/ 2
1

1/ 2
k kk k k

k kk k

x xA K
zC

     
         

, (65) 

                                                                 

“Life is pretty simple. You do stuff. Most fails. Some works. You do more of what works. If it works big, 
others quickly copy it. Then you do something else. The trick is the doing something else.” Leonardo da 
Vinci 

Discrete-Time Smoothing 161
  

/ 1/ / 1/ / / / /ˆ ˆ ˆ ˆ{( )( ) } {( )( ) }T T
k N k k N k N k k N k k k k k k k k k k k kE x G x x G x E x G A x x G A x          (58) 

and using (52), (54) – (56) yields 

/ / 1/ 1/( ) T
k N k k k k k k N kP G P G      . (59) 

It can now be shown that the smoother performs better than the Kalman filter. 

Lemma 4: Suppose that the sequence (59) is initialised with 

1/ 1/N N N NP   , (60) 

Then /k N  ≤ /k kP  for 1 ≤ k ≤ N.  

Proof: The condition (60) implies /N N  = /N NP , which is the initial step for an induction argument. 
For the induction step, (59) is written as 

/ / 1 / 1 / 1 / 1 1/ 1/( ) ( )T T T
k N k k k k k k k k k k k k k k k k N kP P C C P C R C P G P G             (61) 

and thus 1/k N  ≤ 1/k kP  implies /k N  ≤ / 1k kP   and /k N  ≤ /k kP .                                                     � 
 

7.5.2  The Fraser-Potter Smoother 
Forward and backward estimates may be merged using the data fusion formula described in 
Lemma 7 of Chapter 6. A variation of the Fraser-Potter discrete-time fixed-interval smoother 
[4] derived by Monzingo [16] is advocated below. 

In the first pass, a Kalman filter produces corrected state estimates /ˆ k kx  and corrected error 
covariances /k kP  from the measurements. In the second pass, a Kalman filter is employed to 
calculate predicted “backward” state estimates 1/k k   and predicted “backward” error 
covariances 1/k k  from the time-reversed measurements. The smoothed estimate is given 
by [16] 

1 1 1 1 1
/ / / 1 / / / 1 / 1ˆ ˆ( ) ( )k N k k k k k k k k k k k kx P P x     

       . (62) 

Alternatively, Kalman filters could be used to derive predicted quantities, / 1ˆ k kx   and / 1k kP  , 
from the measurements, and backward corrected quantities /k k  and /k k . Smoothed 
estimates may then be obtained from the linear combination 

1 1 1 1 1
/ / 1 / / 1 / 1 / /ˆ ˆ( ) ( )k N k k k k k k k k k k k kx P P x     

       . (63) 

It is observed that the fixed-point smoother (24), the fixed-lag smoother (32), maximum-
likelihood smoother (39), the smoothed estimates (62) − (63) and the minimum-variance 
smoother (which is described subsequently) all use each measurement zk once. 

Note that Fraser and Potter’s original smoother solution [4] and Monzingo’s variation [16] 
are ad hoc and no claims are made about attaining a prescribed level of performance. 

                                                                 

“No great discovery was ever made without a bold guess.” Isaac Newton 

  

 

7.5.3  Minimum-Variance Smoothers 
 

7.5.3.1  Optimal Unrealisable Solutions 
Consider again the estimation problem depicted in Fig. 1 of Chapter 6, where w and v are 
now discrete-time inputs. As in continuous-time, it is desired to construct a solution   is 
that produces output estimates 1ŷ  of a reference system y1 = 1w  from observations z = y2 + 
v, where y2 = 2w . The objective is to minimise the energy of the output estimation error e = 
y1 – 1ŷ . 
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system (65), denoted by 1ˆ  , is obtained using the Matrix Inversion Lemma 
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The optimal output estimation smoother can be approximated as 
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(67) 

A state-space realisation of (67) is given by (66), 
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and  

/ˆ k N k k ky z R   . (69) 

Note that Lemma 1 is used to obtain the realisation (68) of ˆ H  = 1ˆ( )H   from (66). A block 
diagram of this smoother is provided in Fig. 2. The states / 1ˆ k kx   within (66) are immediately 
recognisable as belonging to the one-step-ahead predictor. Thus, the optimum realisable 
solution involves a cascade of familiar building blocks, namely, a Kalman predictor and its 
adjoint.  

Procedure 1. The above output estimation smoother can be implemented via the following 
three-step procedure. 
Step 1. Operate 1ˆ   on zk using (66) to obtain αk. 
Step 2. In lieu of the adjoint system (68), operate (66) on the time-reversed transpose of αk. 

Then take the time-reversed transpose of the result to obtain βk. 
Step 3. Calculate the smoothed output estimate from (69).  

It is shown below that /ˆ k Ny  is an unbiased estimate of yk. 

                                                                 

“When I am working on a problem, I never think about beauty but when I have finished, if the solution 
is not beautiful, I know it is wrong.” Richard Buckminster Fuller 

  

 
Figure 2. Block diagram of the output estimation smoother 

Lemma 5 /ˆ{ }k NE y  = { }kE y . 

Proof: Denote the one-step-head prediction error by 1k kx 

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The first term on the right-hand-side of (70) is zero since it pertains to the prediction error of the 
Kalman filter. The second term is zero since it is assumed that E{vk} = 0. Thus { }kE   = 0. Since the 
recursion (68) is initialized with ζN = 0, it follows that E{ζk} = 0, which implies E{ζk} = − KkE{ζk} + 

1/ 2 { }k kE   = 0. Thus, from (69), /ˆ{ }k NE y  = E{zk} = E{yk}, since it is assumed that E{vk} = 0.          � 
 

7.5.3.3  Causal Output Estimation 
The minimum-variance (Kalman) filter is obtained by taking the causal part of the optimum 
minimum-variance smoother (67) 
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      (71) 

                                                                 

“The practical success of an idea, irrespective of its inherent merit, is dependent on the attitude of the 
contemporaries. If timely it is quickly adopted; if not, it is apt to fare like a sprout lured out of the 
ground by warm sunshine, only to be injured and retarded in its growth by the succeeding frost.” Nicola 
Tesla 
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system (65), denoted by 1ˆ  , is obtained using the Matrix Inversion Lemma 

1/ / 1
1/ 2 1/ 2

ˆ ˆk k k kk k k k

k k k kk k

A K C Kx x
C C z

 
 

    
         

. (66) 
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diagram of this smoother is provided in Fig. 2. The states / 1ˆ k kx   within (66) are immediately 
recognisable as belonging to the one-step-ahead predictor. Thus, the optimum realisable 
solution involves a cascade of familiar building blocks, namely, a Kalman predictor and its 
adjoint.  

Procedure 1. The above output estimation smoother can be implemented via the following 
three-step procedure. 
Step 1. Operate 1ˆ   on zk using (66) to obtain αk. 
Step 2. In lieu of the adjoint system (68), operate (66) on the time-reversed transpose of αk. 

Then take the time-reversed transpose of the result to obtain βk. 
Step 3. Calculate the smoothed output estimate from (69).  

It is shown below that /ˆ k Ny  is an unbiased estimate of yk. 

                                                                 

“When I am working on a problem, I never think about beauty but when I have finished, if the solution 
is not beautiful, I know it is wrong.” Richard Buckminster Fuller 

  

 
Figure 2. Block diagram of the output estimation smoother 
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7.5.3.3  Causal Output Estimation 
The minimum-variance (Kalman) filter is obtained by taking the causal part of the optimum 
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To confirm this linkage between the smoother and filter, denote Lk = / 1( T
k k k kC P C  + 

1)T
k k k kD Q D   and use (71) to obtain  
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                                                            ( )k k k k k kC L C x L z   , 

(72) 

which is identical to (34) of Chapter 4. 
 

7.5.3.4  Input Estimation 
As discussed in Chapter 6, the optimal realisable smoother for input estimation is 

1
2
ˆ ˆH H

IE Q      . (73) 

The development of a state-space realisation for /ˆ k Nw  = 2
ˆH H

kQ   makes use of the 
formula for the cascade of two systems described in Chapter 6. The smoothed input estimate 
is realised by 
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, (74) 

in which k   n  is an auxiliary state.  

Procedure 2. The above input estimator can be implemented via the following three steps. 
Step 1. Operate 1ˆ   on the measurements zk using (66) to obtain αk.  
Step 2. Operate the adjoint of (74) on the time-reversed transpose of αk. Then take the time-

reversed transpose of the result.  
 

7.5.3.5  State Estimation 
Smoothed state estimates can be obtained by defining the reference system 1  = I which 
yields 

1/ / /ˆ ˆ ˆk N k k N k k Nx A x B w    

                                                            / 2
ˆˆ H H

k k N k kA x B Q    . 
(75) 

                                                                 

“Doubt is the father of invention.” Galileo Galilei 

  

Thus, the minimum-variance smoother for state estimation is given by (66) and (74) − (75). 
As remarked in Chapter 6, some numerical model order reduction may be required. In the 
special case of Ck being of rank n and Dk = 0, state estimates can be calculated from (69) and 

#
/ /ˆ ˆk N k k Nx C y . (76) 

where # 1( )T T
k k k kC C C C  is the Moore-Penrose pseudo-inverse. 

 

7.5.3.6  Performance 
The characterisation of smoother performance requires the following additional notation. 
Let γ = 0 w denote the output of the linear time-varying system having the realisation  

1  k k k kx A x w , 

k kx  , 

(77) 

(78) 

where Ak  n n . By inspection of (77) – (78), the output of the inverse system w = 1
0
 y is 

given by 

1k k k kw A   . (79) 

Similarly, let ε = 0
H u denote the output of the adjoint system 0

H , which from Lemma 1 
has the realisation 

1
T

k k k kA u    , 

k k   . 

(80) 

(81) 

It follows that the output of the inverse system u = 0
H  is given by  

1
T

k k k ku A   . (82)  

The exact Wiener-Hopf factor may now be written as  

0 0
H T H T

k k k k k kC B Q B C R    . (83)  

The subsequent lemma, which relates the exact and approximate Wiener-Hopf factors, 
requires the identity  

1 1
0 0 0 0

T H T H
k k k k k k k k kP A P A A P P A P          , (84)  

in which Pk is an arbitrary matrix of appropriate dimensions. A verification of (84) is 
requested in the problems. 

                                                                 

“The theory of our modern technique shows that nothing is as practical as the theory.” Julius Robert 
Oppenheimer 
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Lemma 6 [7]: In respect of the signal model (1) – (2) with Dk = 0, E{wk} = E{vk} = 0, { }T
j kE w w  

= k jkQ  , { }T
j kE v v  = k jkR  , { }T

k kE w v  = 0 and the quantities defined above, 
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k k k k k kC P P C       . (85) 

Proof: The approximate Wiener-Hopf factor may be written as ̂  = 1/ 2
0k k kC K   + 1/ 2

k . Using 
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  + T
k k kB Q B  + / 1k kP   − 1/k kP   

within (84) and simplifying leads to (85).                                                                                              □ 

It can be seen from (85) that the approximate Wiener-Hopf factor approaches the exact 
Wiener-Hopf factor whenever the estimation problem is locally stationary, that is, when the 
model and noise parameters vary sufficiently slowly so that / 1k kP     1/k kP  . Under these 
conditions, the smoother (69) achieves the best-possible performance, as is shown below. 

Lemma 7 [7]: The smoother (67) satisfies 
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2 0 / 1 1/ 0[( ) ( ( ) ) ]H H H T
ei k k k k k k kR C P P C 

          , (86) 

Proof: Substituting (67) into (64) yields 

1 1
2

ˆ ˆ[( ) ( ) ]H H
ei kR       . (87) 

The result (86) is now immediate from (85) and (87).                                                                            □ 

Some conditions under which 1/k kP   asymptotically approaches / 1k kP   and the smoother (67) 
attaining optimal performance are set out below. 

 Lemma 8 [8]: Suppose  
(i) for a t > 0 that there exist solutions Pt ≥ Pt+1 ≥ 0 of the Riccati difference equation 
(ii) 1/k kP   = / 1

T
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Then the smoother (67) achieves 

2 2 2
lim 0H
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Proof: Conditions i) and ii) together with Theorem 1 imply / 1k kP   ≥  1/k kP   for all k ≥ 0 and  

/ 1k kP   = 0. The claim (88) is now immediate from Theorem 2.                                                              □ 

An example that illustrates the performance benefit of the minimum-variance smoother (67) 
is described below. 

                                                                 

“Whoever, in the pursuit of science, seeks after immediate practical utility may rest assured that he 
seeks in vain.” Hermann Ludwig Ferdinand von Helmholtz 

  

Example 2 [9]. The nominal drift rate of high quality inertial navigation systems is around 
one nautical mile per hour, which corresponds to position errors of about 617 m over a 
twenty minute period. Thus, inertial navigation systems alone cannot be used to control 
underground mining equipment. An approach which has been found to be successful in 
underground mines is called dead reckoning, where the Euler angles, k , k  and k , 
reported by an inertial navigation system are combined with external odometer 
measurements, dk. The dead reckoning position estimates in the x-y-z plane are calculated as 
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. (89) 

A filter or a smoother may then be employed to improve the noisy position estimates 

calculated from (89). Euler angles were generated using 
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 and ( )i
kw  ~ (0 , 0.01), i = 1…3. Simulations were conducted with 

1000 realisations of Gaussian measurement noise added to position estimates calculated 
from (89). The mean-square error exhibited by the minimum-variance filter and smoother 
operating on the noisy dead reckoning estimates are shown in Fig. 3. It can be seen that 
filtering the noisy dead reckoning positions can provide a significant mean-square-error 
improvement. The figure also demonstrates that the smoother can offer a few dB of further 
improvement at mid-range signal-to-noise ratios.  
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Figure 3.  Mean-square-error of the position estimate versus input signal to noise ratio for Example 2: (i) 
noisy dead reckoning data, (ii) Kalman filter, and (iii) minimum-variance smoother (69). 
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Lemma 6 [7]: In respect of the signal model (1) – (2) with Dk = 0, E{wk} = E{vk} = 0, { }T
j kE w w  

= k jkQ  , { }T
j kE v v  = k jkR  , { }T

k kE w v  = 0 and the quantities defined above, 
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k k k k k kC P P C       . (85) 

Proof: The approximate Wiener-Hopf factor may be written as ̂  = 1/ 2
0k k kC K   + 1/ 2

k . Using 

/ 1k kP   − / 1
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  + T
k k kB Q B  + / 1k kP   − 1/k kP   

within (84) and simplifying leads to (85).                                                                                              □ 

It can be seen from (85) that the approximate Wiener-Hopf factor approaches the exact 
Wiener-Hopf factor whenever the estimation problem is locally stationary, that is, when the 
model and noise parameters vary sufficiently slowly so that / 1k kP     1/k kP  . Under these 
conditions, the smoother (69) achieves the best-possible performance, as is shown below. 

Lemma 7 [7]: The smoother (67) satisfies 
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2 0 / 1 1/ 0[( ) ( ( ) ) ]H H H T
ei k k k k k k kR C P P C 

          , (86) 

Proof: Substituting (67) into (64) yields 

1 1
2

ˆ ˆ[( ) ( ) ]H H
ei kR       . (87) 

The result (86) is now immediate from (85) and (87).                                                                            □ 

Some conditions under which 1/k kP   asymptotically approaches / 1k kP   and the smoother (67) 
attaining optimal performance are set out below. 

 Lemma 8 [8]: Suppose  
(i) for a t > 0 that there exist solutions Pt ≥ Pt+1 ≥ 0 of the Riccati difference equation 
(ii) 1/k kP   = / 1
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  for all k ≥ 0. 

Then the smoother (67) achieves 
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  . (88) 

Proof: Conditions i) and ii) together with Theorem 1 imply / 1k kP   ≥  1/k kP   for all k ≥ 0 and  

/ 1k kP   = 0. The claim (88) is now immediate from Theorem 2.                                                              □ 

An example that illustrates the performance benefit of the minimum-variance smoother (67) 
is described below. 

                                                                 

“Whoever, in the pursuit of science, seeks after immediate practical utility may rest assured that he 
seeks in vain.” Hermann Ludwig Ferdinand von Helmholtz 

  

Example 2 [9]. The nominal drift rate of high quality inertial navigation systems is around 
one nautical mile per hour, which corresponds to position errors of about 617 m over a 
twenty minute period. Thus, inertial navigation systems alone cannot be used to control 
underground mining equipment. An approach which has been found to be successful in 
underground mines is called dead reckoning, where the Euler angles, k , k  and k , 
reported by an inertial navigation system are combined with external odometer 
measurements, dk. The dead reckoning position estimates in the x-y-z plane are calculated as 
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A filter or a smoother may then be employed to improve the noisy position estimates 

calculated from (89). Euler angles were generated using 
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 and ( )i
kw  ~ (0 , 0.01), i = 1…3. Simulations were conducted with 

1000 realisations of Gaussian measurement noise added to position estimates calculated 
from (89). The mean-square error exhibited by the minimum-variance filter and smoother 
operating on the noisy dead reckoning estimates are shown in Fig. 3. It can be seen that 
filtering the noisy dead reckoning positions can provide a significant mean-square-error 
improvement. The figure also demonstrates that the smoother can offer a few dB of further 
improvement at mid-range signal-to-noise ratios.  
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Figure 3.  Mean-square-error of the position estimate versus input signal to noise ratio for Example 2: (i) 
noisy dead reckoning data, (ii) Kalman filter, and (iii) minimum-variance smoother (69). 
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Lemma 6 [7]: In respect of the signal model (1) – (2) with Dk = 0, E{wk} = E{vk} = 0, { }T
j kE w w  

= k jkQ  , { }T
j kE v v  = k jkR  , { }T

k kE w v  = 0 and the quantities defined above, 
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k k k k k kC P P C       . (85) 

Proof: The approximate Wiener-Hopf factor may be written as ̂  = 1/ 2
0k k kC K   + 1/ 2

k . Using 
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k k kB Q B  + / 1k kP   − 1/k kP   

within (84) and simplifying leads to (85).                                                                                              □ 

It can be seen from (85) that the approximate Wiener-Hopf factor approaches the exact 
Wiener-Hopf factor whenever the estimation problem is locally stationary, that is, when the 
model and noise parameters vary sufficiently slowly so that / 1k kP     1/k kP  . Under these 
conditions, the smoother (69) achieves the best-possible performance, as is shown below. 

Lemma 7 [7]: The smoother (67) satisfies 
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ei k k k k k k kR C P P C 

          , (86) 

Proof: Substituting (67) into (64) yields 
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ˆ ˆ[( ) ( ) ]H H
ei kR       . (87) 

The result (86) is now immediate from (85) and (87).                                                                            □ 

Some conditions under which 1/k kP   asymptotically approaches / 1k kP   and the smoother (67) 
attaining optimal performance are set out below. 

 Lemma 8 [8]: Suppose  
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  for all k ≥ 0. 

Then the smoother (67) achieves 
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Proof: Conditions i) and ii) together with Theorem 1 imply / 1k kP   ≥  1/k kP   for all k ≥ 0 and  

/ 1k kP   = 0. The claim (88) is now immediate from Theorem 2.                                                              □ 

An example that illustrates the performance benefit of the minimum-variance smoother (67) 
is described below. 

                                                                 

“Whoever, in the pursuit of science, seeks after immediate practical utility may rest assured that he 
seeks in vain.” Hermann Ludwig Ferdinand von Helmholtz 

  

Example 2 [9]. The nominal drift rate of high quality inertial navigation systems is around 
one nautical mile per hour, which corresponds to position errors of about 617 m over a 
twenty minute period. Thus, inertial navigation systems alone cannot be used to control 
underground mining equipment. An approach which has been found to be successful in 
underground mines is called dead reckoning, where the Euler angles, k , k  and k , 
reported by an inertial navigation system are combined with external odometer 
measurements, dk. The dead reckoning position estimates in the x-y-z plane are calculated as 
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A filter or a smoother may then be employed to improve the noisy position estimates 

calculated from (89). Euler angles were generated using 
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 and ( )i
kw  ~ (0 , 0.01), i = 1…3. Simulations were conducted with 

1000 realisations of Gaussian measurement noise added to position estimates calculated 
from (89). The mean-square error exhibited by the minimum-variance filter and smoother 
operating on the noisy dead reckoning estimates are shown in Fig. 3. It can be seen that 
filtering the noisy dead reckoning positions can provide a significant mean-square-error 
improvement. The figure also demonstrates that the smoother can offer a few dB of further 
improvement at mid-range signal-to-noise ratios.  
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Figure 3.  Mean-square-error of the position estimate versus input signal to noise ratio for Example 2: (i) 
noisy dead reckoning data, (ii) Kalman filter, and (iii) minimum-variance smoother (69). 
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7.6 Performance Comparison 
It has been demonstrated by the previous examples that the optimal fixed-interval smoother 
provides a performance improvement over the maximum-likelihood smoother. The 
remaining example of this section compares the behaviour of the fixed-lag and the optimum 
fixed-interval smoother.  
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Figure 4. Mean-square-error versus measurement noise covariance for Example 3:  
(i) Kalman filter, (ii) fixed-lag smoothers, and (iii) optimal minimum-variance smoother (67). 

Example 3. Simulations were conducted for a first-order output estimation problem, in 
which A = 0.95, B = 1, C = 0.1, Q = 1, R =  {0.01, 0.02, 0.5, 1, 1.5, 2} and N = 20,000. The mean-
square-errors exhibited by the Kalman filter and the optimum fixed-interval smoother (69) 
are indicated by the top and bottom solid lines of Fig. 4, respectively. Fourteen fixed-lag 
smoother output error covariances, ( 1, 1)

1/
i i T

k kCP C 
 , i = 2 … 15, were calculated from (35) – (36) 

and are indicated by the dotted lines of Fig. 4. The figure illustrates that the fixed-lag 
smoother mean-square errors are bounded above and below by those of the Kalman filter 
and optimal fixed-interval smoother, respectively. Thus, an option for asymptotically 
attaining optimal performance is to employ Moore’s reduced-order fixed-lag solution [1] – 
[3] with a sufficiently long lag. 

 

                                                                 

“You see, wire telegraph is a kind of a very, very long cat. You pull his tail in New York and his head is 
meowing in Los Angeles. Do you understand this? And radio operates exactly the same way: you send 
signals here, they receive them there. The only difference is that there is no cat.” Albert Einstein  
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normally distributed. 
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Table 1. Main results for discrete-time fixed-interval smoothing. 
 

7.7  Conclusion 
Solutions to the fixed-point and fixed-lag smoothing problems can be found by applying the 
standard Kalman filter recursions to augmented systems. Where possible, it is shown that 
the smoother error covariances are less than the filter error covariance, namely, the fixed-
point and fixed-lag smoothers provide a performance improvement over the filter. 

Table 1 summarises three common fixed-interval smoothers that operate on measurements 
zk = y2,k + vk of a system 2  realised by xk+1 = Akxk + Bkwk and y2,k = C2,kxk. Monzingo modified 
the Fraser-Potter smoother solution so that each measurement is only used once. Rauch, 
Tung and Striebel employed the maximum-likelihood method to derive their fixed-interval 
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7.6 Performance Comparison 
It has been demonstrated by the previous examples that the optimal fixed-interval smoother 
provides a performance improvement over the maximum-likelihood smoother. The 
remaining example of this section compares the behaviour of the fixed-lag and the optimum 
fixed-interval smoother.  
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Figure 4. Mean-square-error versus measurement noise covariance for Example 3:  
(i) Kalman filter, (ii) fixed-lag smoothers, and (iii) optimal minimum-variance smoother (67). 

Example 3. Simulations were conducted for a first-order output estimation problem, in 
which A = 0.95, B = 1, C = 0.1, Q = 1, R =  {0.01, 0.02, 0.5, 1, 1.5, 2} and N = 20,000. The mean-
square-errors exhibited by the Kalman filter and the optimum fixed-interval smoother (69) 
are indicated by the top and bottom solid lines of Fig. 4, respectively. Fourteen fixed-lag 
smoother output error covariances, ( 1, 1)

1/
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k kCP C 
 , i = 2 … 15, were calculated from (35) – (36) 

and are indicated by the dotted lines of Fig. 4. The figure illustrates that the fixed-lag 
smoother mean-square errors are bounded above and below by those of the Kalman filter 
and optimal fixed-interval smoother, respectively. Thus, an option for asymptotically 
attaining optimal performance is to employ Moore’s reduced-order fixed-lag solution [1] – 
[3] with a sufficiently long lag. 
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signals here, they receive them there. The only difference is that there is no cat.” Albert Einstein  
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Figure 4. Mean-square-error versus measurement noise covariance for Example 3:  
(i) Kalman filter, (ii) fixed-lag smoothers, and (iii) optimal minimum-variance smoother (67). 
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smoother in which Gk = 1
/ 1 1/

T
k k k k kP A P

   is a gain matrix. Although this is not a minimum-
mean-square-error solution, it outperforms the Kalman filter and can provide close to 
optimal performance whenever the underlying assumptions are reasonable.  

The minimum-variance smoothers are state-space generalisations of the optimal noncausal 
Wiener solutions. They make use of the inverse of the approximate Wiener-Hopf factor 1ˆ   
and its adjoint ˆ H . These smoothers achieve the best-possible performance, however, they 
are not minimum-order solutions. Consequently, any performance benefits need to be 
reconciled against the increased complexity. 
 

7.8  Problems 
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to obtain an expression for the components of the smoothed state.  

(ii) Derive expressions for the two predicted error covariance submatrices of interest. 
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7.9  Glossary  
 

p(xk) Probability density function of a discrete random variable xk. 

~ ( , )k xxx R  The random variable xk has a normal distribution with mean μ and 
covariance Rxx. 

/k k  Error covariance of the fixed-point smoother. 
( , )
1/

i i
k kP   Error covariance of the fixed-lag smoother. 

/ˆ k Nw , /ˆ k Nx , /ˆ k Ny  Estimates of wk, xk and yk at time k, given data zk over an interval k  
[0, N]. 

Gk Gain of the smoother developed by Rauch, Tung and Striebel. 

k  Output of 1ˆ  , the inverse of the approximate Wiener-Hopf factor. 

k  Output of ˆ H , the adjoint of the inverse of the approximate 
Wiener-Hopf factor. 

#
kC  Moore-Penrose pseudoinverse of Ck. 
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ei  
A system (or map) that operates on the problem inputs 
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 to 

produce an estimation error e. It is convenient to make use of the 
factorisation H

ei ei  = 1 1
H

ei ei   + 2 2
H

ei ei  , where 2 2
H

ei ei   includes the 
filter/smoother solution and 1 1

H
ei ei   is a lower performance bound. 
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8.1  Introduction 
Predictors, filters and smoothers have previously been described for state recovery under 
the assumption that the parameters of the generating models are correct. More often than 
not, the problem parameters are unknown and need to be identified. This section describes 
some standard statistical techniques for parameter estimation. Paradoxically, the discussed 
parameter estimation methods rely on having complete state information available. 
Although this is akin to a chicken-and-egg argument (state availability obviates the need for 
filters along with their attendant requirements for identified models), the task is not 
insurmountable.  

The role of solution designers is to provide a cost benefit. That is, their objectives are to 
deliver improved performance at an acceptable cost. Inevitably, this requires simplifications 
so that the problems become sufficiently tractable and amenable to feasible solution. For 
example, suppose that speech emanating from a radio is too noisy and barely intelligible. In 
principle, high-order models could be proposed to equalise the communication channel, 
demodulate the baseband signal and recover the phonemes. Typically, low-order solutions 
tend to offer better performance because of the difficulty in identifying large numbers of 
parameters under low-SNR conditions. Consider also the problem of monitoring the output 
of a gas sensor and triggering alarms when environmental conditions become hazardous. 
Complex models could be constructed to take into account diurnal pressure variations, local 
weather influences and transients due to passing vehicles. It often turns out that low-order 
solutions exhibit lower false alarm rates because there are fewer assumptions susceptible to 
error.    

Thus, the absence of complete information need not inhibit solution development. Simple 
schemes may suffice, such as conducting trials with candidate parameter values and 
assessing the consequent error performance. 

In maximum-likelihood estimation [1] – [5], unknown parameters θ1, θ2, …, θM, are 
identified given states, xk, by maximising a log-likelihood function, log f(θ1, θ2, …, | )M kx . 
For example, the subject of noise variance estimation was studied by Mehra in [6], where 
maximum-likelihood estimates (MLEs) were updated using the Newton-Raphson method. 
Rife and Boorstyn obtained Cramér-Rao bounds for some MLEs, which “indicate the best 
estimation that can be made with the available data” [7]. Nayak et al used the pseudo-

                                                                 

“The sciences do not try to explain, they hardly even try to interpret, they mainly make models. By a 
model is meant a mathematical construct which, with the addition of certain verbal interpretations, 
describes observed phenomena. The justification of such a mathematical construct is solely and 
precisely that it is expected to work” John Von Neuman 
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inverse to estimate unknown parameters in [8]. Belangér subsequently employed a least-
squares approach to estimate the process noise and measurement noise variances [9]. A 
recursive technique for least-squares parameter estimation was developed by Strejc [10]. 
Dempster, Laird and Rubin [11] proved the convergence of a general purpose technique 
for solving joint state and parameter estimation problems, which they called the 
expectation-maximization (EM) algorithm. They addressed problems where complete 
(state) information is not available to calculate the log-likelihood and instead maximised 
the expectation of 1 2log ( , ,..., | )M kf z   , given incomplete measurements, zk. That is, by 
virtue of Jensen’s inequality the unknowns are found by using an objective function (also 
called an approximate log-likelihood function), 1 2{log ( , ,..., | )}M kE f z   , as a surrogate for 
log f(θ1, θ2, …, | )M kx .   

The system identification literature is vast and some mature techniques have evolved. It is 
acknowledged that subspace identification methods have been developed for general 
problems where a system’s stochastic inputs, deterministic inputs and outputs are available. 
The subspace algorithms [12] – [14] consist of two steps. First, the order of the system is 
identified from stacked vectors of the inputs and outputs. Then the unknown parameters 
are determined from an extended observability matrix.  

Continuous-time maximum-likelihood estimation has been mentioned previously. Here, the 
attention is focussed on the specific problem of joint state and parameter estimation 
exclusively from discrete measurements of a system’s outputs. The developments proceed 
as follows. Section 8.2 reviews the maximum-likelihood estimation method for obtaining 
unknown parameters. The same estimates can be found using the method of least squares, 
which was pioneered by Gauss for fitting astronomical observations. Well known (filtering) 
EM algorithms for variance and state matrix estimation are described in Section 8.3. 
Improved parameter estimation accuracy can be obtained via smoothing EM algorithms, 
which are introduced in Section 8.4.  

The filtering and smoothing EM algorithms discussed herein require caution. When 
perfect state information is available, the corresponding likelihood functions are exact. 
However, the use of imperfect state estimates leads to approximate likelihood functions, 
approximate Cramér-Rao bounds and biased MLEs. When the SNR is sufficiently high 
and the states are recovered exactly, the bias terms within the state matrix elements and 
process noise variances diminish to zero. Consequently, process noise variance and state 
matrix estimation is recommended only when the measurement noise is negligible. 
Conversely, measurement noise variance estimation is advocated when the SNR is 
sufficiently low. 
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8.2  Maximum-Likelihood Estimation 
 

8.2.1 General Method 
Let p(θ|xk) denote the probability density function of an unknown parameter θ, given 
samples of a discrete random variable xk. An estimate, ̂ , can be obtained by finding the 
argument θ that maximises the probability density function, that is, 

ˆ argmax ( | )kp x


   . (1) 

A solution can be found by setting ( | )kp x





 = 0 and solving for the unknown θ. Since the 

logarithm function is monotonic, a solution may be found equivalently by maximising 

ˆ argmax log ( | )kp x


    (2) 

and setting log ( | )kp x





 = 0. For exponential families of distributions, the use of (2) 

considerably simplifies the equations to be solved.  

Suppose that N mutually independent samples of xk are available, then the joint density 
function of all the observations is the product of the densities   

1 2( | ) ( | ) ( | ) ( | )k Nf x p x p x p x      

                                                     
1

( | )
K

k
k

p x
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(3) 

which serves as a likelihood function. The MLE of θ may be found maximising the log-
likelihood 

ˆ argmax log ( | )kf x


   

                                                    
1

argmax ( | )
N

k
k

p x





   

(4) 

by solving for a θ that satisfies log ( | )kf x





 = 1
log ( | )

N

k
k

p x









 = 0. The above maximum-

likelihood approach is applicable to a wide range of distributions. For example, the task of 
estimating the intensity of a Poisson distribution from measurements is demonstrated 
below. 

                                                                 

“Therefore I would not have it unknown to Your Holiness, the only thing which induced me to look for 
another way of reckoning the movements of the heavenly bodies was that I knew that mathematicians 
by no means agree in their investigation thereof.” Nicolaus Copernicus“ 
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8.2.1 General Method 
Let p(θ|xk) denote the probability density function of an unknown parameter θ, given 
samples of a discrete random variable xk. An estimate, ̂ , can be obtained by finding the 
argument θ that maximises the probability density function, that is, 
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logarithm function is monotonic, a solution may be found equivalently by maximising 
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likelihood approach is applicable to a wide range of distributions. For example, the task of 
estimating the intensity of a Poisson distribution from measurements is demonstrated 
below. 
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process noise variances diminish to zero. Consequently, process noise variance and state 
matrix estimation is recommended only when the measurement noise is negligible. 
Conversely, measurement noise variance estimation is advocated when the SNR is 
sufficiently low. 
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Example 1. Suppose that N observations of integer xk have a Poisson distribution 
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   is negative for all μ and xk  ≥ 0, the stationary point (6) 

occurs at a maximum of (5). That is to say, ̂  is indeed a maximum-likelihood estimate. 
 

8.2.2  State Matrix Estimation 
From the Central Limit Theorem, which was mentioned in Chapter 6, the mean of a 
sufficiently large sample of independent identically distributed random variables will 
asymptotically approach a normal distribution. Consequently, in many maximum-
likelihood estimation applications it is assumed that random variables are normally 
distributed. Recall that the normal (or Gaussian) probability density function of a discrete 
random variable xk with mean μ and covariance Rxx is   
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in which xxR  denotes the determinant of xxR . A likelihood function for a sample of N 
independently identically distributed random variables is 
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In general, it is more convenient to work with the log-likelihood function 
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An example of estimating a model coefficient using the Gaussian log-likelihood approach is 
set out below. 

Example 2. Consider an autoregressive order-one process xk+1 = a0xk + wk in which it is 
desired to estimate a0    from samples of xk. It follows from xk+1 ~ 0( ,ka x  2
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Often within filtering and smoothing applications there are multiple parameters to be 
identified. Denote the unknown parameters by θ1, θ2, …, θM, then the MLEs may be found by 
solving the M equations  
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An vector parameter estimation example is outlined below. 

Example 3. Consider the third-order autoregressive model 

3 2 2 1 1 0k k k k kx a x a x a x w       (10) 

which can be written in the state-space form 
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8.2.3 Variance Estimation 
MLEs can be similarly calculated for unknown variances, as is demonstrated by the 
following example. 

Example 4. Consider a random variable generated by xk = μ + wk where μ    is fixed and 
wk    is assumed to be a zero-mean Gaussian white input sequence. Since xk ~ ( ,  
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If the random samples are taken from a population without replacement, the samples are 
not independent, the covariance between two different samples is nonzero and the MLE (14) 
is biased. If the sampling is done with replacement then the sample values are independent  
and the following correction applies 
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is unbiased, that is, its expected value equals the variance of the population. To confirm this 
property, observe that 
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Using 2{ }kE x  = 2
w  + 2x , 2{ { }}kE E x  = 2{ }wE   + 2{ }E  , 2{ { }}kE E x  =  2{ }E   = 2  and 2{ }wE   = 

2 /w N  within (16) yields 2{ }wE   = 2
w  as required. Unless stated otherwise, it is assumed 

herein that the sample size is sufficiently large so that N-1 ≈ (N - 1)-1 and (15) may be 
approximated by (14). A caution about modelling error contributing bias is mentioned 
below.  

Example 5. Suppose that the states considered in Example 4 are actually generated by xk = μ 
+ wk + sk, where sk is an independent input that accounts for the presence of modelling error. 
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8.2.4 Cramér-Rao Lower Bound 
The Cramér-Rao Lower Bound (CRLB) establishes a limit of precision that can be achieved 
for any unbiased estimate of a parameter θ. It actually defines a lower bound for the 
variance 2

̂
  of ̂ . As is pointed out in [1], since ̂  is assumed to be unbiased, the variance 
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8.2.3 Variance Estimation 
MLEs can be similarly calculated for unknown variances, as is demonstrated by the 
following example. 

Example 4. Consider a random variable generated by xk = μ + wk where μ    is fixed and 
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not independent, the covariance between two different samples is nonzero and the MLE (14) 
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8.2.4 Cramér-Rao Lower Bound 
The Cramér-Rao Lower Bound (CRLB) establishes a limit of precision that can be achieved 
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8.2.3 Variance Estimation 
MLEs can be similarly calculated for unknown variances, as is demonstrated by the 
following example. 

Example 4. Consider a random variable generated by xk = μ + wk where μ    is fixed and 
wk    is assumed to be a zero-mean Gaussian white input sequence. Since xk ~ ( ,  
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8.2.4 Cramér-Rao Lower Bound 
The Cramér-Rao Lower Bound (CRLB) establishes a limit of precision that can be achieved 
for any unbiased estimate of a parameter θ. It actually defines a lower bound for the 
variance 2
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variances is useful for model selection. Another way of selecting models involves comparing 
residual error variances [23]. A lucid introduction to Gaussian CRLBs is presented in [2]. An 
extensive survey that refers to the pioneering contributions of Fisher, Cramér and Rao 
appears in [4]. 

The bounds on the parameter variances are found from the inverse of the so-called Fisher 
information. A formal definition of the CRLB for scalar parameters is as follows. 

Theorem 1 (Cramér-Rao Lower Bound) [2] - [5]: Assume that ( | )kf x  satisfies the 
following regularity conditions: 
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where the derivative is evaluated at the actual value of θ. Then the variance 2
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  of an unbiased 

estimate ̂  satisfies 
2 1
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Proofs for the above theorem appear in [2] – [5]. 

Example 6. Suppose that samples of xk = μ + wk are available, where wk is a zero-mean 
Gaussian white input sequence and μ    is unknown. Since wk ~ (0,  2
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for i, j = 1 … M. The parameter error variances are then bounded by the diagonal elements 
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variances is useful for model selection. Another way of selecting models involves comparing 
residual error variances [23]. A lucid introduction to Gaussian CRLBs is presented in [2]. An 
extensive survey that refers to the pioneering contributions of Fisher, Cramér and Rao 
appears in [4]. 
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for i, j = 1 … M. The parameter error variances are then bounded by the diagonal elements 
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and therefore 
2 2
ˆ /w N  . (20) 

The above inequality suggests that a minimum of one sample is sufficient to bound the 
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It is found from (22) that the lower bounds for the MLE variances are  2 2
ˆ /w N   and 

2
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  . The impact of modelling error on parameter estimation accuracy is examined 

below. 

Example 8. Consider the problem of estimating 2
w  given samples of states which are 

generated by xk = μ + wk + sk, where sk is an independent sequence that accounts for the 
presence of modelling error. From the assumption xk ~ ( ,  2 2
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“There are only two kinds of people who are really fascinating; people who know absolutely 
everything, and people who know absolutely nothing.” Oscar Fingal O’Flahertie Wills Wilde 

8.3  Filtering EM Algorithms 
 

8.3.1 Background 
The EM algorithm [3], [7], [11], [15] – [17], [19] – [22] is a general purpose technique for 
solving joint state and parameter estimation problems. In maximum-likelihood estimation, it 
is desired to estimate parameters θ1, θ2, …, θM, given states by maximising the log-likelihood 
log f(θ1, θ2, …, | )M kx . When complete state information is not available to calculate the log-
likelihood, the expectation of 1 2log ( , ,..., | )M kf x   , given incomplete measurements, zk, is 
maximised instead. This basic technique was in use prior to Dempster, Laird and Rubin 
naming it the EM algorithm 1977 [11]. They published a general formulation of the 
algorithm, which consists of iterating an expectation step and a maximization step. Their 
expectation step involves least squares calculations on the incomplete observations using 
the current parameter iterations to estimate the underlying states. In the maximization step, 
the unknown parameters are re-estimated by maximising a joint log likelihood function 
using state estimates from the previous expectation step. This sequence is repeated for either 
a finite number of iterations or until the estimates and the log likelihood function are stable. 
Dempster, Laird and Rubin [11] also established parameter map conditions for the 
convergence of the algorithm, namely that the incomplete data log likelihood function is 
monotonically nonincreasing. 

 Wu [16] subsequently noted an equivalence between the conditions for a map to be closed 
and the continuity of a function. In particular, if the likelihood function satisfies certain 
modality, continuity and differentiability conditions, the parameter sequence converges to 
some stationary value. A detailed analysis of Wu’s convergence results appears in [3]. 
Shumway and Stoffer [15] introduced a framework that is employed herein, namely, the use 
of a Kalman filter within the expectation step to recover the states. Feder and Weinstein [17] 
showed how a multiparameter estimation problem can be decoupled into separate 
maximum likelihood estimations within an EM algorithm. Some results on the convergence 
of EM algorithms for variance and state matrix estimation [19] – [20] are included within the 
developments below.  
 

8.3.2 Measurement Noise Variance Estimation 
 

8.3.2.1  EM Algorithm 
The problem of estimating parameters from incomplete information has been previously 
studied in [11] – [16]. It is noted in [11] that the likelihood functions for variance estimation 
do not exist in explicit closed form. This precludes straightforward calculation of the 
Hessians required in [3] to assert convergence. Therefore, an alternative analysis is 
presented here to establish the monotonicity of variance iterations. 

The expectation step described below employs the approach introduced in [15] and involves 
the use of a Kalman filter to obtain state estimates. The maximization step requires the 
calculation of decoupled MLEs similarly to [17]. Measurements of a linear time-invariant 
system are modelled by 

                                                                 

“I’m no model lady. A model is just an imitation of the real thing.” Mary (Mae) Jane West 



Smoothing, Filtering and Prediction -
Estimating the Past, Present and Future182

  

                                                                       2 2 2 2( ) ( )
2 w w
N N     

                                                                       4

2 w
N    , 

2 2

2

log ( , | )w k

w

f x 
 


 

 = 2 2

1
( ) ( )

N

w k
k

x 



   and 
2 2

2

log ( , | )w k

w

f xE  
 

  
 

   
= 0. 

The Fisher information matrix and its inverse are then obtained from (21) as 

2
2

4

0
( , )

0 0.5
w

w
w

N
F u

N









 
  
 

, 
2

1 2
4

/ 0
( , )

0 2 /
w

w
w

N
F u

N





  
  
 

. 

It is found from (22) that the lower bounds for the MLE variances are  2 2
ˆ /w N   and 

2
2 4
ˆ 2 /

w w N


  . The impact of modelling error on parameter estimation accuracy is examined 

below. 

Example 8. Consider the problem of estimating 2
w  given samples of states which are 

generated by xk = μ + wk + sk, where sk is an independent sequence that accounts for the 
presence of modelling error. From the assumption xk ~ ( ,  2 2

w s  ), the associated log 
likelihood function is 

2
2 2 1 2 2 2 2

2
1

log ( | ) 1( ) ( ) ( )
2 2

N
w k

w s w s k
kw

f x N x
    


 




     

  , 

which leads to 
2 2

2 2

log ( | )
( )

w k

w

f x





 = 2 2 2( )
2 w s
N     , that is, 2

2
ˆw

  ≥ 2 2 22( ) /w s N  . Thus, 

parameter estimation accuracy degrades as the variance of the modelling error increases. If 
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“There are only two kinds of people who are really fascinating; people who know absolutely 
everything, and people who know absolutely nothing.” Oscar Fingal O’Flahertie Wills Wilde 

8.3  Filtering EM Algorithms 
 

8.3.1 Background 
The EM algorithm [3], [7], [11], [15] – [17], [19] – [22] is a general purpose technique for 
solving joint state and parameter estimation problems. In maximum-likelihood estimation, it 
is desired to estimate parameters θ1, θ2, …, θM, given states by maximising the log-likelihood 
log f(θ1, θ2, …, | )M kx . When complete state information is not available to calculate the log-
likelihood, the expectation of 1 2log ( , ,..., | )M kf x   , given incomplete measurements, zk, is 
maximised instead. This basic technique was in use prior to Dempster, Laird and Rubin 
naming it the EM algorithm 1977 [11]. They published a general formulation of the 
algorithm, which consists of iterating an expectation step and a maximization step. Their 
expectation step involves least squares calculations on the incomplete observations using 
the current parameter iterations to estimate the underlying states. In the maximization step, 
the unknown parameters are re-estimated by maximising a joint log likelihood function 
using state estimates from the previous expectation step. This sequence is repeated for either 
a finite number of iterations or until the estimates and the log likelihood function are stable. 
Dempster, Laird and Rubin [11] also established parameter map conditions for the 
convergence of the algorithm, namely that the incomplete data log likelihood function is 
monotonically nonincreasing. 

 Wu [16] subsequently noted an equivalence between the conditions for a map to be closed 
and the continuity of a function. In particular, if the likelihood function satisfies certain 
modality, continuity and differentiability conditions, the parameter sequence converges to 
some stationary value. A detailed analysis of Wu’s convergence results appears in [3]. 
Shumway and Stoffer [15] introduced a framework that is employed herein, namely, the use 
of a Kalman filter within the expectation step to recover the states. Feder and Weinstein [17] 
showed how a multiparameter estimation problem can be decoupled into separate 
maximum likelihood estimations within an EM algorithm. Some results on the convergence 
of EM algorithms for variance and state matrix estimation [19] – [20] are included within the 
developments below.  
 

8.3.2 Measurement Noise Variance Estimation 
 

8.3.2.1  EM Algorithm 
The problem of estimating parameters from incomplete information has been previously 
studied in [11] – [16]. It is noted in [11] that the likelihood functions for variance estimation 
do not exist in explicit closed form. This precludes straightforward calculation of the 
Hessians required in [3] to assert convergence. Therefore, an alternative analysis is 
presented here to establish the monotonicity of variance iterations. 

The expectation step described below employs the approach introduced in [15] and involves 
the use of a Kalman filter to obtain state estimates. The maximization step requires the 
calculation of decoupled MLEs similarly to [17]. Measurements of a linear time-invariant 
system are modelled by 
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1k k kx Ax Bw   , 

k k ky Cx Dw  , 

k k kz y v  , 

(23) 

(24) 

(25) 

where A  n n , B  n m , C  p n , D  p m  and wk, vk are stationary processes with 
{ }kE w  = 0, { }T

j kE w w  = jkQ , { }kE v  = { }T
j kE w v  = 0 and { }T

j kE v v  = jkR . To simplify the 
presentation, it is initially assumed that the direct feed-through matrix, D, is zero. A nonzero 
D will be considered later.  

Suppose that it is desired to estimate R = diag( 2
1,v , 2

2,v , …, 2
,p v ) given N samples of zk and 

yk. Let zi,k , yi,k  and vi,k denote the ith element of the vectors zk , yk and vk, respectively. Then 
(25) may be written in terms of its i components, zi,k = yi,k + vi,k, that is, 

, , ,i k i k i kv z y  . (26) 

From the assumption vi,k ~ (0,  2
, )i v , an MLE for the unknown 2

,i v  is obtained from the 
sample variance formula 

2 2
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z y
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


  . (27) 

An EM algorithm for updating the measurement noise variance estimates is described as 
follows. Assume that there exists an estimate ( )ˆ uR  = diag( ( ) 2

1,ˆ( )u
v , ( ) 2

2,ˆ( )u
v , …, ( ) 2

,ˆ( )u
p v ) of R at 

iteration u. A Kalman filter designed with ( )ˆ uR  may then be employed to produce corrected 
output estimates ( )

/ˆ u
k ky . The filter’s design Riccati equation is given by 

( ) ( ) ( ) ( ) ( ) ( ) ( )
1/ / 1

ˆ( ) ( ) ( )u u u u T u u u T T
k k k k k k k kP A K C P A K C K R K BQB      , (28) 

where ( )u
kK  = ( ) ( )

/ 1 / 1(u T u T
k k k kAP C CP C   + ( ) 1ˆ )uR   is the predictor gain. The output estimates are 

calculated from 

( ) ( ) ( ) ( )
1/ 1/
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u u u u
k k k k k k

u u u
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/ /ˆ ˆu u

k k k ky Cx , 
(29) 

(30) 

where ( )u
kL  = ( ) ( )

/ 1 / 1(u T u T
k k k kP C CP C   + ( ) 1ˆ )uR   is the filter gain. 

Procedure 1 [19]. Assume that an initial estimate (1)R̂  of R is available. Subsequent estimates, 
( )ˆ uR , u > 1, are calculated by repeating the following two-step procedure. 
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are things we don’t know we don’t know.” Donald Henry Rumsfeld 

  

Step 1. Operate the Kalman filter (29) – (30) designed with ( )ˆ uR  to obtain corrected output 
estimates ( )

/ˆ u
k ky . 

Step 2. For i = 1, …, p, use ( )
/ˆ u

k ky  instead of yk within (27) to obtain ( 1)ˆ uR   = diag( ( 1) 2
1,ˆ( )u

v  , 
( 1) 2
2,ˆ( )u

v  , …, ( 1) 2
,ˆ( )u

p v  ). 
 

8.3.2.2  Properties 
The above EM algorithm involves a repetition of two steps: the states are deduced using the 
current variance estimates and then the variances are re-identified from the latest states. 
Consequently, a two-part argument is employed to establish the monotonicity of the 
variance sequence. For the expectation step, it is shown that monotonically non-increasing 
variance iterates lead to monotonically non-increasing error covariances. Then for the 
maximisation step, it is argued that monotonic error covariances result in a monotonic 
measurement noise variance sequence. The design Riccati difference equation (28) can be 
written as 

( ) ( ) ( ) ( ) ( ) ( ) ( )
1/ / 1( ) ( ) ( )u u u u T u u T u

k k k k k k k k kP A K C P A K C K R K Q S       , (31) 

where ( ) ( ) ( ) ( )ˆ( )( )u u u u T
k k kS K R R K   accounts for the presence of parameter error. Subtracting xk 

from ( )
/ˆ u

k kx  yields 

( ) ( ) ( ) ( )
/ / 1( )u u u u

k k k k k k kx I L C x L v    , (32) 

where ( )
/
u

k kx  = xk − ( )
/ˆ u

k kx  and ( )
/ 1
u

k kx 
  = xk − ( )

/ 1ˆ u
k kx   are the corrected and predicted state errors, 

respectively. The observed corrected error covariance is defined as ( )
/

u
k k  = ( ) ( )

/ /{ ( ) }u u T
k k k kE x x   and 

obtained from 
( ) ( ) ( ) ( ) ( ) ( )
/ / 1( ) ( ) ( )u u u u T u u T

k k k k k k k kI L C I L C L R L       

                                       ( ) ( ) ( ) 1 ( )
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          , 
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where ( )
/ 1

u
k k  = ( ) ( )

/ 1 / 1{ ( ) }u u T
k k k kE x x 
  . The observed predicted state error satisfies 

( ) ( )
1/ /

u u
k k k k kx Ax Bw    . (34) 

Hence, the observed predicted error covariance obeys the recursion  
( ) ( )

1/ /
u u T T

k k k kA A BQB    . (35) 

Some observations concerning the above error covariances are described below. These 
results are used subsequently to establish the monotonicity of the above EM algorithm. 
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v , …, ( ) 2

,ˆ( )u
p v ) of R at 

iteration u. A Kalman filter designed with ( )ˆ uR  may then be employed to produce corrected 
output estimates ( )

/ˆ u
k ky . The filter’s design Riccati equation is given by 

( ) ( ) ( ) ( ) ( ) ( ) ( )
1/ / 1

ˆ( ) ( ) ( )u u u u T u u u T T
k k k k k k k kP A K C P A K C K R K BQB      , (28) 

where ( )u
kK  = ( ) ( )

/ 1 / 1(u T u T
k k k kAP C CP C   + ( ) 1ˆ )uR   is the predictor gain. The output estimates are 

calculated from 

( ) ( ) ( ) ( )
1/ 1/

( ) ( ) ( )
/

ˆ ˆ( )
ˆ ( )

u u u u
k k k k k k

u u u
k k k k k

x A K C K x
x I L C L z
      

     
     

, ( ) ( )
/ /ˆ ˆu u

k k k ky Cx , 
(29) 

(30) 

where ( )u
kL  = ( ) ( )

/ 1 / 1(u T u T
k k k kP C CP C   + ( ) 1ˆ )uR   is the filter gain. 

Procedure 1 [19]. Assume that an initial estimate (1)R̂  of R is available. Subsequent estimates, 
( )ˆ uR , u > 1, are calculated by repeating the following two-step procedure. 

                                                                 

“There are known knowns. These are things we know that we know. There are known unknowns. That 
is to say, there are things that we know we don’t know. But there are also unknown unknowns. There 
are things we don’t know we don’t know.” Donald Henry Rumsfeld 

  

Step 1. Operate the Kalman filter (29) – (30) designed with ( )ˆ uR  to obtain corrected output 
estimates ( )

/ˆ u
k ky . 

Step 2. For i = 1, …, p, use ( )
/ˆ u

k ky  instead of yk within (27) to obtain ( 1)ˆ uR   = diag( ( 1) 2
1,ˆ( )u

v  , 
( 1) 2
2,ˆ( )u

v  , …, ( 1) 2
,ˆ( )u

p v  ). 
 

8.3.2.2  Properties 
The above EM algorithm involves a repetition of two steps: the states are deduced using the 
current variance estimates and then the variances are re-identified from the latest states. 
Consequently, a two-part argument is employed to establish the monotonicity of the 
variance sequence. For the expectation step, it is shown that monotonically non-increasing 
variance iterates lead to monotonically non-increasing error covariances. Then for the 
maximisation step, it is argued that monotonic error covariances result in a monotonic 
measurement noise variance sequence. The design Riccati difference equation (28) can be 
written as 

( ) ( ) ( ) ( ) ( ) ( ) ( )
1/ / 1( ) ( ) ( )u u u u T u u T u

k k k k k k k k kP A K C P A K C K R K Q S       , (31) 

where ( ) ( ) ( ) ( )ˆ( )( )u u u u T
k k kS K R R K   accounts for the presence of parameter error. Subtracting xk 

from ( )
/ˆ u

k kx  yields 

( ) ( ) ( ) ( )
/ / 1( )u u u u

k k k k k k kx I L C x L v    , (32) 

where ( )
/
u

k kx  = xk − ( )
/ˆ u

k kx  and ( )
/ 1
u

k kx 
  = xk − ( )

/ 1ˆ u
k kx   are the corrected and predicted state errors, 

respectively. The observed corrected error covariance is defined as ( )
/

u
k k  = ( ) ( )

/ /{ ( ) }u u T
k k k kE x x   and 

obtained from 
( ) ( ) ( ) ( ) ( ) ( )
/ / 1( ) ( ) ( )u u u u T u u T

k k k k k k k kI L C I L C L R L       

                                       ( ) ( ) ( ) 1 ( )
/ 1 / 1 / 1 / 1( )u u T u T u

k k k k k k k kC C C R C
          , 

(33) 

where ( )
/ 1

u
k k  = ( ) ( )

/ 1 / 1{ ( ) }u u T
k k k kE x x 
  . The observed predicted state error satisfies 

( ) ( )
1/ /

u u
k k k k kx Ax Bw    . (34) 

Hence, the observed predicted error covariance obeys the recursion  
( ) ( )

1/ /
u u T T

k k k kA A BQB    . (35) 

Some observations concerning the above error covariances are described below. These 
results are used subsequently to establish the monotonicity of the above EM algorithm. 

                                                                 

“I want minimum information given with maximum politeness.” Jacqueline (Jackie) Lee Bouvier Kennedy 
Onassis 
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Lemma 1 [19]: In respect of Procedure 1 for estimating R, suppose the following: 
(i) the data zk has been generated by (23) – (25) in which A, B, C, Q are known, ( )i A  < 1, i 

= 1, …, n,  and the pair (A, C) is observable; 
(ii) there exist (2)

1/ 0P  ≤ (1)
1/ 0P  and R ≤ (2)R̂  ≤  (1)R̂  (or (1)

1/ 0P  ≤ (2)
1/ 0P  and (1)R̂  ≤  (2)R̂  ≤ R). 

Then: 

(i) ( )
1/

u
k k  ≤ ( )

1/
u

k kP  ; 

(ii) ( )
/

u
k k  ≤ ( )

/
u

k kP ; 

(iii) R ≤ ( 1)ˆ uR   ≤ ( )ˆ uR  implies ( 1)
1/

u
k kP 
  ≤ ( )

1/
u

k kP   (or ( )ˆ uR  ≤ ( 1)ˆ uR   ≤ R  implies ( )
1/

u
k kP   ≤ ( 1)

1/
u

k kP 
 )  

for all u ≥ 1. 

Proof: 

(i) Condition (i) ensures that the problem is well-posed. Condition (ii) stipulates that (1)
kS  ≥ 0, 

which is the initialisation step for an induction argument. For the inductive step, 
subtracting (33) from (31) yields ( )

1/
u

k kP   – ( )
1/

u
k k  = (A  – ( ) ( )

/ 1)(u u
k k kK C P   – ( )

/ 1)(
u

k k A  – 
( ) )u T
kK C  + ( )u

kS  and thus ( )
/ 1

u
k k  ≤ ( )

/ 1
u

k kP    implies ( )
1/

u
k k  ≤ ( )

1/
u

k kP  . 
(ii) The result is immediate by considering A = I within the proof for (i). 

(iii) The condition ( 1)ˆ uR   ≤ ( )ˆ uR  ensures that 
( 1) 1 ( ) 1ˆ ˆ( ) ( )

T T

T m T m

Q A Q A

A C R C A C R C  

   
   

       
, 

which together with ( 1)
1/ 0

uP   ≤ ( )
1/ 0

uP  within Theorem 2 of Chapter 7 results in  ( 1)
1/

u
k kP 
  ≤ 

( )
1/

u
k kP  .                                                                                                                                     � 

Thus the sequences of observed prediction and correction error covariances are bounded 
above by the design prediction and correction error covariances. Next, it is shown that the 
observed error covariances are monotonically non-increasing (or non-decreasing). 

Lemma 2 [19]: Under the conditions of Lemma 1: 

i)  ( 1)
1/

u
k k

 ≤ ( )

1/
u

k k  (or ( )
1/

u
k k  ≤ ( 1)

1/
u

k k

 ) and 

ii) ( 1)
/

u
k k
  ≤ ( )

/
u

k k  (or ( )
/

u
k k  ≤ ( 1)

/
u

k k
 ). 

Proof: To establish that the solution of (33) is monotonic non-increasing, from Theorem 2 of Chapter 
7, it is required to show that 

                  
( 1) ( 1) ( 1)

( 1)

( ) ( )
0

u u T u T
k k k

u
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Q K R K A K C
A K C

  



  
 

 
≤

( ) ( ) ( )

( )

( ) ( )
0

u u T u T
k k k

u
k

Q K R K A K C
A K C

  
 

 
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“Technology is so much fun but we can drown in our technology. The fog of information can drive out 
knowledge.” Daniel Joseph Boostin 

  

Since A, Q and R are time-invariant, it suffices to show that 

( 1) ( 1) ( 1) ( ) ( ) ( )

( 1) ( )

( ) ( ) ( ) ( )
0 0

u u T u T u u T u T
k k k k k k

u u
k k

L L I L C L L I L C
I L C I L C

  



    
   

    
. (36) 

Note for an X and Y satisfying I ≥ Y ≥ X ≥ 0 that YYT - XXT ≥ (I – X)(I – X)T – (I – Y)(I – Y)T. 
Therefore, ( 1)ˆ uR   ≤ ( )ˆ uR  and ( 1)

1/
u

k kP 
  ≤ ( )

1/
u

k kP   (from Lemma 1) imply ( 1)uL C  ≤ ( )uL C  ≤  I and thus 
(36) follows.                                                                                                                                            � 

It is established below that monotonic non-increasing error covariances result in a 
monotonic non-increasing measurement noise variance sequence. 

Lemma 3 [19]: In respect of Procedure 1 for estimating R, suppose the following: 

(i) the data zk has been generated by (23) – (25) in which A, B, C, Q are known, ( )i A  < 1, i 
= 1, …, n and the pair (A, C) is observable; 

(ii) there exist (1)R̂  ≥ R ≥ 0 and ( 1)
1/ 0

uP   ≤ ( )
1/ 0

uP  (or ( )
1/ 0

uP  ≤ ( 1)
1/ 0

uP  ) for all u > 1. 

Then ( 1)ˆ uR   ≤ ( )ˆ uR  (or ( )ˆ uR  ≤ ( 1)ˆ uR  ) for all u > 1. 

Proof: Let Ci denote the ith row of C. The approximate MLE within Procedure 1 is written as 

( 1) 2 ( ) 2
, , /

1

1 ˆˆ( ) ( )
N

u u
i v i k i k k

k
z C x

N
 



   

                                                           ( ) 2
/ ,

1

1 ( )
N

u
i k k i k

k
C x v

N 

    

                                                           ( ) 2
/ ,

u T
i k k i i vC C     

(37) 

 

(38) 

 

(39) 

and thus ( 1)ˆ uR   = ( )
/

u T
k kC C  + R. Since ( 1)ˆ uR   is affine to ( )

/
u

k k , which from Lemma 2 is 

monotonically non-increasing, it follows that ( 1)ˆ uR   ≤ ( )ˆ uR .                                                                � 

 

If the estimation problem is dominated by measurement noise, the measurement noise 
MLEs converge to the actual values. 
 
Lemma 4 [19]: Under the conditions of Lemma 3,  

1

( 1)

0, 0,

ˆlim u

Q R u
R R





  
 . (40) 

                                                                 

“Getting information off the internet is like taking a drink from a fire hydrant.” Mitchell David Kapor 



Smoothing, Filtering and Prediction -
Estimating the Past, Present and Future186

Lemma 1 [19]: In respect of Procedure 1 for estimating R, suppose the following: 
(i) the data zk has been generated by (23) – (25) in which A, B, C, Q are known, ( )i A  < 1, i 

= 1, …, n,  and the pair (A, C) is observable; 
(ii) there exist (2)

1/ 0P  ≤ (1)
1/ 0P  and R ≤ (2)R̂  ≤  (1)R̂  (or (1)

1/ 0P  ≤ (2)
1/ 0P  and (1)R̂  ≤  (2)R̂  ≤ R). 

Then: 

(i) ( )
1/

u
k k  ≤ ( )

1/
u

k kP  ; 

(ii) ( )
/

u
k k  ≤ ( )

/
u

k kP ; 

(iii) R ≤ ( 1)ˆ uR   ≤ ( )ˆ uR  implies ( 1)
1/

u
k kP 
  ≤ ( )

1/
u

k kP   (or ( )ˆ uR  ≤ ( 1)ˆ uR   ≤ R  implies ( )
1/

u
k kP   ≤ ( 1)

1/
u

k kP 
 )  

for all u ≥ 1. 

Proof: 

(i) Condition (i) ensures that the problem is well-posed. Condition (ii) stipulates that (1)
kS  ≥ 0, 

which is the initialisation step for an induction argument. For the inductive step, 
subtracting (33) from (31) yields ( )

1/
u

k kP   – ( )
1/

u
k k  = (A  – ( ) ( )

/ 1)(u u
k k kK C P   – ( )

/ 1)(
u

k k A  – 
( ) )u T
kK C  + ( )u

kS  and thus ( )
/ 1

u
k k  ≤ ( )

/ 1
u

k kP    implies ( )
1/

u
k k  ≤ ( )

1/
u

k kP  . 
(ii) The result is immediate by considering A = I within the proof for (i). 

(iii) The condition ( 1)ˆ uR   ≤ ( )ˆ uR  ensures that 
( 1) 1 ( ) 1ˆ ˆ( ) ( )

T T

T m T m

Q A Q A

A C R C A C R C  

   
   

       
, 

which together with ( 1)
1/ 0

uP   ≤ ( )
1/ 0

uP  within Theorem 2 of Chapter 7 results in  ( 1)
1/

u
k kP 
  ≤ 

( )
1/

u
k kP  .                                                                                                                                     � 

Thus the sequences of observed prediction and correction error covariances are bounded 
above by the design prediction and correction error covariances. Next, it is shown that the 
observed error covariances are monotonically non-increasing (or non-decreasing). 

Lemma 2 [19]: Under the conditions of Lemma 1: 

i)  ( 1)
1/

u
k k

 ≤ ( )

1/
u

k k  (or ( )
1/

u
k k  ≤ ( 1)

1/
u

k k

 ) and 

ii) ( 1)
/

u
k k
  ≤ ( )

/
u

k k  (or ( )
/

u
k k  ≤ ( 1)

/
u

k k
 ). 

Proof: To establish that the solution of (33) is monotonic non-increasing, from Theorem 2 of Chapter 
7, it is required to show that 
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 

 
≤
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u
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“Technology is so much fun but we can drown in our technology. The fog of information can drive out 
knowledge.” Daniel Joseph Boostin 

  

Since A, Q and R are time-invariant, it suffices to show that 

( 1) ( 1) ( 1) ( ) ( ) ( )

( 1) ( )

( ) ( ) ( ) ( )
0 0

u u T u T u u T u T
k k k k k k

u u
k k
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I L C I L C
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

    
   
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. (36) 

Note for an X and Y satisfying I ≥ Y ≥ X ≥ 0 that YYT - XXT ≥ (I – X)(I – X)T – (I – Y)(I – Y)T. 
Therefore, ( 1)ˆ uR   ≤ ( )ˆ uR  and ( 1)

1/
u

k kP 
  ≤ ( )

1/
u

k kP   (from Lemma 1) imply ( 1)uL C  ≤ ( )uL C  ≤  I and thus 
(36) follows.                                                                                                                                            � 

It is established below that monotonic non-increasing error covariances result in a 
monotonic non-increasing measurement noise variance sequence. 

Lemma 3 [19]: In respect of Procedure 1 for estimating R, suppose the following: 

(i) the data zk has been generated by (23) – (25) in which A, B, C, Q are known, ( )i A  < 1, i 
= 1, …, n and the pair (A, C) is observable; 

(ii) there exist (1)R̂  ≥ R ≥ 0 and ( 1)
1/ 0

uP   ≤ ( )
1/ 0

uP  (or ( )
1/ 0

uP  ≤ ( 1)
1/ 0

uP  ) for all u > 1. 

Then ( 1)ˆ uR   ≤ ( )ˆ uR  (or ( )ˆ uR  ≤ ( 1)ˆ uR  ) for all u > 1. 

Proof: Let Ci denote the ith row of C. The approximate MLE within Procedure 1 is written as 
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N
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                                                           ( ) 2
/ ,

u T
i k k i i vC C     

(37) 

 

(38) 

 

(39) 

and thus ( 1)ˆ uR   = ( )
/

u T
k kC C  + R. Since ( 1)ˆ uR   is affine to ( )

/
u

k k , which from Lemma 2 is 

monotonically non-increasing, it follows that ( 1)ˆ uR   ≤ ( )ˆ uR .                                                                � 

 

If the estimation problem is dominated by measurement noise, the measurement noise 
MLEs converge to the actual values. 
 
Lemma 4 [19]: Under the conditions of Lemma 3,  

1

( 1)

0, 0,

ˆlim u

Q R u
R R




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 . (40) 
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Lemma 1 [19]: In respect of Procedure 1 for estimating R, suppose the following: 
(i) the data zk has been generated by (23) – (25) in which A, B, C, Q are known, ( )i A  < 1, i 

= 1, …, n,  and the pair (A, C) is observable; 
(ii) there exist (2)

1/ 0P  ≤ (1)
1/ 0P  and R ≤ (2)R̂  ≤  (1)R̂  (or (1)

1/ 0P  ≤ (2)
1/ 0P  and (1)R̂  ≤  (2)R̂  ≤ R). 

Then: 

(i) ( )
1/

u
k k  ≤ ( )

1/
u

k kP  ; 

(ii) ( )
/

u
k k  ≤ ( )

/
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k kP ; 

(iii) R ≤ ( 1)ˆ uR   ≤ ( )ˆ uR  implies ( 1)
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u
k kP 
  ≤ ( )

1/
u

k kP   (or ( )ˆ uR  ≤ ( 1)ˆ uR   ≤ R  implies ( )
1/

u
k kP   ≤ ( 1)

1/
u

k kP 
 )  

for all u ≥ 1. 

Proof: 

(i) Condition (i) ensures that the problem is well-posed. Condition (ii) stipulates that (1)
kS  ≥ 0, 

which is the initialisation step for an induction argument. For the inductive step, 
subtracting (33) from (31) yields ( )

1/
u

k kP   – ( )
1/

u
k k  = (A  – ( ) ( )

/ 1)(u u
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u
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k kP  . 
(ii) The result is immediate by considering A = I within the proof for (i). 

(iii) The condition ( 1)ˆ uR   ≤ ( )ˆ uR  ensures that 
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which together with ( 1)
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uP  within Theorem 2 of Chapter 7 results in  ( 1)
1/

u
k kP 
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Thus the sequences of observed prediction and correction error covariances are bounded 
above by the design prediction and correction error covariances. Next, it is shown that the 
observed error covariances are monotonically non-increasing (or non-decreasing). 

Lemma 2 [19]: Under the conditions of Lemma 1: 
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Proof: To establish that the solution of (33) is monotonic non-increasing, from Theorem 2 of Chapter 
7, it is required to show that 
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“Technology is so much fun but we can drown in our technology. The fog of information can drive out 
knowledge.” Daniel Joseph Boostin 

  

Since A, Q and R are time-invariant, it suffices to show that 

( 1) ( 1) ( 1) ( ) ( ) ( )

( 1) ( )

( ) ( ) ( ) ( )
0 0

u u T u T u u T u T
k k k k k k

u u
k k

L L I L C L L I L C
I L C I L C

  



    
   

    
. (36) 

Note for an X and Y satisfying I ≥ Y ≥ X ≥ 0 that YYT - XXT ≥ (I – X)(I – X)T – (I – Y)(I – Y)T. 
Therefore, ( 1)ˆ uR   ≤ ( )ˆ uR  and ( 1)

1/
u

k kP 
  ≤ ( )

1/
u

k kP   (from Lemma 1) imply ( 1)uL C  ≤ ( )uL C  ≤  I and thus 
(36) follows.                                                                                                                                            � 

It is established below that monotonic non-increasing error covariances result in a 
monotonic non-increasing measurement noise variance sequence. 

Lemma 3 [19]: In respect of Procedure 1 for estimating R, suppose the following: 

(i) the data zk has been generated by (23) – (25) in which A, B, C, Q are known, ( )i A  < 1, i 
= 1, …, n and the pair (A, C) is observable; 

(ii) there exist (1)R̂  ≥ R ≥ 0 and ( 1)
1/ 0

uP   ≤ ( )
1/ 0

uP  (or ( )
1/ 0

uP  ≤ ( 1)
1/ 0

uP  ) for all u > 1. 

Then ( 1)ˆ uR   ≤ ( )ˆ uR  (or ( )ˆ uR  ≤ ( 1)ˆ uR  ) for all u > 1. 

Proof: Let Ci denote the ith row of C. The approximate MLE within Procedure 1 is written as 

( 1) 2 ( ) 2
, , /

1

1 ˆˆ( ) ( )
N

u u
i v i k i k k

k
z C x

N
 



   

                                                           ( ) 2
/ ,

1

1 ( )
N

u
i k k i k

k
C x v

N 

    

                                                           ( ) 2
/ ,

u T
i k k i i vC C     

(37) 

 

(38) 

 

(39) 

and thus ( 1)ˆ uR   = ( )
/

u T
k kC C  + R. Since ( 1)ˆ uR   is affine to ( )

/
u

k k , which from Lemma 2 is 

monotonically non-increasing, it follows that ( 1)ˆ uR   ≤ ( )ˆ uR .                                                                � 

 

If the estimation problem is dominated by measurement noise, the measurement noise 
MLEs converge to the actual values. 
 
Lemma 4 [19]: Under the conditions of Lemma 3,  

1

( 1)

0, 0,

ˆlim u

Q R u
R R





  
 . (40) 
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Proof: By inspection of ( )u
kL  = ( ) ( )

/ 1 / 1(u T u T
k k k kP C CP C   + ( ) 1)uR  , it follows that 

1

( )

0, 0,
lim u

k
Q R u

L
  

 = 0. 

Therefore, 
1

( )
/

0, 0,
ˆlim u

k k
Q R u

x
  

 = 0 and 
10, 0

lim k
Q R

z
 

 = vk , which implies (40), since the MLE (37) is 

unbiased for large N.                                                                                                                              � 

Example 9. In respect of the problem (23) – (25), assume A = 0.9, B = C = 1 and 2
w  = 0.1 are 

known. Suppose that 2
v  = 10 but is unknown. Samples zk and ( )

/ˆ u
k kx  were generated from N 

= 20,000 realisations of zero-mean Gaussian wk and vk. The sequence of MLEs obtained 
using Procedure 1, initialised with (1) 2ˆ( )v  = 14 and 12 are indicated by traces (i) and (ii) of 
Fig. 1, respectively. The variance sequences are monotonically decreasing, which is 
consistent with Lemma 3. The figure shows that the MLEs converge (to a local maximum of 
the approximate log-likelihood function), and are reasonably close to the actual value of 2

v  
= 10. This illustrates the high measurement noise observation described by Lemma 4. An 
alternative to the EM algorithm involves calculating MLEs using the Newton-Raphson 
method [5], [6]. The calculated Newton-Raphson measurement noise variance iterates, 
initialised with (1) 2ˆ( )v  = 14 and 12 are indicated by traces (iii) and (iv) of Fig. 1, respectively. 
It can be seen that the Newton-Raphson estimates converge to those of the EM algorithm, 
albeit at a slower rate.  
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Figure 1. Variance MLEs (27) versus iteration number for Example 9: (i) EM algorithm with (1) 2ˆ( )v  = 14, 

(ii) EM algorithm with (1) 2ˆ( )v  = 12, (iii) Newton-Raphson with (1) 2ˆ( )v  = 14 and (iv) Newton-Raphson 

with (1) 2ˆ( )v  = 12. 
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8.3.3  Process Noise Variance Estimation 

8.3.3.1  EM Algorithm 
In respect of the model (23), suppose that it is desired to estimate Q given N samples of xk+1. 
The vector states within (23) can be written in terms of its i components, , 1 ,i k i k i kx A x w   , 
that is 

, , 1i k i k i kw A x x   , (41) 

where wi,k = Biwk, Ai and Bi refer the ith row of A and B, respectively. Assume that wi,k ~ 
(0,  2

, )i w , where 2
,i w     is to be estimated. An MLE for the scalar 2

,i w  = T
i iB QB  can be 

calculated from the sample variance formula 

2
, , ,

1

1 N
T

i w i k i k
k

w w
N




   

                                                             , 1 , 1
1

1 ( )( )
N

T
i k i k i k i k

k
x A x x A x

N  


    

                                                             
1

1 N
T T

i k k i
k

B w w B
N 

   

                                                             
1

1 N
T T

i k k i
k

B w w B
N 

 
  

 
 . 

(42) 

 
(43) 

 
(44) 

 
(45) 

Substituting wk = Axk – xk+1 into (45) and noting that 2
,i w  = T

i iB QB yields 

1 1
1

1ˆ ( )( )
N

T
k k k k

k
Q Ax x Ax x

N  


   , (46) 

which can be updated as follows. 

Procedure 2 [19]. Assume that an initial estimate (1)Q̂  of Q is available. Subsequent estimates 
can be found by repeating the following two-step algorithm. 

Step 1. Operate the filter recursions (29) designed with ( )ˆ uQ  on the measurements (25) 
over k  [1, N] to obtain corrected state estimates ( )

/ˆ u
k kx  and ( )

1/ 1ˆ u
k kx   . 

Step 2. For i = 1, …, n, use ( )
/ˆ u

k kx  and ( )
1/ 1ˆ u

k kx    instead of xk and xk+1 within (46) to obtain 
( 1)ˆ uQ   = diag( ( 1) 2

1,ˆ( )u
w  , ( 1) 2

2,ˆ( )u
w  , …, ( 1) 2

,ˆ( )u
n w  ). 

 

                                                                 

“Information on the Internet is subject to the same rules and regulations as conversations at a bar.” 
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Proof: By inspection of ( )u
kL  = ( ) ( )

/ 1 / 1(u T u T
k k k kP C CP C   + ( ) 1)uR  , it follows that 

1

( )

0, 0,
lim u

k
Q R u

L
  

 = 0. 

Therefore, 
1

( )
/

0, 0,
ˆlim u

k k
Q R u

x
  

 = 0 and 
10, 0

lim k
Q R

z
 

 = vk , which implies (40), since the MLE (37) is 

unbiased for large N.                                                                                                                              � 

Example 9. In respect of the problem (23) – (25), assume A = 0.9, B = C = 1 and 2
w  = 0.1 are 

known. Suppose that 2
v  = 10 but is unknown. Samples zk and ( )

/ˆ u
k kx  were generated from N 

= 20,000 realisations of zero-mean Gaussian wk and vk. The sequence of MLEs obtained 
using Procedure 1, initialised with (1) 2ˆ( )v  = 14 and 12 are indicated by traces (i) and (ii) of 
Fig. 1, respectively. The variance sequences are monotonically decreasing, which is 
consistent with Lemma 3. The figure shows that the MLEs converge (to a local maximum of 
the approximate log-likelihood function), and are reasonably close to the actual value of 2

v  
= 10. This illustrates the high measurement noise observation described by Lemma 4. An 
alternative to the EM algorithm involves calculating MLEs using the Newton-Raphson 
method [5], [6]. The calculated Newton-Raphson measurement noise variance iterates, 
initialised with (1) 2ˆ( )v  = 14 and 12 are indicated by traces (iii) and (iv) of Fig. 1, respectively. 
It can be seen that the Newton-Raphson estimates converge to those of the EM algorithm, 
albeit at a slower rate.  
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Figure 1. Variance MLEs (27) versus iteration number for Example 9: (i) EM algorithm with (1) 2ˆ( )v  = 14, 

(ii) EM algorithm with (1) 2ˆ( )v  = 12, (iii) Newton-Raphson with (1) 2ˆ( )v  = 14 and (iv) Newton-Raphson 

with (1) 2ˆ( )v  = 12. 
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8.3.3  Process Noise Variance Estimation 

8.3.3.1  EM Algorithm 
In respect of the model (23), suppose that it is desired to estimate Q given N samples of xk+1. 
The vector states within (23) can be written in terms of its i components, , 1 ,i k i k i kx A x w   , 
that is 

, , 1i k i k i kw A x x   , (41) 

where wi,k = Biwk, Ai and Bi refer the ith row of A and B, respectively. Assume that wi,k ~ 
(0,  2

, )i w , where 2
,i w     is to be estimated. An MLE for the scalar 2

,i w  = T
i iB QB  can be 

calculated from the sample variance formula 

2
, , ,

1

1 N
T

i w i k i k
k

w w
N




   

                                                             , 1 , 1
1

1 ( )( )
N

T
i k i k i k i k

k
x A x x A x

N  


    

                                                             
1

1 N
T T

i k k i
k

B w w B
N 

   

                                                             
1

1 N
T T

i k k i
k

B w w B
N 

 
  

 
 . 

(42) 

 
(43) 

 
(44) 

 
(45) 

Substituting wk = Axk – xk+1 into (45) and noting that 2
,i w  = T

i iB QB yields 

1 1
1

1ˆ ( )( )
N

T
k k k k

k
Q Ax x Ax x

N  


   , (46) 

which can be updated as follows. 

Procedure 2 [19]. Assume that an initial estimate (1)Q̂  of Q is available. Subsequent estimates 
can be found by repeating the following two-step algorithm. 

Step 1. Operate the filter recursions (29) designed with ( )ˆ uQ  on the measurements (25) 
over k  [1, N] to obtain corrected state estimates ( )

/ˆ u
k kx  and ( )

1/ 1ˆ u
k kx   . 

Step 2. For i = 1, …, n, use ( )
/ˆ u

k kx  and ( )
1/ 1ˆ u

k kx    instead of xk and xk+1 within (46) to obtain 
( 1)ˆ uQ   = diag( ( 1) 2

1,ˆ( )u
w  , ( 1) 2

2,ˆ( )u
w  , …, ( 1) 2

,ˆ( )u
n w  ). 
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Proof: By inspection of ( )u
kL  = ( ) ( )

/ 1 / 1(u T u T
k k k kP C CP C   + ( ) 1)uR  , it follows that 

1

( )

0, 0,
lim u

k
Q R u

L
  

 = 0. 

Therefore, 
1

( )
/

0, 0,
ˆlim u

k k
Q R u

x
  

 = 0 and 
10, 0

lim k
Q R

z
 

 = vk , which implies (40), since the MLE (37) is 

unbiased for large N.                                                                                                                              � 

Example 9. In respect of the problem (23) – (25), assume A = 0.9, B = C = 1 and 2
w  = 0.1 are 

known. Suppose that 2
v  = 10 but is unknown. Samples zk and ( )

/ˆ u
k kx  were generated from N 

= 20,000 realisations of zero-mean Gaussian wk and vk. The sequence of MLEs obtained 
using Procedure 1, initialised with (1) 2ˆ( )v  = 14 and 12 are indicated by traces (i) and (ii) of 
Fig. 1, respectively. The variance sequences are monotonically decreasing, which is 
consistent with Lemma 3. The figure shows that the MLEs converge (to a local maximum of 
the approximate log-likelihood function), and are reasonably close to the actual value of 2

v  
= 10. This illustrates the high measurement noise observation described by Lemma 4. An 
alternative to the EM algorithm involves calculating MLEs using the Newton-Raphson 
method [5], [6]. The calculated Newton-Raphson measurement noise variance iterates, 
initialised with (1) 2ˆ( )v  = 14 and 12 are indicated by traces (iii) and (iv) of Fig. 1, respectively. 
It can be seen that the Newton-Raphson estimates converge to those of the EM algorithm, 
albeit at a slower rate.  
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Figure 1. Variance MLEs (27) versus iteration number for Example 9: (i) EM algorithm with (1) 2ˆ( )v  = 14, 

(ii) EM algorithm with (1) 2ˆ( )v  = 12, (iii) Newton-Raphson with (1) 2ˆ( )v  = 14 and (iv) Newton-Raphson 

with (1) 2ˆ( )v  = 12. 
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8.3.3  Process Noise Variance Estimation 

8.3.3.1  EM Algorithm 
In respect of the model (23), suppose that it is desired to estimate Q given N samples of xk+1. 
The vector states within (23) can be written in terms of its i components, , 1 ,i k i k i kx A x w   , 
that is 

, , 1i k i k i kw A x x   , (41) 

where wi,k = Biwk, Ai and Bi refer the ith row of A and B, respectively. Assume that wi,k ~ 
(0,  2

, )i w , where 2
,i w     is to be estimated. An MLE for the scalar 2

,i w  = T
i iB QB  can be 

calculated from the sample variance formula 

2
, , ,

1

1 N
T

i w i k i k
k

w w
N




   

                                                             , 1 , 1
1

1 ( )( )
N

T
i k i k i k i k

k
x A x x A x

N  


    
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k

B w w B
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1 N
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B w w B
N 

 
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 
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(42) 

 
(43) 

 
(44) 

 
(45) 

Substituting wk = Axk – xk+1 into (45) and noting that 2
,i w  = T

i iB QB yields 

1 1
1

1ˆ ( )( )
N

T
k k k k

k
Q Ax x Ax x

N  


   , (46) 

which can be updated as follows. 

Procedure 2 [19]. Assume that an initial estimate (1)Q̂  of Q is available. Subsequent estimates 
can be found by repeating the following two-step algorithm. 

Step 1. Operate the filter recursions (29) designed with ( )ˆ uQ  on the measurements (25) 
over k  [1, N] to obtain corrected state estimates ( )

/ˆ u
k kx  and ( )

1/ 1ˆ u
k kx   . 

Step 2. For i = 1, …, n, use ( )
/ˆ u

k kx  and ( )
1/ 1ˆ u

k kx    instead of xk and xk+1 within (46) to obtain 
( 1)ˆ uQ   = diag( ( 1) 2

1,ˆ( )u
w  , ( 1) 2

2,ˆ( )u
w  , …, ( 1) 2

,ˆ( )u
n w  ). 
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Figure 2. Variance MLEs (46) versus iteration number for Example 10: (i) EM algorithm with (1) 2ˆ( )w  = 

0.14, (ii) EM algorithm with (1) 2ˆ( )w  = 0.12, (iii) Newton-Raphson with (1) 2ˆ( )w  = 0.14 and (iv) Newton-

Raphson with (1) 2ˆ( )w  = 0.12. 
 

8.3.3.2 Properties 
Similarly to Lemma 1, it can be shown that a monotonically non-increasing (or non-
decreasing) sequence of process noise variance estimates results in a monotonically non-
increasing (or non-decreasing) sequence of design and observed error covariances, see [19]. 
The converse case is stated below, namely, the sequence of variance iterates is monotonically 
non-increasing, provided the estimates and error covariances are initialized appropriately. 
The accompanying proof makes use of  

( ) ( ) ( ) ( ) ( ) ( )
1/ 1 / 1/ 1 1 1/ /ˆ ˆ ˆ ˆ ˆ( )u u u u u u

k k k k k k k k k k k kx Ax x L z Cx Ax           

                                                     ( ) ( ) ( )
/ , 1 1 1/ /ˆ ˆ ˆ( )u u u

k k i k k k k k kAx L z Cx Ax       

                                                     ( ) ( )
1 / 1( )u u

k k k kL Cx v   . 

(47) 

The components of (47) are written as 
( ) ( ) ( ) ( )
, 1/ 1 / , 1 1/ 1ˆ ˆ ( )u u u u

i k k i k k i k k k kx a x L Cx v       , (48) 

where ( )
, 1
u

i kL   is the ith row of ( )
1

u
kL  . 

 

 

                                                                 

“I must confess that I’ve never trusted the Web. I’ve always seen it as a coward’s tool. Where does it 
live? How do you hold it personally responsible? Can you put a distributed network of fibre-optic cable 
on notice? And is it male or female? In other words, can I challenge it to a fight?” Stephen Tyrone Colbert 

  

Lemma 5 [19]: In respect of Procedure 2 for estimating Q, suppose the following: 

(i) the data zk has been generated by (23) – (25) in which A, B, C, R are known, ( )i A  < 1, i 
= 1, ..., n and the pair (A, C) is observable; 

(ii) there exist (1)Q̂  ≥ Q  ≥ 0 and ( 1)
1/ 0

uP   ≤ ( )
1/ 0

uP   (or ( )
1/ 0

uP  ≤ ( 1)
1/ 0

uP  ) for all u > 1. 

Then ( 1)ˆ uQ   ≤ ( )ˆ uQ  (or ( )ˆ uQ  ≤ ( 1)ˆ uQ  ) for all u > 1. 

Proof: Using (47)within (46) gives 
2

( ) 2 ( ) ( )
, , 1 1/ 1 , 1

1

1ˆ( ) ( )
N

u u u T
i w i k k k k i k

k
L Cx v L

N
    



 
  

 
   

( ) ( ) ( )
, 1 1/ , 1( )( )u u T u T

i k k k i kL C C R L      

(49) 

and thus ( 1)ˆ uQ   = ( ) ( )
1 1/(u u T

k k kL C C   + ( )
1)( )u T

kR L  . Since ( 1)ˆ uQ   varies with ( ) ( )
1 , 1( )u u T

k j kL L   and ( )
1/

u
k k , 

which from Lemma 2 are monotonically non-increasing, it follows that ( 1)ˆ uQ   ≤ ( )ˆ uQ .                                  �  

It is observed that the approximate MLEs asymptotically approach the actual values when 
the SNR is sufficiently high. 

Lemma 6 [19]: Under the conditions of Lemma 5,  

1

( 1)

0, 0,

ˆlim u

Q R u
Q Q





  
 . (50) 

Proof: It is straight forward to show that 
1 ,

0, 0
lim i k

Q R
L C

  
 = I and therefore 

1

( )
/

0, 0,
ˆlim u

k k
Q R u

x
   

 = xk , 

which implies (50), since the MLE (46) is unbiased for large N.                                                      �  

Example 10. For the model described in Example 8, suppose that 2
v  = 0.01 is known, and 

(1) 2ˆ( )w  = 0.1 but is unknown. Procedure 2 and the Newton-Raphson method [5], [6] were 
used to jointly estimate the states and the unknown variance. Some example variance 
iterations, initialised with (1) 2ˆ( )w  = 0.14 and 0.12, are shown in Fig. 2. The EM algorithm 
estimates are seen to be monotonically decreasing, which is in agreement with Lemma 5. At 
the final iteration, the approximate MLEs do not quite reach the actual value of (1) 2ˆ( )w  = 0.1, 
because the presence of measurement noise results in imperfect state reconstruction and 
introduces a small bias (see Example 5). The figure also shows that MLEs calculated via the 
Newton-Raphson method converge at a slower rate.  

                                                                 

“Four years ago nobody but nuclear physicists had ever heard of the Internet. Today even my cat, 
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Figure 2. Variance MLEs (46) versus iteration number for Example 10: (i) EM algorithm with (1) 2ˆ( )w  = 

0.14, (ii) EM algorithm with (1) 2ˆ( )w  = 0.12, (iii) Newton-Raphson with (1) 2ˆ( )w  = 0.14 and (iv) Newton-

Raphson with (1) 2ˆ( )w  = 0.12. 
 

8.3.3.2 Properties 
Similarly to Lemma 1, it can be shown that a monotonically non-increasing (or non-
decreasing) sequence of process noise variance estimates results in a monotonically non-
increasing (or non-decreasing) sequence of design and observed error covariances, see [19]. 
The converse case is stated below, namely, the sequence of variance iterates is monotonically 
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Figure 3. (i) 2

1,ˆ w , (ii) 2
2,ˆ w , (iii) 2

3,ˆ w  and (iv) 2
4,ˆ w , normalised by their steady state values, versus EM 

iteration number for Example 11. 

Example 11. Consider the problem of calculating the initial alignment of an inertial 
navigation system. Alignment is the process of estimating the Earth rotation rate and 
rotating the attitude direction cosine matrix, so that it transforms the body-frame sensor 
signals to a locally-level frame, wherein certain components of accelerations and velocities 
approach zero when the platform is stationary. This can be achieved by a Kalman filter that 
uses the model (23), where xk  4  comprises the errors in earth rotation rate, tilt, velocity 
and position vectors respectively, and wk  4  is a deterministic signal which is a nonlinear 

function of the states (see [24]). The state matrix is calculated as A = I  +  sT  + 21 ( )
2! sT  + 

31 ( )
3! sT , where Ts is the sampling interval,   = 

0 0 0 0
1 0 0 0
0 0 0
0 0 1 0

g

 
 
 
 
 
  

 is a continuous-time state 

matrix and g is the universal gravitational constant. The output mapping within (24) is 
0 0 0 1C     . Raw three-axis accelerometer and gyro data was recorded from a 

stationary Litton LN270 Inertial Navigation System at a 500 Hz data rate. In order to 
generate a compact plot, the initial variance estimates were selected to be 10 times the  
steady state values. 

                                                                 

“On the Internet, nobody knows you’re a dog.” Peter Steiner 

  

 
Figure 4. Estimated magnitude of Earth rotation rate for Example 11. 

The estimated variances after 10 EM iterations are shown in Fig. 3. The figure demonstrates 
that approximate MLEs (46) approach steady state values from above, which is consistent 
with Lemma 5. The estimated Earth rotation rate magnitude versus time is shown in Fig. 4. 
At 100 seconds, the estimated magnitude of the Earth rate is 72.53 micro-radians per second, 
that is, one revolution every 24.06 hours. This estimated Earth rate is about 0.5% in error 
compared with the mean sidereal day of 23.93 hours [25].  Since the estimated Earth rate is 
in reasonable agreement, it is suggested that the MLEs for the unknown variances are 
satisfactory (see [19] for further details). 
 

8.3.4  State Matrix Estimation 

8.3.4.1 EM Algorithm 
The components of the states within (23) are now written as 
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“It’s important for us to explain to our nation that life is important. It’s not only the life of babies, but 
it’s life of children living in, you know, the dark dungeons of the internet.” George Walker Bush 
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By setting , , 1
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 = 0, an MLE for ai,j is obtained as [20] 
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Incidentally, the above estimate can also be found using the least-squares method [2], [10] 
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Since wi,k and  xi,k are independent. Hence, the MLE (53) is unbiased. 

Suppose that an estimate ( )ˆ uA  = ( )
,{ }u

i ja  of A is available at an iteration u. The predicted state 
estimates within (29) can be calculated from 

( ) ( ) ( ) ( ) ( )
1/ 1/

ˆˆ ˆ( )u u u u u
k k k k k k kx A K C x K z    , (54) 
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/ 1 / 1
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An approximate MLE for ai,j is obtained by replacing xk by ( )
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An iterative procedure for re-estimating an unknown state matrix is proposed below. 

Procedure 3 [20]. Assume that there exists an initial estimate (1)Â  satisfying (1)ˆ| ( ) |i A  < 1, i = 
1, …, n. Subsequent estimates are calculated using the following two-step EM algorithm. 

Step 1. Operate the Kalman filter (29) using (54) on the measurements zk over k  [1, N] to 
obtain corrected state estimates ( )

/ˆ u
k kx  and ( )

1/ 1ˆ u
k kx   . 

Step 2. Copy ( )ˆ uA  to ( 1)ˆ uA  . Use ( )
/ˆ u

k kx  within (56) to obtain candidate estimates ( 1)
,ˆ
u

i ja  , i, j = 

1, …, n. Include ( 1)
,ˆ
u

i ja   within ( 1)ˆ uA   if ( 1)ˆ| ( ) |u
i A   < 1, i = 1, …, n.  

The condition ( 1)ˆ| ( ) |u
i A   < 1 within Step 2 ensures that the estimated system is 

asymptotically stable. 
 

8.3.4.2 Properties 
The design Riccati difference equation (55) can be written as 

( ) ( ) ( ) ( ) ( ) ( ) ( )
1/ / 1( ) ( ) ( )u u u u T u u T u

k k k k k k k k kP A K C P A K C K R K Q S       , (57) 

where 
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accounts for the presence of modelling error. In the following, the notation of Lemma 1 is 
employed to argue that a monotonically non-increasing state matrix estimate sequence 
results in monotonically non-increasing error covariance sequences. 

Lemma 7 [20]. In respect of Procedure 3 for estimating A, suppose the following: 

(i) the data zk has been generated by (23) – (25) in which B, C, Q, R are known; 
(ii)  (1)ˆ| ( ) |i A  < 1, i = 1, …, n,  the pair (A, C) is observable; 

(iii) there exist (1)Â  ≥ A and  ( 1)
1/ 0
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By setting , , 1
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Incidentally, the above estimate can also be found using the least-squares method [2], [10] 

and minimising the cost function 
2

, 1 , ,
1 1

.
N n

i k i j i k
k j

x a x
 

 
  

 
   The expectation of ,ˆi ja  is [20] 

, , , , , ,
1 1 1,

,
2
,

1

ˆ{ }

N n n

i j i k i k i j i k j k
k j j j i

i j N

j k
k

a x w a x x
E a E

x

   



  
        

 
 
 

  


 

                                                   
, ,

1
,

2
,

1

N

i k j k
k

i j N

j k
k

w x
a E

x





 
     
 
  




 

                                                   ,i ja , 

Since wi,k and  xi,k are independent. Hence, the MLE (53) is unbiased. 

Suppose that an estimate ( )ˆ uA  = ( )
,{ }u

i ja  of A is available at an iteration u. The predicted state 
estimates within (29) can be calculated from 

( ) ( ) ( ) ( ) ( )
1/ 1/

ˆˆ ˆ( )u u u u u
k k k k k k kx A K C x K z    , (54) 

where ( )u
kK  = ( ) ( ) ( )
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Riccati equation 
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An approximate MLE for ai,j is obtained by replacing xk by ( )
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k kx  within (53) which results in 
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An iterative procedure for re-estimating an unknown state matrix is proposed below. 

Procedure 3 [20]. Assume that there exists an initial estimate (1)Â  satisfying (1)ˆ| ( ) |i A  < 1, i = 
1, …, n. Subsequent estimates are calculated using the following two-step EM algorithm. 

Step 1. Operate the Kalman filter (29) using (54) on the measurements zk over k  [1, N] to 
obtain corrected state estimates ( )

/ˆ u
k kx  and ( )

1/ 1ˆ u
k kx   . 

Step 2. Copy ( )ˆ uA  to ( 1)ˆ uA  . Use ( )
/ˆ u

k kx  within (56) to obtain candidate estimates ( 1)
,ˆ
u

i ja  , i, j = 

1, …, n. Include ( 1)
,ˆ
u

i ja   within ( 1)ˆ uA   if ( 1)ˆ| ( ) |u
i A   < 1, i = 1, …, n.  

The condition ( 1)ˆ| ( ) |u
i A   < 1 within Step 2 ensures that the estimated system is 

asymptotically stable. 
 

8.3.4.2 Properties 
The design Riccati difference equation (55) can be written as 

( ) ( ) ( ) ( ) ( ) ( ) ( )
1/ / 1( ) ( ) ( )u u u u T u u T u

k k k k k k k k kP A K C P A K C K R K Q S       , (57) 
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accounts for the presence of modelling error. In the following, the notation of Lemma 1 is 
employed to argue that a monotonically non-increasing state matrix estimate sequence 
results in monotonically non-increasing error covariance sequences. 

Lemma 7 [20]. In respect of Procedure 3 for estimating A, suppose the following: 

(i) the data zk has been generated by (23) – (25) in which B, C, Q, R are known; 
(ii)  (1)ˆ| ( ) |i A  < 1, i = 1, …, n,  the pair (A, C) is observable; 

(iii) there exist (1)Â  ≥ A and  ( 1)
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By setting , , 1
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Incidentally, the above estimate can also be found using the least-squares method [2], [10] 
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Since wi,k and  xi,k are independent. Hence, the MLE (53) is unbiased. 

Suppose that an estimate ( )ˆ uA  = ( )
,{ }u

i ja  of A is available at an iteration u. The predicted state 
estimates within (29) can be calculated from 

( ) ( ) ( ) ( ) ( )
1/ 1/
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An iterative procedure for re-estimating an unknown state matrix is proposed below. 

Procedure 3 [20]. Assume that there exists an initial estimate (1)Â  satisfying (1)ˆ| ( ) |i A  < 1, i = 
1, …, n. Subsequent estimates are calculated using the following two-step EM algorithm. 

Step 1. Operate the Kalman filter (29) using (54) on the measurements zk over k  [1, N] to 
obtain corrected state estimates ( )

/ˆ u
k kx  and ( )

1/ 1ˆ u
k kx   . 

Step 2. Copy ( )ˆ uA  to ( 1)ˆ uA  . Use ( )
/ˆ u

k kx  within (56) to obtain candidate estimates ( 1)
,ˆ
u

i ja  , i, j = 

1, …, n. Include ( 1)
,ˆ
u

i ja   within ( 1)ˆ uA   if ( 1)ˆ| ( ) |u
i A   < 1, i = 1, …, n.  

The condition ( 1)ˆ| ( ) |u
i A   < 1 within Step 2 ensures that the estimated system is 

asymptotically stable. 
 

8.3.4.2 Properties 
The design Riccati difference equation (55) can be written as 
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accounts for the presence of modelling error. In the following, the notation of Lemma 1 is 
employed to argue that a monotonically non-increasing state matrix estimate sequence 
results in monotonically non-increasing error covariance sequences. 

Lemma 7 [20]. In respect of Procedure 3 for estimating A, suppose the following: 

(i) the data zk has been generated by (23) – (25) in which B, C, Q, R are known; 
(ii)  (1)ˆ| ( ) |i A  < 1, i = 1, …, n,  the pair (A, C) is observable; 
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The proof follows mutatis mutandis from that of Lemma 1. A heuristic argument is outlined 
below which suggests that non-increasing error variances lead to a non-increasing state 
matrix estimate sequence. Suppose that there exists a residual error ( )u

ks   n  at iteration u 
such that 
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(63) 

where C# denotes the Moore-Penrose pseudo-inverse of C. It is shown in Lemma 2 under 
prescribed conditions that ( 1)uL C  ≤ ( )uL C  ≤  I. Since the non-increasing sequence ( )uL C  is a 
factor of the second term on the right-hand-side of (63), the sequence ( 1)

,ˆ
u

i ja   is expected to be 
non-increasing.24 

Lemma 8 [20]: Under the conditions of Lemma 7, suppose that C is full rank, then 
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which implies (64) since the MLE (53) is unbiased.                                                                              �  

 

                                                                 

24“New scientific ideas never spring from a communal body, however organized, but rather from the 
head of an individually inspired researcher who struggles with his problems in lonely thought and 
unites all his thought on one single point which is his whole world for the moment.” Max Karl Ernst 
Ludwig Planck 

  

An illustration is presented below.  
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Figure 5. Sequence of ( )ˆ uA  versus iteration number for Example 12. 

Example 12. In respect of the model (23) – (25), suppose that B = C = 1, 2
w    0.2 are known 

and A = 0.6 is unknown. Simulations were conducted with 100 realizations of Gaussian 
process noise and measurement noise of length N = 500,000 for R = 0.1, 0.01 and 0.001. The 
EM algorithms were initialised with (1)Â  = 0.9999. It was observed that the resulting 
estimate sequences were all monotonically decreasing, however, this becomes  
imperceptible at R = 0.001, due to the limited resolution of the plot. The mean estimates are 
shown in Fig. 5. As expected from Lemma 8, ( )ˆ uA  asymptotically approaches the true value 
of A = 0.6 when the measurement noise becomes negligible. 
 

8.4  Smoothing EM Algorithms 
 

8.4.1 Process Noise Variance Estimation 

8.4.1.1  EM Algorithm 
In the previous EM algorithms, the expectation step involved calculating filtered estimates.  
Similar EM procedures are outlined in [26] and here where smoothed estimates are used at 
iteration u within the expectation step. The likelihood functions described in Sections 8.2.2 
and 8.2.3 are exact, provided that the underlying assumptions are correct and actual random 
variables are available. Under these conditions, the ensuing parameter estimates maximise 
the likelihood functions and their limit of precision is specified by the associated CRLBs. 
However, the use of filtered or smoothed quantities leads to approximate likelihood 
functions, MLEs and CRLBs. It turns out that the approximate MLEs approach the true 
parameter values under prescribed SNR conditions. It will be shown that the use of 
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The proof follows mutatis mutandis from that of Lemma 1. A heuristic argument is outlined 
below which suggests that non-increasing error variances lead to a non-increasing state 
matrix estimate sequence. Suppose that there exists a residual error ( )u

ks   n  at iteration u 
such that 

( ) ( ) ( ) ( )
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ˆˆ ˆu u u u
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(63) 

where C# denotes the Moore-Penrose pseudo-inverse of C. It is shown in Lemma 2 under 
prescribed conditions that ( 1)uL C  ≤ ( )uL C  ≤  I. Since the non-increasing sequence ( )uL C  is a 
factor of the second term on the right-hand-side of (63), the sequence ( 1)

,ˆ
u

i ja   is expected to be 
non-increasing.24 

Lemma 8 [20]: Under the conditions of Lemma 7, suppose that C is full rank, then 
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 = xk, 

which implies (64) since the MLE (53) is unbiased.                                                                              �  
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Figure 5. Sequence of ( )ˆ uA  versus iteration number for Example 12. 
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process noise and measurement noise of length N = 500,000 for R = 0.1, 0.01 and 0.001. The 
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The proof follows mutatis mutandis from that of Lemma 1. A heuristic argument is outlined 
below which suggests that non-increasing error variances lead to a non-increasing state 
matrix estimate sequence. Suppose that there exists a residual error ( )u

ks   n  at iteration u 
such that 

( ) ( ) ( ) ( )
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ks . It follows from (60) and (48) that  
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and 
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where C# denotes the Moore-Penrose pseudo-inverse of C. It is shown in Lemma 2 under 
prescribed conditions that ( 1)uL C  ≤ ( )uL C  ≤  I. Since the non-increasing sequence ( )uL C  is a 
factor of the second term on the right-hand-side of (63), the sequence ( 1)
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and A = 0.6 is unknown. Simulations were conducted with 100 realizations of Gaussian 
process noise and measurement noise of length N = 500,000 for R = 0.1, 0.01 and 0.001. The 
EM algorithms were initialised with (1)Â  = 0.9999. It was observed that the resulting 
estimate sequences were all monotonically decreasing, however, this becomes  
imperceptible at R = 0.001, due to the limited resolution of the plot. The mean estimates are 
shown in Fig. 5. As expected from Lemma 8, ( )ˆ uA  asymptotically approaches the true value 
of A = 0.6 when the measurement noise becomes negligible. 
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In the previous EM algorithms, the expectation step involved calculating filtered estimates.  
Similar EM procedures are outlined in [26] and here where smoothed estimates are used at 
iteration u within the expectation step. The likelihood functions described in Sections 8.2.2 
and 8.2.3 are exact, provided that the underlying assumptions are correct and actual random 
variables are available. Under these conditions, the ensuing parameter estimates maximise 
the likelihood functions and their limit of precision is specified by the associated CRLBs. 
However, the use of filtered or smoothed quantities leads to approximate likelihood 
functions, MLEs and CRLBs. It turns out that the approximate MLEs approach the true 
parameter values under prescribed SNR conditions. It will be shown that the use of 
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smoothed (as opposed to filtered) quantities results in smaller approximate CRLBs, which 
suggests improved parameter estimation accuracy.     

Suppose that the system   having the realisation (23) – (24) is non-minimum phase and D 
is of full rank. Under these conditions 1  exists and the minimum-variance smoother 
(described in Chapter 7) may be employed to produce input estimates. Assume that an 
estimate ( )ˆ uQ  = diag( ( ) 2

1,ˆ( )u
w , ( ) 2

2,ˆ( )u
w , …, ( ) 2

,ˆ( )u
n w ) of Q is are available at iteration u. The 

smoothed input estimates, ( )
/ˆ u

k Nw , are calculated from 

( ) ( ) ( ) ( )
1/ / 1
( ) ( ) 1/ 2 ( ) 1/ 2( ) ( )

u u u u
k k k k k k k k

u u u
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, 
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1/

( ) 0 ( )
( ) ( )

ˆ ˆ ˆ ˆ( ) ( )

u T T u T T u u
k k k k k k k

u T u T T T u u
k k k k k k k
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(65) 

 

 
(66) 

where ( )u
kK = ( )

/ 1( u T
k k k kA P C  + ( ) ( ) 1ˆ )( )u T u

k k k kB Q D  , ( )u
k  = ( )

/ 1
u T

k k k kC P C  + ( )ˆ u T
k k kD Q D  + Rk and ( )

/ 1
u

k kP   
evolves from the Riccati difference equation ( )

1/
u

k kP   = ( )
/ 1
u T

k k k kA P A  − ( )
/ 1( u T

k k k kA P C  + 
( ) ( )

/ 1
ˆ )(u T u T

k k k k k k kB Q D C P C  + ( )ˆ u T
k k kD Q D  + 1 ( )

/ 1) ( u T
k k k k kR C P A

  + ( ) )u T
k k kD Q B  + ( )ˆ u T

k k kB Q B . A smoothing 

EM algorithm for iteratively re-estimating ( )ˆ uQ  is described below. 

Procedure 4. Suppose that an initial estimate (1)Q̂  = diag( (1) 2
1,ˆ( )w , (1) 2

2,ˆ( )w , …, (1) 2
,ˆ( )n w ) is 

available. Then subsequent estimates ( )ˆ uQ , u > 1, are calculated by repeating the following 
two steps.  

Step 1. Use ( )ˆ uQ  = diag( ( ) 2
1,ˆ( )u

w , ( ) 2
2,ˆ( )u

w , …, ( ) 2
,ˆ( )u

n w )) within (65) − (66) to calculate 

smoothed input estimates ( )
/ˆ u

k Nw . 

Step 2. Calculate the elements of ( 1)ˆ uQ   = diag( ( 1) 2
1,ˆ( )u

w  , ( 1) 2
2,ˆ( )u

w  , …, ( 1) 2
,ˆ( )u

n w  ) using  ( )
/ˆ u

k Nw  
from Step 1 instead of wk within the MLE formula (46). 

 

8.4.1.2 Properties 
In the following it is shown that the variance estimates arising from the above procedure 
result in monotonic error covariances. The additional term within the design Riccati 
difference equation (57) that accounts for the presence of parameter error is now given by 

( ) ( )ˆ( )u u T
kS B Q Q B  . Let ( )ˆ u  denote an approximate spectral factor arising in the design of a 
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smoother using ( )
/ 1
u

k kP   and ( )u
kK . Employing the notation and approach of Chapter 7, it is 

straightforward to show that 

( ) ( ) ( ) ( ) ( )
0 / 1 1/ 0

ˆ ˆ( ) ( )u u H H u u u H T
k k k k k kC P P S C         . (67) 

Define the stacked vectors v = 1[ Tv , …, ]T T
Kv , w = 1[ Tw , …, ]T T

Nw , ( )ˆ uw  = ( )
1/ˆ[( )u T

Nw , …, 
( )
/ˆ( ) ]u T T

N Nw  and ( )uw  = w – ( )ˆ uw  = ( )
1/[( )u T

Nw , …, ( )
/( ) ]u T T

N Nw . The input estimation error is 

generated by ( ) ( )u u v
w

w
 

  
 

  � , where ( ) ( )( )u u H
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1 1( )u u H
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ei ei  , in which 
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2

ˆ ˆ( ( ) ) ( )u H u u H H
ei Q         , (68) 

and ( ) ( ) 1
1 1 2( ) ( )u u H H H H

ei ei Q Q Q       . It is shown in the lemma below that the 

sequence ( ) ( )

2
( )u u Tw w   = ( ) ( )

2
( )u u H

ei ei   is monotonically non-increasing or monotonically 

non-decreasing, depending on the initial conditions.   

Lemma 9: In respect of Procedure 4 for estimating Q, suppose the following: 

(i) the system (23) – (24) is non-minimum phase, in which A, B, C, D, R are known, 
(1)ˆ| ( ) |i A  < 1, i = 1, …, n, the pair (A, C) is observable and D is of full rank; 

(ii) the solutions (1)
1/ 0P , (2)

1/ 0P  of (57) for (2)Q̂  ≥ (1)Q̂  satisfy (2)
1/ 0P  ≤ (1)

1/ 0P  (or the solutions (1)
1/ 0P , 

(2)
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1/ 0P ).  

Then:  
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u
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/ 1
u
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/ 1
u

k kP   ≤ ( )
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u
k kP  ) for all k, u ≥ 1; 
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u
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( )u u H

ei ei
   ) for u ≥ 1.  

Proof: (i) and (ii) This follows from S(u+1) ≤ S(u) within condition (iii) of Theorem 2 of Chapter 8. 
Since ( ) ( )

1 1( )u u H
ei ei   is common to ( ) ( )( )u u H

ei ei   and ( 1) ( 1)( )u u H
ei ei
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( 1) ( 1)
2 2 2

( )u u H
ei ei

    ≤ ( ) ( )
2 2 2
( )u u H
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Substituting (67) into (68) yields 
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smoothed (as opposed to filtered) quantities results in smaller approximate CRLBs, which 
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is of full rank. Under these conditions 1  exists and the minimum-variance smoother 
(described in Chapter 7) may be employed to produce input estimates. Assume that an 
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k k kB Q B . A smoothing 

EM algorithm for iteratively re-estimating ( )ˆ uQ  is described below. 

Procedure 4. Suppose that an initial estimate (1)Q̂  = diag( (1) 2
1,ˆ( )w , (1) 2

2,ˆ( )w , …, (1) 2
,ˆ( )n w ) is 

available. Then subsequent estimates ( )ˆ uQ , u > 1, are calculated by repeating the following 
two steps.  

Step 1. Use ( )ˆ uQ  = diag( ( ) 2
1,ˆ( )u

w , ( ) 2
2,ˆ( )u

w , …, ( ) 2
,ˆ( )u

n w )) within (65) − (66) to calculate 

smoothed input estimates ( )
/ˆ u

k Nw . 

Step 2. Calculate the elements of ( 1)ˆ uQ   = diag( ( 1) 2
1,ˆ( )u

w  , ( 1) 2
2,ˆ( )u

w  , …, ( 1) 2
,ˆ( )u

n w  ) using  ( )
/ˆ u

k Nw  
from Step 1 instead of wk within the MLE formula (46). 

 

8.4.1.2 Properties 
In the following it is shown that the variance estimates arising from the above procedure 
result in monotonic error covariances. The additional term within the design Riccati 
difference equation (57) that accounts for the presence of parameter error is now given by 

( ) ( )ˆ( )u u T
kS B Q Q B  . Let ( )ˆ u  denote an approximate spectral factor arising in the design of a 
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smoother using ( )
/ 1
u

k kP   and ( )u
kK . Employing the notation and approach of Chapter 7, it is 

straightforward to show that 

( ) ( ) ( ) ( ) ( )
0 / 1 1/ 0

ˆ ˆ( ) ( )u u H H u u u H T
k k k k k kC P P S C         . (67) 

Define the stacked vectors v = 1[ Tv , …, ]T T
Kv , w = 1[ Tw , …, ]T T

Nw , ( )ˆ uw  = ( )
1/ˆ[( )u T

Nw , …, 
( )
/ˆ( ) ]u T T

N Nw  and ( )uw  = w – ( )ˆ uw  = ( )
1/[( )u T

Nw , …, ( )
/( ) ]u T T

N Nw . The input estimation error is 

generated by ( ) ( )u u v
w

w
 

  
 

  � , where ( ) ( )( )u u H
ei ei   = ( ) ( )

1 1( )u u H
ei ei   + ( ) ( )

2 2( )u u H
ei ei  , in which 

 ( ) ( ) ( ) 1 1
2

ˆ ˆ( ( ) ) ( )u H u u H H
ei Q         , (68) 

and ( ) ( ) 1
1 1 2( ) ( )u u H H H H

ei ei Q Q Q       . It is shown in the lemma below that the 

sequence ( ) ( )

2
( )u u Tw w   = ( ) ( )

2
( )u u H

ei ei   is monotonically non-increasing or monotonically 

non-decreasing, depending on the initial conditions.   

Lemma 9: In respect of Procedure 4 for estimating Q, suppose the following: 

(i) the system (23) – (24) is non-minimum phase, in which A, B, C, D, R are known, 
(1)ˆ| ( ) |i A  < 1, i = 1, …, n, the pair (A, C) is observable and D is of full rank; 

(ii) the solutions (1)
1/ 0P , (2)

1/ 0P  of (57) for (2)Q̂  ≥ (1)Q̂  satisfy (2)
1/ 0P  ≤ (1)

1/ 0P  (or the solutions (1)
1/ 0P , 

(2)
1/ 0P  of (57) for (1)Q̂  ≥ (2)Q̂  satisfy (1)

1/ 0P  ≤ (2)
1/ 0P ).  

Then:  

(i) ( )
1/

u
k kP   ≤ ( )

/ 1
u

k kP   (or ( )
/ 1
u

k kP   ≤ ( )
1/

u
k kP  ) for all k, u ≥ 1; 

(ii) ( 1)
1/

u
k kP 
  ≤ ( )

1/
u

k kP   and ( 1)
/ 1
u

k kP 
  ≤ ( )

/ 1
u

k kP   (or ( )
1/

u
k kP   ≤ ( 1)

1/
u

k kP 
  and ( )

/ 1
u

k kP   ≤ ( 1)
/ 1
u

k kP 
 ) for all k, u ≥ 1; 

(iii) ( 1) ( 1)

2
( )u u H

ei ei
    ≤ ( ) ( )

2
( )u u H

ei ei   (or ( ) ( )

2
( )u u H

ei ei   ≤ ( 1) ( 1)

2
( )u u H

ei ei
   ) for u ≥ 1.  

Proof: (i) and (ii) This follows from S(u+1) ≤ S(u) within condition (iii) of Theorem 2 of Chapter 8. 
Since ( ) ( )

1 1( )u u H
ei ei   is common to ( ) ( )( )u u H

ei ei   and ( 1) ( 1)( )u u H
ei ei

   , it suffices to show that    

( 1) ( 1)
2 2 2

( )u u H
ei ei

    ≤ ( ) ( )
2 2 2
( )u u H

ei ei  . (69) 

Substituting (67) into (68) yields 

 ( ) ( ) ( ) ( ) 1 1
2 0 / 1 1/ 0( ) ) ( )u H H u u u H T H

ei k k k k k kQ C P P S C  
            . (70) 
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smoothed (as opposed to filtered) quantities results in smaller approximate CRLBs, which 
suggests improved parameter estimation accuracy.     

Suppose that the system   having the realisation (23) – (24) is non-minimum phase and D 
is of full rank. Under these conditions 1  exists and the minimum-variance smoother 
(described in Chapter 7) may be employed to produce input estimates. Assume that an 
estimate ( )ˆ uQ  = diag( ( ) 2

1,ˆ( )u
w , ( ) 2

2,ˆ( )u
w , …, ( ) 2

,ˆ( )u
n w ) of Q is are available at iteration u. The 

smoothed input estimates, ( )
/ˆ u

k Nw , are calculated from 

( ) ( ) ( ) ( )
1/ / 1
( ) ( ) 1/ 2 ( ) 1/ 2( ) ( )

u u u u
k k k k k k k k

u u u
k k k k k

x A K C K x
C z

 
 

     
     

       
, 

( ) ( ) ( ) 1/ 2 ( )
1

( ) ( ) ( ) 1/ 2 ( )
1

( ) ( )( ) ( ) ( ) ( ) ( ) 1/ 2
1/

( ) 0 ( )
( ) ( )

ˆ ˆ ˆ ˆ( ) ( )

u T T u T T u u
k k k k k k k

u T u T T T u u
k k k k k k k
u uu T u T u T u T u

k N kk k k k k k k k

A C K C
C K A C

w Q D K Q B Q D

 
 












     
    

      
           

, 

(65) 

 

 
(66) 

where ( )u
kK = ( )

/ 1( u T
k k k kA P C  + ( ) ( ) 1ˆ )( )u T u

k k k kB Q D  , ( )u
k  = ( )

/ 1
u T

k k k kC P C  + ( )ˆ u T
k k kD Q D  + Rk and ( )

/ 1
u

k kP   
evolves from the Riccati difference equation ( )

1/
u

k kP   = ( )
/ 1
u T

k k k kA P A  − ( )
/ 1( u T

k k k kA P C  + 
( ) ( )

/ 1
ˆ )(u T u T

k k k k k k kB Q D C P C  + ( )ˆ u T
k k kD Q D  + 1 ( )

/ 1) ( u T
k k k k kR C P A

  + ( ) )u T
k k kD Q B  + ( )ˆ u T

k k kB Q B . A smoothing 

EM algorithm for iteratively re-estimating ( )ˆ uQ  is described below. 

Procedure 4. Suppose that an initial estimate (1)Q̂  = diag( (1) 2
1,ˆ( )w , (1) 2

2,ˆ( )w , …, (1) 2
,ˆ( )n w ) is 

available. Then subsequent estimates ( )ˆ uQ , u > 1, are calculated by repeating the following 
two steps.  

Step 1. Use ( )ˆ uQ  = diag( ( ) 2
1,ˆ( )u

w , ( ) 2
2,ˆ( )u

w , …, ( ) 2
,ˆ( )u

n w )) within (65) − (66) to calculate 

smoothed input estimates ( )
/ˆ u

k Nw . 

Step 2. Calculate the elements of ( 1)ˆ uQ   = diag( ( 1) 2
1,ˆ( )u

w  , ( 1) 2
2,ˆ( )u

w  , …, ( 1) 2
,ˆ( )u

n w  ) using  ( )
/ˆ u

k Nw  
from Step 1 instead of wk within the MLE formula (46). 

 

8.4.1.2 Properties 
In the following it is shown that the variance estimates arising from the above procedure 
result in monotonic error covariances. The additional term within the design Riccati 
difference equation (57) that accounts for the presence of parameter error is now given by 

( ) ( )ˆ( )u u T
kS B Q Q B  . Let ( )ˆ u  denote an approximate spectral factor arising in the design of a 
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smoother using ( )
/ 1
u

k kP   and ( )u
kK . Employing the notation and approach of Chapter 7, it is 

straightforward to show that 

( ) ( ) ( ) ( ) ( )
0 / 1 1/ 0

ˆ ˆ( ) ( )u u H H u u u H T
k k k k k kC P P S C         . (67) 

Define the stacked vectors v = 1[ Tv , …, ]T T
Kv , w = 1[ Tw , …, ]T T

Nw , ( )ˆ uw  = ( )
1/ˆ[( )u T

Nw , …, 
( )
/ˆ( ) ]u T T

N Nw  and ( )uw  = w – ( )ˆ uw  = ( )
1/[( )u T

Nw , …, ( )
/( ) ]u T T

N Nw . The input estimation error is 

generated by ( ) ( )u u v
w

w
 

  
 

  � , where ( ) ( )( )u u H
ei ei   = ( ) ( )

1 1( )u u H
ei ei   + ( ) ( )

2 2( )u u H
ei ei  , in which 

 ( ) ( ) ( ) 1 1
2

ˆ ˆ( ( ) ) ( )u H u u H H
ei Q         , (68) 

and ( ) ( ) 1
1 1 2( ) ( )u u H H H H

ei ei Q Q Q       . It is shown in the lemma below that the 

sequence ( ) ( )

2
( )u u Tw w   = ( ) ( )

2
( )u u H

ei ei   is monotonically non-increasing or monotonically 

non-decreasing, depending on the initial conditions.   

Lemma 9: In respect of Procedure 4 for estimating Q, suppose the following: 

(i) the system (23) – (24) is non-minimum phase, in which A, B, C, D, R are known, 
(1)ˆ| ( ) |i A  < 1, i = 1, …, n, the pair (A, C) is observable and D is of full rank; 

(ii) the solutions (1)
1/ 0P , (2)

1/ 0P  of (57) for (2)Q̂  ≥ (1)Q̂  satisfy (2)
1/ 0P  ≤ (1)

1/ 0P  (or the solutions (1)
1/ 0P , 

(2)
1/ 0P  of (57) for (1)Q̂  ≥ (2)Q̂  satisfy (1)

1/ 0P  ≤ (2)
1/ 0P ).  

Then:  

(i) ( )
1/

u
k kP   ≤ ( )

/ 1
u

k kP   (or ( )
/ 1
u

k kP   ≤ ( )
1/

u
k kP  ) for all k, u ≥ 1; 

(ii) ( 1)
1/

u
k kP 
  ≤ ( )

1/
u

k kP   and ( 1)
/ 1
u

k kP 
  ≤ ( )

/ 1
u

k kP   (or ( )
1/

u
k kP   ≤ ( 1)

1/
u

k kP 
  and ( )

/ 1
u

k kP   ≤ ( 1)
/ 1
u

k kP 
 ) for all k, u ≥ 1; 

(iii) ( 1) ( 1)

2
( )u u H

ei ei
    ≤ ( ) ( )

2
( )u u H

ei ei   (or ( ) ( )

2
( )u u H

ei ei   ≤ ( 1) ( 1)

2
( )u u H

ei ei
   ) for u ≥ 1.  

Proof: (i) and (ii) This follows from S(u+1) ≤ S(u) within condition (iii) of Theorem 2 of Chapter 8. 
Since ( ) ( )

1 1( )u u H
ei ei   is common to ( ) ( )( )u u H

ei ei   and ( 1) ( 1)( )u u H
ei ei

   , it suffices to show that    

( 1) ( 1)
2 2 2

( )u u H
ei ei

    ≤ ( ) ( )
2 2 2
( )u u H

ei ei  . (69) 

Substituting (67) into (68) yields 

 ( ) ( ) ( ) ( ) 1 1
2 0 / 1 1/ 0( ) ) ( )u H H u u u H T H

ei k k k k k kQ C P P S C  
            . (70) 
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Note for linear time-invariant systems X, Y1 ≥ Y2, that 
1 1 1 1

1 2( ) ( ) ( ) ( )H H H HXX XX Y XX XX Y        . (71) 

Since ( 1) ( 1) ( 1)
0 / 1 1/ 0 2
( )u u u H

k k k kP P S  
     ≤ ( ) ( ) ( )

0 / 1 1/ 0 2
( )u u u H

k k k kP P S    , (69) follows from (70)  and 

(71).                                                                                                                                                         � 

As is the case for the filtering EM algorithm, the process noise variance estimates 
asymptotically approach the exact values when the SNR is sufficiently high. 

Lemma 10: Under the conditions of Lemma 9,  

1

( )

0, 0,

ˆlim u

Q R u
Q Q

   
 . (72) 

Proof: By inspection of the input estimator, IE  = 1( )H HQ   = (H HQ Q    + 1)R  , it 
follows that 

1 0, 0,
lim IE

Q R u   
  =  1  and therefore 

1

( )
/

0, 0,
ˆlim u

k N
Q R u

w
   

 = wk, which implies (72), 

since the MLE (46) is unbiased for large N.                                                                                           �  

It is observed anecdotally that the variance estimates produced by the above smoothing EM 
algorithm are more accurate than those from the corresponding filtering procedure. This is 
consistent with the following comparison of approximate CRLBs.  

Lemma 11 [26]:  
1 12 2 2 2

, / , /
2 2 2 2
, ,

ˆ ˆlog ( | ) log ( | )
( ) ( )

i w k N i w k k

i w i w

f x f x 
 

 
    

            
. (73) 

Proof: The vector state elements within (23) can be written in terms of smoothed state estimates, 
, 1i kx   = /ˆi k NA x  + ,i kw  = i kA x  + ,i kw  –  /i k NA x , where /k Nx  = xk – /ˆ k Nx . From the approach of 

Example 8, the second partial derivative of the corresponding approximate log-likelihood function 
with respect to the process noise variance is 

2 2
, / 2 2

, / /2 2
,

ˆlog ( | )
( { } )

( ) 2
i w k N T T

i w i k N k N i
i w

f x N A E x x A






  


  . 

Similarly, the use of filtered state estimates leads to 
2 2

, / 2 2
, / /2 2

,

ˆlog ( | )
( { } )

( ) 2
i w k k T T

i w i k k k k i
i w

f x N A E x x A






  


  . 

The minimum-variance smoother minimizes both the causal part and the non-causal part of the 
estimation error, whereas the Kalman filter only minimizes the causal part. Therefore, / /{ }T

k N k NE x x   < 

/ /{ }T
k k k kE x x  . Thus, the claim (73) follows.                                                                                             � 
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8.4.2 State Matrix Estimation  

8.4.2.1 EM Algorithm 
Smoothed state estimates are obtained from the smoothed inputs via 

( ) ( ) ( )
1/ / /ˆ ˆ ˆu u u

k N k k N k k Nx A x B w   . (74) 

The resulting ( )
/ˆ u

k Nx  are used below to iteratively re-estimate state matrix elements.  

Procedure 5. Assume that there exists an initial estimate (1)Â  of A such that (1)ˆ| ( ) |i A  < 1, i = 

1, …, n. Subsequent estimates, ( )ˆ uA , u > 1, are calculated using the following two-step EM 
algorithm. 

Step 1. Operate the minimum-variance smoother recursions (65), (66), (74) designed with 
( )ˆ uA  to obtain ( )

/ˆ u
k Nx . 

Step 2. Copy ( )ˆ uA  to ( 1)ˆ uA  . Use ( )
/ˆ u

k Nx  instead of xk within (53) to obtain candidate 

estimates ( 1)
,ˆ
u

i ja  , i, j = 1, …, n. Include ( 1)
,ˆ
u

i ja   within ( 1)ˆ uA   if ( 1)ˆ| ( ) |u
i A   < 1, i = 1, …, 

n. 
 

8.4.2.2 Properties 
Denote x = 1[ Tx , …, ]T T

Nx , ( )ˆ ux  = ( )
1/ˆ[( )u T

Nx , …, ( )
/ˆ( ) ]u T T

N Nx  and ( )ux  = x – ( )ˆ ux  = ( )
1/[( )u T

Nx , …, 

( )
/( ) ]u T T

N Nx . Let ( )u  be redefined as the system that maps the inputs 
v
w
 
 
 

 to smoother state 

estimation error ( )ux , that is, ( ) ( )u u v
x

w
 

  
 

  � . It is stated below that the estimated state 

matrix iterates result in a monotonic sequence of state error covariances. 

Lemma 12: In respect of Procedure 5 for estimating A and x, suppose the following: 

(i) the system (23) – (24) is non-minimum phase, in which B, C, D, Q, R are known, 
( 1)ˆ| ( ) |u

i A   < 1, the pair (A, C) is observable and D is of full rank; 

(ii) there exist solutions (1)
1/ 0P , (2)

1/ 0P  of (57) for AAT ≤ (2) (2)( )TA A  ≤ (1) (1)( )TA A  satisfying (2)
1/ 0P  

≤ (1)
1/ 0P  (or the solutions (1)

1/ 0P , (2)
1/ 0P  of (31) for (1) (1)( )TA A  ≤ (2) (2)( )TA A  ≤ AAT satisfying (1)

1/ 0P  ≤ 
(2)
1/ 0P ).  

Then ( 1) ( 1)

2
( )u u H

ei ei
    ≤ ( ) ( )

2
( )u u H

ei ei   (or ( ) ( )

2
( )u u H

ei ei   ≤ ( 1) ( 1)

2
( )u u H

ei ei
   ) for u ≥ 1.  
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Note for linear time-invariant systems X, Y1 ≥ Y2, that 
1 1 1 1

1 2( ) ( ) ( ) ( )H H H HXX XX Y XX XX Y        . (71) 

Since ( 1) ( 1) ( 1)
0 / 1 1/ 0 2
( )u u u H

k k k kP P S  
     ≤ ( ) ( ) ( )

0 / 1 1/ 0 2
( )u u u H

k k k kP P S    , (69) follows from (70)  and 

(71).                                                                                                                                                         � 

As is the case for the filtering EM algorithm, the process noise variance estimates 
asymptotically approach the exact values when the SNR is sufficiently high. 

Lemma 10: Under the conditions of Lemma 9,  

1

( )

0, 0,

ˆlim u

Q R u
Q Q

   
 . (72) 

Proof: By inspection of the input estimator, IE  = 1( )H HQ   = (H HQ Q    + 1)R  , it 
follows that 

1 0, 0,
lim IE

Q R u   
  =  1  and therefore 

1

( )
/

0, 0,
ˆlim u

k N
Q R u

w
   

 = wk, which implies (72), 
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It is observed anecdotally that the variance estimates produced by the above smoothing EM 
algorithm are more accurate than those from the corresponding filtering procedure. This is 
consistent with the following comparison of approximate CRLBs.  
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The minimum-variance smoother minimizes both the causal part and the non-causal part of the 
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8.4.2 State Matrix Estimation  
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The proof is omitted since it follows mutatis mutandis from that of Lemma 9. Suppose that 
the smoother (65), (66) designed with the estimates ( )
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i ja  is employed to calculate input 
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Now let ( )u  denote the map from 
v
w
 
 
 

 to the smoother input estimation error ( )uw  = w – 

( )ˆ uw  at iteration u. It is argued below that the sequence of state matrix iterates maximises 
(75). 
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of state matrix estimates will similarly vary monotonically. Next, it is stated that the state 
matrix estimates asymptotically approach the exact values when the SNR is sufficiently 
high. 
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 = wk, therefore, the states within (74) are 

reconstructed exactly. Thus, the claim (77) follows since the MLE (53) is unbiased.                           �  

It is expected that the above EM smoothing algorithm offers improved state matrix 
estimation accuracy. 
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Proof: Using smoothed states within (51) yields , 1i kx   = , , /
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Similarly, the use of filtered state estimates leads to 

2
, / 2 1 2

, / / ,2
1,

ˆlog ( | )
( { } )

( ) 2

N
i j k k T T

i w i k k k k i j k
ki j

f a x N A E x x A x
a

 




  

   . 

The result (78) follows since / /{ }T
k N k NE x x   < / /{ }T

k k k kE x x  .                                                                   � 

Example 13.: Consider a system where B = C = D = Q = 1, R = {0.0001, 0.0002, 0.0003} are 
known and A = 0.9 but is unknown. Simulations were conducted using 30 noise realizations 
with N = 500,000. The results of the above smoothing EM algorithm and the filtering EM 
algorithms, initialized with (0)Â  = 1.03A, are respectively shown by the dotted and dashed 
lines within Fig. 6. The figure shows that the estimates improve with increasing u, which is 
consistent with Lemma 15. The estimates also improve with increasing SNR which 
illustrates Lemmas 8 and 14. It is observed anecdotally that the smoother EM algorithm 
outperforms the filter EM algorithm for estimation of A at high signal-to-noise-ratios. 
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Fig. 6. State matrix estimates calculated by the smoother EM algorithm and filter EM algorithm for 
Example 13. It can be seen that the ( )ˆ uA  better approach the nominal A at higher SNR. 
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lines within Fig. 6. The figure shows that the estimates improve with increasing u, which is 
consistent with Lemma 15. The estimates also improve with increasing SNR which 
illustrates Lemmas 8 and 14. It is observed anecdotally that the smoother EM algorithm 
outperforms the filter EM algorithm for estimation of A at high signal-to-noise-ratios. 
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Fig. 6. State matrix estimates calculated by the smoother EM algorithm and filter EM algorithm for 
Example 13. It can be seen that the ( )ˆ uA  better approach the nominal A at higher SNR. 
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The proof is omitted since it follows mutatis mutandis from that of Lemma 9. Suppose that 
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(75). 
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with N = 500,000. The results of the above smoothing EM algorithm and the filtering EM 
algorithms, initialized with (0)Â  = 1.03A, are respectively shown by the dotted and dashed 
lines within Fig. 6. The figure shows that the estimates improve with increasing u, which is 
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8.4.3 Measurement Noise Variance Estimation  
The discussion of an EM procedure for measurement noise variance estimation is presented 
in a summary form because it follows analogously to the algorithms described previously.  

Procedure 6. Assume that an initial estimate (1)R̂  of R is available. Subsequent estimates 
( )ˆ uR , u > 1, are calculated by repeating the following two-step procedure. 

Step 1. Operate the minimum-variance smoother (7.66), (7.68), (7.69) designed with ( )ˆ uR  to 
obtain corrected output estimates ( )

/ˆ u
k Ny . 

Step 2. For i = 1, …, p, use ( )
/ˆ u

k Ny  instead of yk within (27) to obtain ( 1)ˆ uR   = diag( ( 1) 2
1,ˆ( )u

v  , 
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v  , …, ( 1) 2
,ˆ( )u

n v  ). 

It can be shown using the approach of Lemma 9 that the sequence of measurement noise 
variance estimates are either monotonically non-increasing or non-decreasing depending on 
the initial conditions. When the SNR is sufficiently low, the measurement noise variance 
estimates converge to the actual value. 
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since the MLE (27) is unbiased for large N.                                                                                           �  

Once again, the variance estimates produced by the above procedure are expected to be 
more accurate than those relying on filtered estimates. 
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8.5  Conclusion 
From the Central Limit Theorem, the mean of a large sample of independent identically 
distributed random variables asymptotically approaches a normal distribution. 
Consequently, parameter estimates are often obtained by maximising Gaussian log-
likelihood functions.  

Unknown process noise variances and state matrix elements can be estimated by 

considering i single-input state evolutions of the form xi,k+1 = , , ,
1

n

i j i k i k
j

a x w


 , ai,j, xi,k, wi,k   . 

Similarly, unknown measurement noise variances can be estimated by considering i single-
output observations of the form zi,k =  yi,k + vi,k , where yi,k + vi,k   . The resulting MLEs are 
listed in Table 1 and are unbiased provided that the assumed models are correct and the 
number of samples is large.  

The above parameter estimates rely on the availability of complete xi,k and yi,k information. 
Usually, both states and parameters need to be estimated from measurements. The EM 
algorithm is a common technique for solving joint state and parameter estimation problems. 
It has been shown that the estimation sequences vary monotonically and depend on the 
initial conditions. However, the use of imperfect states from filters or smoothers within the 
MLE calculations leads to biased parameter estimates. An examination of the approximate 
Cramér-Rao lower bounds shows that the use of smoothed states as opposed to filtered 
states is expected to provide improved parameter estimation accuracy.  

When the SNR is sufficiently high, the states are recovered exactly and the bias terms 
diminish to zero, in which case 
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 = ai,j. Therefore, the 

process noise variance and state matrix estimation procedures described herein are only 
advocated when the measurement noise is negligible. Conversely, when the SNR is 
sufficiently low, that is, when the estimation problem is dominated by measurement noise, 
then 
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2
,
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Q R

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 = 2

,i v . Thus, measurement noise estimation should only be attempted 

when the signal is absent. If parameter estimates are desired at intermediate SNRs then the 
subspace identification techniques such as [13], [14] are worthy of consideration. 
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cost $100, get a million miles per gallon, and explode once a year, killing everyone inside.” Mark 
Stephens 
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Table 1. MLEs for process noise variance, state matrix element and measurement noise variance. 
 

8.6  Problems 
 

Problem 1.  

(i) Consider the second order difference equation xk+2 + a1xk+1 + a0xk = wk. Assuming 
that wk ~ (0,  2

w ), obtain an equation for the MLEs of the unknown a1 and a0. 
(ii) Consider the nth order autoregressive system xk+n + an-1xk+n-1 + an-2xk+n-2 + … + a0xk = 
wk, where an-1, an-2, …, a0 are unknown. From the assumption wk ~ (0,  2

w ), obtain an 
equation for MLEs of the unknown coefficients. 

Problem 2. Suppose that N samples of xk+1 = Axk + wk are available, where wk ~ (0,  2
w ), 

in which 2
w  is an unknown parameter. 

(i) Write down a Gaussian log-likelihood function for the unknown parameter, given xk. 
(ii) Derive a formula for the MLE 2ˆw  of 2

w . 
(iii) Show that 2ˆ{ }wE   = 2

w  provided that N is large. 
(iv) Find the Cramér Rao lower bound for 2ˆw .  
(v) Replace the actual states kx  with filtered state /ˆ k kx  within the MLE formula. Obtain 
a high SNR asymptote for this approximate MLE. 
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Problem 3. Consider the state evolution 1k k kx Ax w   , where A  n n  is unknown and wk 
 n .  

(i) Write down a Gaussian log-likelihood function for the unknown components ai,j of 
A, given xk and xk+1. 
(ii) Derive a formula for the MLE ,ˆi ja  of ai,j. 

(iii) Show that ,ˆ{ }i jE a  = ai,j. Replace the actual states xk with the filtered state /ˆ k kx  
within the obtained formula to yield an approximate MLE for ai,j.  
(iv) Obtain a high SNR asymptote for the approximate MLE. 

Problem 4. Consider measurements of a sinusoidal signal modelled by yk = Acos(2πfk + φ) + 
vk, with amplitude A > 0, frequency 0 <  f < 0.5, phase φ and Gaussian white measurement 
noise vk.  

(i) Assuming that φ and f are known, determine the Fisher information and the 
Cramér Rao lower bound for an unknown A. 
(ii) Assuming that A and φ are known, determine the fisher information and the 
Cramér Rao lower bound for an unknown f0. 
(iii) Assuming that A and f are known, determine the Fisher information and the 
Cramér Rao lower bound . 
(iv) Assuming that the vector parameter [AT, Tf , φT]T is known, determine the Fisher 
information matrix and the Cramér Rao lower bound. (Hint: use small angle 
approximations for sine and cosine, see [2].)  

 

8.7 Glossary 
 

SNR Signal to noise ratio. 

MLE Maximum likelihood estimate. 

CRLB Cramér Rao Lower Bound 

F(θ) The Fisher information of a parameter θ. 

xk ~ (0,  2 ) The random variable xk is normally distributed with mean μ and variance 
2 . 

wi,k , vi,k , zi,k ith elements of vectors wk , vk , zk. 
( )
,ˆ
u

i w , ( )
,ˆ
u

i v  Estimates of variances of wi,k and vi,k  at iteration u. 

( )ˆ uA , ( )ˆ uR , ( )ˆ uQ  Estimates of state matrix A, covariances R and Q at iteration u. 

( )ˆ( )u
i A  The i eigenvalues of ( )ˆ uA . 

Ai , Ci ith row of state-space matrices A and C. 
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in which 2
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(ii) Derive a formula for the MLE 2ˆw  of 2

w . 
(iii) Show that 2ˆ{ }wE   = 2

w  provided that N is large. 
(iv) Find the Cramér Rao lower bound for 2ˆw .  
(v) Replace the actual states kx  with filtered state /ˆ k kx  within the MLE formula. Obtain 
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(i) Write down a Gaussian log-likelihood function for the unknown components ai,j of 
A, given xk and xk+1. 
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information matrix and the Cramér Rao lower bound. (Hint: use small angle 
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wi,k , vi,k , zi,k ith elements of vectors wk , vk , zk. 
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i v  Estimates of variances of wi,k and vi,k  at iteration u. 
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Ki,k, Li,k ith row of predictor and filter gain matrices Kk and Lk. 
( )u
kS  Additive term within the design Riccati difference equation to account for 

the presence of modelling error at time k and iteration u. 

ai,j Element in row i and column j of A. 
#
kC  Moore-Penrose pseudo-inverse of Ck. 

( )u  A system (or map) that operates on the filtering/smoothing problem inputs 
to produce the input, state or output estimation error at iteration u. It is 
convenient to make use of the factorisation ( ) ( )( )u u H

ei ei   = ( ) ( )
1 1( )u u H

ei ei   + 
( ) ( )
2 2( )u u H

ei ei  , where ( ) ( )
2 2( )u u H

ei ei   includes the filter or smoother solution 

and ( ) ( )
1 1( )u u H

ei ei   is a lower performance bound. 
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( )u
kS  Additive term within the design Riccati difference equation to account for 
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ei ei   = ( ) ( )
1 1( )u u H
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2 2( )u u H

ei ei  , where ( ) ( )
2 2( )u u H

ei ei   includes the filter or smoother solution 

and ( ) ( )
1 1( )u u H

ei ei   is a lower performance bound. 

 
8.8  References 
[1] L. L. Scharf, Statistical Signal Processing: Detection, Estimation, and Time Series Analysis, 

Addison-Wesley Publishing Company Inc., Massachusetts, USA, 1990.  
[2] S. M. Kay, Fundamentals of Statistical Signal Processing: Estimation Theory, Prentice Hall, 

Englewood Cliffs, New Jersey, ch. 7, pp. 157 – 204, 1993. 
[3] G. J. McLachlan and T. Krishnan, The EM Algorithm and Extensions, John Wiley & Sons, 

Inc., New York, 1997. 
[4] H. L. Van Trees and K. L. Bell (Editors), Baysesian Bounds for Parameter Estimation and 

Nonlinear Filtering/Tracking, John Wiley & Sons, Inc., New Jersey, 2007. 
[5] A. Van Den Bos, Parameter Estimation for Scientists and Engineers, John Wiley & Sons, 

New Jersey, 2007. 
[6] R. K. Mehra, “On the identification of variances and adaptive Kalman filtering”, IEEE 

Transactions on Automatic Control, vol. 15, pp. 175 – 184, Apr. 1970. 
[7] D. C. Rife and R. R. Boorstyn, “Single-Tone Parameter Estimation from Discrete-time 

Observations”, IEEE Transactions on Information Theory, vol. 20, no. 5, pp. 591 – 598, Sep. 
1974. 

[8] R. P. Nayak and E. C. Foundriat, “Sequential Parameter Estimation Using 
Pseudoinverse”, IEEE Transactions on Automatic Control, vol. 19, no. 1, pp. 81 – 83, Feb. 
1974. 

[9] P. R. Bélanger, “Estimation of Noise Covariance Matrices for a Linear Time-Varying 
Stochastic Process”, Automatica, vol. 10, pp. 267 – 275, 1974. 

[10] V. Strejc, “Least Squares Parameter Estimation”, Automatica, vol. 16, pp. 535 – 550, Sep. 
1980. 

[11] A. P. Dempster, N. M. Laid and D. B. Rubin, “Maximum likelihood from incomplete 
data via the EM algorithm,” Journal of the Royal Statistical Society, vol 39, no. 1, pp. 1 – 38, 
1977.  

[12] P. Van Overschee and B. De Moor, “A Unifying Theorem for Three Subspace System 
Identification Algorithms”, Automatica, 1995. 

                                                                                                                                                                   

“In my lifetime, we've gone from Eisenhower to George W. Bush. We've gone from John F. Kennedy to 
Al Gore. If this is evolution, I believe that in twelve years, we'll be voting for plants.” Lewis Niles Black 

  

[13] T. Katayama and G. Picci, “Realization of stochastic systems with exogenous inputs and 
subspace identification methods”, Automatica, vol. 35, pp. 1635 – 1652, 1999. 

[14] T. Katayama, Subspace Methods for System Identification, Springer-Verlag London 
Limited, 2005. 

[15] R. H. Shumway and D. S. Stoffer, “An approach to time series smoothing and 
forecasting using the EM algorithm,” Journal of Time Series Analysis, vol. 3, no. 4, pp. 253 
– 264, 1982.  

[16] C. F. J. Wu, “On the convergence properties of the EM algorithm,” Annals of  Statistics, 
vol. 11,no. 1, pp. 95 – 103, Mar. 1983. 

[17] M. Feder and E. Weinstein, “Parameter estimation of superimposed signals using the 
EM algorithm,” IEEE Transactions on Signal Processing, vol. 36, no. 4, pp. 477 – 489, Apr. 
198  

[18] G. A. Einicke, “Optimal and Robust Noncausal Filter Formulations”,  IEEE Transactions 
on Signal Processing, vol. 54, no. 3, pp. 1069 - 1077, Mar. 2006.  

[19] G. A. Einicke, J. T. Malos, D. C. Reid and D. W. Hainsworth, “Riccati Equation and EM 
Algorithm Convergence for Inertial Navigation Alignment”, IEEE Transactions on Signal 
Processing, vol 57, no. 1, Jan. 2009. 

[20] G. A. Einicke, G. Falco and J. T. Malos, “EM Algorithm State Matrix Estimation for 
Navigation”, IEEE Signal Processing Letters, vol. 17, no. 5, pp. 437 – 440, May 2010. 

[21] T. K. Moon, “The Expectation-Maximization Algorithm”, IEEE Signal Processing 
Magazine, vol. 13, pp. 47 – 60, Nov. 1996. 

[22] D. G. Tzikas, A. C. Likas and N. P. Galatsanos, “The Variational Approximation for 
Bayesian Inference: Life After the EM Algorithm”, IEEE Signal Processing Magazine, vol. 
25, Iss. 6, pp. 131 – 146, Nov. 200  

[23] D. M. Titterington, A. F. M. Smith and U. E. Makov, Statistical Analysis of Finite Mixture 
Distributions, Wiley, Chichester and New York, 1985. 

[24] R. P. Savage, Strapdown Analytics, Strapdown Associates, vol. 2, ch. 15, pp. 15.1 – 15.142, 
2000.  

[25] P. K. Seidelmann, ed., Explanatory supplement to the Astronomical Almanac, Mill Valley, 
Cal., University Science Books, pp. 52 and 698, 1992. 

[26] G. A. Einicke, G. Falco, M. T. Dunn and D. C. Reid, “Iterative Smoother-Based Variance 
Estimation”, IEEE Signal Processing letters, 2012 (to appear). 

 
 
 
 

                                                                 

“The faithful duplication and repair exhibited by the double-stranded DNA structure would seem to be 
incompatible with the process of evolution. Thus, evolution has been explained by the occurrence of 
errors during DNA replication and repair.” Tomoyuki Shibata 



  

 
 
 
 
 



  

 
 
 
 
 

Robust Prediction, Filtering and Smoothing 211

Chapter title

Author Name

9 
 

Robust Prediction, Filtering and Smoothing 

1 
9.1  Introduction 
The previously-discussed optimum predictor, filter and smoother solutions assume that the 
model parameters are correct, the noise processes are Gaussian and their associated 
covariances are known precisely. These solutions are optimal in a mean-square-error sense, 
that is they provide the best average performance. If the above assumptions are correct, then 
the filter’s mean-square-error equals the trace of design error covariance. The underlying 
modelling and noise assumptions are a often convenient fiction. They do, however, serve to 
allow estimated performance to be weighed against implementation complexity. 

In general, robustness means “the persistence of a system’s characteristic behaviour under 
perturbations or conditions of uncertainty” [1]. In an estimation context, robust solutions 
refer to those that accommodate uncertainties in problem specifications. They are also 
known as worst-case or peak error designs. The standard predictor, filter and smoother 
structures are retained but a larger design error covariance is used to account for the 
presence of modelling error.  

Designs that cater for worst cases are likely to exhibit poor average performance. Suppose 
that a bridge designed for average loading conditions returns an acceptable cost benefit. 
Then a design that is focussed on accommodating infrequent peak loads is likely to provide 
degraded average cost performance. Similarly, a worst-case shoe design that accommodates 
rarely occurring large feet would provide poor fitting performance on average. That is, 
robust designs tend to be conservative. In practice, a trade-off may be desired between 
optimum and robust designs.  

The material canvassed herein is based on the H∞ filtering results from robust control. The 
robust control literature is vast, see [2] – [33] and the references therein. As suggested above, 
the H∞ solutions of interest here involve observers having gains that are obtained by solving 
Riccati equations. This Riccati equation solution approach relies on the Bounded Real 
Lemma – see the pioneering work by Vaidyanathan [2] and Petersen [3]. The Bounded Real 
Lemma is implicit with game theory [9] – [19]. Indeed, the continuous-time solutions 
presented in this section originate from the game theoretic approach of Doyle, Glover, 
Khargonekar, Francis Limebeer, Anderson, Khargonekar, Green, Theodore and Shaked, see 
[4], [13], [15], [21]. The discussed discrete-time versions stem from the results of Limebeer, 
Green, Walker, Yaesh, Shaked, Xie, de Souza and Wang, see [5], [11], [18], [19], [21]. In the 
parlance of game theory: “a statistician is trying to best estimate a linear combination of the 
states of a system that is driven by nature; nature is trying to cause the statistician’s estimate 

                                                                 

“On a huge hill, Cragged, and steep, Truth stands, and he that will Reach her, about must, and about 
must go.” John Donne 
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to be as erroneous as possible, while trying to minimize the energy it invests in driving the 
system” [19]. 

Pertinent state-space H∞ predictors, filters and smoothers are described in [4] – [19]. Some 
prediction, filtering and smoothing results are summarised in [13] and methods for 
accommodating model uncertainty are described in [14], [18], [19]. The aforementioned 
methods for handling model uncertainty can result in conservative designs (that depart far 
from optimality). This has prompted the use of linear matrix inequality solvers in [20], [23] 
to search for optimal solutions to model uncertainty problems.  

It is explained in [15], [19], [21] that a saddle-point strategy for the games leads to robust 
estimators, and the resulting robust smoothing, filtering and prediction solutions are 
summarised below. While the solution structures remain unchanged, designers need to 
tweak the scalar within the underlying Riccati equations. 

This chapter has two main parts. Section 9.2 describes robust continuous-time solutions and 
the discrete-time counterparts are presented in Section 9.3. The previously discussed 
techniques each rely on a trick. The optimum filters and smoothers arise by completing the 
square. In maximum-likelihood estimation, a function is differentiated with respect to an 
unknown parameter and then set to zero. The trick behind the described robust estimation 
techniques is the Bounded Real Lemma, which opens the discussions. 
 

9.2  Robust Continuous-time Estimation 
 

9.2.1 Continuous-Time Bounded Real Lemma 
First, consider the unforced system 

( ) ( ) ( )x t A t x t  (1)   

over a time interval t  [0, T], where A(t)  n n . For notational convenience, define the 
stacked vector x = {x(t), t  [0, T]}.  From Lyapunov stability theory [36], the system (1) is 
asymptotically stable if there exists a function V(x(t))  > 0 such that ( ( )) 0V x t . A possible 
Lyapunov function is V(x(t)) = ( ) ( ) ( )Tx t P t x t , where P(t) = ( )TP t   n n  is positive definite. 
To ensure x  2 it is required to establish that 

( ( )) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 0T T TV x t x t P t x t x t P t x t x t P t x t      . (2) 

Now consider the output of a linear time varying system, y =  w, having the state-space 
representation 

( ) ( ) ( ) ( ) ( )x t A t x t B t w t  , (3) 
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( ) ( ) ( )y t C t x t , (4)  

where w(t)  m , B(t)  n m  and C(t)   p n . Assume temporarily that { ( ) ( )}TE w t w   = 
( )I t  . The Bounded Real Lemma [13], [15], [21], states that w  2 implies y  2 if  

2( ( )) ( ) ( ) ( ) ( ) 0T TV x t y t y t w t w t    (5) 

for a γ   . Integrating (5) from t = 0 to t = T gives 

2

0 0 0
( ( )) ( ) ( ) ( ) ( ) 0    T T TT TV x t dt y t y t dt w t w t dt  (6) 

and noting that 
0

( ( )) T
V x t dt  = xT(T)P(T)x(T) – xT(0)P(0)x(0), another objective is  

20

0

( ) ( ) ( ) (0) (0) (0) ( ) ( )

( ) ( )


 




TT T T

T T

x T P T x T x P x y t y t dt

w t w t dt
. (7)  

Under the assumptions x(0) = 0 and P(T) = 0, the above inequality simplifies to 

2

202
2

2 0

( ) ( )( )

( ) ( ) ( )

T T

T T

y t y t dty t

w t w t w t dt
 


. (8)  

The ∞-norm of   is defined as  

2 2

2 2

y w

w w
 


 . (9)  

The Lebesgue ∞-space is the set of systems having finite ∞-norm and is denoted by ∞. That 
is,    ∞, if there exists a γ    such that 

2 2

2

0 0
2

sup sup
w w

y

w



 

  , (10)  

namely, the supremum (or maximum) ratio of the output and input 2-norms is finite. The 
conditions under which    ∞ are specified below. The accompanying sufficiency proof 
combines the approaches of [15], [31]. A further five proofs for this important result appear in [21]. 
 

Lemma 1: The continuous-time Bounded Real Lemma [15], [13], [21]: In respect of the above system 
 , suppose that the Riccati differential equation 

2( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )T T TP t P t A t A t P t C t C t P t B t B t P t       , (11) 

has a solution on [0, T]. Then 


  ≤  γ for any w  2. 
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to be as erroneous as possible, while trying to minimize the energy it invests in driving the 
system” [19]. 

Pertinent state-space H∞ predictors, filters and smoothers are described in [4] – [19]. Some 
prediction, filtering and smoothing results are summarised in [13] and methods for 
accommodating model uncertainty are described in [14], [18], [19]. The aforementioned 
methods for handling model uncertainty can result in conservative designs (that depart far 
from optimality). This has prompted the use of linear matrix inequality solvers in [20], [23] 
to search for optimal solutions to model uncertainty problems.  

It is explained in [15], [19], [21] that a saddle-point strategy for the games leads to robust 
estimators, and the resulting robust smoothing, filtering and prediction solutions are 
summarised below. While the solution structures remain unchanged, designers need to 
tweak the scalar within the underlying Riccati equations. 

This chapter has two main parts. Section 9.2 describes robust continuous-time solutions and 
the discrete-time counterparts are presented in Section 9.3. The previously discussed 
techniques each rely on a trick. The optimum filters and smoothers arise by completing the 
square. In maximum-likelihood estimation, a function is differentiated with respect to an 
unknown parameter and then set to zero. The trick behind the described robust estimation 
techniques is the Bounded Real Lemma, which opens the discussions. 
 

9.2  Robust Continuous-time Estimation 
 

9.2.1 Continuous-Time Bounded Real Lemma 
First, consider the unforced system 
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over a time interval t  [0, T], where A(t)  n n . For notational convenience, define the 
stacked vector x = {x(t), t  [0, T]}.  From Lyapunov stability theory [36], the system (1) is 
asymptotically stable if there exists a function V(x(t))  > 0 such that ( ( )) 0V x t . A possible 
Lyapunov function is V(x(t)) = ( ) ( ) ( )Tx t P t x t , where P(t) = ( )TP t   n n  is positive definite. 
To ensure x  2 it is required to establish that 
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Now consider the output of a linear time varying system, y =  w, having the state-space 
representation 
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2 2

2 2

y w
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
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0 0
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w w
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


 
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namely, the supremum (or maximum) ratio of the output and input 2-norms is finite. The 
conditions under which    ∞ are specified below. The accompanying sufficiency proof 
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Lemma 1: The continuous-time Bounded Real Lemma [15], [13], [21]: In respect of the above system 
 , suppose that the Riccati differential equation 
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has a solution on [0, T]. Then 


  ≤  γ for any w  2. 
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which implies (6) and (7). Inequality (8) is established under the assumptions x(0) = 0 and P(T) = 0. 
� 

In general, where { ( ) ( )}TE w t w   = ( ) ( )Q t t  , the scaled matrix ( )B t  =  1/ 2( ) ( )B t Q t  may be 
used in place of B(t) above. When the plant   has a direct feedthrough matrix, that is, 

( ) ( ) ( ) ( ) ( )y t C t x t D t w t  , (12) 

D(t)   p m , the above Riccati differential equation is generalised to 

1
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(13) 

where M(t) = γ2I – DT(t)D(t) > 0. A proof is requested in the problems. 

Criterion (8) indicates that the ratio of the system’s output and input energies is bounded 
above by γ2 for any w  2, including worst-case w. Consequently, solutions satisfying (8) 
are often called worst-case designs. 
 

9.2.2 Continuous-Time H∞ Filtering 
 

9.2.2.1 Problem Definition 
Now that the Bounded Real Lemma has been defined, the H∞ filter can be set out. The 
general filtering problem is depicted in Fig. 1. It is assumed that the system   has the 
state-space realisation 

( ) ( ) ( ) ( ) ( ),x t A t x t B t w t   (0) 0,x   

2 2( ) ( ) ( )y t C t x t . 

(14) 

(15) 

Suppose that the system   has the realisation (14) and 

1 1( ) ( ) ( )y t C t x t . (16) 
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Figure 1. The general filtering problem. The objective is to estimate the output of   from 
noisy measurements of  . 

It is desired to find a causal solution   that produces estimates 1ˆ ( | )y t t  of y1(t) from the 
measurements, 

2( ) ( ) ( )z t y t v t  ,  (17) 

at time t so that the output estimation error, 

1 1ˆ( | ) ( ) ( | )e t t y t y t t  , (18) 

is in 2. The error signal (18) is generated by a system denoted by e = ei , where i = 
v
w
 
 
 

 

and ei = 2 1[ ]    . Hence, the objective is to achieve 
0

( | ) ( | )
T Te t t e t t dt  – 
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0
( ) ( ) 

T Ti t i t dt  < 0 for some     .  For convenience, it is assumed here that w(t)  m , 

E{w(t)} = 0, { ( ) ( )}TE w t w   = ( ) ( )Q t t  , v(t)   p , E{v(t)} = 0, { ( ) ( )}TE v t v   = ( ) ( )R t t   
and { ( ) ( )}TE w t v   = 0. 
 

9.2.2.2 H∞ Solution 
A parameterisation of all solutions for the H∞ filter is developed in [21]. A minimum-
entropy filter arises when the contractive operator within [21] is zero and is given by 

 2ˆ ˆ( | ) ( ) ( ) ( ) ( | ) ( ) ( ),x t t A t K t C t x t t K t z t    ˆ(0) 0,x   
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where 
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Figure 1. The general filtering problem. The objective is to estimate the output of   from 
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is the filter gain and P(t) = PT(t) > 0 is the solution of the Riccati differential equation 

                        ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )T TP t A t P t P t A t B t Q t B t    

                                   1 2
2 2 1 1( )( ( ) ( ) ( ) ( ) ( )) ( )  T TP t C t R t C t C t C t P t , (0) 0.P   

(22)  

It can be seen that the H∞ filter has a structure akin to the Kalman filter. A point of difference 
is that the solution to the above Riccati differential equation solution depends on C1(t), the 
linear combination of states being estimated. 
 

9.2.2.3 Properties 
Define ( )A t  = A(t) – K(t)C2(t). Subtracting (19) – (20) from (14) – (15) yields the error system 

1

( | )
[ ( ) ( )]( )( | ) ( )
[0 0]( )( | ) ( )

x t t
K t B tA tx t t v t

C te t t w t

 
            

          




, (0) 0,x   

                                        eii , 

(23) 

where ( | )x t t  = x(t) – ˆ( | )x t t  and ei  = 
1

[ ( ) ( )]( )
[0 0]( )
K t B tA t

C t
 
 
  

. The adjoint of  ei  is given by 

H
ei  = 

1( ) ( )

0( )
0( )

T T

T

T

A t C t

K t
B t

 
 
    
        

. It is shown below that the estimation error satisfies the desired 

performance objective. 

Lemma 2: In respect of the H∞ problem (14) – (18), the solution (19) – (20) achieves the performance 

( ) ( ) ( )Tx T P T x T  –  (0) (0) (0)Tx P x  + 
0

( | ) ( | )
T Te t t e t t dt  – 2

0
( ) ( )

T Ti t i t dt   < 0. 

Proof: Following the approach in [15], [21], by applying Lemma 1 to the adjoint of (23), it is required 
that there exists a positive definite symmetric solution to 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )T T TP A P P A B Q B K R K                

                                         2
1 1( ) ( ) ( )) ( )TP C C P     ,  ( )

T
P





 = 0, 

 

 

                                                                 

“Although economists have studied the sensitivity of import and export volumes to changes in the 
exchange rate, there is still much uncertainty about just how much the dollar must change to bring 
about any given reduction in our trade deficit.” Martin Stuart Feldstein 

  

on [0, T] for some γ   , in which τ = T – t is a time-to-go variable. Substituting 
1

2( ) ( ) ( ) ( )TK P C R     into the above Riccati differential equation yields 

   1 2
2 2 1 1( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ( ) ( )( ( ) ( ) ( )) ( )T T T TP A P P A B Q B P C R C C C P                      , 

( ) 0
T

P





 . 

Taking adjoints to address the problem (23) leads to (22), for which the existence of a positive define 

solution implies ( ) ( ) ( )Tx T P T x T  –  (0) (0) (0)Tx P x  + 
0

( | ) ( | )
T Te t t e t t dt  – 2

0
( ) ( )

T Ti t i t dt   < 0. 

Thus, under the assumption x(0) = 0, 
0

( | ) ( | )
T Te t t e t t dt  – 2

0
( ) ( )

T Ti t i t dt   < ( ) ( ) ( )Tx T P T x T  < 

0. Therefore, ei  ∞, that is, w, v  2 => e  2.                                                                         � 
 

9.2.2.4 Trading-Off H∞ Performance 
In a robust filter design it is desired to meet an H∞ performance objective for a minimum 
possible γ. A minimum γ can be found by conducting a search and checking for the 
existence of positive definite solutions to the Riccati differential equation (22). This search is 

tractable because ( )P t  is a convex function of γ2, since 
2

2 2

( )P t






 = 6

1 1( ) ( ) ( )) ( )TP t C t C t P t   > 0. 

In some applications it may be possible to estimate a priori values for γ. Recall for output 
estimation problems that the error is generated by eie i , where ei  = 1[ ( ) ]I    . 
From the arguments of Chapters 1 – 2 and [28], for single-input-single-output plants 

2 0
lim

v 
  = 1 and 

2 0
lim
 


v
ei  = 1, which implies 

2 0
lim
 

 
v

H
ei ei  = 2

v . Since the H∞ filter 

achieves the performance H
ei ei 
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is the filter gain and P(t) = PT(t) > 0 is the solution of the Riccati differential equation 
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It can be seen that the H∞ filter has a structure akin to the Kalman filter. A point of difference 
is that the solution to the above Riccati differential equation solution depends on C1(t), the 
linear combination of states being estimated. 
 

9.2.2.3 Properties 
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on [0, T] for some γ   , in which τ = T – t is a time-to-go variable. Substituting 
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which equals the area under the error power spectral density, ( )H
ei eiR R s . Recall that the 

optimal filter (in which γ = ∞) minimises (25), whereas the H∞ filter minimises 
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In view of (25) and (26), it follows that the H∞ filter minimises the maximum magnitude of 
( )H

ei eiR R s . Consequently, it is also called a ‘minimax filter’. However, robust designs, which 
accommodate uncertain inputs tend to be conservative. Therefore, it is prudent to 
investigate using a larger γ to achieve a trade-off between H∞ and minimum-mean-square-
error performance criteria. 
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Figure 2.  R ( )H

ei eiR s  versus frequency for Example 1: optimal filter (solid line) and H∞ filter (dotted line). 

Example 1. Consider a time-invariant output estimation problem where A = -1, B = C2 = C1 = 
1, 2

w  = 10 and 2
v  = 0.1. The magnitude of the error spectrum exhibited by the optimal 

filter (designed with γ2 = 108) is indicated by the solid line of Fig. 2. From a search, a 
minimum of γ2 = 0.099 was found such that the algebraic Riccati equation (24) has a positive 
definite solution, which concurs with the a priori estimate of γ2 ≈ 2

v . The magnitude of the 
error spectrum exhibited by the H∞ filter is indicated by the dotted line of Fig. 2. The figure 
demonstrates that the filter achieves ( )H

ei eiR R s  < γ2. Although the H∞ filter reduces the peak 

of the error spectrum by 10 dB, it can be seen that the area under the curve is larger, that is, 
the mean square error increases. Consequently, some intermediate value of γ may need to be 
considered to trade off peak error (spectrum) and average error performance. 
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9.2.3 Accommodating Uncertainty 
The above filters are designed for situations in which the inputs v(t) and w(t) are uncertain. 
Next, problems in which model uncertainty is present are discussed. The described 
approaches involve converting the uncertainty into a fictitious noise source and solving an 
auxiliary H∞ filtering problem. 

 

 
 
 

Figure 3. Representation of additive model 
uncertainty.  

Figure 4. Input scaling in lieu of a problem 
that possesses an uncertainty. 

 

9.2.3.1 Additive Uncertainty 
Consider a time-invariant output estimation problem in which the nominal model is 2  + Δ, 
where 2  is known and Δ is unknown, as depicted in Fig. 3. The p(t) represents a fictitious 
signal to account for discrepancies due to the uncertainty. It is argued below that a solution 
to the H∞ filtering problem can be found by solving an auxiliary problem in which the input 
is scaled by ε    as shown in Fig. 4. In lieu of the filtering problem possessing the 
uncertainty Δ, an auxiliary problem is defined as 
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where p(t) is an additional exogenous input satisfying 
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Consider the scaled H∞ filtering problem where 
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in which ε2 = (1 + δ2)-1. 

                                                                 

“A theory has only the alternative of being right or wrong. A model has a third possibility - it may be 
right but irrelevant.” Manfred Eigen 
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filter (designed with γ2 = 108) is indicated by the solid line of Fig. 2. From a search, a 
minimum of γ2 = 0.099 was found such that the algebraic Riccati equation (24) has a positive 
definite solution, which concurs with the a priori estimate of γ2 ≈ 2

v . The magnitude of the 
error spectrum exhibited by the H∞ filter is indicated by the dotted line of Fig. 2. The figure 
demonstrates that the filter achieves ( )H

ei eiR R s  < γ2. Although the H∞ filter reduces the peak 

of the error spectrum by 10 dB, it can be seen that the area under the curve is larger, that is, 
the mean square error increases. Consequently, some intermediate value of γ may need to be 
considered to trade off peak error (spectrum) and average error performance. 
 

                                                                 

“If the uncertainty is larger than the effect, the effect itself becomes moot.” Patrick Frank 

  

9.2.3 Accommodating Uncertainty 
The above filters are designed for situations in which the inputs v(t) and w(t) are uncertain. 
Next, problems in which model uncertainty is present are discussed. The described 
approaches involve converting the uncertainty into a fictitious noise source and solving an 
auxiliary H∞ filtering problem. 

 

 
 
 

Figure 3. Representation of additive model 
uncertainty.  

Figure 4. Input scaling in lieu of a problem 
that possesses an uncertainty. 

 

9.2.3.1 Additive Uncertainty 
Consider a time-invariant output estimation problem in which the nominal model is 2  + Δ, 
where 2  is known and Δ is unknown, as depicted in Fig. 3. The p(t) represents a fictitious 
signal to account for discrepancies due to the uncertainty. It is argued below that a solution 
to the H∞ filtering problem can be found by solving an auxiliary problem in which the input 
is scaled by ε    as shown in Fig. 4. In lieu of the filtering problem possessing the 
uncertainty Δ, an auxiliary problem is defined as 

( ) ( ) ( ) ( )x t Ax t Bw t Bp t   , (0) 0x  , 

2( ) ( ) ( ) ( )z t C t x t v t  , 

1 1 ˆ( | ) ( ) ( ) ( ) ( )e t t C t x t C t x t  , 

(27) 

(28) 

(29) 

where p(t) is an additional exogenous input satisfying 
2 22

22
p w ,     . (30) 

Consider the scaled H∞ filtering problem where 

( ) ( ) ( )x t Ax t B w t  , (0) 0x  , 

2( ) ( ) ( ) ( )z t C t x t v t  , 

1 1 ˆ( | ) ( ) ( ) ( ) ( )e t t C t x t C t x t  , 

(31) 

(32) 

(33) 

in which ε2 = (1 + δ2)-1. 

                                                                 

“A theory has only the alternative of being right or wrong. A model has a third possibility - it may be 
right but irrelevant.” Manfred Eigen 
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Lemma 3 [26]: Suppose for a γ ≠ 0 that the scaled H∞ problem (31) – (33) is solvable, that is, 2

2
e  < 

22 2
2

( w    + 2

2
)v . Then, this guarantees the performance 

22 2 22
2 2 22

( )e w p v    (34) 

for the solution of the auxiliary problem (27) – (29). 

Proof: From the assumption that problem (31) – (33) is solvable, it follows that 2

2
e  < 22 2

2
( w    + 

2

2
)v . Substituting for ε, using (30) and rearranging yields (34).                                                       � 

 

9.2.4 Multiplicative Uncertainty 
Next, consider a filtering problem in which the model is G(I + Δ), as depicted in Fig. 5. It is 
again assumed that G and Δ are known and unknown transfer function matrices, 
respectively. This problem may similarly be solved using Lemma 3. Thus a filter that 
accommodates additive or multiplicative uncertainty simply requires scaling of an input. 
The above scaling is only sufficient for a H∞ performance criterion to be met. The design 
may well be too conservative and it is worthwhile to explore the merits of using values for δ 
less than the uncertainty’s assumed norm bound. 
 

9.2.5 Parametric Uncertainty 
Finally, consider a time-invariant output estimation problem in which the state matrix is 
uncertain, namely, 

( ) ( ) ( ) ( ),Ax t A x t Bw t     (0) 0,x   

2( ) ( ) ( ) ( )z t C t x t v t  , 

1 1 ˆ( | ) ( ) ( ) ( ) ( )e t t C t x t C t x t  , 

(35) 

(36) 

(37) 

where ΔA  n n  is unknown. Define an auxiliary H∞ filtering problem by 

( ) ( ) ( ) ( ),x t Ax t Bw t p t    (0) 0,x   (38) 

(36) and (37), where p(t) = ΔAx(t) is a fictitious exogenous input.  A solution to this problem 
would achieve  

22 2 22
2 2 22

( )e w p v    (39) 

for a γ ≠ 0. From the approach of [14], [18], [19], consider the scaled filtering problem 

( ) ( ) ( ),x t Ax t Bw t   (0) 0,x   (40) 

                                                                 

“Remember that all models are wrong; the practical question is how wrong do they have to be to not be 
useful.” George Edward Pelham Box 

  

(36), (37), where B  = 1B     , ( )w t  = 
( )
( )

w t
p t

 
 
 

 and 0 < ε < 1. Then the solution of this H∞ 

filtering problem satisfies 
22 2 22 2

2 2 22
( )e w p v    , (41) 

which implies (39). Thus, state matrix parameter uncertainty can be accommodated by 
including a scaled input in the solution of an auxiliary H∞ filtering problem. Similar 
solutions to problems in which other state-space parameters are uncertain appear in [14], 
[18], [19].  
 

9.2.6 Continuous-Time H∞ Smoothing 
 

9.2.6.1 Background 
There are three kinds of H∞ smoothers: fixed point, fixed lag and fixed interval (see the 
tutorial [13]). The next development is concerned with continuous-time H∞ fixed-interval 
smoothing. The smoother in [10] arises as a combination of forward states from an H∞ filter 
and adjoint states that evolve according to a Hamiltonian matrix. A different fixed-interval 
smoothing problem to [10] is found in [16] by solving for saddle conditions within 
differential games. A summary of some filtering and smoothing results appears in [13]. 
Robust prediction, filtering and smoothing problems are addressed in [22]; the H∞ predictor, 
filter and smoother require the solution of a Riccati differential equation that evolves 
forward in time, whereas the smoother additionally requires another to be solved in reverse-
time. Another approach for combining forward and adjoint estimates is described [32] 
where the Fraser-Potter formula is used to construct a smoothed estimate. 

Continuous-time, fixed-interval smoothers that differ from the formulations within [10], 
[13], [16], [22], [32] are reported in [34] –  [35]. A robust version of [34] – [35] appears in [33], 
which is described below. 

 
 
 
 

Figure 5. Representation of multiplicative 
model uncertainty. 

Figure 6. Robust smoother error structure. 

 

                                                                 

“The purpose of models is not to fit the data but to sharpen the questions.” Samuel Karlin 
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2
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9.2.6.2 Problem Definition 
Once again, it is assumed that the data is generated by (14) – (17). For convenience, attention 
is confined to output estimation, namely 2  = 1  within Fig. 1. Input and state estimation 
problems can be handled similarly using the solution structures described in Chapter 6. It is 
desired to find a fixed-interval smoother solution   that produces estimates 1ˆ ( | )y t T  of 

1( )y t  so that the output estimation error 

1 1ˆ( | ) ( ) ( | )e t T y t y t T   (42) 

is in 2. As before, the map from the inputs i = 
v
w
 
 
 

  to the error is denoted by ei = 

1 1[ ]     and the objective is to achieve 
0

( | ) ( | )
T Te t T e t T dt  – 2

0
( ) ( ) 

T Ti t i t dt  < 0 

for some     . 
 

9.2.6.3  H∞ Solution 
The following H∞ fixed-interval smoother exploits the structure of the minimum-variance 
smoother but uses the gain (21) calculated from the solution of the Riccati differential equation 
(22) akin to the H∞ filter. An approximate Wiener-Hopf factor inverse, 1ˆ  , is given by  

1/ 2 1/ 2

ˆ( ) ( ) ( ) ( ) ( | )ˆ( | )
( ) ( ) ( ) ( )( )

A t K t C t K t x t tx t t
R t C t R t z tt  

     
          


. (43) 

An inspection reveals that the states within (43) are the same as those calculated by the H∞ 
filter (19). The adjoint of 1ˆ  , which is denoted by ˆ H , has the realisation 

1/ 2

1/ 2

( )( ) ( ) ( ) ( ) ( )( )
( )( ) ( )( )

T T T T

T

tA t C t K t C t R tt
tK t R tt








      
     

     


. (44) 

Output estimates are obtained as 

ˆ( | ) ( ) ( ) ( )y t T z t R t t  . (45) 

However, an additional condition requires checking in order to guarantee that the smoother 
actually achieves the above performance objective; the existence of a solution 2 ( )P t  = 2 ( )

TP t  
> 0 is required for the auxiliary Riccati differential equation 

     2
2 2 2( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )T TP t A t P t P t A t K t R t K t     

                    2 1 1
2 2 2( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )T TP t C t R t C t P t C t R t R t C t P t     , 2( ) 0P T  , 

 (46) 

where ( ) ( ) ( ) ( )A t A t K t C t  . 

                                                                 

“Certainty is the mother of quiet and repose, and uncertainty the cause of variance and contentions.” 
Edward Coke 

  

9.2.7 Performance 
It will be shown subsequently that the robust fixed-interval smoother (43) – (45) has the 
error structure shown in Fig. 6, which is examined below. 

Lemma 4 [33]: Consider the arrangement of two linear systems f = fii  and u = H
uj j  shown in 

Fig. 6, in which 
w

i
v

 
  
 

 and 
f

j
v
 

  
 

. Let ei  denote the map from i to e. Assume that w and v  

2.  If and only if: (i) fi   ∞ and (ii) H
uj   ∞, then (i) f, u, e  2 and (ii) ei   ∞. 

Proof: (i) To establish sufficiency, note that 
2

i  ≤ 
2

w    
2

v  => d  2, which with Condition 

(i) => f  2. Similarly, 
2

j  ≤ 
2

f    
2

v  => j  2, which with Condition (ii) => u  2. Also, 

2
e  ≤ 

2
f    

2
u  => e  2. The necessity of (i) follows from the assumption i  2 together with 

the property fi 2   2 => fi   ∞ (see [p. 83, 21]). Similarly, j  2 together with the 

property H
uj 2   2 => H

uj   ∞.  

(ii) Finally, i  2, e = ei i   2 together with the property ei 2   2 => ei   ∞.               � 

It is easily shown that the error system, ei , for the model (14) – (15), the data (17) and the 
smoother (43) – (45), is given by 

1 1

( )
( ) ( ) 0 ( ) ( )

( )
( ) ) ( ) ( ) ( ) 0 ( ) ( )

( )
( | ) ( ) ( ) ( ) 0 0

( )

(T T T

T

x t
x t A t B t K t

t
t C t R t C t A t C t R t

w t
e t T C t R t K t

v t


  



   

                         


 , (0) 0x  , 

( ) 0T  , 

(47) 

where ( | )x t t  = x(t) – ˆ( | )x t t . The conditions for the smoother attaining the desired 
performance objective are described below. 15 
Lemma 5 [33]: In respect of the smoother error system (47), if there exist symmetric positive define 
solutions to (22) and (46) for  , 2  > 0, then the smoother (43) – (45) achieves ei   ∞, that is, i 
2  implies e  2. 

Proof: Since ( | )x t t  is decoupled from ξ(t), ei  is equivalent to the arrangement of two systems fi  

and H
uj  shown in Fig. 6. The fi  is defined by (23) in which C2(t) = C(t). From Lemma 2, the 

existence of a positive definite solution to (22) implies fi   ∞. The H
uj is given by the system 

1 1( ) ( ) ( ) ( ) ( ) ( | ) ( ) ( ) ( )T T TA C R y C R v                 , ( ) 0T  , 

( ) ( ) ( ) ( )Tu R K     . 

(48) 
(49) 
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is in 2. As before, the map from the inputs i = 
v
w
 
 
 

  to the error is denoted by ei = 

1 1[ ]     and the objective is to achieve 
0

( | ) ( | )
T Te t T e t T dt  – 2

0
( ) ( ) 

T Ti t i t dt  < 0 

for some     . 
 

9.2.6.3  H∞ Solution 
The following H∞ fixed-interval smoother exploits the structure of the minimum-variance 
smoother but uses the gain (21) calculated from the solution of the Riccati differential equation 
(22) akin to the H∞ filter. An approximate Wiener-Hopf factor inverse, 1ˆ  , is given by  

1/ 2 1/ 2
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
. (43) 

An inspection reveals that the states within (43) are the same as those calculated by the H∞ 
filter (19). The adjoint of 1ˆ  , which is denoted by ˆ H , has the realisation 

1/ 2
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
. (44) 

Output estimates are obtained as 

ˆ( | ) ( ) ( ) ( )y t T z t R t t  . (45) 

However, an additional condition requires checking in order to guarantee that the smoother 
actually achieves the above performance objective; the existence of a solution 2 ( )P t  = 2 ( )

TP t  
> 0 is required for the auxiliary Riccati differential equation 

     2
2 2 2( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )T TP t A t P t P t A t K t R t K t     

                    2 1 1
2 2 2( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )T TP t C t R t C t P t C t R t R t C t P t     , 2( ) 0P T  , 

 (46) 

where ( ) ( ) ( ) ( )A t A t K t C t  . 
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9.2.7 Performance 
It will be shown subsequently that the robust fixed-interval smoother (43) – (45) has the 
error structure shown in Fig. 6, which is examined below. 

Lemma 4 [33]: Consider the arrangement of two linear systems f = fii  and u = H
uj j  shown in 

Fig. 6, in which 
w

i
v

 
  
 

 and 
f

j
v
 

  
 

. Let ei  denote the map from i to e. Assume that w and v  

2.  If and only if: (i) fi   ∞ and (ii) H
uj   ∞, then (i) f, u, e  2 and (ii) ei   ∞. 

Proof: (i) To establish sufficiency, note that 
2

i  ≤ 
2

w    
2

v  => d  2, which with Condition 

(i) => f  2. Similarly, 
2

j  ≤ 
2

f    
2

v  => j  2, which with Condition (ii) => u  2. Also, 

2
e  ≤ 

2
f    

2
u  => e  2. The necessity of (i) follows from the assumption i  2 together with 

the property fi 2   2 => fi   ∞ (see [p. 83, 21]). Similarly, j  2 together with the 

property H
uj 2   2 => H

uj   ∞.  

(ii) Finally, i  2, e = ei i   2 together with the property ei 2   2 => ei   ∞.               � 

It is easily shown that the error system, ei , for the model (14) – (15), the data (17) and the 
smoother (43) – (45), is given by 

1 1

( )
( ) ( ) 0 ( ) ( )
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where ( | )x t t  = x(t) – ˆ( | )x t t . The conditions for the smoother attaining the desired 
performance objective are described below. 15 
Lemma 5 [33]: In respect of the smoother error system (47), if there exist symmetric positive define 
solutions to (22) and (46) for  , 2  > 0, then the smoother (43) – (45) achieves ei   ∞, that is, i 
2  implies e  2. 

Proof: Since ( | )x t t  is decoupled from ξ(t), ei  is equivalent to the arrangement of two systems fi  

and H
uj  shown in Fig. 6. The fi  is defined by (23) in which C2(t) = C(t). From Lemma 2, the 

existence of a positive definite solution to (22) implies fi   ∞. The H
uj is given by the system 
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(48) 
(49) 
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9.2.6.2 Problem Definition 
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9.2.6.3  H∞ Solution 
The following H∞ fixed-interval smoother exploits the structure of the minimum-variance 
smoother but uses the gain (21) calculated from the solution of the Riccati differential equation 
(22) akin to the H∞ filter. An approximate Wiener-Hopf factor inverse, 1ˆ  , is given by  
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An inspection reveals that the states within (43) are the same as those calculated by the H∞ 
filter (19). The adjoint of 1ˆ  , which is denoted by ˆ H , has the realisation 
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9.2.7 Performance 
It will be shown subsequently that the robust fixed-interval smoother (43) – (45) has the 
error structure shown in Fig. 6, which is examined below. 
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uj   ∞, then (i) f, u, e  2 and (ii) ei   ∞. 

Proof: (i) To establish sufficiency, note that 
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(ii) Finally, i  2, e = ei i   2 together with the property ei 2   2 => ei   ∞.               � 

It is easily shown that the error system, ei , for the model (14) – (15), the data (17) and the 
smoother (43) – (45), is given by 
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where ( | )x t t  = x(t) – ˆ( | )x t t . The conditions for the smoother attaining the desired 
performance objective are described below. 15 
Lemma 5 [33]: In respect of the smoother error system (47), if there exist symmetric positive define 
solutions to (22) and (46) for  , 2  > 0, then the smoother (43) – (45) achieves ei   ∞, that is, i 
2  implies e  2. 

Proof: Since ( | )x t t  is decoupled from ξ(t), ei  is equivalent to the arrangement of two systems fi  

and H
uj  shown in Fig. 6. The fi  is defined by (23) in which C2(t) = C(t). From Lemma 2, the 

existence of a positive definite solution to (22) implies fi   ∞. The H
uj is given by the system 
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For the above system to be in ∞, from Lemma 4, it is required that there exists a solution to (46) for 
which the existence of a positive definite solution implies H

uj   ∞. The claim ei   ∞ follows 
from Lemma 4.                                                                                                                                        � 
The H∞ solution can be derived as a solution to a two-point boundary value problem, which 
involves a trade-off between causal and noncausal processes (see [10], [15], [21]). This 
suggests that the H∞ performance of the above smoother would not improve on that of the 
filter. Indeed, from Fig. 6, e = f + u and the triangle rule yields 

2
e  ≤ 

2
f  + 

2
u , where f is 

the H∞ filter error. That is, the error upper bound for the H∞ fixed-interval smoother (43) – 
(45) is greater than that for the H∞ filter (19) – (20). It is observed below that compared to the 
minimum-variance case, the H∞ solution exhibits an increased mean-square error.  

Lemma 6 [33]: For the output estimation problem (14) – (18), in which C2(t) = C1(t) = C(t), the 
smoother solution (43) –  (45) results in 

2 22, 0 2, 0

H H
ei ei ei ei   

  . (50) 

Proof: By expanding H
ei ei  and completing the squares, it can be shown that H

ei ei  = 1 1
H

ei ei   + 

2 2
H

ei ei  , where 2 2
H

ei ei   = 1 1( ) HQ t     1
1 1 1 1( ) ( )H H HQ t Q t       and 1ei  =     

1 1( ) H HQ t    = [    I + 1( )( ) ]HR t   .  Substituting   = I   1ˆ ˆ( )( )HR t   into 1ei  yields 

1 1
1

ˆ ˆ( )[( ) ( ) ]H H
ei R t      � , (51) 

which suggests ̂  = 1/ 2
0( ) ( ) ( )C t K t R t  + 1/ 2 ( )R t , where 0  denotes an operator having the state-

space realization 
( )

0
A t I

I
 
 
 

. Constructing ˆ ˆ H  = 0( ) [ ( ) ( ) ( )TC t K t R t K t   ( ) ( )TP t A t    

0( ) ( )] ( )H TA t P t C t  + R(t) and using (22) yields ˆ ˆ H  = 0( ) [ ( ) ( ) ( )TC t B t Q t B t    ( )P t  + 
2

0( ) ( ) ( ) ( )] ( )T H TP t C t C t P t C t    + R(t). Comparison with H  = 0 0( ) ( ) ( ) ( ) ( )T H TC t B t Q t B t C t   + 

R(t) leads to ˆ ˆ H  = H    0( ) ( ( )C t P t  + 2
0( ) ( ) ( ) ( )) ( )T H TP t C t C t P t C t   . Substituting for 

ˆ ˆ H  into (51) yields 
1 2 1

1 0 0( )[( ) ( ( ) ( ( ) ( ) ( ) ( ) ( )) ( )) ]H H T H T
ei R t C t P t P t C t C t P t C t           . (52) 

The observation (50) follows by inspection of (52).                                                                                � 

Thus, the cost of designing for worst case input conditions is a deterioration in the mean 
performance. Note that the best possible average performance 2 22 2

H H
ei ei ei eiR R R R  can be 

attained in problems where there are no uncertainties present, 2 0    and the Riccati equation 

solution has converged, that is, ( ) 0P t  , in which case ˆ ˆ H  = H  and 1ei  is a zero matrix. 
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9.2.8 Performance Comparison 
It is of interest to compare to compare the performance of (43) –  (45) with the H∞ smoother 
described in [10], [13], [16], namely, 

11

ˆˆ 0( | )( | ) ( ) ( ) ( ) ( )
( )

( ) ( )( )( ) ( ) ( ) '( )( )

T

TT

x t Tx t T A t B t Q t B t z t
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


, 

ˆ ˆ( | ) ( ) ( ) ( )x t T x t P t t   

(53) 

 

(54) 

and (22). Substituting (54) and its differential into the first row of (53) together with (21) 
yields 

ˆ ˆ ˆ( ) ( ) ( ) ( )( ( ) ( ) ( ))x t A t x t K t z t C t x t   , (55) 

which reverts to the Kalman filter at 2   = 0. Substituting ( )t    1 ˆ( )( ( | )P t x t T   ˆ( ))x t  
into the second row of (53) yields 

ˆ ˆ ˆ ˆ( | ) ( ) ( ) ( )( ( | ) ( ))x t T A t x t G t x t T x t   , (56) 

where G(t)   1
2( ) ( ) ( ) ( )TB t Q t B t P t , which reverts to the maximum-likelihood smoother at 

2   = 0. Thus, the Hamiltonian form (53) – (54) can be realised by calculating the filtered 
estimate (55) and then obtaining the smoothed estimate from (56). 
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“Inquiry is fatal to certainty.” William James Durant 

Figure 7. Fixed-interval smoother performance 
comparison for Gaussian process noise: (i) 
Kalman filter; (ii) Maximum likelihood smoother; 
(iii) Minimum-variance smoother; (iv) H∞ filter; 
(v) H∞ smoother [10], [13], [16]; and (vi)  H∞ 
smoother (43) –  (45). 

Figure 8. Fixed-interval smoother performance 
comparison for sinusoidal process noise: (i) 
Kalman filter; (ii) Maximum likelihood smoother; 
(iii) Minimum-variance smoother; (iv) H∞ filter; 
(v) H∞ smoother [10], [13], [16]; and (vi)  H∞ 
smoother (43) –  (45). 
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For the above system to be in ∞, from Lemma 4, it is required that there exists a solution to (46) for 
which the existence of a positive definite solution implies H

uj   ∞. The claim ei   ∞ follows 
from Lemma 4.                                                                                                                                        � 
The H∞ solution can be derived as a solution to a two-point boundary value problem, which 
involves a trade-off between causal and noncausal processes (see [10], [15], [21]). This 
suggests that the H∞ performance of the above smoother would not improve on that of the 
filter. Indeed, from Fig. 6, e = f + u and the triangle rule yields 
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the H∞ filter error. That is, the error upper bound for the H∞ fixed-interval smoother (43) – 
(45) is greater than that for the H∞ filter (19) – (20). It is observed below that compared to the 
minimum-variance case, the H∞ solution exhibits an increased mean-square error.  

Lemma 6 [33]: For the output estimation problem (14) – (18), in which C2(t) = C1(t) = C(t), the 
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1 1
1

ˆ ˆ( )[( ) ( ) ]H H
ei R t      � , (51) 

which suggests ̂  = 1/ 2
0( ) ( ) ( )C t K t R t  + 1/ 2 ( )R t , where 0  denotes an operator having the state-

space realization 
( )

0
A t I

I
 
 
 

. Constructing ˆ ˆ H  = 0( ) [ ( ) ( ) ( )TC t K t R t K t   ( ) ( )TP t A t    

0( ) ( )] ( )H TA t P t C t  + R(t) and using (22) yields ˆ ˆ H  = 0( ) [ ( ) ( ) ( )TC t B t Q t B t    ( )P t  + 
2

0( ) ( ) ( ) ( )] ( )T H TP t C t C t P t C t    + R(t). Comparison with H  = 0 0( ) ( ) ( ) ( ) ( )T H TC t B t Q t B t C t   + 

R(t) leads to ˆ ˆ H  = H    0( ) ( ( )C t P t  + 2
0( ) ( ) ( ) ( )) ( )T H TP t C t C t P t C t   . Substituting for 

ˆ ˆ H  into (51) yields 
1 2 1

1 0 0( )[( ) ( ( ) ( ( ) ( ) ( ) ( ) ( )) ( )) ]H H T H T
ei R t C t P t P t C t C t P t C t           . (52) 

The observation (50) follows by inspection of (52).                                                                                � 

Thus, the cost of designing for worst case input conditions is a deterioration in the mean 
performance. Note that the best possible average performance 2 22 2

H H
ei ei ei eiR R R R  can be 

attained in problems where there are no uncertainties present, 2 0    and the Riccati equation 

solution has converged, that is, ( ) 0P t  , in which case ˆ ˆ H  = H  and 1ei  is a zero matrix. 
 

                                                                 

“We know accurately only when we know little, with knowledge doubt increases.” Johann Wolfgang von Goethe 

  

9.2.8 Performance Comparison 
It is of interest to compare to compare the performance of (43) –  (45) with the H∞ smoother 
described in [10], [13], [16], namely, 
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and (22). Substituting (54) and its differential into the first row of (53) together with (21) 
yields 

ˆ ˆ ˆ( ) ( ) ( ) ( )( ( ) ( ) ( ))x t A t x t K t z t C t x t   , (55) 

which reverts to the Kalman filter at 2   = 0. Substituting ( )t    1 ˆ( )( ( | )P t x t T   ˆ( ))x t  
into the second row of (53) yields 

ˆ ˆ ˆ ˆ( | ) ( ) ( ) ( )( ( | ) ( ))x t T A t x t G t x t T x t   , (56) 

where G(t)   1
2( ) ( ) ( ) ( )TB t Q t B t P t , which reverts to the maximum-likelihood smoother at 

2   = 0. Thus, the Hamiltonian form (53) – (54) can be realised by calculating the filtered 
estimate (55) and then obtaining the smoothed estimate from (56). 
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comparison for Gaussian process noise: (i) 
Kalman filter; (ii) Maximum likelihood smoother; 
(iii) Minimum-variance smoother; (iv) H∞ filter; 
(v) H∞ smoother [10], [13], [16]; and (vi)  H∞ 
smoother (43) –  (45). 
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Kalman filter; (ii) Maximum likelihood smoother; 
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(v) H∞ smoother [10], [13], [16]; and (vi)  H∞ 
smoother (43) –  (45). 
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For the above system to be in ∞, from Lemma 4, it is required that there exists a solution to (46) for 
which the existence of a positive definite solution implies H

uj   ∞. The claim ei   ∞ follows 
from Lemma 4.                                                                                                                                        � 
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2
e  ≤ 

2
f  + 

2
u , where f is 
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Example: 2 [35]. Let A = 
1 0
0 1
 
  

, B = C = Q = 
1 0
0 1
 
 
 

, D = 
0 0
0 0
 
 
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 and R = 
2

2

0
0

v

v




 
 
 

 

denote time-invariant parameters for an output estimation problem. Simulations were 
conducted for the case of T = 100 seconds, dt = 1 millisecond, using 500 realizations of zero-
mean, Gaussian process noise and measurement noise. The resulting mean-square-error 
(MSE) versus signal-to-noise ratio (SNR) are shown in Fig. 7. The H∞ solutions were 
calculated using a priori designs of 2    2

v   within (22). It can be seen from trace (vi) of 
Fig. 7 that the H∞ smoothers exhibit poor performance when the exogenous inputs are in 
fact Gaussian, which illustrates Lemma 6. The figure demonstrates that the minimum-
variance smoother out-performs the maximum-likelihood smoother.  However, at high 
SNR, the difference in smoother performance is inconsequential. Intermediate values for 

2   may be selected to realise a smoother design that achieves a trade-off between 
minimum-variance performance (trace (iii)) and H∞ performance (trace (v)). 

Example 3 [35]. Consider the non-Gaussian process noise signal w(t) = 1
sin( )sin( ) tt   , where 2

sin( )t  
denotes the sample variance of sin(t). The results of a simulation study appear in Fig. 8. It can 
be seen that the H∞ solutions, which accommodate input uncertainty, perform better than 
those relying on Gaussian noise assumptions. In this example, the developed H∞ smoother (43) 
– (45) exhibits the best mean-square-error performance. 
 

9.3 Robust Discrete-time Estimation 
 

9.3.1 Discrete-Time Bounded Real Lemma 
The development of discrete-time H∞ filters and smoothers proceeds analogously to the 
continuous-time case. From Lyapunov stability theory [36], for the unforced system 

1k k kx A x  , (57) 

Ak  n n , to be asymptotically stable over the interval k  [1, N], a Lyapunov function, 
Vk(xk), is required to satisfy ( ) 0k kV x  , where ΔVk(xk) = Vk+1(xk) – Vk(xk) denotes the first 
backward difference of Vk(xk). Consider the candidate Lyapunov function ( ) T

k k k k kV x x P x , 
where kP  = T

kP   n n  is positive definite. To guarantee xk  2 , it is required that 

1 1 1( ) 0T T
k k k k k k k kV x x P x x P x      . (58) 

Now let y =  w denote the output of the system 

1k k k k kx A x B w   , 

k k ky C x , 

(59) 

(60) 

where wk  m , Bk  n m  and Ck   p n .  

                                                                 

“Education is the path from cocky ignorance to miserable uncertainty.” Samuel Langhorne Clemens aka. 
Mark Twain 

  

The Bounded Real Lemma [18] states that w  2  implies y  2  if  
2

1 1 1 0T T T T
k k k k k k k k k kx P x x P x y y w w        (61) 

for a γ   . Summing (61) from k = 0 to k = N – 1 yields the objective 

1 1
2

0 0 0
0 0

0
 

 

    
N N

T T T
k k k k

k k
x P x y y w w , (62) 

that is, 
1

0 0 0
20

1

0

N
T T

k k
k

N
T
k k

k

x P x y y

w w









 





. (63) 

Assuming that x0 = 0, 
1

02 2
1

2 2

0

N
T
k k

k

N
T
k k

k

y yy w

w w w w






 


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




 . (64)  

Conditions for achieving the above objectives are established below. 

Lemma 7: The discrete-time Bounded Real Lemma [18]: In respect of the above system  , suppose 
that the Riccati difference equation 

2 2 1
1 1 1 1( )T T T T T

k k k k k k k k k k k k k k kP A P A A P B I B P B B P A C C   
       ,  (65) 

with PT = 0, has a positive definite symmetric solution on [0, N]. Then 


  ≤  γ for any w  2 . 

Proof: From the approach of Xie et al [18], define  
2 2 1

1 1( )T T
k k k k k k k k kp w I B P B B P A x   

    .  (66) 

It is easily verified that  
2 2 2 1

1 1 1 1 1( )T T T T T T T T
k k k k k k k k k k k k k k k k k k k kx P x x P x y y w w p I B P B p x A P A x    
           , 

which implies (61) – (62) and (63) under the assumption x0 = 0.                                                         � 

The above lemma relies on the simplifying assumption { }T
j kE w w  = jkI . When { }T

j kE w w  = 

k jkQ  , the scaled matrix kB  =  1/ 2
k kB Q  may be used in place of Bk above. In the case where 

  possesses a direct feedthrough matrix, namely, yk = Ckxk + Dkwk, the Riccati difference 
equation within the above lemma becomes 

      1 T T
k k k k k kP A P A C C  

              2 2 2 1
1 1 1( )( ) ( )T T T T T T

k k k k k k k k k k k k k k kA P B C D I B P B D D B P A D C     
       . 

(67) 

                                                                 

“And as he thus spake for himself, Festus said with a loud voice, Paul, thou art beside thyself; much 
learning doth make thee mad.” Acts 26: 24 
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Conditions for achieving the above objectives are established below. 

Lemma 7: The discrete-time Bounded Real Lemma [18]: In respect of the above system  , suppose 
that the Riccati difference equation 

2 2 1
1 1 1 1( )T T T T T

k k k k k k k k k k k k k k kP A P A A P B I B P B B P A C C   
       ,  (65) 

with PT = 0, has a positive definite symmetric solution on [0, N]. Then 


  ≤  γ for any w  2 . 

Proof: From the approach of Xie et al [18], define  
2 2 1

1 1( )T T
k k k k k k k k kp w I B P B B P A x   

    .  (66) 

It is easily verified that  
2 2 2 1

1 1 1 1 1( )T T T T T T T T
k k k k k k k k k k k k k k k k k k k kx P x x P x y y w w p I B P B p x A P A x    
           , 

which implies (61) – (62) and (63) under the assumption x0 = 0.                                                         � 

The above lemma relies on the simplifying assumption { }T
j kE w w  = jkI . When { }T

j kE w w  = 

k jkQ  , the scaled matrix kB  =  1/ 2
k kB Q  may be used in place of Bk above. In the case where 

  possesses a direct feedthrough matrix, namely, yk = Ckxk + Dkwk, the Riccati difference 
equation within the above lemma becomes 

      1 T T
k k k k k kP A P A C C  

              2 2 2 1
1 1 1( )( ) ( )T T T T T T

k k k k k k k k k k k k k k kA P B C D I B P B D D B P A D C     
       . 

(67) 

                                                                 

“And as he thus spake for himself, Festus said with a loud voice, Paul, thou art beside thyself; much 
learning doth make thee mad.” Acts 26: 24 
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Example: 2 [35]. Let A = 
1 0
0 1
 
  

, B = C = Q = 
1 0
0 1
 
 
 

, D = 
0 0
0 0
 
 
 

 and R = 
2

2

0
0

v

v




 
 
 

 

denote time-invariant parameters for an output estimation problem. Simulations were 
conducted for the case of T = 100 seconds, dt = 1 millisecond, using 500 realizations of zero-
mean, Gaussian process noise and measurement noise. The resulting mean-square-error 
(MSE) versus signal-to-noise ratio (SNR) are shown in Fig. 7. The H∞ solutions were 
calculated using a priori designs of 2    2

v   within (22). It can be seen from trace (vi) of 
Fig. 7 that the H∞ smoothers exhibit poor performance when the exogenous inputs are in 
fact Gaussian, which illustrates Lemma 6. The figure demonstrates that the minimum-
variance smoother out-performs the maximum-likelihood smoother.  However, at high 
SNR, the difference in smoother performance is inconsequential. Intermediate values for 

2   may be selected to realise a smoother design that achieves a trade-off between 
minimum-variance performance (trace (iii)) and H∞ performance (trace (v)). 

Example 3 [35]. Consider the non-Gaussian process noise signal w(t) = 1
sin( )sin( ) tt   , where 2

sin( )t  
denotes the sample variance of sin(t). The results of a simulation study appear in Fig. 8. It can 
be seen that the H∞ solutions, which accommodate input uncertainty, perform better than 
those relying on Gaussian noise assumptions. In this example, the developed H∞ smoother (43) 
– (45) exhibits the best mean-square-error performance. 
 

9.3 Robust Discrete-time Estimation 
 

9.3.1 Discrete-Time Bounded Real Lemma 
The development of discrete-time H∞ filters and smoothers proceeds analogously to the 
continuous-time case. From Lyapunov stability theory [36], for the unforced system 

1k k kx A x  , (57) 

Ak  n n , to be asymptotically stable over the interval k  [1, N], a Lyapunov function, 
Vk(xk), is required to satisfy ( ) 0k kV x  , where ΔVk(xk) = Vk+1(xk) – Vk(xk) denotes the first 
backward difference of Vk(xk). Consider the candidate Lyapunov function ( ) T

k k k k kV x x P x , 
where kP  = T

kP   n n  is positive definite. To guarantee xk  2 , it is required that 

1 1 1( ) 0T T
k k k k k k k kV x x P x x P x      . (58) 

Now let y =  w denote the output of the system 

1k k k k kx A x B w   , 

k k ky C x , 

(59) 

(60) 

where wk  m , Bk  n m  and Ck   p n .  

                                                                 

“Education is the path from cocky ignorance to miserable uncertainty.” Samuel Langhorne Clemens aka. 
Mark Twain 

  

The Bounded Real Lemma [18] states that w  2  implies y  2  if  
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for a γ   . Summing (61) from k = 0 to k = N – 1 yields the objective 
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Assuming that x0 = 0, 
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Conditions for achieving the above objectives are established below. 

Lemma 7: The discrete-time Bounded Real Lemma [18]: In respect of the above system  , suppose 
that the Riccati difference equation 
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with PT = 0, has a positive definite symmetric solution on [0, N]. Then 


  ≤  γ for any w  2 . 

Proof: From the approach of Xie et al [18], define  
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It is easily verified that  
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which implies (61) – (62) and (63) under the assumption x0 = 0.                                                         � 

The above lemma relies on the simplifying assumption { }T
j kE w w  = jkI . When { }T

j kE w w  = 

k jkQ  , the scaled matrix kB  =  1/ 2
k kB Q  may be used in place of Bk above. In the case where 

  possesses a direct feedthrough matrix, namely, yk = Ckxk + Dkwk, the Riccati difference 
equation within the above lemma becomes 

      1 T T
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              2 2 2 1
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(67) 

                                                                 

“And as he thus spake for himself, Festus said with a loud voice, Paul, thou art beside thyself; much 
learning doth make thee mad.” Acts 26: 24 
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A verification is requested in the problems. It will be shown that predictors, filters and 
smoothers satisfy a H∞ performance objective if there exist solutions to Riccati difference 
equations arising from the application of Lemma 7 to the corresponding error systems. A 
summary of the discrete-time results from [5], [11], [13] and the further details described in 
[21], [30], is presented below. 
 

9.3.2 Discrete-Time H∞ Prediction 
 

9.3.2.1 Problem Definition 
Consider a nominal system   

1 ,k k k k kx A x B w    

2, 2,k k ky C x , 

(68) 

(69) 

together with a fictitious reference system   realised by (68) and 

1, 1,k k ky C x , (70) 

where Ak, Bk, C2,k and C1,k are of appropriate dimensions. The problem of interest is to find a 
solution   that produces one-step-ahead predictions, 1, / 1ˆ k ky  , given measurements 

2,k k kz y v   (71) 

at time k – 1. The prediction error is defined as 

/ 1 1, 1, / 1ˆk k k k ke y y   . (72) 

The error sequence (72) is generated by e = ei i, where ei = 2 1[ ]    , i = 
v
w
 
 
 

 and 

the objective is to achieve 
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T
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k
i i




  < 0, for some γ   . For convenience, it 

is assumed that wk  m , { }kE w  = 0, { }T
j kE w w  = k jkQ  , vk  p , { }kE v  = 0, { }T

j kE v v  = k jkR   

and { }T
j kE w v  = 0. 

 

9.3.2.2 H∞ Solution 
The H∞ predictor has the same structure as the optimum minimum-variance (or Kalman) 
predictor. It is given by 

 1/ 2, / 1ˆ ˆ ,k k k k k k k k kx A K C x K z     

1, / 1 1, / 1ˆ ˆ ,k k k k ky C x   

(73) 

(74) 

 
                                                                 

“Why waste time learning when ignorance is instantaneous?” William Boyd Watterson II 

  

where 
1

/ 1 2, 2, / 1 2,( )T T
k k k k k k k k k kK A P C C P C R 

    (75) 

is the one-step-ahead predictor gain, 
1 2 1

/ 1 1, 1 1, 1( )T
k k k k kP M C C  

    , (76) 

and kM  = T
kM  > 0 satisfies the Riccati differential equation 
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such that 
2
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2, 1, 2, 2,

0
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C M C I C M C
C M C R C M C

 
 

  
. The above predictor is also known as an a 

priori filter within [11], [13], [30]. 
 

9.3.2.3 Performance 
Following the approach in the continuous-time case, by subtracting (73) – (74) from (68), 
(70), the predictor error system is 

/ 1
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, 0 0,x   

                                        eii , 

(78) 

where / 1k kx 
  = kx  – / 1ˆ k kx  , ei  = 2,

1,

[ ]
[0 0]

k k k k k

k

A K C K B
C
 

 
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 and i = 
v
w
 
 
 

. It is shown below 

that the prediction error satisfies the desired performance objective. 

Lemma 8 [11], [13], [30]: In respect of the H∞ prediction problem (68) – (72), the existence of kM  = 
T
kM  > 0 for the Riccati differential equation (77) ensures that the solution (73) – (74) achieves the 

performance objective 
1

/ 1 / 1
0

N
T
k k k k

k
e e



 

  – 

1
2

0

N
T
k k

k
i i




  < 0. 

Proof: By applying the Bounded Real Lemma to H
ei  and taking the adjoint to address ei , it is 

required that there exists a positive define symmetric solution to 

                                                                 

“Give me a fruitful error any time, full of seeds bursting with its own corrections. You can keep your 
sterile truth for yourself.” Vilfredo Federico Damaso Pareto 
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A verification is requested in the problems. It will be shown that predictors, filters and 
smoothers satisfy a H∞ performance objective if there exist solutions to Riccati difference 
equations arising from the application of Lemma 7 to the corresponding error systems. A 
summary of the discrete-time results from [5], [11], [13] and the further details described in 
[21], [30], is presented below. 
 

9.3.2 Discrete-Time H∞ Prediction 
 

9.3.2.1 Problem Definition 
Consider a nominal system   

1 ,k k k k kx A x B w    

2, 2,k k ky C x , 

(68) 

(69) 

together with a fictitious reference system   realised by (68) and 

1, 1,k k ky C x , (70) 

where Ak, Bk, C2,k and C1,k are of appropriate dimensions. The problem of interest is to find a 
solution   that produces one-step-ahead predictions, 1, / 1ˆ k ky  , given measurements 

2,k k kz y v   (71) 

at time k – 1. The prediction error is defined as 

/ 1 1, 1, / 1ˆk k k k ke y y   . (72) 

The error sequence (72) is generated by e = ei i, where ei = 2 1[ ]    , i = 
v
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 
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 and 
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is assumed that wk  m , { }kE w  = 0, { }T
j kE w w  = k jkQ  , vk  p , { }kE v  = 0, { }T

j kE v v  = k jkR   

and { }T
j kE w v  = 0. 

 

9.3.2.2 H∞ Solution 
The H∞ predictor has the same structure as the optimum minimum-variance (or Kalman) 
predictor. It is given by 

 1/ 2, / 1ˆ ˆ ,k k k k k k k k kx A K C x K z     

1, / 1 1, / 1ˆ ˆ ,k k k k ky C x   
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(74) 
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where 
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/ 1 2, 2, / 1 2,( )T T
k k k k k k k k k kK A P C C P C R 

    (75) 

is the one-step-ahead predictor gain, 
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/ 1 1, 1 1, 1( )T
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and kM  = T
kM  > 0 satisfies the Riccati differential equation 
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such that 
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. The above predictor is also known as an a 

priori filter within [11], [13], [30]. 
 

9.3.2.3 Performance 
Following the approach in the continuous-time case, by subtracting (73) – (74) from (68), 
(70), the predictor error system is 
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where / 1k kx 
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. It is shown below 

that the prediction error satisfies the desired performance objective. 

Lemma 8 [11], [13], [30]: In respect of the H∞ prediction problem (68) – (72), the existence of kM  = 
T
kM  > 0 for the Riccati differential equation (77) ensures that the solution (73) – (74) achieves the 

performance objective 
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Proof: By applying the Bounded Real Lemma to H
ei  and taking the adjoint to address ei , it is 

required that there exists a positive define symmetric solution to 

                                                                 

“Give me a fruitful error any time, full of seeds bursting with its own corrections. You can keep your 
sterile truth for yourself.” Vilfredo Federico Damaso Pareto 
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A verification is requested in the problems. It will be shown that predictors, filters and 
smoothers satisfy a H∞ performance objective if there exist solutions to Riccati difference 
equations arising from the application of Lemma 7 to the corresponding error systems. A 
summary of the discrete-time results from [5], [11], [13] and the further details described in 
[21], [30], is presented below. 
 

9.3.2 Discrete-Time H∞ Prediction 
 

9.3.2.1 Problem Definition 
Consider a nominal system   

1 ,k k k k kx A x B w    

2, 2,k k ky C x , 

(68) 

(69) 

together with a fictitious reference system   realised by (68) and 

1, 1,k k ky C x , (70) 

where Ak, Bk, C2,k and C1,k are of appropriate dimensions. The problem of interest is to find a 
solution   that produces one-step-ahead predictions, 1, / 1ˆ k ky  , given measurements 

2,k k kz y v   (71) 

at time k – 1. The prediction error is defined as 

/ 1 1, 1, / 1ˆk k k k ke y y   . (72) 

The error sequence (72) is generated by e = ei i, where ei = 2 1[ ]    , i = 
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 and 
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is assumed that wk  m , { }kE w  = 0, { }T
j kE w w  = k jkQ  , vk  p , { }kE v  = 0, { }T

j kE v v  = k jkR   

and { }T
j kE w v  = 0. 

 

9.3.2.2 H∞ Solution 
The H∞ predictor has the same structure as the optimum minimum-variance (or Kalman) 
predictor. It is given by 
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where 
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is the one-step-ahead predictor gain, 
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and kM  = T
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9.3.2.3 Performance 
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“Give me a fruitful error any time, full of seeds bursting with its own corrections. You can keep your 
sterile truth for yourself.” Vilfredo Federico Damaso Pareto 
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Expanding (81) yields (77). The existence of Mk > 0 for the above Riccati differential equation implies 
Pk > 0 for (79). Thus, it follows from Lemma 7 that the stated performance objective is achieved.       � 
 

9.3.3 Discrete-Time H∞ Filtering 
 

9.3.3.1 Problem Definition 
Consider again the configuration of Fig. 1. Assume that the systems   and   have the 
realisations (68) – (69) and (68), (70), respectively. It is desired to find a solution   that operates 
on the measurements (71) and produces the filtered estimates 1, /ˆ k ky . The filtered error sequence, 

/ 1, 1, /ˆk k k k ke y y  , (82) 
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“I believe the most solemn duty of the American president is to protect the American people. If America 
shows uncertainty and weakness in this decade, the world will drift toward tragedy. This will not 
happen on my watch.” George Walker Bush 
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Expanding (81) yields (77). The existence of Mk > 0 for the above Riccati differential equation implies 
Pk > 0 for (79). Thus, it follows from Lemma 7 that the stated performance objective is achieved.       � 
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Consider again the configuration of Fig. 1. Assume that the systems   and   have the 
realisations (68) – (69) and (68), (70), respectively. It is desired to find a solution   that operates 
on the measurements (71) and produces the filtered estimates 1, /ˆ k ky . The filtered error sequence, 
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9.3.3.1 Problem Definition 
Consider again the configuration of Fig. 1. Assume that the systems   and   have the 
realisations (68) – (69) and (68), (70), respectively. It is desired to find a solution   that operates 
on the measurements (71) and produces the filtered estimates 1, /ˆ k ky . The filtered error sequence, 

/ 1, 1, /ˆk k k k ke y y  , (82) 

                                                                 

“Never interrupt your enemy when he is making a mistake.” Napoléon Bonaparte 

  

is generated by e = ei i, where ei = 2 1[ ]    , i = v
w
 
 
 

. The H∞ performance 

objective is to achieve 
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k
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


  – 
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T
k k

k
i i




  < 0, for some γ   . 

 

9.3.3.2 H∞ Solution 
As explained in Chapter 4, filtered states can be evolved from 

/ 1 1/ 1 2, 1 1/ 1ˆ ˆ ˆ( ),k k k k k k k k k k kx A x L z C A x         (83) 

where Lk  n p  is a filter gain. The above recursion is called an a posteriori filter in [11], [13], 
[30]. Output estimates are obtained from 

1, 1/ 1 1, 1 1/ 1ˆ ˆk k k k ky C x     . (84) 

The filter gain is calculated as 
1( )T T

k k k k k k kL M C C M C R   , (85) 

where kM  = T
kM  > 0 satisfies the Riccati differential equation 

1 1 1 1 1 1 1 1 1, 1 2, 1
T T T T
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(86) 

such that 
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9.3.3.3 Performance 
Subtracting from (83) from (68) gives /k kx  = 1 1/ 1ˆk k kA x    + 1 1k kB w   – 1 1/ 1ˆk k kA x    + 

2, 1 1/ 1ˆk k k k kL C A x    + 2, 1 1( (k k k kL C A x   + 1 1)k kB w   + )kv . Denote ik = 
1

k

k

v
w 

 
 
 

, then the filtered 

error system may be written as 

2, 1/ 1/ 12, 1
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I L C Ax xL I L C B
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(87) 

                                                                 

“I believe the most solemn duty of the American president is to protect the American people. If America 
shows uncertainty and weakness in this decade, the world will drift toward tragedy. This will not 
happen on my watch.” George Walker Bush 
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with 0x  = 0, where ei  = 2, 1 2, 1
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   
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. It is shown below that the 

filtered error satisfies the desired performance objective. 

Lemma 9 [11], [13], [30]: In respect of the H∞ problem (68) – (70), (82), the solution (83) – (84) 

achieves the performance 
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Proof: By applying the Bounded Real Lemma to H
ei  and taking the adjoint to address ei , it is 

required that there exists a positive define symmetric solution to 

1 2, 1 1 2,( ) ( )T T T
k k k k k k k kP I L C A P A I C L      

          2 2 1
2, 1 1, 1, 1, 1, 1 2,( ) ( ) ( )T T T T
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          2, 1 1 1 2,( ) ( )T T T T
k k k k k k k k k kI L C B Q B I C L L R L      , 

(88) 

in which use was made of the Matrix Inversion Lemma. Defining  
1 1 2
/ 1 1, 1,

T
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 using (85) and applying the Matrix Inversion Lemma leads to 
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(90) 

where 

1 / 1 1 1 1 1
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It follows from (90) that 1
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. Substituting (92) into (91) yields 

                                                                 

“Hell, there are no rules here – we’re trying to accomplish something.” Thomas Alva Edison 

  

1 1
1 1 1 1 1 1 1 1 1( )T T T

k k k k k k k k k kM A M C R C A B Q B 
           , (93) 

which is the same as (86). The existence of Mk > 0 for the above Riccati difference equation implies the 
existence of a Pk > 0 for (88). Thus, it follows from Lemma 7 that the stated performance objective is 
achieved.                                                                                                                               � 
 

9.3.4 Solution to the General Filtering Problem 
Limebeer, Green and Walker express Riccati difference equations such as (86) in a compact 
form using J-factorisation [5], [21]. The solutions for the general filtering problem follow 
immediately from their results. Consider 
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 and kB  = 1,1, 0kB   . From the 

approach of [5], [21], the Riccati difference equation corresponding to the H∞ problem (94) is 

           1
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                   1( )( ) ( )T T T T T T T

k k k k k k k k k k k k k k k k k kA M C B J D C M C D J D A M C B J D    . 
(95)  

Suppose in a general filtering problem that   is realised by (68), 2,ky  = 2,k kC x  + 2,k kD w ,   

is realised by (68) and 1,ky  = 1,k kC x  + 1,k kD w . Then substituting 1,1,kB  = 0 kB   , 1,1,kC  = 1,kC ,  

2,1,kC  = 2,kC ,  1,1,kD  = 1,0 kD   , 1,2,kD  = I  and 2,1,kD  = 2,kI D    into (95) yields 
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The filter solution is given by 

1/ / 1 2,1, / 1ˆ ˆ ˆ( )k k k k k k k k k kx A x K z C x     , 
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(97) 
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“If we knew what it is we were doing, it would not be called research, would it?” Albert Einstein 
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with 0x  = 0, where ei  = 2, 1 2, 1
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. It is shown below that the 

filtered error satisfies the desired performance objective. 

Lemma 9 [11], [13], [30]: In respect of the H∞ problem (68) – (70), (82), the solution (83) – (84) 
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Proof: By applying the Bounded Real Lemma to H
ei  and taking the adjoint to address ei , it is 

required that there exists a positive define symmetric solution to 
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in which use was made of the Matrix Inversion Lemma. Defining  
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“Hell, there are no rules here – we’re trying to accomplish something.” Thomas Alva Edison 
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which is the same as (86). The existence of Mk > 0 for the above Riccati difference equation implies the 
existence of a Pk > 0 for (88). Thus, it follows from Lemma 7 that the stated performance objective is 
achieved.                                                                                                                               � 
 

9.3.4 Solution to the General Filtering Problem 
Limebeer, Green and Walker express Riccati difference equations such as (86) in a compact 
form using J-factorisation [5], [21]. The solutions for the general filtering problem follow 
immediately from their results. Consider 
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approach of [5], [21], the Riccati difference equation corresponding to the H∞ problem (94) is 

           1
T T

k k k k k k kM A M A B J B    
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(95)  

Suppose in a general filtering problem that   is realised by (68), 2,ky  = 2,k kC x  + 2,k kD w ,   

is realised by (68) and 1,ky  = 1,k kC x  + 1,k kD w . Then substituting 1,1,kB  = 0 kB   , 1,1,kC  = 1,kC ,  

2,1,kC  = 2,kC ,  1,1,kD  = 1,0 kD   , 1,2,kD  = I  and 2,1,kD  = 2,kI D    into (95) yields 

         1, 1,
1

2, 2,

T T
k k k k k kT

k k k k T T
k k k k k k

A M C B Q D
M A M A

A M C B Q D

 
   

  
 

                      
12

1, 1, 1, 1, 1, 2, 1, 2,

2, 1, 2, 1, 2, 2, 2, 2,

T T T T
k k k k k k k k k k k k

T T T T
k k k k k k k k k k k k k

C M C D Q D I C M C D Q D
C M C D Q D R C M C D Q D




   
 

    
 

                      1, 1, 1, 2, 2,
T T T T

k k k k k k k k k k k kC M A D Q B C M A D Q B      T
k k kB Q B . 

(96)  

The filter solution is given by 

1/ / 1 2,1, / 1ˆ ˆ ˆ( )k k k k k k k k k kx A x K z C x     , 
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(97) 
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“If we knew what it is we were doing, it would not be called research, would it?” Albert Einstein 
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. It is shown below that the 

filtered error satisfies the desired performance objective. 

Lemma 9 [11], [13], [30]: In respect of the H∞ problem (68) – (70), (82), the solution (83) – (84) 
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Proof: By applying the Bounded Real Lemma to H
ei  and taking the adjoint to address ei , it is 

required that there exists a positive define symmetric solution to 
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in which use was made of the Matrix Inversion Lemma. Defining  
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“Hell, there are no rules here – we’re trying to accomplish something.” Thomas Alva Edison 
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which is the same as (86). The existence of Mk > 0 for the above Riccati difference equation implies the 
existence of a Pk > 0 for (88). Thus, it follows from Lemma 7 that the stated performance objective is 
achieved.                                                                                                                               � 
 

9.3.4 Solution to the General Filtering Problem 
Limebeer, Green and Walker express Riccati difference equations such as (86) in a compact 
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The filter solution is given by 
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“If we knew what it is we were doing, it would not be called research, would it?” Albert Einstein 
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9.3.5  Discrete-Time H∞ Smoothing 
 

9.3.5.1  Problem Definition 
Suppose that measurements (72) of a system (68) – (69) are available over an interval k  [1, 
N]. The problem of interest is to calculate smoothed estimates /ˆ k Ny  of ky  such that the error 
sequence 

/ /ˆk N k k Ne y y   (99) 

is in 2 . 
 

9.3.5.2  H∞ Solution 
The following fixed-interval smoother for output estimation [28] employs the gain for the 
H∞ predictor, 

1
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T
k k k k k kK A P C 
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where Ωk = 2, / 1 2,
T

k k k kC P C  + Rk, in which / 1k kP   is obtained from (76) and (77). The gain (100) 
is used in the minimum-variance smoother structure described in Chapter 7, viz., 
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It is argued below that this smoother meets the desired H∞ performance objective. 
 

9.3.5.3 H∞ Performance 
It is easily shown that the smoother error system is 
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with 0 0,x   where / 1k kx 
  = kx  – / 1ˆ k kx  , i = 

v
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 and 

                                                                 

“I have had my results for a long time: but I do not yet know how I am to arrive at them.” Karl Friedrich 
Gauss 
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Lemma 10:  In respect of the smoother error system (104), if there exists a symmetric positive definite 
solutions to (77) for   > 0, then the smoother (101) – (103) achieves ei    , that is, i  2  
implies e  2 . 

Outline of Proof: From Lemma 8, x  2 , since it evolves within the predictor error system. 
Therefore,    2 , since it evolves within the adjoint predictor error system. Then e  2 , since it is 
a linear combination of x ,   and i  2 .                                                                                              
 

9.3.5.4 Performance Comparison 
Example 4 [28]. A voiced speech utterance “a e i o u” was sampled at 8 kHz for the purpose 
of comparing smoother performance. Simulations were conducted with the zero-mean, 
unity-variance speech sample interpolated to a 16 kHz sample rate, to which 200 realizations 
of Gaussian measurement noise were added and the signal to noise ratio was varied from -5 
to 5 dB. The speech sample is modelled as a first-order autoregressive process 

1k k kx Ax w   , (105) 

where A   , 0 < A < 1. Estimates for 2
w  and A were calculated at 20 dB SNR using an EM 

algorithm, see Chapter 8. 
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Fig. 9. Speech estimate performance comparison: (i) data (crosses), (ii) Kalman filter (dotted line), (iii) H   

filter (dashed line), (iv) minimum-variance smoother (dot-dashed line) and (v) H   smoother (solid line). 

                                                                                                                                                                   

“If I have seen further it is only by standing on the shoulders of giants.” Isaac Newton 
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9.3.5  Discrete-Time H∞ Smoothing 
 

9.3.5.1  Problem Definition 
Suppose that measurements (72) of a system (68) – (69) are available over an interval k  [1, 
N]. The problem of interest is to calculate smoothed estimates /ˆ k Ny  of ky  such that the error 
sequence 

/ /ˆk N k k Ne y y   (99) 

is in 2 . 
 

9.3.5.2  H∞ Solution 
The following fixed-interval smoother for output estimation [28] employs the gain for the 
H∞ predictor, 
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It is argued below that this smoother meets the desired H∞ performance objective. 
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Lemma 10:  In respect of the smoother error system (104), if there exists a symmetric positive definite 
solutions to (77) for   > 0, then the smoother (101) – (103) achieves ei    , that is, i  2  
implies e  2 . 

Outline of Proof: From Lemma 8, x  2 , since it evolves within the predictor error system. 
Therefore,    2 , since it evolves within the adjoint predictor error system. Then e  2 , since it is 
a linear combination of x ,   and i  2 .                                                                                              
 

9.3.5.4 Performance Comparison 
Example 4 [28]. A voiced speech utterance “a e i o u” was sampled at 8 kHz for the purpose 
of comparing smoother performance. Simulations were conducted with the zero-mean, 
unity-variance speech sample interpolated to a 16 kHz sample rate, to which 200 realizations 
of Gaussian measurement noise were added and the signal to noise ratio was varied from -5 
to 5 dB. The speech sample is modelled as a first-order autoregressive process 

1k k kx Ax w   , (105) 

where A   , 0 < A < 1. Estimates for 2
w  and A were calculated at 20 dB SNR using an EM 

algorithm, see Chapter 8. 
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Fig. 9. Speech estimate performance comparison: (i) data (crosses), (ii) Kalman filter (dotted line), (iii) H   

filter (dashed line), (iv) minimum-variance smoother (dot-dashed line) and (v) H   smoother (solid line). 

                                                                                                                                                                   

“If I have seen further it is only by standing on the shoulders of giants.” Isaac Newton 
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9.3.5  Discrete-Time H∞ Smoothing 
 

9.3.5.1  Problem Definition 
Suppose that measurements (72) of a system (68) – (69) are available over an interval k  [1, 
N]. The problem of interest is to calculate smoothed estimates /ˆ k Ny  of ky  such that the error 
sequence 

/ /ˆk N k k Ne y y   (99) 

is in 2 . 
 

9.3.5.2  H∞ Solution 
The following fixed-interval smoother for output estimation [28] employs the gain for the 
H∞ predictor, 
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It is argued below that this smoother meets the desired H∞ performance objective. 
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Lemma 10:  In respect of the smoother error system (104), if there exists a symmetric positive definite 
solutions to (77) for   > 0, then the smoother (101) – (103) achieves ei    , that is, i  2  
implies e  2 . 

Outline of Proof: From Lemma 8, x  2 , since it evolves within the predictor error system. 
Therefore,    2 , since it evolves within the adjoint predictor error system. Then e  2 , since it is 
a linear combination of x ,   and i  2 .                                                                                              
 

9.3.5.4 Performance Comparison 
Example 4 [28]. A voiced speech utterance “a e i o u” was sampled at 8 kHz for the purpose 
of comparing smoother performance. Simulations were conducted with the zero-mean, 
unity-variance speech sample interpolated to a 16 kHz sample rate, to which 200 realizations 
of Gaussian measurement noise were added and the signal to noise ratio was varied from -5 
to 5 dB. The speech sample is modelled as a first-order autoregressive process 

1k k kx Ax w   , (105) 

where A   , 0 < A < 1. Estimates for 2
w  and A were calculated at 20 dB SNR using an EM 

algorithm, see Chapter 8. 
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Fig. 9. Speech estimate performance comparison: (i) data (crosses), (ii) Kalman filter (dotted line), (iii) H   

filter (dashed line), (iv) minimum-variance smoother (dot-dashed line) and (v) H   smoother (solid line). 

                                                                                                                                                                   

“If I have seen further it is only by standing on the shoulders of giants.” Isaac Newton 
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Simulations were conducted in which a minimum-variance filter and a fixed-interval 
smoother were employed to recover the speech message from noisy measurements. The 
results are provided in Fig. 9. As expected, the smoother out-performs the filter. Searches 
were conducted for minimum values of γ such that solutions to the design Riccati difference 
equations were positive definite for each noise realisation. The performance of the resulting 
H∞ filter and smoother are indicated by the dashed line and solid line of the figure. It can be 
seen for this example that the H∞ filter out-performs the Kalman filter. The figure also 
indicates that the robust smoother provides the best performance and exhibits about 4 dB 
reduction in mean-square-error compared to the Kalman filter at 0 dB SNR. This 
performance benefit needs to be reconciled against the extra calculation cost of combining 
robust forward and backward state predictors within (101) – (103). 
 

9.3.5.5 High SNR and Low SNR Asymptotes 
An understanding of why robust solutions are beneficial in the presence of uncertainties can 
be gleaned by examining single-input-single-output filtering and equalisation. Consider a 
time-invariant plant having the canonical form 
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a0, ... an-1, c   . Since the plant is time-invariant, the transfer function exists and is denoted 
by G(z). Some notation is defined prior to stating some observations for output estimation 
problems. Suppose that an H∞ filter has been constructed for the above plant.  Let the H∞ 
algebraic Riccati equation solution, predictor gain, filter gain, predictor, filter and smoother 
transfer function matrices be denoted by ( )P  , K ( ) , ( )L  , ( ) ( )PH z , ( ) ( )FH z  and ( ) ( )SH z  

respectively.  The H  filter transfer function matrix may be written as ( ) ( )FH z  = ( )L   + (I –  
( ) ( )) ( )PL H z   where ( )L   = I – ( ) 1( )R   .  The transfer function matrix of the map from the 

inputs to the filter output estimation error is 

( ) ( ) ( )( ) [ ( ) ( ( ) ) ( ) ]ei F v F wR z H z H z I G z      . (106) 

The H∞ smoother transfer function matrix can be written as ( ) ( )SH z

 
= I –  

( ) ( ) 1 ( )( ( ( )) )( ) ( ( ))H
P PR I H z I H z      . Similarly, let (2)P , (2)K , (2)L , (2) ( )FH z  and (2) ( )SH z  

denote the minimum-variance algebraic Riccati equation solution, predictor gain, filter gain, 
filter and smoother transfer function matrices respectively. 
 
 
 

                                                                 

“In computer science, we stand on each other's feet.” Brian K. Reid 

Proposition 1 [28]: In the above output estimation problem: 
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Outline of Proof: (i) Let ( )
(1,1)p   denote the (1,1) component of  ( )P  .  The low measurement noise 

observation (107) follows from ( ) 2 2 ( ) 2 1
(1,1)1 ( )v vL c p     
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(iii) Observation (109) follows immediately from the application of (107) in (106). 
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An interpretation of (107) and (110) is that the maximum magnitudes of the filters and 
smoothers asymptotically approach a short circuit (or zero impedance) when 2

v  → 0.  From 
(108) and (111), as 2

v  → 0, the maximum magnitudes of the H∞ solutions approach the 
short circuit asymptote closer than the optimal minimum-variance solutions. That is, for low 
measurement noise, the robust solutions accommodate some uncertainty by giving greater 
weighting to the data.  Since 

2 0
lim
 v

eiR  →  v  and the H∞ filter achieves the performance 

eiR  <  , it follows from (109) that an a priori design estimate is   =  v . 

                                                                 

“All programmers are optimists.” Frederick P. Brooks, Jr 
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Simulations were conducted in which a minimum-variance filter and a fixed-interval 
smoother were employed to recover the speech message from noisy measurements. The 
results are provided in Fig. 9. As expected, the smoother out-performs the filter. Searches 
were conducted for minimum values of γ such that solutions to the design Riccati difference 
equations were positive definite for each noise realisation. The performance of the resulting 
H∞ filter and smoother are indicated by the dashed line and solid line of the figure. It can be 
seen for this example that the H∞ filter out-performs the Kalman filter. The figure also 
indicates that the robust smoother provides the best performance and exhibits about 4 dB 
reduction in mean-square-error compared to the Kalman filter at 0 dB SNR. This 
performance benefit needs to be reconciled against the extra calculation cost of combining 
robust forward and backward state predictors within (101) – (103). 
 

9.3.5.5 High SNR and Low SNR Asymptotes 
An understanding of why robust solutions are beneficial in the presence of uncertainties can 
be gleaned by examining single-input-single-output filtering and equalisation. Consider a 
time-invariant plant having the canonical form 
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a0, ... an-1, c   . Since the plant is time-invariant, the transfer function exists and is denoted 
by G(z). Some notation is defined prior to stating some observations for output estimation 
problems. Suppose that an H∞ filter has been constructed for the above plant.  Let the H∞ 
algebraic Riccati equation solution, predictor gain, filter gain, predictor, filter and smoother 
transfer function matrices be denoted by ( )P  , K ( ) , ( )L  , ( ) ( )PH z , ( ) ( )FH z  and ( ) ( )SH z  

respectively.  The H  filter transfer function matrix may be written as ( ) ( )FH z  = ( )L   + (I –  
( ) ( )) ( )PL H z   where ( )L   = I – ( ) 1( )R   .  The transfer function matrix of the map from the 

inputs to the filter output estimation error is 

( ) ( ) ( )( ) [ ( ) ( ( ) ) ( ) ]ei F v F wR z H z H z I G z      . (106) 

The H∞ smoother transfer function matrix can be written as ( ) ( )SH z

 
= I –  

( ) ( ) 1 ( )( ( ( )) )( ) ( ( ))H
P PR I H z I H z      . Similarly, let (2)P , (2)K , (2)L , (2) ( )FH z  and (2) ( )SH z  

denote the minimum-variance algebraic Riccati equation solution, predictor gain, filter gain, 
filter and smoother transfer function matrices respectively. 
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Proposition 1 [28]: In the above output estimation problem: 
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Outline of Proof: (i) Let ( )
(1,1)p   denote the (1,1) component of  ( )P  .  The low measurement noise 

observation (107) follows from ( ) 2 2 ( ) 2 1
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(iii) Observation (109) follows immediately from the application of (107) in (106). 
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An interpretation of (107) and (110) is that the maximum magnitudes of the filters and 
smoothers asymptotically approach a short circuit (or zero impedance) when 2

v  → 0.  From 
(108) and (111), as 2

v  → 0, the maximum magnitudes of the H∞ solutions approach the 
short circuit asymptote closer than the optimal minimum-variance solutions. That is, for low 
measurement noise, the robust solutions accommodate some uncertainty by giving greater 
weighting to the data.  Since 

2 0
lim
 v

eiR  →  v  and the H∞ filter achieves the performance 

eiR  <  , it follows from (109) that an a priori design estimate is   =  v . 
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Simulations were conducted in which a minimum-variance filter and a fixed-interval 
smoother were employed to recover the speech message from noisy measurements. The 
results are provided in Fig. 9. As expected, the smoother out-performs the filter. Searches 
were conducted for minimum values of γ such that solutions to the design Riccati difference 
equations were positive definite for each noise realisation. The performance of the resulting 
H∞ filter and smoother are indicated by the dashed line and solid line of the figure. It can be 
seen for this example that the H∞ filter out-performs the Kalman filter. The figure also 
indicates that the robust smoother provides the best performance and exhibits about 4 dB 
reduction in mean-square-error compared to the Kalman filter at 0 dB SNR. This 
performance benefit needs to be reconciled against the extra calculation cost of combining 
robust forward and backward state predictors within (101) – (103). 
 

9.3.5.5 High SNR and Low SNR Asymptotes 
An understanding of why robust solutions are beneficial in the presence of uncertainties can 
be gleaned by examining single-input-single-output filtering and equalisation. Consider a 
time-invariant plant having the canonical form 
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a0, ... an-1, c   . Since the plant is time-invariant, the transfer function exists and is denoted 
by G(z). Some notation is defined prior to stating some observations for output estimation 
problems. Suppose that an H∞ filter has been constructed for the above plant.  Let the H∞ 
algebraic Riccati equation solution, predictor gain, filter gain, predictor, filter and smoother 
transfer function matrices be denoted by ( )P  , K ( ) , ( )L  , ( ) ( )PH z , ( ) ( )FH z  and ( ) ( )SH z  

respectively.  The H  filter transfer function matrix may be written as ( ) ( )FH z  = ( )L   + (I –  
( ) ( )) ( )PL H z   where ( )L   = I – ( ) 1( )R   .  The transfer function matrix of the map from the 

inputs to the filter output estimation error is 

( ) ( ) ( )( ) [ ( ) ( ( ) ) ( ) ]ei F v F wR z H z H z I G z      . (106) 

The H∞ smoother transfer function matrix can be written as ( ) ( )SH z
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( ) ( ) 1 ( )( ( ( )) )( ) ( ( ))H
P PR I H z I H z      . Similarly, let (2)P , (2)K , (2)L , (2) ( )FH z  and (2) ( )SH z  

denote the minimum-variance algebraic Riccati equation solution, predictor gain, filter gain, 
filter and smoother transfer function matrices respectively. 
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(iv) 
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Outline of Proof: (i) Let ( )
(1,1)p   denote the (1,1) component of  ( )P  .  The low measurement noise 
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(iii) Observation (109) follows immediately from the application of (107) in (106). 
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An interpretation of (107) and (110) is that the maximum magnitudes of the filters and 
smoothers asymptotically approach a short circuit (or zero impedance) when 2

v  → 0.  From 
(108) and (111), as 2

v  → 0, the maximum magnitudes of the H∞ solutions approach the 
short circuit asymptote closer than the optimal minimum-variance solutions. That is, for low 
measurement noise, the robust solutions accommodate some uncertainty by giving greater 
weighting to the data.  Since 

2 0
lim
 v

eiR  →  v  and the H∞ filter achieves the performance 

eiR  <  , it follows from (109) that an a priori design estimate is   =  v . 
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Suppose now that a time-invariant plant has the transfer function 1( ) ( )G z C zI A B D   , 
where A, B and C are defined above together with D   .  Consider an input estimation (or 
equalisation) problem in which the transfer function matrix of the causal H∞ solution that 
estimates the input of the plant is 

   1 1( ) ( ) ( ) ( )( ) ( )T T
F PH z QD QD H z

        . (112) 

The transfer function matrix of the map from the inputs to the input estimation error is 
( ) ( ) ( )( ) [ ( ) ( ( ) ) ]ei F v F wR z H z H G z I      . (113) 

The noncausal H   transfer function matrix of the input estimator can be written as ( ) ( )SH z  
= 

 
( ) ( ) 1 ( )

3( )( ( ( )) )( ) ( ( ))H H
P PQG z I H z I H z       .   

Proposition 2 [28]:  For the above input estimation problem:  
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(iii) The observation (116) follows immediately from the application of (114) in (113).                       � 

An interpretation of (114) and (117) is that the maximum magnitudes of the equalisers 
asymptotically approach an open circuit (or infinite impedance) when 2

v
  → 0. From (115) 

and (118), as 2
v
  → 0, the maximum magnitude of the H∞ solution approaches the open 

circuit asymptote closer than that of the optimum minimum-variance solution.  That is, 
under high measurement noise conditions, robust solutions accommodate some uncertainty 
by giving less weighting to the data.  Since 

2 0
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 → w , the H∞ solution achieves the 

performance eiR 

 , it follows from (116) than an a priori design estimate is w  . 

Proposition 1 follows intuitively.  Indeed, the short circuit asymptote is sometimes referred 
to as the singular filter. Proposition 2 may appear counter-intuitive and warrants further 
explanation. When the plant is minimum phase and the measurement noise is negligible, the 
equaliser inverts the plant. Conversely, when the equalisation problem is dominated by 
measurement noise, the solution is a low gain filter; that is, the estimation error is minimised 
by giving less weighting to the data.  
 

9.4  Conclusion 
Uncertainties are invariably present within the specification of practical problems. 
Consequently, robust solutions have arisen to accommodate uncertain inputs and plant 
models. The H∞ performance objective is to minimise the ratio of the output energy to the 
input energy of an error system, that is, minimise 
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for some γ   . In the time-invariant case, the objective is equivalent to minimising the 
maximum magnitude of the error power spectrum density.  

Predictors, filters and smoothers that satisfy the above performance objective are found by 
applying the Bounded Real Lemma. The standard solution structures are retained but larger 
design error covariances are employed to account for the presence of uncertainty. In 
continuous time output estimation, the error covariance is found from the solution of 

1 2( ) ( ) ( ) ( ) ( ) ( )( ( ) ( ) ( ) ( ) ( )) ( ) ( ) ( ) ( )T T T TP t A t P t P t A t P t C t R t C t C t C t P t B t Q t B t      . 
Discrete-time predictors, filters and smoothers for output estimation rely on the solution of 
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Suppose now that a time-invariant plant has the transfer function 1( ) ( )G z C zI A B D   , 
where A, B and C are defined above together with D   .  Consider an input estimation (or 
equalisation) problem in which the transfer function matrix of the causal H∞ solution that 
estimates the input of the plant is 
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(iii) The observation (116) follows immediately from the application of (114) in (113).                       � 

An interpretation of (114) and (117) is that the maximum magnitudes of the equalisers 
asymptotically approach an open circuit (or infinite impedance) when 2

v
  → 0. From (115) 

and (118), as 2
v
  → 0, the maximum magnitude of the H∞ solution approaches the open 

circuit asymptote closer than that of the optimum minimum-variance solution.  That is, 
under high measurement noise conditions, robust solutions accommodate some uncertainty 
by giving less weighting to the data.  Since 

2 0
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 → w , the H∞ solution achieves the 

performance eiR 

 , it follows from (116) than an a priori design estimate is w  . 

Proposition 1 follows intuitively.  Indeed, the short circuit asymptote is sometimes referred 
to as the singular filter. Proposition 2 may appear counter-intuitive and warrants further 
explanation. When the plant is minimum phase and the measurement noise is negligible, the 
equaliser inverts the plant. Conversely, when the equalisation problem is dominated by 
measurement noise, the solution is a low gain filter; that is, the estimation error is minimised 
by giving less weighting to the data.  
 

9.4  Conclusion 
Uncertainties are invariably present within the specification of practical problems. 
Consequently, robust solutions have arisen to accommodate uncertain inputs and plant 
models. The H∞ performance objective is to minimise the ratio of the output energy to the 
input energy of an error system, that is, minimise 
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for some γ   . In the time-invariant case, the objective is equivalent to minimising the 
maximum magnitude of the error power spectrum density.  

Predictors, filters and smoothers that satisfy the above performance objective are found by 
applying the Bounded Real Lemma. The standard solution structures are retained but larger 
design error covariances are employed to account for the presence of uncertainty. In 
continuous time output estimation, the error covariance is found from the solution of 
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Suppose now that a time-invariant plant has the transfer function 1( ) ( )G z C zI A B D   , 
where A, B and C are defined above together with D   .  Consider an input estimation (or 
equalisation) problem in which the transfer function matrix of the causal H∞ solution that 
estimates the input of the plant is 
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The transfer function matrix of the map from the inputs to the input estimation error is 
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(iii) The observation (116) follows immediately from the application of (114) in (113).                       � 

An interpretation of (114) and (117) is that the maximum magnitudes of the equalisers 
asymptotically approach an open circuit (or infinite impedance) when 2

v
  → 0. From (115) 

and (118), as 2
v
  → 0, the maximum magnitude of the H∞ solution approaches the open 

circuit asymptote closer than that of the optimum minimum-variance solution.  That is, 
under high measurement noise conditions, robust solutions accommodate some uncertainty 
by giving less weighting to the data.  Since 
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 → w , the H∞ solution achieves the 

performance eiR 

 , it follows from (116) than an a priori design estimate is w  . 

Proposition 1 follows intuitively.  Indeed, the short circuit asymptote is sometimes referred 
to as the singular filter. Proposition 2 may appear counter-intuitive and warrants further 
explanation. When the plant is minimum phase and the measurement noise is negligible, the 
equaliser inverts the plant. Conversely, when the equalisation problem is dominated by 
measurement noise, the solution is a low gain filter; that is, the estimation error is minimised 
by giving less weighting to the data.  
 

9.4  Conclusion 
Uncertainties are invariably present within the specification of practical problems. 
Consequently, robust solutions have arisen to accommodate uncertain inputs and plant 
models. The H∞ performance objective is to minimise the ratio of the output energy to the 
input energy of an error system, that is, minimise 
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for some γ   . In the time-invariant case, the objective is equivalent to minimising the 
maximum magnitude of the error power spectrum density.  

Predictors, filters and smoothers that satisfy the above performance objective are found by 
applying the Bounded Real Lemma. The standard solution structures are retained but larger 
design error covariances are employed to account for the presence of uncertainty. In 
continuous time output estimation, the error covariance is found from the solution of 
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It follows that the H∞ designs revert to the optimum minimum-variance solutions as  γ-2 → 0. 
Since robust solutions are conservative, the art of design involves finding satisfactory trade-
offs between average and worst-case performance criteria, namely, tweaking the γ. 

A summary of suggested approaches for different linear estimation problem conditions is 
presented in Table 1. When the problem parameters are known precisely then the optimum 
minimum-variance solutions cannot be improved upon. However, when the inputs or the 
models are uncertain, robust solutions may provide improved mean-square-error 
performance. In the case of low measurement noise output-estimation, the benefit arises 
because greater weighting is given to the data. Conversely, for high measurement noise input 
estimation, robust solutions accommodate uncertainty by giving less weighting to the data. 

PROBLEM CONDITIONS SUGGESTED APPROACHES 

Gaussian process and 
measurement noises, known 2nd-
order statistics. Known system 
model parameters. 

1. Optimal minimum-variance (or Kalman) filter. 

2. Fixed-lag smoothers, which improve on filter performance 
(see Lemma 3 and Example 1 of Chapter 7). They suit on-line 
applications and have low additional complexity. A sufficiently 
large smoothing lag results in optimal performance  
(see Example 3 of Chapter 7).  

3. Maximum-likelihood (or Rauch-Tung-Striebel) smoothers, 
which also improve on filter performance (see Lemma 6 of 
Chapter 6 and Lemma 4 of Chapter 7). They can provide close 
to optimal performance (see Example 5 of Chapter 6). 

4. The minimum-variance smoother provides the best 
performance (see Lemma 12 of Chapter 6 and Lemma 8 of 
Chapter 7) at the cost of increased complexity (see Example 5 of 
Chapter 6 and Example 2 of Chapter 7). 

Uncertain process and 
measurement noises, known 2nd-
order statistics. Known system 
model parameters. 

1. Optimal minimum-variance filter, which does not rely on 
Gaussian noise assumptions.   

2. Optimal minimum-variance smoother, which similarly does 
not rely on Gaussian noise assumptions (see Example 6 of 
Chapter 6). 

3. Robust filter which trades off H∞ performance (see Lemmas 
2, 9) and mean-square-error performance (see Example 3). 

4. Robust smoother which trades off H∞ performance (see 
Lemmas 5, 10) and mean-square-error performance (see 
Example 3).               

Uncertain processes and 
measurement noises. Uncertain 
system model parameters. 

1. Robust filter (see Example 4). 
2. Robust smoother (see Example 4). 
3. Robust filter or smoother with scaled inputs (see Lemma 3). 

Table 1. Suggested approaches for different linear estimation problem conditions. 

                                                                 

“A computer lets you make more mistakes than almost any invention in history, with the possible 
exceptions of tequila and hand guns.” Mitch Ratcliffe 

  

9.5  Problems 
 

Problem 1 [31].  

(i) Consider a system   having the state-space representation ( )x t  = Ax(t) + 
Bw(t), y(t) = Cx(t). Show that if there exists a matrix P = PT > 0 such that 
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(ii) Generalise (i) for the case where y(t) = Cx(t) + Dw(t). 

Problem 2. Consider a system   modelled by ( )x t  = A(t)x(t) + B(t)w(t), y(t) = C(t)x(t) + 
D(t)w(t). Suppose that the Riccati differential equation  
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Problem 3. For measurements z(t) = y(t) + v(t) of a system realised by ( )x t  = A(t)x(t) + 
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Problem 4 [18].  

(i) For a   modelled by xk+1 = Akxk + Bkwk, yk = Ckxk Dkwk, show that the existence 
of a solution to the Riccati difference equation 
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It follows that the H∞ designs revert to the optimum minimum-variance solutions as  γ-2 → 0. 
Since robust solutions are conservative, the art of design involves finding satisfactory trade-
offs between average and worst-case performance criteria, namely, tweaking the γ. 

A summary of suggested approaches for different linear estimation problem conditions is 
presented in Table 1. When the problem parameters are known precisely then the optimum 
minimum-variance solutions cannot be improved upon. However, when the inputs or the 
models are uncertain, robust solutions may provide improved mean-square-error 
performance. In the case of low measurement noise output-estimation, the benefit arises 
because greater weighting is given to the data. Conversely, for high measurement noise input 
estimation, robust solutions accommodate uncertainty by giving less weighting to the data. 

PROBLEM CONDITIONS SUGGESTED APPROACHES 

Gaussian process and 
measurement noises, known 2nd-
order statistics. Known system 
model parameters. 

1. Optimal minimum-variance (or Kalman) filter. 

2. Fixed-lag smoothers, which improve on filter performance 
(see Lemma 3 and Example 1 of Chapter 7). They suit on-line 
applications and have low additional complexity. A sufficiently 
large smoothing lag results in optimal performance  
(see Example 3 of Chapter 7).  

3. Maximum-likelihood (or Rauch-Tung-Striebel) smoothers, 
which also improve on filter performance (see Lemma 6 of 
Chapter 6 and Lemma 4 of Chapter 7). They can provide close 
to optimal performance (see Example 5 of Chapter 6). 

4. The minimum-variance smoother provides the best 
performance (see Lemma 12 of Chapter 6 and Lemma 8 of 
Chapter 7) at the cost of increased complexity (see Example 5 of 
Chapter 6 and Example 2 of Chapter 7). 

Uncertain process and 
measurement noises, known 2nd-
order statistics. Known system 
model parameters. 

1. Optimal minimum-variance filter, which does not rely on 
Gaussian noise assumptions.   

2. Optimal minimum-variance smoother, which similarly does 
not rely on Gaussian noise assumptions (see Example 6 of 
Chapter 6). 

3. Robust filter which trades off H∞ performance (see Lemmas 
2, 9) and mean-square-error performance (see Example 3). 

4. Robust smoother which trades off H∞ performance (see 
Lemmas 5, 10) and mean-square-error performance (see 
Example 3).               

Uncertain processes and 
measurement noises. Uncertain 
system model parameters. 

1. Robust filter (see Example 4). 
2. Robust smoother (see Example 4). 
3. Robust filter or smoother with scaled inputs (see Lemma 3). 

Table 1. Suggested approaches for different linear estimation problem conditions. 
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9.5  Problems 
 

Problem 1 [31].  

(i) Consider a system   having the state-space representation ( )x t  = Ax(t) + 
Bw(t), y(t) = Cx(t). Show that if there exists a matrix P = PT > 0 such that 
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(ii) Generalise (i) for the case where y(t) = Cx(t) + Dw(t). 

Problem 2. Consider a system   modelled by ( )x t  = A(t)x(t) + B(t)w(t), y(t) = C(t)x(t) + 
D(t)w(t). Suppose that the Riccati differential equation  
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Problem 4 [18].  

(i) For a   modelled by xk+1 = Akxk + Bkwk, yk = Ckxk Dkwk, show that the existence 
of a solution to the Riccati difference equation 
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It follows that the H∞ designs revert to the optimum minimum-variance solutions as  γ-2 → 0. 
Since robust solutions are conservative, the art of design involves finding satisfactory trade-
offs between average and worst-case performance criteria, namely, tweaking the γ. 

A summary of suggested approaches for different linear estimation problem conditions is 
presented in Table 1. When the problem parameters are known precisely then the optimum 
minimum-variance solutions cannot be improved upon. However, when the inputs or the 
models are uncertain, robust solutions may provide improved mean-square-error 
performance. In the case of low measurement noise output-estimation, the benefit arises 
because greater weighting is given to the data. Conversely, for high measurement noise input 
estimation, robust solutions accommodate uncertainty by giving less weighting to the data. 

PROBLEM CONDITIONS SUGGESTED APPROACHES 

Gaussian process and 
measurement noises, known 2nd-
order statistics. Known system 
model parameters. 

1. Optimal minimum-variance (or Kalman) filter. 

2. Fixed-lag smoothers, which improve on filter performance 
(see Lemma 3 and Example 1 of Chapter 7). They suit on-line 
applications and have low additional complexity. A sufficiently 
large smoothing lag results in optimal performance  
(see Example 3 of Chapter 7).  

3. Maximum-likelihood (or Rauch-Tung-Striebel) smoothers, 
which also improve on filter performance (see Lemma 6 of 
Chapter 6 and Lemma 4 of Chapter 7). They can provide close 
to optimal performance (see Example 5 of Chapter 6). 

4. The minimum-variance smoother provides the best 
performance (see Lemma 12 of Chapter 6 and Lemma 8 of 
Chapter 7) at the cost of increased complexity (see Example 5 of 
Chapter 6 and Example 2 of Chapter 7). 

Uncertain process and 
measurement noises, known 2nd-
order statistics. Known system 
model parameters. 

1. Optimal minimum-variance filter, which does not rely on 
Gaussian noise assumptions.   

2. Optimal minimum-variance smoother, which similarly does 
not rely on Gaussian noise assumptions (see Example 6 of 
Chapter 6). 

3. Robust filter which trades off H∞ performance (see Lemmas 
2, 9) and mean-square-error performance (see Example 3). 

4. Robust smoother which trades off H∞ performance (see 
Lemmas 5, 10) and mean-square-error performance (see 
Example 3).               

Uncertain processes and 
measurement noises. Uncertain 
system model parameters. 

1. Robust filter (see Example 4). 
2. Robust smoother (see Example 4). 
3. Robust filter or smoother with scaled inputs (see Lemma 3). 

Table 1. Suggested approaches for different linear estimation problem conditions. 
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(ii) Generalise (i) for the case where y(t) = Cx(t) + Dw(t). 
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Problem 3. For measurements z(t) = y(t) + v(t) of a system realised by ( )x t  = A(t)x(t) + 
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Problem 4 [18].  

(i) For a   modelled by xk+1 = Akxk + Bkwk, yk = Ckxk Dkwk, show that the existence 
of a solution to the Riccati difference equation 
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where 2 2 1
1 1( )T T
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Problem 5. Now consider the model xk+1 = Akxk + Bkwk, yk = Ckxk + Dkwk and show that the 
existence of a solution to the Riccati difference equation 
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Problem 6. Suppose that a predictor attains a H∞ performance objective, that is, the 
conditions of Lemma 8 are satisfied. Show that using the predicted states to construct 
filtered output estimates /ˆ k ky  results in /k ky  =  y – /ˆ k ky   2 . 
 

9.6  Glossary 
 

∞ The Lebesgue ∞-space defined as the set of continuous-time systems 
having finite ∞-norm. 

ei  ∞ The map ei  from the inputs i(t) to the estimation error e(t) satisfies 
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0
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  The Lebesgue ∞-space defined as the set of discrete-time systems 
having finite ∞-norm. 

ei    The map ei  from the inputs ik to the estimation error ek satisfies 
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Problem 5. Now consider the model xk+1 = Akxk + Bkwk, yk = Ckxk + Dkwk and show that the 
existence of a solution to the Riccati difference equation 
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Problem 6. Suppose that a predictor attains a H∞ performance objective, that is, the 
conditions of Lemma 8 are satisfied. Show that using the predicted states to construct 
filtered output estimates /ˆ k ky  results in /k ky  =  y – /ˆ k ky   2 . 
 

9.6  Glossary 
 

∞ The Lebesgue ∞-space defined as the set of continuous-time systems 
having finite ∞-norm. 
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10.1 Introduction 
The Kalman filter is widely used for linear estimation problems where its behaviour is well-
understood. Under prescribed conditions, the estimated states are unbiased and stability is 
guaranteed. Many real-world problems are nonlinear which requires amendments to linear 
solutions. If the nonlinear models can be expressed in a state-space setting then the Kalman 
filter may find utility by applying linearisations at each time step. Linearising means finding 
tangents to the curves of interest about the current estimates, so that the standard filter 
recursions can be employed in tandem to produce predictions for the next step. This 
approach is known as extended Kalman filtering – see [1] – [5].     

Extended Kalman filters (EKFs) revert to optimal Kalman filters when the problems become 
linear. Thus, EKFs can yield approximate minimum-variance estimates. However, there are 
no accompanying performance guarantees and they fall into the try-at-your-own-risk 
category. Indeed, Anderson and Moore [3] caution that the EKF “can be satisfactory on 
occasions”. A number of compounding factors can cause performance degradation. The 
approximate linearisations may be crude and are carried out about estimated states (as 
opposed to true states). Observability problems occur when the variables do not map onto 
each other, giving rise to discontinuities within estimated state trajectories. Singularities 
within functions can result in non-positive solutions to the design Riccati equations and lead 
to instabilities.  

The discussion includes suggestions for performance improvement and is organised as 
follows. The next section begins with Taylor series expansions, which are prerequisites for 
linearisation. First, second and third-order EKFs are then derived. EKFs tend be prone to 
instability and a way of enforcing stability is to masquerade the design Riccati equation by a 
faux version. This faux algebraic Riccati equation technique [6] – [10] is presented in Section 
10.3. In Section 10.4, the higher order terms discarded by an EKF are treated as uncertainties. 
It is shown that a robust EKF arises by solving a scaled H∞ problem in lieu of one possessing 
uncertainties. Nonlinear smoother procedures can be designed similarly. The use of fixed-
lag and Rauch-Tung-Striebel smoothers may be preferable from a complexity perspective. 
However, the approximate minimum-variance and robust smoothers, which are presented 
in Section 10.5, revert to optimal solutions when the nonlinearities and uncertainties 
diminish. Another way of guaranteeing stability is to by imposing constraints and one such 
approach is discussed in Section 10.6. 
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10.2 Extended Kalman Filtering 
 

10.2.1 Taylor Series Expansion 
A nonlinear function ( ) :  n

ka x  having n continuous derivatives may be expanded as a 
Taylor series about a point x0 
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is called a Hessian matrix. 
 

10.2.2 Nonlinear Signal Models 
Consider nonlinear systems having state-space representations of the form 

1 ( ) ( )k k k k k kx a x b x w   , 

( )k k ky c x , 

(2) 

(3) 

where ak(.), bk(.) and ck(.) are continuous differentiable functions. For a scalar function, 
( ) :ka x   , its Taylor series about x = x0 may be written as 

                                                                 

“In the real world, nothing happens at the right place at the right time. It is the job of journalists and 
historians to correct that.” Samuel Langhorne Clemens aka. Mark Twain 
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Similarly, Taylor series for ( ) :kb x    and ( ) :kc x    about x = x0 are 
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respectively. 
 

10.2.3 First-Order Extended Kalman Filter 
Suppose that filtered estimates /ˆ k kx  of xk are desired given observations 

( )k k k kz c x v  , (7) 

where vk is a measurement noise sequence. A first-order EKF for the above problem is 
developed below. Following the approach within [3], the nonlinear system (2) – (3) is 
approximated by 

1k k k k k kx A x B w     , 

k k k ky C x   , 

(8) 

(9)  

where Ak, Bk, Ck, k and πk are found from suitable truncations of the Taylor series for each 
nonlinearity. From Chapter 4, a filter for the above model is given by 

/ / 1 / 1ˆ ˆ ˆ( )k k k k k k k k k kx x L z C x      , 

1/ /ˆ ˆk k k k k kx A x    , 

(10) 
(11) 

                                                                 

“You will always define events in a manner which will validate your agreement with reality.” Steve 
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(see [1] – [5]) to linearise about the current conditional mean estimate, retain up to first order 
terms within the corresponding Taylor series and assume Bk = /ˆ( )k k kb x . This leads to 

                                            
/

/ / ˆ
ˆ ˆ( ) ( ) ( )

k k

T
k k k k k k k x x

a x a x x x a


     

                                                      k k kA x    

(12) 

and 

                                              
/ 1

/ 1 / 1 ˆ
ˆ ˆ( ) ( ) ( )

k k

T
k k k k k k k k x x

c x c x x x c


  
     

                                                         k k kC x   , 

(13) 

where Ak = 
/ˆ( )

k k
k x x

a x


 , Ck = 
/ 1ˆ( )

k k
k x x

c x


 , k = /ˆ( )k k ka x  – /ˆk k kA x  and πk = / 1ˆ( )k k kc x   – 

/ 1ˆk k kC x  . Substituting for k and πk into (10) – (11) gives 

/ / 1 / 1ˆ ˆ ˆ( ( ))k k k k k k k k kx x L z c x    , 

1/ /ˆ ˆ( )k k k k kx a x  . 

(14) 

(15) 
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on optimal filtering, the recursions (14) – (15) are either called a first-order EKF or simply an 
EKF, see [1] – [5]. Two higher order versions are developed below. 
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10.2.5 Third-Order Extended Kalman Filter 
Higher order EKFs can be realised just as elegantly as its predecessors. Retaining up to 
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10.2.5 Third-Order Extended Kalman Filter 
Higher order EKFs can be realised just as elegantly as its predecessors. Retaining up to 
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“People take the longest possible paths, digress to numerous dead ends, and make all kinds of mistakes. 
Then historians come along and write summaries of this messy, nonlinear process and make it appear 
like a simple straight line.” Dean L. Kamen 
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  . The resulting third-order EKF is defined 

by (18) – (19) in which the gain is now calculated using (21) and (23). 

Example 1. Consider a linear state evolution xk+1 = Axk + wk, with A = 0.5, wk   , Q = 0.05, a 
nonlinear output mapping yk = sin(xk) and noisy observations zk = yk + vk, vk   . The first-
order EKF for this problem is given by 

/ / 1 / 1ˆ ˆ ˆ( sin( ))k k k k k k k kx x L z x    , 

1/ /ˆ ˆk k k kx Ax  , 

where Lk = 1
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second-order EKF is amended to 
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The modified output linearisation for the third-order EKF is 

/ 1 / 1 / 1ˆ ˆcos( ) sin( ) / 6k k k k k k kC x x P    . 

Simulations were conducted in which the signal-to-noise-ratio was varied from 20 dB to 40 dB 
for N = 200,000 realisations of Gaussian noise sequences. The mean-square-errors exhibited by 
the first, second and third-order EKFs are plotted in Fig. 1. The figure demonstrates that 
including higher-order Taylor series terms within the filter can provide small performance 
improvements but the benefit diminishes with increasing measurement noise. 

                                                                 

“No two people see the external world in exactly the same way. To every separate person a thing is 
what he thinks it is – in other words, not a thing, but a think.” Penelope Fitzgerald 
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Figure 1. Mean-square-error (MSE) versus signal-to-noise-ratio (SNR) for Example 1: first-order EKF 
(solid line), second-order EKF (dashed line) and third-order EKF (dotted-crossed line). 
 

10.3 The Faux Algebraic Riccati Equation Technique 
 

10.3.1 A Nonlinear Observer 
The previously-described Extended-Kalman filters arise by linearising the signal model 
about the current state estimate and using the linear Kalman filter to predict the next 
estimate. This attempts to produce a locally optimal filter, however, it is not necessarily 
stable because the solutions of the underlying Riccati equations are not guaranteed to be 
positive definite. The faux algebraic Riccati technique [6] – [10] seeks to improve on EKF 
performance by trading off approximate optimality for stability. The familiar structure of 
the EKF is retained but stability is achieved by selecting a positive definite solution to a faux 
Riccati equation for the gain design.  

Assume that data is generated by the following signal model comprising a stable, linear 
state evolution together with a nonlinear output mapping 

1k k kx Ax Bw   , 

( )k k k kz c x v  , 

(24) 

(25) 

where the components of ck(.) are assumed to be continuous differentiable functions. 
Suppose that it is desired to calculate estimates of the states from the measurements. A 
nonlinear observer may be constructed having the form 

1/ / 1ˆ ˆ ˆ( ( ))k k k k k k kx Ax g z c x    , (26) 

where gk(.) is a gain function to be designed. From (24) – (26), the state prediction error is 
given by 

                                                                 

“The observer, when he seems to himself to be observing a stone, is really, if physics is to be believed, 
observing the effects of the stone upon himself.” Bertrand Arthur William Russell 
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Figure 1. Mean-square-error (MSE) versus signal-to-noise-ratio (SNR) for Example 1: first-order EKF 
(solid line), second-order EKF (dashed line) and third-order EKF (dotted-crossed line). 
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Figure 1. Mean-square-error (MSE) versus signal-to-noise-ratio (SNR) for Example 1: first-order EKF 
(solid line), second-order EKF (dashed line) and third-order EKF (dotted-crossed line). 
 

10.3 The Faux Algebraic Riccati Equation Technique 
 

10.3.1 A Nonlinear Observer 
The previously-described Extended-Kalman filters arise by linearising the signal model 
about the current state estimate and using the linear Kalman filter to predict the next 
estimate. This attempts to produce a locally optimal filter, however, it is not necessarily 
stable because the solutions of the underlying Riccati equations are not guaranteed to be 
positive definite. The faux algebraic Riccati technique [6] – [10] seeks to improve on EKF 
performance by trading off approximate optimality for stability. The familiar structure of 
the EKF is retained but stability is achieved by selecting a positive definite solution to a faux 
Riccati equation for the gain design.  

Assume that data is generated by the following signal model comprising a stable, linear 
state evolution together with a nonlinear output mapping 

1k k kx Ax Bw   , 

( )k k k kz c x v  , 

(24) 

(25) 

where the components of ck(.) are assumed to be continuous differentiable functions. 
Suppose that it is desired to calculate estimates of the states from the measurements. A 
nonlinear observer may be constructed having the form 

1/ / 1ˆ ˆ ˆ( ( ))k k k k k k kx Ax g z c x    , (26) 

where gk(.) is a gain function to be designed. From (24) – (26), the state prediction error is 
given by 

                                                                 

“The observer, when he seems to himself to be observing a stone, is really, if physics is to be believed, 
observing the effects of the stone upon himself.” Bertrand Arthur William Russell 
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1/ / 1 ( )k k k k k k kx Ax g w     , (27) 

where kx  = xk – / 1ˆ k kx   and εk = zk – / 1ˆ( )k kc x  . The Taylor series expansion of ck(.) to first order 
terms leads to εk ≈ / 1k k kC x 

  + vk, where Ck = 
/ 1ˆ( )

k k
k x x

c x


 . The objective here is to design gk(εk) 

to be a linear function of / 1k kx   to first order terms. It will be shown that for certain classes of 
problems, this objective can be achieved by a suitable choice of a linear bounded matrix 
function of the states Dk, resulting in the time-varying gain function gk(εk) = KkDkεk, where Kk 
is a gain matrix of appropriate dimension. For example, consider xk  n and zk  m , 
which yield εk  m and Ck  m n . Suppose that a linearisation Dk   p m  can be found so 
that kC  = DkCk    p m  possesses approximately constant terms. Then the locally linearised 
error (27) may be written as 

1/ / 1( )k k k k k k k k k kx A K C x K D v w      . (28) 

If  ( )i A  < 1, i = 1 … n, and if the pair ( , )kA C  is completely observable, then the 

asymptotic stability of (28) can be guaranteed by selecting the gain such that ( )i k kA K C   < 

1. A method for selecting the gain is described below. 
 

10.3.2 Gain Selection 
From (28), an approximate equation for the error covariance Pk/k-1 = / 1 / 1{ }T

k k k kE x x 
   is 

     1/ / 1( ) ( )T T T
k k k k k k k k k k k kP A K C P A K C K D RD K Q      , (29) 

which can be written as 

1
/ / 1 / 1 / 1 / 1( )T T T

k k k k k k k k k k k k k k k kP P P C C P C D RD C P
      , 

1/ /k k k kP AP A Q   . 

(30) 

(31) 

In an EKF for the above problem, the gain is obtained by solving the above Riccati difference 
equation and calculating 

1
/ 1 / 1( )T T T

k k k k k k k k k kK P C C P C D RD 
   . (32) 

The faux algebraic Riccati equation approach [6] – [10] is motivated by connections between 
Riccati difference equation and algebraic Riccati equation solutions. Indeed, it is noted for 
some nonlinear problems that the gains can converge to a steady-state matrix [3]. This 
technique is also known as ‘covariance setting’. Following the approach of [10], the Riccati 
difference equation (30) may be masqueraded by the faux algebraic Riccati equation 

1( )T T T
k k k k k k k k k k kC C C D RD C        . (33) 

                                                                 

“The universe as we know it is a joint product of the observer and the observed.” Pierre Teilhard De 
Chardin 

  

That is, rather than solve (30), an arbitrary positive definite solution k is assumed instead 
and then the gain at each time k is calculated from (31) – (32) using k in place of  Pk/k-1.  
 

10.3.3 Tracking Multiple Signals 
Consider the problem of tracking two frequency or phase modulated signals which may be 
modelled by equation (34), where (1)
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and (1)
kw , … (6)

kw     are zero-mean, uncorrelated, white processes with covariance Q = 
diag( (1)

2
w ,…, ( 6 )

2
w ). The states ( )i

ka , ( )i
k  and ( )i

k , i = 1, 2, represent the signals’ 
instantaneous amplitude, frequency and phase components, respectively. 
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Let  

(1) (1) (1) (1)

(2) (1) (1) (2)

(3) (2) (2) (3)

(4) (2) (2) (4)

cos
sin
cos
sin

k k k k

k k k k

k k k k

k k k k

z a v
z a v
z a v
z a v






     
     
           
     
          

 (35) 

denote the complex baseband observations, where (1)
kv , …, (4)

kv     are zero-mean, 
uncorrelated, white processes with covariance R = (1)

2( vdiag  ,…, ( 4 )
2 )v . Expanding the 

prediction error to linear terms yields Ck = (1)[ kC  (2) ]kC , where  

( ) ( ) ( )
/ 1 / 1 / 1( )

( ) ( ) ( )
/ 1 / 1 / 1
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ˆ ˆ0 ˆsin cos
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This form suggests the choice 
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, where  
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“If you haven't found something strange during the day, it hasn't been much of a day.” John Archibald 
Wheeler 
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1/ / 1 ( )k k k k k k kx Ax g w     , (27) 

where kx  = xk – / 1ˆ k kx   and εk = zk – / 1ˆ( )k kc x  . The Taylor series expansion of ck(.) to first order 
terms leads to εk ≈ / 1k k kC x 

  + vk, where Ck = 
/ 1ˆ( )

k k
k x x

c x


 . The objective here is to design gk(εk) 

to be a linear function of / 1k kx   to first order terms. It will be shown that for certain classes of 
problems, this objective can be achieved by a suitable choice of a linear bounded matrix 
function of the states Dk, resulting in the time-varying gain function gk(εk) = KkDkεk, where Kk 
is a gain matrix of appropriate dimension. For example, consider xk  n and zk  m , 
which yield εk  m and Ck  m n . Suppose that a linearisation Dk   p m  can be found so 
that kC  = DkCk    p m  possesses approximately constant terms. Then the locally linearised 
error (27) may be written as 

1/ / 1( )k k k k k k k k k kx A K C x K D v w      . (28) 

If  ( )i A  < 1, i = 1 … n, and if the pair ( , )kA C  is completely observable, then the 

asymptotic stability of (28) can be guaranteed by selecting the gain such that ( )i k kA K C   < 

1. A method for selecting the gain is described below. 
 

10.3.2 Gain Selection 
From (28), an approximate equation for the error covariance Pk/k-1 = / 1 / 1{ }T

k k k kE x x 
   is 

     1/ / 1( ) ( )T T T
k k k k k k k k k k k kP A K C P A K C K D RD K Q      , (29) 

which can be written as 

1
/ / 1 / 1 / 1 / 1( )T T T

k k k k k k k k k k k k k k k kP P P C C P C D RD C P
      , 

1/ /k k k kP AP A Q   . 

(30) 

(31) 

In an EKF for the above problem, the gain is obtained by solving the above Riccati difference 
equation and calculating 

1
/ 1 / 1( )T T T

k k k k k k k k k kK P C C P C D RD 
   . (32) 

The faux algebraic Riccati equation approach [6] – [10] is motivated by connections between 
Riccati difference equation and algebraic Riccati equation solutions. Indeed, it is noted for 
some nonlinear problems that the gains can converge to a steady-state matrix [3]. This 
technique is also known as ‘covariance setting’. Following the approach of [10], the Riccati 
difference equation (30) may be masqueraded by the faux algebraic Riccati equation 

1( )T T T
k k k k k k k k k k kC C C D RD C        . (33) 

                                                                 

“The universe as we know it is a joint product of the observer and the observed.” Pierre Teilhard De 
Chardin 

  

That is, rather than solve (30), an arbitrary positive definite solution k is assumed instead 
and then the gain at each time k is calculated from (31) – (32) using k in place of  Pk/k-1.  
 

10.3.3 Tracking Multiple Signals 
Consider the problem of tracking two frequency or phase modulated signals which may be 
modelled by equation (34), where (1)
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denote the complex baseband observations, where (1)
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kv     are zero-mean, 
uncorrelated, white processes with covariance R = (1)
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1/ / 1 ( )k k k k k k kx Ax g w     , (27) 

where kx  = xk – / 1ˆ k kx   and εk = zk – / 1ˆ( )k kc x  . The Taylor series expansion of ck(.) to first order 
terms leads to εk ≈ / 1k k kC x 

  + vk, where Ck = 
/ 1ˆ( )

k k
k x x

c x


 . The objective here is to design gk(εk) 

to be a linear function of / 1k kx   to first order terms. It will be shown that for certain classes of 
problems, this objective can be achieved by a suitable choice of a linear bounded matrix 
function of the states Dk, resulting in the time-varying gain function gk(εk) = KkDkεk, where Kk 
is a gain matrix of appropriate dimension. For example, consider xk  n and zk  m , 
which yield εk  m and Ck  m n . Suppose that a linearisation Dk   p m  can be found so 
that kC  = DkCk    p m  possesses approximately constant terms. Then the locally linearised 
error (27) may be written as 

1/ / 1( )k k k k k k k k k kx A K C x K D v w      . (28) 

If  ( )i A  < 1, i = 1 … n, and if the pair ( , )kA C  is completely observable, then the 

asymptotic stability of (28) can be guaranteed by selecting the gain such that ( )i k kA K C   < 

1. A method for selecting the gain is described below. 
 

10.3.2 Gain Selection 
From (28), an approximate equation for the error covariance Pk/k-1 = / 1 / 1{ }T

k k k kE x x 
   is 

     1/ / 1( ) ( )T T T
k k k k k k k k k k k kP A K C P A K C K D RD K Q      , (29) 

which can be written as 

1
/ / 1 / 1 / 1 / 1( )T T T

k k k k k k k k k k k k k k k kP P P C C P C D RD C P
      , 

1/ /k k k kP AP A Q   . 

(30) 

(31) 

In an EKF for the above problem, the gain is obtained by solving the above Riccati difference 
equation and calculating 

1
/ 1 / 1( )T T T

k k k k k k k k k kK P C C P C D RD 
   . (32) 

The faux algebraic Riccati equation approach [6] – [10] is motivated by connections between 
Riccati difference equation and algebraic Riccati equation solutions. Indeed, it is noted for 
some nonlinear problems that the gains can converge to a steady-state matrix [3]. This 
technique is also known as ‘covariance setting’. Following the approach of [10], the Riccati 
difference equation (30) may be masqueraded by the faux algebraic Riccati equation 

1( )T T T
k k k k k k k k k k kC C C D RD C        . (33) 

                                                                 

“The universe as we know it is a joint product of the observer and the observed.” Pierre Teilhard De 
Chardin 

  

That is, rather than solve (30), an arbitrary positive definite solution k is assumed instead 
and then the gain at each time k is calculated from (31) – (32) using k in place of  Pk/k-1.  
 

10.3.3 Tracking Multiple Signals 
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10.3.4 Stability Conditions 
In order to establish conditions for the error system (28) to be asymptotically stable, the 

problem is recast in a passivity framework as follows. Let w = 
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Consider the configuration of Fig. 2, in which there is a cascade of a stable linear system  
and a nonlinear function matrix γ(.) acting on e. It follows from the figure that 

e = w – γ(e). (36) 

Let f  denote a forward difference operator with f ke  = ( )i
ke  – ( )

1
i

ke  . It is assumed that (.) 
satisfies some sector conditions which may be interpreted as bounds existing on the slope of 
the components of (.); see Theorem 14, p. 7 of [11].   
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Lemma 1 [10]: Consider the system (36), where w, e  m . Suppose that (.) consists of m identical, 
noninteracting nonlinearities, with ( )( )i
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 , that is,  
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for all ( )i
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ke  ≠ 0. Assume that  is a causal, stable, finite-gain, time-invariant map m   
m , having a z-transform G(z), which is bounded on the unit circle. Let I denote an m m  identity 
matrix.  Suppose that for some q > 0, q   , there exists a    , such that 

1( ( ) ( ) ) , ,fG z q G z I e e e e      (38) 

for all ( )i
ke    . Under these conditions w  2  implies e, ( )( )i

ke  2 . 

Proof: From (36), f w  = f e  + ( ) ( )f G z e  and w + fq w  = (G(z) + ( )fq G z  +  I -1) γ(e) + e 
– I -1γ(e)+ e – I -1γ(e)  + fq e . Then 
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Consider the first term on the right hand side of (39).  Since the ( )e  consists of noninteracting 
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Using the approach of [11] together with the sector conditions on the identical noninteracting 
nonlinearities (37), it can be shown that expanding out the second term of (39) yields , ( )f e e  ≥ 

                                                                 

“The intelligent man finds almost everything ridiculous, the sensible man hardly anything.” Johann 
Wolfgang von Goethe 

Figure 2. Nonlinear error system configuration. Figure 3. Stable gain space for Example 2. 
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                                      1( ( ) ( ) ) ( ), ( )fG z q G z I e e      . 
(39) 

Consider the first term on the right hand side of (39).  Since the ( )e  consists of noninteracting 

nonlinearities, ( ),e e  = ( ) ( )

1
( ),

m
i i

i
e e


  and 1 ( ), ( )e I e e    = ( )

1

m
i

i
e


  – ( ) 1 ( )( ) ,i ie I e    ≥ 0. 

Using the approach of [11] together with the sector conditions on the identical noninteracting 
nonlinearities (37), it can be shown that expanding out the second term of (39) yields , ( )f e e  ≥ 

                                                                 

“The intelligent man finds almost everything ridiculous, the sensible man hardly anything.” Johann 
Wolfgang von Goethe 

Figure 2. Nonlinear error system configuration. Figure 3. Stable gain space for Example 2. 
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0. Using 
2f w  ≤ 2

2
w  (from p. 192 of [11]), the Schwartz inequality and the triangle inequality, 

it can be shown that 

, ( )w q w e   ≤ 
2

(1 2 )q w . (40) 

It follows from (38) – (40) that 2

2
( )e  ≤ (1 + 1

2
2 )q w  ; hence ( )( )i

ke  2 . Since the gain of G(z) 

is finite, it also follows that ( )( ) ( )i
kG z e   2 .                                                                                      � 

If G(z) is stable and bounded on the unit circle, then the test condition (38) becomes 
1 1

min{ ( )( ( ) ( )) }HI q I z I G z G z        , (41) 

see pp. 175 and 194 of [11]. 
 

10.3.5 Applications 
Example 2 [10]. Consider a unity-amplitude frequency modulated (FM) signal modelled as 
k+1 = k + wk, k+1 = k + k, (1)

kz  = cos(k) + (1)
kv  and (2)

kz  = sin(k) + (2)
kv . The error system 

for an FM demodulator may be written as 
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for gains K1, K2    to be designed. In view of the form (36), the above error system is 
reformatted as 
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k k k
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  
   , (43) 

where γ(x) = x – sin(x). The z-transform of the linear part of (43) is G(z) = (K2z + K2 + K1 ) 
(z2 + (K2 – 1 – )z + K1 + 1 –  K2)-1. The nonlinearity satisfies the sector condition (37) for  
= 1.22. Candidate gains may be assessed by checking that G(z) is stable and the test 
condition (41). The stable gain space calculated for the case of  = 0.9 is plotted in Fig. 3. 
The gains are required to lie within the shaded region of the plot for the error system (42) to 
be asymptotically stable. 

                                                                 

“He that does not offend cannot be honest.” Thomas Paine 

  

−5 0 5
−18

−16

−14

−12

−10

−8

−6

M
S

E
, d

B

SNR,  dB

(i)

(ii)

  
0 10 20 30

−20

−15

−10

−5

0

M
S

E
, d

B

SNR,  dB

(i)

(ii)

 
Figure 4. Demodulation performance for Example 
2: (i) EKF and (ii) Nonlinear observer. 

Figure 5. Demodulation performance for Example 
3: (i) EKF and (ii) Nonlinear observer. 

A speech utterance, namely, the phrase “Matlab is number one”, was sampled at 8 kHz and 
used to synthesize a unity-amplitude FM signal. An EKF demodulator was constructed for 
the above model with 2

w  = 0.02. In a nonlinear observer design it was found that suitable 

parameter choices were k = 
0.001 0.08
0.08 0.7

 
 
 

. The nonlinear observer gains were censored at 

each time k according to the stable gain space of Fig. 3. The results of a simulation study 
using 100 realisations of Gaussian measurement noise sequences are shown in Fig. 4. The 
figure demonstrates that enforcing stability can be beneficial at low SNR, at the cost of 
degraded high-SNR performance. 

Example 3 [10]. Suppose that there are two superimposed FM signals present in the same 
frequency channel. Neglecting observation noise, a suitable approximation of the 
demodulator error system in the form (36) is given by  
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, (44) 

where A = diag(A(1), A(1)), A(1) = 
0

1 1
 

 
 

, C  = 
0 1 0 0
0 0 0 1
 
 
 

. The linear part of (44) may be 

written as G(z) = (C zI  – (A – 1))k kK C K . Two 8-kHz speech utterances, “Matlab is number 
one” and “Number one is Matlab”, centred at ±0.25 rad/s, were used to synthesize two 
superimposed unity-amplitude FM signals. Simulations were conducted using 100 
realisations of Gaussian measurement noise sequences. The test condition (41) was 
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0. Using 
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2
w  (from p. 192 of [11]), the Schwartz inequality and the triangle inequality, 

it can be shown that 

, ( )w q w e   ≤ 
2

(1 2 )q w . (40) 

It follows from (38) – (40) that 2

2
( )e  ≤ (1 + 1

2
2 )q w  ; hence ( )( )i

ke  2 . Since the gain of G(z) 

is finite, it also follows that ( )( ) ( )i
kG z e   2 .                                                                                      � 

If G(z) is stable and bounded on the unit circle, then the test condition (38) becomes 
1 1

min{ ( )( ( ) ( )) }HI q I z I G z G z        , (41) 

see pp. 175 and 194 of [11]. 
 

10.3.5 Applications 
Example 2 [10]. Consider a unity-amplitude frequency modulated (FM) signal modelled as 
k+1 = k + wk, k+1 = k + k, (1)

kz  = cos(k) + (1)
kv  and (2)

kz  = sin(k) + (2)
kv . The error system 

for an FM demodulator may be written as 
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for gains K1, K2    to be designed. In view of the form (36), the above error system is 
reformatted as 
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where γ(x) = x – sin(x). The z-transform of the linear part of (43) is G(z) = (K2z + K2 + K1 ) 
(z2 + (K2 – 1 – )z + K1 + 1 –  K2)-1. The nonlinearity satisfies the sector condition (37) for  
= 1.22. Candidate gains may be assessed by checking that G(z) is stable and the test 
condition (41). The stable gain space calculated for the case of  = 0.9 is plotted in Fig. 3. 
The gains are required to lie within the shaded region of the plot for the error system (42) to 
be asymptotically stable. 
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Figure 4. Demodulation performance for Example 
2: (i) EKF and (ii) Nonlinear observer. 

Figure 5. Demodulation performance for Example 
3: (i) EKF and (ii) Nonlinear observer. 

A speech utterance, namely, the phrase “Matlab is number one”, was sampled at 8 kHz and 
used to synthesize a unity-amplitude FM signal. An EKF demodulator was constructed for 
the above model with 2

w  = 0.02. In a nonlinear observer design it was found that suitable 

parameter choices were k = 
0.001 0.08
0.08 0.7

 
 
 

. The nonlinear observer gains were censored at 

each time k according to the stable gain space of Fig. 3. The results of a simulation study 
using 100 realisations of Gaussian measurement noise sequences are shown in Fig. 4. The 
figure demonstrates that enforcing stability can be beneficial at low SNR, at the cost of 
degraded high-SNR performance. 

Example 3 [10]. Suppose that there are two superimposed FM signals present in the same 
frequency channel. Neglecting observation noise, a suitable approximation of the 
demodulator error system in the form (36) is given by  
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where A = diag(A(1), A(1)), A(1) = 
0
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 
 

, C  = 
0 1 0 0
0 0 0 1
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 

. The linear part of (44) may be 

written as G(z) = (C zI  – (A – 1))k kK C K . Two 8-kHz speech utterances, “Matlab is number 
one” and “Number one is Matlab”, centred at ±0.25 rad/s, were used to synthesize two 
superimposed unity-amplitude FM signals. Simulations were conducted using 100 
realisations of Gaussian measurement noise sequences. The test condition (41) was 
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w  (from p. 192 of [11]), the Schwartz inequality and the triangle inequality, 

it can be shown that 
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It follows from (38) – (40) that 2
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ke  2 . Since the gain of G(z) 

is finite, it also follows that ( )( ) ( )i
kG z e   2 .                                                                                      � 

If G(z) is stable and bounded on the unit circle, then the test condition (38) becomes 
1 1

min{ ( )( ( ) ( )) }HI q I z I G z G z        , (41) 

see pp. 175 and 194 of [11]. 
 

10.3.5 Applications 
Example 2 [10]. Consider a unity-amplitude frequency modulated (FM) signal modelled as 
k+1 = k + wk, k+1 = k + k, (1)

kz  = cos(k) + (1)
kv  and (2)

kz  = sin(k) + (2)
kv . The error system 

for an FM demodulator may be written as 
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for gains K1, K2    to be designed. In view of the form (36), the above error system is 
reformatted as 
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where γ(x) = x – sin(x). The z-transform of the linear part of (43) is G(z) = (K2z + K2 + K1 ) 
(z2 + (K2 – 1 – )z + K1 + 1 –  K2)-1. The nonlinearity satisfies the sector condition (37) for  
= 1.22. Candidate gains may be assessed by checking that G(z) is stable and the test 
condition (41). The stable gain space calculated for the case of  = 0.9 is plotted in Fig. 3. 
The gains are required to lie within the shaded region of the plot for the error system (42) to 
be asymptotically stable. 
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Figure 4. Demodulation performance for Example 
2: (i) EKF and (ii) Nonlinear observer. 

Figure 5. Demodulation performance for Example 
3: (i) EKF and (ii) Nonlinear observer. 

A speech utterance, namely, the phrase “Matlab is number one”, was sampled at 8 kHz and 
used to synthesize a unity-amplitude FM signal. An EKF demodulator was constructed for 
the above model with 2

w  = 0.02. In a nonlinear observer design it was found that suitable 

parameter choices were k = 
0.001 0.08
0.08 0.7

 
 
 

. The nonlinear observer gains were censored at 

each time k according to the stable gain space of Fig. 3. The results of a simulation study 
using 100 realisations of Gaussian measurement noise sequences are shown in Fig. 4. The 
figure demonstrates that enforcing stability can be beneficial at low SNR, at the cost of 
degraded high-SNR performance. 

Example 3 [10]. Suppose that there are two superimposed FM signals present in the same 
frequency channel. Neglecting observation noise, a suitable approximation of the 
demodulator error system in the form (36) is given by  
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. The linear part of (44) may be 

written as G(z) = (C zI  – (A – 1))k kK C K . Two 8-kHz speech utterances, “Matlab is number 
one” and “Number one is Matlab”, centred at ±0.25 rad/s, were used to synthesize two 
superimposed unity-amplitude FM signals. Simulations were conducted using 100 
realisations of Gaussian measurement noise sequences. The test condition (41) was 
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evaluated at each time k for the above parameter values with β = 1.2, q = 0.001, δ = 0.82 and 
used to censor the gains. The resulting co-channel demodulation performance is shown in 
Fig. 5. It can be seen that the nonlinear observer significantly outperforms the EKF at high 
SNR.  

Two mechanisms have been observed for occurrence of outliers or faults within the co-
channel demodulators. Firstly errors can occur in the state attribution, that is, there is correct 
tracking of some component speech message segments but the tracks are inconsistently 
associated with the individual signals. This is illustrated by the example frequency estimate 
tracks shown in Figs. 6 and 7. The solid and dashed lines in the figures indicate two sample 
co-channel frequency tracks. Secondly, the phase unwrapping can be erroneous so that the 
frequency tracks bear no resemblance to the underlying messages.  These faults can occur 
without any significant deterioration in the error residual.  
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Figure 6. Sample EKF frequency tracks for Example 3. Figure 7. Sample Nonlinear observer frequency 

tracks for Example 3. 

The EKF demodulator is observed to be increasingly fault prone at higher SNR. This arises 
because lower SNR designs possess narrower bandwidths and so are less sensitive to nearby 
frequency components. The figures also illustrate the trade-off between stability and 
optimality. In particular, it can be seen from Fig. 6, that the sample EKF speech estimates 
exhibit faults in the state attribution.  This contrasts with Fig. 7, where the nonlinear 
observer’s estimates exhibit stable state attribution at the cost of degraded speech fidelity.  
 

10.4 Robust Extended Kalman Filtering 
 

10.4.1 Nonlinear Problem Statement 
Consider again the nonlinear, discrete-time signal model (2), (7). It is shown below that the 
H∞ techniques of Chapter 9 can be used to recast nonlinear filtering problems into a model 
uncertainty setting. The following discussion attends to state estimation, that is, C1,k = I is 
assumed within the problem and solution presented in Section 9.3.2. 
                                                                 

“You have enemies? Good. That means you’ve stood up for something, sometime in your life.” Winston 
Churchill 

  

The Taylor series expansions of the nonlinear functions ak(.), bk(.) and ck(.) about filtered and 
predicted estimates /ˆ k kx  and / 1ˆ k kx   may be written as 

/ / / 1 /ˆ ˆ ˆ( ) ( ) ( )( ) ( )k k k k k k k k k k k k ka x a x a x x x x       , 

/ 2 /ˆ( ) ( ) ( )k k k k k k kb x b x x    , 

/ 1 / 1 / 1 3 / 1ˆ ˆ ˆ( ) ( ) ( )( ) ( )k k k k k k k k k k k k kc x c x c x x x x          , 

(45) 

(46) 

(47) 

where 1(.) , 2 (.) , 3(.)  are uncertainties that account for the higher order terms, /k kx = xk – 

/ˆ k kx  and / 1k kx  = xk – / 1ˆ k kx  . It is assumed that 1(.) , 2 (.)  and 3(.)  are continuous 
operators mapping 2 2  , with H∞ norms bounded by δ1, δ2 and δ3, respectively. 

Substituting (45) – (47) into the nonlinear system (2), (7) gives the linearised system 

1 1 / 2 /( ) ( )k k k k k k k k k k kx A x B w x x w         , 

3 / 1( )k k k k k k kz C x x v      , 

(48) 

(49) 

where Ak = 
/ˆ( )

k k
k x x

a x


 , Ck = 
/ 1ˆ( )

k k
k x x

c x


 , k = /ˆ( )k k ka x  – /ˆk k kA x  and πk = / 1ˆ( )k k kc x   – 

/ 1ˆk k kC x  .  

Note that the first-order EKF for the above system arises by setting the uncertainties 1(.) , 

2 (.)  and 3(.)  to zero as 

/ / 1 / 1ˆ ˆ ˆ( ( ))k k k k k k k k kx x L z c x    , 

1/ /ˆ ˆ( )k k k k kx a x  , 

1
/ 1 / 1( )T T

k k k k k k k k kL P C C P C R 
   , 

1
/ / 1 / 1 / 1 / 1( )T T

k k k k k k k k k k k k k k kP P P C C P C R P C
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1/ / 1
T T

k k k k k k k k kP A P A B Q B   . 

(50) 

(51) 
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(54) 
 

10.4.2 Robust Solution 
Following the approach in Chapter 9, instead of addressing the problem (48) – (49) which 
possesses uncertainties, an auxiliary H∞ problem is defined as 

1k k k k k k kx A x B w s     , 

k k k k k kz C x v t    , 

(55) 
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evaluated at each time k for the above parameter values with β = 1.2, q = 0.001, δ = 0.82 and 
used to censor the gains. The resulting co-channel demodulation performance is shown in 
Fig. 5. It can be seen that the nonlinear observer significantly outperforms the EKF at high 
SNR.  

Two mechanisms have been observed for occurrence of outliers or faults within the co-
channel demodulators. Firstly errors can occur in the state attribution, that is, there is correct 
tracking of some component speech message segments but the tracks are inconsistently 
associated with the individual signals. This is illustrated by the example frequency estimate 
tracks shown in Figs. 6 and 7. The solid and dashed lines in the figures indicate two sample 
co-channel frequency tracks. Secondly, the phase unwrapping can be erroneous so that the 
frequency tracks bear no resemblance to the underlying messages.  These faults can occur 
without any significant deterioration in the error residual.  
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Figure 6. Sample EKF frequency tracks for Example 3. Figure 7. Sample Nonlinear observer frequency 

tracks for Example 3. 

The EKF demodulator is observed to be increasingly fault prone at higher SNR. This arises 
because lower SNR designs possess narrower bandwidths and so are less sensitive to nearby 
frequency components. The figures also illustrate the trade-off between stability and 
optimality. In particular, it can be seen from Fig. 6, that the sample EKF speech estimates 
exhibit faults in the state attribution.  This contrasts with Fig. 7, where the nonlinear 
observer’s estimates exhibit stable state attribution at the cost of degraded speech fidelity.  
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10.4.1 Nonlinear Problem Statement 
Consider again the nonlinear, discrete-time signal model (2), (7). It is shown below that the 
H∞ techniques of Chapter 9 can be used to recast nonlinear filtering problems into a model 
uncertainty setting. The following discussion attends to state estimation, that is, C1,k = I is 
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10.4.2 Robust Solution 
Following the approach in Chapter 9, instead of addressing the problem (48) – (49) which 
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evaluated at each time k for the above parameter values with β = 1.2, q = 0.001, δ = 0.82 and 
used to censor the gains. The resulting co-channel demodulation performance is shown in 
Fig. 5. It can be seen that the nonlinear observer significantly outperforms the EKF at high 
SNR.  

Two mechanisms have been observed for occurrence of outliers or faults within the co-
channel demodulators. Firstly errors can occur in the state attribution, that is, there is correct 
tracking of some component speech message segments but the tracks are inconsistently 
associated with the individual signals. This is illustrated by the example frequency estimate 
tracks shown in Figs. 6 and 7. The solid and dashed lines in the figures indicate two sample 
co-channel frequency tracks. Secondly, the phase unwrapping can be erroneous so that the 
frequency tracks bear no resemblance to the underlying messages.  These faults can occur 
without any significant deterioration in the error residual.  
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10.4.2 Robust Solution 
Following the approach in Chapter 9, instead of addressing the problem (48) – (49) which 
possesses uncertainties, an auxiliary H∞ problem is defined as 
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/ /ˆk k k k kx x x  , (57) 

where sk = 1 /( )k kx   + 2 /( )k k kx w   and tk = 3 /k kx   ≈ 3 / 1k kx    are additional exogenous inputs 
satisfying 

2

2ks  ≤ 22
1 / 2k kx   + 22

2 2kw , 

2

2kt  ≤ 22
3 / 2k kx   ≤ 22

3 / 1 2k kx 
 . 

(58) 

(59) 

A sufficient solution to the auxiliary H∞ problem (55) – (57) can be obtained by solving 
another problem in which wk and vk are scaled in lieu of the additional inputs sk and rk. The 
scaled H∞ problem is defined by 

1k k k k w k kx A x B c w     , 

k k k v k kz C x c v    , 

/ /ˆk k k k kx x x  , 

(60) 

(61) 

(62) 

where cw, cv    are to be found. 

Lemma 2 [12]: The solution of the H∞ problem (60) – (62), where vk is scaled by 
2 2 2 2 2

1 31vc       , (63) 

and wk is scaled by 
2 2 2 1

2(1 )w vc c    , (64) 

is sufficient for the solution of the auxiliary H∞ problem (55) – (57). 

Proof: If the H∞ problem (50) – (52) has been solved then there exists a 0   such that 

2 2 2 2 22
/ 2 2 2 2 2

( )k k k k k kx w s t v     

                                                             2 2 2 2 22 2 2 2
1 / 2 3 /2 2 2 2 2

( )k k k k k k kw x w x v         , 

which implies 
2 2 22 2 2 2 2 2

1 3 / 22 2 2
(1 ) ((1 ) )k k k kx w v           
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and 
2 2 22 2 2

/ 2 2 2
( )k k w k v kx c w c v    .                                              � 

The robust first-order extended Kalman filter for state estimation is given by (50) – (52), 
12
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and (54). As discussed in Chapter 9, a search is required for a minimum γ such that 
2
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 > 0 and Pk/k-1 > 0 over k  [1, N]. An illustration is provided 

below. 

−20 −10 0 10
0

10

20

30

40

C
um

m
ul

at
iv

e 
F

re
qu

en
cy

MSE, dB

(i)

(ii)

 
Figure 8. Histogram of demodulator mean-square-error for Example 4: (i) first-order EKF (solid line) 
and first-order robust EKF (dotted line). 

Example 4 [12]. Suppose that an FM signal is generated by17 

1k k kw     , 

1 arctan( )k k k      , 

(1) (1)cos( )k k kz v  , 

(2) (2)sin( )k k kz v  . 

(65) 

(66) 

(67) 

(68) 

The objective is to construct an FM demodulator that produces estimates of the frequency 
message ωk from the noisy in-phase and quadrature measurements (1)

kz  and (2)
kz , 

respectively. Simulations were conducted with μω = 0.9, μ = 0.99 and (1)
2
v  = ( 2)

2
v  = 0.001. It 

was found for 2
w   < 0.1, where the state behaviour is almost linear, a robust EKF does not 

                                                                 

17“Happy is he who gets to know the reasons for things.” Virgil 
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A sufficient solution to the auxiliary H∞ problem (55) – (57) can be obtained by solving 
another problem in which wk and vk are scaled in lieu of the additional inputs sk and rk. The 
scaled H∞ problem is defined by 

1k k k k w k kx A x B c w     , 

k k k v k kz C x c v    , 

/ /ˆk k k k kx x x  , 

(60) 

(61) 

(62) 

where cw, cv    are to be found. 

Lemma 2 [12]: The solution of the H∞ problem (60) – (62), where vk is scaled by 
2 2 2 2 2

1 31vc       , (63) 

and wk is scaled by 
2 2 2 1

2(1 )w vc c    , (64) 

is sufficient for the solution of the auxiliary H∞ problem (55) – (57). 

Proof: If the H∞ problem (50) – (52) has been solved then there exists a 0   such that 

2 2 2 2 22
/ 2 2 2 2 2

( )k k k k k kx w s t v     

                                                             2 2 2 2 22 2 2 2
1 / 2 3 /2 2 2 2 2

( )k k k k k k kw x w x v         , 

which implies 
2 2 22 2 2 2 2 2

1 3 / 22 2 2
(1 ) ((1 ) )k k k kx w v           

                                                                 

“You can’t wait for inspiration. You have to go after it with a club.” Jack London  

and 
2 2 22 2 2

/ 2 2 2
( )k k w k v kx c w c v    .                                              � 

The robust first-order extended Kalman filter for state estimation is given by (50) – (52), 
12

/ 1 / 1
/ / 1 / 1 / 1

/ 1 / 1

T
T k k k k k

k k k k k k k k kT
kk k k k k k k k

IP I P C
P P P I C P

CC P R C P C




 
  

 

              
 

and (54). As discussed in Chapter 9, a search is required for a minimum γ such that 
2

/ 1 / 1

/ 1 / 1

T
k k k k k

T
k k k k k k k k

P I P C
C P R C P C

 

 

 
 

 
 > 0 and Pk/k-1 > 0 over k  [1, N]. An illustration is provided 

below. 

−20 −10 0 10
0

10

20

30

40

C
um

m
ul

at
iv

e 
F

re
qu

en
cy

MSE, dB

(i)

(ii)

 
Figure 8. Histogram of demodulator mean-square-error for Example 4: (i) first-order EKF (solid line) 
and first-order robust EKF (dotted line). 
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The objective is to construct an FM demodulator that produces estimates of the frequency 
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Lemma 2 [12]: The solution of the H∞ problem (60) – (62), where vk is scaled by 
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2 2 2 1

2(1 )w vc c    , (64) 

is sufficient for the solution of the auxiliary H∞ problem (55) – (57). 

Proof: If the H∞ problem (50) – (52) has been solved then there exists a 0   such that 
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“You can’t wait for inspiration. You have to go after it with a club.” Jack London  

and 
2 2 22 2 2
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The robust first-order extended Kalman filter for state estimation is given by (50) – (52), 
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and (54). As discussed in Chapter 9, a search is required for a minimum γ such that 
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below. 

−20 −10 0 10
0

10

20

30

40

C
um

m
ul

at
iv

e 
F

re
qu

en
cy

MSE, dB

(i)

(ii)

 
Figure 8. Histogram of demodulator mean-square-error for Example 4: (i) first-order EKF (solid line) 
and first-order robust EKF (dotted line). 

Example 4 [12]. Suppose that an FM signal is generated by17 

1k k kw     , 

1 arctan( )k k k      , 

(1) (1)cos( )k k kz v  , 

(2) (2)sin( )k k kz v  . 

(65) 

(66) 

(67) 

(68) 

The objective is to construct an FM demodulator that produces estimates of the frequency 
message ωk from the noisy in-phase and quadrature measurements (1)

kz  and (2)
kz , 

respectively. Simulations were conducted with μω = 0.9, μ = 0.99 and (1)
2
v  = ( 2)

2
v  = 0.001. It 

was found for 2
w   < 0.1, where the state behaviour is almost linear, a robust EKF does not 
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improve on the EKF. However, when 2
w  = 1, the problem is substantially nonlinear and a 

performance benefit can be observed. A robust EKF demodulator was designed with 

xk = k
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δ1 = 0.1, δ2 = 4.5 and δ3 = 0.001. It was found that γ = 1.38 was sufficient for Pk/k-1 of the above 
Riccati difference equation to always be positive definite. A histogram of the observed 
frequency estimation error is shown in Fig. 8, which demonstrates that the robust 
demodulator provides improved mean-square-error performance. For sufficiently large 2

w , 
the output of the above model will resemble a digital signal, in which case a detector may 
outperform a demodulator. 
 

10.5 Nonlinear Smoothing 
 

10.5.1 Approximate Minimum-Variance Smoother 
Consider again a nonlinear estimation problem where xk+1 = ak(xk) + Bkwk, zk = ck(xk) + vk, with 
xk   , in which the nonlinearities ak(.), ck(.) are assumed to be smooth, differentiable 
functions of appropriate dimension. The linearisations akin to Extended Kalman filtering 
may be applied within the smoothers described in Chapter 7 in the pursuit of performance 
improvement. The fixed-lag, Fraser-Potter and Rauch-Tung-Striebel smoother recursions are 
easier to apply as they are less complex. The application of the minimum-variance smoother 
can yield approximately optimal estimates when the problem becomes linear, provided that 
the underlying assumptions are correct. 

Procedure 1. An approximate minimum-variance smoother for output estimation can be 
implemented via the following three-step procedure. 

Step 1. Operate  
1/ 2

/ 1ˆ( ( ))k k k k k kz c x    , 
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(69) 
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on the measurement zk, where Lk = 1

/ 1
T

k k k kP C 
  ,  
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T
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
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. 

(72) 
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Step 2. Operate (69) – (71) on the time-reversed transpose of αk. Then take the time-
reversed transpose of the result to obtain βk. 

Step 3. Calculate the smoothed output estimate from  

/ˆ k N k k ky z R   . (73) 
 

10.5.2 Robust Smoother 
From the arguments within Chapter 9, a smoother that is robust to uncertain wk and vk can 
be realised by replacing the error covariance correction (72) by 
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within Procedure 1. As discussed in Chapter 9, a search for a minimum γ such that 
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10.5.3 Application 

Returning to the problem of demodulating a unity-amplitude FM signal, let xk = k

k


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 
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, B = 1 0   , (1) (1)cos( )k k kz v  , (2) (2)sin( )k k kz v  , where ωk, k, zk and vk 

denote the instantaneous frequency message, instantaneous phase, complex observations 
and measurement noise respectively. A zero-mean voiced speech utterance “a e i o u” was 
sampled at 8 kHz, for which estimates ˆ  = 0.97 and 2ˆw  = 0.053 were obtained using an 
expectation maximization algorithm. An FM discriminator output [13], 
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serves as a benchmark and as an auxiliary frequency measurement for the above smoother.  

The innovations within Steps 1 and 2 are given by 
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respectively. A unity-amplitude FM signal was synthesized using  
μ = 0.99 and the SNR was varied in 1.5 dB steps from 3 dB to 15 dB.  The mean-square 
errors were calculated over 200 realisations of Gaussian measurement noise and are shown 
in Fig. 9. It can be seen from the figure, that at 7.5 dB SNR, the first-order EKF improves on 
the FM discriminator MSE by about 12 dB. The improvement arises because the EKF 
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improve on the EKF. However, when 2
w  = 1, the problem is substantially nonlinear and a 

performance benefit can be observed. A robust EKF demodulator was designed with 
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δ1 = 0.1, δ2 = 4.5 and δ3 = 0.001. It was found that γ = 1.38 was sufficient for Pk/k-1 of the above 
Riccati difference equation to always be positive definite. A histogram of the observed 
frequency estimation error is shown in Fig. 8, which demonstrates that the robust 
demodulator provides improved mean-square-error performance. For sufficiently large 2

w , 
the output of the above model will resemble a digital signal, in which case a detector may 
outperform a demodulator. 
 

10.5 Nonlinear Smoothing 
 

10.5.1 Approximate Minimum-Variance Smoother 
Consider again a nonlinear estimation problem where xk+1 = ak(xk) + Bkwk, zk = ck(xk) + vk, with 
xk   , in which the nonlinearities ak(.), ck(.) are assumed to be smooth, differentiable 
functions of appropriate dimension. The linearisations akin to Extended Kalman filtering 
may be applied within the smoothers described in Chapter 7 in the pursuit of performance 
improvement. The fixed-lag, Fraser-Potter and Rauch-Tung-Striebel smoother recursions are 
easier to apply as they are less complex. The application of the minimum-variance smoother 
can yield approximately optimal estimates when the problem becomes linear, provided that 
the underlying assumptions are correct. 

Procedure 1. An approximate minimum-variance smoother for output estimation can be 
implemented via the following three-step procedure. 

Step 1. Operate  
1/ 2

/ 1ˆ( ( ))k k k k k kz c x    , 
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Step 2. Operate (69) – (71) on the time-reversed transpose of αk. Then take the time-
reversed transpose of the result to obtain βk. 

Step 3. Calculate the smoothed output estimate from  

/ˆ k N k k ky z R   . (73) 
 

10.5.2 Robust Smoother 
From the arguments within Chapter 9, a smoother that is robust to uncertain wk and vk can 
be realised by replacing the error covariance correction (72) by 
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within Procedure 1. As discussed in Chapter 9, a search for a minimum γ such that 
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, B = 1 0   , (1) (1)cos( )k k kz v  , (2) (2)sin( )k k kz v  , where ωk, k, zk and vk 

denote the instantaneous frequency message, instantaneous phase, complex observations 
and measurement noise respectively. A zero-mean voiced speech utterance “a e i o u” was 
sampled at 8 kHz, for which estimates ˆ  = 0.97 and 2ˆw  = 0.053 were obtained using an 
expectation maximization algorithm. An FM discriminator output [13], 
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serves as a benchmark and as an auxiliary frequency measurement for the above smoother.  

The innovations within Steps 1 and 2 are given by 
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respectively. A unity-amplitude FM signal was synthesized using  
μ = 0.99 and the SNR was varied in 1.5 dB steps from 3 dB to 15 dB.  The mean-square 
errors were calculated over 200 realisations of Gaussian measurement noise and are shown 
in Fig. 9. It can be seen from the figure, that at 7.5 dB SNR, the first-order EKF improves on 
the FM discriminator MSE by about 12 dB. The improvement arises because the EKF 

                                                                 

“The farther the experiment is from theory, the closer it is to the Nobel Prize.” Irène Joliot-Curie  
 

Nonlinear Prediction, Filtering and Smoothing 263
  

improve on the EKF. However, when 2
w  = 1, the problem is substantially nonlinear and a 

performance benefit can be observed. A robust EKF demodulator was designed with 
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δ1 = 0.1, δ2 = 4.5 and δ3 = 0.001. It was found that γ = 1.38 was sufficient for Pk/k-1 of the above 
Riccati difference equation to always be positive definite. A histogram of the observed 
frequency estimation error is shown in Fig. 8, which demonstrates that the robust 
demodulator provides improved mean-square-error performance. For sufficiently large 2

w , 
the output of the above model will resemble a digital signal, in which case a detector may 
outperform a demodulator. 
 

10.5 Nonlinear Smoothing 
 

10.5.1 Approximate Minimum-Variance Smoother 
Consider again a nonlinear estimation problem where xk+1 = ak(xk) + Bkwk, zk = ck(xk) + vk, with 
xk   , in which the nonlinearities ak(.), ck(.) are assumed to be smooth, differentiable 
functions of appropriate dimension. The linearisations akin to Extended Kalman filtering 
may be applied within the smoothers described in Chapter 7 in the pursuit of performance 
improvement. The fixed-lag, Fraser-Potter and Rauch-Tung-Striebel smoother recursions are 
easier to apply as they are less complex. The application of the minimum-variance smoother 
can yield approximately optimal estimates when the problem becomes linear, provided that 
the underlying assumptions are correct. 

Procedure 1. An approximate minimum-variance smoother for output estimation can be 
implemented via the following three-step procedure. 
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Step 2. Operate (69) – (71) on the time-reversed transpose of αk. Then take the time-
reversed transpose of the result to obtain βk. 

Step 3. Calculate the smoothed output estimate from  

/ˆ k N k k ky z R   . (73) 
 

10.5.2 Robust Smoother 
From the arguments within Chapter 9, a smoother that is robust to uncertain wk and vk can 
be realised by replacing the error covariance correction (72) by 
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denote the instantaneous frequency message, instantaneous phase, complex observations 
and measurement noise respectively. A zero-mean voiced speech utterance “a e i o u” was 
sampled at 8 kHz, for which estimates ˆ  = 0.97 and 2ˆw  = 0.053 were obtained using an 
expectation maximization algorithm. An FM discriminator output [13], 
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The innovations within Steps 1 and 2 are given by 

(1) (2)

(2) (2)

(3) (1)

ˆcos( )
ˆsin( )
ˆ

k k

k k

k k

z x
z x
z x

   
   

   
   
   

and 

(1) (2)

(2) (2)

(3) (1)

ˆcos( )
ˆsin( )
ˆ

k k

k k

k k

x
x

x





   
   

   
   
   

 

respectively. A unity-amplitude FM signal was synthesized using  
μ = 0.99 and the SNR was varied in 1.5 dB steps from 3 dB to 15 dB.  The mean-square 
errors were calculated over 200 realisations of Gaussian measurement noise and are shown 
in Fig. 9. It can be seen from the figure, that at 7.5 dB SNR, the first-order EKF improves on 
the FM discriminator MSE by about 12 dB. The improvement arises because the EKF 
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demodulator exploits the signal model whereas the FM discriminator does not. The figure 
shows that the approximate minimum-variance smoother further reduces the MSE by about 
2 dB, which illustrates the advantage of exploiting all the data in the time interval. In the 
robust designs, searches for minimum values of γ were conducted such that the 
corresponding Riccati difference equation solutions were positive definite over each noise 
realisation. It can be seen from the figure at 7.5 dB SNR that the robust EKF provides about a 
1 dB performance improvement compared to the EKF, whereas the approximate minimum-
variance smoother and the robust smoother performance are indistinguishable. 

This nonlinear example illustrates once again that smoothers can outperform filters. Since a 
first-order speech model is used and the Taylor series are truncated after the first-order 
terms, some model uncertainty is present, and so the robust designs demonstrate a marginal 
improvement over the EKF. 
 

4 6 8 10 12 14

5

10

15

SNR,  dB

M
S

E
, d

B

(i)

(ii), (iii)

(iv)

 
Figure 9. FM demodulation performance comparison: (i) FM discriminator (crosses), (ii) first-order EKF 
(dotted line), (iii) Robust EKF (dashed line), (iv) approximate minimum-variance smoother and robust 
smoother (solid line).21 
 

10.6 Constrained Filtering and Smoothing 
 

10.6.1 Background 
Constraints often appear within navigation problems. For example, vehicle trajectories are 
typically constrained by road, tunnel and bridge boundaries. Similarly, indoor pedestrian 
trajectories are constrained by walls and doors. However, as constraints are not easily 
described within state-space frameworks, many techniques for constrained filtering and 
smoothing are reported in the literature. An early technique for constrained filtering 
involves augmenting the measurement vector with perfect observations [14]. The 
application of the perfect-measurement approach to filtering and fixed-interval smoothing is 
described in [15].  
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Constraints can be applied to state estimates, see [16], where a positivity constraint is used 
within a Kalman filter and a fixed-lag smoother. Three different state equality constraint 
approaches, namely, maximum-probability, mean-square and projection methods are 
described in [17]. Under prescribed conditions, the perfect-measurement and projection 
approaches are equivalent [5], [18], which is identical to applying linear constraints within a 
form of recursive least squares. 

In the state equality constrained methods [5], [16] – [18], a constrained estimate can be 
calculated from a Kalman filter’s unconstrained estimate at each time step. Constraint 
information could also be embedded within nonlinear models for use with EKFs. A simpler, 
low-computation-cost technique that avoids EKF stablity problems and suits real-time 
implementation is described in [19]. In particular, an on-line procedure is proposed that 
involves using nonlinear functions to censor the measurements and subsequently applying 
the minimum-variance filter recursions. An off-line procedure for retrospective analyses is 
also described, where the minimum-variance fixed-interval smoother recursions are applied 
to the censored measurements. In contrast to the afore-mentioned techniques, which employ 
constraint matrices and vectors, here constraint information is represented by an exogenous 
input process. This approach uses the Bounded Real Lemma which enables the 
nonlinearities to be designed so that the filtered and smoothed estimates satisfy a 
performance criterion. 22 
 

10.6.2 Problem Statement 
The ensuing discussion concerns odd and even functions which are defined as follows. A 
function go of X is said to be odd if go(– X) = – go(X). A function fe of X is said to be even if 
fe(– X) = fe(X). The product of go and fe is an odd function since go(– X) fe(– X) = – go(X) fe(X).  

Problems are considered where stochastic random variables are subjected to inequality 
constraints. Therefore, nonlinear censoring functions are introduced whose outputs are 
constrained to lie within prescribed bounds. Let β  p  and : p

og   → p  denote a 

constraint vector and an odd function of a random variable X  p  about its expected value 
E{X}, respectively. Define the censoring function 
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demodulator exploits the signal model whereas the FM discriminator does not. The figure 
shows that the approximate minimum-variance smoother further reduces the MSE by about 
2 dB, which illustrates the advantage of exploiting all the data in the time interval. In the 
robust designs, searches for minimum values of γ were conducted such that the 
corresponding Riccati difference equation solutions were positive definite over each noise 
realisation. It can be seen from the figure at 7.5 dB SNR that the robust EKF provides about a 
1 dB performance improvement compared to the EKF, whereas the approximate minimum-
variance smoother and the robust smoother performance are indistinguishable. 
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first-order speech model is used and the Taylor series are truncated after the first-order 
terms, some model uncertainty is present, and so the robust designs demonstrate a marginal 
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By inspection of (75) – (76), g(X) is constrained within E{X} ± β. Suppose that the probability 
density function of X about E{X} is even, that is, is symmetric about E{X}. Under these 
conditions, the expected value of g(X) is given by 

{ ( )} ( ) ( )eE g X g x f x dx



   

                                              { } ( ) ( , ) ( )e o eE X f x dx g x f x dx
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    

                                              { }E X . 

(77) 

since ( )ef x dx


  = 1 and the product ( , ) ( )o eg x f x  is odd.  

Thus, a constraining process can be modelled by a nonlinear function. Equation (77) states 
that g(X) is unbiased, provided that go(X,β) and fX(X) are odd and even functions about E{X}, 
respectively. In the analysis and examples that follow, attention is confined to systems 
having zero-mean inputs, states and outputs, in which case the censoring functions are also 
centred on zero, that is, E{X} = 0.23 

Let wk  = 1, ,

T

k m kw w     m  represent a stochastic white input process having an even 

probability density function, with { } 0kE w  , { }T
j k k jkE w w Q  , in which jk  denotes the 

Kronecker delta function. Suppose that the states of a system  : m  → p are realised by 

1k k k k kx A x B w   , (78) 

where Ak  n n  and Bk  n m . Since wk is zero-mean, it follows that linear combinations 
of the states are also zero-mean. Suppose also that the system outputs, yk, are generated by 
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where Cj,k is the jth row of Ck   p m , θk  = 1,[ k  … , ]
T

p k   p  is an input constraint process 
and , ,( , )o j k k j kg C x  , j = 1, … p, is an odd censoring function centred on zero. The outputs yj,k 
are constrained to lie within ,j k , that is,  

, , ,j k j k j ky    . (80) 

For example, if the system outputs represent the trajectories of pedestrians within a building 
then the constraint process could include knowledge about wall, floor and ceiling positions. 
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Similarly, a vehicle trajectory constraint process could include information about building 
and road boundaries. 

Assume that observations zk = yk + vk are available, where vk  p  is a stochastic, white 
measurement noise process having an even probability density function, with { } 0kE v  , 
{ } 0kE v  , ,{ }T

j k k j kE v v R   and { } 0T
j kE w v  . It is convenient to define the stacked vectors y 

  1[ Ty  … ]T T
Ny  and θ   1[

T  … ]T T
N . It follows that 

2 2

22
y  . (81) 

Thus, the energy of the system’s output is bounded from above by the energy of the 
constraint process. 24 

The minimum-variance filter and smoother which produce estimates of a linear system’s 
output, minimise the mean square error. Here, it is desired to calculate estimates that trade 
off minimum mean-square-error performance and achieve 
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Note that (80) implies (81) but the converse is not true. Although estimates ,ˆ j ky  of ,j ky  satisfying 

, , ,ˆ   j k j k j ky  are desirable, the procedures described below only ensure that (82) is satisfied. 
 

10.6.3 Constrained Filtering 
A procedure is proposed in which a linear filter  : p p   is used to calculate estimates ŷ  
from zero-mean measurements zk that are constrained using an odd censoring function to 
obtain 
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which satisfy 
2 22
2 2

z   . (84) 

where z    1[
Tz  … ]T T

Nz , for a positive γ    to be designed. This design problem is 
depicted in Fig. 10. 
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By inspection of (75) – (76), g(X) is constrained within E{X} ± β. Suppose that the probability 
density function of X about E{X} is even, that is, is symmetric about E{X}. Under these 
conditions, the expected value of g(X) is given by 
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                                              { }E X . 
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since ( )ef x dx


  = 1 and the product ( , ) ( )o eg x f x  is odd.  

Thus, a constraining process can be modelled by a nonlinear function. Equation (77) states 
that g(X) is unbiased, provided that go(X,β) and fX(X) are odd and even functions about E{X}, 
respectively. In the analysis and examples that follow, attention is confined to systems 
having zero-mean inputs, states and outputs, in which case the censoring functions are also 
centred on zero, that is, E{X} = 0.23 

Let wk  = 1, ,
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k m kw w     m  represent a stochastic white input process having an even 

probability density function, with { } 0kE w  , { }T
j k k jkE w w Q  , in which jk  denotes the 

Kronecker delta function. Suppose that the states of a system  : m  → p are realised by 
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where Ak  n n  and Bk  n m . Since wk is zero-mean, it follows that linear combinations 
of the states are also zero-mean. Suppose also that the system outputs, yk, are generated by 
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where Cj,k is the jth row of Ck   p m , θk  = 1,[ k  … , ]
T

p k   p  is an input constraint process 
and , ,( , )o j k k j kg C x  , j = 1, … p, is an odd censoring function centred on zero. The outputs yj,k 
are constrained to lie within ,j k , that is,  

, , ,j k j k j ky    . (80) 

For example, if the system outputs represent the trajectories of pedestrians within a building 
then the constraint process could include knowledge about wall, floor and ceiling positions. 

                                                                 

23 “It was not easy for a person brought up in the ways of classical thermodynamics to come around to 
the idea that gain of entropy eventually is nothing more nor less than loss of information.” Gilbert 
Newton Lewis  

  

Similarly, a vehicle trajectory constraint process could include information about building 
and road boundaries. 
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{ } 0kE v  , ,{ }T

j k k j kE v v R   and { } 0T
j kE w v  . It is convenient to define the stacked vectors y 

  1[ Ty  … ]T T
Ny  and θ   1[

T  … ]T T
N . It follows that 
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Thus, the energy of the system’s output is bounded from above by the energy of the 
constraint process. 24 

The minimum-variance filter and smoother which produce estimates of a linear system’s 
output, minimise the mean square error. Here, it is desired to calculate estimates that trade 
off minimum mean-square-error performance and achieve 
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Note that (80) implies (81) but the converse is not true. Although estimates ,ˆ j ky  of ,j ky  satisfying 

, , ,ˆ   j k j k j ky  are desirable, the procedures described below only ensure that (82) is satisfied. 
 

10.6.3 Constrained Filtering 
A procedure is proposed in which a linear filter  : p p   is used to calculate estimates ŷ  
from zero-mean measurements zk that are constrained using an odd censoring function to 
obtain 
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which satisfy 
2 22
2 2

z   . (84) 

where z    1[
Tz  … ]T T

Nz , for a positive γ    to be designed. This design problem is 
depicted in Fig. 10. 

                                                                 

24“Man's greatest asset is the unsettled mind.” Isaac Asimov 
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Censoring the measurements is suggested as a low-implementation-cost approach to 
constrained filtering. Design constraints are sought for the measurement censoring functions 
so that the outputs of a subsequent filter satisfy the performance objective (82). The recursions 
akin to the minimum-variance filter are applied to calculate predicted and filtered state 
estimates from the constrained measurements kz  at time k. That is, the output mapping Ck is 
retained within the linear filter design even though nonlinearities are present with (83). The 
predicted states, filtered states and output estimates are respectively obtained as 
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k k kB Q B . Nonzero-
mean sequences can be accommodated using deterministic inputs as described in Chapter 
4. Since a nonlinear system output (79) and a nonlinear measurement (83) are assumed, 
the estimates calculated from (85) – (87) are not optimal. Some properties that are 
exhibited by these estimates are described below.26 

Lemma 3 [19]: In respect of the filter (85) – (87) which operates on the constrained measurements 
(83), suppose the following: 

(i) the probability density functions associated with wk and vk are even; 
(ii) the nonlinear functions within (79) and (83) are odd; and 
(iii) the filter is initialized with 0 / 0x̂  = 0{ }E x .  

Then the following applies: 
(i) the predicted state estimates, 1/ˆ k kx  , are unbiased; 
(ii) the corrected state estimates, /ˆ k kx , are unbiased; and 
(iii) the output estimates, /ˆ k ky , are unbiased. 

                                                                 

26“A mind that is stretched by a new idea can never go back to its original dimensions.” Oliver Wendell 
Holmes 

  

Proof: (i) Condition (iii) implies 1/ 0{ }E x  = 0, which is the initialization step of an induction 
argument. It follows from (85) that 
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term on the right-hand-side of (89) pertains to the unconstrained Kalman filter and is zero by 
induction. Thus, 1/{ }k kE x 
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(ii) Condition (iii) again serves as an induction assumption. It follows from (86) that 
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(77) leads to /{ }k kE y  = /{ }k k kC E x  + { }k k kE y C x  =  /{ }k k kC E x  = 0 under condition (iii).              � 

Recall that the Bounded Real Lemma (see Lemma 7 of Chapter 9) specifies a bound for a 
ratio of a system’s output and input energies. This lemma is used to find a design for γ 
within (83) as described below. 

Lemma 4 [19]: Consider the filter (85) – (87) which operates on the constrained measurements 
(83). Let kA  = k k kA K C , kB  = kK , kC  = ( )k k kC I L C  and kD  = k kC L  denote the state-space 
parameters of the filter. Suppose for a given γ2 > 0, that a solution kM  = T

kM  > 0  exists over k  
[1, N] for the Riccati Difference equation resulting from the application of the Bounded Real 

Lemma to the system k k

k k

A B
C D
 
 
 

. Then the design γ = γ2 within (83) results in the performance 

objective (82) being satisfied. 

Proof: For the application of the Bounded Real Lemma to the filter (85) – (87), the existence of a 

solution kM  = T
kM  > 0 for the associated Riccati difference equation ensures that 2

2
ŷ  ≤ 22

2 2
z  

− 0 0 0
Tx M x  ≤ 22

2 2
z , which together with (84) leads to (82).                                                          � 

It is argued below that the proposed filtering procedure is asymptotically stable.  
                                                                 

“All truth passes through three stages: First, it is ridiculed; Second, it is violently opposed; and Third, it 
is accepted as self-evident.” Arthur Schopenhauer 
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Proof: (i) Condition (iii) implies 1/ 0{ }E x  = 0, which is the initialization step of an induction 
argument. It follows from (85) that 
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within (83) as described below. 
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Proof: (i) Condition (iii) implies 1/ 0{ }E x  = 0, which is the initialization step of an induction 
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. Then the design γ = γ2 within (83) results in the performance 

objective (82) being satisfied. 

Proof: For the application of the Bounded Real Lemma to the filter (85) – (87), the existence of a 

solution kM  = T
kM  > 0 for the associated Riccati difference equation ensures that 2

2
ŷ  ≤ 22

2 2
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− 0 0 0
Tx M x  ≤ 22

2 2
z , which together with (84) leads to (82).                                                          � 

It is argued below that the proposed filtering procedure is asymptotically stable.  
                                                                 

“All truth passes through three stages: First, it is ridiculed; Second, it is violently opposed; and Third, it 
is accepted as self-evident.” Arthur Schopenhauer 
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Lemma 5 [19]: Define the filter output estimation error as y  = y   ŷ . Under the conditions of 
Lemma 4, y   2 . 

Proof: It follows from y  = y   ŷ  that 
2

y    
2

y  + 
2

ŷ , which together with (10) and the 

result of Lemma 4 yields 
2

y    
2

2  , thus the claim follows.                                                     � 
 

10.6.4 Constrained Smoothing 
In the sequel, it is proposed that the minimum-variance fixed-interval smoother 
recursions operate on the censored measurements kz  to produce output estimates /ˆ k Ny  of 
yk .  

Lemma 6 [19]: In respect of the minimum-variance smoother recursions that operate on the 
censored measurements kz , under the conditions of Lemma 3, the smoothed estimates, /ˆ k Ny , are 
unbiased. 

The proof follows mutatis mutandis from the approach within the proofs of Lemma 5 of 
Chapter 7 and Lemma 3. An analogous result to Lemma 5 is now stated. 

Lemma 7 [19]: Define the smoother output estimation error as y  = y   ŷ . Under the conditions 
of Lemma 3, y   2 .  

The proof follows mutatis mutandis from that of Lemma 5. Two illustrative examples are 
set out below. A GPS and inertial navigation system integration application is detailed in  
[19]. 

Example 5 [19]. Consider the saturating nonlinearity29 

                        1 1( , ) 2 arctan (2 )og X X     . (91) 

which is a continuous approximation of (76) that satisfies ( , )og X   ≤   and ( , )odg X
dX

  = 

1  +  12 2( ) (2 )X 
  ≈ 1 when 2 2( ) (2 )X    << 1. Data was generated from (78), (79), (91), 

where A = 
0.9 0
0 0.9

 
 
 

, B = C = 
1 0
0 1
 
 
 

, Gaussian, white, zero-mean processes with Q = R = 

0.01 0
0 0.01

 
 
 

. The constraint vector within (80) was chosen to be fixed, namely, θk = 
0.5
0.5
 
 
 

, 

k  [1, 105]. The limits of the observed distribution of estimates, /ˆ k ky  = 1, /

2, /

ˆ
ˆ

k k

k k

y
y
 
 
  

, arising by 

                                                                 

29“Everything we know is only some kind of approximation, because we know that we do not know all 
the laws yet. Therefore, things must be learned only to be unlearned again or, more likely, to be 
corrected.” Richard Phillips Feynman 

  

operating the minimum-variance filter recursions on the raw data zk = yk + vk are indicated 
by the outer black region of Fig. 11. It can be seen that the filter outputs do not satisfy the 
performance objective (82), which motivates the pursuit of constrained techniques. A 
minimum value of γ2 = 1.24 was found for the solutions of the Riccati difference equation 
mentioned specified within Lemma 4 to be positive definite. The filter (85) – (87) was 

applied to the censored measurements kz  = 1,

2,

k

k

z
z
 
 
 

 = 
1

1, 1,
1

2, 2,

( , )
( , )
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o k k

g z
g z

 
 





 
 
  

 using (91). The limits 

of the observed distribution of the constrained filter estimates are indicated by the inner 
white region of Fig. 11. The figure shows that the constrained filter estimates satisfy (82), 
which illustrates Lemma 5.  

Example 6 [19]. Measurements were similarly synthesized using the parameters of 
Example 5 to demonstrate constrained fixed-interval smoother performance. A minimum 
value of γ2 = 5.6 was found for the solutions of the Riccati difference equation mentioned 
within Lemma 4 to be positive definite. The superimposed distributions of the 
unconstrained and constrained smoothers are respectively indicated by the inner and 
outer black regions of Fig. 12. It can be seen by inspection of the figure that the constrained 
smoother estimates meets (80), where as those produced by the standard smoother do not. 30 

  

 

 

 

 

                                                                 

30“An expert is a man who has made all the mistakes which can be made in a very narrow field.” Niels 
Henrik David Bohr 

Figure 11.  Superimposed distributions of  filtered 
estimates for Example 4: unconstrained filter 
(outer black); and constrained filter (middle 
white). 

Figure 12.  Superimposed distributions of  smoothed 
estimates for Example 5: unconstrained smoother 
(outer black); and constrained smoother (middle 
white). 
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white region of Fig. 11. The figure shows that the constrained filter estimates satisfy (82), 
which illustrates Lemma 5.  

Example 6 [19]. Measurements were similarly synthesized using the parameters of 
Example 5 to demonstrate constrained fixed-interval smoother performance. A minimum 
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Figure 11.  Superimposed distributions of  filtered 
estimates for Example 4: unconstrained filter 
(outer black); and constrained filter (middle 
white). 

Figure 12.  Superimposed distributions of  smoothed 
estimates for Example 5: unconstrained smoother 
(outer black); and constrained smoother (middle 
white). 
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Lemma 5 [19]: Define the filter output estimation error as y  = y   ŷ . Under the conditions of 
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recursions operate on the censored measurements kz  to produce output estimates /ˆ k Ny  of 
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by the outer black region of Fig. 11. It can be seen that the filter outputs do not satisfy the 
performance objective (82), which motivates the pursuit of constrained techniques. A 
minimum value of γ2 = 1.24 was found for the solutions of the Riccati difference equation 
mentioned specified within Lemma 4 to be positive definite. The filter (85) – (87) was 
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of the observed distribution of the constrained filter estimates are indicated by the inner 
white region of Fig. 11. The figure shows that the constrained filter estimates satisfy (82), 
which illustrates Lemma 5.  

Example 6 [19]. Measurements were similarly synthesized using the parameters of 
Example 5 to demonstrate constrained fixed-interval smoother performance. A minimum 
value of γ2 = 5.6 was found for the solutions of the Riccati difference equation mentioned 
within Lemma 4 to be positive definite. The superimposed distributions of the 
unconstrained and constrained smoothers are respectively indicated by the inner and 
outer black regions of Fig. 12. It can be seen by inspection of the figure that the constrained 
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Figure 11.  Superimposed distributions of  filtered 
estimates for Example 4: unconstrained filter 
(outer black); and constrained filter (middle 
white). 

Figure 12.  Superimposed distributions of  smoothed 
estimates for Example 5: unconstrained smoother 
(outer black); and constrained smoother (middle 
white). 
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The above examples involved searching for minimum value of γ2 for the existence of 
positive definite solutions for the Riccati equation alluded to within Lemma 4. The need 
for a search may not be apparent as stability is guaranteed whenever a positive definite 
solution for the associated Riccati equation exists. Searching for a minimum  γ2 is 
advocated because the use of an excessively large value can lead to a nonlinearity design 
that is conservative and exhibits poor mean-square-error performance. If a design is still 
too conservative then an empirical value, namely, γ2 = 1

22
ŷ z  , may need to be 

considered instead. 
 

10.7 Conclusion 
In this chapter it is assumed that nonlinear systems are of the form xk+1 = ak(xk) + bk(wk), yk 
= ck(xk), where ak(.), bk(.) and ck(.) are continuous differentiable functions. The EKF arises 
by linearising the model about conditional mean estimates and applying the standard 
filter recursions. The first, second and third-order EKFs simplified for the case of xk    
are summarised in Table 1. 

The EKF attempts to produce locally optimal estimates. However, it is not necessarily 
stable because the solutions of the underlying Riccati equations are not guaranteed to be 
positive definite. The faux algebraic Riccati technique trades off approximate optimality 
for stability. The familiar structure of the EKF is retained but stability is achieved by 
selecting a positive definite solution to a faux Riccati equation for the gain design. 

H∞ techniques can be used to recast nonlinear filtering applications into a model 
uncertainty problem. It is demonstrated with the aid of an example that a robust EKF can 
reduce the mean square error when the problem is sufficiently nonlinear. 

Linearised models may be applied within the previously-described smoothers in the 
pursuit of performance improvement. Nonlinear versions of the fixed-lag, Fraser-Potter 
and Rauch-Tung-Striebel smoothers are easier to implement as they are less complex. 
However, the application of the minimum-variance smoother can yield approximately 
optimal estimates when the problem becomes linear, provided that the underlying 
assumptions are correct. A smoother that is robust to input uncertainty is obtained by 
replacing the approximate error covariance correction with an H∞ version. The resulting 
robust nonlinear smoother can exhibit performance benefits when uncertainty is present. 

In some applications, it may be possible to censor a system’s inputs, states or outputs, 
rather than proceed with an EKF design. It has been shown that the use of a nonlinear 
censoring function to constrain input measurements leads to bounded filter and smoother 
estimation errors. 

 

 

 

                                                                 

“Most of what I learned as an entrepreneur was by trial and error.” Gordon Earl Moore 
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Table 1. Summary of first, second and third-order EKFs for the case of  xk   . 
 

10.8 Problems 
 

Problem 1. Use the following Taylor series expansion of f(x) 

0 0 0
1( ) ( ) ( ) ( )
1!

Tf x f x x x f x    0 0 0
1 ( ) ( )( )
2!

T Tx x f x x x      

                                        0 0 0 0
1 ( ) ( ) ( )( )
3!

T Tx x x x f x x x        

                                        0 0 0 0 0
1 ( ) ( ) ( ) ( )( ) ,
4!

T Tx x x x x x f x x x           

 

 

 

                                                                 

“The capacity to blunder slightly is the real marvel of DNA. Without this special attribute, we would 
still be anaerobic bacteria and there would be no music.” Lewis Thomas 
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= ck(xk), where ak(.), bk(.) and ck(.) are continuous differentiable functions. The EKF arises 
by linearising the model about conditional mean estimates and applying the standard 
filter recursions. The first, second and third-order EKFs simplified for the case of xk    
are summarised in Table 1. 

The EKF attempts to produce locally optimal estimates. However, it is not necessarily 
stable because the solutions of the underlying Riccati equations are not guaranteed to be 
positive definite. The faux algebraic Riccati technique trades off approximate optimality 
for stability. The familiar structure of the EKF is retained but stability is achieved by 
selecting a positive definite solution to a faux Riccati equation for the gain design. 
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uncertainty problem. It is demonstrated with the aid of an example that a robust EKF can 
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Linearised models may be applied within the previously-described smoothers in the 
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optimal estimates when the problem becomes linear, provided that the underlying 
assumptions are correct. A smoother that is robust to input uncertainty is obtained by 
replacing the approximate error covariance correction with an H∞ version. The resulting 
robust nonlinear smoother can exhibit performance benefits when uncertainty is present. 

In some applications, it may be possible to censor a system’s inputs, states or outputs, 
rather than proceed with an EKF design. It has been shown that the use of a nonlinear 
censoring function to constrain input measurements leads to bounded filter and smoother 
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The above examples involved searching for minimum value of γ2 for the existence of 
positive definite solutions for the Riccati equation alluded to within Lemma 4. The need 
for a search may not be apparent as stability is guaranteed whenever a positive definite 
solution for the associated Riccati equation exists. Searching for a minimum  γ2 is 
advocated because the use of an excessively large value can lead to a nonlinearity design 
that is conservative and exhibits poor mean-square-error performance. If a design is still 
too conservative then an empirical value, namely, γ2 = 1

22
ŷ z  , may need to be 

considered instead. 
 

10.7 Conclusion 
In this chapter it is assumed that nonlinear systems are of the form xk+1 = ak(xk) + bk(wk), yk 
= ck(xk), where ak(.), bk(.) and ck(.) are continuous differentiable functions. The EKF arises 
by linearising the model about conditional mean estimates and applying the standard 
filter recursions. The first, second and third-order EKFs simplified for the case of xk    
are summarised in Table 1. 

The EKF attempts to produce locally optimal estimates. However, it is not necessarily 
stable because the solutions of the underlying Riccati equations are not guaranteed to be 
positive definite. The faux algebraic Riccati technique trades off approximate optimality 
for stability. The familiar structure of the EKF is retained but stability is achieved by 
selecting a positive definite solution to a faux Riccati equation for the gain design. 

H∞ techniques can be used to recast nonlinear filtering applications into a model 
uncertainty problem. It is demonstrated with the aid of an example that a robust EKF can 
reduce the mean square error when the problem is sufficiently nonlinear. 

Linearised models may be applied within the previously-described smoothers in the 
pursuit of performance improvement. Nonlinear versions of the fixed-lag, Fraser-Potter 
and Rauch-Tung-Striebel smoothers are easier to implement as they are less complex. 
However, the application of the minimum-variance smoother can yield approximately 
optimal estimates when the problem becomes linear, provided that the underlying 
assumptions are correct. A smoother that is robust to input uncertainty is obtained by 
replacing the approximate error covariance correction with an H∞ version. The resulting 
robust nonlinear smoother can exhibit performance benefits when uncertainty is present. 

In some applications, it may be possible to censor a system’s inputs, states or outputs, 
rather than proceed with an EKF design. It has been shown that the use of a nonlinear 
censoring function to constrain input measurements leads to bounded filter and smoother 
estimation errors. 
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to find expressions for the coefficients αi within the functions below. 

     (i)  2
0 1 0 2 0( ) ( ) ( )f x x x x x       . 

     (ii)   2 3
0 1 0 2 0 3 0( ) ( ) ( ) ( )f x x x x x x x          . 

     (iii)  2
0 1 0 2 0( , ) ( ) ( )f x y x x x x       . 

                               2
3 0 4 0 5 0 0( ) ( ) ( )( )y y y y x x y y          

       (iv)  2 3
0 1 0 2 0 3 0( , ) ( ) ( ) ( )f x y x x x x x x           

                               2 3
4 0 5 0 6 0( ) ( ) ( )y y y y y y         

                               2
7 0 0 8 0 0( )( ) ( ) ( )x x y y x x y y        

                              2
9 0 0( )( )x x y y   . 

       (v)  2 3 4
0 1 0 2 0 3 0 4 0( , ) ( ) ( ) ( ) ( )f x y x x x x x x x x              

                              2 3 4
5 0 6 0 7 0 8 0( ) ( ) ( ) ( )y y y y y y y y            

                              2
9 0 0 10 0 0( )( ) ( ) ( )x x y y x x y y        

                              2 3
11 0 0 12 0 0( )( ) ( ) ( )x x y y x x y y        

                              3 2 2
13 0 0 14 0 0( )( ) ( ) ( )x x y y x x y y       . 

Problem 2. Consider a state estimation problem, where xk+1 = ak(xk) + Bkwk, yk = ck(xk), zk = yk 
+ vk, in which wk, xk, yk, vk, ak(.), Bk, ck(.)   . Derive the 

(i) first-order, 
(ii) second-order, 
(iii) third-order and  
(iv) fourth-order EKFs, 

assuming the required derivatives exist. 

Problem 3. Suppose that an FM signal is generated by ak+1 = aak + (1)
kw , k+1 = k + (2)

kw , 
k+1 = k + k, (1)

kz  = akcos(k) + (1)
kv  and (2)

kz  = aksin(k) + (2)
kv . Write down the recursions for  

(i) first-order and  
(ii) second-order 

EKF demodulators. 

                                                                 

“I am quite conscious that my speculations run quite beyond the bounds of true science.” Charles Robert 
Darwin 

  

Problem 4. (Continuous-time EKF) Assume that continuous-time signals may be modelled 
as ( )x t  = a(x(t)) + w(t), y(t) = c(x(t)), z(t) = y(t) + v(t), where E{w(t)wT(t)} = Q(t) and 
E{v(t)vT(t)} = R(t).  

(i) Show that approximate state estimates can be obtained from ˆ( )x t  = ˆ( ( ))a x t  + 

( ) ( )K t z t  – ˆ( ( ))c x t , where K(t) = P(t)CT(t)R-1(t), ( )P t  = A(t)P(t) + P(t)AT(t) – 

K(t)C(t)P(t) + Q(t), A(t) = 
( )

( )

x x t

a x
x 




 and C(t) = 
( )

( )

x x t

c x
x 




. 

(ii) Often signal models are described in the above continuous-time setting but 
sampled measurements zk of z(t) are available. Write down a hybrid 
continuous-discrete version of the EKF in corrector-predictor form. 

Problem 5. Consider a pendulum of length   that subtends an angle θ(t) with a vertical line 
through its pivot. The pendulum’s angular acceleration and measurements of its 

instantaneous horizontal position (from the vertical) may be modelled as 
2

2

( )
( )

d t
d t



 = 

sin( ( ))
g t 


 + w(t) and z(t) = sin( ( ))t  + v(t), respectively, where g is the gravitational 

constant, w(t) and v(t) are stochastic inputs. 

(i) Set out the pendulum’s equations of motion in a state-space form and write 
down the continuous-time EKF for estimating θ(t) from v(t). 

(ii) Use Euler’s first-order integration formula to discretise the above model and 
then detail the corresponding discrete-time EKF.   

 

10.9 Glossary 
 

f  The gradient of a function f, which is a row-vector of partial 
derivatives. 

T f   The Hessian of a function f, which is a matrix of partial derivatives. 

tr(Pk) The trace of a matrix Pk, which is the sum of its diagonal terms. 

FM Frequency modulation. 

f  The forward difference operator with f ke  = ( )i
ke  – ( )

1
i

ke  . 
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( ) ( )K t z t  – ˆ( ( ))c x t , where K(t) = P(t)CT(t)R-1(t), ( )P t  = A(t)P(t) + P(t)AT(t) – 

K(t)C(t)P(t) + Q(t), A(t) = 
( )

( )

x x t

a x
x 




 and C(t) = 
( )

( )

x x t

c x
x 




. 

(ii) Often signal models are described in the above continuous-time setting but 
sampled measurements zk of z(t) are available. Write down a hybrid 
continuous-discrete version of the EKF in corrector-predictor form. 

Problem 5. Consider a pendulum of length   that subtends an angle θ(t) with a vertical line 
through its pivot. The pendulum’s angular acceleration and measurements of its 

instantaneous horizontal position (from the vertical) may be modelled as 
2

2

( )
( )

d t
d t



 = 

sin( ( ))
g t 


 + w(t) and z(t) = sin( ( ))t  + v(t), respectively, where g is the gravitational 

constant, w(t) and v(t) are stochastic inputs. 

(i) Set out the pendulum’s equations of motion in a state-space form and write 
down the continuous-time EKF for estimating θ(t) from v(t). 

(ii) Use Euler’s first-order integration formula to discretise the above model and 
then detail the corresponding discrete-time EKF.   

 

10.9 Glossary 
 

f  The gradient of a function f, which is a row-vector of partial 
derivatives. 

T f   The Hessian of a function f, which is a matrix of partial derivatives. 

tr(Pk) The trace of a matrix Pk, which is the sum of its diagonal terms. 

FM Frequency modulation. 

f  The forward difference operator with f ke  = ( )i
ke  – ( )

1
i

ke  . 
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