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In this research monograph, we explain the development of a mechanistic, stochastic 
theory of nonfickian solute dispersion in porous media. We have included sufficient 
amount of background material related to stochastic calculus and the scale dependency 
of diffusivity in this book so that it could be read independently.

The advection-dispersion equation that is being used to model the solute transport 
in a porous medium is based on the premise that the fluctuating components of the 
flow velocity, hence the fluxes, due to a porous matrix can be assumed to obey a 
relationship similar to Fick’s law. This introduces phenomenological coefficients which 
are dependent on the scale of the experiments. Our approach, based on the theories 
of stochastic calculus and differential equations, removes this basic premise, which 
leads to a multiscale theory with scale independent coefficients. We try to illustrate this 
outcome with available data at different scales, from experimental laboratory scales to 
regional scales in this monograph. There is a large body of computational experiments 
we have not discussed here, but their results corroborate with the gist presented here.

In Chapter 1, we introduce the context of the research questions we are seeking answers 
in the rest of the monograph. We dedicate the first part of Chapter 2 as a primer for Ito 
stochastic calculus and related integrals. We develop a basic stochastic solute transport 
model in Chapter 3 and develop a generalised model in one dimension in Chapter 4. 
In Chapter 5, we attempt to explain the connectivity of the basic premises in our theory 
with the established theories in fluctuations and dissipation in physics. This is only to 
highlight the alignment, mostly intuitive, of our approach with the established physics. 
Then we develop the multiscale stochastic model in Chapter 6, and finally we extend 
the approach to two dimensions in Chapters 7 and 8. We may not have cited many 
authors who have published research related to nonfickian dispersion because our 
intention is to highlight the problem through the literature. We refer to recent books 
which summarise most of the works and apologise for omissions as this monograph is 
not intented to be a comprehensive review.

There are many who helped me during the course of this research. I really appreciate 
Hong Ling’s assistance during the last two and half years in writing and testing 
Mathematica programs. Without her dedication, this monograph would have taken 
many more months to complete. I am grateful to Amphun Chaiboonchoe for typing 
of the first six chapters in the first draft, and to Yao He for Matlab programming work 
for Chapter 6. I also acknowledge my former PhD students, Dr. Channa Rajanayake of 
Aqualinc Ltd, New Zealand, for the assistance in inverse method computations, and Dr. 
Zhi Xie of National Institute for Health (NIH), U.S.A., for the assistance in the neural 
networks computations.
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This work is funded by the Foundation for Science and Technology of New Zealand 
(FoRST) through Lincoln Ventures Ltd. (LVL), Lincoln University. I am grateful to the 
Chief Scientist of LVL, my colleague, Dr. Ian Woodhead for overseeing the contractual 
matters to facilitate the work with a sense of humour. I also acknowledge Dr. John 
Bright of Aqualinc Ltd. for managing the project for many years.

Finally I am grateful to my wife Professor Sandhya Samarasinghe for understanding the 
value of this work. Her advice on neural networks helped in the computational methods 
developed in this work. Sandhya’s love and patience remained intact during this piece 
of work. To that love and patience, I dedicate this monograph.

Don Kulasiri
Professor

Centre for Advanced Computational Solutions (C-fACS) 
Lincoln University, New Zealand
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NonFickian Solute Transport 

1.1 Models in Solute Transport in Porous Media
This research monograph presents the modelling of solute transport in the saturated porous
media using novel stochastic and computational approaches. Our previous book published
in the North-Holland series of Applied Mathematics and Mechanics (Kulasiri and 
Verwoerd, 2002) covers some of our research in an introductory manner; this book can be 
considered as a sequel to it, but we include most of the basic concepts succinctly here, 
suitably placed in the main body so that the reader who does not have the access to the
previous book is not disadvantaged to follow the material presented. 

The motivation of this work has been to explain the dispersion in saturated porous media at 
different scales in underground aquifers (i.e., subsurface groundwater flow), based on the 
theories in stochastic calculus. Underground aquifers render unique challenges in 
determining the nature of solute dispersion within them. Often the structure of porous
formations is unknown and they are sometimes notoriously heterogeneous without any 
recognizable patterns. This element of uncertainty is the over-arching factor which shapes
the nature of solute transport in aquifers. Therefore, it is reasonable to review briefly the 
work already done in that area in the pertinent literature when and where it is necessary.
These interludes of previous work should provide us with necessary continuity of thinking 
in this work. 

There is monumental amount of research work done related to the groundwater flow since
1950s. During the last five to six decades major changes to the size and demographics of
human populations occurred; as a result, an unprecedented use of the hydrogeological
resources of the earth makes contamination of groundwater a scientific, socio-economic and, 
in many localities, a political issue. What is less obvious in terms of importance is the way a 
contaminant, a solute, disperses itself within the geological formations of the aquifers. 
Experimentation with real aquifers is expensive; hence the need for mathematical and 
computational models of solute transport. People have developed many types of models
over the years to understand the dynamics of aquifers, such as physical scale models,
analogy models and mathematical models (Wang and Anderson, 1982; Anderson and
Woessner, 1992; Fetter, 2001; Batu, 2006). All these types of models serve different purposes. 

Physical scale models are helpful to understand the salient features of groundwater flow
and measure the variables such as solute concentrations at different locations of an artificial 
aquifer. A good example of this type of model is the two artificial aquifers at Lincoln 
University, New Zealand, a brief description of which appears in the monograph by Kulasiri
and Verwoerd (2002). Apart from understanding the physical and chemical processes that
occur in the aquifers, the measured variables can be used to partially validate the
mathematical models. Inadequacy of these physical models is that their flow lengths are 
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fixed (in the case of Lincoln aquifers, flow length is 10 m), and the porous structure cannot 
be changed, and therefore a study involving multi-scale general behaviour of solute 
transport in saturated porous media may not be feasible. Analog models, as the name 
suggests, are used to study analogues of real aquifers by using electrical flow through 
conductors. While worthwhile insights can be obtained from these models, the development 
of and experimentation on these models can be expensive, in addition to being cumbersome 
and time consuming.These factors may have contributed to the popular use of mathematical 
and computational models in recent decades (Bear, 1979; Spitz and Moreno, 1996; Fetter, 
2001). 

A mathematical model consists of a set of differential equations that describe the governing 
principles of the physical processes of groundwater flow and mass transport of solutes. 
These time-dependent models have been solved analytically as well as numerically (Wang 
and Anderson, 1982; Anderson and Woessner, 1992; Fetter, 2001). Analytical solutions are 
often based on simpler formulations of the problems, for example, using the assumptions on 
homogeneity and isotropy of the medium; however, they are rich in providing the insights 
into the untested regimes of behaviour. They also reduce the complexity of the problem 
(Spitz and Moreno, 1996), and in practice, for example, the analytical solutions are 
commonly used in the parameter estimation problems using the pumping tests (Kruseman 
and Ridder, 1970). Analytical solutions also find wide applications in describing the one-
dimensional and two-dimensional steady state flows in homogeneous flow systems 
(Walton, 1979). However, in transport problems, the solutions of mathematical models are 
often intractable; despite this difficulty there are number of models in the literature that 
could be useful in many situations: Ogata and Banks’ (1961) model on one-dimensional 
longitudinal transport is such a model. A one-dimensional solution for transverse spreading 
(Harleman and Rumer (1963)) and other related solutions are quite useful (see Bear (1972); 
Freeze and Cherry (1979)). 

Numerical models are widely used when there are complex boundary conditions or where 
the coefficients are nonlinear within the domain of the model or both situations occur 
simultaneously (Zheng and Bennett, 1995). Rapid developments in digital computers enable 
the solutions of complex groundwater problems with numerical models to be efficient and 
faster. Since numerical models provide the most versatile approach to hydrology problems, 
they have outclassed all other types of models in many ways; especially in the scale of the 
problem and heterogeneity. The well-earned popularity of numerical models, however, may 
lead to over-rating their potential because groundwater systems are complicated beyond 
our capability to evaluate them in detail. Therefore, a modeller should pay great attention to 
the implications of simplifying assumptions, which may otherwise become a 
misrepresentation of the real system (Spitz and Moreno, 1996). 

Having discussed the context within which this work is done, we now focus on the core 
problem, the solute transport in porous media. We are only concerned with the porous 
media saturated with water, and it is reasonable to assume that the density of the solute in 
water is similar to that of water. Further we assume that the solute is chemically inert with 
respect to the porous material. While these can be included in the mathematical 
developments, they tend to mask the key problem that is being addressed.  

 

There are three distinct processes that contribute to the transport of solute in groundwater: 
convection, dispersion, and diffusion. Convection or advective transport refers to the 
dissolved solid transport due to the average bulk flow of the ground water. The quantity of 
solute being transported, in advection, depends on the concentration and quantity of 
ground water flowing. Different pore sizes, different flow lengths and friction in pores cause 
ground water to move at rates that are both greater and lesser than the average linear 
velocity. Due to these multitude of non-uniform non-parallel flow paths within which water 
moves at different velocities, mixing occurs in flowing ground water. The mixing that occurs 
in parallel to the flow direction is called hydrodynamic longitudinal dispersion; the word 
“hydrodynamic” signifies the momentum transfers among the fluid molecules. Likewise, 
the hydrodynamic transverse dispersion is the mixing that occurs in directions normal to the 
direction of flow. Diffusion refers to the spreading of the pollutant due to its concentration 
gradients, i.e., a solute in water will move from an area of greater concentration towards an 
area where it is less concentrated. Diffusion, unlike dispersion will occur even when the 
fluid has a zero mean velocity. Due to the tortuosity of the pores, the rate of diffusion in an 
aquifer is lower than the rate in water alone, and is usually considered negligible in aquifer 
flow when compared to convection and dispersion (Fetter, 2001). (Tortuosity is a measure of 
the effect of the shape of the flow path followed by water molecules in a porous media). The 
latter two processes are often lumped under the term hydrodynamic dispersion. Each of the 
three transport processes can dominate under different circumstances, depending on the 
rate of fluid flow and the nature of the medium (Bear, 1972).  

The combination of these three processes can be expressed by the advection – dispersion 
equation (Bear, 1979; Fetter, 1999; Anderson and Woessner, 1992; Spitz and Moreno, 1996; 
Fetter, 2001). Other possible phenomenon that can present in solute transport such as 
adsorption and the occurrence of short circuits are assumed negligible in this case. 
Derivation of the advection-dispersion equation is given by Ogata (1970), Bear (1972), and 
Freeze and Cherry (1979). Solutions of the advection-dispersion equation are generally 
based on a few working assumptions such as: the porous medium is homogeneous, 
isotropic and saturated with fluid, and flow conditions are such that Darcy’s law is valid 
(Bear, 1972; Fetter, 1999). The two-dimensional deterministic advection – dispersion 
equation can be written as (Fetter, 1999), 

    

2 2

2 2L T x
C C C CD D v
t x y x

                   
,                  (1.1.1) 

where C  is the solute concentration (M/L3), t  is time (T), LD  is the hydrodynamic 
dispersion coefficient parallel to the principal direction of flow (longitudinal) (L2/T), TD   is 
the hydrodynamic dispersion coefficient perpendicular to the principal direction of flow 
(transverse) (L2/T), and xv   is the average linear velocity (L/T) in the direction of flow. 

It is usually assumed that the hydrodynamic dispersion coefficients will have Gaussian 
distributions that is described by the mean and variance; therefore we express them as 
follows: 
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(Bear, 1972; Fetter, 1999). The two-dimensional deterministic advection – dispersion 
equation can be written as (Fetter, 1999), 
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where C  is the solute concentration (M/L3), t  is time (T), LD  is the hydrodynamic 
dispersion coefficient parallel to the principal direction of flow (longitudinal) (L2/T), TD   is 
the hydrodynamic dispersion coefficient perpendicular to the principal direction of flow 
(transverse) (L2/T), and xv   is the average linear velocity (L/T) in the direction of flow. 

It is usually assumed that the hydrodynamic dispersion coefficients will have Gaussian 
distributions that is described by the mean and variance; therefore we express them as 
follows: 
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fixed (in the case of Lincoln aquifers, flow length is 10 m), and the porous structure cannot 
be changed, and therefore a study involving multi-scale general behaviour of solute 
transport in saturated porous media may not be feasible. Analog models, as the name 
suggests, are used to study analogues of real aquifers by using electrical flow through 
conductors. While worthwhile insights can be obtained from these models, the development 
of and experimentation on these models can be expensive, in addition to being cumbersome 
and time consuming.These factors may have contributed to the popular use of mathematical 
and computational models in recent decades (Bear, 1979; Spitz and Moreno, 1996; Fetter, 
2001). 

A mathematical model consists of a set of differential equations that describe the governing 
principles of the physical processes of groundwater flow and mass transport of solutes. 
These time-dependent models have been solved analytically as well as numerically (Wang 
and Anderson, 1982; Anderson and Woessner, 1992; Fetter, 2001). Analytical solutions are 
often based on simpler formulations of the problems, for example, using the assumptions on 
homogeneity and isotropy of the medium; however, they are rich in providing the insights 
into the untested regimes of behaviour. They also reduce the complexity of the problem 
(Spitz and Moreno, 1996), and in practice, for example, the analytical solutions are 
commonly used in the parameter estimation problems using the pumping tests (Kruseman 
and Ridder, 1970). Analytical solutions also find wide applications in describing the one-
dimensional and two-dimensional steady state flows in homogeneous flow systems 
(Walton, 1979). However, in transport problems, the solutions of mathematical models are 
often intractable; despite this difficulty there are number of models in the literature that 
could be useful in many situations: Ogata and Banks’ (1961) model on one-dimensional 
longitudinal transport is such a model. A one-dimensional solution for transverse spreading 
(Harleman and Rumer (1963)) and other related solutions are quite useful (see Bear (1972); 
Freeze and Cherry (1979)). 

Numerical models are widely used when there are complex boundary conditions or where 
the coefficients are nonlinear within the domain of the model or both situations occur 
simultaneously (Zheng and Bennett, 1995). Rapid developments in digital computers enable 
the solutions of complex groundwater problems with numerical models to be efficient and 
faster. Since numerical models provide the most versatile approach to hydrology problems, 
they have outclassed all other types of models in many ways; especially in the scale of the 
problem and heterogeneity. The well-earned popularity of numerical models, however, may 
lead to over-rating their potential because groundwater systems are complicated beyond 
our capability to evaluate them in detail. Therefore, a modeller should pay great attention to 
the implications of simplifying assumptions, which may otherwise become a 
misrepresentation of the real system (Spitz and Moreno, 1996). 

Having discussed the context within which this work is done, we now focus on the core 
problem, the solute transport in porous media. We are only concerned with the porous 
media saturated with water, and it is reasonable to assume that the density of the solute in 
water is similar to that of water. Further we assume that the solute is chemically inert with 
respect to the porous material. While these can be included in the mathematical 
developments, they tend to mask the key problem that is being addressed.  

 

There are three distinct processes that contribute to the transport of solute in groundwater: 
convection, dispersion, and diffusion. Convection or advective transport refers to the 
dissolved solid transport due to the average bulk flow of the ground water. The quantity of 
solute being transported, in advection, depends on the concentration and quantity of 
ground water flowing. Different pore sizes, different flow lengths and friction in pores cause 
ground water to move at rates that are both greater and lesser than the average linear 
velocity. Due to these multitude of non-uniform non-parallel flow paths within which water 
moves at different velocities, mixing occurs in flowing ground water. The mixing that occurs 
in parallel to the flow direction is called hydrodynamic longitudinal dispersion; the word 
“hydrodynamic” signifies the momentum transfers among the fluid molecules. Likewise, 
the hydrodynamic transverse dispersion is the mixing that occurs in directions normal to the 
direction of flow. Diffusion refers to the spreading of the pollutant due to its concentration 
gradients, i.e., a solute in water will move from an area of greater concentration towards an 
area where it is less concentrated. Diffusion, unlike dispersion will occur even when the 
fluid has a zero mean velocity. Due to the tortuosity of the pores, the rate of diffusion in an 
aquifer is lower than the rate in water alone, and is usually considered negligible in aquifer 
flow when compared to convection and dispersion (Fetter, 2001). (Tortuosity is a measure of 
the effect of the shape of the flow path followed by water molecules in a porous media). The 
latter two processes are often lumped under the term hydrodynamic dispersion. Each of the 
three transport processes can dominate under different circumstances, depending on the 
rate of fluid flow and the nature of the medium (Bear, 1972).  

The combination of these three processes can be expressed by the advection – dispersion 
equation (Bear, 1979; Fetter, 1999; Anderson and Woessner, 1992; Spitz and Moreno, 1996; 
Fetter, 2001). Other possible phenomenon that can present in solute transport such as 
adsorption and the occurrence of short circuits are assumed negligible in this case. 
Derivation of the advection-dispersion equation is given by Ogata (1970), Bear (1972), and 
Freeze and Cherry (1979). Solutions of the advection-dispersion equation are generally 
based on a few working assumptions such as: the porous medium is homogeneous, 
isotropic and saturated with fluid, and flow conditions are such that Darcy’s law is valid 
(Bear, 1972; Fetter, 1999). The two-dimensional deterministic advection – dispersion 
equation can be written as (Fetter, 1999), 
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where C  is the solute concentration (M/L3), t  is time (T), LD  is the hydrodynamic 
dispersion coefficient parallel to the principal direction of flow (longitudinal) (L2/T), TD   is 
the hydrodynamic dispersion coefficient perpendicular to the principal direction of flow 
(transverse) (L2/T), and xv   is the average linear velocity (L/T) in the direction of flow. 

It is usually assumed that the hydrodynamic dispersion coefficients will have Gaussian 
distributions that is described by the mean and variance; therefore we express them as 
follows: 
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fixed (in the case of Lincoln aquifers, flow length is 10 m), and the porous structure cannot 
be changed, and therefore a study involving multi-scale general behaviour of solute 
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commonly used in the parameter estimation problems using the pumping tests (Kruseman 
and Ridder, 1970). Analytical solutions also find wide applications in describing the one-
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often intractable; despite this difficulty there are number of models in the literature that 
could be useful in many situations: Ogata and Banks’ (1961) model on one-dimensional 
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(Harleman and Rumer (1963)) and other related solutions are quite useful (see Bear (1972); 
Freeze and Cherry (1979)). 

Numerical models are widely used when there are complex boundary conditions or where 
the coefficients are nonlinear within the domain of the model or both situations occur 
simultaneously (Zheng and Bennett, 1995). Rapid developments in digital computers enable 
the solutions of complex groundwater problems with numerical models to be efficient and 
faster. Since numerical models provide the most versatile approach to hydrology problems, 
they have outclassed all other types of models in many ways; especially in the scale of the 
problem and heterogeneity. The well-earned popularity of numerical models, however, may 
lead to over-rating their potential because groundwater systems are complicated beyond 
our capability to evaluate them in detail. Therefore, a modeller should pay great attention to 
the implications of simplifying assumptions, which may otherwise become a 
misrepresentation of the real system (Spitz and Moreno, 1996). 

Having discussed the context within which this work is done, we now focus on the core 
problem, the solute transport in porous media. We are only concerned with the porous 
media saturated with water, and it is reasonable to assume that the density of the solute in 
water is similar to that of water. Further we assume that the solute is chemically inert with 
respect to the porous material. While these can be included in the mathematical 
developments, they tend to mask the key problem that is being addressed.  

 

There are three distinct processes that contribute to the transport of solute in groundwater: 
convection, dispersion, and diffusion. Convection or advective transport refers to the 
dissolved solid transport due to the average bulk flow of the ground water. The quantity of 
solute being transported, in advection, depends on the concentration and quantity of 
ground water flowing. Different pore sizes, different flow lengths and friction in pores cause 
ground water to move at rates that are both greater and lesser than the average linear 
velocity. Due to these multitude of non-uniform non-parallel flow paths within which water 
moves at different velocities, mixing occurs in flowing ground water. The mixing that occurs 
in parallel to the flow direction is called hydrodynamic longitudinal dispersion; the word 
“hydrodynamic” signifies the momentum transfers among the fluid molecules. Likewise, 
the hydrodynamic transverse dispersion is the mixing that occurs in directions normal to the 
direction of flow. Diffusion refers to the spreading of the pollutant due to its concentration 
gradients, i.e., a solute in water will move from an area of greater concentration towards an 
area where it is less concentrated. Diffusion, unlike dispersion will occur even when the 
fluid has a zero mean velocity. Due to the tortuosity of the pores, the rate of diffusion in an 
aquifer is lower than the rate in water alone, and is usually considered negligible in aquifer 
flow when compared to convection and dispersion (Fetter, 2001). (Tortuosity is a measure of 
the effect of the shape of the flow path followed by water molecules in a porous media). The 
latter two processes are often lumped under the term hydrodynamic dispersion. Each of the 
three transport processes can dominate under different circumstances, depending on the 
rate of fluid flow and the nature of the medium (Bear, 1972).  

The combination of these three processes can be expressed by the advection – dispersion 
equation (Bear, 1979; Fetter, 1999; Anderson and Woessner, 1992; Spitz and Moreno, 1996; 
Fetter, 2001). Other possible phenomenon that can present in solute transport such as 
adsorption and the occurrence of short circuits are assumed negligible in this case. 
Derivation of the advection-dispersion equation is given by Ogata (1970), Bear (1972), and 
Freeze and Cherry (1979). Solutions of the advection-dispersion equation are generally 
based on a few working assumptions such as: the porous medium is homogeneous, 
isotropic and saturated with fluid, and flow conditions are such that Darcy’s law is valid 
(Bear, 1972; Fetter, 1999). The two-dimensional deterministic advection – dispersion 
equation can be written as (Fetter, 1999), 
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where C  is the solute concentration (M/L3), t  is time (T), LD  is the hydrodynamic 
dispersion coefficient parallel to the principal direction of flow (longitudinal) (L2/T), TD   is 
the hydrodynamic dispersion coefficient perpendicular to the principal direction of flow 
(transverse) (L2/T), and xv   is the average linear velocity (L/T) in the direction of flow. 

It is usually assumed that the hydrodynamic dispersion coefficients will have Gaussian 
distributions that is described by the mean and variance; therefore we express them as 
follows: 
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where 2
L  is the variance of the longitudinal spreading of the plume, and 2

T  is the 
variance of the transverse spreading of the plume.  

The dispersion coefficients can be thought of having two components: the first measure 
would reflect the hydrodynamic effects and the other component would indicate the 
molecular diffusion. For example, for the longitudinal dispersion coefficient,  

              
*

L L LD v D  ,                  (1.1.4) 

where L  is the longitudinal dynamic dispersivity, Lv  is the average linear velocity in  
longitudinal direction, and *D  is the effective diffusion coefficient. 

A similar equation can be written for the transverse dispersion as well. Equation (1.1.4) 
introduces a measure of dispersivity, L , which has the length dimension, and it can be 
considered as the average length a solute disperses when mean velocity of solute is unity. 
Usually in aquifers, diffusion can be neglected compared to the convective flow. Therefore, 
if velocity is written as a derivative of travel length with respect to time, the simplified 
version of equation (1.1.4) ( L L iD v ) shows a similar relationship as Fick’s law in physics.  

(Fick’s first law expresses that the mass of fluid diffusing is proportional to the 
concentration gradient. In one dimension, Fick’s first law can be expressed as: 
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where F  is the mass flux of solute per unit area per unit time (M/ L2/T), dD   is the  

diffusion coefficient (L2/T), C is the solute concentration (M/L3), and dC
dx

 is the 

concentration gradient (M/L3/L). 

Fick’s second law gives, in one dimension,  
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In general, dispersivity is considered as a property of a porous medium. Within equation 
(1.1.1) hydrodynamic dispersion coefficients represent the average dispersion for each 
direction for the entire domain of flow, and they mainly allude to and help quantifying the 
fingering effects on dispersing solute due to granular and irregular nature of the porous 

 

matrix through which solute flows. To understand how equation (1.1.1), which is a working 
model of dispersion, came about, it is important to understand its derivation better and the 
assumptions underpinning the development of the model. 
 

1.2 Deterministic Models of Dispersion 
There is much work done in this area using the deterministic description of mass 
conservation. In the derivation of advection–dispersion equation, also known as continuum 
transport model, (see Rashidi et al. (1999)), one takes the velocity fluctuations around the 
mean velocity to calculate the solute flux at a given point using the averaging theorems. The 
solute flux can be divided into two parts: mean advective flux which stems from the mean 
velocity and the mean concentration at a given point in space; and the mean dispersive flux 
which results from the averaging of the product of the fluctuating velocity component and 
the fluctuating concentration component. These fluctuations are at the scale of the particle 
sizes, and these fluctuations give rise to hydrodynamic dispersion over time along the 
porous medium in which solute is dispersed. If we track a single particle with time along 
one dimensional direction, the velocity fluctuation of the solute particle along that direction 
is a function of the pressure differential across the medium and the geometrical shapes of 
the particles, consequently the shapes of the pore spaces. These factors get themselves 
incorporated into the advection-dispersion equation through the assumptions which are 
similar to the Fick’s law in physics. 

To understand where the dispersion terms originate, it is worthwhile to review briefly the 
continuum model for the advection and dispersion in a porous medium (see Rashidi et al. 
(1999)). The mass conservation has been applied to a neutral solute assuming that the 
porosity of the region in which the mass is conserved does not change abruptly, i.e., changes 
in porosity would be continuous. This essentially means that the fluctuations which exist at 
the pore scale get smoothened out at the scale in which the continuum model is derived. 
However, the pore scale fluctuations give rise to hydrodynamic dispersion in the first place, 
and we can expect that the continuum model is more appropriate for homogeneous media. 

Consider the one dimensional problem of advection and dispersion in a porous medium 
without transverse dispersion. Assuming that the porous matrix is saturated with water of 
density, ρ, the local flow velocity with respect to pore structure and the local concentration  
are denoted by v(x,t) and c(x,t) at a given point x, respectively. These variables are 
interpreted as intrinsic volume average quantities over a representative elementary volume 
(Thompson and Gray, 1986). Because the solute flux is transient, conservation of solute mass 
is expressed by the time-dependent equation of continuity, a form of which is given below: 
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,             (1.2.1) 

where xv  is the mean velocity in the x- direction, c  is the intrinsic volume average 
concentration, φ is the porosity, Jx and τx are the macroscopic dispersive flux and diffusive 
tortuosity, respectively. They are approximated by using constitutive relationships for the 
medium. 
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where 2
L  is the variance of the longitudinal spreading of the plume, and 2

T  is the 
variance of the transverse spreading of the plume.  

The dispersion coefficients can be thought of having two components: the first measure 
would reflect the hydrodynamic effects and the other component would indicate the 
molecular diffusion. For example, for the longitudinal dispersion coefficient,  
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where L  is the longitudinal dynamic dispersivity, Lv  is the average linear velocity in  
longitudinal direction, and *D  is the effective diffusion coefficient. 

A similar equation can be written for the transverse dispersion as well. Equation (1.1.4) 
introduces a measure of dispersivity, L , which has the length dimension, and it can be 
considered as the average length a solute disperses when mean velocity of solute is unity. 
Usually in aquifers, diffusion can be neglected compared to the convective flow. Therefore, 
if velocity is written as a derivative of travel length with respect to time, the simplified 
version of equation (1.1.4) ( L L iD v ) shows a similar relationship as Fick’s law in physics.  

(Fick’s first law expresses that the mass of fluid diffusing is proportional to the 
concentration gradient. In one dimension, Fick’s first law can be expressed as: 
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In general, dispersivity is considered as a property of a porous medium. Within equation 
(1.1.1) hydrodynamic dispersion coefficients represent the average dispersion for each 
direction for the entire domain of flow, and they mainly allude to and help quantifying the 
fingering effects on dispersing solute due to granular and irregular nature of the porous 

 

matrix through which solute flows. To understand how equation (1.1.1), which is a working 
model of dispersion, came about, it is important to understand its derivation better and the 
assumptions underpinning the development of the model. 
 

1.2 Deterministic Models of Dispersion 
There is much work done in this area using the deterministic description of mass 
conservation. In the derivation of advection–dispersion equation, also known as continuum 
transport model, (see Rashidi et al. (1999)), one takes the velocity fluctuations around the 
mean velocity to calculate the solute flux at a given point using the averaging theorems. The 
solute flux can be divided into two parts: mean advective flux which stems from the mean 
velocity and the mean concentration at a given point in space; and the mean dispersive flux 
which results from the averaging of the product of the fluctuating velocity component and 
the fluctuating concentration component. These fluctuations are at the scale of the particle 
sizes, and these fluctuations give rise to hydrodynamic dispersion over time along the 
porous medium in which solute is dispersed. If we track a single particle with time along 
one dimensional direction, the velocity fluctuation of the solute particle along that direction 
is a function of the pressure differential across the medium and the geometrical shapes of 
the particles, consequently the shapes of the pore spaces. These factors get themselves 
incorporated into the advection-dispersion equation through the assumptions which are 
similar to the Fick’s law in physics. 

To understand where the dispersion terms originate, it is worthwhile to review briefly the 
continuum model for the advection and dispersion in a porous medium (see Rashidi et al. 
(1999)). The mass conservation has been applied to a neutral solute assuming that the 
porosity of the region in which the mass is conserved does not change abruptly, i.e., changes 
in porosity would be continuous. This essentially means that the fluctuations which exist at 
the pore scale get smoothened out at the scale in which the continuum model is derived. 
However, the pore scale fluctuations give rise to hydrodynamic dispersion in the first place, 
and we can expect that the continuum model is more appropriate for homogeneous media. 

Consider the one dimensional problem of advection and dispersion in a porous medium 
without transverse dispersion. Assuming that the porous matrix is saturated with water of 
density, ρ, the local flow velocity with respect to pore structure and the local concentration  
are denoted by v(x,t) and c(x,t) at a given point x, respectively. These variables are 
interpreted as intrinsic volume average quantities over a representative elementary volume 
(Thompson and Gray, 1986). Because the solute flux is transient, conservation of solute mass 
is expressed by the time-dependent equation of continuity, a form of which is given below: 
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where xv  is the mean velocity in the x- direction, c  is the intrinsic volume average 
concentration, φ is the porosity, Jx and τx are the macroscopic dispersive flux and diffusive 
tortuosity, respectively. They are approximated by using constitutive relationships for the 
medium. 
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where 2
L  is the variance of the longitudinal spreading of the plume, and 2

T  is the 
variance of the transverse spreading of the plume.  

The dispersion coefficients can be thought of having two components: the first measure 
would reflect the hydrodynamic effects and the other component would indicate the 
molecular diffusion. For example, for the longitudinal dispersion coefficient,  
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where L  is the longitudinal dynamic dispersivity, Lv  is the average linear velocity in  
longitudinal direction, and *D  is the effective diffusion coefficient. 

A similar equation can be written for the transverse dispersion as well. Equation (1.1.4) 
introduces a measure of dispersivity, L , which has the length dimension, and it can be 
considered as the average length a solute disperses when mean velocity of solute is unity. 
Usually in aquifers, diffusion can be neglected compared to the convective flow. Therefore, 
if velocity is written as a derivative of travel length with respect to time, the simplified 
version of equation (1.1.4) ( L L iD v ) shows a similar relationship as Fick’s law in physics.  

(Fick’s first law expresses that the mass of fluid diffusing is proportional to the 
concentration gradient. In one dimension, Fick’s first law can be expressed as: 
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where F  is the mass flux of solute per unit area per unit time (M/ L2/T), dD   is the  

diffusion coefficient (L2/T), C is the solute concentration (M/L3), and dC
dx

 is the 

concentration gradient (M/L3/L). 

Fick’s second law gives, in one dimension,  
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In general, dispersivity is considered as a property of a porous medium. Within equation 
(1.1.1) hydrodynamic dispersion coefficients represent the average dispersion for each 
direction for the entire domain of flow, and they mainly allude to and help quantifying the 
fingering effects on dispersing solute due to granular and irregular nature of the porous 

 

matrix through which solute flows. To understand how equation (1.1.1), which is a working 
model of dispersion, came about, it is important to understand its derivation better and the 
assumptions underpinning the development of the model. 
 

1.2 Deterministic Models of Dispersion 
There is much work done in this area using the deterministic description of mass 
conservation. In the derivation of advection–dispersion equation, also known as continuum 
transport model, (see Rashidi et al. (1999)), one takes the velocity fluctuations around the 
mean velocity to calculate the solute flux at a given point using the averaging theorems. The 
solute flux can be divided into two parts: mean advective flux which stems from the mean 
velocity and the mean concentration at a given point in space; and the mean dispersive flux 
which results from the averaging of the product of the fluctuating velocity component and 
the fluctuating concentration component. These fluctuations are at the scale of the particle 
sizes, and these fluctuations give rise to hydrodynamic dispersion over time along the 
porous medium in which solute is dispersed. If we track a single particle with time along 
one dimensional direction, the velocity fluctuation of the solute particle along that direction 
is a function of the pressure differential across the medium and the geometrical shapes of 
the particles, consequently the shapes of the pore spaces. These factors get themselves 
incorporated into the advection-dispersion equation through the assumptions which are 
similar to the Fick’s law in physics. 

To understand where the dispersion terms originate, it is worthwhile to review briefly the 
continuum model for the advection and dispersion in a porous medium (see Rashidi et al. 
(1999)). The mass conservation has been applied to a neutral solute assuming that the 
porosity of the region in which the mass is conserved does not change abruptly, i.e., changes 
in porosity would be continuous. This essentially means that the fluctuations which exist at 
the pore scale get smoothened out at the scale in which the continuum model is derived. 
However, the pore scale fluctuations give rise to hydrodynamic dispersion in the first place, 
and we can expect that the continuum model is more appropriate for homogeneous media. 

Consider the one dimensional problem of advection and dispersion in a porous medium 
without transverse dispersion. Assuming that the porous matrix is saturated with water of 
density, ρ, the local flow velocity with respect to pore structure and the local concentration  
are denoted by v(x,t) and c(x,t) at a given point x, respectively. These variables are 
interpreted as intrinsic volume average quantities over a representative elementary volume 
(Thompson and Gray, 1986). Because the solute flux is transient, conservation of solute mass 
is expressed by the time-dependent equation of continuity, a form of which is given below: 
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where xv  is the mean velocity in the x- direction, c  is the intrinsic volume average 
concentration, φ is the porosity, Jx and τx are the macroscopic dispersive flux and diffusive 
tortuosity, respectively. They are approximated by using constitutive relationships for the 
medium. 
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where xv  is the mean velocity in the x- direction, c  is the intrinsic volume average 
concentration, φ is the porosity, Jx and τx are the macroscopic dispersive flux and diffusive 
tortuosity, respectively. They are approximated by using constitutive relationships for the 
medium. 
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In equation (1.2.1), the rate of change of the intrinsic volume average concentration is 
balanced by the spatial gradients of A0, B0, and C0 terms, respectively. A0 represents the 
average volumetric flux of the solute transported by the average flow of fluid in the x-
direction at a given point in the porous matrix, x. However, the fluctuating component of 
the flux due to the velocity fluctuations around the mean velocity is captured through the 
term Jx(x,t) in B0, 

            
( , )x xJ x t c  ,                              (1.2.2) 

where ξx and c are the “noise” or perturbation  terms of  the solute velocity and the 
concentration about their means, respectively. C0 denotes the diffusive flux where Dm is the 
fundamental solute diffusivity. 

The mean advective flux (A0) and the mean dispersive flux (B0) can be thought of as 
representations of the masses of solute carried away by the mean velocity and the 
fluctuating components of velocity. Further, we do not often know the behaviour of the 
fluctuating velocity component, and the following assumption, which relates the fluctuating 
component of the flux to the mean velocity and the spatial gradient of the mean 
concentration, is used to describe the dispersive flux, 
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The plausible reasoning behind this assumption is as follows: dispersive flux is proportional 
to the mean velocity and also proportional to the spatial gradient of the mean concentration. 
The proportionality constant, αL, called the dispersivity, and the subscript L indicates the 
longitudinal direction. Higher the mean velocity, the pore-scale fluctuations are higher but 
they are subjected to the effects induced by the geometry of the pore structure. This is also 
true for the dispersive flux component induced by the concentration gradient. Therefore, the 
dispersivity can be expected to be a material property but its dependency on the spatial 
concentration gradient makes it vulnerable to the fluctuations in the concentration as so 
often seen in the experimental situations. The concentration gradients become weaker as the 
solute plume disperses through a bed of porous medium, and therefore, the mean 
dispersivity across the bed could be expected to be dependent on the scale of the 
experiment. This assumption (equation (1.2.3)) therefore, while making mathematical 
modelling simpler, adds another dimension to the problem: the scale dependency of the 
dispersivity; and therefore, the scale dependency of the dispersion coefficient, which is 
obtained by multiplying dispersivity by the mean velocity. 

The dispersion coefficient can be expressed as,  
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The diffusive tortuosity is typically approximated by a diffusion model of the form, 
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where G is a material coefficient bounded by 0 and 1. 

 

By substituting equations (1.2.3), (1.2.4) and (1.2.5) into equation (1.2.1), the working model 
for solute transport in porous media can be expressed as, 
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    is called the coefficient of hydrodynamic dispersion. In 

many cases, D>>Dm , therefore, DH ≈ D. We simply refer to D as the dispersion coefficient. 
For a flow with a constant mean velocity through a porous matrix having a constant 
porosity, we see that equation (1.2.6) becomes equation (1.1.1).  

In his pioneering work, Taylor (1953) used an equation analogous to equation (1.2.6) to 
study the dispersion of a soluble substance in a slow moving fluid in a small diameter tube, 
and he primarily focused on modelling the molecular diffusion coefficient using 
concentration profiles along a tube for large time. Following that work, Gill and 
Sankarasubramanian (1970) developed an exact solution for the local concentration for the 
fully developed laminar flow in a tube for all time. Their work shows that the time-
dependent dimensionless dispersion coefficient approaches an asymptotic value for larger 
time proving that Taylor’s analysis is adequate for steady-state diffusion through tubes. 
Even though the above analyses are primarily concerned with the diffusive flow in small-
diameter tubes, as a porous medium can be modelled as a pack of tubes, we could expect 
similar insights from the advection-dispersion models derived for porous media flow. 

The assumptions described by equations (1.2.3) and (1.2.5) above are similar in form to 
Fick’s first law, and therefore, we refer to equations (1.2.3) and (1.2.5) as Fickian 
assumptions. In particular, equation (1.2.3) defines the dispersivity and dispersion 
coefficient, which have become so integral to the modelling of dispersion in the literature. 
As we have briefly explained, dispersivity can be expected to be dependent on the scale of 
the experiment. This means that, in equations (1.1.1) and (1.2.6), the dispersion coefficient 
depends on the total length of the flow; mathematically, dispersion coefficient is not only a 
function of the distance variable x, but also a function of the total length. To circumvent the 
problems associated with solving the mathematical problem, the usual practice is to develop 
statistical relationships of dispersivity as a function of the total flow length. We discuss 
some of the relevant research related to ground water flow addressing the scale dependency 
problem in the next section. 
 

1.3 A Short Literature Review of Scale Dependency 
The differences between longitudinal dispersion observed in the field experiments and to 
the those conducted in the laboratory may be a result of the wide distribution of 
permeabilities and consequently the velocities found within a real aquifer (Theis 1962, 1963). 
Fried (1972) presented a few longitudinal dispersivity observations for several sites which 
were within the range of 0.1 to 0.6 m for the local (aquifer stratum) scale, and within 5 to 11 
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The plausible reasoning behind this assumption is as follows: dispersive flux is proportional 
to the mean velocity and also proportional to the spatial gradient of the mean concentration. 
The proportionality constant, αL, called the dispersivity, and the subscript L indicates the 
longitudinal direction. Higher the mean velocity, the pore-scale fluctuations are higher but 
they are subjected to the effects induced by the geometry of the pore structure. This is also 
true for the dispersive flux component induced by the concentration gradient. Therefore, the 
dispersivity can be expected to be a material property but its dependency on the spatial 
concentration gradient makes it vulnerable to the fluctuations in the concentration as so 
often seen in the experimental situations. The concentration gradients become weaker as the 
solute plume disperses through a bed of porous medium, and therefore, the mean 
dispersivity across the bed could be expected to be dependent on the scale of the 
experiment. This assumption (equation (1.2.3)) therefore, while making mathematical 
modelling simpler, adds another dimension to the problem: the scale dependency of the 
dispersivity; and therefore, the scale dependency of the dispersion coefficient, which is 
obtained by multiplying dispersivity by the mean velocity. 
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m for the global (aquifer thickness) scale. These values show the differences in magnitude of 
the dispersivities. Fried (1975) revisited and redefined these scales in terms of ‘mean 
travelled distance’ of the tracer or contaminant as local scale (total flow length between 2 
and 4 m), global scale 1 (flow length between 4 and 20 m), global scale 2 (flow length 
between 20 and 100 m), and regional scale (greater than 100 m; usually several kilometres). 

When tested for transverse dispersion, Fried (1972) found no scale effect on the transverse 
dispersivity and thought that its value could be obtained from the laboratory results. 
However, Klotz et al. (1980) illustrated from a field tracer test that the width of the tracer 
plume increased linearly with the travel distance. Oakes and Edworthy (1977) conducted the 
two-well pulse and the radial injection experiments in a sandstone aquifer and showed that 
the dispersivity readings for the fully penetrated depth to be 2 to 4 times the values for 
discrete layers. These results are inconclusive about the lateral dispersivity, and it is very 
much dependent on the flow length as well as the characteristics of porous matrix subjected 
to the testing. 

Pickens and Grisak (1981), by conducting the laboratory column and field tracer tests, 
reported that the average longitudinal dispersivity, L ,  was 0.035 cm for three laboratory 
tracer tests with a repacked column of sand when the flow length was 30 cm. For a stratified 
sand aquifer, by analysing the withdrawal phase concentration histories of a single–well test 
of an injection withdrawal well, they showed  L  were 3 cm and 9 cm for flow lengths of 
3.13 m and 4.99 m, respectively. Further, they obtained 50 cm dispersivity in a two-well 
recirculating withdrawal–injection tracer test with wells located 8 m apart. All these tests 
were conducted in the same site. Pickens and Grisak (1981) showed that the scale 
dependency of L  for the study site has a relationship of L = 0.1 L, where L is the mean 
travel distance. Lallemand-Barres and Peaudecerf  (1978, cited in Fetter, 1999) plotted the 
field measured L  against the flow length on a log-log graph which strengthened the 
finding of Pickens and Grisak (1981) and suggested that L  could be estimated to be about 
0.1 of the flow length. Gelhar (1986) published a similar representation of the scale of 
dependency L using the data from many sites around the world, and according to that 
study, L  in the range of 1 to 10 m would be reasonable for a site of dimension in the order 
of 1 km. However, the relationship of L  and the flow length is more complex and not as 
simple as shown by Pickens and Grisak (1981), and Lallemand-Barres and Peaudecerf (1978, 
cited in Fetter, 1999). Several other studies  on the scale dependency of dispersivity can be 
found in Peaudecef and Sauty (1978), Sudicky and Cherry (1979), Merritt et al. (1979), 
Chapman (1979), Lee et al. (1980), Huang et al. (1996b), Scheibe and Yabusaki (1998), Klenk 
and Grathwohl (2002), and Vanderborght and Vereecken (2002). These empirical 
relationships influenced the way models developed subsequently. For example, Huang et al. 
(1996a) developed an analytical solution for solute transport in heterogeneous porous media 
with scale dependent dispersion. In this model, dispersivity was assumed to increase 
linearly with flow length until some distance and reaches an asymptotic value. 

Scale dependency of dispersivity shows that the contracted description of the deterministic 
model has inherent problems that need to be addressed using other forms of contracted 
descriptions. The Fickian assumptions, for example, help to develop a description which 
would absorb the fluctuations into a deterministic formalism. But this does not necessarily 

 

mean that this deterministic formalism is adequate to capture the reality of solute transport 
within, often unknown, porous structures. While the deterministic formalisms provide 
tractable and useful solutions for practical purposes, they may deviate from the reality they 
represent, in some situations, to unacceptable levels. One could argue that any contracted 
description of  the behaviour of physical ensemble of moving particles must be mechanistic 
as well as statistical (Keizer, 1987);  this may be one of the plausible reasons why there are 
many stochastic models of groundwater flow. Other plausible reasons are: formations of 
real world groundwater aquifers are highly heterogeneous, boundaries of the system are 
multifaceted, inputs are highly erratic, and other subsidiary conditions can be subject to 
variation as well. Heterogeneous underground formations pose major challenges of 
developing contracted descriptions of solute transport within them. This was illustrated by 
injecting a colour liquid into a body of porous rock material with irregular permeability 
(Øksendal, 1998). These experiments showed that the resulting highly scattered 
distributions of the liquid were not diffusing according to the deterministic models.  

To address the issue of scale dependence of dispersivity and dispersion coefficient 
fundamentally, it has been argued that a more realistic approach to modelling is to use 
stochastic calculus (Holden et al., 1996; Kulasiri and Verwoerd, 1999, 2002). Stochastic 
calculus deals with the uncertainty in the natural and other phenomena using 
nondifferentiable functions for which ordinary differentials do not exist (Klebaner, 1998). 
This well established branch of applied mathematics is based on the premise that the 
differentials of nondifferential functions can have meaning only through certain types of 
integrals such as Ito integrals which are rigorously developed in the literature. In addition, 
mathematically well-defined processes such as Weiner processes aid in formulating 
mathematical models of complex systems. 

Mathematical theories aside, one needs to question the validity of using stochastic calculus 
in each instance. In modelling the solute transport in porous media, we consider that the 
fluid velocity is fundamentally a random variable with respect to space and time and 
continuous but irregular, i.e., nondifferentiable. In many natural porous formations, 
geometrical structures are irregular and therefore, as fluid particles encounter porous 
structures, velocity changes are more likely to be irregular than regular. In many situations, 
we hardly have accurate information about the porous structure, which contributes to 
greater uncertainties. Hence, stochastic calculus provides a more sophisticated mathematical 
framework to model the advection-dispersion in porous media found in practical situations, 
especially involving natural porous formations. By using stochastic partial differential 
equations, for example, we could incorporate the uncertainty of the dispersion coefficient 
and hydraulic conductivity that are present in porous structures such as underground 
aquifers. The incorporation of the dispersivity as a random, irregular coefficient makes the 
solution of resulting partial differential equations an interesting area of study. However, the 
scale dependency of the dispersivity can not be addressed in this manner because the 
dispersivity itself is not a material property but it depends on the scale of the experiment. 
 

1.4 Stochastic Models  
The last three decades have seen rapid developments in theoretical research treating 
groundwater flow and transport problems in a probabilistic framework. The models that are 
developed under such a theoretical basis are called stochastic models, in which statistical 
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developed under such a theoretical basis are called stochastic models, in which statistical 
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uncertainty of a natural phenomenon, such as solute transport, is expressed within the 
stochastic governing equations rather than based on deterministic formulations. The 
probabilistic nature of this outcome is due to the fact that there is a heterogeneous 
distribution of the underlying aquifer parameters such as hydraulic conductivity and 
porosity (Freeze, 1975). 

The researchers in the field of hydrology have paid more attention to the scale and 
variability of aquifers over the two past decades. It is apparent that we need to deal with 
larger scales more than ever to study the groundwater contaminant problems, which are 
becoming serious environmental concerns. The scale of the aquifer has a direct proportional 
relationship to the variability. Hence, the potential role of modelling in addressing these 
challenges is very much dependent on spatial distribution. When working with 
deterministic models, if we could measure the hydrogeologic parameters at very close 
spatial intervals (which is prohibitively expensive), the distribution of aquifer properties 
would have a high degree of detail. Therefore, the solution of the deterministic model 
would yield results with a high degree of reliability. However, as the knowledge of fine-
grained hydrogeologic parameters are limited in practice, the stochastic models are used to 
understand dynamics of aquifers thus recognising the inherent probabilistic nature of the 
hydrodynamic dispersion.  

Early research on stochastic modelling can be categorised in terms of three possible sources 
of uncertainties: (i) those caused by measurement errors in the input parameters, (ii) those 
caused by spatial averaging of input parameters, and (iii) those associated with an inherent 
stochastic description of heterogeneity porous media (Freeze, 1975). Bibby and Sunada 
(1971) utilised the Monte Carlo numerical simulation model to investigate the effect on the 
solution of normally distributed measurement errors in initial head, boundary heads, 
pumping rate, aquifer thickness, hydraulic conductivity, and storage coefficient of transient 
flow to a well in a confined aquifer. Sagar and Kisiel (1972) conducted an error propagation 
study to understand the influence of errors in the initial head, transmissibility, and storage 
coefficient on the drawdown pattern predicted by the Theis equation. We can find that some 
aspects of the flow in heterogeneous formations have been investigated even in the early 
1960s (Warren and Price, 1961; McMillan, 1966). However, concerted efforts began only in 
1975, with the pioneering work of Freeze (1975).  

Freeze (1975) showed that all soils and geologic formations, even those that are 
homogeneous, are non-uniform. Therefore, the most realistic representation of a non-
uniform porous medium is a stochastic set of macroscopic elements in which the three basic 
hydrologic parameters (hydraulic conductivity, compressibility and porosity) are assumed 
to come from the frequency distributions. Gelhar et al. (1979) discussed the stochastic 
microdispersion in a stratified aquifer, and Gelhar and Axness (1983) addressed the issue of 
three-dimensional stochastic macro dispersion in aquifers. Dagan (1984) analysed the solute 
transport in heterogeneous porous media in a stochastic framework, and Gelgar (1986) 
demonstrated that the necessity of the use of theoretical knowledge of stochastic subsurface 
hydrology in real world applications. Other major contributions to stochastic groundwater 
modelling in the decade of 1980 can be found in Dagan (1986), Dagan (1988) and Neuman et 
al. (1987).  

 

Welty and Gelhar (1992) studied that the density and fluid viscosity as a function of 
concentration in heterogeneous aquifers. The spatial and temporal behaviour of the solute 
front resulting from variable macrodispersion were investigated using analytical results and 
numerical simulations. The uncertainty in the mass flux for the solute advection in 
heterogeneous porous media was the research focus of Dagan et al. (1992) and Cvetkovic et 
al. (1992). Rubin and Dagan (1992) developed a procedure for the characterisation of the 
head and velocity fields in heterogeneous, statistically anisotropic formations. The velocity 
field was characterised through a series of spatial covariances as well as the velocity-head 
and velocity-log conductivity. Other important contributions of stochastic studies in 
subsurface hydrology can be found in Painter (1996), Yang et al. (1996), Miralles-Wilhelm 
and Gelhar (1996), Harter and Yeh (1996), Koutsoyiannis (1999), Koutsoyiannis (2000), 
Zhang and Sun (2000), Foussereau et al. (2000), Leeuwen et al. (2000), Loll and Moldrup 
(2000), Foussereau et al. (2001) and, Painter and Cvetkovic (2001). In additional to that, 
Farrell (1999), Farrell (2002a), and Farrell (2002b) made important contributions to the 
stochastic theory in uncertain flows. 

Kulasiri (1997) developed a preliminary stochastic model that describes the solute 
dispersion in a porous medium saturated with water and considers velocity of the solute as 
a fundamental stochastic variable. The main feature of this model is it eliminates the use of 
the hydrodynamic dispersion coefficient, which is subjected to scale effects and based on 
Fickian assumptions that were discussed in section 1.2. The model drives the mass 
conservation for solute transport based on the theories of stochastic calculus. 
 

1.5 Inverse Problems of the Models 
In the process of developing the differential equations of any model, we introduce the 
parameters, which we consider the attributes or properties of the system. In the case of 
groundwater flow, for example, the parameters such as hydraulic conductivity, 
transmissivity and porosity are constant within the differential equations, and it is often 
necessary to assign numerical values to these parameters. There are a few generally 
accepted direct parameter measurement methods such as the pumping tests, the 
permeameter tests and grain size analysis (details on these tests can be found in Bear et al. 
(1968) and Bear (1979)). The values of the parameters obtained from the laboratory 
experiments and/or the field scale experiments, may not represent the often complex 
patterns across a large geographical area, hence limiting the validity and credibility of a 
model. The inaccuracies of the laboratory tests are due to the scale differences of the actual 
aquifer and the laboratory sample. The heterogeneous porous media is, most of the time, 
laterally smaller than the longitudinal scale of the flow; in laboratory experiments, due to 
practical limitations, we deal with proportionally larger lateral dimensions. Hence, the 
parameter values obtained from the laboratory tests are not directly usable in the models, 
and generally need to be upscaled using often subjective techniques. This difficulty is 
recognised as a major impediment to wider use of the groundwater models and their full 
utilisation (Frind and Pinder, 1973). For this reason, Freeze (1972) stated that the estimation 
of the parameters is the ‘Achilles’ heel’ of groundwater modelling. 

Often we are interested in modelling the quantities such as the depth of water table and 
solute concentration, which are relevant to environmental decision making, and we measure 
these variables regularly and the measuring techniques tend to be relatively inexpensive. In 
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uncertainty of a natural phenomenon, such as solute transport, is expressed within the 
stochastic governing equations rather than based on deterministic formulations. The 
probabilistic nature of this outcome is due to the fact that there is a heterogeneous 
distribution of the underlying aquifer parameters such as hydraulic conductivity and 
porosity (Freeze, 1975). 

The researchers in the field of hydrology have paid more attention to the scale and 
variability of aquifers over the two past decades. It is apparent that we need to deal with 
larger scales more than ever to study the groundwater contaminant problems, which are 
becoming serious environmental concerns. The scale of the aquifer has a direct proportional 
relationship to the variability. Hence, the potential role of modelling in addressing these 
challenges is very much dependent on spatial distribution. When working with 
deterministic models, if we could measure the hydrogeologic parameters at very close 
spatial intervals (which is prohibitively expensive), the distribution of aquifer properties 
would have a high degree of detail. Therefore, the solution of the deterministic model 
would yield results with a high degree of reliability. However, as the knowledge of fine-
grained hydrogeologic parameters are limited in practice, the stochastic models are used to 
understand dynamics of aquifers thus recognising the inherent probabilistic nature of the 
hydrodynamic dispersion.  

Early research on stochastic modelling can be categorised in terms of three possible sources 
of uncertainties: (i) those caused by measurement errors in the input parameters, (ii) those 
caused by spatial averaging of input parameters, and (iii) those associated with an inherent 
stochastic description of heterogeneity porous media (Freeze, 1975). Bibby and Sunada 
(1971) utilised the Monte Carlo numerical simulation model to investigate the effect on the 
solution of normally distributed measurement errors in initial head, boundary heads, 
pumping rate, aquifer thickness, hydraulic conductivity, and storage coefficient of transient 
flow to a well in a confined aquifer. Sagar and Kisiel (1972) conducted an error propagation 
study to understand the influence of errors in the initial head, transmissibility, and storage 
coefficient on the drawdown pattern predicted by the Theis equation. We can find that some 
aspects of the flow in heterogeneous formations have been investigated even in the early 
1960s (Warren and Price, 1961; McMillan, 1966). However, concerted efforts began only in 
1975, with the pioneering work of Freeze (1975).  

Freeze (1975) showed that all soils and geologic formations, even those that are 
homogeneous, are non-uniform. Therefore, the most realistic representation of a non-
uniform porous medium is a stochastic set of macroscopic elements in which the three basic 
hydrologic parameters (hydraulic conductivity, compressibility and porosity) are assumed 
to come from the frequency distributions. Gelhar et al. (1979) discussed the stochastic 
microdispersion in a stratified aquifer, and Gelhar and Axness (1983) addressed the issue of 
three-dimensional stochastic macro dispersion in aquifers. Dagan (1984) analysed the solute 
transport in heterogeneous porous media in a stochastic framework, and Gelgar (1986) 
demonstrated that the necessity of the use of theoretical knowledge of stochastic subsurface 
hydrology in real world applications. Other major contributions to stochastic groundwater 
modelling in the decade of 1980 can be found in Dagan (1986), Dagan (1988) and Neuman et 
al. (1987).  

 

Welty and Gelhar (1992) studied that the density and fluid viscosity as a function of 
concentration in heterogeneous aquifers. The spatial and temporal behaviour of the solute 
front resulting from variable macrodispersion were investigated using analytical results and 
numerical simulations. The uncertainty in the mass flux for the solute advection in 
heterogeneous porous media was the research focus of Dagan et al. (1992) and Cvetkovic et 
al. (1992). Rubin and Dagan (1992) developed a procedure for the characterisation of the 
head and velocity fields in heterogeneous, statistically anisotropic formations. The velocity 
field was characterised through a series of spatial covariances as well as the velocity-head 
and velocity-log conductivity. Other important contributions of stochastic studies in 
subsurface hydrology can be found in Painter (1996), Yang et al. (1996), Miralles-Wilhelm 
and Gelhar (1996), Harter and Yeh (1996), Koutsoyiannis (1999), Koutsoyiannis (2000), 
Zhang and Sun (2000), Foussereau et al. (2000), Leeuwen et al. (2000), Loll and Moldrup 
(2000), Foussereau et al. (2001) and, Painter and Cvetkovic (2001). In additional to that, 
Farrell (1999), Farrell (2002a), and Farrell (2002b) made important contributions to the 
stochastic theory in uncertain flows. 

Kulasiri (1997) developed a preliminary stochastic model that describes the solute 
dispersion in a porous medium saturated with water and considers velocity of the solute as 
a fundamental stochastic variable. The main feature of this model is it eliminates the use of 
the hydrodynamic dispersion coefficient, which is subjected to scale effects and based on 
Fickian assumptions that were discussed in section 1.2. The model drives the mass 
conservation for solute transport based on the theories of stochastic calculus. 
 

1.5 Inverse Problems of the Models 
In the process of developing the differential equations of any model, we introduce the 
parameters, which we consider the attributes or properties of the system. In the case of 
groundwater flow, for example, the parameters such as hydraulic conductivity, 
transmissivity and porosity are constant within the differential equations, and it is often 
necessary to assign numerical values to these parameters. There are a few generally 
accepted direct parameter measurement methods such as the pumping tests, the 
permeameter tests and grain size analysis (details on these tests can be found in Bear et al. 
(1968) and Bear (1979)). The values of the parameters obtained from the laboratory 
experiments and/or the field scale experiments, may not represent the often complex 
patterns across a large geographical area, hence limiting the validity and credibility of a 
model. The inaccuracies of the laboratory tests are due to the scale differences of the actual 
aquifer and the laboratory sample. The heterogeneous porous media is, most of the time, 
laterally smaller than the longitudinal scale of the flow; in laboratory experiments, due to 
practical limitations, we deal with proportionally larger lateral dimensions. Hence, the 
parameter values obtained from the laboratory tests are not directly usable in the models, 
and generally need to be upscaled using often subjective techniques. This difficulty is 
recognised as a major impediment to wider use of the groundwater models and their full 
utilisation (Frind and Pinder, 1973). For this reason, Freeze (1972) stated that the estimation 
of the parameters is the ‘Achilles’ heel’ of groundwater modelling. 

Often we are interested in modelling the quantities such as the depth of water table and 
solute concentration, which are relevant to environmental decision making, and we measure 
these variables regularly and the measuring techniques tend to be relatively inexpensive. In 
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uncertainty of a natural phenomenon, such as solute transport, is expressed within the 
stochastic governing equations rather than based on deterministic formulations. The 
probabilistic nature of this outcome is due to the fact that there is a heterogeneous 
distribution of the underlying aquifer parameters such as hydraulic conductivity and 
porosity (Freeze, 1975). 

The researchers in the field of hydrology have paid more attention to the scale and 
variability of aquifers over the two past decades. It is apparent that we need to deal with 
larger scales more than ever to study the groundwater contaminant problems, which are 
becoming serious environmental concerns. The scale of the aquifer has a direct proportional 
relationship to the variability. Hence, the potential role of modelling in addressing these 
challenges is very much dependent on spatial distribution. When working with 
deterministic models, if we could measure the hydrogeologic parameters at very close 
spatial intervals (which is prohibitively expensive), the distribution of aquifer properties 
would have a high degree of detail. Therefore, the solution of the deterministic model 
would yield results with a high degree of reliability. However, as the knowledge of fine-
grained hydrogeologic parameters are limited in practice, the stochastic models are used to 
understand dynamics of aquifers thus recognising the inherent probabilistic nature of the 
hydrodynamic dispersion.  

Early research on stochastic modelling can be categorised in terms of three possible sources 
of uncertainties: (i) those caused by measurement errors in the input parameters, (ii) those 
caused by spatial averaging of input parameters, and (iii) those associated with an inherent 
stochastic description of heterogeneity porous media (Freeze, 1975). Bibby and Sunada 
(1971) utilised the Monte Carlo numerical simulation model to investigate the effect on the 
solution of normally distributed measurement errors in initial head, boundary heads, 
pumping rate, aquifer thickness, hydraulic conductivity, and storage coefficient of transient 
flow to a well in a confined aquifer. Sagar and Kisiel (1972) conducted an error propagation 
study to understand the influence of errors in the initial head, transmissibility, and storage 
coefficient on the drawdown pattern predicted by the Theis equation. We can find that some 
aspects of the flow in heterogeneous formations have been investigated even in the early 
1960s (Warren and Price, 1961; McMillan, 1966). However, concerted efforts began only in 
1975, with the pioneering work of Freeze (1975).  

Freeze (1975) showed that all soils and geologic formations, even those that are 
homogeneous, are non-uniform. Therefore, the most realistic representation of a non-
uniform porous medium is a stochastic set of macroscopic elements in which the three basic 
hydrologic parameters (hydraulic conductivity, compressibility and porosity) are assumed 
to come from the frequency distributions. Gelhar et al. (1979) discussed the stochastic 
microdispersion in a stratified aquifer, and Gelhar and Axness (1983) addressed the issue of 
three-dimensional stochastic macro dispersion in aquifers. Dagan (1984) analysed the solute 
transport in heterogeneous porous media in a stochastic framework, and Gelgar (1986) 
demonstrated that the necessity of the use of theoretical knowledge of stochastic subsurface 
hydrology in real world applications. Other major contributions to stochastic groundwater 
modelling in the decade of 1980 can be found in Dagan (1986), Dagan (1988) and Neuman et 
al. (1987).  

 

Welty and Gelhar (1992) studied that the density and fluid viscosity as a function of 
concentration in heterogeneous aquifers. The spatial and temporal behaviour of the solute 
front resulting from variable macrodispersion were investigated using analytical results and 
numerical simulations. The uncertainty in the mass flux for the solute advection in 
heterogeneous porous media was the research focus of Dagan et al. (1992) and Cvetkovic et 
al. (1992). Rubin and Dagan (1992) developed a procedure for the characterisation of the 
head and velocity fields in heterogeneous, statistically anisotropic formations. The velocity 
field was characterised through a series of spatial covariances as well as the velocity-head 
and velocity-log conductivity. Other important contributions of stochastic studies in 
subsurface hydrology can be found in Painter (1996), Yang et al. (1996), Miralles-Wilhelm 
and Gelhar (1996), Harter and Yeh (1996), Koutsoyiannis (1999), Koutsoyiannis (2000), 
Zhang and Sun (2000), Foussereau et al. (2000), Leeuwen et al. (2000), Loll and Moldrup 
(2000), Foussereau et al. (2001) and, Painter and Cvetkovic (2001). In additional to that, 
Farrell (1999), Farrell (2002a), and Farrell (2002b) made important contributions to the 
stochastic theory in uncertain flows. 

Kulasiri (1997) developed a preliminary stochastic model that describes the solute 
dispersion in a porous medium saturated with water and considers velocity of the solute as 
a fundamental stochastic variable. The main feature of this model is it eliminates the use of 
the hydrodynamic dispersion coefficient, which is subjected to scale effects and based on 
Fickian assumptions that were discussed in section 1.2. The model drives the mass 
conservation for solute transport based on the theories of stochastic calculus. 
 

1.5 Inverse Problems of the Models 
In the process of developing the differential equations of any model, we introduce the 
parameters, which we consider the attributes or properties of the system. In the case of 
groundwater flow, for example, the parameters such as hydraulic conductivity, 
transmissivity and porosity are constant within the differential equations, and it is often 
necessary to assign numerical values to these parameters. There are a few generally 
accepted direct parameter measurement methods such as the pumping tests, the 
permeameter tests and grain size analysis (details on these tests can be found in Bear et al. 
(1968) and Bear (1979)). The values of the parameters obtained from the laboratory 
experiments and/or the field scale experiments, may not represent the often complex 
patterns across a large geographical area, hence limiting the validity and credibility of a 
model. The inaccuracies of the laboratory tests are due to the scale differences of the actual 
aquifer and the laboratory sample. The heterogeneous porous media is, most of the time, 
laterally smaller than the longitudinal scale of the flow; in laboratory experiments, due to 
practical limitations, we deal with proportionally larger lateral dimensions. Hence, the 
parameter values obtained from the laboratory tests are not directly usable in the models, 
and generally need to be upscaled using often subjective techniques. This difficulty is 
recognised as a major impediment to wider use of the groundwater models and their full 
utilisation (Frind and Pinder, 1973). For this reason, Freeze (1972) stated that the estimation 
of the parameters is the ‘Achilles’ heel’ of groundwater modelling. 

Often we are interested in modelling the quantities such as the depth of water table and 
solute concentration, which are relevant to environmental decision making, and we measure 
these variables regularly and the measuring techniques tend to be relatively inexpensive. In 
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uncertainty of a natural phenomenon, such as solute transport, is expressed within the 
stochastic governing equations rather than based on deterministic formulations. The 
probabilistic nature of this outcome is due to the fact that there is a heterogeneous 
distribution of the underlying aquifer parameters such as hydraulic conductivity and 
porosity (Freeze, 1975). 

The researchers in the field of hydrology have paid more attention to the scale and 
variability of aquifers over the two past decades. It is apparent that we need to deal with 
larger scales more than ever to study the groundwater contaminant problems, which are 
becoming serious environmental concerns. The scale of the aquifer has a direct proportional 
relationship to the variability. Hence, the potential role of modelling in addressing these 
challenges is very much dependent on spatial distribution. When working with 
deterministic models, if we could measure the hydrogeologic parameters at very close 
spatial intervals (which is prohibitively expensive), the distribution of aquifer properties 
would have a high degree of detail. Therefore, the solution of the deterministic model 
would yield results with a high degree of reliability. However, as the knowledge of fine-
grained hydrogeologic parameters are limited in practice, the stochastic models are used to 
understand dynamics of aquifers thus recognising the inherent probabilistic nature of the 
hydrodynamic dispersion.  

Early research on stochastic modelling can be categorised in terms of three possible sources 
of uncertainties: (i) those caused by measurement errors in the input parameters, (ii) those 
caused by spatial averaging of input parameters, and (iii) those associated with an inherent 
stochastic description of heterogeneity porous media (Freeze, 1975). Bibby and Sunada 
(1971) utilised the Monte Carlo numerical simulation model to investigate the effect on the 
solution of normally distributed measurement errors in initial head, boundary heads, 
pumping rate, aquifer thickness, hydraulic conductivity, and storage coefficient of transient 
flow to a well in a confined aquifer. Sagar and Kisiel (1972) conducted an error propagation 
study to understand the influence of errors in the initial head, transmissibility, and storage 
coefficient on the drawdown pattern predicted by the Theis equation. We can find that some 
aspects of the flow in heterogeneous formations have been investigated even in the early 
1960s (Warren and Price, 1961; McMillan, 1966). However, concerted efforts began only in 
1975, with the pioneering work of Freeze (1975).  

Freeze (1975) showed that all soils and geologic formations, even those that are 
homogeneous, are non-uniform. Therefore, the most realistic representation of a non-
uniform porous medium is a stochastic set of macroscopic elements in which the three basic 
hydrologic parameters (hydraulic conductivity, compressibility and porosity) are assumed 
to come from the frequency distributions. Gelhar et al. (1979) discussed the stochastic 
microdispersion in a stratified aquifer, and Gelhar and Axness (1983) addressed the issue of 
three-dimensional stochastic macro dispersion in aquifers. Dagan (1984) analysed the solute 
transport in heterogeneous porous media in a stochastic framework, and Gelgar (1986) 
demonstrated that the necessity of the use of theoretical knowledge of stochastic subsurface 
hydrology in real world applications. Other major contributions to stochastic groundwater 
modelling in the decade of 1980 can be found in Dagan (1986), Dagan (1988) and Neuman et 
al. (1987).  

 

Welty and Gelhar (1992) studied that the density and fluid viscosity as a function of 
concentration in heterogeneous aquifers. The spatial and temporal behaviour of the solute 
front resulting from variable macrodispersion were investigated using analytical results and 
numerical simulations. The uncertainty in the mass flux for the solute advection in 
heterogeneous porous media was the research focus of Dagan et al. (1992) and Cvetkovic et 
al. (1992). Rubin and Dagan (1992) developed a procedure for the characterisation of the 
head and velocity fields in heterogeneous, statistically anisotropic formations. The velocity 
field was characterised through a series of spatial covariances as well as the velocity-head 
and velocity-log conductivity. Other important contributions of stochastic studies in 
subsurface hydrology can be found in Painter (1996), Yang et al. (1996), Miralles-Wilhelm 
and Gelhar (1996), Harter and Yeh (1996), Koutsoyiannis (1999), Koutsoyiannis (2000), 
Zhang and Sun (2000), Foussereau et al. (2000), Leeuwen et al. (2000), Loll and Moldrup 
(2000), Foussereau et al. (2001) and, Painter and Cvetkovic (2001). In additional to that, 
Farrell (1999), Farrell (2002a), and Farrell (2002b) made important contributions to the 
stochastic theory in uncertain flows. 

Kulasiri (1997) developed a preliminary stochastic model that describes the solute 
dispersion in a porous medium saturated with water and considers velocity of the solute as 
a fundamental stochastic variable. The main feature of this model is it eliminates the use of 
the hydrodynamic dispersion coefficient, which is subjected to scale effects and based on 
Fickian assumptions that were discussed in section 1.2. The model drives the mass 
conservation for solute transport based on the theories of stochastic calculus. 
 

1.5 Inverse Problems of the Models 
In the process of developing the differential equations of any model, we introduce the 
parameters, which we consider the attributes or properties of the system. In the case of 
groundwater flow, for example, the parameters such as hydraulic conductivity, 
transmissivity and porosity are constant within the differential equations, and it is often 
necessary to assign numerical values to these parameters. There are a few generally 
accepted direct parameter measurement methods such as the pumping tests, the 
permeameter tests and grain size analysis (details on these tests can be found in Bear et al. 
(1968) and Bear (1979)). The values of the parameters obtained from the laboratory 
experiments and/or the field scale experiments, may not represent the often complex 
patterns across a large geographical area, hence limiting the validity and credibility of a 
model. The inaccuracies of the laboratory tests are due to the scale differences of the actual 
aquifer and the laboratory sample. The heterogeneous porous media is, most of the time, 
laterally smaller than the longitudinal scale of the flow; in laboratory experiments, due to 
practical limitations, we deal with proportionally larger lateral dimensions. Hence, the 
parameter values obtained from the laboratory tests are not directly usable in the models, 
and generally need to be upscaled using often subjective techniques. This difficulty is 
recognised as a major impediment to wider use of the groundwater models and their full 
utilisation (Frind and Pinder, 1973). For this reason, Freeze (1972) stated that the estimation 
of the parameters is the ‘Achilles’ heel’ of groundwater modelling. 

Often we are interested in modelling the quantities such as the depth of water table and 
solute concentration, which are relevant to environmental decision making, and we measure 
these variables regularly and the measuring techniques tend to be relatively inexpensive. In 
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addition, we can continuously monitor these decision (output) variables in many situations. 
Therefore, it is reasonable to assume that these observations of the output variables 
represent the current status of the system and measurement errors. If the dynamics of the 
system can be reliably modelled using relevant differential equations, we can expect the 
parameters estimated, based on the observations, may give us more reliable representative 
values than those obtained from the laboratory tests and literature. The observations often 
contain noise from two different sources: experimental errors and noisy system dynamics. 
Noise in the system dynamics may be due to the factors such as heterogeneity of the media, 
random nature of inputs (rainfall) and variable boundary conditions. Hence, the question of 
estimating the parameters from the observations should involve the models that consist of 
plausible representation of “noises”. 
 

1.6 Inherent Ill-Posedness  
A well-posed mathematical problem derived from a physical system must satisfy the 
existence, uniqueness and stability conditions, and if any one of these conditions is not 
satisfied the problem is ill-posed. But in a physical system itself, these conditions do not 
necessarily have specific meanings because, regardless of their mathematical descriptions, the 
physical system would respond to any situation. As different combinations of hydrological 
factors would produce almost similar results, it may be impossible to determine a unique set 
of parameters for a given set of mathematical equations. So this lack of uniqueness could only 
be remedied by searching a large enough parameter space to find a set of parameters that  
would explain the dynamics of  the maximum possible number, if not all, of the state 
variables satisfactorily. However, these parameter searches guarantee neither uniqueness nor 
stability in the inverse problems associated with the groundwater problems (Yew, 1986; 
Carrera, 1987; Sun, 1994; Kuiper, 1986; Ginn and Cushman, 1990; Keidser and Rosbjerg, 1991). 
The general consensus among groundwater modellers is that the inverse problem may at 
times result in meaningless solutions (Carrera and Neuman, 1986b). There are even those who 
argue that the inverse problem is hopelessly ill-posed and as such, intrinsically unsolvable 
(Carrera and Neuman, 1986b). This view aside, it has been established that a well-posed 
inverse problem can, in practice, yield an acceptable solution (McLauglin and Townley, 1996). 
We adopt a positive view point that a mixture of techniques smartly deployed would render 
us the sets of effective parameters under the regimes of behaviours of the system which we are 
interested in. Given this stance, we would like to briefly discuss a number of techniques we 
found useful in the parameter estimation of the models we describe in this monograph. This 
discussion does not do justice to the methods mentioned and therefore we include the 
references for further study. We attempt to describe a couple of methods, which we use in this 
work, inmore detail, but the reader may find the discussion inadequate; therefore, it is 
essential to follow up the references to understand the techniques thoroughly. 
 

1.7 Methods in Parameter Estimation 
The trial and error method is the most simple but laborious for solving the inverse problems 
to estimate the parameters. In this method, we use a model that represents the aquifer 
system with some observed data of state variables. It is important, however, to have an 
expert who is familiar with the system available, i.e., a specific aquifer (Sun, 1994). 
Candidate parameter values are tried out until satisfactory outputs are obtained. However, 
if a satisfactory parameter fitting cannot be found, the modification of the model structure 

 

should be considered. Even though there are many advantages of this method such as not 
having to solve an ill-posed inverse problem, this is a rather tedious way of finding 
parameters when the model is a large one, and subjective judgements of experts may play a 
role in determining the parameters (Keidser and Rosbjerg, 1991).  

The indirect method transfers the inverse problem into an optimisation problem, still using 
the forward solutions. Steps such as a criterion to decide the better parameters between 
previous and present values, and also a stopping condition, can be replaced with the 
computer-aided algorithms (Neuman, 1973; Sun, 1994). One draw back is that this method 
tends to converge towards local minima rather than global minima of objective functions 
(Yew, 1986; Kuiper, 1986; Keidser and Rosbjerg, 1991). 

The direct method is another optimisation approach to the inverse problem. If the state 
variables and their spatial and temporal derivatives are known over the entire region, and if 
the measurement and mass balance errors are negligible, the flow equation becomes a first 
order partial differential equation in terms of the unknown aquifer parameters. Using 
numerical methods, the linear partial differential equations can be reduced to a linear 
system of equations, which can be solved directly for the unknown aquifer parameters, and 
hence the method is named “direct method” (Neuman, 1973; Sun, 1994).  

The above three methods (trial and error, indirect, and direct) are well established and a 
large number of advanced techniques have been added. The algorithms to use in these 
methods can be found in any numerical recipes (for example, Press, 1992). Even though we 
change the parameter estimation problem for an optimisation problem, the ill-posedness of 
the inverse problems do still exist. The non-uniqueness of the inverse solution strongly 
displays itself in the indirect method through the existence of many local minima (Keidser 
and Rosbjerg, 1991). In the direct method the solution is often unstable (Kuiper, 1986). To 
overcome the ill-posedness, it is necessary to have supplementary information, or as often 
referred to as prior information, which is independent of the measurement of state variables. 
This can be designated parameter values at some specific time and space points or reliable 
information about the system to limit the admissible range of possible parameters to a 
narrower range or to assume that an unknown parameter is piecewise constant (Sun, 1994). 
 

1.8 Geostatistical Approach to the Inverse Problem 
The above described optimisation methods are limited to producing the best estimates and 
can only assess a residual uncertainty. Usually, output is an estimate of the confidence 
interval of each parameter after a post-calibration sensitivity study. This approach is 
deemed insufficient to characterise the uncertainty after calibration (Zimmerman et al., 
1998). Moreover, these inverse methods are not suitable enough to provide an accurate 
representation of larger scales. For that reason, the necessity of having statistically sound 
methods that are capable of producing reasonable distribution of data (parameters) 
throughout larger regions was identified. As a result, a large number of geostatistically-
based inverse methods have been developed to estimate groundwater parameters (Keidser 
and Rosbjerg, 1991; Zimmerman et al., 1998). A theoretical underpinning for new 
geostatistical inverse methods and discussion of geostatistical estimation approach can be 
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addition, we can continuously monitor these decision (output) variables in many situations. 
Therefore, it is reasonable to assume that these observations of the output variables 
represent the current status of the system and measurement errors. If the dynamics of the 
system can be reliably modelled using relevant differential equations, we can expect the 
parameters estimated, based on the observations, may give us more reliable representative 
values than those obtained from the laboratory tests and literature. The observations often 
contain noise from two different sources: experimental errors and noisy system dynamics. 
Noise in the system dynamics may be due to the factors such as heterogeneity of the media, 
random nature of inputs (rainfall) and variable boundary conditions. Hence, the question of 
estimating the parameters from the observations should involve the models that consist of 
plausible representation of “noises”. 
 

1.6 Inherent Ill-Posedness  
A well-posed mathematical problem derived from a physical system must satisfy the 
existence, uniqueness and stability conditions, and if any one of these conditions is not 
satisfied the problem is ill-posed. But in a physical system itself, these conditions do not 
necessarily have specific meanings because, regardless of their mathematical descriptions, the 
physical system would respond to any situation. As different combinations of hydrological 
factors would produce almost similar results, it may be impossible to determine a unique set 
of parameters for a given set of mathematical equations. So this lack of uniqueness could only 
be remedied by searching a large enough parameter space to find a set of parameters that  
would explain the dynamics of  the maximum possible number, if not all, of the state 
variables satisfactorily. However, these parameter searches guarantee neither uniqueness nor 
stability in the inverse problems associated with the groundwater problems (Yew, 1986; 
Carrera, 1987; Sun, 1994; Kuiper, 1986; Ginn and Cushman, 1990; Keidser and Rosbjerg, 1991). 
The general consensus among groundwater modellers is that the inverse problem may at 
times result in meaningless solutions (Carrera and Neuman, 1986b). There are even those who 
argue that the inverse problem is hopelessly ill-posed and as such, intrinsically unsolvable 
(Carrera and Neuman, 1986b). This view aside, it has been established that a well-posed 
inverse problem can, in practice, yield an acceptable solution (McLauglin and Townley, 1996). 
We adopt a positive view point that a mixture of techniques smartly deployed would render 
us the sets of effective parameters under the regimes of behaviours of the system which we are 
interested in. Given this stance, we would like to briefly discuss a number of techniques we 
found useful in the parameter estimation of the models we describe in this monograph. This 
discussion does not do justice to the methods mentioned and therefore we include the 
references for further study. We attempt to describe a couple of methods, which we use in this 
work, inmore detail, but the reader may find the discussion inadequate; therefore, it is 
essential to follow up the references to understand the techniques thoroughly. 
 

1.7 Methods in Parameter Estimation 
The trial and error method is the most simple but laborious for solving the inverse problems 
to estimate the parameters. In this method, we use a model that represents the aquifer 
system with some observed data of state variables. It is important, however, to have an 
expert who is familiar with the system available, i.e., a specific aquifer (Sun, 1994). 
Candidate parameter values are tried out until satisfactory outputs are obtained. However, 
if a satisfactory parameter fitting cannot be found, the modification of the model structure 

 

should be considered. Even though there are many advantages of this method such as not 
having to solve an ill-posed inverse problem, this is a rather tedious way of finding 
parameters when the model is a large one, and subjective judgements of experts may play a 
role in determining the parameters (Keidser and Rosbjerg, 1991).  

The indirect method transfers the inverse problem into an optimisation problem, still using 
the forward solutions. Steps such as a criterion to decide the better parameters between 
previous and present values, and also a stopping condition, can be replaced with the 
computer-aided algorithms (Neuman, 1973; Sun, 1994). One draw back is that this method 
tends to converge towards local minima rather than global minima of objective functions 
(Yew, 1986; Kuiper, 1986; Keidser and Rosbjerg, 1991). 

The direct method is another optimisation approach to the inverse problem. If the state 
variables and their spatial and temporal derivatives are known over the entire region, and if 
the measurement and mass balance errors are negligible, the flow equation becomes a first 
order partial differential equation in terms of the unknown aquifer parameters. Using 
numerical methods, the linear partial differential equations can be reduced to a linear 
system of equations, which can be solved directly for the unknown aquifer parameters, and 
hence the method is named “direct method” (Neuman, 1973; Sun, 1994).  

The above three methods (trial and error, indirect, and direct) are well established and a 
large number of advanced techniques have been added. The algorithms to use in these 
methods can be found in any numerical recipes (for example, Press, 1992). Even though we 
change the parameter estimation problem for an optimisation problem, the ill-posedness of 
the inverse problems do still exist. The non-uniqueness of the inverse solution strongly 
displays itself in the indirect method through the existence of many local minima (Keidser 
and Rosbjerg, 1991). In the direct method the solution is often unstable (Kuiper, 1986). To 
overcome the ill-posedness, it is necessary to have supplementary information, or as often 
referred to as prior information, which is independent of the measurement of state variables. 
This can be designated parameter values at some specific time and space points or reliable 
information about the system to limit the admissible range of possible parameters to a 
narrower range or to assume that an unknown parameter is piecewise constant (Sun, 1994). 
 

1.8 Geostatistical Approach to the Inverse Problem 
The above described optimisation methods are limited to producing the best estimates and 
can only assess a residual uncertainty. Usually, output is an estimate of the confidence 
interval of each parameter after a post-calibration sensitivity study. This approach is 
deemed insufficient to characterise the uncertainty after calibration (Zimmerman et al., 
1998). Moreover, these inverse methods are not suitable enough to provide an accurate 
representation of larger scales. For that reason, the necessity of having statistically sound 
methods that are capable of producing reasonable distribution of data (parameters) 
throughout larger regions was identified. As a result, a large number of geostatistically-
based inverse methods have been developed to estimate groundwater parameters (Keidser 
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geostatistical inverse methods and discussion of geostatistical estimation approach can be 
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computer-aided algorithms (Neuman, 1973; Sun, 1994). One draw back is that this method 
tends to converge towards local minima rather than global minima of objective functions 
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The direct method is another optimisation approach to the inverse problem. If the state 
variables and their spatial and temporal derivatives are known over the entire region, and if 
the measurement and mass balance errors are negligible, the flow equation becomes a first 
order partial differential equation in terms of the unknown aquifer parameters. Using 
numerical methods, the linear partial differential equations can be reduced to a linear 
system of equations, which can be solved directly for the unknown aquifer parameters, and 
hence the method is named “direct method” (Neuman, 1973; Sun, 1994).  

The above three methods (trial and error, indirect, and direct) are well established and a 
large number of advanced techniques have been added. The algorithms to use in these 
methods can be found in any numerical recipes (for example, Press, 1992). Even though we 
change the parameter estimation problem for an optimisation problem, the ill-posedness of 
the inverse problems do still exist. The non-uniqueness of the inverse solution strongly 
displays itself in the indirect method through the existence of many local minima (Keidser 
and Rosbjerg, 1991). In the direct method the solution is often unstable (Kuiper, 1986). To 
overcome the ill-posedness, it is necessary to have supplementary information, or as often 
referred to as prior information, which is independent of the measurement of state variables. 
This can be designated parameter values at some specific time and space points or reliable 
information about the system to limit the admissible range of possible parameters to a 
narrower range or to assume that an unknown parameter is piecewise constant (Sun, 1994). 
 

1.8 Geostatistical Approach to the Inverse Problem 
The above described optimisation methods are limited to producing the best estimates and 
can only assess a residual uncertainty. Usually, output is an estimate of the confidence 
interval of each parameter after a post-calibration sensitivity study. This approach is 
deemed insufficient to characterise the uncertainty after calibration (Zimmerman et al., 
1998). Moreover, these inverse methods are not suitable enough to provide an accurate 
representation of larger scales. For that reason, the necessity of having statistically sound 
methods that are capable of producing reasonable distribution of data (parameters) 
throughout larger regions was identified. As a result, a large number of geostatistically-
based inverse methods have been developed to estimate groundwater parameters (Keidser 
and Rosbjerg, 1991; Zimmerman et al., 1998). A theoretical underpinning for new 
geostatistical inverse methods and discussion of geostatistical estimation approach can be 
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values than those obtained from the laboratory tests and literature. The observations often 
contain noise from two different sources: experimental errors and noisy system dynamics. 
Noise in the system dynamics may be due to the factors such as heterogeneity of the media, 
random nature of inputs (rainfall) and variable boundary conditions. Hence, the question of 
estimating the parameters from the observations should involve the models that consist of 
plausible representation of “noises”. 
 

1.6 Inherent Ill-Posedness  
A well-posed mathematical problem derived from a physical system must satisfy the 
existence, uniqueness and stability conditions, and if any one of these conditions is not 
satisfied the problem is ill-posed. But in a physical system itself, these conditions do not 
necessarily have specific meanings because, regardless of their mathematical descriptions, the 
physical system would respond to any situation. As different combinations of hydrological 
factors would produce almost similar results, it may be impossible to determine a unique set 
of parameters for a given set of mathematical equations. So this lack of uniqueness could only 
be remedied by searching a large enough parameter space to find a set of parameters that  
would explain the dynamics of  the maximum possible number, if not all, of the state 
variables satisfactorily. However, these parameter searches guarantee neither uniqueness nor 
stability in the inverse problems associated with the groundwater problems (Yew, 1986; 
Carrera, 1987; Sun, 1994; Kuiper, 1986; Ginn and Cushman, 1990; Keidser and Rosbjerg, 1991). 
The general consensus among groundwater modellers is that the inverse problem may at 
times result in meaningless solutions (Carrera and Neuman, 1986b). There are even those who 
argue that the inverse problem is hopelessly ill-posed and as such, intrinsically unsolvable 
(Carrera and Neuman, 1986b). This view aside, it has been established that a well-posed 
inverse problem can, in practice, yield an acceptable solution (McLauglin and Townley, 1996). 
We adopt a positive view point that a mixture of techniques smartly deployed would render 
us the sets of effective parameters under the regimes of behaviours of the system which we are 
interested in. Given this stance, we would like to briefly discuss a number of techniques we 
found useful in the parameter estimation of the models we describe in this monograph. This 
discussion does not do justice to the methods mentioned and therefore we include the 
references for further study. We attempt to describe a couple of methods, which we use in this 
work, inmore detail, but the reader may find the discussion inadequate; therefore, it is 
essential to follow up the references to understand the techniques thoroughly. 
 

1.7 Methods in Parameter Estimation 
The trial and error method is the most simple but laborious for solving the inverse problems 
to estimate the parameters. In this method, we use a model that represents the aquifer 
system with some observed data of state variables. It is important, however, to have an 
expert who is familiar with the system available, i.e., a specific aquifer (Sun, 1994). 
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should be considered. Even though there are many advantages of this method such as not 
having to solve an ill-posed inverse problem, this is a rather tedious way of finding 
parameters when the model is a large one, and subjective judgements of experts may play a 
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the forward solutions. Steps such as a criterion to decide the better parameters between 
previous and present values, and also a stopping condition, can be replaced with the 
computer-aided algorithms (Neuman, 1973; Sun, 1994). One draw back is that this method 
tends to converge towards local minima rather than global minima of objective functions 
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The direct method is another optimisation approach to the inverse problem. If the state 
variables and their spatial and temporal derivatives are known over the entire region, and if 
the measurement and mass balance errors are negligible, the flow equation becomes a first 
order partial differential equation in terms of the unknown aquifer parameters. Using 
numerical methods, the linear partial differential equations can be reduced to a linear 
system of equations, which can be solved directly for the unknown aquifer parameters, and 
hence the method is named “direct method” (Neuman, 1973; Sun, 1994).  

The above three methods (trial and error, indirect, and direct) are well established and a 
large number of advanced techniques have been added. The algorithms to use in these 
methods can be found in any numerical recipes (for example, Press, 1992). Even though we 
change the parameter estimation problem for an optimisation problem, the ill-posedness of 
the inverse problems do still exist. The non-uniqueness of the inverse solution strongly 
displays itself in the indirect method through the existence of many local minima (Keidser 
and Rosbjerg, 1991). In the direct method the solution is often unstable (Kuiper, 1986). To 
overcome the ill-posedness, it is necessary to have supplementary information, or as often 
referred to as prior information, which is independent of the measurement of state variables. 
This can be designated parameter values at some specific time and space points or reliable 
information about the system to limit the admissible range of possible parameters to a 
narrower range or to assume that an unknown parameter is piecewise constant (Sun, 1994). 
 

1.8 Geostatistical Approach to the Inverse Problem 
The above described optimisation methods are limited to producing the best estimates and 
can only assess a residual uncertainty. Usually, output is an estimate of the confidence 
interval of each parameter after a post-calibration sensitivity study. This approach is 
deemed insufficient to characterise the uncertainty after calibration (Zimmerman et al., 
1998). Moreover, these inverse methods are not suitable enough to provide an accurate 
representation of larger scales. For that reason, the necessity of having statistically sound 
methods that are capable of producing reasonable distribution of data (parameters) 
throughout larger regions was identified. As a result, a large number of geostatistically-
based inverse methods have been developed to estimate groundwater parameters (Keidser 
and Rosbjerg, 1991; Zimmerman et al., 1998). A theoretical underpinning for new 
geostatistical inverse methods and discussion of geostatistical estimation approach can be 
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1.9 Parameter Estimation by Stochastic Partial Differential Equations 
The geostatistical approaches mentioned briefly above estimate the distribution of the 
parameter space based on a few direct measurements and the geological formation of the 
spatial domain. Therefore, the accuracy of each method is largely dependent on direct 
measurements that, as mentioned above, are subject to randomness, numerical errors, and 
the methods of measurements tend to be expensive. Unny (1989) developed an approach 
based on the theory of stochastic partial differential equations to estimate groundwater 
parameters of a one-dimensional aquifer fed by rainfall by considering the water table depth 
as the output variable to identify the current state of the system. The approach inversely 
estimates the parameters by using stochastic partial differential equations that model the 
state variables of the system dynamics. Theory of the parameter estimation of stochastic 
processes can be found in Kutoyants (1984), Lipster and Shirayev (1977), and Basawa and 
Prakasa Rao (1980). We summarise this approach in some detail as we use this approach to 
estimate the parameters in our models in this monograph. 

Let ( )V t  denote a stochastic process having many realisations. We define the parameter set 
   of a probability space which is given by a stochastic process ( )V t , based on a set of 
realisations { ( )V t ; 0 t T  }. Let the evolution of the family of stochastic processes 
{ ( )V t ; t T ;  } be described by a stochastic partial differential equation (SPDE), 

   
( ) ( , )V t AV dt x t dt     ,                   (1.9.1) 

where A is a partial differential operator in space, and ( , )x t dt  is the stochastic process to 
represent a space- and time- correlated noise process.  

The stochastic process ( )V t  forms infinitely many sub event spaces with increasing times. 

We can describe the stochastic process  ( ); ;V t t T   , and AV  as a known function 

of the system, 

     
 , ,AV S t V  .                        (1.9.2) 

Therefore, the stochastic process ( )V t  can be represented as the solution of the stochastic 
differential equation (SDE), 

            
 ( ) , , ( , ) ,V t S t V dt x t dt                   (1.9.3) 

where (.)S  is a given function. 

We can transform the noise process by a Hilbert space valued standard Wiener process 
increments, ( )t . (A Hilbert space is an inner product space that is complete with respect to 
the norm defined by the inner product; and a separable Hilbert space should contain a 
complete orthonormal sequence (Young, 1988).) Therefore, 

     
 ( ) , , ( ).V t S t V dt d t                          (1.9.4) 

 

The explanation on the transformation of ( , )x t  to ( )d t  can be found in Jazwinski 
(1970), and we develop this approach further in the later chapters. A standard Wiener 
process (often called a Brownian motion) on the interval  0,T  is a random variable ( )W t  

that depends continuously on  0,t T  and satisfies the following:  

                   
(0) 0,W                              (1.9.5) 

For 0 s t T   , 

( ) ( ) (0,1),W t W s t s N    

where (0,1)N  is a random variable generated with zero mean and unit variance.  

Note that ( )d t and ( )V t  are defined on the same event space. We estimate the 
parameter   using the maximum likelihood approach using all the available observations 
of the groundwater system. The estimate θ̂  of   maximises the likelihood functions 

( )V t  given by (Basawa and Prakasa Rao, 1980): 

L( ) = exp    2

0 0
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T T
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The estimate θ̂  can be obtained as the solution to the equation,  
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.                  (1.9.7) 

Maximising the likelihood function ( )L   is equivalent to maximising the log-likelihood 
function, l( ) = ln L( ); hence, the maximum likelihood estimate can also be obtained as a 
solution to the equation      
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.                        (1.9.8) 

Taking log on both sides of equation (1.9.6) we obtain, 

l( ) =    2
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T T1S t V dV t S t V dt

2
                  (1.9.9) 

The parameter is estimated as the solution to the equation 

       
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S t, V, θ  dV - S t, V, θ S t, V, θ dt =
θ θ

.            (1.9.10) 

The parameters can be estimated from equation (1.9.10), based on a single sample path. Let 
us now consider the case when M independent sample paths are being observed. The 
likelihood-function becomes the product of the likelihood functions for M individual sample 
paths,  
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increments, ( )t . (A Hilbert space is an inner product space that is complete with respect to 
the norm defined by the inner product; and a separable Hilbert space should contain a 
complete orthonormal sequence (Young, 1988).) Therefore, 

     
 ( ) , , ( ).V t S t V dt d t                          (1.9.4) 

 

The explanation on the transformation of ( , )x t  to ( )d t  can be found in Jazwinski 
(1970), and we develop this approach further in the later chapters. A standard Wiener 
process (often called a Brownian motion) on the interval  0,T  is a random variable ( )W t  

that depends continuously on  0,t T  and satisfies the following:  

                   
(0) 0,W                              (1.9.5) 

For 0 s t T   , 

( ) ( ) (0,1),W t W s t s N    

where (0,1)N  is a random variable generated with zero mean and unit variance.  

Note that ( )d t and ( )V t  are defined on the same event space. We estimate the 
parameter   using the maximum likelihood approach using all the available observations 
of the groundwater system. The estimate θ̂  of   maximises the likelihood functions 

( )V t  given by (Basawa and Prakasa Rao, 1980): 
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The estimate θ̂  can be obtained as the solution to the equation,  
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Maximising the likelihood function ( )L   is equivalent to maximising the log-likelihood 
function, l( ) = ln L( ); hence, the maximum likelihood estimate can also be obtained as a 
solution to the equation      
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Taking log on both sides of equation (1.9.6) we obtain, 
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The parameter is estimated as the solution to the equation 
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The parameters can be estimated from equation (1.9.10), based on a single sample path. Let 
us now consider the case when M independent sample paths are being observed. The 
likelihood-function becomes the product of the likelihood functions for M individual sample 
paths,  
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1.9 Parameter Estimation by Stochastic Partial Differential Equations 
The geostatistical approaches mentioned briefly above estimate the distribution of the 
parameter space based on a few direct measurements and the geological formation of the 
spatial domain. Therefore, the accuracy of each method is largely dependent on direct 
measurements that, as mentioned above, are subject to randomness, numerical errors, and 
the methods of measurements tend to be expensive. Unny (1989) developed an approach 
based on the theory of stochastic partial differential equations to estimate groundwater 
parameters of a one-dimensional aquifer fed by rainfall by considering the water table depth 
as the output variable to identify the current state of the system. The approach inversely 
estimates the parameters by using stochastic partial differential equations that model the 
state variables of the system dynamics. Theory of the parameter estimation of stochastic 
processes can be found in Kutoyants (1984), Lipster and Shirayev (1977), and Basawa and 
Prakasa Rao (1980). We summarise this approach in some detail as we use this approach to 
estimate the parameters in our models in this monograph. 

Let ( )V t  denote a stochastic process having many realisations. We define the parameter set 
   of a probability space which is given by a stochastic process ( )V t , based on a set of 
realisations { ( )V t ; 0 t T  }. Let the evolution of the family of stochastic processes 
{ ( )V t ; t T ;  } be described by a stochastic partial differential equation (SPDE), 

   
( ) ( , )V t AV dt x t dt     ,                   (1.9.1) 

where A is a partial differential operator in space, and ( , )x t dt  is the stochastic process to 
represent a space- and time- correlated noise process.  

The stochastic process ( )V t  forms infinitely many sub event spaces with increasing times. 

We can describe the stochastic process  ( ); ;V t t T   , and AV  as a known function 

of the system, 

     
 , ,AV S t V  .                        (1.9.2) 

Therefore, the stochastic process ( )V t  can be represented as the solution of the stochastic 
differential equation (SDE), 
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where (.)S  is a given function. 

We can transform the noise process by a Hilbert space valued standard Wiener process 
increments, ( )t . (A Hilbert space is an inner product space that is complete with respect to 
the norm defined by the inner product; and a separable Hilbert space should contain a 
complete orthonormal sequence (Young, 1988).) Therefore, 
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where (0,1)N  is a random variable generated with zero mean and unit variance.  

Note that ( )d t and ( )V t  are defined on the same event space. We estimate the 
parameter   using the maximum likelihood approach using all the available observations 
of the groundwater system. The estimate θ̂  of   maximises the likelihood functions 
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Maximising the likelihood function ( )L   is equivalent to maximising the log-likelihood 
function, l( ) = ln L( ); hence, the maximum likelihood estimate can also be obtained as a 
solution to the equation      
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Taking log on both sides of equation (1.9.6) we obtain, 
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The parameter is estimated as the solution to the equation 
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The parameters can be estimated from equation (1.9.10), based on a single sample path. Let 
us now consider the case when M independent sample paths are being observed. The 
likelihood-function becomes the product of the likelihood functions for M individual sample 
paths,  
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The estimate θ̂  can be obtained as the solution to the equation,  
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Maximising the likelihood function ( )L   is equivalent to maximising the log-likelihood 
function, l( ) = ln L( ); hence, the maximum likelihood estimate can also be obtained as a 
solution to the equation      
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Taking log on both sides of equation (1.9.6) we obtain, 
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The parameter is estimated as the solution to the equation 
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The parameters can be estimated from equation (1.9.10), based on a single sample path. Let 
us now consider the case when M independent sample paths are being observed. The 
likelihood-function becomes the product of the likelihood functions for M individual sample 
paths,  
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       ...... .L L L 1 2 ML θ θ, V θ, V θ, V             (1.9.11) 

Taking the log on both sides of equation (1.9.11) we have the log-likelihood function, 

         
       1 2, , ...... , .Ml l V l V l V                      (1.9.12) 

Using equation (1.9.10) and (1.9.12)  
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Now the parameter estimate is obtained as the solution to 
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Lets consider two particular examples in which the drift term S(t, V,  ) depends linearly on 
its parameters  . 
 

Example 1 

We define the problem of estimating a single parameter as follows, 

   0 1 1 1( ,  ,  ) , , ;S t V a V t a V t                     (1.9.15) 

The log-likelihood function from equation (1.9.13) is 
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The estimate θ̂  is obtained as a solution to the equation, 
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Hence the estimate is given by 
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Example 2 

When there are two unknown parameters to be estimated, 

     0 1 1 2 2 1 2( ,  ,  ) , , , ; ,S t V a V t a V t a V t         .             (1.9.19) 

 

 

The log-likelihood function from equation (1.9.13) is, 
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Differentiating the above two expressions with respect to 1  and 2 , respectively, we can 
obtain the following two simultaneous equations: 
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and 
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  (1.9.22) 

We obtain the values for 1  and 2  as the solutions to these two equations. 
 

1.10 Use of Artificial Neural Networks in Parameter Estimation 
Over the past decades, Artificial Neural Networks (ANN) have become increasingly 
popular in many disciplines as a problem solving tool in data rich areas (Samarasinghe, 
2006). ANN’s flexible structure is capable of approximating almost any input-output 
relationship. Their application areas are almost limitless but fall into categories such as 
classification, forecasting and data modelling (Maren et al., 1990; Hassoun, 1995). 

ANNs are a massively parallel-distributed information processing system that has certain 
performance characteristics resembling biological neural networks of the human brain 
(Samarasinghe, 2006, Haykin, 1994). We discuss only a few of main ANN techniques that 
are used in this work. General detail descriptions of ANN can be found in Samarasinghe 
(2006), Maren et al. (1990), Hertz et al. (1991), Hegazy et al. (1994), Hassoun (1995), Rojas 
(1996), and in many other excellent texts.  

Back propagation may be the most popular algorithm for training ANN in a multi-layer 
perceptron (MLP), which is one of many different types of neural networks. MLP comprises 
a number of active 'neurons' connected together to form a network. The 'strengths' or 
'weights' of these links between the neurons are where the functionality of the network 
resides (NeuralWare, 1998). Its basic structure is shown in Figure 1.1. 

Rumelhart et al. (1986) developed the standard back propagation algorithm. Since then it 
has undergone many modifications to overcome the limitations; and the back propagation is 
essentially a gradient descent technique that minimises the network error function between 
the output vector and the target vector. Each input pattern of the training data set is passed 
through the network from the input layer to the output layer. The network output is 
compared with the described target output, and an error is computed based on the error 

NonFickian Solute Transport 17
 

       ...... .L L L 1 2 ML θ θ, V θ, V θ, V             (1.9.11) 

Taking the log on both sides of equation (1.9.11) we have the log-likelihood function, 

         
       1 2, , ...... , .Ml l V l V l V                      (1.9.12) 

Using equation (1.9.10) and (1.9.12)  

       2

1 10 0

1,  ,   ,  ,  .
2

T TM M

i i i
i i

l S t V dV t S t V dt  
 

                 (1.9.13) 

Now the parameter estimate is obtained as the solution to 

     
1 10 0

,  ,  ,  ,  
 ( ) ,  ,  0.

T TM M
i i

i i
i i

S t V S t V
dV t S t V dt

 


  

 
 

               (1.9.14) 

Lets consider two particular examples in which the drift term S(t, V,  ) depends linearly on 
its parameters  . 
 

Example 1 
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The estimate θ̂  is obtained as a solution to the equation, 
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Hence the estimate is given by 
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obtain the following two simultaneous equations: 
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We obtain the values for 1  and 2  as the solutions to these two equations. 
 

1.10 Use of Artificial Neural Networks in Parameter Estimation 
Over the past decades, Artificial Neural Networks (ANN) have become increasingly 
popular in many disciplines as a problem solving tool in data rich areas (Samarasinghe, 
2006). ANN’s flexible structure is capable of approximating almost any input-output 
relationship. Their application areas are almost limitless but fall into categories such as 
classification, forecasting and data modelling (Maren et al., 1990; Hassoun, 1995). 

ANNs are a massively parallel-distributed information processing system that has certain 
performance characteristics resembling biological neural networks of the human brain 
(Samarasinghe, 2006, Haykin, 1994). We discuss only a few of main ANN techniques that 
are used in this work. General detail descriptions of ANN can be found in Samarasinghe 
(2006), Maren et al. (1990), Hertz et al. (1991), Hegazy et al. (1994), Hassoun (1995), Rojas 
(1996), and in many other excellent texts.  

Back propagation may be the most popular algorithm for training ANN in a multi-layer 
perceptron (MLP), which is one of many different types of neural networks. MLP comprises 
a number of active 'neurons' connected together to form a network. The 'strengths' or 
'weights' of these links between the neurons are where the functionality of the network 
resides (NeuralWare, 1998). Its basic structure is shown in Figure 1.1. 

Rumelhart et al. (1986) developed the standard back propagation algorithm. Since then it 
has undergone many modifications to overcome the limitations; and the back propagation is 
essentially a gradient descent technique that minimises the network error function between 
the output vector and the target vector. Each input pattern of the training data set is passed 
through the network from the input layer to the output layer. The network output is 
compared with the described target output, and an error is computed based on the error 



Computational Modelling of Multi-Scale Non-Fickian Dispersion  
in Porous Media - An Approach Based on Stochastic Calculus16
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Taking the log on both sides of equation (1.9.11) we have the log-likelihood function, 
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Using equation (1.9.10) and (1.9.12)  
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Now the parameter estimate is obtained as the solution to 
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Lets consider two particular examples in which the drift term S(t, V,  ) depends linearly on 
its parameters  . 
 

Example 1 

We define the problem of estimating a single parameter as follows, 
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The log-likelihood function from equation (1.9.13) is 
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The estimate θ̂  is obtained as a solution to the equation, 
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Hence the estimate is given by 
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Example 2 

When there are two unknown parameters to be estimated, 
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The log-likelihood function from equation (1.9.13) is, 
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Differentiating the above two expressions with respect to 1  and 2 , respectively, we can 
obtain the following two simultaneous equations: 
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We obtain the values for 1  and 2  as the solutions to these two equations. 
 

1.10 Use of Artificial Neural Networks in Parameter Estimation 
Over the past decades, Artificial Neural Networks (ANN) have become increasingly 
popular in many disciplines as a problem solving tool in data rich areas (Samarasinghe, 
2006). ANN’s flexible structure is capable of approximating almost any input-output 
relationship. Their application areas are almost limitless but fall into categories such as 
classification, forecasting and data modelling (Maren et al., 1990; Hassoun, 1995). 

ANNs are a massively parallel-distributed information processing system that has certain 
performance characteristics resembling biological neural networks of the human brain 
(Samarasinghe, 2006, Haykin, 1994). We discuss only a few of main ANN techniques that 
are used in this work. General detail descriptions of ANN can be found in Samarasinghe 
(2006), Maren et al. (1990), Hertz et al. (1991), Hegazy et al. (1994), Hassoun (1995), Rojas 
(1996), and in many other excellent texts.  

Back propagation may be the most popular algorithm for training ANN in a multi-layer 
perceptron (MLP), which is one of many different types of neural networks. MLP comprises 
a number of active 'neurons' connected together to form a network. The 'strengths' or 
'weights' of these links between the neurons are where the functionality of the network 
resides (NeuralWare, 1998). Its basic structure is shown in Figure 1.1. 

Rumelhart et al. (1986) developed the standard back propagation algorithm. Since then it 
has undergone many modifications to overcome the limitations; and the back propagation is 
essentially a gradient descent technique that minimises the network error function between 
the output vector and the target vector. Each input pattern of the training data set is passed 
through the network from the input layer to the output layer. The network output is 
compared with the described target output, and an error is computed based on the error 

NonFickian Solute Transport 17
 

       ...... .L L L 1 2 ML θ θ, V θ, V θ, V             (1.9.11) 

Taking the log on both sides of equation (1.9.11) we have the log-likelihood function, 
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Lets consider two particular examples in which the drift term S(t, V,  ) depends linearly on 
its parameters  . 
 

Example 1 

We define the problem of estimating a single parameter as follows, 
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The log-likelihood function from equation (1.9.13) is 
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The estimate θ̂  is obtained as a solution to the equation, 
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Hence the estimate is given by 
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Example 2 

When there are two unknown parameters to be estimated, 
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The log-likelihood function from equation (1.9.13) is, 
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Differentiating the above two expressions with respect to 1  and 2 , respectively, we can 
obtain the following two simultaneous equations: 
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We obtain the values for 1  and 2  as the solutions to these two equations. 
 

1.10 Use of Artificial Neural Networks in Parameter Estimation 
Over the past decades, Artificial Neural Networks (ANN) have become increasingly 
popular in many disciplines as a problem solving tool in data rich areas (Samarasinghe, 
2006). ANN’s flexible structure is capable of approximating almost any input-output 
relationship. Their application areas are almost limitless but fall into categories such as 
classification, forecasting and data modelling (Maren et al., 1990; Hassoun, 1995). 

ANNs are a massively parallel-distributed information processing system that has certain 
performance characteristics resembling biological neural networks of the human brain 
(Samarasinghe, 2006, Haykin, 1994). We discuss only a few of main ANN techniques that 
are used in this work. General detail descriptions of ANN can be found in Samarasinghe 
(2006), Maren et al. (1990), Hertz et al. (1991), Hegazy et al. (1994), Hassoun (1995), Rojas 
(1996), and in many other excellent texts.  

Back propagation may be the most popular algorithm for training ANN in a multi-layer 
perceptron (MLP), which is one of many different types of neural networks. MLP comprises 
a number of active 'neurons' connected together to form a network. The 'strengths' or 
'weights' of these links between the neurons are where the functionality of the network 
resides (NeuralWare, 1998). Its basic structure is shown in Figure 1.1. 

Rumelhart et al. (1986) developed the standard back propagation algorithm. Since then it 
has undergone many modifications to overcome the limitations; and the back propagation is 
essentially a gradient descent technique that minimises the network error function between 
the output vector and the target vector. Each input pattern of the training data set is passed 
through the network from the input layer to the output layer. The network output is 
compared with the described target output, and an error is computed based on the error 
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function. This error is propagated backward through the network to each node, and 
correspondingly the connection weights are adjusted. 
 

 
Figure 1.1. Basic structure of a multi-layer perceptron network. 

The Self-Organizing Map (SOM) was developed by Kohonen (1982) and arose from the 
attempts to model the topographically organized maps found in the cortices of the more 
developed animal brains. The underlying basis behind the development of the SOM was 
that topologically correct maps can be formed in an n-dimensional array of processing 
elements that did not have this initial ordering to begin with. In this way, input stimuli, 
which may have many dimensions, can cluster to be represented by a one or two-
dimensional vector which preserves the order of the higher dimensional data (NeuralWare, 
1998). The SOM employs a type of learning commonly referred to as competitive, 
unsupervised or self-organizing, in which adjacent cells within the network are able to 
interact and adaptively evolved into the detectors of a specific input pattern (Kohonen, 
1990). The SOM can be considered to be “neural” because the results have indicated that the 
adaptive processes utilized in the SOM may be similar to the processes at work within the 
brain (Kohonen, 1990). The SOM has the potential for extending its capability beyond the 
original purpose of modelling biological phenomena. Sorting items into categories of similar 
objects is a challenging, yet frequent task. The SOM achieves this task by nonlinearly 
projecting the data onto a lower dimensional display and by clustering the data (Kohonen, 
1990). This attribute has been used in a wide number of applications ranging from 
engineering (including image and signal processing, image recognition, telecommunication, 
process monitoring and control, and robotics) to natural sciences, medicine, humanities, 
economics and mathematics (Kaski et al., 1998). 
 

1.11 ANN Applications in Hydrology 
It has been shown that ANN’s flexible structure can provide simple and reasonable 
solutions to various problems in hydrology. Since the beginning of the last decade, ANN 
have been successfully employed in hydrology research such as rainfall-runoff modelling, 
stream flow forecasting, precipitation forecasting, groundwater modelling, water quality 
and management modelling (Morshed and Kaluarachchi, 1998; ASCE Task Committee on 
Application of ANN in Hydrology, 2000a, b; Maier and Dandy, 2000).  

 

ANN applications in groundwater problems are limited when compared to other disciplines 
in hydrology. A few of applications relevant to our work are reviewed here. Ranjithan et al. 
(1993) successfully used ANNs to simulate the pumping index for hydraulic conductivity 
realisation to remediate groundwater under uncertainty. In the process of designing a 
reliable groundwater remediation strategy, clear identification of heterogeneous spatial 
variability of the hydrology parameters is an important issue. The association of hydraulic 
conductivity patterns and the level of criticalness need to be understood sufficiently for 
efficient screening. ANNs have been used to recognize and classify the variable patterns 
(Ranjithan et al., 1993). Similar work has been conducted by Rogers and Dowla (1994) to 
simulate a regulatory index for multiple pumping realizations at a contaminated site. In this 
study the supervised learning algorithm of back propagation has been used to train a 
network. The conjugate gradient method and weight elimination procedures have been 
employed to speed up the convergence and improve the performance, respectively. After 
training the networks, the ANN begins a search through various realizations of pumping 
patterns to determine matching patterns. Rogers et al. (1995) took another step forward to 
simulate the regulatory index, remedial index and cost index by using ANN for 
groundwater remediation. This research contributed towards addressing the issue of 
escalating costs of environmental cleanup. 

Zhu (2000) used ANN to develop an approach to populate a soil similarity model that was 
designed to represent soil landscape as spatial continua for hydrological modelling at 
watershed of mesoscale size. Coulibaly et al. (2001) modelled the water table depth 
fluctuations by using three types of functionally different ANN models: Input Delay Neural 
Network (IDNN), Recurrent Neural Network (RNN) and Radial Basis Function Network 
(RBFN). This type of study has significant implications for groundwater management in the 
areas with inadequate groundwater monitoring networks (Maier and Dandy, 2000). Hong 
and Rosen (2001) demonstrated that the unsupervised self-organising map was an efficient 
tool for diagnosing the effect of the storm water infiltration on the groundwater quality 
variables. In addition, they showed that SOM could also be useful in extracting the 
dependencies between the variables in a given groundwater quality dataset.  

Balkhair (2002) presented a method for estimating the aquifer parameters in large diameter 
wells using ANN. The designed network was trained to learn the underlying complex 
relationship between input and output patterns of the normalized draw down data 
generated from an analytical solution and its corresponding transmissivity values. The 
ANN was trained with a fixed number of input draw down data points obtained from the 
analytical solution for a pre-specified ranges of aquifer parameter values and time-series 
data. The trained network was capable of producing aquifer parameter values for any given 
input pattern of normalized draw down data and well diameter size. The values of aquifer 
parameters obtained using this approach were in a good agreement with those obtained by 
other published results. Prior knowledge about the aquifer parameter values has served as a 
valuable piece of information in this ANN approach.  

Rudnitskaya et al. (2001) developed a methodology to monitor groundwater quality using 
an array of non-specific potentiometric chemical sensors with data processing by ANN. 
Lischeid (2001) studied the impact of long-lasting non-point emissions on groundwater and 
stream water in remote watersheds using a neural network approach. Scarlatos (2001) used 
ANN method to identify the sources, distribution and fate of fecal coliform populations in 

NonFickian Solute Transport 19
 

function. This error is propagated backward through the network to each node, and 
correspondingly the connection weights are adjusted. 
 

 
Figure 1.1. Basic structure of a multi-layer perceptron network. 

The Self-Organizing Map (SOM) was developed by Kohonen (1982) and arose from the 
attempts to model the topographically organized maps found in the cortices of the more 
developed animal brains. The underlying basis behind the development of the SOM was 
that topologically correct maps can be formed in an n-dimensional array of processing 
elements that did not have this initial ordering to begin with. In this way, input stimuli, 
which may have many dimensions, can cluster to be represented by a one or two-
dimensional vector which preserves the order of the higher dimensional data (NeuralWare, 
1998). The SOM employs a type of learning commonly referred to as competitive, 
unsupervised or self-organizing, in which adjacent cells within the network are able to 
interact and adaptively evolved into the detectors of a specific input pattern (Kohonen, 
1990). The SOM can be considered to be “neural” because the results have indicated that the 
adaptive processes utilized in the SOM may be similar to the processes at work within the 
brain (Kohonen, 1990). The SOM has the potential for extending its capability beyond the 
original purpose of modelling biological phenomena. Sorting items into categories of similar 
objects is a challenging, yet frequent task. The SOM achieves this task by nonlinearly 
projecting the data onto a lower dimensional display and by clustering the data (Kohonen, 
1990). This attribute has been used in a wide number of applications ranging from 
engineering (including image and signal processing, image recognition, telecommunication, 
process monitoring and control, and robotics) to natural sciences, medicine, humanities, 
economics and mathematics (Kaski et al., 1998). 
 

1.11 ANN Applications in Hydrology 
It has been shown that ANN’s flexible structure can provide simple and reasonable 
solutions to various problems in hydrology. Since the beginning of the last decade, ANN 
have been successfully employed in hydrology research such as rainfall-runoff modelling, 
stream flow forecasting, precipitation forecasting, groundwater modelling, water quality 
and management modelling (Morshed and Kaluarachchi, 1998; ASCE Task Committee on 
Application of ANN in Hydrology, 2000a, b; Maier and Dandy, 2000).  

 

ANN applications in groundwater problems are limited when compared to other disciplines 
in hydrology. A few of applications relevant to our work are reviewed here. Ranjithan et al. 
(1993) successfully used ANNs to simulate the pumping index for hydraulic conductivity 
realisation to remediate groundwater under uncertainty. In the process of designing a 
reliable groundwater remediation strategy, clear identification of heterogeneous spatial 
variability of the hydrology parameters is an important issue. The association of hydraulic 
conductivity patterns and the level of criticalness need to be understood sufficiently for 
efficient screening. ANNs have been used to recognize and classify the variable patterns 
(Ranjithan et al., 1993). Similar work has been conducted by Rogers and Dowla (1994) to 
simulate a regulatory index for multiple pumping realizations at a contaminated site. In this 
study the supervised learning algorithm of back propagation has been used to train a 
network. The conjugate gradient method and weight elimination procedures have been 
employed to speed up the convergence and improve the performance, respectively. After 
training the networks, the ANN begins a search through various realizations of pumping 
patterns to determine matching patterns. Rogers et al. (1995) took another step forward to 
simulate the regulatory index, remedial index and cost index by using ANN for 
groundwater remediation. This research contributed towards addressing the issue of 
escalating costs of environmental cleanup. 

Zhu (2000) used ANN to develop an approach to populate a soil similarity model that was 
designed to represent soil landscape as spatial continua for hydrological modelling at 
watershed of mesoscale size. Coulibaly et al. (2001) modelled the water table depth 
fluctuations by using three types of functionally different ANN models: Input Delay Neural 
Network (IDNN), Recurrent Neural Network (RNN) and Radial Basis Function Network 
(RBFN). This type of study has significant implications for groundwater management in the 
areas with inadequate groundwater monitoring networks (Maier and Dandy, 2000). Hong 
and Rosen (2001) demonstrated that the unsupervised self-organising map was an efficient 
tool for diagnosing the effect of the storm water infiltration on the groundwater quality 
variables. In addition, they showed that SOM could also be useful in extracting the 
dependencies between the variables in a given groundwater quality dataset.  

Balkhair (2002) presented a method for estimating the aquifer parameters in large diameter 
wells using ANN. The designed network was trained to learn the underlying complex 
relationship between input and output patterns of the normalized draw down data 
generated from an analytical solution and its corresponding transmissivity values. The 
ANN was trained with a fixed number of input draw down data points obtained from the 
analytical solution for a pre-specified ranges of aquifer parameter values and time-series 
data. The trained network was capable of producing aquifer parameter values for any given 
input pattern of normalized draw down data and well diameter size. The values of aquifer 
parameters obtained using this approach were in a good agreement with those obtained by 
other published results. Prior knowledge about the aquifer parameter values has served as a 
valuable piece of information in this ANN approach.  
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the North Fork of the New River that flows through the City of Fort Lauderdale, Florida, 
USA and how the storm water drainage from sewers affects the groundwater. Other ANN 
applications in water resources can be found in Aly and Peralta (1999), Mukhopadhyay 
(1999), Freeze and Gorelick (2000), Johnson and Rogers (2000), Hassan and Hamed (2001), 
Beaudeau et al. (2001), and Lindsay et al. (2002). 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2 
 

Stochastic Differential Equations  
and Related Inverse Problems 

 
2.1 Concepts in Stochastic Calculus 
As we have discussed in chapter 1, the deterministic mathematical formulation of solute 
transport through a porous medium introduces the dispersivity, which is a measure of the 
distance a solute tracer would travel when the mean velocity is normalized to be one. One 
would expect such a measure to be a mechanical property of the porous medium under 
consideration, but the evidence are there to show that dispersivity is dependent on the scale 
of the experiment for a given porous medium. One of the challenges in modelling the 
phenomena is to discard the Fickian assumptions, through which dispersivity is defined, 
and develop a mathematical discription containing the fluctuations associated with the 
mean velocity of a physical ensemble of solute particles. To this end, we require a 
sophisticated mathematical framework, and the theory of stochastic processes and 
differential equations is a natural mathematical setting. In this chapter we review some 
essential concepts in stochastic processes and stochastic differential equations in order to 
understand the stochastic calculus in a more applied context. 

A deterministic variable expressed as a function of time uniquely determines the value of 
the variable at a given time. A stochastic variable Y, on the other hand, is one that does not 
have a unique value; it can have any one out of a set of values. We assign a unique label  to 
each possible value of the stochastic variable, and set  to denote the set of all such values. 
When Y represents, for example the outcome of throwing dice,  may be a finite set of 
discrete numbers, and when Y is the instantaneous position of a fluid particle, it may be a 
continuous range of real numbers. If a particular value y is observed for Y, this is called an 
event F. In fact, this is only the simplest prototype of an event; other possibilities might be 
that the value of Y is observed not to be y  (the complementary event), or that a value 
within a certain range of  values is observed. The set of all possible events is denoted by F. 
Even though the outcome of a particular observation of Y is unpredictable, the probability of 
observing y must be determined by a probability function P(). By using the standard 
methods of probability calculus, this implies that a probability P(F) can also be assigned to 
compound events F e.g. by appropriate summation or integration over  values. For this to 
work, F must satisfy the criteria that for any event F in its complement Fc must also belong 
to F, and that for any subset of F’s the union of these must also belong to F. The explanation 
above of what it means to call Y a stochastic variable, is encapsulated in formal 
mathematical language by saying “Y is defined on a probability space (, F, P )” . 

In describing physical systems, deterministic variables usually depend on additional 
parameters such as time. Similarly, a stochastic variable may depend on an additional 
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parameter t (for example, the probability may change with time, i.e. P(y ,t). The collection of 
stochastic variables, Yt , is termed a stochastic process. The word ‘process’ suggests temporal 
development and  is particularly appropriate when the parameter t has the meaning of 
time, but mathematically it is equally well used for any other parameter, usually assumed to 
be a real number in the interval [0,). 

The label   is often explicitly included in writing the notation Yt (), for an individual 
value obtained from the set of Y-values at a fixed t. Conversely, we might keep  fixed, and 
let t vary; a natural notation would be to write Y (t). In physical terms, one may think of 
this as the set of values obtained from a single experiment to observe the time development 
of the stochastic variable Y. When the experiment is repeated, a different set of observations 
are obtained; those may be labelled by a different value of . Each such sequence of 
observed Y-values is called a realization (or sometimes a path) of the stochastic process, and 
from this perspective  may be considered as labelling the realizations of the process. It is 
seen that it is somewhat arbitrary which of  and t is considered to be a label, and which is 
an independent variable; this is sometimes expressed by writing the stochastic process as 
Y(t,). 

In standard calculus, we deal with differentiable functions which are continuous except 
perhaps in certain locations of the domain under consideration. To understand the 
continuity of the functions better we make use of the definitions of the limits. We call a 
function f, a continuous function at the point t = t0 if 0

0

lim ( ) ( )
t t

f t f t


  regardless of the 

direction t approaches t0. A right-continuous function at t0 has a limiting value only when t 
approaches t0 from the right direction, i.e. t is larger than t0 in the vicinity of t0. We will 
denote this as 

0
0

( ) lim ( ) ( )
t t

f t f t f t


   . 

Similarly a left-continuous function at t0 can be represented as  

0
0

( ) lim ( ) ( )
t t

f t f t f t


   . 

These statements imply that a continuous function is both right-continuous and left-
continuous at a given point of t. Often we encounter functions having discontinuities; hence 
the need for the above definitions. To measure the size of a discontinuity, we define the term 
“jump” at any point t to be a discontinuity where the both f(t+) and f(t-) exist and the size of 
the jump be ( ) ( ) ( )f t f t f t     . The jumps are the discontinuities of the first kind and any 
other discontinuity is called a discontinuity of the second kind. Obviously a function can 
only have countable number of jumps in a given range. From the mean value theorem in 
calculus, it can be shown that we can differentiate a function in a given interval only if the 
function is either continuous or has a discontinuity of the second kind during the interval. 
Stochastic calculus is the calculus dealing with often non-differentiable functions having 
jumps without discontinuities of the second kind. One such example of a function is the 
Wiener process (Brownian motion). One realization of the standard Wiener process is given 
in Figure 2.1. These statements imply that a continuous function is both right-continuous 
and left-continuous at a given point of t. Often we encounter functions having 
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Figure 2.1. A realization of the Wiener process; this is a continuous but non-differentiable 
function. 

The increments of the function shown in Figure 2.1 are irregular and a derivative cannot be 
defined according to the mean value theorem. This is because of the fact that the function 
changes erratically within small intervals, however small that interval may be. Therefore we 
have to devise new mathematical tools that would be useful in dealing with these irregular, 
non-differentiable functions. 

Variation of a function f on [a,b] is defined as    
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where 11
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If Vf([a,b]) is finite such as in continuous differentiable functions then f  is called a function 
of finite variation on [a,b]. Variation of a function is a measure of the total change in the 
function value within the interval considered. An important result (Theorem 1.7 Klebaner 
(1998)) is that a function of finite variation can only have a countable number of jumps. 
Furthermore, if f is a continuous function, f   exists and ( )f t dt   then f is a function 
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stochastic variables, Yt , is termed a stochastic process. The word ‘process’ suggests temporal 
development and  is particularly appropriate when the parameter t has the meaning of 
time, but mathematically it is equally well used for any other parameter, usually assumed to 
be a real number in the interval [0,). 

The label   is often explicitly included in writing the notation Yt (), for an individual 
value obtained from the set of Y-values at a fixed t. Conversely, we might keep  fixed, and 
let t vary; a natural notation would be to write Y (t). In physical terms, one may think of 
this as the set of values obtained from a single experiment to observe the time development 
of the stochastic variable Y. When the experiment is repeated, a different set of observations 
are obtained; those may be labelled by a different value of . Each such sequence of 
observed Y-values is called a realization (or sometimes a path) of the stochastic process, and 
from this perspective  may be considered as labelling the realizations of the process. It is 
seen that it is somewhat arbitrary which of  and t is considered to be a label, and which is 
an independent variable; this is sometimes expressed by writing the stochastic process as 
Y(t,). 

In standard calculus, we deal with differentiable functions which are continuous except 
perhaps in certain locations of the domain under consideration. To understand the 
continuity of the functions better we make use of the definitions of the limits. We call a 
function f, a continuous function at the point t = t0 if 0
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direction t approaches t0. A right-continuous function at t0 has a limiting value only when t 
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0
0

( ) lim ( ) ( )
t t

f t f t f t


   . 

These statements imply that a continuous function is both right-continuous and left-
continuous at a given point of t. Often we encounter functions having discontinuities; hence 
the need for the above definitions. To measure the size of a discontinuity, we define the term 
“jump” at any point t to be a discontinuity where the both f(t+) and f(t-) exist and the size of 
the jump be ( ) ( ) ( )f t f t f t     . The jumps are the discontinuities of the first kind and any 
other discontinuity is called a discontinuity of the second kind. Obviously a function can 
only have countable number of jumps in a given range. From the mean value theorem in 
calculus, it can be shown that we can differentiate a function in a given interval only if the 
function is either continuous or has a discontinuity of the second kind during the interval. 
Stochastic calculus is the calculus dealing with often non-differentiable functions having 
jumps without discontinuities of the second kind. One such example of a function is the 
Wiener process (Brownian motion). One realization of the standard Wiener process is given 
in Figure 2.1. These statements imply that a continuous function is both right-continuous 
and left-continuous at a given point of t. Often we encounter functions having 
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Figure 2.1. A realization of the Wiener process; this is a continuous but non-differentiable 
function. 

The increments of the function shown in Figure 2.1 are irregular and a derivative cannot be 
defined according to the mean value theorem. This is because of the fact that the function 
changes erratically within small intervals, however small that interval may be. Therefore we 
have to devise new mathematical tools that would be useful in dealing with these irregular, 
non-differentiable functions. 

Variation of a function f on [a,b] is defined as    
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If Vf([a,b]) is finite such as in continuous differentiable functions then f  is called a function 
of finite variation on [a,b]. Variation of a function is a measure of the total change in the 
function value within the interval considered. An important result (Theorem 1.7 Klebaner 
(1998)) is that a function of finite variation can only have a countable number of jumps. 
Furthermore, if f is a continuous function, f   exists and ( )f t dt   then f is a function 
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development and  is particularly appropriate when the parameter t has the meaning of 
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The label   is often explicitly included in writing the notation Yt (), for an individual 
value obtained from the set of Y-values at a fixed t. Conversely, we might keep  fixed, and 
let t vary; a natural notation would be to write Y (t). In physical terms, one may think of 
this as the set of values obtained from a single experiment to observe the time development 
of the stochastic variable Y. When the experiment is repeated, a different set of observations 
are obtained; those may be labelled by a different value of . Each such sequence of 
observed Y-values is called a realization (or sometimes a path) of the stochastic process, and 
from this perspective  may be considered as labelling the realizations of the process. It is 
seen that it is somewhat arbitrary which of  and t is considered to be a label, and which is 
an independent variable; this is sometimes expressed by writing the stochastic process as 
Y(t,). 

In standard calculus, we deal with differentiable functions which are continuous except 
perhaps in certain locations of the domain under consideration. To understand the 
continuity of the functions better we make use of the definitions of the limits. We call a 
function f, a continuous function at the point t = t0 if 0
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These statements imply that a continuous function is both right-continuous and left-
continuous at a given point of t. Often we encounter functions having discontinuities; hence 
the need for the above definitions. To measure the size of a discontinuity, we define the term 
“jump” at any point t to be a discontinuity where the both f(t+) and f(t-) exist and the size of 
the jump be ( ) ( ) ( )f t f t f t     . The jumps are the discontinuities of the first kind and any 
other discontinuity is called a discontinuity of the second kind. Obviously a function can 
only have countable number of jumps in a given range. From the mean value theorem in 
calculus, it can be shown that we can differentiate a function in a given interval only if the 
function is either continuous or has a discontinuity of the second kind during the interval. 
Stochastic calculus is the calculus dealing with often non-differentiable functions having 
jumps without discontinuities of the second kind. One such example of a function is the 
Wiener process (Brownian motion). One realization of the standard Wiener process is given 
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The increments of the function shown in Figure 2.1 are irregular and a derivative cannot be 
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parameter t (for example, the probability may change with time, i.e. P(y ,t). The collection of 
stochastic variables, Yt , is termed a stochastic process. The word ‘process’ suggests temporal 
development and  is particularly appropriate when the parameter t has the meaning of 
time, but mathematically it is equally well used for any other parameter, usually assumed to 
be a real number in the interval [0,). 

The label   is often explicitly included in writing the notation Yt (), for an individual 
value obtained from the set of Y-values at a fixed t. Conversely, we might keep  fixed, and 
let t vary; a natural notation would be to write Y (t). In physical terms, one may think of 
this as the set of values obtained from a single experiment to observe the time development 
of the stochastic variable Y. When the experiment is repeated, a different set of observations 
are obtained; those may be labelled by a different value of . Each such sequence of 
observed Y-values is called a realization (or sometimes a path) of the stochastic process, and 
from this perspective  may be considered as labelling the realizations of the process. It is 
seen that it is somewhat arbitrary which of  and t is considered to be a label, and which is 
an independent variable; this is sometimes expressed by writing the stochastic process as 
Y(t,). 

In standard calculus, we deal with differentiable functions which are continuous except 
perhaps in certain locations of the domain under consideration. To understand the 
continuity of the functions better we make use of the definitions of the limits. We call a 
function f, a continuous function at the point t = t0 if 0
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These statements imply that a continuous function is both right-continuous and left-
continuous at a given point of t. Often we encounter functions having discontinuities; hence 
the need for the above definitions. To measure the size of a discontinuity, we define the term 
“jump” at any point t to be a discontinuity where the both f(t+) and f(t-) exist and the size of 
the jump be ( ) ( ) ( )f t f t f t     . The jumps are the discontinuities of the first kind and any 
other discontinuity is called a discontinuity of the second kind. Obviously a function can 
only have countable number of jumps in a given range. From the mean value theorem in 
calculus, it can be shown that we can differentiate a function in a given interval only if the 
function is either continuous or has a discontinuity of the second kind during the interval. 
Stochastic calculus is the calculus dealing with often non-differentiable functions having 
jumps without discontinuities of the second kind. One such example of a function is the 
Wiener process (Brownian motion). One realization of the standard Wiener process is given 
in Figure 2.1. These statements imply that a continuous function is both right-continuous 
and left-continuous at a given point of t. Often we encounter functions having 
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The increments of the function shown in Figure 2.1 are irregular and a derivative cannot be 
defined according to the mean value theorem. This is because of the fact that the function 
changes erratically within small intervals, however small that interval may be. Therefore we 
have to devise new mathematical tools that would be useful in dealing with these irregular, 
non-differentiable functions. 
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If Vf([a,b]) is finite such as in continuous differentiable functions then f  is called a function 
of finite variation on [a,b]. Variation of a function is a measure of the total change in the 
function value within the interval considered. An important result (Theorem 1.7 Klebaner 
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Furthermore, if f is a continuous function, f   exists and ( )f t dt   then f is a function 



Computational Modelling of Multi-Scale Non-Fickian Dispersion  
in Porous Media - An Approach Based on Stochastic Calculus24

 

of finite variation. This implies that a function of finite variation on [a,b] is differentiable on 
[a,b], and a corollary is that a function of infinite variation is non-differentiable. Another 
mathematical construct that plays a major role in stochastic calculus is the quadratic 
variation. In stochastic calculus, the quadratic variation of a function f over the interval [0,t] 
is given by 
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where the limit is taken over the partitions: 

0 10 ...n n n
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with 11
max( )n n

n i ii n
t t  

   0. 

It can be proved that the quadratic variation of a continuous function with finite variation is 
zero. However, the functions having zero quadratic variation may have infinite variation 
such as zero energy processes (Klebaner, 1998). If a function or process has a finite positive 
quadratic variation within an interval, then its variation is infinite, and therefore the 
function is continuous but not differentiable. 

Variation and quadratic variation of a function are very important tools in the development 
of stochastic calculus, even though we do not use quadratic variation in standard calculus. 

We also define quadratic covariation of functions f and g on [0,t] by extending equation 
(2.1.2): 
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when the limit is taken over partitions { }n
it of [0,t] with 11

max( )n n
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t t  
   0. It can be 

shown that if both the functions are continuous and one is of finite variation, the quadratic 
covariation is zero. 

Quadratic covariation of two functions, f and g, has the following properties: 
 

1. Polarization identity  

Polarization identity expresses the quadratic covariation, [f,g](t) , in terms of quadratic 
variation of individual functions. 
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2. Symmetry  

              [f,g](t) = [g,f](t) .                          (2.1.5) 

 

 

3. Linearity  

Using polarization identity and symmetry one can show that covariation is linear for any 
constants a and b, 
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Quadratic variation of a function [f](t) and covariation [f,g](t) are measures of change in the 
functional values over a given range [0,t]. 

In many situations where stochastic processes are involved, we would like to know the 
limiting values of useful random variables, i.e. whether they approach a some sort of a 
“steady state” or asymptotic behaviour. It is natural to define the steady state of random 
variable within a probabilistic context. Therefore, in stochastic processes, we define the 
convergence of random variables using the following four different criteria: 
 

1. Almost sure convergence 

Random variables {Xn} converges to {X } with probability one: 

({ : lim ( ) ( ) 0} ) 1nn
P X X  
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2. Mean-square convergence 

{Xn} converges to {X } such a way that 2( )nE X   for n = 1,2,...,n, ( )E X   and 
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3. Convergence in probability  

{Xn} converges to {X} with zero probability of having a difference between the two 
processes: 

 lim ({ ; ( ) ) 0nn
P X X   


    , for all   > 0. 

Convergence in probability is called stochastic convergence as well. 

Note that we adopt the notation of E( , ) or E[ , ] to denote the expected value (mean value) 
of a stochastic variable. In physical literature, this is denoted by “< , >”. 
 

4. Convergence in distribution 

Distribution function of {Xn} converges to that of {X} at any point of continuity of the 
limiting distribution (i.e. the distribution function of {X}). 

These four criteria add another dimension to our discussion of the asymptotic behaviour of a 
process. These arguments can be extended in comparing stochastic processes with each other.  
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shown that if both the functions are continuous and one is of finite variation, the quadratic 
covariation is zero. 

Quadratic covariation of two functions, f and g, has the following properties: 
 

1. Polarization identity  

Polarization identity expresses the quadratic covariation, [f,g](t) , in terms of quadratic 
variation of individual functions. 
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2. Symmetry  

              [f,g](t) = [g,f](t) .                          (2.1.5) 

 

 

3. Linearity  

Using polarization identity and symmetry one can show that covariation is linear for any 
constants a and b, 
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Quadratic variation of a function [f](t) and covariation [f,g](t) are measures of change in the 
functional values over a given range [0,t]. 

In many situations where stochastic processes are involved, we would like to know the 
limiting values of useful random variables, i.e. whether they approach a some sort of a 
“steady state” or asymptotic behaviour. It is natural to define the steady state of random 
variable within a probabilistic context. Therefore, in stochastic processes, we define the 
convergence of random variables using the following four different criteria: 
 

1. Almost sure convergence 

Random variables {Xn} converges to {X } with probability one: 
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2. Mean-square convergence 

{Xn} converges to {X } such a way that 2( )nE X   for n = 1,2,...,n, ( )E X   and 
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3. Convergence in probability  

{Xn} converges to {X} with zero probability of having a difference between the two 
processes: 
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Convergence in probability is called stochastic convergence as well. 

Note that we adopt the notation of E( , ) or E[ , ] to denote the expected value (mean value) 
of a stochastic variable. In physical literature, this is denoted by “< , >”. 
 

4. Convergence in distribution 

Distribution function of {Xn} converges to that of {X} at any point of continuity of the 
limiting distribution (i.e. the distribution function of {X}). 

These four criteria add another dimension to our discussion of the asymptotic behaviour of a 
process. These arguments can be extended in comparing stochastic processes with each other.  
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of finite variation. This implies that a function of finite variation on [a,b] is differentiable on 
[a,b], and a corollary is that a function of infinite variation is non-differentiable. Another 
mathematical construct that plays a major role in stochastic calculus is the quadratic 
variation. In stochastic calculus, the quadratic variation of a function f over the interval [0,t] 
is given by 
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Convergence in probability is called stochastic convergence as well. 

Note that we adopt the notation of E( , ) or E[ , ] to denote the expected value (mean value) 
of a stochastic variable. In physical literature, this is denoted by “< , >”. 
 

4. Convergence in distribution 

Distribution function of {Xn} converges to that of {X} at any point of continuity of the 
limiting distribution (i.e. the distribution function of {X}). 

These four criteria add another dimension to our discussion of the asymptotic behaviour of a 
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Unlike in deterministic variables where any asymptotic behaviour can clearly be identified 
either graphically or numerically, stochastic variables do require adherence to one of the 
convergence criteria mentioned above which are called the “criteria for strong 
convergence”. There are weakly converging stochastic processes and we do not discuss the 
weak convergence criteria as they are not relevant to the development of the material in this 
book. 

In standard calculus we have continuous functions with discontinuities at finitely many 
points and we integrate them using the definition of Riemann integral of a function f (t) over 
the interval [a,b]: 
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where n
it ’s represents partitions of the interval, 
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i i it t    . 

Riemann integral is used extensively in standard calculus where continuous functions are 
the main concern. The integral converges regardless of the chosen n

i  within [ 1 ,n n
i it t ]. 

A generalization of Riemann integral is Stieltjes integral which is defined as the integral of  
f(t) with respect to a monotone function g(t) over the interval [a,b]: 
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with the same definitions as above for  and n
it ’s. It can be shown that for the Stieltjes 

integral to exist for any continuous function f(t), g(t) must be a function with finite variation 
on [a,b]. This means that if g(t) has infinite variation on [a,b] then for such a function, 
integration has to be defined differently. This is the case in the integration of the continuous 
stochastic processes, therefore, can not be integrated using Stieltjes integral. Before we 
discuss alternative forms of integration that can be applied to the functions of positive 
quadratic variation, i.e. the functions of infinite variation, we introduce a fundamentally 
important stochastic process, the Wiener process and its properties. 
 

2.2 Wiener Process 
The botanist Robert Brown, first observed that pollen grains suspended in liquid, undergo 
irregular motion. Centuries later, it was realised that the physical explanation of this is that 
the pollen grain is continually bombarded by molecules of the liquid travelling with 
different speeds in different directions. Over a time scale that is large compared with the 
intervals between molecular impacts, these will average out and no net force is exerted on 
the grain. However, this will not happen over a small time interval; and if the mass of the 
grain is small enough to undergo appreciable displacement in the small time interval as the 
result of molecular impacts, an observable erratic motion results. The crucial point to notice 
in the present context is that while the impacts and therefore the individual

 

displacements suffered by the grain can be considered independent at different times, the 
actual position of the grain can only change continuously.  

In the physical Brownian motion, there are small but nevertheless finite intervals between 
the impulses of molecules colliding with the pollen grain. Consequently, the path that the 
grain follows, consists of a sequence of straight segments forming an irregular but 
continuous line – a so-called random walk. Each straight segment can be considered an 
increment of the momentary position of the grain.  

The mathematical idealisation of the Brownian motion let the interval between increments 
approach zero. The resulting process – called the Wiener process due to N. Wiener – is 
difficult to conceptualise: for example, consideration shows that the resulting position is 
everywhere continuous, but nowhere differentiable. This means that while the particle has a 
position at any moment, and since this position is changing it is moving, yet no velocity can 
be defined. Nevertheless as discussed by Stroock and Varadhan (1979) a consistent 
mathematical description is obtained by defining the position as a stochastic process B(t,) 
with the following properties that are suggested as a mathematical model for the Brownian 
motion- a Wiener process: 

P1: B(0,) = 0 , i.e. choose the position of the particle at the arbitrarily chosen initial time t 
= 0 as the coordinate origin; 

P2: B(t,) has independent increments, i.e. B(t1,), {B(t2,) – B(t1,) },…, {B(tk,) – B(tk-1,) } 
are independent for all 0   t1   t2 …   tk  ; 

P3:      1 , ,i iB t B t    is normally distributed with mean 0 and variance 1( )i it t  ; 

P4: The stochastic variation of B(t,)  at fixed time t is determined by a Gaussian probability; 

P5: The Gaussian has a zero mean, E[B(t,)] = 0 for all values of t; 

P6: B(t,) are continuous functions of t for t  0 ; 

P7: The covariance of Brownian motion is determined by a correlation between the values 
of B(t,) at times ti and tj (for fixed ), given by  

     ,  ,   min ,i j i jE B t B t t t     .                  (2.2.1) 

When applied to ti = tj = t, P7 reduces to the statement that  

   
 ,  = ,Var B t w t                          (2.2.2) 

where ‘Var’ means statistical variance. For the Brownian motion this can be interpreted as 
the statement that the radius within which the particle can be found increases proportional 
to time.  

Because the Wiener process is defined by the independence of its increments, it is for some 
purposes convenient to reformulate the variance of a Wiener process in terms of the 
variance of the increments: 
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Unlike in deterministic variables where any asymptotic behaviour can clearly be identified 
either graphically or numerically, stochastic variables do require adherence to one of the 
convergence criteria mentioned above which are called the “criteria for strong 
convergence”. There are weakly converging stochastic processes and we do not discuss the 
weak convergence criteria as they are not relevant to the development of the material in this 
book. 

In standard calculus we have continuous functions with discontinuities at finitely many 
points and we integrate them using the definition of Riemann integral of a function f (t) over 
the interval [a,b]: 

10 1
( ) lim ( ) ( )

nb n n n
i i ia

i
f t dt f t t


 



  ,                (2.1.7) 

where n
it ’s represents partitions of the interval, 

0 1 2 ....n n n n
na t t t t b     , 

11
max( ),n n

i ii n
t t  

   and    1
n n n
i i it t    . 

Riemann integral is used extensively in standard calculus where continuous functions are 
the main concern. The integral converges regardless of the chosen n

i  within [ 1 ,n n
i it t ]. 

A generalization of Riemann integral is Stieltjes integral which is defined as the integral of  
f(t) with respect to a monotone function g(t) over the interval [a,b]: 

10 1
( ) ( ) lim ( )( ( ) ( ))

nb n n
i i ia

i
f t dg t f g t g t


 



                    (2.1.8) 

with the same definitions as above for  and n
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integral to exist for any continuous function f(t), g(t) must be a function with finite variation 
on [a,b]. This means that if g(t) has infinite variation on [a,b] then for such a function, 
integration has to be defined differently. This is the case in the integration of the continuous 
stochastic processes, therefore, can not be integrated using Stieltjes integral. Before we 
discuss alternative forms of integration that can be applied to the functions of positive 
quadratic variation, i.e. the functions of infinite variation, we introduce a fundamentally 
important stochastic process, the Wiener process and its properties. 
 

2.2 Wiener Process 
The botanist Robert Brown, first observed that pollen grains suspended in liquid, undergo 
irregular motion. Centuries later, it was realised that the physical explanation of this is that 
the pollen grain is continually bombarded by molecules of the liquid travelling with 
different speeds in different directions. Over a time scale that is large compared with the 
intervals between molecular impacts, these will average out and no net force is exerted on 
the grain. However, this will not happen over a small time interval; and if the mass of the 
grain is small enough to undergo appreciable displacement in the small time interval as the 
result of molecular impacts, an observable erratic motion results. The crucial point to notice 
in the present context is that while the impacts and therefore the individual
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increment of the momentary position of the grain.  

The mathematical idealisation of the Brownian motion let the interval between increments 
approach zero. The resulting process – called the Wiener process due to N. Wiener – is 
difficult to conceptualise: for example, consideration shows that the resulting position is 
everywhere continuous, but nowhere differentiable. This means that while the particle has a 
position at any moment, and since this position is changing it is moving, yet no velocity can 
be defined. Nevertheless as discussed by Stroock and Varadhan (1979) a consistent 
mathematical description is obtained by defining the position as a stochastic process B(t,) 
with the following properties that are suggested as a mathematical model for the Brownian 
motion- a Wiener process: 
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= 0 as the coordinate origin; 
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Unlike in deterministic variables where any asymptotic behaviour can clearly be identified 
either graphically or numerically, stochastic variables do require adherence to one of the 
convergence criteria mentioned above which are called the “criteria for strong 
convergence”. There are weakly converging stochastic processes and we do not discuss the 
weak convergence criteria as they are not relevant to the development of the material in this 
book. 

In standard calculus we have continuous functions with discontinuities at finitely many 
points and we integrate them using the definition of Riemann integral of a function f (t) over 
the interval [a,b]: 
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Riemann integral is used extensively in standard calculus where continuous functions are 
the main concern. The integral converges regardless of the chosen n

i  within [ 1 ,n n
i it t ]. 

A generalization of Riemann integral is Stieltjes integral which is defined as the integral of  
f(t) with respect to a monotone function g(t) over the interval [a,b]: 
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with the same definitions as above for  and n
it ’s. It can be shown that for the Stieltjes 

integral to exist for any continuous function f(t), g(t) must be a function with finite variation 
on [a,b]. This means that if g(t) has infinite variation on [a,b] then for such a function, 
integration has to be defined differently. This is the case in the integration of the continuous 
stochastic processes, therefore, can not be integrated using Stieltjes integral. Before we 
discuss alternative forms of integration that can be applied to the functions of positive 
quadratic variation, i.e. the functions of infinite variation, we introduce a fundamentally 
important stochastic process, the Wiener process and its properties. 
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position at any moment, and since this position is changing it is moving, yet no velocity can 
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mathematical description is obtained by defining the position as a stochastic process B(t,) 
with the following properties that are suggested as a mathematical model for the Brownian 
motion- a Wiener process: 
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where ‘Var’ means statistical variance. For the Brownian motion this can be interpreted as 
the statement that the radius within which the particle can be found increases proportional 
to time.  

Because the Wiener process is defined by the independence of its increments, it is for some 
purposes convenient to reformulate the variance of a Wiener process in terms of the 
variance of the increments: 
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Unlike in deterministic variables where any asymptotic behaviour can clearly be identified 
either graphically or numerically, stochastic variables do require adherence to one of the 
convergence criteria mentioned above which are called the “criteria for strong 
convergence”. There are weakly converging stochastic processes and we do not discuss the 
weak convergence criteria as they are not relevant to the development of the material in this 
book. 

In standard calculus we have continuous functions with discontinuities at finitely many 
points and we integrate them using the definition of Riemann integral of a function f (t) over 
the interval [a,b]: 
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it ’s. It can be shown that for the Stieltjes 

integral to exist for any continuous function f(t), g(t) must be a function with finite variation 
on [a,b]. This means that if g(t) has infinite variation on [a,b] then for such a function, 
integration has to be defined differently. This is the case in the integration of the continuous 
stochastic processes, therefore, can not be integrated using Stieltjes integral. Before we 
discuss alternative forms of integration that can be applied to the functions of positive 
quadratic variation, i.e. the functions of infinite variation, we introduce a fundamentally 
important stochastic process, the Wiener process and its properties. 
 

2.2 Wiener Process 
The botanist Robert Brown, first observed that pollen grains suspended in liquid, undergo 
irregular motion. Centuries later, it was realised that the physical explanation of this is that 
the pollen grain is continually bombarded by molecules of the liquid travelling with 
different speeds in different directions. Over a time scale that is large compared with the 
intervals between molecular impacts, these will average out and no net force is exerted on 
the grain. However, this will not happen over a small time interval; and if the mass of the 
grain is small enough to undergo appreciable displacement in the small time interval as the 
result of molecular impacts, an observable erratic motion results. The crucial point to notice 
in the present context is that while the impacts and therefore the individual

 

displacements suffered by the grain can be considered independent at different times, the 
actual position of the grain can only change continuously.  

In the physical Brownian motion, there are small but nevertheless finite intervals between 
the impulses of molecules colliding with the pollen grain. Consequently, the path that the 
grain follows, consists of a sequence of straight segments forming an irregular but 
continuous line – a so-called random walk. Each straight segment can be considered an 
increment of the momentary position of the grain.  

The mathematical idealisation of the Brownian motion let the interval between increments 
approach zero. The resulting process – called the Wiener process due to N. Wiener – is 
difficult to conceptualise: for example, consideration shows that the resulting position is 
everywhere continuous, but nowhere differentiable. This means that while the particle has a 
position at any moment, and since this position is changing it is moving, yet no velocity can 
be defined. Nevertheless as discussed by Stroock and Varadhan (1979) a consistent 
mathematical description is obtained by defining the position as a stochastic process B(t,) 
with the following properties that are suggested as a mathematical model for the Brownian 
motion- a Wiener process: 

P1: B(0,) = 0 , i.e. choose the position of the particle at the arbitrarily chosen initial time t 
= 0 as the coordinate origin; 

P2: B(t,) has independent increments, i.e. B(t1,), {B(t2,) – B(t1,) },…, {B(tk,) – B(tk-1,) } 
are independent for all 0   t1   t2 …   tk  ; 

P3:      1 , ,i iB t B t    is normally distributed with mean 0 and variance 1( )i it t  ; 

P4: The stochastic variation of B(t,)  at fixed time t is determined by a Gaussian probability; 

P5: The Gaussian has a zero mean, E[B(t,)] = 0 for all values of t; 

P6: B(t,) are continuous functions of t for t  0 ; 

P7: The covariance of Brownian motion is determined by a correlation between the values 
of B(t,) at times ti and tj (for fixed ), given by  

     ,  ,   min ,i j i jE B t B t t t     .                  (2.2.1) 

When applied to ti = tj = t, P7 reduces to the statement that  

   
 ,  = ,Var B t w t                          (2.2.2) 

where ‘Var’ means statistical variance. For the Brownian motion this can be interpreted as 
the statement that the radius within which the particle can be found increases proportional 
to time.  

Because the Wiener process is defined by the independence of its increments, it is for some 
purposes convenient to reformulate the variance of a Wiener process in terms of the 
variance of the increments: 
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From P3, for ti < tj : 

[ ( , ) ( , )]j i j iVar B t B t t t                           (2.2.3) 

Bearing in mind that the statistical definition of the variance of a quantity X reduces to the 
expectation value expression  22[ ] [ ] [ ]Var X E X E X  and that the expectation value or mean 
of a Wiener process is zero, we can rewrite this as,  

2
2 1 2 1[{ ( , ) ( , )} ] [ ( , ) ( , )]E B t B t Var B t B t      ,  i.e. [ ]E B B t     ,        (2.2.4) 

where t is defined to mean the time increment for a fixed realization . 

The connection between the two formulations is established by similarly rewriting equation 
(2.2.3) and then applying equation (2.2.1): 

2
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t t t t

   

   

  

  
  
  

 

 

2.3 Further Properties of Wiener Process and their Relationships 
Consider a stochastic process ( , )X t  having a stationary joint probability distribution and 

( ( , ))E X t   0, i.e. the mean value of the process is zero. The Fourier transform of 
( ( , ))Var X t  can be written as, 

( ( )
1( , )

2
, iVar X e dS     







   .                  (2.3.1) 

( , )S   is called the spectral density of the process ( , )X t  and is also a function of angular 
frequency  . The inverse of the Fourier transform is given by 

( ( , )) )( , iVar X e dS     




  .                   (2.3.2) 

Therefore variance of (0, )X  is the area under a graph of spectral density 
( , )S   against  : 

2( (0, )) ( (0, ))Var X E X  because ( ( , )) 0E X t   . 

Spectral density ( , )S    is considered as the “average power” per unit frequency at   
which gives rise to the variance of ( , )X t  at = 0 . If the average power is a constant, the 
power is distributed uniformly across the frequency spectrum, such as the case for white 
light, then ( , )X t   is called white noise. White noise is often used to model independent 
random disturbances in engineering systems, and the increments of Wiener process have 
the same characteristics as white noise. Therefore white noise ( ( ))t is defined as 

 

 ( )( ) ,dB tt
dt

   and ( ) ( )dB t t dt .                    (2.3.3) 

We will use this relationship to formulate stochastic differential equations. 

As shown before, the relationships among the properties mentioned above can be derived 
starting from P1 to P7. For example, let us evaluate the covariance of Wiener processes, 

( , )iB t   and ( , )jB t  : 

           
( ( , ) ( , )) ( ( , ) ( , ))i j i jCov B t B t E B t B t    .                 (2.3.4) 

Assuming i jt t , we can express: 

( , ) ( , ) ( , ) ( , )j i j iB t B t B t B t      .                  (2.3.5) 

Therefore, 
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          (2.3.6) 

From P2, ( , )jB t   and ( ( , ) ( , ))i jB t B t  are independent processes and therefore we can 
write , 

( ( , )( ( , ) ( , ))) ( ( , )) ( ( , ) ( , ))j i j i i jE B t B t B t E B t E B t B t         .        (2.3.7)   

According to P3 and P5, ( ( , )) 0jE B t    and ( ( , ) ( , )) 0i jE B t B t    . 

Therefore, from equation (2.3.7) 

( ( , ) ( , ) ( , ))) 0j i jE B t B t B t    . 

This leads equation (2.3.6) to 2( ( , ) ( , )) ( ( , )),i j iE B t B t E B t     

And 2 2( ( , )) (( ( , )) 0) )i iE B t E B t   .                  (2.3.8) 

From P3, { ( , ) (0, )iB t B  } is normally distributed with a variance ( 0)it  , and equation 
(2.3.8) becomes, 2( ( , ))i iE B t t  , and , therefore, ( ( , ) ( , ))i j iCov B t B t t   . 

Using a similar approach it can be shown that if i jt t , 

    
( ( , ) ( , ))i j jCov B t B t t   .                       (2.3.9) 

This leads to P7: ( ( , ) ( , )) min( , )i j i jE B t B t t t   .                                

The above derivations show the relatedness of the variance of an independent increment, 
1 2{ ( , ) ( , )}Var B t B t   to the properties of Wiener process given by P1 to P7. The fact that 
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From P3, for ti < tj : 

[ ( , ) ( , )]j i j iVar B t B t t t                           (2.2.3) 

Bearing in mind that the statistical definition of the variance of a quantity X reduces to the 
expectation value expression  22[ ] [ ] [ ]Var X E X E X  and that the expectation value or mean 
of a Wiener process is zero, we can rewrite this as,  

2
2 1 2 1[{ ( , ) ( , )} ] [ ( , ) ( , )]E B t B t Var B t B t      ,  i.e. [ ]E B B t     ,        (2.2.4) 

where t is defined to mean the time increment for a fixed realization . 

The connection between the two formulations is established by similarly rewriting equation 
(2.2.3) and then applying equation (2.2.1): 
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2.3 Further Properties of Wiener Process and their Relationships 
Consider a stochastic process ( , )X t  having a stationary joint probability distribution and 

( ( , ))E X t   0, i.e. the mean value of the process is zero. The Fourier transform of 
( ( , ))Var X t  can be written as, 

( ( )
1( , )

2
, iVar X e dS     







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( , )S   is called the spectral density of the process ( , )X t  and is also a function of angular 
frequency  . The inverse of the Fourier transform is given by 

( ( , )) )( , iVar X e dS     




  .                   (2.3.2) 

Therefore variance of (0, )X  is the area under a graph of spectral density 
( , )S   against  : 

2( (0, )) ( (0, ))Var X E X  because ( ( , )) 0E X t   . 

Spectral density ( , )S    is considered as the “average power” per unit frequency at   
which gives rise to the variance of ( , )X t  at = 0 . If the average power is a constant, the 
power is distributed uniformly across the frequency spectrum, such as the case for white 
light, then ( , )X t   is called white noise. White noise is often used to model independent 
random disturbances in engineering systems, and the increments of Wiener process have 
the same characteristics as white noise. Therefore white noise ( ( ))t is defined as 

 

 ( )( ) ,dB tt
dt

   and ( ) ( )dB t t dt .                    (2.3.3) 

We will use this relationship to formulate stochastic differential equations. 

As shown before, the relationships among the properties mentioned above can be derived 
starting from P1 to P7. For example, let us evaluate the covariance of Wiener processes, 

( , )iB t   and ( , )jB t  : 

           
( ( , ) ( , )) ( ( , ) ( , ))i j i jCov B t B t E B t B t    .                 (2.3.4) 

Assuming i jt t , we can express: 

( , ) ( , ) ( , ) ( , )j i j iB t B t B t B t      .                  (2.3.5) 

Therefore, 
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From P2, ( , )jB t   and ( ( , ) ( , ))i jB t B t  are independent processes and therefore we can 
write , 

( ( , )( ( , ) ( , ))) ( ( , )) ( ( , ) ( , ))j i j i i jE B t B t B t E B t E B t B t         .        (2.3.7)   

According to P3 and P5, ( ( , )) 0jE B t    and ( ( , ) ( , )) 0i jE B t B t    . 

Therefore, from equation (2.3.7) 

( ( , ) ( , ) ( , ))) 0j i jE B t B t B t    . 

This leads equation (2.3.6) to 2( ( , ) ( , )) ( ( , )),i j iE B t B t E B t     

And 2 2( ( , )) (( ( , )) 0) )i iE B t E B t   .                  (2.3.8) 

From P3, { ( , ) (0, )iB t B  } is normally distributed with a variance ( 0)it  , and equation 
(2.3.8) becomes, 2( ( , ))i iE B t t  , and , therefore, ( ( , ) ( , ))i j iCov B t B t t   . 

Using a similar approach it can be shown that if i jt t , 

    
( ( , ) ( , ))i j jCov B t B t t   .                       (2.3.9) 

This leads to P7: ( ( , ) ( , )) min( , )i j i jE B t B t t t   .                                

The above derivations show the relatedness of the variance of an independent increment, 
1 2{ ( , ) ( , )}Var B t B t   to the properties of Wiener process given by P1 to P7. The fact that 
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From P3, for ti < tj : 

[ ( , ) ( , )]j i j iVar B t B t t t                           (2.2.3) 

Bearing in mind that the statistical definition of the variance of a quantity X reduces to the 
expectation value expression  22[ ] [ ] [ ]Var X E X E X  and that the expectation value or mean 
of a Wiener process is zero, we can rewrite this as,  

2
2 1 2 1[{ ( , ) ( , )} ] [ ( , ) ( , )]E B t B t Var B t B t      ,  i.e. [ ]E B B t     ,        (2.2.4) 

where t is defined to mean the time increment for a fixed realization . 

The connection between the two formulations is established by similarly rewriting equation 
(2.2.3) and then applying equation (2.2.1): 
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2.3 Further Properties of Wiener Process and their Relationships 
Consider a stochastic process ( , )X t  having a stationary joint probability distribution and 

( ( , ))E X t   0, i.e. the mean value of the process is zero. The Fourier transform of 
( ( , ))Var X t  can be written as, 
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

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( , )S   is called the spectral density of the process ( , )X t  and is also a function of angular 
frequency  . The inverse of the Fourier transform is given by 

( ( , )) )( , iVar X e dS     




  .                   (2.3.2) 

Therefore variance of (0, )X  is the area under a graph of spectral density 
( , )S   against  : 

2( (0, )) ( (0, ))Var X E X  because ( ( , )) 0E X t   . 

Spectral density ( , )S    is considered as the “average power” per unit frequency at   
which gives rise to the variance of ( , )X t  at = 0 . If the average power is a constant, the 
power is distributed uniformly across the frequency spectrum, such as the case for white 
light, then ( , )X t   is called white noise. White noise is often used to model independent 
random disturbances in engineering systems, and the increments of Wiener process have 
the same characteristics as white noise. Therefore white noise ( ( ))t is defined as 
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   and ( ) ( )dB t t dt .                    (2.3.3) 

We will use this relationship to formulate stochastic differential equations. 

As shown before, the relationships among the properties mentioned above can be derived 
starting from P1 to P7. For example, let us evaluate the covariance of Wiener processes, 

( , )iB t   and ( , )jB t  : 

           
( ( , ) ( , )) ( ( , ) ( , ))i j i jCov B t B t E B t B t    .                 (2.3.4) 

Assuming i jt t , we can express: 

( , ) ( , ) ( , ) ( , )j i j iB t B t B t B t      .                  (2.3.5) 

Therefore, 

  

2 2

2

2

( ( , ) ( , )) ( ( , )( ( , ) ( , ) ( , ))

( ( , ) ( , ) ( , ) ( , ))

( ( , ) ( , )( ( , ) ( , )))

( ( , )) ( ( , )( ( , ) ( , )))

i j i i j i

i i j i

i j i j

i j i j

E B t B t E B t B t B t B t

E B t B t B t B t

E B t B t B t B t

E B t E B t B t B t

     

   

   

   

  

  

  

  

          (2.3.6) 

From P2, ( , )jB t   and ( ( , ) ( , ))i jB t B t  are independent processes and therefore we can 
write , 

( ( , )( ( , ) ( , ))) ( ( , )) ( ( , ) ( , ))j i j i i jE B t B t B t E B t E B t B t         .        (2.3.7)   

According to P3 and P5, ( ( , )) 0jE B t    and ( ( , ) ( , )) 0i jE B t B t    . 

Therefore, from equation (2.3.7) 

( ( , ) ( , ) ( , ))) 0j i jE B t B t B t    . 

This leads equation (2.3.6) to 2( ( , ) ( , )) ( ( , )),i j iE B t B t E B t     

And 2 2( ( , )) (( ( , )) 0) )i iE B t E B t   .                  (2.3.8) 

From P3, { ( , ) (0, )iB t B  } is normally distributed with a variance ( 0)it  , and equation 
(2.3.8) becomes, 2( ( , ))i iE B t t  , and , therefore, ( ( , ) ( , ))i j iCov B t B t t   . 

Using a similar approach it can be shown that if i jt t , 

    
( ( , ) ( , ))i j jCov B t B t t   .                       (2.3.9) 

This leads to P7: ( ( , ) ( , )) min( , )i j i jE B t B t t t   .                                

The above derivations show the relatedness of the variance of an independent increment, 
1 2{ ( , ) ( , )}Var B t B t   to the properties of Wiener process given by P1 to P7. The fact that 
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From P3, for ti < tj : 

[ ( , ) ( , )]j i j iVar B t B t t t                           (2.2.3) 

Bearing in mind that the statistical definition of the variance of a quantity X reduces to the 
expectation value expression  22[ ] [ ] [ ]Var X E X E X  and that the expectation value or mean 
of a Wiener process is zero, we can rewrite this as,  
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where t is defined to mean the time increment for a fixed realization . 

The connection between the two formulations is established by similarly rewriting equation 
(2.2.3) and then applying equation (2.2.1): 
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The above derivations show the relatedness of the variance of an independent increment, 
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1{ ( , ) ( , )}i iB t B t    is a Gaussian random variable with zero mean and 1{ }i it t   variance 
can be used to construct Wiener process paths on computer. If we divide the time interval 
[0, ]t  into n equidistant parts having length t , and at the end of each segment we can 
randomly generate a Brownian increment using the Normal distribution with mean 0 and 
variance t . This increment is simply added to the value of Wiener process at the point 
considered and move on to the next point. When we repeat this procedure starting from 
t t   to t=t and taking the fact that (0, ) 0B    into account, we can generate a realization 
of Wiener process. We can expect these Wiener process realizations to have properties quite 
distinct from other continuous functions of t. We will briefly discuss some important 
characteristics of Wiener process realizations next as these results enable us to utilise this 
very useful stochastic process effectively. 

Some useful characteristics of Wiener process realizations  ,B t  are 
 

1.  ,B t  is a continuous , nondifferentiable function of t. 
 

2. The quadratic variation of ( , ), [ ( , ), ( , )]( )B t B t B t t    over [0, ]t is t. 

Using the definition of covariation of functions, 
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where 1max( )n n
n i it t    and 1{ }n n

i it  is a partition of [0 , ]t , as n  , n  . 

Taking the expectation of the summation, 
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Let us take the variance of 2
1( ( ) ( ))n n

i iB t B t  : 
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1, 0, ( ( ) ( )) 0n n

n i in Var B t B t     . 

 

Summarizing the results, 
2

1( ( ( ) ( )) ) ,n n
i iE B t B t t   

and  
2

1( ( ( ) ( )) ) 0n n
i iVar B t B t    as n  . 

This implies that, according to the monotone convergence theories that 
2

1( ( ) ( ))n n
i iB t B t t   almost surely as n  . 

Therefore, the quadratic variation of Brownian motion ( , )B t  is t: 

[ ( , ), ( , )]( )B t B t t t   .                        (2.3.13) 

Omitting t and , [ , ]( )B B t t  . 
 

3. Wiener process ( ( , ))B t   is a martingale.  

A stochastic process, { ( )}X t  is a martingale, when the future expected value of { ( )}X t  is 
equal to {X (t)}. In mathematical notation, ( ( )| ) ( )tE X t s F X t   with converging almost 
surely, Ft is the information about {X(t)} up to time  t. We do not give the proof of these 
martingale characteristics of Brownian motion here but it is easy to show 
that ( ( )| ) ( )tE B t s F B t  . 

It can also be shown that 2{ ( , ) }B t t   and 
2

{exp( ( , ) )}
2

B t t    are also martingales. 

These martingales can be used to characterize the Wiener process as well and more details 
can be found in Klebaner (1998). 
 

4. Wiener process has Markov property 

Markov property simply states that the future of a process depends only on the present 
state. In other words, a stochastic process having Markov property does not “remember” the 
past and the present state contains all the information required to drive the process into the 
future states. 

This can be expressed as 

( ( ) | ) ( ( ) | ( ))tP X t s y F P X t s y X t     ,                  (2.3.14) 

Converging almost surely. 

From the very definition of increments of the Wiener process for the discretized intervals of 
[0,t], 1{ ( ) ( )}n n

i iB t B t  , the Wiener process increment behaves independently to its immediate 
predecessor 1{ ( ) ( )}n n

i iB t B t  . 
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i iB t B t  . 

As seen before, 1 1[ ( ) ( )] ( )n n n n
i i i iVar B t B t t t    . 

Therefore,  

2
1 1

1
1

( ( ) ( ( )) [ ( ) ( )]

( ) 0 .

( )n n n n
i i i i

n
n n
i i

i

E B t B t Var B t B t

t t t t

 




  

    

 


               (2.3.12) 

Let us take the variance of 2
1( ( ) ( ))n n

i iB t B t  : 

2 2
1 1 1( ( ) ( )) 3( ) 3 max ( ) 3( )n n n n n n

i i i i i i nVar B t B t t t t t t t         , and 

as 2
1, 0, ( ( ) ( )) 0n n

n i in Var B t B t     . 

 

Summarizing the results, 
2

1( ( ( ) ( )) ) ,n n
i iE B t B t t   

and  
2

1( ( ( ) ( )) ) 0n n
i iVar B t B t    as n  . 

This implies that, according to the monotone convergence theories that 
2

1( ( ) ( ))n n
i iB t B t t   almost surely as n  . 

Therefore, the quadratic variation of Brownian motion ( , )B t  is t: 

[ ( , ), ( , )]( )B t B t t t   .                        (2.3.13) 

Omitting t and , [ , ]( )B B t t  . 
 

3. Wiener process ( ( , ))B t   is a martingale.  

A stochastic process, { ( )}X t  is a martingale, when the future expected value of { ( )}X t  is 
equal to {X (t)}. In mathematical notation, ( ( )| ) ( )tE X t s F X t   with converging almost 
surely, Ft is the information about {X(t)} up to time  t. We do not give the proof of these 
martingale characteristics of Brownian motion here but it is easy to show 
that ( ( )| ) ( )tE B t s F B t  . 

It can also be shown that 2{ ( , ) }B t t   and 
2

{exp( ( , ) )}
2

B t t    are also martingales. 

These martingales can be used to characterize the Wiener process as well and more details 
can be found in Klebaner (1998). 
 

4. Wiener process has Markov property 

Markov property simply states that the future of a process depends only on the present 
state. In other words, a stochastic process having Markov property does not “remember” the 
past and the present state contains all the information required to drive the process into the 
future states. 

This can be expressed as 

( ( ) | ) ( ( ) | ( ))tP X t s y F P X t s y X t     ,                  (2.3.14) 

Converging almost surely. 

From the very definition of increments of the Wiener process for the discretized intervals of 
[0,t], 1{ ( ) ( )}n n

i iB t B t  , the Wiener process increment behaves independently to its immediate 
predecessor 1{ ( ) ( )}n n

i iB t B t  . 
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In other words 1{ ( ) ( )}n n
i iB t B t  does not remember the behaviour of 1{ ( ) ( )}n n

i iB t B t  and 
only element common to both increments is ( )n

iB t . 

One can now see intuitively why Wiener process should behave as a Markov process. This 
can be expressed as 

1( ( ) |{ ( ), ( )...0)}) ( ( ) | ( ))i i i i i i iP B t s x B t B t P B t s x B t     ,            (2.3.15) 

which is another way of expressing the previous equation (2.3.14). 
 

5. Generalized form of Wiener process  

The Wiener process as defined above is sometimes called the standard Wiener process, to 
distinguish it from that obtained by the following generalization:  

min( , )

0

[ ( , ) ( , ) ]  ( )
i jt t

i jE B t B t q d     . 

The integral kernel q() is called the correlation function and determines the correlation 
between stochastic process values at different times. The standard Wiener process is the 
simple case that q()=1 , i.e. full correlation over any time interval; the generalised Wiener 
process includes, for example, the case that q decreases, and there is progressively less 
correlation between the values in a given realization as the time interval between them 
increases. 
 

2.4 Stochastic Integration 
At this point of our discussion, we need to define the integration of stochastic process with 
respect to the Wiener process ( ( , ))B t  so that we understand the conditions under which 
this integral exists and what kind of processes can be integrated using this integral. The 
Stieltjes integral can not used to integrate the functions of infinite variation, and therefore, 
there is a need to define the integrals for the stochastic process such as the Wiener process. 
There are two choices available: Ito definition of integration and Stratanovich integration. 
These two definitions produce entirely different integral stochastic process. 

The Ito definition is popular among mathematicians and physicists tend to use the 
Stratanovich integral. The Ito integral has the martingale property among many other 

useful technical properties (Keizw, 1987), and in addition, the Stratanovich integrals can be 
reduced to Ito integrals (Klebaner, 1998). In this monograph, we confine ourselves to Ito 
definition of integration: 

[ ]( ) ( , ) ( , )
T

S
I X X t dB t    . 

[ ]( )I X  implies that the integration of   ,X t   is along a realization   and with respect 
to the Wiener process (a.k.a Brownian motion) which is a function of  t. [ ]( )I X  is also a 
stochastic process in its own right and have properties originating from the definition of the 
integral. It is natural to expect [ ]( )I X   to be equal to ( ( , ) ( , ))c B t B s   when ( , )X t  is a 

 

constant c. If X(t) is a deterministic process, which can be expressed as a sequence of 
constants over small intervals, we can define Ito integral as follows: 

   

1

1
0

[ ] ( ) ( )

(( ( ) ( )))

T

S
n

i i i
i

I X X t dB t

c B t B t







 




 ,                      (2.4.1) 

 

where 0

1

,
,( ) {

i i i

t S
t t t

cX t c 


   0, , 1i n   . 

The time interval [S,T] has been discretized into n intervals : 0 1 nS t t t T     . 

Using the property of independent increments of Brownian motion, we can show that the 
mean of [ ]( )I X   is zero and, 

( [ ])Variance Var I X
1

2
1

0
( )

n

i i i
i

c t t





  .                  (2.4.2) 

It turns out that if ( , )X t   is a continuous stochastic process and its future values are solely 
dependent on the information of this process only up to t, Ito integral [ ]( )I X   exists. The 
future states on a stochastic process, ( , )X t  , is only dependent on Ft  then it is called an 
adapted process. A left-continuous adapted process ( , )X t   is defined as a predictable 

process and it satisfies the following condition: 2

0
( , )

T
X t dt    with almost surely 

convergence. 

As we are only concerned about continuous processes driven by the past events, we limit 
our discussion of predictable processes. Reader may want to refer to ksendal (1998) and 
Klebaner (1998) for more rigorous discussion of these concepts. 

We can now define Ito integral [ ]( )I X  similarly to equation (2.4.1) if ( , )X t  is a 
continuous and adapted process then [ ]( )I X  can be defined as 

1

1
0

( , )( ( , ) ( , )) ,
n

n n n
i i i

i
X t B t B t  






                     (2.4.3) 

and this sum converges in probability. 

Dropping   for convenience and adhering to the same discretization of interval [S, T] as in 
equation (2.4.1),  

1

1
0

[ ] ( ) ( ) ( )( ( ) ( ))
nT n n n

i i iS
i

I X X t dB t X t B t B t





   .                (2.4.4) 

Equation (2.4.4) expresses an approximation of ( ) ( )
T

S
X t dB t  based on the convergence in 

probability. We take equation (2.4.3) as the definition of Ito integral for the purpose of this 
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In other words 1{ ( ) ( )}n n
i iB t B t  does not remember the behaviour of 1{ ( ) ( )}n n

i iB t B t  and 
only element common to both increments is ( )n

iB t . 

One can now see intuitively why Wiener process should behave as a Markov process. This 
can be expressed as 

1( ( ) |{ ( ), ( )...0)}) ( ( ) | ( ))i i i i i i iP B t s x B t B t P B t s x B t     ,            (2.3.15) 

which is another way of expressing the previous equation (2.3.14). 
 

5. Generalized form of Wiener process  

The Wiener process as defined above is sometimes called the standard Wiener process, to 
distinguish it from that obtained by the following generalization:  

min( , )

0

[ ( , ) ( , ) ]  ( )
i jt t

i jE B t B t q d     . 

The integral kernel q() is called the correlation function and determines the correlation 
between stochastic process values at different times. The standard Wiener process is the 
simple case that q()=1 , i.e. full correlation over any time interval; the generalised Wiener 
process includes, for example, the case that q decreases, and there is progressively less 
correlation between the values in a given realization as the time interval between them 
increases. 
 

2.4 Stochastic Integration 
At this point of our discussion, we need to define the integration of stochastic process with 
respect to the Wiener process ( ( , ))B t  so that we understand the conditions under which 
this integral exists and what kind of processes can be integrated using this integral. The 
Stieltjes integral can not used to integrate the functions of infinite variation, and therefore, 
there is a need to define the integrals for the stochastic process such as the Wiener process. 
There are two choices available: Ito definition of integration and Stratanovich integration. 
These two definitions produce entirely different integral stochastic process. 

The Ito definition is popular among mathematicians and physicists tend to use the 
Stratanovich integral. The Ito integral has the martingale property among many other 

useful technical properties (Keizw, 1987), and in addition, the Stratanovich integrals can be 
reduced to Ito integrals (Klebaner, 1998). In this monograph, we confine ourselves to Ito 
definition of integration: 

[ ]( ) ( , ) ( , )
T

S
I X X t dB t    . 

[ ]( )I X  implies that the integration of   ,X t   is along a realization   and with respect 
to the Wiener process (a.k.a Brownian motion) which is a function of  t. [ ]( )I X  is also a 
stochastic process in its own right and have properties originating from the definition of the 
integral. It is natural to expect [ ]( )I X   to be equal to ( ( , ) ( , ))c B t B s   when ( , )X t  is a 

 

constant c. If X(t) is a deterministic process, which can be expressed as a sequence of 
constants over small intervals, we can define Ito integral as follows: 

   

1

1
0

[ ] ( ) ( )

(( ( ) ( )))

T
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i

I X X t dB t

c B t B t



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

 




 ,                      (2.4.1) 

 

where 0

1

,
,( ) {

i i i

t S
t t t

cX t c 


   0, , 1i n   . 

The time interval [S,T] has been discretized into n intervals : 0 1 nS t t t T     . 

Using the property of independent increments of Brownian motion, we can show that the 
mean of [ ]( )I X   is zero and, 

( [ ])Variance Var I X
1

2
1

0
( )

n

i i i
i

c t t





  .                  (2.4.2) 

It turns out that if ( , )X t   is a continuous stochastic process and its future values are solely 
dependent on the information of this process only up to t, Ito integral [ ]( )I X   exists. The 
future states on a stochastic process, ( , )X t  , is only dependent on Ft  then it is called an 
adapted process. A left-continuous adapted process ( , )X t   is defined as a predictable 

process and it satisfies the following condition: 2

0
( , )

T
X t dt    with almost surely 

convergence. 

As we are only concerned about continuous processes driven by the past events, we limit 
our discussion of predictable processes. Reader may want to refer to ksendal (1998) and 
Klebaner (1998) for more rigorous discussion of these concepts. 

We can now define Ito integral [ ]( )I X  similarly to equation (2.4.1) if ( , )X t  is a 
continuous and adapted process then [ ]( )I X  can be defined as 

1

1
0

( , )( ( , ) ( , )) ,
n

n n n
i i i

i
X t B t B t  






                     (2.4.3) 

and this sum converges in probability. 

Dropping   for convenience and adhering to the same discretization of interval [S, T] as in 
equation (2.4.1),  

1

1
0

[ ] ( ) ( ) ( )( ( ) ( ))
nT n n n

i i iS
i

I X X t dB t X t B t B t





   .                (2.4.4) 

Equation (2.4.4) expresses an approximation of ( ) ( )
T

S
X t dB t  based on the convergence in 

probability. We take equation (2.4.3) as the definition of Ito integral for the purpose of this 
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In other words 1{ ( ) ( )}n n
i iB t B t  does not remember the behaviour of 1{ ( ) ( )}n n

i iB t B t  and 
only element common to both increments is ( )n

iB t . 

One can now see intuitively why Wiener process should behave as a Markov process. This 
can be expressed as 

1( ( ) |{ ( ), ( )...0)}) ( ( ) | ( ))i i i i i i iP B t s x B t B t P B t s x B t     ,            (2.3.15) 

which is another way of expressing the previous equation (2.3.14). 
 

5. Generalized form of Wiener process  

The Wiener process as defined above is sometimes called the standard Wiener process, to 
distinguish it from that obtained by the following generalization:  

min( , )

0

[ ( , ) ( , ) ]  ( )
i jt t

i jE B t B t q d     . 

The integral kernel q() is called the correlation function and determines the correlation 
between stochastic process values at different times. The standard Wiener process is the 
simple case that q()=1 , i.e. full correlation over any time interval; the generalised Wiener 
process includes, for example, the case that q decreases, and there is progressively less 
correlation between the values in a given realization as the time interval between them 
increases. 
 

2.4 Stochastic Integration 
At this point of our discussion, we need to define the integration of stochastic process with 
respect to the Wiener process ( ( , ))B t  so that we understand the conditions under which 
this integral exists and what kind of processes can be integrated using this integral. The 
Stieltjes integral can not used to integrate the functions of infinite variation, and therefore, 
there is a need to define the integrals for the stochastic process such as the Wiener process. 
There are two choices available: Ito definition of integration and Stratanovich integration. 
These two definitions produce entirely different integral stochastic process. 

The Ito definition is popular among mathematicians and physicists tend to use the 
Stratanovich integral. The Ito integral has the martingale property among many other 

useful technical properties (Keizw, 1987), and in addition, the Stratanovich integrals can be 
reduced to Ito integrals (Klebaner, 1998). In this monograph, we confine ourselves to Ito 
definition of integration: 

[ ]( ) ( , ) ( , )
T

S
I X X t dB t    . 

[ ]( )I X  implies that the integration of   ,X t   is along a realization   and with respect 
to the Wiener process (a.k.a Brownian motion) which is a function of  t. [ ]( )I X  is also a 
stochastic process in its own right and have properties originating from the definition of the 
integral. It is natural to expect [ ]( )I X   to be equal to ( ( , ) ( , ))c B t B s   when ( , )X t  is a 

 

constant c. If X(t) is a deterministic process, which can be expressed as a sequence of 
constants over small intervals, we can define Ito integral as follows: 
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where 0

1

,
,( ) {

i i i

t S
t t t

cX t c 


   0, , 1i n   . 

The time interval [S,T] has been discretized into n intervals : 0 1 nS t t t T     . 

Using the property of independent increments of Brownian motion, we can show that the 
mean of [ ]( )I X   is zero and, 

( [ ])Variance Var I X
1

2
1

0
( )

n

i i i
i

c t t





  .                  (2.4.2) 

It turns out that if ( , )X t   is a continuous stochastic process and its future values are solely 
dependent on the information of this process only up to t, Ito integral [ ]( )I X   exists. The 
future states on a stochastic process, ( , )X t  , is only dependent on Ft  then it is called an 
adapted process. A left-continuous adapted process ( , )X t   is defined as a predictable 

process and it satisfies the following condition: 2

0
( , )

T
X t dt    with almost surely 

convergence. 

As we are only concerned about continuous processes driven by the past events, we limit 
our discussion of predictable processes. Reader may want to refer to ksendal (1998) and 
Klebaner (1998) for more rigorous discussion of these concepts. 

We can now define Ito integral [ ]( )I X  similarly to equation (2.4.1) if ( , )X t  is a 
continuous and adapted process then [ ]( )I X  can be defined as 
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( , )( ( , ) ( , )) ,
n

n n n
i i i

i
X t B t B t  






                     (2.4.3) 

and this sum converges in probability. 

Dropping   for convenience and adhering to the same discretization of interval [S, T] as in 
equation (2.4.1),  
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I X X t dB t X t B t B t




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Equation (2.4.4) expresses an approximation of ( ) ( )
T

S
X t dB t  based on the convergence in 

probability. We take equation (2.4.3) as the definition of Ito integral for the purpose of this 
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In other words 1{ ( ) ( )}n n
i iB t B t  does not remember the behaviour of 1{ ( ) ( )}n n

i iB t B t  and 
only element common to both increments is ( )n

iB t . 

One can now see intuitively why Wiener process should behave as a Markov process. This 
can be expressed as 

1( ( ) |{ ( ), ( )...0)}) ( ( ) | ( ))i i i i i i iP B t s x B t B t P B t s x B t     ,            (2.3.15) 

which is another way of expressing the previous equation (2.3.14). 
 

5. Generalized form of Wiener process  

The Wiener process as defined above is sometimes called the standard Wiener process, to 
distinguish it from that obtained by the following generalization:  

min( , )

0

[ ( , ) ( , ) ]  ( )
i jt t

i jE B t B t q d     . 

The integral kernel q() is called the correlation function and determines the correlation 
between stochastic process values at different times. The standard Wiener process is the 
simple case that q()=1 , i.e. full correlation over any time interval; the generalised Wiener 
process includes, for example, the case that q decreases, and there is progressively less 
correlation between the values in a given realization as the time interval between them 
increases. 
 

2.4 Stochastic Integration 
At this point of our discussion, we need to define the integration of stochastic process with 
respect to the Wiener process ( ( , ))B t  so that we understand the conditions under which 
this integral exists and what kind of processes can be integrated using this integral. The 
Stieltjes integral can not used to integrate the functions of infinite variation, and therefore, 
there is a need to define the integrals for the stochastic process such as the Wiener process. 
There are two choices available: Ito definition of integration and Stratanovich integration. 
These two definitions produce entirely different integral stochastic process. 

The Ito definition is popular among mathematicians and physicists tend to use the 
Stratanovich integral. The Ito integral has the martingale property among many other 

useful technical properties (Keizw, 1987), and in addition, the Stratanovich integrals can be 
reduced to Ito integrals (Klebaner, 1998). In this monograph, we confine ourselves to Ito 
definition of integration: 

[ ]( ) ( , ) ( , )
T

S
I X X t dB t    . 

[ ]( )I X  implies that the integration of   ,X t   is along a realization   and with respect 
to the Wiener process (a.k.a Brownian motion) which is a function of  t. [ ]( )I X  is also a 
stochastic process in its own right and have properties originating from the definition of the 
integral. It is natural to expect [ ]( )I X   to be equal to ( ( , ) ( , ))c B t B s   when ( , )X t  is a 

 

constant c. If X(t) is a deterministic process, which can be expressed as a sequence of 
constants over small intervals, we can define Ito integral as follows: 
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where 0
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,
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t S
t t t

cX t c 


   0, , 1i n   . 

The time interval [S,T] has been discretized into n intervals : 0 1 nS t t t T     . 

Using the property of independent increments of Brownian motion, we can show that the 
mean of [ ]( )I X   is zero and, 

( [ ])Variance Var I X
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It turns out that if ( , )X t   is a continuous stochastic process and its future values are solely 
dependent on the information of this process only up to t, Ito integral [ ]( )I X   exists. The 
future states on a stochastic process, ( , )X t  , is only dependent on Ft  then it is called an 
adapted process. A left-continuous adapted process ( , )X t   is defined as a predictable 

process and it satisfies the following condition: 2

0
( , )

T
X t dt    with almost surely 

convergence. 

As we are only concerned about continuous processes driven by the past events, we limit 
our discussion of predictable processes. Reader may want to refer to ksendal (1998) and 
Klebaner (1998) for more rigorous discussion of these concepts. 

We can now define Ito integral [ ]( )I X  similarly to equation (2.4.1) if ( , )X t  is a 
continuous and adapted process then [ ]( )I X  can be defined as 
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and this sum converges in probability. 
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Equation (2.4.4) expresses an approximation of ( ) ( )
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S
X t dB t  based on the convergence in 

probability. We take equation (2.4.3) as the definition of Ito integral for the purpose of this 
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book. As stated earlier [ ]( )I X   is a stochastic process and it has the following properties 
(see, for example, ksendal (1998) for more details): 
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Therefore the variance of Ito integral process is 2( ( ))
T

s
E X t dt  and this result will be useful 

to us in understanding the behaviour of Ito integral process. We say that Ito integral is 
square integrable. According to Fubuni’s Theorem, which states that, for a stochastic process 
X(t) , with continuous realizations, 
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4. Ito integral is a martingale 

It can be shown that ( [ ( )]| ) [ ( )]tE I X t F I X t . Strictly speaking X(t) should 
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5. Ito integral of a deterministic function X(t) is a Guassian process with zero mean and 
covariance function, 

2
0 00

( [ ( )], [ ( )]) ( ) , 0.
t

Cov I X t I X t t X s ds t                  (2.4.11) 

I [X (t ) ] is a square integrable martingale. 
 

6. Quadratic variation of Ito integral, 
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We see that Ito integral has a positive quadratic variation making it a process with     
infinite variation i.e., it is a nondifferentiable continuous function of t.
 

7. Quadratic covariation of Ito integral with respect to processes 1( )X t and 2( )X t  is given by       
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Armed with these properties we can proceed to discuss the machinery of stochastic calculus 
such as stochastic chain rule, which is also known as Ito formula. 
 

2.5 Stochastic Chain Rule (Ito Formula) 
As we have seen previously, the quadratic variations of Brownian motion, [B(t,  ), 
B(t, )](t), is the limit in probability over the interval [0,t ]: 
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i iB B t B t   , and summation as 
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We have shown that [B,B] (t) = t, and therefore, 2
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For our convenience and also to make the notation similar to the one in standard differential 
calculus, we denote  
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This equation does not have a meaning outside the integral equation (2.5.3) and should not 
be interpreted in any other way. 
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Therefore the variance of Ito integral process is 2( ( ))
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E X t dt  and this result will be useful 

to us in understanding the behaviour of Ito integral process. We say that Ito integral is 
square integrable. According to Fubuni’s Theorem, which states that, for a stochastic process 
X(t) , with continuous realizations, 
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1 2 1 20
[ [ ], [ ]]( ) ( ) ( )

T
I X I X t X t X t dt  .                 (2.4.13) 

Armed with these properties we can proceed to discuss the machinery of stochastic calculus 
such as stochastic chain rule, which is also known as Ito formula. 
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Therefore the variance of Ito integral process is 2( ( ))
T

s
E X t dt  and this result will be useful 

to us in understanding the behaviour of Ito integral process. We say that Ito integral is 
square integrable. According to Fubuni’s Theorem, which states that, for a stochastic process 
X(t) , with continuous realizations, 
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6. Quadratic variation of Ito integral, 
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We see that Ito integral has a positive quadratic variation making it a process with     
infinite variation i.e., it is a nondifferentiable continuous function of t.
 

7. Quadratic covariation of Ito integral with respect to processes 1( )X t and 2( )X t  is given by       

1 2 1 20
[ [ ], [ ]]( ) ( ) ( )

T
I X I X t X t X t dt  .                 (2.4.13) 

Armed with these properties we can proceed to discuss the machinery of stochastic calculus 
such as stochastic chain rule, which is also known as Ito formula. 
 

2.5 Stochastic Chain Rule (Ito Formula) 
As we have seen previously, the quadratic variations of Brownian motion, [B(t,  ), 
B(t, )](t), is the limit in probability over the interval [0,t ]: 
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We have shown that [B,B] (t) = t, and therefore, 2
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For our convenience and also to make the notation similar to the one in standard differential 
calculus, we denote  
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This equation does not have a meaning outside the integral equation (2.5.3) and should not 
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Therefore the variance of Ito integral process is 2( ( ))
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E X t dt  and this result will be useful 

to us in understanding the behaviour of Ito integral process. We say that Ito integral is 
square integrable. According to Fubuni’s Theorem, which states that, for a stochastic process 
X(t) , with continuous realizations, 
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6. Quadratic variation of Ito integral, 
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We see that Ito integral has a positive quadratic variation making it a process with     
infinite variation i.e., it is a nondifferentiable continuous function of t.
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Armed with these properties we can proceed to discuss the machinery of stochastic calculus 
such as stochastic chain rule, which is also known as Ito formula. 
 

2.5 Stochastic Chain Rule (Ito Formula) 
As we have seen previously, the quadratic variations of Brownian motion, [B(t,  ), 
B(t, )](t), is the limit in probability over the interval [0,t ]: 

1
2

10 0
[ ( , ), ( , )]( ) lim ( ( ) ( ))

n

n
n n
i i

i
B t B t t B t B t


 






  ,                 (2.5.1) 

1max( ) 0n n
n i it t    . Using the differential notation, 1( ) ( )n n

i iB B t B t   , and summation as 
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We have shown that [B,B] (t) = t, and therefore, 2
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For our convenience and also to make the notation similar to the one in standard differential 
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Computational Modelling of Multi-Scale Non-Fickian Dispersion  
in Porous Media - An Approach Based on Stochastic Calculus36

 

Similarly for any other continuous function g (t ), 

      
2( )( ( )) ( ( ))g t dB t g B t dt ,                         (2.5.5) 

which means, 
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This equation is an expression of the approximation, converging in probability, of  
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As the quadratic variation of a continuous and differentiable function is zero, 

  [t,t] (t) = 0.                              (2.5.8) 

This equation in integral notation, 
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Similarly, quadratic covariation of t (a continuous and differentiable function) and Brownian 
notion,  
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This relationship can be proved by expressing quadratic covariation as 
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Therefore as n  , 0n  (because t is a function of finite variation), 

[ , ]( ) 0t B t   as  n  . 

Hence, [ , ]( ) 0t B t   and in integral notation, 
0

0
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dt dB  . 

This can be written in differential notation, 

. 0dt dB  .                            (2.5.11) 

 

Therefore, we can summarize the following rules in differential notation as follows, 

. 0dt dt  ; . 0dt dB  ; . 0,dB dt   and  .dB dB dt .          (2.5.12) 

In order to come to grips with the interpretation of the differential properties of dBt , it is 
useful to consider the chain rule of differentiation. This will also lead us to formulas that are 
often more useful in calculating Ito integrals than the basic definition as the limit of a sum. 
Consider first the case in ordinary calculus of a function g(x,t), where x is also a function of t. 
We can write the change in g as t changes, as follows: 
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From this, an expression for dg/dt is obtained by taking the limit t  0 of the ratio (g/t). 

Since x = (dx/dt) t, when t  0 the 2nd derivative term shown is of order (t)2 and falls 
away together with all higher derivatives, and the well-known chain rule formula for the 
total derivative (dg/dt) is obtained. However, if , instead of x , we have a Wiener process Bt , 
we get 
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If the expectation value of this expression over all realizations is taken, the above shows that 
the second derivative term is now only of order t and cannot be ignored. Since this holds 
for the expectation value, for consistency we also cannot neglect the term if the limit t  0 
is taken without considering the expectation value. Unlike the case of ordinary calculus 
where all expressions containing products of differentials higher than 1 is neglected, in Ito 
calculus we therefore have different rules. 

Recall that in standard calculus chain rule is applied to composite functions. 

For example, if Y=f (t ) then g(Y ) is a function of Y. 
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Similarly for any other continuous function g (t ), 
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which means, 
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This equation is an expression of the approximation, converging in probability, of  
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As the quadratic variation of a continuous and differentiable function is zero, 

  [t,t] (t) = 0.                              (2.5.8) 

This equation in integral notation, 
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and in differential notation, 
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Similarly, quadratic covariation of t (a continuous and differentiable function) and Brownian 
notion,  
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This relationship can be proved by expressing quadratic covariation as 
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Therefore as n  , 0n  (because t is a function of finite variation), 

[ , ]( ) 0t B t   as  n  . 

Hence, [ , ]( ) 0t B t   and in integral notation, 
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This can be written in differential notation, 

. 0dt dB  .                            (2.5.11) 

 

Therefore, we can summarize the following rules in differential notation as follows, 

. 0dt dt  ; . 0dt dB  ; . 0,dB dt   and  .dB dB dt .          (2.5.12) 

In order to come to grips with the interpretation of the differential properties of dBt , it is 
useful to consider the chain rule of differentiation. This will also lead us to formulas that are 
often more useful in calculating Ito integrals than the basic definition as the limit of a sum. 
Consider first the case in ordinary calculus of a function g(x,t), where x is also a function of t. 
We can write the change in g as t changes, as follows: 
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From this, an expression for dg/dt is obtained by taking the limit t  0 of the ratio (g/t). 

Since x = (dx/dt) t, when t  0 the 2nd derivative term shown is of order (t)2 and falls 
away together with all higher derivatives, and the well-known chain rule formula for the 
total derivative (dg/dt) is obtained. However, if , instead of x , we have a Wiener process Bt , 
we get 
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If the expectation value of this expression over all realizations is taken, the above shows that 
the second derivative term is now only of order t and cannot be ignored. Since this holds 
for the expectation value, for consistency we also cannot neglect the term if the limit t  0 
is taken without considering the expectation value. Unlike the case of ordinary calculus 
where all expressions containing products of differentials higher than 1 is neglected, in Ito 
calculus we therefore have different rules. 

Recall that in standard calculus chain rule is applied to composite functions. 

For example, if Y=f (t ) then g(Y ) is a function of Y. 

Then .dg dg dY
dt dY dt
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In differential notation, 
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By integrating  
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Suppose say f(t) =B(t) (Brownian motion) and g(x) is twice continuously differentiable 
function. Then by using stochastic Taylor series expansion, 
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Therefore, we can summarize the following rules in differential notation as follows, 
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useful to consider the chain rule of differentiation. This will also lead us to formulas that are 
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If the expectation value of this expression over all realizations is taken, the above shows that 
the second derivative term is now only of order t and cannot be ignored. Since this holds 
for the expectation value, for consistency we also cannot neglect the term if the limit t  0 
is taken without considering the expectation value. Unlike the case of ordinary calculus 
where all expressions containing products of differentials higher than 1 is neglected, in Ito 
calculus we therefore have different rules. 

Recall that in standard calculus chain rule is applied to composite functions. 
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Therefore, we can summarize the following rules in differential notation as follows, 

. 0dt dt  ; . 0dt dB  ; . 0,dB dt   and  .dB dB dt .          (2.5.12) 

In order to come to grips with the interpretation of the differential properties of dBt , it is 
useful to consider the chain rule of differentiation. This will also lead us to formulas that are 
often more useful in calculating Ito integrals than the basic definition as the limit of a sum. 
Consider first the case in ordinary calculus of a function g(x,t), where x is also a function of t. 
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From this, an expression for dg/dt is obtained by taking the limit t  0 of the ratio (g/t). 

Since x = (dx/dt) t, when t  0 the 2nd derivative term shown is of order (t)2 and falls 
away together with all higher derivatives, and the well-known chain rule formula for the 
total derivative (dg/dt) is obtained. However, if , instead of x , we have a Wiener process Bt , 
we get 
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If the expectation value of this expression over all realizations is taken, the above shows that 
the second derivative term is now only of order t and cannot be ignored. Since this holds 
for the expectation value, for consistency we also cannot neglect the term if the limit t  0 
is taken without considering the expectation value. Unlike the case of ordinary calculus 
where all expressions containing products of differentials higher than 1 is neglected, in Ito 
calculus we therefore have different rules. 

Recall that in standard calculus chain rule is applied to composite functions. 

For example, if Y=f (t ) then g(Y ) is a function of Y. 

Then .dg dg dY
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In differential notation, 
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Suppose say f(t) =B(t) (Brownian motion) and g(x) is twice continuously differentiable 
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Comparing equation (2.5.13) and the corresponding stochastic chain rule, we can see that 
the second derivative term of the Taylor series plays a significant role in changing the chain 
rule in the standard calculus to the stochastic one. 

For example, let ( ) xg x e  

Therefore, ( ) (0) ( ) ( )
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t tB t B s B se e e dB s e ds    .                (2.5.14) 

In differential notation (which is only a convention),  
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As an another example, let 2( )g x x . 

Therefore, from the chain rule 
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This is quite a different result from the standard integration. In differential convention,  

21 1( ) ( ) (( ( )) ) .
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B t dB t d B t dt               (2.5.17) 

In other words, the stochastic process 
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( ) ( )
t
B s dB s can be calculated by evaluating 
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B t t . We will show how this process behaves using computer simulations in 

section 2.6. 

We can write Ito integral as 

0
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t
Y t s dB s  .               (2.5.18) 

Then we can add a “drift term” to the “diffusion term” given by equation (2.5.18): 
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We recall that ( )s  should be a predictable process and is subjected to the condition 
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0
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T
t dt    converging almost surely. ( )t  is, on the other hand,   an adapted 

continuous process of finite variation. In equation (2.5.19)  
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s dB s  represents the 

diffusion part of the process and 
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s ds does not contain the noise; therefore it represents 

 

the drifting of the process. Y(t) is called an Ito process and in differential notation we can 
write, 

        ( ) ( ) ( ) ( )dY t t dt t dB t   .                      (2.5.20) 

Equation (2.5.20) can be quite useful in practical applications where the main driving force is 
perturbed by an irregular noise. A particle moving through a porous medium is such an 
example. In this case, advection gives rise to the drift term and hydrodynamic dispersion 
and microdiffusion give rise to the “diffusive” term. In the population dynamics, the 
diffusive term is a direct result of noise in the proportionality constant. Therefore it is 
important to study Ito process further in order to apply it in modeling situations. ( )t is 
called the drift coefficient and ( )t the diffusion coefficient and they can depend on Y(t) 
and/or B(t). For example, we can write in pervious result (equation (2.5.17)),  

2( ( ) ) 2 ( ) ( )d B t dt B t dB t  .                    (2.5.21) 

This is an Ito process with the drift coefficient of 1 and the diffusion coefficient of 2B(t). 
Quadratic variation of Ito process on [0, ]T  
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This can be deduced from the fact that 
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s ds  is a continuous function with finite 

variation and using quadratic variation of Ito integral. In differential notation,  
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       (2.5.24) 

The chain rule given in equation (2.5.12) gives us a way to compute the behaviour of a 
function of Brownian motion. It is also useful to know the chain rule to compute a function 
of a given Ito process. Suppose an Ito process is given by a general form,  

( ) ( )dX t dt dB t   ,                        (2.5.25) 

where   is the drift coefficient and  is the diffusion coefficient and let g(t, x) is a twice 
differentiable continuous function. Let Y (t) = g(t , X (t)). Here Y (t) is a function of t and Ito 
process X (t), and is also a stochastic process. Y (t) can also be expressed as an Ito process. 
Then Ito formula states, 
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where, 2( ( )) ( ( )). ( ( ))dX t d X t d X t ,                   (2.5.27) 
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process X (t), and is also a stochastic process. Y (t) can also be expressed as an Ito process. 
Then Ito formula states, 

2
2

2

1( ) ( , ( )) ( , ( )) ( ) ( , ( )).( ( )) .
2

dg g gdY t t X t dt t X t dX t t X t dX t
dt x x

 
  

 
         (2.5.26) 

where, 2( ( )) ( ( )). ( ( ))dX t d X t d X t ,                   (2.5.27) 
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Comparing equation (2.5.13) and the corresponding stochastic chain rule, we can see that 
the second derivative term of the Taylor series plays a significant role in changing the chain 
rule in the standard calculus to the stochastic one. 

For example, let ( ) xg x e  

Therefore, ( ) (0) ( ) ( )

0 0

1( )
2

t tB t B s B se e e dB s e ds    .                (2.5.14) 

In differential notation (which is only a convention),  

( ) ( ) ( )1( ) ( )
2

B t B t B td e e dB t e dt  .                        (2.5.15) 

As an another example, let 2( )g x x . 

Therefore, from the chain rule 

2 2

0

1( ( )) ( (0)) 2 ( ) ( ) 2
2

t t

s
B t B B s dB s ds    , 

2

0

1 1( ) ( ) ( ( ))
2 2

t
B s dB s B t t  .                     (2.5.16) 

This is quite a different result from the standard integration. In differential convention,  

21 1( ) ( ) (( ( )) ) .
2 2

B t dB t d B t dt               (2.5.17) 

In other words, the stochastic process 
0

( ) ( )
t
B s dB s can be calculated by evaluating 

21 1{ ( ( )) }
2 2
B t t . We will show how this process behaves using computer simulations in 

section 2.6. 

We can write Ito integral as 

0
( ) ( ) ( )

t
Y t s dB s  .               (2.5.18) 

Then we can add a “drift term” to the “diffusion term” given by equation (2.5.18): 

0 0
( ) (0) ( ) ( ) ( )

t t
Y t Y s ds s dB s     .                  (2.5.19)   

We recall that ( )s  should be a predictable process and is subjected to the condition 
2

0
( )

T
t dt    converging almost surely. ( )t  is, on the other hand,   an adapted 

continuous process of finite variation. In equation (2.5.19)  
0

( ) ( )
t

s dB s  represents the 

diffusion part of the process and 
0

( )
t

s ds does not contain the noise; therefore it represents 

 

the drifting of the process. Y(t) is called an Ito process and in differential notation we can 
write, 

        ( ) ( ) ( ) ( )dY t t dt t dB t   .                      (2.5.20) 

Equation (2.5.20) can be quite useful in practical applications where the main driving force is 
perturbed by an irregular noise. A particle moving through a porous medium is such an 
example. In this case, advection gives rise to the drift term and hydrodynamic dispersion 
and microdiffusion give rise to the “diffusive” term. In the population dynamics, the 
diffusive term is a direct result of noise in the proportionality constant. Therefore it is 
important to study Ito process further in order to apply it in modeling situations. ( )t is 
called the drift coefficient and ( )t the diffusion coefficient and they can depend on Y(t) 
and/or B(t). For example, we can write in pervious result (equation (2.5.17)),  

2( ( ) ) 2 ( ) ( )d B t dt B t dB t  .                    (2.5.21) 

This is an Ito process with the drift coefficient of 1 and the diffusion coefficient of 2B(t). 
Quadratic variation of Ito process on [0, ]T  

0 0
( ) (0) ( ) ( ) ( ).

t t
Y t Y s ds s dB s                 (2.5.22) 

is given by 

2

0
[ , ]( ) ( )

t
Y Y t s ds   .                      (2.5.23) 

This can be deduced from the fact that 
0

( )
t

s ds  is a continuous function with finite 

variation and using quadratic variation of Ito integral. In differential notation,  
2

2 2 2 2

2

( ( )) ( ). ( ),
( )( ) 2 ( ) ,

( ) .

dY t dY t dY dt
t dt dtdB dB
t dt

   





  



       (2.5.24) 

The chain rule given in equation (2.5.12) gives us a way to compute the behaviour of a 
function of Brownian motion. It is also useful to know the chain rule to compute a function 
of a given Ito process. Suppose an Ito process is given by a general form,  

( ) ( )dX t dt dB t   ,                        (2.5.25) 

where   is the drift coefficient and  is the diffusion coefficient and let g(t, x) is a twice 
differentiable continuous function. Let Y (t) = g(t , X (t)). Here Y (t) is a function of t and Ito 
process X (t), and is also a stochastic process. Y (t) can also be expressed as an Ito process. 
Then Ito formula states, 

2
2

2

1( ) ( , ( )) ( , ( )) ( ) ( , ( )).( ( )) .
2

dg g gdY t t X t dt t X t dX t t X t dX t
dt x x

 
  

 
         (2.5.26) 

where, 2( ( )) ( ( )). ( ( ))dX t d X t d X t ,                   (2.5.27) 
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Comparing equation (2.5.13) and the corresponding stochastic chain rule, we can see that 
the second derivative term of the Taylor series plays a significant role in changing the chain 
rule in the standard calculus to the stochastic one. 

For example, let ( ) xg x e  

Therefore, ( ) (0) ( ) ( )

0 0

1( )
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t tB t B s B se e e dB s e ds    .                (2.5.14) 

In differential notation (which is only a convention),  
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As an another example, let 2( )g x x . 
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This is quite a different result from the standard integration. In differential convention,  
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section 2.6. 

We can write Ito integral as 
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Then we can add a “drift term” to the “diffusion term” given by equation (2.5.18): 
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diffusion part of the process and 
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the drifting of the process. Y(t) is called an Ito process and in differential notation we can 
write, 

        ( ) ( ) ( ) ( )dY t t dt t dB t   .                      (2.5.20) 

Equation (2.5.20) can be quite useful in practical applications where the main driving force is 
perturbed by an irregular noise. A particle moving through a porous medium is such an 
example. In this case, advection gives rise to the drift term and hydrodynamic dispersion 
and microdiffusion give rise to the “diffusive” term. In the population dynamics, the 
diffusive term is a direct result of noise in the proportionality constant. Therefore it is 
important to study Ito process further in order to apply it in modeling situations. ( )t is 
called the drift coefficient and ( )t the diffusion coefficient and they can depend on Y(t) 
and/or B(t). For example, we can write in pervious result (equation (2.5.17)),  

2( ( ) ) 2 ( ) ( )d B t dt B t dB t  .                    (2.5.21) 

This is an Ito process with the drift coefficient of 1 and the diffusion coefficient of 2B(t). 
Quadratic variation of Ito process on [0, ]T  

0 0
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is given by 
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This can be deduced from the fact that 
0

( )
t

s ds  is a continuous function with finite 

variation and using quadratic variation of Ito integral. In differential notation,  
2

2 2 2 2

2

( ( )) ( ). ( ),
( )( ) 2 ( ) ,

( ) .

dY t dY t dY dt
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t dt
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       (2.5.24) 

The chain rule given in equation (2.5.12) gives us a way to compute the behaviour of a 
function of Brownian motion. It is also useful to know the chain rule to compute a function 
of a given Ito process. Suppose an Ito process is given by a general form,  

( ) ( )dX t dt dB t   ,                        (2.5.25) 

where   is the drift coefficient and  is the diffusion coefficient and let g(t, x) is a twice 
differentiable continuous function. Let Y (t) = g(t , X (t)). Here Y (t) is a function of t and Ito 
process X (t), and is also a stochastic process. Y (t) can also be expressed as an Ito process. 
Then Ito formula states, 

2
2

2

1( ) ( , ( )) ( , ( )) ( ) ( , ( )).( ( )) .
2

dg g gdY t t X t dt t X t dX t t X t dX t
dt x x

 
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 
         (2.5.26) 

where, 2( ( )) ( ( )). ( ( ))dX t d X t d X t ,                   (2.5.27) 
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and is evaluated according to the rules given by equation (2.5.12). 

As an example, consider the Ito process 

( ) 2 ( ) ( )dX t dt B t dB t                            (2.5.28) 

where 1  and 2 ( )B t  .  

Assume 2( , )g t x x , therefore,  

0g
t





; 

2

22 ; 2g gx
x x
 

 
 

.                  (2.5.29) 

Substituting to Ito formula above , 

       
2

2 ( ) ( ) ( ). ( ),
2( 2 ( ) ( )) ( ) 4 ( ) .

dg X t dX t dX t dX t
dt B t dB t B t B t dt

 

  
                 (2.5.30) 

 
2 2( ) (2 ( ) 4 ( )) 4 ( ) ( ) ( ).dX t X t B t dt X t B t dB t                 (2.5.31) 

As seen above 2( )dX t  is also an Ito process with 22 ( ) 4 ( )u X t B t  (drift coefficient), a 
function of X(t) and B (t), and  v = 4X(t)B(t) (diffusion coefficient) , also a function of X(t) 
and B(t). 

Substituting 2( ) ( )X t B t  to equation (2.5.31), 

4 2 2 2

2 3

( ( )) 2( ( ) 2 ( ) 4( ( )) ( ) ( )
6 ( ) 4 ( ) ( )

d B t B t B t dt B t B t dB t
B t dt B t dB t

  

 
.              (2.5.32) 

We can derive this from chain rule for a function of B(t) as well. 

Let 4( )g x x , and from Ito formula: 

  

3 2

1( ( )) ( ) ( )
2

14 ( ) ( ) 4.3. ( ) ,
2

dg g B t dB t g t dt

B t dB t B t dt

  

 
                    (2.5.33) 

4 2 3( ( )) 6 ( ) 4 ( ) ( )d B t B t dt B t dB t  .                   (2.5.34) 

This is the same Ito process as in equation (2.5.32). Let us consider another example which 
will be useful. Consider the function ( ) lng x x  and the Ito process  

    

1( ) ( ) ( ) ( )
2

dX t X t X t dB t  .                    (2.5.35) 

For this Ito process 1 ( )
2

X t   and ( )X t   . 

 

 

From the Ito formula (equation (2.5.26)), 

2
2

1 1 1(ln ( )) ( ) ( ( ) ),
( ) 2 ( )

1 1 1( ) ( ) ( ) ,
( ) 2 2

1 1( ) ,
2 2

( ).

d X t dX t X t dt
X t X t

X t dt X t dB t dt
X t

dt dB t dt

dB t

 
   

 
    
 

  



              (2.5.36) 

By convention, the above stochastic differential is given by the following integral equation: 

        0
ln ( ) ln (0) ( )

t
X t X dB t   ,                      (2.5.37) 

( )ln ( )
(0)

X t B t
X
 

 
 

,                         (2.5.38) 

( )( ) (0) B tX t X e . 

We can show that ( )( ) (0) B tX t X e  satisfies 1( ) ( ) ( ) ( )
2

dX t X t dt X t dB t  . In other words 

( )( ) (0) B tX t X e  is a “solution” to the stochastic differential 1( ) ( ) ( ) ( )
2

dX t X t dt X t dB t  . 

This idea of having a solution to a stochastic differential is similar to having a solution to 
differential equations in standard calculus. 

Suppose 1( )X t and 2( )X t  are Ito processes given by the following differentials: 

        1 1 1( ) ( ) ( ) ( )dX t t dt t dB t    ,                   (2.5.39) 

2 2 2( ) ( ) ( ) ( )dX t t dt t dB t    .              (2.5.40) 

Quadratic covariation is given by 

1 2 1 2
2 2

1 2 1 2 2 1 1 2

[ , ] ( ). ( ) ,
( ) . ( ) . ( ) ( ( )) .

d X X dX t dX t
dt dt dB t dt dB t dB t       



   
 

And 2( ) . ( ) 0dt dt dB t  . 

2
1 2 1 2

1 2

[ , ] ( ) ( )( ( ))
( ) ( )

d X X t t dB t
t t dt

 
 




.                     (2.5.41) 

The stochastic product rule is given by, 

            

1 2 1 2

1 2 2 1 1 20 0

( ) ( ) (0) (0)

( ) ( ) ( ) ( ) [ , ]( )
t t

X t X t X X

X s dX s X s dX s X X t



   
.               (2.5.42) 
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and is evaluated according to the rules given by equation (2.5.12). 

As an example, consider the Ito process 

( ) 2 ( ) ( )dX t dt B t dB t                            (2.5.28) 

where 1  and 2 ( )B t  .  

Assume 2( , )g t x x , therefore,  
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Substituting to Ito formula above , 
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As seen above 2( )dX t  is also an Ito process with 22 ( ) 4 ( )u X t B t  (drift coefficient), a 
function of X(t) and B (t), and  v = 4X(t)B(t) (diffusion coefficient) , also a function of X(t) 
and B(t). 

Substituting 2( ) ( )X t B t  to equation (2.5.31), 
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We can derive this from chain rule for a function of B(t) as well. 

Let 4( )g x x , and from Ito formula: 
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This is the same Ito process as in equation (2.5.32). Let us consider another example which 
will be useful. Consider the function ( ) lng x x  and the Ito process  
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From the Ito formula (equation (2.5.26)), 
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By convention, the above stochastic differential is given by the following integral equation: 
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( )( ) (0) B tX t X e . 

We can show that ( )( ) (0) B tX t X e  satisfies 1( ) ( ) ( ) ( )
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dX t X t dt X t dB t  . In other words 
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and is evaluated according to the rules given by equation (2.5.12). 

As an example, consider the Ito process 

( ) 2 ( ) ( )dX t dt B t dB t                            (2.5.28) 

where 1  and 2 ( )B t  .  

Assume 2( , )g t x x , therefore,  
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Substituting to Ito formula above , 
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As seen above 2( )dX t  is also an Ito process with 22 ( ) 4 ( )u X t B t  (drift coefficient), a 
function of X(t) and B (t), and  v = 4X(t)B(t) (diffusion coefficient) , also a function of X(t) 
and B(t). 

Substituting 2( ) ( )X t B t  to equation (2.5.31), 
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We can derive this from chain rule for a function of B(t) as well. 

Let 4( )g x x , and from Ito formula: 
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This is the same Ito process as in equation (2.5.32). Let us consider another example which 
will be useful. Consider the function ( ) lng x x  and the Ito process  
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By convention, the above stochastic differential is given by the following integral equation: 
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,                         (2.5.38) 

( )( ) (0) B tX t X e . 

We can show that ( )( ) (0) B tX t X e  satisfies 1( ) ( ) ( ) ( )
2

dX t X t dt X t dB t  . In other words 

( )( ) (0) B tX t X e  is a “solution” to the stochastic differential 1( ) ( ) ( ) ( )
2

dX t X t dt X t dB t  . 

This idea of having a solution to a stochastic differential is similar to having a solution to 
differential equations in standard calculus. 

Suppose 1( )X t and 2( )X t  are Ito processes given by the following differentials: 

        1 1 1( ) ( ) ( ) ( )dX t t dt t dB t    ,                   (2.5.39) 
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The stochastic product rule is given by, 
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and is evaluated according to the rules given by equation (2.5.12). 
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Substituting to Ito formula above , 
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We can derive this from chain rule for a function of B(t) as well. 

Let 4( )g x x , and from Ito formula: 
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By convention, the above stochastic differential is given by the following integral equation: 
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dX t X t dt X t dB t  . 

This idea of having a solution to a stochastic differential is similar to having a solution to 
differential equations in standard calculus. 

Suppose 1( )X t and 2( )X t  are Ito processes given by the following differentials: 
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The stochastic product rule is given by, 
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If at least one of 1X  and 2X  is a continuous function with finite variation, then 

1 2[ , ]( ) 0X X t   and equation (2.5.42) reduces to the integration by parts formula in the 
standard calculus. 

Stochastic product rule can be expressed in differential form: 
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As an example, consider Y(t) = t B(t), 

1 2( ) ( ) ( )Y t X t X t , 

where 1( )X t t , a continuous function with finite variation and 1 0  , and 2( ) ( )X t B t  , 
Brownian motion  with infinite variation and 2 1  . 

From the product rule, 

( ( )) ( ) ( ) (0)(1)d Y t tdB t B t dt dt   , 

  ( ( )) ( ) ( )d tB t tdB t B t dt                           (2.5.44) 

This is the same result we obtain if we use the standard product rule. The reason for this is 
that quadratic covariation of a continuous function and a function with infinite variation is 
zero as we have mentioned previously. 

Suppose 1( ) ( ) ( )dX t tdB t B t dt  , and 
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This is again an Ito process. 
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As an integral equation, 
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If 1 2( , )g x x  is a continuous and twice differentiable function of 1x  and 2x , and we are 
given Ito processes of the forms, 1 1 1( ) ( )dX t dt dB t    and 2 2 2( ) ( )dX t dt dB t   . 

Then 1 2( ( ), ( ))g X t X t  is also an Ito process and given by the following differential form: 
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Using quadratic variation and covariation of Ito processes, 
2 2

1 1 1 1( ( )) ( ) . ( )dX t dX t dX t dt  , 

2 2
2 2 2 2( ( )) ( ) . ( )dX t dX t dX t dt  , and 

1 2 1 2( ) . ( )dX t dX t dt  . 

These can be considered as a generalization of the rules on differentials given by equation 
(2.5.12). We use this generalized Ito formula for a function of two Ito processes in the 
following example. 

We will express the stochastic process ( )( ) 2 B tX t t e    as an Ito process having the 
standard form, ( ) ( )dX t dt dB t   . 

We can consider  

   
( )( ) ( , ( )) 2 B tX t g t B t t e    .                      (2.5.49) 

Therefore, ( , ) 2 yg t y t e   , where 

1( )X t t , 

2( ) ( )X t y B t  . 

These equations give, 1dX dt  and 2 ( )dX dB t , where 1 1  ; 1 0  ; 2 0  ; and 2 1  . 
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If at least one of 1X  and 2X  is a continuous function with finite variation, then 

1 2[ , ]( ) 0X X t   and equation (2.5.42) reduces to the integration by parts formula in the 
standard calculus. 

Stochastic product rule can be expressed in differential form: 
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This is the same result we obtain if we use the standard product rule. The reason for this is 
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If 1 2( , )g x x  is a continuous and twice differentiable function of 1x  and 2x , and we are 
given Ito processes of the forms, 1 1 1( ) ( )dX t dt dB t    and 2 2 2( ) ( )dX t dt dB t   . 
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Using quadratic variation and covariation of Ito processes, 
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These can be considered as a generalization of the rules on differentials given by equation 
(2.5.12). We use this generalized Ito formula for a function of two Ito processes in the 
following example. 

We will express the stochastic process ( )( ) 2 B tX t t e    as an Ito process having the 
standard form, ( ) ( )dX t dt dB t   . 

We can consider  
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Therefore, ( , ) 2 yg t y t e   , where 
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These equations give, 1dX dt  and 2 ( )dX dB t , where 1 1  ; 1 0  ; 2 0  ; and 2 1  . 
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(2.5.12). We use this generalized Ito formula for a function of two Ito processes in the 
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We can consider  

   
( )( ) ( , ( )) 2 B tX t g t B t t e    .                      (2.5.49) 

Therefore, ( , ) 2 yg t y t e   , where 

1( )X t t , 

2( ) ( )X t y B t  . 

These equations give, 1dX dt  and 2 ( )dX dB t , where 1 1  ; 1 0  ; 2 0  ; and 2 1  . 
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From a previous example, ( ) ( ) ( )1( ) ( )
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X(t)= constant + t + ( )B te  can be considered as a solution process to the stochastic 
differential, 

( ) ( )1( ) (1 ) ( )
2

B t B tdX t e dt e dB t   . 

As we can see in the above solution, the solution process contains the characteristics of both 
the drift and diffusion phenomena. In this case, diffusion phenomenon dominates as t 
increases because of the expected value of the exponential of Brownian motion increases at a 
faster rate in general. If we examine the drift term of the stochastic differential above, we see 
that the drift term is also affected by the Brownian motion, so the final solution is always a 
result of complex interactions between the drift term and the diffusion term. 

 

 

 

We now to discuss a population dynamics example equipped with the knowledge of Ito 
process and formula: 
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dt
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As seen from the above equation (2.5.51), X(t) is an Ito process. 
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Converting back to the integral form, 
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.                (2.5.52) 

X(t) process, therefore, satisfies the Ito process, 

( ) ( ) ( ) ( )dX t rX t dt X t dB t  , 

and equation (2.5.52) can be considered as a solution to the stochastic differential equation. 
As discussed earlier, this solution significantly different from its deterministic counterpart. 

This section we have reviewed the essentials of stochastic calculus and presented the results 
which could be useful in developing models and solving stochastic differential equations. 
While analytical expressions are quite helpful to understand stochastic processes, computer 
simulation provides us with an intuitive “feel” for the simulated phenomena. Sometimes it 
is revealing to simulate a number of realizations of a process and visualize them on 
computers to understand the behaviours of the process. 
 

2.6 Computer Simulation of Brownian Motion and Ito Processes 
In the previous section, we have introduced Brownian motion (the Wiener process) as a 
stationary, continuous stochastic process with independent increments. This process is a 
unique one to model the irregular noise such as Gaussian white noise in systems, and once 
such a process is incorporated in differential equations, the process of obtaining solutions 
involve stochastic calculus. Only a limited number of stochastic differential equations have 
analytical solutions and some of these equations are given by Kloeden and Platen (1992). In 
many instances we have to resort to numerical methods. We illustrate the behaviour of the 
Wiener process and Ito processes through computer simulations so that reader can 
appreciate the variable nature of individual realizations. 

For the numerical implementation, it is most convenient to use the variance specification of 
the Wiener process B(t). The time span of the simulation, [0,1] is discretised into small equal 
time increments delt, and the corresponding independent Wiener increments selected 
randomly from a normal distribution with zero mean and variance, delt. 

Figure 2.2 shows the Wiener process increments as a single stochastic process. Since 
Gaussian white noise is the derivative of Wiener process and the time interval is a constant, 
Figure 2.2 depicts a realization of an approximation of white noise process. 

The Wiener process is very irregular (Figure 2.1), and the only discernible pattern is that as 
time progresses, the position tends to wander away from the starting position at the origin. 
In other words, if the statistical variance over realisations for a fixed time is evaluated, this 

 

increases gradually – a property referred to as time varying variance. The use of the Wiener 
process in a modelling situation to represent the noise in the system should be carefully 
thought through. If the noise can be represented as white noise, then Wiener process enters 
into the equation because of the relationship between the white noise and the Wiener 
process. It is also important to realize that the Ito integral is a stochastic process dependent 
on the Wiener process. This is analogous to integration in standard calculus because an 
indefinite integral is a function of the independent, deterministic variable.  
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Figure 2.2. A realization of the Wiener process increment. 

Given the Wiener process realization depicted in Figure 2.1, we compute the Ito integral of 

Wiener process, 
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As we have previously seen, this integral can be evaluated by using the following stochastic 
relationship converging in probability; and it is shown in Figure 2.4. 
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Figure 2.3. The realization of the Wiener process used in the calculation of the Ito Integral 
shown in Figure 2.4.
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Figure 2.3. The realization of the Wiener process used in the calculation of the Ito Integral 
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Figure 2.4. A realization of 
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Let us consider the following Ito process which we have derived in section 2.5. In 
differential notation, 
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The Ito process given in equation (2.6.1) is simulated in Figure 2.6 for the Wiener realization 
depicted in Figure 2.5.  
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Figure 2.5. Wiener realization used in evaluating the Ito process 4( )B t . 
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Figure 2.6. Ito process 4 2 3
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Even for a decreasing and erratic Wiener process, the Ito process 
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B t dt B t dB t   in general has a smoother realization which has an overall 

growth in positive direction. The effect of Ito integration tends to smoothen the erratic 
behaviour of Wiener process. We have evaluated the above Ito process for 3 different 
realizations of the standard Wiener process, and they are shown in Figure 2.7. 

As seen in Figure 2.7, individual realizations of the Ito process  2 3
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are distinct from each other; and they show the complexity in stochastic integration as 
opposed to integration in standard calculus. 
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Figure 2.7. Three realizations of  2 3
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2.7 Solving Stochastic Differential Equation 
Let us consider an ordinary differential equation which relates the derivative of the 
dependent variable (y(t)) to the independent variable (t) through a function, ( ( ), )y t t , with 
the initial condition 0(0)y y : 

 
( , )dy y t

dt
 ,                            (2.7.1) 

and ( , )dy y t dt .                          (2.7.2) 

In many natural systems, this rate of change can be influenced by random noise caused by a 
combination of factors, which could be difficult to model. As a model of this random 
fluctuations, white noise ( ( ))t  is a suitable candidate. Therefore we can write, in general, 
the increments of the noise process as ( , ) ( )y t t   where   is an amplitude function 
modifying the white noise.     

Hence, 

    
( , ) ( , ) ( )dy y t y t t

dt
    .                       (2.7.3) 

As we have seen before (equation (2.3.3)), 

( , ) ( ) ( , ) dBy t t y t
dt

                           (2.7.4) 

where, B(t) = the standard Wiener process. 

Therefore, 

( , ) ( , )dy dBy t y t
dt dt

   ,                         (2.7.5) 

    
( , ) ( , )dy y t d y t dB    .                       (2.7.6) 

In general, ( , )y t  and ( , )y t , could be stochastic processes. This equation is called a 
stochastic differential equation (SDE) driven by Wiener process.  Once the Wiener process 
enters into equation (2.7.4), y becomes a stochastic process, ( , )Y t  , and in the differential 
notation SDE is written as

( ) ( ( ), ) ( ( ), ) ( )dY t Y t t dt Y t t dB t   .                  (2.7.7) 

This actually means, 

( ) (0) ( ( ), ) ( ( ), ) ( )
t t

Y t Y Y t t dt Y t t dB t
 

     .              (2.7.8) 

If we can find a function of Wiener process in the form of an Ito process that satisfies the 
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Strong solutions do not depend on individual realizations of Brownian motion. In other 
words, all possible realizations of an Ito process, which is a strong solution of a SDE, satisfy 
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solutions is called weak solutions where solution to each individual realization is different 
from each other. In this section we will focus only on strong solutions. In many situations, 
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Now let us consider a similar SDE with a drift term: 

       
( ) ( ) ( ) ( )dX t X t dt X t dB t   ,                    (2.7.15) 

where   and   are constants. 

Dividing it by X (t),  

( ) ( )
( )

dX t dt dB t
X t

   .                        (2.7.16) 

This differential represents, 

0 0 0
( ),

( )
( ( ) (0)),

( ).

t t tdX dt dB t
X t

t B t B
t B t

 

 
 

 

  
 

  
                      (2.7.17) 

The second term on the right hand side comes from Ito integration. 

Now let us assume 

( ) ( )t t B t    .                         (2.7.18) 

Then the SDE becomes, 

0

( ) ( ),
( )

t dX t t
X t

  

and  

1( ) ( ) (0) [ , ]( )
2

t t t       . 

2

2

[ , ]( ) [( ( )),( ( ))]( ),
[ , ]( ) 2 [ , ( )]( ) [ , ]( ),
0 0 .

t t B t t B t t
t t t t B t t B B t

t

     

    



  

  

  
 

Therefore 21( ) ( ) 0
2

t t B t t       . 

Then the solution to the SDE is 

21( ) exp(( ) ( ))
2

X t t B t     . 

Let us examine whether the stochastic process  

  

21( ) exp(( ) ( )).
2

X t t B t                           (2.7.19) 

 

is a strong solution to the differential equation 

( ) ( ) ( ) ( )dX t X t dt X t dB t   . 

We will define a function, 

21( , ) exp(( ) ).
2

f x t t X      

2

( ) ( ( ), ),
1exp(( ) ( )).
2

X t f B t t
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

  
 

We need to apply Ito formula for the two Ito processes 1( )X t  and 2( )X t . 

1( ) ( )X t B t ; 2 ( )X t t  (a continuous function with finite variation); 

1 2 1 2. ( ) [ , ] 0dX dX t d X X  ; 2
1( )dX dt ;  2

2( ) 0dX  . 
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2 2
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 , 
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From Ito formula, 
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2 2
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( ) ( ) ( ).
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This proves that ( ) ( ( ), )X t f B t t  is a strong solution of the SDE given by equation (2.7.19). 

We can see that if we can find a function ( , )f x t , and for a given Wiener process ( )B t , 
( ) ( ( ), )X t f B t t  is a solution to the SDE of the form 

          
( ) ( ( ), ) ( ( ), ) ( )dX t X t t dt X t t dB t   .                (2.7.20) 
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1 2
2 2 2

2 2

2 2 2 2 2

( ( , ))
1 1 1( ) (0) (0),
2 2 2

1 1 1 1 1exp(( ) ( )) ( )exp( ) exp( ) .
2 2 2 2 2

d f X X
f f f f fdB t dt dt
x t x t x t

t B t dt dt          

    
    
     

       

 

2 2

( ( )) ( ( ( ), ))
1 1exp(( ) ( )) exp(( ) ( ) ( ),
2 2

( ) ( ) ( ).

d X t d f B t t

t B t dt t B t dB t

X t dt X t dB t

       

 



     

 

 

This proves that ( ) ( ( ), )X t f B t t  is a strong solution of the SDE given by equation (2.7.19). 

We can see that if we can find a function ( , )f x t , and for a given Wiener process ( )B t , 
( ) ( ( ), )X t f B t t  is a solution to the SDE of the form 

          
( ) ( ( ), ) ( ( ), ) ( )dX t X t t dt X t t dB t   .                (2.7.20) 
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Now let us consider a similar SDE with a drift term: 
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The second term on the right hand side comes from Ito integration. 
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This proves that ( ) ( ( ), )X t f B t t  is a strong solution of the SDE given by equation (2.7.19). 

We can see that if we can find a function ( , )f x t , and for a given Wiener process ( )B t , 
( ) ( ( ), )X t f B t t  is a solution to the SDE of the form 

          
( ) ( ( ), ) ( ( ), ) ( )dX t X t t dt X t t dB t   .                (2.7.20) 
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This proves that ( ) ( ( ), )X t f B t t  is a strong solution of the SDE given by equation (2.7.19). 

We can see that if we can find a function ( , )f x t , and for a given Wiener process ( )B t , 
( ) ( ( ), )X t f B t t  is a solution to the SDE of the form 
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X(t) should also satisfy, 
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Solution to the general linear SDE of the form, 

( ) ( ( ) ( ) ( )) ( ( ) ( ) ( )) ( ).dX t t t X t dt t t X t dB t                (2.7.21) 

where  ,  ,   and   are given adapted processes and continuous functions of t, can 
be quite useful in applications. 

The solution can be expresses as a product of two Ito processes (Klebaner, 1998) 

( ) ( ) ( )X t u t v t , where , 

( ) ( ) ( ) ( )du t u t dt u t dB t   , and  

( ) ( )dv t a dt b dB t  . 

u(t) can be solved by using a stochastic exponential as shown above and once we have a 
solution, we can obtain a(t), b(t) by solving the following two equations: 

( ) ( ) ( )b t u t t , and 

( ) ( ) ( ) ( ) ( )a t u t t t t    . 

Then the solution to the general linear SDE is given by (Klebaner, 1998) : 
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 
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As an example let us solve the following linear SDE: 

( ) ( ) ( )dx t a X t dt dB t  ,               (2.7.23) 

where a is a constant. 

Here ( ) ,t a  ( ) 1,t  ( ) 0t  , and ( ) 0t  . 

Using the general solution with 

( ) ( ) (0) ( ),
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a t u t dt
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

 

From stochastic exponential, 

( ) exp( )u t a t  . 

 

Therefore, 

( ) exp( )( ( ) exp( ) ( ))
t

X t at X as dB s


   . 

This is also the solution of the SDE given by equation (2.7.23). 

The integral in the solution given above is an Ito integral and should be calculated according 
Ito integration. For non-linear stochastic differential equations, appropriate substitutions 
may be found to reduce them to linear ones. 

 
2.8 The Estimation of Parameters for Stochastic  
Differential Equations Using Neural Networks 
Stochastic differential equations (SDEs) offer an attractive way of modelling the random 
system dynamics, but the estimation of the drift and diffusion coefficients remains a 
challenging problem in many situations. There are various statistical methods that are used 
to estimate the parameters in differential equations driven by Wiener processes. In this 
section we offer an alternative approach based on artificial neural networks to estimate the 
parameters in a SDE. Readers who are familiar with neural networks may skip this section. 
Artificial Neural Networks (ANNs) as discussed in chapter 1 are universal function 
approximators that can map any nonlinear function, and they have been used in a variety of 
fields, such as prediction, pattern recognition, classification and forecasting. ANNs are less 
sensitive to error term assumptions and they can tolerate noise and chaotic behaviour better 
than most other methods. Other advantages include greater fault tolerance, robustness and 
adaptability due to ANNs’ large number of interconnected processing elements that can be 
trained to learn new patterns (Bishop, 1995). The Multilayer Perceptron (MLP) network is 
among the most common ANN architecture in use. It is one type of feed forward networks 
wherein the connections are only allowed from the nodes in layer i to the nodes in layer i+1. 
There are other more complex neural network architectures available, such as recurrent 
networks and stochastic networks; however MLP networks are always sufficient for dealing 
with most of the recognition and classification problems if enough hidden layers and hidden 
neurons are used (Samarasinghe, 2006). We show how to use the output values from the 
SDE solutions of the equations to train neural networks, and use the trained networks to 
estimate the SDE parameters for given output data. MLP networks will be used to solve this 
type of mapping problem.

The general form of SDE can be expressed by  

               ( ) ( , , ) ( , , ) ( )dy t y t dt y t dw t                         (2.8.1) 

where ( )y t  = the state variable of interest,   = a set of parameters (known and  
unknown), and ( )w t  = a standard Wiener process. In practice, to determine the parameter 
 , the system output variable y is usually observed at discrete time intervals, t, where 
0 t T  , at M independent points: 1 2{ , ,..., }My y y y . Observed data are recorded in 
discrete time intervals, regardless whether the model is described best by a continuous or 
discrete intervals.  
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among the most common ANN architecture in use. It is one type of feed forward networks 
wherein the connections are only allowed from the nodes in layer i to the nodes in layer i+1. 
There are other more complex neural network architectures available, such as recurrent 
networks and stochastic networks; however MLP networks are always sufficient for dealing 
with most of the recognition and classification problems if enough hidden layers and hidden 
neurons are used (Samarasinghe, 2006). We show how to use the output values from the 
SDE solutions of the equations to train neural networks, and use the trained networks to 
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unknown), and ( )w t  = a standard Wiener process. In practice, to determine the parameter 
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system dynamics, but the estimation of the drift and diffusion coefficients remains a 
challenging problem in many situations. There are various statistical methods that are used 
to estimate the parameters in differential equations driven by Wiener processes. In this 
section we offer an alternative approach based on artificial neural networks to estimate the 
parameters in a SDE. Readers who are familiar with neural networks may skip this section. 
Artificial Neural Networks (ANNs) as discussed in chapter 1 are universal function 
approximators that can map any nonlinear function, and they have been used in a variety of 
fields, such as prediction, pattern recognition, classification and forecasting. ANNs are less 
sensitive to error term assumptions and they can tolerate noise and chaotic behaviour better 
than most other methods. Other advantages include greater fault tolerance, robustness and 
adaptability due to ANNs’ large number of interconnected processing elements that can be 
trained to learn new patterns (Bishop, 1995). The Multilayer Perceptron (MLP) network is 
among the most common ANN architecture in use. It is one type of feed forward networks 
wherein the connections are only allowed from the nodes in layer i to the nodes in layer i+1. 
There are other more complex neural network architectures available, such as recurrent 
networks and stochastic networks; however MLP networks are always sufficient for dealing 
with most of the recognition and classification problems if enough hidden layers and hidden 
neurons are used (Samarasinghe, 2006). We show how to use the output values from the 
SDE solutions of the equations to train neural networks, and use the trained networks to 
estimate the SDE parameters for given output data. MLP networks will be used to solve this 
type of mapping problem.

The general form of SDE can be expressed by  

               ( ) ( , , ) ( , , ) ( )dy t y t dt y t dw t                         (2.8.1) 

where ( )y t  = the state variable of interest,   = a set of parameters (known and  
unknown), and ( )w t  = a standard Wiener process. In practice, to determine the parameter 
 , the system output variable y is usually observed at discrete time intervals, t, where 
0 t T  , at M independent points: 1 2{ , ,..., }My y y y . Observed data are recorded in 
discrete time intervals, regardless whether the model is described best by a continuous or 
discrete intervals.  
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Figure 2.8. Basic structure of a MLP with backpropagation algorithm. 

A MLP shown in Figure 2.8 has one hidden layer ( 1m ) and one output layer ( 2m ), and all 
the layers are fully connected to their subsequent layer. Connections are only allowed from 
the input layer to the hidden layer, and then, from the hidden layer to the output layer. 

Rumelhart (1986) developed the backpropagation learning algorithm and it is commonly 
used to train ANNs due to its advanced ability to generalize wider variety of problems. A 
typical backpropagation learning algorithm is based on an architecture that contains a layer 
of input neurons, output neurons, and one or more hidden layers; these neurons are all 
interconnected with different weights. In the backpropagation training algorithm, the error 
information is passed backward from the output layer to the input layer (Figure 2.8). 
Weights are adjusted with the gradient descent method. 

The ANN is trained by first setting up the network with all its units and connections, and 
then initialising with arbitrary weights. Then the network is trained by presenting examples. 
During the training phase the weights on connections change enabling the network to learn. 
When the network performs well on all training examples it should be validated on some 
other examples that it has not seen before. If the network can produce reasonable output 
values which are similar to validation targets and contain only small errors, it is then 
considered to be ready to use for problem solving. 

Both linear and nonlinear SDEs are examined in this section. The linear SDE (Eq. (2.8.2)) is 
expressed by a one-dimensional diffusion equation. Its drift term has a linear relationship to 
the output variable of the model, and the diffusion term represents the noise in the model. 
Eq. (2.8.3) is arbitrarily chosen as a representative nonlinear SDE: 

( ) ( ) ( ) ( )dX t X t dt X t dw t   , and             (2.8.2) 

2( ) ( ) ( ) ( )dX t X t dt X t dt dw t     ,             (2.8.3)  

where α, β = constant coefficients to be estimated as parameters, and   = a constant 
coefficient to adjust the noise level (amplitude).  

For each particular parameter α or the combination of parameters α and β, we can generate 
one realisation of SDE output through Eq. (2.8.2) or (2.8.3). The range of   and   used in 

 

the experiments is assumed to be [1, 2]. In addition,   is used to adjust the proportion of 
the contribution of diffusion term, and the range of   is [0.01, 0.1] in the linear case and 
[0.5, 3] in the nonlinear case. 

The discrete observations ( )X t  of these two equations are obtained at the sampling 
instants. Suppose the number of samples to be nt , we consider the first nt  time steps 
starting from 0 1X   and the size of sampling interval t  = 0.001. All the values come 
from the solution of SDEs. It has been shown that using Ito formula, Eq. (2.8.2) has an 
analytical solution (section 2.7), 
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For Eq. (2.8.4), we use the Euler method for the numerical solution. The numerical solution 
of 0   has been compared with the analytical solution of the equation. 

Before we describe the neural networks data sets, we clarify the terminology about 
“training”, “validation” and “test” data sets. In the literature of machine learning and neural 
networks communities, different meaning of the words “validation” and “test” are 
employed. We restrict ourselves to the definitions given by Ripley (1996): a training set is 
used for learning, a validation set is used to tune the network parameters and a test set is 
used only to assess the performance of the network. 

We generate a number of SDE realisations for a specified range of parameters with some 
patterns of Wiener processes to train the ANN. These data sets are called training data sets 
and validation sets are randomly chosen from the training sets. In order to test the 
prediction capability of the ANN, test data sets are generated with different patterns of 
Wiener processes within the same range of parameters as the training data sets. 

Obviously if the test data sets were generated from SDEs which contain only a single Wiener 
process, the result would be biased if this Wiener process was coincidently similar to the one 
used to generate the training data sets. To fairly assess the performance of networks, five 
different patterns of Wiener processes are used to generate the test data sets.  

To determine the value of time step nt , we have taken different nt  values, where min
nt  = 

10 to max
nt  = 200 and nt  = 10, to generate the training and test data sets. We found that 50 

values were sufficient to represent the pattern of SDEs in order to train neural networks. 
Further increase in nt  did not increase the neural networks performance in parameter 
estimation. Therefore 50 time steps are used in our computational experiments.  

All the experiments are carried out on a personal computer running the Microsoft Windows 
XP operating system. We use a commercial ANN software, namely NeuroShell2, for the 
neural network computations. It is recommended for academic users only, or those users 
who are concerned with classic neural network paradigms like backpropagation. Users 
interested in solving real problems should consider the NeuroShell Predictor, NeuroShell 
Classifier, or the NeuroShell Trader (Group, W.S., 2005). 
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For Eq. (2.8.4), we use the Euler method for the numerical solution. The numerical solution 
of 0   has been compared with the analytical solution of the equation. 

Before we describe the neural networks data sets, we clarify the terminology about 
“training”, “validation” and “test” data sets. In the literature of machine learning and neural 
networks communities, different meaning of the words “validation” and “test” are 
employed. We restrict ourselves to the definitions given by Ripley (1996): a training set is 
used for learning, a validation set is used to tune the network parameters and a test set is 
used only to assess the performance of the network. 

We generate a number of SDE realisations for a specified range of parameters with some 
patterns of Wiener processes to train the ANN. These data sets are called training data sets 
and validation sets are randomly chosen from the training sets. In order to test the 
prediction capability of the ANN, test data sets are generated with different patterns of 
Wiener processes within the same range of parameters as the training data sets. 

Obviously if the test data sets were generated from SDEs which contain only a single Wiener 
process, the result would be biased if this Wiener process was coincidently similar to the one 
used to generate the training data sets. To fairly assess the performance of networks, five 
different patterns of Wiener processes are used to generate the test data sets.  

To determine the value of time step nt , we have taken different nt  values, where min
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10 to max
nt  = 200 and nt  = 10, to generate the training and test data sets. We found that 50 

values were sufficient to represent the pattern of SDEs in order to train neural networks. 
Further increase in nt  did not increase the neural networks performance in parameter 
estimation. Therefore 50 time steps are used in our computational experiments.  

All the experiments are carried out on a personal computer running the Microsoft Windows 
XP operating system. We use a commercial ANN software, namely NeuroShell2, for the 
neural network computations. It is recommended for academic users only, or those users 
who are concerned with classic neural network paradigms like backpropagation. Users 
interested in solving real problems should consider the NeuroShell Predictor, NeuroShell 
Classifier, or the NeuroShell Trader (Group, W.S., 2005). 
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used only to assess the performance of the network. 

We generate a number of SDE realisations for a specified range of parameters with some 
patterns of Wiener processes to train the ANN. These data sets are called training data sets 
and validation sets are randomly chosen from the training sets. In order to test the 
prediction capability of the ANN, test data sets are generated with different patterns of 
Wiener processes within the same range of parameters as the training data sets. 

Obviously if the test data sets were generated from SDEs which contain only a single Wiener 
process, the result would be biased if this Wiener process was coincidently similar to the one 
used to generate the training data sets. To fairly assess the performance of networks, five 
different patterns of Wiener processes are used to generate the test data sets.  

To determine the value of time step nt , we have taken different nt  values, where min
nt  = 

10 to max
nt  = 200 and nt  = 10, to generate the training and test data sets. We found that 50 

values were sufficient to represent the pattern of SDEs in order to train neural networks. 
Further increase in nt  did not increase the neural networks performance in parameter 
estimation. Therefore 50 time steps are used in our computational experiments.  

All the experiments are carried out on a personal computer running the Microsoft Windows 
XP operating system. We use a commercial ANN software, namely NeuroShell2, for the 
neural network computations. It is recommended for academic users only, or those users 
who are concerned with classic neural network paradigms like backpropagation. Users 
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Among all the parameters in MLP, the numbers of input and output neurons are the easiest 
parameters to be determined because each independent variable is represented by its own 
input neuron. The number of inputs is determined by the number of sampling instants in 
the SDE’s solution, and the number of outputs is determined by the number of parameters 
which need to be predicted. In terms of the number of hidden layers and hidden layer 
neurons, we try a network that started with one layer and a few neurons, and then test 
different hidden layers and neurons to achieve the best ANN performance. In the following 
experiments, (X – Y – Z) is used to denote to the networks, where X is the number of input 
nodes, Y is the number of hidden nodes and Z is the number of output nodes. 

We found that the logistic function was always superior to other five transfer functions used 
in NeuroShell2, logistic, linear, hyperbolic tangent function, Sine and Gaussian, as input, 
output and hidden layer functions because of its nonlinear and continuously differentiable 
properties, which are desirable for learning complex problems. In addition to the logistic 
function, we use the default values of 0.1 in NeuroShell2 for both learning rate and 
momentum as we found that it was always appropriate. 

The number of training epochs plays an important role in determining the performance of 
the ANN. An epoch is the presentation of the entire training going through the network. 
ANNs need sufficient training epochs to learn complex input-output relationships. 
However excessive training epochs require unnecessarily long training time and cause over 
fitting problems where the network performs during the training very well but fails in 
testing (Caruana, 2001). To monitor the over fitting problem, we set up 20% of the training 
sets as validation sets and and the ANN monitors errors on the validation sets during 
training. The profile of the error plot for the training and validation sets during the training 
procedure indicates whether further training epoch is needed. We can stop training when 
the error of the training set plot keeps decreasing but that of the validation set plot has an 
increasing or flat line at the end. 

In order to test the robustness of neural networks, we need to measure the level of noise in 
the diffusion term of a SDE with respect to its drift term. Thus the diffusion parameter γ is 
used to adjust the noise level. The higher γ value indicates greater noise and increases the 
influence of the contribution of the diffusion term to the entire solution. As one can assume, 
the increased noise levels raises the difficulty of estimation. To measure it, we define P  for 
linear equation (2.8.2) as 
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where n = the number of time steps, and dt  = time differential. 

 

There are two parameters,   and  , in the drift term of the nonlinear SDE. We define aP  
to determine the strength of the linear term (i.e. ( )dt x t ). Similarly, P  indicates the 
measurement of strength of nonlinear term. They can be defined as 
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2R  (coefficient of multiple determinations) is a statistical indication of data sets which is 
determined by multiple regression analysis, and it is an important indicator of the ANN 
performance used in NeuroShell2 (Triola, 2004). 2R  compares the results predicted by 
ANN with actual values, and it is defined by 
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where y  = actual value, ŷ  = predicted value of y, y  = mean of y, and m  = number of 
data patterns. In the case of parameter estimation for the linear SDE, one 2R  value is 
obtained for determining the accuracy of the predicted parameter α. For the nonlinear SDE, 
two 2R  values are calculated for determining the accuracy of the predicted parameters α 
and β. If the ANN predicts all the values correctly as the actual values, a perfect fit would 
result in an 2R  value of 1. In a very poor fit, the 2R  value would be close to 0. If ANN 
predictions are worse than the mean of samples, the 2R  value will be less than 0. 

In addition to 2R , the Average Absolute Percentage Error (AAPE) is also used for 
evaluating the prediction performance where needed (Triola, 2004). The AAPE can be 
defined as, 
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where y = target value, ŷ = predicted value of y, and m = number of data patterns. 

The performance of ANN is evaluated by assessing the accuracy of the estimated parameters. 
Different ANN architectures including various combinations of hidden layers, neurons, and 
training epochs are used to obtain the optimum neural network. Further, a range of diffusion 
term is used to evaluate the effect of different level of stochasticity on the performance of ANN. 

We do not have a priori knowledge of the optimal ANN architecture at first; therefore we 
choose the default parameters in NeuroShell2 for one hidden layer MLP network, which has 

Stochastic Differential Equations and Related Inverse Problems 59
 

Among all the parameters in MLP, the numbers of input and output neurons are the easiest 
parameters to be determined because each independent variable is represented by its own 
input neuron. The number of inputs is determined by the number of sampling instants in 
the SDE’s solution, and the number of outputs is determined by the number of parameters 
which need to be predicted. In terms of the number of hidden layers and hidden layer 
neurons, we try a network that started with one layer and a few neurons, and then test 
different hidden layers and neurons to achieve the best ANN performance. In the following 
experiments, (X – Y – Z) is used to denote to the networks, where X is the number of input 
nodes, Y is the number of hidden nodes and Z is the number of output nodes. 

We found that the logistic function was always superior to other five transfer functions used 
in NeuroShell2, logistic, linear, hyperbolic tangent function, Sine and Gaussian, as input, 
output and hidden layer functions because of its nonlinear and continuously differentiable 
properties, which are desirable for learning complex problems. In addition to the logistic 
function, we use the default values of 0.1 in NeuroShell2 for both learning rate and 
momentum as we found that it was always appropriate. 

The number of training epochs plays an important role in determining the performance of 
the ANN. An epoch is the presentation of the entire training going through the network. 
ANNs need sufficient training epochs to learn complex input-output relationships. 
However excessive training epochs require unnecessarily long training time and cause over 
fitting problems where the network performs during the training very well but fails in 
testing (Caruana, 2001). To monitor the over fitting problem, we set up 20% of the training 
sets as validation sets and and the ANN monitors errors on the validation sets during 
training. The profile of the error plot for the training and validation sets during the training 
procedure indicates whether further training epoch is needed. We can stop training when 
the error of the training set plot keeps decreasing but that of the validation set plot has an 
increasing or flat line at the end. 

In order to test the robustness of neural networks, we need to measure the level of noise in 
the diffusion term of a SDE with respect to its drift term. Thus the diffusion parameter γ is 
used to adjust the noise level. The higher γ value indicates greater noise and increases the 
influence of the contribution of the diffusion term to the entire solution. As one can assume, 
the increased noise levels raises the difficulty of estimation. To measure it, we define P  for 
linear equation (2.8.2) as 
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There are two parameters,   and  , in the drift term of the nonlinear SDE. We define aP  
to determine the strength of the linear term (i.e. ( )dt x t ). Similarly, P  indicates the 
measurement of strength of nonlinear term. They can be defined as 
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2R  (coefficient of multiple determinations) is a statistical indication of data sets which is 
determined by multiple regression analysis, and it is an important indicator of the ANN 
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where y  = actual value, ŷ  = predicted value of y, y  = mean of y, and m  = number of 
data patterns. In the case of parameter estimation for the linear SDE, one 2R  value is 
obtained for determining the accuracy of the predicted parameter α. For the nonlinear SDE, 
two 2R  values are calculated for determining the accuracy of the predicted parameters α 
and β. If the ANN predicts all the values correctly as the actual values, a perfect fit would 
result in an 2R  value of 1. In a very poor fit, the 2R  value would be close to 0. If ANN 
predictions are worse than the mean of samples, the 2R  value will be less than 0. 

In addition to 2R , the Average Absolute Percentage Error (AAPE) is also used for 
evaluating the prediction performance where needed (Triola, 2004). The AAPE can be 
defined as, 
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where y = target value, ŷ = predicted value of y, and m = number of data patterns. 

The performance of ANN is evaluated by assessing the accuracy of the estimated parameters. 
Different ANN architectures including various combinations of hidden layers, neurons, and 
training epochs are used to obtain the optimum neural network. Further, a range of diffusion 
term is used to evaluate the effect of different level of stochasticity on the performance of ANN. 

We do not have a priori knowledge of the optimal ANN architecture at first; therefore we 
choose the default parameters in NeuroShell2 for one hidden layer MLP network, which has 
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Among all the parameters in MLP, the numbers of input and output neurons are the easiest 
parameters to be determined because each independent variable is represented by its own 
input neuron. The number of inputs is determined by the number of sampling instants in 
the SDE’s solution, and the number of outputs is determined by the number of parameters 
which need to be predicted. In terms of the number of hidden layers and hidden layer 
neurons, we try a network that started with one layer and a few neurons, and then test 
different hidden layers and neurons to achieve the best ANN performance. In the following 
experiments, (X – Y – Z) is used to denote to the networks, where X is the number of input 
nodes, Y is the number of hidden nodes and Z is the number of output nodes. 

We found that the logistic function was always superior to other five transfer functions used 
in NeuroShell2, logistic, linear, hyperbolic tangent function, Sine and Gaussian, as input, 
output and hidden layer functions because of its nonlinear and continuously differentiable 
properties, which are desirable for learning complex problems. In addition to the logistic 
function, we use the default values of 0.1 in NeuroShell2 for both learning rate and 
momentum as we found that it was always appropriate. 

The number of training epochs plays an important role in determining the performance of 
the ANN. An epoch is the presentation of the entire training going through the network. 
ANNs need sufficient training epochs to learn complex input-output relationships. 
However excessive training epochs require unnecessarily long training time and cause over 
fitting problems where the network performs during the training very well but fails in 
testing (Caruana, 2001). To monitor the over fitting problem, we set up 20% of the training 
sets as validation sets and and the ANN monitors errors on the validation sets during 
training. The profile of the error plot for the training and validation sets during the training 
procedure indicates whether further training epoch is needed. We can stop training when 
the error of the training set plot keeps decreasing but that of the validation set plot has an 
increasing or flat line at the end. 

In order to test the robustness of neural networks, we need to measure the level of noise in 
the diffusion term of a SDE with respect to its drift term. Thus the diffusion parameter γ is 
used to adjust the noise level. The higher γ value indicates greater noise and increases the 
influence of the contribution of the diffusion term to the entire solution. As one can assume, 
the increased noise levels raises the difficulty of estimation. To measure it, we define P  for 
linear equation (2.8.2) as 
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2R  (coefficient of multiple determinations) is a statistical indication of data sets which is 
determined by multiple regression analysis, and it is an important indicator of the ANN 
performance used in NeuroShell2 (Triola, 2004). 2R  compares the results predicted by 
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where y  = actual value, ŷ  = predicted value of y, y  = mean of y, and m  = number of 
data patterns. In the case of parameter estimation for the linear SDE, one 2R  value is 
obtained for determining the accuracy of the predicted parameter α. For the nonlinear SDE, 
two 2R  values are calculated for determining the accuracy of the predicted parameters α 
and β. If the ANN predicts all the values correctly as the actual values, a perfect fit would 
result in an 2R  value of 1. In a very poor fit, the 2R  value would be close to 0. If ANN 
predictions are worse than the mean of samples, the 2R  value will be less than 0. 

In addition to 2R , the Average Absolute Percentage Error (AAPE) is also used for 
evaluating the prediction performance where needed (Triola, 2004). The AAPE can be 
defined as, 
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where y = target value, ŷ = predicted value of y, and m = number of data patterns. 

The performance of ANN is evaluated by assessing the accuracy of the estimated parameters. 
Different ANN architectures including various combinations of hidden layers, neurons, and 
training epochs are used to obtain the optimum neural network. Further, a range of diffusion 
term is used to evaluate the effect of different level of stochasticity on the performance of ANN. 

We do not have a priori knowledge of the optimal ANN architecture at first; therefore we 
choose the default parameters in NeuroShell2 for one hidden layer MLP network, which has 
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Among all the parameters in MLP, the numbers of input and output neurons are the easiest 
parameters to be determined because each independent variable is represented by its own 
input neuron. The number of inputs is determined by the number of sampling instants in 
the SDE’s solution, and the number of outputs is determined by the number of parameters 
which need to be predicted. In terms of the number of hidden layers and hidden layer 
neurons, we try a network that started with one layer and a few neurons, and then test 
different hidden layers and neurons to achieve the best ANN performance. In the following 
experiments, (X – Y – Z) is used to denote to the networks, where X is the number of input 
nodes, Y is the number of hidden nodes and Z is the number of output nodes. 

We found that the logistic function was always superior to other five transfer functions used 
in NeuroShell2, logistic, linear, hyperbolic tangent function, Sine and Gaussian, as input, 
output and hidden layer functions because of its nonlinear and continuously differentiable 
properties, which are desirable for learning complex problems. In addition to the logistic 
function, we use the default values of 0.1 in NeuroShell2 for both learning rate and 
momentum as we found that it was always appropriate. 

The number of training epochs plays an important role in determining the performance of 
the ANN. An epoch is the presentation of the entire training going through the network. 
ANNs need sufficient training epochs to learn complex input-output relationships. 
However excessive training epochs require unnecessarily long training time and cause over 
fitting problems where the network performs during the training very well but fails in 
testing (Caruana, 2001). To monitor the over fitting problem, we set up 20% of the training 
sets as validation sets and and the ANN monitors errors on the validation sets during 
training. The profile of the error plot for the training and validation sets during the training 
procedure indicates whether further training epoch is needed. We can stop training when 
the error of the training set plot keeps decreasing but that of the validation set plot has an 
increasing or flat line at the end. 

In order to test the robustness of neural networks, we need to measure the level of noise in 
the diffusion term of a SDE with respect to its drift term. Thus the diffusion parameter γ is 
used to adjust the noise level. The higher γ value indicates greater noise and increases the 
influence of the contribution of the diffusion term to the entire solution. As one can assume, 
the increased noise levels raises the difficulty of estimation. To measure it, we define P  for 
linear equation (2.8.2) as 
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There are two parameters,   and  , in the drift term of the nonlinear SDE. We define aP  
to determine the strength of the linear term (i.e. ( )dt x t ). Similarly, P  indicates the 
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2R  (coefficient of multiple determinations) is a statistical indication of data sets which is 
determined by multiple regression analysis, and it is an important indicator of the ANN 
performance used in NeuroShell2 (Triola, 2004). 2R  compares the results predicted by 
ANN with actual values, and it is defined by 
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where y  = actual value, ŷ  = predicted value of y, y  = mean of y, and m  = number of 
data patterns. In the case of parameter estimation for the linear SDE, one 2R  value is 
obtained for determining the accuracy of the predicted parameter α. For the nonlinear SDE, 
two 2R  values are calculated for determining the accuracy of the predicted parameters α 
and β. If the ANN predicts all the values correctly as the actual values, a perfect fit would 
result in an 2R  value of 1. In a very poor fit, the 2R  value would be close to 0. If ANN 
predictions are worse than the mean of samples, the 2R  value will be less than 0. 

In addition to 2R , the Average Absolute Percentage Error (AAPE) is also used for 
evaluating the prediction performance where needed (Triola, 2004). The AAPE can be 
defined as, 
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where y = target value, ŷ = predicted value of y, and m = number of data patterns. 

The performance of ANN is evaluated by assessing the accuracy of the estimated parameters. 
Different ANN architectures including various combinations of hidden layers, neurons, and 
training epochs are used to obtain the optimum neural network. Further, a range of diffusion 
term is used to evaluate the effect of different level of stochasticity on the performance of ANN. 

We do not have a priori knowledge of the optimal ANN architecture at first; therefore we 
choose the default parameters in NeuroShell2 for one hidden layer MLP network, which has 
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68 hidden neurons and the logistic transfer function for the hidden layers and output layer. 
In addition,   = [1, 2],   = 0.01 and   = 0.03 are used for the parameters of SDE. 

The experiments show that when training data set is developed using only one Wiener 
process, over fitting problem is obvious. The average error in the training set continues to 
decrease during training process. Because of the powerful mapping capability of neural 
networks, the average error between the target and network outputs approaches zero as the 
training continues. During the first four epochs, the average error in the test set drops 
significantly. It reaches the lowest at the epoch 8. After that, the validation set error starts 
rising although the training set error is getting smaller. The reason for this increasingly poor 
generalization is that the neural network tends to track every individual point in the 
training set created by a particular pattern of Wiener process, rather than seeing the whole 
character of the equation. 

When the training data set is produced by more than one Wiener process, over fitting 
significantly decreases. The average error in the validation set continues to drop and 
remains stable after certain epochs. We examine the relationship between the number of 
Wiener processes and ANN prediction ability. 
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Figure 2.9. 2R  on the training and test sets against the number of Wiener Processes used to 
produce the training sets in the case of γ = 0.03 (A) and γ = 0.07 (B). 

The same ANN architecture and SDE parameters as the previous section are used here. 
Additionally we test a set of noisier data with   = 0.07. The results are obtained with the 
same numbers of training epochs. Figure 2.9 shows the influence of the number of Wiener 
processes that are used to produce training data sets. It indicates that as the number of 
Wiener Processes in the training sets increases, the network produces higher 2R  values for 
the test sets. It should be noted that the size of training data set expands as more Wiener 
processes are employed, and consequently the expansion causes slower training. Therefore, 
although there is a marginal improvement on 2R  value when more than 80 Wiener 
processes are used, we limit the number of Wiener Processes to 100 in further investigations. 

 

We use the same SDE parameters except γ = 0.07 to create training and test data sets, and 
100 Wiener processes are used to produce the training data sets. All the R2 values are 
obtained by using early stopping. The results in Table 2.1 suggest that when there is only 
one hidden layer and the number of neurons in the hidden layer is very small, the 
performance of the network is poor because the network does not have enough “power” to 
learn the input-output relationship. When the number of neurons in the hidden layer is 
close to the half number of input neurons, the performance reaches a higher accuracy. 
Further increase in the number of hidden layers and neurons does not improve the 
performance. 

The ANN performance is investigated for different combinations of drift and diffusion 
terms. We use three different MLP architectures, 50-30-1, 50-15-15-1, and 50-10-10-10-1, to 
train and test the data sets, and record the best performance. 

The ANN performance is investigated for different combinations of drift and diffusion 
terms. We use three different MLP architectures, 50-30-1, 50-15-15-1, and 50-10-10-10-1, to 
train and test the data sets, and record the best performance. 

1 hidden 
layer 

Test set 
2R  

2 hidden layers Test set 
2R  

3 hidden 

 layer 

Test set 
2R  

50-3-1 0.2728 50-3-3-1 0.5103 50-3-3-3-1 0.4920 

50-10-1 0.5222 50-5-5-1 0.4916 50-5-5-5-1 0.4576 

50-30-1 0.5392 50-15-15-1 0.5125 50-10-10-10-1 0.5075 

50-50-1 0.5151 50-25-25-1 0.4986 50-20-20-20-1 0.4987 

50-100-1 0.4980 50-50-50-1 0.4936 50-30-30-30-1 0.5072 

50-200-1 0.4969 50-100-100-1 0.4669 50-100-100-100-1 0.4892 

Table 2.1.  2R   variation on test set with different hidden neurons and hidden layers. 

Figure 2.10A demonstrates that the ANN performance decreases as the magnitude of the 
diffusion term increases and Figure 2.10B shows that the target and network output in the 
test sets are in good agreement when   = 0.01. Because the test set is created by 5 Wiener 
processes, it should be noticed that there are five repetitive sub-data sets and each of them 
represents a range of α values, which is from 1 to 2, with one pattern of Wiener process. By 
observing the sub-data sets separately, we can gain a better understanding on how noise 
influences the estimation of the parameter. As the   value reaches 0.05 (Figure 2.10C) and 
the ratio of diffusion term and drift term reaches 0.67 (shown in Figure 2.10A), the 2nd, 3rd 
and 5th sub-data sets show more accurate predictions than the 1st and 4th sets. Figure 2.10D 
demonstrates that the network-generated outputs just tend to use the average of targets in 
most of the sub-data sets when γ = 0.10 where the weight of diffusion term is more than that 
of the drift term (Pγ = 1.39 as shown in Figure 2.10A). 
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68 hidden neurons and the logistic transfer function for the hidden layers and output layer. 
In addition,   = [1, 2],   = 0.01 and   = 0.03 are used for the parameters of SDE. 

The experiments show that when training data set is developed using only one Wiener 
process, over fitting problem is obvious. The average error in the training set continues to 
decrease during training process. Because of the powerful mapping capability of neural 
networks, the average error between the target and network outputs approaches zero as the 
training continues. During the first four epochs, the average error in the test set drops 
significantly. It reaches the lowest at the epoch 8. After that, the validation set error starts 
rising although the training set error is getting smaller. The reason for this increasingly poor 
generalization is that the neural network tends to track every individual point in the 
training set created by a particular pattern of Wiener process, rather than seeing the whole 
character of the equation. 

When the training data set is produced by more than one Wiener process, over fitting 
significantly decreases. The average error in the validation set continues to drop and 
remains stable after certain epochs. We examine the relationship between the number of 
Wiener processes and ANN prediction ability. 
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Figure 2.9. 2R  on the training and test sets against the number of Wiener Processes used to 
produce the training sets in the case of γ = 0.03 (A) and γ = 0.07 (B). 

The same ANN architecture and SDE parameters as the previous section are used here. 
Additionally we test a set of noisier data with   = 0.07. The results are obtained with the 
same numbers of training epochs. Figure 2.9 shows the influence of the number of Wiener 
processes that are used to produce training data sets. It indicates that as the number of 
Wiener Processes in the training sets increases, the network produces higher 2R  values for 
the test sets. It should be noted that the size of training data set expands as more Wiener 
processes are employed, and consequently the expansion causes slower training. Therefore, 
although there is a marginal improvement on 2R  value when more than 80 Wiener 
processes are used, we limit the number of Wiener Processes to 100 in further investigations. 

 

We use the same SDE parameters except γ = 0.07 to create training and test data sets, and 
100 Wiener processes are used to produce the training data sets. All the R2 values are 
obtained by using early stopping. The results in Table 2.1 suggest that when there is only 
one hidden layer and the number of neurons in the hidden layer is very small, the 
performance of the network is poor because the network does not have enough “power” to 
learn the input-output relationship. When the number of neurons in the hidden layer is 
close to the half number of input neurons, the performance reaches a higher accuracy. 
Further increase in the number of hidden layers and neurons does not improve the 
performance. 

The ANN performance is investigated for different combinations of drift and diffusion 
terms. We use three different MLP architectures, 50-30-1, 50-15-15-1, and 50-10-10-10-1, to 
train and test the data sets, and record the best performance. 

The ANN performance is investigated for different combinations of drift and diffusion 
terms. We use three different MLP architectures, 50-30-1, 50-15-15-1, and 50-10-10-10-1, to 
train and test the data sets, and record the best performance. 

1 hidden 
layer 

Test set 
2R  

2 hidden layers Test set 
2R  

3 hidden 

 layer 

Test set 
2R  

50-3-1 0.2728 50-3-3-1 0.5103 50-3-3-3-1 0.4920 

50-10-1 0.5222 50-5-5-1 0.4916 50-5-5-5-1 0.4576 

50-30-1 0.5392 50-15-15-1 0.5125 50-10-10-10-1 0.5075 

50-50-1 0.5151 50-25-25-1 0.4986 50-20-20-20-1 0.4987 

50-100-1 0.4980 50-50-50-1 0.4936 50-30-30-30-1 0.5072 

50-200-1 0.4969 50-100-100-1 0.4669 50-100-100-100-1 0.4892 

Table 2.1.  2R   variation on test set with different hidden neurons and hidden layers. 

Figure 2.10A demonstrates that the ANN performance decreases as the magnitude of the 
diffusion term increases and Figure 2.10B shows that the target and network output in the 
test sets are in good agreement when   = 0.01. Because the test set is created by 5 Wiener 
processes, it should be noticed that there are five repetitive sub-data sets and each of them 
represents a range of α values, which is from 1 to 2, with one pattern of Wiener process. By 
observing the sub-data sets separately, we can gain a better understanding on how noise 
influences the estimation of the parameter. As the   value reaches 0.05 (Figure 2.10C) and 
the ratio of diffusion term and drift term reaches 0.67 (shown in Figure 2.10A), the 2nd, 3rd 
and 5th sub-data sets show more accurate predictions than the 1st and 4th sets. Figure 2.10D 
demonstrates that the network-generated outputs just tend to use the average of targets in 
most of the sub-data sets when γ = 0.10 where the weight of diffusion term is more than that 
of the drift term (Pγ = 1.39 as shown in Figure 2.10A). 
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Figure 2.9. 2R  on the training and test sets against the number of Wiener Processes used to 
produce the training sets in the case of γ = 0.03 (A) and γ = 0.07 (B). 

The same ANN architecture and SDE parameters as the previous section are used here. 
Additionally we test a set of noisier data with   = 0.07. The results are obtained with the 
same numbers of training epochs. Figure 2.9 shows the influence of the number of Wiener 
processes that are used to produce training data sets. It indicates that as the number of 
Wiener Processes in the training sets increases, the network produces higher 2R  values for 
the test sets. It should be noted that the size of training data set expands as more Wiener 
processes are employed, and consequently the expansion causes slower training. Therefore, 
although there is a marginal improvement on 2R  value when more than 80 Wiener 
processes are used, we limit the number of Wiener Processes to 100 in further investigations. 

 

We use the same SDE parameters except γ = 0.07 to create training and test data sets, and 
100 Wiener processes are used to produce the training data sets. All the R2 values are 
obtained by using early stopping. The results in Table 2.1 suggest that when there is only 
one hidden layer and the number of neurons in the hidden layer is very small, the 
performance of the network is poor because the network does not have enough “power” to 
learn the input-output relationship. When the number of neurons in the hidden layer is 
close to the half number of input neurons, the performance reaches a higher accuracy. 
Further increase in the number of hidden layers and neurons does not improve the 
performance. 

The ANN performance is investigated for different combinations of drift and diffusion 
terms. We use three different MLP architectures, 50-30-1, 50-15-15-1, and 50-10-10-10-1, to 
train and test the data sets, and record the best performance. 

The ANN performance is investigated for different combinations of drift and diffusion 
terms. We use three different MLP architectures, 50-30-1, 50-15-15-1, and 50-10-10-10-1, to 
train and test the data sets, and record the best performance. 
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Table 2.1.  2R   variation on test set with different hidden neurons and hidden layers. 

Figure 2.10A demonstrates that the ANN performance decreases as the magnitude of the 
diffusion term increases and Figure 2.10B shows that the target and network output in the 
test sets are in good agreement when   = 0.01. Because the test set is created by 5 Wiener 
processes, it should be noticed that there are five repetitive sub-data sets and each of them 
represents a range of α values, which is from 1 to 2, with one pattern of Wiener process. By 
observing the sub-data sets separately, we can gain a better understanding on how noise 
influences the estimation of the parameter. As the   value reaches 0.05 (Figure 2.10C) and 
the ratio of diffusion term and drift term reaches 0.67 (shown in Figure 2.10A), the 2nd, 3rd 
and 5th sub-data sets show more accurate predictions than the 1st and 4th sets. Figure 2.10D 
demonstrates that the network-generated outputs just tend to use the average of targets in 
most of the sub-data sets when γ = 0.10 where the weight of diffusion term is more than that 
of the drift term (Pγ = 1.39 as shown in Figure 2.10A). 
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decrease during training process. Because of the powerful mapping capability of neural 
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training continues. During the first four epochs, the average error in the test set drops 
significantly. It reaches the lowest at the epoch 8. After that, the validation set error starts 
rising although the training set error is getting smaller. The reason for this increasingly poor 
generalization is that the neural network tends to track every individual point in the 
training set created by a particular pattern of Wiener process, rather than seeing the whole 
character of the equation. 

When the training data set is produced by more than one Wiener process, over fitting 
significantly decreases. The average error in the validation set continues to drop and 
remains stable after certain epochs. We examine the relationship between the number of 
Wiener processes and ANN prediction ability. 
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Figure 2.9. 2R  on the training and test sets against the number of Wiener Processes used to 
produce the training sets in the case of γ = 0.03 (A) and γ = 0.07 (B). 

The same ANN architecture and SDE parameters as the previous section are used here. 
Additionally we test a set of noisier data with   = 0.07. The results are obtained with the 
same numbers of training epochs. Figure 2.9 shows the influence of the number of Wiener 
processes that are used to produce training data sets. It indicates that as the number of 
Wiener Processes in the training sets increases, the network produces higher 2R  values for 
the test sets. It should be noted that the size of training data set expands as more Wiener 
processes are employed, and consequently the expansion causes slower training. Therefore, 
although there is a marginal improvement on 2R  value when more than 80 Wiener 
processes are used, we limit the number of Wiener Processes to 100 in further investigations. 

 

We use the same SDE parameters except γ = 0.07 to create training and test data sets, and 
100 Wiener processes are used to produce the training data sets. All the R2 values are 
obtained by using early stopping. The results in Table 2.1 suggest that when there is only 
one hidden layer and the number of neurons in the hidden layer is very small, the 
performance of the network is poor because the network does not have enough “power” to 
learn the input-output relationship. When the number of neurons in the hidden layer is 
close to the half number of input neurons, the performance reaches a higher accuracy. 
Further increase in the number of hidden layers and neurons does not improve the 
performance. 

The ANN performance is investigated for different combinations of drift and diffusion 
terms. We use three different MLP architectures, 50-30-1, 50-15-15-1, and 50-10-10-10-1, to 
train and test the data sets, and record the best performance. 

The ANN performance is investigated for different combinations of drift and diffusion 
terms. We use three different MLP architectures, 50-30-1, 50-15-15-1, and 50-10-10-10-1, to 
train and test the data sets, and record the best performance. 
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50-3-1 0.2728 50-3-3-1 0.5103 50-3-3-3-1 0.4920 

50-10-1 0.5222 50-5-5-1 0.4916 50-5-5-5-1 0.4576 

50-30-1 0.5392 50-15-15-1 0.5125 50-10-10-10-1 0.5075 

50-50-1 0.5151 50-25-25-1 0.4986 50-20-20-20-1 0.4987 

50-100-1 0.4980 50-50-50-1 0.4936 50-30-30-30-1 0.5072 

50-200-1 0.4969 50-100-100-1 0.4669 50-100-100-100-1 0.4892 

Table 2.1.  2R   variation on test set with different hidden neurons and hidden layers. 

Figure 2.10A demonstrates that the ANN performance decreases as the magnitude of the 
diffusion term increases and Figure 2.10B shows that the target and network output in the 
test sets are in good agreement when   = 0.01. Because the test set is created by 5 Wiener 
processes, it should be noticed that there are five repetitive sub-data sets and each of them 
represents a range of α values, which is from 1 to 2, with one pattern of Wiener process. By 
observing the sub-data sets separately, we can gain a better understanding on how noise 
influences the estimation of the parameter. As the   value reaches 0.05 (Figure 2.10C) and 
the ratio of diffusion term and drift term reaches 0.67 (shown in Figure 2.10A), the 2nd, 3rd 
and 5th sub-data sets show more accurate predictions than the 1st and 4th sets. Figure 2.10D 
demonstrates that the network-generated outputs just tend to use the average of targets in 
most of the sub-data sets when γ = 0.10 where the weight of diffusion term is more than that 
of the drift term (Pγ = 1.39 as shown in Figure 2.10A). 
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Figure 2.10. A: The neural network performance decreases as the diffusion term in SDEs 
increases. B, C and D: Target values and network outputs when γ= 0.01, 0.05 and 0.10; x-axis 
represents the index in testing datasets where five Wiener processes were used. 

We investigate nonlinear SDE as well. Moreover, because the nonlinear SDE contains two 
parameters, we investigate how the accuracy of estimation varies for different combination 
of parameters. The parameter values and ranges of the SDE are as follows:   = [1, 2],   
= 0.05,   = [1, 2],   = 0.05 and γ= 0.5. We use early stopping to find out the best results. 
From Table 2.2, the different network architectures result in a very similar performance. The 

2R  values for   are very close to zero while the 2R values for β are all more than 0.9. 
According to the statistical meaning of 2R given previously, we consider that the neural 
networks fail to predict α and succeed in predicting β. We explore the reason for the 
difference between α and β later. 

 

 

 

 

Network 
architecture 

2R ( ) 2R (  ) Network 
architecture 

2R ( ) 2R (  ) 

50-10-2 0.0256 0.9161 50-10-10-2 -0.0135 0.9209 

50-30-2 0.0349 0.9453 50-20-20-2 -0.0183 0.9299 

50-60-2 0.0395 0.9406 50-50-50-2 0.0134 0.9310 

50-100-2 0.0296 0.9209 50-10-10-10-2 0.0128 0.9198 

50-200-2 0.0354 0.9299 50-50-50-50-2 -0.0164 0.9257 

Table 2.2. Network performance in the nonlinear SDE as network architecture changes. 

We use three network architectures, 50-30-2, 50-60-2 and 50-50-50-2, to estimate parameters for 
different SDEs and recorded the best results. The results in Table 2.3 indicate that the accuracy 
of network performance decreases as the strength of diffusion terms in SDEs increases, which 
is similar to the linear equation. Figure 2.11 shows that comparing with the results in the linear 
case (Figure 2.10A), the prediction capability of networks for the nonlinear case is poorer due 
to the complexity of input-output relationship in the nonlinear SDEs. 
 

Range 
of α 

Range 

of β 

γ Pα Pβ Pγ 2R (α) AAPE 
( ) 

2R (β) AAPE 
(  ) 

[1,2] [1,2] 0.5 0.12 0.88 0.10 0.0349 17.79 0.9453 4.02 

[1,2] [1,2] 2 0.11 0.89 0.40 0.0006 18 0.6833 9.92 

[1,2] [1,2] 3 0.11 0.89 0.60 -0.012 17.59 0.3687 12.96 

Table 2.3. Network performance in the nonlinear SDE as diffusion term increases. 

P

0.0 0.2 0.4 0.6 0.8

R2

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

 in linear SDE
in non-linear SDE
 in non-linear SDE

 
Figure 2.11. The scattered graph of 2R values for the parameters in the linear and the 
nonlinear equations against their corresponding P  values. 
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Figure 2.10. A: The neural network performance decreases as the diffusion term in SDEs 
increases. B, C and D: Target values and network outputs when γ= 0.01, 0.05 and 0.10; x-axis 
represents the index in testing datasets where five Wiener processes were used. 

We investigate nonlinear SDE as well. Moreover, because the nonlinear SDE contains two 
parameters, we investigate how the accuracy of estimation varies for different combination 
of parameters. The parameter values and ranges of the SDE are as follows:   = [1, 2],   
= 0.05,   = [1, 2],   = 0.05 and γ= 0.5. We use early stopping to find out the best results. 
From Table 2.2, the different network architectures result in a very similar performance. The 

2R  values for   are very close to zero while the 2R values for β are all more than 0.9. 
According to the statistical meaning of 2R given previously, we consider that the neural 
networks fail to predict α and succeed in predicting β. We explore the reason for the 
difference between α and β later. 
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We use three network architectures, 50-30-2, 50-60-2 and 50-50-50-2, to estimate parameters for 
different SDEs and recorded the best results. The results in Table 2.3 indicate that the accuracy 
of network performance decreases as the strength of diffusion terms in SDEs increases, which 
is similar to the linear equation. Figure 2.11 shows that comparing with the results in the linear 
case (Figure 2.10A), the prediction capability of networks for the nonlinear case is poorer due 
to the complexity of input-output relationship in the nonlinear SDEs. 
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Figure 2.11. The scattered graph of 2R values for the parameters in the linear and the 
nonlinear equations against their corresponding P  values. 
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Figure 2.10. A: The neural network performance decreases as the diffusion term in SDEs 
increases. B, C and D: Target values and network outputs when γ= 0.01, 0.05 and 0.10; x-axis 
represents the index in testing datasets where five Wiener processes were used. 

We investigate nonlinear SDE as well. Moreover, because the nonlinear SDE contains two 
parameters, we investigate how the accuracy of estimation varies for different combination 
of parameters. The parameter values and ranges of the SDE are as follows:   = [1, 2],   
= 0.05,   = [1, 2],   = 0.05 and γ= 0.5. We use early stopping to find out the best results. 
From Table 2.2, the different network architectures result in a very similar performance. The 

2R  values for   are very close to zero while the 2R values for β are all more than 0.9. 
According to the statistical meaning of 2R given previously, we consider that the neural 
networks fail to predict α and succeed in predicting β. We explore the reason for the 
difference between α and β later. 
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50-200-2 0.0354 0.9299 50-50-50-50-2 -0.0164 0.9257 

Table 2.2. Network performance in the nonlinear SDE as network architecture changes. 

We use three network architectures, 50-30-2, 50-60-2 and 50-50-50-2, to estimate parameters for 
different SDEs and recorded the best results. The results in Table 2.3 indicate that the accuracy 
of network performance decreases as the strength of diffusion terms in SDEs increases, which 
is similar to the linear equation. Figure 2.11 shows that comparing with the results in the linear 
case (Figure 2.10A), the prediction capability of networks for the nonlinear case is poorer due 
to the complexity of input-output relationship in the nonlinear SDEs. 
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Table 2.3. Network performance in the nonlinear SDE as diffusion term increases. 

P

0.0 0.2 0.4 0.6 0.8

R2

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

 in linear SDE
in non-linear SDE
 in non-linear SDE

 
Figure 2.11. The scattered graph of 2R values for the parameters in the linear and the 
nonlinear equations against their corresponding P  values. 
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Range 
of α 

Range of 
β 

γ Pα Pβ Pγ 2R ( ) AAPE 
( ) 

2R (  ) AAPE 
(  ) 

[1,2] [0.2,0.4] 0.35 0.47 0.53 0.39 0.2932 13.91 0.3891 12.98 

[1,2] [1,2] 2 0.11 0.89 0.40 0.0006 18 0.6833 9.92 

[0.8,1.6] [0.02,0.04] 0.15 0.89 0.11 0.42 0.7735 8.46 0.0108 17.94 

Table 2.4. Network performance for different parameters in the nonlinear SDE 

To investigate the reason for largest differences in R2 values for α and β, we change the 
magnitudes of   term and   term in SDEs by altering parameters   and   values 
while keeping diffusion level an approximate constant. Table 2.4 shows that the bigger the 
contribution of a term containing a particular parameter (Pα or Pβ), the smaller the error 
(AAPE) and better the prediction (R2) for that parameter. Therefore, we conclude that the 
accuracy of a parameter in a nonlinear SDE is dependent on its term that contributes pro rata 
to the drift term. 

In the data preparation stage, we use different time steps to solve SDEs and found 50 data 
points are sufficient to represent the realisation of SDEs. In addition, we emphasise the effect 
of the number of Wiener processes used to create training data sets. Increasing the number 
of Wiener processes boosts the performance of networks considerably and eliminates the 
over fitting problem. When over fitting occurs, the resulting network is accurate on the 
training set but perform poorly on the test set. When the number of Wiener processes used 
to generate training data sets is increased, the learning procedure finds common features 
amongst the training sets that enable the network to correctly estimate the parameter(s) in 
test data sets. 

In the ANN training procedure, we use early stopping to obtain the optimum test results. 
We also employ different MLP architectures, transfer functions, learning rates and 
momentums. However we find that these factors do not increase the performance of ANNs 
significantly. 

The diffusion level in a SDE has a significant impact on the network performance. In the 
linear SDE, when the ratio of diffusion term and drift term is below 0.40, the network can 
estimate the parameter accurately ( 2R >0.93). When the ratio reaches 0.67, the network 
estimates the parameter accurately only when Wiener processes in test sets and in training 
sets are similar. If the diffusion term is larger than the drift term, the network cannot predict 
the parameter(s) and only tends to give an average value of the parameters used for training 
datasets. For nonlinear SDEs, the estimation ability of a network is generally poorer than 
that for the linear SDEs. Furthermore, the accuracy of a parameter in a nonlinear SDE is 
dependent on its term that contributes pro rata to the drift term.  

We can conclude that the classical neural networks method (MLP with backpropagation 
algorithm) provides a simple but robust parameter estimation approach for the SDEs that 
are under certain noisy conditions, but this estimation capability is limited for the SDEs 
having a high diffusion level. When the diffusion level is high (>10%-20%), the statistical 
methods also fail to estimate parameters accurately. 
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3.1 Introduction 
We have seen in chapter 1 that, in the derivation of advection–dispersion equation, also 
known as continuum transport model ( Rashidi et al. ,1999), the velocity fluctuations around 
the mean velocity enter into the calculation of solute flux at a given point through averaging 
theorems. The mean advective flux and the mean dispersive flux are then related to the 
concentration gradients through Fickian–type assumptions. These assumptions are 
instrumental in defining dispersivity as a measure of solute dispersion. Dispersivity is 
proven to be scale dependant. 

To address the issue of scale dependence of dispersive fundamentally, it has been argued 
that a more realistic mathematical framework for modelling is to use stochastic calculus 
(Holden et al., 1996; Kulasiri and Verwoerd, 1999, 2002). Stochastic calculus deals with the 
uncertainty in the natural and other phenomena using nondifferentiable functions for which 
ordinary differentials do not exist (Klebaner, 1998). Stochastic calculus is based on the 
premise that the differentials of nondifferential functions can have meaning only through 
certain types of integrals such as Ito integrals which are rigorously developed in the 
literature. In addition, mathematically well-defined processes such as the Weiner process 
aid in formulating mathematical models of complex systems. Mathematical theories aside, 
one needs to question the validity of using stochastic calculus in each instance. In modelling 
the solute transport in porous media, we consider that the fluid velocity is fundamentally a 
random variable with respect to space and time and continuous but irregular, i.e., 
nondifferentiable. In many natural porous formations, geometrical structures are irregular 
and therefore, as fluid particles encounter porous structures, velocity changes are more 
likely to be irregular than regular. In many situations, we hardly have accurate information 
about the porous structure, which contributes to greater uncertainties. Hence, stochastic 
calculus provides a more sophisticated mathematical framework to model the advection-
dispersion in porous media found in practical situations, especially involving natural 
porous formations. By using stochastic partial differential equations, for example, we could 
incorporate the uncertainty of the dispersion coefficient and hydraulic conductivity that are 
present in porous structures such as underground aquifers. The incorporation of the 
dispersivity as a random, irregular coefficient makes the solution of resulting partial 
differential equations an interesting area of study. However, the scale dependency of the 
dispersivity can not be addressed in this manner because the dispersivity itself is not a 
material property but a constant that depends on the scale of the experiment. 

In this chapter we develop one dimensional model without resorting to Fickian assumptions 
and discuss the methods of estimating the parameters. As of many contracted description of 
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Table 2.4. Network performance for different parameters in the nonlinear SDE 

To investigate the reason for largest differences in R2 values for α and β, we change the 
magnitudes of   term and   term in SDEs by altering parameters   and   values 
while keeping diffusion level an approximate constant. Table 2.4 shows that the bigger the 
contribution of a term containing a particular parameter (Pα or Pβ), the smaller the error 
(AAPE) and better the prediction (R2) for that parameter. Therefore, we conclude that the 
accuracy of a parameter in a nonlinear SDE is dependent on its term that contributes pro rata 
to the drift term. 

In the data preparation stage, we use different time steps to solve SDEs and found 50 data 
points are sufficient to represent the realisation of SDEs. In addition, we emphasise the effect 
of the number of Wiener processes used to create training data sets. Increasing the number 
of Wiener processes boosts the performance of networks considerably and eliminates the 
over fitting problem. When over fitting occurs, the resulting network is accurate on the 
training set but perform poorly on the test set. When the number of Wiener processes used 
to generate training data sets is increased, the learning procedure finds common features 
amongst the training sets that enable the network to correctly estimate the parameter(s) in 
test data sets. 

In the ANN training procedure, we use early stopping to obtain the optimum test results. 
We also employ different MLP architectures, transfer functions, learning rates and 
momentums. However we find that these factors do not increase the performance of ANNs 
significantly. 

The diffusion level in a SDE has a significant impact on the network performance. In the 
linear SDE, when the ratio of diffusion term and drift term is below 0.40, the network can 
estimate the parameter accurately ( 2R >0.93). When the ratio reaches 0.67, the network 
estimates the parameter accurately only when Wiener processes in test sets and in training 
sets are similar. If the diffusion term is larger than the drift term, the network cannot predict 
the parameter(s) and only tends to give an average value of the parameters used for training 
datasets. For nonlinear SDEs, the estimation ability of a network is generally poorer than 
that for the linear SDEs. Furthermore, the accuracy of a parameter in a nonlinear SDE is 
dependent on its term that contributes pro rata to the drift term.  

We can conclude that the classical neural networks method (MLP with backpropagation 
algorithm) provides a simple but robust parameter estimation approach for the SDEs that 
are under certain noisy conditions, but this estimation capability is limited for the SDEs 
having a high diffusion level. When the diffusion level is high (>10%-20%), the statistical 
methods also fail to estimate parameters accurately. 
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literature. In addition, mathematically well-defined processes such as the Weiner process 
aid in formulating mathematical models of complex systems. Mathematical theories aside, 
one needs to question the validity of using stochastic calculus in each instance. In modelling 
the solute transport in porous media, we consider that the fluid velocity is fundamentally a 
random variable with respect to space and time and continuous but irregular, i.e., 
nondifferentiable. In many natural porous formations, geometrical structures are irregular 
and therefore, as fluid particles encounter porous structures, velocity changes are more 
likely to be irregular than regular. In many situations, we hardly have accurate information 
about the porous structure, which contributes to greater uncertainties. Hence, stochastic 
calculus provides a more sophisticated mathematical framework to model the advection-
dispersion in porous media found in practical situations, especially involving natural 
porous formations. By using stochastic partial differential equations, for example, we could 
incorporate the uncertainty of the dispersion coefficient and hydraulic conductivity that are 
present in porous structures such as underground aquifers. The incorporation of the 
dispersivity as a random, irregular coefficient makes the solution of resulting partial 
differential equations an interesting area of study. However, the scale dependency of the 
dispersivity can not be addressed in this manner because the dispersivity itself is not a 
material property but a constant that depends on the scale of the experiment. 

In this chapter we develop one dimensional model without resorting to Fickian assumptions 
and discuss the methods of estimating the parameters. As of many contracted description of 
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a natural phenomena the model presented in this chapter has its weaknesses. But we model 
the fluctuation of the solute velocity due to porous structure and incorporate the fluctuation 
in the mass conservation of solute. Then we need to characterise the fluctuations so that we 
can relate them to the porous structure 
 

3.2 The Model Development 
The basic assumption on the formulation of this model is that the velocity of solute particles 
is fundamentally a stochastic variable with irregular but continuous realisations.

Let us consider an infinite cylindrical volume having a cross sectional area, A, within a one-
dimensional porous medium with the solute concentration of C(x, t) (Figure 3.1). Within the 
context of solute transport in heterogeneous groundwater systems, the velocity, V(x, t), the 
contaminant flux, J(x, t), and C(x,t) are stochastic functions of space and time, having 
irregular (may be highly irregular) and continuous realisations. Therefore, when 
formulating the mass conservation model for the solute transport, it is important to use 
higher order terms in the Taylor expansion. 

 
Figure 3.1. An infinitesimal cylindrical volume within a one-dimensional porous medium. 

The mass balance for change of solute of the infinitesimal cylindrical volume for a small 
time interval, t , could be written as, 

( , ) ( ( , ) ( , )e x x eC x t n A x J x t J x x t n A t       , 

,

( ( , ) ( , )) ,x x

x t

J x t J x x tC
t x

       
                      (3.2.1) 

where en  is the effective porosity of the material, ( , )C x t  and t  are infinitesimal 
changes of solute concentration, C(x,t), and time, respectively. 

For the convenience, let us indicate ( , )xJ x t  as xJ  and ( , )xJ x x t   as x xJ  . 

The Taylor series expansion can be shown as 
2 3

2 3
2 3

1 1 1( ) ( ) ( )
1! 2! 3!

x x x
x x

J J JJ J x x x Rx x x x


  
       

  
, 

where ( )R   is the remainder of the series. 

 

Let us assume that the terms up to second order would be sufficient to adequately represent 
the irregular behaviour of the flow, thus, the higher order derivatives of the flux greater 
than three of the flux are negligible. Therefore, equation (3.2.1) can be written as,  

2

2

1 ( , ),
2

x x
c

C J J dx R x t
t x x

  
  

  
                     (3.2.2) 

where
3 4
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3 4

1 1( , ) ( ) ( ) ( )
6 24

x x
c

J JR x t dx dx R
x x

 
  

 
.  

Substituting xdx h , we can write equation (3.2.2), 
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2 .( , )
2

x x x
c

C J h J R x t
t x x

  
  

  
               (3.2.3) 

Multiplying the both sides of equation (3.2.3) by dt, we obtain,  

2

2 ( , ) .
2

x x x
c

J h JdC dt R x t dt
x x

  
     

                    (3.2.4) 

Equation (3.2.4) represents the mass conversation of the solute within the infinitesimal 
cylindrical volume shown in Figure 3.1. ( , )C x t  describes the average solute concentration 
over the cylindrical volume and the smallest possible x  would increase the accuracy of 
the stochastic model. However, if x  is in the same order of magnitude of a typical grain 
size of the porous media, ( , )C x t  would lose its meaning. Therefore, it is important to use a 
realistic x  value for the scale under consideration for the computational solutions.  

Compared to the first term on the right hand side of equation (3.2.4), it is assumed that 
( , ) 0.cR x t dt  (However, this assumption needs to be tested for any given situation, 

especially when porous media is extremely heterogeneous.) Under this assumption, 

2

2 .
2

x x xJ h JdC dt
x x

  
    

                     (3.2.5) 

The contaminant flux can be expressed in terms of the velocity in the x direction and the 
concentration of the contaminant is expressed as, 

( , ) ( , ) ( , ).J x t V x t C x t                          (3.2.6) 
The velocity is modelled as, 

( , ) ( , ) ( , ),V x t V x t x t                            (3.2.7) 

where ( , )V x t  is the mean velocity of the flow that may be described by Darcy's law, 

( )( , )
( )e

pK xV x t
n x x





, 

  ( )K x  = an average value of the hydraulic conductivity of the region, 
  ( )en x  = porosity of the material, 
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a natural phenomena the model presented in this chapter has its weaknesses. But we model 
the fluctuation of the solute velocity due to porous structure and incorporate the fluctuation 
in the mass conservation of solute. Then we need to characterise the fluctuations so that we 
can relate them to the porous structure 
 

3.2 The Model Development 
The basic assumption on the formulation of this model is that the velocity of solute particles 
is fundamentally a stochastic variable with irregular but continuous realisations.

Let us consider an infinite cylindrical volume having a cross sectional area, A, within a one-
dimensional porous medium with the solute concentration of C(x, t) (Figure 3.1). Within the 
context of solute transport in heterogeneous groundwater systems, the velocity, V(x, t), the 
contaminant flux, J(x, t), and C(x,t) are stochastic functions of space and time, having 
irregular (may be highly irregular) and continuous realisations. Therefore, when 
formulating the mass conservation model for the solute transport, it is important to use 
higher order terms in the Taylor expansion. 

 
Figure 3.1. An infinitesimal cylindrical volume within a one-dimensional porous medium. 

The mass balance for change of solute of the infinitesimal cylindrical volume for a small 
time interval, t , could be written as, 

( , ) ( ( , ) ( , )e x x eC x t n A x J x t J x x t n A t       , 

,

( ( , ) ( , )) ,x x

x t

J x t J x x tC
t x

       
                      (3.2.1) 

where en  is the effective porosity of the material, ( , )C x t  and t  are infinitesimal 
changes of solute concentration, C(x,t), and time, respectively. 

For the convenience, let us indicate ( , )xJ x t  as xJ  and ( , )xJ x x t   as x xJ  . 

The Taylor series expansion can be shown as 
2 3

2 3
2 3

1 1 1( ) ( ) ( )
1! 2! 3!

x x x
x x

J J JJ J x x x Rx x x x


  
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  
, 

where ( )R   is the remainder of the series. 

 

Let us assume that the terms up to second order would be sufficient to adequately represent 
the irregular behaviour of the flow, thus, the higher order derivatives of the flux greater 
than three of the flux are negligible. Therefore, equation (3.2.1) can be written as,  
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where
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 
.  

Substituting xdx h , we can write equation (3.2.2), 

       

2

2 .( , )
2

x x x
c

C J h J R x t
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               (3.2.3) 

Multiplying the both sides of equation (3.2.3) by dt, we obtain,  
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J h JdC dt R x t dt
x x

  
     

                    (3.2.4) 

Equation (3.2.4) represents the mass conversation of the solute within the infinitesimal 
cylindrical volume shown in Figure 3.1. ( , )C x t  describes the average solute concentration 
over the cylindrical volume and the smallest possible x  would increase the accuracy of 
the stochastic model. However, if x  is in the same order of magnitude of a typical grain 
size of the porous media, ( , )C x t  would lose its meaning. Therefore, it is important to use a 
realistic x  value for the scale under consideration for the computational solutions.  

Compared to the first term on the right hand side of equation (3.2.4), it is assumed that 
( , ) 0.cR x t dt  (However, this assumption needs to be tested for any given situation, 

especially when porous media is extremely heterogeneous.) Under this assumption, 

2

2 .
2

x x xJ h JdC dt
x x

  
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                     (3.2.5) 

The contaminant flux can be expressed in terms of the velocity in the x direction and the 
concentration of the contaminant is expressed as, 

( , ) ( , ) ( , ).J x t V x t C x t                          (3.2.6) 
The velocity is modelled as, 

( , ) ( , ) ( , ),V x t V x t x t                            (3.2.7) 

where ( , )V x t  is the mean velocity of the flow that may be described by Darcy's law, 

( )( , )
( )e

pK xV x t
n x x





, 

  ( )K x  = an average value of the hydraulic conductivity of the region, 
  ( )en x  = porosity of the material, 
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a natural phenomena the model presented in this chapter has its weaknesses. But we model 
the fluctuation of the solute velocity due to porous structure and incorporate the fluctuation 
in the mass conservation of solute. Then we need to characterise the fluctuations so that we 
can relate them to the porous structure 
 

3.2 The Model Development 
The basic assumption on the formulation of this model is that the velocity of solute particles 
is fundamentally a stochastic variable with irregular but continuous realisations.

Let us consider an infinite cylindrical volume having a cross sectional area, A, within a one-
dimensional porous medium with the solute concentration of C(x, t) (Figure 3.1). Within the 
context of solute transport in heterogeneous groundwater systems, the velocity, V(x, t), the 
contaminant flux, J(x, t), and C(x,t) are stochastic functions of space and time, having 
irregular (may be highly irregular) and continuous realisations. Therefore, when 
formulating the mass conservation model for the solute transport, it is important to use 
higher order terms in the Taylor expansion. 

 
Figure 3.1. An infinitesimal cylindrical volume within a one-dimensional porous medium. 

The mass balance for change of solute of the infinitesimal cylindrical volume for a small 
time interval, t , could be written as, 

( , ) ( ( , ) ( , )e x x eC x t n A x J x t J x x t n A t       , 

,

( ( , ) ( , )) ,x x

x t

J x t J x x tC
t x

       
                      (3.2.1) 

where en  is the effective porosity of the material, ( , )C x t  and t  are infinitesimal 
changes of solute concentration, C(x,t), and time, respectively. 

For the convenience, let us indicate ( , )xJ x t  as xJ  and ( , )xJ x x t   as x xJ  . 

The Taylor series expansion can be shown as 
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where ( )R   is the remainder of the series. 

 

Let us assume that the terms up to second order would be sufficient to adequately represent 
the irregular behaviour of the flow, thus, the higher order derivatives of the flux greater 
than three of the flux are negligible. Therefore, equation (3.2.1) can be written as,  
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where
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Substituting xdx h , we can write equation (3.2.2), 
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Multiplying the both sides of equation (3.2.3) by dt, we obtain,  
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                    (3.2.4) 

Equation (3.2.4) represents the mass conversation of the solute within the infinitesimal 
cylindrical volume shown in Figure 3.1. ( , )C x t  describes the average solute concentration 
over the cylindrical volume and the smallest possible x  would increase the accuracy of 
the stochastic model. However, if x  is in the same order of magnitude of a typical grain 
size of the porous media, ( , )C x t  would lose its meaning. Therefore, it is important to use a 
realistic x  value for the scale under consideration for the computational solutions.  

Compared to the first term on the right hand side of equation (3.2.4), it is assumed that 
( , ) 0.cR x t dt  (However, this assumption needs to be tested for any given situation, 

especially when porous media is extremely heterogeneous.) Under this assumption, 
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                     (3.2.5) 

The contaminant flux can be expressed in terms of the velocity in the x direction and the 
concentration of the contaminant is expressed as, 

( , ) ( , ) ( , ).J x t V x t C x t                          (3.2.6) 
The velocity is modelled as, 

( , ) ( , ) ( , ),V x t V x t x t                            (3.2.7) 

where ( , )V x t  is the mean velocity of the flow that may be described by Darcy's law, 

( )( , )
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pK xV x t
n x x


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
, 

  ( )K x  = an average value of the hydraulic conductivity of the region, 
  ( )en x  = porosity of the material, 
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a natural phenomena the model presented in this chapter has its weaknesses. But we model 
the fluctuation of the solute velocity due to porous structure and incorporate the fluctuation 
in the mass conservation of solute. Then we need to characterise the fluctuations so that we 
can relate them to the porous structure 
 

3.2 The Model Development 
The basic assumption on the formulation of this model is that the velocity of solute particles 
is fundamentally a stochastic variable with irregular but continuous realisations.

Let us consider an infinite cylindrical volume having a cross sectional area, A, within a one-
dimensional porous medium with the solute concentration of C(x, t) (Figure 3.1). Within the 
context of solute transport in heterogeneous groundwater systems, the velocity, V(x, t), the 
contaminant flux, J(x, t), and C(x,t) are stochastic functions of space and time, having 
irregular (may be highly irregular) and continuous realisations. Therefore, when 
formulating the mass conservation model for the solute transport, it is important to use 
higher order terms in the Taylor expansion. 

 
Figure 3.1. An infinitesimal cylindrical volume within a one-dimensional porous medium. 

The mass balance for change of solute of the infinitesimal cylindrical volume for a small 
time interval, t , could be written as, 

( , ) ( ( , ) ( , )e x x eC x t n A x J x t J x x t n A t       , 

,

( ( , ) ( , )) ,x x
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J x t J x x tC
t x

       
                      (3.2.1) 

where en  is the effective porosity of the material, ( , )C x t  and t  are infinitesimal 
changes of solute concentration, C(x,t), and time, respectively. 

For the convenience, let us indicate ( , )xJ x t  as xJ  and ( , )xJ x x t   as x xJ  . 

The Taylor series expansion can be shown as 
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where ( )R   is the remainder of the series. 

 

Let us assume that the terms up to second order would be sufficient to adequately represent 
the irregular behaviour of the flow, thus, the higher order derivatives of the flux greater 
than three of the flux are negligible. Therefore, equation (3.2.1) can be written as,  

2

2

1 ( , ),
2

x x
c

C J J dx R x t
t x x

  
  

  
                     (3.2.2) 

where
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Substituting xdx h , we can write equation (3.2.2), 
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Multiplying the both sides of equation (3.2.3) by dt, we obtain,  
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                    (3.2.4) 

Equation (3.2.4) represents the mass conversation of the solute within the infinitesimal 
cylindrical volume shown in Figure 3.1. ( , )C x t  describes the average solute concentration 
over the cylindrical volume and the smallest possible x  would increase the accuracy of 
the stochastic model. However, if x  is in the same order of magnitude of a typical grain 
size of the porous media, ( , )C x t  would lose its meaning. Therefore, it is important to use a 
realistic x  value for the scale under consideration for the computational solutions.  

Compared to the first term on the right hand side of equation (3.2.4), it is assumed that 
( , ) 0.cR x t dt  (However, this assumption needs to be tested for any given situation, 

especially when porous media is extremely heterogeneous.) Under this assumption, 
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                     (3.2.5) 

The contaminant flux can be expressed in terms of the velocity in the x direction and the 
concentration of the contaminant is expressed as, 

( , ) ( , ) ( , ).J x t V x t C x t                          (3.2.6) 
The velocity is modelled as, 

( , ) ( , ) ( , ),V x t V x t x t                            (3.2.7) 

where ( , )V x t  is the mean velocity of the flow that may be described by Darcy's law, 

( )( , )
( )e

pK xV x t
n x x


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
, 

  ( )K x  = an average value of the hydraulic conductivity of the region, 
  ( )en x  = porosity of the material, 
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  p   = pressure head, and 
( , )x t = stochastic perturbation of the fluid velocity described by noise correlated in 

space and  - correlated in time such that, 

 ( , ) 0,E x t                               (3.2.8) 
 

   
 1 1 2 2 1 2 1 2( , ) ( , ) ( , ) ( ),E x t x t q x x t t                       (3.2.9) 

where 1 2( , )q x x  is the velocity covariance kernel in space, and 1 2( )t t   is the Dirac's delta 
function. 

Since, 2 1 ,t t t    we can rewrite equation (3.2.9) as, 

 1 1 2 1 1 2( , ) ( , ) ( , ) ( )E x t x t t q x x t      .                (3.2.10) 

In equation (3.2.6) the velocity, ( , )V x t , is modelled as a stochastic process with the 
fluctuating component ( ( , )x t ) superimposed on the expectation of velocity (mean 

velocity). The expected value of the velocity ( , )V x t  can be obtained from other 
considerations without involving Darcy’s law. The use of Darcy’s law is only one way of 
prescribing ( , )V x t  within a given region of the porous medium. The fluctuating velocity 
( ( , )x t ) is assumed to be a zero-mean stochastic process as given by equation (3.2.7), and 
the two-time correlation function is expressed as a product of a function of space ( 1 2( , )q x x ) 
and a function of time ( 1 2( )t t  ) in equation (3.2.9) and  (3.2.10). (As ( , )x t   is a zero-
mean process, the two-time correlation function and the covariance are the same). The 
spatial function, 1 2( , )q x x , reflects the contribution of the porous structure to the 
fluctuations and helps characterise the structural influence on the flow. The Dirac’s delta 
function makes the stochastic process behave as a white noise process along the time line. 
For low velocity situations, such as in aquifers, this is not an unreasonable assumption, but 
the alternative approach of assembling a time correlation function along the time line would 
complicate the mathematics a fair deal, and unless the flow is turbulent, there is no 
justification to take that approach. 

Substituting equations (3.2.5) and (3.2.6) into equation (3.2.4), we can obtain, 
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(3.2.11) 

An operator in space can be defined such that, 
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22
xhS

x x
  

    
                            (3.2.12) 

for a given .xh  

 

Therefore, we can write equation (3.2.11) as, 

   ( , ) ( , ) ( , ) ( , ) .dC S V x t C x t dt S C x t x t dt                   (3.2.13) 

Equation (3.2.13) is a stochastic (partial) differential equation and both terms on the right 
hand side need to be integrated as Ito integrals to obtain the concentration. ( , )x t dt can be 
transformed by ( )d t which is a Wiener process increments in Hilbert space for a given x. 
The explanation on the transformation of ( , )x t dt  to ( )d t  can be found in Jazwinski 
(1970). 

The transformation of ( , )x t dt  to ( )d t  can be understood if we interpret ( , )x t dt  to be 
fluctuating component of the travel length of a solute particle during of time interval dt . 
As we see later this fluctuating travel length component can be expressed as a random 
vector field ( ( )d t ) in an orthonormal set of co-ordinate space (Hilber space). The co-
ordinates depend on the covariance kernel 1 2( , )q x x , and these are called basis functions in 
Hilbert space (Hernandez, 1995).  

Equation (3.2.13) can be written as,  

       
   ( , ) ( , ) ( , ) ( ) ,dC S V x t C x t dt S C x t d t                  (3.2.14) 

And 

   
0 0

( , ) ( , ) ( , ) ( , ) ( ) .
t t

C x t S V x t C x t dt S C x t d t                 (3.2.15) 

We call equation (3.2.15) a stochastic solute transport model (SSTM) in which C(x,t)  is 
stochastic solute concentration at a given point in space and time; ( , )V x t  is the expected 
value of  stochastic velocity; hx approximates the spatial discretization interval, dx; and 

( )d t can be considered as a “noise” term which models the velocity fluctuations. 

In this model, instead of the Fickian assumption (equation (1.2.3)), a covariance kernel for 
the velocity fluctuations 1 2( , )q x x  is assumed. The emphasis on modelling of the velocity 
fluctuation as a random field of second order has its own strengths and weaknesses. The 
expectation is that by directly incorporating the velocity fluctuation in the solute mass 
conservation, we expect to reduce the scale dependency because the assumed covariance 
kernel is a function of the pore structure. The major weakness is that we usually do not have 
velocity data to construct the kernel for velocity fluctuations. On the other hand, different 
velocity kernels can be assumed based on plausible reasoning. In this chapter, for the 
illustration purposes, we assume that the covariance kernel to be exponentially decaying 

function, 
1 2

2
x x

be
 

, where 2  is the variance and b is the correlation length.  

In SSTM, the first term on the right hand side of equation (3.2.15) can be considered as the 
drift term of the stochastic partial differential equations (SPDE). The velocity, ( , )V x t ,  can 
be considered as the mean velocity of a local region but for the simplicity, we can assume 
that ( , )V x t   is a constant in this chapter. This assumption is reasonable in practice as we 
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  p   = pressure head, and 
( , )x t = stochastic perturbation of the fluid velocity described by noise correlated in 

space and  - correlated in time such that, 

 ( , ) 0,E x t                               (3.2.8) 
 

   
 1 1 2 2 1 2 1 2( , ) ( , ) ( , ) ( ),E x t x t q x x t t                       (3.2.9) 

where 1 2( , )q x x  is the velocity covariance kernel in space, and 1 2( )t t   is the Dirac's delta 
function. 

Since, 2 1 ,t t t    we can rewrite equation (3.2.9) as, 

 1 1 2 1 1 2( , ) ( , ) ( , ) ( )E x t x t t q x x t      .                (3.2.10) 

In equation (3.2.6) the velocity, ( , )V x t , is modelled as a stochastic process with the 
fluctuating component ( ( , )x t ) superimposed on the expectation of velocity (mean 

velocity). The expected value of the velocity ( , )V x t  can be obtained from other 
considerations without involving Darcy’s law. The use of Darcy’s law is only one way of 
prescribing ( , )V x t  within a given region of the porous medium. The fluctuating velocity 
( ( , )x t ) is assumed to be a zero-mean stochastic process as given by equation (3.2.7), and 
the two-time correlation function is expressed as a product of a function of space ( 1 2( , )q x x ) 
and a function of time ( 1 2( )t t  ) in equation (3.2.9) and  (3.2.10). (As ( , )x t   is a zero-
mean process, the two-time correlation function and the covariance are the same). The 
spatial function, 1 2( , )q x x , reflects the contribution of the porous structure to the 
fluctuations and helps characterise the structural influence on the flow. The Dirac’s delta 
function makes the stochastic process behave as a white noise process along the time line. 
For low velocity situations, such as in aquifers, this is not an unreasonable assumption, but 
the alternative approach of assembling a time correlation function along the time line would 
complicate the mathematics a fair deal, and unless the flow is turbulent, there is no 
justification to take that approach. 

Substituting equations (3.2.5) and (3.2.6) into equation (3.2.4), we can obtain, 
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An operator in space can be defined such that, 
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for a given .xh  

 

Therefore, we can write equation (3.2.11) as, 

   ( , ) ( , ) ( , ) ( , ) .dC S V x t C x t dt S C x t x t dt                   (3.2.13) 

Equation (3.2.13) is a stochastic (partial) differential equation and both terms on the right 
hand side need to be integrated as Ito integrals to obtain the concentration. ( , )x t dt can be 
transformed by ( )d t which is a Wiener process increments in Hilbert space for a given x. 
The explanation on the transformation of ( , )x t dt  to ( )d t  can be found in Jazwinski 
(1970). 

The transformation of ( , )x t dt  to ( )d t  can be understood if we interpret ( , )x t dt  to be 
fluctuating component of the travel length of a solute particle during of time interval dt . 
As we see later this fluctuating travel length component can be expressed as a random 
vector field ( ( )d t ) in an orthonormal set of co-ordinate space (Hilber space). The co-
ordinates depend on the covariance kernel 1 2( , )q x x , and these are called basis functions in 
Hilbert space (Hernandez, 1995).  

Equation (3.2.13) can be written as,  

       
   ( , ) ( , ) ( , ) ( ) ,dC S V x t C x t dt S C x t d t                  (3.2.14) 

And 

   
0 0

( , ) ( , ) ( , ) ( , ) ( ) .
t t

C x t S V x t C x t dt S C x t d t                 (3.2.15) 

We call equation (3.2.15) a stochastic solute transport model (SSTM) in which C(x,t)  is 
stochastic solute concentration at a given point in space and time; ( , )V x t  is the expected 
value of  stochastic velocity; hx approximates the spatial discretization interval, dx; and 

( )d t can be considered as a “noise” term which models the velocity fluctuations. 

In this model, instead of the Fickian assumption (equation (1.2.3)), a covariance kernel for 
the velocity fluctuations 1 2( , )q x x  is assumed. The emphasis on modelling of the velocity 
fluctuation as a random field of second order has its own strengths and weaknesses. The 
expectation is that by directly incorporating the velocity fluctuation in the solute mass 
conservation, we expect to reduce the scale dependency because the assumed covariance 
kernel is a function of the pore structure. The major weakness is that we usually do not have 
velocity data to construct the kernel for velocity fluctuations. On the other hand, different 
velocity kernels can be assumed based on plausible reasoning. In this chapter, for the 
illustration purposes, we assume that the covariance kernel to be exponentially decaying 

function, 
1 2

2
x x

be
 

, where 2  is the variance and b is the correlation length.  

In SSTM, the first term on the right hand side of equation (3.2.15) can be considered as the 
drift term of the stochastic partial differential equations (SPDE). The velocity, ( , )V x t ,  can 
be considered as the mean velocity of a local region but for the simplicity, we can assume 
that ( , )V x t   is a constant in this chapter. This assumption is reasonable in practice as we 
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  p   = pressure head, and 
( , )x t = stochastic perturbation of the fluid velocity described by noise correlated in 

space and  - correlated in time such that, 

 ( , ) 0,E x t                               (3.2.8) 
 

   
 1 1 2 2 1 2 1 2( , ) ( , ) ( , ) ( ),E x t x t q x x t t                       (3.2.9) 

where 1 2( , )q x x  is the velocity covariance kernel in space, and 1 2( )t t   is the Dirac's delta 
function. 

Since, 2 1 ,t t t    we can rewrite equation (3.2.9) as, 

 1 1 2 1 1 2( , ) ( , ) ( , ) ( )E x t x t t q x x t      .                (3.2.10) 

In equation (3.2.6) the velocity, ( , )V x t , is modelled as a stochastic process with the 
fluctuating component ( ( , )x t ) superimposed on the expectation of velocity (mean 

velocity). The expected value of the velocity ( , )V x t  can be obtained from other 
considerations without involving Darcy’s law. The use of Darcy’s law is only one way of 
prescribing ( , )V x t  within a given region of the porous medium. The fluctuating velocity 
( ( , )x t ) is assumed to be a zero-mean stochastic process as given by equation (3.2.7), and 
the two-time correlation function is expressed as a product of a function of space ( 1 2( , )q x x ) 
and a function of time ( 1 2( )t t  ) in equation (3.2.9) and  (3.2.10). (As ( , )x t   is a zero-
mean process, the two-time correlation function and the covariance are the same). The 
spatial function, 1 2( , )q x x , reflects the contribution of the porous structure to the 
fluctuations and helps characterise the structural influence on the flow. The Dirac’s delta 
function makes the stochastic process behave as a white noise process along the time line. 
For low velocity situations, such as in aquifers, this is not an unreasonable assumption, but 
the alternative approach of assembling a time correlation function along the time line would 
complicate the mathematics a fair deal, and unless the flow is turbulent, there is no 
justification to take that approach. 

Substituting equations (3.2.5) and (3.2.6) into equation (3.2.4), we can obtain, 
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(3.2.11) 

An operator in space can be defined such that, 
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for a given .xh  

 

Therefore, we can write equation (3.2.11) as, 

   ( , ) ( , ) ( , ) ( , ) .dC S V x t C x t dt S C x t x t dt                   (3.2.13) 

Equation (3.2.13) is a stochastic (partial) differential equation and both terms on the right 
hand side need to be integrated as Ito integrals to obtain the concentration. ( , )x t dt can be 
transformed by ( )d t which is a Wiener process increments in Hilbert space for a given x. 
The explanation on the transformation of ( , )x t dt  to ( )d t  can be found in Jazwinski 
(1970). 

The transformation of ( , )x t dt  to ( )d t  can be understood if we interpret ( , )x t dt  to be 
fluctuating component of the travel length of a solute particle during of time interval dt . 
As we see later this fluctuating travel length component can be expressed as a random 
vector field ( ( )d t ) in an orthonormal set of co-ordinate space (Hilber space). The co-
ordinates depend on the covariance kernel 1 2( , )q x x , and these are called basis functions in 
Hilbert space (Hernandez, 1995).  

Equation (3.2.13) can be written as,  

       
   ( , ) ( , ) ( , ) ( ) ,dC S V x t C x t dt S C x t d t                  (3.2.14) 

And 

   
0 0

( , ) ( , ) ( , ) ( , ) ( ) .
t t

C x t S V x t C x t dt S C x t d t                 (3.2.15) 

We call equation (3.2.15) a stochastic solute transport model (SSTM) in which C(x,t)  is 
stochastic solute concentration at a given point in space and time; ( , )V x t  is the expected 
value of  stochastic velocity; hx approximates the spatial discretization interval, dx; and 

( )d t can be considered as a “noise” term which models the velocity fluctuations. 

In this model, instead of the Fickian assumption (equation (1.2.3)), a covariance kernel for 
the velocity fluctuations 1 2( , )q x x  is assumed. The emphasis on modelling of the velocity 
fluctuation as a random field of second order has its own strengths and weaknesses. The 
expectation is that by directly incorporating the velocity fluctuation in the solute mass 
conservation, we expect to reduce the scale dependency because the assumed covariance 
kernel is a function of the pore structure. The major weakness is that we usually do not have 
velocity data to construct the kernel for velocity fluctuations. On the other hand, different 
velocity kernels can be assumed based on plausible reasoning. In this chapter, for the 
illustration purposes, we assume that the covariance kernel to be exponentially decaying 

function, 
1 2

2
x x

be
 

, where 2  is the variance and b is the correlation length.  

In SSTM, the first term on the right hand side of equation (3.2.15) can be considered as the 
drift term of the stochastic partial differential equations (SPDE). The velocity, ( , )V x t ,  can 
be considered as the mean velocity of a local region but for the simplicity, we can assume 
that ( , )V x t   is a constant in this chapter. This assumption is reasonable in practice as we 
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  p   = pressure head, and 
( , )x t = stochastic perturbation of the fluid velocity described by noise correlated in 

space and  - correlated in time such that, 

 ( , ) 0,E x t                               (3.2.8) 
 

   
 1 1 2 2 1 2 1 2( , ) ( , ) ( , ) ( ),E x t x t q x x t t                       (3.2.9) 

where 1 2( , )q x x  is the velocity covariance kernel in space, and 1 2( )t t   is the Dirac's delta 
function. 

Since, 2 1 ,t t t    we can rewrite equation (3.2.9) as, 

 1 1 2 1 1 2( , ) ( , ) ( , ) ( )E x t x t t q x x t      .                (3.2.10) 

In equation (3.2.6) the velocity, ( , )V x t , is modelled as a stochastic process with the 
fluctuating component ( ( , )x t ) superimposed on the expectation of velocity (mean 

velocity). The expected value of the velocity ( , )V x t  can be obtained from other 
considerations without involving Darcy’s law. The use of Darcy’s law is only one way of 
prescribing ( , )V x t  within a given region of the porous medium. The fluctuating velocity 
( ( , )x t ) is assumed to be a zero-mean stochastic process as given by equation (3.2.7), and 
the two-time correlation function is expressed as a product of a function of space ( 1 2( , )q x x ) 
and a function of time ( 1 2( )t t  ) in equation (3.2.9) and  (3.2.10). (As ( , )x t   is a zero-
mean process, the two-time correlation function and the covariance are the same). The 
spatial function, 1 2( , )q x x , reflects the contribution of the porous structure to the 
fluctuations and helps characterise the structural influence on the flow. The Dirac’s delta 
function makes the stochastic process behave as a white noise process along the time line. 
For low velocity situations, such as in aquifers, this is not an unreasonable assumption, but 
the alternative approach of assembling a time correlation function along the time line would 
complicate the mathematics a fair deal, and unless the flow is turbulent, there is no 
justification to take that approach. 

Substituting equations (3.2.5) and (3.2.6) into equation (3.2.4), we can obtain, 
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An operator in space can be defined such that, 
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for a given .xh  

 

Therefore, we can write equation (3.2.11) as, 

   ( , ) ( , ) ( , ) ( , ) .dC S V x t C x t dt S C x t x t dt                   (3.2.13) 

Equation (3.2.13) is a stochastic (partial) differential equation and both terms on the right 
hand side need to be integrated as Ito integrals to obtain the concentration. ( , )x t dt can be 
transformed by ( )d t which is a Wiener process increments in Hilbert space for a given x. 
The explanation on the transformation of ( , )x t dt  to ( )d t  can be found in Jazwinski 
(1970). 

The transformation of ( , )x t dt  to ( )d t  can be understood if we interpret ( , )x t dt  to be 
fluctuating component of the travel length of a solute particle during of time interval dt . 
As we see later this fluctuating travel length component can be expressed as a random 
vector field ( ( )d t ) in an orthonormal set of co-ordinate space (Hilber space). The co-
ordinates depend on the covariance kernel 1 2( , )q x x , and these are called basis functions in 
Hilbert space (Hernandez, 1995).  

Equation (3.2.13) can be written as,  

       
   ( , ) ( , ) ( , ) ( ) ,dC S V x t C x t dt S C x t d t                  (3.2.14) 

And 

   
0 0

( , ) ( , ) ( , ) ( , ) ( ) .
t t

C x t S V x t C x t dt S C x t d t                 (3.2.15) 

We call equation (3.2.15) a stochastic solute transport model (SSTM) in which C(x,t)  is 
stochastic solute concentration at a given point in space and time; ( , )V x t  is the expected 
value of  stochastic velocity; hx approximates the spatial discretization interval, dx; and 

( )d t can be considered as a “noise” term which models the velocity fluctuations. 

In this model, instead of the Fickian assumption (equation (1.2.3)), a covariance kernel for 
the velocity fluctuations 1 2( , )q x x  is assumed. The emphasis on modelling of the velocity 
fluctuation as a random field of second order has its own strengths and weaknesses. The 
expectation is that by directly incorporating the velocity fluctuation in the solute mass 
conservation, we expect to reduce the scale dependency because the assumed covariance 
kernel is a function of the pore structure. The major weakness is that we usually do not have 
velocity data to construct the kernel for velocity fluctuations. On the other hand, different 
velocity kernels can be assumed based on plausible reasoning. In this chapter, for the 
illustration purposes, we assume that the covariance kernel to be exponentially decaying 

function, 
1 2

2
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be
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, where 2  is the variance and b is the correlation length.  

In SSTM, the first term on the right hand side of equation (3.2.15) can be considered as the 
drift term of the stochastic partial differential equations (SPDE). The velocity, ( , )V x t ,  can 
be considered as the mean velocity of a local region but for the simplicity, we can assume 
that ( , )V x t   is a constant in this chapter. This assumption is reasonable in practice as we 



Computational Modelling of Multi-Scale Non-Fickian Dispersion  
in Porous Media - An Approach Based on Stochastic Calculus70

 

often calculate the Darcian velocity over a region. As C(x,t) is a stochastic variable, at a given 
point in space, the integral can be evaluated as an Ito integral to simplify the numerical 
solution. This argument can also be applied to the dispersion term, the second integral of the 
right hand side of equation (3.2.15), but ( )d t   term has to be evaluated. (We use the term 
“dispersion” instead of “diffusion” to denote the second integral of the right hand side of 
equation (3.2.15) to allude to the physical nature that is being represented by the term. But in 
the mathematical literature, the term “diffusion” is used to denote the stochastic (Ito or 
Stratonovich) integral of analogous stochastic differential equations because it is a diffusion 
process in mathematical sense.)  It should also be noted that ( , )V x t  could also vary from 
location to location at a higher scale, and we can assume that we can identify regions of 
sufficiently large magnitudes within which ( , )V x t  can be treated as a smoothly varying 
function if not a constant. However, this assumption is not necessary if we know the mean 
velocity profiles based on more aggregate properties. ( , )x t , on the other hand, relaxes the 
assumption expressed by equation (1.2.3) and allows us to include a much more realistic 
assumption as to how the noise behaves. There is some experimental evidence to suggest 
that the normalised longitudinal velocity covariances for different flow rates had similar 
exponential behaviour with respect to time in a homogenous porous media (Moroni and 
Cushman, 2001). However, there is no experimental evidence to date as to how the 
covariance of velocity fluctuation around the mean velocity, ( , )x t , behaves with respect to 
space, but the exponential decay in this situation is quite plausible. 
 

3.3 Construction of ( )d t  Random Fields Using Spectral Expansion 
We summarise the pertinent theoretical background here to explain the assumptions in our 
model of velocity fluctuations. Let K be a compact set in Rd, over which we define a second 
order random field, having a covariance function,  q(x,y) which is assumed to be square 
integrable over K × K  (see Hernandez,1995): 

2( , )
K K

q x y dxdy


  . 

Let A: L2(K)→L2(K)  be the integral operator 

        
( ) ( , ) ( )KA x q x y y dy                          (3.3.1) 

with the set of eigen values {λi : i= 1, 2, 3.....} and the set of  orthonormal eigenfunctions {ψi : 
i= 1, 2, 3 ...}. This means  

        
, 1,2,3...i i iA i   ,                          (3.3.2) 

and , , 1,2,3.....i j ij i j      ,                  (3.3.3) 

where , ( ) ( )i j i j
K

x x dx     .                  (3.3.4) 

If q(x,y) is continuous then , 0i iA    for 2 ( )i L K  . 

 

Now we can make use of Mercer’s theorem (Hernandez, 1995) to express q(x,y) in terms of  
eigenfunctions (ψi ) and the corresponding eigenvalues (λi) , 

1
( , ) ( ) ( )k k k

k
q x y x y  




  ,                          (3.3.5) 

and convergence is uniform and absolute over K × K. Now let us define a set of (complex) 
random variables {Zi : i=1, 2, 3...} with the following moments: 

, 1, 2,...0nEZ n   , and 

, 1,2,.....n m n nmEZ Z n   . 

Then the Karhunen-Loeve theorem states that random field ( )x can be expressed as a 
series expansion of Zi s, 
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which converges in quadratic mean for any x in K. In addition, the following conditions 
hold, 

( ) ( ), 1,2,.....n n nE x Z x n     and, 
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     for any  x0 in K. 

What Karhunen-Loeve (KL) expansion does is to model a random field by using two 
separate mathematical objects: continuous functions, which stem as the solutions of an 
integral equation (equation (3.3.1)) and random variables. If we assume the random 
variables ( iZ ) to be standard Gaussian (N(0,1)), then Karhunen-Loeve expansion takes the 
following form,  
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KL expansion provides a way of modelling a random field of  a single variable, which is 
considered to be the space variable, in terms of  a set of orthonormal basis functions of  a 
Hilbert space and a discrete set of standard Gaussian variables. We extend this development 
to model the velocity fluctuation of equation (3.2.6), ( , )x t , which is spatially and 
temporally correlated in such a way that 0

2( , ) ( ) [0, ]x t H L R T     where 0H  is a 
separable Hilbert space in which we assume ( , )x t  to be spatially correlated through a 
symmetric and positive definite covariance function 1 2( , )q x x , and δ-correlated in time (or 
white in time). As mentioned before this means that velocity changes in a porous medium 
are influenced by the porous matrix but behaves like white noise with respect to time, i.e., 
correlation in time is a Dirac delta function. Suppose that the mean velocity ( , )V x t  of a 
region is 1 m per day, then within a second a solute particle travels 0.01 mm on the average, 
and within 0.001 days it travels 1 mm, which increases the probability of solute particle 
changing its course. We can assume that in slow moving fluids, the velocity fluctuation at 
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often calculate the Darcian velocity over a region. As C(x,t) is a stochastic variable, at a given 
point in space, the integral can be evaluated as an Ito integral to simplify the numerical 
solution. This argument can also be applied to the dispersion term, the second integral of the 
right hand side of equation (3.2.15), but ( )d t   term has to be evaluated. (We use the term 
“dispersion” instead of “diffusion” to denote the second integral of the right hand side of 
equation (3.2.15) to allude to the physical nature that is being represented by the term. But in 
the mathematical literature, the term “diffusion” is used to denote the stochastic (Ito or 
Stratonovich) integral of analogous stochastic differential equations because it is a diffusion 
process in mathematical sense.)  It should also be noted that ( , )V x t  could also vary from 
location to location at a higher scale, and we can assume that we can identify regions of 
sufficiently large magnitudes within which ( , )V x t  can be treated as a smoothly varying 
function if not a constant. However, this assumption is not necessary if we know the mean 
velocity profiles based on more aggregate properties. ( , )x t , on the other hand, relaxes the 
assumption expressed by equation (1.2.3) and allows us to include a much more realistic 
assumption as to how the noise behaves. There is some experimental evidence to suggest 
that the normalised longitudinal velocity covariances for different flow rates had similar 
exponential behaviour with respect to time in a homogenous porous media (Moroni and 
Cushman, 2001). However, there is no experimental evidence to date as to how the 
covariance of velocity fluctuation around the mean velocity, ( , )x t , behaves with respect to 
space, but the exponential decay in this situation is quite plausible. 
 

3.3 Construction of ( )d t  Random Fields Using Spectral Expansion 
We summarise the pertinent theoretical background here to explain the assumptions in our 
model of velocity fluctuations. Let K be a compact set in Rd, over which we define a second 
order random field, having a covariance function,  q(x,y) which is assumed to be square 
integrable over K × K  (see Hernandez,1995): 
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If q(x,y) is continuous then , 0i iA    for 2 ( )i L K  . 
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and convergence is uniform and absolute over K × K. Now let us define a set of (complex) 
random variables {Zi : i=1, 2, 3...} with the following moments: 
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What Karhunen-Loeve (KL) expansion does is to model a random field by using two 
separate mathematical objects: continuous functions, which stem as the solutions of an 
integral equation (equation (3.3.1)) and random variables. If we assume the random 
variables ( iZ ) to be standard Gaussian (N(0,1)), then Karhunen-Loeve expansion takes the 
following form,  
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KL expansion provides a way of modelling a random field of  a single variable, which is 
considered to be the space variable, in terms of  a set of orthonormal basis functions of  a 
Hilbert space and a discrete set of standard Gaussian variables. We extend this development 
to model the velocity fluctuation of equation (3.2.6), ( , )x t , which is spatially and 
temporally correlated in such a way that 0

2( , ) ( ) [0, ]x t H L R T     where 0H  is a 
separable Hilbert space in which we assume ( , )x t  to be spatially correlated through a 
symmetric and positive definite covariance function 1 2( , )q x x , and δ-correlated in time (or 
white in time). As mentioned before this means that velocity changes in a porous medium 
are influenced by the porous matrix but behaves like white noise with respect to time, i.e., 
correlation in time is a Dirac delta function. Suppose that the mean velocity ( , )V x t  of a 
region is 1 m per day, then within a second a solute particle travels 0.01 mm on the average, 
and within 0.001 days it travels 1 mm, which increases the probability of solute particle 
changing its course. We can assume that in slow moving fluids, the velocity fluctuation at 
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often calculate the Darcian velocity over a region. As C(x,t) is a stochastic variable, at a given 
point in space, the integral can be evaluated as an Ito integral to simplify the numerical 
solution. This argument can also be applied to the dispersion term, the second integral of the 
right hand side of equation (3.2.15), but ( )d t   term has to be evaluated. (We use the term 
“dispersion” instead of “diffusion” to denote the second integral of the right hand side of 
equation (3.2.15) to allude to the physical nature that is being represented by the term. But in 
the mathematical literature, the term “diffusion” is used to denote the stochastic (Ito or 
Stratonovich) integral of analogous stochastic differential equations because it is a diffusion 
process in mathematical sense.)  It should also be noted that ( , )V x t  could also vary from 
location to location at a higher scale, and we can assume that we can identify regions of 
sufficiently large magnitudes within which ( , )V x t  can be treated as a smoothly varying 
function if not a constant. However, this assumption is not necessary if we know the mean 
velocity profiles based on more aggregate properties. ( , )x t , on the other hand, relaxes the 
assumption expressed by equation (1.2.3) and allows us to include a much more realistic 
assumption as to how the noise behaves. There is some experimental evidence to suggest 
that the normalised longitudinal velocity covariances for different flow rates had similar 
exponential behaviour with respect to time in a homogenous porous media (Moroni and 
Cushman, 2001). However, there is no experimental evidence to date as to how the 
covariance of velocity fluctuation around the mean velocity, ( , )x t , behaves with respect to 
space, but the exponential decay in this situation is quite plausible. 
 

3.3 Construction of ( )d t  Random Fields Using Spectral Expansion 
We summarise the pertinent theoretical background here to explain the assumptions in our 
model of velocity fluctuations. Let K be a compact set in Rd, over which we define a second 
order random field, having a covariance function,  q(x,y) which is assumed to be square 
integrable over K × K  (see Hernandez,1995): 
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Let A: L2(K)→L2(K)  be the integral operator 

        
( ) ( , ) ( )KA x q x y y dy                          (3.3.1) 

with the set of eigen values {λi : i= 1, 2, 3.....} and the set of  orthonormal eigenfunctions {ψi : 
i= 1, 2, 3 ...}. This means  

        
, 1,2,3...i i iA i   ,                          (3.3.2) 

and , , 1,2,3.....i j ij i j      ,                  (3.3.3) 

where , ( ) ( )i j i j
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x x dx     .                  (3.3.4) 

If q(x,y) is continuous then , 0i iA    for 2 ( )i L K  . 

 

Now we can make use of Mercer’s theorem (Hernandez, 1995) to express q(x,y) in terms of  
eigenfunctions (ψi ) and the corresponding eigenvalues (λi) , 
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and convergence is uniform and absolute over K × K. Now let us define a set of (complex) 
random variables {Zi : i=1, 2, 3...} with the following moments: 

, 1, 2,...0nEZ n   , and 

, 1,2,.....n m n nmEZ Z n   . 

Then the Karhunen-Loeve theorem states that random field ( )x can be expressed as a 
series expansion of Zi s, 

1
( ): ( )n n

n
x x Z 




  ,                     (3.3.6) 

which converges in quadratic mean for any x in K. In addition, the following conditions 
hold, 

( ) ( ), 1,2,.....n n nE x Z x n     and, 
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     for any  x0 in K. 

What Karhunen-Loeve (KL) expansion does is to model a random field by using two 
separate mathematical objects: continuous functions, which stem as the solutions of an 
integral equation (equation (3.3.1)) and random variables. If we assume the random 
variables ( iZ ) to be standard Gaussian (N(0,1)), then Karhunen-Loeve expansion takes the 
following form,  
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KL expansion provides a way of modelling a random field of  a single variable, which is 
considered to be the space variable, in terms of  a set of orthonormal basis functions of  a 
Hilbert space and a discrete set of standard Gaussian variables. We extend this development 
to model the velocity fluctuation of equation (3.2.6), ( , )x t , which is spatially and 
temporally correlated in such a way that 0

2( , ) ( ) [0, ]x t H L R T     where 0H  is a 
separable Hilbert space in which we assume ( , )x t  to be spatially correlated through a 
symmetric and positive definite covariance function 1 2( , )q x x , and δ-correlated in time (or 
white in time). As mentioned before this means that velocity changes in a porous medium 
are influenced by the porous matrix but behaves like white noise with respect to time, i.e., 
correlation in time is a Dirac delta function. Suppose that the mean velocity ( , )V x t  of a 
region is 1 m per day, then within a second a solute particle travels 0.01 mm on the average, 
and within 0.001 days it travels 1 mm, which increases the probability of solute particle 
changing its course. We can assume that in slow moving fluids, the velocity fluctuation at 
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often calculate the Darcian velocity over a region. As C(x,t) is a stochastic variable, at a given 
point in space, the integral can be evaluated as an Ito integral to simplify the numerical 
solution. This argument can also be applied to the dispersion term, the second integral of the 
right hand side of equation (3.2.15), but ( )d t   term has to be evaluated. (We use the term 
“dispersion” instead of “diffusion” to denote the second integral of the right hand side of 
equation (3.2.15) to allude to the physical nature that is being represented by the term. But in 
the mathematical literature, the term “diffusion” is used to denote the stochastic (Ito or 
Stratonovich) integral of analogous stochastic differential equations because it is a diffusion 
process in mathematical sense.)  It should also be noted that ( , )V x t  could also vary from 
location to location at a higher scale, and we can assume that we can identify regions of 
sufficiently large magnitudes within which ( , )V x t  can be treated as a smoothly varying 
function if not a constant. However, this assumption is not necessary if we know the mean 
velocity profiles based on more aggregate properties. ( , )x t , on the other hand, relaxes the 
assumption expressed by equation (1.2.3) and allows us to include a much more realistic 
assumption as to how the noise behaves. There is some experimental evidence to suggest 
that the normalised longitudinal velocity covariances for different flow rates had similar 
exponential behaviour with respect to time in a homogenous porous media (Moroni and 
Cushman, 2001). However, there is no experimental evidence to date as to how the 
covariance of velocity fluctuation around the mean velocity, ( , )x t , behaves with respect to 
space, but the exponential decay in this situation is quite plausible. 
 

3.3 Construction of ( )d t  Random Fields Using Spectral Expansion 
We summarise the pertinent theoretical background here to explain the assumptions in our 
model of velocity fluctuations. Let K be a compact set in Rd, over which we define a second 
order random field, having a covariance function,  q(x,y) which is assumed to be square 
integrable over K × K  (see Hernandez,1995): 
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Now we can make use of Mercer’s theorem (Hernandez, 1995) to express q(x,y) in terms of  
eigenfunctions (ψi ) and the corresponding eigenvalues (λi) , 
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and convergence is uniform and absolute over K × K. Now let us define a set of (complex) 
random variables {Zi : i=1, 2, 3...} with the following moments: 

, 1, 2,...0nEZ n   , and 

, 1,2,.....n m n nmEZ Z n   . 

Then the Karhunen-Loeve theorem states that random field ( )x can be expressed as a 
series expansion of Zi s, 
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which converges in quadratic mean for any x in K. In addition, the following conditions 
hold, 
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     for any  x0 in K. 

What Karhunen-Loeve (KL) expansion does is to model a random field by using two 
separate mathematical objects: continuous functions, which stem as the solutions of an 
integral equation (equation (3.3.1)) and random variables. If we assume the random 
variables ( iZ ) to be standard Gaussian (N(0,1)), then Karhunen-Loeve expansion takes the 
following form,  
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KL expansion provides a way of modelling a random field of  a single variable, which is 
considered to be the space variable, in terms of  a set of orthonormal basis functions of  a 
Hilbert space and a discrete set of standard Gaussian variables. We extend this development 
to model the velocity fluctuation of equation (3.2.6), ( , )x t , which is spatially and 
temporally correlated in such a way that 0

2( , ) ( ) [0, ]x t H L R T     where 0H  is a 
separable Hilbert space in which we assume ( , )x t  to be spatially correlated through a 
symmetric and positive definite covariance function 1 2( , )q x x , and δ-correlated in time (or 
white in time). As mentioned before this means that velocity changes in a porous medium 
are influenced by the porous matrix but behaves like white noise with respect to time, i.e., 
correlation in time is a Dirac delta function. Suppose that the mean velocity ( , )V x t  of a 
region is 1 m per day, then within a second a solute particle travels 0.01 mm on the average, 
and within 0.001 days it travels 1 mm, which increases the probability of solute particle 
changing its course. We can assume that in slow moving fluids, the velocity fluctuation at 
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one small interval in time is independent of that of within another interval in time. By 
incorporating appropriate discretisation time and space intervals in the solution process, the 
white-in-time assumption leads to a simpler but physically plausible model of velocity 
fluctuation. Therefore, we can express ( , )x t  as a second-order random field with the 
moments as given in equation (3.2.9). 

Based on stochastic calculus considerations (Unny, 1985),  ( , )x t dt can be considered as a 
Wiener process increment ( )d t  in Hilbert space 0H  for a given x; and to obtain strong 
solutions to the stochastic partial differential equation (3.2.14) numerically, this 
representation is particularly useful. The orthonormal functions,  {ψi : i=1, 2, 3... }, provide a 
basis for 0H , and then we can use the standard Wiener increments (dbi(t)) to replace 
random variables in KL expansion (equation (3.3.7)) to construct the random field dβ(t):  

1
( ): ( ) ( ) ( , )n n n

n
d t x db t x t dt   




  .                   (3.3.8) 

Intrinsic in this model is the fact that for any given element 0e H , the inner product 
( ),t e   is a real Wiener process having the correlation, 

 1 2 1 2 1 2 2 1 1 2( ), ( ), ( , ) ( ) ( )
K K

E t e t e q x x e x e x dx dx 


     .            (3.3.9) 

An approximation for equation (3.3.8) can be constructed by considering the first m terms in 
the expansion which converges to a desired accuracy. As the increments in standard Wiener 
process have zero means and dt variances, care must be given to the choice of the time 
increments within the context of the problem. Smaller the time increments, higher the 
accuracy of KL expansion as in the case of solving stochastic differntial equations 
numerically (Kloeden and Platen, 1992). 

Equation (3.3.8) gives a series expansion for the stochastic process ( )d t  but eigen 
functions and eigenvalues must be found for a given kernel. This task is not straight forward 
and often involves solving the Fredholm integral equations. Let us assume, based on 
previous discussion, an exponentially decaying kernel in the x-direction in this chapter, 

1 2
2

1 2( , ) .
x x

bq x x e
 

                           (3.3.10) 

where x1 and  x2 are two neighbouring points on x. The correlation length b signifies the 
extent to which the correlation of the stochastic process is decayed along the x-axis. σ2 is the 
variance  which acts as an amplitude factor. To obtain the orthornormal functions for the 
kernel in equation (3.3.10), the following integral equation must be solved within the 
domain [0, a], where a is the length (scale) of the experiment, 

1 2 2 2 10 ( , ) ( ) ( )a
i i iq x x f x dx f x .                  (3.3.11) 

Equation (3.3.11) can be written as,  

1 2
2

1 2 20
1( ) ( )

x x
a b

i i
i

f x e f x dx


 

  .                    (3.3.12) 

 

As the upper limit of integration is a constant, equation (3.3.10) is a homogenous Fredholm 
integral equation of the second kind. 

We now discuss the general solution of the integral equation generated by equation (3.3.10) 
considering the solutions of a general Fredholm integral equation of the form (Polyanin et 
al., 1998), 

( ) 1 ( ) ( )b x t
ay x A e y t dt f x   ,                      (3.3.13) 

where A1 and θ are constants. 

Then the function y = y(x) obeys the following second order linear non-homogeneous 
differential equation with constant coefficients, 

2(2 1 ) ( ) ( )xx xxy A y f x f x       .                   (3.3.14) 

The boundary conditions for this ordinary differential equation (ODE) have the form, 

( ) ( ) ( ) ( )x xy a y a f a f a     ,and                       (3.3.15) 

( ) ( ) ( ) ( )x xy b y b f b f b     .                   (3.3.16) 

Polyanin et al. (1998) explain why the given ODE (equation (3.3.16)) under these boundary 
conditions determines the solutions of the original integral equation (3.3.12). 

Case 1. For (2 1 ) 0A   , the general solution of equation (3.3.13) is given by, 

1 2 0
2 1( ) ( ) ( ) ( ) [ ( )] ( )xAy x C Cosh k x C Sinh kx f x Sinh k x t f t dt

k


     ,       (3.3.17) 

where ( 2 1)k A   , and 1C  and 2C  are arbitrary constants. 

Case 2. For (2 1 ) 0A   , the general solution of equation (3.3.13) is given by 

1 2 0

2 1( ) ( ) ( ) ( ) [ ( )] ( )
xAy x C Cos k x C Sin kx f x Sin k x t f t dt

k


     ,        (3.3.18) 

where (2 1 )k A   . 

Case 3. For 2 1A  , the general solution of equation (3.3.13) is given by, 

2
1 2( ) ( ) 4 1 ( ) ( )x

ay x C C x f x A x t f t dt     .                (3.3.19) 

The constants 1C  and 2C  are determined by the boundary conditions.  

These results (Cases 1, 2, and 3) can be applied to the integral equation (3.3.11) by changing 
notation, and observing that 

21 2 1(2 1 ) 0A
b b




       
  

.                      (3.3.20) 
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one small interval in time is independent of that of within another interval in time. By 
incorporating appropriate discretisation time and space intervals in the solution process, the 
white-in-time assumption leads to a simpler but physically plausible model of velocity 
fluctuation. Therefore, we can express ( , )x t  as a second-order random field with the 
moments as given in equation (3.2.9). 

Based on stochastic calculus considerations (Unny, 1985),  ( , )x t dt can be considered as a 
Wiener process increment ( )d t  in Hilbert space 0H  for a given x; and to obtain strong 
solutions to the stochastic partial differential equation (3.2.14) numerically, this 
representation is particularly useful. The orthonormal functions,  {ψi : i=1, 2, 3... }, provide a 
basis for 0H , and then we can use the standard Wiener increments (dbi(t)) to replace 
random variables in KL expansion (equation (3.3.7)) to construct the random field dβ(t):  

1
( ): ( ) ( ) ( , )n n n

n
d t x db t x t dt   




  .                   (3.3.8) 

Intrinsic in this model is the fact that for any given element 0e H , the inner product 
( ),t e   is a real Wiener process having the correlation, 

 1 2 1 2 1 2 2 1 1 2( ), ( ), ( , ) ( ) ( )
K K

E t e t e q x x e x e x dx dx 


     .            (3.3.9) 

An approximation for equation (3.3.8) can be constructed by considering the first m terms in 
the expansion which converges to a desired accuracy. As the increments in standard Wiener 
process have zero means and dt variances, care must be given to the choice of the time 
increments within the context of the problem. Smaller the time increments, higher the 
accuracy of KL expansion as in the case of solving stochastic differntial equations 
numerically (Kloeden and Platen, 1992). 

Equation (3.3.8) gives a series expansion for the stochastic process ( )d t  but eigen 
functions and eigenvalues must be found for a given kernel. This task is not straight forward 
and often involves solving the Fredholm integral equations. Let us assume, based on 
previous discussion, an exponentially decaying kernel in the x-direction in this chapter, 
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bq x x e
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where x1 and  x2 are two neighbouring points on x. The correlation length b signifies the 
extent to which the correlation of the stochastic process is decayed along the x-axis. σ2 is the 
variance  which acts as an amplitude factor. To obtain the orthornormal functions for the 
kernel in equation (3.3.10), the following integral equation must be solved within the 
domain [0, a], where a is the length (scale) of the experiment, 

1 2 2 2 10 ( , ) ( ) ( )a
i i iq x x f x dx f x .                  (3.3.11) 

Equation (3.3.11) can be written as,  
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
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As the upper limit of integration is a constant, equation (3.3.10) is a homogenous Fredholm 
integral equation of the second kind. 

We now discuss the general solution of the integral equation generated by equation (3.3.10) 
considering the solutions of a general Fredholm integral equation of the form (Polyanin et 
al., 1998), 

( ) 1 ( ) ( )b x t
ay x A e y t dt f x   ,                      (3.3.13) 

where A1 and θ are constants. 

Then the function y = y(x) obeys the following second order linear non-homogeneous 
differential equation with constant coefficients, 

2(2 1 ) ( ) ( )xx xxy A y f x f x       .                   (3.3.14) 

The boundary conditions for this ordinary differential equation (ODE) have the form, 

( ) ( ) ( ) ( )x xy a y a f a f a     ,and                       (3.3.15) 

( ) ( ) ( ) ( )x xy b y b f b f b     .                   (3.3.16) 

Polyanin et al. (1998) explain why the given ODE (equation (3.3.16)) under these boundary 
conditions determines the solutions of the original integral equation (3.3.12). 

Case 1. For (2 1 ) 0A   , the general solution of equation (3.3.13) is given by, 

1 2 0
2 1( ) ( ) ( ) ( ) [ ( )] ( )xAy x C Cosh k x C Sinh kx f x Sinh k x t f t dt

k


     ,       (3.3.17) 

where ( 2 1)k A   , and 1C  and 2C  are arbitrary constants. 

Case 2. For (2 1 ) 0A   , the general solution of equation (3.3.13) is given by 

1 2 0

2 1( ) ( ) ( ) ( ) [ ( )] ( )
xAy x C Cos k x C Sin kx f x Sin k x t f t dt

k


     ,        (3.3.18) 

where (2 1 )k A   . 

Case 3. For 2 1A  , the general solution of equation (3.3.13) is given by, 

2
1 2( ) ( ) 4 1 ( ) ( )x

ay x C C x f x A x t f t dt     .                (3.3.19) 

The constants 1C  and 2C  are determined by the boundary conditions.  

These results (Cases 1, 2, and 3) can be applied to the integral equation (3.3.11) by changing 
notation, and observing that 
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one small interval in time is independent of that of within another interval in time. By 
incorporating appropriate discretisation time and space intervals in the solution process, the 
white-in-time assumption leads to a simpler but physically plausible model of velocity 
fluctuation. Therefore, we can express ( , )x t  as a second-order random field with the 
moments as given in equation (3.2.9). 

Based on stochastic calculus considerations (Unny, 1985),  ( , )x t dt can be considered as a 
Wiener process increment ( )d t  in Hilbert space 0H  for a given x; and to obtain strong 
solutions to the stochastic partial differential equation (3.2.14) numerically, this 
representation is particularly useful. The orthonormal functions,  {ψi : i=1, 2, 3... }, provide a 
basis for 0H , and then we can use the standard Wiener increments (dbi(t)) to replace 
random variables in KL expansion (equation (3.3.7)) to construct the random field dβ(t):  

1
( ): ( ) ( ) ( , )n n n

n
d t x db t x t dt   




  .                   (3.3.8) 

Intrinsic in this model is the fact that for any given element 0e H , the inner product 
( ),t e   is a real Wiener process having the correlation, 

 1 2 1 2 1 2 2 1 1 2( ), ( ), ( , ) ( ) ( )
K K

E t e t e q x x e x e x dx dx 


     .            (3.3.9) 

An approximation for equation (3.3.8) can be constructed by considering the first m terms in 
the expansion which converges to a desired accuracy. As the increments in standard Wiener 
process have zero means and dt variances, care must be given to the choice of the time 
increments within the context of the problem. Smaller the time increments, higher the 
accuracy of KL expansion as in the case of solving stochastic differntial equations 
numerically (Kloeden and Platen, 1992). 

Equation (3.3.8) gives a series expansion for the stochastic process ( )d t  but eigen 
functions and eigenvalues must be found for a given kernel. This task is not straight forward 
and often involves solving the Fredholm integral equations. Let us assume, based on 
previous discussion, an exponentially decaying kernel in the x-direction in this chapter, 
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where x1 and  x2 are two neighbouring points on x. The correlation length b signifies the 
extent to which the correlation of the stochastic process is decayed along the x-axis. σ2 is the 
variance  which acts as an amplitude factor. To obtain the orthornormal functions for the 
kernel in equation (3.3.10), the following integral equation must be solved within the 
domain [0, a], where a is the length (scale) of the experiment, 

1 2 2 2 10 ( , ) ( ) ( )a
i i iq x x f x dx f x .                  (3.3.11) 

Equation (3.3.11) can be written as,  
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
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As the upper limit of integration is a constant, equation (3.3.10) is a homogenous Fredholm 
integral equation of the second kind. 

We now discuss the general solution of the integral equation generated by equation (3.3.10) 
considering the solutions of a general Fredholm integral equation of the form (Polyanin et 
al., 1998), 

( ) 1 ( ) ( )b x t
ay x A e y t dt f x   ,                      (3.3.13) 

where A1 and θ are constants. 

Then the function y = y(x) obeys the following second order linear non-homogeneous 
differential equation with constant coefficients, 

2(2 1 ) ( ) ( )xx xxy A y f x f x       .                   (3.3.14) 

The boundary conditions for this ordinary differential equation (ODE) have the form, 

( ) ( ) ( ) ( )x xy a y a f a f a     ,and                       (3.3.15) 

( ) ( ) ( ) ( )x xy b y b f b f b     .                   (3.3.16) 

Polyanin et al. (1998) explain why the given ODE (equation (3.3.16)) under these boundary 
conditions determines the solutions of the original integral equation (3.3.12). 

Case 1. For (2 1 ) 0A   , the general solution of equation (3.3.13) is given by, 

1 2 0
2 1( ) ( ) ( ) ( ) [ ( )] ( )xAy x C Cosh k x C Sinh kx f x Sinh k x t f t dt

k


     ,       (3.3.17) 

where ( 2 1)k A   , and 1C  and 2C  are arbitrary constants. 

Case 2. For (2 1 ) 0A   , the general solution of equation (3.3.13) is given by 

1 2 0

2 1( ) ( ) ( ) ( ) [ ( )] ( )
xAy x C Cos k x C Sin kx f x Sin k x t f t dt

k


     ,        (3.3.18) 

where (2 1 )k A   . 

Case 3. For 2 1A  , the general solution of equation (3.3.13) is given by, 

2
1 2( ) ( ) 4 1 ( ) ( )x

ay x C C x f x A x t f t dt     .                (3.3.19) 

The constants 1C  and 2C  are determined by the boundary conditions.  

These results (Cases 1, 2, and 3) can be applied to the integral equation (3.3.11) by changing 
notation, and observing that 
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one small interval in time is independent of that of within another interval in time. By 
incorporating appropriate discretisation time and space intervals in the solution process, the 
white-in-time assumption leads to a simpler but physically plausible model of velocity 
fluctuation. Therefore, we can express ( , )x t  as a second-order random field with the 
moments as given in equation (3.2.9). 

Based on stochastic calculus considerations (Unny, 1985),  ( , )x t dt can be considered as a 
Wiener process increment ( )d t  in Hilbert space 0H  for a given x; and to obtain strong 
solutions to the stochastic partial differential equation (3.2.14) numerically, this 
representation is particularly useful. The orthonormal functions,  {ψi : i=1, 2, 3... }, provide a 
basis for 0H , and then we can use the standard Wiener increments (dbi(t)) to replace 
random variables in KL expansion (equation (3.3.7)) to construct the random field dβ(t):  

1
( ): ( ) ( ) ( , )n n n

n
d t x db t x t dt   




  .                   (3.3.8) 

Intrinsic in this model is the fact that for any given element 0e H , the inner product 
( ),t e   is a real Wiener process having the correlation, 

 1 2 1 2 1 2 2 1 1 2( ), ( ), ( , ) ( ) ( )
K K

E t e t e q x x e x e x dx dx 


     .            (3.3.9) 

An approximation for equation (3.3.8) can be constructed by considering the first m terms in 
the expansion which converges to a desired accuracy. As the increments in standard Wiener 
process have zero means and dt variances, care must be given to the choice of the time 
increments within the context of the problem. Smaller the time increments, higher the 
accuracy of KL expansion as in the case of solving stochastic differntial equations 
numerically (Kloeden and Platen, 1992). 

Equation (3.3.8) gives a series expansion for the stochastic process ( )d t  but eigen 
functions and eigenvalues must be found for a given kernel. This task is not straight forward 
and often involves solving the Fredholm integral equations. Let us assume, based on 
previous discussion, an exponentially decaying kernel in the x-direction in this chapter, 
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where x1 and  x2 are two neighbouring points on x. The correlation length b signifies the 
extent to which the correlation of the stochastic process is decayed along the x-axis. σ2 is the 
variance  which acts as an amplitude factor. To obtain the orthornormal functions for the 
kernel in equation (3.3.10), the following integral equation must be solved within the 
domain [0, a], where a is the length (scale) of the experiment, 

1 2 2 2 10 ( , ) ( ) ( )a
i i iq x x f x dx f x .                  (3.3.11) 

Equation (3.3.11) can be written as,  
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As the upper limit of integration is a constant, equation (3.3.10) is a homogenous Fredholm 
integral equation of the second kind. 

We now discuss the general solution of the integral equation generated by equation (3.3.10) 
considering the solutions of a general Fredholm integral equation of the form (Polyanin et 
al., 1998), 

( ) 1 ( ) ( )b x t
ay x A e y t dt f x   ,                      (3.3.13) 

where A1 and θ are constants. 

Then the function y = y(x) obeys the following second order linear non-homogeneous 
differential equation with constant coefficients, 

2(2 1 ) ( ) ( )xx xxy A y f x f x       .                   (3.3.14) 

The boundary conditions for this ordinary differential equation (ODE) have the form, 

( ) ( ) ( ) ( )x xy a y a f a f a     ,and                       (3.3.15) 

( ) ( ) ( ) ( )x xy b y b f b f b     .                   (3.3.16) 

Polyanin et al. (1998) explain why the given ODE (equation (3.3.16)) under these boundary 
conditions determines the solutions of the original integral equation (3.3.12). 

Case 1. For (2 1 ) 0A   , the general solution of equation (3.3.13) is given by, 

1 2 0
2 1( ) ( ) ( ) ( ) [ ( )] ( )xAy x C Cosh k x C Sinh kx f x Sinh k x t f t dt

k


     ,       (3.3.17) 

where ( 2 1)k A   , and 1C  and 2C  are arbitrary constants. 

Case 2. For (2 1 ) 0A   , the general solution of equation (3.3.13) is given by 

1 2 0

2 1( ) ( ) ( ) ( ) [ ( )] ( )
xAy x C Cos k x C Sin kx f x Sin k x t f t dt

k


     ,        (3.3.18) 

where (2 1 )k A   . 

Case 3. For 2 1A  , the general solution of equation (3.3.13) is given by, 

2
1 2( ) ( ) 4 1 ( ) ( )x

ay x C C x f x A x t f t dt     .                (3.3.19) 

The constants 1C  and 2C  are determined by the boundary conditions.  

These results (Cases 1, 2, and 3) can be applied to the integral equation (3.3.11) by changing 
notation, and observing that 
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The eigenvalues of equation (3.3.13) for constant 2  over [0, a] are given by 
2

2 2

2
i

i


 




,                          (3.3.21) 

where 1
b

  , and 

ωi s are the roots of the following equation, 

2 2

2( ) i
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


.                           (3.3.22) 

The orthonormal basis functions of the Hilbert space associated with the given exponential 
kernel (equation (3.3.10)) are the normalised eigenfunctions, 
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where, 
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As seen from equation (3.3.21), the eigenvalues are dependent on the correlation length b 
and the variance 2  directly and to the length of the experiment, a, indirectly through 
equation (3.3.22). Equation (3.3.22) is a transendental equation with roots ωi. Firstly, 
equation (3.3.22) has to be solved numerically for a given a and b, then the eigenvalues λi s 
and finally the basis functions of 0H . Then the random field ( )d t  for a given number of 
terms, m, can be evaluated by using equation (3.3.8) in conjunction with the standard 
Wiener increments. 
 

3.4 The Dispersion and Travel Length Fluctuations 
In this section, we explore the dispersion term in the SSTM to understand its behaviour in 
simplified settings; as we have seen previously, ( ( , ) ( ))S C x t d t  can be expanded by using 
the spectral expansion, 
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

  .                 (3.4.1) 

Let us assume that we use the same realisation of the standard Wiener process across all x in 
evaluating this term, i.e., dbj is independent of x. Then we can express the dispersion term 
for this situation, 
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Now for the sake of argument, let us assume that all the Wiener increments are the same, a 
situation which is never encountered in computation. Then we can take dbj s out of the 

summation, and explore the behaviour of the term, 
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By substituting for the differential operator S and for ( )jf x , after symbolic manipulations,  
we can express, 
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where, 
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This exercise shows the complexity of the dispersion term and it is related to the local spatial 

gradient of the concentration, C
x




 , the second order spatial derivative 
2

2

C
x



 , as well as 

C(x,t). j , j  and j  coefficients are also dependent on λi s, hx, and ωi s, and they are 
analogous to Fourier series, i.e., the coefficients themselves have the form of spectral 
expansions. Recall that hx is a scale length introduced to retain the second order derivative 

of fluxes in the SSTM. We can assume that ( )xh x  , i.e., 
0

0x

x

hLim
x 

   
 where  x  is 

the discretization length in x direction. If we make hx=0 then j =0, which eliminates the 
second order spatial derivative of the concentration in equation (3.4.3). Even in a simplified 
setting of having a common standard Wiener increment (dbi(t)) for all x, and assuming a 
differentiable function for C(x,t), this analysis shows that the dispersion term depicts much 
more complicated behaviours that cannot be modelled by scale independent simplifying 
assumptions. Therefore, one should note that as time increases the effects of Wiener process 
increases, and it would be worthwhile to investigate the dependence of the random field 

( )d t  for different scales of experiments. In other words, from equation (3.2.7), we see that, 

( ) ( , ) ( , )dX t V x t dt x t dt  ,                         (3.4.4) 

where X(t) is travel distance of a solute particle in x-direction. 
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The eigenvalues of equation (3.3.13) for constant 2  over [0, a] are given by 
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where 1
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ωi s are the roots of the following equation, 
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
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.                           (3.3.22) 

The orthonormal basis functions of the Hilbert space associated with the given exponential 
kernel (equation (3.3.10)) are the normalised eigenfunctions, 
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i i if x Sin x Cos x

N
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,                     (3.3.23) 

where, 
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.          (3.3.24) 

As seen from equation (3.3.21), the eigenvalues are dependent on the correlation length b 
and the variance 2  directly and to the length of the experiment, a, indirectly through 
equation (3.3.22). Equation (3.3.22) is a transendental equation with roots ωi. Firstly, 
equation (3.3.22) has to be solved numerically for a given a and b, then the eigenvalues λi s 
and finally the basis functions of 0H . Then the random field ( )d t  for a given number of 
terms, m, can be evaluated by using equation (3.3.8) in conjunction with the standard 
Wiener increments. 
 

3.4 The Dispersion and Travel Length Fluctuations 
In this section, we explore the dispersion term in the SSTM to understand its behaviour in 
simplified settings; as we have seen previously, ( ( , ) ( ))S C x t d t  can be expanded by using 
the spectral expansion, 

1
( ( , ) ( )) ( ( , ) ( ) ( ))

m

j j j
j

S C x t d t S C x t f x db t 


  .                 (3.4.1) 

Let us assume that we use the same realisation of the standard Wiener process across all x in 
evaluating this term, i.e., dbj is independent of x. Then we can express the dispersion term 
for this situation, 

1
( ( , ) ( )) ( ( , ) ) ( )

m

j j j
j

S C x t d t S C x t f db t 


 .                (3.4.2) 

 

Now for the sake of argument, let us assume that all the Wiener increments are the same, a 
situation which is never encountered in computation. Then we can take dbj s out of the 

summation, and explore the behaviour of the term, 
1

( ( , ) ( ) )
m

j j
j

S C x t f x 

 .  

By substituting for the differential operator S and for ( )jf x , after symbolic manipulations,  
we can express, 
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where, 
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This exercise shows the complexity of the dispersion term and it is related to the local spatial 

gradient of the concentration, C
x




 , the second order spatial derivative 
2

2

C
x



 , as well as 

C(x,t). j , j  and j  coefficients are also dependent on λi s, hx, and ωi s, and they are 
analogous to Fourier series, i.e., the coefficients themselves have the form of spectral 
expansions. Recall that hx is a scale length introduced to retain the second order derivative 

of fluxes in the SSTM. We can assume that ( )xh x  , i.e., 
0

0x

x

hLim
x 

   
 where  x  is 

the discretization length in x direction. If we make hx=0 then j =0, which eliminates the 
second order spatial derivative of the concentration in equation (3.4.3). Even in a simplified 
setting of having a common standard Wiener increment (dbi(t)) for all x, and assuming a 
differentiable function for C(x,t), this analysis shows that the dispersion term depicts much 
more complicated behaviours that cannot be modelled by scale independent simplifying 
assumptions. Therefore, one should note that as time increases the effects of Wiener process 
increases, and it would be worthwhile to investigate the dependence of the random field 

( )d t  for different scales of experiments. In other words, from equation (3.2.7), we see that, 

( ) ( , ) ( , )dX t V x t dt x t dt  ,                         (3.4.4) 

where X(t) is travel distance of a solute particle in x-direction. 
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The eigenvalues of equation (3.3.13) for constant 2  over [0, a] are given by 
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where 1
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  , and 

ωi s are the roots of the following equation, 
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The orthonormal basis functions of the Hilbert space associated with the given exponential 
kernel (equation (3.3.10)) are the normalised eigenfunctions, 
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where, 
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As seen from equation (3.3.21), the eigenvalues are dependent on the correlation length b 
and the variance 2  directly and to the length of the experiment, a, indirectly through 
equation (3.3.22). Equation (3.3.22) is a transendental equation with roots ωi. Firstly, 
equation (3.3.22) has to be solved numerically for a given a and b, then the eigenvalues λi s 
and finally the basis functions of 0H . Then the random field ( )d t  for a given number of 
terms, m, can be evaluated by using equation (3.3.8) in conjunction with the standard 
Wiener increments. 
 

3.4 The Dispersion and Travel Length Fluctuations 
In this section, we explore the dispersion term in the SSTM to understand its behaviour in 
simplified settings; as we have seen previously, ( ( , ) ( ))S C x t d t  can be expanded by using 
the spectral expansion, 
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S C x t d t S C x t f x db t 
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  .                 (3.4.1) 

Let us assume that we use the same realisation of the standard Wiener process across all x in 
evaluating this term, i.e., dbj is independent of x. Then we can express the dispersion term 
for this situation, 
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S C x t d t S C x t f db t 
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 .                (3.4.2) 

 

Now for the sake of argument, let us assume that all the Wiener increments are the same, a 
situation which is never encountered in computation. Then we can take dbj s out of the 

summation, and explore the behaviour of the term, 
1

( ( , ) ( ) )
m

j j
j

S C x t f x 

 .  

By substituting for the differential operator S and for ( )jf x , after symbolic manipulations,  
we can express, 
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where, 
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This exercise shows the complexity of the dispersion term and it is related to the local spatial 

gradient of the concentration, C
x




 , the second order spatial derivative 
2

2

C
x



 , as well as 

C(x,t). j , j  and j  coefficients are also dependent on λi s, hx, and ωi s, and they are 
analogous to Fourier series, i.e., the coefficients themselves have the form of spectral 
expansions. Recall that hx is a scale length introduced to retain the second order derivative 

of fluxes in the SSTM. We can assume that ( )xh x  , i.e., 
0

0x

x
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x 

   
 where  x  is 

the discretization length in x direction. If we make hx=0 then j =0, which eliminates the 
second order spatial derivative of the concentration in equation (3.4.3). Even in a simplified 
setting of having a common standard Wiener increment (dbi(t)) for all x, and assuming a 
differentiable function for C(x,t), this analysis shows that the dispersion term depicts much 
more complicated behaviours that cannot be modelled by scale independent simplifying 
assumptions. Therefore, one should note that as time increases the effects of Wiener process 
increases, and it would be worthwhile to investigate the dependence of the random field 

( )d t  for different scales of experiments. In other words, from equation (3.2.7), we see that, 

( ) ( , ) ( , )dX t V x t dt x t dt  ,                         (3.4.4) 

where X(t) is travel distance of a solute particle in x-direction. 
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The eigenvalues of equation (3.3.13) for constant 2  over [0, a] are given by 
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where 1
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  , and 

ωi s are the roots of the following equation, 
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The orthonormal basis functions of the Hilbert space associated with the given exponential 
kernel (equation (3.3.10)) are the normalised eigenfunctions, 
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where, 
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As seen from equation (3.3.21), the eigenvalues are dependent on the correlation length b 
and the variance 2  directly and to the length of the experiment, a, indirectly through 
equation (3.3.22). Equation (3.3.22) is a transendental equation with roots ωi. Firstly, 
equation (3.3.22) has to be solved numerically for a given a and b, then the eigenvalues λi s 
and finally the basis functions of 0H . Then the random field ( )d t  for a given number of 
terms, m, can be evaluated by using equation (3.3.8) in conjunction with the standard 
Wiener increments. 
 

3.4 The Dispersion and Travel Length Fluctuations 
In this section, we explore the dispersion term in the SSTM to understand its behaviour in 
simplified settings; as we have seen previously, ( ( , ) ( ))S C x t d t  can be expanded by using 
the spectral expansion, 
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  .                 (3.4.1) 

Let us assume that we use the same realisation of the standard Wiener process across all x in 
evaluating this term, i.e., dbj is independent of x. Then we can express the dispersion term 
for this situation, 
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S C x t d t S C x t f db t 
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 .                (3.4.2) 

 

Now for the sake of argument, let us assume that all the Wiener increments are the same, a 
situation which is never encountered in computation. Then we can take dbj s out of the 

summation, and explore the behaviour of the term, 
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( ( , ) ( ) )
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S C x t f x 
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By substituting for the differential operator S and for ( )jf x , after symbolic manipulations,  
we can express, 
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where, 
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This exercise shows the complexity of the dispersion term and it is related to the local spatial 

gradient of the concentration, C
x




 , the second order spatial derivative 
2

2

C
x



 , as well as 

C(x,t). j , j  and j  coefficients are also dependent on λi s, hx, and ωi s, and they are 
analogous to Fourier series, i.e., the coefficients themselves have the form of spectral 
expansions. Recall that hx is a scale length introduced to retain the second order derivative 

of fluxes in the SSTM. We can assume that ( )xh x  , i.e., 
0

0x

x

hLim
x 
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 where  x  is 

the discretization length in x direction. If we make hx=0 then j =0, which eliminates the 
second order spatial derivative of the concentration in equation (3.4.3). Even in a simplified 
setting of having a common standard Wiener increment (dbi(t)) for all x, and assuming a 
differentiable function for C(x,t), this analysis shows that the dispersion term depicts much 
more complicated behaviours that cannot be modelled by scale independent simplifying 
assumptions. Therefore, one should note that as time increases the effects of Wiener process 
increases, and it would be worthwhile to investigate the dependence of the random field 

( )d t  for different scales of experiments. In other words, from equation (3.2.7), we see that, 

( ) ( , ) ( , )dX t V x t dt x t dt  ,                         (3.4.4) 

where X(t) is travel distance of a solute particle in x-direction. 
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As seen in equation (3.3.7), ( ) ( , )d t x t dt   is the fluctuating part of the travel length of a 

solute within the time dt at a given x. Assuming ( , )V x t  is a constant across the domain 
[0,a], by investigating the nature of  the fluctuating component of  the travel length as the 
scale of the experiments changes, we can understand the scale dependency of the dispersion 
term better.  

( )d t  is an irregular stochastic function of time with spatial component appearing in 
normalised eigen functions, ( )jf x .A standard Wiener process increment (dbi)  
corresponding to a time increment,  Δti , should be generated for each eigenfunction. 

( )d t  can be approximated as a summation of M terms: 

1
( ) ( ) ( )

M

i i i
i

d t f x db t 
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 . 

Let ( ) ( )i i ix f x  , then 
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( ) ( )
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i i
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d x db t 


 . 

Recall ( )idb t s are independent zero-mean Gaussian increments with Δti variance. 

Therefore, [ ] ( ) 0i iE d E x db     , for a given x. 

For a given x, 2[ ] ( ) [ ]i iVar d x Var db  . 

If we discretise the time axis equidistantly, 1 2 ... ...it t t t        , then, 

 2[ ] ( )iVar d x t   .                         (3.4.5) 

As seen from equation (3.4.5), d  is a summation of independent Gaussian processes for a 
given x value making it a Gaussian process zero mean and variance proportional to Δt. We 
will make use of equation (3.4.5) in the approximate numerical solution of SSTM for large 
scale experiments in chapter 4. 
 

3.5 Numerical Solutions of the 1-D SSTM and Their Behaviours 
We solve equation (3.2.14) for strong solutions using a finite difference scheme which is 
based on Euler solution of Ito integral. One dimensional domain is discretised, and the basis 

of numerical solutions to SPDEs as given by Gaines and Lyons (1997) is adopted. A constant 
mean velocity is assumed in the scheme. The differential operator S in equation (3.2.11) was 
expressed as a differential operator using a backward difference scheme. One dimensional 
spatial length, a ( 0 x a  ) on x axis was divided into (k-1) equidistant intervals of small 
lengths of x . The total model time, T, was divided into (n-1) equidistant small intervals of 

t . The space-time grid for the explicit difference scheme that can be used to independently 
calculate the concentration value at time level 1nt   from the concentration values at time 
intervals nt , thus preserving the non-antipating nature of Ito integral.  

 

 

Figure 3.2 show the space-time grid for the explicit difference scheme that can be used to 
independently calculate the value at time 1nt  (denoted by ●) from the values at time nt  
(denoted by ○). 

 
Figure 3.2. An explicit space-time scheme used for the computational solution. 

The first derivative of a variable U can be described as (Morton and Mayers, 1994), 
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,                           (3.5.1) 

where n
kU  = value of U at the grid point (k, n). 

The second derivative can be given by, 
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The operator S can be written as, 
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, 
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As seen in equation (3.3.7), ( ) ( , )d t x t dt   is the fluctuating part of the travel length of a 

solute within the time dt at a given x. Assuming ( , )V x t  is a constant across the domain 
[0,a], by investigating the nature of  the fluctuating component of  the travel length as the 
scale of the experiments changes, we can understand the scale dependency of the dispersion 
term better.  

( )d t  is an irregular stochastic function of time with spatial component appearing in 
normalised eigen functions, ( )jf x .A standard Wiener process increment (dbi)  
corresponding to a time increment,  Δti , should be generated for each eigenfunction. 

( )d t  can be approximated as a summation of M terms: 
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Let ( ) ( )i i ix f x  , then 
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Recall ( )idb t s are independent zero-mean Gaussian increments with Δti variance. 

Therefore, [ ] ( ) 0i iE d E x db     , for a given x. 

For a given x, 2[ ] ( ) [ ]i iVar d x Var db  . 

If we discretise the time axis equidistantly, 1 2 ... ...it t t t        , then, 

 2[ ] ( )iVar d x t   .                         (3.4.5) 

As seen from equation (3.4.5), d  is a summation of independent Gaussian processes for a 
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As seen in equation (3.3.7), ( ) ( , )d t x t dt   is the fluctuating part of the travel length of a 

solute within the time dt at a given x. Assuming ( , )V x t  is a constant across the domain 
[0,a], by investigating the nature of  the fluctuating component of  the travel length as the 
scale of the experiments changes, we can understand the scale dependency of the dispersion 
term better.  

( )d t  is an irregular stochastic function of time with spatial component appearing in 
normalised eigen functions, ( )jf x .A standard Wiener process increment (dbi)  
corresponding to a time increment,  Δti , should be generated for each eigenfunction. 

( )d t  can be approximated as a summation of M terms: 
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Therefore, we can express the operator in the difference form 
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Substituting the backward difference schemes from (3.5.1) and (3.5.3) and taking xh x , 
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The first derivative of U with respect to time can be expressed using a forward difference 
scheme, 
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Applying equation (3.5.1) and (3.5.3) to (3.5.5) and considering the mean velocity for the 
region as a constant, v, we can obtain the following scheme:  
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where ( )d t = Wiener process increments in Hilbert space for a given x. 

The explicit difference model (3.5.6) gives the future values of a stochastic variable in terms 
of the past values preserving the properties of Ito definition of integration with respect to 
time. This scheme is stable and gives strong solutions to equation (3.2.14), as in many 
SPDEs, if 410t   . For example, if a=1000 meters, and if we simulate the solute transport 
for at least 1000 days, taking x =0.01 m and t =0.0001 days for stability reasons, we need 
a grid of 5 710 10x . In addition, the evaluation of ( )d t  for each x involves the summation 
of a large number of ( )i x dbi terms. Because of the computational time it requires to solve 
the SPDE, we use the scheme given in equation (3.5.6) when a< 10 m, and for larger a values 
we approximate ( )d t  term as described later. 

We can now investigate the behaviour of the stochastic solute transport model (SSTM) in 
one-dimension. The main parameters of the SSTM are correlation length, b and variance, 

2 . As the statistical nature of the computational solution changes with different b and 2 , 
we would like to understand the effect of these parameters on the solution of the model.  
Furthermore, we attempt to understand these parameters in relation to the hydrodynamic 
dispersion.  

The finite difference numerical schemes are used in the investigation taking the numerical 
convergence and stability into account for the domain [0, 1]. First we solve equation (3.3.20) 
for the given values of b and 2 . It is necessary to find and appropriate number of roots for 
equation (3.3.20) to produce the desired accuracy of the numerical solution. For the domain 

 

[0, 1], the first 30 values of the roots (ωi ) are generally sufficient. We generate the standard 
Wiener process increments for 0.001 day time intervals for total of three days. Then the 
eigenvalues n  are computed for the given 2  using equation (3.3.21). With these roots, 
  and n , we calculate the basis functions using equation (3.3.23). These values are used 
to compute (t)d , the Hilbert space valued Wiener incremental processes, using the KL 
expansion (equation (3.3.7)). Then we calculate the concentration profile for the discretised 
values of spatial-temporal development for the mean velocity of 0.5 m/day. The numerical 
solution is implemented in a mathematical software package, Mathematica (Wolfram 
Research, 1999). 

We use a spatial grid length of 0.1 m for the numerical calculation. The initial concentration 
distribution profile of 1.0 unit at x = 0 is considered and it exponentially decreases through 
the rest of the domain according to the function, e-5k x , where k = 1, 2, …,10 and x = grid 
size. We begin the numerical scheme with very small numerical concentration values, rather 
than zero concentrations, to reduce the numerical errors at the beginning of the scheme. The 
concentration of 1.0 unit is maintained at the boundary of x = 0 for the whole time period of 
the solution to mimic a continuous point source.  

To investigate the general behaviour of the SSTM, we obtain the temporal development of 
the concentration profiles at the mid point of the domain, x = 0.5 m, for various parameter 
combinations of b and 2 . The same realisation of the standard Wiener process increments 
and constant mean velocity of 0.5 m/day are used for all the experiments, so that we would 
not bias our comparisons.  
 

       
Figure 3.3. Comparison of deterministic advection-dispersion (D = 0.01) and stochastic ( 2  
= 0.001 and b = 0.0001) model concentration profiles. An explicit space-time scheme used for 
the computational solution. 

Figure 3.3 shows that the stochastic model can mimic the solution of the advection-
dispersion equation with reasonable accuracy. The concentration breakthrough curves (the 
time history of concentration at a fixed x ) for the SSTM for 2 = 0.001 and b = 0.0001, and 
the deterministic curve for the advection-dispersion equation for dispersion coefficient (D) 
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where ( )d t = Wiener process increments in Hilbert space for a given x. 
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time history of concentration at a fixed x ) for the SSTM for 2 = 0.001 and b = 0.0001, and 
the deterministic curve for the advection-dispersion equation for dispersion coefficient (D) 



Computational Modelling of Multi-Scale Non-Fickian Dispersion  
in Porous Media - An Approach Based on Stochastic Calculus78

 

Therefore, we can express the operator in the difference form 

    

 
2

22

nn
n x
k

k k

U h USU
x x

               
.                                            (3.5.3) 

Substituting the backward difference schemes from (3.5.1) and (3.5.3) and taking xh x , 

  1 2
1 3 4

2
n n n n

k k kkSU U U U
x  

         
.               (3.5.4) 

The first derivative of U with respect to time can be expressed using a forward difference 
scheme, 

1n n
k kU UU

t t

 


 
.                   (3.5.5) 

Applying equation (3.5.1) and (3.5.3) to (3.5.5) and considering the mean velocity for the 
region as a constant, v, we can obtain the following scheme:  

1
1 2

1 1 2 2

. * 3 4
2

1 * 3 ( ) 4 ( ) ( ) ,
2

n n n n n
k k k k k

n n n n n n
k k k k k k

t vC C C C C
x

C d t C d t C d t
x

  


 

   

          
         

            (3.5.6) 
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eigenvalues n  are computed for the given 2  using equation (3.3.21). With these roots, 
  and n , we calculate the basis functions using equation (3.3.23). These values are used 
to compute (t)d , the Hilbert space valued Wiener incremental processes, using the KL 
expansion (equation (3.3.7)). Then we calculate the concentration profile for the discretised 
values of spatial-temporal development for the mean velocity of 0.5 m/day. The numerical 
solution is implemented in a mathematical software package, Mathematica (Wolfram 
Research, 1999). 

We use a spatial grid length of 0.1 m for the numerical calculation. The initial concentration 
distribution profile of 1.0 unit at x = 0 is considered and it exponentially decreases through 
the rest of the domain according to the function, e-5k x , where k = 1, 2, …,10 and x = grid 
size. We begin the numerical scheme with very small numerical concentration values, rather 
than zero concentrations, to reduce the numerical errors at the beginning of the scheme. The 
concentration of 1.0 unit is maintained at the boundary of x = 0 for the whole time period of 
the solution to mimic a continuous point source.  

To investigate the general behaviour of the SSTM, we obtain the temporal development of 
the concentration profiles at the mid point of the domain, x = 0.5 m, for various parameter 
combinations of b and 2 . The same realisation of the standard Wiener process increments 
and constant mean velocity of 0.5 m/day are used for all the experiments, so that we would 
not bias our comparisons.  
 

       
Figure 3.3. Comparison of deterministic advection-dispersion (D = 0.01) and stochastic ( 2  
= 0.001 and b = 0.0001) model concentration profiles. An explicit space-time scheme used for 
the computational solution. 

Figure 3.3 shows that the stochastic model can mimic the solution of the advection-
dispersion equation with reasonable accuracy. The concentration breakthrough curves (the 
time history of concentration at a fixed x ) for the SSTM for 2 = 0.001 and b = 0.0001, and 
the deterministic curve for the advection-dispersion equation for dispersion coefficient (D) 
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where ( )d t = Wiener process increments in Hilbert space for a given x. 
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of 0.01 m2/day are overlaid in Figure 3.3. We can always find a solution for the SSTM that 
reasonably represents the deterministic break through curve for any given dispersion 
coefficient using appropriate values for the parameters, 2  and b.  

To study the influences of b and 2  on the solution of the problem, we keep one parameter 
constant and change the other within a reasonable range to examine the behavioural change 
of the concentration breakthrough curves. Figure 3.4 shows the concentration profile at x = 
0.5 m for a small value of the variance, 2 = 0.0001, when the correlation length, b varies 
from 0.0001m to 0.25m. Although the range of b varies from 0.0001 to 0.25m (a change of 
2500 times) the change of stochasticity (noise level) is negligible and the solutions of the 
SSTM are independent of b and behave like those of a deterministic model. 
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Figure 3.4. Concentration profiles at x = 0.5m for 2 = 0.0001. 
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Figure 3.5. Concentration profiles at x = 0.5 m for 2 = 0.001. 

We gradually increase 2  and obtain the concentration profiles for the same regime of b 
(0.0001 m to 0.25 m) to examine the effect of 2 . With an increase in 2  by 10 times, 
Figure 3.5 shows that two types of changes have occurred in the concentration profiles; 

 

individual concentration profiles have worse fluctuatiing stochasticity, and there are 
significant differences between concentration values for different b values at a given time. 
The high values of the variance not only directly increase the unpredictable nature of the 
flow but also influence the ways in which b affects the flow. We also observe that with high 
b values the asymptotic values (sills) of the concentration profiles are lower than the 
deterministic sill. 

In the note that when b is very small, the concentration profile is smooth, but when b is 0.1 m 
it lowers the sill. By increasing 2  by 10 times, to 0.01, and by using the same standard 
Wiener process increments, we obtain the break through curves as shown in Figure 3.6. The 
flow tends to be significantly unsteady for larger correlation lengths and still shows smaller 
fluctuations smaller b values. Furthermore larger values of 2  intensities the fluctuation 
the effect of b significantly. 
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Figure 3.6. Concentration profiles at x = 0.5 m for 2 = 0.01. 
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Figure 3.7. Concentration profiles at x = 0.5 m for 2 = 0.1. 
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Figure 3.6. Concentration profiles at x = 0.5 m for 2 = 0.01. 
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Figure 3.7. Concentration profiles at x = 0.5 m for 2 = 0.1. 
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of 0.01 m2/day are overlaid in Figure 3.3. We can always find a solution for the SSTM that 
reasonably represents the deterministic break through curve for any given dispersion 
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Figure 3.7. Concentration profiles at x = 0.5 m for 2 = 0.1. 
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of 0.01 m2/day are overlaid in Figure 3.3. We can always find a solution for the SSTM that 
reasonably represents the deterministic break through curve for any given dispersion 
coefficient using appropriate values for the parameters, 2  and b.  
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2500 times) the change of stochasticity (noise level) is negligible and the solutions of the 
SSTM are independent of b and behave like those of a deterministic model. 
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Figure 3.4. Concentration profiles at x = 0.5m for 2 = 0.0001. 
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Figure 3.5. Concentration profiles at x = 0.5 m for 2 = 0.001. 
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Figure 3.7. Concentration profiles at x = 0.5 m for 2 = 0.1. 
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The concentration profiles for higher b regimes for the increased value of 2  (=0.1) are 
highly random as shown in Figure 3.7. With higher values of b, the concentration profiles 
become highly irregular making the numerical scheme unstable. Therefore, limit our 
experiments to smaller b values, that are less than 0.01 m. Figure 4.8 shows that the 
fluctuation invariably increase with the high 2  values and the behaviour of the model 
continues with the same trend that we noticed earlier, but with enhanced effects. 
 

 

0.5 1 1.5 2 2.5 3 t (days)
0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

C 

b0.005 

b0.001 

b0.0001 

 
Figure 3.8. Concentration profiles at x = 0.5 m for 2 = 0.25. 

Figure 3.9 shows the concentration profiles at b = 0.0001 for the range of 2  that varies from 
0.0001 to 0.25. By comparing in Figure 3.4, when 2  was very small, the fluctuation are not 
distinguishable even for very high b values; however, in Figure 3.9, irrespective of smaller b, 

2  influenced the behaviour of the flow. It is not possible to differentiate the concentration 
profiles for very small 2 , such as 0.0001 and 0.001. With the increase of 2  stochasticity 
increases rapidly, and 2  influences the behaviour of the flow more than b does. 
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Figure 3.9. Concentration profiles at x = 0.5 m for b = 0.0001. 

 

We increase b by 10 times to obtain Figure 3.10, which shows considerable changes in the 
breakthrough curves. 

To understand the effects of different Wiener realizations on the concentration profiles by 
using 50 different Wiener realisations to calculate the 95% confidence intervals. They show 
that, for smaller values of parameters (for example, 2 = 0.001, b= 0.01), the variations in the 
concentration profile are negligible, but for larger values (for example, 2 = 0.1, b= 0.1) the 
fluctuation regimes increase but the solutions remain stable. Obviously, the confidence 
intervals widen with the larger values of the parameters. 
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Figure 3.10. Concentration profiles at x = 0.5 m for b = 0.001. 

We can now extend the investigation to a 10 m flow length. Similar to the 1 m investigation, 
a simple setting of the one-dimensional case is used to explore the behaviour of the model 
for different model parameters of the correlation length, b and the variance, 2 . To obtain 
meaningful concentration profiles for the extended spatial domain, we also increase the time 
interval of the solution. The stochastic model is computationally solved for an average linear 
velocity of 0.5 m/day for 30 days, which allows sufficient time for the solute to travel the 
entire spatial domain. However, due to increases in the time length, a different realisation of 
the standard Wiener process increments was used for the 10 m length. This may raise the 
question of the validity in comparing of the model for two different spatial lengths. 
However, as we have shown earlier the model is reasonably stable for different Wiener 
process increments and therefore, it is reasonable to assume that the solutions of the model 
are not significantly affected by the different Wiener processes. A single realisation of the 
standard Wiener process is used throughout the investigation of the 10 m spatial domain.  

Similar to 1 m case, the 10 m scale shows that a SSTM could mimic the solution of the 
advection – dispersion equation for the same distance (Figure 3.11)
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Figure 3.8. Concentration profiles at x = 0.5 m for 2 = 0.25. 
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2  influenced the behaviour of the flow. It is not possible to differentiate the concentration 
profiles for very small 2 , such as 0.0001 and 0.001. With the increase of 2  stochasticity 
increases rapidly, and 2  influences the behaviour of the flow more than b does. 
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Figure 3.9. Concentration profiles at x = 0.5 m for b = 0.0001. 

 

We increase b by 10 times to obtain Figure 3.10, which shows considerable changes in the 
breakthrough curves. 

To understand the effects of different Wiener realizations on the concentration profiles by 
using 50 different Wiener realisations to calculate the 95% confidence intervals. They show 
that, for smaller values of parameters (for example, 2 = 0.001, b= 0.01), the variations in the 
concentration profile are negligible, but for larger values (for example, 2 = 0.1, b= 0.1) the 
fluctuation regimes increase but the solutions remain stable. Obviously, the confidence 
intervals widen with the larger values of the parameters. 
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Figure 3.10. Concentration profiles at x = 0.5 m for b = 0.001. 

We can now extend the investigation to a 10 m flow length. Similar to the 1 m investigation, 
a simple setting of the one-dimensional case is used to explore the behaviour of the model 
for different model parameters of the correlation length, b and the variance, 2 . To obtain 
meaningful concentration profiles for the extended spatial domain, we also increase the time 
interval of the solution. The stochastic model is computationally solved for an average linear 
velocity of 0.5 m/day for 30 days, which allows sufficient time for the solute to travel the 
entire spatial domain. However, due to increases in the time length, a different realisation of 
the standard Wiener process increments was used for the 10 m length. This may raise the 
question of the validity in comparing of the model for two different spatial lengths. 
However, as we have shown earlier the model is reasonably stable for different Wiener 
process increments and therefore, it is reasonable to assume that the solutions of the model 
are not significantly affected by the different Wiener processes. A single realisation of the 
standard Wiener process is used throughout the investigation of the 10 m spatial domain.  

Similar to 1 m case, the 10 m scale shows that a SSTM could mimic the solution of the 
advection – dispersion equation for the same distance (Figure 3.11)
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The concentration profiles for higher b regimes for the increased value of 2  (=0.1) are 
highly random as shown in Figure 3.7. With higher values of b, the concentration profiles 
become highly irregular making the numerical scheme unstable. Therefore, limit our 
experiments to smaller b values, that are less than 0.01 m. Figure 4.8 shows that the 
fluctuation invariably increase with the high 2  values and the behaviour of the model 
continues with the same trend that we noticed earlier, but with enhanced effects. 
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Figure 3.8. Concentration profiles at x = 0.5 m for 2 = 0.25. 

Figure 3.9 shows the concentration profiles at b = 0.0001 for the range of 2  that varies from 
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Figure 3.9. Concentration profiles at x = 0.5 m for b = 0.0001. 
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Figure 3.10. Concentration profiles at x = 0.5 m for b = 0.001. 

We can now extend the investigation to a 10 m flow length. Similar to the 1 m investigation, 
a simple setting of the one-dimensional case is used to explore the behaviour of the model 
for different model parameters of the correlation length, b and the variance, 2 . To obtain 
meaningful concentration profiles for the extended spatial domain, we also increase the time 
interval of the solution. The stochastic model is computationally solved for an average linear 
velocity of 0.5 m/day for 30 days, which allows sufficient time for the solute to travel the 
entire spatial domain. However, due to increases in the time length, a different realisation of 
the standard Wiener process increments was used for the 10 m length. This may raise the 
question of the validity in comparing of the model for two different spatial lengths. 
However, as we have shown earlier the model is reasonably stable for different Wiener 
process increments and therefore, it is reasonable to assume that the solutions of the model 
are not significantly affected by the different Wiener processes. A single realisation of the 
standard Wiener process is used throughout the investigation of the 10 m spatial domain.  

Similar to 1 m case, the 10 m scale shows that a SSTM could mimic the solution of the 
advection – dispersion equation for the same distance (Figure 3.11)
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Figure 3.8. Concentration profiles at x = 0.5 m for 2 = 0.25. 
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Figure 3.9. Concentration profiles at x = 0.5 m for b = 0.0001. 
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Figure 3.10. Concentration profiles at x = 0.5 m for b = 0.001. 

We can now extend the investigation to a 10 m flow length. Similar to the 1 m investigation, 
a simple setting of the one-dimensional case is used to explore the behaviour of the model 
for different model parameters of the correlation length, b and the variance, 2 . To obtain 
meaningful concentration profiles for the extended spatial domain, we also increase the time 
interval of the solution. The stochastic model is computationally solved for an average linear 
velocity of 0.5 m/day for 30 days, which allows sufficient time for the solute to travel the 
entire spatial domain. However, due to increases in the time length, a different realisation of 
the standard Wiener process increments was used for the 10 m length. This may raise the 
question of the validity in comparing of the model for two different spatial lengths. 
However, as we have shown earlier the model is reasonably stable for different Wiener 
process increments and therefore, it is reasonable to assume that the solutions of the model 
are not significantly affected by the different Wiener processes. A single realisation of the 
standard Wiener process is used throughout the investigation of the 10 m spatial domain.  

Similar to 1 m case, the 10 m scale shows that a SSTM could mimic the solution of the 
advection – dispersion equation for the same distance (Figure 3.11)
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Figure 3.11. Comparison of deterministic advection-dispersion (D = 0.035 m2/day) and the 
SSTM ( 2  = 0.001 and b = 0.0001) concentration profiles at x  = 5m for 10 m domain. 

The behaviours of the SSTM model for the 10-m flow length are quite similar to those for the 
1-m flow length. The influence of the parameter b can be seen in Figure 3.12 for the fixed 
values of 2 . High b values increase the propensity of the flow to be more stochastic and 
decrease the asymptotic values of the concentration. For a given b, the effects of increasing 

2  are more profound in comparison to those associated with increasing b for a fixed 2 . 
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SSTM ( 2  = 0.001 and b = 0.0001) concentration profiles at x  = 5m for 10 m domain. 

How do we relate the parameter, 2  and b, to the physical porous structure? The 
relationship need to be understood through the influences on the concentration profiles. b is 
the correlation length of the velocity Kernel 1 2( , )q x x  (see equation 3.3.9), and higher the b 
slower the rate at which 1 2( , )q x x  decays. This means that pore structure contains larger 

 

pores; and b is indicative of the size of pores, and, may be, geometric shapes of pores. 2  
affects the profiles more dramatically, especially depressing asymptotic of the profiles, 
indicating that solute mass is dissolved in a larger volume of water. This alludes again to 
pore geometry (shapes and interconnecting paths) and if pore structure is heterogeneous 
with high porosity, one could expect 2  as well as b to be high. 2  and b allow us more 
flexibility of defining the nature of solute dispersion, and the complex interaction between 

2  and b would help us to characterise the pore structures for a given velocity kernel. 
 

3.6 A Comparison of the SSTM with the Experiments Data 
The Lincoln University aquifer is 9.49 m long, 4.66 m wide and 2.6 m deep. As shown in 
Figure 3.13, constant head tanks are the boundaries of the aquifer at its upstream and 
downstream ends. A porous wall provides the hydraulic connection between the aquifer 
and the head tanks. A weir controls the water surface elevation in each head tank, and each 
weir can be adjusted to provide different hydraulic gradients. However, a uniform 
hydraulic gradient of 0.0018 (head loss along the aquifer / flow length = 0.017 m / 9.49 m) is 
maintained during the entire experiment along the longitudinal direction of the tank. 
 

 
Figure 3.13. Schematic diagram of the artificial aquifer at Lincoln University, New Zealand 
(Courtesy of Dr.John Bright, Lincoln Ventures Ltd). 
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Multi-port monitoring wells are laid out on a 1m x 1m grid. The computer controlled 
peristaltic pumps enable fully automated, simultaneous solute water samples to be collected 
from sample points that are uniformly distributed throughout the aquifer (four sample 
points for each grid point at 0.4m, 1.0m, 1.6m and 2.2m depth from the top surface of the 
aquifer). The tracer used is Rhodamine WT (RWT) dye with an initial concentration of 200 
parts per million and then allowed to decrease exponentially. Tracer is injected at the middle 
of the header tank using an injection box (dimensions of 50 cm length, 10 cm width and 20 
cm depth). This tracer is rapidly mixed in the upstream header tank and, thus, infiltrates 
across the whole of the upstream face of the aquifer. This particular experiment described 
here lasted 432 hours, and two samples were taken at four-hour intervals from the wells. 

Since, STTM described in this chapter is a one-dimensional model, we experiment in directly 
relating the one-dimension solute concentration profiles of the aquifer. However, as one can 
assume, the actual aquifer is subjected to transverse dispersion, and consideration of only a 
one-dimensional flow is not sufficiently accurate. Hence, we employ the following 
methodology to approximate the aquifer parameters.  

Solute concentration values for the artificial aquifer are available for a large number of 
spatial points at different temporal intervals. The data are available mainly for header tank, 
row 1, row 3, row 5, row 7 and row 9 (see Figure 3.13) at all levels. Initially, we select a few 
spatial coordinates at row 5 of well A – level YE. We then develop a two-dimensional 
deterministic advection-dispersion transport model and obtain corresponding concentration 
values of the model that are similar to the selected spatial locations of the aquifer. As past 
studies show, we approximate that the transverse dispersion coefficient is 10% of the 
longitudinal dispersion (Fetter, 1999). The mean velocity is 0.5 m/day. The profiles of both 
the aquifer and the deterministic model are plotted in one axis system, to compare their 
similarities. This trial-and-error curve fitting technique is carried out to determine the most 
accurate dispersion coefficients of the deterministic model. In this procedure concentration 
values of the aquifer are normalised (i.e., the values vary from 0 to 1). 

By trial and error, we find that the closest fit is given by the longitudinal dispersion coefficient 
of 0.15 m2/day, i.e., transverse dispersion is 0.015 m2/day, (Figure 3.14) for the aquifer. 
 

 
Figure 3.14. Concentration profile of trial and error curve fit for D = 0.15 m2/day of the 
advection dispersion model with row 5 of the aquifer data. 

 

 
Figure 3.15. Concentration profiles of deterministic advection-dispersion model with D = 0.15 
m2/day and SSTM with 2 = 0.01 and b = 0.01. 

Subsequently, we develop a one-dimensional deterministic advection-dispersion model 
using the D obtained from a two-dimensional comparison. We then use a similar curve 
fitting technique with the 1-D deterministic model and 1-D stochastic model to find the most 
suitable 2  and b for the SSTM. 

Figures 3.15 show the best fitting curves for both the SSTM and the 1-D advection-
dispersion model. Having determined the appropriate parameters of the SSTM ( 2 = 0.01 
and b = 0.01) that simulate the Lincoln University aquifer at the spatial location under 
consideration (Row 5 – well A) we investigated the robustness of the model for different 
Wiener processes and found that the SSTM is reasonably stable for the seven different 
Wiener realisations tested. 

Even though the results show, as mentioned above, that the parameter combination of 2 = 
0.01 and b = 0.01 is a fairly accurate representation of the experimental aquifer for the given 
spatial point, we need to test these parameters other spatial locations. Figure 3.16 shows that 
the 2-D deterministic advection-dispersion model with the longitudinal dispersion 
coefficient of 0.15 m2/day fits the aquifer data reasonably well for the similar locations. 
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Figure 3.16. Concentration profiles of 2-D deterministic advection-dispersion model (D = 
0.15 m2/day) and the experimental aquifer. 
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Multi-port monitoring wells are laid out on a 1m x 1m grid. The computer controlled 
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Figure 3.15. Concentration profiles of deterministic advection-dispersion model with D = 0.15 
m2/day and SSTM with 2 = 0.01 and b = 0.01. 
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fitting technique with the 1-D deterministic model and 1-D stochastic model to find the most 
suitable 2  and b for the SSTM. 

Figures 3.15 show the best fitting curves for both the SSTM and the 1-D advection-
dispersion model. Having determined the appropriate parameters of the SSTM ( 2 = 0.01 
and b = 0.01) that simulate the Lincoln University aquifer at the spatial location under 
consideration (Row 5 – well A) we investigated the robustness of the model for different 
Wiener processes and found that the SSTM is reasonably stable for the seven different 
Wiener realisations tested. 

Even though the results show, as mentioned above, that the parameter combination of 2 = 
0.01 and b = 0.01 is a fairly accurate representation of the experimental aquifer for the given 
spatial point, we need to test these parameters other spatial locations. Figure 3.16 shows that 
the 2-D deterministic advection-dispersion model with the longitudinal dispersion 
coefficient of 0.15 m2/day fits the aquifer data reasonably well for the similar locations. 
 

 

2 4 6 8 10 t (days)

0.2 

0.4 

0.6 

0.8 

1 
C 

Det

Aquifer

 
Figure 3.16. Concentration profiles of 2-D deterministic advection-dispersion model (D = 
0.15 m2/day) and the experimental aquifer. 
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Multi-port monitoring wells are laid out on a 1m x 1m grid. The computer controlled 
peristaltic pumps enable fully automated, simultaneous solute water samples to be collected 
from sample points that are uniformly distributed throughout the aquifer (four sample 
points for each grid point at 0.4m, 1.0m, 1.6m and 2.2m depth from the top surface of the 
aquifer). The tracer used is Rhodamine WT (RWT) dye with an initial concentration of 200 
parts per million and then allowed to decrease exponentially. Tracer is injected at the middle 
of the header tank using an injection box (dimensions of 50 cm length, 10 cm width and 20 
cm depth). This tracer is rapidly mixed in the upstream header tank and, thus, infiltrates 
across the whole of the upstream face of the aquifer. This particular experiment described 
here lasted 432 hours, and two samples were taken at four-hour intervals from the wells. 

Since, STTM described in this chapter is a one-dimensional model, we experiment in directly 
relating the one-dimension solute concentration profiles of the aquifer. However, as one can 
assume, the actual aquifer is subjected to transverse dispersion, and consideration of only a 
one-dimensional flow is not sufficiently accurate. Hence, we employ the following 
methodology to approximate the aquifer parameters.  

Solute concentration values for the artificial aquifer are available for a large number of 
spatial points at different temporal intervals. The data are available mainly for header tank, 
row 1, row 3, row 5, row 7 and row 9 (see Figure 3.13) at all levels. Initially, we select a few 
spatial coordinates at row 5 of well A – level YE. We then develop a two-dimensional 
deterministic advection-dispersion transport model and obtain corresponding concentration 
values of the model that are similar to the selected spatial locations of the aquifer. As past 
studies show, we approximate that the transverse dispersion coefficient is 10% of the 
longitudinal dispersion (Fetter, 1999). The mean velocity is 0.5 m/day. The profiles of both 
the aquifer and the deterministic model are plotted in one axis system, to compare their 
similarities. This trial-and-error curve fitting technique is carried out to determine the most 
accurate dispersion coefficients of the deterministic model. In this procedure concentration 
values of the aquifer are normalised (i.e., the values vary from 0 to 1). 

By trial and error, we find that the closest fit is given by the longitudinal dispersion coefficient 
of 0.15 m2/day, i.e., transverse dispersion is 0.015 m2/day, (Figure 3.14) for the aquifer. 
 

 
Figure 3.14. Concentration profile of trial and error curve fit for D = 0.15 m2/day of the 
advection dispersion model with row 5 of the aquifer data. 
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and b = 0.01) that simulate the Lincoln University aquifer at the spatial location under 
consideration (Row 5 – well A) we investigated the robustness of the model for different 
Wiener processes and found that the SSTM is reasonably stable for the seven different 
Wiener realisations tested. 

Even though the results show, as mentioned above, that the parameter combination of 2 = 
0.01 and b = 0.01 is a fairly accurate representation of the experimental aquifer for the given 
spatial point, we need to test these parameters other spatial locations. Figure 3.16 shows that 
the 2-D deterministic advection-dispersion model with the longitudinal dispersion 
coefficient of 0.15 m2/day fits the aquifer data reasonably well for the similar locations. 
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Figure 3.16. Concentration profiles of 2-D deterministic advection-dispersion model (D = 
0.15 m2/day) and the experimental aquifer. 
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Multi-port monitoring wells are laid out on a 1m x 1m grid. The computer controlled 
peristaltic pumps enable fully automated, simultaneous solute water samples to be collected 
from sample points that are uniformly distributed throughout the aquifer (four sample 
points for each grid point at 0.4m, 1.0m, 1.6m and 2.2m depth from the top surface of the 
aquifer). The tracer used is Rhodamine WT (RWT) dye with an initial concentration of 200 
parts per million and then allowed to decrease exponentially. Tracer is injected at the middle 
of the header tank using an injection box (dimensions of 50 cm length, 10 cm width and 20 
cm depth). This tracer is rapidly mixed in the upstream header tank and, thus, infiltrates 
across the whole of the upstream face of the aquifer. This particular experiment described 
here lasted 432 hours, and two samples were taken at four-hour intervals from the wells. 

Since, STTM described in this chapter is a one-dimensional model, we experiment in directly 
relating the one-dimension solute concentration profiles of the aquifer. However, as one can 
assume, the actual aquifer is subjected to transverse dispersion, and consideration of only a 
one-dimensional flow is not sufficiently accurate. Hence, we employ the following 
methodology to approximate the aquifer parameters.  

Solute concentration values for the artificial aquifer are available for a large number of 
spatial points at different temporal intervals. The data are available mainly for header tank, 
row 1, row 3, row 5, row 7 and row 9 (see Figure 3.13) at all levels. Initially, we select a few 
spatial coordinates at row 5 of well A – level YE. We then develop a two-dimensional 
deterministic advection-dispersion transport model and obtain corresponding concentration 
values of the model that are similar to the selected spatial locations of the aquifer. As past 
studies show, we approximate that the transverse dispersion coefficient is 10% of the 
longitudinal dispersion (Fetter, 1999). The mean velocity is 0.5 m/day. The profiles of both 
the aquifer and the deterministic model are plotted in one axis system, to compare their 
similarities. This trial-and-error curve fitting technique is carried out to determine the most 
accurate dispersion coefficients of the deterministic model. In this procedure concentration 
values of the aquifer are normalised (i.e., the values vary from 0 to 1). 

By trial and error, we find that the closest fit is given by the longitudinal dispersion coefficient 
of 0.15 m2/day, i.e., transverse dispersion is 0.015 m2/day, (Figure 3.14) for the aquifer. 
 

 
Figure 3.14. Concentration profile of trial and error curve fit for D = 0.15 m2/day of the 
advection dispersion model with row 5 of the aquifer data. 

 

 
Figure 3.15. Concentration profiles of deterministic advection-dispersion model with D = 0.15 
m2/day and SSTM with 2 = 0.01 and b = 0.01. 

Subsequently, we develop a one-dimensional deterministic advection-dispersion model 
using the D obtained from a two-dimensional comparison. We then use a similar curve 
fitting technique with the 1-D deterministic model and 1-D stochastic model to find the most 
suitable 2  and b for the SSTM. 

Figures 3.15 show the best fitting curves for both the SSTM and the 1-D advection-
dispersion model. Having determined the appropriate parameters of the SSTM ( 2 = 0.01 
and b = 0.01) that simulate the Lincoln University aquifer at the spatial location under 
consideration (Row 5 – well A) we investigated the robustness of the model for different 
Wiener processes and found that the SSTM is reasonably stable for the seven different 
Wiener realisations tested. 

Even though the results show, as mentioned above, that the parameter combination of 2 = 
0.01 and b = 0.01 is a fairly accurate representation of the experimental aquifer for the given 
spatial point, we need to test these parameters other spatial locations. Figure 3.16 shows that 
the 2-D deterministic advection-dispersion model with the longitudinal dispersion 
coefficient of 0.15 m2/day fits the aquifer data reasonably well for the similar locations. 
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Figure 3.16. Concentration profiles of 2-D deterministic advection-dispersion model (D = 
0.15 m2/day) and the experimental aquifer. 
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We compare the curves of the one-dimensional deterministic advection-dispersion model 
with D= 0.15 and of the SSTM with 2 = 0.01 and b = 0.01. Figure 3.17 illustrates that the 
curves for the deterministic model and the SSTM are in agreement.  
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Figure 3.17. Concentration profiles of the deterministic advection-dispersion model (D = 
0.15 m2/day) and SSTM with 2 = 0.01 and b = 0.01 for row 3 well A. 

Figures 3.18 and 3.19 show that the same parameter combination is valid for the data from 
well A of row 7. 
 

 
Figure 3.18. Concentration profiles of the 2-D deterministic advection-dispersion model (D = 
0.15 m2/day) and the experimental aquifer at row 7. 

The comparative study of the SSTM and the experimental data described here is to show 
that the SSTM would faithfully mimic the concentration breakthrough curves in a real 
experiment situation. However, we do not attempt to validate the SSTM using the trial-and-
error curve fitting techniques for all the data sets as if is too labour intensive. As the 
experimental aquifer consists of sand of similar particle size, one would expect that one set 
of 2  and b values should be able to characterise the whole aquifer. It appears that 

2 =0.01 and b=0.01 would be an acceptable set of parameters. However, we can not say 

 

much about the uniqueness of these set of parameters. A correlation length (b) of 0.01 m 
seems to be reasonable for a porous medium containing sand. But this has not been 
ascertained through the experiments in a laboratory. Therefore, one of the ways of 
determining the uniqueness of the parameters set is to develop the methodologies to 
estimate them using all the observations we have. We have used the maximum likelihood 
estimation (MLE) to determine the parameters of the deterministic advection and dispersion 
model for the aquifer data. However, MLE can not be used to estimate parameters of SSTM 
as the SSTM contains the stochastic integral for dispersion which can not be built into 
likelihood functions. Therefore, we make use of ANN to estimate the parameters of the 
SSTM for the experimental aquifer in section 3.6. 
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Figure 3.19. Concentration profiles of the deterministic advection-dispersion model (D = 
0.15 m2/day) and SSTM with 2 = 0.01 and b = 0.01 for row 7 well A. 
 

3.7 Parameter Estimation using Maximum Likelihood Method 
In chapter 1, we discuss the parameter estimation of the partial differential equations when 
the additive noise terms are present. The development of the likelihood functions are based 
on the theory of parameter estimation for stochastic process (Kutoyants, 1984; Lipster and 
Shirayer, 1977; Basawa and Prakasa Rao, 1980) and we use this theory to estimate 
parameters. 

Let us consider a one-dimensional stochastic advection-dispersion equation with additive 
fluctuations:  
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where LD  is the longitudinal hydrodynamic dispersion coefficient, in m2/day, and xv  is 
the velocity of water flow, in m/day. 

The two parameters to be estimated are LD  and xv , and we can express the right hand 
side of equation (3.7.1) as a linear function of the parameters (see section 1.4) 
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We compare the curves of the one-dimensional deterministic advection-dispersion model 
with D= 0.15 and of the SSTM with 2 = 0.01 and b = 0.01. Figure 3.17 illustrates that the 
curves for the deterministic model and the SSTM are in agreement.  
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Figure 3.17. Concentration profiles of the deterministic advection-dispersion model (D = 
0.15 m2/day) and SSTM with 2 = 0.01 and b = 0.01 for row 3 well A. 

Figures 3.18 and 3.19 show that the same parameter combination is valid for the data from 
well A of row 7. 
 

 
Figure 3.18. Concentration profiles of the 2-D deterministic advection-dispersion model (D = 
0.15 m2/day) and the experimental aquifer at row 7. 

The comparative study of the SSTM and the experimental data described here is to show 
that the SSTM would faithfully mimic the concentration breakthrough curves in a real 
experiment situation. However, we do not attempt to validate the SSTM using the trial-and-
error curve fitting techniques for all the data sets as if is too labour intensive. As the 
experimental aquifer consists of sand of similar particle size, one would expect that one set 
of 2  and b values should be able to characterise the whole aquifer. It appears that 

2 =0.01 and b=0.01 would be an acceptable set of parameters. However, we can not say 

 

much about the uniqueness of these set of parameters. A correlation length (b) of 0.01 m 
seems to be reasonable for a porous medium containing sand. But this has not been 
ascertained through the experiments in a laboratory. Therefore, one of the ways of 
determining the uniqueness of the parameters set is to develop the methodologies to 
estimate them using all the observations we have. We have used the maximum likelihood 
estimation (MLE) to determine the parameters of the deterministic advection and dispersion 
model for the aquifer data. However, MLE can not be used to estimate parameters of SSTM 
as the SSTM contains the stochastic integral for dispersion which can not be built into 
likelihood functions. Therefore, we make use of ANN to estimate the parameters of the 
SSTM for the experimental aquifer in section 3.6. 
 

 

2 4 6 8 10 12 14 t (days)
0.2 

0.4 

0.6 

0.8 

1 
C 

SSTM

DET

 
Figure 3.19. Concentration profiles of the deterministic advection-dispersion model (D = 
0.15 m2/day) and SSTM with 2 = 0.01 and b = 0.01 for row 7 well A. 
 

3.7 Parameter Estimation using Maximum Likelihood Method 
In chapter 1, we discuss the parameter estimation of the partial differential equations when 
the additive noise terms are present. The development of the likelihood functions are based 
on the theory of parameter estimation for stochastic process (Kutoyants, 1984; Lipster and 
Shirayer, 1977; Basawa and Prakasa Rao, 1980) and we use this theory to estimate 
parameters. 

Let us consider a one-dimensional stochastic advection-dispersion equation with additive 
fluctuations:  
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where LD  is the longitudinal hydrodynamic dispersion coefficient, in m2/day, and xv  is 
the velocity of water flow, in m/day. 

The two parameters to be estimated are LD  and xv , and we can express the right hand 
side of equation (3.7.1) as a linear function of the parameters (see section 1.4) 
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We compare the curves of the one-dimensional deterministic advection-dispersion model 
with D= 0.15 and of the SSTM with 2 = 0.01 and b = 0.01. Figure 3.17 illustrates that the 
curves for the deterministic model and the SSTM are in agreement.  
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Figure 3.17. Concentration profiles of the deterministic advection-dispersion model (D = 
0.15 m2/day) and SSTM with 2 = 0.01 and b = 0.01 for row 3 well A. 

Figures 3.18 and 3.19 show that the same parameter combination is valid for the data from 
well A of row 7. 
 

 
Figure 3.18. Concentration profiles of the 2-D deterministic advection-dispersion model (D = 
0.15 m2/day) and the experimental aquifer at row 7. 

The comparative study of the SSTM and the experimental data described here is to show 
that the SSTM would faithfully mimic the concentration breakthrough curves in a real 
experiment situation. However, we do not attempt to validate the SSTM using the trial-and-
error curve fitting techniques for all the data sets as if is too labour intensive. As the 
experimental aquifer consists of sand of similar particle size, one would expect that one set 
of 2  and b values should be able to characterise the whole aquifer. It appears that 

2 =0.01 and b=0.01 would be an acceptable set of parameters. However, we can not say 

 

much about the uniqueness of these set of parameters. A correlation length (b) of 0.01 m 
seems to be reasonable for a porous medium containing sand. But this has not been 
ascertained through the experiments in a laboratory. Therefore, one of the ways of 
determining the uniqueness of the parameters set is to develop the methodologies to 
estimate them using all the observations we have. We have used the maximum likelihood 
estimation (MLE) to determine the parameters of the deterministic advection and dispersion 
model for the aquifer data. However, MLE can not be used to estimate parameters of SSTM 
as the SSTM contains the stochastic integral for dispersion which can not be built into 
likelihood functions. Therefore, we make use of ANN to estimate the parameters of the 
SSTM for the experimental aquifer in section 3.6. 
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Figure 3.19. Concentration profiles of the deterministic advection-dispersion model (D = 
0.15 m2/day) and SSTM with 2 = 0.01 and b = 0.01 for row 7 well A. 
 

3.7 Parameter Estimation using Maximum Likelihood Method 
In chapter 1, we discuss the parameter estimation of the partial differential equations when 
the additive noise terms are present. The development of the likelihood functions are based 
on the theory of parameter estimation for stochastic process (Kutoyants, 1984; Lipster and 
Shirayer, 1977; Basawa and Prakasa Rao, 1980) and we use this theory to estimate 
parameters. 

Let us consider a one-dimensional stochastic advection-dispersion equation with additive 
fluctuations:  
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where LD  is the longitudinal hydrodynamic dispersion coefficient, in m2/day, and xv  is 
the velocity of water flow, in m/day. 

The two parameters to be estimated are LD  and xv , and we can express the right hand 
side of equation (3.7.1) as a linear function of the parameters (see section 1.4) 
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We compare the curves of the one-dimensional deterministic advection-dispersion model 
with D= 0.15 and of the SSTM with 2 = 0.01 and b = 0.01. Figure 3.17 illustrates that the 
curves for the deterministic model and the SSTM are in agreement.  
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Figure 3.17. Concentration profiles of the deterministic advection-dispersion model (D = 
0.15 m2/day) and SSTM with 2 = 0.01 and b = 0.01 for row 3 well A. 

Figures 3.18 and 3.19 show that the same parameter combination is valid for the data from 
well A of row 7. 
 

 
Figure 3.18. Concentration profiles of the 2-D deterministic advection-dispersion model (D = 
0.15 m2/day) and the experimental aquifer at row 7. 

The comparative study of the SSTM and the experimental data described here is to show 
that the SSTM would faithfully mimic the concentration breakthrough curves in a real 
experiment situation. However, we do not attempt to validate the SSTM using the trial-and-
error curve fitting techniques for all the data sets as if is too labour intensive. As the 
experimental aquifer consists of sand of similar particle size, one would expect that one set 
of 2  and b values should be able to characterise the whole aquifer. It appears that 

2 =0.01 and b=0.01 would be an acceptable set of parameters. However, we can not say 

 

much about the uniqueness of these set of parameters. A correlation length (b) of 0.01 m 
seems to be reasonable for a porous medium containing sand. But this has not been 
ascertained through the experiments in a laboratory. Therefore, one of the ways of 
determining the uniqueness of the parameters set is to develop the methodologies to 
estimate them using all the observations we have. We have used the maximum likelihood 
estimation (MLE) to determine the parameters of the deterministic advection and dispersion 
model for the aquifer data. However, MLE can not be used to estimate parameters of SSTM 
as the SSTM contains the stochastic integral for dispersion which can not be built into 
likelihood functions. Therefore, we make use of ANN to estimate the parameters of the 
SSTM for the experimental aquifer in section 3.6. 
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Figure 3.19. Concentration profiles of the deterministic advection-dispersion model (D = 
0.15 m2/day) and SSTM with 2 = 0.01 and b = 0.01 for row 7 well A. 
 

3.7 Parameter Estimation using Maximum Likelihood Method 
In chapter 1, we discuss the parameter estimation of the partial differential equations when 
the additive noise terms are present. The development of the likelihood functions are based 
on the theory of parameter estimation for stochastic process (Kutoyants, 1984; Lipster and 
Shirayer, 1977; Basawa and Prakasa Rao, 1980) and we use this theory to estimate 
parameters. 

Let us consider a one-dimensional stochastic advection-dispersion equation with additive 
fluctuations:  
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where LD  is the longitudinal hydrodynamic dispersion coefficient, in m2/day, and xv  is 
the velocity of water flow, in m/day. 

The two parameters to be estimated are LD  and xv , and we can express the right hand 
side of equation (3.7.1) as a linear function of the parameters (see section 1.4) 
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Then the log-likelihood function can be written as, 
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Differentiating equation (3.7.3) with respect to 1  and 2 , respectively, we obtain the 
following two simultaneous equations: 
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Suppose we have the observations of solute concentration, iC  at M independent space 
coordinates along the x-axis, where 1   i   M, at different time intervals, t (where 0   t 
  T , and T is an integer that represents the last reading taken at unit intervals on t-axis). In 
other words, we have M number of iC  observations for each time step. Hence, there are, 
altogether, ((T+1)M) iC  observations. We use these observations to estimate the parameter 

1  and 2 ,  

We substitute 0( , )ia C t , 1( , )ia C t , 2( , )ia C t ,  1  and 2  in equations (3.7.4) to obtain the 
following set of equations, 
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Therefore, DL and xv  values can be obtained by solving these two simultaneous equations.  

Once xv  is known, the hydraulic conductivity (K) can be obtained from, 
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C  = solute concentration, mg/l, 

K  = hydraulic conductivity, m/day, 

dh
dl

 = hydraulic gradient, m/m, and 

en  = effective porosity. 

We have used the experimental data from the artificial aquifer (Figure 3.13) to estimate DL 
and xv . Table 3.1 shows the estimated and experimental values for DL and K (calculated 
from equation (3.7.6)) at different depths of the aquifer from the top surface. 
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0.4 203.2 137 0.167 0.1596 

1.0 210.6 137 0.143 0.1596 

1.6 208.9 137 0.134 0.1596 

2.2 262.3 137 0.242 0.1596 

Table 3.1. Estimated and experimental parameters hydraulic conductivity, K (m/day) and 
longitudinal hydrodynamic dispersion, DL (m2/day). 

The results show the accuracy of DL estimates is better than that of K. We estimate the vx by 

using equation (3.7.6) for and for simplicity, we assume that the hydraulic gradient, dh
dl

  

and the effective porosity, en  to be constants, or in other words, their spatial distributions 
are homogeneous. However, distribution of these values in the aquifer may be slightly 
heterogeneous. This assumption may have influenced the accuracy of less precise K 
estimates. However, the DL values are estimated directly and not affected by such 
assumptions, and the maximum likelihood estimates are closer to the experimental. 

Another possible phenomenon that can be present in solute transport is adsorption and the 
occurrence of short circuits which are, assumed to be included in the random component, 

( , )x t , of the governing equation, equation (3.7.1). However, we assumed that in the 
experiments the tracer is mixed in the upstream header tank, hence, adsorption in the 
aquifer could be neglected. 

As mentioned earlier, in the process of calibration to obtain parameters, it is assumed that 
the experimental aquifer is homogeneous. However, Figures 3.20, 3.21 and 3.22 show that 
the aquifer did not behave as expected (please refer to Figure 3.13 for notation). Figure 3.10 
shows that the concentration values at a well which is closer to the middle of the artificial 
aquifer (Row 5 – Well B). This well is approximately 3 m away from the header tank as 
shown in Figure 3.13. Other Figures, 3.21 and 3.22, show that the concentration profiles of 
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  T , and T is an integer that represents the last reading taken at unit intervals on t-axis). In 
other words, we have M number of iC  observations for each time step. Hence, there are, 
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We have used the experimental data from the artificial aquifer (Figure 3.13) to estimate DL 
and xv . Table 3.1 shows the estimated and experimental values for DL and K (calculated 
from equation (3.7.6)) at different depths of the aquifer from the top surface. 
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Table 3.1. Estimated and experimental parameters hydraulic conductivity, K (m/day) and 
longitudinal hydrodynamic dispersion, DL (m2/day). 

The results show the accuracy of DL estimates is better than that of K. We estimate the vx by 

using equation (3.7.6) for and for simplicity, we assume that the hydraulic gradient, dh
dl

  

and the effective porosity, en  to be constants, or in other words, their spatial distributions 
are homogeneous. However, distribution of these values in the aquifer may be slightly 
heterogeneous. This assumption may have influenced the accuracy of less precise K 
estimates. However, the DL values are estimated directly and not affected by such 
assumptions, and the maximum likelihood estimates are closer to the experimental. 

Another possible phenomenon that can be present in solute transport is adsorption and the 
occurrence of short circuits which are, assumed to be included in the random component, 

( , )x t , of the governing equation, equation (3.7.1). However, we assumed that in the 
experiments the tracer is mixed in the upstream header tank, hence, adsorption in the 
aquifer could be neglected. 

As mentioned earlier, in the process of calibration to obtain parameters, it is assumed that 
the experimental aquifer is homogeneous. However, Figures 3.20, 3.21 and 3.22 show that 
the aquifer did not behave as expected (please refer to Figure 3.13 for notation). Figure 3.10 
shows that the concentration values at a well which is closer to the middle of the artificial 
aquifer (Row 5 – Well B). This well is approximately 3 m away from the header tank as 
shown in Figure 3.13. Other Figures, 3.21 and 3.22, show that the concentration profiles of 
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Therefore, DL and xv  values can be obtained by solving these two simultaneous equations.  

Once xv  is known, the hydraulic conductivity (K) can be obtained from, 
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We have used the experimental data from the artificial aquifer (Figure 3.13) to estimate DL 
and xv . Table 3.1 shows the estimated and experimental values for DL and K (calculated 
from equation (3.7.6)) at different depths of the aquifer from the top surface. 
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Table 3.1. Estimated and experimental parameters hydraulic conductivity, K (m/day) and 
longitudinal hydrodynamic dispersion, DL (m2/day). 

The results show the accuracy of DL estimates is better than that of K. We estimate the vx by 

using equation (3.7.6) for and for simplicity, we assume that the hydraulic gradient, dh
dl

  

and the effective porosity, en  to be constants, or in other words, their spatial distributions 
are homogeneous. However, distribution of these values in the aquifer may be slightly 
heterogeneous. This assumption may have influenced the accuracy of less precise K 
estimates. However, the DL values are estimated directly and not affected by such 
assumptions, and the maximum likelihood estimates are closer to the experimental. 

Another possible phenomenon that can be present in solute transport is adsorption and the 
occurrence of short circuits which are, assumed to be included in the random component, 

( , )x t , of the governing equation, equation (3.7.1). However, we assumed that in the 
experiments the tracer is mixed in the upstream header tank, hence, adsorption in the 
aquifer could be neglected. 

As mentioned earlier, in the process of calibration to obtain parameters, it is assumed that 
the experimental aquifer is homogeneous. However, Figures 3.20, 3.21 and 3.22 show that 
the aquifer did not behave as expected (please refer to Figure 3.13 for notation). Figure 3.10 
shows that the concentration values at a well which is closer to the middle of the artificial 
aquifer (Row 5 – Well B). This well is approximately 3 m away from the header tank as 
shown in Figure 3.13. Other Figures, 3.21 and 3.22, show that the concentration profiles of 
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Therefore, DL and xv  values can be obtained by solving these two simultaneous equations.  

Once xv  is known, the hydraulic conductivity (K) can be obtained from, 

 
x

e

K dhv
n dl
   
 

 = average linear velocity, m/day,            (3.7.6) 

 

C  = solute concentration, mg/l, 

K  = hydraulic conductivity, m/day, 

dh
dl

 = hydraulic gradient, m/m, and 

en  = effective porosity. 

We have used the experimental data from the artificial aquifer (Figure 3.13) to estimate DL 
and xv . Table 3.1 shows the estimated and experimental values for DL and K (calculated 
from equation (3.7.6)) at different depths of the aquifer from the top surface. 
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Table 3.1. Estimated and experimental parameters hydraulic conductivity, K (m/day) and 
longitudinal hydrodynamic dispersion, DL (m2/day). 

The results show the accuracy of DL estimates is better than that of K. We estimate the vx by 

using equation (3.7.6) for and for simplicity, we assume that the hydraulic gradient, dh
dl

  

and the effective porosity, en  to be constants, or in other words, their spatial distributions 
are homogeneous. However, distribution of these values in the aquifer may be slightly 
heterogeneous. This assumption may have influenced the accuracy of less precise K 
estimates. However, the DL values are estimated directly and not affected by such 
assumptions, and the maximum likelihood estimates are closer to the experimental. 

Another possible phenomenon that can be present in solute transport is adsorption and the 
occurrence of short circuits which are, assumed to be included in the random component, 

( , )x t , of the governing equation, equation (3.7.1). However, we assumed that in the 
experiments the tracer is mixed in the upstream header tank, hence, adsorption in the 
aquifer could be neglected. 

As mentioned earlier, in the process of calibration to obtain parameters, it is assumed that 
the experimental aquifer is homogeneous. However, Figures 3.20, 3.21 and 3.22 show that 
the aquifer did not behave as expected (please refer to Figure 3.13 for notation). Figure 3.10 
shows that the concentration values at a well which is closer to the middle of the artificial 
aquifer (Row 5 – Well B). This well is approximately 3 m away from the header tank as 
shown in Figure 3.13. Other Figures, 3.21 and 3.22, show that the concentration profiles of 
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wells at Well B at Row 3 and Well A at Row 7, respectively. These figures demonstrate that 
the concentration values are not the same at all the depths and, hence, the behaviour of the 
aquifer is not similar throughout. The plots of other wells also exhibit heterogeneous 
behaviour. Therefore, we can state that the aquifer is not behaving homogeneously, 
meaning that the aquifer parameters, such as hydraulic gradient and effective porosity are 
not uniformly distributed throughout the system. The variables used to calibrate the aquifer 
parameters are subjected to randomness and the accuracy of the results could be affected, 
considerably.  

 
Figure 3.20. Concentration profiles at Row 5 – Well B. 

 
Figure 3.21. Concentrations profiles at Row 3 – Well B. 

 

The reason that the artificial aquifer does not behave homogeneously may be due to the 
method of construction. The aquifer was constructed using sand blocks that were laid layer 
by layer. We assume that even though material used in the aquifer is uniform, joints in the 
blocks can create diverse flow patterns and different flow lengths. Besides, due to the high 
pressure on the bottom layers (from the top layers), they may be more compacted and, 
therefore, behave differently. 

 
Figure 3.22. Concentrations profiles at Row 7 – Well A. 

We can extend the parameter estimation procedure to determine parameters of a two-
dimensional groundwater problem. In the two-dimensional case, an advancing solute front 
will also tend to spread in the directions normal to the direction of flow because at the pore 
scale the flow paths can diverge. This results in mixing in the directions normal to the flow 
path, which is called transverse dispersion. Considering the transverse dispersion, the two-
dimensional advection-dispersion equation can be written as (Fetter, 1999), 
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,                 (3.7.7) 

where  C = solute concentration (mg/l), 

 t = time (day), 

        DL = hydrodynamic dispersion coefficient parallel to the principal direction of  
            flow (longitudinal) (m2/day), 

  DT = hydrodynamic dispersion coefficient perpendicular to the principal direction  

            of flow (transverse) (m2/day), and 

 vx = average linear velocity (m/day). 
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wells at Well B at Row 3 and Well A at Row 7, respectively. These figures demonstrate that 
the concentration values are not the same at all the depths and, hence, the behaviour of the 
aquifer is not similar throughout. The plots of other wells also exhibit heterogeneous 
behaviour. Therefore, we can state that the aquifer is not behaving homogeneously, 
meaning that the aquifer parameters, such as hydraulic gradient and effective porosity are 
not uniformly distributed throughout the system. The variables used to calibrate the aquifer 
parameters are subjected to randomness and the accuracy of the results could be affected, 
considerably.  
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The randomness of heterogeneous groundwater systems can be accounted for by adding a 
noise component to equation (3.7.7), and it can be given by 
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where ( , )x t  is assumed to be a zero-mean stochastic process. 

We multiply equation (3.6.8) by dt throughout and replace ( , )x t dt  by 2 ( )dB t  
(Jazwinski, 1970), where 2  is the amplitude of the Wiener increments, ( )dB t , to obtain 
equation (3.7.9). We can now obtain the stochastic partial differential equation as follows, 
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As we described in equation (3.7.6) average linear velocity can be expressed by 
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We assume that transverse dispersion ( TD ) can be approximated to 10% of the longitudinal 
dispersion LD  , i.e., TD  = 0.1 LD  (Felter,1999). 

Then equation (3.7.10) becomes, 
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We use the observations for C(x, y, t) at M discrete points in (x, y) coordinate space for a 
period of time t (where 0 )t T  . Then we obtain the estimates for two unknown 
parameters as the solution to the following simultaneous equations: 
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The randomness of heterogeneous groundwater systems can be accounted for by adding a 
noise component to equation (3.7.7), and it can be given by 
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The randomness of heterogeneous groundwater systems can be accounted for by adding a 
noise component to equation (3.7.7), and it can be given by 
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where ( , )x t  is assumed to be a zero-mean stochastic process. 

We multiply equation (3.6.8) by dt throughout and replace ( , )x t dt  by 2 ( )dB t  
(Jazwinski, 1970), where 2  is the amplitude of the Wiener increments, ( )dB t , to obtain 
equation (3.7.9). We can now obtain the stochastic partial differential equation as follows, 
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As we described in equation (3.7.6) average linear velocity can be expressed by 
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Hence, equation (3.7.9) becomes, 
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We assume that transverse dispersion ( TD ) can be approximated to 10% of the longitudinal 
dispersion LD  , i.e., TD  = 0.1 LD  (Felter,1999). 

Then equation (3.7.10) becomes, 
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We use the observations for C(x, y, t) at M discrete points in (x, y) coordinate space for a 
period of time t (where 0 )t T  . Then we obtain the estimates for two unknown 
parameters as the solution to the following simultaneous equations: 

We can simplify equation (3.7.11) to 

2 2

2 2
1 0

2 2 2 2

2 2 2 2
1 0

0.1

- 0.1 0.1 0

TM

i
i

TM

L
i e

C C dC
x y

C C K dh C C CD dt
x y n dl x x y





       
    
                                              




,   

2 2

2 2
1 10 0

- 0.1 0
T TM M

i L
i i e

C C C K dh C CdC D dt
x x y n dl x x 

                                            
   .    (3.7.12) 

We can rewrite equations (3.7.12) as 

1 1 1

2 2 2

0,

0,

L
e

L
e

K dhD k l m
n dl
K dhD k l m
n dl

    
 
    
 

                        (3.7.13) 

where   

 
22 21

1 12 2
1 0

0.1
j jM n
i i

j j
i j

C Ck t t
x y




 

       
   

 ,    

  
2 21

1 12 2
1 0

0.1
j j jM n
i i i

j j
i j

C C Cl t t
x x y




 

          
     

 ,   

  
2 21

1
1 2 2

1 0
0.1

j jM n
j ji i
i i

i j

C Cm C C
x y




 

      
   

 , 

  
2 21

2 12 2
1 0

j j jM n
i i i

j j
i j

C C Ck t t
x x y




 

          
     

 ,  

 
21

2 1
1 0

jM n
i

j j
i j

Cl t t
x




 

 
   

 
 , and   

  
1

1
2

1 0

jM n
j ji
i i

i j

Cm C C
x




 

 
  

 
 .  

A Stochastic Model for Hydrodynamic Dispersion 95
 

The randomness of heterogeneous groundwater systems can be accounted for by adding a 
noise component to equation (3.7.7), and it can be given by 
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where ( , )x t  is assumed to be a zero-mean stochastic process. 

We multiply equation (3.6.8) by dt throughout and replace ( , )x t dt  by 2 ( )dB t  
(Jazwinski, 1970), where 2  is the amplitude of the Wiener increments, ( )dB t , to obtain 
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We assume that transverse dispersion ( TD ) can be approximated to 10% of the longitudinal 
dispersion LD  , i.e., TD  = 0.1 LD  (Felter,1999). 
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We use the observations for C(x, y, t) at M discrete points in (x, y) coordinate space for a 
period of time t (where 0 )t T  . Then we obtain the estimates for two unknown 
parameters as the solution to the following simultaneous equations: 
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values of k1, l1, m1, k2, l2, and m2. Furthermore, by substituting average values for the 

hydraulic gradient, dh
dl

 
 
 

, and the effective porosity, ne , two simultaneous equations 

(3.7.13) can be solved to obtain DL and K, for a two-dimensional groundwater system. 

We estimate the parameters of the artificial aquifer at Lincoln University using the 
procedure developed. The observations of solute concentration are obtained at 1 m grid 
intervals at four different levels (0.4, 1.0, 1.6, and 2.2 m from the surface of the aquifer). 
Hence, we rearrange the dataset to be four two-dimensional datasets for each level.  

Table 3.2 shows the estimated parameters for the two-dimensional aquifer and the estimates 
have come closer to the experimental values. However, as the experimental values may not 
represent the real values within the aquifer, further computational experiments by changing 
the lateral dispersion would not improve the estimates. 
 

Depth 
(m) 

Hydraulic conductivity, K 
(m/day) 

Longitudinal hydrodynamic dispersion, 
DL (m2/day) 

Estimated Experimental Estimated Experimental 

0.4 198.2 137 0.165 0.1596 

1.0 166.7 137 0.162 0.1596 

1.6 171.5 137 0.143 0.1596 

2.2 231.1 137 0.197 0.1596 

Table 3.2. Estimated and experimental parameters, hydraulic conductivity, K (m/day), and 
longitudinal hydrodynamic dispersion, DL (m2/day), for the aquifer. 
 

3.8 Parameter Estimation using ANN 
In estimating parameters with ANN, first we employ a deterministic 2-D advection-
dispersion transport numerical model to generate synthetic data. Afterwards, ANN are 
trained to learn the complex excitation and response relationship of the generated data. This 
is done by training the network sufficiently to minimise the error between the actual and 
network response while retaining the generalising capabilities of the network. We then 
estimate the associated parameters using noisy concentration data that represent real world 
aquifer systems. We also test the ability of the model to estimate hydraulic conductivity of 
an artificial experimental aquifer.  

The two-dimensional deterministic advection–dispersion equation (Fetter, 1999), is used as 
the governing equation for this section. It is important to mention that other possible 
phenomenon that can be present in the solute transport, such as adsorption and the 
occurrence of short circuits, are neglected in the governing equation on the assumption that 
the introduction of noise into the solute concentration values used to estimate the 
parameters would compensate for them. 

 

The deterministic solute concentration values are generated for a 10 m x 5 m 2-D aquifer 
using equation (3.6.7). Eight hundred data examples (patterns) are generated for different 
hydraulic conductivity, K, values that ranged from 40 to 240 m/day. It is assumed that all 
other parameters, control variables and subsidiary conditions are fixed. An initial 
concentration value of 100 ppm is considered as a point source at the middle of the header 
boundary of the aquifer and the same source is maintained at the boundary throughout the 
10 day period considered. Exponentially distributed concentration values of the point source 
(at the middle of the header boundary) are considered along with the longitudinal and 
lateral directions as the initial conditions for the other spatial coordinates. We gather 50 
input values for each example. These input values represent solute concentration values at 
10 spatial locations (Figure 6.1) at five different time intervals; t = 1, t = 3, t = 5, t = 7, t = 10 
day. We examine the possibility of amalgamating the time as an independent variable into 
the concentration input data. However, it is difficult to meaningfully integrate them into 
presently available ANN architectures and innovative model structures need to be 
developed. 
 

 
Figure 3.23. Spatial coordinates of concentration observations of the 2-D aquifer. 

It is noted, in many studies, that determination of an appropriate network architecture is 
one of the most important but also one of the most difficult tasks in the model building 
process (Maier and Dandy, 2000). The network architecture determines the number of 
connection weights (free parameters) and the way information flows through the network. It 
is common practice to fix the number of hidden layers in the network and then to choose the 
number of nodes in each of these layers. Initially, it may be worthwhile to consider a 
network with simple properties. Such networks have higher processing speeds and can be 
implemented on hardware more economically (Towell et al., 1991; Bebis and Georgiopoulos, 
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Hence, we rearrange the dataset to be four two-dimensional datasets for each level.  

Table 3.2 shows the estimated parameters for the two-dimensional aquifer and the estimates 
have come closer to the experimental values. However, as the experimental values may not 
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estimate the associated parameters using noisy concentration data that represent real world 
aquifer systems. We also test the ability of the model to estimate hydraulic conductivity of 
an artificial experimental aquifer.  

The two-dimensional deterministic advection–dispersion equation (Fetter, 1999), is used as 
the governing equation for this section. It is important to mention that other possible 
phenomenon that can be present in the solute transport, such as adsorption and the 
occurrence of short circuits, are neglected in the governing equation on the assumption that 
the introduction of noise into the solute concentration values used to estimate the 
parameters would compensate for them. 
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hydraulic conductivity, K, values that ranged from 40 to 240 m/day. It is assumed that all 
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(3.7.13) can be solved to obtain DL and K, for a two-dimensional groundwater system. 

We estimate the parameters of the artificial aquifer at Lincoln University using the 
procedure developed. The observations of solute concentration are obtained at 1 m grid 
intervals at four different levels (0.4, 1.0, 1.6, and 2.2 m from the surface of the aquifer). 
Hence, we rearrange the dataset to be four two-dimensional datasets for each level.  

Table 3.2 shows the estimated parameters for the two-dimensional aquifer and the estimates 
have come closer to the experimental values. However, as the experimental values may not 
represent the real values within the aquifer, further computational experiments by changing 
the lateral dispersion would not improve the estimates. 
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estimate the associated parameters using noisy concentration data that represent real world 
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an artificial experimental aquifer.  

The two-dimensional deterministic advection–dispersion equation (Fetter, 1999), is used as 
the governing equation for this section. It is important to mention that other possible 
phenomenon that can be present in the solute transport, such as adsorption and the 
occurrence of short circuits, are neglected in the governing equation on the assumption that 
the introduction of noise into the solute concentration values used to estimate the 
parameters would compensate for them. 
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1994; Castellano et al., 1997). Cybenko (1989) showed that only one hidden layer was 
required to approximate any continuous function, given that sufficient degrees of freedom 
(i.e. connection weights) are provided. However, in practice many functions are difficult to 
approximate with one hidden layer, requiring a prohibitive number of hidden layer nodes 
(Flood and Kartam, 1994). The use of more than one hidden layer provides greater flexibility 
and enables the approximation of complex functions with fewer connection weights in 
many situations (Sarle, 1994). 

Despite numerous studies, no systematic approach has been developed for the selection of 
an optimal network architecture and its geometry. Hence, we employ a trial and error 
exercise to determine the network architecture (number of hidden layers and number of 
nodes for each layer). Initially, a simple three layer MLP network (only one hidden layer) is 
used to train the network to build the complex relationship of output, K, and the associated 
concentration values. Hecht-Nielsen (1987) suggested that an optimum number of hidden 
nodes for a single hidden layer network can be selected from following relationship, 
Number if hidden nodes = 2 ( Number of input nodes ) + 1. 

This suggests we should have 101 hidden nodes for 50 inputs. Nevertheless, after a number 
of trial and error tests, it was found that the optimum results can be achieved by 20 hidden 
neurons. As reported elsewhere, Abrahart et al. (1999) presented a method based on genetic 
algorithms to identify the best number of suitable hidden nodes. Chakilam (1998) used 
principal component analysis to determine the optimal structure of the multi-layered feed 
forward neural network for a time series forecasting problems, thus reducing the 
generalisation error and overcoming the over fitting problems. 

The dataset is divided into two categories with a random selection of 80% used for training 
and the rest for testing. The maximum and minimum values of the training network are set by 
selecting the values from both training (and testing) and estimating dataset, to prevent the 
ANN from extrapolating beyond its range. We apply scale functions of none, logistic and 
logistic for input, hidden and output layers, respectively. The default network parameters of 
NeuroShell2 (neural computing software package) are used; learning rate = 0.1, momentum = 
0.1, initial weight = 0.3. The network reached the stopping criterion of average error on test set, 
fixed at 0.000002, in less than two minutes in a 1GHz personal computer with performance 
measurements of the coefficient of multiple determination, R2 = 0.9999 and the square of the 
correlation coefficient, r2 = 0.9999. The network that produces the best results on the test set is 
the one most capable of generalising, so this is saved as the best network.  

Having completed the successful training, another dataset is employed to test the 
performance of the trained network. We make use of the same model to generate 800 new 
data values, however, the initial concentration is randomly changed by up to 5%, and up to 
5% noise is arbitrarily added to all concentration input values. The reason for adding the 
noise is to simulate the real world problem of erratic behaviour of aquifers. The estimation 
error of each K value is given in Figure 3.4.4, which shows that the error increases with K.  

Table 3.3 illustrates that the statistical measurements of error with mean square error (MSE) of 
45.25, an average absolute percentage error (AAPE) of 5.63%, and a maximum error of 22.45 
m/day. Such high error values may not be acceptable in the most practical cases. Since the 
objective range of parameters is fairly large (40 –240 m/day), the accuracy of the approximation 
tends to decrease (Figure 3.24). Therefore, we conduct the same estimation procedure with four 

 

smaller permissible parameter regimes of K; (i) 40-90, (ii) 90-140, (iii) 140-190, and (iv) 190-240 
m/day. Table 3.3 shows that accuracy of the estimates has improved considerably. 
 

 
Figure 3.24. Absolute error of estimated parameter, K, when considering the whole range, 
40–240 m/day. 

The maximum error in the 190-240 range has been reduced by about 90% (Figure 3.25 and 
Table 3.3). Therefore, it is reasonable to assume that if we can gather prior information about 
the system under consideration, it is possible to obtain more accurate estimates. However, in 
the real world problems the prior knowledge of the system is limited. Later, we discuss a 
method to identify the range of parameters by using Self-Organising Maps (SOM). 
However, before using SOM, we explore the robustness of the ANN estimation models. 
 

 
Figure 3.25. Absolute Error of estimated parameter K, only for the range 190 – 240 m/day. 
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Error 
K Range (m/day) 

40-240 40–90 90–140 140–190 190-240 

Max 22.45 1.88 2.23 2.99 2.98 

Mean 8.03 0.27 0.38 0.36 0.39 

StDev 5.15 0.32 0.41 0.49 0.47 

MSE 45.25 0.11 0.14 0.20 0.19 

AAPE(%) 5.63 0.11 0.12 0.18 0.18 

Table 3.3. Statistics of estimated error for different ranges of K with up to a ±5% difference in 
initial value and up to a ±5% noise in observations. 
 

Initial condition Error of K (m/day) 

Point C value Noise Maximum Mean Stdev MSE AAPE  

50 -50% 9.72 3.48 1.68 12.66 0.95 

60 -40% 7.55 2.06 1.57 3.36 0.94 

70 -30% 6.18 2.01 1.42 3.01 0.92 

80 -20% 4.36 1.59 0.97 2.58 0.77 

90 -10% 2.84 0.97 0.72 1.46 0.43 

Trained value 
(100) 

0% 1.64 0.34 0.44 0.17 0.17 

110 +10% 2.92 1.04 0.86 1.46 0.44 

120 +20% 4.57 1.68 1.05 2.95 0.84 

130 +30% 6.49 2.11 1.48 3.26 1.06 

140 +40% 7.58 2.08 1.57 3.47 1.07 

150 +50% 10.14 3.67 1.73 13.81 1.07 

Table 3.4. Statistics of estimated error for different initial values with up to a ±5% error for 
the K range, 190-240. 

As discussed in chapter 1, real world aquifer systems are subject to numerous random 
effects. One of them may be an initial value problem. First, we investigate in the range of K 
between 190 – 240 m/day for the stability of the model for different initial values. The point 
source value of the initial concentration are changed from –50% to 50%. Since, as explained 
above, an exponentially distributed pattern was used to determine the initial concentration 
values of other spatial points, change of initial value at the point source also resulted in 
changing the initial values of every spatial location. Furthermore, to illustrate the 
heterogeneity of the aquifers, up to 5% extra noise is added to the generated concentration 

 

values of all time intervals. Table 3.4 shows the statistics of the estimates. The estimates 
exhibit a direct relationship to the noise; however, the most of the results are dependable 
even at higher noise levels.  

Random boundary conditions and an irregular porous structure can result in an erratic 
distribution of flow paths. Therefore, solute concentration spreads could be highly 
stochastic. We address this issue by extending the investigation of the robustness by adding 
different level of randomness to the concentration values. First, the data is generated using 
the deterministic solutions of equation (3.6.7) for each case and then noise is added 
randomly to each deterministic concentration value to generate a noisy dataset. For 
example, to generate up to a ±10% noise component to a deterministic value, d, two random 
functions are used as follows, 

random function 1  generate a random number between 0-1 (say n) 

random function 2  generate either + or -.  

Therefore, noisy data = d (1 ± 10%  n). 

Table 3.5 demonstrates the statistics of the estimates obtained for noisy concentration data. 
Estimates show that the ANN model is stable even for highly stochastic systems. 
 

 % 

added noise 

Error of Estimate K (m/day) 

Max Mean StDev MSE AAPE 

10 2.29 0.85 1.10 1.98 0.68 

20 3.54 1.05 1.19 2.04 0.76 

30 5.46 1.74 1.22 2.25 0.81 

40 5.88 1.96 1.35 2.31 0.92 

50 6.00 1.99 1.39 2.39 0.93 

Table 3.5. Statistics of estimates for noisy data for the K range, 190-240 m/day. 

The ANN model gives more accurate estimates when the target parameter range is small. 
However, in real world heterogeneous aquifers, it may not be a trivial task to identify the 
accurate parameter range without reliable prior information. Self Organising Maps (SOM ) 
has the ability to sort items into categories of similar objects by nonlinearly projecting the 
data onto a lower dimensional display and by clustering the data (Kohonen, 1990). We use 
this power of SOM and develop a method to identify the parameter range for given solute 
concentration values. We employ SOM to cluster an 800 x 50 dimension noisy dataset used 
before with a parameter range of 40 –240 m/day into four different categories. The 
“Supervised Kohonen” network architecture of NeroShell2 successfully categorised four 
different groups with 201, 200, 197 and 202 data patterns in each cluster, respectively. The 
SOM put data into categories with a high accuracy, with few exceptions which can be 
expected with noisy data, at the boundaries of the parameter ranges. To test the accuracy of 
the prediction capability of the trained model, we then create and feed 12 different test 
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Error 
K Range (m/day) 
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Table 3.3. Statistics of estimated error for different ranges of K with up to a ±5% difference in 
initial value and up to a ±5% noise in observations. 
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between 190 – 240 m/day for the stability of the model for different initial values. The point 
source value of the initial concentration are changed from –50% to 50%. Since, as explained 
above, an exponentially distributed pattern was used to determine the initial concentration 
values of other spatial points, change of initial value at the point source also resulted in 
changing the initial values of every spatial location. Furthermore, to illustrate the 
heterogeneity of the aquifers, up to 5% extra noise is added to the generated concentration 

 

values of all time intervals. Table 3.4 shows the statistics of the estimates. The estimates 
exhibit a direct relationship to the noise; however, the most of the results are dependable 
even at higher noise levels.  

Random boundary conditions and an irregular porous structure can result in an erratic 
distribution of flow paths. Therefore, solute concentration spreads could be highly 
stochastic. We address this issue by extending the investigation of the robustness by adding 
different level of randomness to the concentration values. First, the data is generated using 
the deterministic solutions of equation (3.6.7) for each case and then noise is added 
randomly to each deterministic concentration value to generate a noisy dataset. For 
example, to generate up to a ±10% noise component to a deterministic value, d, two random 
functions are used as follows, 

random function 1  generate a random number between 0-1 (say n) 

random function 2  generate either + or -.  

Therefore, noisy data = d (1 ± 10%  n). 

Table 3.5 demonstrates the statistics of the estimates obtained for noisy concentration data. 
Estimates show that the ANN model is stable even for highly stochastic systems. 
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The ANN model gives more accurate estimates when the target parameter range is small. 
However, in real world heterogeneous aquifers, it may not be a trivial task to identify the 
accurate parameter range without reliable prior information. Self Organising Maps (SOM ) 
has the ability to sort items into categories of similar objects by nonlinearly projecting the 
data onto a lower dimensional display and by clustering the data (Kohonen, 1990). We use 
this power of SOM and develop a method to identify the parameter range for given solute 
concentration values. We employ SOM to cluster an 800 x 50 dimension noisy dataset used 
before with a parameter range of 40 –240 m/day into four different categories. The 
“Supervised Kohonen” network architecture of NeroShell2 successfully categorised four 
different groups with 201, 200, 197 and 202 data patterns in each cluster, respectively. The 
SOM put data into categories with a high accuracy, with few exceptions which can be 
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As discussed in chapter 1, real world aquifer systems are subject to numerous random 
effects. One of them may be an initial value problem. First, we investigate in the range of K 
between 190 – 240 m/day for the stability of the model for different initial values. The point 
source value of the initial concentration are changed from –50% to 50%. Since, as explained 
above, an exponentially distributed pattern was used to determine the initial concentration 
values of other spatial points, change of initial value at the point source also resulted in 
changing the initial values of every spatial location. Furthermore, to illustrate the 
heterogeneity of the aquifers, up to 5% extra noise is added to the generated concentration 

 

values of all time intervals. Table 3.4 shows the statistics of the estimates. The estimates 
exhibit a direct relationship to the noise; however, the most of the results are dependable 
even at higher noise levels.  

Random boundary conditions and an irregular porous structure can result in an erratic 
distribution of flow paths. Therefore, solute concentration spreads could be highly 
stochastic. We address this issue by extending the investigation of the robustness by adding 
different level of randomness to the concentration values. First, the data is generated using 
the deterministic solutions of equation (3.6.7) for each case and then noise is added 
randomly to each deterministic concentration value to generate a noisy dataset. For 
example, to generate up to a ±10% noise component to a deterministic value, d, two random 
functions are used as follows, 

random function 1  generate a random number between 0-1 (say n) 

random function 2  generate either + or -.  

Therefore, noisy data = d (1 ± 10%  n). 

Table 3.5 demonstrates the statistics of the estimates obtained for noisy concentration data. 
Estimates show that the ANN model is stable even for highly stochastic systems. 
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Table 3.5. Statistics of estimates for noisy data for the K range, 190-240 m/day. 

The ANN model gives more accurate estimates when the target parameter range is small. 
However, in real world heterogeneous aquifers, it may not be a trivial task to identify the 
accurate parameter range without reliable prior information. Self Organising Maps (SOM ) 
has the ability to sort items into categories of similar objects by nonlinearly projecting the 
data onto a lower dimensional display and by clustering the data (Kohonen, 1990). We use 
this power of SOM and develop a method to identify the parameter range for given solute 
concentration values. We employ SOM to cluster an 800 x 50 dimension noisy dataset used 
before with a parameter range of 40 –240 m/day into four different categories. The 
“Supervised Kohonen” network architecture of NeroShell2 successfully categorised four 
different groups with 201, 200, 197 and 202 data patterns in each cluster, respectively. The 
SOM put data into categories with a high accuracy, with few exceptions which can be 
expected with noisy data, at the boundaries of the parameter ranges. To test the accuracy of 
the prediction capability of the trained model, we then create and feed 12 different test 
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between 190 – 240 m/day for the stability of the model for different initial values. The point 
source value of the initial concentration are changed from –50% to 50%. Since, as explained 
above, an exponentially distributed pattern was used to determine the initial concentration 
values of other spatial points, change of initial value at the point source also resulted in 
changing the initial values of every spatial location. Furthermore, to illustrate the 
heterogeneity of the aquifers, up to 5% extra noise is added to the generated concentration 

 

values of all time intervals. Table 3.4 shows the statistics of the estimates. The estimates 
exhibit a direct relationship to the noise; however, the most of the results are dependable 
even at higher noise levels.  

Random boundary conditions and an irregular porous structure can result in an erratic 
distribution of flow paths. Therefore, solute concentration spreads could be highly 
stochastic. We address this issue by extending the investigation of the robustness by adding 
different level of randomness to the concentration values. First, the data is generated using 
the deterministic solutions of equation (3.6.7) for each case and then noise is added 
randomly to each deterministic concentration value to generate a noisy dataset. For 
example, to generate up to a ±10% noise component to a deterministic value, d, two random 
functions are used as follows, 

random function 1  generate a random number between 0-1 (say n) 

random function 2  generate either + or -.  

Therefore, noisy data = d (1 ± 10%  n). 

Table 3.5 demonstrates the statistics of the estimates obtained for noisy concentration data. 
Estimates show that the ANN model is stable even for highly stochastic systems. 
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Table 3.5. Statistics of estimates for noisy data for the K range, 190-240 m/day. 

The ANN model gives more accurate estimates when the target parameter range is small. 
However, in real world heterogeneous aquifers, it may not be a trivial task to identify the 
accurate parameter range without reliable prior information. Self Organising Maps (SOM ) 
has the ability to sort items into categories of similar objects by nonlinearly projecting the 
data onto a lower dimensional display and by clustering the data (Kohonen, 1990). We use 
this power of SOM and develop a method to identify the parameter range for given solute 
concentration values. We employ SOM to cluster an 800 x 50 dimension noisy dataset used 
before with a parameter range of 40 –240 m/day into four different categories. The 
“Supervised Kohonen” network architecture of NeroShell2 successfully categorised four 
different groups with 201, 200, 197 and 202 data patterns in each cluster, respectively. The 
SOM put data into categories with a high accuracy, with few exceptions which can be 
expected with noisy data, at the boundaries of the parameter ranges. To test the accuracy of 
the prediction capability of the trained model, we then create and feed 12 different test 
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datasets with the same number of input variables (50) into the trained SOM and it accurately 
identified the correct parameter range for all the datasets. 

We extend the hybrid methodology to solve the groundwater inverse problem in the case of 
two unknown system parameters. We simulate the same aquifer as used above. The two 
parameters to be estimated are hydraulic conductivity, K (m/day) and longitudinal 
dispersion coefficient, DL (m2/day). In line with earlier work, we fed 50 concentration values 
and two actual outputs (K and DL) to train the network. 

We use a simple three layer network and produce R2 = 0.9999 and r2 = 0.9999 for both 
outputs in 2 min and 50 sec. We then feed a different dataset, which has not been seen by the 
trained network before. The new dataset consisted of randomly varying (up to 5%) initial 
conditions and added noise to replicate a natural system. We explore two different levels of 
noise; up to 5% and 50%. The parameter ranges are; K between 190 – 240 m/day, DL 
between 0.03 – 0.08 m2/day. The ANN model produces reasonable estimates for both 
parameters and the summary of estimates is given in Table 3.6. 
 

Parameter Actual Range  % noise 
Error of Estimate 

Max Mean MSE AAPE 

K 190-240 
5 2.48 0.99 2.65 0.81 

50 6.78 2.35 3.18 1.12 

DL 0.03-0.08 
5 0.00341 0.00092 0.0014 0.0005 

50 0.00875 0.00247 0.0029 0.0010 

Table 3.6. Statistics of estimates for two parameter case 

We apply the hybrid ANN inverse approach presented in the above sections to estimate 
parameters of the artificial aquifer at Lincoln University. Although, initial conditions, other 
parameters and the subsidiary conditions of the aquifer are somewhat known, we have to 
conduct a fairly tiresome, “trial and error” exercise to replicate the aquifer. Eight hundred 
data patterns are generated for the hydraulic conductivity range of 80 to 280 m/day. Each 
pattern consists of 100 concentration input variables for 10 distinct spatial locations for 10 
different time intervals. We then use Kohonen’s SOM (80% data for training and 20% for 
testing) to classify the input values into four clusters. Next we feed the actual aquifer data 
into the trained network and the selected subrange; it is established that the aquifer 
parameter should be within the second cluster (130 – 180 m/day). Based on this 
information, we generate a separate dataset for the specified range and train an MLP 
network with the associated K values. 

The estimate of K given by the trained ANN is 152.86 m/day. The experimental value of 
hydraulic conductivity, K, is found to be 137 m/day, which is calculated by calibration tests 
conducted by aquifer testing staff. In these experiments they have assumed that the aquifer 
is homogeneous. The difference between two estimates is only 10.37 %. Considering the 
assumptions of homogeneity made by the aquifer researchers and other possible human 

 

errors, it is fair to state that the estimate obtained from the ANN model is reasonable and 
acceptable. 

Our investigation emphasise that the importance of modelling a sufficiently true 
representation of the physical system and subsidiary conditions to obtain accurate 
parameter values. As Minns et al. (1996) pointed out, the ANN is susceptible to becoming “a 
prisoner of its training data”. Therefore, prior information, such as type of contaminant 
source, boundary conditions and subsidiary conditions is crucial to modelling the system 
accurately. If we could gain such prior information and model the system with ANN, it 
would be capable of solving the inverse problem with greater accuracy, even with highly 
noisy data, as well as different system input values. 
 

3.9 Parameter Estimation of SSTM 
In this section, we apply the ANN hybrid approach presented in the previous section to 
estimate parameters of the Stochastic Solute Transport Model (SSTM) developed in this 
chapter. Since SSTM consists of two parameters ; variance ( σ2 ) and correlation length (b), 
we estimate both parameters simultaneously. 

In section 3.8 we showed that the accuracy of the estimates was inversely proportional to the 
size of the objective range of the output (maximum error of the estimate of parameter K was 
reduced by about 90% for smaller output ranges). In addition, the accuracy of the estimates 
may reduce when two parameters are estimated simultaneously. To limit the diminution of 
accuracy of the results imposed by the above mentioned performance characteristics of the 
method and, as this research is conducted in a general personal computer, we select a 
smaller permissible output ranges. Additionally, it has shown that the higher parameter 
values of SSTM (especially σ2  around 0.25) represent greater heterogeneous flow systems. 
Thus, we limit the parameter range for both parameters, σ2  and b, to be between 0.0001 
and 0.2.  

The main objective of this section is to estimate parameters of SSTM using a hybrid ANN 
approach developed in the above section. We then extend the exercise using a case study to 
validate the method. As used in the previous section, the results from the artificial aquifer is 
used for the validation. However, we intend to achieve an auxiliary objective in the 
validation process by comparing the artificial aquifer parameters with the estimates 
obtained for the same aquifer using a curve fitting technique.

As the first step of the implementation process, we use SSTM to simulate a one-dimensional 
aquifer of 10 m in length. Eight hundred data patterns for different combinations of σ2  and 
b are generated. Each parameter ranges from 0.0001 and 0.2. Every data pattern consists of 
200 inputs for 10 various spatial locations of the aquifer for 20 distinct time intervals. The 
same standard Wiener process is used for generating all data sets. The initial condition of 
the concentration value of unit 1.0 at x = 0.0 and exponentially distributed values for other 
spatial locations are considered. Throughout the simulation the same concentration (unit 
1.0) is maintained at the upper end boundary. It is assumed that the mean velocity of the 
solute is 0.5 m/day. As mentioned above, it is very important to limit the objective range of 
the parameters for smaller regimes to attain accurate approximations. Thus, Kohonen’s Self 
Organising Map (SOM) is employed to cluster the data set into four categories. 
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datasets with the same number of input variables (50) into the trained SOM and it accurately 
identified the correct parameter range for all the datasets. 

We extend the hybrid methodology to solve the groundwater inverse problem in the case of 
two unknown system parameters. We simulate the same aquifer as used above. The two 
parameters to be estimated are hydraulic conductivity, K (m/day) and longitudinal 
dispersion coefficient, DL (m2/day). In line with earlier work, we fed 50 concentration values 
and two actual outputs (K and DL) to train the network. 

We use a simple three layer network and produce R2 = 0.9999 and r2 = 0.9999 for both 
outputs in 2 min and 50 sec. We then feed a different dataset, which has not been seen by the 
trained network before. The new dataset consisted of randomly varying (up to 5%) initial 
conditions and added noise to replicate a natural system. We explore two different levels of 
noise; up to 5% and 50%. The parameter ranges are; K between 190 – 240 m/day, DL 
between 0.03 – 0.08 m2/day. The ANN model produces reasonable estimates for both 
parameters and the summary of estimates is given in Table 3.6. 
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We apply the hybrid ANN inverse approach presented in the above sections to estimate 
parameters of the artificial aquifer at Lincoln University. Although, initial conditions, other 
parameters and the subsidiary conditions of the aquifer are somewhat known, we have to 
conduct a fairly tiresome, “trial and error” exercise to replicate the aquifer. Eight hundred 
data patterns are generated for the hydraulic conductivity range of 80 to 280 m/day. Each 
pattern consists of 100 concentration input variables for 10 distinct spatial locations for 10 
different time intervals. We then use Kohonen’s SOM (80% data for training and 20% for 
testing) to classify the input values into four clusters. Next we feed the actual aquifer data 
into the trained network and the selected subrange; it is established that the aquifer 
parameter should be within the second cluster (130 – 180 m/day). Based on this 
information, we generate a separate dataset for the specified range and train an MLP 
network with the associated K values. 

The estimate of K given by the trained ANN is 152.86 m/day. The experimental value of 
hydraulic conductivity, K, is found to be 137 m/day, which is calculated by calibration tests 
conducted by aquifer testing staff. In these experiments they have assumed that the aquifer 
is homogeneous. The difference between two estimates is only 10.37 %. Considering the 
assumptions of homogeneity made by the aquifer researchers and other possible human 

 

errors, it is fair to state that the estimate obtained from the ANN model is reasonable and 
acceptable. 

Our investigation emphasise that the importance of modelling a sufficiently true 
representation of the physical system and subsidiary conditions to obtain accurate 
parameter values. As Minns et al. (1996) pointed out, the ANN is susceptible to becoming “a 
prisoner of its training data”. Therefore, prior information, such as type of contaminant 
source, boundary conditions and subsidiary conditions is crucial to modelling the system 
accurately. If we could gain such prior information and model the system with ANN, it 
would be capable of solving the inverse problem with greater accuracy, even with highly 
noisy data, as well as different system input values. 
 

3.9 Parameter Estimation of SSTM 
In this section, we apply the ANN hybrid approach presented in the previous section to 
estimate parameters of the Stochastic Solute Transport Model (SSTM) developed in this 
chapter. Since SSTM consists of two parameters ; variance ( σ2 ) and correlation length (b), 
we estimate both parameters simultaneously. 

In section 3.8 we showed that the accuracy of the estimates was inversely proportional to the 
size of the objective range of the output (maximum error of the estimate of parameter K was 
reduced by about 90% for smaller output ranges). In addition, the accuracy of the estimates 
may reduce when two parameters are estimated simultaneously. To limit the diminution of 
accuracy of the results imposed by the above mentioned performance characteristics of the 
method and, as this research is conducted in a general personal computer, we select a 
smaller permissible output ranges. Additionally, it has shown that the higher parameter 
values of SSTM (especially σ2  around 0.25) represent greater heterogeneous flow systems. 
Thus, we limit the parameter range for both parameters, σ2  and b, to be between 0.0001 
and 0.2.  

The main objective of this section is to estimate parameters of SSTM using a hybrid ANN 
approach developed in the above section. We then extend the exercise using a case study to 
validate the method. As used in the previous section, the results from the artificial aquifer is 
used for the validation. However, we intend to achieve an auxiliary objective in the 
validation process by comparing the artificial aquifer parameters with the estimates 
obtained for the same aquifer using a curve fitting technique.

As the first step of the implementation process, we use SSTM to simulate a one-dimensional 
aquifer of 10 m in length. Eight hundred data patterns for different combinations of σ2  and 
b are generated. Each parameter ranges from 0.0001 and 0.2. Every data pattern consists of 
200 inputs for 10 various spatial locations of the aquifer for 20 distinct time intervals. The 
same standard Wiener process is used for generating all data sets. The initial condition of 
the concentration value of unit 1.0 at x = 0.0 and exponentially distributed values for other 
spatial locations are considered. Throughout the simulation the same concentration (unit 
1.0) is maintained at the upper end boundary. It is assumed that the mean velocity of the 
solute is 0.5 m/day. As mentioned above, it is very important to limit the objective range of 
the parameters for smaller regimes to attain accurate approximations. Thus, Kohonen’s Self 
Organising Map (SOM) is employed to cluster the data set into four categories. 
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datasets with the same number of input variables (50) into the trained SOM and it accurately 
identified the correct parameter range for all the datasets. 

We extend the hybrid methodology to solve the groundwater inverse problem in the case of 
two unknown system parameters. We simulate the same aquifer as used above. The two 
parameters to be estimated are hydraulic conductivity, K (m/day) and longitudinal 
dispersion coefficient, DL (m2/day). In line with earlier work, we fed 50 concentration values 
and two actual outputs (K and DL) to train the network. 

We use a simple three layer network and produce R2 = 0.9999 and r2 = 0.9999 for both 
outputs in 2 min and 50 sec. We then feed a different dataset, which has not been seen by the 
trained network before. The new dataset consisted of randomly varying (up to 5%) initial 
conditions and added noise to replicate a natural system. We explore two different levels of 
noise; up to 5% and 50%. The parameter ranges are; K between 190 – 240 m/day, DL 
between 0.03 – 0.08 m2/day. The ANN model produces reasonable estimates for both 
parameters and the summary of estimates is given in Table 3.6. 
 

Parameter Actual Range  % noise 
Error of Estimate 

Max Mean MSE AAPE 

K 190-240 
5 2.48 0.99 2.65 0.81 

50 6.78 2.35 3.18 1.12 

DL 0.03-0.08 
5 0.00341 0.00092 0.0014 0.0005 

50 0.00875 0.00247 0.0029 0.0010 

Table 3.6. Statistics of estimates for two parameter case 

We apply the hybrid ANN inverse approach presented in the above sections to estimate 
parameters of the artificial aquifer at Lincoln University. Although, initial conditions, other 
parameters and the subsidiary conditions of the aquifer are somewhat known, we have to 
conduct a fairly tiresome, “trial and error” exercise to replicate the aquifer. Eight hundred 
data patterns are generated for the hydraulic conductivity range of 80 to 280 m/day. Each 
pattern consists of 100 concentration input variables for 10 distinct spatial locations for 10 
different time intervals. We then use Kohonen’s SOM (80% data for training and 20% for 
testing) to classify the input values into four clusters. Next we feed the actual aquifer data 
into the trained network and the selected subrange; it is established that the aquifer 
parameter should be within the second cluster (130 – 180 m/day). Based on this 
information, we generate a separate dataset for the specified range and train an MLP 
network with the associated K values. 

The estimate of K given by the trained ANN is 152.86 m/day. The experimental value of 
hydraulic conductivity, K, is found to be 137 m/day, which is calculated by calibration tests 
conducted by aquifer testing staff. In these experiments they have assumed that the aquifer 
is homogeneous. The difference between two estimates is only 10.37 %. Considering the 
assumptions of homogeneity made by the aquifer researchers and other possible human 

 

errors, it is fair to state that the estimate obtained from the ANN model is reasonable and 
acceptable. 

Our investigation emphasise that the importance of modelling a sufficiently true 
representation of the physical system and subsidiary conditions to obtain accurate 
parameter values. As Minns et al. (1996) pointed out, the ANN is susceptible to becoming “a 
prisoner of its training data”. Therefore, prior information, such as type of contaminant 
source, boundary conditions and subsidiary conditions is crucial to modelling the system 
accurately. If we could gain such prior information and model the system with ANN, it 
would be capable of solving the inverse problem with greater accuracy, even with highly 
noisy data, as well as different system input values. 
 

3.9 Parameter Estimation of SSTM 
In this section, we apply the ANN hybrid approach presented in the previous section to 
estimate parameters of the Stochastic Solute Transport Model (SSTM) developed in this 
chapter. Since SSTM consists of two parameters ; variance ( σ2 ) and correlation length (b), 
we estimate both parameters simultaneously. 

In section 3.8 we showed that the accuracy of the estimates was inversely proportional to the 
size of the objective range of the output (maximum error of the estimate of parameter K was 
reduced by about 90% for smaller output ranges). In addition, the accuracy of the estimates 
may reduce when two parameters are estimated simultaneously. To limit the diminution of 
accuracy of the results imposed by the above mentioned performance characteristics of the 
method and, as this research is conducted in a general personal computer, we select a 
smaller permissible output ranges. Additionally, it has shown that the higher parameter 
values of SSTM (especially σ2  around 0.25) represent greater heterogeneous flow systems. 
Thus, we limit the parameter range for both parameters, σ2  and b, to be between 0.0001 
and 0.2.  

The main objective of this section is to estimate parameters of SSTM using a hybrid ANN 
approach developed in the above section. We then extend the exercise using a case study to 
validate the method. As used in the previous section, the results from the artificial aquifer is 
used for the validation. However, we intend to achieve an auxiliary objective in the 
validation process by comparing the artificial aquifer parameters with the estimates 
obtained for the same aquifer using a curve fitting technique.

As the first step of the implementation process, we use SSTM to simulate a one-dimensional 
aquifer of 10 m in length. Eight hundred data patterns for different combinations of σ2  and 
b are generated. Each parameter ranges from 0.0001 and 0.2. Every data pattern consists of 
200 inputs for 10 various spatial locations of the aquifer for 20 distinct time intervals. The 
same standard Wiener process is used for generating all data sets. The initial condition of 
the concentration value of unit 1.0 at x = 0.0 and exponentially distributed values for other 
spatial locations are considered. Throughout the simulation the same concentration (unit 
1.0) is maintained at the upper end boundary. It is assumed that the mean velocity of the 
solute is 0.5 m/day. As mentioned above, it is very important to limit the objective range of 
the parameters for smaller regimes to attain accurate approximations. Thus, Kohonen’s Self 
Organising Map (SOM) is employed to cluster the data set into four categories. 
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parameter values. As Minns et al. (1996) pointed out, the ANN is susceptible to becoming “a 
prisoner of its training data”. Therefore, prior information, such as type of contaminant 
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used for the validation. However, we intend to achieve an auxiliary objective in the 
validation process by comparing the artificial aquifer parameters with the estimates 
obtained for the same aquifer using a curve fitting technique.

As the first step of the implementation process, we use SSTM to simulate a one-dimensional 
aquifer of 10 m in length. Eight hundred data patterns for different combinations of σ2  and 
b are generated. Each parameter ranges from 0.0001 and 0.2. Every data pattern consists of 
200 inputs for 10 various spatial locations of the aquifer for 20 distinct time intervals. The 
same standard Wiener process is used for generating all data sets. The initial condition of 
the concentration value of unit 1.0 at x = 0.0 and exponentially distributed values for other 
spatial locations are considered. Throughout the simulation the same concentration (unit 
1.0) is maintained at the upper end boundary. It is assumed that the mean velocity of the 
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Since the data set represents the stochastic behaviour of the flow, the time needed to classify 
the data into separate groups is much more than for the similar case, in the deterministic 
advection – dispersion data, in the previous section. Randomly selected 80% of data were 
used for training the network and the rest for the validation. Notwithstanding the random 
nature of the current dataset, the SOM has clustered the data to an adequate degree of 
accuracy that may be sufficient for the problem at hand. 

To test the performance of the trained network model, we use eight different data patterns. 
Two datasets are generated for each group of clustered network. Moreover, each dataset is 
produced using different standard Wiener process. New data patterns are fed into the 
trained model and it accurately identified the parameter range it fitted into.  

Having substantiated that the SOM could be successfully used to cluster large dataset that 
represent heterogeneous data, such as given by SSTM, we create four separate specialised 
network models for smaller parameter regimes of both parameters in the following ranges; 

0.0001 – 0.05;0.05 – 0.1;0.1 – 0.15; and 0.15 – 0.2. 

Each dataset comprises 441 data patterns of different combinations of σ2  and b at intervals 
of 0.0025. For instance, for the range of 0.05 – 0.1, there are 21 different values of each 
parameter; 0.05, 0.0525, 0.055, 0.0575, … , 0.1 (21 x 21 = 441 data patterns). Same SSTM 
model used above for SOM cluster distribution is also used for data generation. 
Nevertheless, in this case each data pattern contains not only 200 inputs but also two 
corresponding output parameters. The number of training patterns has considerable 
influence on the performance of the ANN model (Flood and Kartam, 1994). Increasing the 
number of data patterns provides more information about the shape of the solution surface 
and, thus, improves the accuracy of the model prediction. However, in most real world 
applications, numerous logistical issues impose limitations on the amount of data available 
and, consequently, the size of the training set. Hence, in developing a method for practical 
applications, it is important to test the robustness of the method for such data limitations. 
For that reason, we limit the parameter range of each model to 21 values (between 0.0001 
and 0.2 at intervals of 0.0025). 

Maier and Dandy (2000) showed that it was important to select a suitable network 
architecture and model validation method in the development of ANN models to achieve 
optimum results. In addition, it may be necessary to select the most suitable model for 
handling highly random data such as SSTM data. Therefore, we conduct a few trial and 
error exercises to choose the appropriate model structure, and training and testing 
procedure. The following are the MLP ANN models that are considered for different 
combinations of hidden layers and various grouping of activation functions: three layer 
standard connections; four layer standard connections; five layer standard connections; one 
hidden layer with two parallel slabs with different activation functions; one hidden layer 
with three hidden slabs with different activation functions; one hidden layer of two parallel 
slabs, different activation functions and jump connection; three layer jump connections; four 
layer jump connections; and five layer jump connections. 

After numerous attempts, it is found that the network model of five layer standard 
connections could produce the best trained model in the least time. In the selected model, 
each hidden layer consists of 30 neurons. Activation functions of linear <0, 1>, logistic, tanh, 

 

Gaussian and logistic are used for layers of input, hidden (3 layers) and output, respectively. 
The default network parameters (NeuroShell2) are employed; learning rate = 0.1, 
momentum = 0.1, initial weight = 0.3. The stopping criterion is set to a minimum error of 
0.000001. All four networks reach the stopping condition in about 30 minutes in a 1 GHz 
personal computer with the performance measurements shown in Table 3.7. 

After the completion of successful training for each model, separate datasets are generated 
to test the prediction capability of each model. The same SSTM is employed to produce 
another dataset of 441 data patterns for each parameter range. However, different standard 
Wiener process increments are used. In addition, initial and boundary conditions are 
adjusted up to ±5% by adding random values. Input data values of each dataset are then fed 
into the corresponding trained network and processed to obtain model predictions. 
 

Parameter 
range 

Coefficient of multiple 
determination, R2 

Square of the correlation 
coefficient, r2 

Mean absolute 
error 

σ2  b σ2  b σ2  b 

0.0001 – 0.05 0.9912 0.9876 0. 9911 0.9876 0.0 0.0 

0.05 – 0.1 0.9911 0.9876 0. 9899 0.9876 0.0 0.0 

0.1 – 0.15 0.9898 0.9870 0. 9872 0.9868 0.0 0.0 

0.15 – 0.2 0.9728 0.9774 0. 9721 0.9661 0.0001 0.0001 

Table 3.7. Performance measurements of trained ANN model for four different parameter 
ranges. 

Figure 3.26 illustrates the absolute error of estimated parameter σ2 , for the range of 0.0001 – 
0.05. It shows that the ANN model prediction is extremely satisfactory and that the average 
absolute error is approximately 0.04%. Figure 3.27 shows that prediction for the other 
parameter, b also met with similar accuracy for the same range. 

 

Figure 3.26. Absolute error of estimated parameter σ2 , for the range of 0.0001 – 0.05. 
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Since the data set represents the stochastic behaviour of the flow, the time needed to classify 
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advection – dispersion data, in the previous section. Randomly selected 80% of data were 
used for training the network and the rest for the validation. Notwithstanding the random 
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used for training the network and the rest for the validation. Notwithstanding the random 
nature of the current dataset, the SOM has clustered the data to an adequate degree of 
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produced using different standard Wiener process. New data patterns are fed into the 
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influence on the performance of the ANN model (Flood and Kartam, 1994). Increasing the 
number of data patterns provides more information about the shape of the solution surface 
and, thus, improves the accuracy of the model prediction. However, in most real world 
applications, numerous logistical issues impose limitations on the amount of data available 
and, consequently, the size of the training set. Hence, in developing a method for practical 
applications, it is important to test the robustness of the method for such data limitations. 
For that reason, we limit the parameter range of each model to 21 values (between 0.0001 
and 0.2 at intervals of 0.0025). 

Maier and Dandy (2000) showed that it was important to select a suitable network 
architecture and model validation method in the development of ANN models to achieve 
optimum results. In addition, it may be necessary to select the most suitable model for 
handling highly random data such as SSTM data. Therefore, we conduct a few trial and 
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Gaussian and logistic are used for layers of input, hidden (3 layers) and output, respectively. 
The default network parameters (NeuroShell2) are employed; learning rate = 0.1, 
momentum = 0.1, initial weight = 0.3. The stopping criterion is set to a minimum error of 
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Wiener process increments are used. In addition, initial and boundary conditions are 
adjusted up to ±5% by adding random values. Input data values of each dataset are then fed 
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After numerous attempts, it is found that the network model of five layer standard 
connections could produce the best trained model in the least time. In the selected model, 
each hidden layer consists of 30 neurons. Activation functions of linear <0, 1>, logistic, tanh, 

 

Gaussian and logistic are used for layers of input, hidden (3 layers) and output, respectively. 
The default network parameters (NeuroShell2) are employed; learning rate = 0.1, 
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another dataset of 441 data patterns for each parameter range. However, different standard 
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Parameter 
range 

Coefficient of multiple 
determination, R2 

Square of the correlation 
coefficient, r2 

Mean absolute 
error 

σ2  b σ2  b σ2  b 

0.0001 – 0.05 0.9912 0.9876 0. 9911 0.9876 0.0 0.0 

0.05 – 0.1 0.9911 0.9876 0. 9899 0.9876 0.0 0.0 

0.1 – 0.15 0.9898 0.9870 0. 9872 0.9868 0.0 0.0 

0.15 – 0.2 0.9728 0.9774 0. 9721 0.9661 0.0001 0.0001 

Table 3.7. Performance measurements of trained ANN model for four different parameter 
ranges. 

Figure 3.26 illustrates the absolute error of estimated parameter σ2 , for the range of 0.0001 – 
0.05. It shows that the ANN model prediction is extremely satisfactory and that the average 
absolute error is approximately 0.04%. Figure 3.27 shows that prediction for the other 
parameter, b also met with similar accuracy for the same range. 

 

Figure 3.26. Absolute error of estimated parameter σ2 , for the range of 0.0001 – 0.05. 
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A similar approach is also applied to other parameter ranges. The precision of the estimates 
given by ANN models shrinks with highly heterogeneous data. As larger values of 
parameters indicate excessive stochastic flows, we can expect the accuracy of the prediction 
to diminish for highly stochastic flows. Nonetheless, the average absolute error for the 
estimates for a range of 0.15 to 0.2 is approximately 5.5% (for example, Figure 3.28 illustrates 
the error of estimated parameter σ2  for parameter range of 0.15 to 0.2), which may be 
acceptable for the most of practical applications. 

The above prediction accuracy analyses of the ANN models are based on similar ranges for 
both parameters. However, in real world applications we may have to deal with extremely 
different values for two parameters. Therefore, the robustness of the ANN method for 
different values of parameter regimes for two parameters need to be assessed.  

 
Figure 3.27. Absolute error of estimated parameter b, for the range of 0.0001 – 0.05. 

 
Figure 3.28. Absolute error of estimated parameter σ2 , for the range of 0.15– 0.2. 

 

 

We generate two separate datasets for two extreme cases: 

where σ2  is smaller and b is higher - σ2  ranges of 0.0001 – 0.05 and b ranges of  0.15 – 
0.2; and where σ2  is higher and b is smaller - σ2  ranges of 0.15 – 0.2 and b ranges of  
0.0001 – 0.05. 

A similar method to that which was used for earlier investigations is employed to gauge the 
capability of the ANN model. Figures 3.29 and 3.30 reveal that the trained network has 
predicted the estimates with reasonable precision. In both cases the percentage average 
absolute error is approximately 4%. 
 

 

Figure 3.29. Absolute error of estimated parameter σ2 , for the σ2  range of 0.0001 – 0.05 
and b range of  0.15 – 0.2. 
 

 

Figure 3.30. Absolute error of estimated parameter b, for the σ2  range of 0.15 – 0.2 and b 
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We use the artificial aquifer data to validate the developed hybrid ANN method. We make 
use of the same aquifer dataset in this section to estimate the parameters of SSTM for the 
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aquifer. Additionally, we use the same data to partially validate the stochastic model 
(SSTM) previously using a curve fitting technique to approximate the aquifer parameters. It 
was found that the approximate artificial aquifer parameters are variance, σ2  = 0.01 and 
correlation length, b = 0.01.  

In the present validation, first, we used the known conditions such as initial and boundary 
conditions, and hydraulic gradient to simulate the aquifer using the SSTM. The initial 
concentration at x = 0 is 1.0 unit and it is reduced exponentially with time. Initial values of 
other spatial points are considered as zero. 1681 data patterns are generated for different 
combinations of parameters, σ2  and b. Single standard Wiener process increments are 
retained for every simulation run. Both parameters varied between 0.0001 and 0.2.  

The 1681 generated data patterns are fed into Kohonen’s self-organising map architecture to 
cluster them into four different groups. After classifying them with reasonable accuracy the 
aquifer dataset is fed into the SOM model to identify relevant groups that the data resemble 
the most. In this case, we make an assumption that the effect of the transverse dispersion of 
the flow is reflected in the stochastic flow described by SSTM. As shown in Figure 3.13, the 
data have been collected along five wells at four levels (A to E wells at levels BR, BL, RE and 
YE). We consider the data collected along each well at a certain level as a one-dimensional 
flow path. Hence, we reproduce 20 different one-dimensional datasets. 

Concentration values of the aquifer are normalised to enable to weigh them against the 
normalised SSTM data. 

Initially, a dataset closer to the middle of the aquifer, well C – level RE is chosen for the 
estimation of parameters. An aquifer dataset has to be interpolated to produce missing data 
and fabricate uniform spatial and temporal grids. Having constructed an exact number of 
data for similar spatial and time intervals as for the original ANN model, the aquifer dataset 
is fed into the trained model. The selected dataset is then separated from the larger set and 
trained for the smaller range selected. Based on the findings described previously, a five 
layer standard connections is used with the same activation functions, initial weights, 
momentum and learning rates. 

After completing sufficient training, the artificial aquifer dataset is fed into the ANN model 
to estimate parameters. The estimates that are produced by the model are σ2  = 0.01364 and 
b = 0.01665. The estimates produced by the ANN model show close resemblance to the 
values given by the curve fitting technique. Since we avoid considering lateral dispersions 
for estimation by ANN model, the results may be subject to slight errors.  

We extend the estimation procedure to determine the parameters of the Lincoln University 
aquifer for other flow lines. Since the earlier dataset is closer to the middle of the aquifer, we 
choose the next dataset that is nearer to the boundary of the aquifer. Estimates obtained using 
well A – level YE are σ2  = 0.01483 and b = 0.00912. These estimates are similar to earlier values.  
 

3.10 Dispersivity Based on the SSTM 
To estimate the parameter of the SSTM, we develop a procedure consisting of the following 
steps: (1) we generate a large number of realizations of concentration (usually 100) for a 
particular set of values of σ2  and b using the SSTM; (2) estimate the diffusion coefficient 

 

(D) using the maximum likelihood estimation procedure for the 1-D advection-dispersion 
equation for a given velocity using each of the realization; and (3) take the mean of the 
estimates of D as the dispersivity for the given set of parameters 

We have demonstrated that the SSTM can be used to characterise an experimental 
homogeneous sand aquifer of  5 m width x 10 m length x 2.7 height using a single set of 
values of ( σ2  = 0.01 and b = 0.01) quite satisfactorily. It has also been shown that the 
numerical solutions of SSTM, in conjunction with the parameter estimation methods such as 
maximum likelihood method and artificial neural networks, can be used to estimate reliable 
effective dispersion coefficients, therefore, effective dispersivity, for different scale 
experiments up to 10 meters.  

We use this procedure, which we call stochastic inversive method (SIM) to estimate D for 
other combinations of 2  and b for different flow lengths. Table 3.8 exhibits the estimated 
dispersion coefficients (D) for the range of scales; 1, 10, 20, 30, 50 and 100 m.  

We need to remember that the SSTM is based on the velocity covariance kernel, 
1 2

2
x x

be
 

, 
and a different kernel would give different D values. In addition, SIM is not accurate for 
very noisy realizations because the theory of estimation is strictly valid when noise is small 
and Gaussian (Kutoyants, 1984). 
 

b σ2  
Estimated D 

1 m 10 m 20 m 30 m 50 m 100 m 

0.0001 0.0001 0.01634 0.03502 0.05804 0.07328 0.09447 0.12493 

0.0001 0.001 0.01942 0.03738 0.06126 0.07526 0.09930 0.13006 

0.0001 0.01 0.03844 0.05287 0.08469 0.10502 0.13591 0.18294 

0.0001 0.05 0.04758 0.07799 0.12986 0.16064 0.20645 0.27009 

0.0001 0.1 0.06786 0.08690 0.14214 0.17914 0.23342 0.31205 

0.0001 0.15 0.06968 0.09060 0.15044 0.18790 0.24022 0.31327 

0.0001 0.2 0.07047 0.09259 0.15717 0.20209 0.25756 0.33937 

0.0001 0.25 0.07188 0.09382 0.15905 0.19747 0.25542 0.33289 

0.0001 0.3 0.07258 0.09466 0.16131 0.19895 0.26026 0.34742 

0.001 0.0001 0.01917 0.03738 0.05519 0.07807 0.09628 0.12984 

0.001 0.001 0.03749 0.05289 0.08020 0.11085 0.13335 0.18273 

0.001 0.01 0.06739 0.08698 0.13530 0.18702 0.23005 0.31770 

0.001 0.05 0.07424 0.09650 0.15306 0.21656 0.26236 0.36391 

0.001 0.1 0.08492 0.09910 0.15522 0.21291 0.25431 0.35222 
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In the present validation, first, we used the known conditions such as initial and boundary 
conditions, and hydraulic gradient to simulate the aquifer using the SSTM. The initial 
concentration at x = 0 is 1.0 unit and it is reduced exponentially with time. Initial values of 
other spatial points are considered as zero. 1681 data patterns are generated for different 
combinations of parameters, σ2  and b. Single standard Wiener process increments are 
retained for every simulation run. Both parameters varied between 0.0001 and 0.2.  

The 1681 generated data patterns are fed into Kohonen’s self-organising map architecture to 
cluster them into four different groups. After classifying them with reasonable accuracy the 
aquifer dataset is fed into the SOM model to identify relevant groups that the data resemble 
the most. In this case, we make an assumption that the effect of the transverse dispersion of 
the flow is reflected in the stochastic flow described by SSTM. As shown in Figure 3.13, the 
data have been collected along five wells at four levels (A to E wells at levels BR, BL, RE and 
YE). We consider the data collected along each well at a certain level as a one-dimensional 
flow path. Hence, we reproduce 20 different one-dimensional datasets. 

Concentration values of the aquifer are normalised to enable to weigh them against the 
normalised SSTM data. 

Initially, a dataset closer to the middle of the aquifer, well C – level RE is chosen for the 
estimation of parameters. An aquifer dataset has to be interpolated to produce missing data 
and fabricate uniform spatial and temporal grids. Having constructed an exact number of 
data for similar spatial and time intervals as for the original ANN model, the aquifer dataset 
is fed into the trained model. The selected dataset is then separated from the larger set and 
trained for the smaller range selected. Based on the findings described previously, a five 
layer standard connections is used with the same activation functions, initial weights, 
momentum and learning rates. 

After completing sufficient training, the artificial aquifer dataset is fed into the ANN model 
to estimate parameters. The estimates that are produced by the model are σ2  = 0.01364 and 
b = 0.01665. The estimates produced by the ANN model show close resemblance to the 
values given by the curve fitting technique. Since we avoid considering lateral dispersions 
for estimation by ANN model, the results may be subject to slight errors.  

We extend the estimation procedure to determine the parameters of the Lincoln University 
aquifer for other flow lines. Since the earlier dataset is closer to the middle of the aquifer, we 
choose the next dataset that is nearer to the boundary of the aquifer. Estimates obtained using 
well A – level YE are σ2  = 0.01483 and b = 0.00912. These estimates are similar to earlier values.  
 

3.10 Dispersivity Based on the SSTM 
To estimate the parameter of the SSTM, we develop a procedure consisting of the following 
steps: (1) we generate a large number of realizations of concentration (usually 100) for a 
particular set of values of σ2  and b using the SSTM; (2) estimate the diffusion coefficient 

 

(D) using the maximum likelihood estimation procedure for the 1-D advection-dispersion 
equation for a given velocity using each of the realization; and (3) take the mean of the 
estimates of D as the dispersivity for the given set of parameters 

We have demonstrated that the SSTM can be used to characterise an experimental 
homogeneous sand aquifer of  5 m width x 10 m length x 2.7 height using a single set of 
values of ( σ2  = 0.01 and b = 0.01) quite satisfactorily. It has also been shown that the 
numerical solutions of SSTM, in conjunction with the parameter estimation methods such as 
maximum likelihood method and artificial neural networks, can be used to estimate reliable 
effective dispersion coefficients, therefore, effective dispersivity, for different scale 
experiments up to 10 meters.  

We use this procedure, which we call stochastic inversive method (SIM) to estimate D for 
other combinations of 2  and b for different flow lengths. Table 3.8 exhibits the estimated 
dispersion coefficients (D) for the range of scales; 1, 10, 20, 30, 50 and 100 m.  

We need to remember that the SSTM is based on the velocity covariance kernel, 
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, 
and a different kernel would give different D values. In addition, SIM is not accurate for 
very noisy realizations because the theory of estimation is strictly valid when noise is small 
and Gaussian (Kutoyants, 1984). 
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0.001 0.0001 0.01917 0.03738 0.05519 0.07807 0.09628 0.12984 

0.001 0.001 0.03749 0.05289 0.08020 0.11085 0.13335 0.18273 
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0.001 0.05 0.07424 0.09650 0.15306 0.21656 0.26236 0.36391 

0.001 0.1 0.08492 0.09910 0.15522 0.21291 0.25431 0.35222 
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(SSTM) previously using a curve fitting technique to approximate the aquifer parameters. It 
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conditions, and hydraulic gradient to simulate the aquifer using the SSTM. The initial 
concentration at x = 0 is 1.0 unit and it is reduced exponentially with time. Initial values of 
other spatial points are considered as zero. 1681 data patterns are generated for different 
combinations of parameters, σ2  and b. Single standard Wiener process increments are 
retained for every simulation run. Both parameters varied between 0.0001 and 0.2.  

The 1681 generated data patterns are fed into Kohonen’s self-organising map architecture to 
cluster them into four different groups. After classifying them with reasonable accuracy the 
aquifer dataset is fed into the SOM model to identify relevant groups that the data resemble 
the most. In this case, we make an assumption that the effect of the transverse dispersion of 
the flow is reflected in the stochastic flow described by SSTM. As shown in Figure 3.13, the 
data have been collected along five wells at four levels (A to E wells at levels BR, BL, RE and 
YE). We consider the data collected along each well at a certain level as a one-dimensional 
flow path. Hence, we reproduce 20 different one-dimensional datasets. 

Concentration values of the aquifer are normalised to enable to weigh them against the 
normalised SSTM data. 

Initially, a dataset closer to the middle of the aquifer, well C – level RE is chosen for the 
estimation of parameters. An aquifer dataset has to be interpolated to produce missing data 
and fabricate uniform spatial and temporal grids. Having constructed an exact number of 
data for similar spatial and time intervals as for the original ANN model, the aquifer dataset 
is fed into the trained model. The selected dataset is then separated from the larger set and 
trained for the smaller range selected. Based on the findings described previously, a five 
layer standard connections is used with the same activation functions, initial weights, 
momentum and learning rates. 

After completing sufficient training, the artificial aquifer dataset is fed into the ANN model 
to estimate parameters. The estimates that are produced by the model are σ2  = 0.01364 and 
b = 0.01665. The estimates produced by the ANN model show close resemblance to the 
values given by the curve fitting technique. Since we avoid considering lateral dispersions 
for estimation by ANN model, the results may be subject to slight errors.  

We extend the estimation procedure to determine the parameters of the Lincoln University 
aquifer for other flow lines. Since the earlier dataset is closer to the middle of the aquifer, we 
choose the next dataset that is nearer to the boundary of the aquifer. Estimates obtained using 
well A – level YE are σ2  = 0.01483 and b = 0.00912. These estimates are similar to earlier values.  
 

3.10 Dispersivity Based on the SSTM 
To estimate the parameter of the SSTM, we develop a procedure consisting of the following 
steps: (1) we generate a large number of realizations of concentration (usually 100) for a 
particular set of values of σ2  and b using the SSTM; (2) estimate the diffusion coefficient 

 

(D) using the maximum likelihood estimation procedure for the 1-D advection-dispersion 
equation for a given velocity using each of the realization; and (3) take the mean of the 
estimates of D as the dispersivity for the given set of parameters 

We have demonstrated that the SSTM can be used to characterise an experimental 
homogeneous sand aquifer of  5 m width x 10 m length x 2.7 height using a single set of 
values of ( σ2  = 0.01 and b = 0.01) quite satisfactorily. It has also been shown that the 
numerical solutions of SSTM, in conjunction with the parameter estimation methods such as 
maximum likelihood method and artificial neural networks, can be used to estimate reliable 
effective dispersion coefficients, therefore, effective dispersivity, for different scale 
experiments up to 10 meters.  

We use this procedure, which we call stochastic inversive method (SIM) to estimate D for 
other combinations of 2  and b for different flow lengths. Table 3.8 exhibits the estimated 
dispersion coefficients (D) for the range of scales; 1, 10, 20, 30, 50 and 100 m.  

We need to remember that the SSTM is based on the velocity covariance kernel, 
1 2

2
x x

be
 

, 
and a different kernel would give different D values. In addition, SIM is not accurate for 
very noisy realizations because the theory of estimation is strictly valid when noise is small 
and Gaussian (Kutoyants, 1984). 
 

b σ2  
Estimated D 

1 m 10 m 20 m 30 m 50 m 100 m 

0.0001 0.0001 0.01634 0.03502 0.05804 0.07328 0.09447 0.12493 

0.0001 0.001 0.01942 0.03738 0.06126 0.07526 0.09930 0.13006 

0.0001 0.01 0.03844 0.05287 0.08469 0.10502 0.13591 0.18294 

0.0001 0.05 0.04758 0.07799 0.12986 0.16064 0.20645 0.27009 

0.0001 0.1 0.06786 0.08690 0.14214 0.17914 0.23342 0.31205 

0.0001 0.15 0.06968 0.09060 0.15044 0.18790 0.24022 0.31327 

0.0001 0.2 0.07047 0.09259 0.15717 0.20209 0.25756 0.33937 

0.0001 0.25 0.07188 0.09382 0.15905 0.19747 0.25542 0.33289 

0.0001 0.3 0.07258 0.09466 0.16131 0.19895 0.26026 0.34742 

0.001 0.0001 0.01917 0.03738 0.05519 0.07807 0.09628 0.12984 

0.001 0.001 0.03749 0.05289 0.08020 0.11085 0.13335 0.18273 

0.001 0.01 0.06739 0.08698 0.13530 0.18702 0.23005 0.31770 

0.001 0.05 0.07424 0.09650 0.15306 0.21656 0.26236 0.36391 

0.001 0.1 0.08492 0.09910 0.15522 0.21291 0.25431 0.35222 
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0.001 0.15 0.08671 0.10782 0.17443 0.24632 0.29578 0.40749 

0.001 0.2 0.09482 0.11886 0.18858 0.26626 0.32559 0.44440 

0.001 0.25 0.10701 0.12933 0.20057 0.28264 0.33817 0.46265 

0.001 0.3 0.11008 0.13860 0.21898 0.30438 0.36830 0.50826 

0.01 0.0001 0.02541 0.05302 0.08035 0.11327 0.14376 0.20657 

0.01 0.001 0.05697 0.08773 0.13444 0.19613 0.24574 0.34753 

0.01 0.01 0.07906 0.10003 0.15332 0.22578 0.28589 0.40472 

0.01 0.05 0.09457 0.16952 0.26730 0.38284 0.48728 0.69328 

0.01 0.1 0.11483 0.21334 0.33450 0.48658 0.61670 0.87920 

0.01 0.15 0.13745 0.24065 0.37173 0.54195 0.67787 0.96664 

0.01 0.2 0.15574 0.25994 0.40478 0.58780 0.73802 1.05102 

0.01 0.25 0.18468 0.27120 0.41747 0.59966 0.75083 1.06491 

0.01 0.3 0.18994 0.27751 0.43013 0.62369 0.78586 1.11591 

0.05 0.0001 0.01874 0.07828 0.12467 0.17543 0.22998 0.34209 

0.05 0.001 0.03559 0.10128 0.16245 0.22834 0.29946 0.44681 

0.05 0.01 0.06957 0.15994 0.25211 0.34326 0.45352 0.68013 

0.05 0.05 0.07651 0.26271 0.41319 0.56701 0.75557 1.13054 

0.05 0.1 0.08450 0.29209 0.45872 0.63193 0.83988 1.26490 

0.05 0.15 0.08725 0.29659 0.47462 0.66040 0.88362 1.33137 

0.05 0.2 0.08987 0.29700 0.46840 0.64492 0.85205 1.27735 

0.05 0.25 0.09219 0.29480 0.46693 0.65051 0.87047 1.30991 

0.05 0.3 0.09294 0.29137 0.45748 0.63153 0.83935 1.26428 

0.1 0.0001 0.01797 0.08546 0.14242 0.19805 0.26901 0.42102 

0.1 0.001 0.02971 0.10536 0.16856 0.23555 0.31622 0.48560 

0.1 0.01 0.05925 0.17795 0.29101 0.41507 0.56815 0.88488 

0.1 0.05 0.06452 0.28179 0.45334 0.64813 0.87743 1.35846 

0.1 0.1 0.07232 0.29698 0.48594 0.68641 0.93357 1.45105 

0.1 0.15 0.07485 0.29776 0.47662 0.67992 0.91941 1.42114 

0.1 0.2 0.07587 0.29876 0.48105 0.68887 0.93379 1.44814 

0.1 0.25 0.07608 0.29928 0.48535 0.68808 0.93290 1.45029 

 

Table 3.8. Estimates of D obtained by using a stochastic inverse method for different 
combinations of parameters of SSTM for different flow lengths (velocity = 0.5 m/day). 

 

0.1 0.3 0.07678 0.29791 0.48068 0.67575 0.91363 1.41871 

0.15 0.0001 0.01731 0.08784 0.14149 0.20423 0.28678 0.45299 

0.15 0.001 0.02570 0.10921 0.18047 0.25898 0.35905 0.56336 

0.15 0.01 0.05454 0.16218 0.26117 0.37775 0.52802 0.82934 

0.15 0.05 0.06574 0.24498 0.40463 0.57946 0.81625 1.27853 

0.15 0.1 0.07627 0.24830 0.40532 0.58494 0.82098 1.28586 

0.15 0.15 0.07722 0.24896 0.40327 0.58331 0.82088 1.29136 

0.15 0.2 0.07785 0.25016 0.40435 0.58084 0.81027 1.27489 

0.15 0.25 0.07807 0.25278 0.41587 0.59926 0.83683 1.32106 

0.2 0.3 0.07527 0.27394 0.44577 0.65306 0.93236 1.47560 

0.25 0.0001 0.01694 0.08642 0.14037 0.20553 0.29769 0.47547 

0.25 0.001 0.02292 0.11779 0.19345 0.28363 0.41296 0.65983 

0.25 0.01 0.04829 0.13433 0.22093 0.32259 0.46790 0.74928 

0.25 0.05 0.06187 0.18828 0.30661 0.45919 0.67190 1.08123 

0.25 0.1 0.07470 0.23226 0.37711 0.55761 0.81495 1.30630 

0.25 0.15 0.07537 0.25020 0.41219 0.60827 0.88655 1.42797 

025 0.2 0.07559 0.26583 0.42875 0.63902 0.92617 1.48670 

0.25 0.25 0.07567 0.28102 0.46074 0.68281 0.99764 1.60438 

0.25 0.3 0.07593 0.29162 0.46948 0.69110 1.00010 1.61016 

0.3 0.0001 0.01785 0.08229 0.13906 0.21167 0.31537 0.51395 

0.3 0.001 0.02169 0.11016 0.18535 0.28209 0.42416 0.69259 

0.3 0.01 0.04787 0.14860 0.25288 0.38448 0.58112 0.95251 

0.3 0.05 0.06316 0.22140 0.38149 0.57637 0.87271 1.42535 

0.3 0.1 0.07527 0.25171 0.42778 0.64452 0.97782 1.58726 

0.3 0.15 0.07728 0.27513 0.47773 0.73238 1.10681 1.80695 

0.3 0.2 0.07799 0.28755 0.49003 0.73771 1.11325 1.81448 

0.3 0.25 0.07824 0.29803 0.50666 0.77144 1.17052 1.91032 

0.3 0.3 0.07911 0.30699 0.53747 0.80802 1.22297 1.98500 
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0.05 0.1 0.08450 0.29209 0.45872 0.63193 0.83988 1.26490 
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0.1 0.001 0.02971 0.10536 0.16856 0.23555 0.31622 0.48560 
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0.1 0.05 0.06452 0.28179 0.45334 0.64813 0.87743 1.35846 
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Table 3.8. Estimates of D obtained by using a stochastic inverse method for different 
combinations of parameters of SSTM for different flow lengths (velocity = 0.5 m/day). 

 

0.1 0.3 0.07678 0.29791 0.48068 0.67575 0.91363 1.41871 

0.15 0.0001 0.01731 0.08784 0.14149 0.20423 0.28678 0.45299 

0.15 0.001 0.02570 0.10921 0.18047 0.25898 0.35905 0.56336 
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0.15 0.05 0.06574 0.24498 0.40463 0.57946 0.81625 1.27853 
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0.15 0.25 0.07807 0.25278 0.41587 0.59926 0.83683 1.32106 
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0.3 0.3 0.07911 0.30699 0.53747 0.80802 1.22297 1.98500 
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We can summarise some of the estimates in the plots in Figures 3.31, 3.32 and 3.33 as functions 
of the scales of the experiments. What these plots show is that, for a given set of parameters, 
the SSTM would give the estimates of dispersivity increasing with the flow length. 

As discussed in chapter 1, Pickens and Grisak (1981), and Lallemand-Barres and Peaudecerf 
(1978, cited in Fetter, 1999) showed that the scale dependency of L  has a linear 
relationship of L = 0.1 L, where L is the mean travel distance. However, Pickens and 
Grisak (1981) recognised that the linear increase of dispersivity with the mean travel 
distance was unlikely for large travel distances. It was expected that tracer migration 
between aquifer layers could cause a reduction in the magnitude of the proportionality 
constants, since the transverse migration would tend to reduce the spreading effect caused 
by the stratification. Field measurements obtained by Gelhar (1986) illustrate that the scale 
dependence relationship between L and the flow length is non-linear (Figure 3.34). 

To evaluate the comparative estimates of D obtained from the inverse method for the SSTM 
parameters and the field measurements observed by Gelhar (1986), we plot them on the 
same graph (Figure 3.35 – 3.37). Only reliable observations of Figure 3.34 (indicated by 
larger symbols) are considered. Since the parameter estimated from the inverse approach is 
D, L  values of Figure 3.34 are converted to D ( LD v ). Furthermore, we plot the 
relationship of L = 0.1 L in the same graph to assess our estimates. Three different ranges 
of b are chosen. Figure 3.35 shows the estimates for smaller b, 0.0001 m, for four values of 
σ2  (0.0001, 0.05, 0.2 and 0.3). Figures 3.36 and 3.37 illustrate the similar σ2  values for a 
mid range value b, 0.01 m, and larger b, 0.3, respectively.  

 
Figure 3.31. D for the parameter combination of b = 0.0001 and 2  = 0.0001. 

 
Figure 3.32 D for the parameter combination of b = 0.001 and 2  = 0.0001. 

 

 
Figure 3.33. D for the combination of b = 0.3 and σ2  = 0.0001. 
 

 
Figure 3.34. Field measured values of longitudinal dispersivity as a function of the scale of 
measurement. The largest circles represent the most reliable data. The estimated dispersivity 
from the SSTM are given by the squares. (Source: Gelhar (1986).) 

Figures 3.35 – 3.37 demonstrate that corresponding D values obtained for SSTM parameters 
do not agree with the relationship of L = 0.1 L. However, for mid and larger ranges of b, 
estimated D s are in reasonable agreement with the most of the reliable field measurements 
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Figure 3.35. Estimated D values for b = 0.0001 m for range of σ2  (0.0001 – 0.3), D= 0.1 L v, 
and reliable field measurements observed by Gelhar (1986) for different flow lengths. 

 
Figure 3.36. Estimated D values for b = 0.01 m for range of σ2  (0.0001 – 0.3), D= 0.1Lv, and 
reliable field measurements observed by Gelhar (1986) for different flow lengths. 

 
Figure 3.37 Estimated D values for b = 0.1 m for range of 2  (0.0001 – 0.3), D= 0.1Lv, and 
reliable field measurements observed by Gelhar (1986) for different flow lengths. 

 

observed by Gelhar (1986). Data in Figure 3.35 represent a solute transport system with very 
low stochasticity, which may not be realistic in real world aquifers. Figures 3.38 and 3.39  

may be a better representation of an actual aquifer. Note that the L values of Figure 3.36 
were obtained from many sites around the world. The estimated data that agrees with field 
measurements may be obtained from a variety of soil and heterogeneity. 

To simplify the computational burden, we make use of the fact that the expected value of  
mean ( )d t  is zero and the variance is given by equation (3.4.5). Instead of calculating  

( )d t  for each x within a, we take the mean of [ ]Var d  over the length a, 
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Therefore,  2[ ( ( ))]E Var d t t   .                            (3.10.4) 

To illustrate this approximation, the number of eigenvalues required for each a (M) is 
determined by calculating a number of roots that are sufficient for the Mth eigenvalue to 
reach a value , where  was set to be 5% of the value of the first eigenvalue. The 
relationship between a and the number of roots required is approximately 150 * a, for a = 1 
to 10 000 metres. For example, when 2 =1.0 and b=0.01, M = 
{150,750,1500,7500,15000,75000,150000,300000,450000}, then for a = 

{1,5,10,50,100,500,1000,2000,3000}. 
1

M

i
i



 = {0.8762, 4.2920, 8.5443, 42.5518, 85, 04312, 

425.0663, 850.1131, 1710.6345, and 2684.8313}. This shows the extent of the computational 
problem without the approximation for ( )d t . We have computed ( [ ( ( ))]E Var d t / t  ) 
using equation (3.10.1) for different values of a with b=0.01, t =0.001,  0.01x   , 

2 =1.0, and 150* a number of eigen values. For each a , the computation was done using a 
set of routines written in the Python™ language with the Numeric extension for fast array 
operations. Computing ( [ ( ( ))]E Var d t / t  ) for larger values of a is a computationally 
expensive operation with the computing times increasing exponentially with a. As an 
example, for a = 1000 meters, it takes approximately 200 minutes, with a = 2000 taking 
approximately 760 minutes on a 1.8 GHZ computer. For a 
={1,5,10,50,100,500,1000,2000,3000}, the corresponding values for [ ( ( ))]E Var d t / t  are 
{0.8653, 0.8647,0.8630,0.8615,0.8611,0.8610,0.8610,0.8655, 0.8983}, respectively, and we can 
expect that for an infinite number of eigen functions it will approach 1.0. Therefore, the 
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Figure 3.36. Estimated D values for b = 0.01 m for range of σ2  (0.0001 – 0.3), D= 0.1Lv, and 
reliable field measurements observed by Gelhar (1986) for different flow lengths. 

 
Figure 3.37 Estimated D values for b = 0.1 m for range of 2  (0.0001 – 0.3), D= 0.1Lv, and 
reliable field measurements observed by Gelhar (1986) for different flow lengths. 
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problem without the approximation for ( )d t . We have computed ( [ ( ( ))]E Var d t / t  ) 
using equation (3.10.1) for different values of a with b=0.01, t =0.001,  0.01x   , 

2 =1.0, and 150* a number of eigen values. For each a , the computation was done using a 
set of routines written in the Python™ language with the Numeric extension for fast array 
operations. Computing ( [ ( ( ))]E Var d t / t  ) for larger values of a is a computationally 
expensive operation with the computing times increasing exponentially with a. As an 
example, for a = 1000 meters, it takes approximately 200 minutes, with a = 2000 taking 
approximately 760 minutes on a 1.8 GHZ computer. For a 
={1,5,10,50,100,500,1000,2000,3000}, the corresponding values for [ ( ( ))]E Var d t / t  are 
{0.8653, 0.8647,0.8630,0.8615,0.8611,0.8610,0.8610,0.8655, 0.8983}, respectively, and we can 
expect that for an infinite number of eigen functions it will approach 1.0. Therefore, the 
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Figure 3.35. Estimated D values for b = 0.0001 m for range of σ2  (0.0001 – 0.3), D= 0.1 L v, 
and reliable field measurements observed by Gelhar (1986) for different flow lengths. 

 
Figure 3.36. Estimated D values for b = 0.01 m for range of σ2  (0.0001 – 0.3), D= 0.1Lv, and 
reliable field measurements observed by Gelhar (1986) for different flow lengths. 

 
Figure 3.37 Estimated D values for b = 0.1 m for range of 2  (0.0001 – 0.3), D= 0.1Lv, and 
reliable field measurements observed by Gelhar (1986) for different flow lengths. 
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spatially averaged ( )d t  is a Gaussian random variable with zero-mean and 2 t   -
variance, which can be readly incorporated into the numerical solution scheme for SSTM.  

Because of the high computational times involved, instead of using the SIM procedure, we 
estimate the dispersivity for a computational  experiment by limiting ourselves to the 
SSTM parameters obtained for experimental sand aquifer (i.e., 2 =0.01; b=0.01 m ) in the 
following way: 

(a) Set the initial and boundary conditions as,   

( ,0) 0, 0
(0, ) 1.0, 0
( , ) 0, 0

C x x
C t t
C t t

 
 

  
  and 

(b) Solve equation (21) assuming mean velocity to be 1.0 m/day, 

(c) Use a realization of C(x,t) at x=a to estimate the dispersivity,  L   , using equation (3.10.5) 
(Fetter,  1999)  given  below using  nonlinear  regression:  ( Mathematica®    was  used  for  this 
purpose.)   

( , ) 0.5 exp
2 2LL L

a t a taC x t erfc erfc
t t 
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.                                (3.10.5) 

Equation (3.10.5) is the analytical solution for the one-dimensional advection-dispersion 
equation for the initial and boundary conditions given in (a) above. To get a reliable estimate 
of  L  for given a, we need to have x-axis length of 1.5 a meters and should have C(x,t) 
realization upto 2 a days. For example, to obtain an estimate of  L  for a = 3000 meters, we 
need to run the simulation of a domain of 4500 meters for 6000 days. However, to reduce the 
computational time, one can use higher  x  and  t  values than ideally suitable in solving 
SPDEs thereby sacrificing the reliability. ( x =0.01 m and t =0.00001 days would give very 
good solutions to SSTM.) However, this approximate procedure is only valid for the velocity 
covariance kernel used in this chapter. This procedure is not as reliable as the SIM. 

We overlay some representative values of dispersivities from the SSTM on a graph of the 
field measurements obtained by Gelhar (1986) from different experiments in Figure 3.34, 
which shows that SSTM could model the multi-scale dispersion with a single set of 
parameters, 2 =0.01; b=0.01 m, that would give rise to similar non-linear scale dependency 
of “deterministic” dispersivity evaluated using the realisations of SSTM.  

In Figure 3.34, the larger (hollow) circles depict the most reliable experimental data whereas 
the smaller (filled) circles give the data with lesser experimental accuracy. The dotted lines 
show the bounded region of experimental data. The estimated dispersivity values (filled 
squares) from SSTM are within the bounded region and follow similar trends to the most 
reliable experimental data. We estimated the dispersivities from SSTM using only a limited 
number of computational experiments, and each computational experiment produces a 
random realisation. Therefore, the estimated dispersivities are stochastic quantities just like the 
experimental values, and it is reasonable to expect discrepancies within the bounded region.
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4.1 Introduction 
In the previous chapter we derived a stochastic solute transport model (equation (3.2.14)); 
we developed the methods to estimate its parameters, and investigated its behaviour 
numerically. We see some promise to characterise the solute dispersion at different flow 
lengths, and there are some indications that equation (3.2.14) produce the behaviours that 
would be interpreted as capturing the scale-dependency of dispersivity. However, there are 
weaknesses in the model as evident from Chapter 3. These weaknesses, which are discussed 
in the next section, are stemming from the very assumptions we made in the development 
of the model. One could argue that by relaxing the Fickian assumptions, we are actually 
complicating the problem quite unnecessarily. But as we see in Chapter 3 and in this 
chapter, we develop a new mathematical and computational machinery at a more 
fundamental level for the hydrodynamic dispersion in saturated porous media. 

We see that equation (3.2.14) is based on assuming a covariance kernel for the velocity 
fluctuations, and the solution is dependent on solving an integral equation (see equation 
(3.3.11)). In Chapter 3, the integral equation is solved analytically for the covariance kernel 
given by equation (3.3.10) to obtain the eigen values and eigen functions, but analytical 
solutions of integral equations can not be easily derived for any arbitrary covariance kernel. 
This limits the flexibility of the SSTM in employing a suitable covariance kernel independent 
of the ability to solve relevant integral equations. Further, we need to solve the SSTM in a 
much more computationally efficient manner, and estimating dispersivity by always 
relating to the deterministic advection-dispersion equation is not quite satisfactory. 
Therefore, we seek to develop a more general form of equation (3.2.14) in this chapter. 
 

4.2 The Development of the Generalized Model 
We restate equation (3.2.14) in the differential form: 
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We use the same notations and symbols as in Chapter 3. In equation (4.2.2),  md t  is 

calculated by summing m terms of (  j j jf db t ), and for each eigen function, jf , there is an 

associated independent Wiener process increment (  jdb t ). 
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(c) Use a realization of C(x,t) at x=a to estimate the dispersivity,  L   , using equation (3.10.5) 
(Fetter,  1999)  given  below using  nonlinear  regression:  ( Mathematica®    was  used  for  this 
purpose.)   
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Equation (3.10.5) is the analytical solution for the one-dimensional advection-dispersion 
equation for the initial and boundary conditions given in (a) above. To get a reliable estimate 
of  L  for given a, we need to have x-axis length of 1.5 a meters and should have C(x,t) 
realization upto 2 a days. For example, to obtain an estimate of  L  for a = 3000 meters, we 
need to run the simulation of a domain of 4500 meters for 6000 days. However, to reduce the 
computational time, one can use higher  x  and  t  values than ideally suitable in solving 
SPDEs thereby sacrificing the reliability. ( x =0.01 m and t =0.00001 days would give very 
good solutions to SSTM.) However, this approximate procedure is only valid for the velocity 
covariance kernel used in this chapter. This procedure is not as reliable as the SIM. 

We overlay some representative values of dispersivities from the SSTM on a graph of the 
field measurements obtained by Gelhar (1986) from different experiments in Figure 3.34, 
which shows that SSTM could model the multi-scale dispersion with a single set of 
parameters, 2 =0.01; b=0.01 m, that would give rise to similar non-linear scale dependency 
of “deterministic” dispersivity evaluated using the realisations of SSTM.  

In Figure 3.34, the larger (hollow) circles depict the most reliable experimental data whereas 
the smaller (filled) circles give the data with lesser experimental accuracy. The dotted lines 
show the bounded region of experimental data. The estimated dispersivity values (filled 
squares) from SSTM are within the bounded region and follow similar trends to the most 
reliable experimental data. We estimated the dispersivities from SSTM using only a limited 
number of computational experiments, and each computational experiment produces a 
random realisation. Therefore, the estimated dispersivities are stochastic quantities just like the 
experimental values, and it is reasonable to expect discrepancies within the bounded region.
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we developed the methods to estimate its parameters, and investigated its behaviour 
numerically. We see some promise to characterise the solute dispersion at different flow 
lengths, and there are some indications that equation (3.2.14) produce the behaviours that 
would be interpreted as capturing the scale-dependency of dispersivity. However, there are 
weaknesses in the model as evident from Chapter 3. These weaknesses, which are discussed 
in the next section, are stemming from the very assumptions we made in the development 
of the model. One could argue that by relaxing the Fickian assumptions, we are actually 
complicating the problem quite unnecessarily. But as we see in Chapter 3 and in this 
chapter, we develop a new mathematical and computational machinery at a more 
fundamental level for the hydrodynamic dispersion in saturated porous media. 

We see that equation (3.2.14) is based on assuming a covariance kernel for the velocity 
fluctuations, and the solution is dependent on solving an integral equation (see equation 
(3.3.11)). In Chapter 3, the integral equation is solved analytically for the covariance kernel 
given by equation (3.3.10) to obtain the eigen values and eigen functions, but analytical 
solutions of integral equations can not be easily derived for any arbitrary covariance kernel. 
This limits the flexibility of the SSTM in employing a suitable covariance kernel independent 
of the ability to solve relevant integral equations. Further, we need to solve the SSTM in a 
much more computationally efficient manner, and estimating dispersivity by always 
relating to the deterministic advection-dispersion equation is not quite satisfactory. 
Therefore, we seek to develop a more general form of equation (3.2.14) in this chapter. 
 

4.2 The Development of the Generalized Model 
We restate equation (3.2.14) in the differential form: 

         , , , mdC S V x t C x t dt S C x t d t  ,                 (4.2.1) 

where    
1

m

m j j j
j

d t f db t  


  .             (4.2.2) 

We use the same notations and symbols as in Chapter 3. In equation (4.2.2),  md t  is 

calculated by summing m terms of (  j j jf db t ), and for each eigen function, jf , there is an 

associated independent Wiener process increment (  jdb t ). 
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This Wiener process increment is -correlated in time only, and for a particular point in 
time, it , the Wiener process  ,B f  generates the Wiener increments  j idb t for each of 

the eigen functions. At another time, kt ,  ,B f  generates  j kdb t  for each of the eigen 
function. However, as the Wiener increments are Gaussian with t  variance (see Chapter 
2), i.e.,  j idb t  and   j kdb t  are essentially the same stochastic variable. 

The number of terms that need to be summed up, m, has to be determined by considering 
the contribution each pair of eigen value i  and corresponding eigen function jf  make to 
approximate the covariance. 

Instead of solving the integral equation to obtain eigen function, we assume the following 
function to be a generalized eigen function. (We will discuss the method to obtain this 
function for any given kernel in section 4.3.) 

We define, 
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where  jf x  is the jth eigen function of a given covariance kernel, 0 jg , 1 jg  and kjg  are 
numerical coefficients,  jkr  and jks  are the coefficients in the exponent where k is an 
integer index ranging from 2 to jp . jp  is determined by the computational method in 
section 4.3. 

The differential operator is defined by, 

2
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xhS
x x
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, 

and the second term on the right hand side of equation (4.2.1) can be written as, 
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after substituting equation (4.2.2) into the second terms of equation (4.2.1) and taking 

j and  jdb t out of the operand. We can now expand the differential, 
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Let us evaluate the derivatives separately; 
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Now the derivative within the summation in equation (4.2.6) is evaluated. 
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Substituting this derivation back to equation (4.2.6) and defining,  ,j x t  for eigen 
function j, 
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Then taking the derivative of  ,j x t  with respect to x, 
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This Wiener process increment is -correlated in time only, and for a particular point in 
time, it , the Wiener process  ,B f  generates the Wiener increments  j idb t for each of 

the eigen functions. At another time, kt ,  ,B f  generates  j kdb t  for each of the eigen 
function. However, as the Wiener increments are Gaussian with t  variance (see Chapter 
2), i.e.,  j idb t  and   j kdb t  are essentially the same stochastic variable. 

The number of terms that need to be summed up, m, has to be determined by considering 
the contribution each pair of eigen value i  and corresponding eigen function jf  make to 
approximate the covariance. 

Instead of solving the integral equation to obtain eigen function, we assume the following 
function to be a generalized eigen function. (We will discuss the method to obtain this 
function for any given kernel in section 4.3.) 

We define, 
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where  jf x  is the jth eigen function of a given covariance kernel, 0 jg , 1 jg  and kjg  are 
numerical coefficients,  jkr  and jks  are the coefficients in the exponent where k is an 
integer index ranging from 2 to jp . jp  is determined by the computational method in 
section 4.3. 

The differential operator is defined by, 
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and the second term on the right hand side of equation (4.2.1) can be written as, 
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after substituting equation (4.2.2) into the second terms of equation (4.2.1) and taking 

j and  jdb t out of the operand. We can now expand the differential, 
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Let us evaluate the derivatives separately; 
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Now the derivative within the summation in equation (4.2.6) is evaluated. 
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Substituting this derivation back to equation (4.2.6) and defining,  ,j x t  for eigen 
function j, 
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Then taking the derivative of  ,j x t  with respect to x, 
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This Wiener process increment is -correlated in time only, and for a particular point in 
time, it , the Wiener process  ,B f  generates the Wiener increments  j idb t for each of 

the eigen functions. At another time, kt ,  ,B f  generates  j kdb t  for each of the eigen 
function. However, as the Wiener increments are Gaussian with t  variance (see Chapter 
2), i.e.,  j idb t  and   j kdb t  are essentially the same stochastic variable. 

The number of terms that need to be summed up, m, has to be determined by considering 
the contribution each pair of eigen value i  and corresponding eigen function jf  make to 
approximate the covariance. 

Instead of solving the integral equation to obtain eigen function, we assume the following 
function to be a generalized eigen function. (We will discuss the method to obtain this 
function for any given kernel in section 4.3.) 

We define, 
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where  jf x  is the jth eigen function of a given covariance kernel, 0 jg , 1 jg  and kjg  are 
numerical coefficients,  jkr  and jks  are the coefficients in the exponent where k is an 
integer index ranging from 2 to jp . jp  is determined by the computational method in 
section 4.3. 

The differential operator is defined by, 
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and the second term on the right hand side of equation (4.2.1) can be written as, 
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after substituting equation (4.2.2) into the second terms of equation (4.2.1) and taking 

j and  jdb t out of the operand. We can now expand the differential, 
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Let us evaluate the derivatives separately; 

 

   

       

         

2

2

2

0 1
2

0 1
2

0 1 1
2

,

, , , ,

, ,
, , .

j
kj kj

j
kj kj

j
kj kj

p
r x s

j j kj
k

p
r x s

j j kj
k

p
r x s

j j j kj
k

C x t g g x g e
x

g C x t g xC x t g C x t e
x

C x t C x t
g g x g C x t g C x t e

x x x

 



 



 



  
        
 

   
   

             






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Now the derivative within the summation in equation (4.2.6) is evaluated. 
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Then taking the derivative of  ,j x t  with respect to x, 
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This Wiener process increment is -correlated in time only, and for a particular point in 
time, it , the Wiener process  ,B f  generates the Wiener increments  j idb t for each of 

the eigen functions. At another time, kt ,  ,B f  generates  j kdb t  for each of the eigen 
function. However, as the Wiener increments are Gaussian with t  variance (see Chapter 
2), i.e.,  j idb t  and   j kdb t  are essentially the same stochastic variable. 

The number of terms that need to be summed up, m, has to be determined by considering 
the contribution each pair of eigen value i  and corresponding eigen function jf  make to 
approximate the covariance. 

Instead of solving the integral equation to obtain eigen function, we assume the following 
function to be a generalized eigen function. (We will discuss the method to obtain this 
function for any given kernel in section 4.3.) 

We define, 
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where  jf x  is the jth eigen function of a given covariance kernel, 0 jg , 1 jg  and kjg  are 
numerical coefficients,  jkr  and jks  are the coefficients in the exponent where k is an 
integer index ranging from 2 to jp . jp  is determined by the computational method in 
section 4.3. 

The differential operator is defined by, 
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and the second term on the right hand side of equation (4.2.1) can be written as, 
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after substituting equation (4.2.2) into the second terms of equation (4.2.1) and taking 

j and  jdb t out of the operand. We can now expand the differential, 
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Let us evaluate the derivatives separately; 
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Now the derivative within the summation in equation (4.2.6) is evaluated. 
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Substituting this derivation back to equation (4.2.6) and defining,  ,j x t  for eigen 
function j, 
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Then taking the derivative of  ,j x t  with respect to x, 
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Therefore, equation (4.2.5) can be expressed as, 
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                (4.2.12) 

We see that, in equation (4.2.9), the coefficients,    0,1,2ijP x i   are functions of x only. 

If we recall the premise on which stochastic calculus is discussed in Chapter 2,  ,C x t  is a 
continuous, non-differentiable function, and equation (4.2.1) should be interpreted as an Ito 
stochastic differential, which essentially mean equation (4.2.1) has to be understood only in 
the following form: 
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i

C x t A C x t t x dt B C x t t x dw   ,             (4.2.13) 

where   , , ,A C x t t x  is the drift coefficient and   , , ,iB C x t t x  are diffusion coefficients 

of the Ito diffusion, equation (4.2.13); here  idw t  are increments of the standard Wiener 
process. Ito diffusion are an interesting class of stochastic integrals and has many 
advantageous properties of practical importance (Klebaner, 1998).  

 

The expression of stochastic partial differential equation (equation (4.2.1)) as an Ito diffusion 
in time would give us the mathematical justification in solving it using Ito calculus. In our 
development, the eigen functions,  jf x  are continuous, differentiable functions so are the 

coefficients,   0,1,2ijP x i  . Therefore, the Ito stochastic product rule is the same as the 
product rule in standard calculus (Klebaner, 1998), and we employ this fact in the previous 
derivations. Further, we assume that the mean velocity  ,V x t  is a continuous, 
differentiable function which is a reasonable assumption given that the average velocity in 
aquifer situation is based on the hydraulic conductivity, porosity and the pressure gradient 
across a large enough domain within a much larger total flow length. 

Therefore, we can write the drift term of equation (4.2.1) as follows: 
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By substituting equations (4.2.14) and (4.2.9) into equation (4.2.1), 
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and then, 
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where, 
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Therefore, equation (4.2.5) can be expressed as, 
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We see that, in equation (4.2.9), the coefficients,    0,1,2ijP x i   are functions of x only. 

If we recall the premise on which stochastic calculus is discussed in Chapter 2,  ,C x t  is a 
continuous, non-differentiable function, and equation (4.2.1) should be interpreted as an Ito 
stochastic differential, which essentially mean equation (4.2.1) has to be understood only in 
the following form: 
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C x t A C x t t x dt B C x t t x dw   ,             (4.2.13) 

where   , , ,A C x t t x  is the drift coefficient and   , , ,iB C x t t x  are diffusion coefficients 

of the Ito diffusion, equation (4.2.13); here  idw t  are increments of the standard Wiener 
process. Ito diffusion are an interesting class of stochastic integrals and has many 
advantageous properties of practical importance (Klebaner, 1998).  

 

The expression of stochastic partial differential equation (equation (4.2.1)) as an Ito diffusion 
in time would give us the mathematical justification in solving it using Ito calculus. In our 
development, the eigen functions,  jf x  are continuous, differentiable functions so are the 

coefficients,   0,1,2ijP x i  . Therefore, the Ito stochastic product rule is the same as the 
product rule in standard calculus (Klebaner, 1998), and we employ this fact in the previous 
derivations. Further, we assume that the mean velocity  ,V x t  is a continuous, 
differentiable function which is a reasonable assumption given that the average velocity in 
aquifer situation is based on the hydraulic conductivity, porosity and the pressure gradient 
across a large enough domain within a much larger total flow length. 

Therefore, we can write the drift term of equation (4.2.1) as follows: 
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By substituting equations (4.2.14) and (4.2.9) into equation (4.2.1), 
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Therefore, equation (4.2.5) can be expressed as, 
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We see that, in equation (4.2.9), the coefficients,    0,1,2ijP x i   are functions of x only. 

If we recall the premise on which stochastic calculus is discussed in Chapter 2,  ,C x t  is a 
continuous, non-differentiable function, and equation (4.2.1) should be interpreted as an Ito 
stochastic differential, which essentially mean equation (4.2.1) has to be understood only in 
the following form: 
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where   , , ,A C x t t x  is the drift coefficient and   , , ,iB C x t t x  are diffusion coefficients 

of the Ito diffusion, equation (4.2.13); here  idw t  are increments of the standard Wiener 
process. Ito diffusion are an interesting class of stochastic integrals and has many 
advantageous properties of practical importance (Klebaner, 1998).  

 

The expression of stochastic partial differential equation (equation (4.2.1)) as an Ito diffusion 
in time would give us the mathematical justification in solving it using Ito calculus. In our 
development, the eigen functions,  jf x  are continuous, differentiable functions so are the 

coefficients,   0,1,2ijP x i  . Therefore, the Ito stochastic product rule is the same as the 
product rule in standard calculus (Klebaner, 1998), and we employ this fact in the previous 
derivations. Further, we assume that the mean velocity  ,V x t  is a continuous, 
differentiable function which is a reasonable assumption given that the average velocity in 
aquifer situation is based on the hydraulic conductivity, porosity and the pressure gradient 
across a large enough domain within a much larger total flow length. 

Therefore, we can write the drift term of equation (4.2.1) as follows: 
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By substituting equations (4.2.14) and (4.2.9) into equation (4.2.1), 
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We see that, in equation (4.2.9), the coefficients,    0,1,2ijP x i   are functions of x only. 

If we recall the premise on which stochastic calculus is discussed in Chapter 2,  ,C x t  is a 
continuous, non-differentiable function, and equation (4.2.1) should be interpreted as an Ito 
stochastic differential, which essentially mean equation (4.2.1) has to be understood only in 
the following form: 

       , , , , , , ,i i
i

C x t A C x t t x dt B C x t t x dw   ,             (4.2.13) 

where   , , ,A C x t t x  is the drift coefficient and   , , ,iB C x t t x  are diffusion coefficients 

of the Ito diffusion, equation (4.2.13); here  idw t  are increments of the standard Wiener 
process. Ito diffusion are an interesting class of stochastic integrals and has many 
advantageous properties of practical importance (Klebaner, 1998).  

 

The expression of stochastic partial differential equation (equation (4.2.1)) as an Ito diffusion 
in time would give us the mathematical justification in solving it using Ito calculus. In our 
development, the eigen functions,  jf x  are continuous, differentiable functions so are the 

coefficients,   0,1,2ijP x i  . Therefore, the Ito stochastic product rule is the same as the 
product rule in standard calculus (Klebaner, 1998), and we employ this fact in the previous 
derivations. Further, we assume that the mean velocity  ,V x t  is a continuous, 
differentiable function which is a reasonable assumption given that the average velocity in 
aquifer situation is based on the hydraulic conductivity, porosity and the pressure gradient 
across a large enough domain within a much larger total flow length. 

Therefore, we can write the drift term of equation (4.2.1) as follows: 
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By substituting equations (4.2.14) and (4.2.9) into equation (4.2.1), 
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where, 
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In equation (4.2.15), 0 1,dI dI  and 2dI  are Ito stochastic differentials with respect to t as 
well, and we can rewrite a generalized SSTM given by equation (4.2.1) in terms of another 
set of stochastic differentials, 
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We note that 0 1,dI dI  and 2dI  are only functions of the mean velocity,  ,V x t , and 

  0,1,2ijP x i  ; and  ,C x t  is separated out in equation (4.2.19), which can be interpreted 

as  ,C x t  and its spatial derivatives are modulating  0,1,2idI i  s. iI  are Ito stochastic 
integrals of the form given by equation (4.2.13), and can be expressed as, 
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where, 
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   2 , , ,
2
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 
                                 (4.2.23) 

          
 0 0 ,j j jG P x                                (4.2.24) 

 1 1 ,j j jG P x                               (4.2.25) 

and  2 2 .j j jG P x                       (4.2.26) 

As the stochastic integrals,  ,iI x t  are dependent only on the behaviours of  ,V x t , the 

eigen values of the velocity covariance kernel and  ijP x  functions, i.e.,  ,iI x t s are only 
dependent on the velocity fields within the porous media. A corollary to that is if we know 
the velocity fields and characterize them as stochastic differentials, we can then

 

develop an empirical SSTM based on equation (4.2.19). We explore the behaviours of 
 ,iI x t in section 4.5. Next we discuss the derivation of the generalized eigen function, the 

form of which is given by equation (4.2.3). 
 

4.3 A Computational Approach for Eigen Functions 
We discuss the approach in this section to obtain the eigen functions for any given kernel in 
the form given by equation (4.2.3). We calculate the covariance kernel matrix (COV) for any 
given kernel function and COV can be decomposed in to eigen values and the 
corresponding eigen vectors using singular value decomposition method or principle 
component analysis. This can easily be done using mathematical software. Then we use the 
eigen vectors to develop eigen functions using neural networks. 

Suppose that we already have an exponential covariance kernel as given by,  

2
1 2( , )

y

bq x x e


  ,                           (4.3.1) 

where 1 2y x x  , 

      b is the correlation length , and  

      2  is the variance when 1 2x x . 

In terms of 1x  and 2x , both of them have the domain of [0,L]; we equally divide this range 
into (n) equidistant intervals of  x  for both variables. Thus, the particular position for 1x  
and 2x  can be displayed as: 

1 , for 0,1, 2, ,kx k x k n    , and                     (4.3.2) 

2 , for 0,1, 2, ,jx j x j n    .                         (4.3.3) 

By substituting equations (4.3.2) and (4.3.3) into equation (4.3.1), we can obtain, 

   
( )

2 , 1, 1, for
k j x

bCOV e k j nk j 
 



   .                 (4.3.4) 

In equation (4.3.4), COV is the covariance matrix which contains all the variances and 
covariances, and it is a symmetric matrix with size n n  where n is the number of 
intervals. The diagonals of COV represent variances where 1x  is equal to 2x  and off-
diagonals represent covariances between any two different discrete 1x  and 2x .  

After the covariance matrix is defined, we can transform the COV matrix into a new matrix 
with new scaled variables according to Karhunen-Loève (KL) theorem. In this new matrix, 
all the variables are independent of each other having their own variances. i.e, the 
covariance between any two new variables is zero. The new matrix can be represented by 
using the Karhunen-Loève theorem as, 
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In equation (4.2.15), 0 1,dI dI  and 2dI  are Ito stochastic differentials with respect to t as 
well, and we can rewrite a generalized SSTM given by equation (4.2.1) in terms of another 
set of stochastic differentials, 
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We note that 0 1,dI dI  and 2dI  are only functions of the mean velocity,  ,V x t , and 

  0,1,2ijP x i  ; and  ,C x t  is separated out in equation (4.2.19), which can be interpreted 

as  ,C x t  and its spatial derivatives are modulating  0,1,2idI i  s. iI  are Ito stochastic 
integrals of the form given by equation (4.2.13), and can be expressed as, 
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where, 
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 0 0 ,j j jG P x                                (4.2.24) 

 1 1 ,j j jG P x                               (4.2.25) 

and  2 2 .j j jG P x                       (4.2.26) 

As the stochastic integrals,  ,iI x t  are dependent only on the behaviours of  ,V x t , the 

eigen values of the velocity covariance kernel and  ijP x  functions, i.e.,  ,iI x t s are only 
dependent on the velocity fields within the porous media. A corollary to that is if we know 
the velocity fields and characterize them as stochastic differentials, we can then

 

develop an empirical SSTM based on equation (4.2.19). We explore the behaviours of 
 ,iI x t in section 4.5. Next we discuss the derivation of the generalized eigen function, the 

form of which is given by equation (4.2.3). 
 

4.3 A Computational Approach for Eigen Functions 
We discuss the approach in this section to obtain the eigen functions for any given kernel in 
the form given by equation (4.2.3). We calculate the covariance kernel matrix (COV) for any 
given kernel function and COV can be decomposed in to eigen values and the 
corresponding eigen vectors using singular value decomposition method or principle 
component analysis. This can easily be done using mathematical software. Then we use the 
eigen vectors to develop eigen functions using neural networks. 

Suppose that we already have an exponential covariance kernel as given by,  

2
1 2( , )

y

bq x x e


  ,                           (4.3.1) 

where 1 2y x x  , 

      b is the correlation length , and  

      2  is the variance when 1 2x x . 

In terms of 1x  and 2x , both of them have the domain of [0,L]; we equally divide this range 
into (n) equidistant intervals of  x  for both variables. Thus, the particular position for 1x  
and 2x  can be displayed as: 

1 , for 0,1, 2, ,kx k x k n    , and                     (4.3.2) 

2 , for 0,1, 2, ,jx j x j n    .                         (4.3.3) 

By substituting equations (4.3.2) and (4.3.3) into equation (4.3.1), we can obtain, 
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In equation (4.3.4), COV is the covariance matrix which contains all the variances and 
covariances, and it is a symmetric matrix with size n n  where n is the number of 
intervals. The diagonals of COV represent variances where 1x  is equal to 2x  and off-
diagonals represent covariances between any two different discrete 1x  and 2x .  

After the covariance matrix is defined, we can transform the COV matrix into a new matrix 
with new scaled variables according to Karhunen-Loève (KL) theorem. In this new matrix, 
all the variables are independent of each other having their own variances. i.e, the 
covariance between any two new variables is zero. The new matrix can be represented by 
using the Karhunen-Loève theorem as, 
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In equation (4.2.15), 0 1,dI dI  and 2dI  are Ito stochastic differentials with respect to t as 
well, and we can rewrite a generalized SSTM given by equation (4.2.1) in terms of another 
set of stochastic differentials, 
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We note that 0 1,dI dI  and 2dI  are only functions of the mean velocity,  ,V x t , and 

  0,1,2ijP x i  ; and  ,C x t  is separated out in equation (4.2.19), which can be interpreted 

as  ,C x t  and its spatial derivatives are modulating  0,1,2idI i  s. iI  are Ito stochastic 
integrals of the form given by equation (4.2.13), and can be expressed as, 
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eigen values of the velocity covariance kernel and  ijP x  functions, i.e.,  ,iI x t s are only 
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the velocity fields and characterize them as stochastic differentials, we can then
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form of which is given by equation (4.2.3). 
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We discuss the approach in this section to obtain the eigen functions for any given kernel in 
the form given by equation (4.2.3). We calculate the covariance kernel matrix (COV) for any 
given kernel function and COV can be decomposed in to eigen values and the 
corresponding eigen vectors using singular value decomposition method or principle 
component analysis. This can easily be done using mathematical software. Then we use the 
eigen vectors to develop eigen functions using neural networks. 

Suppose that we already have an exponential covariance kernel as given by,  
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where 1 2y x x  , 

      b is the correlation length , and  

      2  is the variance when 1 2x x . 

In terms of 1x  and 2x , both of them have the domain of [0,L]; we equally divide this range 
into (n) equidistant intervals of  x  for both variables. Thus, the particular position for 1x  
and 2x  can be displayed as: 
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By substituting equations (4.3.2) and (4.3.3) into equation (4.3.1), we can obtain, 
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In equation (4.3.4), COV is the covariance matrix which contains all the variances and 
covariances, and it is a symmetric matrix with size n n  where n is the number of 
intervals. The diagonals of COV represent variances where 1x  is equal to 2x  and off-
diagonals represent covariances between any two different discrete 1x  and 2x .  

After the covariance matrix is defined, we can transform the COV matrix into a new matrix 
with new scaled variables according to Karhunen-Loève (KL) theorem. In this new matrix, 
all the variables are independent of each other having their own variances. i.e, the 
covariance between any two new variables is zero. The new matrix can be represented by 
using the Karhunen-Loève theorem as, 
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In equation (4.2.15), 0 1,dI dI  and 2dI  are Ito stochastic differentials with respect to t as 
well, and we can rewrite a generalized SSTM given by equation (4.2.1) in terms of another 
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We note that 0 1,dI dI  and 2dI  are only functions of the mean velocity,  ,V x t , and 

  0,1,2ijP x i  ; and  ,C x t  is separated out in equation (4.2.19), which can be interpreted 
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As the stochastic integrals,  ,iI x t  are dependent only on the behaviours of  ,V x t , the 

eigen values of the velocity covariance kernel and  ijP x  functions, i.e.,  ,iI x t s are only 
dependent on the velocity fields within the porous media. A corollary to that is if we know 
the velocity fields and characterize them as stochastic differentials, we can then

 

develop an empirical SSTM based on equation (4.2.19). We explore the behaviours of 
 ,iI x t in section 4.5. Next we discuss the derivation of the generalized eigen function, the 

form of which is given by equation (4.2.3). 
 

4.3 A Computational Approach for Eigen Functions 
We discuss the approach in this section to obtain the eigen functions for any given kernel in 
the form given by equation (4.2.3). We calculate the covariance kernel matrix (COV) for any 
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      b is the correlation length , and  

      2  is the variance when 1 2x x . 
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In equation (4.3.4), COV is the covariance matrix which contains all the variances and 
covariances, and it is a symmetric matrix with size n n  where n is the number of 
intervals. The diagonals of COV represent variances where 1x  is equal to 2x  and off-
diagonals represent covariances between any two different discrete 1x  and 2x .  

After the covariance matrix is defined, we can transform the COV matrix into a new matrix 
with new scaled variables according to Karhunen-Loève (KL) theorem. In this new matrix, 
all the variables are independent of each other having their own variances. i.e, the 
covariance between any two new variables is zero. The new matrix can be represented by 
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where n is the total number of variables in the new matrix; j  represents the variance of the 
thj  rescaled variable and j  is also the thj  eigen values of the COV1 matrix; and ( )j x  is 

the eigen vectors of the COV1 matrix. The number of eigen vectors depends on the number 
of discrete intervals. This decomposition of the COV1 matrix which is called the singular 
value decomposition method can easily be done by using mathematical or statistical 
software.  

Once we have the eigen vectors, the next step is to develop suitable neural networks to 
represent or mimic these eigen vectors. In fact, it is not necessary to simulate all the eigen 
vectors. The number of neural networks is decided by the number of eigen values which are 
significant in the KL representation. In some situations, for example, we may have 100 eigen 
values in the KL representation but only 4 significant eigen values. Then, we just create four 
networks to simulate these four eigenvectors which correspond to the most significant eigen 
values. The way we decide on the number of significant eigen values is based on the 
following equation: 
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where [ ]R i  represents the contribution of the thi  eigen value in capturing the total original 
variance, k  represents the number of the significant eigen values, and Th  is the 
contribution of all significant eigen values in capturing  the total original variance. In this 
chapter, Th  is chosen to vary between 0.95 and 1. This means that if the total number of 
eigen values is 100 from the KL expansion and the contribution of the first 4 eigen values 
takes up more than 95% of the original variance, there are only four individual neural 
networks that need to be developed. 

The main factors that need to be decided in the development of neural networks are the 
number of neurons needed, the structure of neural networks and the learning algorithm. 
The number of neurons in neural networks is case-dependent. It is difficult to define the 
number of neurons before the learning stage. In general, the number of neurons is adjusted 
during training until the network output converges on the actual output based on least 
square error minimization. A neural network with an optimum number of neurons will 
reach the desired minimum error level more quickly than other networks with more 
complex structures. The proposed neural network is a Radial Basis Function (RBF) Network. 
The approximation function is the Gaussian Function given below:  
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where r  and s  are constants. In this symmetric function, s  defines the centre of 
symmetry and r  defines the sharpness of Gaussian function.  

Based on numerical values of the significant eigen vectors, several RBF networks with one 
input ( x ) and one output (eigen vector) are developed to approximate each significant 

 

eigenvector. Now let us have the following function the form of which is previously given in 
equation (4.2.3) to define the RBF network, 
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where 0g  is the bias weight of the network, 1g  and kg  is the 1st  and thk  weight of the 
network, and p  is the total number of neurons in this RBF network (the reason for using 
p+1 for the summation is that k starts at 2). Figure 4.1 displays the architecture of a neural 
network for the case of one-dimensional input and  x  is used to represent the output of 
the neural network given by equation (4.3.9). 

After we decide the input-output mapping and architecture of deterministic neural 
networks, the next step is to choose the learning algorithm, i.e., the method used to update 
weights and other parameters of networks. The backpropagation algorithm is used as the 
learning algorithm in this work. The backpropagation algorithm is used to minimize the 
network’s global error between the actual network outputs and their corresponding desired 
outputs. The backpropagation leaning method is based on gradient descent that updates 
weights and other parameters through partial derivatives of the network’s global error with 
respect to the weights and parameters. A stable approach is to change the weights and 
parameters in the network after the whole sample has been presented and to repeat this 
process iteratively until the desired minimum error level is reached. This is called batch (or 
epoch based) learning.    
    

     
Figure 4.1. Architecture of the one-dimensional RBF network given by equation (4.3.9). 

Their values are based on the summation over all training examples of the partial derivative 
of the network’s global error with respect to the weights and parameters in the whole 
sample. 
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Figure 4.1. Architecture of the one-dimensional RBF network given by equation (4.3.9). 

Their values are based on the summation over all training examples of the partial derivative 
of the network’s global error with respect to the weights and parameters in the whole 
sample. 
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Now let us assume that the actual network output is T ( ( )x ), the desired network output 
is Z ( ( )x ). The network’s global error between the network output and actual output is 
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where iT  and iZ  are the actual output and the network output for the thi  training 
pattern, and N is the total number of training patterns. The multiplication by 1 / 2  is a 
mathematical convenience (Samarasinghe, 2006). 

The method of modifying a weight or a parameter is the same for all weights and 
parameters so we show the change to an arbitrary weight as an example. The change to a 
single weight of a connection between neuron j and neuron i  in the RBF network based on 
batch learning can be defined as, 
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where   is called the learning rate with a constant value between 0 and 1. It controls the 
step size and the speed of weight adjustments. k  is the total number of input vectors. The 
process that propagates the error information backwards into the network and updates 
weights and the parameters of network is repeated until the network minimizes the global 
error between the actual network outputs and their corresponding desired outputs. In the 
learning process, the weights and the parameters of the network converge on the optimal 
values.  

To illustrate the computational approach, we give some examples here. The first covariance 
kernel is chosen to be 
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where 2
1 2y x x  , 

      b is constant , and  

      2  is variance when 1 2x x . 

This covariance kernel needs a relatively lower number of significant eigen values to capture 
95% or more of the total variance; therefore we choose to work with this kernel and later we 
use two other forms of kernels: one discussed previously in Chapter 3 and other one is 
empirically based. 

Figure 4.2 displays the covariance matrix based on the covariance kernel (equation (4.3.12)) 
when 2 1 and 0.1b   . 

Table 4.1 reports all eigen values in the KL representation of the covariance matrix. The 
most of the eigen values is equal to zero and these eigen values can not affect the covariance 
matrix and just a few are significant and capture the total variance in the original data. 

 

Therefore, we need to focus on the significant eigen values as well as their corresponding 
eigen functions. There are 6 significant eigen values whose contribution takes up 99.9035% 
of the original variance and table 4.1 shows the value of each significant eigen value and the 
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n x , i th eigen function; and N is the total number of 
eigen values. 

Figure 4.3 displays all the six eigen functions and Table 4.2 gives their functional forms. 
Figure 4.3 shows the eigen functions given by the KL theory (dots), obtained by solving the 
corresponding integral equation, overlaid with the outputs from the neural networks (lines), 
and the approximation functions are the same as the theoretically derived functions. 
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and the approximation functions are the same as the theoretically derived functions. 
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Table 4.2. The final formula from the developed RBF networks to approximate each 
significant eigen vector and their corresponding eigen values. 

 

Figure 4.4. The covariance matrix of equation (4.3.12) when 2 1   and b = 0.2. 
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Eigen values Values Contribution as a proportion 
1  61.242 0.606 

2  28.820 0.285 
3  8.747 0.087 

4  1.853 0.018 
5  0.29597 0.00293 

Table 4.3. Relative amounts of variance in the data captured by each significant eigenvalue 
obtained from the KL expansion of equation (4.3.12) when 2 1  and b=0.2. 
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4.39837 ( 0.179304)
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x
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e
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2

2 2
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x

x x
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e e

 

   
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x

x x

x e

e e

 
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  
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Table 4.4. The eigen functions from the developed RBF networks to approximate each 
significant eigen vector for the kernel given by equation (4.3.12) when 2 1   and b=0.2. 

 
Figure 4.5. The approximated six eigen functions from BRF networks for equation (4.3.12) 
when 2 1 and 0.2b   . 

From the previous two examples, we have seen that the covariance kernel given by equation 
(4.3.12) provides a relative small number of eigen functions and therefore one may say that 
the kernel given by equation (4.3.12) has fast convergence. This is quite a desirable property 
to have, especially in terms of computational efficiency of the algorithms. In the next 
example, we find the eigen values and the eigen functions of the covariance kernel we use in 

 

the development of the SSTM in Chapter 3. In Chapter 3 the covariance kernel given by 
equation (4.3.14) - we reproduce the equation here- constitutes an integral equation which 
we solve analytically to obtain eigen values and eigen functions: 

1 2
2

1 2( , )
x x

bg x x e
 


 ,                         (4.3.14) 

when 2  and b have the same meanings as before. 

This covariance kernel is depicted graphically in Figure 4.6. 

 
Figure 4.6. The covariance matrix calculated by the given equation (4.3.14) under the 
condition 2 1  . 
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1  18.745 0.186 

2  15.681 0.155 

3  12.218 0.121 

4  9.241 0.091 
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7  4.149 0.041 

8  3.293 0.033 
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9  2.661 0.026 

10  2.188 0.022 

11  1.826 0.018 

12  1.545 0.015 

13  1.323 0.013 

14  1.145 0.011 

15  0.9999 0.0099 

16  0.881 0.0087 

17  0.782 0.0077 

18  0.699 0.0069 

19  0.628 0.0062 

20  0.568 0.0056 

21  0.516 0.0051 

22  0.471 0.0047 

23  0.432 0.0043 

24  0.398 0.0039 

25  0.367 0.0036 

26  0.341 0.0034 

27  0.317 0.0031 

28  0.295 0.0029 

29  0.276 0.0027 

30  0.259 0.0026 

31  0.244 0.0024 

32  0.229 0.0023 

Table 4.5. The eigen values for the kernel given by equation (4.3.14) (32 significant eigen 
values which take up 94.29% of original variance) 

 

 

In Table 4.5, we give the 32 eigen values which capture up to 94% of the only original 
variance; Table 4.6 gives only the first six eigen functions obtained from the networks for 
brevity. Figure 4.7 shows the first eight eigen functions. 
 

Eigen 
values Values The analytical forms of eigen functions  ( )i x  for  0,1x  

1  18.745 
21.19444 ( 0.5)160.238941 7.92548 10 0.368191 xx e     

2  15.681 
2

2

5.79605 ( 0.830952 )

5.79605 ( 0.169048)
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0.23274

x

x

x e

e
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 
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2

2 2
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x

x x

x e

e e
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 
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2 2
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x

x x

x e

e e

 
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  
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5  6.976 
2

2 2

9.19718 ( 0.611767 )10

7.12542 ( 0.5) 9.19718 ( 0.388233)

1.10289 1.12328 10 55.2051

99.6664 55.2051

x

x x

x e

e e

 

   

   
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2

2 2

2

17.354 ( 0.590219)

4.883 ( 0.215442 ) 1.85592 ( 0.0783536)

1.30206 ( 0.0105042)

822.58 496.01 6.74448
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3181.28

 

   

 

 

 



x

x x

x

x e

e e
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7  4.149 

2

2 2

2

14.2086 ( 0.592557 )

13.3089 ( 0.577832 ) 10.1574 ( 0.488994)

13.1355 ( 0.350845)

2.16846 0.148883 1451.69

2198.81 1013.85

358.254 

x

x x

x

x e

e e

e

 

   

 

  

 



 

8  3.293 

2

2 2

2 2

9.37148 ( 0.813402 )

8.63616 ( 0.807765) 5.03775 ( 0.766933)

13.5694 ( 0.3499) 22.3578 ( 0.307475)

31.8294 108.195 6255.59

7941.31 1838.53

282.847 52.6999

x

x x

x x

x e

e e

e e

 

   

   

  

 

 

 

Table 4.6. The final formula from the developed RBF networks to approximate the first 8 
significant eigen vectors and their corresponding eigen values. 
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Figure 4.7. The approximated first eight eigen functions from RBF network for the equation 
(4.3.14) when 2 1   and 0.1b   . 

We can also use an empirically derived covariance kernel. As an example, let us consider 
equation (4.3.15). 
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Equation (4.3.15) is depicted in Figure 4.8, and Figure 4.9 shows the corresponding 
covariance matrix. 

Table 4.7 gives the most significant eigen values (the first nine values); Table 4.8 shows the 
functional forms of eigen functions and Figure 4.10 shows the graphical forms of eigen 
functions. 

 
Figure 4.8. An empirical distribution. 

 
Figure 4.9. The covariance matrix given by the empirical distribution (equation (4.3.15)). 
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Eigen values Values Contribution as a proportion 

1  66.022 0.6537 

2  24.216 0.2398 

3  3.163 0.0313 

4  1.989 0.0197 

5  0.447 0.0189 

6  0.445 0.00443 

7  0.395 0.0044 

8  0.390 0.00391 

9  0.201 0.00386 
Table 4.7. Relative amount of variance in the data captured by each significant eigen value for 
the kernel in equation (4.3.15). (9 significant eigen values capture 98% of original variance) 
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Table 4.8. The final formulas from the developed RBF networks to approximate each 
significant eigenvector and their corresponding eigen values. 

 
Figure 4.10. The approximated nine eigenfunctions from the BRF networks for the kernel 
given in equation (4.3.15). 

We have seen that some covariance kernels provide relatively small number of significant 
eigen values for the given domain [0,1] and whereas for others, obtaining the significant 
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7  0.395 0.0044 
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Table 4.7. Relative amount of variance in the data captured by each significant eigen value for 
the kernel in equation (4.3.15). (9 significant eigen values capture 98% of original variance) 
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Table 4.8. The final formulas from the developed RBF networks to approximate each 
significant eigenvector and their corresponding eigen values. 

 
Figure 4.10. The approximated nine eigenfunctions from the BRF networks for the kernel 
given in equation (4.3.15). 

We have seen that some covariance kernels provide relatively small number of significant 
eigen values for the given domain [0,1] and whereas for others, obtaining the significant 
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significant eigenvector and their corresponding eigen values. 

 
Figure 4.10. The approximated nine eigenfunctions from the BRF networks for the kernel 
given in equation (4.3.15). 

We have seen that some covariance kernels provide relatively small number of significant 
eigen values for the given domain [0,1] and whereas for others, obtaining the significant 
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Table 4.8. The final formulas from the developed RBF networks to approximate each 
significant eigenvector and their corresponding eigen values. 

 
Figure 4.10. The approximated nine eigenfunctions from the BRF networks for the kernel 
given in equation (4.3.15). 

We have seen that some covariance kernels provide relatively small number of significant 
eigen values for the given domain [0,1] and whereas for others, obtaining the significant 
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eigen functions could be tedious. The main point in this exercise is to show that any given 
covariance kernel can be used to obtain the eigen functions of the form given by equation 
(4.2.3). A corollary to this statement is that if we express the eigen functions in the form 
given by equation (4.2.3), then we can assume that these is an underlying covariance kernel 
responsible for these eigen functions. In deriving the SSTM in the form of equation (4.2.15), 
we assume that the form of equation (4.2.3) is given. But we see now that any covariance-
kernel driven SSTM can be represented by equation (4.2.15). 
 

4.4 Effects of Different Kernels and xh  
We have seen in sections 4.2 and 4.3 that the SSTM developed in Chapter 2 and 3 can be 
recasted so that we could employ any given velocity kernel. In fact, we can even use an 
empirical set of data for the velocity covariance. We can anticipate that the generalized 
SSTM would behave quite similar to the one developed in Chapter 2 given that same 
covariance kernel is used. We compute the 95% confidence intervals for the concentration 
breakthrough curves (concentration realizations) at x = 0.5 m when the flow length is 1 m 
to compare the differences that occur in using different kernels in the generalized SSTM. The 
mean velocity is kept constant at 0.5 m/day, and the covariance kernel given by equation 
(4.3.14) is used to obtain Figure 4.11, and Figure 4.12 is obtained by employing the kernel, 

 21 2
2

x x
be

 


. First, the confidence intervals shown in Figure 4.11 are very similar to those 
ones could obtain by using the SSTM developed in Chapter 2. Comparing the effects of the 
kernels on the behaviours of the generalized SSTM, we see that the confidence interval 
bandwidth in Figure 4.12 is almost non-existent. The reason is that the kernel used has a 
faster convergence when decomposed in the eigen vector space. For smaller values of  , 
the randomness in the concentration realization are minimal but as 2  is increased, we see 
increased randomness in the realizations. This also allows us to use the kernel used in 
Figure 4.12 for larger scale computations. We conclude that the choice of the velocity 
covariance kernel has a significant effect on the behaviour of the generalized SSTM 
increasing the flexibility of the SSTM. 
 

2  b  

The Kernel 1 

1 2
2

1 2( , )
x x
bCov x x e



  

The Kernel 2 

  2
1 2

2
1 2( , )

x x
bCov x x e



  

LD    LD    

0.0001 0.1 0.02305 0.04611 0.02460 0.04921 

0.001 0.1 0.02699 0.05199 0.02513 0.05025 

0.01 0.1 0.03059 0.06117 0.02782 0.05361 

0.1 0.1 0.06852 0.13705 0.06407 0.12815 

Table 4.9. Comparison of the dispersivity values for the two kernels. 

 

 

We investigate the effects of the kernels on the dispersivity values; we compute them using 
the stochastic inverse method (SIM) discussed in Chapter 3. Table 4.9 shows the results. For 
all practical purposes they are essentially the same. The mechanic of dispersion is more 
influenced by 2  for a given b  or if both 2  and b  are allowed to vary, on both 2  
and b . The mechanics of dispersion in general can also be assumed to be influenced by the 
mathematical form of the kernel. The both of these kernels are exponential decaying 
functions. Because of the case of computations, we continue to use kernel 2 in Table 4.9 in 
the most of the work discussed in this book. 
 

 
Figure 4.11. The generalized SSTM 95% confidence intervals for the concentration 

realization for the kernel, 
1 2

2
x x
be

 


 when 2 = 0.1 and b =0.1. 

 
Figure 4.12. The generalized SSTM 95% confidence intervals for the concentration 

realization for the kernel, 
 21 2

2
x x
be

 


 when 2 = 0.1 and b =0.1. 
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eigen functions could be tedious. The main point in this exercise is to show that any given 
covariance kernel can be used to obtain the eigen functions of the form given by equation 
(4.2.3). A corollary to this statement is that if we express the eigen functions in the form 
given by equation (4.2.3), then we can assume that these is an underlying covariance kernel 
responsible for these eigen functions. In deriving the SSTM in the form of equation (4.2.15), 
we assume that the form of equation (4.2.3) is given. But we see now that any covariance-
kernel driven SSTM can be represented by equation (4.2.15). 
 

4.4 Effects of Different Kernels and xh  
We have seen in sections 4.2 and 4.3 that the SSTM developed in Chapter 2 and 3 can be 
recasted so that we could employ any given velocity kernel. In fact, we can even use an 
empirical set of data for the velocity covariance. We can anticipate that the generalized 
SSTM would behave quite similar to the one developed in Chapter 2 given that same 
covariance kernel is used. We compute the 95% confidence intervals for the concentration 
breakthrough curves (concentration realizations) at x = 0.5 m when the flow length is 1 m 
to compare the differences that occur in using different kernels in the generalized SSTM. The 
mean velocity is kept constant at 0.5 m/day, and the covariance kernel given by equation 
(4.3.14) is used to obtain Figure 4.11, and Figure 4.12 is obtained by employing the kernel, 
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. First, the confidence intervals shown in Figure 4.11 are very similar to those 
ones could obtain by using the SSTM developed in Chapter 2. Comparing the effects of the 
kernels on the behaviours of the generalized SSTM, we see that the confidence interval 
bandwidth in Figure 4.12 is almost non-existent. The reason is that the kernel used has a 
faster convergence when decomposed in the eigen vector space. For smaller values of  , 
the randomness in the concentration realization are minimal but as 2  is increased, we see 
increased randomness in the realizations. This also allows us to use the kernel used in 
Figure 4.12 for larger scale computations. We conclude that the choice of the velocity 
covariance kernel has a significant effect on the behaviour of the generalized SSTM 
increasing the flexibility of the SSTM. 
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0.1 0.1 0.06852 0.13705 0.06407 0.12815 

Table 4.9. Comparison of the dispersivity values for the two kernels. 

 

 

We investigate the effects of the kernels on the dispersivity values; we compute them using 
the stochastic inverse method (SIM) discussed in Chapter 3. Table 4.9 shows the results. For 
all practical purposes they are essentially the same. The mechanic of dispersion is more 
influenced by 2  for a given b  or if both 2  and b  are allowed to vary, on both 2  
and b . The mechanics of dispersion in general can also be assumed to be influenced by the 
mathematical form of the kernel. The both of these kernels are exponential decaying 
functions. Because of the case of computations, we continue to use kernel 2 in Table 4.9 in 
the most of the work discussed in this book. 
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4.5 Analysis of Ito Diffusions  ,iI x t  

We have developed the Ito diffusions  ,iI x t  in section 4.2 (see equation (4.2.20)), and we 
rewrite the diffusions in the differential form: 

       
1

, , , ,
m

i i ij j
j

dI x t F x t dt G x t db t


    for  0,1,2i   and  1,..., .j m     (4.5.1) 

In equation (4.5.1),  ,iF x t  are given by equations (4.2.21), (4.2.22) and (4.2.23), which can 
be considered as regular continuous and differentiable functions of x  and t  because we 
assumed the mean velocity   ,V x t  to be a continuous, differentiable function with finite 

variation in the development of the SSTM. 

For many situations, we can assume   ,V x t  to be a function of x  alone, and some 

regions of x  it can be considered as a constant. ijG ’s are continuous differentiable 
functions of x  only, with finite variation with respect to x  (see equations (4.2.24) to 
(4.2.26)). Therefore, for a fixed value of x , we can write equation (4.5.1) as, 

     , , ,
1

,
m

x i x i x ij j
j

dI t F t dt G db t


     0,1,2i   and  1,..., .j m         (4.5.2) 

From the derivation of equation (4.2.19), we see that the  jdb t s  are the same standard 

Wiener process increments for each ,x iI  and each  jdb t : equation (4.5.2) is a diffusion in 

m dimensions, and we can write  xI t  as a multidimensional stochastic differential 
equation (SDE) (Klebaner, 1998). 

In coordinate form we can write, 
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               (4.5.3) 

In matrix form, we can write, 

   x x xdI t F dt G dB t                            (4.5.4) 
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The drift and diffusion coefficients of the multi-dimensional SDEs are vector xF  and the 
matrix xG  is independent of t , and the drift coefficient xF  can also be assumed to be 
independent of t  in many cases. Therefore, equation (4.2.4) is a linear multi-dimensional 
SDE. The associated with this SDE, the matrix a  called the diffusion matrix can be defined,   

  Tx xa G G                               (4.5.5) 

when superscript T  indicates the transposed matrix. Under the conditions such as the 
coefficients use locally Lipschitz, equation (4.5.4) has strong solutions (see Theorem 6.22 in 
Klebaner (1998)). 

The diffusion matrix, a , is important to obtain the covariation of xI : 

     , ,i j i j ijd I I t dI t dI t a dt                             (4.5.6) 
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  0,1,2,i   and 0,1,2.j   

a  is a symmetric matrix. 

In obtaining equation (4.2.6), we employ the fact that independent Brownian motions have 
quadratic covariation. The most important use of quadratic covariation is that we can 
determine the movement of  xI t  with respect to time using the following well known 
results for Ito diffusions, which are also continuous Markov processes. It can be shown that, 
for an infinitesimal time increment, 

   
      , , , ,x i x i x iE I t I t F                           (4.5.7) 
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The drift and diffusion coefficients of the multi-dimensional SDEs are vector xF  and the 
matrix xG  is independent of t , and the drift coefficient xF  can also be assumed to be 
independent of t  in many cases. Therefore, equation (4.2.4) is a linear multi-dimensional 
SDE. The associated with this SDE, the matrix a  called the diffusion matrix can be defined,   
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when superscript T  indicates the transposed matrix. Under the conditions such as the 
coefficients use locally Lipschitz, equation (4.5.4) has strong solutions (see Theorem 6.22 in 
Klebaner (1998)). 

The diffusion matrix, a , is important to obtain the covariation of xI : 

     , ,i j i j ijd I I t dI t dI t a dt                             (4.5.6) 

when,  

2 2
,

1

2
, ,

1

if 
,

if

 

m

x ik
K

ij m

x ik x jk
K

G i j
a

G G i j










 

 





  0,1,2,i   and 0,1,2.j   
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In obtaining equation (4.2.6), we employ the fact that independent Brownian motions have 
quadratic covariation. The most important use of quadratic covariation is that we can 
determine the movement of  xI t  with respect to time using the following well known 
results for Ito diffusions, which are also continuous Markov processes. It can be shown that, 
for an infinitesimal time increment, 
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functions of x  only, with finite variation with respect to x  (see equations (4.2.24) to 
(4.2.26)). Therefore, for a fixed value of x , we can write equation (4.5.1) as, 
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From the derivation of equation (4.2.19), we see that the  jdb t s  are the same standard 

Wiener process increments for each ,x iI  and each  jdb t : equation (4.5.2) is a diffusion in 

m dimensions, and we can write  xI t  as a multidimensional stochastic differential 
equation (SDE) (Klebaner, 1998). 
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The drift and diffusion coefficients of the multi-dimensional SDEs are vector xF  and the 
matrix xG  is independent of t , and the drift coefficient xF  can also be assumed to be 
independent of t  in many cases. Therefore, equation (4.2.4) is a linear multi-dimensional 
SDE. The associated with this SDE, the matrix a  called the diffusion matrix can be defined,   

  Tx xa G G                               (4.5.5) 

when superscript T  indicates the transposed matrix. Under the conditions such as the 
coefficients use locally Lipschitz, equation (4.5.4) has strong solutions (see Theorem 6.22 in 
Klebaner (1998)). 

The diffusion matrix, a , is important to obtain the covariation of xI : 

     , ,i j i j ijd I I t dI t dI t a dt                             (4.5.6) 

when,  

2 2
,

1

2
, ,

1

if 
,

if

 

m

x ik
K

ij m

x ik x jk
K

G i j
a

G G i j










 

 





  0,1,2,i   and 0,1,2.j   

a  is a symmetric matrix. 

In obtaining equation (4.2.6), we employ the fact that independent Brownian motions have 
quadratic covariation. The most important use of quadratic covariation is that we can 
determine the movement of  xI t  with respect to time using the following well known 
results for Ito diffusions, which are also continuous Markov processes. It can be shown that, 
for an infinitesimal time increment, 
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The drift and diffusion coefficients of the multi-dimensional SDEs are vector xF  and the 
matrix xG  is independent of t , and the drift coefficient xF  can also be assumed to be 
independent of t  in many cases. Therefore, equation (4.2.4) is a linear multi-dimensional 
SDE. The associated with this SDE, the matrix a  called the diffusion matrix can be defined,   

  Tx xa G G                               (4.5.5) 
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In obtaining equation (4.2.6), we employ the fact that independent Brownian motions have 
quadratic covariation. The most important use of quadratic covariation is that we can 
determine the movement of  xI t  with respect to time using the following well known 
results for Ito diffusions, which are also continuous Markov processes. It can be shown that, 
for an infinitesimal time increment, 
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and when i j , equation (4.6.8) becomes, 
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As the solution to the SDE equation (4.5.4) exists, from equation (4.5.8) it is seen that xF  is 
the form of xI  at time t , and a  is the coefficients in the covariance of the infinitesimal 
displacement from xI . Using those results we can construct the realizations of  xI t  by 

using the fact that  xI t  are Gaussian processes. By dividing a given time interval into 
equidistant infinitesimal time interval,  , we can generate normally distributed xdI  
increments for a given x , using the mean and variance obtained by equations (4.5.7) and 
(4.5.9). It should be noted that in generating the standard Wiener process increments, we use 
the zero-mean and  -variance Gaussian increments. 

We take   0xI t   when 0t   because  
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Figure 4.13 shows some realizations of  xI t  when 0.5x  . 
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The increments of  xI t  are Gaussian random variables having the mean and variance 
given by equations (4.5.7) and (4.5.8). 

The SDE given in equation (4.5.4) is linear and strong solutions do exist. When ,x iF  are not 
functions of t , then the solution of equation (4.5.4) is given by 

   .x x xI t F t G B t                           (4.5.11) 

 

Equation (4.5.11) provides realizations which have the statistical properties of the 
realizations depicted in Figure 4.13. The vector  B t  consists of independent Wiener 
processes; Figure 4.14 shows some realizations based on equation (4.5.11). 

The statistical properties of these realizations are essentially the same to those of the 
realizations given in Figure 4.13. 

As we have mentioned earlier,  xI t  are only dependent on the velocity patterns in the 
medium, and it is important ask the question how the correlation length, b , affects the 

realization of  xI t . (In this discussion we focus on the kernel 
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 only). It is seen 
that   (the square root of the variance of the kernel) acts as the multiplication factor to the 
diffusion form of the SDE given in equation (4.5.11). However, the correlation length b  
influence  xI t  nonlinearly through xG , but this influence can always be captured by 
suitable changes in   . Therefore, we can keep b at a constant value that is appropriate for 
the porous medium under study. We found that b =0.1 is suitable for our computational 
experiments in this chapter as well as in chapters 6, 7 and 8. 
 

 

Figure 4.14. Some realization of  xI t  for fixed ,x iF s  when 0.5x   based on equation (4.5.11). 
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and when i j , equation (4.6.8) becomes, 
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In the above equations, m  is the number of significant eigen functions and is dependent on 
b . From equation (4.2.24), (4.2.25) and (4.2.26), we see that ijG  are related to  ijP x  which 
are given by equations (4.2.10), (4.2.11) and (4.2.12). For 0.05b  , 8m  , Figure 4.15 give 

 ijP x s  when 0.0 1.0x  . The following observations can be noted from Figure 4.15: (a) 

ijP s , therefore ijG s  are sinesodial in nature; (b) amplitutes of ijP s  increase with m  (eigen 
function number) but as eigen values decrease with m , ijG s  diminish with m  (not 
shown); (c) 2 jP s  are insignificant in comparision to 0 jP s  and 1 jP s  and therefore could be 
ignored; and (d) frequency of ijP  functions increases as m  increase. 

 
Figure 4.15. The approximated  ijP x s  given by equations (4.2.10), (4.2.11) and (4.2.12) 
when 0.0 1.0x   for 0.05b  . 

 

 
Figure 4.16. The approximated  ijP x s  given by equations (4.2.10), (4.2.11) and (4.2.12) 
when 0.0 1.0x   for 0.1b  . 

When 0.1b  , the required number of significant eigen values is reduced to 6 and ijP  
functions are depicted in Figure 4.16. Similar observation as before, when 0.05b  , can be 
made. Figure 4.17 shows ijP  functions when 0.2b  , and now the number of significant 
eigen values is 5 (i.e, 5m  ). The same observations can be made for ijP  s when 0.2b  . 

We produce the 3-dimensional graphs of ijP  when 0,1i   and 1,2,3,4,5j   in Figure 
4.18 and Figure 4.19; b  is plotted as the y-axis. As one could expect, it is reasonable to 
assume that function surface of ijP  is a smooth, continuous function of b . We can define 
continuous functions of x  and b  to define 2 jP s . 
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Figure 4.17. The approximated  ijP x s  given by equations (4.2.10), (4.2.11) and (4.2.12) 
when 0.0 1.0x   for 0.2b  . 

 

 

 

 

 

 
Figure 4.18. The 3-dimensional graphs of ijP  when 0i   and 1,2,3,4,5j   
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Figure 4.18. The 3-dimensional graphs of ijP  when 0i   and 1,2,3,4,5j   
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Figure 4.19. The 3-dimensional graphs of ijP  when 1i   and 1,2,3,4,5j   

As we recall that the SSTM can be expressed as a diffusion process with martingale 
properties in time dimensions when another set of diffusion processes,  xI t  are used: 
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             (4.5.13) 

We need to interpret this equation as follows: the solute concentration at a given point x  
consists of a combination of three diffusion processes which are solely based on velocity. 

The spatial influence on the concentration is mediated through the prevailing concentration, 
and its spatial gradients. In keeping with the Ito definition of stochastic integration 
(Klebaner, 1998) we must use the concentration and its spatial gradients at a previous time. 
As a difference equation, we can write equation (4.5.13) as, 
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where nt  denotes the discretized time and the spatial gradients act as the coefficients of 
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Therefore, we can write, 
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x xC t FdI t  . 
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Figure 4.19. The 3-dimensional graphs of ijP  when 1i   and 1,2,3,4,5j   
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As 2 jP  functions are insignificant compared to the other two functions, we can 
approximate equation (4.5.15) as 
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This approximation enables us to reduce the computational time further in obtaining 
solutions. 

Equation (4.2.3) gives the general form of eigen functions,  jf x s. By inspecting equation 
(4.2.10), (4.2.11) and (4.2.12), we can deduce the following relationships between ijP  s and jf  s:  
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Therefore ijG  are given by, 
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The components of diffusion matrix a  (see equation (4.5.5)) can be written as, 
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ija s  can also be evaluated using equation (4.5.24). 

This menas that once we have eigen functions in the form given by equation (4.2.3), the 
diffusion matrix a  can be evaluated and equation (4.5.7) and (4.5.9) can be used to 
calculate the strong solutions for   xI t . 
 

4.6 Propagator of  xI t  

The propagator of  xI t  can be defined as  
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i  denotes the displacement of  ,x iI t  during the infinitesimally small time interval t  

given the position (value) of  ,x iI t  at time t . As  ,x iI t  is an Ito diffusion, it is also a 

Markov process; the propagator   ,; ,i x it I t t   is also a Markov process having a 
Gaussian probability density function, which completely specifics the propagator variable. 
To abbreviate the notation, we denote the propagator as  i t  . It can be shown that the 

moments of  i t   has the analytical structure (Gillespie,1992), 
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when nB s are well behaved functions of t  for a given  ,x iI t  (  nB t  are also called the n 

th propagator moment function.) ; and  P t   is the probability density function of 

 i t  . 

It can be shown that, for a given value of  ,x iI t  at time t , the mean and variance of the 
propagator function can be expressed as follows (Gillespie, 1992): 

       ,i iE t A t t t       and                   (4.6.3) 

       ,i iVar t D t t t                             (4.6.4) 
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As 2 jP  functions are insignificant compared to the other two functions, we can 
approximate equation (4.5.15) as 
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This approximation enables us to reduce the computational time further in obtaining 
solutions. 

Equation (4.2.3) gives the general form of eigen functions,  jf x s. By inspecting equation 
(4.2.10), (4.2.11) and (4.2.12), we can deduce the following relationships between ijP  s and jf  s:  
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ija s  can also be evaluated using equation (4.5.24). 

This menas that once we have eigen functions in the form given by equation (4.2.3), the 
diffusion matrix a  can be evaluated and equation (4.5.7) and (4.5.9) can be used to 
calculate the strong solutions for   xI t . 
 

4.6 Propagator of  xI t  

The propagator of  xI t  can be defined as  

       , , , ,; , .i x i x i x i x it I t t I t t I I t                         (4.6.1) 

i  denotes the displacement of  ,x iI t  during the infinitesimally small time interval t  

given the position (value) of  ,x iI t  at time t . As  ,x iI t  is an Ito diffusion, it is also a 

Markov process; the propagator   ,; ,i x it I t t   is also a Markov process having a 
Gaussian probability density function, which completely specifics the propagator variable. 
To abbreviate the notation, we denote the propagator as  i t  . It can be shown that the 

moments of  i t   has the analytical structure (Gillespie,1992), 
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when nB s are well behaved functions of t  for a given  ,x iI t  (  nB t  are also called the n 

th propagator moment function.) ; and  P t   is the probability density function of 

 i t  . 

It can be shown that, for a given value of  ,x iI t  at time t , the mean and variance of the 
propagator function can be expressed as follows (Gillespie, 1992): 

       ,i iE t A t t t       and                   (4.6.3) 
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As 2 jP  functions are insignificant compared to the other two functions, we can 
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This approximation enables us to reduce the computational time further in obtaining 
solutions. 

Equation (4.2.3) gives the general form of eigen functions,  jf x s. By inspecting equation 
(4.2.10), (4.2.11) and (4.2.12), we can deduce the following relationships between ijP  s and jf  s:  

     2

0 2 ,j j
j x

df x d f x
P x h

dx dx
                          (4.5.17) 

     
1 ,j
j i x

df x
P x f x h

dx
                           (4.5.18) 

              and    2 .
2
x

j j
hP x f x                     (4.5.19) 

Therefore ijG  are given by, 

2

0 2 ,j j
j j x j

df d f
G h

dx dx
                           (4.5.20) 

 
1 ,jj j j x j

df
G f h

dx
                            (4.5.21) 

 and 2 .
2
x

j j j
hG f                           (4.5.22) 

The components of diffusion matrix a  (see equation (4.5.5)) can be written as, 

 
2 2

1
1

, ( ,1,2,3)
m

ii i k
k

a G i 


  ,                       (4.5.23) 

and  2
1 1

1
, ,1,2,3

m

ij i k j k
k

a G G j  


   .                (4.5.24) 

For example, 

2 2
11 0

1
22

2
2

1
,

m

k
k

m
k k

k x k
k

a G

df d fh
dx dx



  







 
  

 




 

 

  

22 2 2
2 2

11 2 2
1

2 .
m

k k k k
k x k x k

k

f df d f fa h h
x dx dx x

   


                      
             (4.5.25) 

Similarly, 

2
2 2 2 2 2

22 1
1 1

2 .
m m

k k
k k k x k k x k

k k

df dfa G f h f h
dx dx

    
 

          
              (4.5.26) 

2 2
33

1
.

4

m
x

j j
k

ha f 


                             (4.5.27)  

ija s  can also be evaluated using equation (4.5.24). 

This menas that once we have eigen functions in the form given by equation (4.2.3), the 
diffusion matrix a  can be evaluated and equation (4.5.7) and (4.5.9) can be used to 
calculate the strong solutions for   xI t . 
 

4.6 Propagator of  xI t  

The propagator of  xI t  can be defined as  
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i  denotes the displacement of  ,x iI t  during the infinitesimally small time interval t  

given the position (value) of  ,x iI t  at time t . As  ,x iI t  is an Ito diffusion, it is also a 

Markov process; the propagator   ,; ,i x it I t t   is also a Markov process having a 
Gaussian probability density function, which completely specifics the propagator variable. 
To abbreviate the notation, we denote the propagator as  i t  . It can be shown that the 

moments of  i t   has the analytical structure (Gillespie,1992), 
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when nB s are well behaved functions of t  for a given  ,x iI t  (  nB t  are also called the n 

th propagator moment function.) ; and  P t   is the probability density function of 

 i t  . 

It can be shown that, for a given value of  ,x iI t  at time t , the mean and variance of the 
propagator function can be expressed as follows (Gillespie, 1992): 
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This approximation enables us to reduce the computational time further in obtaining 
solutions. 

Equation (4.2.3) gives the general form of eigen functions,  jf x s. By inspecting equation 
(4.2.10), (4.2.11) and (4.2.12), we can deduce the following relationships between ijP  s and jf  s:  
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ija s  can also be evaluated using equation (4.5.24). 

This menas that once we have eigen functions in the form given by equation (4.2.3), the 
diffusion matrix a  can be evaluated and equation (4.5.7) and (4.5.9) can be used to 
calculate the strong solutions for   xI t . 
 

4.6 Propagator of  xI t  
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i  denotes the displacement of  ,x iI t  during the infinitesimally small time interval t  

given the position (value) of  ,x iI t  at time t . As  ,x iI t  is an Ito diffusion, it is also a 

Markov process; the propagator   ,; ,i x it I t t   is also a Markov process having a 
Gaussian probability density function, which completely specifics the propagator variable. 
To abbreviate the notation, we denote the propagator as  i t  . It can be shown that the 

moments of  i t   has the analytical structure (Gillespie,1992), 

         ,n n
i uE t d P t B t t t  




                         (4.6.2) 

when nB s are well behaved functions of t  for a given  ,x iI t  (  nB t  are also called the n 

th propagator moment function.) ; and  P t   is the probability density function of 

 i t  . 

It can be shown that, for a given value of  ,x iI t  at time t , the mean and variance of the 
propagator function can be expressed as follows (Gillespie, 1992): 

       ,i iE t A t t t       and                   (4.6.3) 

       ,i iVar t D t t t                             (4.6.4) 



Computational Modelling of Multi-Scale Non-Fickian Dispersion  
in Porous Media - An Approach Based on Stochastic Calculus152

 

when  iA t  and  iD t  are independent of t . As the variance can not be negative, 

 iD t  should be a non-negative function. As mentioned before,  i t   is a Gaussian 
variable, i.e., it is normally distributed; therefore, we can write, 

      , ,i i it N A t t D t t                           (4.6.5) 

where  “  ” indicates the random variable is generated from the normal density function 
having the mean,  iA t t  and the variance  iD t t . 

If we recall, equation (4.5.9) gives, 
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This can be written as, 

    2
, .i x i iiE t I t a t                              (4.6.7) 

when ,t t  i.e., 0,t   therefore   0i t   . 

 / 0iE t    at ,t t . 

This leads to  

    .i iiVar t a                                (4.6.8) 

By comparing equation (4.5.7) with equation (4.6.3), and equation (4.6.4) with equation 
(4.6.8), we deduce that, 

  , ,i x iA t F  and                              (4.6.9) 

  .i iiD t a                                (4.6.10) 

We can now write the Langevin equation for the Ito diffusion,  ,x iI t . 
 

4.7 Langevin Equation for  ,x iI t  
From equation (4.6.1), the propagator can be written as, 

     , , , ,x i x i x idI t I t t I t     for a given  ,x iI t .            (4.7.1) 

At the same time, we can write equation (4.6.5) as, 

   
1

2
, , ,x i ii x idI t N a t t F t                             (4.7.2) 

where N  is a unit normal random variable generated from  0,1N  density function. In 
the limit, 0,t   

 

   
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2
, , .x i x i iidI t F dt a t dt N                        (4.7.3) 

This is the first form of the Langevin equation for  ,x iI t . 

It can be shown that, if  0,1 ,N Normal  

 2, ,N Normal                                (4.7.4) 

Therefore, dtN  is a normally distributed random variable having the density function 
 0, .Normal dt  This is the density function of the standard Wiener process increments, 

 dw t . Therefore, we can rewrite equation (4.7.3) as, 

   , , .x i x i ii idI t F dt a dw t                             (4.7.5) 

Equation (4.7.5) is the second form of the Langevin equation. 

The advantage of this Langevin approximation for  ,x iI t  over equation (4.5.2) is that it is 
not a multidimensional SDE but a one-dimensional one. This would allow us to compute 

 ,x iI t s more efficiently. 

The moment evolution equations for  ,x iI t  can be given as follows: (See Gillespie (1992) 
for derivations.) 
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with initial conditions, 

 , 0 0,x iE I     and                           (4.7.8)     

 , 0 0.x iVar I                                (4.7.9) 

If ,x iF  and iia  are deterministic functions of x  then the moment evolution equations can 
be simplified to equations (4.5.7) and (4.5.8). 
 

4.8 The Evaluation of  xC t  Diffusions 
The SSTM can be written as, for given x , (see equation (4.5.13)), 

   
2

,0 ,1 ,22
x x

x x x x x
x x

C CdC t C t dI dI dI
x x

             
 ,                (4.8.1) 

A Generalized Mathematical Model in One-Dimension 153
 

when  iA t  and  iD t  are independent of t . As the variance can not be negative, 

 iD t  should be a non-negative function. As mentioned before,  i t   is a Gaussian 
variable, i.e., it is normally distributed; therefore, we can write, 

      , ,i i it N A t t D t t                           (4.6.5) 

where  “  ” indicates the random variable is generated from the normal density function 
having the mean,  iA t t  and the variance  iD t t . 

If we recall, equation (4.5.9) gives, 

         2
, , , .x i x i x i iiE I t I t I t a t                          (4.6.6) 

This can be written as, 

    2
, .i x i iiE t I t a t                              (4.6.7) 

when ,t t  i.e., 0,t   therefore   0i t   . 

 / 0iE t    at ,t t . 

This leads to  

    .i iiVar t a                                (4.6.8) 

By comparing equation (4.5.7) with equation (4.6.3), and equation (4.6.4) with equation 
(4.6.8), we deduce that, 

  , ,i x iA t F  and                              (4.6.9) 

  .i iiD t a                                (4.6.10) 

We can now write the Langevin equation for the Ito diffusion,  ,x iI t . 
 

4.7 Langevin Equation for  ,x iI t  
From equation (4.6.1), the propagator can be written as, 

     , , , ,x i x i x idI t I t t I t     for a given  ,x iI t .            (4.7.1) 

At the same time, we can write equation (4.6.5) as, 
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, , ,x i ii x idI t N a t t F t                             (4.7.2) 

where N  is a unit normal random variable generated from  0,1N  density function. In 
the limit, 0,t   
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, , .x i x i iidI t F dt a t dt N                        (4.7.3) 

This is the first form of the Langevin equation for  ,x iI t . 

It can be shown that, if  0,1 ,N Normal  

 2, ,N Normal                                (4.7.4) 

Therefore, dtN  is a normally distributed random variable having the density function 
 0, .Normal dt  This is the density function of the standard Wiener process increments, 

 dw t . Therefore, we can rewrite equation (4.7.3) as, 

   , , .x i x i ii idI t F dt a dw t                             (4.7.5) 

Equation (4.7.5) is the second form of the Langevin equation. 

The advantage of this Langevin approximation for  ,x iI t  over equation (4.5.2) is that it is 
not a multidimensional SDE but a one-dimensional one. This would allow us to compute 

 ,x iI t s more efficiently. 

The moment evolution equations for  ,x iI t  can be given as follows: (See Gillespie (1992) 
for derivations.) 
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with initial conditions, 

 , 0 0,x iE I     and                           (4.7.8)     

 , 0 0.x iVar I                                (4.7.9) 

If ,x iF  and iia  are deterministic functions of x  then the moment evolution equations can 
be simplified to equations (4.5.7) and (4.5.8). 
 

4.8 The Evaluation of  xC t  Diffusions 
The SSTM can be written as, for given x , (see equation (4.5.13)), 
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when  iA t  and  iD t  are independent of t . As the variance can not be negative, 

 iD t  should be a non-negative function. As mentioned before,  i t   is a Gaussian 
variable, i.e., it is normally distributed; therefore, we can write, 

      , ,i i it N A t t D t t                           (4.6.5) 

where  “  ” indicates the random variable is generated from the normal density function 
having the mean,  iA t t  and the variance  iD t t . 

If we recall, equation (4.5.9) gives, 

         2
, , , .x i x i x i iiE I t I t I t a t                          (4.6.6) 

This can be written as, 

    2
, .i x i iiE t I t a t                              (4.6.7) 

when ,t t  i.e., 0,t   therefore   0i t   . 

 / 0iE t    at ,t t . 

This leads to  

    .i iiVar t a                                (4.6.8) 

By comparing equation (4.5.7) with equation (4.6.3), and equation (4.6.4) with equation 
(4.6.8), we deduce that, 

  , ,i x iA t F  and                              (4.6.9) 

  .i iiD t a                                (4.6.10) 

We can now write the Langevin equation for the Ito diffusion,  ,x iI t . 
 

4.7 Langevin Equation for  ,x iI t  
From equation (4.6.1), the propagator can be written as, 

     , , , ,x i x i x idI t I t t I t     for a given  ,x iI t .            (4.7.1) 

At the same time, we can write equation (4.6.5) as, 

   
1

2
, , ,x i ii x idI t N a t t F t                             (4.7.2) 

where N  is a unit normal random variable generated from  0,1N  density function. In 
the limit, 0,t   
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2
, , .x i x i iidI t F dt a t dt N                        (4.7.3) 

This is the first form of the Langevin equation for  ,x iI t . 

It can be shown that, if  0,1 ,N Normal  

 2, ,N Normal                                (4.7.4) 

Therefore, dtN  is a normally distributed random variable having the density function 
 0, .Normal dt  This is the density function of the standard Wiener process increments, 

 dw t . Therefore, we can rewrite equation (4.7.3) as, 

   , , .x i x i ii idI t F dt a dw t                             (4.7.5) 

Equation (4.7.5) is the second form of the Langevin equation. 

The advantage of this Langevin approximation for  ,x iI t  over equation (4.5.2) is that it is 
not a multidimensional SDE but a one-dimensional one. This would allow us to compute 

 ,x iI t s more efficiently. 

The moment evolution equations for  ,x iI t  can be given as follows: (See Gillespie (1992) 
for derivations.) 
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                         (4.7.7) 

with initial conditions, 

 , 0 0,x iE I     and                           (4.7.8)     

 , 0 0.x iVar I                                (4.7.9) 

If ,x iF  and iia  are deterministic functions of x  then the moment evolution equations can 
be simplified to equations (4.5.7) and (4.5.8). 
 

4.8 The Evaluation of  xC t  Diffusions 
The SSTM can be written as, for given x , (see equation (4.5.13)), 
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when  iA t  and  iD t  are independent of t . As the variance can not be negative, 

 iD t  should be a non-negative function. As mentioned before,  i t   is a Gaussian 
variable, i.e., it is normally distributed; therefore, we can write, 

      , ,i i it N A t t D t t                           (4.6.5) 

where  “  ” indicates the random variable is generated from the normal density function 
having the mean,  iA t t  and the variance  iD t t . 

If we recall, equation (4.5.9) gives, 

         2
, , , .x i x i x i iiE I t I t I t a t                          (4.6.6) 

This can be written as, 

    2
, .i x i iiE t I t a t                              (4.6.7) 

when ,t t  i.e., 0,t   therefore   0i t   . 

 / 0iE t    at ,t t . 

This leads to  

    .i iiVar t a                                (4.6.8) 

By comparing equation (4.5.7) with equation (4.6.3), and equation (4.6.4) with equation 
(4.6.8), we deduce that, 

  , ,i x iA t F  and                              (4.6.9) 

  .i iiD t a                                (4.6.10) 

We can now write the Langevin equation for the Ito diffusion,  ,x iI t . 
 

4.7 Langevin Equation for  ,x iI t  
From equation (4.6.1), the propagator can be written as, 

     , , , ,x i x i x idI t I t t I t     for a given  ,x iI t .            (4.7.1) 

At the same time, we can write equation (4.6.5) as, 

   
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2
, , ,x i ii x idI t N a t t F t                             (4.7.2) 

where N  is a unit normal random variable generated from  0,1N  density function. In 
the limit, 0,t   

 

   
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2
, , .x i x i iidI t F dt a t dt N                        (4.7.3) 

This is the first form of the Langevin equation for  ,x iI t . 

It can be shown that, if  0,1 ,N Normal  

 2, ,N Normal                                (4.7.4) 

Therefore, dtN  is a normally distributed random variable having the density function 
 0, .Normal dt  This is the density function of the standard Wiener process increments, 

 dw t . Therefore, we can rewrite equation (4.7.3) as, 

   , , .x i x i ii idI t F dt a dw t                             (4.7.5) 

Equation (4.7.5) is the second form of the Langevin equation. 

The advantage of this Langevin approximation for  ,x iI t  over equation (4.5.2) is that it is 
not a multidimensional SDE but a one-dimensional one. This would allow us to compute 

 ,x iI t s more efficiently. 

The moment evolution equations for  ,x iI t  can be given as follows: (See Gillespie (1992) 
for derivations.) 
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with initial conditions, 

 , 0 0,x iE I     and                           (4.7.8)     

 , 0 0.x iVar I                                (4.7.9) 

If ,x iF  and iia  are deterministic functions of x  then the moment evolution equations can 
be simplified to equations (4.5.7) and (4.5.8). 
 

4.8 The Evaluation of  xC t  Diffusions 
The SSTM can be written as, for given x , (see equation (4.5.13)), 
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where subscript x  refers to the first and second derivatives with respect to x . Note that 
the coefficients are functions of t  for given x , and ,x iI  s are Ito diffusions based on the 
velocity structure. Equation (4.8.1) is a stochastic diffusion and a SDE which displays the 
interplay between the concentration profile and velocity structures in the medium. By 
substituting the equations of the form of equation (4.7.5) for ,x idI s we obtain, 

      
  

  

,0 00 0

,1 11 1
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   

                 (4.8.2) 

In equation (4.8.2), 0 1,dw dw  and 2dw  are independent standard Wiener increments. 

Equation (4.8.2) can be written as, 
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where,               
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Now the equation (4.8.3) can be written as 
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Equation (4.8.6) gives a diffusion matrix, 
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Following Klebaner (1998), the expectations of infinitesimal differences of  xC t  can be 
written as (see also equation (4.5.7) and (4.5.9)), 
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and 
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Following the same arguments as in the case of deriving the Langevin equation for  ,x iI t , 

we can obtain the Langevin equation for  xC t : 

   2 2 2
0 1 2 ,xdC t dt dw t                           (4.8.10) 

where  dw t  is independent increments of the standard Wiener process, and if  

2 2 2
0 1 2 ,x       then 

   .x xdC t dt dw t                           (4.8.11) 

This shows that the concentration at given x  can be characterised by a Langevin type 
stochastic differential equation. This equation can be used to develop numerical solutions of 
the concentration profiles. 

The time evolution of the probability density function of  xC t ,   0, , ,x x xP C t C t t  is 
described by Fokker-Plank equation (Klebaner, 1998; Gillespie, 1992). The Fokker-Plank 
equation for  0 0, ,xP y t y t  is, 
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where y  denotes  xC t  and xP  stands for  0 0, ,xP y t y t . 

Equation (4.8.12) has the initial condition, 

   0 0 0 0, , ,P y t t y t y y                         (4.8.13) 

where   is the Dirac-delta function. 

Once we solve the Fokker-Plank equation (4.8.12) along with its initial condition, the time 
evolution of probability density function can be found. This is also a weak solution to 
equation (4.8.10). Equation (4.8.10) also has strong solutions which can be obtained by 
integrating the SDE (4.8.11) using Ito integration. The drift coefficient    in equation 
(4.8.11) is a stochastic variable in x  and t . 
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Equation (4.8.6) gives a diffusion matrix, 
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Following Klebaner (1998), the expectations of infinitesimal differences of  xC t  can be 
written as (see also equation (4.5.7) and (4.5.9)), 
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Following the same arguments as in the case of deriving the Langevin equation for  ,x iI t , 

we can obtain the Langevin equation for  xC t : 

   2 2 2
0 1 2 ,xdC t dt dw t                           (4.8.10) 

where  dw t  is independent increments of the standard Wiener process, and if  
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   .x xdC t dt dw t                           (4.8.11) 

This shows that the concentration at given x  can be characterised by a Langevin type 
stochastic differential equation. This equation can be used to develop numerical solutions of 
the concentration profiles. 

The time evolution of the probability density function of  xC t ,   0, , ,x x xP C t C t t  is 
described by Fokker-Plank equation (Klebaner, 1998; Gillespie, 1992). The Fokker-Plank 
equation for  0 0, ,xP y t y t  is, 
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where y  denotes  xC t  and xP  stands for  0 0, ,xP y t y t . 

Equation (4.8.12) has the initial condition, 

   0 0 0 0, , ,P y t t y t y y                         (4.8.13) 

where   is the Dirac-delta function. 

Once we solve the Fokker-Plank equation (4.8.12) along with its initial condition, the time 
evolution of probability density function can be found. This is also a weak solution to 
equation (4.8.10). Equation (4.8.10) also has strong solutions which can be obtained by 
integrating the SDE (4.8.11) using Ito integration. The drift coefficient    in equation 
(4.8.11) is a stochastic variable in x  and t . 
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Equation (4.8.6) gives a diffusion matrix, 
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Following Klebaner (1998), the expectations of infinitesimal differences of  xC t  can be 
written as (see also equation (4.5.7) and (4.5.9)), 
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and 
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0 1 2 .x x xE C t C t C t                          (4.8.9) 

Following the same arguments as in the case of deriving the Langevin equation for  ,x iI t , 

we can obtain the Langevin equation for  xC t : 

   2 2 2
0 1 2 ,xdC t dt dw t                           (4.8.10) 

where  dw t  is independent increments of the standard Wiener process, and if  
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0 1 2 ,x       then 

   .x xdC t dt dw t                           (4.8.11) 

This shows that the concentration at given x  can be characterised by a Langevin type 
stochastic differential equation. This equation can be used to develop numerical solutions of 
the concentration profiles. 

The time evolution of the probability density function of  xC t ,   0, , ,x x xP C t C t t  is 
described by Fokker-Plank equation (Klebaner, 1998; Gillespie, 1992). The Fokker-Plank 
equation for  0 0, ,xP y t y t  is, 
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where y  denotes  xC t  and xP  stands for  0 0, ,xP y t y t . 

Equation (4.8.12) has the initial condition, 

   0 0 0 0, , ,P y t t y t y y                         (4.8.13) 

where   is the Dirac-delta function. 

Once we solve the Fokker-Plank equation (4.8.12) along with its initial condition, the time 
evolution of probability density function can be found. This is also a weak solution to 
equation (4.8.10). Equation (4.8.10) also has strong solutions which can be obtained by 
integrating the SDE (4.8.11) using Ito integration. The drift coefficient    in equation 
(4.8.11) is a stochastic variable in x  and t . 
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Following Klebaner (1998), the expectations of infinitesimal differences of  xC t  can be 
written as (see also equation (4.5.7) and (4.5.9)), 
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Following the same arguments as in the case of deriving the Langevin equation for  ,x iI t , 

we can obtain the Langevin equation for  xC t : 
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where  dw t  is independent increments of the standard Wiener process, and if  
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   .x xdC t dt dw t                           (4.8.11) 

This shows that the concentration at given x  can be characterised by a Langevin type 
stochastic differential equation. This equation can be used to develop numerical solutions of 
the concentration profiles. 

The time evolution of the probability density function of  xC t ,   0, , ,x x xP C t C t t  is 
described by Fokker-Plank equation (Klebaner, 1998; Gillespie, 1992). The Fokker-Plank 
equation for  0 0, ,xP y t y t  is, 
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where y  denotes  xC t  and xP  stands for  0 0, ,xP y t y t . 

Equation (4.8.12) has the initial condition, 

   0 0 0 0, , ,P y t t y t y y                         (4.8.13) 

where   is the Dirac-delta function. 

Once we solve the Fokker-Plank equation (4.8.12) along with its initial condition, the time 
evolution of probability density function can be found. This is also a weak solution to 
equation (4.8.10). Equation (4.8.10) also has strong solutions which can be obtained by 
integrating the SDE (4.8.11) using Ito integration. The drift coefficient    in equation 
(4.8.11) is a stochastic variable in x  and t . 
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Similar to equations (4.7.6) and (4.7.7), we can write time evolution of the moments  xC t . 
The derivation of these equations are very similar to those given by Gillespie (1992). 

The time evolution of the mean of  xC t  is given by, 
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therefore,      
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The mean of  xC t  at a given x  is expressed as an integral of the expectation of   . As 

can be seen from equation (4.8.4),   is not only dependent on  xC t  and its first and 
second derivatives with respect to x , but also dependent on the mean velocity and its first 
and second derivatives with respect to x , according to equations (4.2.20), (4.2.21) and 
(4.2.22). The initial condition for equation (4.8.15) is  0xC , the value of the concentration at 
time is zero for a given x . 

The evolution of the variance of       ,x xC t Var C t  is given by, 
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and the variance of  xC t  can be obtained by integrating equation (4.8.16) with respect to t , 
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By Fubini’s theorem (Klebaner,1998), for continuous stochastic variable such as  ,  xC t  
and x , we can rewrite equation (4.8.17) as, 
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In equation (4.8.18), Fubini’s theorem is only applied to the first and third term of equation 
(4.8.17). 

Once we evaluate the mean and variance of  xC t , we can obtain the probability density 

function,  0 0, ,xP y t y t  of  xC t  (y represents the value of  xC t ). As Ito diffusions are 

Martingales with Markovian properties (Klebaner, 1998), and  xC t  is Gaussian, 
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when  E y  and  Var y  are given by equations (4.8.15) and (4.8.18). When time is zero, 

  0 1.0.x xP C   

Equation (4.8.19) should also be the solution to the Fokker-Plank equation (4.8.12). The 
Fokker-Plank equation (4.8.12) is a stochastic partial differential equation for which 
analytical equations can not easily be obtained. Therefore, we can make use of this fact to 
verify the numerical solutions for the Fokker-Planck equation. 

 

4.9 Numerical Solutions 
We have seen in the previous section 4.8, the following SDE gives the time course of 
concertration  xC t for a given x in the vicinity of x: 

    ,x xdC t dt dw t                               (4.9.1) 

where  dw t  is the standard Wiener increments with a zero mean and dt  variance, if dt  
is sufficiently small; the drift coefficient   is given by (see equation (4.8.4)), 
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where  ,V x t  in the mean velocity which is assumed to be regular differentiable 
continuous function. 

x  in equation (4.9.1) is given by, 
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Similar to equations (4.7.6) and (4.7.7), we can write time evolution of the moments  xC t . 
The derivation of these equations are very similar to those given by Gillespie (1992). 

The time evolution of the mean of  xC t  is given by, 
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therefore,      
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The mean of  xC t  at a given x  is expressed as an integral of the expectation of   . As 

can be seen from equation (4.8.4),   is not only dependent on  xC t  and its first and 
second derivatives with respect to x , but also dependent on the mean velocity and its first 
and second derivatives with respect to x , according to equations (4.2.20), (4.2.21) and 
(4.2.22). The initial condition for equation (4.8.15) is  0xC , the value of the concentration at 
time is zero for a given x . 

The evolution of the variance of       ,x xC t Var C t  is given by, 
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and the variance of  xC t  can be obtained by integrating equation (4.8.16) with respect to t , 
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By Fubini’s theorem (Klebaner,1998), for continuous stochastic variable such as  ,  xC t  
and x , we can rewrite equation (4.8.17) as, 

          2

0 0 0

2 2 .
t t t

x x x xVar C t E C t dt E C t E dt E dt  
   

      
   
          (4.8.18) 

In equation (4.8.18), Fubini’s theorem is only applied to the first and third term of equation 
(4.8.17). 

Once we evaluate the mean and variance of  xC t , we can obtain the probability density 

function,  0 0, ,xP y t y t  of  xC t  (y represents the value of  xC t ). As Ito diffusions are 

Martingales with Markovian properties (Klebaner, 1998), and  xC t  is Gaussian, 
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when  E y  and  Var y  are given by equations (4.8.15) and (4.8.18). When time is zero, 

  0 1.0.x xP C   

Equation (4.8.19) should also be the solution to the Fokker-Plank equation (4.8.12). The 
Fokker-Plank equation (4.8.12) is a stochastic partial differential equation for which 
analytical equations can not easily be obtained. Therefore, we can make use of this fact to 
verify the numerical solutions for the Fokker-Planck equation. 
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We have seen in the previous section 4.8, the following SDE gives the time course of 
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where  dw t  is the standard Wiener increments with a zero mean and dt  variance, if dt  
is sufficiently small; the drift coefficient   is given by (see equation (4.8.4)), 
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where  ,V x t  in the mean velocity which is assumed to be regular differentiable 
continuous function. 

x  in equation (4.9.1) is given by, 
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where, 
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Similar to equations (4.7.6) and (4.7.7), we can write time evolution of the moments  xC t . 
The derivation of these equations are very similar to those given by Gillespie (1992). 

The time evolution of the mean of  xC t  is given by, 
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therefore,      
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The mean of  xC t  at a given x  is expressed as an integral of the expectation of   . As 

can be seen from equation (4.8.4),   is not only dependent on  xC t  and its first and 
second derivatives with respect to x , but also dependent on the mean velocity and its first 
and second derivatives with respect to x , according to equations (4.2.20), (4.2.21) and 
(4.2.22). The initial condition for equation (4.8.15) is  0xC , the value of the concentration at 
time is zero for a given x . 

The evolution of the variance of       ,x xC t Var C t  is given by, 
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and the variance of  xC t  can be obtained by integrating equation (4.8.16) with respect to t , 
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By Fubini’s theorem (Klebaner,1998), for continuous stochastic variable such as  ,  xC t  
and x , we can rewrite equation (4.8.17) as, 
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In equation (4.8.18), Fubini’s theorem is only applied to the first and third term of equation 
(4.8.17). 

Once we evaluate the mean and variance of  xC t , we can obtain the probability density 

function,  0 0, ,xP y t y t  of  xC t  (y represents the value of  xC t ). As Ito diffusions are 

Martingales with Markovian properties (Klebaner, 1998), and  xC t  is Gaussian, 
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when  E y  and  Var y  are given by equations (4.8.15) and (4.8.18). When time is zero, 

  0 1.0.x xP C   

Equation (4.8.19) should also be the solution to the Fokker-Plank equation (4.8.12). The 
Fokker-Plank equation (4.8.12) is a stochastic partial differential equation for which 
analytical equations can not easily be obtained. Therefore, we can make use of this fact to 
verify the numerical solutions for the Fokker-Planck equation. 

 

4.9 Numerical Solutions 
We have seen in the previous section 4.8, the following SDE gives the time course of 
concertration  xC t for a given x in the vicinity of x: 

    ,x xdC t dt dw t                               (4.9.1) 

where  dw t  is the standard Wiener increments with a zero mean and dt  variance, if dt  
is sufficiently small; the drift coefficient   is given by (see equation (4.8.4)), 
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where  ,V x t  in the mean velocity which is assumed to be regular differentiable 
continuous function. 

x  in equation (4.9.1) is given by, 
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Similar to equations (4.7.6) and (4.7.7), we can write time evolution of the moments  xC t . 
The derivation of these equations are very similar to those given by Gillespie (1992). 

The time evolution of the mean of  xC t  is given by, 

     xd E C t
E

dt
  ,                     (4.8.14) 

therefore,      
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The mean of  xC t  at a given x  is expressed as an integral of the expectation of   . As 

can be seen from equation (4.8.4),   is not only dependent on  xC t  and its first and 
second derivatives with respect to x , but also dependent on the mean velocity and its first 
and second derivatives with respect to x , according to equations (4.2.20), (4.2.21) and 
(4.2.22). The initial condition for equation (4.8.15) is  0xC , the value of the concentration at 
time is zero for a given x . 

The evolution of the variance of       ,x xC t Var C t  is given by, 
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and the variance of  xC t  can be obtained by integrating equation (4.8.16) with respect to t , 
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By Fubini’s theorem (Klebaner,1998), for continuous stochastic variable such as  ,  xC t  
and x , we can rewrite equation (4.8.17) as, 
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In equation (4.8.18), Fubini’s theorem is only applied to the first and third term of equation 
(4.8.17). 

Once we evaluate the mean and variance of  xC t , we can obtain the probability density 

function,  0 0, ,xP y t y t  of  xC t  (y represents the value of  xC t ). As Ito diffusions are 

Martingales with Markovian properties (Klebaner, 1998), and  xC t  is Gaussian, 
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when  E y  and  Var y  are given by equations (4.8.15) and (4.8.18). When time is zero, 
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Equation (4.8.19) should also be the solution to the Fokker-Plank equation (4.8.12). The 
Fokker-Plank equation (4.8.12) is a stochastic partial differential equation for which 
analytical equations can not easily be obtained. Therefore, we can make use of this fact to 
verify the numerical solutions for the Fokker-Planck equation. 

 

4.9 Numerical Solutions 
We have seen in the previous section 4.8, the following SDE gives the time course of 
concertration  xC t for a given x in the vicinity of x: 
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where  dw t  is the standard Wiener increments with a zero mean and dt  variance, if dt  
is sufficiently small; the drift coefficient   is given by (see equation (4.8.4)), 
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where  ,V x t  in the mean velocity which is assumed to be regular differentiable 
continuous function. 

x  in equation (4.9.1) is given by, 
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where, 
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The following equation gives the expressions of 00 11,a a , and 22a , 
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where m  is the number of effective eigen functions, and  

, ( ,0,1,2).ij j ijG P i                         (4.9.10) 

In the numerical solutions, we make use of the finite differences, for a given dependent 
variable, say U , based on the grid given in Figure 4.20 
 

 
Figure 4.20. Space-time grid used in the numerical solutions with respect to y 
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By using a numerical scheme developed, we obtain realizations of  xC t  as strong 
solutions to equation (4.9.1). We can also obtain solutions to the Fokker-Plank equation 
(4.8.12) using the same finite differences. 
 

4.10 Remarks for the Chapter 
In this Chapter, we develop a generalized form of SSTM that can include any arbitrary 
velocity covariance kernel in principle. We have demonstrates that for a given kernel, a 
generalized analytical forms for eigen functions can be obtained by using the computational 
methods developed. We have also developed a Langevin form of the SSTM for a given x , 
and the time evolution of concentration,  xC t , follows a stochastic differential equation 

having the coefficients   and x  which are again functions of  xC t  and eigen 

functions. In other words, if one monitors the concentration  xC t  at a given point in 
space, the data collected along with time would constitute a realization of the strong 
solution of the SDE. The solution is a function of the covariance kernel, i.e. a function of 2  
and b  for an exponentially decaying kernel, and also a function of  xC t  itself and its 
first- and second derivatives with respect to x . This focus of SDE provides a very 
convenient and computationally efficient way to solve the stochastic partial differential 
equation associated with the SSTM. 

By deriving a Langevin form of the SSTM, we essentially prove that any time course of the 
concentration at a given point behaves according to the underlying SDE, which would 
characterize the nature of local porous medium and is a statement of mass concentration of 
the solute. 
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5 

 
Theories of Fluctuations and Dissipation 

 
5.1 Introduction 
In the previous chapters, we see that the hydrodynamic dispersion is in fact a result of 
solute particles moving along a decreasing pressure gradient and encountering the solid 
surfaces of a porous medium. The pressure gradient provides the driving force which 
translates into kinetic energy, and the porous medium acts as the dissipater of the kinetic 
energy; any such energy dissipation associated with small molecules generates fluctuations 
among molecules. Looking at a molecular-level picture, the dissolved solute particles in 
water travelling through the porous medium slow down nearing a surface and then increase 
in velocity once the molecules get scattered after the impact with solid surface. Refining this 
picture a bit more, we see that the velocity boundary layers along the solid surfaces are 
helping this process. Not all the molecules hit solid surfaces either; some of these would be 
subjected to micro-level local pressure gradients and move away from the surfaces. A 
physical ensemble of these solute molecules would depict behaviours that are measurable 
using appropriate extensive variables. (Extensive variables depend on the extent of the 
system of molecules. i.e., the number of molecules, concentrations, kinetic energy etc., where 
as intensive variables do not change with size of the system, i.e., pressure, temperature, 
entropy etc.) These measurable quantities at macroscopic level have origins in microscopic 
level. Therefore, we can anticipate that molecular level description would justify the 
operational models that we develop at an ensemble level. Naturally one could expect that 
the statistical moments of the variables of an ensemble would lead to meaningful models of 
the process we would like to observe. 

In the development of the SSTM, we express the velocity of solute as the sum of the mean 
velocity and a fluctuating component around the mean. The mean velocity may then be 
evaluated by using the Darcy’s law. We then express the fluctuating component in terms of 
the spectral expansion dependent on a covariance kernel. However, we need to understand 
that this type of picture in a more fundamental way should be based on the established 
theories. Towards that end, in this chapter, we review some of the fundamental theoretical 
frameworks associated with molecular fluctuation. We show the connectivity of 
thermodynamical, molecular and stochastic description of fluctuations and dissipations, and 
then we make use of Ito diffusions to obtain the models of statistical moments of relevant 
variables. While we do not cite the reference within this chapter -- as the works we refer to 
are well accepted knowledge in the disciplines such as thermodynamics, statistical 
mechanics and stochastic processes-- all the relevant works are given in the references list at 
the end of the book. However, we refer to Keizer’s work (1987) primarily in this chapter. 
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Any description of a process once expressed in mathematical abstraction, becomes a 
“contracted” description or a contracted model. What is important  to understand is that 
different levels of contracted descriptions could be useful for different purposes, and at the 
same time, the insights gained from one level of description should be obtained by another 
level of description and vice versa. However, this is a very difficult task in many of the 
molecular level processes. One of the main reasons for this difficulty is that the most of the 
molecular processes are thermodynamically irreversible. In addition, physics of the 
processes at different levels of descriptions are based on different conceptual frameworks, 
albeit being very meaningful at a given level. In our discussion here, we consider the 
thermodynamic level of description, the Boltzmann level of description, and physical 
ensemble description which is inherently stochastic, hence described in stochastic processes. 
 

5.2 Thermodynamic Description 
To facilitate the discussion here, we make use of the Brownian motion as an example with 
the aim of developing a general framework for discussion. The total differential of entropy 
of an idealized system of the Brownian particles can be written as, 

,dU PdS dV dN
T T T

        
   

    

                   (5.2.1) 

where U  is the internal energy; V  is the volume of the system; N  is the number of 
particles (molecules); P  is the pressure;   is the chemical potential; and, T  is the 
absolute temperature. Equation (5.2.1) is a statement for a system of molecules and the 
system has the well-defined physical boundaries through which mass and heat transfer 
could occur. The momentum of the particles is included in the internal energy term, and by 

including the momentum ( M ) , the total energy is 
2

2
ME U
m

   , where m  is the mass of 

a particle. We can write equation (5.2.1) in the following form after including the 
momentum as a thermodynamic variable: 

.dE v PdS dM dV dN
T T T T

             
     

                  (5.2.2) 

In equation (5.2.2), v  is the row vector of particle velocities and M  is the column vector 
of particle moments. The total differential of entropy  dS  can be expressed in terms of 
partial derivatives: 

,S S S SdS dE dM dV dN
E M V N
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                 (5.2.3) 

where S
M



 indicates the row vector of 
i
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M


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E
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M V
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 and S
N



 are 

thermodynamically conjugate to the respective variables in equation (5.2.3), namely E, ,M V  
and N . 

 

The Onsager principle for the linear laws for irreversible processes states that the rate of 
change of an extensive variable is linearly related to the difference of the corresponding 
thermodynamically conjugate variable from its value at the thermodynamic equilibrium. 
According to this Onsager linear law we can express the expected value of the momentum 
conditional on the initial value in component form as follows: 

           0 0 0 ,i i ij e
j i i i i

dE S S S SM t M L E t E t
dt M M M M

                           
        (5.2.4) 

with  E  denoting the expectation operator;  L  denoting the coupling matrix, which is 
symmetric and non-negative definite; and subscript “e” refers to  the values at the 
thermodynamic equilibrium. To simplify the notation, we denote conditional expectation as 

0
E     when the variable within square brackets is conditional upon a well defined value at 

0t  . Using this notation, equation (5.2.4) can be written as, 
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               (5.2.5) 

According to equation (5.2.5), the rate of change of the conditional average of the 
momentum of the particle is linearly related to the deviation of conditional average of the 
thermodynamic conjugate of the momentum from its value at the equilibrium. The 

conjugate variables are intensive variables and the conjugate for the momentum is iv
T
  

according to equation (5.2.2); i.e.,  
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 


                              (5.2.6) 

The coefficient matrix L  needs to be found to complete the linear law. In this case, we can 
make use of the Langevin description of the Brownian motion. (See section 5.3 for a 
discussion of the Langevin equation.) By disregarding the random force term, the expected 
value of the particle momentum can be expressed as,  

   0 0
,dE M t E M t

dt m
           

                    (5.2.7) 

with   as the fiction constant m  is the mass of the particle, according to the Newton law 
of motion. 

Because    M t mv t , we can rewrite equation (5.2.7) as, 

   0 0
.dE M t E v t

dt
                                 (5.2.8) 
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same time, the insights gained from one level of description should be obtained by another 
level of description and vice versa. However, this is a very difficult task in many of the 
molecular level processes. One of the main reasons for this difficulty is that the most of the 
molecular processes are thermodynamically irreversible. In addition, physics of the 
processes at different levels of descriptions are based on different conceptual frameworks, 
albeit being very meaningful at a given level. In our discussion here, we consider the 
thermodynamic level of description, the Boltzmann level of description, and physical 
ensemble description which is inherently stochastic, hence described in stochastic processes. 
 

5.2 Thermodynamic Description 
To facilitate the discussion here, we make use of the Brownian motion as an example with 
the aim of developing a general framework for discussion. The total differential of entropy 
of an idealized system of the Brownian particles can be written as, 
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where U  is the internal energy; V  is the volume of the system; N  is the number of 
particles (molecules); P  is the pressure;   is the chemical potential; and, T  is the 
absolute temperature. Equation (5.2.1) is a statement for a system of molecules and the 
system has the well-defined physical boundaries through which mass and heat transfer 
could occur. The momentum of the particles is included in the internal energy term, and by 

including the momentum ( M ) , the total energy is 
2

2
ME U
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   , where m  is the mass of 

a particle. We can write equation (5.2.1) in the following form after including the 
momentum as a thermodynamic variable: 
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In equation (5.2.2), v  is the row vector of particle velocities and M  is the column vector 
of particle moments. The total differential of entropy  dS  can be expressed in terms of 
partial derivatives: 
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thermodynamically conjugate to the respective variables in equation (5.2.3), namely E, ,M V  
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The Onsager principle for the linear laws for irreversible processes states that the rate of 
change of an extensive variable is linearly related to the difference of the corresponding 
thermodynamically conjugate variable from its value at the thermodynamic equilibrium. 
According to this Onsager linear law we can express the expected value of the momentum 
conditional on the initial value in component form as follows: 
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with  E  denoting the expectation operator;  L  denoting the coupling matrix, which is 
symmetric and non-negative definite; and subscript “e” refers to  the values at the 
thermodynamic equilibrium. To simplify the notation, we denote conditional expectation as 

0
E     when the variable within square brackets is conditional upon a well defined value at 

0t  . Using this notation, equation (5.2.4) can be written as, 
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According to equation (5.2.5), the rate of change of the conditional average of the 
momentum of the particle is linearly related to the deviation of conditional average of the 
thermodynamic conjugate of the momentum from its value at the equilibrium. The 

conjugate variables are intensive variables and the conjugate for the momentum is iv
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The coefficient matrix L  needs to be found to complete the linear law. In this case, we can 
make use of the Langevin description of the Brownian motion. (See section 5.3 for a 
discussion of the Langevin equation.) By disregarding the random force term, the expected 
value of the particle momentum can be expressed as,  
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with   as the fiction constant m  is the mass of the particle, according to the Newton law 
of motion. 

Because    M t mv t , we can rewrite equation (5.2.7) as, 
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                                 (5.2.8) 
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albeit being very meaningful at a given level. In our discussion here, we consider the 
thermodynamic level of description, the Boltzmann level of description, and physical 
ensemble description which is inherently stochastic, hence described in stochastic processes. 
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To facilitate the discussion here, we make use of the Brownian motion as an example with 
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where U  is the internal energy; V  is the volume of the system; N  is the number of 
particles (molecules); P  is the pressure;   is the chemical potential; and, T  is the 
absolute temperature. Equation (5.2.1) is a statement for a system of molecules and the 
system has the well-defined physical boundaries through which mass and heat transfer 
could occur. The momentum of the particles is included in the internal energy term, and by 

including the momentum ( M ) , the total energy is 
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a particle. We can write equation (5.2.1) in the following form after including the 
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In equation (5.2.2), v  is the row vector of particle velocities and M  is the column vector 
of particle moments. The total differential of entropy  dS  can be expressed in terms of 
partial derivatives: 
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The Onsager principle for the linear laws for irreversible processes states that the rate of 
change of an extensive variable is linearly related to the difference of the corresponding 
thermodynamically conjugate variable from its value at the thermodynamic equilibrium. 
According to this Onsager linear law we can express the expected value of the momentum 
conditional on the initial value in component form as follows: 
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with  E  denoting the expectation operator;  L  denoting the coupling matrix, which is 
symmetric and non-negative definite; and subscript “e” refers to  the values at the 
thermodynamic equilibrium. To simplify the notation, we denote conditional expectation as 

0
E     when the variable within square brackets is conditional upon a well defined value at 

0t  . Using this notation, equation (5.2.4) can be written as, 
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According to equation (5.2.5), the rate of change of the conditional average of the 
momentum of the particle is linearly related to the deviation of conditional average of the 
thermodynamic conjugate of the momentum from its value at the equilibrium. The 
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The coefficient matrix L  needs to be found to complete the linear law. In this case, we can 
make use of the Langevin description of the Brownian motion. (See section 5.3 for a 
discussion of the Langevin equation.) By disregarding the random force term, the expected 
value of the particle momentum can be expressed as,  
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with   as the fiction constant m  is the mass of the particle, according to the Newton law 
of motion. 

Because    M t mv t , we can rewrite equation (5.2.7) as, 
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“contracted” description or a contracted model. What is important  to understand is that 
different levels of contracted descriptions could be useful for different purposes, and at the 
same time, the insights gained from one level of description should be obtained by another 
level of description and vice versa. However, this is a very difficult task in many of the 
molecular level processes. One of the main reasons for this difficulty is that the most of the 
molecular processes are thermodynamically irreversible. In addition, physics of the 
processes at different levels of descriptions are based on different conceptual frameworks, 
albeit being very meaningful at a given level. In our discussion here, we consider the 
thermodynamic level of description, the Boltzmann level of description, and physical 
ensemble description which is inherently stochastic, hence described in stochastic processes. 
 

5.2 Thermodynamic Description 
To facilitate the discussion here, we make use of the Brownian motion as an example with 
the aim of developing a general framework for discussion. The total differential of entropy 
of an idealized system of the Brownian particles can be written as, 
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where U  is the internal energy; V  is the volume of the system; N  is the number of 
particles (molecules); P  is the pressure;   is the chemical potential; and, T  is the 
absolute temperature. Equation (5.2.1) is a statement for a system of molecules and the 
system has the well-defined physical boundaries through which mass and heat transfer 
could occur. The momentum of the particles is included in the internal energy term, and by 

including the momentum ( M ) , the total energy is 
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a particle. We can write equation (5.2.1) in the following form after including the 
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In equation (5.2.2), v  is the row vector of particle velocities and M  is the column vector 
of particle moments. The total differential of entropy  dS  can be expressed in terms of 
partial derivatives: 
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The Onsager principle for the linear laws for irreversible processes states that the rate of 
change of an extensive variable is linearly related to the difference of the corresponding 
thermodynamically conjugate variable from its value at the thermodynamic equilibrium. 
According to this Onsager linear law we can express the expected value of the momentum 
conditional on the initial value in component form as follows: 
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with  E  denoting the expectation operator;  L  denoting the coupling matrix, which is 
symmetric and non-negative definite; and subscript “e” refers to  the values at the 
thermodynamic equilibrium. To simplify the notation, we denote conditional expectation as 

0
E     when the variable within square brackets is conditional upon a well defined value at 

0t  . Using this notation, equation (5.2.4) can be written as, 
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According to equation (5.2.5), the rate of change of the conditional average of the 
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The coefficient matrix L  needs to be found to complete the linear law. In this case, we can 
make use of the Langevin description of the Brownian motion. (See section 5.3 for a 
discussion of the Langevin equation.) By disregarding the random force term, the expected 
value of the particle momentum can be expressed as,  
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with   as the fiction constant m  is the mass of the particle, according to the Newton law 
of motion. 

Because    M t mv t , we can rewrite equation (5.2.7) as, 
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Combining with equation (5.2.6), equation (5.2.8) becomes, 
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                      (5.2.9) 

As the equilibrium value of  ev t  is 0, we could express equation (5.2.9) in form of the 
Onsager linear law, 
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              (5.2.9a) 

with ij ijL T  when ij  is the Kronecker delta. 

Another example of linear law is the Newton’s law of cooling. Consider the heat transfer 
between two solids, one at temperature 1T  and the other at 2T , and the equilibrium 
temperature the two solids reach is eT . The thermodynamic conjugates of the internal 

energies, 1U  and 2U , are 
1

1
T

 and 
2

1
T

 (equation (5.2.1)). The Onsager principle states 

that, 
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Equation (5.2.10) can be derived from applying the Onsager principle for the two solids 
separately and taking into the account of the fact that the energy loss of one solid is the 
energy gained of the other solid. L  in equation (5.2.10) is non-negative and needs to be 
determined experimentally. Further, equation (5.2.10) is only valid in the vicinity of the 
equilibrium. 

The extensive variables, the momentum and the internal energy, are expressed as 
thermodynamic rule laws in equation (5.2.9) and (5.2.10); however, the momentum and the 
internal energy have quite distinct forms of functional characteristics. For example, if we 
reverse the velocities of the molecules, the magnetic field and the time associated with a 
physical ensemble, the momentum changes the direction but the internal energy remains the 
same. As the time progresses in the reverse direction, the ensemble will move along the past 
trajectory. When an extensive variable changes its sign under the reversal of the time or the 
magnetic field or velocities, we call that variable an odd variable; the variables that are 
invariant under the reversal are call even variables. In the Brownian molecule and the heat 
transfer examples discussed previously, the internal energy and the momentum are 
decoupled, i.e. the coupling effects are ignored. The coupling are only among the variables 
having the same symmetry under time reversal. Onsager principle can be extended to the 
situation where the coupling between the variables with different time reversal symmetry 
exists. The matrix ijL  in the linear laws now change to  

   ij i j ijL B L B  
   

                      (5.2.11) 

 

when L  is dependent on the external magnetic filed, B , when either the effects of the 
external magnetic field are ignored or the magnetic field is absent, the even or odd variables 
are coupled by a symmetric matrix where as the odd and even variables are coupled by a 
antisymmetric matrix. Equation (5.2.11) are called the Onsager-Casimir reciprocal relations. 

To simplify the notation in the linear laws such as equation (5.2.5), we introduce the 
following variables: 
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 to denote the conditional average difference of the 

thermodynamic conjugate of the extensive variable jx  from the corresponding equilibrium 
value; and 

2. 0 0( ) [ ( )] [ ( )]i i i ea t E x t E x t  to denote the conditional average of the difference between an 
extensive variable of our choice and its value at the thermodynamic equilibrium. Then the 
Onsager linear laws can be written as, 

i
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                             (5.2.12) 

and equation (5.2.12) can be interpreted in terms of fluxes and thermodynamic forces: jY  is 
the “thermodynamic force” which drives ia  towards zero, i.e., ix  approaches its 
equilibrium value on the average. The rate of change of ia  can be considered as the 
average thermodynamic flux, iJ , giving, 

i
i ij j

i
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                            (5.2.13) 

In the linear laws, the thermodynamic forces are descriptions of the entropy of the system. At 
thermodynamic equilibrium, the entropy of a given system is maximum as the Second Law of 
thermodynamics says that entropy increases on the average of any spontaneous process. Let us 
consider the entropy of an isolated system in the vicinity of its thermodynamic equilibrium. The 
extensive variable a  as defined before has finite values, and the entropy associated with the 
system, ( )S a , can be expressed in terms of Taylor series: 
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at the maximum of ( )S a , 
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Combining with equation (5.2.6), equation (5.2.8) becomes, 
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As the equilibrium value of  ev t  is 0, we could express equation (5.2.9) in form of the 
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with ij ijL T  when ij  is the Kronecker delta. 

Another example of linear law is the Newton’s law of cooling. Consider the heat transfer 
between two solids, one at temperature 1T  and the other at 2T , and the equilibrium 
temperature the two solids reach is eT . The thermodynamic conjugates of the internal 

energies, 1U  and 2U , are 
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 and 
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Equation (5.2.10) can be derived from applying the Onsager principle for the two solids 
separately and taking into the account of the fact that the energy loss of one solid is the 
energy gained of the other solid. L  in equation (5.2.10) is non-negative and needs to be 
determined experimentally. Further, equation (5.2.10) is only valid in the vicinity of the 
equilibrium. 

The extensive variables, the momentum and the internal energy, are expressed as 
thermodynamic rule laws in equation (5.2.9) and (5.2.10); however, the momentum and the 
internal energy have quite distinct forms of functional characteristics. For example, if we 
reverse the velocities of the molecules, the magnetic field and the time associated with a 
physical ensemble, the momentum changes the direction but the internal energy remains the 
same. As the time progresses in the reverse direction, the ensemble will move along the past 
trajectory. When an extensive variable changes its sign under the reversal of the time or the 
magnetic field or velocities, we call that variable an odd variable; the variables that are 
invariant under the reversal are call even variables. In the Brownian molecule and the heat 
transfer examples discussed previously, the internal energy and the momentum are 
decoupled, i.e. the coupling effects are ignored. The coupling are only among the variables 
having the same symmetry under time reversal. Onsager principle can be extended to the 
situation where the coupling between the variables with different time reversal symmetry 
exists. The matrix ijL  in the linear laws now change to  
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when L  is dependent on the external magnetic filed, B , when either the effects of the 
external magnetic field are ignored or the magnetic field is absent, the even or odd variables 
are coupled by a symmetric matrix where as the odd and even variables are coupled by a 
antisymmetric matrix. Equation (5.2.11) are called the Onsager-Casimir reciprocal relations. 

To simplify the notation in the linear laws such as equation (5.2.5), we introduce the 
following variables: 

1.    
0 0

j e
j j

S SY E t E t
x x

    
    

       
 to denote the conditional average difference of the 

thermodynamic conjugate of the extensive variable jx  from the corresponding equilibrium 
value; and 

2. 0 0( ) [ ( )] [ ( )]i i i ea t E x t E x t  to denote the conditional average of the difference between an 
extensive variable of our choice and its value at the thermodynamic equilibrium. Then the 
Onsager linear laws can be written as, 

i
ij j

da L Y
dt

                             (5.2.12) 

and equation (5.2.12) can be interpreted in terms of fluxes and thermodynamic forces: jY  is 
the “thermodynamic force” which drives ia  towards zero, i.e., ix  approaches its 
equilibrium value on the average. The rate of change of ia  can be considered as the 
average thermodynamic flux, iJ , giving, 
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In the linear laws, the thermodynamic forces are descriptions of the entropy of the system. At 
thermodynamic equilibrium, the entropy of a given system is maximum as the Second Law of 
thermodynamics says that entropy increases on the average of any spontaneous process. Let us 
consider the entropy of an isolated system in the vicinity of its thermodynamic equilibrium. The 
extensive variable a  as defined before has finite values, and the entropy associated with the 
system, ( )S a , can be expressed in terms of Taylor series: 
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internal energy have quite distinct forms of functional characteristics. For example, if we 
reverse the velocities of the molecules, the magnetic field and the time associated with a 
physical ensemble, the momentum changes the direction but the internal energy remains the 
same. As the time progresses in the reverse direction, the ensemble will move along the past 
trajectory. When an extensive variable changes its sign under the reversal of the time or the 
magnetic field or velocities, we call that variable an odd variable; the variables that are 
invariant under the reversal are call even variables. In the Brownian molecule and the heat 
transfer examples discussed previously, the internal energy and the momentum are 
decoupled, i.e. the coupling effects are ignored. The coupling are only among the variables 
having the same symmetry under time reversal. Onsager principle can be extended to the 
situation where the coupling between the variables with different time reversal symmetry 
exists. The matrix ijL  in the linear laws now change to  
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In the linear laws, the thermodynamic forces are descriptions of the entropy of the system. At 
thermodynamic equilibrium, the entropy of a given system is maximum as the Second Law of 
thermodynamics says that entropy increases on the average of any spontaneous process. Let us 
consider the entropy of an isolated system in the vicinity of its thermodynamic equilibrium. The 
extensive variable a  as defined before has finite values, and the entropy associated with the 
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with ij ijL T  when ij  is the Kronecker delta. 
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Equation (5.2.10) can be derived from applying the Onsager principle for the two solids 
separately and taking into the account of the fact that the energy loss of one solid is the 
energy gained of the other solid. L  in equation (5.2.10) is non-negative and needs to be 
determined experimentally. Further, equation (5.2.10) is only valid in the vicinity of the 
equilibrium. 

The extensive variables, the momentum and the internal energy, are expressed as 
thermodynamic rule laws in equation (5.2.9) and (5.2.10); however, the momentum and the 
internal energy have quite distinct forms of functional characteristics. For example, if we 
reverse the velocities of the molecules, the magnetic field and the time associated with a 
physical ensemble, the momentum changes the direction but the internal energy remains the 
same. As the time progresses in the reverse direction, the ensemble will move along the past 
trajectory. When an extensive variable changes its sign under the reversal of the time or the 
magnetic field or velocities, we call that variable an odd variable; the variables that are 
invariant under the reversal are call even variables. In the Brownian molecule and the heat 
transfer examples discussed previously, the internal energy and the momentum are 
decoupled, i.e. the coupling effects are ignored. The coupling are only among the variables 
having the same symmetry under time reversal. Onsager principle can be extended to the 
situation where the coupling between the variables with different time reversal symmetry 
exists. The matrix ijL  in the linear laws now change to  
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when L  is dependent on the external magnetic filed, B , when either the effects of the 
external magnetic field are ignored or the magnetic field is absent, the even or odd variables 
are coupled by a symmetric matrix where as the odd and even variables are coupled by a 
antisymmetric matrix. Equation (5.2.11) are called the Onsager-Casimir reciprocal relations. 
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Onsager linear laws can be written as, 
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and equation (5.2.12) can be interpreted in terms of fluxes and thermodynamic forces: jY  is 
the “thermodynamic force” which drives ia  towards zero, i.e., ix  approaches its 
equilibrium value on the average. The rate of change of ia  can be considered as the 
average thermodynamic flux, iJ , giving, 
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In the linear laws, the thermodynamic forces are descriptions of the entropy of the system. At 
thermodynamic equilibrium, the entropy of a given system is maximum as the Second Law of 
thermodynamics says that entropy increases on the average of any spontaneous process. Let us 
consider the entropy of an isolated system in the vicinity of its thermodynamic equilibrium. The 
extensive variable a  as defined before has finite values, and the entropy associated with the 
system, ( )S a , can be expressed in terms of Taylor series: 
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as these conditions are true for any a , the matrix 
ij
S  must be negative semi-definite. By 

incorporating equation (5.2.12) in equation (5.2.14), and using the conditions for the 
thermodynamic equilibrium stated previously, we obtain, 

1( ) (0)
2 ij i j

i j
S a S S a a   .                        (5.2.15) 

But as an approximation, we can write, 

i ij j
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Y S a ,                            (5.2.16) 

Because our definition of iY  is the first derivative of S  with respect to ix  on the average. 

Therefore, we can write equation (5.2.15), 
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Using equation (5.2.12), 
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dS a L YY
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                           (5.2.18) 

As the derivative of the entropy with respect to time is positive, L  is a positive semi-
definite matrix. What equation (5.2.17) and (5.2.18) convey is that the mean fluctuations of 

an extensive variable give rise to increase in the entropy, and therefore ( )dS a
dt

 alludes to 

dissipation of energy due to the fluctuations of an extensive variable. We define the 
Rayleigh-Onsager dissipation function as  

( )( ) 0.ij i j
i j

dS aa L YY
dt

                          (5.2.19) 

The dissipation function   is also called the entropy production and is dependent on our 
choice of the system. 

Using equation (5.2.16) and (5.2.12), one can write, 
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where ij ik kj
k

H L S , which is the relaxation matrix H  governing the return of mean 

values of  the extensive variables to equilibrium; equation (5.2.20) can be written in the 
matrix form, 

,da Ha
dt

                               (5.2.21) 

which has the solution, 
0( ) exp( )a t Ht a                           (5.2.22) 

where 0a  is the initial value of the selected process. The matrix H  must be negative 
semi-definite as the entropy increases on the average during the relaxation process. 

Using equation (5.2.22), we can deduce the covariance function, 1 2( , )C t t , 

    0 0 0 0
1 2 1 2 1 2 1 2( , ) [ ( ) ( )] [ exp( ) exp( ) ] [ ]exp .

TT T TC t t E a t a t E Ht a Ht a E a a Ht H t     (5.2.23) 

If 2 1t t   , and closer to the equilibrium the process is stationary, 

 0 0 0( ) [ ( )] [ ]exp .T T TC E a a E a a H                      (5.2.24) 

As we can see, from a thermodynamic point of view, equation (5.2.23) and (5.2.24) state that 
the covariances have an exponential character to them, and they are decaying functions with 
respective to time. 

Equation (5.2.21) shows the behaviour of the conditional average value of 

   0 0( ) ( ) ( ) .i i i ea t E x t E x t   in relation to matrix ijH . By substituting for a  the component 
form of equation (5.2.21) can be written as, 

        0 0 0 0( ) ( ) ( ) ( ) .i i e ij i ij i e
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dt
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At equilibrium,  0( )i eE x t  remains unchanged; therefore, 

      0 0 0( ) ( ) ( ) .i ij i ij i e
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dt

   

As discussed before any dissipative system would have fluctuations in extensive variables. 
Let us define the fluctuations with reference to the expected value conditioned upon the 
initial value as, 

 0( ) ( ) ( ) .i i ix t x t E x t                           (5.2.25) 

Then, 
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dt
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the covariances have an exponential character to them, and they are decaying functions with 
respective to time. 
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form of equation (5.2.21) can be written as, 

        0 0 0 0( ) ( ) ( ) ( ) .i i e ij i ij i e
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    

At equilibrium,  0( )i eE x t  remains unchanged; therefore, 

      0 0 0( ) ( ) ( ) .i ij i ij i e
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   

As discussed before any dissipative system would have fluctuations in extensive variables. 
Let us define the fluctuations with reference to the expected value conditioned upon the 
initial value as, 

 0( ) ( ) ( ) .i i ix t x t E x t                           (5.2.25) 

Then, 
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        
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as these conditions are true for any a , the matrix 
ij
S  must be negative semi-definite. By 

incorporating equation (5.2.12) in equation (5.2.14), and using the conditions for the 
thermodynamic equilibrium stated previously, we obtain, 
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But as an approximation, we can write, 
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Because our definition of iY  is the first derivative of S  with respect to ix  on the average. 

Therefore, we can write equation (5.2.15), 
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Using equation (5.2.12), 
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                           (5.2.18) 

As the derivative of the entropy with respect to time is positive, L  is a positive semi-
definite matrix. What equation (5.2.17) and (5.2.18) convey is that the mean fluctuations of 

an extensive variable give rise to increase in the entropy, and therefore ( )dS a
dt

 alludes to 

dissipation of energy due to the fluctuations of an extensive variable. We define the 
Rayleigh-Onsager dissipation function as  

( )( ) 0.ij i j
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dS aa L YY
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                          (5.2.19) 

The dissipation function   is also called the entropy production and is dependent on our 
choice of the system. 

Using equation (5.2.16) and (5.2.12), one can write, 
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H L S , which is the relaxation matrix H  governing the return of mean 

values of  the extensive variables to equilibrium; equation (5.2.20) can be written in the 
matrix form, 

,da Ha
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                               (5.2.21) 

which has the solution, 
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If 2 1t t   , and closer to the equilibrium the process is stationary, 
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As we can see, from a thermodynamic point of view, equation (5.2.23) and (5.2.24) state that 
the covariances have an exponential character to them, and they are decaying functions with 
respective to time. 
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where 0a  is the initial value of the selected process. The matrix H  must be negative 
semi-definite as the entropy increases on the average during the relaxation process. 

Using equation (5.2.22), we can deduce the covariance function, 1 2( , )C t t , 
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As we can see, from a thermodynamic point of view, equation (5.2.23) and (5.2.24) state that 
the covariances have an exponential character to them, and they are decaying functions with 
respective to time. 

Equation (5.2.21) shows the behaviour of the conditional average value of 
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Let us define the fluctuations with reference to the expected value conditioned upon the 
initial value as, 

 0( ) ( ) ( ) .i i ix t x t E x t                           (5.2.25) 

Then, 
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 is small compared to  ( )i
d x t
dt

  following 

equation (5.2.21), we can simplify the above equation to  

( ) ( ) .i
ij i i

d x t H x t f
dt

     

where if  is a random term. Expressing this in matrix form, 

.d X H X f
dt
                               (5.2.26) 

This equation is the Onsager’s regression hypothesis for fluctuations. This hypothesis is 
based on the thermodynamic arguments not on the particles behaviour in a physical 
ensemble. However, as we will see in the next sections, equation (5.2.26) has a similar 
character to those derived from the particle dynamics. 

To complete the Onsager picture of random fluctuations in equation (5.2.26), we need to 
consider equation (5.2.26) as linear stochastic differential equation. Then f  term can be 

defined in terms of the Wiener process and H  as a function of X  to develop the 
simplest form of a stochastic differential equation. We will address this in section 5.4. 
 

5.3 The Boltzmann Picture 
As mentioned in the previous section, the Onsager regression hypothesis is based on the 
entropy and the coefficients which form the coupling matrix, L . The Boltzmann equation is 
on the other hand dependent entirely on the molecular dynamics of collisions and the 
resulting fluctuations. We do not intent to derive the Boltzmann equation here; instead, we 
describe the equation and the variables here. For the technical details of the derivation, there 
are many excellent texts on statistical mechanics and some of the original works are given in 
the references.  

Boltzmann’s work was on the dynamics of dilute gases and the average behaviour of gas 
molecules was the main focus on his work. The Boltzmann’s equation describes the 
nonlinear dynamics of the molecular collisions, while Onsager theory is on linear dynamics 
without fluctuations. It can be shown that the linearized Boltzmann equation is a special 
case of Onsager theory. 

In the derivation of the Boltzmann equation, we have a six-dimensional space in which the 
position of, r , and the velocity, v  , of the centre of mass of a single molecule are defined. 

 

We call this six-dimensional space the -space or molecule phase space. We can divide the 
six-dimensional space into small cellular volumes and each volume elements is assigned an 
index 1,2,3,i   as a unique number for identification purposes. The number of 
molecules, ( )iN t  would be the macroscopic Boltzmann variable associated in the volume 
element i , and we choose the volume element i  to be sufficiently large that ( )iN t  is a 
large number. 

It is assumed that binary collisions between the molecules of only two volume elements 
located at ,r v  and 1,r v  occur in the -space. Each of these volumes lose one molecule 
each and volume elements located at ,,r v  and '

1,r v  gain one molecule each at the end of 
each collisions. (The primes denote the velocities at the centre of mass velocities after the 
collisions.) We can define the extensive property of the number density is -space, 

( , , )r v t , so that ( , , )r v dt drdv is the number of molecules with centre of mass position 
and velocity in the ranges  ,r r dr  and  ,v v dv . 

Then the Boltzmann equation gives, 

' '
1 1 1ˆ ,r v Tv F g dv

t
                                 (5.3.1) 

where '' ' '
11

( , , ) , ( , , )r v t r v t   


   , F  is an external force field acting in the -space, and 

r  and v  are the derivatives with respective to r  and v  , respectively. The third term 
on the right hand side of equation (5.3.1) is the dissipative effect of collisions; ˆT  is a linear 
operator and g  is the constant relative velocity magnitude. In the absence of an external 
force equation (5.3.1) can be written as, 

,r ev d
t
 
   


                           (5.3.2) 

with ed  lumping the dissipation due to collisions. 

Unlike the Onsager’s linear laws, which are true only near the thermodynamic equilibrium, 
the Boltzmann equation is true not only in the vicinity of the equilibrium but also away from 
the equilibrium. However, near the equilibrium these two pictures are similar and while the 
Boltzmann equation is valid strictly speaking only for diluted gases, the Onsager linear laws 
are valid for any ensemble. 

Boltzmann’s theory includes a function called the H-function which behaves in an entropy-

like manner; for a closed system H-function is a non-increasing function, i.e., 0.dH
dt

  H  

function is defined as  

ln .H drdv                               (5.3.3) 

This attribute of H function is H-theorem, and H function has similar character to the Gibb’s 
free energy in thermodynamics. 
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molecules was the main focus on his work. The Boltzmann’s equation describes the 
nonlinear dynamics of the molecular collisions, while Onsager theory is on linear dynamics 
without fluctuations. It can be shown that the linearized Boltzmann equation is a special 
case of Onsager theory. 

In the derivation of the Boltzmann equation, we have a six-dimensional space in which the 
position of, r , and the velocity, v  , of the centre of mass of a single molecule are defined. 
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six-dimensional space into small cellular volumes and each volume elements is assigned an 
index 1,2,3,i   as a unique number for identification purposes. The number of 
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1,r v  gain one molecule each at the end of 
each collisions. (The primes denote the velocities at the centre of mass velocities after the 
collisions.) We can define the extensive property of the number density is -space, 
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r  and v  are the derivatives with respective to r  and v  , respectively. The third term 
on the right hand side of equation (5.3.1) is the dissipative effect of collisions; ˆT  is a linear 
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with ed  lumping the dissipation due to collisions. 

Unlike the Onsager’s linear laws, which are true only near the thermodynamic equilibrium, 
the Boltzmann equation is true not only in the vicinity of the equilibrium but also away from 
the equilibrium. However, near the equilibrium these two pictures are similar and while the 
Boltzmann equation is valid strictly speaking only for diluted gases, the Onsager linear laws 
are valid for any ensemble. 

Boltzmann’s theory includes a function called the H-function which behaves in an entropy-

like manner; for a closed system H-function is a non-increasing function, i.e., 0.dH
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function is defined as  
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This attribute of H function is H-theorem, and H function has similar character to the Gibb’s 
free energy in thermodynamics. 



Computational Modelling of Multi-Scale Non-Fickian Dispersion  
in Porous Media - An Approach Based on Stochastic Calculus168

 

( ) ( ) ( ) ( ) ( ) ( ).i i
ij i ij i ij i e ij i e

dx t d x t H x t H x t H x t H x t
dt dt

        

Rearranging, 

( ) ( )( ) ( ) ( ) ( ).i i
ij i ij i e ij i ij i e

d x t dx tH x t H x t H x t H x t
dt dt

       

Near equilibrium, 

( ) 0i ex t  ; and ( ) ( ( ) ( ))i
ij i e i e

dx t H x t x t
dt

   
 

 is small compared to  ( )i
d x t
dt

  following 

equation (5.2.21), we can simplify the above equation to  

( ) ( ) .i
ij i i

d x t H x t f
dt

     

where if  is a random term. Expressing this in matrix form, 

.d X H X f
dt
                               (5.2.26) 

This equation is the Onsager’s regression hypothesis for fluctuations. This hypothesis is 
based on the thermodynamic arguments not on the particles behaviour in a physical 
ensemble. However, as we will see in the next sections, equation (5.2.26) has a similar 
character to those derived from the particle dynamics. 

To complete the Onsager picture of random fluctuations in equation (5.2.26), we need to 
consider equation (5.2.26) as linear stochastic differential equation. Then f  term can be 

defined in terms of the Wiener process and H  as a function of X  to develop the 
simplest form of a stochastic differential equation. We will address this in section 5.4. 
 

5.3 The Boltzmann Picture 
As mentioned in the previous section, the Onsager regression hypothesis is based on the 
entropy and the coefficients which form the coupling matrix, L . The Boltzmann equation is 
on the other hand dependent entirely on the molecular dynamics of collisions and the 
resulting fluctuations. We do not intent to derive the Boltzmann equation here; instead, we 
describe the equation and the variables here. For the technical details of the derivation, there 
are many excellent texts on statistical mechanics and some of the original works are given in 
the references.  

Boltzmann’s work was on the dynamics of dilute gases and the average behaviour of gas 
molecules was the main focus on his work. The Boltzmann’s equation describes the 
nonlinear dynamics of the molecular collisions, while Onsager theory is on linear dynamics 
without fluctuations. It can be shown that the linearized Boltzmann equation is a special 
case of Onsager theory. 

In the derivation of the Boltzmann equation, we have a six-dimensional space in which the 
position of, r , and the velocity, v  , of the centre of mass of a single molecule are defined. 

 

We call this six-dimensional space the -space or molecule phase space. We can divide the 
six-dimensional space into small cellular volumes and each volume elements is assigned an 
index 1,2,3,i   as a unique number for identification purposes. The number of 
molecules, ( )iN t  would be the macroscopic Boltzmann variable associated in the volume 
element i , and we choose the volume element i  to be sufficiently large that ( )iN t  is a 
large number. 

It is assumed that binary collisions between the molecules of only two volume elements 
located at ,r v  and 1,r v  occur in the -space. Each of these volumes lose one molecule 
each and volume elements located at ,,r v  and '

1,r v  gain one molecule each at the end of 
each collisions. (The primes denote the velocities at the centre of mass velocities after the 
collisions.) We can define the extensive property of the number density is -space, 

( , , )r v t , so that ( , , )r v dt drdv is the number of molecules with centre of mass position 
and velocity in the ranges  ,r r dr  and  ,v v dv . 

Then the Boltzmann equation gives, 
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   , F  is an external force field acting in the -space, and 

r  and v  are the derivatives with respective to r  and v  , respectively. The third term 
on the right hand side of equation (5.3.1) is the dissipative effect of collisions; ˆT  is a linear 
operator and g  is the constant relative velocity magnitude. In the absence of an external 
force equation (5.3.1) can be written as, 
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with ed  lumping the dissipation due to collisions. 

Unlike the Onsager’s linear laws, which are true only near the thermodynamic equilibrium, 
the Boltzmann equation is true not only in the vicinity of the equilibrium but also away from 
the equilibrium. However, near the equilibrium these two pictures are similar and while the 
Boltzmann equation is valid strictly speaking only for diluted gases, the Onsager linear laws 
are valid for any ensemble. 

Boltzmann’s theory includes a function called the H-function which behaves in an entropy-

like manner; for a closed system H-function is a non-increasing function, i.e., 0.dH
dt

  H  

function is defined as  

ln .H drdv                               (5.3.3) 

This attribute of H function is H-theorem, and H function has similar character to the Gibb’s 
free energy in thermodynamics. 
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describe the equation and the variables here. For the technical details of the derivation, there 
are many excellent texts on statistical mechanics and some of the original works are given in 
the references.  

Boltzmann’s work was on the dynamics of dilute gases and the average behaviour of gas 
molecules was the main focus on his work. The Boltzmann’s equation describes the 
nonlinear dynamics of the molecular collisions, while Onsager theory is on linear dynamics 
without fluctuations. It can be shown that the linearized Boltzmann equation is a special 
case of Onsager theory. 
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each collisions. (The primes denote the velocities at the centre of mass velocities after the 
collisions.) We can define the extensive property of the number density is -space, 

( , , )r v t , so that ( , , )r v dt drdv is the number of molecules with centre of mass position 
and velocity in the ranges  ,r r dr  and  ,v v dv . 

Then the Boltzmann equation gives, 
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r  and v  are the derivatives with respective to r  and v  , respectively. The third term 
on the right hand side of equation (5.3.1) is the dissipative effect of collisions; ˆT  is a linear 
operator and g  is the constant relative velocity magnitude. In the absence of an external 
force equation (5.3.1) can be written as, 
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with ed  lumping the dissipation due to collisions. 

Unlike the Onsager’s linear laws, which are true only near the thermodynamic equilibrium, 
the Boltzmann equation is true not only in the vicinity of the equilibrium but also away from 
the equilibrium. However, near the equilibrium these two pictures are similar and while the 
Boltzmann equation is valid strictly speaking only for diluted gases, the Onsager linear laws 
are valid for any ensemble. 

Boltzmann’s theory includes a function called the H-function which behaves in an entropy-

like manner; for a closed system H-function is a non-increasing function, i.e., 0.dH
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function is defined as  
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This attribute of H function is H-theorem, and H function has similar character to the Gibb’s 
free energy in thermodynamics. 
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It can be shown that when 0,dH
dt

  if e   then 

' '
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e e e e                               (5.3.4) 

where ‘ e ’ indicates the equilibrium state. 

In the vicinity of equilibrium, we can write, 

( , , ) ( ) ( , , )er v t v r v t                            (5.3.5) 

where ( , , )r v t  is a small change in the -space density. By substituting equation (5.3.5) 

in the Boltzmann equation and ignoring the higher order terms of rD , we obtain, 
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t
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
                         (5.3.6) 

with  C   replacing the dissipation integral as a linear functional. 

It can be shown that (Fox and Uhlenbeck, 1970 a and b) by adopting the Onsager hypothesis, 
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with SL  is a linear operator (see Fox and Uhlenbeck, 1970 a and b);  and f  is a random 
term which needs to be characterised. 

The random term now can be defined by, 

( , , ) 0E f r v t   
  and 

' ' ' ' '
1( , , ) ( , , ) 2 ( , ) ( ) ( ).S

BE f r v t f r v t k L v v r r t t      
                (5.3.8) 

In equation (5.3.7), the rate of change of the -space density increments are expressed in 
terms of thermodynamic forces  X . 

By deriving the random term f  as in (5.3.8), we see that the random term is a zero-mean 
stochastic process in the -space,  -correlated in r  and t  but influenced by the velocity 
of the centre of mass through a linear operator derived from the dissipation term, Sd , in the 
Boltzmann equation. Equation (5.3.7) and (5.3.8) show that the Boltzmann and Onsager 
pictures are united near equilibrium. Equally importantly, equation (5.3.8) justifies the  -

 

correlated stochastic processes to model the fluctuations. Moving away from the -space, we 
describe the fluctuations and dissipation using the theory of stochastic processes in an effort 
to develop operational models of molecular fluctuations. 
 

5.4 Onsager Regression Hypothesis, Langevin Equation and Itō processes 
The Onsager regression hypothesis, equation (5.2.26), states that the fluctuations of 
extensive variables around their expected values conditional on the initial values can be 
expressed in terms of a system of differential equations through a relaxation matrix which is 
defined in equation (5.2.20). Equation (5.2.26) is similar in form to equations (5.3.6) and 
(5.3.7) which are derived from Boltzmann’s equation (5.3.1). Both of these theories support 
the hypothesis that the time derivatives of fluctuations on the average follow differential 
equations with additive random terms. The average fluctuations are driven by 
thermodynamically coupled driving forces because of energy dissipation according to 
Boltzmann. We have seen in the previous section that both of these descriptions are 
phenomenologically equivalent. However, none of those descriptions are amenable for 
operational models of fluctuation and dissipation. 

Starting point of the development of such models is the Langevin equation which describes 
the motion of Brownian particles. Even though Langevin used the Newtonian laws to 
describe the particle motion, he developed a differential equation with an addictive random 
term, which is quite similar to the Onsager regression hypothesis. Langevin started by 
considering a particle of mass m at a distance r  from an initial point, if p  is the 
momentum vector of the particle and V  is the velocity, we can write from the Newton 
laws,  

pdr
dt m




,                                 (5.4.1) 

 
dpF
dt




,                                 (5.4.2)   

                                               
and p mV .                              (5.4.3) 

We have slightly changed the notation to indicate that the variables are associated with a 
particle rather than with an ensemble. 

In equation (5.4.2), F is the force vector on the particle (the particle is bombarded by the 
surrounding water molecules). We can express the F  as ( )d eF F  where dF  is the drag 
component due to friction and eF  is the external force; the force due to molecular collisions on 
the particle is assumed to be random. dF  can be expressed through the friction constant  , 

dF V  .                              (5.4.4) 

Now we can write, pdr
dt m




 as in equation (5.4.1), 

and e
dp p F f
dt m

      
 

 
.                 (5.4.5) 
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where ‘ e ’ indicates the equilibrium state. 
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with  C   replacing the dissipation integral as a linear functional. 
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with SL  is a linear operator (see Fox and Uhlenbeck, 1970 a and b);  and f  is a random 
term which needs to be characterised. 

The random term now can be defined by, 
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In equation (5.3.7), the rate of change of the -space density increments are expressed in 
terms of thermodynamic forces  X . 

By deriving the random term f  as in (5.3.8), we see that the random term is a zero-mean 
stochastic process in the -space,  -correlated in r  and t  but influenced by the velocity 
of the centre of mass through a linear operator derived from the dissipation term, Sd , in the 
Boltzmann equation. Equation (5.3.7) and (5.3.8) show that the Boltzmann and Onsager 
pictures are united near equilibrium. Equally importantly, equation (5.3.8) justifies the  -

 

correlated stochastic processes to model the fluctuations. Moving away from the -space, we 
describe the fluctuations and dissipation using the theory of stochastic processes in an effort 
to develop operational models of molecular fluctuations. 
 

5.4 Onsager Regression Hypothesis, Langevin Equation and Itō processes 
The Onsager regression hypothesis, equation (5.2.26), states that the fluctuations of 
extensive variables around their expected values conditional on the initial values can be 
expressed in terms of a system of differential equations through a relaxation matrix which is 
defined in equation (5.2.20). Equation (5.2.26) is similar in form to equations (5.3.6) and 
(5.3.7) which are derived from Boltzmann’s equation (5.3.1). Both of these theories support 
the hypothesis that the time derivatives of fluctuations on the average follow differential 
equations with additive random terms. The average fluctuations are driven by 
thermodynamically coupled driving forces because of energy dissipation according to 
Boltzmann. We have seen in the previous section that both of these descriptions are 
phenomenologically equivalent. However, none of those descriptions are amenable for 
operational models of fluctuation and dissipation. 

Starting point of the development of such models is the Langevin equation which describes 
the motion of Brownian particles. Even though Langevin used the Newtonian laws to 
describe the particle motion, he developed a differential equation with an addictive random 
term, which is quite similar to the Onsager regression hypothesis. Langevin started by 
considering a particle of mass m at a distance r  from an initial point, if p  is the 
momentum vector of the particle and V  is the velocity, we can write from the Newton 
laws,  
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We have slightly changed the notation to indicate that the variables are associated with a 
particle rather than with an ensemble. 

In equation (5.4.2), F is the force vector on the particle (the particle is bombarded by the 
surrounding water molecules). We can express the F  as ( )d eF F  where dF  is the drag 
component due to friction and eF  is the external force; the force due to molecular collisions on 
the particle is assumed to be random. dF  can be expressed through the friction constant  , 
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Now we can write, pdr
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where ‘ e ’ indicates the equilibrium state. 

In the vicinity of equilibrium, we can write, 
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with  C   replacing the dissipation integral as a linear functional. 

It can be shown that (Fox and Uhlenbeck, 1970 a and b) by adopting the Onsager hypothesis, 
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with SL  is a linear operator (see Fox and Uhlenbeck, 1970 a and b);  and f  is a random 
term which needs to be characterised. 

The random term now can be defined by, 
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In equation (5.3.7), the rate of change of the -space density increments are expressed in 
terms of thermodynamic forces  X . 

By deriving the random term f  as in (5.3.8), we see that the random term is a zero-mean 
stochastic process in the -space,  -correlated in r  and t  but influenced by the velocity 
of the centre of mass through a linear operator derived from the dissipation term, Sd , in the 
Boltzmann equation. Equation (5.3.7) and (5.3.8) show that the Boltzmann and Onsager 
pictures are united near equilibrium. Equally importantly, equation (5.3.8) justifies the  -

 

correlated stochastic processes to model the fluctuations. Moving away from the -space, we 
describe the fluctuations and dissipation using the theory of stochastic processes in an effort 
to develop operational models of molecular fluctuations. 
 

5.4 Onsager Regression Hypothesis, Langevin Equation and Itō processes 
The Onsager regression hypothesis, equation (5.2.26), states that the fluctuations of 
extensive variables around their expected values conditional on the initial values can be 
expressed in terms of a system of differential equations through a relaxation matrix which is 
defined in equation (5.2.20). Equation (5.2.26) is similar in form to equations (5.3.6) and 
(5.3.7) which are derived from Boltzmann’s equation (5.3.1). Both of these theories support 
the hypothesis that the time derivatives of fluctuations on the average follow differential 
equations with additive random terms. The average fluctuations are driven by 
thermodynamically coupled driving forces because of energy dissipation according to 
Boltzmann. We have seen in the previous section that both of these descriptions are 
phenomenologically equivalent. However, none of those descriptions are amenable for 
operational models of fluctuation and dissipation. 

Starting point of the development of such models is the Langevin equation which describes 
the motion of Brownian particles. Even though Langevin used the Newtonian laws to 
describe the particle motion, he developed a differential equation with an addictive random 
term, which is quite similar to the Onsager regression hypothesis. Langevin started by 
considering a particle of mass m at a distance r  from an initial point, if p  is the 
momentum vector of the particle and V  is the velocity, we can write from the Newton 
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We have slightly changed the notation to indicate that the variables are associated with a 
particle rather than with an ensemble. 

In equation (5.4.2), F is the force vector on the particle (the particle is bombarded by the 
surrounding water molecules). We can express the F  as ( )d eF F  where dF  is the drag 
component due to friction and eF  is the external force; the force due to molecular collisions on 
the particle is assumed to be random. dF  can be expressed through the friction constant  , 
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with SL  is a linear operator (see Fox and Uhlenbeck, 1970 a and b);  and f  is a random 
term which needs to be characterised. 

The random term now can be defined by, 
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In equation (5.3.7), the rate of change of the -space density increments are expressed in 
terms of thermodynamic forces  X . 

By deriving the random term f  as in (5.3.8), we see that the random term is a zero-mean 
stochastic process in the -space,  -correlated in r  and t  but influenced by the velocity 
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correlated stochastic processes to model the fluctuations. Moving away from the -space, we 
describe the fluctuations and dissipation using the theory of stochastic processes in an effort 
to develop operational models of molecular fluctuations. 
 

5.4 Onsager Regression Hypothesis, Langevin Equation and Itō processes 
The Onsager regression hypothesis, equation (5.2.26), states that the fluctuations of 
extensive variables around their expected values conditional on the initial values can be 
expressed in terms of a system of differential equations through a relaxation matrix which is 
defined in equation (5.2.20). Equation (5.2.26) is similar in form to equations (5.3.6) and 
(5.3.7) which are derived from Boltzmann’s equation (5.3.1). Both of these theories support 
the hypothesis that the time derivatives of fluctuations on the average follow differential 
equations with additive random terms. The average fluctuations are driven by 
thermodynamically coupled driving forces because of energy dissipation according to 
Boltzmann. We have seen in the previous section that both of these descriptions are 
phenomenologically equivalent. However, none of those descriptions are amenable for 
operational models of fluctuation and dissipation. 

Starting point of the development of such models is the Langevin equation which describes 
the motion of Brownian particles. Even though Langevin used the Newtonian laws to 
describe the particle motion, he developed a differential equation with an addictive random 
term, which is quite similar to the Onsager regression hypothesis. Langevin started by 
considering a particle of mass m at a distance r  from an initial point, if p  is the 
momentum vector of the particle and V  is the velocity, we can write from the Newton 
laws,  

pdr
dt m




,                                 (5.4.1) 

 
dpF
dt




,                                 (5.4.2)   

                                               
and p mV .                              (5.4.3) 

We have slightly changed the notation to indicate that the variables are associated with a 
particle rather than with an ensemble. 

In equation (5.4.2), F is the force vector on the particle (the particle is bombarded by the 
surrounding water molecules). We can express the F  as ( )d eF F  where dF  is the drag 
component due to friction and eF  is the external force; the force due to molecular collisions on 
the particle is assumed to be random. dF  can be expressed through the friction constant  , 

dF V  .                              (5.4.4) 

Now we can write, pdr
dt m




 as in equation (5.4.1), 

and e
dp p F f
dt m

      
 

 
.                 (5.4.5) 
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In equations (5.4.5) and (5.4.1), the position of the particle, r  and the momentum, p  are 
coupled, and f  is a random additive noise. In a dissipative system, the random forcing 

term f  can be assumed to have an expected value of zero: 

0E f    .                              (5.4.6) 

At the given time, the random force term, f  at time 1t  is uncorrelated to that of 2t , and 

it is a result if molecular impacts on the particle. Therefore, we can assume that f  to be a 
 -correlated function: 

  2
1 2 1 2( ) ( ) ( )Cov f t f t t t   ,                      (5.4.7) 

where 2  is the variance. 

It is now clear that the Wiener process described in Chapter 2 is a good model for f , and 

therefore we can write equation (5.4.5) as, 

( )edp pdt F dt dw t
m
      

 
  ,                       (5.4.6) 

where, ( )w t  is the standard Wiener process. 

In the absence of an external force,  

( )dp pdt dw t
m
     

 
  .                         (5.4.7) 

Therefore, the solution of the stochastic differential equation (5.4.7), can be written as, 

( ) (0) ( )p t p pdt dw t
m
     

  
   ,                      (5.4.8) 

and equation (5.4.8) in an stochastic integral. The last integration can be interpreted in two 
ways: as an Itō integral or as a Stratonovich integral. Because of the martingale of property 
of Itō integrals, we choose to interpret the second integral on the right hand side of equation 
(5.4.8) as an Itō integral. The implications of this choice is important to understand: it makes 
stochastic processes such as equation (5.4.8) Markov processes with the transitional 
conditional probabilities obeying Fokker-Planck type equations. The stochastic differential 
equations of the type given by equation (5.4.7) describe the time evolution of stochastic 
variables. We generalize the stochastic differential of a vector valued stochastic process by, 

 ( , ) ( , )dn h n t dt g n t dw  ,                        (5.4.9) 

where n  is an extensive variable, h  is a vector function of n  and t ,   is a diagonal 
matrix with ii  as the diagonal element, ( , )g n t  is a matrix function of n  and t  and w  

is the standard Wiener process vector. By taking   to be diagonal matrix, we assume that 

 

covariance  2

ij  is not cross correlated, i.e., where i j , ij ii   and when i j , 

0ij  . Then by defining, 

( , ) ( , )G n t g n t , 

We can write a general Ito integral, 

( , ) ( , )dn h n t dt G n t dw    , and 

0 0

0( ) ( ) ( , ) ( , )
t t

t t

n t n t h n t dt G n t dw    .                   (5.4.10) 

Equation (5.4.10) depicts a Markov process and is a martingale. 

The probability density or the transitional probability function of ( )n t , 1 1( , | , )p n t n t  obeys 
the Fokker-Planck equation (given in the repeated summation indices):  

2
1 1

1 1 1 1
( , | , ) 1( , ) ( , | , ) ( , ) ( , ) ( , | , ),

2
iki

ik
j i j

p n t n t gh n t p n t n t n t g n t p n t n t
t n n n

 
 

   
      (5.4.11) 

 
and 1 1( ,0| ,0) ( )p n n n n  . 

Once the Fokker-Plank equation is solved for the conditional density, the Markov process 
( )n t  can be described completely. For the most of the Markov process of practical interest 
( , )h n t is linear in n  and ( , )G n t  is independent of n , and therefore the Fokker-Plank 

equation (5.4.10) can also be solved using integration by parts without resorting to Ito 
calculus. However, in general stochastic integrals are solved using Ito definition. 
 

5.5 Velocity as a Stochastic Variable 
Equation (5.4.6) expresses the dynamics of a single Brownian particle based on the first 
principles. We can write the infinitesimal change in momentum in a slightly modified form: 

e p pdp p F dt dw
m
 

         

  ,                       (5.5.1) 

where the subscript “ p ” indicates that they are associated with particle momentum. 

eF denotes the external force acting on the particle. If the particle is in a porous media 
saturated with water, the porous matrix exerts a force opposite to the direction of flow, 
whereas the pressure gradient acting in the flow direction would be largely responsible for 
p . The first term on the right hand side of equation (5.5.1) can be thought of as the change 
of momentum on the average if we lump the fluctuating component of eF  in to p pdw .  
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In equations (5.4.5) and (5.4.1), the position of the particle, r  and the momentum, p  are 
coupled, and f  is a random additive noise. In a dissipative system, the random forcing 

term f  can be assumed to have an expected value of zero: 

0E f    .                              (5.4.6) 

At the given time, the random force term, f  at time 1t  is uncorrelated to that of 2t , and 

it is a result if molecular impacts on the particle. Therefore, we can assume that f  to be a 
 -correlated function: 

  2
1 2 1 2( ) ( ) ( )Cov f t f t t t   ,                      (5.4.7) 

where 2  is the variance. 

It is now clear that the Wiener process described in Chapter 2 is a good model for f , and 

therefore we can write equation (5.4.5) as, 

( )edp pdt F dt dw t
m
      

 
  ,                       (5.4.6) 

where, ( )w t  is the standard Wiener process. 

In the absence of an external force,  

( )dp pdt dw t
m
     

 
  .                         (5.4.7) 

Therefore, the solution of the stochastic differential equation (5.4.7), can be written as, 

( ) (0) ( )p t p pdt dw t
m
     

  
   ,                      (5.4.8) 

and equation (5.4.8) in an stochastic integral. The last integration can be interpreted in two 
ways: as an Itō integral or as a Stratonovich integral. Because of the martingale of property 
of Itō integrals, we choose to interpret the second integral on the right hand side of equation 
(5.4.8) as an Itō integral. The implications of this choice is important to understand: it makes 
stochastic processes such as equation (5.4.8) Markov processes with the transitional 
conditional probabilities obeying Fokker-Planck type equations. The stochastic differential 
equations of the type given by equation (5.4.7) describe the time evolution of stochastic 
variables. We generalize the stochastic differential of a vector valued stochastic process by, 

 ( , ) ( , )dn h n t dt g n t dw  ,                        (5.4.9) 

where n  is an extensive variable, h  is a vector function of n  and t ,   is a diagonal 
matrix with ii  as the diagonal element, ( , )g n t  is a matrix function of n  and t  and w  

is the standard Wiener process vector. By taking   to be diagonal matrix, we assume that 

 

covariance  2

ij  is not cross correlated, i.e., where i j , ij ii   and when i j , 

0ij  . Then by defining, 

( , ) ( , )G n t g n t , 

We can write a general Ito integral, 

( , ) ( , )dn h n t dt G n t dw    , and 

0 0

0( ) ( ) ( , ) ( , )
t t

t t

n t n t h n t dt G n t dw    .                   (5.4.10) 

Equation (5.4.10) depicts a Markov process and is a martingale. 

The probability density or the transitional probability function of ( )n t , 1 1( , | , )p n t n t  obeys 
the Fokker-Planck equation (given in the repeated summation indices):  

2
1 1

1 1 1 1
( , | , ) 1( , ) ( , | , ) ( , ) ( , ) ( , | , ),

2
iki

ik
j i j

p n t n t gh n t p n t n t n t g n t p n t n t
t n n n

 
 

   
      (5.4.11) 

 
and 1 1( ,0| ,0) ( )p n n n n  . 

Once the Fokker-Plank equation is solved for the conditional density, the Markov process 
( )n t  can be described completely. For the most of the Markov process of practical interest 
( , )h n t is linear in n  and ( , )G n t  is independent of n , and therefore the Fokker-Plank 

equation (5.4.10) can also be solved using integration by parts without resorting to Ito 
calculus. However, in general stochastic integrals are solved using Ito definition. 
 

5.5 Velocity as a Stochastic Variable 
Equation (5.4.6) expresses the dynamics of a single Brownian particle based on the first 
principles. We can write the infinitesimal change in momentum in a slightly modified form: 

e p pdp p F dt dw
m
 

         

  ,                       (5.5.1) 

where the subscript “ p ” indicates that they are associated with particle momentum. 

eF denotes the external force acting on the particle. If the particle is in a porous media 
saturated with water, the porous matrix exerts a force opposite to the direction of flow, 
whereas the pressure gradient acting in the flow direction would be largely responsible for 
p . The first term on the right hand side of equation (5.5.1) can be thought of as the change 
of momentum on the average if we lump the fluctuating component of eF  in to p pdw .  
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In equations (5.4.5) and (5.4.1), the position of the particle, r  and the momentum, p  are 
coupled, and f  is a random additive noise. In a dissipative system, the random forcing 

term f  can be assumed to have an expected value of zero: 

0E f    .                              (5.4.6) 

At the given time, the random force term, f  at time 1t  is uncorrelated to that of 2t , and 

it is a result if molecular impacts on the particle. Therefore, we can assume that f  to be a 
 -correlated function: 

  2
1 2 1 2( ) ( ) ( )Cov f t f t t t   ,                      (5.4.7) 

where 2  is the variance. 

It is now clear that the Wiener process described in Chapter 2 is a good model for f , and 

therefore we can write equation (5.4.5) as, 

( )edp pdt F dt dw t
m
      

 
  ,                       (5.4.6) 

where, ( )w t  is the standard Wiener process. 

In the absence of an external force,  

( )dp pdt dw t
m
     

 
  .                         (5.4.7) 

Therefore, the solution of the stochastic differential equation (5.4.7), can be written as, 

( ) (0) ( )p t p pdt dw t
m
     

  
   ,                      (5.4.8) 

and equation (5.4.8) in an stochastic integral. The last integration can be interpreted in two 
ways: as an Itō integral or as a Stratonovich integral. Because of the martingale of property 
of Itō integrals, we choose to interpret the second integral on the right hand side of equation 
(5.4.8) as an Itō integral. The implications of this choice is important to understand: it makes 
stochastic processes such as equation (5.4.8) Markov processes with the transitional 
conditional probabilities obeying Fokker-Planck type equations. The stochastic differential 
equations of the type given by equation (5.4.7) describe the time evolution of stochastic 
variables. We generalize the stochastic differential of a vector valued stochastic process by, 

 ( , ) ( , )dn h n t dt g n t dw  ,                        (5.4.9) 

where n  is an extensive variable, h  is a vector function of n  and t ,   is a diagonal 
matrix with ii  as the diagonal element, ( , )g n t  is a matrix function of n  and t  and w  

is the standard Wiener process vector. By taking   to be diagonal matrix, we assume that 

 

covariance  2

ij  is not cross correlated, i.e., where i j , ij ii   and when i j , 

0ij  . Then by defining, 

( , ) ( , )G n t g n t , 

We can write a general Ito integral, 

( , ) ( , )dn h n t dt G n t dw    , and 

0 0

0( ) ( ) ( , ) ( , )
t t

t t

n t n t h n t dt G n t dw    .                   (5.4.10) 

Equation (5.4.10) depicts a Markov process and is a martingale. 

The probability density or the transitional probability function of ( )n t , 1 1( , | , )p n t n t  obeys 
the Fokker-Planck equation (given in the repeated summation indices):  

2
1 1

1 1 1 1
( , | , ) 1( , ) ( , | , ) ( , ) ( , ) ( , | , ),

2
iki

ik
j i j

p n t n t gh n t p n t n t n t g n t p n t n t
t n n n

 
 

   
      (5.4.11) 

 
and 1 1( ,0| ,0) ( )p n n n n  . 

Once the Fokker-Plank equation is solved for the conditional density, the Markov process 
( )n t  can be described completely. For the most of the Markov process of practical interest 
( , )h n t is linear in n  and ( , )G n t  is independent of n , and therefore the Fokker-Plank 

equation (5.4.10) can also be solved using integration by parts without resorting to Ito 
calculus. However, in general stochastic integrals are solved using Ito definition. 
 

5.5 Velocity as a Stochastic Variable 
Equation (5.4.6) expresses the dynamics of a single Brownian particle based on the first 
principles. We can write the infinitesimal change in momentum in a slightly modified form: 

e p pdp p F dt dw
m
 

         

  ,                       (5.5.1) 

where the subscript “ p ” indicates that they are associated with particle momentum. 

eF denotes the external force acting on the particle. If the particle is in a porous media 
saturated with water, the porous matrix exerts a force opposite to the direction of flow, 
whereas the pressure gradient acting in the flow direction would be largely responsible for 
p . The first term on the right hand side of equation (5.5.1) can be thought of as the change 
of momentum on the average if we lump the fluctuating component of eF  in to p pdw .  
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In equations (5.4.5) and (5.4.1), the position of the particle, r  and the momentum, p  are 
coupled, and f  is a random additive noise. In a dissipative system, the random forcing 

term f  can be assumed to have an expected value of zero: 

0E f    .                              (5.4.6) 

At the given time, the random force term, f  at time 1t  is uncorrelated to that of 2t , and 

it is a result if molecular impacts on the particle. Therefore, we can assume that f  to be a 
 -correlated function: 

  2
1 2 1 2( ) ( ) ( )Cov f t f t t t   ,                      (5.4.7) 

where 2  is the variance. 

It is now clear that the Wiener process described in Chapter 2 is a good model for f , and 

therefore we can write equation (5.4.5) as, 

( )edp pdt F dt dw t
m
      

 
  ,                       (5.4.6) 

where, ( )w t  is the standard Wiener process. 

In the absence of an external force,  

( )dp pdt dw t
m
     

 
  .                         (5.4.7) 

Therefore, the solution of the stochastic differential equation (5.4.7), can be written as, 

( ) (0) ( )p t p pdt dw t
m
     

  
   ,                      (5.4.8) 

and equation (5.4.8) in an stochastic integral. The last integration can be interpreted in two 
ways: as an Itō integral or as a Stratonovich integral. Because of the martingale of property 
of Itō integrals, we choose to interpret the second integral on the right hand side of equation 
(5.4.8) as an Itō integral. The implications of this choice is important to understand: it makes 
stochastic processes such as equation (5.4.8) Markov processes with the transitional 
conditional probabilities obeying Fokker-Planck type equations. The stochastic differential 
equations of the type given by equation (5.4.7) describe the time evolution of stochastic 
variables. We generalize the stochastic differential of a vector valued stochastic process by, 

 ( , ) ( , )dn h n t dt g n t dw  ,                        (5.4.9) 

where n  is an extensive variable, h  is a vector function of n  and t ,   is a diagonal 
matrix with ii  as the diagonal element, ( , )g n t  is a matrix function of n  and t  and w  

is the standard Wiener process vector. By taking   to be diagonal matrix, we assume that 

 

covariance  2

ij  is not cross correlated, i.e., where i j , ij ii   and when i j , 

0ij  . Then by defining, 

( , ) ( , )G n t g n t , 

We can write a general Ito integral, 

( , ) ( , )dn h n t dt G n t dw    , and 

0 0

0( ) ( ) ( , ) ( , )
t t

t t

n t n t h n t dt G n t dw    .                   (5.4.10) 

Equation (5.4.10) depicts a Markov process and is a martingale. 

The probability density or the transitional probability function of ( )n t , 1 1( , | , )p n t n t  obeys 
the Fokker-Planck equation (given in the repeated summation indices):  

2
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      (5.4.11) 

 
and 1 1( ,0| ,0) ( )p n n n n  . 

Once the Fokker-Plank equation is solved for the conditional density, the Markov process 
( )n t  can be described completely. For the most of the Markov process of practical interest 
( , )h n t is linear in n  and ( , )G n t  is independent of n , and therefore the Fokker-Plank 

equation (5.4.10) can also be solved using integration by parts without resorting to Ito 
calculus. However, in general stochastic integrals are solved using Ito definition. 
 

5.5 Velocity as a Stochastic Variable 
Equation (5.4.6) expresses the dynamics of a single Brownian particle based on the first 
principles. We can write the infinitesimal change in momentum in a slightly modified form: 

e p pdp p F dt dw
m
 

         

  ,                       (5.5.1) 

where the subscript “ p ” indicates that they are associated with particle momentum. 

eF denotes the external force acting on the particle. If the particle is in a porous media 
saturated with water, the porous matrix exerts a force opposite to the direction of flow, 
whereas the pressure gradient acting in the flow direction would be largely responsible for 
p . The first term on the right hand side of equation (5.5.1) can be thought of as the change 
of momentum on the average if we lump the fluctuating component of eF  in to p pdw .  
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Therefore, we can write equation (5.5.1) as, 

' '
e p pdp p F dt dw

m
 

         

  ,                       (5.5.2) 

where ' '
p pdw  now contains the fluctuating component of the momentum change due to 

the porous media. eF  is in the mean force acting on the particle, and in the saturated 
medium, it may be dominating the first term of the right hand side of equation (5.5.2). 
Therefore, we could approximate equation (5.5.2) for an i th particle in an ensemble particles 
with, 

, ,i i p i p idp Fdt dw  ,                          (5.5.3) 

where iF  now depicts the mean force acting on a particle i, and all the variables are vectors 
and ,p i  is a matrix. Now we can write, 

i i ip m v , 

where im  is the mass of a particle i and iv  is the particle velocity, which is a random 
variable. We can express equation (5.5.3) as, 

, ,( ) i
i i i p i p i

dvd m v m dt dw
dt

  , and 

the instantaneous change in the velocity, idv , can be approximated by  iv dt  where iv  is 
the mean velocity of the i th particle at the locality of the particle at time, t. Now we can 
write 

, ,i i v i v idv v dt dw  ,                          (5.5.4) 
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where V  is the Gausssian velocity of the ensemble, V is the mean velocity and   is the 
“average” noise representing the fluctuations. 

We have shown that the velocity can be expressed as consisting of a mean component and 
an additive fluctuating component, based on the Langevin description of Brownian 
particles. From an application point of view, the additive form of the velocity can be used to 
explain the local heterogeneity of the porous medium, i.e., we can always calculate the 
average velocity in a region and then the changes in the porous structure may be assumed to 
cause the fluctuations around the mean. This is the working assumption on which the 
stochastic solute transport model (SSTM) in Chapter 3 is based. 
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As we have seen in section 5.3, equation (5.3.7) unites the Onsager and Boltzmann pictures 
close to equilibrium (Keizer, 1987). The SSTM given by equation (4.2.1) has a similar form to 
that of equation (5.3.7) and equation (5.3.2) where the fluctuating component is separated 
out as an additive component but the fluctuating part is now more complicated reflecting 
the influence of the porous media. According to equation (5.3.8), the “noisy” random 
functions have zero means and the two-time covariances are δ-correlated in time and space; 
and these Dirac’s delta functions are related through a linear operator. In the development 
of SSTM, we assume only the δ-correlation in time because the spatial aspect is separated 
into a continuous function of space. This assumption can be justified as the porous medium 
influencing the fluctuations can be considered as a continuum.  
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Multiscale, Generalised Stochastic Solute 
Transport Model in One Dimension 

 
6.1 Introduction 
In Chapter 3 and 4, we have developed a stochastic solute transport model in 1-D without 
rosorting to simplifying Fickian assumptions, but by using the idea that the fluctuations in 
velocity are influenced by the nature of porous medium. We model these fluctuations 
through the velocity covariance kernel. We have also estimated the dispersivity by taking 
the realisations of the solution of the SSTM and using them as the observations in the 
stochastic inverse method (SIM) based on the maximum likelihood estimation procedure for 
the stochastic partial differential equation obtained by adding a noise term to the advection-
dispersion equation. We have confined the estimation of dispersitivities to a flow length of 1 
m (i.e,  0,1x ) except in Chapter 3, section 3.10, where we have estimated the 
dispersitivities up to 10 km using the SIM by simplifying the SSTM. This approach was 
proven to be computationally expensive and the approximation of the SSTM we have 
developed was based on the spatial average of the variance of the fluctuation term over the 
flow length. Further, the solution is based on a specific kernel. This development in Chapter 
3 is inadequate to examine the scale dependence of the dispersitivity. Therefore, we set out 
to develop a dimensionless model for any given arbitrary flow length, L , in this Chapter 
for any given velocity kernel provided that we have the eigen functions in the form given by 
equation (4.2.3). Then we examine the dispersivities in relation to the flow lengths to 
understand the multi-scale behaviour of the SSTM. 

The starting point of the development of the multi-scale SSTM is the Langevin equation for 
the SSTM, which is interpreted locally. From equation (4.9.1), the Langevin equation can be 
written as, 

2

2( ) ( ( ), ( , ), ) ( ( ), , , ) ( )x x
x x x x x

C CdC t C t V x t x dt C t x dw t
x x

   
  
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          (6.1.1)   

where the coefficients x  and x  are dependent on , ( )xx C t  and ( , )V x t ; and 
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2( ), ,x x
x

C CC t
x x

 
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 and x , respectively. ( )dw t  are the standard Wiener increments with 

zero-mean and dt  variance. As discussed in Chapter 4, equation (6.1.1) has to be 
interpreted carefully to understand it better. Equation (6.1.1) is a SDE and also an Ito 
diffusion with the coefficients depending on the functions of space variables. It gives us the 
time evolution of the concentration of solute at a given point x  which is denoted by 
subscript x . Obviously, the computation of xC  also depends on how the spatial 
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derivatives of xC  are calculated. In that sense, equation (6.1.1) is a stochastic partial 
differential equation as the coefficients are functions of random quantities. But we avoid 
solving a SPDE by treating equation (6.1.1) as a SDE and interpreting it as an Ito integral 
which makes us to evaluate coefficients at the previous time point with respect to the 
current point of evaluation. 

For simplicity, we will denote the coefficients as x  and x . In Chapter 4, we have 
derived explicit function for x  and x : 
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and, 
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In equation (6.1.10), 2  is the variance of the covariance kernel, j  are eigen functions, 

and for the domain of  0,1x , 
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Equation (6.1.1) to (6.1.13) constitute the Langevin form of the SSTM. It should be noted that 
the functions ijP are only valid for  0,1x . If we normalize the spatial variable x  to 

remain with in  0,1 , then we can use the results in Chapter 4 to obtain ijP . We develop 
the dimensionless Langevin form of the SSTM in section 6.2. 

One should note that the Langevin equation for any system reflect the role of external noise 
to the system under consideration (van Kampen, 1992). Even though we have derived 
equation (6.1.1) starting from the mass conservation of solute particles, the fluctuations 
associate with hydrodynamics dispersion are a result of dissipation of energy of particles 
due to momentum changes associated near to the surfaces of porous medium. For a  
physical ensemble of solute particles, porous medium through which it flows act as an 
external source of noise. From this point of review, the Langevin type equation for solute 
concentration is justified. As a SDE, equation (6.1.1) is a Wiener process with stochastic, at 
best nonlinear, time-dependent coefficients, and it is also an Ito diffusion which should be 
interpreted locally, i.e., for a given x  and t , equation (6.1.1) is valid only for short time 
intervals beyond t . This naturally leads us to evaluate the associated spatial derivatives at 
the previous time, which is valid according to Ito’s interpretation of stochastic integral. In 
terms of discretized times, 0 1 1, ,..., , ,...,i it t t t   equation (6.1.1) can be written as, 
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where the drift coefficient, x , and the diffusion coefficient, x , are evaluated at time it . 
This restrictive nature of equation (6.1.14) in evaluating the coefficient has to be taken in to 
account in developing numerical algorithms to solve it. 
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derivatives of xC  are calculated. In that sense, equation (6.1.1) is a stochastic partial 
differential equation as the coefficients are functions of random quantities. But we avoid 
solving a SPDE by treating equation (6.1.1) as a SDE and interpreting it as an Ito integral 
which makes us to evaluate coefficients at the previous time point with respect to the 
current point of evaluation. 

For simplicity, we will denote the coefficients as x  and x . In Chapter 4, we have 
derived explicit function for x  and x : 
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In equation (6.1.10), 2  is the variance of the covariance kernel, j  are eigen functions, 

and for the domain of  0,1x , 
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Equation (6.1.1) to (6.1.13) constitute the Langevin form of the SSTM. It should be noted that 
the functions ijP are only valid for  0,1x . If we normalize the spatial variable x  to 

remain with in  0,1 , then we can use the results in Chapter 4 to obtain ijP . We develop 
the dimensionless Langevin form of the SSTM in section 6.2. 

One should note that the Langevin equation for any system reflect the role of external noise 
to the system under consideration (van Kampen, 1992). Even though we have derived 
equation (6.1.1) starting from the mass conservation of solute particles, the fluctuations 
associate with hydrodynamics dispersion are a result of dissipation of energy of particles 
due to momentum changes associated near to the surfaces of porous medium. For a  
physical ensemble of solute particles, porous medium through which it flows act as an 
external source of noise. From this point of review, the Langevin type equation for solute 
concentration is justified. As a SDE, equation (6.1.1) is a Wiener process with stochastic, at 
best nonlinear, time-dependent coefficients, and it is also an Ito diffusion which should be 
interpreted locally, i.e., for a given x  and t , equation (6.1.1) is valid only for short time 
intervals beyond t . This naturally leads us to evaluate the associated spatial derivatives at 
the previous time, which is valid according to Ito’s interpretation of stochastic integral. In 
terms of discretized times, 0 1 1, ,..., , ,...,i it t t t   equation (6.1.1) can be written as, 
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where the drift coefficient, x , and the diffusion coefficient, x , are evaluated at time it . 
This restrictive nature of equation (6.1.14) in evaluating the coefficient has to be taken in to 
account in developing numerical algorithms to solve it. 
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derivatives of xC  are calculated. In that sense, equation (6.1.1) is a stochastic partial 
differential equation as the coefficients are functions of random quantities. But we avoid 
solving a SPDE by treating equation (6.1.1) as a SDE and interpreting it as an Ito integral 
which makes us to evaluate coefficients at the previous time point with respect to the 
current point of evaluation. 

For simplicity, we will denote the coefficients as x  and x . In Chapter 4, we have 
derived explicit function for x  and x : 
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In equation (6.1.10), 2  is the variance of the covariance kernel, j  are eigen functions, 

and for the domain of  0,1x , 
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Equation (6.1.1) to (6.1.13) constitute the Langevin form of the SSTM. It should be noted that 
the functions ijP are only valid for  0,1x . If we normalize the spatial variable x  to 

remain with in  0,1 , then we can use the results in Chapter 4 to obtain ijP . We develop 
the dimensionless Langevin form of the SSTM in section 6.2. 

One should note that the Langevin equation for any system reflect the role of external noise 
to the system under consideration (van Kampen, 1992). Even though we have derived 
equation (6.1.1) starting from the mass conservation of solute particles, the fluctuations 
associate with hydrodynamics dispersion are a result of dissipation of energy of particles 
due to momentum changes associated near to the surfaces of porous medium. For a  
physical ensemble of solute particles, porous medium through which it flows act as an 
external source of noise. From this point of review, the Langevin type equation for solute 
concentration is justified. As a SDE, equation (6.1.1) is a Wiener process with stochastic, at 
best nonlinear, time-dependent coefficients, and it is also an Ito diffusion which should be 
interpreted locally, i.e., for a given x  and t , equation (6.1.1) is valid only for short time 
intervals beyond t . This naturally leads us to evaluate the associated spatial derivatives at 
the previous time, which is valid according to Ito’s interpretation of stochastic integral. In 
terms of discretized times, 0 1 1, ,..., , ,...,i it t t t   equation (6.1.1) can be written as, 
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where the drift coefficient, x , and the diffusion coefficient, x , are evaluated at time it . 
This restrictive nature of equation (6.1.14) in evaluating the coefficient has to be taken in to 
account in developing numerical algorithms to solve it. 

Multiscale, Generalised Stochastic Solute Transport Model in One Dimension 179
 

derivatives of xC  are calculated. In that sense, equation (6.1.1) is a stochastic partial 
differential equation as the coefficients are functions of random quantities. But we avoid 
solving a SPDE by treating equation (6.1.1) as a SDE and interpreting it as an Ito integral 
which makes us to evaluate coefficients at the previous time point with respect to the 
current point of evaluation. 

For simplicity, we will denote the coefficients as x  and x . In Chapter 4, we have 
derived explicit function for x  and x : 
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In equation (6.1.10), 2  is the variance of the covariance kernel, j  are eigen functions, 

and for the domain of  0,1x , 
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and 
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Equation (6.1.1) to (6.1.13) constitute the Langevin form of the SSTM. It should be noted that 
the functions ijP are only valid for  0,1x . If we normalize the spatial variable x  to 

remain with in  0,1 , then we can use the results in Chapter 4 to obtain ijP . We develop 
the dimensionless Langevin form of the SSTM in section 6.2. 

One should note that the Langevin equation for any system reflect the role of external noise 
to the system under consideration (van Kampen, 1992). Even though we have derived 
equation (6.1.1) starting from the mass conservation of solute particles, the fluctuations 
associate with hydrodynamics dispersion are a result of dissipation of energy of particles 
due to momentum changes associated near to the surfaces of porous medium. For a  
physical ensemble of solute particles, porous medium through which it flows act as an 
external source of noise. From this point of review, the Langevin type equation for solute 
concentration is justified. As a SDE, equation (6.1.1) is a Wiener process with stochastic, at 
best nonlinear, time-dependent coefficients, and it is also an Ito diffusion which should be 
interpreted locally, i.e., for a given x  and t , equation (6.1.1) is valid only for short time 
intervals beyond t . This naturally leads us to evaluate the associated spatial derivatives at 
the previous time, which is valid according to Ito’s interpretation of stochastic integral. In 
terms of discretized times, 0 1 1, ,..., , ,...,i it t t t   equation (6.1.1) can be written as, 
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      (6.1.14) 

where the drift coefficient, x , and the diffusion coefficient, x , are evaluated at time it . 
This restrictive nature of equation (6.1.14) in evaluating the coefficient has to be taken in to 
account in developing numerical algorithms to solve it. 
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6.2 Partially Dimensionless SSTM with Flow Length L  
We start the derivation of partially dimensionless SSTM by defining the dimensionless 
distance, Z , as: 

x
L                                  (6.2.1) 

where L  is the total flow length. 

When  0, ,x L   0,1 .  

If 0C  is a constant concentration defined such a way that 0C maximum of  xC t  for all 

x  and t , then   0 xC C t  for any t  and x . We can define dimensional concentration 

 t  as, 
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From equation (6.2.1), 
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As the domain of x  is the generalized SSTM is from 0 to 1, we can replace x  with Z  in 
the dimensionless generalized SSTM. For example, ,0xF  becomes ,0ZF . 

     2

,0 2

2

2 2

, , ,
. .

2 2

1 1 .
2 2

V t V t V th Z h V ZF
x x Z x x Z x

V h V Z V h V
L L Z Z x L L

 


 

          
            

                   

          (6.2.4) 
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   0 1,j jP P   and  2 jP   are obtained by simply replacing x  in    0 1,j jP x P x  and 

 2 jP x  expressions by  , because these expressions are derived for  0,1  domain. 
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Now we can write equation (6.1.1) in the following manner: 

       0 Zd C dt d t        ,                    (6.2.10) 
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where 
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          (6.2.13) 

Therefore, the Langevin form of the generalized SSTM is given by 

  , 0 1.d dt d t Z                             (6.2.14) 

where  
0
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Using equation (6.2.14) we can compute the time course of the dimensionless concentration 
for any given L . 

The dimensionless/concentration,  , varies from 0 to 1.  ZC t  is proportioned to the 
number of solute moles within a unit volume of porous/water matrix, and 0C  is 
proportional to the maximum possible number of solute moles within the same matrix. 
Therefore,   0/ZC t C   can be interpreted as the likelihood (probability) of finding solute 
moles within the matrix. 

It should be noted that time, t , is not a dimensionless quantity and therefore, equation 
(6.2.14) is partially dimensionless equation. We will explore the dispersivity using equation 
(6.2.14) first before discussing a completely dimensionless equation. 
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6.2 Partially Dimensionless SSTM with Flow Length L  
We start the derivation of partially dimensionless SSTM by defining the dimensionless 
distance, Z , as: 

x
L                                  (6.2.1) 

where L  is the total flow length. 

When  0, ,x L   0,1 .  

If 0C  is a constant concentration defined such a way that 0C maximum of  xC t  for all 

x  and t , then   0 xC C t  for any t  and x . We can define dimensional concentration 

 t  as, 
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As the domain of x  is the generalized SSTM is from 0 to 1, we can replace x  with Z  in 
the dimensionless generalized SSTM. For example, ,0xF  becomes ,0ZF . 
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Similarly, 
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   0 1,j jP P   and  2 jP   are obtained by simply replacing x  in    0 1,j jP x P x  and 

 2 jP x  expressions by  , because these expressions are derived for  0,1  domain. 
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Now we can write equation (6.1.1) in the following manner: 
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Therefore, the Langevin form of the generalized SSTM is given by 
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where  
0

Z
Z C





  and  

0
Z

Z
C


  . 

Using equation (6.2.14) we can compute the time course of the dimensionless concentration 
for any given L . 

The dimensionless/concentration,  , varies from 0 to 1.  ZC t  is proportioned to the 
number of solute moles within a unit volume of porous/water matrix, and 0C  is 
proportional to the maximum possible number of solute moles within the same matrix. 
Therefore,   0/ZC t C   can be interpreted as the likelihood (probability) of finding solute 
moles within the matrix. 

It should be noted that time, t , is not a dimensionless quantity and therefore, equation 
(6.2.14) is partially dimensionless equation. We will explore the dispersivity using equation 
(6.2.14) first before discussing a completely dimensionless equation. 
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6.2 Partially Dimensionless SSTM with Flow Length L  
We start the derivation of partially dimensionless SSTM by defining the dimensionless 
distance, Z , as: 
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where L  is the total flow length. 

When  0, ,x L   0,1 .  

If 0C  is a constant concentration defined such a way that 0C maximum of  xC t  for all 
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As the domain of x  is the generalized SSTM is from 0 to 1, we can replace x  with Z  in 
the dimensionless generalized SSTM. For example, ,0xF  becomes ,0ZF . 
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 2 jP x  expressions by  , because these expressions are derived for  0,1  domain. 
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Now we can write equation (6.1.1) in the following manner: 
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Therefore, the Langevin form of the generalized SSTM is given by 
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Using equation (6.2.14) we can compute the time course of the dimensionless concentration 
for any given L . 

The dimensionless/concentration,  , varies from 0 to 1.  ZC t  is proportioned to the 
number of solute moles within a unit volume of porous/water matrix, and 0C  is 
proportional to the maximum possible number of solute moles within the same matrix. 
Therefore,   0/ZC t C   can be interpreted as the likelihood (probability) of finding solute 
moles within the matrix. 

It should be noted that time, t , is not a dimensionless quantity and therefore, equation 
(6.2.14) is partially dimensionless equation. We will explore the dispersivity using equation 
(6.2.14) first before discussing a completely dimensionless equation. 
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6.2 Partially Dimensionless SSTM with Flow Length L  
We start the derivation of partially dimensionless SSTM by defining the dimensionless 
distance, Z , as: 
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As the domain of x  is the generalized SSTM is from 0 to 1, we can replace x  with Z  in 
the dimensionless generalized SSTM. For example, ,0xF  becomes ,0ZF . 
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   0 1,j jP P   and  2 jP   are obtained by simply replacing x  in    0 1,j jP x P x  and 

 2 jP x  expressions by  , because these expressions are derived for  0,1  domain. 
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Now we can write equation (6.1.1) in the following manner: 
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Therefore, the Langevin form of the generalized SSTM is given by 
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Using equation (6.2.14) we can compute the time course of the dimensionless concentration 
for any given L . 

The dimensionless/concentration,  , varies from 0 to 1.  ZC t  is proportioned to the 
number of solute moles within a unit volume of porous/water matrix, and 0C  is 
proportional to the maximum possible number of solute moles within the same matrix. 
Therefore,   0/ZC t C   can be interpreted as the likelihood (probability) of finding solute 
moles within the matrix. 

It should be noted that time, t , is not a dimensionless quantity and therefore, equation 
(6.2.14) is partially dimensionless equation. We will explore the dispersivity using equation 
(6.2.14) first before discussing a completely dimensionless equation. 
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6.3 Computational Exploration of the Langevin form of SSTM 
Equation (6.2.14) is not only an expression of how the solute disperses within a porous 
media but also an expression of nature of dispersion. Being a SDE, the drift coefficient 
 Z  portrays the dispersion due to the convective forces and the diffusive 

coefficient     shows the dynamical behaviour of hydrodynamic dispersion. As Z  has 

the range from 0 to 1 in equation (6.2.14), we can compute Z  and   values for a 
specific Z  value and examine how they change over time. (We use 0 1.0C   for 

computations, and therefore, Z Z   and    .) We have developed a finite 
difference algorithm to compute Z  and   adhering to the Ito integration as we have 
done before. Figure 6.1a and 6.1b show the time courses of Z  and   at 0.5Z  , 
respectively, for different 2  values when 1L m  (All times are given in days and 

0.1b  . At low 2  values, Z  behaves almost as a smooth deterministic function but 
at high 2  values it shows irregular behaviours. In these calculations, we have kept the 
mean velocity V  at a constant value (0.5), therefore only fluctuating component affecting 

Z  function is the solute concentration and its spatial derivatives. Further, Figure 6.1a 
and 6.1b only show a single realization for each 2  values. When we explore multiple 
realizations (not shown here), we see that randomness of Z  and   increases with 
higher 2 . One distinct feature of Figure 6.1b for Z  is that   is almost negligible for 
very small values of 2  but increases quite sharply for higher 2  values. Z  does not 
behave in this manner. However, we can not ignore the effect of 2  at low values in 
computing  Z  , which has a follow-on affect on subsequent calculation. In other 

words, the affects of porous media, which 2  and the covariance kernel signify, can not 
be ignored as they affect the flow velocities significantly in making them stochastic. 
Figure 6.2a and 6.2b show Z  and   realization at 0.5Z   when 5L m . The 
behaviours of  Z  and   realizations are similar to those shown in Figures 6.1a and 
6.1b. Figure 6.3a and Figure 6.3b show the similar trends for 10L m . It should be noted 
that as L  is increased, the time duration for the numerical solution of equation (6.2.14) 
should be increased. For example, when 10L m , the model was run for 25 days to 
obtain Figures 6.3a and 6.3b. However, the order of magnitude for Z  and Z  has not 
changed as we change L  in an order of magnitude. 
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Figure 6.1. (a) Realizations of Z  at 0.5Z   when 1L m , 0.1b   and 

0.5 /V m day for different 2  values; (b) Realizations of Z  at 0.5Z   when 1L m , 

0.1b   and 0.5 /V m day  for different 2  values. 
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behaviours of  Z  and   realizations are similar to those shown in Figures 6.1a and 
6.1b. Figure 6.3a and Figure 6.3b show the similar trends for 10L m . It should be noted 
that as L  is increased, the time duration for the numerical solution of equation (6.2.14) 
should be increased. For example, when 10L m , the model was run for 25 days to 
obtain Figures 6.3a and 6.3b. However, the order of magnitude for Z  and Z  has not 
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6.1b. Figure 6.3a and Figure 6.3b show the similar trends for 10L m . It should be noted 
that as L  is increased, the time duration for the numerical solution of equation (6.2.14) 
should be increased. For example, when 10L m , the model was run for 25 days to 
obtain Figures 6.3a and 6.3b. However, the order of magnitude for Z  and Z  has not 
changed as we change L  in an order of magnitude. 
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Figure 6.1. (a) Realizations of Z  at 0.5Z   when 1L m , 0.1b   and 

0.5 /V m day for different 2  values; (b) Realizations of Z  at 0.5Z   when 1L m , 
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(b) 

Figure 6.2. (a) Realizations of Z  at 0.5Z   when 5L m , 0.1b   and 

0.5 /V m day for different 2  values; (b) Realizations of Z  at 0.5Z   when 5L m , 

0.1b   and 0.5 /V m day  for different 2  values. 
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Figure 6.3. (a) Realizations of Z  at 0.5Z   when L  10 m, b  = 0.1 and V =0.5 m/day 
for different 2  values; (b) Realizations of Z  at 0.5Z   when L  10 m, b  = 0.1 and 

V =0.5 m/day for different 2  values. 

 

     
(a) 

     
(b) 

       
(c) 

       
(d) 

Figure 6.4. Realizations of Z  at 0.5Z   when b  = 0.1, V =0.5 for (a) L  1, (b) L  5, 
(c) L  10 and (d) L  100 
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Figure 6.4a, 6.4b, 6.4c, and 6.4d show the realization of  Z  at 0.5Z   when 

1,5,10,L  and 100, respectively, for different values of 2 . (For all the calculations, we 
have used b = 0.1). When L  100 m, we computed  Z  values for 175 days and the 

affects of 2  on  Z  is quite dramatic, and this shows that equation (6.2.14) can display 

very complex behaviour patterns albeit its simplicity. It should be noted however that 2  
plays major role in delimiting the nature of realizations; 2  values high than 0.25 in these 
situations produces highly irregular concentration realizations which could occur in highly 
heterogeneous porous formations such as fractured formations. 
 

6.4 Dispersivities Based on the Langevin Form of SSTM for 10L  m 
One of the advantages of the partially dimensionless Langevin equation for the SSTM 
(equation 6.2.14) is that we can use it to compute the solute concentration profiles when the 

travel length  L is large. Equation (6.2.14) allows us to compute the dispersitivities using the 

stochastic inverse method (SIM) by estimating dispersivity for each realization of  Z . For 
the SIM, we need to modify the deterministic-advection and dispersion equation into a 
partially dimensionless one. We start with the deterministic advection-dispersion equation 
with additive Gaussian noise, 

 
2

2 , ,L x
C C CD V x t
t x x

  
  

  
                      (6.4.1) 

where LD  is the dispersion coefficient (dispersivity xV ). 

The partially dimensionless form of equation (6.4.1) is, 

 
2

2 2 , ,L xD V Z t
t L Z L Z

   
  
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                     (6.4.2) 

where 2
LD
L

 is now estimated using SIM when xV  is known. Then the dispersivity value is 

(estimated 2
LD
L

) 2 / .xL V  

Figure 6.5 show the scatter plots of dispersivity values estimated using the SIM for 1,5,L   
and 10 m. Each plot in Figure 6.5 gives 30 estimates of the dispersivity for a given value 2 . 
 Z  realizations were computed at 0.5Z   and 0.1b   for all plots. Table 6.1 

summarizes the results giving the mean of each plot. We will compare these results with 
available data for dispersivities later in this chapter. 
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plays major role in delimiting the nature of realizations; 2  values high than 0.25 in these 
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where LD  is the dispersion coefficient (dispersivity xV ). 

The partially dimensionless form of equation (6.4.1) is, 
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where 2
LD
L

 is now estimated using SIM when xV  is known. Then the dispersivity value is 

(estimated 2
LD
L

) 2 / .xL V  

Figure 6.5 show the scatter plots of dispersivity values estimated using the SIM for 1,5,L   
and 10 m. Each plot in Figure 6.5 gives 30 estimates of the dispersivity for a given value 2 . 
 Z  realizations were computed at 0.5Z   and 0.1b   for all plots. Table 6.1 

summarizes the results giving the mean of each plot. We will compare these results with 
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Figure 6.5. Dispersivities estimated from SSTM for 1,5,L  and 10. 
 

2  
Dispersivity 

L=1 L=5 L=10 
0.0001 0.050064 0.050112 0.0495545 
0.001 0.0501232 0.05082 0.0511587 
0.01 0.0520638 0.0604215 0.0778382 
0.1 0.0669766 0.0832735 0.11899 
0.25 0.0723413 0.111142 0.253195 
0.4 0.0783754 0.142422 0.354335 
0.6 0.0843219 0.170975 0.427603 
0.8 0.0962623 0.225344 0.549473 
1 0.110849 0.256348 0.609508 

Table 6.1. Mean dispersivities for the data in Figure 6.5. 

 

 

As mentioned previously, the partially dimensionless equation (6.2.14) still requires us to 
compute for a large number of days when L  is large. While the computational times are 
still manageable, we would like to develop a completely dimensionless Langevin equation 
for the SSTM. This could be especially useful and insightful when the mean velocity V  
could be considered as a constant. 
 

6.5 Dimensionless Time 
We introduce dimensionless time,  , as, 

 , . ,tV Z t
L

                               (6.5.1) 

where,  ,V Z t  is mean velocity when 0 1,Z   (m/day); L  is travel length, m; and t  
is time in days.  

Therefore, if 0.5V  , 100L   and 0 200,t   then, 0 1.0.   This allows us to 
compute  Z  realization for larger times. 

Equation (6.2.14) can be written as, 

   .Z zZ dt d t       

We can now change ,Ldt d
V

  and the variance of   Ld t t
V

     . 

Therefore, 

    ,Z
z

LZ d d t
V
   

                          (6.5.2) 

where  dw  ~ 0, L d
V

  
 

. 

The completely dimentionless Langevin form of the SSTM is therefore, 

   , ,Z zZ d d                                (6.5.3) 

where  d   are the Wiener increment with zero-mean and L d
V

  variance, and  

, .Z
Z

L
V
 

                                (6.5.4) 

To use equation (6.5.3), we need to choose   and the range of   appropriately. Ideally 

0.0001L d
V

   for the Ito integration to be accurate; therefore, we should have for maximum 

  as 0.0001V
L

. Suppose 0.5, 1000,V L   then 
410 0.5 ,

1000


 
   i.e, 85 10 .     
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As we can see we may not gain much computational advantage with a completely 
dimensionless Langevin form of the SSTM. 
 

6.6 Estimation of Field Scale Dispersivities 
We have estimated the longitudinal dispersivities using SSTM for two different boundary 
conditions: 

(A) 1Z   at 0Z  and for 0;t   and 

(B) 1Z   at 0Z  and for 0 ,Rt t   ; and 0Z  at Z=0 for Rt t . 

Rt is taken to be 1/3 of the total time (T) of the computational experiment. Table 6.1 and 6.2 
show the dispersivity values for the boundary conditions A and B, respectively, when 
L  10 m based on 100 realisations for each of the boundary condition. 

 

2  
Dispersivity 

L=1 L=5 L=10 
0.0001 0.050013 0.050013 0.049828 
0.001 0.050035 0.050223 0.050226 
0.01 0.050646 0.055152 0.06112 
0.1 0.055176 0.079403 0.136904 
0.25 0.068846 0.108899 0.257902 
0.4 0.083342 0.16346 0.333472 
0.6 0.093185 0.191919 0.334818 
0.8 0.109335 0.251033 0.54346 
1 0.129395 0.331389 0.613823 

Table 6.2. Longitudinal dispersivities (mean) for the boundary condition A. 

The values in Table 6.1 and 6.2 are similar for the similar values of 2 and L  showing that 
(1) the SSTM procedure is robust in evaluating the dispersivities, and (2) the computed 
mean dispersivities do not depend on the boundary conditions, A and B. In these 
calculations, we have 0.5ZV  m/day. 

We have also computed the dispersivities for larger scales up to 10,000 m, and Table 6.3   
gives the mean values for the range of L  from 1 m to 410 m under the boundary condition 
A, and Table 6.4 gives the mean values for the range of L from 1 m to 810 m for the 
boundary condition B. All mean values are calculated based on different sets of 100 
realisations for each boundary condition. Except for the smallest  2  values (0.0001 and 
0.001), the dispersivities have similar mean values for both boundary conditions, A and B. 
Therefore, it is quite reasonable to compute the dispersivities only for the boundary 
condition A for larger values of L. We can also hypothesise that the dispersivities are 
independent of the boundary conditions used to solve the SSTM. We have tested the SSTM 
for different values of Rt > (1/3) T when L>10 m. Figure 6.6 depicts the dispersivity plotted 
against 2  and L in Log10 scale, and Log10 (Dispersivity) is a linear function of Log10(L) 

 

and Log10( 2 ) for the most parts of the Log10 (Dispersivity) surface. Figure 6.7 shows the 
linear relationship of Log10 (Dispersivity) vs Log10 (L) for different values of 2 , and 
Figure 6.8 shows the same for Log10 (Dispersivity) vs Log10( 2 ) for different values of L. 
The gradient of the graphs are the same except for lower values of 2  (0.0001) and lower 
values of L (1 and 5). Therefore, we develop the following statistical nonlinear regression 
models for these significant relationships: 

  12
1

m

sD C  , and                           (6.6.1) 

   2

2

m
sD C L ,                            (6.6.2) 

where sD is the dispersivity, and 1C and 2C  are given in Tables 6.5 and 6.6 , respectively, 
along with m1 and m2 values. R-square values for equations (6.6.1) and (6.6.2) are 0.96 and 
0.94, respectively. 

σ2 
Dispersivity 

L=1 L=5 L=10 L=50 L=100 L=500 

0.0001 0.0498 0.0500 0.0497 0.0498 0.0507 0.0686 

0.001 0.0498 0.0499 0.0495 0.0477 0.0639 0.4982 

0.01 0.0492 0.0510 0.0511 0.1642 0.5073 4.0672 

0.1 0.0449 0.0592 0.1372 0.9309 2.9601 28.6151 
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As we can see we may not gain much computational advantage with a completely 
dimensionless Langevin form of the SSTM. 
 

6.6 Estimation of Field Scale Dispersivities 
We have estimated the longitudinal dispersivities using SSTM for two different boundary 
conditions: 

(A) 1Z   at 0Z  and for 0;t   and 

(B) 1Z   at 0Z  and for 0 ,Rt t   ; and 0Z  at Z=0 for Rt t . 

Rt is taken to be 1/3 of the total time (T) of the computational experiment. Table 6.1 and 6.2 
show the dispersivity values for the boundary conditions A and B, respectively, when 
L  10 m based on 100 realisations for each of the boundary condition. 

 

2  
Dispersivity 

L=1 L=5 L=10 
0.0001 0.050013 0.050013 0.049828 
0.001 0.050035 0.050223 0.050226 
0.01 0.050646 0.055152 0.06112 
0.1 0.055176 0.079403 0.136904 
0.25 0.068846 0.108899 0.257902 
0.4 0.083342 0.16346 0.333472 
0.6 0.093185 0.191919 0.334818 
0.8 0.109335 0.251033 0.54346 
1 0.129395 0.331389 0.613823 

Table 6.2. Longitudinal dispersivities (mean) for the boundary condition A. 

The values in Table 6.1 and 6.2 are similar for the similar values of 2 and L  showing that 
(1) the SSTM procedure is robust in evaluating the dispersivities, and (2) the computed 
mean dispersivities do not depend on the boundary conditions, A and B. In these 
calculations, we have 0.5ZV  m/day. 

We have also computed the dispersivities for larger scales up to 10,000 m, and Table 6.3   
gives the mean values for the range of L  from 1 m to 410 m under the boundary condition 
A, and Table 6.4 gives the mean values for the range of L from 1 m to 810 m for the 
boundary condition B. All mean values are calculated based on different sets of 100 
realisations for each boundary condition. Except for the smallest  2  values (0.0001 and 
0.001), the dispersivities have similar mean values for both boundary conditions, A and B. 
Therefore, it is quite reasonable to compute the dispersivities only for the boundary 
condition A for larger values of L. We can also hypothesise that the dispersivities are 
independent of the boundary conditions used to solve the SSTM. We have tested the SSTM 
for different values of Rt > (1/3) T when L>10 m. Figure 6.6 depicts the dispersivity plotted 
against 2  and L in Log10 scale, and Log10 (Dispersivity) is a linear function of Log10(L) 
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σ2 
Dispersivity 

L=1 L=5 L=10 L=50 L=100 L=500 L=1000 

0.0001 0.0498 0.0500 0.0497 0.0498 0.0507 0.0686 0.1426 

0.001 0.0498 0.0499 0.0495 0.0477 0.0639 0.4982 1.4690 

0.01 0.0492 0.0510 0.0511 0.1642 0.5073 4.0672 12.0999 

0.1 0.0449 0.0592 0.1372 0.9309 2.9601 28.6151 69.2489 

0.25 0.0451 0.1123 0.2391 2.5441 6.1225 40.5301 87.0760 

0.4 0.0573 0.1340 0.3413 3.4365 8.1834 48.7567 100.6075 

0.6 0.0784 0.1824 0.4619 4.9440 10.9837 64.7589 132.1320 

0.8 0.0958 0.1987 0.7057 6.6800 14.9122 82.4423 173.1823 

1 0.1247 0.2159 0.8102 8.9878 19.9003 112.5246 221.6737 

Table 6.4. Longitudinal dispersivities (mean) for the range of L  from 1 m to 810 m under 
the boundary condition B 
 

 

Figure 6.6. The linear relationship of Log10 (Dispersivity) vs Log10 ( 2 ) for different values of L. 

 

 
Figure 6.7. The linear relationship of Log10 (Dispersivity) vs Log10 (L) for different values of 2 . 
 

 
Figure 6.8. The plot of Log10 (Dispersivity) vs Log10 ( 2 ) and Log10 (L) 
 

L (m) 1 5 10 50 100 500 
m1 0.039 0.125 0.311 0.605 0.677 0.704 
C1 0.063 0.124 0.468 6.275 16.23 109.6 

L (m) 1000 2000 4000 6000 8000 10000 
m1 0.690 0.642 0.605 0.578 0.567 0.552 
C1 229.5 451.3 912.4 1368.7 1823.1 2281.4 

Table 6.5. m1 and 1C values for different L for equation (6.6.1). 
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Figure 6.8. The plot of Log10 (Dispersivity) vs Log10 ( 2 ) and Log10 (L) 
 

L (m) 1 5 10 50 100 500 
m1 0.039 0.125 0.311 0.605 0.677 0.704 
C1 0.063 0.124 0.468 6.275 16.23 109.6 

L (m) 1000 2000 4000 6000 8000 10000 
m1 0.690 0.642 0.605 0.578 0.567 0.552 
C1 229.5 451.3 912.4 1368.7 1823.1 2281.4 

Table 6.5. m1 and 1C values for different L for equation (6.6.1). 
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Figure 6.9. Mean dispersivity from the SSTM and experimental dispersivity vs flow length 
(log10 scale). 

We can estimate the approximate dispersivity values either from Figures 6.7 and 6.8, or from 
equations (6.6.1) and (6.6.2). It is quite logical to ask the question whether we can characterise 
the large scale aquifer dispersivities using a single value of 2 ? To answer this question, we 
resort to the published dispersivity values for aquifers. We use the dispersivity data first 
published by Gelhar et al. (1992) and reported to Batu (2006). We extracted the tracer tests data 
related to porous aquifers in 59 different locations characterised by different geologic 
materials. The longest flow length was less than 10000 m. We then plotted the experimental 
data and overlaid the plot with the dispersivity vs L curves from the SSTM for each 2  value. 
Figure 6.9 shows the plots, and 2 =0.1 best fit to the experimental data. In other words, by 
using one value of 2 , we can obtain the dispersivity for any length of the flow by using the 
SSTM. We can also assume that each experimental data point represents the mean dispersivity 
for any length of the flow by using the SSTM. We can also assume that each experimental data 
point represents the mean dispersivity at a particular flow length. If that is the case, Figure 6.9 
can be interpreted as follows: by using the SSTM, we can obtain sufficiently large number of 
realisations for particular values of 2  and the mean flow velocity, and the mean values of 
the dispersivities estimated for those concentration realisations do represent the experimental 
dispersivities. 2  can be hypothesised to indicate the type of media (e.g. fractured, porous 
etc.). These findings support the hypothesis that the dimensionless SSTM is scale-independent, 
i.e., one value of 2 would be sufficient to characterise the dispersivity at different flow 
lengths. It is important to note that the role of the mean velocity in these calculations. We used 
0.5 m/day to represent an indicative value in real aquifers, but the character of solutions do 
not change, if we assume a different value; only the specific values of 2 would be changed to 
represent a given flow situation. 
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dimension and showed that it can model the hydrodynamic dispersion in porous media for 
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velocity covariance kernel. If the kernel is developed based on the field data, then the SSTM 
based on that particular kernel should give realistic outputs from the model for that 
particular porous medium. In the development of the SSTM, we assumed that the 
hydrodynamic dispersion is one dimensional but by its very nature, the dispersion lateral to 
the flow direction occurs. We intend to explore this aspect in this chapter. 

First, we solve the integral equation with the covariance kernel in two dimensions, and use 
the eigen values and functions thus obtained in developing the two dimensional stochastic 
solute transport model (SSTM2d). Then we solve the SSTM2d numerically using a finite 
difference scheme. In the last section of the chapter, we illustrate the behaviours of the 
SSTM2d graphically to show the robustness of the solution. 
 

7.2 Solving the Integral Equation 
We consider the flow direction to be x and the coordinate perpendicular to x to be y in the 2 
dimensional flow with in the porous matrix saturated with water. Then the distance 
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Figure 6.9. Mean dispersivity from the SSTM and experimental dispersivity vs flow length 
(log10 scale). 

We can estimate the approximate dispersivity values either from Figures 6.7 and 6.8, or from 
equations (6.6.1) and (6.6.2). It is quite logical to ask the question whether we can characterise 
the large scale aquifer dispersivities using a single value of 2 ? To answer this question, we 
resort to the published dispersivity values for aquifers. We use the dispersivity data first 
published by Gelhar et al. (1992) and reported to Batu (2006). We extracted the tracer tests data 
related to porous aquifers in 59 different locations characterised by different geologic 
materials. The longest flow length was less than 10000 m. We then plotted the experimental 
data and overlaid the plot with the dispersivity vs L curves from the SSTM for each 2  value. 
Figure 6.9 shows the plots, and 2 =0.1 best fit to the experimental data. In other words, by 
using one value of 2 , we can obtain the dispersivity for any length of the flow by using the 
SSTM. We can also assume that each experimental data point represents the mean dispersivity 
for any length of the flow by using the SSTM. We can also assume that each experimental data 
point represents the mean dispersivity at a particular flow length. If that is the case, Figure 6.9 
can be interpreted as follows: by using the SSTM, we can obtain sufficiently large number of 
realisations for particular values of 2  and the mean flow velocity, and the mean values of 
the dispersivities estimated for those concentration realisations do represent the experimental 
dispersivities. 2  can be hypothesised to indicate the type of media (e.g. fractured, porous 
etc.). These findings support the hypothesis that the dimensionless SSTM is scale-independent, 
i.e., one value of 2 would be sufficient to characterise the dispersivity at different flow 
lengths. It is important to note that the role of the mean velocity in these calculations. We used 
0.5 m/day to represent an indicative value in real aquifers, but the character of solutions do 
not change, if we assume a different value; only the specific values of 2 would be changed to 
represent a given flow situation. 
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Figure 6.9. Mean dispersivity from the SSTM and experimental dispersivity vs flow length 
(log10 scale). 

We can estimate the approximate dispersivity values either from Figures 6.7 and 6.8, or from 
equations (6.6.1) and (6.6.2). It is quite logical to ask the question whether we can characterise 
the large scale aquifer dispersivities using a single value of 2 ? To answer this question, we 
resort to the published dispersivity values for aquifers. We use the dispersivity data first 
published by Gelhar et al. (1992) and reported to Batu (2006). We extracted the tracer tests data 
related to porous aquifers in 59 different locations characterised by different geologic 
materials. The longest flow length was less than 10000 m. We then plotted the experimental 
data and overlaid the plot with the dispersivity vs L curves from the SSTM for each 2  value. 
Figure 6.9 shows the plots, and 2 =0.1 best fit to the experimental data. In other words, by 
using one value of 2 , we can obtain the dispersivity for any length of the flow by using the 
SSTM. We can also assume that each experimental data point represents the mean dispersivity 
for any length of the flow by using the SSTM. We can also assume that each experimental data 
point represents the mean dispersivity at a particular flow length. If that is the case, Figure 6.9 
can be interpreted as follows: by using the SSTM, we can obtain sufficiently large number of 
realisations for particular values of 2  and the mean flow velocity, and the mean values of 
the dispersivities estimated for those concentration realisations do represent the experimental 
dispersivities. 2  can be hypothesised to indicate the type of media (e.g. fractured, porous 
etc.). These findings support the hypothesis that the dimensionless SSTM is scale-independent, 
i.e., one value of 2 would be sufficient to characterise the dispersivity at different flow 
lengths. It is important to note that the role of the mean velocity in these calculations. We used 
0.5 m/day to represent an indicative value in real aquifers, but the character of solutions do 
not change, if we assume a different value; only the specific values of 2 would be changed to 
represent a given flow situation. 
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Figure 6.9. Mean dispersivity from the SSTM and experimental dispersivity vs flow length 
(log10 scale). 

We can estimate the approximate dispersivity values either from Figures 6.7 and 6.8, or from 
equations (6.6.1) and (6.6.2). It is quite logical to ask the question whether we can characterise 
the large scale aquifer dispersivities using a single value of 2 ? To answer this question, we 
resort to the published dispersivity values for aquifers. We use the dispersivity data first 
published by Gelhar et al. (1992) and reported to Batu (2006). We extracted the tracer tests data 
related to porous aquifers in 59 different locations characterised by different geologic 
materials. The longest flow length was less than 10000 m. We then plotted the experimental 
data and overlaid the plot with the dispersivity vs L curves from the SSTM for each 2  value. 
Figure 6.9 shows the plots, and 2 =0.1 best fit to the experimental data. In other words, by 
using one value of 2 , we can obtain the dispersivity for any length of the flow by using the 
SSTM. We can also assume that each experimental data point represents the mean dispersivity 
for any length of the flow by using the SSTM. We can also assume that each experimental data 
point represents the mean dispersivity at a particular flow length. If that is the case, Figure 6.9 
can be interpreted as follows: by using the SSTM, we can obtain sufficiently large number of 
realisations for particular values of 2  and the mean flow velocity, and the mean values of 
the dispersivities estimated for those concentration realisations do represent the experimental 
dispersivities. 2  can be hypothesised to indicate the type of media (e.g. fractured, porous 
etc.). These findings support the hypothesis that the dimensionless SSTM is scale-independent, 
i.e., one value of 2 would be sufficient to characterise the dispersivity at different flow 
lengths. It is important to note that the role of the mean velocity in these calculations. We used 
0.5 m/day to represent an indicative value in real aquifers, but the character of solutions do 
not change, if we assume a different value; only the specific values of 2 would be changed to 
represent a given flow situation. 
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Then the integral equation can be written for 2 dimensions, 
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where  ,f x y  and   are eigen functions and corresponding eigen values, respectively. 

The covariance kernel is the multiplication of a function of x and a function of y , and from 
the symmetry of equation (7.2.3), we can assume that the eigen function is the multiplication 
of a function of x and a function of y: 

     , x yf x y f x f y .                      (7.2.4) 

Then the integral equation can be written as, 
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Then we can see,  , x yf x y f f , and 2
x y    . 

This shows that we can use the eigen functions and eigen values obtained for 1-dimensional 
covariance kernels in Chapter 4 can be used in constructing the eigen functions and eigen 
values for two dimensional covariance kernel given in equation (7.2.2). Once we have 
obtained eigen functions and eigen values as solutions of the integral equation, we can 
derive the two dimensional mass conservation equation for solutes. 
 

7.3 Derivation of Mass Conservation Equation 
Consider the two dimensional infinitesimal volume element depicted in Figure 7.1. We can 
write the mass balance for solutes with in the element as, 
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where C(x,y,t) is the solute concentration and J represents the solute flux at the location 
indicated by a subscript. We can expand J using Taylor expansions as follows: 
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Lumping the higher order terms greater than 2, and denoting xR and yR as the remainders of 
the series, 
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2
2

1
2!

x x
x x x x

J JJ J x x R
x x



 
     

 
, and        (7.3.2a) 
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Then the integral equation can be written for 2 dimensions, 

   
2 21 1

2 1 2 1 2
2 2 2 2 1 1

0 0

( ) ( )exp exp , ,x x y y f x y dx dy f x y
b b

 
    
       
   

,       (7.2.3) 

where  ,f x y  and   are eigen functions and corresponding eigen values, respectively. 

The covariance kernel is the multiplication of a function of x and a function of y , and from 
the symmetry of equation (7.2.3), we can assume that the eigen function is the multiplication 
of a function of x and a function of y: 

     , x yf x y f x f y .                      (7.2.4) 

Then the integral equation can be written as, 

   2 2
1 2 1 21 1

2
2 2

0 0

x x y y
b b

x y x yf e dx f e dy f f 
 

   
   

  
  

 
 , and 

   2 2
1 2 1 21 1

2 2 2
0 0

x x y y
b b

x y x yf e dx f e dy f f


 
                       

   .            (7.2.5) 

Therefore, if  

 

 
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1 21

2 1
0

x x
b

x x xf e dx f x



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 

 
2

1 21

2 1
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y y
b

y y yf e dy f y





. 

Then we can see,  , x yf x y f f , and 2
x y    . 

This shows that we can use the eigen functions and eigen values obtained for 1-dimensional 
covariance kernels in Chapter 4 can be used in constructing the eigen functions and eigen 
values for two dimensional covariance kernel given in equation (7.2.2). Once we have 
obtained eigen functions and eigen values as solutions of the integral equation, we can 
derive the two dimensional mass conservation equation for solutes. 
 

7.3 Derivation of Mass Conservation Equation 
Consider the two dimensional infinitesimal volume element depicted in Figure 7.1. We can 
write the mass balance for solutes with in the element as, 

      
    

, , , , , ,

, , , , ,
e x x e

y y e

C x y t n l x y J x y t J x x y t l y n t

J x y t J x y y t l xn t

        

     
 

                                                                        

 

          and      , , y y yx x x
J JC x y t J J

t x y


 
 

  
,                (7.3.1) 

where C(x,y,t) is the solute concentration and J represents the solute flux at the location 
indicated by a subscript. We can expand J using Taylor expansions as follows: 

   
2 3

2 3
2 3

1 1 1
1! 2! 3!

x x x
x x x

J J JJ J x x x
x x x

  
       

  
 higher order terms, and 
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2 3
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1 1 1
1! 2! 3!

y y y
y y y

J J J
J J y y y

y y y

  
       

  
 higher order terms. 

Lumping the higher order terms greater than 2, and denoting xR and yR as the remainders of 
the series, 

       
2

2
2

1
2!

x x
x x x x

J JJ J x x R
x x



 
     

 
, and        (7.3.2a) 
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 
     

 
.                   (7.3.2b) 

 

 
Figure 7.1. Two dimensional infinitesimal volume element with a depth l and porosity     
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Then the integral equation can be written for 2 dimensions, 

   
2 21 1

2 1 2 1 2
2 2 2 2 1 1

0 0

( ) ( )exp exp , ,x x y y f x y dx dy f x y
b b

 
    
       
   

,       (7.2.3) 

where  ,f x y  and   are eigen functions and corresponding eigen values, respectively. 

The covariance kernel is the multiplication of a function of x and a function of y , and from 
the symmetry of equation (7.2.3), we can assume that the eigen function is the multiplication 
of a function of x and a function of y: 

     , x yf x y f x f y .                      (7.2.4) 

Then the integral equation can be written as, 

   2 2
1 2 1 21 1

2
2 2

0 0

x x y y
b b

x y x yf e dx f e dy f f 
 

   
   

  
  

 
 , and 

   2 2
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b b
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

 
                       

   .            (7.2.5) 

Therefore, if  
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
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. 

Then we can see,  , x yf x y f f , and 2
x y    . 

This shows that we can use the eigen functions and eigen values obtained for 1-dimensional 
covariance kernels in Chapter 4 can be used in constructing the eigen functions and eigen 
values for two dimensional covariance kernel given in equation (7.2.2). Once we have 
obtained eigen functions and eigen values as solutions of the integral equation, we can 
derive the two dimensional mass conservation equation for solutes. 
 

7.3 Derivation of Mass Conservation Equation 
Consider the two dimensional infinitesimal volume element depicted in Figure 7.1. We can 
write the mass balance for solutes with in the element as, 

      
    

, , , , , ,

, , , , ,
e x x e

y y e

C x y t n l x y J x y t J x x y t l y n t

J x y t J x y y t l xn t
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          and      , , y y yx x x
J JC x y t J J

t x y


 
 

  
,                (7.3.1) 

where C(x,y,t) is the solute concentration and J represents the solute flux at the location 
indicated by a subscript. We can expand J using Taylor expansions as follows: 
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x x x
x x x

J J JJ J x x x
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       

  
 higher order terms, and 
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  
 higher order terms. 

Lumping the higher order terms greater than 2, and denoting xR and yR as the remainders of 
the series, 
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Then the integral equation can be written for 2 dimensions, 

   
2 21 1

2 1 2 1 2
2 2 2 2 1 1

0 0

( ) ( )exp exp , ,x x y y f x y dx dy f x y
b b

 
    
       
   

,       (7.2.3) 

where  ,f x y  and   are eigen functions and corresponding eigen values, respectively. 

The covariance kernel is the multiplication of a function of x and a function of y , and from 
the symmetry of equation (7.2.3), we can assume that the eigen function is the multiplication 
of a function of x and a function of y: 

     , x yf x y f x f y .                      (7.2.4) 

Then the integral equation can be written as, 
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x x y y
b b
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 
 , and 
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Therefore, if  
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. 

Then we can see,  , x yf x y f f , and 2
x y    . 

This shows that we can use the eigen functions and eigen values obtained for 1-dimensional 
covariance kernels in Chapter 4 can be used in constructing the eigen functions and eigen 
values for two dimensional covariance kernel given in equation (7.2.2). Once we have 
obtained eigen functions and eigen values as solutions of the integral equation, we can 
derive the two dimensional mass conservation equation for solutes. 
 

7.3 Derivation of Mass Conservation Equation 
Consider the two dimensional infinitesimal volume element depicted in Figure 7.1. We can 
write the mass balance for solutes with in the element as, 

      
    

, , , , , ,

, , , , ,
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          and      , , y y yx x x
J JC x y t J J

t x y


 
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  
,                (7.3.1) 

where C(x,y,t) is the solute concentration and J represents the solute flux at the location 
indicated by a subscript. We can expand J using Taylor expansions as follows: 
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Lumping the higher order terms greater than 2, and denoting xR and yR as the remainders of 
the series, 
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Substituting equations (7.3.2a) and (7.3.2b) back to equation (7.3.1) and taking the limit 
0t  , 

   

   

22
'

2 2

22
' '

2 2

, , 1 1
2 2

2 2

y yx x
x

y y yx x x
x y

J JC x y t J J x y R
t x x y y

J h JJ h J R R
x y x y



 

   
       

    

      
                   

,        (7.3.3) 

where xh x  and yh y  . 

    
22

' '
2 22 2

y y yx x x
x y

J h JJ h JdC dt dt R R dt
x x y y

 
    

                . 

Assuming     ' ' 0x yR R dt   , 

 
22

2 2, ,
2 2

y y yx x x
J h JJ h JdC x y t dt dt

x x y y
    

             
.              (7.3.4) 

Now we can express the solute flux in terms of solute concentration and velocity, 

     , , , , , ,x xJ x y t V x y t C x y t , and                    (7.3.5a) 

     , , , , , ,y yJ x y t V x y t C x y t .                        (7.3.5b) 

We can express the velocity in terms of the mean velocity vector and a noise vector, 

     , , , , , ,V x y t V x y t x y t  ,                      (7.3.6) 

where   , ,V x y t ,  , ,V x y t  and  , ,x y t are velocity, mean velocity and noise vectors 
respectively. Instantaneous velocity vector can now be expressed as, 

     , , , , , ,x yV x y t V x y t i V x y t j  ,                   (7.3.7) 

where i  and j  are unit vectors in x and y directions, respectively; and,  , ,xV x y t  and 

 , ,yV x y t  are the magnitudes of the velocities in x and y directions. By substituting the 
vector components in equation (7.3.6) in to equation (7.3.7), we obtain, 

           
      

, , , , , , , , , ,

, , , ,

x x y y

x y x y

V x y t V x y t x y t i V x y t x y t j

V i V j x y t i x y t j

 

 

   

   
,         (7.3.8) 

where x  and y  are the noise components in x and y directions. We can see the noise 

term appearing as,       , , , , , ,x yx y t i x y t j x y t    . 

 

To simplify the notation, 

x x xV V   , and                             (7.3.9)   

y y yV V   .                              (7.3.10) 

By substituting these equations in to equations (7.3.5a) and (7.3.5b), and then substituting 
the resulting equations in to equation (7.3.4), we obtain, 

       x x y y x x x y y ydC S V C dt S V C dt S C dt S C dt     ,            (7.3.11) 

where 
2

22
x

x
hS

x x
  

     
, and 

       
2

22
y

y

h
S

y y
  

   
  

. 

We can now write, 

        x x y y x x x y y ydC S V C S V C dt S C dt S C dt     , and bringing dt in to the parenthesis 

in the third and fourth terms of the right hand side, 

        x x y y x x y ydC S V C S V C dt S C dt S C dt     .             (7.3.12) 

As in the one dimensional case, we can define, 

x xdt   and y y dt  , and these are the components of  a noise vector,  , which 
operates in a Hilbert space having eigen functions as co-ordinates. Equation (7.3.12) can now 
be expressed as, 

        .x x y y x x y ydC S V C S V C dt S Cd S Cd                  (7.3.13) 

The resultant noise term is given by, 

 , , , ,
1

m

x j y j x j y j j
j

d f f db t   


  ,                    (7.3.14) 

where ,x jf   eigen functions in x  direction, and 

      ,y jf   eigen functions in y  direction. 

Now we can express the components in x and y directions, 

cosxd d   , and                          (7.3.15) 

sinyd d   .                            (7.3.16) 
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Substituting equations (7.3.2a) and (7.3.2b) back to equation (7.3.1) and taking the limit 
0t  , 

   

   

22
'

2 2

22
' '

2 2

, , 1 1
2 2

2 2

y yx x
x

y y yx x x
x y

J JC x y t J J x y R
t x x y y

J h JJ h J R R
x y x y



 

   
       

    

      
                   

,        (7.3.3) 

where xh x  and yh y  . 

    
22

' '
2 22 2

y y yx x x
x y

J h JJ h JdC dt dt R R dt
x x y y

 
    

                . 

Assuming     ' ' 0x yR R dt   , 

 
22

2 2, ,
2 2

y y yx x x
J h JJ h JdC x y t dt dt

x x y y
    

             
.              (7.3.4) 

Now we can express the solute flux in terms of solute concentration and velocity, 

     , , , , , ,x xJ x y t V x y t C x y t , and                    (7.3.5a) 

     , , , , , ,y yJ x y t V x y t C x y t .                        (7.3.5b) 

We can express the velocity in terms of the mean velocity vector and a noise vector, 

     , , , , , ,V x y t V x y t x y t  ,                      (7.3.6) 

where   , ,V x y t ,  , ,V x y t  and  , ,x y t are velocity, mean velocity and noise vectors 
respectively. Instantaneous velocity vector can now be expressed as, 

     , , , , , ,x yV x y t V x y t i V x y t j  ,                   (7.3.7) 

where i  and j  are unit vectors in x and y directions, respectively; and,  , ,xV x y t  and 

 , ,yV x y t  are the magnitudes of the velocities in x and y directions. By substituting the 
vector components in equation (7.3.6) in to equation (7.3.7), we obtain, 

           
      

, , , , , , , , , ,

, , , ,

x x y y

x y x y

V x y t V x y t x y t i V x y t x y t j

V i V j x y t i x y t j

 

 

   

   
,         (7.3.8) 

where x  and y  are the noise components in x and y directions. We can see the noise 

term appearing as,       , , , , , ,x yx y t i x y t j x y t    . 

 

To simplify the notation, 

x x xV V   , and                             (7.3.9)   

y y yV V   .                              (7.3.10) 

By substituting these equations in to equations (7.3.5a) and (7.3.5b), and then substituting 
the resulting equations in to equation (7.3.4), we obtain, 

       x x y y x x x y y ydC S V C dt S V C dt S C dt S C dt     ,            (7.3.11) 

where 
2

22
x

x
hS

x x
  

     
, and 

       
2

22
y

y

h
S

y y
  

   
  

. 

We can now write, 

        x x y y x x x y y ydC S V C S V C dt S C dt S C dt     , and bringing dt in to the parenthesis 

in the third and fourth terms of the right hand side, 

        x x y y x x y ydC S V C S V C dt S C dt S C dt     .             (7.3.12) 

As in the one dimensional case, we can define, 

x xdt   and y y dt  , and these are the components of  a noise vector,  , which 
operates in a Hilbert space having eigen functions as co-ordinates. Equation (7.3.12) can now 
be expressed as, 

        .x x y y x x y ydC S V C S V C dt S Cd S Cd                  (7.3.13) 

The resultant noise term is given by, 

 , , , ,
1

m

x j y j x j y j j
j

d f f db t   


  ,                    (7.3.14) 

where ,x jf   eigen functions in x  direction, and 

      ,y jf   eigen functions in y  direction. 

Now we can express the components in x and y directions, 

cosxd d   , and                          (7.3.15) 

sinyd d   .                            (7.3.16) 
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Substituting equations (7.3.2a) and (7.3.2b) back to equation (7.3.1) and taking the limit 
0t  , 

   

   

22
'

2 2

22
' '

2 2

, , 1 1
2 2

2 2

y yx x
x

y y yx x x
x y

J JC x y t J J x y R
t x x y y

J h JJ h J R R
x y x y



 

   
       

    

      
                   

,        (7.3.3) 

where xh x  and yh y  . 

    
22

' '
2 22 2

y y yx x x
x y

J h JJ h JdC dt dt R R dt
x x y y

 
    

                . 

Assuming     ' ' 0x yR R dt   , 

 
22

2 2, ,
2 2

y y yx x x
J h JJ h JdC x y t dt dt

x x y y
    

             
.              (7.3.4) 

Now we can express the solute flux in terms of solute concentration and velocity, 

     , , , , , ,x xJ x y t V x y t C x y t , and                    (7.3.5a) 

     , , , , , ,y yJ x y t V x y t C x y t .                        (7.3.5b) 

We can express the velocity in terms of the mean velocity vector and a noise vector, 

     , , , , , ,V x y t V x y t x y t  ,                      (7.3.6) 

where   , ,V x y t ,  , ,V x y t  and  , ,x y t are velocity, mean velocity and noise vectors 
respectively. Instantaneous velocity vector can now be expressed as, 

     , , , , , ,x yV x y t V x y t i V x y t j  ,                   (7.3.7) 

where i  and j  are unit vectors in x and y directions, respectively; and,  , ,xV x y t  and 

 , ,yV x y t  are the magnitudes of the velocities in x and y directions. By substituting the 
vector components in equation (7.3.6) in to equation (7.3.7), we obtain, 

           
      

, , , , , , , , , ,

, , , ,

x x y y

x y x y

V x y t V x y t x y t i V x y t x y t j

V i V j x y t i x y t j

 

 

   

   
,         (7.3.8) 

where x  and y  are the noise components in x and y directions. We can see the noise 

term appearing as,       , , , , , ,x yx y t i x y t j x y t    . 

 

To simplify the notation, 

x x xV V   , and                             (7.3.9)   

y y yV V   .                              (7.3.10) 

By substituting these equations in to equations (7.3.5a) and (7.3.5b), and then substituting 
the resulting equations in to equation (7.3.4), we obtain, 

       x x y y x x x y y ydC S V C dt S V C dt S C dt S C dt     ,            (7.3.11) 

where 
2

22
x

x
hS

x x
  

     
, and 

       
2

22
y

y

h
S

y y
  

   
  

. 

We can now write, 

        x x y y x x x y y ydC S V C S V C dt S C dt S C dt     , and bringing dt in to the parenthesis 

in the third and fourth terms of the right hand side, 

        x x y y x x y ydC S V C S V C dt S C dt S C dt     .             (7.3.12) 

As in the one dimensional case, we can define, 

x xdt   and y y dt  , and these are the components of  a noise vector,  , which 
operates in a Hilbert space having eigen functions as co-ordinates. Equation (7.3.12) can now 
be expressed as, 

        .x x y y x x y ydC S V C S V C dt S Cd S Cd                  (7.3.13) 

The resultant noise term is given by, 

 , , , ,
1

m

x j y j x j y j j
j

d f f db t   


  ,                    (7.3.14) 

where ,x jf   eigen functions in x  direction, and 

      ,y jf   eigen functions in y  direction. 

Now we can express the components in x and y directions, 

cosxd d   , and                          (7.3.15) 

sinyd d   .                            (7.3.16) 
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Substituting equations (7.3.2a) and (7.3.2b) back to equation (7.3.1) and taking the limit 
0t  , 

   

   

22
'

2 2

22
' '

2 2

, , 1 1
2 2

2 2

y yx x
x

y y yx x x
x y

J JC x y t J J x y R
t x x y y

J h JJ h J R R
x y x y



 

   
       

    

      
                   

,        (7.3.3) 

where xh x  and yh y  . 

    
22

' '
2 22 2

y y yx x x
x y

J h JJ h JdC dt dt R R dt
x x y y

 
    

                . 

Assuming     ' ' 0x yR R dt   , 

 
22

2 2, ,
2 2

y y yx x x
J h JJ h JdC x y t dt dt

x x y y
    

             
.              (7.3.4) 

Now we can express the solute flux in terms of solute concentration and velocity, 

     , , , , , ,x xJ x y t V x y t C x y t , and                    (7.3.5a) 

     , , , , , ,y yJ x y t V x y t C x y t .                        (7.3.5b) 

We can express the velocity in terms of the mean velocity vector and a noise vector, 

     , , , , , ,V x y t V x y t x y t  ,                      (7.3.6) 

where   , ,V x y t ,  , ,V x y t  and  , ,x y t are velocity, mean velocity and noise vectors 
respectively. Instantaneous velocity vector can now be expressed as, 

     , , , , , ,x yV x y t V x y t i V x y t j  ,                   (7.3.7) 

where i  and j  are unit vectors in x and y directions, respectively; and,  , ,xV x y t  and 

 , ,yV x y t  are the magnitudes of the velocities in x and y directions. By substituting the 
vector components in equation (7.3.6) in to equation (7.3.7), we obtain, 

           
      

, , , , , , , , , ,

, , , ,

x x y y

x y x y

V x y t V x y t x y t i V x y t x y t j

V i V j x y t i x y t j

 

 

   

   
,         (7.3.8) 

where x  and y  are the noise components in x and y directions. We can see the noise 

term appearing as,       , , , , , ,x yx y t i x y t j x y t    . 

 

To simplify the notation, 

x x xV V   , and                             (7.3.9)   

y y yV V   .                              (7.3.10) 

By substituting these equations in to equations (7.3.5a) and (7.3.5b), and then substituting 
the resulting equations in to equation (7.3.4), we obtain, 

       x x y y x x x y y ydC S V C dt S V C dt S C dt S C dt     ,            (7.3.11) 

where 
2

22
x

x
hS

x x
  

     
, and 

       
2

22
y

y

h
S

y y
  

   
  

. 

We can now write, 

        x x y y x x x y y ydC S V C S V C dt S C dt S C dt     , and bringing dt in to the parenthesis 

in the third and fourth terms of the right hand side, 

        x x y y x x y ydC S V C S V C dt S C dt S C dt     .             (7.3.12) 

As in the one dimensional case, we can define, 

x xdt   and y y dt  , and these are the components of  a noise vector,  , which 
operates in a Hilbert space having eigen functions as co-ordinates. Equation (7.3.12) can now 
be expressed as, 

        .x x y y x x y ydC S V C S V C dt S Cd S Cd                  (7.3.13) 

The resultant noise term is given by, 

 , , , ,
1

m

x j y j x j y j j
j

d f f db t   


  ,                    (7.3.14) 

where ,x jf   eigen functions in x  direction, and 

      ,y jf   eigen functions in y  direction. 

Now we can express the components in x and y directions, 

cosxd d   , and                          (7.3.15) 

sinyd d   .                            (7.3.16) 
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We make an assumption that q is defined by 

2 22 2
cos ; sin yx

x y x y
  

 
. This is a simplifying approximation which makes 

the modelling more tractable; as the noise term is quite random, this approximation does 
not make significant difference to final results. 

Then 

          , , cos , , sinx x y y x ydC S V C S V C dt S C x y t d S C x y t d       .    (7.3.17) 

Analogous to equation (4.2.4), 

      , , , ,
1

, , cos , , cos
m

x x x j y j x j y j j
j

S C x y t d S C x y t f f db t     


          
 . 

     

    

, , , ,
1

, , , ,
1

cos cos

cos

m

x x j y j y j x x j j
j

m

x j y j y j x x j j
j

S Cd f S Cf db t

f S Cf db t

     

   





  

 




.             (7.3.18) 

Now we can expand the terms in the brackets in equation (7.3.18), 

   
2

, ,2cos cos
2
x

x x j x j
hS Cf Cf

x x
 

  
     

. 

We see that,  

  ,
, , ,

coscos cos cosx j
x j x j x j

f CCf Cf C f
x x x x

  
  

  
   

, and 

 

 
2 2

,
, , ,2 2

2
, , ,

2

2
,

, ,2

cos cos coscos

coscos cos

coscos cos

x j
x j x j x j

x j x j x j

x j
x j x j

f CCf Cf C f
x x x x x x

f f f CC C
x x x x x

fC C Cf f
x x x x x

  

 

 
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We make an assumption that q is defined by 
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We make an assumption that q is defined by 
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Now we can expand the terms in the brackets in equation (7.3.18), 
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Equations (7.3.25) - (7.3.31) constitute the SSTM2d with the definitions for P s and Q s given 
by equations (7.3.19) to (7.3.24). The SSTM2d has similar Ito diffusions for velocities as in the 
one dimensional case. Equation (7.3.19) shows an elegant extension of SSTM into 2-
dimensions. It should be noted that the eigen values for both directions are the same for the 
[0,1] domain, further simplifying the equations.  

The development of the SSTM2d is based on the fact that any kernel can be expressed as a 
multiplication of two kernels, for example, as in equation (7.2.2); and we know the 
methodology of obtaining the eigen values and eigen functions for any kernel. Therefore, we 
can solve the SSTM2d for any kernel. However, for the illustrative purposes, we only focus 
on the kernel given in equation (7.2.2) in this chapter. 
 

7.3.1 A Summary of the Finite Difference Scheme 

To understand the behaviour of the SSTM2d, we need to solve the equations numerically by 
using a finite difference scheme developed for the purpose. We only highlight the pertinent 
equations in the algorithm. 

Now let [ , ] [ , ], , , and n

i j

tn
i j n i j x yx i x y j y t n t C C       , Equation (7.3.25) can be redisplayed as , 
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We use the forward difference to calculate the first first-order derivatives with respect to 
time (t), the backward difference to calculate the first-order derivative in x and y directions 
and the central difference to calculate the second-order derivatives, i.e.,  
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Equations (7.3.25) - (7.3.31) constitute the SSTM2d with the definitions for P s and Q s given 
by equations (7.3.19) to (7.3.24). The SSTM2d has similar Ito diffusions for velocities as in the 
one dimensional case. Equation (7.3.19) shows an elegant extension of SSTM into 2-
dimensions. It should be noted that the eigen values for both directions are the same for the 
[0,1] domain, further simplifying the equations.  

The development of the SSTM2d is based on the fact that any kernel can be expressed as a 
multiplication of two kernels, for example, as in equation (7.2.2); and we know the 
methodology of obtaining the eigen values and eigen functions for any kernel. Therefore, we 
can solve the SSTM2d for any kernel. However, for the illustrative purposes, we only focus 
on the kernel given in equation (7.2.2) in this chapter. 
 

7.3.1 A Summary of the Finite Difference Scheme 

To understand the behaviour of the SSTM2d, we need to solve the equations numerically by 
using a finite difference scheme developed for the purpose. We only highlight the pertinent 
equations in the algorithm. 

Now let [ , ] [ , ], , , and n
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We use the forward difference to calculate the first first-order derivatives with respect to 
time (t), the backward difference to calculate the first-order derivative in x and y directions 
and the central difference to calculate the second-order derivatives, i.e.,  
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Equations (7.3.25) - (7.3.31) constitute the SSTM2d with the definitions for P s and Q s given 
by equations (7.3.19) to (7.3.24). The SSTM2d has similar Ito diffusions for velocities as in the 
one dimensional case. Equation (7.3.19) shows an elegant extension of SSTM into 2-
dimensions. It should be noted that the eigen values for both directions are the same for the 
[0,1] domain, further simplifying the equations.  

The development of the SSTM2d is based on the fact that any kernel can be expressed as a 
multiplication of two kernels, for example, as in equation (7.2.2); and we know the 
methodology of obtaining the eigen values and eigen functions for any kernel. Therefore, we 
can solve the SSTM2d for any kernel. However, for the illustrative purposes, we only focus 
on the kernel given in equation (7.2.2) in this chapter. 
 

7.3.1 A Summary of the Finite Difference Scheme 

To understand the behaviour of the SSTM2d, we need to solve the equations numerically by 
using a finite difference scheme developed for the purpose. We only highlight the pertinent 
equations in the algorithm. 

Now let [ , ] [ , ], , , and n
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We use the forward difference to calculate the first first-order derivatives with respect to 
time (t), the backward difference to calculate the first-order derivative in x and y directions 
and the central difference to calculate the second-order derivatives, i.e.,  
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Equations (7.3.25) - (7.3.31) constitute the SSTM2d with the definitions for P s and Q s given 
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one dimensional case. Equation (7.3.19) shows an elegant extension of SSTM into 2-
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We use the forward difference to calculate the first first-order derivatives with respect to 
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We can develop the finite difference scheme to solve the SSTM2d based on the following 
equation:  
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We illustrate some realisations of the solutions graphically in the next section. 
 

7.3.2 Graphical Depictions of Realisations 
In the following figures, we present a sample of solution realisations of the SSTM2d to 
illustrate the behaviours of the model under different parameter values for the boundary 
condition: C(t, x, y)=1.0 at ( x=0.0 and y=0.0) for any given t. The value of b is kept at 0.1for 
all computations. 

 

Figure 7.2. A realisation of concentration at y=0.5 m when 2 =0.0001. 

 

 

Figure 7.3. A realisation of concentration at y=0.5 m when 2 =0.001. 

 

Figure 7.4. A realisation of concentration at y=0.5 m when 2 =0.01. 
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We can develop the finite difference scheme to solve the SSTM2d based on the following 
equation:  
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We illustrate some realisations of the solutions graphically in the next section. 
 

7.3.2 Graphical Depictions of Realisations 
In the following figures, we present a sample of solution realisations of the SSTM2d to 
illustrate the behaviours of the model under different parameter values for the boundary 
condition: C(t, x, y)=1.0 at ( x=0.0 and y=0.0) for any given t. The value of b is kept at 0.1for 
all computations. 

 

Figure 7.2. A realisation of concentration at y=0.5 m when 2 =0.0001. 

 

 

Figure 7.3. A realisation of concentration at y=0.5 m when 2 =0.001. 

 

Figure 7.4. A realisation of concentration at y=0.5 m when 2 =0.01. 
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Figure 7.5. A realisation of concentration at y=0.5 m when 2 =0.1 
 

 

Figure 7.6. A realisation of concentration at t=1 day when 2 =0.0001. 

 

 

 

Figure 7.7. A realisation of concentration at t=1 day when 2 =0.001. 
 

 

Figure 7.8. A realisation of concentration at t=1 day when 2 =0.01. 
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Figure 7.7. A realisation of concentration at t=1 day when 2 =0.001. 
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Figure 7.9. A realisation of concentration at t=1 day when 2 =0.1. 
 

 

Figure 7.10. A realisation of concentration at t=3 days when 2 =0.0001. 

 

 

 

Figure 7.11. A realisation of concentration at t=3 days when 2 =0.001. 
 

 

Figure 7.12. A realisation of concentration at t=3 days when 2 =0.01. 

 

The Stochastic Solute Transport Model in 2-Dimensions 209
 

 

Figure 7.9. A realisation of concentration at t=1 day when 2 =0.1. 
 

 

Figure 7.10. A realisation of concentration at t=3 days when 2 =0.0001. 

 

 

 

Figure 7.11. A realisation of concentration at t=3 days when 2 =0.001. 
 

 

Figure 7.12. A realisation of concentration at t=3 days when 2 =0.01. 

 



Computational Modelling of Multi-Scale Non-Fickian Dispersion  
in Porous Media - An Approach Based on Stochastic Calculus208

 

 

Figure 7.9. A realisation of concentration at t=1 day when 2 =0.1. 
 

 

Figure 7.10. A realisation of concentration at t=3 days when 2 =0.0001. 

 

 

 

Figure 7.11. A realisation of concentration at t=3 days when 2 =0.001. 
 

 

Figure 7.12. A realisation of concentration at t=3 days when 2 =0.01. 

 

The Stochastic Solute Transport Model in 2-Dimensions 209
 

 

Figure 7.9. A realisation of concentration at t=1 day when 2 =0.1. 
 

 

Figure 7.10. A realisation of concentration at t=3 days when 2 =0.0001. 

 

 

 

Figure 7.11. A realisation of concentration at t=3 days when 2 =0.001. 
 

 

Figure 7.12. A realisation of concentration at t=3 days when 2 =0.01. 

 



Computational Modelling of Multi-Scale Non-Fickian Dispersion  
in Porous Media - An Approach Based on Stochastic Calculus210

 

 

Figure 7.13. A realisation of concentration at t=3 days under 2 =0.1. 

The figures above shows that the numerical scheme is robust to obtain the concentration 
realisations for a range of values of 2 . As 2  increases the stochasticity of the 
realisations increases. 
 

7.4 Longitudinal and Transverse Dispersivity according to SSTM2D 
To estimate the longitudinal and transverse dispersivities, we start with the partial 
differential equation for advection and dispersion, taking x axis to be the direction of the 
flow. 

The two-dimensional advection-dispersion equation can be written as,  
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                  (7.4.1) 

where C = solution concentration (mg/l), 

      t = time (day), 

      DL = hydrodynamic dispersion coefficient parallel to the principal direction of flow 
(longitudinal) (m2/day), 

      DT = hydrodynamic dispersion coefficient perpendicular to the principal direction of 
flow (transverse) (m2/day), and 

      xv = average linear velocity (m/day). 

 

 

The randomness of heterogeneous groundwater systems can be accounted for by adding a 
stochastic component to equation (7.4.1), and it can be given by 
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where ( , )x t is described by a zero-mean stochastic process. 

We multiple equation (7.4.2) by dt  throughout and, formally replace ( , )x t dt  by ζ(t). We 
can now obtain the stochastic partial differential equation as follows, 
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The two parameters to be estimated are DL and DT (while 0.5xv   in this case). For the two 
parameter case, we can write the right hand side of equation (7.4.3) as follows: 

1 2 0 1 1 2 2( , , , ) ( , ) ( , ) ( , )f t C a C t a C t a C t      ,                   (7.4.4) 
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The log-likelihood function can be written as (see Chapter 1), 
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If we have values for ( , , )C x y t at M discrete points in (x, y) coordinate space for a period of 
time t (where 0 t T  ), then differentiating equation (7.4.5) with respect to 1  and 2 , 
respectively, we get the following two simultaneous equations: 
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If we have values for ( , , )C x y t at M discrete points in (x, y) coordinate space for a period of 
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The log-likelihood function can be written as (see Chapter 1), 
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If we have values for ( , , )C x y t at M discrete points in (x, y) coordinate space for a period of 
time t (where 0 t T  ), then differentiating equation (7.4.5) with respect to 1  and 2 , 
respectively, we get the following two simultaneous equations: 
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We simplify equation (7.4.6) to 
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Now we substitute 0( , )ia C t , 1( , )a C t , 2( , )a C t , 1  and 2  in equations (7.4.7) to obtain the 
following set of equations: 
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We can rewrite equations (7.4.8) as,  
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The two simultaneous equations in (7.4.9) can be solved to obtain the estimates of the 
unknown parameters, DL and DT, for a two-dimensional groundwater system. The solutions 
of equations (7.4.9) are, 
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We have estimated the longitudinal and lateral dispersion coefficients for 100 realisations 
for each of 2 value chosen, and their mean values are given in Table 7.1 . 

The transverse dispersion coefficient is significantly less than the longitudinal dispersion 
coefficient for the flow length [0,1] when 2  is very small but approaches approximately 
0.5 of longitudinal dispersion coefficient when 2 increases (Figure 7.12). Comparing Table 
7.1 with Table 4.9, we see that the dispersion coefficient, therefore, the dispersivity, is 
smaller in 2 dimensions especially when 2 >0.01 . This needs to be expected as the lateral 
dispersion provides another mechanism of energy dissipation, thwarting the dispersion in 
the longitudinal direction. 
 

2  LD  TD  

0.001 0.0251 0.0003 

0.005 0.0258 0.0012 

0.01 0.0264 0.0017 

0.02 0.0273 0.0027 

0.04 0.0293 0.0053 

0.05 0.0304 0.0072 

0.06 0.0314 0.0089 

0.08 0.0332 0.012 

0.1 0.0354 0.0145 

0.15 0.04 0.0197 

Table 7.1. Estimated mean longitudinal and transverse dispersion coefficients using 100 
concentration realisations from SSTM2d for each of 2 value. 
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Now we substitute 0( , )ia C t , 1( , )a C t , 2( , )a C t , 1  and 2  in equations (7.4.7) to obtain the 
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We can rewrite equations (7.4.8) as,  
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The two simultaneous equations in (7.4.9) can be solved to obtain the estimates of the 
unknown parameters, DL and DT, for a two-dimensional groundwater system. The solutions 
of equations (7.4.9) are, 
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We have estimated the longitudinal and lateral dispersion coefficients for 100 realisations 
for each of 2 value chosen, and their mean values are given in Table 7.1 . 

The transverse dispersion coefficient is significantly less than the longitudinal dispersion 
coefficient for the flow length [0,1] when 2  is very small but approaches approximately 
0.5 of longitudinal dispersion coefficient when 2 increases (Figure 7.12). Comparing Table 
7.1 with Table 4.9, we see that the dispersion coefficient, therefore, the dispersivity, is 
smaller in 2 dimensions especially when 2 >0.01 . This needs to be expected as the lateral 
dispersion provides another mechanism of energy dissipation, thwarting the dispersion in 
the longitudinal direction. 
 

2  LD  TD  

0.001 0.0251 0.0003 

0.005 0.0258 0.0012 

0.01 0.0264 0.0017 

0.02 0.0273 0.0027 

0.04 0.0293 0.0053 

0.05 0.0304 0.0072 

0.06 0.0314 0.0089 

0.08 0.0332 0.012 

0.1 0.0354 0.0145 

0.15 0.04 0.0197 

Table 7.1. Estimated mean longitudinal and transverse dispersion coefficients using 100 
concentration realisations from SSTM2d for each of 2 value. 
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Now we substitute 0( , )ia C t , 1( , )a C t , 2( , )a C t , 1  and 2  in equations (7.4.7) to obtain the 
following set of equations: 
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The two simultaneous equations in (7.4.9) can be solved to obtain the estimates of the 
unknown parameters, DL and DT, for a two-dimensional groundwater system. The solutions 
of equations (7.4.9) are, 
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We have estimated the longitudinal and lateral dispersion coefficients for 100 realisations 
for each of 2 value chosen, and their mean values are given in Table 7.1 . 

The transverse dispersion coefficient is significantly less than the longitudinal dispersion 
coefficient for the flow length [0,1] when 2  is very small but approaches approximately 
0.5 of longitudinal dispersion coefficient when 2 increases (Figure 7.12). Comparing Table 
7.1 with Table 4.9, we see that the dispersion coefficient, therefore, the dispersivity, is 
smaller in 2 dimensions especially when 2 >0.01 . This needs to be expected as the lateral 
dispersion provides another mechanism of energy dissipation, thwarting the dispersion in 
the longitudinal direction. 
 

2  LD  TD  

0.001 0.0251 0.0003 

0.005 0.0258 0.0012 

0.01 0.0264 0.0017 

0.02 0.0273 0.0027 

0.04 0.0293 0.0053 

0.05 0.0304 0.0072 

0.06 0.0314 0.0089 

0.08 0.0332 0.012 

0.1 0.0354 0.0145 

0.15 0.04 0.0197 

Table 7.1. Estimated mean longitudinal and transverse dispersion coefficients using 100 
concentration realisations from SSTM2d for each of 2 value. 
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We can rewrite equations (7.4.8) as,  
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The two simultaneous equations in (7.4.9) can be solved to obtain the estimates of the 
unknown parameters, DL and DT, for a two-dimensional groundwater system. The solutions 
of equations (7.4.9) are, 

1 2 2 1
2

1 2 1

1 1 2 1
2
1 1 2

,

and

.

L

T

m l m lD
k l l

m l m kD
l k l











                           (7.4.15) 

We have estimated the longitudinal and lateral dispersion coefficients for 100 realisations 
for each of 2 value chosen, and their mean values are given in Table 7.1 . 

The transverse dispersion coefficient is significantly less than the longitudinal dispersion 
coefficient for the flow length [0,1] when 2  is very small but approaches approximately 
0.5 of longitudinal dispersion coefficient when 2 increases (Figure 7.12). Comparing Table 
7.1 with Table 4.9, we see that the dispersion coefficient, therefore, the dispersivity, is 
smaller in 2 dimensions especially when 2 >0.01 . This needs to be expected as the lateral 
dispersion provides another mechanism of energy dissipation, thwarting the dispersion in 
the longitudinal direction. 
 

2  LD  TD  

0.001 0.0251 0.0003 

0.005 0.0258 0.0012 

0.01 0.0264 0.0017 

0.02 0.0273 0.0027 

0.04 0.0293 0.0053 

0.05 0.0304 0.0072 

0.06 0.0314 0.0089 

0.08 0.0332 0.012 

0.1 0.0354 0.0145 

0.15 0.04 0.0197 

Table 7.1. Estimated mean longitudinal and transverse dispersion coefficients using 100 
concentration realisations from SSTM2d for each of 2 value. 
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Figure 7.14. The ratio of the transverse dispersivity to the longitudinal dispersivity vs 2 . 
 

7.5 Summary 
In this chapter, we developed the 2 dimensional version of SSTM for the flow length of [0,1], 
and estimated the transverse dispersivity using the Stochastic Inverse Method (SIM) 
adopted for the purpose. The SSTM2d has mathematically similar form to SSTM but 
computationally more involved. However, the numerical routines developed are robust. We 
will extend SSTM2d in a dimensionless form to understand multi-scale behaviours of 
SSTM2d in the next chapter.
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inverse method (SIM), which is based on the maximum likelihood method. We have seen 
that transverse dispersion coefficient relative to longitudinal dispersion coefficient increases 
as 2 increases when the flow length is confined to 1.0. In this chapter, we extend the 
SSTM2d into a partially dimensional form as we did for 1 dimension, so that we can explore 
the larger scale behaviours of the model. However, the experimental data on transverse 
dispersion is scarce in laboratory  and field scales limiting our ability to validate the 
multiscale dispersion model. In this chapter, we briefly outline the dimensionless form of 
SSTM2d and illustrate the numerical solution for a particular value of flow length. We also 
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As we have developed the SSTM2d for [0,1] domains in both x and y directions (see Chapter 
6), we define the cosine and sine of the angle as follows, 
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We can also express the partial derivatives of the mean velocities in both x and y directions 
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The above equations constitute the multiscale SSTM2d and we developed the numerical 
solutions when the flow length along the main flow direction is 100 m and the flow length in 
the direction perpendicular to the main direction is 25 m. 
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The above equations constitute the multiscale SSTM2d and we developed the numerical 
solutions when the flow length along the main flow direction is 100 m and the flow length in 
the direction perpendicular to the main direction is 25 m. 
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8.3 A Sample of Realisations of Multiscale SSTM2d 
For the illustrative purposes, we plot three realisations of concentration when 0C =1.0 at 
(x=0; and y=0) when time is 20 days for two different 2 values, 0.01 and 0.1. These are 
shown in Figures 8.1 and 8.2. 

 
Figure 8.1. A concentration realisation when time is 20 days for 2 =0.01. Mean velocity in x 
direction is 0.5 m/day and, in y direction is 0.0. 

 
Figure 8.2. A concentration realisation when time is 20 days for 2 =0.1. (Same conditions as 
in Figure 8.1.) 

 

 

8.4 Estimation of Dispersion Coefficients 
We use the same methodology as in Chapter 7 with a slight modification to the advection-
dispersion stochastic partial differential equation (SPDE) to make it dimensionless. 

The SPDE becomes, 
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We can use the SIM to estimate the parameters but to obtain the dispersion coefficients, we 
note the following relations: 
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Based on 60 realisations for each value of 2 , Table 8.1 shows the estimated mean 
dispersion coefficients for the same boundary and initial conditions. 
 

2  LD  TD  

0.01 5.445969667 0.259079583 

0.1 6.853118 1.043493717 

Table 8.1. The estimated mean dispersion coefficients for two different 2 values (b=0.1). 
 

8.5 Summary 
In this brief chapter, we have given sufficient details of development of the multiscale 
SSTM2d and a sample of its realisations. We also have adopted SIM to estimate dispersion 
coefficients in both longitudinal and lateral directions. The computational experiments we 
have done with the SSTM2d show realistic solutions under variety of boundary and initial 
conditions, even for larger scales such 10000 m. However, it is not important to illustrate the 
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