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Preface 

For decades, endocytosis has been recognized as a fundamental cellular process that 
regulates the uptake of small molecules (cell surface proteins, bacteria, toxins, etc.) into 
the cell. So why, after years of study, does this simple process warrant more 
discussion? Anyone who has examined the endocytic pathway will appreciate that this 
conceptually simple mechanism is highly complex and sophisticated. Like ballet 
dancers who make their synchronous performance seem effortless, the cell brings in 
molecules via a carefully choreographed mechanism. However, closer inspection 
reveals very specific roles that are dependent on the cargo being internalized. There 
are differences in the routes of entry into the cell (calthrin-mediated versus non-
clathrin dependent), pathways within the cell (recycling versus degradation), and 
consequences associated with each branch point (i.e. viral replication versus viral 
senescence). With each branch point there are differences in the resulting cell biology.  

There were several goals in writing this book. First, by bringing together researchers 
that study diverse biological processes, there is a side-by-side comparison of the 
commonalities and differences of these processes. Second, tools that are standard in 
one field can often be novel to another. With a common mechanistic link, each story 
reveals new experimental approaches. Next, the examples in this book help one look 
beyond the mechanism of endocytosis and onto the functional relevance. How does 
endocytosis support the life cycle of a virus? Does endocytic trafficking help or hinder 
the signaling by a receptor? Does the route of entry effect the toxicity of foreign 
substances? Finally, the later chapters in this book demonstrate ways in which the 
endocytic process can be harnessed for therapeutic applications. 

While endocytosis has been well studied, the work is far from done. This book will be 
part of the continuum in understanding endocytic trafficking. It is the hope that this 
book will be useful to scientists who have had a longstanding interest in membrane 
trafficking, those who have just begun their exploration, and those who need their 
curiosity satisfied.  

Brian P. Ceresa, Ph.D. 
Department of Pharmacology 

University of Louisville, Louisville, Kentucky,  
USA 
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Key Events in Synaptic Vesicle Endocytosis 

Frauke Ackermann, Joshua A. Gregory and Lennart Brodin 

Additional information is available at the end of the chapter 

http://dx.doi.org/10.5772/45785 

1. Introduction 

A synaptic release site is characterized by a pool of synaptic vesicles aggregated to an active 
zone at the presynaptic plasma membrane. When an action potential arrives, calcium 
channels in the active zone open to generate a steep increase in calcium concentration. 
Calcium binds the synaptic vesicle protein synaptotagmin which promotes its interaction 
with the SNARE complex and with the plasma membrane, together triggering fusion of the 
synaptic vesicle membrane with the plasma membrane (1). Following fusion, the synaptic 
vesicle membrane needs to be removed from the plasma membrane to prevent its 
expansion, and recycling of the vesicle components is needed to refill the pool of vesicles at 
the release site. 

An outline of the steps in the recycling of a synaptic vesicle is depicted in Figure 1. The 
vesicle membrane first moves out from the active zone into the periactive zone. The 
mechanism behind such movement is unclear but it is critical in order to maintain the 
function of the active zone. Impaired clearance of vesicle components from the release site 
has been linked with depression of neurotransmtter release (2). After the vesicle membrane 
has reached the periactive zone, clathrin and accessory endocytic factors accumulate to 
begin the nucleation of a clathrin coat. The coat grows and invaginates until a deeply 
invaginated coated pit with a narrow neck has formed. The neck of the coat is then 
surrounded by a dynamin-containing ring or short spiral, which helps to cut off the neck. 
The free vesicle rapidly sheds its coat and it may be directly refilled with neurotransmitter 
and prepared for a new round of release. Alternatively, the primary endocytic vesicle may 
first fuse with an endosome, prior to undergoing a second endosomal budding step to yield 
a new synaptic vesicle. Although the presence of an endosomal recycling route has been 
well established (3,4) its precise role in vesicle cycling is not fully clear. It may potentially be 
used to recycle readily releaseable vesicles (5), or it may participate in refilling the reserve 
pool during extended periods of synaptic activity (6). The endosomal route may be used 
more extensively in subsets of synapses (7). 

© 2012 Brodin et al., licensee InTech. This is a paper distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.
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2. Clathrin-mediated endocytosis as the main synaptic vesicle recycling 
pathway 
The model of synaptic vesicle recycling shown in Figure 1 has its origin in quick-freeze 
studies performed at the frog neuromuscular junction 8, and microinjection studies 
performed in giant synapses in lamprey and squid (9-11). In the latter type of experiments a 
compound - antibody, toxin or peptide - that disrupts the function of an endocytic protein 
(or a protein-protein interaction) is microinjected into the presynaptic cytoplasm. When the 
microinjected synapse is examined at rest, the synaptic structure is normal. However, 
repetitive stimulation uncovers defects in synaptic vesicle recycling. These include loss of 
synaptic vesicles, expansion of the plasma membrane, and accumulation of clathrin-coated 
endocytic intermediates in the periactive zone. Depending on which protein is perturbed, 
the structure of the accumulated intermediates may differ. For instance, if the clathrin/AP2-
binding region of epsin is perturbed, enlarged coated pits with wide necks occur (Fig. 2). In 
contrast, if dynamin - SH3 domain interactions are perturbed, deeply invaginated coated 
pits with narrow necks appear (Fig. 3). If synaptojanin is perturbed, free clathrin coated 
vesicles accumulate as a sign of impaired uncoating (12) .  

 
Figure 1. Model of clathrin-mediated synaptic vesicle endocytosis. Synaptic vesicles partially or 
completely fuse with the presynaptic membrane at the active zone and release neurotransmitter into the 
synaptic cleft. The membrane of the fused vesicles then diffuses laterally to the areas outside the active 
zone where it is retrieved by clathrin-mediated endocytosis. Clathrin-coated vesicle formation involves 
several morphologically distinct steps, from clathrin coat binding, invagination of the coated bud, 
constriction and fission of the pit ‘neck’ and the subsequent stripping of the clathrin coat from the 
newly formed vesicle. The vesicle is then either directly transported back to the cluster of synaptic 
vesicles or translocated to a primary endosomal compartment. During endocytosis and migration to the 
release site vesicles are refilled with transmitter (NT). Reproduced from ref 17. 
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Figure 2. Microinjection of antibodies to the CLAP region of epsin increases the size of coated pits. 
Electronmicrographs show the periactive zone area in lamprey giant reticulospinal axons stimulated at 
5 Hz following microinjection. A-B, Shallow coated pits from control (A) and CLAP antibody-injected 
(B). C-D, Examples of non-constricted (bucket-shaped) coated pits from control (C) and CLAP antibody-
injected axons (D). Scale bars = 100 nm. Reproduced from ref 85. 

 
Figure 3. Microinjection of the SH3 domain of amphiphysin traps coated pits with narrow necks. The 
electronmicrograph shows the periactive zone area in a lamprey giant reticulospinal axon, and a 
synaptic release site with clustered synaptic vesicles is visible to the right. The axon was stimulated at 
0.2 Hz for 30 min prior to fixation Scale bar = 200 nm. Reproduced from ref 28. 

The requirement of clathrin in synaptic vesicle recycling has also been demonstrated in 
experiments using photoinactivation of a transgenically encoded protein (FlAsH-FALI 
method) (13,14). The technique is based on the use of a short tetracysteine epitope tag that 
covalently binds a membrane permeable dye, Lumio. When excited with fluorescent light, 
Lumio inactivates the tagged protein. Following tagging of the clathrin light or heavy chain, 
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illumination followed by repetitive stimulation causes a complete loss of synaptic vesicles 
along with massive accumulation of plasma membrane folds in the terminals (13,14). The 
importance of clathrin-mediated synaptic vesicle endocytosis has also been demonstrated in 
real-time imaging experiments using synaptic vesicle proteins tagged with a pH-sensitive 
reporter (15). Granseth et al showed that brief action potential stimulation is followed by an 
endocytic response (due to loss of the acidic pH in the vesicles) with a time course of about 
15 s. Such responses were abolished in neurons in which the expression of the clathrin 
heavy chain had been knocked down by RNAi (16). In addition to the studies mentioned 
above, a number of genetic studies performed in C. elegans, Drosophila and mice support 
the critical role of clathrin-mediated synaptic vesicle endocytosis (15,17). In fact, the 
molecular analysis once began with studies in a temperature-sensitive paralytic Drosophila 
mutant, shibire (18,19). Following the discovery that the shibire mutation is situated in the 
dynamin gene (20,21) a network of interconnected endocytic proteins could be identified 
(15,22). 

In the present chapter we will only briefly comment on other, non-clathrin mediated 
mechanisms of synaptic vesicle recycling. One such mechanism of clathrin-independent 
membrane internalization is termed bulk endocytosis. Large membrane cisternae are 
internalized and subsequently converted to synaptic vesicles, but the budding mechanism 
involved is not well defined. In some model systems, like cerebellar granule cell synapses, 
bulk endocytosis has been examined in detail and it has been been found to operate under 
conditions of physiological stimulation (23). In many studies, however, the occurrence of 
bulk endocytosis in nerve terminals has been linked to non-physiological conditions, 
including excessive stimulation, or moderate stimulation combined with disruption of the 
clathrin machinery (15,24). The term kiss-and-run refers to a mode of recycling that involves 
a transient opening and closing of a fusion pore without loss of the vesicle´s integrity. The 
functional role of kiss-and-run recycling has been the matter of lively debate (25,26). 
Evidence in favor of the kiss-and-run phenomenon has mainly been obtained in imaging 
studies. Studies detailing the behavior of single pH-sensitive quantum dots trapped in 
individual synaptic vesicles in hippocampal boutons supports the possibility that synaptic 
vesicles can open transiently (27). Further studies, however, are required to determine the 
generality of this phenomenon and its possible implications for synaptic transmission. 

3. A storage pool of endocytic proteins is associated with synaptic release 
sites 

Early models of synaptic recycling often assumed that endocytic proteins occur in a 
diffusible cytoplasmic pool from which they are recruited to the plasma membrane to 
participate endocytosis. This appears, at least for most proteins, not to be case. In contrast, 
endocytic proteins have been found to be distinctly accumulated at release sites. Following 
the observation that an SH3 domain (of amphiphysin) bound tightly to synaptic vesicle 
clusters (28), it was shown by immunogold labeling that many endocytic proteins including 
dynamin, amphiphysin, epsin, endophilin and intersectin accumulate within the vesicle 
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cluster (29). The cluster-associated protein pool can be mobilized by synaptic activity. Thus, 
after a period of repetitive stimulation the endocytic proteins partly dissociate from the 
synaptic vesicles and appear at the plasma membrane in the periactive zone (30-32). Such 
protein redistibution has also been observed in live imaging experiments. The clathrin 
heavy chain is found to be concentrated in the center of release sites at rest but rapidly 
redistibutes to the periphery upon stimulation (16). Interestingly, not only endocytic, but 
also other soluble presynaptic proteins, such as synapsin, NSF, rab3, and rabphilin reside in 
the cluster at rest and redistribute peripherally upon stimulation (33,34). In agreement, in 
vitro studies showed that these proteins bind reversibly to synaptic vesicles. It was 
suggested by Denker et al that the presence of a cluster of synaptic vesicles (larger than 
what is needed to support neurotransmitter release) provides a buffer site for proteins near 
synaptic release sites (34). What regulates the mobilization of proteins from the synaptic 
vesicle cluster? The work of Denker et al suggest that calcium is one important factor, but 
other factors may also be required. In a study of synapsin, Orenbuch et al found that not 
only calcium influx and phosphorylation of synapsin, but also exocytosis is required in 
order for synapsin to redistribute from synaptic vesicle clusters (Orenbuch et al J 
Neurochem, in press). It will be interesting to examine whether mobilization of endocytic 
proteins from the synaptic vesicle cluster also requires a signal associated with exocytosis. 

4. Early events in synaptic vesicle endocytosis 

The model of synaptic vesicle recycling depicted in Figure 1 may suggest that synaptic 
vesicle membrane is absent from the periactive zone until it has fused in the active zone and 
moved laterally. It is now becoming increasingly clear, however, that some synaptic vesicle 
membrane resides in the axonal plasma membrane in between periods of exo- and 
endocytosis. Thus, in resting hippocampal nerve terminals, extracellularly applied 
antibodies to the luminal domain of synaptotagmin binds the axonal surface near release 
sites (35). Studies employing antibodies with pH-sensitive tags have further shown that a 
plasma membrane-resident pool of synaptotagmin is preferentially endocytosed at the onset 
of a bout of endocytosis (36). These findings indicate that a subset of ”readily retrievable 
vesicles” occur in the periactive zone and can be endocytosed rapidly upon stimulation. The 
protein components in this vesicular membrane pool may be sorted and packaged to 
facilitate rapid endocytosis (37).  

With regard to the precise order of recruitment of endocytic proteins to the periactive zone 
information is as yet limited. This contrasts with the detailed information that has been 
obtained in non-neuronal cells grown on glass slides in which protein movement near the 
plasma membrane can be tracked by total internal reflection (TIRF) microcopy (38). These 
studies indicate that among the first proteins to occur at the plasma membran is the F-BAR 
protein FCHo1/2, followed by the scaffold proteins eps15 and intersectin. Different adaptor 
proteins are then recruited while clathrin shows a slow build-up terminating at scission. 
Dynamin is present at low levels from early stages but exhibits a peak just before scission. A 
similar behavior is also observed for endophilin and synaptojanin (38,39).  
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5. What triggers synaptic vesicle endocytosis? 
The simplest answer to the question of what triggers synaptic vesicle endocytosis would be 
the vesicle membrane itself. It is known that (clathrin-mediated) retrieval of synaptic vesicle 
membrane can be temporally dissociated from action potential-induced calcium influx (40). 
Thus, calcium influx is not needed to trigger endocytosis. Moreover, compensatory synaptic 
vesicle endocytosis can occur after non-calcium-dependent triggering of exocytosis by 
hypertonic sucrose stimulation (41). The synaptic vesicle membrane thus appears to contain 
components capable of inducing its reinternalization. However, in the absence of calcium 
influx, the time-course of endocytosis is slower than that seen under normal conditions of 
calcium-triggered release. Indeed, several studies have shown that calcium can accelerate 
endocytosis (42,43). Several proteins have been implicated as calcium sensors for 
endocytosis, including calmodulin (44), calcineurin (45) and synaptotagmin (46). At present, 
it remains unclear whether different synapses utilize different trigger mechanisms. One of 
the most detailed investigations of an endocytic calcium sensor was recently performed in 
hippocampal neurons (41). These authors examined synaptotagmin, the trigger of fast 
synchronous exocytosis (47,48), which also is also implicated in endocytosis (49). 
Interestingly, Yao et al found that the calcium dependence of synaptotagmin in exo- and 
endocytosis could be uncoupled. Either the C2A or C2B domain of synaptotagmin could 
function as calcium sensor for endocytosis, whereas only the C2B domain effectively 
supported exocytosis. It was also found that retargeting of synaptotagmin to the plasma 
membrane abolished the calcium dependence of endocytosis but not that of exocytosis. 
Synaptotagmin thus appears two play distinct roles, one as a calcium sensor that triggers 
fast synchronous exocytosis and another as a calcium sensor that speeds up endocytosis. 

6. Recycling of SNARE proteins 
The role of SNARE (soluble NSF attachment protein receptors) proteins in synaptic vesicle 
fusion have been described in great detail (50), but the subsequent fate of the SNARE 
complex and its components synaptobrevin, syntaxin and SNAP25 have been less well 
studied. Initial studies suggested that disassembly of the SNARE proteins occurs shortly 
before fusion such that NSF is in a position to regulate the kinetics of neurotransmitter 
release (51). More recent studies, however, suggest that SNARE complex disasembly occurs 
much earlier, even before synaptic vesicle endocytosis. Imaging studies showed that 
syntaxin remains in the plasma membrane after synaptic vesicles have been endocytosed, 
indicating that complex dissasembly preceeds endocytosis (52). Moreover, it was shown that 
NSF and SNARE proteins accumulate in the periactive zone after inhibition of NSF function 
53. It is quite possible that, following its disassembly, synaptobrevin participates in clathrin-
mediated endocytosis. Synaptic vesicle endocytosis is impaired in synaptobrevin-deficient 
mice (54), and the endocytic adaptors AP180 and CALM have been found to bind 
synaptobrevin. Notably, these adaptors bind at a site within the SNARE domain that is only 
accessible after the SNARE complex has been disassembled. Together these observations 
indicate that SNARE complex disassembly occurs within the plasma membrane of the 
periactive zone prior to the onset of synaptic vesicle endocytosis, and they further suggest 
that synaptobrevin may facilitate clathrin-mediated endocytosis. 
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accessible after the SNARE complex has been disassembled. Together these observations 
indicate that SNARE complex disassembly occurs within the plasma membrane of the 
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7. BAR domains – Membrane benders or membrane binders?  
Proteins with BAR domains have attracted much interest due to the striking structural 
features of this domain. Two BAR domains form a dimer with a concave surface that can 
bind phospholipid membranes (22,55). Hence BAR domains have been implicated as 
inducers of curvature and as curvature-sensing modules that bind membrane domains with a 
given curvature. Endophilin is the BAR protein that has attracted most interest in the 
synaptic vesicle field, both because it is expressed in nerve terminals in organisms ranging 
from worms and flies to mammals, and because it interacts with dynamin and synaptojanin 
(56). The effect of perturbing endophilin has been tested in many studies, all of which point to 
an important role of the protein. Endophilin has been suggested to act at multiple steps in 
synaptic vesicle endocytosis. A role early in the endocytic reaction was suggested by the 
finding that shallow coated pits can be trapped by endophilin antibody microinjection in the 
lamprey giant axon. This phenomenon has also seen in Drosophila after genetic reduction of 
the endophilin levels (57-59). Endophilin has been detected by immunogold labeling at the 
rim of shallow coated pits (32). These obervations are possibly compatible with a membrane 
bending role of endophilin at an early stage of endocytosis, but such a function has not yet 
been supported by studies in mammalian models (see below). Second, a role for endophilin 
in recruitment of dynamin to the neck of coated pits has been proposed. Endophilin occurs at 
the proximal part of the neck of coated pits, and peptides competing the endophilin – 
dynamin interaction inhibit formation of dynamin rings as well as subsequent membrane 
fission (12,32 see also 60). Finally, endophilin has been linked with vesicle uncoating by its 
interaction with synaptojanin. In the lamprey giant axon perturbation of the endophilin – 
synaptojanin interaction results in accumulation of numerous free clathrin coated vesicles, in 
addition to deeply invaginated coated pits. In mice lacking all three endophilin genes nerve 
terminals were found to contain large numbers of free clathrin coated vesicles (that are nearly 
absent in wild-type animals) (61). Somewhat surprisingly, in the mouse model no other type 
of endocytic intermediate was accumulated. Moreover, in both C. elegans and Drosophila the 
phenotype of synaptojanin mutants closely resembled that of endophilin mutants, and 
endophilin was found to be required for localization of synaptojanin to nerve terminals 
(62,63). It is therefore likely that a principal function of endophilin in nerve terminals is to 
mediate recruitment of synaptojanin to the vesicle neck to support uncoating. Hence, a role of 
the BAR domain of endophilin as a binder rather then a bender appears most plausible. 

8. New insights into dynamin function and membrane fission 
Different models have been proposed to account for the role of dynamin in catalyzing 
endocytic membrane fission (64,65). The most recent models incorporate rich high-
resolution structural information. The crystal structure of full-length dynamin has been 
determined by taking advantage of assembly-deficient mutants (66,67). Insight into the 
organization of assembled dynamin multimers has been gained by computer docking of 
domain crystal structures into cryo-EM images (68). These studies suggest that initial 
constriction of the coated pit neck, triggered by GTP binding and structural changes in the 
middle domain of dynamin, promotes GTP domain dimerization between tetramers in 
adjacent helical rungs. Assembly-stimulated GTP hydrolysis is suggested to induce a 
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rotation that provides force, and propagation of this change could cause further constriction 
of the neck leading to fission. Moreover, in vitro studies have provided detailed insight into 
the dynamic behavior of dynamin at membranes. It was found that the extended dynamin 
spirals that form around lipid tubules in the absence of GTP (69) do not effectively promote 
fission. Instead assembly of short spirals followed by disassembly led to membrane fission 
(70). Moreover, dynamin alone can form self-limited assemblies that drive vesiculation from 
a lipid surface in the presence of GTP 71 (Fig. 5A).  

 
Figure 4. Dynamin-induced vesiculation and its modulation by EHD. A, Vesiculation in vitro from 
rhodamine-labeled SUPER templates induced by application of dynamin in the constant presence of 
GTP (1 mM GTP and ATP present in A and B). The trace with the response to dynamin (dyn) is 
superimposed on the trace preceeding addition of dynamin (-protein) B, Vesiculation was suppressed 
when dynamin was co-applied with l-EHD. C, Reduced inhibitory effect of l-EHD on dynamin-induced 
vesiculation in the constant presence of GTP after replacement of ATP with ATPγS (1 mM). D, 
Application of dynamin in the constant presence of GTPS induced formation of narrow tubules (1 mM 
GTPS and ATP present in D-F). E, Tubule formation was suppressed when dynamin was co-applied 
with l-EHD. F, Reduced inhibitory effect of l-EHD on dynamin-induced tubulation in the constant 
presence of GTPγS after replacement of ATP with ATPγS. Scale bars=5 m. Reproduced from ref 75. 

Under in vivo conditions the function of dynamin depends strictly on interactions with other 
proteins. In particular, interactions with SH3 domains are important. As indicated above, 
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perturbation of dynamin - SH3 domain interactions blocks endocytosis at a late stage (Fig. 
3). In this case, dynamin rings do not form suggesting that SH3 interactions are needed for 
proper recruitment or assembly of dynamin at the neck of the coated pit. Several proteins 
may mediate SH3 domain interactions with dynamin in nerve terminals, including 
amphiphysin, endophilin, intersectin, SNX9 and syndapin. It may be noted, however, that in 
Drosophila (and possibly in other invertebrates) neither amphiphysin nor syndapin are 
expressed in nerve terminals (72,73).  

Recent studies performed in the lamprey giant reticulospinal synapse indicate that extrinsic 
proteins not only regulate the recruitment of dynamin, but they may also control the length of 
the dynamin spiral. Eps15 homology domain-containing proteins (EHDs) are conserved 
ATPases implicated in membrane remodelling, primarily in endosomal traffic. EHD1 is 
enriched at synaptic release sites (74), suggesting a possible involvement in the trafficking of 
synaptic vesicles. The role of EHD in this function has been analyzed in the lamprey giant 
reticulospinal synapse. EHD1/3 was detected by immunogold at endocytic structures adjacent 
to release sites. In antibody microinjection experiments, perturbation of EHD inhibited 
synaptic vesicle endocytosis and caused accumulation of clathrin-coated pits with atypical, 
elongated necks (Fig. 5). The necks were covered with helix-like material containing dynamin 
(75). To test whether EHD directly interferes with dynamin function, fluid supported bilayers 
were used as in vitro assay. EHD strongly inhibited vesicle budding induced by dynamin in 
the constant presence of GTP (Fig. 4A-C). EHD also inhibited dynamin-induced membrane 
tubulation in the presence of GTPγS (Fig. 4D-E) a phenomenon linked with dynamin helix 
assembly. Taken together the in vivo and in vitro results suggest that l-EHD acts to limit the 
formation of long, unproductive dynamin helices, thereby promoting vesicle budding (75). 

 
Figure 5. Immunogold localization of dynamin at endocytic pits with elongated necks trapped after 
perturbation of EHD. A, Examples of coated pits with long necks decorated with dynamin immunogold 
labeling in lamprey giant axons stimulated after microinjection of EHD antibodies. Scale bar=0.2 m. B, 
Regression analysis of dynamin labeling and length of coated pits in EHD antibody-injected axons 
(R2=0.43, n=45, 0.05<p<0.01, Pearson’s correlation coefficient). Reproduced from ref 75. 
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9. Possible implications of synaptic vesicle endocytosis for disease 
mechanisms 

Knowledge about the mechanisms of synaptic vesicle endocytosis is not only important for 
our understanding of synaptic information processing, but may potentially also shed light 
on pathogenetic mechanisms. One aspect conerns toxins and infectious agents that may hi-
jack the synaptic endocytic machinery to enter neurons (76-78). Another aspect concerns the 
possible role of endocytosis in neurodegenerative disorders that affect synapses. For 
instance, Lewy body pathology, occurring in Parkinson and other disorders, may involve 
endocytic uptake of α-synuclein fibrils that induce intracellular fibril formation, which in 
turn leads to synaptic dysfunction (79). Synaptic endocytosis has also been implicated in the 
pathogenesis of Alzheimer´s disease. For instance, part of the processing of the amyloid 
precursor protein (APP), into synaptotoxic  amyloid beta peptides appears to occur in nerve 
terminals in an endocytosis-dependent manner. Thus, microdialysis studies have shown 
that the extracellular A pool in brain is elevated by enhanced synaptic activity and lowered 
after inhibition of synaptic endocytosis (80-82), Accordingly, formation of A in a neuronal 
cell line has been shown to be suppressed by knock-down of the clathrin adaptor AP180 
(83). It is also interesting to note that -secretase, that cleaves APP, is present in nerve 
terminals (84). 
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1. Introduction 

In eukaryotes, pathways concerned with protein synthesis and those involved in protein 
degradation serve to maintain the levels of proteins in a cell [1]. The degradation of proteins 
occurs by two major pathways, the proteasomal degradation pathway and the lysosomal 
degradation pathway [2]. In the proteasomal degradation pathway, target proteins are 
ubiquitinated by a system of E1, E2 and E3 enzymes [2,3]. Thereafter, the ubiquitinated 
proteins are delivered to the proteasome for degradation [2,3]. In contrast, the lysosome, 
which contains many hydrolytic enzymes, serves as the site of degradation for a multitude 
of pathways. One such pathway is the macroautophagy pathway [4]. This undiscerning 
catabolic process, comprising of approximately 30 ATG genes, helps cells to endure phases 
of nutrient starvation and other stresses by degrading proteins and organelles in the 
lysosome [5-7]. In disparity, chaperone-mediated autophagy is a selective autophagy 
pathway that targets specific cargo proteins (having the KFERQ amino acid sequence) to the 
lysosome for degradation via cytosolic chaperone proteins [8-11]. Therefore, vital processes 
such as cell development, growth and homeostasis require autophagy and it’s absence or 
deregulation can result in diseases such as cancer, and even neurodegeneration [12,13]. 

Vesicular transport facilitates the delivery of proteins to the different organelles of the cell, 
with the exception of transport to the nucleus, peroxisomes, endoplasmic reticulum etc [14]. 
These intermediate carriers of proteins range from the endosomes to the coat protein 
complex I (COPI) vesicles, COPII vesicles and clathrin-coated vesicles [14-16]. The 
anterograde transport (from ER to Golgi) of proteins is mediated by the COPII vesicles while 
the retrograde transport (from Golgi to ER) is mediated by the COPI vesicles [14-16]. In 
addition, the transport of proteins from the plasma membrane to the early endosomes, and 
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from the Golgi to endosomes is facilitated by the clathrin-coated vesicles [14]. In yeast, the 
organelle that is homologous to the mammalian lysosome is the vacuole [17-18]. This 
organelle is essential for cellular processes such as maturation of vacuolar resident proteins, 
protein degradation, and for osmoregulation [18]. The transport of vacuole resident proteins 
into the vacuole is essential for the function of this organelle. For example, the Vps pathway 
transports carboxypeptidase Y (CPY) from the Golgi to the vacuole for maturation [19]. This 
pathway enlists the involvement of approximately 40 VPS genes [19]. Moreover, endocytosis 
is another pathway that delivers proteins from the plasma membrane and other 
extracellular molecules to the vacuole [18-20]. In addition, proteins can also be delivered 
from the cytoplasm into vacuole. For instance, the Cvt pathway delivers enzymes such as 
aminopeptidase I (API) and -mannosidase from the cytoplasm to the vacuole [5,21].  

Transport of proteins and organelles to vacuole can be affected by alterations in nutrient 
stimuli [5,21]. Upon starving Saccharomyces cerevisiae of nitrogen, proteins are sequestered in 
autophagosomes and then transported to the vacuole for degradation by the 
macroautophagy pathway. The target of rapamycin 1 protein (Tor1p) is a component of 
TORC1 that functions to regulate gene expression, ribosomal synthesis and nutrient 
transport [22,23]. Intriguingly, Tor1p inhibits the macroautophagy pathway. Rapamycin 
induces the macroautophagy pathway even in the absence of nitrogen starvation. In another 
instance, when yeast is replenished from growth in media containing oleic acid to that 
containing glucose, the peroxisomes are transported to the vacuole for degradation [24].  

2. Regulation of gluconeogenic enzymes in yeast 

In Saccharomyces cerevisiae, essential regulatory enzymes in the gluoconeogenesis pathway 
such as fructose-1,6-bisphosphatase (FBPase), malate dehydrogenase (MDH2), 
phosphoenolpyruvate carboxykinase (Pck1p) and isocitrate lyase (Icl1p) are induced when 
cells are grown in media depleted of glucose [25-27]. These enzymes function to synthesize 
glucose from non-carbohydrate carbon sources such as pvruvate or acetate. Upon supplying 
cells with media containing fresh glucose, these enzymes are inactivated [26-28]. This is 
referred to as catabolite inactivation [26-28]. FBPase is the best-studied example of catabolite 
inactivation [26,27]. From previous investigations, it has been determined that there may be 
many contributing factors; however protein degradation is the principal mechanism that 
inactivates FBPase.  

FBPase is a suitable candidate for degradation studies for two reasons. First, expression of 
FBPase can be induced in response to specific stimuli [25-27]. And secondly, following 
glucose replenishment, FBPase is promptly degraded and exhibits a half-life of 
approximately 20-40 min. A key factor in targeting FBPase for degradation may be protein 
modification. To better illustrate this, it has been suggested that phosphorylation of FBPase 
may be a regulatory factor in this protein’s degradation [29]. There is evidence that FBPase 
is phosphorylated at serine 11 and that this phosphorylation increases following glucose 
replenishment [30]. Protein kinase A (PKA) and the Ras2 signaling pathway mediate 
phosphorylation of FBPase [29-31].  
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3. The site of degradation of gluconeogenic enzymes 

The site of degradation of FBPase is dependent on the duration of starvation. From studies 
conducted by the Wolf lab, it has been demonstrated that following glucose replenishment, 
FBPase is inactivated by ubiquitination [32-35]. There is evidence that the N-terminal proline 
residue is essential for the polyubiquitination of FBPase following glucose replenishment [36]. 
Thereafter, ubiquitinated FBPase is then delivered to the proteasome for degradation [32-36]. 
This is because the mutations in genes involved in the proteasome pathway such as CIM3 
results in the inhibition of FBPase degradation [32-36]. In contrast, after glucose starvation of 
yeast cells for 3 days, it has been determined that FBPase is phosphorylated and inactivated by 
PKA [29-31]. Following inactivation, FBPase is delivered to the vacuole for degradation [37-
39]. For instance, the degradation of FBPase was examined using a pep4prb1prc1 vacuole 
mutant. This mutant strain contains deletion of proteinases A, B and C. In the absence of these 
genes, there is retardation in the degradation of proteins that are delivered to the vacuole 
[38,41]. In this study, upon replenishing cells with fresh glucose following one day starvation it 
was observed that FBPase was degraded normally. However, following glucose replenishment 
after 3 days glucose starvation, FBPase degradation was inhibited. This suggests that FBPase 
degradation following 3 days glucose starvation is dependent on the presence of vacuolar 
proteinases. More recently, our lab has also demonstrated that other gluconeogenic enzymes 
such as MDH2, Pck1p and Icl1p also share the same degradation characteristics as FBPase. 
Furthermore, the re-distribution of these enzymes from the cytosol to vacuole following 
glucose replenishment has been validated by immunofluorescence and immunoelectron 
microscopy studies. At present, it is suggested that differential modification of FBPase 
following glucose replenishment dictates whether the protein is degraded in the vacuole or the 
proteasome. Such a disparate degradation behavior has been previously ascribed to the 
degradation of the fatty acid synthase subunit ß [42]. Depending on growth conditions, fatty 
acid synthase subunit ß is degraded either in the vacuole or the proteasome. 

4. The vacuole import and degradation pathway 

The gluconeogenic enzymes (FBPase, MDH2, Pck1p and Icl1p) are transported to the vacuole 
for degradation by a selective autophagy pathway [37-41]. This pathway is called the vacuole 
import and degradation (Vid) pathway. The genes involved in this pathway are cumulatively 
called VID genes [37-41].  For the purposes of characterizing this pathway, FBPase was selected 
as a marker for associated studies. By using a myriad of mutagenesis assays, our lab has 
identified many genes that play a role in the Vid pathway. For instance, mutants, created by 
subjecting cells to UV mutagenesis, have been studied for their ability to degrade FBPase. A 
colony blotting procedure was utilized to screen for mutants defective in FBPase degradation 
following glucose replenishment [40]. The results from these experiments were further 
validated by performing pulse-chase experiments. It was determined that while FBPase was 
degraded with a half-life of 20-40 min in wild-type cells, mutants degraded FBPase with a half-
life ranging from 120-400 min. Moreover, all vid mutations were recessive as these mutants were 
complemented for the FBPase degradation defect upon mating with wild-type cells. 
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Another strategy to identify genes involved in the Vid pathway was by transposon 
mutagenesis. For this strategy, a transposon-lacZ/LEU2 library was transformed into 
wild-type cells. These mutants were then screened for FBPase degradation defects a using 
colony blotting procedure [43]. The identities of the mutated genes were ascertained by 
extracting the genomic DNA and the subsequent amplification of the nucleotide 
sequences adjoining the transposon insertion site via PCR. The product from the PCR was 
sequenced and analyzed using gene sequence alignment software from the National 
Center for Biotechnology Information (NCBI). Moreover, the degradation defect 
attributed to these mutants was confirmed by using yeast null mutants for the 
corresponding genes. Furthermore, the FBPase degradation phenotype was rescued upon 
transforming the corresponding VID genes into these mutants. The vid mutants are 
distinct from those affecting protein secretion (sec), vacuolar proteolysis (pep) and 
vacuolar protein sorting (vps). Upon studying the distribution of FBPase in cells of these 
mutants, it was inferred that the mutants can be classified into two categories. After 
replenishing cells with fresh glucose, some mutants depicted a more cytosolic staining of 
FBPase (Class A mutants) while other mutants showed FBPase to be distributed in 
punctate structures (Class B mutants) [40].  

5. Vid vesicles: Intermediate carriers of the Vid pathway 

From fractionation analysis, it was proposed that in the Vid pathway, FBPase was 
delivered to the vacuole for degradation via intermediate vesicles. This hypothesis was 
investigated by isolation and purification of FBPase-associated vesicles to near 
homogeneity [44]. In this investigation, wild-type cells were shifted to glucose for 30 min 
at 22ºC and vesicles were purified. At this temperature, there is a delay in the delivery of 
FBPase to the vacuole [44].  Following homogenization and subsequent centrifugation at 
100,000 x g of cells, the intracellular organelles were separated by size via fractionation on 
a Sephacryl S-1000 column. Immunoblotting with antibodies against FBPase and organelle 
markers enabled in assessing the purity of the isolated FBPase-associated vesicles. FBPase 
was detected in two distinct peaks from the S-1000 fractionation [44]. The first peak was 
enriched in both the vacuole membrane marker CPY and the plasma membrane marker 
Pma1p [44]. Interestingly, the second FBPase peak was enriched in a number of 
intracellular organelle markers. These include markers for the ER (Sec62p), Golgi 
(Mnn1p), vacuole (CPY), mitochondria (cytochrome C), and the ER-derived COPII 
vesicles (Sec22p) [44]. Owing to the enrichment of the second FBPase peak with numerous 
intracellular organelle markers, this peak was purified by further fractionation on sucrose 
density equilibrium gradients. From this fractionation, it was ascertained that FBPase was 
present in only one peak that corresponded to a density of 1.18 – 1.22 g/ml [44]. As this 
density did not correspond to any of the above intracellular organelle markers, this 
indicated that FBPase might be contained in distinct intracellular structures. Upon 
examining the FBPase containing peak using electron microscopy, a uniform population 
of vesicles (35-50 nm in diameter) was observed [44]. 
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An understanding of how the Vid vesicles facilitate delivery of FBPase to the vacuole is vital 
to understanding the degradation kinetics of the Vid pathway. As such, it was first 
hypothesized that if the Vid vesicles serve as intermediate carriers in the Vid pathway, then 
FBPase will be associated with these vesicles prior to their delivery into the vacuole. In that 
endeavor, studying the distribution of FBPase at 22ºC aided in examining the kinetics of 
FBPase association with Vid vesicles in wild-type cells [44]. In this experiment, wild-type 
cells were replenished with fresh glucose for various times at 22ºC. It was determined that 
FBPase was associated with the Vid vesicle fraction at t=30 min and was then distributed in 
both the Vid vesicle and vacuole fractions by 60 min [44]. Moreover, FBPase was associated 
with the vacuole by 90 min [44]. These results indicate that glucose induces FBPase to be 
distributed in Vid vesicles and that this occurs prior to delivery of this protein to the 
vacuole. CPY, which was used as a control in this experiment, was not affected by glucose 
under these same conditions [44]. In order to ascertain whether FBPase was sequestered into 
the lumen of the Vid vesicles, the vesicles were purified and then incubated in the presence 
or absence of proteinase K [44]. The underlying principle of this assay is that FBPase that is 
sequestered into the lumen of the Vid vesicles will be unaffected by proteinase K digestion 
and that FBPase that is peripherally associated with the vesicles will be digested by 
proteinase K. It was determined that FBPase was stable when incubated with proteinase K, 
which indicated that this protein was sequestered in the lumen of Vid vesicles [44]. Addition 
of 2% Triton X-100 to permeabilize the Vid vesicle membrane resulted in digestion of 
FBPase by proteinase K. Thus, a portion of FBPase is sequestered inside Vid vesicles. 
However, these observations do not rule out the prospect of low amounts of FBPase being 
associated with the vesicles peripherally [44].  

6. The biogenesis and trafficking of Vid vesicles to the vacuole 

Owing to the unique nature of the Vid vesicles, innumerable questions need to be answered. 
Questions ranging from elucidating the origin of the vesicles to characterizing the 
mechanism by which FBPase is sequestered are imperative for better understanding the Vid 
pathway. In addition, if Vid vesicles are intermediary carriers of cargo protein in the Vid 
pathway, the vesicles should contain proteins that are essential for the import of FBPase into 
the vesicles and also for transport of FBPase from the vesicles to the vacuole. In that 
endeavor, VID24 was characterized as a gene involved in the degradation of FBPase in the 
Vid pathway. This gene was identified by chromosomal walking [45].  

The VID24 gene encodes a protein with a molecular weight of 41 kDa. Vid24p has been 
characterized as a peripheral protein that is distributed to the Vid vesicles [45]. Under 
glucose starvation conditions, Vid24p is expressed at low levels in wild-type cells. Following 
glucose replenishment, Vid24p is detected at increased levels from 20 to 120 min. It has been 
suggested that glucose induces de novo synthesis of Vid24p as addition of cyclohexamide 
with glucose was determined to inhibit induction of this protein. Furthermore, during 
glucose starvation, Vid24p produced weak fluorescence upon studying the distribution of 
Vid24p by immunofluorescence microscopy. In contrast, Vid24p produced a stronger 
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fluorescent signal following glucose replenishment for 30 to 60 min. Interesting, Vid24p was 
mostly distributed in punctate structures within cells. This suggested that Vid24p was 
associated with intracellular organelles, which were later determined to be the Vid vesicles. 
This indicates that Vid24p is a structural protein for the Vid vesicles.  Furthermore, this also 
suggests that the vid24-1 mutant belongs to the Class B category of mutants that accumulate 
FBPase in punctate structures. The above results highlight the requirement of Vid24p for the 
transport of FBPase from the Vid vesicles to the vacuole for degradation.  

The next question pertains to the origin of the Vid vesicles. It has been proposed that the Vid 
vesicles may be derived from existing organelles and that they may be synthesized in cells 
even prior to glucose replenishment. Investigations surrounding the origins of the Vid 
vesicles have been hindered by the fact that Vid24p is only induced following 20-30 min of 
glucose replenishment. Therefore, events detailing the biogenesis of Vid vesicles during the 
first 20-30 min of glucose replenishment are difficult to examine with Vid24p. To circumvent 
this issue, an alternative strategy was designed that entailed the screening of mutants that 
failed to form Vid vesicles. This strategy would facilitate in assigning functions to mutants 
that were involved in specific steps of Vid vesicle biogenesis. In this manner, it was 
ascertained that the UBC1 gene was required for Vid vesicle biogenesis [46]. As a matter of 
fact, the rate of FBPase degradation was observed to decrease in the null mutant of UBC1. 
Moreover, there was a diminished import of FBPase into the Vid vesicle fractions in the 
∆ubc1 mutant. As such, it could be inferred that in the ∆ubc1 strain, there is a decrease in the 
level of Vid vesicles. For instance, Vid24p levels were enriched in the pellet fraction that was 
representative of Vid vesicles in wild-type cells. However, Vid24p levels were diminished in 
the pellet fraction in the ∆ubc1 mutant, indicative of an impaired production of the Vid 
vesicles. At present, the mechanism by which UBC1 is involved in the biogenesis of Vid 
vesicles has not been elucidated. Moreover, the formation of multi-ubiquitin chains has also 
been implicated in the degradation of FBPase in the Vid pathway. As such, yeast strains 
expressing the R48K/R63K ubiquitin mutant, which blocks multi-ubiquitin chain formation, 
resulted in inhibiting the degradation of FBPase in the Vid pathway. Interestingly, there was 
also a diminished amount of FBPase that was associated with the Vid vesicle fraction. Thus, 
these observations suggest that the UBC1 gene and the formation of polyubiquitin chains 
are involved in the biogenesis of the Vid vesicles.  

Another question is to understand how FBPase is imported into the Vid vesicles. To 
elucidate this, an in vitro system was developed to investigate the sequestration of FBPase 
into isolated Vid vesicles in the presence of the wild-type cytosol [47]. A wild-type strain in 
which the endogenous FBP1 gene had been deleted for used for this in vitro assay. The Vid 
vesicles were isolated from this strain by differential centrifugation. Thereafter, the isolated 
Vid vesicles were incubated with a defined amount of purified FBPase in a reaction mixture 
that also contained wild-type cytosol, ATP and an ATP regenerating system. Proteinase K 
was added to the reaction mixture to degrade non-sequestered FBPase after 20 min of 
incubation. It was determined that 20-40% of the purified FBPase was protected from 
proteinase K digestion in vitro. Interestingly, addition of 2% Triton X-100 to permeabilize the 
membrane facilitated in the digestion of FBPase by proteinase K. As such, it can be inferred 
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that FBPase is imported inside Vid vesicles, and that this import requires ATP and cytosol. 
In addition, our lab has also identified the cytosolic heat shock proteins Ssa1p and Ssa2p as 
being required for the import of FBPase into Vid vesicles [47]. 

Vid22p is a plasma membrane protein that was also determined to regulate FBPase 
sequestration into the Vid vesicles indirectly via the action of Cpr1p [43]. By using a 
transposon mutagenesis strategy, our lab identified the VID22 gene. Following its synthesis 
in the cytosol, Vid22p is then targeted to the plasma membrane in a manner that is 
independent of the ER-Golgi transport pathway. It was determined that the null mutant of 
VID22 inhibited the degradation of FBPase following glucose replenishment. Interestingly, 
FBPase was found to accumulate in the cytosol of the ∆vid22 mutant strain. This indicates 
that VID22 may be required for the import of FBPase into the Vid vesicles. It was ascertained 
that FBPase sequestration into the Vid vesicles was inhibited upon combining the ∆vid22 
mutant cytosol with the wild-type Vid vesicles using in vitro analysis. However, the wild-
type FBPase import phenotype was rescued by incubating the wild-type cytosol with Vid 
vesicles from the ∆vid22 mutant. From these experiments, it can be inferred that the ∆vid22 
mutant may contain functional Vid vesicles but have a defective cyotosolic environment. It 
has been determined that Vid22p, through its role in regulating the levels of Cpr1p, 
influences the degradation of FBPase. This is supported by the fact that the levels of Cpr1p 
in total lysates are diminished in the ∆vid22 mutant when compared to that observed in 
wild-type cells. However, this defect that is attributed to the absence of the VID22 gene is 
rescued by the addition of purified Cpr1p in vitro or by overexpressing Cpr1p in vivo. As 
such, the Cpr1p protein, whose levels are regulated by Vid22p, directly promotes FBPase 
import into the Vid vesicles. At present, the mechanism by which Vid22p regulated Cpr1p 
levels has not been elucidated.  

The peptidylprolyl isomerase cyclophilin A (Cpr1p) was identified as being required for the 
import of FBPase into Vid vesicles [48]. This cytosolic protein serves as a receptor for the 
immunosuppressant drug cyclosporin A. Our lab identified Cpr1p owing to its role as a 
mediator for the Vid protein Vid22p. By fractionating the wild-type cytosol by purification 
using ammonium sulfate precipitation, Superose 6 and G75 sizing chromatography, and 
DEAE ion exchange chromatography, our lab was able to isolate and identify Cpr1p.  The 
role of Cpr1p in the degradation of FBPase was determined by using the ∆cpr1 mutant 
strain. It was ascertained that in vitro FBPase import and the subsequent degradation of 
FBPase was inhibited in the null mutant of CPR1. Furthermore, it was determined that the 
sequestration of FBPase into the wild-type Vid vesicles was impeded by the cytosol from the 
∆cpr1 mutant. In contrast, import of FBPase into the Vid vesicles from ∆cpr1 mutants was 
not impaired when supplied with the wild-type cytosol. The role of Cpr1p in the 
involvement of FBPase import into the Vid vesicles was verified by adding increasing 
amounts of purified Cpr1p to an in vitro reaction mixture containing the Vid vesicles and 
cytosol from the null mutant of CPR1. A control experiment comprising of addition of BSA 
to the in vitro reaction mixture containing the Vid vesicles and cytosol from the null mutant 
of CPR1 did not stimulate FBPase import. This suggests that Cpr1p has a direct involvement 
in the import of FBPase into the Vid vesicles. 
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7. The Vid pathway merges with the endocytic pathway to deliver cargo 
to the vacuole  

In order to facilitate a better understanding of the biogenesis of Vid vesicles, Vid vesicles 
were isolated, purified and interacting proteins or those serving as structural components 
were identified using MALDI analysis. Interestingly, constituents of COPI vesicles such as 
Ret1p, Ret2p, Sec21p and Sec28p were identified on purified Vid vesicles [49]. As 
described previously, the COPI vesicles mediate transport of proteins from the Golgi to 
the ER [15,50]. It has been previously reported that COPI proteins have also been 
identified as components of endocytic compartments in both mammalian cells and in 
yeast [15,50]. Moreover, COPI proteins are involved in multivesicular body sorting in 
yeast and in endosomal trafficking in mammalian cells [15,50]. Our lab has demonstrated 
that COPI proteins associate with Vid vesicles [49]. This suggests that the COPI proteins 
may play a role in FBPase degradation. The RET1, RET2, RET3, SEC26, SEC27, SEC21 and 
SEC28 genes encode the different coatomer proteins in yeast. With the exception of SEC28, 
all the other genes are essential. As such, the role of the essential COPI genes in FBPase 
degradation was studied using temperature sensitive mutants. Following glucose 
replenishment of the null mutant of SEC28 and the COPI temperature sensitive mutants, it 
was ascertained that FBPase degradation was impaired. Moreover, the ∆sec28 mutant and 
all of the temperature sensitive mutants of COPI genes inhibited the import of FBPase into 
the Vid vesicles. The ∆vam3 mutant served as a control in these experiments. The VAM3 
gene encodes a vacuolar t-SNARE that mediates fusion of intermediary vesicles with the 
vacuole. As such, the ∆vam3 mutant blocks FBPase degradation following its import into 
the Vid vesicles. These results suggest that the COPI genes are required for the import of 
FBPase into the Vid vesicles. The above results were verified by studying the distribution 
of FBPase in COPI mutants using sucrose density gradients. It was determined that 
FBPase distribution was enriched in the cytosolic fractions in these mutants and its levels 
were diminished in Vid vesicle fractions when compared to the ∆vam3 mutant. 
Intriguingly, the FBPase distribution in COPI mutants was similar to that observed in the 
∆ubc1 mutant. As these mutants inhibit the formation of Vid vesicles, this indicates that 
the COPI genes are also involved in Vid vesicle biogenesis. During glucose starvation, 
COPI proteins were observed to localize with the Vid vesicle marker Vid24p and the 
cargo FBPase. Interestingly, levels of COPI proteins in the Vid vesicle fractions displayed 
a transient increase and decrease following glucose replenishment. Furthermore, it was 
determined that COPI proteins associated with Vid24p forming a complex. This 
association was increased following glucose replenishment and was required for 
recruiting Vid24p to the Vid vesicles. 

As the COPI genes have been previously reported to be involved in endocytosis in 
mammalian cells, it was important to determine whether endocytosis may be involved in 
our degradation pathway [49]. As a preliminary study, the kinetics of the uptake of the 
lipophilic dye FM4-64 was examined under our growth conditions. In wild-type cells, after 
its internalization, the FM4-64 dye stains the endocytic compartments before finally staining 
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the vacuole membrane. Interestingly, the uptake of the FM dye differed upon studying its 
distribution in mutants that inhibited the degradation of FBPase in the Vid pathway. While 
mutants such as ∆vph1 displayed large FM circular distributions, other mutants such as 
∆vam3 produced small FM-containing circles.  Having identified Sec28p (COPI subunit of 
coatomer) as a structural protein of Vid vesicles, the distribution of this protein was studied 
as a means to monitor Vid vesicle trafficking. Sec28p was distributed in punctate structures 
following glucose replenishment of wild-type cells for 20-30 min. Following glucose 
replenishment, it was observed that Sec28p was localized to FM-containing endosomes in 
wild-type cells. In contrast, Sec28p failed to localize to FM-containing structures in the 
∆vam3 mutant. As such, it can be inferred that the VAM3 gene is required for the 
distribution of Sec28p to endosomes.      

It has been previously determined that the UBC1 gene is required for the biogenesis of 
Vid vesicles. In the null mutant of UBC1, FBPase is enriched in the cytosol and levels of 
Vid vesicles are diminished. The trafficking of Sec28p was also studied using a ∆ubc1 
mutant [49]. It was postulated that if COPI genes are involved in Vid vesicle biogenesis, 
then COPI proteins such as Sec28p may be discerningly distributed to structural 
precursors of Vid vesicles in the ∆ubc1 mutant. Following glucose replenishment of the 
∆ubc1 mutant, it was observed that at the earlier time points, Sec28p was distributed at 
compartments that were stained by the FM dye. However, at later time points, Sec28p was 
distributed to the FM stained vacuole membrane. These results suggest that the UBC1 
gene is not required for the anterograde transport of Sec28p to the vacuole. As such, it can 
be inferred that the step following the delivery of Sec28p to vacuole membrane may 
require UBC1. It has been previously established that the biogenesis and budding of the 
COPI vesicles requires the assembly of COPI proteins at the budding site. Therefore, 
mutations of the COPI genes should result in altering the distribution of Sec28p to sites 
where the COPI vesicle buds from a precursor structure. Similarly, it was hypothesized 
that as Sec28p is a structural component of Vid vesicles, mutations of other COPI genes 
should affect the distribution of Sec28p to sites where the Vid vesicle is formed. To test 
this, the distribution of Sec28p was examined in a ret2-1 mutant. In this mutant, the ret2-1 
gene encodes for a temperature sensitive protein which comprises the δ subunit of the 
COPI complex. Shortly after glucose replenishment, it was determined that Sec28p 
localized to FM containing endosomes in the ret2-1 mutant. Interestingly, by 180 min 
following glucose replenishment, while FM had stained the vacuole membrane, Sec28p 
was observed as punctate dots near or on the vacuole membrane. This suggests that either 
Sec28p is a component of vesicles that are in the process of fusing with the vacuole or that 
Sec28p is budding from the vacuole as a component of retrograde vesicles. This was 
clarified by studying the distribution of Sec28p after pre-labeling the vacuole membrane 
with FM dye in the ret2-1 strain. It was ascertained that Sec28p was distributed to buds 
that were forming on the vacuole membrane following glucose replenishment. Based on 
our results, it can be inferred that Sec28p containing vesicles are involved in both 
transport to and from the vacuole.  
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8. Early steps of endocytosis and actin polymerization are required for 
degradation of cargo to the Vid pathway 

It has been previously ascertained that the Vid pathway merges with the endocytic 
pathway. An elucidation of this site of merger would afford a better understanding of the 
Vid pathway. According to one postulation, the Vid vesicles may originate from the plasma 
membrane or the vacuole. Alternatively, Vid vesicles may converge with endocytic vesicles 
that are forming on the plasma membrane. This may suggest that FBPase is also distributed 
near the plasma membrane. This was studied by examining, at the ultra-structural level, the 
distribution of FBPase in wild-type and pep4 strains [51]. In these studies, following 
prolonged glucose starvation, the yeast strains were replenished with media containing 
fresh glucose for 20 min. Immuno-electron microscopy using affinity purified FBPase 
antibodies followed by secondary antibodies conjugated with 10 nm colloid gold particles 
facilitated in visualizing the FBPase distribution (Figure 1). It was determined that in both 
wild-type and pep4 strains, a significant percentage of FBPase was distributed in irregularly 
shaped intracellular structures in the cytoplasm following glucose replenishment. 
Interestingly, FBPase was also found near the plasma membrane. This suggests that the 
early steps of the endocytic pathway are involved in the vacuole dependent degradation of 
FBPase. These irregularly shaped intracellular structures (containing FBPase) were purified 
by high speed centrifugation and passing the re-suspended pellet over a S-1000 column. In 
this manner, it was ascertained that these intracellular structures were enriched for the Vid 
vesicle marker Vid24p and the endosomal marker Pep12p. From this, it can be inferred that 
following glucose replenishment, Vid vesicles may associate with the endosomes to form 
large aggregates of FBPase containing structures. 

Owing to the distribution of FBPase near the plasma membrane, this suggests that the early 
steps of endocytosis may be required for the Vid pathway. In yeast, it has been previously 
ascertained that the early steps of endocytosis is facilitated by actin polymerization [52-63]. 
Proteins involved in actin polymerization are recruited to the plasma membrane in a specific 
and orderedsequence (Figure 2). At the site of cargo internalization, coat module proteins and 
nucleation promotion factor (NPF) module proteins are recruited at the same time for shaping 
the membrane and for regulating actin assembly. Coat module proteins comprise of Sla1p, 
Lsb3p, Pan1p, and End3p. The NPF module proteins consist of Las17p, type I myosins Myo3p 
and Myo5p, and Vrp1p, Bzz1p and Bbc1p. With the exception of the type I myosins, it should 
be noted that the coat module proteins and the NPF module proteins are recruited 
independent of F-actin. Thereafter, the actin module proteins (consisting of 20 proteins) are 
recruited by F-actin to sites of actin assembly. The actin module proteins are involved in the 
organization and dynamics of the actin network. This module comprises of proteins such as 
Act1p, Arp2/3 protein complex, Abp1p, Cap1p, Cap2p, Sac6p and Aim3p among others. The 
Arp2/3 protein complex is involved in the nucleation of branched actin filaments. This protein 
complex is comprised of Arp2p, Arp3p, Arc15p, Arc18p, Arc19p, Arc35p and Arc40p. 
Additionally, the Las17p, Pan1p and Abp1p proteins are required for the activation of the 
Arp2/3 complex. Finally, the amphiphysin module proteins are recruited by F-actin to mediate 
scission of endocytic vesicles. This module comprises of Rvs161p and Rvs167p. 
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Figure 1. Ultra-structural distribution of FBPase in pep4 cells following glucose replenishment for 20 
min. FBPase was visualized using a purified primary antibody against FBPase and a secondary 
antibody conjugated with 10 nm colloid gold particles. This research was originally published in The 
Journal of Biological Chemistry (2010, vol. 285(2), pgs. 1516-1528). © the American Society for 
Biochemistry and Molecular Biology. 
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During glucose starvation, it was ascertained that there was a low percentage of co-
localization of FBPase to actin patches in wild-type cells (Figure 3) [51,64]. Following 
glucose replenishment for up to 30 min, FBPase produced a high percentage of co-
localization to actin patches. Interestingly, after 60 min of glucose replenishment, FBPase 
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showed less co-localization to the actin patches. The distribution of MDH2 to actin patches 
also produced similar results. This indicates that the cargo proteins of the Vid pathway are 
targeted to the sites of actin polymerization on the plasma membrane.  

 
Figure 2. Actin polymerization assembly in yeast. (I, II) At the site of internalization, actin 
polymerization assembly recruits the coat module and nuclear promotion factor (NPF) module proteins 
for shaping the membrane. (III) The actin module proteins are then recruited for maintaining the 
integrity and the dynamics of actin assembly. (IV) The amphiphysin module proteins facilitate the 
scission of endocytic vesicles.  

The distribution of the Vid24p to actin patches was next studied in wild-type cells as a 
means to determine whether the Vid vesicles are distributed to actin patches (Figure 4) 
[51,64]. During glucose starvation and following replenishment for up to 30 min, Vid24p 
was observed to be co-localized with actin patches. Intriguingly, by the 60 min time point, 
Vid24p demonstrated less co-localization with the actin patches. The distribution of Sec28p 
to actin patches also produced similar results. This suggests that during glucose starvation 
and following replenishment for up to 30 min, Vid vesicles associate with actin patches. In 
addition, in the rvs167 strain, there is a prolonged association of Vid24p and Sec28p with 
actin patches. As such, it can be inferred that the actin patches mediate the scission of the 
Vid-endocytic vesicles from the plasma membrane. 
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To summarize the above results, we assert that Vid24p and Sec28p are distributed at the 
sites of actin polymerization (involved in the early steps of endocytosis) during glucose 
starvation. The gluconeogenic enzymes, FBPase and MDH2 are sequestered into free Vid 
vesicles and Vid vesicles that are aggregated at the site of actin polymerization. Following 
the scission of Vid-endocytic vesicles into the cytoplasm as small Vid-endosomes, these 
vesicles cluster and form large asymmetrically shaped structures. Therefore, the Vid-
endosomes serve as intermediary carriers of cargo destined for degradation in the vacuole. 

 
Figure 3. FBPase co-localizes with actin patches in wild-type cells. FBPase displays a low percentage of 
co-localization with actin patches in wild-type cells during glucose starvation. Following glucose 
replenishment for up to 30 min, FBPase displays a high percentage of co-localization with actin patches. 
Co-localization of FBPase with actin patches diminishes by the 60 min time point. This research was 
originally published in Autophagy (2012, vol. 8(1), pgs. 29-46). © Landes Bioscience. 

 
Figure 4. Vid24p co-localizes with actin patches in wild-type cells. Vid24p co-localizes to actin patches 
in wild-type cells during glucose starvation and for up to 30 min following glucose replenishment. Co-
localization of Vid24p to actin patches diminishes by the 60 min time point. This research was originally 
published in Autophagy (2012, vol. 8(1), pgs. 29-46). © Landes Bioscience. 



 
Molecular Regulation of Endocytosis 30 

9. The association of Vid vesicles and actin patches requires VID30  

As it has been previously determined that that the Vid pathway merges with the 
endocytic pathway, one could propose that association of Vid vesicles and actin patches 
may be a pivotal point of this integration. In that endeavor, the VID30 gene was identified 
as a putative candidate involved in the Vid pathway using a transposon library screen 
[64]. This gene encodes a protein that has been previously reported to be involved in the 
proteasomal degradation of FBPase [65]. Vid30p forms a complex with Vid24p and serves 
as an E3 ligase in the ubiquitination of FBPase. The requirement of VID30 in the Vid 
pathway was verified by examining FBPase degradation in both wild-type and vid30 
cells [64]. After glucose starvation for 3 days and following replenishment, FBPase was 
degraded in wild-type cells. In contrast, there was an inhibition of FBPase degradation in 
the vid30 cells. This indicates that VID30 is required for the vacuole dependent 
degradation of FBPase. In order to determine whether Vid30p was distribution to Vid 
vesicles, wild-type cells expressing Vid30p were glucose starved for 3 days followed by 
replenishment for up to 20 min. The cells were then subjected to differential 
centrifugation. Vid30p levels were enriched in the Vid vesicle enriched fraction. This 
infers that Vid30p is distributed to Vid vesicles.  

Using pulldown assays, it was determined that Vid30p interacts with Vid24p and Sec28p 
under our growth conditions. Moreover, FBPase does not associate with this Vid30p-Vid24p 
complex. This further supports the notion that FBPase and Vid24p exist in topologically 
different environments. Thereafter, the effect of the absence of SEC28 on the interaction of 
Vid30p and Vid24p was examined using pulldown assays. In this study, Vid30p was pulled 
down and the levels of Vid24p was examined the bound and unbound fractions. In the 
sec28 mutant, the level of Vid24p in the bound fraction was diminished in comparison to 
that observed in wild-type cells. This indicates that Sec28p is required for the association of 
Vid30p with Vid24p. Furthermore, the absence of VID24  also resulted in diminishing the 
interaction of Vid30p with Sec28p. 

The co-localization of Vid30p with actin patches was studied using fluorescent miscroscopy. 
In wild-type cells, it was ascertained that Vid30p was co-localized with actin patches during 
glucose starvation and following glucose replenishment for up to 30 min (Figure 5) [64]. By 
the 60 min time point, the localization of Vid30p to actin patches began to diminish. In the 
absence of VID24, Vid30p co-localization with actin patches was prolonged following 
glucose replenishment (Figure 6) [64]. The absence of SEC28 also prolonged the Vid30p co-
localization to actin patches. This suggests that SEC28 and VID24 mediate the dissociation of 
Vid30p and actin patches. Interestingly, deletion of genes involved in the later steps of actin 
polymerization, such as RVS161, also resulted in prolonging the co-localization of Vid30p 
with actin patches.  

Differential centrifugation was used to determine the step of the Vid pathway that requires 
the VID30 gene. In this study, wild-type and vid30 cells were glucose starved and 
replenished with glucose for 20 min. By differential centrifugation, it was determined that 
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FBPase was detected in both the Vid vesicle and cytosolic fractions in vid30 cells. This is 
similar to what was observed for wild-type cells. Moreover, most of Vid24p was detected in 
the Vid vesicle fraction in the vid30 mutant. This suggests that Vid vesicle formation occurs 
in the absence of the VID30 gene. Even though Vid30p is distributed to multiple 
compartments, the deletion of this gene has no impact on the levels of FBPase and Vid24p in 
the Vid vesicle fraction. Moreover, it was determined that FBPase (Figure 7) and Vid24p 
(Figure 8) failed to co-localize with actin patches in vid30 cells [64]. This suggests that 
Vid30p is required for the association of Vid vesicles and actin patches. 

 
Figure 5. Vid30p co-localizes with actin patches in wild-type cells. Vid30p co-localizes to actin patches 
in wild-type cells during glucose starvation and for up to 30 min following glucose replenishment. Co-
localization of Vid30p with actin patches diminishes by the 60 min time point. This research was 
originally published in Autophagy (2012, vol. 8(1), pgs. 29-46). © Landes Bioscience. 

 
Figure 6. Vid30p co-localization with actin patches is prolonged in the null mutant of VID24. Vid30p is 
co-localized with actin patches during glucose starvation and for up to 60 min following glucose 
replenishment in the vid24 strain. This research was originally published in Autophagy (2012, vol. 8(1), 
pgs. 29-46). © Landes Bioscience. 



 
Molecular Regulation of Endocytosis 32 

 
Figure 7. FBPase fails to co-localize with actin patches in vid30 cells. During glucose starvation and 
following glucose replenishment for up to 60 min, FBPase fails to co-localize to actin patches in vid30 
cells. This research was originally published in Autophagy (2012, vol. 8(1), pgs. 29-46). © Landes 
Bioscience 

 
Figure 8. Vid24p fail to co-localize with patches in vid30 cells. During glucose starvation and 
following glucose replenishment for up to 60 min, Vid24p fails to co-localize to actin patches in vid30 
cells. This research was originally published in Autophagy (2012, vol. 8(1), pgs. 29-46). © Landes 
Bioscience. 

Vid30p contains two domains, a LisH (lissencephaly type 1-like homology) and CTLH (C-
terminal to the LisH) domain. It has been previously reported that the LIS1 gene is mutated 
in Miller-Dieker lissencephaly, a medical condition that contributes to retardation and 
premature mortality. In addition, the CTLH domain has been postulated to be involved in 
microtubule function. It was next determined if these domains play a role in the vacuole 
dependent degradation of FBPase. In either deletion of LisH or CTLH domain in the VID30 
gene, FBPase degradation was inhibited. Deletion of either domain also resulted in 
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diminishing the association of Vid30p with Vid24p, and also with Sec28p. Vid30p, in which 
either LisH or CTLH domain had been deleted, was observed to be distributed to Vid 
vesicles and actin patches. Unlike in wild-type cells, the mutant Vid30p failed to be 
distributed to the vacuole membrane and was observed to aggregate in punctate structures. 
Similarly, upon deleting either domain, FBPase was also observed to localize to punctate 
structures. This indicates that the LisH and CTLH domains of Vid30p are involved in the 
later steps of the Vid pathway. Thus, in summation, VID30 is required for the association of 
Vid vesicles and actin patches, and that the LisH and CTLH domains also required at a later 
step in the Vid pathway. 

10. Proposed model for the Vid pathway 

Based on the above findings, we postulate the following model for the vacuole import and 
degradation pathway (Figure 9). When Saccharomyces cerevisiae are grown under glucose 
starvation conditions, this induces synthesis of gluconeogenic enzymes such as FBPase, 
MDH2, Pck1p and Icl1p. Vid30p, Vid24p and Sec28p are present as a complex and are 
distributed on free Vid vesicles and on Vid vesicles aggregating around endocytic vesicles at 
the actin patch sites. Ubc1p has been implicated in the biogenesis of Vid vesicles. Moreover, 
Vid30p is required for the association of actin patches to Vid vesicles. In response to glucose, 
PKA facilitates in the phosphorylation of cargo proteins. Vid vesicles are distributed freely 
in the cytoplasm and also aggregate around the endocytic vesicles forming from the plasma 
membrane. The cargo proteins are sequestered into Vid vesicles and this step requires 
Vid22p and Cpr1p. Vid30p facilitates in the association of free Vid vesicles and actin 
patches. The amphiphysin module proteins (Rvs161p and Rvs167p) mediate the scission of 
Vid-endocytic vesicles and these are released as Vid-endosomes into the cytoplasm. 
Thereafter, the free Vid vesicles also accumulate around the Vid-endosomes to form large 
Vid-endosome clusters. The LisH and CTLH domains of Vid30p are required for the 
delivery of Vid-endosome clusters to the vacuole for degradation of cargo proteins. Overall, 
our current model highlights the association of Vid vesicles to actin patches as mediated by 
Vid30p as a crucial step in the degradation of gluconeogenic enzymes in the vacuole.  

11. Future directions 

Many questions remain to be answered concerning the degradation of cargo proteins by the 
Vid pathway. A pivotal question surrounding the mechanism that regulates the degradation 
of gluconeogenic enzymes by the proteasomal pathway versus the Vid pathway requires 
further elucidation. Previously, differential modification of cargo proteins following glucose 
replenishment has been attributed to dictate the site of degradation. For instance, proteins 
that are degraded in the proteasome are ubiquitinated prior to their degradation. In 
contrast, cargo proteins that are degraded in the vacuole are subject to phosphorylation by 
PKA before degradation [66]. Intriguingly, what signaling stimulus regulates this transition 
from degradation in the proteasome versus that in the vacuole?  This warrants further 
elucidation.  
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Figure 9. Current model of the Vid pathway. Growth of yeast cells under glucose starvation conditions 
induces the synthesis of gluconeogenic enzymes (cargo). Vid30p, Vid24p and Sec28p are present as a 
complex on free Vid vesicles and on those that are clustered around the endocytic vesicles at the site of 
actin patches. Following glucose replenishment, cargo proteins are phosphorylated by PKA and are 
subsequently imported into the Vid vesicles. Import of cargo into Vid vesicles requires Vid22p and 
Cpr1p. Vid30p mediates the association of free Vid vesicles and actin patches. Thereafter, Rvs161p and 
Rvs167p facilitate the scission of Vid-endocytic vesicles that are released into the cytoplasm as Vid-
endosomes. The free Vid vesicles also aggregate with the Vid-endosomes to form larger clusters of Vid-
endosomes. Finally, the Vid-endosome clusters deliver their cargo to the vacuole for degradation, and 
this step requires the LisH and CTLH domains of Vid30p. 

A second concern pertains to the origin of Vid vesicles. According to one proposal, Vid 
vesicles may be derived from the plasma membrane or the sites of internalization. 
Alternatively, Vid vesicles may originate from the vacuole membrane as retrograde vesicles. 
Deletion of genes involved in plasma membrane internalization, such as rvs161 or rvs167, 
contributed in prolonging the association of Vid vesicles to actin patches [51]. Perhaps Vid 
vesicles are components of endosomes. It is interesting to note that the Vid-endosome 
clusters that are formed following glucose replenishment share morphological similarities to 
multivesicular bodies. Moreover, the importance of the early steps of endocytosis and actin 
polymerization for the vacuole dependent degradation of cargo proteins requires further 
analysis. This could imply that cargo proteins are secreted out of the cells and then 
internalize at actin patch sites. As cargo proteins do not contain the ER-Golgi secretory 
signal sequence, this could facilitate in the understanding of the non-classical secretory 
pathway.  
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A comprehensive understanding of the Vid pathway could have significant implications in 
studying the etiology of diseases associated with abnormal gluconeogenesis in humans. 
And this could aid in developing therapeutics that regulate gluconeogenesis and treat the 
subsequent malady. For example, it has been previously reported that patients afflicted with 
Type II diabetes also suffer from an increase in levels of gluconeogenesis [67]. And an 
FBPase inhibitor called managlinat dialanetil has proven to be relatively successful in the 
treatment of Type II diabetes [67]. Another example is that FBPase may be attributed to 
cause clonorchiasis-associated hepatic fibrosis owing to the protein’s secretion along with 
excretory products from Clonorchis sinensis adult worms [68]. Moreover, studies aimed at 
evaluating deterioration of the proximal renal tubules have identified FBPase as a crucial 
marker in this determination [69]. As such, seeking answers to the above questions will 
enable us in the development of treatments that will help improve the quality of life for the 
general public.  
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1. Introduction 

Control of the pattern of cell division is essential for the proper development of multi-
cellular organisms. In animal cells, cytokinesis is mediated by a contractile ring in which 
the cleavage force is produced by an acto-myosin system. Furthermore, the future site of 
cell division in animal cells (the site where contraction starts in the cell cortex) is 
determined by the position of the aster during the later stages of mitosis. In contrast, plant 
cytokinesis involves the assembly of a cell plate from Golgi-derived vesicles. The division 
site in plants (the cell cortex where the cell plate fuses with the parental cell walls) is 
defined by a band of cortical microtubules (MTs) – the preprophase band (PPB) of MTs – 
that mark the division site during prophase. The PPB MTs subsequently disassemble 
when the cells enter prometaphase. However, some positional information, or positional 
memory, is retained in the cell cortex/plasma membrane where the PPB of MTs was 
located, and the cell plate edge grows towards and fuses with this predetermined division 
site. Thus, how MTs demarcate the future division site during PPB development, and how 
the division site memory is created and maintained in the PPB region until the end of 
cytokinesis, are important questions related to the regulation of division plane positioning 
in plants. 

Several potential cell division plane-positioning molecules have been identified, and these 
have been classified into ”positive memory“ and ”negative memory“ types of molecules. 
However, how these molecules contribute to the creation of positional memory information 
has yet to be determined. Early electron microscopists reported the presence of vesicles in 
the forming PPB regions, and it was suggested that these vesicles might contribute to the 
creation of a PPB memory site (cortical division zone) either via exocytosis or endocytosis. 
By using high-pressure freezing to preserve the cells for electron microscopical analysis, we 
have been able to demonstrate that the vesicles are generated by endocytosis, and with the 
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help of electron tomography, we have been able to quantify the distribution of vesicles in 
the cell cortex. The latter analysis has demonstrated that clathrin-mediated endocytosis is 
enhanced in the PPB region compared to the cell cortex outside the PPB or in the cell cortex 
of interphase cells. Thus, creation of the cortical division zone appears to involve increased 
rates of clathrin-mediated endocytosis in the PPB region. Based on these results, we propose 
that removal of membrane proteins by endocytosis at the division site plays a critical role in 
the formation of PPB ”memory“ structures. In this chapter, we will discuss in greater detail 
how endocytosis at the future site of cell division contributes to the regulation of the plane 
of cell division in plants. 

2. Creation and demarcation of the cortical division zone1 in plants 

The division site is defined as the region where a new division plane is inserted into a cell 
at the end of cell division (Gunning, 1982). Since the division plane in animal cells is 
inserted centripetally from the cell cortex using a contractile ring, the cortical division site 
corresponds to a region where the cleavage furrow is initiated in the cell cortex. In plant 
cells, cell plate formation starts with the accumulation of Golgi-derived, cell plate-forming 
vesicles in the midplane of the phragmoplast MT array in the central region of the cell 
(Seguí-Simarro et al., 2004). Upon fusion of these vesicles, the cell plate starts to grow 
centrifugally until it reaches and then fuses with the plasma membrane at the cell division 
site, the PPB memory site. In the majority of plant cells, the final division plane is inserted 
in the plane defined by the equatorial plane (the plane where metaphase chromosomes 
arrange) existed in metaphase, and where the cell plate is initiated at the beginning of cell 
plate formation. This is not always the case. Figure 1 shows the process of cell division in 
a Tradescantia stamen hair cell where the equatorial plane developed in an oblique 
orientation (Fig. 1b). Subsequently, however, the cell plate was inserted transversely (Fig. 
1e). When the mitotic apparatus of a Tradescantia stamen hair cell is displaced 
experimentally towards the distal end of the cell by centrifugation, the initially formed 
cell plate develops between the displaced daughter nuclei, but then gradually extends 
towards the cortical site where it would have been inserted if there had been no 
centrifugal treatment (Ôta, 1961). This experiment clearly demonstrated that the plant 
division site is determined prior to the separation of the chromosomes, and that the 
memory site, where the cell plate fuses to the parental cell wall, is maintained during and 
after the centrifugal treatment. When and how this cortical division site is established, and 
how it influences the positioning of the cell plate during cytokinesis remains to be 
elucidated. 
                                                                 
1 Normally the PPB is a few micrometer wide and thus this cortical band region is broader than the 
exact site where the cell plate attaches. Because of this, Van Damme et al. (2011) have proposed the term 
cortical division zone to distinguish the cortical division site, the exact region where the cell plate 
attaces to the cell cortex. Here we use this term if we need to distinguish the former PPB region and the 
exact attachment site of the cell plate. 



 
Molecular Regulation of Endocytosis 

 

42 

help of electron tomography, we have been able to quantify the distribution of vesicles in 
the cell cortex. The latter analysis has demonstrated that clathrin-mediated endocytosis is 
enhanced in the PPB region compared to the cell cortex outside the PPB or in the cell cortex 
of interphase cells. Thus, creation of the cortical division zone appears to involve increased 
rates of clathrin-mediated endocytosis in the PPB region. Based on these results, we propose 
that removal of membrane proteins by endocytosis at the division site plays a critical role in 
the formation of PPB ”memory“ structures. In this chapter, we will discuss in greater detail 
how endocytosis at the future site of cell division contributes to the regulation of the plane 
of cell division in plants. 

2. Creation and demarcation of the cortical division zone1 in plants 

The division site is defined as the region where a new division plane is inserted into a cell 
at the end of cell division (Gunning, 1982). Since the division plane in animal cells is 
inserted centripetally from the cell cortex using a contractile ring, the cortical division site 
corresponds to a region where the cleavage furrow is initiated in the cell cortex. In plant 
cells, cell plate formation starts with the accumulation of Golgi-derived, cell plate-forming 
vesicles in the midplane of the phragmoplast MT array in the central region of the cell 
(Seguí-Simarro et al., 2004). Upon fusion of these vesicles, the cell plate starts to grow 
centrifugally until it reaches and then fuses with the plasma membrane at the cell division 
site, the PPB memory site. In the majority of plant cells, the final division plane is inserted 
in the plane defined by the equatorial plane (the plane where metaphase chromosomes 
arrange) existed in metaphase, and where the cell plate is initiated at the beginning of cell 
plate formation. This is not always the case. Figure 1 shows the process of cell division in 
a Tradescantia stamen hair cell where the equatorial plane developed in an oblique 
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centrifugal treatment (Ôta, 1961). This experiment clearly demonstrated that the plant 
division site is determined prior to the separation of the chromosomes, and that the 
memory site, where the cell plate fuses to the parental cell wall, is maintained during and 
after the centrifugal treatment. When and how this cortical division site is established, and 
how it influences the positioning of the cell plate during cytokinesis remains to be 
elucidated. 
                                                                 
1 Normally the PPB is a few micrometer wide and thus this cortical band region is broader than the 
exact site where the cell plate attaches. Because of this, Van Damme et al. (2011) have proposed the term 
cortical division zone to distinguish the cortical division site, the exact region where the cell plate 
attaces to the cell cortex. Here we use this term if we need to distinguish the former PPB region and the 
exact attachment site of the cell plate. 
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2.1. Proteins involved in preprophase band (PPB) formation and maturation 

The most prominent structural change in the region of the future cortical division site is the 
assembly of a PPB during the G2 and prophase stages of the cell cycle. The PPB is a band of 
MTs associated with vesicles in the cell cortex (Mineyuki, 1999). Pickett-Heaps & Northcote 
(1966a, b) provided the first description of the PPB, but did not provide an answer to the 
question whether the PPB predicts the division site or the position of the equatorial plane in 
metaphase. This problem was solved in a study of the PPB in onion guard mother cells. 
Onion guard mother cells are relatively small cells and the equatorial plane in metaphase 
orients obliquely, but the cell plate is inserted longitudinally (Miehe, 1899). In these cells, the 
PPB orients longitudinally, thereby predicting the future division site and not the 
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Figure 1. Cell division of a stamen hair cell of Tradescanta virginiana. (a) prophase, (b) metaphase,  
(c) anaphase, (d) just after the cell plate has reached the cell wall, (e) 18 min after (d), the cell plate 
becomes flatten. This cell is the same cell used in the experiment of Fig. 2 in Mineyuki & Gunning 
(1990). White arrows in (b) show the position of the equatorial plane. Stars (*) in (c) mark the spindle 
pole region. Rectangles colored yellow show the cortical division zone. N, nucleus; ch, chromosomes; 
cp, cell plate. Bar = 10 µm. 

PPB MTs originate during the G2 phase in the form of a broad band (Fig. 2b), which 
narrows during prophase. The narrow MT band localizes to the region of the ultimate 
division site (Fig. 2c). This MT band disappears when the nucleus enters prometaphase but 
leaves behind positional information that aids in the subsequent orientation and function of 
the cell plate with the plasma membrane (Fig. 2d, e). Some MT associated proteins (MAPs) 
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have been shown to be associated with PPBs, and studies on loss-of-function mutants have 
demonstrated that the MICROTUBULE ORGANIZATION 1 (MOR1) and CLIP-associated 
proteins (CLASP) are involved in the organization of the MTs in PPBs (Ambrose et al., 2007; 
Kawamura et al., 2006; Whittington et al., 2001). FASS/TONNEAU2 (TON2), a putative 
regulatory B” subunit of the Thr/Ser protein phosphatase 2A, and TONNEAU1 (TON1), a 
protein that interacts with centrin (CEN1) and is related to a human centrosomal protein, are 
also essential proteins for PPB formation (Camilleri et al., 2002; Traas et al., 1995). As 
discussed below in greater detail, actin plays a critical role in PPB formation, and the actin-
depolymerising drug cytochalasin inhibits the narrowing of the MTs (Eleftheriou & Palevitz, 
1992; Mineyuki & Palevitz, 1990).  

Besides guiding the cell plate towards the cortical division zone, molecules associated with 
the PPB memory site also have the ability to induce cell plate flattening. For example, during 
cell division in Tradescantia stamen hair cells, the cell plate tends to be fluid and wrinkled 
(Fig. 1d) when the cell plate edges attach to the cortical division site, but flattens thereafter 
(Fig. 1e). The flattening process is delayed or stops when a cell plate fails to reach the correct 
cortical division zone (Mineyuki & Gunning, 1990). 

 
Figure 2. Schematic view of PPB development and the division plane insertion in plants. (a) interphase, 
(b) early PPB stage (G2~prophase), (c) late PPB stage (late prophase), (d) metaphase, (e) telophase,  
(f) after cell division. MT (green), microtubule; CW (light brown), cell wall; N (blue), nucleus; PM 
(pink), plasma membrane; CDZ (red), cortical division zone; ch, chromosome; cp, cell plate. 

2.2. Candidate proteins of division site memory molecules 

The PPB is considered to predict the future site of cell division in plant cells and to generate 
positional memory information that demarcates the cortical division zone after 
disappearance of the MTs. Several candidate molecules for the memory function of the 
cortical division zone have been described (Table 1). The first candidate molecule identified 
was actin. Although actin serves multiple functions during PPB development, actin 
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filaments disappear from the PPB zone in late prophase, thereby generating an actin-
depleted zone (ADZ) adjacent to the plasma membrane (Cleary et al., 1992; Liu & Palevitz, 
1992). Since the ADZ remains after the disappearance of the MT band, the ADZ has been 
thought of as a kind of ”negative memory”. Another ”negative memory“ candidate is the 
kinesin-like molecule KCA1 (Vanstraelen et al., 2006), which also forms a KCA1 depleted 
zone (KDZ) in the same area as the ADZ. How these molecules are excluded from the 
cortical division zone, and how the ADZ and the KDZ are maintained during cell division 
remains to be determined. 

Molecules such as TANGLED (TAN), a highly basic protein that can directly bind to MTs, 
and RanGAP1, a negative regulator of the small GTPase Ran, are accumulated in the PPB 
and remain there after the disappearance of the PPB MTs (Rasmussen et al., 2011; Walker et 
al., 2007; Xu et al., 2008). These are candidates of ”positive memory“ molecules. Together, 
the ”positive“ and ”negative“ memory molecules may be key players for guiding the cell 
plate to the predicted cortical division site. PHRAGMOPLAST ORIENTING KINESINs 1 
and 2 (POK1, POK2), originally identified as potential partner of TAN in a yeast two-hybrid 
screen, are required for the correct localization of TAN and RanGAP1 to the PPB region 
(Müller et al., 2006), and the functional relationship between POK1/POK2 and 
TAN/RanGAP1 has been examined (Walker et al., 2007; Xu et al., 2008). TAN–interacting 
proteins DISCORDIA1 (DCD1) and ALTERNATIVE DISCORDIA1 (ADD1), maize 
homologs of Arabidopsis FASS/TON2, are two other proteins that persist at the cortical 
division zone after disappearance of the PPB MTs. Although DCD1/ADD1 are detectable in 
the cortical division zone of metaphase cells, they cannot be observed in the cortical division 
zone in anaphase (Wright et al., 2009). 

Molecules, that appear in the cortical division zone just before the cell plate edges reach the 
plasma membrane, have also been identified. Adaptin-like protein, TPLATE and clathrin 
reappear in the cortical division zone when the cell plate edge almost reaches the cortical 
division site (Van Damme et al., 2006, 2011). Whether these molecules are associated with 
the edge region of the maturing cell plate (Seguí-Simarro et al., 2004) or with structures in 
the cortical division zone remains to be determined. 

Based on the observation of cell plate flattening in Tradescantia stamen hair cells, Mineyuki 
and Gunning (1990) proposed that the PPB leaves behind factors involved in cell plate 
maturation. A MT-associated protein, AUXIN-INDUCED IN ROOT CULTURES 9 (AIR9) 
decorates the PPB and phragmoplast MTs and reappears at the cortical division site when 
the outwardly growing phragmoplast contacts the cortical division site. AIR9, then moves 
inward on the young cell plate to form a torus-like structure. When the cell plate is inserted 
outside the former PPB site no AIR9 torus is formed, suggesting that AIR9 associates with 
proteins that are retained in the PPB site. For this reason, AIR9 is viewed as a candidate 
factor involved in the regulation of cell plate maturation (Buschmann et al., 2006). A cell 
wall hydroxyproline-rich glycoprotein (Hall & Cannon, 2002) may also play a role in cell 
plate maturation. 
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Molecules that mark the cortical division zone after the 
disappearance of PPB MTs Molecules that appear in 

the cortical zone at the end 
of cell plate insertion Candidates of 

negative memories 
Candidates of 

positive memories 
Actin 

(Liu & Palevitz, 1992; 
Cleary et al., 1992) 

 
KCA1 

(Kinesin-like protein: 
Vanstraelen et al., 2006) 

TAN 
(Protein having basic MT-

binding domain of 
vertebrate APC proteins: 

Walker et al. 2007) 
 

RanGAP1 
(RanGTPase activating 

protein: 
Xu et al., 2008) 

 
DCD1/ADD1 

(Maize homologus of 
Arabidosis FASS/TON2: 

Wright et al., 2009) 

TPLATE 
(Adaptin-like protein: 

Van Damme et al., 2006) 
 

Clathrin 
(Van Damme et al., 2011) 

 
AIR9 

(MT associated protein: 
Buschmann et al., 2006) 

 
RSH (?) 

(Cell wall hydroxyproline-
rich glycoprotein: 

Hall & Cannon, 2002) 

Table 1. Candidates molecules for modifiers of the cortical division zone. 

3. Electron tomography of high-pressure frozen cells 

Electron tomography is a powerful method for visualizing and quantitatively analyzing the 
ultrastructural features of cells in three dimensions (Frank, 1992). In the context of PPBs, 
electron tomography has enabled us to obtain quantitative information on the organization 
of cortical and cell plate-associated MTs, and on the types and the distribution of vesicles in 
large volumes of cytoplasm in defined cellular domains (Austin et al., 2005; Karahara et al., 
2009; Seguí-Simarro et al., 2004). This method is particularly effective when employed in 
conjunction with cryo-fixation, which preserves transient membrane systems much better 
than chemical fixation. We selected epidermal cells of onion cotyledons for the analysis of 
membrane structures associated with PPBs, because PPB development in this cell type is 
well characterized (Mineyuki et al., 1989). Most notably, in the basal region of the 
cotyledons, the percentage of cells undergoing mitosis is relatively high. Specimen 
preparation was carried out as described previously (Karahara et al., 2009). In short, a basal 
part of the cotyledon was cut and immediately frozen using a high pressure freezer. The 
high pressure-frozen samples were freeze-substituted and then embedded in Spurr's resin 
(Murata et al., 2002). Our electron micrographs of transverse sections of high-pressure 
frozen/freeze-substituted onion epidermal cells showed exceptionally-well preserved cells at 
the ultrastructural level (Fig. 3). Late prophase cells with a narrow PPB can be distinguished 
from interphase cells based on the staining pattern of the chromosomes. After the staining of 
250 nm-thick tangential sections with uranyl acetate and Reynold's lead citrate, colloidal 
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gold particles were added to both sides of the grid as fiducial markers to align the series of 
tilted images. These thick tangential sections of outer epidermal cell wall regions were 
mounted in a tilt-rotate specimen holder and observed using either a high-voltage electron 
microscope operating at 750 kV, or an intermediate-voltage electron microscope operating at 
300 kV. The images were taken from +60o to -60o at 1.5o intervals about two orthogonal axes 
and collected with a digital camera attached to the electron microscopes. Tomograms were 
computed for each set of aligned tilts using the R-weighted back-projection algorithm. 
Tomograms were displayed and analyzed with Imod, the graphics component of the IMOD 
software package (Kremer et al., 1996). 

The use of electron tomography has enabled us to identify, map and model the pits, vesicles 
and MTs of PPB regions in three dimension with a much higher degree of resolution than is 
possible with conventional ultra-thin sections obtained using an ultramicrotome (Figs. 3a, b 
& 4). The specimen preparation procedures employed in this study produced characteristic, 
high-contrast images of the triskelion complexes and lattices associated with the clathrin-
coated pits, as well as of the contents of the vesicles. Although most vesicles in the cell 
cortex examined in the tomographic images were either dark-core, clathrin-coated vesicles 
(Fig. 3e) or dark-core, non-coated vesicles (Fig. 3h), we did observe some dark-core vesicles 
with partial coats (Fig. 3f, g). This indicates that the dark-core, non-coated vesicles could be 
derived from the dark-core, clathrin-coated vesicles. 

To test this postulated relationship, we have also quantitatively analyzed the distance 
between the center of the darkly stained clathrin-coated and non-coated vesicles and the 
plasma membrane. If the darkly stained, non-clathrin-coated vesicles were derived from 
clathrin-coated, endocytic vesicles, then, on average, they should be found at a greater 
distance from the plasma membrane than the clathrin-coated ones. As illustrated in Fig. 5, in 
the cytoplasm underlying PPBs, the non-coated, darkly stained vesicles were found to be 
further away from the plasma membrane (74.4 ± 2.6 nm, mean ± SEM, n=168) than the 
clathrin-coated vesicles (52.8 ± 6.4 nm, mean ± SEM, n=29). This supports the idea that the 
non-coated, darkly stained vesicles were the uncoated form of the clathrin-coated vesicles 
on the way to endosomal compartments. 

To confirm that clathrin molecules are present in the PPB, we examined the localization of 
clathrin in interphase and prophase cells of onion epidermal cells by immunofluorescent 
microscopy. The anti-clathrin heavy-chain antibodies cross-reacted with two types of 
intracellular structures in the onion epidermal cells, large, brightly stained objects and small, 
dim structures. The small, dim fluorescent structures seen in the confocal images correspond 
to the clathrin-coated pits and vesicles seen in the cell cortex of thin-sectioned cells (see Fig. 
6 in Karahara et al., 2009). We have roughly quantified the frequency of the anti-clathrin 
stained, small, dim fluorescent dots observed in the PPBs of cells visualized by 
immunofluorescence microscopy (see Table S1 in Karahara et al., 2009). However, because 
the number of clathrin-containing dim fluorescent dots per square micron was smaller than 
the number of clathrin-coated pits and vesicles determined by electron tomography, one 
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fluorescent dot may in some instances correspond to a cluster of several clathrin-coated pits 
and vesicles (Fig. 4a, circles of dashed blue lines). 

 
Figure 3. Tomographic images of a tangentially-sectioned PPB in a late prophase onion epidermal 
cell. The tomogram contained a total of 110 slices, with the higher slice numbers showing areas closer 
to the plasma membrane. Structures 1 and 2: Clathrin lattices associated with shallow pits. Structures 
3 and 4: Two cortical MTs. Structure 5: A detached clathrin-coated vesicle. Structures 6 and 7: 
Partially uncoated and non-coated dark vesicles. Structure 8: Horseshoe-shaped plasma membrane 
infoldings. (a, b) Two images of 1.42-nm thick tomographic slices. Inset: overview electron 
micrograph of the 250 nm section used to make the tomogram. (c, d) Higher magnification 
tomographic slices images of a horseshoe-shaped plasma membrane infoldings shown in the black 
rectangular in (b). (c) (slice 54) and (d) (slice 60) are different sections through the same horseshoe 
structure framed in (b). (e-h) Gallery of 21.3-nm thick, composite tomographic slice images 
illustrating the morphological similarities between clathrin-coated (a), partially-coated (b, c) and 
non-coated (d) dense-core vesicles. Bars =(a, b) 1 µm, (c, d) 1 µm, (e-h) 50 nm and (inset Figure in (a)) 
10 µm. Figure adapted from Karahara et al. (2009). 
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Figure 4. Tomography-based reconstructions of the cortical region at the nuclear level (i.e. PPB region) 
of an interphase cell (a), at the PPB region of a late prophase cell (b). ccv, clathrin coated vesicle (bright 
red); ccp, clathrin-coated pit (deep red); ncv, non-coated vesicle (green); mt, MT (purple); pm, plasma 
membrane (yellow). Clusters of several clathrin-coated pits and vesicles shown in circles of blue broken 
line, which may correspond to fluorescent dots seen in immunofluorescence photographs. Bar = 1 µm. 
Figure modified from Karahara et al. (2009). 

 
Figure 5. Histograms illustrating the distances between the center of the dark-core vesicles (clathrin-
coated and non-coated) and the plasma membrane as measured in tomograms of late prophase cells. 
Open column, clathrin-coated vesicle; closed column, non-coated vesicle. 

4. Endocytosis at the future site of cell division 

Clathrin-mediated endocytosis is an attractive mechanism for locally changing the 
composition of the plasma membrane at the PPB site, because clathrin-coated pits are 
known to concentrate specific types of membrane molecules prior to budding from the 
plasma membrane (Bonifacino & Traub, 2003; Chen et al., 2011; Kirchhausen, 2000). The 
original term for endocytosis in plant cell was pinocytosis (Conner & Schmid, 2003), which 
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included both clathrin-mediated and clathrin-independent endocytosis. The former one is 
considered to be the major pathway while the importance or even existence of the latter one 
is still being debated (Chen et al., 2011). Clathrin-mediated endosytosis in plants has been 
shown to involve molecules, such as adaptor proteins (Holstein, 2002; Takano et al., 2010; 
Van Damme et al., 2011), accessory adaptor proteins (Bar & Avni, 2009), dynamins 
(Bednarek & Backues, 2010), small GTPases (Naramoto et al., 2010), actin filaments (Bar et 
al., 2009; Lam et al., 2001), as well as post-translational protein modifications such as 
phosphorylation and ubiquitination (Chen et al., 2011). TPLATE, an adaptor-like protein, 
also appears to participate in endocytic activities associated with cell plate formation during 
cytokinesis (Van Damme et al., 2004, 2006, 2011). 

4.1. Endocytic membrane structures in the PPB region 

Quantitative analysis of the distribution of the clathrin-coated pits in the cortical region closest 
to the nucleus of late prophase and of interphase cells showed that the average frequency of 
clathrin-coated pits between the PPB (nuclear) and the non-PPB (extra nuclear) regions of the 
plasma membrane was reduced in the non-PPB domains (see Figure 4 in Karahara et al., 2009). 
Furthermore, the average frequencies of dark-core, clathrin-coated and non-coated vesicles in 
the cytoplasm underlying the external wall at the nuclear (PPB) and extra nuclear (non-PPB) 
levels of late prophase cells, and those at the nuclear level of interphase cells, demonstrated 
that in late prophase cells the frequency of the clathrin-coated vesicles underlying the PPB 
region was 3.7 fold higher than in the region outside the PPB. On the other hand, the 
frequency of the dark-core, clathrin-coated vesicles in the PPB region of late prophase cells was 
two-fold higher than in the interphase cells, and the frequency of dense-core, non-coated 
vesicles in late prophase cells was over three-fold higher compared to interphase cells (see 
Table 1 in Karahara et al., 2009). These data demonstrate that the PPB regions are sites of 
endocytic activity mediated by clathrin-coated vesicles. 

To determine whether some of the dense core vesicles underlying the thicker, cuticle-covered 
outer cell wall of the epidermal cells could be secretory vesicles, we counted all of the vesicles 
with dark cores in the cortical cytoplasm underlying the inner and outer cell wall regions in 
serial thin sections of cells sectioned in the plane of their PPBs. No significant differences in the 
frequency of dark-core vesicles underlying inner and outer cell walls in the PPB region and in 
the non-PPB regions was observed. However, we did confirm the noted increase in vesicle 
frequency in the cytoplasm underlying the PPB, both adjacent to the thick outer and the 
thinner inner cell walls of the epidermal cells (see Table 2 in Karahara et al., 2009). 

In plants, endocytosed vesicles have been shown to be transported via the trans Golgi 
network (TGN) to multivesicular bodies (MVBs), where both membrane and cargo 
molecules are sorted for recycling or for degradation in vacuoles (Haas et al., 2007; Kang et 
al., 2011; Reyes et al., 2011; Viotti et al., 2010). The onset of clathrin vesicle-mediated 
endocytosis from cell plates leads to a temporary increase in MVBs in apical meristem cells 
of Arabidopsis thaliana (Seguí-Simarro & Staehelin, 2006). However, in our study of onion 
epidermal cells we have observed few MVBs in the cortical cytoplasm (Fig. 6) and have been 
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unable to detect any significant increase in MVBs in the PPB (Table 2). This suggests that the 
plasma membrane molecules endocytosed from the PPB membrane domains could be 
recycled back to the plasma membrane via the TGN and not transferred to the MVBs and 
vacuoles for degradation.  

 
Figure 6. Electron micrograph of a thin sectioned multivesicular body (MVB) in a late prophase onion 
epidermal cell. The MVB contains intraluminal vesicles (arrow). Characteristic electron dense patches 
are seen on the surface of the MVB membrane (arrowheads). Schematic illustration depicting the MVB 
is shown (inset). Bar = 50 nm. 

 interphase late prophase 
P 

(cell stage comparison) 
nuclear level 0.16 ± 0.07 0.20 ± 0.10 0.59 (z=-0.53) 

extra nuclear level 0.23 ± 0.06 0.11 ± 0.06 0.22 (z=-1.20) 
P 

(level comparison) 
1.00 

(z=0.00) 
0.77 

(z=0.29) 
 

Table 2. Average frequency of MVBs observed in PPB (inner and outer cortical regions at nuclear level 
in late prophase cell) and in non-PPB cortical region (inner and outer cortical regions at extra nuclear 
level in late prophase cell and inner and outer cortical regions in interphase cell) determined from 
serially thin cross-sections of onion epidermal cells. The frequency of MVBs was expressed as numbers 
of MVBs per µm3 (mean ± SEM, n=6). Thickness of each section was 70-90 nm. The Mann-Whitney U-
test (two-tailed) was performed at each level. Schematic illustration depicting the plane of the sections is 
shown, which is adapted from Karahara et al. (2009). 
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Enhanced rates of endocytosis confined to PPB regions has also been observed in FM4-64 
uptake studies in tobacco BY-2 cells (Dhonukshe et al., 2005). However, in our study, both 
the tomographic data and immunofluorescent microscopy with anti-clathrin antibodies 
clearly showed that the frequency of clathrin-bearing structures (clathrin-coated pits and 
vesicles) does not decrease abruptly at the edge of the PPB region but decreases gradually. 
Thus, our tomographic models demonstrate that a significant amount of the clathrin-bearing 
structures are also formed in the region adjacent to the PPB MTs (see Fig. 4 in Karahara et al. 
2009). Based on this observation we have postulated that the formation of clathrin-coated 
pits is not tightly coupled to PPB MTs. Instead, the observed distribution of the MTs and of 
the endocytic vesicles in the PPB region can be better explained by the hypothesis that the 
local removal of selected molecules from the plasma membrane via endocytosis creates a 
membrane gradient in the PPB region that stimulates the assembly of MTs in that region. In 
this context, the function of the PPB MT array might be both to create a planar reference 
structure and an associated membrane domain in which the molecules involved in defining 
the division site can become organized. Therefore, the PPB region can be defined not only as 
a localized array of MTs but also as a localized region of clathrin-mediated endocytic 
activity. The fact that the PPB-associated p34cdc2 kinase homolog (A-type cyclin-dependent 
kinase CDKA;1) forms a band that is narrower than the PPB (Mineyuki, 1999; Mineyuki et 
al., 1991b) is consistent with this idea. 

4.2. Exocytic membrane structures in the PPB region 

The outer tangential walls of epidermal cells are considerably thicker than the inner walls. 
In addition, the outer walls are covered by a cuticle. Since it is possible that there is a 
difference in secretory activity between the outer and the inner walls in epidermal cells, 
secretory activities were assessed inside and outside of the PPB region. When a secretory 
vesicle fuses with the plasma membrane of a plant cell, the vesicle collapses and forms a 
characteristic, horseshoe-shaped infolding (Staehelin & Chapman, 1987). These horseshoe-
shaped membrane structures can be identified in cryofixed and freese-substituted cells and 
used as a diagnostic tool for assessing secretory activities (Fig. 3c and d). We have analyzed 
the distribution of horseshoe-shaped structures in serial thin-sectioned onion epidermal 
cells and have demonstrated that there was no significant difference between the frequency 
of horseshoe-shaped structures in the cell cortex at the nuclear level as well as at the extra-
nuclear level in the late prophase cells (i.e. PPB region) and in the interphase cells (see Table 
3 in Karahara et al., 2009). It has been reported that in 10% of tobacco BY-2 cells there is an 
increase in Golgi stacks underlying the PPB (Dixit & Cyr, 2002). To determine if onion 
epidermal cells also accumulate Golgi stacks in the cortical cytoplasm underlying the PPB, 
we have analyzed the distribution of Golgi stacks in our serial thin-sectioned cells and 
found that there was no significant difference between the frequency of Golgi stacks in the 
cell cortex at the nuclear and the extra-nuclear level in late prophase cells and interphase 
cells (see Table 4 in Karahara et al., 2009).  

In a recent study of tobacco BY-2 cells, Toyooka et al. (2009) have described what they 
claimed was a new exocytic structure, and which they called secretory vesicle cluster. 
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However, as demonstrated in a recent electron tomography study, the so-called secretory 
vesicle clusters are free TGN cisternae that release their vesicles by means of cisternal 
fragmentation prior to the fusion of the individual secretory vesicles with the plasma 
membrane (Kang et al., 2011).  

By quantifying the frequency of secretory structures we have demonstrated that the number 
of secretory events inside and outside of the PPB is essentially the same and that at this 
stage of the cell cycle the number of secretory events is low. The paucity of secretory 
structures observed in the PPB region is also consistent with the conclusion of Dixit and Cyr 
(2002) that Golgi secretion is not required for marking the PPB site. 

4.3. Role of endocytosis in the establishment of the cortical division zone 

The discovery that PPB formation involves increased rates of endocytosis at the PPB zone 
leads to the question as to what types of plasma membrane molecules could be selectively 
retrieved from this zone by means of the clathrin-coated vesicles. If molecules, that are 
necessary for the attachment of actin filaments or KCA1 molecules to the plasma membrane 
were selectively removed by endocytosis, then this could lead to the formation of actin or 
KCA1 depleted zones. One class of candidate proteins might be the plasma membrane-
associated, actin filament-nucleating proteins called formin homology (FH) proteins (Banno 
& Chua, 2000; Favery et al., 2004). Several plant formins have been shown to have the ability 
to nucleate actin filaments, and overexpression of AtFH1 induces the formation of arrays of 
actin cables that project into the cytoplasm from the plasma membrane (Cheung & Wu, 
2004). Thus, one possible function of the enhanced endocytic activity at forming PPBs might 
be the retrieval of actin-nucleating/binding proteins from these plasma membrane domains 
to create an actin-free zone to which the expanding cell plate is guided and where it can 
fuse. A similar function for the removal of KCA1 can also be envisaged. Together, our data 
suggest a mechanism for how endocytosis could help create a “negative memory” structure 
in the PPB region of preprophase cells.  

5. Effects of brefeldin A on the formation of clathrin-coated membrane 
vesicles at the future division site 

It is known that brefeldin A (BFA) interferes with the functioning of Arf proteins, which are 
important both for the assembly of COPI as well as for clathrin-coated vesicles that are 
formed both on TGN cisternae and at the plasma membrane (Nebenführ et al., 2002). To 
determine if BFA can also inhibit the endocytosis events associated with PPB formation, we 
examined the effects of BFA on the formation of clathrin-coated pits and vesicles as well as 
dark core vesicles in the PPB regions of epidermal cells. For the BFA treatment, we made a 
stock solution in methanol and diluted it in an aqueous solution of 0.1 M sucrose to achieve 
an effective working concentration of 100 µM BFA. The control solution contained 0.2% 
(v/v) methanol and 0.1 M sucrose. Onion seedlings were treated with the solution for 20 
minutes before high-pressure freezing. To evaluate the responses of Golgi stacks to BFA 
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treatment, three separate tissue regions (each including 5-6 cells) were selected, and the 
numbers of normal and BFA-perturbed Golgi stacks were determined. 

 
Figure 7. Effects of BFA on the Golgi architecture and on the density of clathrin-coated pits and of 
clathrin-coated and non-coated, dark vesicles in the PPB zone of the cytoplasm of onion epidermal cells. 
(a, b) Electron micrographs of thin sections showing Golgi architecture observed in a control (a) and a 
BFA-treated (100 µM for 20 min) (b) onion epidermal cell at the nuclear level. (c, d) Tomography-based 
reconstructions of the cortical region of a control (c) and a BFA-treated (d) late prophase cell. ccv, 
clathrin coated vesicle (bright red); ccp, clathrin-coated pit (deep red); ncv, non-coated vesicle (green); 
mt, MT (purple); pm, plasma membrane (yellow). Bar = (a, b) 0.7 µm and (c, d) 1 µm. 

After treatment with BFA for 20 min, the onion epidermal cells contained a mixture of both 
normal looking and BFA-perturbed Golgi (Fig. 7a, b). In particular, the normal looking 
Golgi, which made up 31 ± 3 % (mean ± SEM) of the total Golgi population, displayed polar 
stack architecture together with one or several TGN cisternae, and resembled control Golgi 
(Fig. 7a). In contrast, the BFA-perturbed Golgi (69 ± 3 %) consisted of stacks that lacked a 
polar architecture, and whose cisternae resembled wider than normal and curved trans 
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cisternae (Fig. 7b). Many secretory-type vesicles (84.3 ± 3.5 nm (diameter), mean ± SEM, 
n=73) were also seen in the vicinity of the altered stacks. In contrast to the variable 
appearance of the Golgi/TGN units in the BFA-treated cells, the responses of the endocytic 
membrane compartments to BFA were both pronounced and consistent.  

 
Figure 8. Average densities of clathrin-coated pits and vesicles at the nuclear level of late prophase 
(PPB region) of BFA-treated (100 µM for 20 min) cells. The results are based on measurements made on 
tomographic data sets. The frequency is expressed as number of pits per µm2 in the case of clathrin 
coated pits, and numbers of vesicles per µm3 in the case of vesicles (mean ± SEM; n=3). The Mann-
Whitney U-test (two-tailed) was used to determine whether the difference were statistically significant 
compared with the control. *; P=0.0495, z=-1.964. 

The number of clathrin-coated pits was decreased by ~90%, the number of clathrin-coated 
vesicles by ~80%, and the number of non-coated, dark-core vesicles by 67% (Fig. 8), 
consistent with the hypothesis that these three structures are causally related and involved 
in the endocytic pathway. By limiting the exposure time of the seedlings to BFA to 20 min, 
we have been able to differentially perturb the secretory and endocytic pathways, and 
thereby obtain data that are consistent with the hypothesis that the dense-core, non-coated 
vesicles underlying the plasma membrane are derived from clathrin-coated pits and vesicles 
that originate at the plasma membrane, and that they are not Golgi-derived secretory 
vesicles. 

6. Conclusion 

How the PPB marks the future site of cell division has been the subject of many studies and 
discussions since its discovery in 1966 (Pickett-Heaps & Northcote, 1966a, b). In a recent 
paper, we have quantified the distribution of clathrin-coated pits and vesicles as well as of 
secretory structures during PPB formation in onion epidermal cells using a combination of 
high-pressure freezing and electron tomography techniques. This quantitative 
characterization demonstrated that the rate of endocytosis is enhanced in PPB regions and 
suggests that the reported changes in composition of the plasma membrane of PPB regions 
could be brought about by the selective removal of specific plasma membrane molecules via 
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BFA-sensitive, clathrin-coated pits and vesicles. One possible function of the enhanced 
endocytic activity at forming PPBs might be the retrieval of actin-nucleating/binding 
proteins or KCA1 from these plasma membrane domains to create membrane zones that are 
depleted of such molecules. In turn, these modified plasma membrane regions could help 
guide the expanding cell plate to the division site and facilitate fusion of the cell plate 
margins to that site (Karahara et al., 2010). Thus, endocytosis appears to play an essential 
role in the creation of PPB "memory" structures in plants. 
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1. Introduction 

1.1. Host-pathogen interaction: A process of co-evolution 

In the mind of most human beings, microbial pathogens, including viruses, bacteria, and 
parasites, are the foreign invaders that cause diseases, and sometimes death. Thus, 
prevention and treatment of infectious diseases, by controlling and eradicating microbial 
pathogens, has become one of the major tasks of modern medicine. Based on current 
evolutionary theory, however, most of the pathogens we’ve seen nowadays are the species 
that have evolved through a close interaction with their hosts (e.g. humans and other 
animals). In an even broader sense, the hosts and the pathogens co-evolved through a 
mutual interaction. During this co-evolution, hosts and pathogens develop specific, intricate 
systems to either defend or invade, which in turn presents us with an intriguing picture of 
host-pathogen interaction. Host cells have the ability to defend themselves against the 
invasion of microbial pathogens. On one hand, host cells use the plasma membrane as a 
physical barrier that prevents pathogens from entering the cytoplasm, leaving pathogens in 
the harsh environment of the extracellular milieu, where pathogens are exposed to anti-
microbial elements, such as antibodies, cytokines, and complement factors. On the other 
hand, professional phagocytic cells can engulf microbial pathogens into the phagosomes 
that later fuse with lysosomes, where reactive oxygen species (ROS), low pHs, and proteases 
can inactivate and kill the pathogens. Through the course of evolution, however, pathogens 
have developed effective strategies against such host defense systems. Viruses and obligate 
intracellular bacterial and protozoan pathogens gain access into phagocytic and non-
phagocytic cells through membrane remodeling events, such as phagocytosis and 
macropinocytosis. In many cases, these membrane-remodeling events are controlled by 
cytoskeletal rearrangement mediated by pathogen-produced effector proteins (e.g. toxins) 
[1-3]. Within the phagosomes, pathogens have evolved a variety of mechanisms to protect 

© 2012 Sun, licensee InTech. This is a paper distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.
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themselves from damage by the hostile environment. For instance, pathogens can produce 
effector proteins to antagonize ROS effects [4], inhibit phagosome maturation, block 
phagosome-lysosome fusion, and escape from phagosomes [5]. In contrast, extracellular 
pathogens need to protect themselves from being engulfed by professional phagocytic cells. 
Such pathogens usually produce toxins to disarm the host cell defense, resulting in 
inhibition of phagocysis, or in cell killing [6]. Some bacterial toxins are directly translocated 
into the host cytoplasm through sophisticated ‘molecular syringes’, such as type III or type 
IV secretion systems [7-9], which are multi-subunit molecular machines that span the 
bacterial and host membranes and translocate effectors directly into host cells. Other toxins 
(e.g. AB toxins) are secreted by bacteria in the vicinity of the host cell and these toxins bind 
to specific receptors and are taken up by endocytosis [10-13]. Once internalized, bacterial 
toxins usually take advantage of the hostile environment in endosomes/lysosomes, and they 
hijack host factors, which enables translocation into the cytosol. For instance, many bacterial 
toxins utilize endosomal acidification (low-pH) as a trigger for conformational conversion, 
which activates toxins and/or facilitates release of toxins into the cytoplasm [14]. Moreover, 
some pathogens and toxins hijack cellular redox factors, thus allowing them enter into the 
host cells, which will be discussed in detail in this review. 

1.2. Endocytic pathways: The portals of entry for microbial pathogens and toxins 

Endocytosis is a physiological process of invagination and pinching-off pieces of the plasma 
membranes, and IT serves as a ubiquitous mechanism that facilitate the internationalization 
of various particles and molecules from the extracellular milieu into the host cytoplasm. 
Endocytosis plays a vital role in a diverse range of physiological processes, including 
maintenance of cellular homeostasis, cell polarity, and uptake of nutrients. Thus, it is not 
surprising that a great variety of microbial pathogens and toxins have evolved to exploit 
aspects of this internalization process as portals of entry into host cells. Based on the nature 
(e.g. size) of the extracellular substrates, endocytosis has been categorized into phagocytosis 
and pinocytosis. Phagocytosis is involved in engulfment of large particles (e.g. cell debris and 
bacterial pathogens) by professional phagocytic cells, such as macrophages, monocytes and 
neutrophils. Pinocytosis, on the other hand, is typically involved in uptake of small particles, 
such as viruses and bacterial toxins, by non-phagocytic cells. Based on the proteins involved in 
membrane vesiculation, endocytosis is defined by several types of mechanisms, including 
clathrin-mediated, caveolin-mediated, lipid raft-dependent, and macropinocytosis, etc. These 
different mechanisms have been described in recent excellent reviews [6,15-18].  

Despite the diversity of membrane vesiculation, upon endocytosis most pathogens and 
toxins follow one of the two intracellular trafficking pathways (Figure 1). In pathway 1, 
pathogens and toxins travel to the early and late endosomes where some pathogens (e.g. 
HIV, Chlamydia, Leishmania) and toxins (e.g. anthrax toxin, diphtheria toxin, botulinum 
toxin) translocate to the cytosol; while others (e.g. Listeria monocytogenes) travel to the 
lysosomes and are then released into the cytosol. In pathway 2, instead of going through the 
endo-lysosomal pathway, pathogens and toxins (e.g. SV40, cholera toxin, shiga toxin, 
exotoxin A) traffic to the Golgi, and from the Golgi to the endoplasmic reticulum (ER), a 
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pathway in reverse of the classical secretion pathway, called retrograde transport. An ER 
retention signal (e.g. KDEL) is usually required for this transport to occur [10,13,15,16,18,19].  

To date, substantial evidence has suggested that cellular redox factors play an essential role 
in pathogen and toxin entry through endocytosis. These redox factors include protein 
disulfide bond isomerase (PDI), -interferon inducible lysosomal thiol reductase (GILT), 
NADPH oxidases (Nox) and some ER-chaperones. These redox factors function at various 
sites in the endocytic pathways that facilitate pathogen and toxin entry into the cells (Figure 
1). These events will be discussed in detail in the later sections of this review.  

 

 
Figure 1. Interaction of cellular redox factors with microbial pathogens and toxins in the endocytic 
pathways. Microbial pathogens and toxins are internalized into the host cells through endocytosis. 
Pathway 1 (left): The pathogens and toxins travel to endosomes and/or lysosomes where they 
translocate to the cytosol. Pathway 2 (right): the pathogens and toxins undergo retrograde transport 
through Golgi to ER where they are released into the cytosol. In this cartoon, HIV, SV40, Chlamydia, 
Listeria monocytogenes, Leishmania, are presented as the representatives of microbial pathogens that 
are discussed in the review.  A group of AB toxins are also shown in this cartoon, and some of these 
toxins are discussed in this review. The cellular redox factors, such as PDI, GILT, NADPH oxidase 
(Nox), are placed into the various locations of the endocytic pathways according to the current 
literature. Due to space limitation, the cartoon only depicts a simplified illustration. Solid arrows: 
intracellular trafficking; dashed arrows: translocation across the membranes. 
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1.3. Disulfide bond: A redox-controlled switch for pathogen and toxin entry   

Disulfide bond, a covalent link between a pair of cysteine residues, plays important roles in 
protein structure and function. Disulfide bond has a significant impact on thermodynamics 
of protein folding, as it can stabilize the native conformation by disfavoring the unfolded 
form. In a naturally folded protein, disulfide bond maintains the protein’s integrity by 
protecting the protein from damage by oxidants and proteolytic enzymes [20-23]. More 
importantly, in mature, folded proteins, some disulfide bonds can function as molecular 
switches that can turn “on” or “off” certain protein functions. This is usually accomplished 
via conformational changes induced by breaking, forming, or the isomerization of the 
disulfide bonds [24-26]. These diverse, reversible features of disulfide bonds can be readily 
manipulated by redox factors ranging from small molecular reagents (e.g. reduced/oxidized 
glutathione) to macromolecular redox enzymes (e.g. oxidoreductases). Moreover, these 
redox factors are ubiquitously present, yet un-equally distributed in the sub-cellular 
compartments of eukaryotic cells, which offers a distinct spatial regulation of the 
thiol/dithiol equilibrium [27,28]. In the course of evolution, microbial infection has become a 
highly regulated process. Thus, activation at the right time and at the right location is an 
important factor for pathogens and toxins to successfully cause an infection. Thus, a readily 
controlled disulfide bond “on/off” switch is evolutionarily favored. It is not surprising that 
pathogens and toxins use disulfide bonds as redox-controlled switches for invasion.  

Increasing evidence has shown that cellular redox factors play pivotal roles in pathogen and 
toxin entry into the endocytic pathways, particularly through modulating the thiol-dithiol 
states of pathogen- and/or host-factors. For instance, cellular entry of certain bacterial toxins 
(e.g. diphtheria toxin [29-33], cholera toxin [34], botulinum neurotoxins [35,36], anthrax 
toxin [37]) are apparently dependent on the redox states (either reduced or oxidized) of the 
specific disulfides of either the toxin molecules, or the host receptors. At the same time, 
protein disulfide isomerase (PDI) [38] and other redox factors, such as gamma-interferon-
inducible lysosomal thiol reductase (GILT)  [39]) and NADPH oxidase [40-42], have been 
implicated in regulating the redox states of the disulfides. Similarly, PDI and others are also 
involved in the entry of numerous pathogenic bacteria (e.g. Chlamydia [43,44], Listeria [39]), 
viruses (e. g. HIV [45] and SV40 (46,47]) and parasites (e. g. Leishmania [40]) through 
endocytosis. This review will present the current major findings on the roles of cellular 
redox factors in pathogen and toxin entry with an attempt to outline the strategies and 
mechanisms that microbial pathogens and toxins utilize to hijack the cellular redox factors 
within the endocytic pathways.  

2. Cellular redox factors in endocytic pathways 

2.1. Redox potentials of endocytic pathways: Oxidizing or reducing? 

Eukaryotic cell is organized into several distinct sub-cellular compartments, each of which 
maintains a distinct redox potential [28]. Relative to the extracellular milieu, which is 
oxidizing, it is generally believed that endocytic pathways are reducing. This notion is based 
on the primary function of endocytosis: i.e., the uptake and degradation of foreign and self-
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particles including proteins, for which a reducing potential facilitates protein unfolding.  
This concept has been well supported by the evidence that uptake and activation of some 
bacterial toxins, such as diphtheria toxin, cholera toxin and Pseudomonas exotoxin A, through 
the endocytic pathways involves reduction of disulfides. The dynamics of disulfide reduction 
in endocytic pathways have recently been studied with fluorescence resonance energy transfer 
(FRET) using a fluorescent folate conjugate, in which folate-BODIPY and Rhodamine is linked 
with a disulfide bond [48]. Reduction of this disulfide bond changes fluorescence from red to 
green, which allows real-time fluorescence imaging of the reduction in cells. Reduction was 
observed to occur in endosomes, with a half-life of 6 hours post-endocytosis. Using this 
experimental setup, reduction did not depend significantly on extracellular surface thiols or 
redox machinery within lysosomes or Golgi. The yielded products were sorted into different 
endosomes and trafficked in different directions. This excellent FRET design ensures an 
accurate assessment of disulfide bond reduction during normal vesicle trafficking in living 
cells and demonstrates that reduction occurs in the endocytic pathways. In fact, the presence of 
distinct redox potentials between the oxidizing extracellular space and the reducing endocytic 
pathways has created interest in disulfide bonds as a potential tool for drug delivery. For 
example, the disulfide-based bioconjugation approach has become a popular conjugation 
method applied in a variety of cellular drug delivery systems. Successful applications of thiol-
based conjugation resulted in targeted delivery and enhanced cytosolic delivery, improved 
pharmacokinetics, and increased stability of the drugs [49-52].  

While it is generally accepted that endocytic pathways are reducing, there is also evidence 
suggesting the contrary. In another independent study, a disulfide linker cleavage assay was 
developed whereby rhodamine red was linked to an anti-HER2 antibody through a peptide 
linker containing a disulfide bond [53]. Cleavage of the disulfide bond would release self-
quenching of the fluorophore. In breast carcinoma SKBr3 cells, no linker cleavage was 
observed, as detected by fluorescence dequenching upon internalization. In contrast, the 
conjugate did display fluorescence dequenching when it was diverted to the lysosomal 
pathways, which could be an effect partly due to proteolytic degradation rather than 
disulfide reduction. More convincingly, the redox potentials of endocytic compartments 
were measured directly by expressing a redox-sensitive variant of GFP fused to various 
endocytic proteins. The results showed that recycling endosomes, late endosomes, and 
lysosomes were not reducing, but rather oxidizing and to a level comparable with 
conditions in the ER.  

In summary, the redox potentials in the endocytic pathways appear to vary accordingly to 
different ligands, different cell types, and different physiological/pathological conditions. 
For instance, NADPH oxidase, the major enzyme that catalyzes the production of reactive 
oxygen species (ROS), is regulated by hormone or growth factors in normal cells, but it is 
constitutively activated in cancerous cells such as HeLa and hepatoma cells [54]). It is well 
known that in professional phagocytic cells NADPH oxidase is activated upon pathogen 
infection and that it produces ROS within the phagosomes, a process called oxidative burst 
that is described below.  
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2.2. Oxidative burst and NADPH oxidase in professional phagocytic cells 

When professional phagocytes recognize pathogen-associated molecular patterns that are 
located on microbial pathogens, the phagocytes will internalize them through phagocytosis 
and activate a strong bacterial killing mechanism, called oxidative or respiratory burst, 
which is marked as an abrupt increase of superoxide formation within the phagosomes [55]. 
This process is mainly catalyzed by NADPH oxidase, a membrane-associated enzyme 
complex that is located on the phagosome membrane and generates superoxide (O2-) by the 
one-electron reduction of oxygen, using NADPH as the electron donor. Assembly and 
activation of NADPH oxidase requires phosphorylation of its subunits and translocation of 
cytosolic components to the plasma membrane [56,57]. The superoxide anion generated is 
enzymatically converted to hydrogen peroxide by superoxide dismutase (SOD). The 
generated hydrogen peroxide can serve as a precursor for hydroxyl radical (•OH) 
generation via a Fenton-like reaction. Hydrogen peroxide then enters cells and forms 
hydroxyl radical that can kill many microorganisms by reacting with different 
macromolecules, including proteins and DNA. Except for killing microorganisms directly, 
ROS can also work as secondary messengers in many signaling pathways within phagocytic 
cells, which promote actions of other antibacterial agents and stimulate inflammation. 
However, chronic inflammation induced by ROS may damage the host tissue and induce 
apoptosis of the phagocytic cells [56-58].  

2.3. Protein disulfide isomerizes and other oxidoreductases (e.g. GILT) 

2.3.1. Protein disulfide isomerase (PDI) 

Enzymatic activities and sub-cellular localization: 

PDI is a ubiquitous dithiol/disulfide oxidoreductase chaperone belonging to the thioredoxin 
oxireductase superfamily. There are around 20 PDI homologues, and the structure and 
function of eukaryotic PDIs have been covered in recent excellent reviews [59,60]. The 
prototypic PDI contains 5 domains ordered as a-b-b’-a’-c, in which two thioredoxin-like 
motifs (CXXC) are located in the domains a and a’, respectively. The primary function of 
PDI is to promote protein oxidative folding in the ER. The PDI redox-domains catalyze three 
redox reactions: reduction (breaking disulfide bond), oxidation (forming disulfide bond), 
and isomerization (exchanging disulfide bond). Independently of its redox activity, PDI also 
functions as a chaperone, which requires its ATPase and Ca2+ activities [60-62].  PDI contains 
a KDEL sequence at the domain c, which facilitates its retention in the ER lumen, and PDI 
cycles between ER and cis-Golgi through the KDEL receptor. Despite its KDEL sequence 
and ER retention mechanism, PDI is also involved diverse intracellular trafficking processes 
and is even secreted outside cell and can be found at the cell surface [59]. The cell-surface 
PDI is thought to localize on the plasma membrane by attachment to lipids, glycans and 
integral membrane proteins [59,63]. Unlike other members of thioredoxin family, PDI is not 
normally found in the cytosol. In addition to catalyzing protein oxidative folding in the ER, 
PDI has been shown to be actively involved in many other processes, such as ER-associated 
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degradation, trafficking, calcium homeostasis, antigen presentation and host-pathogen 
interaction [60].  

ER-located PDI: 

The ER-located PDI plays an important role in host-pathogen interactions, particularly in 
antigen presentation and ER-mediated phagocysis of intracellular pathogens. Antigen 
presentation occurs through two pathways: the exogenous pathway and the endogenous 
pathway. In the exogenous pathway, the antigens from extracellular pathogens (e.g. fungi, 
bacteria, and parasites) are captured and processed in the phagosome/lysosome 
compartments within the long-lived antigen presenting cells (e.g. macrophages and 
dendritic cells) and then form complexes with MHC class II. The antigen complexed with 
MHC-II is then presented on the cell surface and subsequently recognized by helper CD4+ T 
cells. In endogenous pathway, self cell antigens and viruses synthesized within cells are 
degraded by the proteasome and then form complexes with MHC class I, which are 
presented on the cell surface and recognized by cytotoxic CD8+ T cells.  The two pathways 
sometimes overlap and antigens can be presented by both MHC class I and class II. These 
include some intracellular bacterial and parasite pathogens that pass or live in the 
phagosomes, such as salmonella typhimurium, Mycobacterium tuberculosis, Leishmania spp and 
Trypanosoma cruzi. As a part of the protein folding machinery in the ER, PDI has been shown 
to directly regulate antigen processing of the MHC class I complex [64,65] .  

Phagocysis is the main mechanism for the professional phagocytes to internalize large 
pathogens. A recent study has found that fusion of the ER with the plasmalemma 
underneath phagocytic cups is a source of membranes for the phagosome formation within 
macrophages. The ER-associated chaperones, including PDI, are involved in this intense 
membrane remodeling process [66,67]. Of particular interest to this review article is the ER-
associated PDI that is involved in the translocation of the toxins (e.g. cholera toxin) and 
pathogens (e.g. SV40 and Leishmania) from the ER to the cytosol.  

Secreted and cell-surface associated PDI: 

While PDI enzymes are predominantly located in the ER where they act as chaperones and 
facilitate protein folding, they also can be secreted extracellularly and located on the cell 
surface. The secreted PDI and the cell surface PDI can be identified by the use of antibodies 
or specific ligands. Since PDI is a soluble protein, PDI is associated with the cell surface 
probably through electrostatic interaction with other surface-located proteins, peptides or 
lipids. The thioredoxin sites of PDI appear to be involved in the reducing activity of the cell 
exterior where protein disulfide bonds are reduced or reshuffled. Recent research has shown 
that the level of cell surface thiols positively correlates to the amount of cell surface PDI (68). 
Consistent with the fact that the thiol groups of cell surface proteins are involved in cell 
adhesion, PDI thioredoxin activity plays an important role in cell adhesion. In leukocyte 
adhesion, PDI reducing activity maintains the adhesion protein L-selectin in a particular 
conformation (disulfide breaking) on the cell membrane that is not accessible to proteolytic 
enzymes. Inhibition of PDI leads to a conformational change in L-selectin (disulfide 
forming), and the subsequent cleavage of L-selectin, which results in lose of cell adhesion 
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[22]. PDI is also involved in the integrin-mediated platelet adhesion. Integrin receptors 
contain “open” and “close” conformations that represent the “on” and “off” states of ligand 
binding, respectively. It has been suggested that PDI regulates the open and close 
conformations through reduction and/or reshuffling of the disulfide bonds in integrins 
[23,69,70]. The cell-surface PDI not only plays important roles in physiological processes, it 
is also involved in pathological events, particularly in the entry of pathogens and toxins into 
host cells as discussed in detail in this review.  

PDI regulation of NADPH oxidase: 

NADPH oxidase is not only the main source of ROS production during oxidative burst, it 
also has been described as another cell surface-associated protein with disulfide–thiol 
interchange activity [54,71]. NADPH oxidase proteins on the mammalian cell surface exhibit 
two different activities, oxidation of hydroquinones (or NADH) and protein disulfide-thiol 
interchange. Protein thiols on the membranes were measured by reaction with 5,5'-dithiobis-
(2-nitrobenzoic acid) (DTNB; Ellman's reagent) and the results suggested that protein 
disulfides may be the natural electron acceptors for NADH oxidation within plasma 
membrane vesicles. Protein disulfides of the membranes were reduced, with a concomitant 
stoichiometric increase in protein thiols in the presence of NADH, while the increase in 
protein thiols was inhibited in parallel to the inhibition of NADH oxidation.  

It is not clear how NAD(P)H oxidase catalyzes disulfide-thiol exchange. Interestingly, PDI 
has been shown to regulate NAD(P)H oxidase activity. In rabbit aortic smooth muscle cells 
PDI was found to be co-localized and co-immunoprecipitated with the oxidase subunits p22, 
Nox1, and Nox4. Inhibition of PDI using PDI antagonism, such as bacitracin, scrambled 
RNase, neutralizing antibody, or antisense oligonucleotide, resulted in inhibition of the 
oxidase activity, which suggests that PDI closely associates with NAD(P)H oxidase, and acts 
as a novel redox regulator of the oxidase [72]. Later, the PDI-mediated regulation of 
NADPH oxidase activity was confirmed, showing that PDI plays a role in organizing 
NADPH oxidase activation in a variety of physiological/pathological events [41,42,73], of 
which PDI association with NADPH oxidase is required for phagocytosis of Leishmania 
chagasi promastigotes in macrophages as is discussed later in this review.  

2.3.2. Gamma-interferon (IFN-γ)-inducible lysosomal thiol reductase, GILT 

Proteins internalized via the endocytic pathways are usually degraded in lysosomes, where 
proteolysis is facilitated by protein denaturation induced by acidic condition and by 
reduction of inter- and intra-molecular disulfide bonds. While high concentration of 
cysteines was claimed to be the physiological reducing agent in lysosomes, this small 
molecular reducing agent alone appears inefficient in disulfide reduction in an acidic 
environment, since disulfide reduction requires deprotonantion of thiols, which is not 
favored by acidic environments. Thus, the presence of redox enzymes within the acidic 
cellular compartments had been postulated for a long time [74,75]. Known redox enzymes, 
such as thioredoxin reductase and glutathione reductase, normally function in neutral pH 
environments, so they are obviously not the likely candidates. The enzymes that catalyze the 
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reduction within acidic compartments had been elusive until recently when GILT was 
identified as the first thiol reductase optimally active at low pH (4.0 – 5.5) [76,77]. GILT is 
expressed constitutively in antigen-presenting cells, in which it is synthesized as a 35-kDa 
glycoprotein precursor containing a mannose-6-phosphate signal sequence and is co-
localized with early endosomes. The amino- and carboxyl-terminal propeptides are cleaved 
in the early endosomes and the 30-kDa mature enzyme is delivered by the mannose 6-
phosphate receptors through the endocytic pathways to late endosomes and lysosomes. The 
mature enzyme is found in MHC class II-containing compartments, where it catalyzes 
disulfide bond reduction to facilitate antigen processing [78]. GILT can also facilitate the 
transfer of disulfide-containing antigens into the cytosol, enhancing their cross-presentation 
by MHC class I [79]. Compared to other members of the thioredoxin family, GILT possesses 
seminar yet distinctive enzymatic characteristics. GILT has a similar catalytic active site (-C-
X-X-C-), but does not have the common motif (-C-G-H/P-C-) that is shared by the members 
of the thioredoxin family. GILT shows optimal activity at pH 4.0-5.5, while the other 
members of the family function optimally at neutral pH. Moreover, GILT requires a 
reducing agent, such as DTT or cysteine (but not glutathione) to regenerate and retain its 
activity in vitro [76], which is consistent with the potential function of cysteine in the acidic 
compartments for disulfide reduction.  

In addition to being constitutively expressed in antigen presenting cells, GILT is induced 
and up-regulated by interferon-r (IFN-γ) in other cell types via signal transducer and 
activator of transcription 1 [80]. GILT has been found to accumulate in macrophage 
phagosomes as they mature into phagolysosomes [81]. Most interestingly, GILT is a critical 
host factor for Listeria monocytogenes infection [39], as is discussed later in this review.  

3. Roles of redox factors in entry of bacterial toxins through endocytosis 

3.1. AB toxins and interchain disulfide bond 

A number of proteins produced by bacterial pathogens are highly toxic to mammalian cells 
due to their ability to enter the cytosol and attack essential cellular metabolic and/or signal 
transduction pathways. These toxic proteins mostly belong to AB toxin family (82). AB 
toxins contain two structurally and functionally distinctive moieties: an enzymatically active 
A moiety that normally modifies a cellular target upon entry into the cytosol, leading to cell 
death or other pathological effects; and a binding/translocation B moiety that binds to cell 
surface receptors and translocates the A moiety into the cytosol. Commonly, an AB toxin is 
synthesized and secreted from the pathogen as an inactive form. This inactive precursor is 
activated through a proteolytic cleavage performed by either a host or a pathogen protease 
at a region between two cysteine residues. The cleavage results in a di-chain toxin molecule 
with the A moiety and the B moiety linked by a disulfide bond (Figure 2). AB toxin-
mediated intoxication of the host cells starts with B moiety binding to the cell surface 
receptors, followed by receptor-mediated endocytosis. Some toxins, such as anthrax toxin, 
diphtheria toxins, and Clostridial neurotoxins, traffic to endosomes, where acidification 
triggers conformational change on B moiety that forms a protein conductive channel/pore 
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on the endosomal membranes and translocates A moiety into the cytosol. Other toxins, 
including shiga toxin, cholera toxin, exotoxin A, will travel through a retrograde transport 
pathway to arrive at the ER. There, A moiety is released into the cytosol (Figure 1 and 2). In 
either of these two intracellular trafficking schemes, it is presumed that the interchain disulfide 
that links A and B moieties must be cleaved prior to translocation of A moiety into the cytosol. 
While the mechanism of disulfide reduction-dependent translocation is not fully understood, 
and may be toxin-specific, current research has provided evidence that cellular redox factors 
play essential roles in toxin translocation by mediating reduction of the interchain disulfide.   

 
Figure 2. Molecular organization and translocation of AB toxins. Based on molecular organization 
(presence or absence of interchain disulfide bond) and sites of membrane translocation (endosome or 
ER), AB toxins are divided into four groups as indicated in this cartoon, with the representative toxins 
listed in each group. Group 1: the toxins (e.g. diphtheria toxin) are produced as a single-polypeptide 
precursor. Activation requires a proteolytic cleavage to generate a dichain molecule that is linked by an 
interchain disulfide bond. The toxins travel to the endosomes where the B moiety forms a pore on the 
endosomal membranes and translocates the A moiety into the cytosol. Group 2: the A and B moieties of 
the toxins (e.g. anthrax toxin and C2 toxin) are produced as separate proteins. The B moiety is activated 
by proteolytic cleavage and assembles into a heptameric complex that recruits the A moiety. Within the 
endosomes, the B moiety forms a pore on the endosomal membranes and translocates the A moiety into 
the cytosol. While there is no interchain disulfide bond, the disulfide bonds of anthrax toxin receptor 
are required for the toxin translocation, which is discussed in this review. Group 3: The proteolytic 
cleavage occurs in the A moiety of the toxins (e.g. Cholera toxin), resulting in two fragments, A1 and 
A2, that are linked by a disulfide bond. In the ER, A1 is translocated with the assistance of the ER 
machinery (e.g. Sec) to the cytosol, which requires the reduction of the disulfide bond. Group 4: the 
toxins (e.g. exotoxin A) share a similar structural organization with the toxins in Group 1, but 
translocation occurs in the ER, instead of the endosomes.  
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3.1.1. Diphtheria toxin and cell-surface PDI 

Diphtheria toxin (DT) is secreted as a single polypeptide chain of 535 residues (58 kDa) from 
toxigenic strains of Corynebacterium diphtheriae [83]. DT is activated by a proteolytic 
cleavage that is catalyzed by the cellular protease furin, which results in two protomers (DT-
A, 21 kDa; DT-B, 37 kDa) that are linked by a disulfide bridge (Figure 2). DT-A is an ADP-
ribosyltransferase that ADP-ribosylates elongation factor 2 (EF-2) in the cytosol. DT-B is 
responsible for cell binding and translocation of DT-A to the cytosol. The receptor-binding 
domain at the C-terminal half of DT-B binds to the cell surface receptor (heparin-binding 
EGF-like growth factor) and enters the cell through the receptor-mediated, clathrin-
dependent endocytosis. Within the endosomes, the acidic pH triggers a conformational 
change on DT-B, leading to the exposure of the hydrophobic domains and an increased 
tendency to interact with the membrane lipids. Thus, DT-B inserts into the membranes and 
forms a cation-selective channel that translocates DT-A into the cytosol, where DT-A inhibits 
protein synthesis by ADP-ribosylation of EF-2 [84].  

An earlier study showed that membrane-impermeant sulfhydryl inhibitors (DNTB and 
pCMBS) markedly inhibited DT cytotoxicity, an effect that was not due to inactivation of 
unbound DT, inhibition of endocytosis, or impairment of endosomal acidification [32]. This 
indicated that the reductive cleavage of DT’s interchain disulfide bond mediated by the cell 
surface sulfhydryls is required for the DT cytotoxicity. A later independent study of DT-
mediated Vero cell intoxication showed that reduction of the single interchain disulfide 
bond is the rate-limiting step of the entire intoxication process, and this reduction occurred 
only after the toxin had passed through a low pH triggered structural change on DT-B in an 
early endosome [30]. Together, these studies suggested that the reductive activation of DT is 
catalyzed by sulfhydryls that are originally present at the cell surface and through 
vesiculations, become situated at the inner face of nascent endosomes. Sulfhydryl groups 
blocked at the cell surface will remain blocked in primary endosomes whose fluid volume 
still contains inhibitors. More interestingly, specific PDI inhibitors, bacitracin and anti-PDI 
antibodies, effectively inhibited DT-mediated cytotoxicity [33], suggesting that cell-surface 
PDI is involved in the translocation of DT through the reduction of the interchain disulfide 
bond. The PDI-catalyzed reduction appears to be specifically restricted to the site of 
interchain disulfide bond, but not others. In an earlier study, intramolecular disulfide bonds 
were generated in the DT-A domain by introducing double cysteine residues [29]. During 
endocytosis, the interchain disulfide bond was found to be reduced, while the engineered 
intramolecular disulfide bonds remained intact, which inhibited DT-A unfolding and 
membrane translocation. This target-specific reduction of the interchain disulfide bond 
implicates the existence of enzymatic specificity.    

More recently, however, an assay of measuring the in vitro delivery of DT-A from the lumen 
of purified early endosomes to the external milieu has shown that cellular thioredoxin 
reductase activity plays an essential role in the cytosolic release of the DT-A, suggesting that 
other cellular redox enzymes, except for PDI, may also be involved in DT translocation [85].  
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3.1.2. Cholera toxin and ER-located PDI 

Cholera toxin (CT), produced by the bacterium Vibrio cholerae, acts on intestinal epithelial 
cells in mammals to induce massive salt and water secretion, causing severe diarrhea 
[86,87]. CT consists of one A subunit, an ADP-ribosyltransferase that targets heterotrimeric 
Gs proteins, and five B subunits that bind to the cell surface receptor, ganglioside GM1. The 
A subunit is cleaved by a bacterial endoprotease to form two fragments, A1 and A2, that are 
linked by a disulfide bond (Figure 2). Reduction of the disulfide bond is required for 
translocation of A1 fragment from ER to the cytosol, where it ADP-ribosylates Gs. ADP-
ribosylation of Gs results in a constitutive activation of adenylyl cyclase and an increase of 
cAMP levels. The A2 fragment bores through the center of the B subunit ring with a C-
terminal KDEL (Lys-Asp-Glu-Leu) sequence that protrudes outwards.  CT enters cells through 
clathrin-independent endocytic pathways, primarily through the cholesterol-rich plasma 
membrane domain caveolae. The ER retrieval KDEL sequence located on the A2 fragment 
leads the toxin through the retrograde transport pathway from Golgi network to the ER.  
Within the ER the A1 fragment is unfolded, released from the rest of the toxin, and 
translocated across the ER membrane to the cytosol [88]. It has been reported that 
translocation occurs through the Sec61 channel and utilizes ER-associated degradation 
(ERAD), which is a physiological process for retro-translocation of mis-folded proteins into 
the cytosol.  

Although the mechanism of A1 translocation from ER into the cytosol is not clear, it is 
presumed that the toxin in the ER must undergo the following events: subunits must be 
disassembled, the disulfide bond must be reduced, and the A1 fragment must be unfolded 
in order to be translocated through the Sec61 channel. However, the ER is the compartment 
where proteins are folded, assembled and disulfide bonds are formed. This apparent 
paradox has raised the question of how the disassembly and unfolding of the toxin occur in 
such an unfavorable environment. Because of the reported role of PDI in the reduction of the 
interchain disulfide bond of DT, inhibitors of cell-surface PDI, such as bacitracin, DTNB, and 
anti-PDI antibodies, were tested [89,90]. In contrast to DT, these inhibitors had no effect on 
CT cytotoxicity in intact cells, suggesting that the reduction of CT does not occur at the cell 
surface or in the early endocytic pathways. In the presence of Triton X-100, however, these 
inhibitors significantly inhibited CT activity. Further study revealed that the A1 fragment is 
co-localized with PDI in the ER-derived membrane fraction, suggesting that PDI is the redox 
factor that catalyzes the CT reduction at the ER [90]. Subsequently, an excellent study 
showed that protein disulfide isomerase (PDI) in the ER lumen functions to disassemble and 
unfold the toxin once the A chain is cleaved [34]. In this reaction PDI acts as a redox-driven 
chaperone: that is, in the reduced state, it binds to the A chain and unfolds it, while in the 
oxidized state it releases the substrate. Moreover, the PDI-mediated CT translocation in the 
ER appears to be coordinated with a series of ER proteins, such as Ero1, Erp72, and Derlin-1 
[34,91]. Together, these studies have revealed a highly coordinately operations exploited by 
PDI and other ER chaperone proteins in CT translocation.  
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3.1.2. Cholera toxin and ER-located PDI 
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3.2. Membrane translocation of Botulinum neurotoxins and anthrax toxin: two 
stories without cellular redox enzymes? 

3.2.1. Botulinum neurotoxins: Interchain disulfide bridge remains intact throughout the 
translocation 

Botulinum neurotoxins (BoNTs), produced by various strains of the spore-forming bacteria 
(e.g. Clostridium botulinum, C. butyricum, and C. barati), are known as the most poisonous 
toxins in nature [11,92]. To date, seven antigenically distinguishable BoNTs (designated 
from A to G) have been identified in research. The seven serotypes of BoNTs in combination 
with another neurotoxin of clostridia, tetanus neurotoxin (TeNT) from C. tetani, make up the 
clostridial neurotoxin family. BoNTs cause flaccid paralysis by targeting to peripheral 
motorneuron, while TeNT causes opposite symptoms by acting in inhibitory interneurons 
[82]. Despite their extreme cytotoxicity, when applied with an appropriate dose BoNTs 
could act as effective drugs because of their powerful neuroparalytic activity. In fact, BoNT 
serotype A is the first biological toxin that has received FDA approval for treatment of 
human diseases, such as cervical torticollis, strabismus, and dystonias.  

Each BoNT is synthesized as a ~150 kDa single chain protein. This single chain precursor is 
subsequently cleaved into a di-chain molecule, in which the ~50 kDa light chain (LC) and 
the ~100 kDa heavy chain (HC) remain linked via a single disulfide bond [93,94] (Figure 2). 
The HC is composed of an N-terminal translocation domain and a C-terminal receptor-
binding domain. The receptor-binding domain binds to both gangliosides and protein 
receptors on the cell membrane and the toxin is internalized through a receptor-mediated 
endocytosis [95-97]. Within the acidic endosomes, the translocation domain undergoes a 
conformational change to form a pore on the endosomal membranes and translocates LC to 
the cytosol.  In the cytosol, LC, a zinc endoprotease, specifically cleaves SNARE proteins, 
resulting in inhibition of synaptic exocytosis [13,87,92,98].  

Apparently BoNTs share similar features with DT in terms of molecular organization (e. g. 
The A and B moieties are linked by an interchain disulfide bond) and the mode of entry into 
the host cells (e.g. receptor-mediated endocytosis, low-pH-induced pore formation and 
translocation). Despite of these apparent similarities, however, the interchain disulfide 
bridge of BoNTs appears to dictate a different mechanism in translocation, relative to DT. 
The dynamics of the toxin translocation was elegantly examined in a single channel/single 
molecule assay using patch clamp recording on the cell membranes [36,99]. The disulfide 
bond needs to remain intact throughout LC translocation, and premature reduction of the 
disulfide bond even after channel formation or within the lipid bilayer arrests translocation. 
Consistent with this result, addition of the reducing agent TCEP before the toxin 
endocytosis inhibited the proteolytic activity of BoNT/B in human neuronal SHSY-5Ycells 
(35).  It is hypothesized that the disulfide bridge between LC and HC is intact in the low pH, 
oxidizing environment of the endosomal lumen. Once LC is translocated across the 
membranes, the disulfide bridge is reduced in the neutral pH, reducing cytoplasm, which 
results in LC release [92]. Moreover, in an in vitro planar lipid bilayer system, BoNT can 
conduct the translocation of LC into the trans compartment without the presence of 
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additional cellular factors [10] Together, these results strongly support a model that HC-LC 
complex embedded in the membrane is a transmembrane chaperone. The HC chaperone 
activity driven by a pH gradient across the endosome prevents aggregation of the LC in the 
acidic vesicle interior, maintains the LC in a unfolded conformation during translocation, 
and releases it after it refolds at the neutral-pH cytosol. In this model, the reduction of 
interchain disulfide bond only occurs after the LC translocation to the cytosol [36]. Although 
in planar lipid bilayer, reduction of the disulfide bond occurs without additional factors. 
Presently, it is not clear if any cytosolic redox enzymes facilitate this process in vivo.  

3.2.2. Anthrax toxin: Pore formation and translocation require intact disulfide bonds of the 
receptors 

Anthrax toxin, produced by Bacillus anthracis, is responsible for the major symptoms of 
anthrax disease [14]. Anthrax toxin is a tripartite AB toxin consisting of two A moieties, 
lethal factor (LF, 90 kDa) and edema factor (EF, 90 kDa), and one B moiety, protective 
antigen (PA, 83 kDa). Anthrax toxin-mediated intoxication of host cells starts with PA 
binding to the cell surface receptors. Currently, two receptors for PA have been identified: 
anthrax toxin receptor 1 (ANTXR1; or, tumor endothelial marker 8, TEM8) and anthrax 
toxin receptor 2 (ANTXR2; or, capillary morphogenesis protein 2, CMG2) [101-103]. The 
extracellular domains of the two receptors share over 60% of sequence homology. Both 
contain a conserved von willebrand factor A (VWA) domain, which binds to PA (104), and a 
newly defined immunoglobulin-like (Ig-like) domain [37]. Upon binding to the cell surface 
receptors, PA83 is cleaved by the cellular protease furin into PA63 and PA20. The PA63 self-
assembles into a heptameric or an octameric complex, called prepore, to which LF and EF 
bind. Endocytosis of anthrax toxin is a highly regulated event, in which S-palmitoylation of 
the receptor cytoplasmic tail plays a role to prevent constitutive endocytosis of the toxin. 
The toxin-receptor complex is redistributed on the plasma membrane from the 
glycerophospholipidic regions to the specialized domains of lipid rafts, where receptor 
ubiquitination triggers endocytosis. The toxin-receptor complex is supposedly internalized 
into the cell through the clathrin-mediated endocytosis [12,105,106]. Within the endosomes, 
acidification triggers conformational change on PA and converts the prepore into a pore on 
the endosomal membranes, through which LF and EF are translocated to the cytosol. There, 
LF, a zinc-dependent protease, cleaves MAP kinase kinases, which results in lethality of the 
host cells; EF, an adenylate cyclase, increases cellular cAMP level, which causes edema.  

Unlike many other AB toxins that are produced as a single polypeptide chain and require 
proteolytic cleavage to generate A and B moieties linked by an interchain disulfide bond, 
anthrax toxin is produced as the three separate polypeptides:  PA, LF and EF (Figure 2). 
Most interestingly, anthrax toxin has no cysteine residue out of the total 2373 residues in the 
three proteins. This unique “cysteine-free” feature appears to exclude the possibility of 
exploiting redox-controlled “thiol-dithiol exchange” as a potential mechanism that regulates 
anthrax toxin translocation. However, our recent study showed that the disulfide bonds in 
the Ig-like domain of ANTXR2 were required for anthrax toxin pore formation and 
membrane translocation [37]. Reduction of the disulfide bonds significantly blocked anthrax 
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toxin pore formation on the liposomal membrane and plasma membranes evidenced by the 
release of K+ ion, and it also blocked translocation of a model substrate across the cell 
membranes. More recently, purified PDI was shown to facilitate the refolding of the 
recombinant extracellular domain of ANTXR2 (Sun, unpublished data), indicating that the 
receptor disulfide bonds may be subjected to redox regulation by PDI or PDI-like 
oxidoreductases. The mechanism of anthrax inhibition induced by reduction of the receptor 
disulfide bonds is not yet fully understood. 

Based on the available data, one can hypothesize that anthrax toxin translocation must 
require an oxidative environment or factors that favor the receptor disulfide bond 
formation, instead of reducing it as of DT, CT and other toxins. But how might the 
endosomes maintain a disulfide bond favorable environment? In the early stage of anthrax 
infection, macrophages are activated by the components of Bacillus anthracis and launch a 
strong oxidative burst within the phagosomes for bacterial killing immediately after 
phagocytosis of bacteria [4]. In addition, it is reported that anthrax is expressed and plays an 
essential role in several stages of infection, including the very early stage, in the newly 
germinated spores within macrophages [107,108]. An earlier study has also shown that 
anthrax lethal toxin stimulated an oxidative burst in macrophages and induced cytolysis 
[109]. The toxin-induced macrophage lysis was dependent on the ability of the macrophages 
to mount an oxidative burst and was inhibited by exogenous antioxidants. Based on the 
above evidence and given the fact that anthrax toxin requires a redox environment that 
favors receptor disulfide bond formation for translocation, an intriguing hypothesis is that 
the bacterium and the toxin stimulate an oxidative burst within the host cells so as to ensure 
anthrax toxin translocation. Consistent with this hypothesis, B. anthracis has evolved 
mechanisms defending itself against oxidative stress, including superoxide dismutases, 
peroxidases, and catalases, all of which suppress the damaging Fenton reaction catalyzed by 
reactive oxygen or nitrogen species [4,110,111]. Moreover, as mentioned above, the unusual 
“cysteine-free” feature of anthrax toxin might have been selected through evolution 
permitting the toxin to be exempt from the damaging thiol-modifications caused by 
oxidative stress. In summary, Bacillus anthracis and anthrax toxin may have evolved the 
ability to subvert oxidative burst, the host defense mechanism, for their own benefit. Instead 
of being damaged by oxidative burst, anthrax toxin takes advantage of its oxidizing power 
that maintains integrity of the receptor disulfide bonds for toxin translocation.  

3.3. Thiol-activated cytolysins and GILT: Reduction of undecapeptide cysteine 

Thiol-activated cytolysins are a group of pore-forming toxins that are secreted by 
taxonomically diverse species of gram-positive bacteria, responsible for life-threatening 
infections [112]. Currently, over 20 family members have been identified, including 
listeriolysin O (LLO) from Listeria monocytogenes that causes meningitis and abortion; 
perfringolysin O (PFO) from Clostridium perfringens that causes gas gangrene; and 
pneumolysin (PLY) from Streptococcus pneumoniae that causes pneumonia and meningitis. 
Each of these toxins is produced as a single polypeptide chain with molecular weight 
ranging from 50 – 80 kDa and shares high degree of sequence similarity ranging from 40 – 
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80%, suggesting a close structural and functional relation between them.  In deed, the toxins 
share a common mode of action.  All of the thiol-activated cytolysins are produced as water-
soluble monomers and use cholesterol as cell surface receptors. Upon binding to the 
cholesterol, these toxins undergo cholesterol-dependent oligomerization and membrane 
insertion, leading to membrane damage. Thus, they are also referred to as cholesterol-
dependent cytolysins, CDCs. The diameters of the ring-shaped pores can exceed 150 Å, 
making these toxins a widely used tool as membrane-permeabilizing agents in cell biology. 
Not surprisingly, all the available crystal structures of the toxins share an elongated, four-
domain structure. Upon pore formation, the toxins undergo dramatic domain 
rearrangements that have been recently revealed by excellent fluorescence measurements 
and by cryo-electronic microscopy study [113-115].  

Thiol-activated cytolysins share another critical common feature, that is, the toxins are 
activated by reducing agents and suppressed by oxidation [116,117]. The requirement of 
thiol-reduction for the toxin activation appears to rely on a single cysteine residue located in 
a highly conserved undecapeptide (also known as tryptophan-rich region) in domain 4 of 
the toxins [118,119]. The undecapeptide cysteine is the only cysteine present in the primary 
structure of the secreted toxins. Irreversible oxidation of this cysteine inhibited cytolytic 
activity, suggesting that this cysteine plays a central role in the cytolytic mechanism. Recently, 
GILT was found to be a critical host factor for Listeria monocytogenes infection [39]. As an 
intracellular pathogen, L. monocytogenes is internalized into the phagosomes, where it secrets 
LLO to form pores on the endosomal membranes that facilitate bacterial escape from the 
phagosomes to the cytosol. Since LLO activation requires reducing activity, the authors 
speculated that GILT, the only known thiol oxidoreductase present in the phagosomes, might 
activate LLO in vivo. The results confirmed the authors’ hypothesis, showing that mice lacking 
GILT are resistant to L. monocytogenes infection; GILT activates LLO within the phagosomes by 
the thiol reductase activity and purified GILT activates recombinant LLO in vitro.  

While the thiol(s) targeted by GILT was not directly identified, the highly conserved, 
undecapeptide cysteine is obviously the potential target. Besides LLO, GILT also activates 
streptolysin O (SLO), produced by Streptococcus pyogenes, as measured by the haemolysis of 
sheep red blood cells. But GILT failed to activate the SLO mutant that lacked the 
undecapeptide cysteine residue. Thus, GILT presumably targets to the characteristic 
cysteine residue and GILT-mediated exposure of this critical cysteine may result in a 
conformational change that allows the formation of the pre-pore complex and full 
activation. 

4. Cellular entry of pathogenic bacteria, viruses, and parasites that 
require cellular redox factors 

Available evidence has indicated that cellular redox factors are widely involved in entry of 
numerous microbial pathogens, ranging from bacteria, viruses and parasites. Here, we 
briefly review the best-characterized examples from each category.  
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4.1. Pathogenic bacteria: Chlamydia entry 

Chlamydia trachomatis is the leading bacterial agent responsible for sexually transmitted 
diseases. Two biovariants of C. trachomatis, trachoma and lymphogranuloma venereum, 
cause 90 million new sexually transmitted infections per annum and 400 – 600 million cases 
of trachoma worldwide. As an obligatory intracellular pathogen, it requires host invasion 
for survival and growth. However, little is known about the molecular mechanism of 
Chlamydia entry into host cells. Serovar E, an adhesion molecule from C. trachomatis, is 
known to be required for invasion of genital epithelial cells, but the host factor(s) required 
for the pathogen entry was not known until PDI was identified as an potential mediator 
[43]. PDI was detected in an earlier immunoprecipitation experiment [120]., in which a 
biotinylated apical membrane protein receptor attached to elementary body (EB) was 
stripped off the surface of HE-1B cells and immunoprecipitated with anti-EB antibodies, 
followed by 2D SDS-PAGE and MALDI MS analysis. During EB attachment, exposure of 
HEC-1B cells to three different inhibitors of PDI reductive activity (DTNB, bacitracin, and 
anti-PDI antibodies) resulted in reduced chlamydial infection. Subsequently, a proteomic 
study of CHO6 cell line [121], a mutagenized cell line resistant to attachment and infection 
by Chlamydia, showed that CHO6 has a defect in processing of the leader sequence of PDI, 
which results in altered cellular distribution of PDI. PDI is abundantly localized in the ER, 
and surface localization is predominantly sequestered to large patches compared to the 
punctate pattern in the wild type CHOK1 cells. Complementation by expression of full-
length PDI restored C. trachomatis binding and infectivity in the CHO6 mutant cell line. 
These data directly demonstrate that native PDI at the cell surface is required for effective 
chlamydial attachment and infection. Most recently, RNA interference was used to confirm 
that cellular PDI is essential for Chlamydial attachment to cells [44]. More precisely, the role 
of PDI in the process of chlamydial infection was further dissected using genetic 
complementation and PDI-specific inhibitors, showing that PDI has two essential and 
independent roles in the process of chlamydial infection. It is structurally required for 
chlamydial attachment, and the thiol-mediated oxido-reductive function is necessary for 
entry. While PDI is required for chlamydial attachment, it does not function as a receptor for 
the pathogen. Other host factor(s) that structurally associate with PDI may be required for 
chlamydial attachment.  

4.2. Viral entry 

As obligatory intracellular parasites, viruses can only replicate within host cells. Most 
viruses that infect vertebrate and insect cells exploit the endocytic pathways to enter the 
host cells, particularly through macropinocytosis [15,16]. Entry of enveloped virus to the 
host cells normally requires binding of virus to the cell surface and fusion of the viral 
membrane with the host cell membrane. These processes are accomplished through a 
coordinated interaction between viral envelope glycoproteins and host cell surface 
receptors, during which conformational changes of the proteins involved play an essential 
role in virus binding and/or membrane fusion. Increasing evidence suggests that the 
conformational changes are largely triggered by isomerization or reduction of the disulfide 
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bonds catalyzed by either viral- or host- redox factors. The requirement of redox factors for 
viral entry is exemplified with human immunodeficiency virus (HIV), Newcastle disease 
virus [122-124], Sindbis virus [125] and avian leukosis virus [126], etc. For the non-
enveloped virus SV40, the virus is internalized through endocytosis and retrograde 
transported to ER, where it makes use of the thiol-disulfide oxidoreductases, ERp57 and PDI 
as well as the retrotranslocation proteins, to move to the cytosol. The HIV and SV40 viruses 
are discussed below. 

4.2.1. HIV 

Infection of human immunodeficiency virus (HIV) starts with viral binding to attachment 
factors, such as mannose binding C-type lectin receptor and intracellular adhesion molecule 
on the surface of CD4+ lymphocytes. The HIV envelope glycoprotein gp120 binds to CD4 
protein, the primary receptor of HIV-1, and undergoes conformational changes, which 
allows the virus to interact with its co-receptors, CXCR4 or CCR5. Subsequently, these 
interactions stimulate downstream conversion of HIV gp41 envelope subunit to a competent 
fusion conformation [45]. Initially, inspired by the finding that the cell-surface PDI reductive 
activity is required for DT entry and cytotoxicity through reduction of the interchain 
disulfide bond, the roles of cell-surface PDI in HIV entry into human lymphoid cells were 
tested with PDI inhibitors, DTNB, bacitracin and anti-PDI antibodies [127]. The result 
showed that HIV infection was markedly inhibited by those inhibitors, suggesting that HIV 
and its target cell engage in the PDI-mediated thiol-disulfide interchange and that the 
reduction of critical disulfides in viral envelope glycoproteins may be the initial event that 
triggers conformational changes required for HIV entry and cell infection. This finding 
revealed a novel direction in the study of HIV entry. A series of experiments have been 
performed to define the roles of PDI or PDI-like redox enzymes in viral entry and 
membrane fusion, particularly in the aspect of thiol-disulfide interchange on viral- and host- 
factors. PDI was first found clustered at the CD4+ lymphocyte surface in the vicinity of CD4-
enriched regions and later PDI was co-precipitated with both soluble and cellular CD4 [128]. 
Moreover, anti-PDI antibodies and the inhibitors of its catalytic function altered HIV 
envelope-mediated membrane fusion, which suggests that PDI catalytic activity functions in 
the HIV envelope-mediated cell-cell fusion in a post-CD4 binding step [129]. It is believed 
that PDI-CD4 interaction at the cell surface enables PDI to reach CD4-bound viral 
glycoproteins. HIV gp120 is a highly disulfide-bonded molecule that attaches HIV to CD4 
and co-receptor CXCR4 or CCR5, thus it becomes a potential target of cell-surface PDI. It has 
been shown that soluble PDI cleaved disulfide bonds in the recombinant gp120 in vitro and 
the gp120 bound to the CD4 on the cell surface undergoes a disulfide reduction that is 
prevented by the PDI inhibitors [130]. Furthermore, additional studies showed that on 
average two of the nine disulfides of gp120 are reduced during interaction with the 
lymphocyte surface after CXCR4 binding prior to fusion and that the cell surface PDI 
catalyzes this process. Thus, the PDI-mediated disulfide restructuring within the HIV 
envelope constitutes the molecular basis of the post-receptor binding conformational 
changes that induce fusion competence. Due to the essential role of PDI in HIV entry, PDI is 
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enveloped virus SV40, the virus is internalized through endocytosis and retrograde 
transported to ER, where it makes use of the thiol-disulfide oxidoreductases, ERp57 and PDI 
as well as the retrotranslocation proteins, to move to the cytosol. The HIV and SV40 viruses 
are discussed below. 

4.2.1. HIV 

Infection of human immunodeficiency virus (HIV) starts with viral binding to attachment 
factors, such as mannose binding C-type lectin receptor and intracellular adhesion molecule 
on the surface of CD4+ lymphocytes. The HIV envelope glycoprotein gp120 binds to CD4 
protein, the primary receptor of HIV-1, and undergoes conformational changes, which 
allows the virus to interact with its co-receptors, CXCR4 or CCR5. Subsequently, these 
interactions stimulate downstream conversion of HIV gp41 envelope subunit to a competent 
fusion conformation [45]. Initially, inspired by the finding that the cell-surface PDI reductive 
activity is required for DT entry and cytotoxicity through reduction of the interchain 
disulfide bond, the roles of cell-surface PDI in HIV entry into human lymphoid cells were 
tested with PDI inhibitors, DTNB, bacitracin and anti-PDI antibodies [127]. The result 
showed that HIV infection was markedly inhibited by those inhibitors, suggesting that HIV 
and its target cell engage in the PDI-mediated thiol-disulfide interchange and that the 
reduction of critical disulfides in viral envelope glycoproteins may be the initial event that 
triggers conformational changes required for HIV entry and cell infection. This finding 
revealed a novel direction in the study of HIV entry. A series of experiments have been 
performed to define the roles of PDI or PDI-like redox enzymes in viral entry and 
membrane fusion, particularly in the aspect of thiol-disulfide interchange on viral- and host- 
factors. PDI was first found clustered at the CD4+ lymphocyte surface in the vicinity of CD4-
enriched regions and later PDI was co-precipitated with both soluble and cellular CD4 [128]. 
Moreover, anti-PDI antibodies and the inhibitors of its catalytic function altered HIV 
envelope-mediated membrane fusion, which suggests that PDI catalytic activity functions in 
the HIV envelope-mediated cell-cell fusion in a post-CD4 binding step [129]. It is believed 
that PDI-CD4 interaction at the cell surface enables PDI to reach CD4-bound viral 
glycoproteins. HIV gp120 is a highly disulfide-bonded molecule that attaches HIV to CD4 
and co-receptor CXCR4 or CCR5, thus it becomes a potential target of cell-surface PDI. It has 
been shown that soluble PDI cleaved disulfide bonds in the recombinant gp120 in vitro and 
the gp120 bound to the CD4 on the cell surface undergoes a disulfide reduction that is 
prevented by the PDI inhibitors [130]. Furthermore, additional studies showed that on 
average two of the nine disulfides of gp120 are reduced during interaction with the 
lymphocyte surface after CXCR4 binding prior to fusion and that the cell surface PDI 
catalyzes this process. Thus, the PDI-mediated disulfide restructuring within the HIV 
envelope constitutes the molecular basis of the post-receptor binding conformational 
changes that induce fusion competence. Due to the essential role of PDI in HIV entry, PDI is 
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regarded as a potential drug target. Most recently, a high-throughput screening of PDI-
specific inhibitors identified the natural compound juniferdin as the most potent inhibitor of 
PDI. And derivatives of juniferdin were synthesized and used to carry out further studies, of 
these, compound 13 showed comparable inhibitory activity but reduced cytotoxicity, 
compared to juniferdin [131].   

Interestingly, PDI knockdown by siRNA in U373 and HeLa cells had little effect on HIV 
infection as compared to the effect mediated by general thiol inhibitors [132]. This 
discrepancy raised the question whether the reductive activity of PDI is coupled to other 
redox enzymes that could enhance the redox-dependent viral membrane fusion and entry. 
This hypothesis has been supported by several recent studies. The extracellular portion of 
CD4 contains four immunoglobulin-like domains, D1 to D4. The D2 disulfide bond 
appeared redox-active and regulated by thioredoxin that is secreted by CD4(+) T cells. 
Locking the CD4 and the thioredoxin active-site dithiols in the reduced state with a 
hydrophilic trivalent arsenical blocked entry of HIV-1 into host cells [133]. More recently, 
human glutaredoxin-1 (Grx1) has been shown to efficiently catalyze gp120 and CD4 
disulfide reduction in vitro [134]. Grx1 catalyzes the reduction of two disulfide bridges in 
gp120 in a similar manner to that of PDI. Anti-Grx1 antibodies inhibited the Grx1 activity 
and block HIV-1 replication in cultured peripheral blood mononuclear cells. The polyanion 
PRO2000, previously shown to prevent HIV entry, inhibited the Grx1- and PDI-dependent 
reduction of gp120 disulfides. Thus, other redox enzymes other than PDI may also be 
involved in HIV entry. Studies that further dissect the specific roles of PDI and other redox 
enzymes in HIV entry are needed to uncover the mechanism of HIV entry.  

4.2.2. SV40 

Simian virus 40 (SV40) is a simple, non-enveloped DNA virus that belongs to the polyoma 
virus family. It uses ganglioside GM1 as receptor, and enters host cells through a unique 
endocytic pathway, caveolae/lipid raft-mediated endocytosis [15,47,135]. After 
internalization, instead of trafficking to endosome/lysosome compartments, it traffics into a 
pH-neutral, caveolin-containing endocytic organelle, called caveosome. From there the virus 
moves in noncaveolar vesicles along microtubules to the ER through retrograde transport. 
In the ER, SV40 manages to translocate into the cytosol, and from there it enters the nucleus 
via nuclear pore complexes for viral replication. SV40 capsids are composed of 
homopentamers of the major capsid protein VP1, and VP1 is associated with one of the 
minor structural proteins VP2 or VP3. The virus has icosahedral symmetry and contains 72 
pentamers, of which 12 are five-coordinated and the rest of 60 are six-coordinated. The 
pentamers are linked to each other by the interchain disulfide bonds between the residues 
Cys104. Isomerization of the disulfide bonds in the ER is crucial for the viral uncoating 
process [136-138]. Recent data has shown that SV40 makes use of the protein folding and 
quality control machinery in the ER for initial uncoating and membrane translocation [46]. 
Among all the ER-resident proteins, ERp57 and PDI more specifically regulate SV40 
infection through isomerization of the disulfide bonds. Silencing of ERp57 and PDI 
substantially decreases SV40 infection. In addition, these ERp57 and PDI cooperate with the 
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ER-associated degradation (ERAD) proteins, Derlin-1 and Sel1L, facilitating a Ca2+-
dependent retrotranslocation from the ER to the cytosol.  

4.3. Parasite entry 

4.3.1. PDI, NADPH oxidase and Leishmania entry 

Leishmania, a family of obligate intracellular parasites, causes leishmaniases in millions of 
individuals worldwide [139]. The parasites are transmitted by a variety of species of sand 
flies from two major genera Phlebotomus and Lutzomyia, respectively. The life cycle of 
Leishmania starts with a motile promastigote form in the insect host, in which they attach to 
the midgut wall to avoid being expelled with the blood meal. They later migrate to the 
digestive tract and differentiate into a non-dividing metacyclic form. The metacyclic 
promastimgotes are injected into the mammalian host, enter macrophages and differentiate 
into non-flagellated amastigotes that replicate and persist intracellularly, which provides a 
reservoir for transmission. Entry of promastimgotes into macrophages through 
phagocytosis is a critical step for leishmania infection.  Inside the phagosome and/or 
phagolysosome vesicles, the parasites are exposed to enzymes, antimicrobial peptides, and 
ROS generated by NADPH oxidase activation [140]. Surprisingly, the promastimgotes are 
able to survive in such a stressful environment and differentiate into amastigotes, 
progressing to an active infectious disease. While the mechanism of pathogenesis is still 
elusive, current research has greatly advanced our understanding of the process. It is well 
known that Nox2 oxidase, a prototypic member of the NADPH oxidase family, is activated 
during phagocytosis of Leishmania, and uptake of the parasites is inhibited by antioxidants 
(e. g. catalase) [141]. This suggests that the oxidative stress induced by NADPH oxidase 
activation may have a favorable effect, instead of the expected anti-microbial effect, with 
regard to parasite infectivity. Recently, PDI has been shown to be involved in phagocytosis of 
Leishmania chagasi through regulation of NADPH oxidase, in which PDI was found to closely 
associate with the NADPH oxidase, and inhibitors of PDI (bacitracin, phenylarsine oxide, anti-
PDI antibody) significantly blocked promastigote phagocytosis (40). These results correlate 
well with, and are supported by, the previous findings that proteomic study of macrophages 
showed that PDI is involved in the formation of the phagosomes during phagocytosis of some 
parasites, including Leishmania (66,81). And PDI is closely associated with NADPH oxidase 
and plays an organizer role in NADPH oxidase activation [41,72].  

5. Conclusions and future perspectives 

Current studies have revealed excitingly novel features of host-pathogen interaction. 
Microbial pathogens (bacteria, viruses, and parasites) and bacterial toxins exploit different 
aspects of the endocytic pathways, and hijack cellular redox factors to accomplish entry and 
invasion. Despite the fact that the pathogens and toxins are very diverse, the mechanism 
involved in the infectivity could be readily narrowed down to any of the simple redox 
reactions: reduction, oxidation, or isomerization of the thiol/dithiol groups on proteins from 
either pathogens or hosts. Therefore, these redox reactions could potentially be part of a 
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ER-associated degradation (ERAD) proteins, Derlin-1 and Sel1L, facilitating a Ca2+-
dependent retrotranslocation from the ER to the cytosol.  

4.3. Parasite entry 

4.3.1. PDI, NADPH oxidase and Leishmania entry 

Leishmania, a family of obligate intracellular parasites, causes leishmaniases in millions of 
individuals worldwide [139]. The parasites are transmitted by a variety of species of sand 
flies from two major genera Phlebotomus and Lutzomyia, respectively. The life cycle of 
Leishmania starts with a motile promastigote form in the insect host, in which they attach to 
the midgut wall to avoid being expelled with the blood meal. They later migrate to the 
digestive tract and differentiate into a non-dividing metacyclic form. The metacyclic 
promastimgotes are injected into the mammalian host, enter macrophages and differentiate 
into non-flagellated amastigotes that replicate and persist intracellularly, which provides a 
reservoir for transmission. Entry of promastimgotes into macrophages through 
phagocytosis is a critical step for leishmania infection.  Inside the phagosome and/or 
phagolysosome vesicles, the parasites are exposed to enzymes, antimicrobial peptides, and 
ROS generated by NADPH oxidase activation [140]. Surprisingly, the promastimgotes are 
able to survive in such a stressful environment and differentiate into amastigotes, 
progressing to an active infectious disease. While the mechanism of pathogenesis is still 
elusive, current research has greatly advanced our understanding of the process. It is well 
known that Nox2 oxidase, a prototypic member of the NADPH oxidase family, is activated 
during phagocytosis of Leishmania, and uptake of the parasites is inhibited by antioxidants 
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Leishmania chagasi through regulation of NADPH oxidase, in which PDI was found to closely 
associate with the NADPH oxidase, and inhibitors of PDI (bacitracin, phenylarsine oxide, anti-
PDI antibody) significantly blocked promastigote phagocytosis (40). These results correlate 
well with, and are supported by, the previous findings that proteomic study of macrophages 
showed that PDI is involved in the formation of the phagosomes during phagocytosis of some 
parasites, including Leishmania (66,81). And PDI is closely associated with NADPH oxidase 
and plays an organizer role in NADPH oxidase activation [41,72].  

5. Conclusions and future perspectives 

Current studies have revealed excitingly novel features of host-pathogen interaction. 
Microbial pathogens (bacteria, viruses, and parasites) and bacterial toxins exploit different 
aspects of the endocytic pathways, and hijack cellular redox factors to accomplish entry and 
invasion. Despite the fact that the pathogens and toxins are very diverse, the mechanism 
involved in the infectivity could be readily narrowed down to any of the simple redox 
reactions: reduction, oxidation, or isomerization of the thiol/dithiol groups on proteins from 
either pathogens or hosts. Therefore, these redox reactions could potentially be part of a 
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general mechanism for pathogen and toxin invasion, and this redox-dependent entry 
mechanism can be an attractive target for anti-microbial and anti-toxin drug development. 
The specificity of regulation is supposed to heavily rely on specific interaction of the cellular 
redox factors with the pathogens in a timely and spatial manner in various endocytic 
pathways. Thus far, PDI seems to be involved in many of the pathogen and toxin entry 
events, which is, at least in part, due to its diverse cellular distribution, ranging from the cell 
surface to the ER. Further studies are needed to address this question if other members of 
the PDI family and other ER-residing folding machinery are involved in pathogen and toxin 
entry. It is exciting that GILT was identified as the first oxidoreductase active optimally in 
the acidic compartments. The roles of GILT in entry of pathogens or toxins other than L. 
monocytogenes/LLO warrant further investigation. Finally, some pathogens or toxins can 
survive through the oxidative burst within the phagosomes and even can take advantage of 
this host defense mechanism for invasion. Thus, more studies are needed to look into the 
new insights concerning the role of oxidative burst in host-pathogen interactions. 
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1. Introduction 

Endocytosis is the highly controlled and complex process by which a portion of the plasma 
membrane, including its lipids, proteins, and local extracellular fluid becomes internalized 
in a cell. Endocytosis serves to mediate a multitude of interactions between a cell and its 
environment, including nutrient uptake, mitosis, motility, as well as adaptive and innate 
immune response, among many others. There are multiple routes of endocytotic uptake into 
cells, with the most studied being clathrin mediated endocytosis (CME). Although CME 
differs significantly on a molecular level from the clathrin-independent endocytosis 
mechanisms (e.g. macropinocytosis, phagocytosis), all of the endocytic mechanisms involve 
a sequence of changes in morphology, molecular composition, and protein interactions at 
the plasma membrane, as well as throughout the bulk of the cell. Further, each of these 
changes is tightly regulated in space and time. To fully characterize endocytic pathways and 
their intertwined relationship to other signalling pathways, there is a need to visualize the 
dynamics of multiple species at the plasma membrane and within the cell with high three-
dimensional spatial resolution.  

Traditional biochemical and genetic approaches have provided, and will continue to provide, 
a wealth of information about the cellular pathways and key molecules involved in 
endocytosis. However, such bulk assays are only able to provide ensemble measurements. 
Thus, they cannot shed light on the important and stochastic sub-cellular spatiotemporal 
information that is inherent to endocytosis. High resolution electron microscopy studies can 
address this limitation with exquisite spatial detail approaching atomic resolution, but cannot 
easily capture the dynamics of endocytosis. For this reason, live cell fluorescence microscopy 
has been exploited to provide vital information at the subcellular and single molecule level 
about the localization of components involved in individual endocytosis events.  

Very early optical microscopy investigations used traditional organic fluorophores and 
widefield fluorescence imaging to follow membrane associations during endocytosis. 

© 2012 Aaron and Timlin, licensee InTech. This is a paper distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
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Widefield fluoresce microscopy is readily available, simple to conduct, and provides lateral 
spatial resolution of 200-400 nm when using visible excitation light and axial spatial 
resolution on the order of 1 µm with optimal objective and microscope configurations. This 
resolution is sufficient to understand the overall arrangement of proteins on the cellular 
membrane and determine uptake into cells as demonstrated by Leserman et al. (Leserman, 
et al., 1980); but, the presence of interfering signal from throughout the depth of the cell 
limits the ability to visualize single events using this approach. The addition of the confocal 
pinhole into the fluorescence microscope serves to reject much of the out-of-focus light, 
providing a significant improvement in axial spatial resolution, and signal to noise (SNR); 
confocal fluorescence microscopy has demonstrated wide success in following endocytotic 
processes within living cells in three dimensions (Betz, et al., 1996; Muller, 2006). The reader 
is referred to Stephens and Allan for a review of the basics of widefield and confocal 
fluorescence microscopy technologies for live cell imaging (Stephens & Allan, 2003).  

In this chapter, we will summarize optical imaging methodologies beyond the simple 
transmission optical, widefield fluorescence, and confocal fluorescence microscopes. The 
advanced techniques presented here have significant advantages in spatial, spectral, and/or 
temporal resolution when compared to traditional microscopy methods and are well-suited 
for real-time tracking of individual endocytotic events in living cells. We will cover: (1) total 
internal reflection fluorescence microscopy, which has become a dominant technology for 
endocytosis dynamics due to its specificity for the plasma membrane, (2) super-resolution 
microscopy, whose exquisite spatial resolution has led to emerging applications in the field of 
endocytosis, and (3) spectral imaging, which exploits the spectral properties of fluorophores 
and spectral deconvolution to extend fluorescence microscopy much further into the 
multiplexed regime. In each of these areas, we will introduce the basic concepts of the 
measurement technique, present important developments in analysis algorithms, and 
highlight recent studies with regard to endocytosis. It is important to note that although the 
focus of this chapter is advanced optical imaging methodologies for following endocytosis in 
living cells, the techniques presented here demonstrate the potential utility in visualizing 
exocytotic processes and the various vesicle trafficking events that are critical to cell function. 

2. Total internal reflection fluorescence microscopy 

2.1. Basic principles 

Total internal reflectance fluorescence (TIRF) microscopy offers a unique approach for 
selective imaging of biological components and events very near (typically <200nm) to the 
plasma membrane in cells (Axelrod, 2001). This technique avoids much of the background 
signal emanating from fluorophores within the cytoplasm, thereby increasing detection 
sensitivity over traditional widefield or confocal microscopy. TIRF was first demonstrated in 
living cells by Axelrod and colleagues for visualization of acetyl choline receptors, and as a 
sensitive measure of membrane topology (Axelrod, 1981). It has since been widely adopted 
in biological laboratories for a large range of applications, particularly after the introduction 
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of commercially available objective-based TIRF systems (Mattheyses & Axelrod, 2006). 
Demonstrations have included characterizations of cell receptor distributions (N. L. 
Thompson, et al., 1997), and other membrane bound biomolecules (Sund & Axelrod, 2000), 
dynamic imaging of exocytic/secretory vesicle trafficking and fusion (Schmoranzer, et al., 
2000), as well as single molecule (Tokunaga, et al., 1997) and single nanoparticle (Aaron, et 
al., 2011) 2D tracking within the membrane. In addition, TIRF has allowed for enhanced 
biophysical characterizations of endocytotic events, as discussed in the following section. 

The principle behind TIRF relies on the creation of evanescent excitation. Snell’s law 
accurately predicts the angle of light refraction through media of various refractive indices. 
However, it can be shown that in cases where light propagates from a higher refractive 
index material (such as glass) to a lower refractive index material (such as air or water), 
there exists a critical angle, θc, above which refraction cannot occur. Mathematically, this is 
represented by:  
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where n1 and n2 correspond to the lower and higher refractive indices, respectively. At 
angles that exceed this value, total internal reflection occurs, and light does not propagate 
through the lower refractive index material, but rather is reflected away from the interface 
in the opposite direction. Interestingly, a more detailed analysis using Maxwell’s equations 
reveals that a portion of the impinging light’s energy extends slightly into the lower 
refractive index material. This is referred to as an evanescent wave, which propagates 
parallel to the interface, and decays quickly in the perpendicular direction. The decrease in 
intensity from the surface can be described by an exponential function, with characteristic 
decay constant, d, given by: 
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where λ refers to the excitation wavelength, θ is the angle at which the light impinges 
normal to the interface (θ > θc), and n1 and n2 are as described above. Equation (2) indicates 
that the penetration depth of the evanescent field will typically extend a distance less than 
the wavelength of light used, and will decrease with increasing illumination angle. For 
instance, excitation at 532nm, passing from a glass coverslip (n1 = 1.52) to an aqueous 
environment (n2 = 1.33), at an angle of 68° to the surface, will exhibit an evanescent decay 
length of only 165nm. This represents more than a 3-fold smaller distance than the axial 
resolution of a typical confocal microscope. As such, TIRF has become a widely used 
modality to study events very near the cell membrane, including the myriad of endocytosis 
mechanisms. The following sections focus on three phenomena where TIRF imaging has 
dramatically impacted current knowledge of internalization-related phenomena: (1) clathrin 
mediated endocytosis, (2) cellular uptake of viruses, and (3) internalization of engineered 
nanoparticles. 
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2.2. Understanding clathrin mediated endocytosis via TIRF microscopy 

CME is perhaps the best characterized pathway for internalizing receptor-specific 
biomolecules and is conserved among nearly all eukaryotic cells (Rappoport, et al., 2004). 
Many of the earliest studies examining CME relied on electron microscopy due to the ultra-
high resolving power of that modality (Kirchhausen, et al., 1986). However, the advent of 
fluorescence imaging has permitted the important advantage of capturing dynamic, 
molecular-specific behavior in living cells. When combined with fluorescent protein 
constructs or other labels, new insights into this complex process have been gleaned using 
time-resolved live cell microscopy. 

Earlier wide-field fluorescence imaging studies reported previously unseen behavior of 
clathrin-coated pits (CCPs) on or near the plasma membrane (Gaidarov, et al., 1999). 
Interestingly, distinct patterns were observed within a cell-wide population of CCPs. A 
majority of CCPs displayed limited/random, or no lateral motion within the membrane, 
and were generally termed “static”. With the introduction of TIRF microscopy, a subset of 
CCPs was observed to be motile – exhibiting rapid active transport motion (Keyel, et al., 
2004). This latter observation has led to a shift in the overall model of the CME pathway. 
While clathrin was originally thought to only participate in vesicle formation, Rappoport 
et al. showed that some clathrin coated vesicles (CCVs) persisted beyond the initial 
plasma membrane-bound state, and were transferred to microtubules parallel to the 
membrane (Rappoport, Taha, & Simon, 2003). This rapid motion was correlated with CCV 
internalization. However, still others were shown to disappear or re-appear from the TIRF 
field of view without active transport-like motion. This suggested that some disassembly 
or reassembly of the clathrin triskelia is concomitant with their internalization away from 
the evanescent field, without transport by motor proteins/microtubule network 
(Merrifield, et al., 2002; Merrifield, et al., 2005).  

Matters were complicated further when later data suggested that a single CCP could give 
rise to multiple vesicles (Rappoport, 2008). Single particle analysis of TIRF data showed that 
some CCV were initiated de novo – that is, the assembly of a single CCP resulted in complete 
disappearance of clathrin-associated signal into an internalized vesicle. However, other 
CCPs were seen to separate into sub-structures, only a portion of which were seen to 
internalize, while other CCPs were seen to merge into larger structures (often termed 
clathrin coated plaques). As an example, Figure 1 shows TIRF images and analysis 
representing a single event of the latter type, taken from (Rappoport, 2008). Close inspection 
of the indicated point spread function from a single sub-diffraction sized CCP shows a 
broadening and eventual separation into two distinct features. This was followed by the 
disappearance of the newly isolated CCP, presumably as it is internalized as a vesicle. This 
model of CCV formation has been referred to as iterative budding. The relative 
contributions of de novo formation and iterative budding mechanisms to overall CME 
behavior have shown to be highly cell-line dependent. Swiss 3T3 fibroblasts exhibited 
59%:41% iterative:de novo behavior in one study (Merrifield, et al., 2005), while BSC1 cells 
showed exclusively de novo CCV formation in another (Ehrlich, et al., 2004).  
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Figure 1. Iterative budding of a CCV from a larger CCP. At top, an image sequence illustrates TIRF 
images of CME. At bottom, signal intensity profiles indicate the progressive widening of a single CCP, and 
eventual partial separation, resulting in the iterative budding of a single CCV (Rappoport, 2008). 
Reproduced with permission, from Rappoport, (2008), Biochem. J., 412, 415-523. © The Biochemical Society. 

The complexity and mechanistic diversity of CME has been postulated to arise in part from 
variety of adapter and accessory proteins that are expressed in a given cell. However, there 
does appear to be a “core” group of molecular players present in nearly all forms of CME. 
Arguably the most ubiquitous accessory proteins are dynamin and actin. Dynamin fulfills a 
plethora of roles within many cell signaling pathways (particularly dynamin-2). One of its 
most prominent functions is in aiding the initial formation of CCVs, and their scission from 
the plasma membrane. Despite its importance, the precise sequence of events surrounding 
the role of dynamin is still uncertain. Merrifield et al. initially showed, via dual-color TIRF 
microscopy, an increase in dynamin-associated fluorescence immediately prior to clathrin 
internalization, and a synchronized decrease during CCV internalization (Merrifield et.al, 
2002). However, the underlying reason for the increase in fluorescence is still not clear. 
Alternate models predict either a recruitment of dynamin from the cytosol directly to the 
“neck” of the newly formed CCV, or recruitment from the cytosol to the whole vesicle, and 
then translocation to the point of invagination.  

Along with dynamin, actin also plays a role in CCV formation as an accessory protein in 
many cells (Kaksonen, et al., 2006; Merrifield, et al., 2002). Merrifield et al. showed that 
EGFP-actin signal displayed a transient increase near CCPs during internalization 
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(Merrifield, et al., 2002). Interestingly, using TIRF microscopy to compare the kinetics of 
dynamin and actin recruitment over a number of cells clearly indicated that dynamin 
recruitment consistently precedes local actin polymerization (in addition to clathrin 
internalization), thus giving valuable insight to the sequence of events in the CME process.  

TIRF microscopy has also been instrumental in disentangling the complex interactions of 
adapter proteins involved in CME (Rappoport, et al., 2006). The first identified, and most 
studied, of these are the adaptins (Boehm & Bonifacino, 2001). These proteins can form a 
tetrameric complex referred to as AP-2, and act as an intermediate between cell surface 
receptors and the endocytic machinery by concentrating cargo bound for internalization into 
a CCP. However, the role for AP-2 during the post-internalization phase has been 
controversial. Rappoport et al. initially showed that AP-2 is lost from the CCV during 
internalization (Rappoport, Taha, Lemeer, et al., 2003), although Keyel et al. later proposed 
that AP-2 accompanies CCVs into the cytosol, suggesting its possible regulatory role the 
downstream sorting machinery (Keyel, et al., 2004). However, more detailed TIRF image 
analysis confirmed the former hypothesis, and showed that while AP-2 was co-localized to 
static CCPs in the membrane, it was absent from those CCPs observed to disappear into the 
cytosol (Rappoport, et al., 2005).  

2.3. Tracking single viruses and endocytosis in living cells with TIRF imaging 

Simliar to its utility in understanding the kinetics of endogenous protein-protein 
interactions during CME, TIRF microscopy has also been highly useful to probe the 
mechanisms of pathogen invasion via similar routes. Of particular interest is the mechanism 
by which viruses enter their host cells (Brandenburg & Zhuang, 2007). Although some 
viruses (such as HIV) replicate via direct genome injection through the plasma membrane, 
most have evolved a multitude of methods to gain entry to cells via endocytosis; specific 
mechanisms include CME, macropinocytosis, and caveolin-dependent internalization 
(Sieczkarski & Whittaker, 2002a). As a prominent example, this section will highlight studies 
of Influenza A viral entry by CME, as elucidated by TIRF microscopy. 

Zhuang and colleagues were among the first to visualize the interactions between single 
influenza A viruses and host cells using both widefield (Lakadamyali, et al., 2003) and TIRF 
microscopy (Floyd, et al., 2008; Rust, et al., 2004). Influenza A is an enveloped, single-
stranded RNA virus thought to enter cells via CME, although more recent data indicate it 
may also utilize a clathrin-independent pathway (Sieczkarski & Whittaker, 2002b). One of 
the first TIRF imaging studies revealed that influenza A particles were internalized via de 
novo CCP formation and internalization to CCV, as shown in Figure 2 (Rust, et al., 2004). 

Images indicate that Influenza viruses, which were labeled with a lipophilic fluorescent 
tracer (DiD, shown in red), bind to the surface of live BSC1 cells. A few minutes after 
binding, GFP-tagged clathrin is seen to accumulate around a subset of viral particles, as 
shown in (B). Following this, the velocity of the viral particle dramatically increases, 
indicative of attachment to microtubules. The increase in viral velocity is then correlated 
with a complete disappearance of both DiD and GFP fluorescence signal, suggesting 
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directed internalization within a single, de novo CCV. Interestingly, however, some viral 
particles were seen to exhibit the aforementioned velocity increase without apparent 
recruitment of clathrin. While that may simply suggest the presence of non-fluorescent 
clathrin, it may also point to the presence of alternate endocytosis mechanisms. This later 
hypothesis is supported by other data that demonstrate little change in influenza infectivity 
in the presence of inhibitors of CME (Sieczkarski & Whittaker, 2002b). Nevertheless, CME 
does seem to be a route that is well-exploited by viral pathogens, albeit not always in the 
classical sense. For instance, Johannsdottir, et al. used single particle tracking TIRF 
microscopy to show that while dynamin-2 was required for Vesicular stomatis virus (VSV) 
internalization, AP-2 was not (Johannsdottir, et al., 2009).  

  
Figure 2. Dual color TIRF microscopy reveals that Influenza virus is endocytosed via de novo CCV 
formation. In (a), a single influenza virus (shown in red) binds to the cell surface, and is eventually 
colocalized to EGFP-tagged clathrin. After colocalization, the clathrin/virus complex displays enhanced 
motility, and eventual disappearance from the evanescent field. In (b), intensity profiles (in green) show 
the recruitment of clathrin near the single influenza virus. Black traces indicate viral velocity, indictative 
of active transport into the cytoplasm. In (c), an example of viral internalization is shown that does not 
indicate dependance on clathrin (Rust, et al., 2004). Adapted by permission from Macmillan Publishers Ltd: 
Nature Structural and Molecular Biology M.J. Rust, et al., 11(5), 567-573, © 2004.   

TIRF microscopy has been used to not only visualize initial viral entry, but also its behavior 
later in the endocytosis pathway. When enveloped viruses are labeled with high density of a 
fluorescent dye such as DiD or lipophilic Rhodamine, fluorescence self-quenching occurs 
such that viral particles are relatively non-fluorescent. Upon fusion of the virus to the 
endosomal membrane, the density of fluorophore decreases, resulting in a dramatic increase 
in detectable signal (Hoekstra, et al., 1984; van der Schaar, et al., 2007). Furthermore, viral 
particles can independently or simultaneously be loaded with a tracer molecule to measure 
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release of genomic material into the cytosol, subsequent to fusion (Brandenburg, et al., 
2007). For instance, Floyd, et al. used a dual-labeling approach to gain new insights into 
influenza fusion using a supported lipid bilayer model under TIRF interrogation as shown 
in Figure 3 (Floyd, et al., 2008).   

 
Figure 3. In vitro TIRF characterization of influenza fusion and content mixing. In (A), the experimental 
setup is illustrated, showing influenza virus binding to a dextran-supported lipid bilayer to model the 
endosomal membrane. Viral envelopes are labeled with lipophilic rhodamine (green), and the interior is 
loaded with sulforhodamine B (SRB) (red). Images in (B) show representative dual color TIRF images. 
In (C), fluorescence intensity plots show a sharp spike in the lipophilic rhodamine signal (green), 
indicative of viral hemifusion, while the SRB (red) shows the dispersal of viral cargo into the sub-bilayer 
space after pore formation (Floyd, et al., 2008). Reproduced with permission, from D.L. Floyd, et al., Proc. 
Nat. Acad. Sci., 105(40), 15382-15387, ©2008 by the National Academy of Sciences. 
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In this study, influenza viruses were labeled first with a lipophilic Rhodamine derivative, 
which exhibits a fusion dependent signal increase under these conditins. Additionally, the 
interior of the virus was labeled with sulforhodamine B (SRB). While only 30% of virus 
contained both dyes in sufficient quantities, the sequence of viral docking, fusion, and 
content release was able to be monitored in near real time, and corresponding rate constants, 
number of intermediate states, and lag times between fusion and pore formation were all 
able to be calculated. Figure 3 shows TIRF experimental setup (A) and data (B-C) obtained 
from influenza virus interactions with a liquid supported bilayer. In (C), dual color TIRF 
microscopy shows pore formation (red) vs. hemifusion (green) as a function of time. 
Hemifusion can be detected by a sharp, transient increase in fluorescence intensity as the 
lipophilic dye is released from its self-quenching state, and diffuses throughout the bilayer. 
The viral content release is assessed by the decay in red fluorescence as the SRB enters the 
sub-bilayer space and diffuses away.  

As can be seen, TIRF microscopy has produced notable insight into pathogenic infection 
mechanisms, particularly with regard to their endocytosis by host cells. As opposed to bulk 
studies, imaging approaches allow for a “single cell”, and even “single virus” quantification 
of behavior. This capability has far-reaching consequences in understanding fundamental 
molecular mechanisms. For instance, the data above was used to model the kinetics of viral 
hemifusion with endosomal membranes to clearly reveal that three intermediate stages exist 
in this process, thereby opening avenues for potential, specific therapeutic targets for 
Influenza infection. 

2.4. TIRF microscopy for studying endocytosis of engineered nanomaterials 

In addition to monitoring the internalization of pathogens, TIRF microscopy has also been 
instrumental in characterizing the uptake of engineered nanoparticles aimed at therapeutic 
or diagnostic applications (West & Halas, 2003), as well as in an effort to assess possible 
toxicological consequences of these materials (Marquis, et al., 2009). Engineered 
nanoparticles comprised of porous silica (Slowing, et al., 2008), liposomes (Hashida, et al., 
2005), and other polymer materials (Panyam & Labhasetwar, 2003) have been widely 
successful as therapeutic carriers for both drug and gene delivery. Much of these 
approaches depend on the endocytic uptake and release of the material in question into the 
cytoplasm. Thus, quantitative characterizations of endocytosis are imperative in order to 
assess diagnostic/therapeutic effect. 

Among the first and most widely used nanomaterials for diagnostic use include quantum 
dots (QDs). QDs are typically <20nm in diameter, and are comprised of various heavy 
metal/semiconductor materials such as CdSe, CdTe, or PbS, among others. This 
configuration results in an electronic bandgap that typically falls in the optical/NIR 
wavelength range. As such, QDs make highly attractive optical imaging probes with narrow 
emission bandwidth, broad absorption spectra, and relative resistance to photobleaching 
(Medintz, et al., 2005). Nie and colleagues were the first to demonstrate their utility as 
molecular imaging probes (Chan & Nie, 1998), and they have since gained wide-spread 
acceptance in this regard, including their use as in vivo diagnostic agents (Gao, et al., 2005).  
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Nevertheless, questions remain about the possible cytotoxic effects of semiconductor/heavy 
metal nanomaterials. In this regard, TIRF microscopy has been utilized to quantify the 
uptake properties of various CdSe QDs in immune cells. Aaron et al. have shown that while 
QD diameter is not a good predictor of cellular uptake (both in terms of uptake rate and 
extent), there does appear to be a correlation with QD shape (Aaron, et al., 2011). Figure 4 
shows representative TIRF images of QD (emitting at 605nm, referred to as QD605) uptake 
in RBL mast cells over time. Similar to studies examining CME, this approach relied on the 
gradual disappearance of QD-associated signal as particles are transported to the cytoplasm, 
and away from the evanescent field. 

 
Figure 4. TIRF microscopy to quantify internalization rates of various shape/size quantum dots (QDs) 
in an RBL mast cell line. In (A), fluorescence signal from QDs are seen to gradually disappear over 30-60 
minutes, as they move beyond the TIRF evanescent field into the cytoplasm. The total QD signal can be 
plotted vs. time to calculate a characteristic endocytosis time (B-D) for various sized/shaped QDs. These 
values are represented in (E) for two spheroidal QDs (QD585 and QD655, in light and dark grey, 
respectively), and one rod-shaped QD (QD605, medium grey). Data suggest that particle shape 
regulates internalization, with uptake times of rod-shaped particles nearly two-fold longer than 
spheroidal QDs (Aaron, et al., 2011).  
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Live cell time-course TIRF imaging of QD uptake (shown in A) allows for a measure of 
endocytosis rates for these materials. By simply plotting fluorescence signal as a function of 
time, a typical decay behavior becomes evident. Uptake measurements taken for QDs 
emitting at 585nm, 605nm, and 655nm (B, C, and D, respectively) showed marked 
differences in their rates of internalization, summarized in (E). Interestingly, the uptake 
rates did not correlated with size (average diameter increases with increasing emission 
peak), but upon closer inspection, was found to be related to QD shape. While QD585 and 
QD655 displayed relatively small aspect ratios (1.2 and 1.6, respectively), QD605 were found 
to have more rod-shaped character, with aspect ratio of 2.0. This suggests that spheriodal 
particles are internalized at a higher rate than elliptical particles, giving insight into the 
shape and size effects on nanoparticle-cell interactions. 

2.5. Emerging TIRF microscopy methods 

TIRF microscopy is currently in the midst of another renaissance, as more advanced 
methodologies are being developed to better extract meaningful, quantitative information 
about events at the plasma membrane. Two such approaches are directly applicable to 
imaging of endocytosis, and include polarization sensitive and multi-angle TIRF imaging. 

Polarization-sensitive TIRF (pTIRF) microscopy had been proposed for some time (N. L. 
Thompson, et al., 1984), yet only in the last several years have these concepts been applied in 
biological samples (Anantharam, et al., 2010; Sund, et al., 1999). This method is based on the 
observation that, at the surface of a cell, endocytosis events create a localized birefringent 
environment, as illustrated in Figure 5. As can be seen, during endocytosis (or exocytosis), 
the deformation of the plasma membrane creates portions of the membrane that are parallel 
and perpendicular (as illustrated by arrows) to the s- and p-polarizations of the evanescent 
field, respectively. Therefore, a polarized detection scheme will be sensitive to separate 
regions within the nascent vesicle, provided that fluorescent dyes (such as DiD) are all 
oriented similarly with respect to the lipid bilayer. Resulting images may include a 
“doughnut” appearance at sites of membrane invagination, due to the alternative parallel 
and perpendicular orientations of the membrane with respect to the evanescent field 
polarization. While still in its infancy, this method has sensitively detected exocytosis of 
neuronal vesicles (Anantharam, et al., 2010), as well as fusion of SNARE-bearing vesicles on 
a supported lipid bilayer (Kiessling, et al., 2010). Further studies combining pTIRF with 
atomic force microscopy have shed light on fundamental mechanisms of protein-mediated 
membrane disordering (Oreopoulos & Yip, 2009). 

While technically more complex, pTIRF may also be an ideal method for imaging 
endocytosis pathways that do not have well identified proteomic markers. For instance, a 
growing body of evidence has shown that Influenza A virus may make use of multiple 
endocytic pathways for infection of host cells, with at least one route being both clathrin and 
caveolin-independent. Using pTIRF to image the structural and kinetic properties of this 
cryptic pathway may lead to ultimately elucidating its origin. 
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Figure 5. Principle of pTIRF. During membrane reorganization during endocytosis, fluorophores 
become oriented perpendicular and parallel to the incoming evanescent field polarization. Using cross-
polarized detection, endosomal vesicles appear as alternating dark and light rings. 

Another promising emerging strategy is the implementation of multi-angle TIRF 
microscopy. Hypothesized more than 20 years ago (Reichert, et al., 1987), it has only more 
recently been applied to quantitatively determining axial distributions of biomolecules at 
the nanoscale. Recall that Equation 2 in section 2.1 illustrates how the evanescent field depth 
is a sensitive function of illumination angle, with decreasing field penetration with 
increasing beam angle. This offers the intriguing possibility of optical sectioning at various 
axial positions near the sample/coverslip interface, far below the optical diffraction limit by 
systematically varying the TIRF angle, θ. This strategy has been successfully implemented 
in a compact design (Stock, et al., 2003), and utilized for a number of applications, including 
mapping cell membrane topology relative to the cytoplasm (Olveczky, et al., 1997), viewing 
exocytosis of secretory granules in Chromaffin cells (Oheim, et al., 1998), as well as detecting 
sub-diffraction axial movements of surface-immobilized DNA molecules, all with accuracies 
of less than 50nm along the optical axis (He, et al., 2005). Doubtless, the application of this 
methodology may shed new lights into endocytic mechanisms as well. 

3. Super-resolution microscopy 

3.1. History and background 

Until the last decade, interrogation of cells and cellular processes with a microscope was 
limited by diffraction. Practically speaking, this meant that cellular features could only be 
distinguished if they were laterally separated by at least half the wavelength of the 
illumination light,  as elegantly described by Ernest Abbe in in the late 19th century (Abbe, 
1873). Under visible wavelength excitation, this means that cellular features and structures 
must be at least 200-350 nm apart in order to be resolved in X and Y. Unfortunately, this 
resolution limit is more than an order of magnitude larger than the spatial scale on which 
most biochemical processes occur. To address this, scientists have developed specialty 
optical microscopy techniques over the years to achieve information on a spatial scale below 
the limits of optical diffraction in living organisms. The most well-known of these are 
Förster resonance energy transfer (FRET), fluorescence correlation spectroscopy (FCS), and 
TIRF microscopy which as discussed above can provide axial resolution of ca. 100 nm, but is 
limited by diffraction in the lateral dimension.  
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More recent advances have produced several new methodologies, collectively termed 
“super-resolution” microscopy or “nanoscopy” that effectively break the traditional 
diffraction barrier in all three spatial dimensions. These resolutions are more aligned with 
the spatial scales on which biomolecular processes occur, and have potential to re-define the 
state-of-the art in biological imaging. Though a complete review of all the super-resolution 
microscopies is outside of the scope of this chapter, this section will discuss two major 
approaches with demonstrated applications in endocytosis: (1) localization microscopy and 
(2) stimulated emission depletion microscopy (STED). The reader is referred to recent 
review articles and the references within for additional information on super-resolution 
microscopy (B. Huang, et al., 2009; Schermelleh, et al., 2010). 

3.2. Localization microscopy  

3.2.1. Fundamentals of localization microscopy 

If a single molecule within a diffraction-limited volume can be imaged independently from 
any other nearby emitters, localization techniques (R. E. Thompson, et al., 2002) can be 
employed to determine that molecule’s location with precision of approximately  

    
PSFx

N
 (3) 

where x is the localization precision, PSF is the size of the point spread function, and N is 
the number of detected photons from a single chromophore. With laser excitation and 
modern detectors, this accuracy can routinely be accomplished with <50nm precision. 
Interestingly, if this localization procedure could be repeated for many molecules, then an 
image could be constructed from the sum of all the localizations, with lateral resolution 
nearly 10-fold less than the diffraction limit. The practical challenge of this approach is 
rendering the vast majority of fluorophores in a sample in a “dark” state, only allowing a 
small subset to be visible at any given time. Indeed, conventional immunofluorescence 
labelling may result in thousands of visible fluorophores within a diffraction limited 
volume. However, several methods based on wide-field imaging of subpopulations of 
molecules activated in a stochastic fashion have emerged, including STORM (Rust, et al., 
2006), PALM (Betzig, et al., 2006), and FPALM (Hess, et al., 2006). These approaches, 
collectively termed localization microscopies, each differ in the photophysics and 
photochemistry through which the single molecule activation and deactivation is achieved, 
but in general, make use of some form of “photoswitching” to turn individual fluorescent 
dyes to/from an on/off state. Then, the localization procedure remains essentially the same 
as described previously. In each approach, a delicate optimization is necessary between dye 
choice, imaging buffer solutions, labelling density, excitation wavelength and intensity, 
emission wavelength, and acquisition speed to produce images of the highest quality. A 
comprehensive review of fluorophore characteristics for use in localization microscopy has 
been recently published (Dempsey, et al., 2011).  
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To visualize biological processes like endocytosis which occur in three-dimensions, it is 
important to develop techniques that improve spatial resolution in x, y, and z and are 
compatible with imaging of living cells. More recent methods based on Astigmatism 
(Huang, Wang, et al., 2008) and dual-focal plane imaging (Juette, et al., 2008) have achieved 
axial localization precisions of 50 nm and 75 nm respectively, over depths of several 
hundreds of nanometers. Additionally, sub- 25 nm axial localization precision has been 
demonstrated using interferometric methods (Shtengel, et al., 2009). Z-scanning and single-
particle tracking can be combined with these methods to extend the depth to several 
micrometers permitting imaging throughout the cell. (Huang, Jones, et al., 2008; Juette, et al., 
2008). Though localization microscopies were originally limited to imaging fixed cells due to 
the conditions necessary to provide the stochastic photoswitching and the need to have no 
movement during the lengthy acquisition times, current methods are compatible with live-
cell imaging (Manley, et al., 2008; Shroff, et al., 2008) while still maintaining axial spatial 
resolutions in the 50-60 nm range. This is an active area of research and further 
advancements are anticipated to eventually permit visualization of endocytotic dynamics at 
sub-50 nm resolution in all three dimensions. 

3.2.2. Current applications of localization microscopy in endocytosis 

The past five years have seen a flurry of localization-based superresolution microscopy 
studies related to endocytic processes, in a number of contexts. For instance, Betzig et al. 
successfully detected lysosomal membrane-associated proteins using a PALM approach 
with better than 10nm lateral resolution in fixed cell sections (Betzig, et al., 2006). 
Furthermore, Zhuang and colleagues were able to construct exquisite 3D images of both 
microtubule networks and clathrin coated vesicles (CCVs) in intact samples using the 
astigmatism-based STORM approach described above (Huang, Wang, et al., 2008). In 
addition, highly multiplexed studies using another localization variant, ground state 
depletion followed by individual molecule return (GSDIM), have shed light on the 
interactions between clathrin, tubulin, actin, and peroxisomes (Testa, et al., 2010). The 
interactions of HIV with the host cell cofactor tethrin (a protein implicated in preventing 
virus internalization) were revealed with excellent detail using a combination of 
photoactivatable proteins and photoswitchable organic dyes (Lehmann, et al., 2011). 
Another excellent example of super-resolution imaging applied toward endocytosis 
mechanisms includes a study by Subach, et al. In this case, novel photoactivatable proteins 
were exploited to acquire dual-color PALM images to visualize the clustering of transferrin 
receptors into clathrin coated pits (CCPs) at 25nm spatial resolution, as illustrated in Figure 
6 (Subach, et al., 2009).  

Data in Figure 6 show the substantial increase in image detail afforded by super-resolution 
imaging (b, e, h) over TIRF microscopy (a, d, g), with enlarged areas (indicated by white 
boxes), shown in (c, f, i). Clathrin (green) is generally co-localized to clusters of transferrin 
(red), although a large background of isolated/non-colocalized receptors is also apparent. 
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Figure 6. Localization-based super-resolution microscopy of transferrin receptor co-localization to 
CCPs. (a, d, g) indicate conventional TIRF images of receptor, clathrin, and overlay image, respectively. 
(b,e,h) illustrate the large increase in image detail after super-resolution localization is preformed, with 
zoomed in regions displayed in (c, f, and i). Co-cluster analysis was performed on areas where 
transferrin receptor/clathrin density was greater than 5-fold the mean (k, l). Correlation functions 
indicate a characteristic cluster size of approximately 200nm, below the Abbe limit (j) (Subach, et al., 
2009). Reprinted by permission from Macmillan Publishers Ltd: Nature Methods F.V. Subach, et al., 6(2), 153-
159, ©2009. 
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As this data suggests, super-resolution microscopy also allows for image analysis with 
greatly increased precision over diffraction-limited imaging. In (k-j) receptor/clathrin 
clusters are analysed such that only areas where receptor density is five-fold greater than 
the image-wide average are considered (k-i). Spatial pair-correlation analysis (j) gives a 
measure of cluster diameter in the 200nm range, representing a detailed optical image 
analysis below the Abbe limit. This is important, as the above treatment demonstrates that 
while super-resolution imaging can provide images with exquisite detail and multiplexed 
capability, perhaps its greatest utility is its ability to enable improved quantification of 
biomolecular behaviour in situ. As more demonstrations are reported, new biological 
insights will doubtless be gained with the ability to monitor changes in biomolecular 
localization and dynamics at the nanoscale. 

3.3. Stimulated emission depletion microscopy  

3.3.1. Fundamentals of STED microscopy 

In contrast to the localization-based super-resolution methods described in sections 3.1-3.2, 
stimulated emission-depletion (STED) microscopy relies on a different mechanism, and falls 
into the category of illumination-based techniques. Instead of localizing many random fields 
of single fluorophors to form a complete image, Illumination-based methods rely on a 
carefully engineered point spread function (PSF) that effectively limits fluorescence 
emission to a small, sub-diffraction volume. This modified PSF is subsequently scanned 
across a field of view in order to construct an image via confocal detection. 

By far the most common way to accomplish a restriction in the PSF is to make use of two, 
superimposed beams of light, as shown in Figure 7. The first “excitation” beam (green) is a 
conventionally focused laser spot, whose diameter is subject to the diffraction limit. The 
second “depletion” beam (orange) is also diffraction limited, but a phase function is 
imparted such that it forms an optical vortex or “doughnut” when focused on the sample. 
When superimposed, the depletion beam prevents conventional fluorescence emission 
except for a small area near the center of the vortex. Using this method, optical resolutions 
approaching 7nm have been achieved (Rittweger, et al., 2009).  

The concept of stimulated emission as a means to break the diffraction barrier extends from 
Stephan Hell’s seminal paper exploring the theoretical basis (Hell & Wichmann, 1994), with 
experimental demonstration following (Klar, et al., 2000). The original implementation of 
this concept invovled complex, expensive instrumentation, including pairs of highly 
synchronized, femtosecond pulsed laser sources, in addition to other non-trivial timing 
electronics. However, subsequent simplifications were made such that STED could be 
accomplished with a single light source (Wildanger, et al., 2008), as well without any pulsed 
light sources (Willig, et al., 2007). 

STED microscopy remains a very active area of development, with applications 
demonstrated in a wide variety of fields (Nägerl, et al., 2008; Rittweger, et al., 2009; Willig, 
Kellner, et al., 2006; Willig, Rizzoli, et al., 2006). Endocytosis stands as a enticeing area in 
which to apply STED microscopy, due to the intricate interplay between proteomic 
mediators and the sensitive spatiotemporally varying nature of cargo internalization. 
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of single fluorophors to form a complete image, Illumination-based methods rely on a 
carefully engineered point spread function (PSF) that effectively limits fluorescence 
emission to a small, sub-diffraction volume. This modified PSF is subsequently scanned 
across a field of view in order to construct an image via confocal detection. 

By far the most common way to accomplish a restriction in the PSF is to make use of two, 
superimposed beams of light, as shown in Figure 7. The first “excitation” beam (green) is a 
conventionally focused laser spot, whose diameter is subject to the diffraction limit. The 
second “depletion” beam (orange) is also diffraction limited, but a phase function is 
imparted such that it forms an optical vortex or “doughnut” when focused on the sample. 
When superimposed, the depletion beam prevents conventional fluorescence emission 
except for a small area near the center of the vortex. Using this method, optical resolutions 
approaching 7nm have been achieved (Rittweger, et al., 2009).  

The concept of stimulated emission as a means to break the diffraction barrier extends from 
Stephan Hell’s seminal paper exploring the theoretical basis (Hell & Wichmann, 1994), with 
experimental demonstration following (Klar, et al., 2000). The original implementation of 
this concept invovled complex, expensive instrumentation, including pairs of highly 
synchronized, femtosecond pulsed laser sources, in addition to other non-trivial timing 
electronics. However, subsequent simplifications were made such that STED could be 
accomplished with a single light source (Wildanger, et al., 2008), as well without any pulsed 
light sources (Willig, et al., 2007). 

STED microscopy remains a very active area of development, with applications 
demonstrated in a wide variety of fields (Nägerl, et al., 2008; Rittweger, et al., 2009; Willig, 
Kellner, et al., 2006; Willig, Rizzoli, et al., 2006). Endocytosis stands as a enticeing area in 
which to apply STED microscopy, due to the intricate interplay between proteomic 
mediators and the sensitive spatiotemporally varying nature of cargo internalization. 
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Figure 7. Principle of Stimulated Emission Depletion (STED) Microscopy. A conventional exictation 
spot (green) is overlayed with a optical vortex depletion beam (orange) to confine fluorescence emission 
to a sub-diffraction volume, and then scanned across a sample to create an image. 

3.3.2. Current applications of STED microscopy in endocytosis 

Illumination-based super-resolution techniques such as STED generally require more 
complex instrumentation as compared to localization approaches such as PALM/STORM. 
However, STED offers the advantage of more facile dynamic imaging. Although STED-
based methods have somewhat lagged in their application toward the understanding of 
endocytosis as compared to localization techniques, several studies have begun to bring the 
considerable power of STED microscopy to bear on a number of pathways that are relevant 
in this regard. For instance, Schneider, et al. utilized STED microscopy to gain insight into 
the function of flotillin proteins in the context of Alzheimer’s disease. Flotillins have been 
implicated in non-clathrin/caveolin mediated endocytosis as a mediator of amyloid 
regulation. Via knockdown models, they were able to show, with convincing image detail, 
that amyloid precursor protein (APP) internalization was reduced in the absence of flotillin-
2. Furthermore, the increased resolution also permitted measurement of membrane-bound 
APP clusters with 70nm precision, and revealed that flotillin knockdown significantly 
reduced APP cluster size (Schneider, et al., 2008).  

Additionally, Barrantes and colleagues successfully probed the nanoscale arrangement of 
acetylcholine receptors using STED microscopy (Kellner, et al., 2007). Perturbations in 
plasma membrane cholesterol via methyl-β-cyclodextrin resulted in significant, yet sub-
diffraction changes in receptor behaviour, with clear implications for their regulation via 
endocytosis (Barrantes, 2007). 

In combination with the development of video rate STED microscopy (Westphal, et al., 
2008), Hell and colleagues were able to dynamically image synaptic vesicle trafficking in 
neurons at 40-60nm resolution (Willig, Rizzoli, et al., 2006). While synaptic transmission is 
often treated as an exocytic phenomenon, these results indicated that synaptotagmin 
remains clustered after exocytic vesicle fusion with the neuronal plasma membrane. This 
observation has clear implications for neurotransmitter re-endocytosis, as the precise 
mechanism by which endosomal recycling controls neurotransmitter release is still under 
investigation. These results indicate that membrane re-sorting of neurotransmitters may not 
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be necessary for their recycling back to the cytoplasm. Via multi-temperature 
immunolabeling, combined with appropriate blocking and permeabilization, these data 
indicated re-endocytosis of synaptotagmin occurred within seconds of their initial 
exocytosis. Below, Figure 8 shows the increase in image quality afforded by STED when 
imaging re-endocytosed synaptic vesicles, taken from (Willig, Rizzoli, et al., 2006). 

 
Figure 8. Confocal (left) and STED (right) microscopy images of synaptotagmin clustering on the 
surface of neuronal cells. STED microscopy affords a nearly order of magnitude increase in image 
resolution, allowing better quantifaction of neurotransmitter clustering, thereby giving better insight 
into the role of re-endocytosis as a mediator of synaptic transmission (Willig, Rizzoli, et al., 2006). 
Reprinted by permission from Macmillan Publishers Ltd: Nature K.I. Willig et al., 440, 935-939, ©2006 

4. Spectral imaging 

4.1. Basic principles 

Traditionally, optical microscopy (including the confocal and TIRF modalities applied to 
applications in endocytosis), and even superresolution imaging have been accomplished 
using a set of one or more filters to select a specific range of emission wavelengths to pass 
on to the detector. Filter-based microscopy is readily commercially available and can be 
extremely fast, producing high quality images at frame rates of up to hundreds or 
thousands of Hz with modern detectors. Filter-based microscopy requires that multiple 
chromophores of interest have well-separated emissions in order to avoid a phenomenon 
known as spectral channel crosstalk or spectral bleed through (SBT). Thoughtful choices of 
fluorophore labels can permit two- or three-color imaging in well characterized systems 
with filter-based microscopes; however in most live cell applications, filter-based 
microscopy is further limited by the presence of cellular autofluorescence. Cellular 
autofluorescence typically displays a broad emission that can span most of the visible 
wavelengths, and its spectral characteristics and intensity can vary widely across cell types 
and even within cells. In many applications where sensitivity is not a limiting factor, 
thresholding is used to minimize the SBT effect of cellular autofluorescence. Unfortunately, 
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thresholding approaches may not be suitable for imaging of endocytotic processes if the 
signal at the single event level is often very near the intensity level of the cellular 
autofluorescence, since this will greatly confound quantitative analyses.  

Spectral imaging is an alternative to filter-based microscopy whereby an entire emission 
spectrum is collected at each image pixel (2D) or voxel (3D) (Garini, et al., 2006; 
Zimmerman, et al., 2003). Spectral imaging has been implemented in a variety of optical 
modalities for biological applications including visible reflectance (Zuzak, et al., 2002), 
fluorescence (Michalet, et al., 2003) and vibrational spectroscopies such IR absorption (Levin 
& Bhargava, 2005), Raman scattering (Christensen & Morris, 1998), and surface-enhanced 
Raman (SERS) (Sharonov, et al., 1994)), as well as in non-optical methods like mass 
spectrometry (Fletcher, et al., 2008). In practice, higher degrees of multiplexing, higher 
accuracy, and lower detection limits are achievable with spectral imaging due to the ability 
to implement multivariate analysis methods to identify and/or classify spectral signatures 
even in the presence of high degrees of spectral overlap from other labels and cellular 
autofluorescence (Mansfield, et al., 2005). The trade-off is usually a sacrifice in speed, 
however microscope designs have been recently introduced that are competitive with 
current filter-based microscope acquisition rates (Sinclair, et al., 2006). In addition, further 
advances in the speed of acquisition are possible and anticipated given the latest detector 
technology (Coates, 2011; Fowler, et al., 2010).  

Of the spectral imaging modalities, fluorescence and Raman-based spectral imaging are of 
particular interest to the field of endocytosis due to their demonstrated success in increasing 
the degree of multiplexing and providing label-free molecular specificity, respectively. 
Lerner provides a comprehensive tutorial covering the general principles of imaging 
spectrometers applicable to both fluorescence and Raman modalities and the reader is 
referred there for additional information (Lerner, 2006). 

Fluorescence spectral imaging, also termed hyperspectral fluorescence microscopy, can be 
implemented in a wide variety of formats that differ predominantly in the way the spectral 
information is obtained. Hyperspectral fluorescence microscopes typically use one of three 
approaches to generate spectrally-resolved information: (1) a prism or grating to disperse 
the fluorescence emission onto a linear detector array or a charge-coupled device (CCD) 
detector in point-scanning (Sinclair, et al., 2006) or line-scanning (Sinclair, et al., 2004) 
formats, (2) interferometric methods that measure the intensity as a function of optical path 
length difference and glean spectral information through Fourier analysis (Malik, et al., 
1996), (3) sequential, narrow bandpass filter scanning of discrete wavelength regions using 
acousto-optical or liquid crystal tunable filter (Gat, 2000). 

4.2. Applications of fluorescence spectral imaging in endocytosis 

Due to their relatively large excitation cross section, size-determined emission properties, 
and improved photostability as compared with traditional organic fluorophores, semi-
conductor quantum dots (QDs) are becoming increasingly popular for biomedical research, 
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with applications including targeted therapeutics and disease diagnostics. However the 
behavior and ultimate fate of these and other engineered nanoparticles in living systems has 
yet to be fully characterized. To this end, Aaron and co-authors took advantage of the 
multiplexing capabilities of hyperspectral confocal fluorescence microscopy and 
multivariate curve resolution (MCR), a constrained alternating least squares method, to 
identify and localize three colors of quantum dots and a lysosome-specific dye 
simultaneously (Aaron, et al., 2011), as shown in Figure 9. This work revealed unanticipated 
compartmentalization of the QDs on the plasma membrane (B and D) of a non-phagocytotic 
immune cell line (RBL cells), as well as an accurate measure of the relative fraction of QDs 
located within the lysosomes following endocytosis (C). These data were acquired with high 
precision, despite the significant spectral overlap between the various QDs and the 
lysosome-specific tracer dye, as shown in (A). 

 
Figure 9. Hyperspectral imaging of quantum dot (QD) endocytosis. In (A), pure component spectra for 
three sized/shaped of QDs and a lysosome-specific fluorescent tracer are calculated without the need for 
any a priori information, and despite signficant spectral overlap. (B) indicates QDs not present in 
lysosomes, with the white box denoting the enlarged region shown in (D). Images indicate a 
compartmentalization of similar sized/ shaped QDs into distinct regions near the membrane, rather 
than a random distribution. In (C), QD signal is shown in green, while lysosome-specific dye is 
indicated in red. Areas of QD/lysosome co-localization are shown in white. 

A B 
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Huth and colleagues have also demonstrated the power of fluorescence hyperspectral 
imaging for visualizing uptake and intracellular trafficking of liposomes (Huth, et al., 2004). 
This work has particular relevance to understanding and manipulating the mechanisms of 
drug delivery via liposomal vehicles. They utilized Fourier-transform based spectral 
imaging technology to generate hyperspectral images of five fluorescent dyes in COS-7 cells. 
With the help of multivariate analysis algorithms, they were able to determine vesicle 
distribution throughout the cell relative to membrane lipids, lysosomes, and nuclear 
compartments. Their work clearly shows the multiplexing and accuracy advantages of 
spectral imaging for visualizing multiple subcellular compartments, while following the 
distribution of endocytosed cargo. 

These highlighted applications illustrate the suitability of hyperspectral fluorescence 
microscopy for fundamental research into endocytotic mechanisms and make it easy to 
imagine future work employing hyperspectral fluorescence microscopy to follow the 
distributions of many of the cellular factors listed in Table 1 of Mercer (Mercer, et al., 2010), 
as well as potential cargo with diffraction-limited spatial and moderate temporal (10-100’s of 
frame/sec) resolution. Studies of this type would provide information unavailable with 
other techniques. 

4.3. Applications of Raman spectral imaging in endocytosis 

Unlike fluorescence spectral imaging, Raman spectral imaging does not typically utilize 
exogenous labels to generate image contrast (Lewis & Edwards, 2001). Instead, the 
technique relies on the interaction of excitation light with the native molecular vibrations 
that are characteristic of distinct molecular components within the sample. These 
molecular “signatures” provide a label-free detection method for many important 
biomolecules, including proteins, nucleic acids, lipids, phospholipids, and carbohydrates. 
Though Raman spectral signatures are much weaker than fluorescence emission spectra, it 
is possible to perform Raman spectral imaging at the single cell level with modern 
detection technologies. Hyperspectral Raman microscopy can be implemented in a variety 
of formats similar to those described for hyperspectral fluorescence microscopy 
(Christensen & Morris, 1998; Govil, et al., 1993; Morris, et al., 1996), however the most 
commonly utilized for visualizing endocytosis in living cells has been the confocal point-
scanning method, due to its availability, high sensitivity, optical sectioning capability, and 
speed. 

Chernenko and colleagues applied hyperspectral confocal Raman microscopy to 
noninvasively query the distribution of cellular organelles relative to two biodegradable 
polymeric nanoparticle delivery systems (Chernenko, et al., 2009). It is very important to 
characterize the biocompatibility, cellular uptake and intracellular trafficking of these and 
other nanoparticle vehicles for drug delivery. Typically this is accomplished through the use 
of 1-2 fluorescent labels at a time and as such is likely to be inefficient and can suffer 
problems with label stability and interference with the nanocarrier. Importantly, in addition 
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to the multiplexed advantage demonstrated with fluorescence-based spectral imaging, 
Raman spectra are exquisitely sensitive to changes in the local biochemical environment. 
This gives the added ability to detect and monitor changes that are associated with 
nanoparticle degradation (such as endosomal acidification). The authors employed a 
multivariate analysis algorithm known as Vertex Component Analysis to decompose 
spectra into their individual components (also called endmembers) (Nascimento & Dias, 
2005). The resulting data were able to represent the spatial distribution of proteins, 
nanoparticles, lipid/phospholipids rich organelle membranes, and endosomal vesicles all 
without the need for exogenous labels. 

Toward similar goals of characterizing the endocytotic uptake and trafficking of gold 
nanoparticles for applications in biomedical diagnostics and targeted gene/drug delivery, 
Park et al. used surface-enhanced Raman scattering (SERS) and dark field microscopy to 
visualize gold nanoparticles conjugated to transferrin protein (Park, et al., 2011). This work 
demonstrates the additional sensitivity offered by SERS over traditional Raman 
spectroscopy, and the potential of this method to not only follow nanoparticle distribution 
in three dimensions in a single living cell, but also make use of SERS spectral changes to 
indicate alterations in protein conjugation due to biochemical reactions. 

5. Conclusion  

A fuller understanding of endocytosis processes and the signalling cascades that regulate 
them is critically important for developing diagnostics, therapeutics, and vaccines. In this 
chapter we have presented three advanced optical imaging methodologies that have 
demonstrated advantages in spatial, temporal, and/or spectral resolution over traditional 
microscopy for interrogation of the processes involved in cellular uptake and trafficking. 
The ability to visualize dynamics of multiple species within living cells with high 3D spatial 
and temporal resolution provides unique information about molecular level interactions and 
their heterogeneity, both within and between cells, that is unavailable with other techniques. 
The examples we highlighted from recent literature illustrate how these tools are being 
engaged to address unanswered questions about the roles of key biomolecules including 
actin, dynamin, and others in the field of endocytosis as well as the sequence of 
biomolecular events during cellular response. 

Yet, the potential of advanced imaging for studying endocytosis-related processes has not 
been fully realized. Recent developments in super-resolution microscopy, spectral imaging, 
and specialized TIRF modalities have extended imaging into a realm where multiple 
biomolecules involved in individual endocytic events can be visualized with never before 
seen clarity, detail, and precision. Future efforts will doubtlessly focus on continued 
improvements to these enabling technologies individually, as well as on coupling the 
aforementioned approaches. Progress towards both ends will provide more complete 
visualizations that are necessary to complement bulk biochemical and genetic approaches, 
and thus better characterize endocytosis pathways in the living cell. 
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1. Introduction 

Endocytosis is the general term for internalization of fluid, solutes, macromolecules, plasma 
membrane components, and particles by the invagination of the plasma membrane and the 
formation of vesicles and vacuoles through membrane fusion. The means by which food 
material enters the body is to a great extent dependent on the size of the particles involved 
[1, 2]. One type of endocytosis is phagocytosis where large (>250 nm) particles are taken up 
by cells. In protozoa, phagocytosis is a feeding mechanism. Particles are brought into the cell 
in large endocytic vesicles called phagosomes (food vacuoles). The phagosomes fuse with 
lysosomes and digestion of the ingested particles occurs. In multicellular organisms, 
phagocytosis is a behavior seen only in certain specialized cells (for example, macrophages). 
The process is essentially the same whether it is phagocytosis of particles or other organisms 
or pinocytosis of molecules. Both endocytic processes are affected identically by inhibitors of 
aerobic metabolism and by low temperatures.  

The various forms of endocytosis (or food uptake) really only differ in degree. They are 
closely linked in that the combined volume taken up by endocytosis is constant and 
critical. As phagocytosis increases, pinocytosis must decrease proportionally.  In 
addition to the forms of bulk transport just considered, which involve invagination of 
the plasma membrane, other essential substances, dissolved nutrients of low molecu1ar 
weight, enter the organism by facilitated diffusion or active transport through the 
plasma membrane. 

Some protozoa secrete hydrolyzing enzymes into the external medium to degrade large 
nutritive molecules into smaller soluble units for transport through the plasma membrane. 
This facility for extracellular digestion is of value to facultative and obligate parasites and to 
other protozoa which live in a highly nutritive environment. 

© 2012 Ramoino et al., licensee InTech. This is a paper distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.
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Ciliated protozoa collect or capture their food in a variety of ways, involving phagocytosis, 
fluid phase and receptor-mediated endocytosis 

2. Phagocytosis 

2.1. Phagocytosis in ciliates 

Ciliates acquire their food as particles from the surrounding medium by a variety of means 
[1-5]. Filter feeders create water currents with special ciliary structures associated with the 
cytostome. The synchronized beating of these membranelles acts as a collecting sieve, where 
the food particles become trapped. Using this mode of feeding, ciliates can shift considerable 
volumes of water in relation to their size. Some of the most efficient filter feeders are the 
hymenostomes Paramecium, Tetrahymena and Glaucoma. All have a ventral buccal (oral) 
cavity containing well-developed ciliary membranelles and some form of paroral membrane 
on its right margin. Fluid and suspended food particles are collected in the buccal cavity and 
directed, by oral membranelle beating, downward to the cytopharynx and cytostome to 
form a new food vacuole [6, 7]. 

Herbivorous ciliates, instead, lack complex oral cilia and gather their food by a complex 
pharyngeal basket of rods and sheets of microtubules that forms an internal support to the 
cytostome. They ingest filamentous algae by grasping the filament, bending it like a hairpin, 
and drawing it into the cytopharynx, where it is broken up into fragments and enclosed in 
digestive vacuoles.  

Gulper ciliates apprehend their prey with special structures called toxicysts, which are found 
in the oral region and release toxins that paralyze or kill the swimming prey organims. The 
paralyzed prey can then be ingested without difficulty. Indeed the oral area of gulpers can be 
extended greatly, as most carnivores take food at least as big as themselves. The initial contact 
may be due to chemotactic orientation or fortuitous contact. Some ciliates develop carnivorous 
tendencies only when their preferred food supply is exhausted. In the absence of bacteria 
Blepharisma eats its own kind and develops giant forms for self-protection [8].  

Sophisticated organelles involved in ingestion are tentacles of suctoria. The predatory or 
parasitic suctorians are sessile ciliates. The ectocommensals on a wide variety of marine and 
freshwater hosts use the motile activities of their host or its feeding strategy to bring food to 
them. Carnivores have developed a special method of feeding in which the tips of the 
tentacles act as cytostomes. The contact between the prey and the tentacles of the predator 
triggers the stimulus for ingestion. The cell contents of the prey are transported up through 
the feeding tentacles into the suctorian, where digestive vacuoles are formed. The 
transporting mechanism is mediated by a complex array of microtubules within the tentacle.  

A number of ciliates respond to exudates from animal tissues and have exploited this 
response by becoming active scavengers. Sheet-like membranous organelles associated with 
feeding are a feature of apostome ciliates which live in or on a variety of animal hosts, 
arthropods, echinoderms and sea anemones.  
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2.2. Paramecium as a model system for membrane trafficking 

The ciliated protozoan Paramecium is easily cultured and manipulated. Therefore, it is 
especially useful to study in vivo vesicle formation, transport and fusion during the digestive 
process. It disposes of well-defined sites for formation of phagosomes (oral cavity, with 
cytostome and cytopharynx) [9, 10]. 

Food vacuoles undergo a series of sequential changes from their formation at the cytostome 
to their defecation at the cytoproct. Depending on their age, size, morphology, vacuolar pH, 
acid phosphatase activity and degree of bacteria digestion, they have been grouped into 
four stages [11-17]. 

The first stage, stage I, includes the nascent and newly formed food vacuoles which separate 
from the base of the cytopharynx and move toward the posterior end of the cell (Figure 1). 
During stage I, food vacuoles have no acid phosphatase activity and are bounded by 
acidosomes. Their content condenses, becoming progressively more acidic, and surplus 
vacuolar membrane and excess fluid are removed by pinocytosis of vesicles which migrate 
back to the cytopharynx. The condensed and acidic food vacuoles (stage II) are surrounded 
by enzyme-containing primary lysosomes. As lysosomes fuse and digestion proceeds, the 
vacuole enlarges again, becoming less acidic or even slightly alkaline (stage III). The 
breakdown products are pinched off as small vesicles (secondary lysosomes) to be 
transported where necessary. Following membrane and water elimination, the food vacuole 
decreases in size and tends to a neutral pH (stage IV); the active retrieval of lysosomal 
membrane may continue during this stage, but active acid phosphatase is not present. In the 
final stage, when the food vacuole becomes defecation-competent, it fuses with the plasma 
membrane at the cytoproct (a fixed spot on the ventral surface, posterior to the buccal 
cavity). The indigestible material is excreted, while the vacuolar membrane is retrieved and 
recycled as discoidal vesicles moving back to cytopharynx and providing the membrane to 
the nascent food vacuole.  

2.3. Phagocytosis in Paramecium by confocal microscopy 

In paramecia fed with indigestible particles, the duration of the digestive cycle is relatively 
short (20 to 60 minutes), and the digestive processes are synchronous enough and so 
temporally defined as to allow food vacuole selection in a specific digestion stage using a 
pulse-chase protocol. By immobilizing living cells pulsed with a food vacuole marker at 
succeeding times after a chase of unlabeled medium, it is possible visualize in vivo the 
intracellular movement of food vacuoles along an orderly path from their formation at the 
cytostome to their egestion at the cytoproct, as well as the flow of pinocytic vesicles from 
vacuolar membrane evagination to the fusion with other food vacuoles. 

The sequence of appearance of the four vacuole stages in different regions of the cell follows 
the general path of cyclosis and indicates that the cytoplasm moves forward in the dorsal 
zone and backward in the ventral zone [6, 18]. Notwithstanding the fact that the digestive 
processes are sufficiently synchronous and separated in time, there is considerable overlap 
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and variability in the length of the food vacuole stages from cell to cell, and possibly from 
food vacuole to food vacuole [16]. Food vacuoles less than 5 min old are vacuoles of stage I 
located in the posterior end of the cell and undergoing rapid acidification and condensation. 
Vacuoles between 5 to 10 min old are acidic and condensed food vacuoles of stage II; they 
are located near the oral region and around the macronucleus. The vacuoles of stage III 
range in age from 10 to about 20 min and are generally located in the anterior half of the cell, 
while stage IV food vacuoles are more than 21 min old and move toward the cytoproct. 
Vacuolar defecation has been shown to begin at about 20 min and is essentially completed 
by 60 min in axenically grown cells [14] as well as in bacterized cells. 

 
Figure 1. Schematic drawing of phagocytic and endocytic pathways of internalization in Paramecium 
based upon WGA-FITC and dextran-TXR staining. Without phagocytosis inhibition the ingested 
material is directed by the oral membranelle beating into the buccal cavity (bc), the cytopharynx and, at 
last, into the nascent food vacuole (nfv). The newly formed food vacuole (I) is surrounded by 
acidosomes (ac) discharging their content into it. The vacuole reduces its size by eliminating water and 
membrane trough small pinocytic vesicles. The condensed vacuole (II) receives the enzymes contained 
into lysosomes (ly). The cargo is digested (III) and pinocytic vesicles containing digestion products are 
pinched off. At last, the indigestible material (IV) is excreted at the cytoproct (cp), while the vacuolar 
membrane is retrieved (rm). The endocytosis of WGA-FITC and dextran-TXR also occurs at the 
parasomal sacs located next the ciliar basal bodies. Exogenous fluid and plasma membrane components 
are internalized by vesicles which fuse with food vacuoles. G = Golgi apparatus; * = WGA-FTC; ° = 
dextran-TXR; + = degraded material;   = flow direction (modified from Allen et al. [17]). 

In order to characterize the cytoplasmic distribution and movement of food vacuoles and 
pynocytic vesicles, living cells were continuously fed with BSA-FITC and latex particles (LP) 
in culture medium for a time period ranging from 30 sec to 30 min, washed, immobilized 
with NiCl2 [19]. NiCl2 inhibits both locomotive activity [20] and formation of food vacuoles 
with solid particle content [21], without affecting cytoplasmic streaming [21]. To 
demonstrate the reutilization of pinocytic vesicles and vesicles formed by the membrane 
retrieved from spent vacuoles at the cytoproct, cells first fed with BSA-FITC and LP for 30 
min, then washed in sterile filtered culture medium for 20 to 30 min, were labeled with 
carmine particles or BSA-Texas red for 1 min, washed and immobilized at various times 
during chase [19].  
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Figure 2. (a) One nascent food vacuole (arrow) at the bottom of buccal cavity (bc) and two newly 
formed food vacuole in a cell fed (carmine particles). (b) In cells fed with BSA-TXR, newly formed food 
vacuoles which fused with BSA-FITC labeled recycled vesicles (arrow), contain both fluorochromes. 
Bars, 10 m. 

In cells fed with carmine particles for 30 sec, only 1-2 food vacuoles are labeled (Figure 
2a). To enlarge the membrane surrounding the nascent food vacuoles, cells utilize 
recycled vesicles that are pinched off from food vacuoles during the digestive process and 
the vesicles deriving from the membrane of the spent vacuoles at the cytoproct. So, in cells 
fed with BSA-Texas red newly formed food vacuoles, which fused with BSA-FITC labeled 
recycled vesicles, contain both fluorochromes (Figure 2b). Food vacuoles separating from 
the cytopharynx and moving toward the posterior end of the cell, are surrounded by 
small acidic vesicles (acidosomes) and by lysosomes (containing hydrolytic enzymes) 
which fuse with vacuolar membrane. To analyze the distribution of acidosomes and 
lysosomes during food vacuole migration, living cells pulsed with LP for 1-2 min, were 
labeled with acridine orange (AO) at various times after the chase in unlabeled medium, 
and immobilized. AO is a fluorescent tertiary amine that accumulates in the acidic 
compartment of living cells and is commonly used to stain lysosomes [23-25]. The 
fluorescence around the newly formed food vacuoles (<5 min old) is due to acidosomes 
[25], whereas the fluorescence around and within >5 min-old food vacuoles is due to 
lysosomes. The AO-stained granules produce a punctuate pattern throughout the cell and 
around certain food vacuoles. Fluorescent granules, including both primary and 
secondary lysosomes, form a relatively thin rim around 6 min-old food vacuoles 
containing LP (Figure 3a). The rim becomes quite prominent in other food vacuoles (10 
min old), as the lysosomes fuse with the vacuolar membrane and discharge their content 
into the vacuole (Figure 3b).  
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Figure 3. (a) Stage II LP-labeled food vacuoles (non-fluorescent) surrounded by AO-labeled lysosomes 
(arrows). (b) Stage III LP-labeled food vacuole (more fluorescent in the surface area, arrow): AO-labeled 
lysosomes are fusing and discharging their content into the vacuole. Bars, 10 µm .(modified from 
Ramoino et al. [19]) 

As the vacuolar content is digested by lysosomal enzymes, the breakdown substances pass 
into the cytoplasm through vacuolar membrane or by way of small pinocytic vesicles. The 
vesicles evaginated from the membrane, go away from the food vacuole and move in the 
cytoplasm toward the cytopharynx where they enlarge the membrane of the nascent food 
vacuole. These vesicles can also fuse with stage II food vacuoles (Figure 4), when the 
vacuoles of stage II increase their size, changing from an acidic to an alkaline status. For 
better visualization of the movement of the pinocytic vesicles, cells are fed with BSA-FITC 
and LP for 30 sec. and washed in a sterile culture medium. So, only 1 or 2 labeled vacuoles 
are formed and few fluorescent vesicles move in the cytoplasm. When the cells are 
immobilized between 15 to 20 min after chase in sterile medium, the food vacuoles are in the 
digestion stage and small pinocytic fluorescent vesicles pinch off. The multimodal image 
analysis utilizing the pseudo-color technique [26] shows changes on the direction of 
movement of the vesicles going away from the vacuole (Figure 5a). 

 
Figure 4. (a) Carmine-labeled food vacuole (non-fluorescent) surrounded by FITC- labeled fluorescent 
vesicles. Carmine-labeled food vacuole (more fluorescent in the superficial zone) surrounded by FITC-
labeled fluorescent vesicles. Bars, 5 µm (modified from  Ramoino et al. [19]) 
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vacuole. These vesicles can also fuse with stage II food vacuoles (Figure 4), when the 
vacuoles of stage II increase their size, changing from an acidic to an alkaline status. For 
better visualization of the movement of the pinocytic vesicles, cells are fed with BSA-FITC 
and LP for 30 sec. and washed in a sterile culture medium. So, only 1 or 2 labeled vacuoles 
are formed and few fluorescent vesicles move in the cytoplasm. When the cells are 
immobilized between 15 to 20 min after chase in sterile medium, the food vacuoles are in the 
digestion stage and small pinocytic fluorescent vesicles pinch off. The multimodal image 
analysis utilizing the pseudo-color technique [26] shows changes on the direction of 
movement of the vesicles going away from the vacuole (Figure 5a). 

 
Figure 4. (a) Carmine-labeled food vacuole (non-fluorescent) surrounded by FITC- labeled fluorescent 
vesicles. Carmine-labeled food vacuole (more fluorescent in the superficial zone) surrounded by FITC-
labeled fluorescent vesicles. Bars, 5 µm (modified from  Ramoino et al. [19]) 
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The utilization of recycled vesicles from stage II and early stage III food vacuoles is 
evidenced by labeling food vacuoles either with carmine particles or with a second 
fluorescent probe. When carmine particles are utilized, food vacuoles in cells immobilized 
after a 5-min. chase (stage II) are initially non-fluorescent and surrounded with a lot of 
fluorescent small vesicles (Figure 4a), then, as the vesicles fuse with the food vacuole (stage 
III), their content becomes fluorescent. At the beginning fluorescence is only located in the 
surface area (Figure 4b), then, it increases as the food vacuole age progresses and more 
vesicles fuse discharging their labeled content inside the vacuole. Vesicles, which fuse with 
food vacuoles, move apparently in unidirectional manner (Figure 5b). 

 
Figure 5. Composite false-color images showing the global vesicle movement of one FITC-labeled 
vesicle moving away from a food vacuole (a) as well as of one small FlTC-labeled vesicle moving 
toward the vacuole (b). A different color, green, blue and red, was associated with three successive 
temporal images t1, t2, t3, respectively. Bar, 10 µm. (modified from Ramoino et al. [19]) 

In Paramecium, a saltatory movement with   changes in direction and velocity, stops and 
starts, was described for cell organelles such as mitochondria and trichocysts in subcortical 
regions of the cell [27] and for all motions within the cytoplasmic streaming [28], whereas a 
smooth and continuous unidirectional movement along the microtubules joined to the 
cytopharynx was reported for acidosomes and discoidal vesicles [29].  

After a digestion period, the food vacuole becomes defecation-competent and fuses with 
plasma membrane; the indigestible material is excreted. Figure 6 is a composite picture of 
phase-contrast CLSM images demonstrating the temporal and spatial movement and 
egestion of food vacuoles at the cytoproct.  

In P. primaurelia food vacuole formation depends on membrane material supply [30]. By 
using different solid particle concentrations in unbacterized culture medium it is shown that 
a given amount of membrane material is available for food vacuole formation. This 
membrane amount is utilized more rapidly if the concentration of particles is higher, where 
the food vacuole size is larger, than for a lower concentration, where the food vacuole size is 
smaller. After the utilization of the membrane made available for the cell, a decrease in the 
food vacuole number occurs. Furthermore, the rate of food ingestion decreases in starved 
cells pressed continuously to form food vacuoles because of particles suspended in the 
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culture medium. The kinetics of food vacuole formation does not differ when cells are fed 
on latex particles in bacterized and unbacterized medium for short periods of time. For 
longer labeling periods with high particle concentrations, the food vacuole number 
decreases after the maximum value more rapidly in cells stained with particles in non-
nutrient medium than in cells fed with particles diluted in bacterized medium. The spent 
vacuole membrane is insufficient to keep the food vacuole number at a high level. Failing 
new syntheses, the vacuolar membrane amount goes on depressing. 

 
Figure 6. Composite image showing the movement of a food vacuole egesting its content at the 
cytoproct. A different color cyan, yellow, red, blue, green and magenta was associated with six 
successive temporal images t1, t2, t3, t4, t5 and t6, respectively. Bar, 10 µm.  

3. Endocytosis  

3.1. Endocytosis in ciliates 

Fluid phase and receptor-mediated endocytosis has been extensively studied in mammalian 
cells [31-34] and most of what is understood about the endocytic process in protozoa comes 
from the studies of pinocytosis in amoeba [35-37]. In an amoeba pinocytotic vesicles are 
formed at the bases of long narrow invaginations, pinocytotic channels. Small vesicles are 
pinched off at the base of a channel deep in the cytoplasm and are passed into the interior. 
But fluid phase endocytosis does not necessarily involve the development of channels. The 
parasitic Opalina ranarum, which must take up nutrients through its plasma membrane, 
pinches off small vesicles in the grooves between the folds in its pellicle [38]. Once inside, 
vesicles coalesce to form larger vacuoles bounded by unit membranes, vacuoles which are 
not markedly different from endocytic vacuoles produced by phagocytosis. Fluid phase 
endocytosis may occur simultaneously all over the surface as in amoebae, or it may be 
restricted to clearly defined regions, such as the walls of the flagellar pocket of some 
trypanosomes. 
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The limited data about endocytosis in ciliates is also due to the difficulty of visualizing this 
process at an optical level. Indeed, in ciliates only defined areas on cell surface are potential 
sites for endocytic uptake since most of the surface is covered internally by an extensive 
system of alveoli and an underlying fibrous epiplasm [39]. This system is interrupted only at 
the cytopharynx, the cytoproct, contractile vacuole pores and along the junctions of the 
abutting units of alveolar membrane sacs. Only the punctuate indentations of the plasma 
membrane, called parasomal sacs, and pellicular pores are potential endocytic entry ports of 
all fluid phase and putative receptor-mediated endocytosis [17, 40-42]. 

Detailed morphological and tracer studies on endocytosis carried out by electron 
microscopy showed that in Paramecium multimicronucleatum fluid phase markers such as 
horseradish peroxidase (HRP) and in Tetrahymena pyriformis receptor-mediated markers 
such as cationized ferritin are internalized via coated pits and are found in coated vesicles 
[40, 41]. Both coated pits and vesicles are also labeled in fixed cells when a monoclonal 
antibody against the plasma membrane of P. multimicronucleatum (C6 antigen) is applied to 
cryosections, suggesting that both membrane-bound and fluid phase markers are 
internalized at the coated pits [40]. Most endocytic sites are clathrin coated pits, however 
there is increasing evidence for mammalian cells for clathrin-independent pathways, 
mediated by caveolae or non-coated vesicles [43].  

In Paramecium the fluorescence amount internalized by endocytosis is less than that 
internalized by phagocytosis even if an increased endocytic rate is obtained when food 
vacuole formation is blocked. Indeed, evidence was provided by electron microscopy 
studies that the number of endocytic vesicles increased when food vacuole formation was 
blocked by trifluoperazine, a calmodulin antagonist [41]. In addition, by means of a 
quantitative analysis, it was evidenced more specifically that the HRP influx rate increased 
twofold when phagocytosis was blocked by propranolol, a -adrenergic antagonist [44]. 
Wyroba [44] suggested that in Paramecium the increased fluid phase uptake indicates that 
the two pathways, though independent, may be limited by a membrane pool and/or energy 
requirements. Indeed, forskolin and phorbol ester, powerful stimulants of Paramecium 
phagocytosis [45], reduce the HRP uptake rate. 

3.2. Endocytosis in Paramecium by confocal microscopy  

Endocytosis in P. primaurelia was studied using WGA (Triticum vulgaris agglutinin) and 
GABAB receptor antibodies, which bind to surface constituents of fixed [46, 47] and living 
cells, as markers for membrane transport and dextran as a marker for fluid phase 
endocytosis.  

Endocytosis markers are internalized via food vacuoles formed at the cytopharynx when 
they are added to the cell incubation medium without phagocytosis inhibition [48]. Cells 
pulsed with WGA-FITC for 3 min show some food vacuoles at the posterior pole of the 
body. After a 10-min chase in unlabeled medium the number of fluorescent food vacuoles 
increases (data not shown). The increase in labeled food vacuoles in a fluorochrome-free 
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medium is due to the fact that the ingested lectins are degraded and pass into the 
cytoplasm by small vesicles which then fuse with other food vacuoles [19]. Increasing the 
chase in unlabeled medium increases the fluorescence inside the cytoplasm, which is 
found later in the vesicles of the phagosome-lysosome system and at the plasma 
membrane level. Conversely, when phagocytosis is blocked by trifluoperazine, the 
fluorescence is initially found, in 3 min pulsed cells, on the plasma membrane and cilia 
and inside the cell into small cytoplasmic vesicles (Figure 7a). After a 5-10 min chase in 
unlabeled medium, fluorescent vesicles fuse with some food vacuoles (Figure 7b), and 
after 20-30 min the labeled food vacuoles increase in number and small vesicles 
throughout the cytoplasm fluoresce (Figure 7c). Therefore, the digestion inside the 
vacuoles of lectins internalized via endocytosis begins later with respect to lectins 
internalized via food vacuole formation (phagocytosis). Moreover, a very weak 
fluorescence is detectable on plasma membrane after longer time periods compared with 
lectin internalization via food vacuole formation.  

 
 
 
 

 
 
 
 
Figure 7. WGA internalization and intracellular flow.  Cells labeled with WGA-FITC for 3 min. Plasma 
membrane and small vesicles inside the cell fluoresce (a). After a 10 min chase in unlabeled medium (b) 
fluorescence is visible in a few food vacuoles whereas after 30 min (c) small vesicles throughout the 
cytoplasm fluoresce. Bar, 20 m.  
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The fusion of endocytic vesicles with food vacuoles is evidenced by a double-labeling 
experiment in which the vesicles are dyed with WGA-FITC and the food vacuoles with BSA-
TXR (Figure 8). 

Similar results were obtained in cells blocked in the phagocytic activity, incubated at 25°C in 
a culture medium containing an antibody anti-GABAB R1 receptor for 15-30 minutes and 
then fixed and processed for immunolabeling.  

Dextran-TXR, a fluid phase endocytosis marker, does not label the plasma membrane and 
enters the cell via small vesicles initially localized at the cortical level (Figure 9a). The 
vesicles later migrate in the cytoplasm and fuse with other endocytic vesicles and with food 
vacuoles (Figure 9b). The number of labeled food vacuoles increases as the dextran-labeled 
vesicles fuse with food vacuoles (Figure 9c) and then decreases when the vacuolar content is 
digested and food vacuoles containing the indigestible material are ejected at the cytoproct. 

 
 
 
 

 
 
 
 
 
Figure 8. Fusion of endocytic vesicles with food vacuoles.  Cells fed with BSA-TXR for 20 min, washed, 
and labeled with WGA-FITC for 5 min. At first, green fluorescence is localized on plasma membrane 
(a); after 20 (b) and 30 min (c) of chase in unlabeled medium green fluorescence is also present inside 
the food vacuoles. Bar, 20 m. 
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Figure 9. Dextran internalization and intracellular flow. In cells labeled with dextran-TXR for 3 min 
fluorescence is visible in small vesicles located in the cortex under the plasma membrane (a). After a 10 
min chase in unlabeled medium (b), vesicles decrease in number and increase in size. After 30 min 
several food vacuoles are labeled (c). Bar, 20 m. 

The relationships between the two different routes of internalization, membrane transport 
and fluid phase endocytosis, are clearly shown when cells blocked in their phagocytic 
activity are simultaneously fed with WGA-FITC and dextran-TXR (Figure 10). The data 
obtained by confocal microscopy suggest that WGA and dextran are present in different 
endocytic vesicles soon after initiation of uptake (< 10 min). The two probes probably partly 
join prior to their fusion with the phago-lysosomal compartment. From these data we can 
assume that dextran-TXR and WGA-FITC enter the cells through two different vesicle 
populations, which then can fuse together or with food vacuoles.  

In order to understand if the two markers are internalized through two separate pathways, 
cells were incubated either in a hypertonic medium or in acetic acid. Indeed, subjecting 
mammalian cells to either incubation in media containing sucrose [49] or cytosol 
acidification with acetic acid [50, 51] has been shown to inhibit clathrin-mediated 
endocytosis by interfering with clathrin-adaptor interactions [52], or by altering the 
structure of clathrin itself [53-55]. In P. primaurelia 0.20 M sucrose incubation completely 
blocks the internalization of WGA, which stops at the plasma membrane (Figure 11a). It also 
reduces dextran uptake, which is localized in small vesicles in the cortical part of the cell 
and in a few vesicles throughout the cytoplasm. Through cytosol acidification by 10 mM 
acetic acid, pH 5.0, WGA fluorescence is localized at the plasma membrane level whereas 
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small red vesicles containing dextran are localized both in the cortex, under the plasma 
membrane, and throughout the cytoplasm (Figure 11b). A similar fluorescent pattern was 
seen by using chlorpromazine (data not shown), a cationic amphiphilic drug which inhibits 
clathrin-dependent receptor mediated endocytosis by reducing the number of coated pit-
associated receptors at the cell surface [56, 57]. 
 

 
Figure 10. Double labeling with WGA and dextran. Cells are fed with WGA-FITC and dextran-TXR for 
5 min (a, b), and fixed after 10 (c) and 20 min (d) of chase in unlabeled medium. (a) and (b) are images of 
the same cell acquired at different focus planes. WGA and dextran are present in different endocytic 
vesicles soon after initiation of uptake (< 10 min), then the two probes partly join prior to their fusion 
with food vacuoles. Bar, 20 m. 

 

 
Figure 11. Fig. 11. Inhibition of clathrin-mediated endocytosis. (a) Effect of hypertonic medium on fluid 
phase and membrane mediated transport. Cells blocked in phagocytic activity are incubated in 0.20 M 
sucrose, WGA-FITC and dextran-TXR for 10 min. Sucrose inhibits WGA internalization and reduces 
dextran internalization. (b) Effect of cytosol acidification on fluid phase and membrane mediated 
transport. Cells blocked in phagocytic activity are incubated in 10 mM acetic acid, pH 5.0, WGA-FITC 
and dextran-TXR for 5 min. Green fluorescence is localized on the plasma membrane and red 
fluorescence in vesicles in both the cortical region and throughout the cytoplasm. (a, b) Two images of 
the same cell acquired at different focus planes from the dorsal side (left) to the internal cytoplasm 
(right). Bars, 20 m. 
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Conversely, dextran internalization is blocked by filipin and nystatin (Figure 12), sterol-
binding agents that disrupt caveolar structure and function [58]. 

 
Figure 12. Inhibition of clathrin-independent endocytosis. Effect of nystatin on fluid phase and 
membrane mediated transport. Cells blocked in phagocytic activity are incubated in 2µg/ml nystatin, 
WGA-FITC and dextran-TXR for 5 (a, b) and 20 min (c) min. (a) and (b) are images of the same cell 
acquired at different focus planes. Green fluorescence locate on the plasma membrane and in vesicles 
through the cytoplasm; no red vesicles are seen inside the cell. Bar, 20 m. 

4. Receptor internalization and recycling  

4.1. Receptor endocytosis  

The classical paradigm of receptor function assumes that receptors localize on the cell 
surface and are activated by the binding of agonist ligands. After activation, most receptors 
are endocytosed from cell surface and travel to low pH endosomes, allowing the ligand to 
detach before the receptor is recycled back to the cell surface or sent through late endosomes 
to lysosomes for degradation [59]. Increasing evidence shows that some G protein-coupled 
receptors are not totally inactive in the absence of ligands but exhibit a constitutive activity, 
too, with elevated basal levels of intracellular signaling [60, 61]. It was found that receptor 
internalization from the neuronal surface occurring both constitutively and in response to 
agonist exposure is mediated by clathrin-dependent endocytosis [62-64]. Clathrin-coated 
vesicles are the initial vehicles for sequestration of surface receptors, which are ultimately 
degraded or recycled. Endocytosis of such membrane proteins involves a series of steps 
beginning with the clustering of receptors at specific sites of the plasma membrane, regions 
that later turn into clathrin-coated pits. Receptors do this by recruiting cytosolic AP2 
adaptor complexes through their cytoplasmic tails.   
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AP2 is a key component of the endocytic machinery that links cargo membrane proteins to the 
clathrin lattice, selects molecules for sorting into clathrin-coated vesicles and recruits clathrin 
to the plasma membrane [65-69]. It is composed of subunits: α, β2, µ2, and σ. The µ2 subunit 
(AP50) binds the endocytic sequence motif of cargo proteins, whereas the β2 subunit binds to 
clathrin and the α region interacts via distinct domains with amphiphysin, AP180 and eps15. 
In addition to the AP2 adaptor complex, amphiphysin interacts with dynamin and the 
disruption of dynamin-amphiphysin interaction by recombinant amphiphysin src homology 3 
(SH3) domain in vivo leads to a potent block in clathrin-mediated endocytosis [70, 71]. 
Dynamin, a large GTP-binding protein, pinches off vesicles at constricted clathrin-coated pits 
by forming a ring-like structure collaring the neck of the vesicle that is thought to drive vesicle 
separation. Eps15 binds the C-terminal domain of the AP2 adaptor -subunit and mediates the 
interaction of AP2 with proteins such as epsin, CALM/AP180 and synaptojanin, implicated in 
regulation of receptor-mediated endocytosis. Eps15 function in clathrin-dependent 
endocytosis seems to be restricted to the early events leading to clathrin-coated pit formation: 
indeed eps15 is not present in clathrin-coated vesicles [72]. 

It has been shown that endocytosis of receptors may also occur through other membrane 
structures, including noncoated membrane invaginations [73, 74] and caveolae [75]. The 2-
adrenergic receptor, which is endocytosed by clathrin-coated pits in several cell types [76, 
77], is endocytosed by membrane invaginations resembling to caveolae in other cells [74, 
75]. Cholecystokinin receptors have been observed in both clathrin-coated pits and caveolae 
in the same cells [73]. Caveolae are cholesterol- and sphingolipid-rich smooth invaginations 
of the plasma membrane that partition into raft fractions and the expression of which is 
associated with caveolin 1. 

A clathrin- and dynamim-dependent mechanism in the β2-adrenergic receptor 
internalization has been already shown in Paramecium [78, 79]. An homologue of dynamin, a 
protein present in mammalian cells with three isoforms generating more than 25 possible 
spliced variants expressed in a tissue-specific manner, was identified in Paramecium, too [80]. 
A gene fragment of this dynamin reveals 74% similarity to human dynamin 2 mRNA and 
the deduced amino acid sequence shows 61.1% homology in a 175 amino acid overlap to the 
N-terminal region of human, mouse and rat dynamin [81]. Endocytosis in Tetrahymena also 
involves a protein in the dynamin family [82]. 

4.2. Receptor trafficking after internalization 

Endocytosis of receptors can contribute to functional resensitization of signal transduction 
by promoting dephosphorylation and recycling of receptors to the plasma membrane [83] as 
well as to down-regulation of receptors, a process that leads to functional desensitization of 
signal transduction by reducing the number of receptors present in the plasma membrane 
and promoting degradation of receptors in lysosomes [73, 84, 85].  

These processes of receptor regulation are thought to involve membrane trafficking of 
receptors via distinct recycling or degradative pathways and can mediate opposite effects on 
the regulation of functional signal transduction [83, 86].  Golgi-derived vesicles provide 
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newly synthesized receptors to the cell surface, whereas clathrin coated vesicles are the 
initial vehicles for sequestration of surface receptors, which are ultimately degraded or 
recycled back to the plasma membrane, either directly or through the recycling endosomes 
[87-89]. These processes are mediated by a continuous traffic of vesicular and tubular 
intermediates which needs to be coordinated to ensure proper progression of cargo through 
the different compartments. Several rab family members have been localized to distinct 
compartments of the endocytic pathway and play different roles in endocytosis and 
recycling [90-93]. Rab5 and rab4 are both localized to early endosomes but exert opposite 
effects on the uptake of membrane-bound proteins. Rab5 plays a role in the formation of 
clathrin-coated vesicles at the plasma membrane [94], their subsequent fusion with early 
endosomes, in the homotypic fusion between early endosomes [95, 96] and in the interaction 
of early endosomes with microtubules [97]. Rab4 has been implicated in the regulation of 
membrane recycling from the early endosomes to the recycling endosomes or directly to the 
plasma membrane [98]. 

In accordance with this functional diversity, rab5 lies at the center of a complex machinery 
comprising several effector proteins [99]. Of these proteins, EEA1 was identified as a core 
component of the homotypic endosome docking and fusion machinery and was shown to 
play a role in the docking/tethering of the endosome membranes [99]. EEA1 is 
predominantly localized to the early endosomes and is regarded as a specific marker of this 
compartment. Because of this localization and given its function in endosome membrane 
docking [99] it has been proposed that EEA1 may confer directionality to rab5-dependent 
vesicular transport to the early endosomes.  Another effector protein for rab5 is rabaptin-5. 
Rabaptin-5 binds directly to the GTP-bound form of rab5 and is recruited to early 
endosomes by rab5 in a GTP-dependent manner [100], stabilizes rab5 in the GTP-bound 
active form by down-regulating GTP hydrolysis [101] and, finally, it is required for the 
homotypic fusion between early endosomes as well as for the heterotypic fusion of clathrin-
coated vesicles with early endosomes in vitro [100, 102]. Rabadpin-5 also interacts, via a 
distinct structural unrelated N-terminal RBD, with GTP-bound rab4 but does not appear to 
interact with rab11, a GTPase that is highly enriched on the recycling endosome and whose 
activity is required for receptor recycling through this compartment [89]. Thus the same 
effector interacts with the two rab proteins which act sequentially in transport through the 
early endosomes. Furthermore, the lysosomal sorting of receptors is dependent upon rab 7 
activity [103]. 

Small GTPase rab is a widely conserved molecular switch among eukaryotes and regulates 
membrane trafficking, also in ciliates. In the T. thermophila genome 56 different rab protein 
genes were identified [104]. These do not include 17 putative rabs previously reported [82]. 
This is a remarkable number, considering that somewhat over 63 rabs have been identified 
in humans [105]. Some of them are very conserved and some others are ciliate specific [104, 
106]. Endocytic compartments were found to be associated with a large number of rabs, 
including both conserved endocytic rabs but also a roughly equal number of divergent rabs. 
One of the conserved rabs did not fall into any of the proposed core clades. The animal rabs 
in this clade are associated with transport of lysosome-related organelles, while the 
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the different compartments. Several rab family members have been localized to distinct 
compartments of the endocytic pathway and play different roles in endocytosis and 
recycling [90-93]. Rab5 and rab4 are both localized to early endosomes but exert opposite 
effects on the uptake of membrane-bound proteins. Rab5 plays a role in the formation of 
clathrin-coated vesicles at the plasma membrane [94], their subsequent fusion with early 
endosomes, in the homotypic fusion between early endosomes [95, 96] and in the interaction 
of early endosomes with microtubules [97]. Rab4 has been implicated in the regulation of 
membrane recycling from the early endosomes to the recycling endosomes or directly to the 
plasma membrane [98]. 

In accordance with this functional diversity, rab5 lies at the center of a complex machinery 
comprising several effector proteins [99]. Of these proteins, EEA1 was identified as a core 
component of the homotypic endosome docking and fusion machinery and was shown to 
play a role in the docking/tethering of the endosome membranes [99]. EEA1 is 
predominantly localized to the early endosomes and is regarded as a specific marker of this 
compartment. Because of this localization and given its function in endosome membrane 
docking [99] it has been proposed that EEA1 may confer directionality to rab5-dependent 
vesicular transport to the early endosomes.  Another effector protein for rab5 is rabaptin-5. 
Rabaptin-5 binds directly to the GTP-bound form of rab5 and is recruited to early 
endosomes by rab5 in a GTP-dependent manner [100], stabilizes rab5 in the GTP-bound 
active form by down-regulating GTP hydrolysis [101] and, finally, it is required for the 
homotypic fusion between early endosomes as well as for the heterotypic fusion of clathrin-
coated vesicles with early endosomes in vitro [100, 102]. Rabadpin-5 also interacts, via a 
distinct structural unrelated N-terminal RBD, with GTP-bound rab4 but does not appear to 
interact with rab11, a GTPase that is highly enriched on the recycling endosome and whose 
activity is required for receptor recycling through this compartment [89]. Thus the same 
effector interacts with the two rab proteins which act sequentially in transport through the 
early endosomes. Furthermore, the lysosomal sorting of receptors is dependent upon rab 7 
activity [103]. 

Small GTPase rab is a widely conserved molecular switch among eukaryotes and regulates 
membrane trafficking, also in ciliates. In the T. thermophila genome 56 different rab protein 
genes were identified [104]. These do not include 17 putative rabs previously reported [82]. 
This is a remarkable number, considering that somewhat over 63 rabs have been identified 
in humans [105]. Some of them are very conserved and some others are ciliate specific [104, 
106]. Endocytic compartments were found to be associated with a large number of rabs, 
including both conserved endocytic rabs but also a roughly equal number of divergent rabs. 
One of the conserved rabs did not fall into any of the proposed core clades. The animal rabs 
in this clade are associated with transport of lysosome-related organelles, while the 
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Tetrahymena protein localized to phagosomes. The remaining 14 conserved rabs in 
Tetrahymena fall within five of the proposed core pathways: ER-to Golgi, 
endocytosis/recycling, endocytosis, retrograde Golgi and late endocytosis [104, 106].  

86 rab genes in the Tetrahymena genome and 229 rab genes in P. tetraurelia were found by 
Saito-Nakano et al. [107]. By comparing the amino acid sequence of rabs in humans and the 
budding yeast Saccharomyces cerevisiae, 42 conventional and 44 species-specific rabs were 
categorized in Tetrahymena and 157 conventional and 72 species-specific rabs in Paramecium. 
Among them, nine Paramecium rab genes showed high homology to seven Tetrahymena rabs, 
suggesting the conservation of ciliate-specific rab [107]. 

4.3. Investigating the GABAB receptor trafficking pathway in Paramecium using 
confocal microscopy 

In our studies we are interested in understanding the endocytic properties of GABAB 
receptors in Paramecium [108, 109]. Although most G protein-coupled receptors undergo 
endocytosis, the conditions and mechanisms of this process vary from receptor to receptor. 
Many of them are endocytosed via clathrin-coated pits, but some are not [110, 111]. Some 
have an agonist-induced endocytosis, some are continuously endocytosed even in the 
absence of stimulation, while others exhibit both a constitutive and a stimulated endocytosis 
[110, 112, 113]. Currently, very little is known about the targeting and trafficking 
mechanisms of GABAB receptor in cells. In the past years, attention has mainly been focused 
on endocytosis of ionotropic GABA (GABAA) receptors. It has been shown that GABAA 

receptors are internalized by a clathrin-coated pit-mediated process in hippocampal neurons 
and in A293 cells [114] and in a clathrin independent manner in HEK-293 cells [115]. Using a 
dominant-negative dynamin construct K44A Herring et al. [116] showed that constitutive 
endocytosis of GABAA receptors in HEK-293 cells is dynamin-mediated, while Cinar and 
Barnes [115] found that it is dynamin-independent. It was also shown that both recombinant 
and neuronal GABAA receptors can constitutively recycle between the cell surface and an 
intracellular endosomal compartment [117]. In Paramecium a dynamin- and clathrin-
dependent pathway has been already observed [78, 79]. 

Constitutive internalization and intracellular trafficking of receptors in P. primaurelia was 
visualized by multiple immunofluorescence analysis using GABAB receptors as marker. 
GABAB receptors display a dotted vesicular pattern dispersed on the cell surface and 
throughout the cytoplasm (Figure 13a), and are internalized via clathrin-dependent and -
independent endocytosis. Indeed, GABAB receptors colocalize with the adaptin complex 
AP2, which is implicated in the selective recruitment of integral membrane proteins to 
clathrin-coated vesicles, and with caveolin 1, which is associated with uncoated membrane 
invaginations [109]. 

Cells were double labeled with a guinea pig anti-GABAB receptor R1 subunit antibody and 
with a monoclonal anti-clathrin or anti-caveolin 1 antibody and visualized with Alexa Fluor 
594-conjugated anti-guinea pig and Alexa Fluor 488-conjugated anti-mouse secondary 
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antibodies, respectively. Staining with anti-clathrin or antI-caveolin antibody led to a 
punctuate pattern throughout the cytoplasm representing endocytic vesicles. The expression 
of GABAB receptors and clathrin- or caveolin-coated vesicles exhibited a clustered 
distribution on the cell membrane and inside the cytoplasm (Figure13). Importantly, GABAB 

receptor and clathrin- or caveolin-coated vesicle clusters were partly colocalized (yellow 
fluorescence). Furthermore, GABAB receptors colocalize with β2 adaptin in a number of sites 
on the plasma membrane [109].  

 
Figure 13. Colocalization of GABAB receptors and clathrin. In cells labeled with a polyclonal antibody 
against GABAB receptor (b) and a monoclonal antibody against clathrin HC (a), a clustered distribution 
of fluorescence is detected on the plasma membrane and inside the cytoplasm. GABAB receptors and 
clathrin vesicles are partly colocalized (c, yellow fluorescence). Bar, 20 m. (d) 2D cytofluorogram: 
colocalized pixels are clustered along the diagonal line (visualized in blue). 

In addition, we have shown that GABAB receptors are removed from the plasma membrane 
by clathrin-dependent and -independent endocytosis by blocking receptors internalization 
by hypertonic sucrose. However, it has recently been found that sucrose inhibits GABAA 

receptor endocytosis that is not mediated by clathrin-coated pits [115]. Therefore, we have 
also used cytosol acidification with acetic acid for clathrin-mediated endocytosis inhibition 
[50]. Furthermore, GABAB receptor internalization in Paramecium is blocked by filipin and 
nystatin, cholesterol binding drugs. The sensitivity of endocytosis to nonacute cholesterol 
depletion with agents such as filipin and nystatin distinguishes caveolae and raft pathways 
from clathrin-dependent and constitutive pinocytosis pathways [118].  
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Treatment of cells with 150 mM sucrose or cytosol acidification significantly inhibited the 
internalization of receptors, as shown by the considerable reduction in receptors inside the 
cytoplasm (Figure 14) as compared to the control (Figure14b). This observation strongly 
suggests that GABAB receptor internalization in Paramecium is mediated by clathrin-
dependent endocytosis. In these experiments phagocytosis was blocked by trifluoperazine.  

 
Figure 14. GABAB-receptor internalization is mediated by clathrin-coated vesicles. In cells whose 
phagocytic activity is blocked by trifluoperazine, 20-minute treatment with 150 mM sucrose (c) or 
citosol acidification (d) inhibits receptor internalization, which can be seen by receptor accumulation on 
the cell membrane and receptor reduction inside the cytoplasm. Controls are cells incubated with the 
anti-GABAB receptor antibody for 1 (a) and 20 min (b) in the absence of inhibitors; the antibody is 
localized in endosomes and phagosomes. Incubation temperature, 25°C. Bar, 20 m. 

Moreover, when endocytosis was blocked by filipin or by nystatin the receptor internalization 
decreased (Figure 15). In these experiments cells were incubated in the anti-GABAB receptor 
antibody for 30 minutes at 4°C (temperature inhibiting phagosome and endosome formation, 
[16], so that receptors were accumulated on the cell membrane (Figure 15a). After removal of 
the excess of antibody, cells were incubated at 25°C. 84% receptors were internalized in 
untreated cells after 20 minutes incubation at 25°C, as shown both by the reduction of cell 
membrane fluorescence intensity and by the fluorescence localization into endosomes and 
phagosomes (Figure 15b). Only 37% and 46% fluorescence was internalized in filipin (p<0.01) 
and nystatin-treated cells (p<0.01), respectively (Figure 16).  

 
Figure 15. GABAB receptors are internalized by non-coated endocytosis. Cells preincubated at 4°C for 
30 minutes and labeled with anti-GABAB receptor antibody for 30 minutes (a) are fixed after a 20-
minute chase at 25°C in the absence (b) or in the presence of non-coated-pit endocytosis inhibitors 
filipin (c) and nystatin (d). Bar, 20 m. 
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Figure 16. Measurement of the internalization shown in Figure 15. Constitutive receptor internalization 
is partially inhibited by filipin and nystatin (38% and 47%, respectively); P < 0.01, Student’s t-test). Data 
were normalized to cells before internalization at 25°C (shown in  Figure15a).  

Colocalization values reported in Table 1 and experiments carried out in living cells suggest 
that GABAB receptors are internalized through the two pathways in a similar quantity. 
Quantification of cell membrane fluorescence was performed by ImageJ 1.46b software 
(Wayne Rasband, Nat. Inst. of Health, USA). 
 

Red Green Red/green (%) Green/red (%) 
GABAB receptor Clathrin 18 ± 3 19 ± 3 
GABAB receptor Caveolin 1 21 ± 6 25 ± 4 

Every colocalization value is the average from four optical sections of ten cells. Data were calculated as the mean ± s.e. 
and are given in percent. 

Table 1. Colocalization of GABAB receptor labeling with proteins involved in endocytosis 

After internalization by clathrin-coated vesicles and by caveolae GABAB receptors are 
transported by rab5-linked vesicles to early endosomes, characterized by the EEA1 marker. 
Receptors are then partly recycled back to cell membrane and partly degraded. The 
recycling of GABAB receptors is evidenced by the overlapping of their immunolocalization 
with both rab4 and rab11 immunostaining. Rab4 controls the rapid recycling of cargo 
proteins directly back to the cell surface from rab4/rab5 positive endosomal structures, and 
the slow recycling of cargo via rab11 positive recycling endosomes. The traffic of GABAB 
receptors to Golgi apparatus is evidenced by colocalization of GABAB with TGN38 
immunoreactivity. The communication between contiguous rab-domains and thereby the 
sequential transport of receptors from one intracellular compartment to another is regulated 
by rab effector rabaptin-5. Furthermore a fraction of GABAB R1 seemed to be directed to 
lysosomes, as shown by GABAB R1 and LAMP1 (lysosomal marker) immunocolocalization, 
and to phagosomes for degradation. An immunolocalization of rab7 on phagosomal 
membrane was also reported in Paramecium [119-122]. 
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Colocalization of GABAB receptors with proteins involved in the endocytosis and recycling 
was demonstrated by both the colocalized pixels in a 2D cytofluorogram and the similarity 
of green and red profiles along the z-axes of fluorescence intensity of double-stained vesicles 
[109]. 2D cytofluorogram (Figure 14d) was generated using ICA plugin of ImageJ.  
Colocalization along the z-axes of double-stained vesicles is also demonstrated by the 
similarity of green and red profiles of their fluorescence intensity of double-labeled vesicles 
from a stack of 30 images (total thickness 2 µm). For three different focal planes a sample of 
a vesicle that shows colocalization (yellow fluorescence) was selected (Figure 17).  
 

 
Figure 17. z-Stack profile of fluorescence intensity of double-labeled vesicles. The left side of the figure 
shows a optical plane from a stack of 30 images (total thickness 2 µm). The right side of the figure 
shows fluorescence-intensity distribution along the z-axis of three yellow-labeled vesicles selected from 
different optical planes (a, top; b, middle; c, bottom) (green,  open circle; red, filled circle). 

The quantitative estimation of colocalized proteins in immunocytochemical studies has been 
performed calculating the colocalization coefficients [123] from the red- and green-channel 
scatterplot. Colocalization coefficients express the fraction of colocalizing molecular species 
in each component of a dual-color image and are based on the Pearson’s correlation 
coefficient, a standard procedure for matching one image with another in pattern 
recognition [124]. If two molecular species are colocalized, the overlay of their spatial 
distributions has a correlation value higher than what would be expected by chance alone. 
Costes et al. [125] developed an automated procedure to evaluate correlation between the 
green and red channels with a significance level >95%. The same procedure automatically 
determines an intensity threshold for each color channel based on a linear least-square fit of 
the green and red intensities in the image’s 2D correlation cytofluorogram. Costes’ approach 
has been accomplished by macro routines integrated as plug-ins (WCIF Co-localization 
Plugins, Wright Cell Imaging Facility, Toronto Western Research Institute, Canada) in the 
ImageJ 1.46b image-analysis software (Wayne Rasband, NIH, USA). 
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5. Conclusion 

In ciliates, essential components of membrane trafficking during endocytosis have been 
identified, based on work mainly with Paramecium and Tetrahymena. We used P. 
primaurelia and laser scanning microscopy to show in vivo vesicle formation, movement 
and fusion. The retrieval of membrane of stage III and stage IV food vacuoles, and 
recycling back both to nascent food vacuoles as small vesicles and to the acidified food 
vacuoles (stage II) as secondary lysosomes have been clearly and dynamically 
documented. Furthermore, the multimodal analysis using the pseudo-color technique 
enabled us to observe the changes in the direction of movement of pinocytic vesicles after 
evagination from food vacuoles.  

Using endocytosis markers and confocal microscopy we have also shown that WGA and 
dextran enter the cell via two distinct vesicle populations and that in Paramecium, as in 
mammalian cells, fluid phase endocytosis is unaffected by treatments that arrest coated pit-
mediated endocytosis, indicating that fluid phase endocytosis is primarily clathrin-
independent. So, plasma membrane components are internalized by endosomes, which are 
first localized in the cortical region of the cell, transported in the most internal cytoplasmic 
portion and fused with other endosomal compartments, until their content is transferred to 
the phagosomes. 

Furthermore, GABAB receptors are removed from the plasma membrane by clathrin-
dependent and -independent endocytosis. Indeed, internalization of receptors is blocked by 
hypertonic sucrose and cytosol acidification, classic inhibitors of clathrin-mediated 
endocytosis, as well as by nystatin and filipin, sterol-binding agents that disrupt caveolar 
structure and function.  

Using standard immunomarkers for early endosomes, recycling vesicles and lysosomes, and 
comparing our data with those obtained in mammalian cells relating to the internalization 
and recycling of some other receptors, we inferred that also in Paramecium GABAB receptors 
are partly recycled to cell plasma membrane and partly degraded into lysosomes. So, using 
immunohistochemical methods we demonstrated that in the single-celled organism 
Paramecium, as in mammalian cells, rab-like proteins are involved in the vesicle transport 
from one compartment to another.  
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1. Introduction 

1.1. Caveolae structure and morphogenesis 

Morphologically described as small “caves” in the plasma membrane, caveolae are highly 
specialized membrane domains with important roles in cell endocytosis, lipid metabolism, 
and signaling. Since their discovery sixty years ago [1,2], the functional relevance of 
caveolae has challenged many scientists, raising numerous debates and controversies. The 
electron microscopy images of caveolae show a rather cell-type-dependent appearance. In 
endothelial cells, caveolae opening is more constricted [3], while in epithelial cells they 
appear open to the extracellular medium and smaller in size [4]. In muscle cells, multiple 
caveolae units cluster together forming T-like tubules invaginating from sarcolemma [5]. 
Regardless their shape, caveolae appear as immobile structures, in tight connection with the 
cortical actin cytoskeleton underlying the plasma membrane. Video microscopy and 
fluorescence recovery after photobleaching analysis have shown that caveolae detach from 
the membrane only upon ligand binding and specific signaling [6]. 

The discovery of caveolins (Cav), the structural proteins enveloping caveolae in a spike-like 
coat [7] marked a significant breakthrough in understanding the nature and importance of 
these organelles. 

Three members of the Cav family have been described in mammalian cells, to date: Cav-1, -
2, -3, which share a significant homology and are conserved throughout evolution [8]. Cav-1 
and -2 are relatively ubiquitous, with highest distribution in fibroblasts, adipocytes, 
endothelial cells, and pneumocytes, being co-expressed in most cells types [9]. Cav-3 is 
expressed independently of Cav-1 and -2 and is limited to skeletal muscle fibers and cardiac 
myocytes [10-12]. Over-expression of Cav-1 in caveolae-deficient cells is necessary and 
apparently sufficient to drive caveolae biogenesis [13]. Moreover, Cav-1 expression is 

© 2012 Branza-Nichita et al., licensee InTech. This is a paper distributed under the terms of the Creative 
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.
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required for the membrane localization and stability of Cav-2. Although unable to drive 
caveolae biogenesis on its own, Cav-2 may however influence it, at least in several 
polarized, epithelial cells [14,15]. The capacity to modulate caveolae assembly, shape and 
size has been shown to depend on Cav-2 phosphorylation status [16]. Similar to Cav-1, Cav-
3 protein is sufficient to drive formation of caveolae in muscle cells [17].  

Most of the molecular data available on caveolins refer to Cav-1; therefore the following 
discussion will focus on this protein, as a representative of the caveolin family, which is 
shown schematically in Fig.1. 

Cav-1 is an integral membrane protein of 21kDa with an unusual topology. Both the N- and 
C-termini are cytoplasmically oriented and connected by a central hydrophobic domain, 
comprising approximately residues 102-134, inserted into, but not spanning the membrane 
bilayer, in a hairpin (or U bent, or horseshoe) configuration [18,19]. Interestingly, a peptide 
corresponding to the last 20 residues of the hydrophilic N-domain, (amino acids 82–101) 
enriched in aromatic residues, can also bind to membranes independently [20,21]. This so-
called caveolin scaffolding domain (CSD) is a highly conserved region responsible for many 
functions associated with Cav-1. 

In silico analysis of the conformation of this hydrophobic domain, showed that mutation of 
a single residue, Pro (110), changes the stable conformation to a straight hydrophobic helix 
that would span the membrane. Expression of the Cav-1 P110A mutant in HEK 293 cells 
followed by confocal immunofluorescence microscopy further confirmed the in silico data 
and the estimated topology [22].  
 

 
 

Figure 1. Schematic presentation of the structural similarities of the caveolin family of proteins. 
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Very recently, circular dichroism and NMR spectroscopy analysis have shown that the 
transmembrane domain of Cav-1 is primarily α-helical (57-65%). In addition, the helix–
break–helix structure was suggested to be critical for the formation of the intra-membrane 
horseshoe conformation predicted for the protein. Interestingly, mutations of Ile (109) and 
Pro (110) to Ala dramatically altered the helix-break-helix structure. Moreover, it was shown 
that substitution of Pro (110) with any other residue results in disruption of the helix-break-
helix structure, confirming the importance of the residue in the stability of the hydrophobic 
domain [23].  

An important structural feature of Cav-1 is represented by its arrangement in high 
molecular mass oligomers of about 350 kDa, composed of 14-16 individual molecules 
[24,25]. Oligomerization is initiated in the endoplasmic reticulum (ER), where the Cav-1 
monomer is co-translationally inserted into the membrane [19] and is rapidly assembled to 
form SDS-resistant, 8S complexes considered the building units of caveolae structure [24,25]. 
Intriguingly, blue native gel analysis evidenced only a few intermediate sized oligomers, 
suggesting that Cav-1 oligomerization is a highly cooperative process [26]. Oligomerization 
of the full-length protein requires the presence of the CSD and of the C-terminal domain [27] 
and appears to be stabilized by the palmitoylation of cysteine residues located at positions 
133, 143 and 156 [18,28]. At this stage of their assembly, the complexes appear highly mobile 
in the ER membrane and rapidly concentrate at the ER exit sites, a process favored by the 
existence of a di-acidic export sequence located at the N-terminal domain. In the absence of 
this signal sequence, Cav-1 accumulates in lipid droplets [29,30]. This is an important 
observation, suggesting that ER exit and lipid droplets localization of caveolin complexes 
are competing processes, highlighting the role of the di-acidic motif in caveolin trafficking.  

Interestingly, co-expression of Cav-1 and -2 results in assembly of mixt 8S complexes, where 
the Cav-1 to Cav-2 ratio may vary from 2:1 to 4:1 [31]; however, expression of Cav-2 alone 
does not result in oligomer formation.  

The process continues in the trans-Golgi where the oligomers are exported in a COPII-
dependent manner and self-associate into a large network of caveolin. However, formation 
of the 8S complex is not a prerequisite for Golgi transport, as expression of Cav- 2 alone, as 
well as that of an oligomerization-incompetent variant of Cav-1 does not result in their 
retention within the ER [32,33].  

The Golgi oligomerization step is sensitive to BFA, clearly indicating that formation of large 
oligomer complexes is dependent on caveolins trafficking to this compartment, probably 
requiring a specific lipid composition of the membrane. The assembly process continues in a 
cholesterol-dependent manner, resulting in formation of 70S stable complexes, also 
evidenced by using a panel of anti-Cav-1 conformational antibodies. These complexes were 
assumed to correspond to the intact protein scaffold of the caveolae structure [34]. It is 
interesting that the caveolin assemblies colocalized with medial, rather than trans-Golgi 
markers, suggesting that, unlike other cargos transported through the secretory pathway, 
caveolar carrier vesicles are formed in the medial cisternae, being further exported to the 
plasma membrane in a dynamin-2 independent manner, similar to other raft-associated 
proteins [34]. This assembly process is schematically shown in Fig.2. 
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Figure 2. Caveolin oligomerization and assembly  

It can be concluded from these observations that the tight regulation of Cav-1 trafficking 
along the secretory compartments (and the multiple check points) is totally justified by the 
complexity of the assembly process. 

In addition to oligomerization, caveola formation involves association of the complexes with 
cholesterol-rich lipid-raft domains at plasma membrane. It is estimated that Cav-1 binds to 
1–2 cholesterol molecules through the conserved basic and hydrophobic residues of the 
scaffolding domain [35]; thus, the relative amount of cholesterol concentrated in isolated 
caveolae can be as high as 20.000 molecules [36]. The relationship between cholesterol and 
caveolins is very complex. Treatment of cells with cholesterol binding or depleting agents 
results in caveolae with altered morphology and disrupted protein coat [7]. Moreover, 
cholesterol regulates Cav-1 expression at both, transcriptional and translational levels, 
through binding to either two steroid regulatory elements in the Cav-1 promoter, or the 
protein itself, thus modulating the level of Cav-1 mRNA or the protein stability [37,38].  

Caveolae are enriched in glycosphingolipids (like GM1 and GM3) and sphingomyelin, the 
total lipid density being significantly higher than within the rest of the plasma membrane 
[36]. This is an important observation implying that certain lipids are recruited in caveolae, 
possibly to ensure their invagination-competent composition.  

Recently, a crucial role in the last steps of caveolae biogenesis has been attributed to PTRF 
(Polymerase I and transcript release factor), originally described as an RNA Pol I 
transcription factor (also called Cav-P60 or cavin-1) [39,40]. Interestingly, cavin-1 is able to 
associate with plasma membrane caveolae but not with caveolins with other intracellular 
distribution (such as Golgi caveolins) [34]. Cavin-1 is recruited by Cav-1 to plasma 
membrane caveolar domains, where the two proteins are found to be in close proximity and 
an approximate ration of 1:1 [39]; however, whether or not they directly interact with each 
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other is still a matter of debate. It was clearly demonstrated that cavins bind to 
phosphatidylserine and are phosphorylated at multiple sites, suggesting they may act as 
regulatory proteins of caveolae functions [41].  

Based on sequence homology with cavin-1, three other proteins named cavin-2 to 4, sharing 
similar molecular organization, have been identified as part of the cavin family [42-44]. 
While cavin-1 expression is strictly associated to that of Cav-1 [39] contributing to the 
stability of the caveolae unit like a scaffolding protein, cavin-2 promotes recruitment of 
cavin-1 in caveolae and appears to have a role in the membrane-curvature [45].  

The role of cavin-3 and -4 in caveolae biogenesis is less well understood. Cavin-3 was shown 
to regulate caveolae budding and Cav-1 trafficking, suggesting a function in coupling 
caveolae to the intracellular transport network [44]. Cavin-4 is co-expressed with Cav-3 in 
cardiac and muscle tissues where their function appears to be tightly correlated [42]. 

All members of the cavin family interact in a multimeric complex of about 60-80 cavins, in a 
Cav-1 independent manner. These complexes were detected both in the cytosol and plasma 
membrane fractions, suggesting they are the result of a succession of events, starting with 
cavin association into the cytosol and ending with the recruitment of the multimeric 
complexes to caveolae, during the final step of their biogenesis [42].  

In contrast to caveolins, cavins are peripheral membrane proteins, and bind molecular 
components of the caveolar domain facing the cytosol. Given the high affinity of cavins for 
phosphatidylserine and the rapid dissociation from caveolae in the presence of nonionic 
detergents, it was suggested that binding to the lipid membrane, rather than to the protein 
scaffold, was highly probable.  

The identification of cavins in caveolae opened new perspectives in understanding the 
complexity of caveolar structure. Although our knowledge on caveolae architecture and 
molecular composition has improved since their discovery, the main structural pillars 
defined at the time have not dramatically changed. Thus, today, caveolae are referred to as 
invaginations of the plasma membrane lipid bilayer, enriched in cholesterol and 
sphingolipids, embedding an integral membrane scaffold formed by caveolin oligomers 
assembled in a stable network, peripherally covered by a protein layer of cavin complexes. 
Once formed, this structure appears to remain stable also during endocytosis [46].  

2. Caveolae signaling  

The protein composition of caveolae has been addressed in a more systematic manner 
within the last years, using proteomic approaches [47-49]. A variety of signal transduction 
proteins were found to localize in caveolae, in tight connection with either the CSD or the 
lipid domains. 

According to the caveolin signaling hypothesis, the role of caveolae is to trigger specific 
signal transduction by concentrating downstream effectors close to plasma membrane 
receptors, through direct interaction with the CSD [50,51]. Palmitoylation appears to play an 
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important function in this process by facilitating the caveolar localization of proteins [52]. Of 
the signaling molecules identified, several have been more thoroughly investigated: 

a. G proteins were abundant in caveolae; their binding to caveolin has a role in maintaining 
the Gα subunits in an inactive GDP-bound state [53]. Small GTP-binding proteins of the 
Ras superfamily also localized in caveolae, a process enhanced by palmitoylation of the C-
terminal hypervariable region [54,55]. Binding of the H-Ras to the CSD results in 
inactivation of the protein, which is relevant in certain human cancers were H-Ras -
caveolin interaction is prevented and the protein is maintained in an active state [56].  

b. Src family kinases, such as c-Src, Fyn, Lyn [57] are nonreceptor tyrosine kinases, also 
enriched in caveolae. Their localization depends on the N-terminal myristoylation and 
subsequent interaction with the caveolins. Interestingly, Cav-1 palmitoylation is equally 
important for caveolae/c-Src interaction [52], which results in c-Src and Fyn inactivation 
[58]. In turn, the tyrosine phosphorylation of Cav-1 and -2 facilitates the recruitment of 
matrix metalloproteinases [58,59], and promotes caveolins localization to focal 
adhesions [60,61]. 

c. Several steroid hormone receptors were localized in caveolae, a process depending on 
both, palmitoylation and association with Cav-1 [62] and facilitating their activation [63].  

d. Endothelial nitric oxide synthase (eNOS) is one of the most extensively studied Cav-1 
interacting protein [64]. eNOS binds to the CSD of both Cav-1 and -3, which inhibit its 
enzymatic activity [65,66]. This observation lead to a novel concept of eNOS regulation, 
whereby, the interaction with caveolins is necessary to keep the enzyme inactive under 
basal conditions, while its concentration in caveolae will allow a quick response upon 
stimulation [67]. 

e. Many ion channels and pumps are targeted to caveolae and interact with caveolins, 
such as the calcium signaling molecules calmodulin, Ca2+-ATPase, L-type Ca2+ channels 
[68,69]. Transient receptor potential (TRP) channels, and large-conductance Ca2+-
activated K+ channels also localize in cholesterol-rich membrane areas, suggesting an 
important role of these domains in Ca2+ homeostasis [70,71]. Other transporters, like the 
Na/K-ATPase, involved in maintaining the Na+ membrane gradient, are also found in 
caveolae, owing this localization to the existence of two caveolin-binding motifs in their 
amino acid sequence [72]. 

f. Protein kinases of different families were found in caveolae, due to their direct interaction 
with the Cav-1 CSD. For PKA, this interaction results in inhibition of the enzymatic 
activity [73], with consequences on regulation of other proteins, such as ATP-dependent 
K+ channels or eNOS in muscle and endothelial cells, respectively [74,75]. Different 
isoforms of the PKC family of enzymes are also caveolae resident and appear to 
participate in regulation of caveolar proteins [76]. Caveolae interaction with PKC is more 
complex, leading to either activation (via ceramide interaction) [77], or inactivation, 
following endosomal delivery [78]. Caveolae also recruit the phosphatidylinositol-3-
kinase (PI3K) through direct binding to Cav-1 [79] and the protein kinase B (PKB). 
Integration of this signaling pathway by caveolae plays a significant role in managing the 
cellular physiological stress, and regulating cell survival and death [80]. 

g. Phosphodiesterases (PDEs), involved in cyclic nucleotides (cAMP and cGMP) 
hydrolysis, have a preference for lipid rafts association (Abrahamsen H, 2004). For some 
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isoformes, such as PDE3B, a direct interaction with Cav-1, with a stabilizing effect on 
PDE3B, has been clearly confirmed by co-immunoprecipitation [81]. Other PDEs (PDE5, 
PDE4A4) appear to be recruited by caveoale through indirect mechanisms, possibly 
involving adapter proteins; [82]. Nevertheless, this association influences the 
establishment of cAMP/cGMP gradients and the downstream events [83]. 

3. Caveolae internalization and trafficking  
Electron microscopy data show that caveolae are tightly connected to submembranous actin 
filaments [84,85], suggesting a function of the cytoskeleton in caveolae-mediated 
endocytosis. However, the exact role of the actin cytoskeleton is not clearly defined, as its 
disruption inhibits uptake of the caveolae ligand, alkaline phosphatase, on one hand [86] 
and promotes clustering of caveolae and internalization of Cav-1-labeled vesicles, on the 
other hand [6,87]. These observations fit into a model whereby actin would play a dual role 
in caveolae internalization: one is to keep the organization of caveolae and maintain their 
immobility at the plasma membrane, and the other to promote vesicle budding and release 
from the membrane.  

Caveolae endocytosis relies heavily on dynamin, a multi-domain GTPase [88,89], which was 
shown to interact directly with Cav-1 [90]. Ligand binding initially disrupts the local actin 
cytoskeleton and promotes dynamin II recruitment to the site of internalization [91,92]. 
Dynamin oligomerization and the GTP-dependent conformational changes result in a 
structural collar around the neck of caveolae, directly mediating formation of free transport 
vesicles, following vesicular fission from the plasma membrane. It was shown that the 
protein regulates the actin tail formation [93,94], possibly through binding to cortactin [95-
97] or intersectin, which promotes actin polymerization [98].  

Another player in this complex molecular game was recently suggested, following the initial 
observation that Cav-1 binds to actin cross-linking proteins, filamin A and B, both in vitro 
and in vivo [99]. The main intracellular function of these proteins is to organize the actin 
cytoskeleton. The Cav-1 filamin A interaction was further confirmed in different cell types 
[100,101] and it was implicated in activation of the actin-folding and chaperone protein T-
complex protein-1, [100] and inhibition of calpain-mediated cleavage of filamin A [102]. 
Thus, by providing the missing link between Cav-1 and the actin cytoskeleton, filamin is an 
important regulator of caveolae-mediated endocytosis and trafficking [103].  

It was proposed that following budding, caveolae can fuse with either preformed vesicles, 
called “caveosome” at the time of their discovery, or early endosome, the latter process 
being dependent on Rab5 expression [46].  

The caveosome was initially described as an immobile structure which did not co-localize 
with fluid phase markers or ligands of the clathrin-dependent pathway [104]. Moreover, the 
compartment was characterized by neutral pH and was unable to accumulate a lysosomal 
dye (lysotracker), reinforcing the notion of an independent organelle, clearly distinct from 
other endocytic compartments, which delivers its cargo to other cellular locations, such as 
the ER [104,105]. However, in a recent investigation of Cav-1 trafficking using pH-sensitive 
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fluorophores, the existence of a neutral pH compartment was seriously doubted [106]. 
Rather, it was suggested that the caveosomes would correspond to modified late 
endosomes, where Cav-1 accumulates when over-expressed, undergoing ubiquitination and 
being further targeted to degradation [106]. Conversely, under physiological conditions, 
caveolae would bud from the plasma membrane transporting their viral cargo to early 
endosomes and eventually to the ER, in a microtubule-dependent manner [107], following a 
series of maturation events, which will be detailed below. 

Clearly, more work is necessary to have the correct picture of the highly atypical caveolar 
trafficking, which appears to allow access of its ligands to intracellular destinations that are 
not reachable from other endocytic pathways. Despite the remaining uncertainties, the 
continuous development of the field has considerable advanced our knowledge of virus 
infection of host cells using caveolae endocytosis.  

The current view of caveolae internalization and trafficking is depicted in Fig. 3. 

 
Figure 3. Ligand internalization and intracellular trafficking following caveolae-mediated endocytosis  
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4. Caveolae dependent viral infections 

Owing to the vast amount of experimental data characterizing cell infection by the simian 
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pathway, being now extensively used in other studies as a marker of it [104,108]. Other well-
characterized viruses using this entry pathway belong to the polyoma virus family, which 
has gained more interest recently, with the increasing number of human viruses identified. 
These include the KI polyoma virus, the WU polyoma virus and the Merkel cell polyoma 
virus [109-111], the latter being associated with an aggressive form of neuroendocrine skin 
cancer, the Merkel cell carcinoma. These are all non enveloped DNA viruses that replicate in 
the nucleus. 

Viruses that use the same pathway to initiate a productive infection in target cells are listed 
in Table 1. Amongst them, Echovirus 1 (EV1), Human Hepatitis B virus (HBV) [112], Murine 
Leukemia Virus (MLV) [113], enteroviruses [114], have been more intensely investigated.   
 

Virus Reference
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Stang, E., J. Kartenbeck, and R.G. Parton. 1997. Major 
histocompatibility complex class I molecules mediate association of 
SV40 with caveolae. Mol Biol Cell. 8:47-57. 
Pelkmans, L., J. Kartenbeck, and A. Helenius. 2001. Caveolar 
endocytosis of simian virus 40 reveals a new two-step vesicular-
transport pathway to the ER. Nat Cell Biol. 3:473-83. 

KI polyoma virus 
Allander, T., K. Andreasson, S. Gupta, A. Bjerkner, G. Bogdanovic, 
M.A. Persson, T. Dalianis, T. Ramqvist, and B. Andersson. 2007. 
Identification of a third human polyomavirus. J Virol. 81:4130-6 

WU polyoma virus 

Gaynor, A.M., M.D. Nissen, D.M. Whiley, I.M. Mackay, S.B. 
Lambert, G. Wu, D.C. Brennan, G.A. Storch, T.P. Sloots, and D. 
Wang. 2007. Identification of a novel polyomavirus from patients 
with acute respiratory tract infections. PLoS Pathog. 3:e64 

Merkel cell polyoma 
virus 

Feng, H., M. Shuda, Y. Chang, and P.S. Moore. 2008. Clonal 
integration of a polyomavirus in human Merkel cell carcinoma. 
Science. 319:1096-100 

Echovirus 1 

Marjomaki, V., V. Pietiainen, H. Matilainen, P. Upla, J. Ivaska, L. 
Nissinen, H. Reunanen, P. Huttunen, T. Hyypia, and J. Heino. 2002. 
Internalization of echovirus 1 in caveolae. J Virol. 76:1856-65. 
Stuart, A.D., H.E. Eustace, T.A. McKee, and T.D. Brown. 2002. A 
novel cell entry pathway for a DAF-using human enterovirus is 
dependent on lipid rafts. J Virol. 76:9307-22 

Human Hepatitis B 
virus 

Macovei, A., C. Radulescu, C. Lazar, S. Petrescu, D. Durantel, R.A. 
Dwek, N. Zitzmann, and N.B. Nichita. 2010. Hepatitis B virus 
requires intact caveolin-1 function for productive infection in 
HepaRG cells. J Virol. 84:243-53. 
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Virus Reference

Murine Leukemia 
Virus 

Beer, C., D.S. Andersen, A. Rojek, and L. Pedersen. 2005. Caveola-
dependent endocytic entry of amphotropic murine leukemia virus. J 
Virol. 79:10776-87 

Tiger Frog Virus 

Guo, C.J., D. Liu, Y.Y. Wu, X.B. Yang, L.S. Yang, S. Mi, Y.X. Huang, 
Y.W. Luo, K.T. Jia, Z.Y. Liu, W.J. Chen, S.P. Weng, X.Q. Yu, and J.G. 
He. 2011. Entry of tiger frog virus (an Iridovirus) into HepG2 cells 
via a pH-dependent, atypical, caveola-mediated endocytosis 
pathway. J Virol. 85:6416-26 

Infectious spleen and 
kidney necrosis virus 

Guo, C.J., Y.Y. Wu, L.S. Yang, X.B. Yang, J. He, S. Mi, K.T. Jia, S.P. 
Weng, X.Q. Yu, and J.G. He. 2011. Infectious spleen and kidney 
necrosis virus (a fish iridovirus) enters Mandarin fish fry cells via 
caveola-dependent endocytosis. J Virol. 86:2621-31. 

Influenza viruses 
Nunes-Correia, I., A. Eulalio, S. Nir, and M.C. Pedroso de Lima. 
2004. Caveolae as an additional route for influenza virus 
endocytosis in MDCK cells. Cell Mol Biol Lett. 9:47-60. 

Coronavirus 229E 
Nomura, R., A. Kiyota, E. Suzaki, K. Kataoka, Y. Ohe, K. Miyamoto, 
T. Senda, and T. Fujimoto. 2004. Human coronavirus 229E binds to 
CD13 in rafts and enters the cell through caveolae. J Virol. 78:8701-8 

Papillomavirus 31 
Bousarghin, L., A. Touze, P.Y. Sizaret, and P. Coursaget. 2003. 
Human papillomavirus types 16, 31, and 58 use different 
endocytosis pathways to enter cells. J Virol. 77:3846-50 

Respiratory syncytial 
virus 

Brown G, Jeffree CE, McDonald T, Rixon HW, Aitken JD, et al. 
Analysis of the interaction between respiratory syncytial virus and 
lipid-rafts in Hep2 cells during infection. Virology 2004;327(2) 175-185. 
Werling D, Hope JC, Chaplin P, Collins RA, Taylor G, et al. 
Involvement of caveolae in the uptake of respiratory syncytial virus 
antigen by dendritic cells. J Leukoc Biol 1999;66(1) 50-58. 

Newcastle disease 
virus 

Cantin, C., J. Holguera, L. Ferreira, E. Villar, and I. Munoz-Barroso. 
2007. Newcastle disease virus may enter cells by caveolae-mediated 
endocytosis. J Gen Virol. 88:559-69 

Ebola virus 
Empig, C.J., and M.A. Goldsmith. 2002. Association of the caveola 
vesicular system with cellular entry by filoviruses. J Virol. 76:5266-70. 

BK polyoma virus 
Eash, S., W. Querbes, and W.J. Atwood. 2004. Infection of vero cells 
by BK virus is dependent on caveolae. J Virol. 78:11583-90. 

Marburg virus 
Empig, C.J., and M.A. Goldsmith. 2002. Association of the caveola 
vesicular system with cellular entry by filoviruses. J Virol. 76:5266-70. 

Table 1. Viruses that use caveolae-mediated endocytosis 

After binding to the host cell, the virus particles are able to cluster the receptor molecules 
such as certain integrins (a2h1 in the case of EV1) [118] or glycosphingolipids (GM1 or GD1a 
in the case of SV40 or polyoma viruses), within the lipid rafts [119]. Accumulation of viral 
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particles in caveolae induces a cascade of tyrosine phosphorylation reactions followed by 
rearrangements of the cortical actin cytoskeleton, as described above [91].  

Several models addressing virus capturing into the plasma membrane invaginations have 
been proposed, the most recent relying on the observation that Cav-1 polymer remains 
intact once formed in the Golgi complex, during transport to the plasma membrane. 
According to this model, caveolae result from the fusion of a pre-existing caveolar vesicle 
with the plasma membrane [46]. As a consequence of virus binding to an increasing number 
of sphingolipids and/or integrins, the affinity of the pathogen for caveolar domains 
increases, facilitating entrapment in these areas. Another possibility is that virus particles 
bind and release the plasma membrane gangliosides in a transient manner, thus screening 
the whole cell surface. When reaching a caveolar region where multiple gangliosides 
interactions can occur simultaneously, binding becomes permanent and the virus particles 
are sequestered [104].  

The intracellular trafficking of caveolae cargos has been recently re-evaluated using SV40 as 
a model and a series of complementary, state-of-the art techniques, including live-cells and 
electron microscopy, video recordings, pharmacological inhibitors and inhibition of 
expression of trafficking regulators [120]. It was shown that productive SV40 infection 
depends on the virus transport through a series of classical endocytic vesicles. Initially, the 
virus is found in Rab5-, EEA1-positive early endosomes and subsequently becomes 
associated with Rab7-positive domains, during endosome maturation. As this process 
proceeds, SV40 co-localizes with LAMP1-, Rab9-, and Rab7-positive late endosomes 
resembling multivesicular bodies and possibly endolysosomes. Endosome maturation also 
involves acidification of the compartments, as a consequence of vacuolar ATPase (v-
ATPase) recruitment and activity. At this stage, acidification is required for SV40 
subsequent transport steps and the initiation of productive infection. Interestingly, BK and 
JC viruses were also shown to enter the endosomes and depend on acidification for infection 
[121-123]. In the case of the mouse polyoma virus, the recycling, as well as late endosomes 
have been involved in infection [124,125].  

From the late compartments of the endocytic pathway, SV40 appears to be directly 
transported to the ER, although an indirect ER targeting, via the Golgi complex, has not 
been completely excluded. Similarly, other polyoma viruses are transported to the ER 
lumen, before reaching the nucleus [121,125].  

However, there are some notable exceptions of virus trafficking diverting from this pathway, 
despite being internalized through caveolae. Thus, cellular penetration of the EV1, a positive-
stranded RNA human pathogen, depends on caveolins, dynamin II, and signaling events but 
does not require actin filaments or microtubules. The virus uptake was much faster than that 
of SV40 and was followed by rapid co-localization with Cav-1. Beyond this step, the virus 
failed to enter the Golgi complex, the ER, or the lysosomes, as none of the markers used to 
label these organelles co-localized with viral proteins. This observation raised the hypothesis 
that the virus particles remain sequestered in the Cav-1 positive endocytic vesicles until 
replication is initiated, further using them for cytoplasmic penetration and uncoating.  
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The lack of transport to the ER or Golgi was also confirmed by the absence of any inhibition 
of infection in the presence of nocodazole. Although more experimental data is needed to 
substantiate it, it is tempting to speculate that the different sorting pathway of the two 
viruses is related to their replication mechanism; thus, a DNA virus such as SV40 needs the 
nucleus for replication, which might be more accessible through the ER, whereas for a 
positive-stranded RNA virus the release of the genome into the cytoplasm is sufficient to 
initiate replication. 

Either way, the precise molecular details characterizing this segment of the trafficking 
pathway are still to be defined, but understanding the factors involved in these unusual 
trafficking pathways is crucially important as other, yet uninvestigated viruses, may well 
use them when accessing the host cell via caveolae.  

Importantly, there is accumulating evidence suggesting that several viruses take advantage of 
cross talk between endocytosis routes. For instance, JCV, bovine papillomavirus type 1 and 
human papillomavirus type 16 have been shown to access cells using the clathrin-dependent 
endocytosis, but intriguingly, they require Cav-1-mediated trafficking to initiate productive 
infection [123,126,127]. The internalized virions were trafficked to early endosomes before 
being transported to the caveolar pathway. From the Cav-1-positive vesicles, the viral cargo is 
further moved to the ER in a COPI-mediated, BFA-sensitive manner [127].  

The newly described trafficking routes taken by these viruses may have an explanation in 
their absolute requirement to reach the ER compartment, a target that is not on the clathrin-
mediated route.  

The intriguing question as to why these viruses travel to the lumen of the ER, instead of 
using the endosomes for genome release, have received several interesting answers lately. 
One possibility is that the pathogens take advantage of the ER machinery of folding 
enzymes and chaperones, for uncoating and membrane penetration, being activated by 
lumenal thiol oxidoreductases before release into the cytosol/nucleoplasm [128]. 

Very recently, BiP and the ER-membrane protein BAP31 (both involved in ERAD) were 
shown to be essential factors for SV40 infection; thus incoming SV40 particles are 
structurally remodeled leading to exposure of the amino-terminal sequence of the minor 
viral protein VP2. These hydrophobic sequences anchor the virus to the ER membranes 
helping the particles release into the cytosol [129].  

5. Investigation of the caveolae entry pathway 

The molecular details of virus entry have been investigated through a variety of techniques, by 
perturbing endocytotic internalization with various inhibitors or interfering with the 
expression or function of key regulator proteins, using siRNA or dominant-negative mutants 
of the proteins, or by using transgenic animals. Because no single method to assess caveolae is 
perfect, the use of complementary techniques is crucial for such a task. These can employ cell 
fractionation, immunoprecipitation, protein and organelle labeling, immunofluorescence 
microscopy. Since caveolae are best characterized by their microscopic appearance, studies 
employing alteration of the intracellular level of caveolins, cholesterol, or different molecules 
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enriched, but not exclusively present in caveolae, should ideally follow the impact of such 
changes to other internalization and trafficking pathways, by electron microscopy 

5.1. Pharmacological approaches 

A pharmacologic approach involves the treatment of cells with agents that deplete 
membranes of cholesterol, or inhibit various structural or signaling molecules involved in 
controlling the pathway. Having the advantage of being readily available and convenient to 
use, chemical inhibitors have been extensively employed to characterize different endocytic 
pathway; however, stringent controls must be included and results should be interpreted 
with care, because of the pleiotropic effects these drugs may have within the treated cell.  

The usefulness as well as the pitfalls associated with the use of these agents will be detailed 
below. 

Methyl-β-cyclodextrin (MβCD) – Cyclodextrins are cyclic oligomers of glucose that have the 
property to bind and extract lipophiles, including cholesterol, from their hydrophobic core 
[130]. Based on the tight dependency of caveolae stability and function on the amount of 
cholesterol present in the lipid rafts, the compound has been widely used to define the 
caveolar-mediated entry of many pathogens [6,117,131-135].  

A major issue of MβCD treatment is its cellular toxicity, which was initially associated with 
longer incubation times (for example, the cell viability decreases form 90% during a  30 
minutes incubation, to as low as 64%, if the drug is used for 12 h) [117]. A thorough study 
performed on multiple cell lines showed, however, that MβCD significantly decreased cellular 
viability, even after short treatment and at concentrations routinely used to inhibit 
endocytosis, a phenomenon which was cell line dependent [136]. Moreover, a low level of 
plasma membrane cholesterol was shown to interfere with other endocytic pathways, such as 
the clathrin-mediated endocytosis [137,138], or even with cholesterol independent endocytosis 
[139], demonstrating a rather poor specificity of the drug in inhibiting a distinct pathway. 

Statins – are a group of drugs that lower the intracellular cholesterol level by competitively 
inhibiting the 3 hydroxy 3 methylglutaryl coenzyme A reductase involved in its biosynthesis. 
As a consequence, efficient depletion of membrane cholesterol and decreased formation of 
caveolae are observed [140]. Despite showing good toxicity profiles, statins also exert 
pleiotropic effects through a variety of mechanisms, which appear to be unrelated to their 
cholesterol-lowering activity. Thus, several immunosuppressive effects have been involved; 
amongst them well-documented are the prevention of activation of the transcription factor NF-
kappaB or up-regulation of the pro-inflammatory cytokine production [141,142]. 

Filipin - is a macrolide pentene polyene with antibiotic properties relying on sterol binding with 
high affinity [143]. Filipin III has been employed to block caveolae entry since it complexes with 
membrane cholesterol, thus interfering with cholesterol-sensitive processes [144]. Treatment 
with filipin dispersed the receptors found in caveolae and promoted disassembly of these 
structures [145]. Similar to MβCD, filipin treatment is toxic and at least for certain cell lines, its 
inhibitory effect on endocytosis was exclusively due to cytotoxicity [146]. However, a narrow 
window of specific inhibitory function can be identified in most cell lines. 
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Genistein – inhibits several tyrosine kinases in mammalian cells and thus, caveolae 
internalization [86,147]. Genistein has been however shown to suppress the entry of several 
types of viruses that use different endocytic ways to gain access to the replication sites: SV40 
[91], adenoviruses [148], human herpesvirus 8 (HHV-8) [149], HBV [112]. However, the 
general need of tyrosine kinases-mediated signaling of diverse families of viruses, both at 
early entry steps, or later in infection, makes it difficult to clearly ascertain the endocytic 
route used, only by using genistein. 

U18666A - is an amphiphilic amine that arrests cholesterol transport and suppresses sterol 
biosynthesis. Treatment of cells with this inhibitor was shown to induce cholesterol 
accumulation in late endosomes/lysosomes and deplete cholesterol from the Golgi complex 
[150]. Interestingly, the mobility of Cav-1 significantly increased in the Golgi complex of 
U18666A-treated cells. 

Phorbol 12-myristate 13-acetate (PMA) – is an activator of classical 2,3-diacylglycerol (DAG)-
dependent protein kinase isoforms, owing this property to their high affinity for the DAG 
binding site. Interestingly, PMA treatment results in constitutive phosphorylation of 
caveolin [151] with significant inhibitory effects on caveola invagination from the 
intracellular face of the plasma membrane [86,152,153].  

PMA has been shown to specifically inhibit the caveolae-mediated entry of Ebola and 
Marburg viruses, two negative-stranded RNA pathogens, members of the Filoviridae family 
[154]. PMA has a low citotoxicity even when used for longer incubation times (82% of the 
cell are still viable following incubation for 24 h, at concentrations required to inhibit 
caveolae endocytosis [117]. 

It is important to note that PMA can stimulate endocytosis of other ligands and interferes 
with the endocytic trafficking by stimulating a factor required for endosome fusion after 
Rab5 activation [155]. PMA treatment may have opposite effects on internalization of certain 
ligands (such as FITC-dextran) in polarized cells, increasing for instance, its basolateral, but 
not apical uptake. 

Okadaic acid – is an inhibitor of phosphatases 1 and 2A, which are important in caveolae 
function [156]. Treatment with okadaic acid has been shown to promote removal of caveolar 
structures from the cell surface and stimulate endocytosis via these structures [6,86]. 
Importantly, the drug also inhibits the clathrin-mediated endocytosis [86] making the time 
of addition to the cells an important experimental factor in drawing the right conclusions on 
viral entry. Thus, pretreatment of cells with okadaic acid interferes with both, caveolae and 
clathrin pathways, while addition after virus binding to the target cells enhances infection, 
as it was shown for MLV [113]. 

Cytoskeleton inhibitors - the actin cytoskeleton localized near the plasma membrane appear to 
be a critical regulator of caveolae endocytosis [157].  

Depolymerization of microtubules with colchicine or disruption of actin microfilaments 
with cytochalasin D resulted in a significant reduction of the amount of Cav-3 in plasma 
membrane fractions isolated from cardiac myocytes. Treatment with either drug also led to 
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the exclusion of Cav-1 and -2 from similar fractions and the decrease of tyrosine-
phosphorylated Cav-1 [101].  

Other drugs interfering with actin polymerization are latrunculin A (actin monomer-
sequestering drug) and jasplakinolide (an actin polymer-stabilizing compound), both were 
shown to reduced SV40 internalization by more than 60% [91]. Since function of many 
cellular processes such as trafficking and organelle movement are regulated by 
microtubules and the actin cytoskeleton, the biochemical assays should be combined with 
microscopy analysis to clearly define the role of the cytoskeleton in viral infection mediated 
by caveolae. Also, it is important to keep in mind that viruses induce cytoskeletal 
reorganization and reconfiguration to initiate, maintain and spread the infection. Therefore, 
the impact of the cytoskeleton perturbation on the outcome of infection highly depends on 
the stage of the viral life cycle the drug is acting upon [158]. 

5.2. Interference with expression and function of caveolae regulating proteins 

As threshold levels of Cav-1 regulate caveolae formation [155, 159, 160], modulating the 
expression and/or function of this protein is one the most reliable approach to investigate 
caveolae entry. Cav-1 down-regulation using anti-sense, small interfering (si) or short 
hairpin (sh) RNA results in a significant decrease in the number of caveolae. For instance, 
the siRNA-mediated knockdown of Cav-1 expression was sufficient to inhibit albumin 
uptake in endothelial cells; however, intriguingly enough, the caveolae localization of 
signaling proteins, including eNOS, Rac, tyrosine kinase Src and insulin receptor was not 
altered. Using this technique, several viruses were shown to depend on caveolae for 
productive infection such as the Avian Reovirus [161], BK polyomavirus [133]. 

Cavin proteins are also important targets to study caveolae-mediated entry, since absence of 
cavin-1 results in lower expression level of caveolins and eventually, the loss of caveole. 
Down-regulation of cavin-1, using specific shRNA, increases mobility of caveolin-1, which is 
released from the cell surface and rapidly internalized and degraded [39]. Interfering with 
cavin-2 expression is also a valuable tool when assessing the role of caveolae in viral 
infection, since its down-regulation induces loss of cavin-1 and caveolin expression and 
therefore, it limits caveolae formation [43]. Similarly, suppression of cavin-3 biosynthesis 
uncouples caveolae from the intracellular transport machinery [44]. 

Caveolae budding from the plasma membrane and subsequent internalization strictly 
depends on dynamin II [89], thus silencing its expression is also often used in combination 
with caveolin inhibition.  

An elegant alternative to silencing the expression of the proteins involved in caveolae 
architecture and function is over-expression of their mutant counterparts, which compete 
with the wild-type proteins for the same function. An important advantage of this technique 
is that, at any time during the experiment, the wild-type protein is still expressed ensuring 
the functioning of the pathway at a basal level and reducing toxicity. This approach was 
used to show the dependence of HBV internalization on functional Cav-1 and dynamin II 
(Fig. 4) [112]. 
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Figure 4. Hepatitis B Virus (HBV) infection of permissive HepaRG cells stably expressing dynamin II 
(A and B) and caveolin-1 (C and D) proteins with either wild-type (A and C) or dominant-negative (B 
and D) functions. HBV infection is evidenced by immunofluorescence microscopy using antibodies 
against the envelope proteins (in red). The dominant-negative dynamin II contains the K44A mutation 
which abolishes the GTP-ase activity (B). The dominant negative caveolin-1 contains a deletion of the 1-
81 amino acid domain, at the N-terminal end (D).  Expression of the wild-type and dominant-negative 
variants is evidenced through the Green Fluorescent Protein (GFP), which is either co-expressed from 
bicistronic GFP-caveolin DNA constructs (C and D) or expressed in fusion with dynamin II (A and B).  
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Cav -1 dominant negative proteins – disturb the formation of Cav-1-positive lipid rafts and 
cause the redistribution of endogenous caveolin to detergent soluble membrane fractions 
[162]. These are N-terminally truncated or N-terminally GFP-tagged caveolin constructs, 
which strongly inhibit SV40 entry [104,163] and were used to characterize the internalization 
pathway of many other viruses [134,164,165].  

Other caveolin constructs containing the point mutations, Y14F and P132L were recently 
demonstrated to have dominant-negative activity [166]. Expression of the Cav-1 variant 
containing the P110A mutation was shown to determine a profound inhibition of caveolae 
endocytosis, cellular lipid accumulation and lipid droplet biogenesis. Moreover, this is a 
potent mutant to take into account when investigating the caveolae pathway,  as it 
significantly reduces the Cav-1 localization  into detergent-resistant domains of the plasma 
membrane and caveolae formation [22]. 

An interesting caveolin mutant is cavDGV, a deleted Cav-3 form, which lacks the first 53 
residues of the protein, but contains an intact scaffolding domain. The truncated protein acts 
as a dominant negative inhibitory mutant, causing the intracellular accumulation of free 
cholesterol in late endosomes, a reduction of surface cholesterol, efflux and synthesis [30].  

Dynamin -II dominant negative proteins - as important regulators of clathrin, caveolae and 
other endocytic pathaways [88,167], dynamin II inhibition is often used in combination with 
modulation of other, more specific proteins involved in caveolae function (listed above). By far, 
the most used mutant dynamin is the K44A variant, defective in GTP hydrolysis, which was 
clearly shown to inhibit release of caveolae from plasma membranes in an in vitro assay [89].  

A long term expression of a dominant negative protein may be toxic for the cells, 
determining changes of morphology. Also it is important to keep in mind that down-
regulation of a certain pathway may promote up-regulation of other, compensatory entry 
mechanisms, if cells express dominant negative proteins for a long time. A solution to 
overcome these potential problems is the use controlled/inducible expression systems (such 
as the TetOn/Tet Off switch).  

Generation of knockout (KO) mice – is a powerful approach for the study of caveolae in vivo. 
Caveolin-KO mice (Cav-1, -2, -3 and Cav-1/-3 double KO mice have already been generated 
and characterized. They displayed different phenotypes, but interestingly, were viable and 
fertile [168]. While Cav-2 KO mice retain normal expression of caveolae, Cav-1 KO mice are 
devoid of Cav-2 expression and caveolae in certain cell lines, and develop many cardiac and 
pulmonary diseases. More work is needed to understand whether or not these pathologies are 
directly correlated with the loss of expression of caveolins and caveolae and a good approach 
toward this aim would be to investigate each individual caveolins and the development of the 
corresponding phenotypes over a longer period of time.  

6. Concluding remarks 
The new experimental evidence emerged with the advance of the techniques used to 
investigate ligand internalization and intracellular trafficking, have consolidated the notion 
that endocytosis through caveolae is a true alternative to the clathrin-mediated pathway. By 
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employing this route for entry into the target cell, viruses could benefit from the enormous 
advantage of being targeted directly to specific organelles that are essential for their 
replication; moreover, degradative compartments can be bypassed, which could enhance 
the efficiency of productive infection. Nevertheless, despite the tremendous development of 
the field in the last decade, many conceptual and mechanistic aspects are still to be clarified 
or reevaluated. Certainly, important issues regarding: a) the regulation of the crosstalk 
between different internalization pathways; b) the similarities between caveolae and other 
clathrin-independent entry routes; c) the exact mechanism of ligand sorting; d) the 
properties of the compartment(s) where it occurs; d) the preferential targeting of caveolae 
ligands to other intracellular compartments than the ER; are already under the scrutiny of 
many cell biologists and will find an answer in the near future.  
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1. Introduction 

For successful infection, viruses must solve several problems and overcome barriers that 
would impede or prevent infection. Some of these barriers include finding a suitable host, 
circumventing the immune system, interacting with cells within their host range, attaching 
to the cell surface, penetrating to the interior of the cell and finding ways for transcription, 
synthesis of their gene products, genome replication, assembly of the particle components, 
and escape from the infected cell. As a whole, viruses are paradoxically, fascinatingly simple 
yet complex. Some viruses, such as those that are enveloped, enter the target cell by 
attacking the cell membrane with a fusion protein, or a fusion domain of an attachment 
protein, that invades the cell membrane and promotes fusion of the viral envelope with the 
cell membrane. This fusion event may occur either at the plasma membrane level or at a 
membrane site in the endocytic vesicle. The viral genome then is free of its envelope and can 
enter the cell interior. Nonenveloped viruses generally do not enter by fusion at the plasma 
membrane level but are commonly taken into the cell by endocytosis, then, by some 
mechanism, are able to invade the cell cytoplasm by escaping from confinement in the 
endosome.  The pathways for virus entry along with the entry subtleties are nearly as 
diverse as the virus families themselves. Many of the parvoviruses are known to employ the 
clathrin-associated acid mediated endocytotic pathway for penetration into their host cell 
and this chapter deals with parvovirus entry. 

The virus family Parvoviridae is so named because of the small size of the virus particles. As 
a group, they are approximately 22-26 nm in diameter, have T=1 capsid structure, and 
contain a single stranded DNA genome. Six genera have been named. They infect a variety 
of mammalian, avian, non-mammalian vertebrate, and invertebrate hosts (Table 1). Some of 
these viruses will be described in the discussion of endocytic entry pathways that follow. 
Parvovirus host range and entry was reviewed by Cotmore and Tattersall (2007) 
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emphasizing viruses in the genus Parvovirus. For purposes of illustration of parvovirus 
entry, bovine parvovirus 1 (BPV-1) will be emphasized in the current review. In subsequent 
descriptions this virus is referred to simply as BPV. BPV is a member of the genus Bocavirus. 
Other Bocaviruses are canine minute virus (CnMV) and human bocavirus (HBoV). BPV-1 is 
the prototype virus of this genus. It is a small (22 nm), non-enveloped virus with icosahedral 
structure. BPV is a pathogen of cattle found worldwide that causes severe gastroenteritis in 
calves, mild respiratory infection, and may cause reproductive failure (Manteufel & Truyen, 
2008; Sandals et al., 1995). It is a contamination risk for commercially prepared bovine serum 
and bovine-derived products. The genome consists of single stranded DNA that is 
composed of about 5515 nucleotides (Chen et al., 1986; Qiu et al., 2007; Sun, et al., 2009). The 
genome contains non-identical palindromic sequences at the two ends. The palindromic 
sequences have signals that are important for genome replication and packaging (Berns, 
1990; Shull et al., 1988). The genome has three open reading frames (ORFs): the left ORF 
encodes the nonstructural proteins NS1 and NS2; the central ORF encodes the nonstructural 
protein NP-1; and the right ORF encodes two or three structural proteins VP1, VP2, and VP3 
(Johnson & Hoggan, 1973; Qiu et al., 2007). According to parvovirus structural protein 
nomenclature, the viruses with two proteins (VP1 and VP2) designate the largest protein 
VP1. The two proteins are co-terminal at the carboxyterminal ends but a unique sequence 
(called VP1u or the VP1 unique sequence) is present on the larger protein. Similar 
nomenclature applies to AAV except there are three structural proteins and the unique ends 
are the VP1/VP2u sequences. Parvoviruses do not encode polymerases. These enzymes are 
provided by the host cell. BPV genome replication relies on host cell DNA polymerase and 
replication factors found in S-phase cells (Berns, 1990). Moreover, transcription is carried out 
by cell RNA polymerase II which requires a double-stranded transcription template. Thus, 
genome replication is a necessary precursor to transcription. The genomic organization of 
HBoV, the second human-pathogenic parvovirus known (discovered after Parvovirus B19), 
closely resembles the other known bocaviruses BPV and CnMV (Allander et al., 2005; 
Kaplan et al., 2006; Ma et al., 2006; Sun et al., 2009). The mid-ORF product of HBoV is 
homologous to NP-1 of BPV and CnMV, and these proteins have 47% amino acid identity. 
The proteins of the two major ORFs (NS and VP) of HBoV have 42-43% homology with NS1, 
VP1, and VP2 proteins of BPV and CnMV (Allander et al., 2005; Bi et al., 2007). 

Most parvoviruses, as understood to date, utilize several different subtle variations of a 
general strategy to deliver their genome to the cell nucleus, the site of virus replication. 
These are late penetrating viruses, in the sense that they are pH-dependent and persist 
longer through the endocytic transport system than earlier penetrating viruses (Greber, 
2011). The rugged, mature, extracellular virion undergoes multistep conformational changes 
that are time- and cell compartment-dependent. In general, several discrete steps have been 
recognized that entering parvoviruses follow. These are interaction with a cell surface 
receptor, trafficking through the endosomal pathway to the late endosome or lysosome, or 
through macropinocytosis for porcine parvovirus (Boisvert et al., 2010), escape from the 
endosomal pathway using the newly deployed phospholipase 2 (PLA2) domain of the 
capsid protein, and cytoskeletal-controlled transport of the modified particle to the nucleus.  
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Techniques employed in the laboratory for the elucidation of viral entry pathways involve 
both direct observational detection of virus in cells and indirect detection of virus movement 
by blocking specific functions in the process with chemical inhibitors. Electron microscopy is 
used as a method for showing virus associated with cell structures giving “snap shot” views 
of virus over time intervals in the entry process. Parvoviruses, for example, can be seen 
associated with clathrin coated pits and in endosomes (Dudleenamjil et al., 2010; Parker & 
Parrish, 2000; Vendeville et al., 2009). Chemical inhibitors are assumed to block the entry 
pathway at certain specific points and incomplete virus replication in the presence of 
inhibitor is presumed to indicate viral penetration using the pathway blocked by the drug. 
Commonly used drugs are chlorpromazine (prevents assembly and disassembly of clathrin 
lattices at the cell surface and on endosomes by inhibiting clathrin polymerization which 
blocks assembly of coated pits and is also a phospholipase A2 inhibitor, Blanchard et al., 
2006); bafilamycin A1 (inhibits vacuolar proton ATPases inhibiting acidification of 
endosomes by blocking transport of protons into the vesicle, Clague et al., 1994; Drose & 
Altendorf, 1997; Wassmer et al., 2005); ammonium chloride (penetrates into the endosome 
increasing endosomal pH, Jin et al., 2002; Liebl et al., 2006); chloroquine (blocks assembly of 
clathrin coated pits and raises endosomal pH, Mani et al., 2006; Ros et al., 2002). Brefeldin A 
has no effect on the early endosome but inhibits vesicle transport and early-to-late 
endosome transition (Clague et al., 1994; Nebenfuhr et al., 2002). 

Some drugs block virus entry through caveolae and can be used to help distinguish virus 
entry through caveolae or clathrin-associated endosomes. The antifungal drug nystatin 
complexes with and sequesters cholesterol inhibiting lipid rafts and caveolae (Chazal & 
Gerlier, 2003; Damm et al., 2005; Sieczkarski & Whittaker, 2002). Phorbol-12-myristate-13-
acetate, a mitogen and a tumor promoter, decreases membrane caveolin-1 (Smart et al., 
1994). Methyl-β-cyclodextrin disrupts detergent-resistant lipid rafts (Beer et al., 2005). 
Genistein blocks phosphorylation of tyrosine kinase which is involved in the formation of 
caveosomes (Pelkmans, 2005a). Other drugs block transport of virions (or modified virions) 
through the cell cytoplasm. Some viruses depend on microtubules for transport and some 
associate with actin filaments. Nocodazole blocks microtubule polymerization 
(Brandenburg & Zhuang, 2007; Pelkmans & Helenius, 2003), vanadate is a dynein inhibitor 
(Beckerle & Porter, 1982), erythro-9-3-(2hydroxynonyl)adenine also is a dynein inhibitor 
(Krietensson et al., 1986). Cytochalasin D disrupts actin microfilaments and blocks actin 
polymerization (Vendeville et al., 2009), and latrunculin A also inhibits actin polymerization 
(Damm et al., 2005; Forest et al., 2005). 

There are some important concerns about the interpretation of the results obtained in studies 
that employ inhibitors. Concentrations of the drugs must be below the cell toxicity levels to 
preserve virus-dependent cell activities. In most cases complete shut-off of virus replication 
does not occur. So, the possibilities of pathway leakiness or the presence of more than one 
entrance pathway must be considered. None of the drugs possesses absolute specificity, 
therefore possible side effects may occur that affect interpretation. In studies like these, the use 
of several chemical inhibitors having different modes of action help to somewhat mitigate the 
problem of cloudy interpretation if the results are mutually supportive.  
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Genus Species Pathogenesis1 

Parvovirus Canine parvovirus Gastroenteritis, cardiovascular failure 
 Chicken parvovirus Enteric disease, cerebellar hypoplasia 
 Feline panleukopenia virus Gastroenteritis, leukopenia, cerebellar 

hypoplasia
 Goose parvovirus Gastroenteritis, anorexia, nasal discharge, 

death
 Hamster parvovirus Osteolytic infection, facial and tooth 

malformation
 H-1 parvovirus A hamster osteolytic virus
 Human PARV 4 Viremia, ?other disease
 Kilham rat virus Mostly asymptomatic, small litters, runting 
 Lapine parvovirus Enteritis
 LUIII virus Systemic infection in hamsters
 Mink enteritis virus Gastroenteritis, leukopenia
 Mouse minute virus Asymptomatic, MMVi is 

immunosuppressive
 Murine parvovius 1 No known disease
 Porcine parvovirus Reproductive failure, embryonic death 
 Raccoon parvovirus Enteritis
 Rat minute virus 1a, 1b, 1c Asymptomatic
 Rat parvovirus (Also known as Kilham rat virus) 
 

Erythrovirus Human parvovirus B19 Erythema infectiosum (Fifth disease), 
exanthema, hydrops fetalis

 

Bocavirus Bovine parvovirus 1 Gastroenteritis (calf scours), dyspnea, 
stillborn calves

 Bovine parvovirus 2 Same as BPV-1
 Bovine parvovirus 3 Same as BPV-1
 Canine minute virus Diarrhea, anorexia, dyspnea
 Human bocavirus Upper respiratory, coryza
 

Amdovirus Aleutian mink disease virus Immune complex disease, 
glomerulonephritis, death

 

Dependovirus Adeno-associated virus   
(types 1-11)

None known, latency in chromosome 19 

 

Densovirus Brevidensovirus Infects mosquito larvae
 Densovirus GmDNV kills moth larvae
 Iteravirus Infects silkworm larvae
 Pefudensovirus Host is the cockroach

 
Table 1. Members of family Parvoviridae. Other presumptive parvovirus isolates are not listed. 1In some 
instances virus infection in adult animals is largely asymptomatic but in neonates some pattern of 
symptomatic infection has been recognized. 
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Immunofluoresceinated virus particles have been used to show association of virus with cell 
receptors and clathrin-rich early endosomes (Freistadt & Eberle, 2006). Purified virus 
particles are directly labeled with the fluorescein fluor by treatment with N-
hydroxysuccinimide-fluorescein. Attachment and uptake of virus by cells is tracked by flow 
cytometry, fluorescence microscopy, or confocal microscopy. Most viruses, including the 
very small parvoviruses, cannot be seen as individual particles by light microscopy, but 
clumps of viruses can be seen. Also, accumulated virus particles present in cell organelles 
such as late endosomes-lysosomes can be seen. Among the Rab proteins in cells, Rab5 is 
primarily associated with early endosomes, Rab7 with late endosomes, and Rab 11 with 
recycling endosomes. Co-localization of virus with specific Rab proteins provides evidence 
of virus trafficking through certain endosomal compartments. 

A recent report provided cryoelectron microscopic images of the HBoV particle (Gurda et 
al., 2010). Other reports show the small, T=1 capsid of parvoviruses displays amino acid side 
chains to the inner capsid surface which bond to the bases of the single stranded genome 
(Agbandje-McKenna & Chapman, 2006; Chapman & Agbandje-McKenna, 2006). Such 
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2. Attachment of virus to the cell 

The term receptor to indicate the cell surface structure to which the virus attaches and  
the term antireceptor to indicate the virus-associated component that binds to the cell 
receptor are used to describe the virus-cell interaction that leads to sticking of virus to cell. 
Several studies have been reported that show the orientations of the capsid proteins and the 
capsid surface topography (Agbandje-McKenna & Chapman, 2006; Agbandje et al.,  
1998; Chapman & Agbandje-McKenna, 2006; Chapman & Rossmann, 1993; Tsao et al., 1991) 
and show the major structural protein forming ridges and valleys on the faces and edges 
with a pore at each vertex. In the parvoviruses studied for surface structure, there  
is a surface “spike” positioned on the icosahedral face or axis of three-fold rotational 
symmetry. The antireceptor is located with this icosahedral face spike (Cotmore &  
Tattersall, 2007). 

Parvoviruses are known to utilize a variety of cell surface molecules as their receptors 
including glycoproteins, glycolipids, and glycans (Cotmore & Tattersall, 2007; Harbison et 
al., 2008). Members of the genus Parvovirus in the FPV serotype (Feline and canine 
parvoviruses) can use transferrin receptors (TfR) for attachment and entry (Cotmore & 
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Tattersall, 2007; Hueffer et al., 2004; Parker et al., 2001; Suikkanen, 2003). These FPV viruses 
also bind to neuraminidase-sensitive N-glycolyl neuraminic acid side chains present on 
some cells, but these probably only act as attachment receptors and not entry receptors 
because infectious entry is insensitive to neuraminidase and infectious entry occurs on TfR. 
The block to FPV infection in canine cells is largely due to the lack of a functional  
cell surface receptor. Feline panleukopenia virus (FPV) and canine parvovirus (CPV) both 
bind feline TfR and use it to infect cat cells, but CPV preferentially binds canine TfR and 
infects dog cells (Palermo et al., 2006). In contrast to the FPV entry program, MVM binds  
to sialoglycoprotein receptors and both binding and entry are neuraminidase sensitive 
suggesting these receptors provide two functions, attachment and entry. Porcine parvovirus 
(PPV) is a major etiologic agent of reproductive failure in swine. PPV binds to sialic  
acid receptors on surface glycoproteins (Boisvert et al., 2010). These authors found pre-
treatment of cells with neuraminidase prevented infection. Resialation on sialidase-treated 
cells with either α-2,3-O-sialyltransferase or α-2,3-N-sialyltransferase partially restored 
infectivity suggesting both O-linked and N-linked forms of carbohydrate moieties may act 
as receptors, but leaves open the possibility of other sialic acids functioning in the 
attachment process. 

The mammalian adeno-associated viruses (AAVs) have been extensively studied for use as 
gene vectors for therapy of diseases resulting from genetic defects. Cellular receptors and 
coreceptors are an area of crucial interest in viral vector-mediated gene therapy because 
receptor preference and receptor tissue distribution may dictate vector choice for a given 
organ. By understanding the mechanisms of viral entry into target cells it may be possible to 
manipulate the gene vector in order to target a cell type of interest. Heparan sulfate 
proteoglycan mediates attachment of AAV-2 to susceptible cell lines (Summerford & 
Samulski, 1998), and other cell entry receptors or co-receptors for AAV-2 include human 
fibroblast growth factor receptor-1 (FGFR-1) (Qing et al., 1999), αVβ5 integrin (Sanlioglu et 
al., 2000; Summerford et al., 1999), and hepatocyte growth factor receptor (c-Met) 
(Kashiwakura et al., 2005). It has been suggested that heparin sulfate may play a role in 
AAV-2 infection as a low affinity attachment molecule (Qiu et al., 2000). Reports indicate 
that a group of basic amino acids that contribute to heparin binding are clustered in three 
positions on the three-fold spike of the AAV-2 capsid (Kern et al., 2003). Additionally, AAV-
5 reportedly binds to cell surface 2,3-linked sialic acids (Walters et al., 2001) and the AAV-5 
receptor for hemagglutination and transduction is α2,3-N-linked sialic acid and that for 
AAV-4 is α2,3-O-linked sialic acid (Kaludov et al., 2001). AAV-5 also binds to the platelet 
derived growth factor receptor (Di Pasquale et al., 2003). AAV type 3 can use fibroblast 
growth factor receptor 1 for binding (Blackburn et al., 2006).  

A characteristic feature of BPV is its ability to hemagglutinate erythrocytes, hence its 
original name, hemadsorbing enteric virus (HADEN) (Abinanti & Warfield, 1961). This 
aspect of virus-cell interaction is possible because this virus attaches to receptors on the 
red cell membrane. Glycophorin A is an abundant transmembrane glycoprotein found in 
the erythrocyte membrane (Tomita et al., 1978). The glycophorin A monomer is composed 
of a 131 amino acid sequence found in three domains that form the hydrophilic 
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cytoplasmic domain, the hydrophobic transmembrane domain, and the aminoterminal 
glycosylated external domain. Glycophorin A naturally exists as a homodimer with 
extensive O-linked oligosaccharide glycosylation on the external domain. Exposure of the 
red cell surface to proteolytic enzymes or to neuraminidase destroyed the erythrocyte 
receptors for BPV indicating the receptor consists of a sialylglycoprotein (Thacker & 
Johnson, 1998). Virus probes on western blots and virus attachment to purified 
glycophorin A on dot blots confirmed virus attachment to this glycoprotein. Moreover, 
purified glycophorin A completely competed out virus attachment to the natural receptor. 
Further, Blackburn et al. (2005) showed BPV binding to α-2,3-linked sialic acid located on 
the O-linked oligosaccharides of the glycophorin A molecule. Treatment of glycophorin  
A with α2,3,-6,-8 neuraminidase eliminated binding of virus to this receptor. Beta-
elimination of O-linked sialic acids on glycophorin A also eliminated binding while 
removal of N-linked carbohydrates using the N-glycosidase PNGase failed to eliminate 
virus binding. After enzymatic removal of the receptors, virus binding could be restored 
by reconstitution of the O-linked α2,3 neuraminic acids.  On nucleated bovine host  
cells BPV attachment occurs on both α-2,3-O-linked and α-2,3-N-linked sialic acids 
(Johnson et al., 2004). 

In studies on PPV infection, prior treatment of cells with neuraminidase prevented infection 
by eliminating PPV receptors (Boisvert et al., 2010). Resialation with α-2,3-O-
sialyltransferase or α-2,3-N-sialyltransferase, or with a combination of the two enzymes 
partially restored infectivity. Therefore, the sialylglycoprotein receptors on the cell surface 
for PPV appeared to consist of both O- and N-linked sialic acids. Possibly other sialic acid 
receptor moieties exist in addition to these because total reconstitution did not occur but it 
was unclear whether completion of the reconstitution reaction could occur under the 
experimental conditions. 

Host range is a property of the virus-host interaction that provides a suitable environment 
for complete virus replication resulting in the production of virus progeny. Only certain 
organs, tissues, and cells are within the host range of viruses. Commonly, host range is 
thought of relating to the availability of cell surface receptors. However, determination of 
host range and its resultant tissue tropism can occur at many levels including attachment to 
compatible receptors, the entry pathway, uncoating, the transcriptional environment, 
genome duplication, translational processes, assembly of virus particles, and mechanisms of 
escape from the host cell. At one level, host range for autonomous parvoviruses is 
determined by the viral requirement for S-phase cells. Frequently, in examples of parvovirus 
disease, the tissues involved are those which have an abundance of mitotic cells. In the case 
of FPV and CPV, related parvoviruses, attachment then entry by endocytosis can occur in 
many different kinds of non-permissive cells, indicating that their host range can be 
determined by events after cell entry. Amino acid residues 359 to 375 found in a flexible 
capsid protein loop were found to exhibit differential conformation when exposed to 
various concentrations of protons and Ca++ (Simpson et al., 2000). It was found that this 
region was functionally associated with both hemagglutinating activity and host range 
determinants providing continuance of successful replication.  
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3. Engulfment 

Several possible pathways of receptor-mediated endocytosis are recognized: clathrin- and 
caveolae-mediated endocytosis, macropinocytosis, and novel nonclathrin/noncaveolae 
pathways (Brindley & Maury, 2008; Damm et al., 2005; Dimitrov, 2004; Kee et al., 2004; 
Marsh & Helenius, 2006; Meier & Greber, 2004; Meier et al., 2002; Mercer & Helenius, 2009; 
Pelkmans & Helenius, 2003; Pelkmans et al. 2004; Sieczkarski & Whittaker, 2002; Stuart & 
Brown, 2006). To date, for viral infections that have been studied, viruses mostly take 
advantage of clathrin-mediated endocytosis for internalization (Marsh & Helenius, 2006; 
Pelkmans & Helenius, 2003; Sieczkarski & Whittaker, 2002). During clathrin-mediated 
endocytosis, transport vesicles are surrounded by a clathrin coat, which is a three-
dimensional array of triskelia. A triskelion is composed of three clathrin heavy chains 
(CHCs, approximately 190-kDa) and three light chains (CLCs, about 25-29 kDa), and has 
three-fold rotational symmetry (Edeling et al., 2006; Merrifield et al., 2005). Ligands that are 
to be transported to the cytosol, including viruses, are concentrated on the cell surface, and 
the concentrated ligands, as a patch, trigger recruitment of clathrin-adaptor proteins to the 
cytoplasmic side of the plasma membrane. Clathrin-adaptor complexes (APs) include the 
main distinct complexes, AP1 and AP2. A third protein, AP180, is used mainly for synaptic 
vesicles. The AP-2 complex consistes of α-adaptin, β2-adaptin, μ2-chain, and σ2-chain. APs 
bind to membranes by recognizing phosphoinositides and link clathrin to the membrane. 
Therefore, clathrin coated vesicles (CCVs) are three-layered: 1) the inner, membrane layer 
with its embedded receptor/ligand complex, 2) the middle layer that is composed of APs 
and other regulatory proteins for clathrin assembly, and 3) the outer clathrin shell (Edling et 
al., 2006). CCVs comprise one of the most common and well defined coated transport 
vesicles. The internal pH in the CCV is around 6.5. Once fission of the pit has occurred 
through the action of accessory proteins including dynamin and other proteins forming 
CCVs, the clathrin coat must be rapidly shed to allow fusion of the vesicle with its target 
membrane. Uncoating of clathrin is resolved by auxilin and the molecular chaperone Hsc70 
(heat shock protein 70). Auxilin interacts with assembled clathrin and binds to Hsc70 via its 
carboxyl-terminal J domain triggering Hsc70’s ATPase activity. Hsc 70 then interrupts 
clathrin-clathrin interactions, causing shedding of the clathrin coat. Disassembled clathrin, 
accessory proteins and the endocytic recycling compartment (internal pH about 6.5) are 
recycled and promote the clathrin-coated vesicle cycle (Brandenburg & Zhuang, 2007; 
Dawsen et al., 2006; DeTulleo & Kirhchausen, 1998; Doxsey et al., 1987; Edling et al., 2006; 
Heuser & Anderson, 1989; Huang et al., 2004; Lemmon, 2001; Pu & Zhang, 2008; Sun et al., 
2002). The cargo-containing vesicle then matures to the early endosome with an acidic 
environment (pH 6.5 to 6.0). In addition to the pH, markers for the early endosome include 
Rab5-GDP and Early Endosome Associated Protein-1. Virus-engaged receptors are 
uncoupled from their ligands at this mildly acidic environment of the early endosomes and 
ligand molecules are recycled back to the plasma membrane (Van der Goot & Gruenberg, 
2006). The early endosomes are major sorting stations where the endosome is recycled back 
to the cell membrane, or where endocytosed cargo, including some viruses, can be released 
to the cytoplasm or can progress farther into the endosomal pathway to more acidic late 
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endosomes (pH 6.0 to 5.0) and lysosomes. The acidification of endosomes is required for 
release of virus into the cytoplasm (Damm & Pelkmans, 2006; Gagescu et al., 2000; 
Lakadamyali et al., 2006; Marsh & Helenius, 2006; Pelkmans & Helenius, 2003; Russell et al., 
2006; Sieczkarski & Whittaker, 2002; Smith & Helenius, 2004; Van der Goot & Gruenberg, 
2006). The late endosome becomes a degradative body with lower pH. It acquires the 
marker for mannose-6-phosphate receptor (MPR+) and the Rab7-GDP marker. They also 
acquire the unusual lipid lysobisphosphatidic acid (LBPA).  

After engulfment the genome or nucleocapsids of viruses are released into the cytosol by 
fusion of the viral envelope with the endosomal membrane for enveloped viruses or, for 
non-enveloped viruses, capsid disassembly occurs in the endosome for some viruses with 
subsequent genomic escape to the cytosol (Brandenburg et al., 2007; Stidwill & Greber, 
2000). The acidic pH of endosomes plays an essential role to trigger these events. Further, 
some non-enveloped viruses begin the uncoating process in the late endosome, but 
complete uncoating is delayed and it is a nuclear event. For example, in some instances such 
as adenovirus, AAV and canine parvovirus infections, the genome together with modified 
capsid components translocate to the nuclear membrane (Meier & Greber, 2004; Sonntag et 
al., 2006; Vihinen-Ranta et al., 2002) where final uncoating occurs for adenovirus but the 
small parvovirus capsid crosses the nuclear membrane before final uncoating within the 
nucleus. Digestion of material enclosed in the late endosome may not be complete and 
fusion with lysosomes may occur forming a hybrid organelle with an internal pH of about 
5.0 and are MPR-negative. Viruses that exploit clathrin-dependent acid-mediated entry are 
sensitive to the inhibitors of endosomal acidification. Thus, inhibition of virus replication by 
endosomal pH inhibitors is taken as evidence for virus tracking through an acid-mediated 
endocytosis pathway. 

The transport of endosomes is mediated by microtubules and proceeds toward the 
microtubule organization center which is found in the perinuclear area of the cell. Thus, 
transport to the late endosomes/lysosomes is beneficial for both virion conformation 
adjustment and for transport to the nucleus. Once the virus has escaped from the endosomal 
compartment the virus particle itself may interact with microtubule motors or with actin 
filaments to complete the journey to the nuclear membrane. In the case of parvoviruses, 
proteosomal digestion can help or hinder virus infection. AAV particles are degraded by the 
proteosome causing an aborted infection (Douar et al., 2001) while proteosome processing is 
required for MVM infection (Ros et al., 2002).  

Electron microscopic images of BPV-infected cells show vacuoles consistent with CCVs 
containing virus particles (Dudleenamjil et al., 2010) at 15 minutes post-infection. In a 
separate report on canine parvovirus (Parker & Parrish, 2000), virus particles were found  
in endosomes at 5 minutes and 15 minutes post-infection. Densonucleosis virus was shown 
by EM in CCVs of Lepidoptera cells at 5 minutes post infection (Vendeville et al., 2009).  
These images in three different host cells were very similar and characteristic of CCVs 
bound with membrane-linked clathrin. An electron micrograph (Fig. 1) illustrates the 
possible invagination and pinching off process and shows a CCV that contains a virus- 
like particle. 
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In contrast to clathrin-mediated pH-dependent endocytosis, caveolae-mediated entry is an 
event triggered by binding of, for example, virus particles to receptor molecules on the cell 
surface that induces the clustering of lipid rafts with a high content of cholesterol and 
sphingolipids (Chazal & Gerlier, 2003; Hommelgaard et al., 2005; Pelkmans, 2005a). The area 
of the plasma membrane with the clusters invaginates to the cytosol, and the vesicle is 
surrounded by caveolins, the most characterized proteins of caveolae-mediated entry. These 
caveolin coated vesicles formed at the cholesterol-rich microdomains at the plasma membrane 
are the caveolae. Caveolins stabilize caveolae, and they are remarkably static in caveosomes 
(Marsh & Helenius, 2006; Pelkmans, 2005b). Accessory proteins involved in caveolae-mediated 
entry are dynamin and actin, and they are recruited by tyrosine kinase activites (Dimitrov, 
2004; Marsh & Helenius, 2006; Pelkmans, 2005a; Pelkmans & Helenius, 2003; Pelkmans et al., 
2005; Smith & Helenius, 2004). The caveolae containing the virus/receptor complex, close, 
pinch off from the cell membrane, and fuse together forming caveosomes. Caveosomes are 
part of the endocytic organelles with a neutral pH and the absence of markers for early, 
recycling, and late endosomes (Pelkmans, 2005a; Pelkmans & Helenius, 2003). Nevertheless, 
caveosomes connect with the smooth endoplasmic reticulum (ER), early and late endosomes, 
and the cell membrane. Release of virus taken up by the caveolar-raft system can occur from 
caveosomes (Echo 1), the ER (SV40), and endosomes (polyomaviruses and BK virus) (Eash et 
al., 2004; Marsh & Helenius, 2006; Pelkmans & Helenius, 2003). The interaction with 
endosomes may be crucial for some viruses that are taken up by caveolae-mediated 
endocytosis but require a low-pH environment for escape to the cytoplasm. Chemical 
inhibitors, targeted for a certain part of interconnected organelles of caveolae entry, are 
extensively exploited for examination of caveolae pathways used for virus entry. Results of 
studies utilizing inhibitors targeting caveolae found no evidence for BPV entry through 
these vesicles (Dudleenamjil et al., 2010) nor for PPV (Boisvert et al., 2010). 

Active cell entry routes of some members of the Parvoviridae family have been described. 
Parvoviruses are known to utilize a variety of cell surface molecules as their receptor 
including glycoproteins (Blackburn et al., 2005; Thacker & Johnson, 1998), glycolipids, and 
glycans (Cotmore & Tattersall, 2007). It has been reported that parvoviruses with known cell 
entry routes enter into CCVs and establish successful infections (Basak & Compans, 1989; 
Cotmore & Tattersall, 2007; Harbison et al., 2008; Op De Beeck & Caillet-Fauquet, 1997; 
Parker & Parrish, 2000; Ros et al., 2002; Vendeville et al., 2009).  Most studied for 
illumination of this process are MVM, CPV, PPV, DNV and AAV. Adeno-associated virus 
(AAV)’s entry into the host cell is mediated by clathrin coated pits and then routes to the 
late endosomes (Bartlett et al., 2000). The virus particles then escape to the cytoplasm where 
they are partially degraded by the proteasome and delivered to the nucleus for replication 
(Douar et al., 2001). The canine parvovirus, having used the transferrin receptor (TfR) for 
attachment (Parker et al., 2001), enters through the CCVs, and localizes in endosomes 
(Hueffer et al., 2004; Parker & Parrish, 2000; Vihinen-Ranta et al., 2002). Both CPV and FPV 
bind to TfR but species-specific binding controls host range. CPV binds to the filopodia of 
canine cells while FPV infects cats binding to the TfR on feline cells. FPV does not bind the 
canine TfR, does not infect dogs, or infect cultured canine cells (Harbison et al., 2009). 
Conversely, CPV can infect feline cells by binding to TfR on the cell body. Minute virus of 
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mice (MVM)’s cell entry and following events in the cytoplasm were investigated analyzing 
the effects of drugs that interfere with the endosomal acidification and ubiquitin-
proteasome activities. Results suggested that MVM’s entry is pH-dependent, and the 
interaction with the ubiquitin-proteasome system is required for MVM replication (Ros et 
al., 2002). The relatively rapid endocytic uptake of parvoviruses appears to be followed by 
slower traffic along the endocytic compartments toward the nucleus. The endosomal 
pathway undertaken by parvoviruses appears to be complex and depends on the virus, its 
concentration, and likely the cell type (Dorsch et al., 2002; Mani et al., 2006; Sonntag et al., 
2006; Suikkanen et al., 2003; Yuan & Parrish, 2001). Conformational alterations in capsid 
structure probably occur in the endosomal compartment facilitating uncoating and 
transport to the nucleus. 
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Figure 1. Electron micrograph of a clathrin coated vesicle-associated parvovirus-like particle. A) 
Negative-stained uninfected EBTr cell thin section showing invagination of membrane (a); (b) a nearly 
closed clathrin coated vesicle (CCV); (c) an enclosed CCV. B) A bovine parvovirus-infected cell (at 15 
minutes post-infection) showing the cytoplasmic membrane site of CCV formation (long arrow), and a 
CCV containing unidentified material and a parvovirus-like particle (short arrow). A puddle of 
negative stain lies next to the particle slightly obscuring the capsid edge.  

The vacuolar proton ATPase (V-ATPase) is a multisubunit enzyme complex, and it is 
responsible for the acidification of membrane-bounded organelles like endosomes. V-
ATPase transports H+ over membranes against an electrochemical potential under ATP 
hydrolysis, and H+ ions acidify endosomal environments. Baf A1 blocks the V-ATPase 
activity causing neutralization of the acidic environment of endosomes. Baf A1 is routinely 
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used as a suppressor of V-ATPases, and it is used to test whether specific viral entry is 
reliant on endosomal acidification (Clague et al., 1994; Drose & Altendorf, 1997; Jin et al., 
2005; Wassmer et al., 2005). It has been widely used as a probe to study acid-mediated viral 
trafficking using a variety of virus models. Entry pathway studies of mouse polyomavirus 
(Liebl et al., 2006), feline calicivirus (Stuart & Brown, 2006), bovine viral diarrhea virus 
(Lecot et al., 2005), AAV (Bartlett et al., 2000), MVM (Mani et al., 2006; Ros et al., 2002), 
mouse hepatitis virus type 2 (Pu & Zhang, 2008), poliovirus (Brandenburg et al., 2007), 
baculovirus (Long et al., 2006), hepatitis C virus (Blanchard et al., 2006), influenza virus 
(Guinea & Carrasco, 1995; Sieczkarski et al., 2003), HIV-1 (Fredericksen et al., 2002), and 
human rhinovirus 14 (Bayer et al., 1999) have analyzed the effects of Baf A1 on virus 
trafficking and examined the role of endosomal acidification in a route that leads to viral 
replication. For studies of parvovirus entry Baf A1 may be an inhibitor preferred over 
chlorpromazine because chlorpromazine is not only an inhibitor of clathrin lattice 
processing, but is also an inhibitor of phospholipase A2. Because parvoviruses use their own 
version of PLA2 for entry, confusion may arise regarding the point of inhibition.  

4. Virus in the early endosome  

In the process of acid mediated endocytosis acidification begins in the early endosome 
reaching a pH of 6.5 to 6.0. Proton transport continues during the transition to the late 
endosome which develops a pH of about 5.0 within this vesicle. The intravesicular 
environment of the lysosome is also characterized by low pH. Early endosomes are 
considered an initial sorting station where cargos for degradation are distinguished from 
those for recycling and this sorting process begins in clathrin coated vesicles, depends on 
microtubule motility, and appears to involve endocytosis adaptors (Lakadamyali et al., 
2006). Acidification of endosomes is known to be essential for viruses which internalize 
within CCVs. Studies on parvovirus entry have reported that BPV, MVM, AAV, and CPV 
internalization require endosomal acidification, and the endosomal acidic environment may 
induce capsid conformational changes vital for viral release from endosomes to the 
cytoplasm (Basak & Compans, 1989; Douar et al., 2001; Dudleenamjil et al., 2010; Mani et al., 
2006; Ros et al., 2002). Because the proton concentration increases during transition from 
early to late endosomes and high acidity is maintained in the lysosome, it is possible that 
acid-dependent uncoating of viruses, specifically pH-dependent capsid protein 
conformational shifts, may occur at various points within the early endosome, in the late 
endosome, or after exposure to the harsh environment in the lysosome complex.  

The mechanisms of capsid endosomal processing in a low pH environment are poorly 
understood but are under investigation. The N termini of AAV VP1 and VP2 (VP1/VP2u), 
like the N terminus of MVM, CPV, and PPV VP1 (VP1u), contain motifs homologous to 
PLA2 and nuclear localization signals. AAV mutants that are consistent with a nuclear 
localization signal-deficient phenotype, traffick through the early endosome as the 
recombinant AAV2 control does, but forms a more diffuse accumulation pattern in the 
perinuclear area consistent with an NLS defect (Johnson et al., 2010). In a recent study, 
AAV-8 was exposed to pHs ranging from 7.5 to 4.0 and crystal structures of empty particles 
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and green fluorescent protein gene-packaged particles were analyzed (Nam et al., 2011). The 
capsid surface topologies of particles exposed to various pHs were similar except changes 
located close to the two-fold depression and significant amino acid side chain 
conformational changes were seen on the interior surface of the capsid under the three-fold 
axis. The three-fold change is consistent with low pH-associated release of genomic DNA 
from an ordered state on the interior surface of the capsid and likely indicate capsid 
transitions that ultimately result in genome uncoating. The surface alteration results in 
disruption of VP-VP interface interactions along with a decrease in buried surface area 
between VP monomers. This destabilization may lead to activation of the PLA2 activity for 
endosomal escape and the NLS for nuclear targeting. As noted, it was observed by Nam et 
al. (2011) that at pH 4.0 specific interactions between the capsid and the packaged  
DNA genome are weakened but it is insufficient for genome uncoating. Rather, the 
intracapsid genome may be compacted. This process could be a step toward genome  
release or shift of the VP1u to externalization. These authors further point out that current 
thinking postulates that the five-fold pore of AAV is the externalization portal for the AAV 
VP1 and VP2 N-termini, the other parvovirus’ VP1u, and the packaged DNA. But there is 
only a small difference in diameter at the top of the channel between pH 7.5 and  
pH 4.0. Therefore, in addition to acid pH other cellular factors such as proteolytic  
enzymes likely operate to facilitate capsid dynamic events to externalize these VP1u and 
VP1/VP2 N-terminal domains and ultimately genome release after trafficking from the early 
endosome. 

A contrast exists between the deployment times of VP1u of some autonomous parvoviruses 
with that of Parvovirus B19. As noted above VP1u deployment occurs during trafficking 
through the acidified endosomal compartments. It was found that B19 attachment to human 
erythrocytes caused early accessibility and activity of PLA2 without entry into a nucleated 
cell (Bönsch et al., 2008). Thus, VP1u is displayed as the virus remains attached to the 
surface of erythrocytes. The phospholipase does not cause lysis of the cells but does cause 
increased osmotic fragility. In an earlier study on VPu of B19 virus, it was reported that the 
VPu motif is internally oriented but becomes exposed in heat-treated particles and in 
particles exposed to low pH (Ros et al., 2006). 

CPV capsids labeled with fluorescent markers were seen in Rab-5 positive endosomes 
within minutes of uptake (Harbison et al., 2009). Capsids were also seen in Rab7- and 
Rab11-positive endosomal compartments by 10-15 minutes after infection. Gradually  
the virus accumulated near the microtubule organizing center. The CA form of Rab5 
induces large, ring-like vesicles in cells and a high proportion of the CPV capsids entered 
these vesicles and remained there for a period of time of one hour or more. Many  
of the particles remained attached to the vesicle wall probably in association with the 
receptors. 

In Lepidoptera cells densonucleosis virus (DNV) particles are rapidly internalized and are 
found in CCVs. They then traffic slowly within early endosomes, then to late endosomes 
(Vendeville et al., 2009). An alternative route from the endosome is to the multivesicular 
body (MVB) which contains numerous intraluminal vesicles (ILVs). Fusion of the MVB with 
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the plasma membrane releases small exosomes to the extracellular environment. Exosomes 
are microvesicles 40-100 nm in size that exhibit a cup-like morphology and appear  
to be released ILVs (Meckes & Raab-Traub, 2011). The size of an exosome would 
accomodate one or more parvovirus particles but this pathway would be a detour diverting 
virus from the entry process leading to nuclear penetration which is essential for virus 
replication. It is not clear at this time if parvovirus particles are extruded from the cell in 
exosomes. It would be feasible for cells outside of the viral host range to expel endocytosed 
particles in this manner, but such a resistance pathway for parvoviruses is yet to be 
demonstrated.  

5. Transition to the late endosome  

It is thought that four general biological alterations accompany the early-to-late endosomal 
transition: acidification of the endosomal lumen, formation of luminal vesicles, the switch of 
Rab GTPases, and microtubule-mediated transport between the organelles (Greber & 
Cosset, 2011). Some viruses escape to the cytoplasm under the effects of the acidic 
environment (pH 6.5 to 6.0) of the early endosome.  Sensitivity to endosomal acidification 
raises a question regarding duration of the virus within the endosome. That is, whether the 
virus particles are directly released from the early endosomal compartment to the cytosol or 
are routed farther into the late endocytic compartment or even to the late endosome-
lysosome complex. If virus does not escape from the early endosomal station, it would 
follow the transition pathway to the late endosome. In this transition, the early endosome 
becomes a transport intermediate recruiting ADP ribosylation factor-1 (Arf1)-dependent 
coatomer proteins (COPI, clathrin, and AP-1) and converts to the late endosome. Arf 1 or 
small GTPase’s activities are catalyzed by Sec7-type GTP-exchange factors (GEFs). GEFs are 
primarily targets of BFA. Therefore, tubulation of maturation of early endosomes is delayed, 
and virus transition to the late endosome is blocked (Brandenburg et al., 2007; Nebenfuhr et 
al., 2002; Stuart & Brown, 2006). Studies reported that BFA also affects transport between 
Golgi and endoplasmic reticulum with the same mechanism through Arf1. BFA was chosen 
as an inhibitor of pH-dependent endocytosis to investigate early events of murine 
polyomavirus, SV40, AAV, DNV, MVM, PV, and FCV interaction with the host cell 
(Blanchard et al., 2006; Damm et al., 2005; Douar et al., 2001; Gilbert & Benjamin, 2004; 
Guinea & Carrasco, 1995; Mani et al., 2006; Ros et al., 2002; Stuart & Brown, 2006; Vendeville 
et al., 2009). That BFA blocks infection by these viruses is suggestive of late endosomal 
involvement in the entry process. 

Rab proteins are small GTPases that regulate vesicular transport in endocytosis and 
exocytosis. They are considered master regulators of transport. Early endosomes are 
converted to late endosomes as a shift occurs in their linked Rab GTPases from the early 
endosome-associated Rab5 to the late endosome-associated Rab7 (Cabrera & Ungermann, 
2010; Rink et al., 2005; Rodman & Wandinger-Ness, 2000). Rab conversion is the mechanism 
by which cargo moves from early to late endosomes. The Rab7 domain grows on the early 
endosome and converts the Rab5-positive endosome to a Rab7-positive endosome 
(Poteryaev et al., 2010). Participating in this process are the cofactors SAND-1 and Mon1 
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(Nordmann et al., 2010; Poteryaev et al., 2007). The Rab7 complex is activated by the Class C 
VPS/HOPS complex (vacuolar protein sorting/homotypic fusion and vacuole protein 
sorting) complex which is a GEF (guanine nucleotide exchange factor) for Rab7. It interacts 
with Rab5 and is required for the Rab5 to Rab7 conversion (Rink et al., 2005). Activated 
Rab5 is important for sequestering ligands into clathrin-coated pits and subsequent fusion of 
these vesicles with early endosomes. The actin cytoskeleton plays a prominent role in both 
the early stages of endocytosis and the late Rab5 function (Rodman & Wandinger-Ness, 
2000) and actin facilitates fusion among late endosomes and between late endosomes and 
phagosomes (Kjeken et al., 2004). Materials destined for degradation are delivered to early 
endosomes then segregated for transport to late endosomes, then to lysosomes (Rodman 
&Wandinger-Ness, 2000). The transition of the Rab5 early endosome to the Rab 7 late 
endosome, mediated by the Class C VPS/HOPS complex, is facilitated by Syntaxin-7 which 
is localized to the late endosome and is required for late endosome and lysosome fusion 
(Kim et al., 2001). Moreover, the endosomal membrane protein Ema interacts with Class C 
VPS/HOPS to promote endosomal maturation (Kim et al., 2010). 

ADP-ribosylation factor (Arf) in association with Sec7 (Arf GDP/Sec7) is a GEF  
used in membrane traffic at the Golgi. Arf GDP/Sec7 is phosphorylated to the GTP level 
which may be used for activation of Class C VPS/HOPS-GDP to Class C VPS/HOPS-GTP 
that is used in the Rab5 to Rab7 conversion. BFA is a drug with specificity for the Arf-
GDP/Sec7 complex and by binding at the interface between Arf-GDP and the Sec7 domains 
acts as an uncompetitive inhibitor of Arf activation and freezes (stabilizes) the complex that 
cannot proceed to nucleotide dissociation (Cherfils & Melancon, 2005; Zeghouf et al.,  
2005). BFA disrupts maturation of the early endosome to the late endosome (Douar et al., 
2001; Vieira et al., 2002), but it also interferes with the secretory pathway (Greber &  
Way, 2006). However, inhibition of parvovirus infection with BFA is not due to interference 
with the secretory pathway as no parvoviruses are known to exit the infected cell in  
that way. So, viral susceptibility to BFA in the parvovirus replication cycle is most likely due 
to blockage of the early-to-late endosome transition. Thus, using BFA inhibition of  
Arf GTPase employs a strategy for disrupting early to late endosome traffic (Vieira et  
al., 2002).  

A possible mechanism for BFA inhibition of late endosome formation is shown in Fig. 2. 
Illustrated in the figure is the molecular interaction between the ArfGDP and Sec7 subunits 
of the ArfGDP/Sec7 GEF complex. This interaction stabilizes the molecular complex 
preventing its activity as a GEF. Altogether, biochemical and structural data using isolated 
Sec7 domains provide a consistent explanation for the action of BFA, that its only target is 
the Arf-GDP/Sec7 interface (Cherfils & Melancon, 2005). This, in turn, inhibits the pathway 
responsible for the Rab5 to Rab7 conversion which is necessary for endosome maturation. 
The bovine parvovirus entry pathway goes through clathrin-associated endocytosis 
(Dudleenamjil et al., 2010) and it may go through extended compartments in this pathway. 
The results of inhibitor studies using BFA in BPV entry were consistent with virus 
persistence within the endosome until transition to late endosome is complete 
(Dudleenamjil & Johnson, unpublished data).   
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After internalization, generally both virus particles and vesicles that carry virus particles 
are able to interact with cell cytoskeletal structures and utilize their activities to reach 
specific sites in the cytoplasm or nucleus for replication. Virus-associated trafficking 
routes may involve actin filaments together with myosin motors or microtubules with 
their dynein and kinesin motors. Globular (G-) actin is polymerized to filamentous (F-) 
actin during synthesis of actin fibers. Synthesis begins with a loose association of three to 
four G-actin monomers to an unstable oligomer, a process called nucleation. Filaments are 
then elongated by addition of G-actin monomers. F-actin is involved in both cell 
movement and in the movement of cell organelles. Endocytic vesicles move at the tips of 
actin tails and appear to be pushed through the cytosol (Merrifield et al., 1999) and late 
endosomes can nucleate F-actin whereas early endosomes cannot (Kjeken et al., 2004). 
LAT A is a natural toxin secreted by red sea sponges, for example Latrunculia magnifica 
(Coue’ et al., 1987). Lat A binds to G-actin and prevents it from adding to a filament  
end during synthesis of F-actin (Yarmola et al., 2000). Growing evidence has suggested a 
tight interaction between the actin network and acid-mediated endocytosis at the level of 
the late endosome (Kjeken et al., 2004; Rodman & Wandinger-Ness, 2000). Thus, inhibition 
of virus movement through the endocytic compartment by LAT A would be evidence  
that viral transit through the late endosome is essential in the process of getting the virus 
to the cell nucleus. Cells treated with increasing noncytotoxic concentrations of  
the inhibitor LAT A reduced bovine parvovirus infectivity (Dudleenamjil & Johnson, 
unpublished observations).  The reduction of virus infection by this drug is evidence  
that acid-mediated endocytosis is a functional route of BPV internalization into the host 
cell and utilizes actin filaments in the trafficking of ligands contained in the  
late endosome. 

6. Lysosomal interaction 

In the viral entry process followed by some non-parvoviruses, exposure of stable capsids 
to low pH may allow proteolysis of capsid protein to occur creating a metastable 
configuration displaying sequences for membrane penetration (Cotmore & Tattersall, 
2007). CPV enters the cell in association with its receptor, TfR, and the virus along with 
the TfRs is transported to late endosomes-lysosomes before escape into the cytoplasm 
(Suikkanen, 2003). In the pathway followed by MVM, a low pH environment fosters 
proteololysis of the VP2 N-termini which results in enhanced stability at low pH 
(Cotmore & Tatersall, 2007). Thus, these modified particles may be required to return  
to a pH-neutral environment before they undergo the structural transition that exposes 
the PLA2 activity required for membrane penetration. However, it would be expected  
that after late endosome-lysosome fusion this hazardous compartment would result in 
extensive viral polypeptide hydrolysis and DNA damage. Results indicate that  
CPV does not face this same requirement. CPV exposed to low pH in vitro develops PLA2 
activity which persists when returned to neutral pH (Suikkanen et al., 2003). It seems  
clear that CPV requires PLA2 activity as PLA2 inhibitors block viral replication 
(Suikkanen, 2003). 
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clear that CPV requires PLA2 activity as PLA2 inhibitors block viral replication 
(Suikkanen, 2003). 
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Cells infected with viable parvovirus, empty capsids, or entry-defective mutants accumulate 
virus in large, crescent-shaped, peri-nuclear vesicular clusters that are probably microtubule 
organizing centers. The vesicles appear to be late endosomes-lysosomes as the processing of 
early endosomes to these late structures utilizes microtubule transport. Nocodazole, a 
microtubule depolymerizing drug, inhibits CPV infection and leaves vesicles containing 
CPV near the cell surface (Vihinen-Ranta et al., 1998) and they fail to accumulate in the 
perinuclear crescents. Likewise, in the MVM model, microtubule polymerization moves 
virus to the perinuclear late endosome-lysosome complex and depolymerization of 
microtubules scatters virus toward the cell periphery. Upon repolymerization of the 
microtubules the virus returns to crescent complexes (Cotmore &Tattersall, 2007). Similarly, 
BPV infection is sensitive to nocodazole treatment. 

Some viruses that infect the gastrointestinal tract, notably rotavirus, require proteolytic 
activation in order to promote virus entry and infection. The proteolytic enzymes in the 
gastrointestinal tract provide this service to the virus. Influenza A viruses require 
proteolytic cleavage of the hemagglutinin (H) molecule to separate HA1 and HA2 exposing 
the fusion peptide located on the N-terminal end of HA2 which is required for bridging the 
endosomal membrane. Also, the acidic pH of the endosome promotes conformational shift 
in the HA structure resulting in functional availability of the hydrophobic fusion domain for 
penetration into the endosomal membrane. Many parvoviruses target the enteric tract 
and/or the respiratory tract of their natural hosts. Although parvoviruses, many of which 
may be exposed to the proteolytic enzymes in the gastrointestinal tract or to respiratory 
proteolysis such as that mediated by tryptase clara, may not require proteolysis for cell 
entry, but one considers a possible role for proteolysis as well as low pH conformational 
shifts in capsid protein structure for enhancement of infection relating to the display and 
activity of the PLA2 and NLS motifs. On the other hand, exposure to low pH may 
circumvent the infectious pathway. Acid pHs promote virus aggregation and crystal 
formation (see Fig. 3). The pH of the respiratory tract is acidic resulting from the CO2 
reaction with H2O to form carbonic acid. Parvoviruses that infect the respiratory tract such 
as Parvovirus B19, HuBoV, BPV, AAV and others may aggregate in the respiratory tract. 
Viruses infecting the gastrointestinal tract such as PPV, MVM, and others may aggregate in 
the gastric environment. In infected cells, intranuclear newly assembled virions clearly form 
large crystalline arrays, then, upon escape from the infected cell these newly produced 
aggregates may not be easily dispersed even at physiological pH. Moreover, regarding 
entry, it is possible multiple virions may be engulfed in single CCVs and transport together 
within the endosomal system and upon acidification form aggregates. Because aggregates 
become too large to penetrate the nucleus as is the case for individual particles, the fate of 
the virions within the aggregate may not include nuclear entry but they may be digested in 
the lysosome complex. As demonstrated for PPV, viral aggregates enter by 
macropinocytosis. The outcome of this pathway may be virus destruction rather than 
nuclear entry. In this regard, most viral progeny in parvoviral infections may not end up as 
infectious units but may be cleared and destroyed in the lysosome. More work will be 
required to decipher the probability of multiple routes of cell entry, and multiple intra-
cellular outcomes.  
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Figure 2. A possible mechanism of inhibition of the early to late endosome transition by brefeldin A 
(BFA). Rab5GDP is a marker on the early endosome. It is phosphorylated and gradually replaced by 
Rab7GDP which is a marker of the late endosome. The Mon1-Ccz 1 complex with SAND-1 control this 
process (Cabrera & Ungermann, 2010; Poteryaev et al., 2010). During this event, Class C VPS/HOPS is 
activated by phosphorylation, complexes with STX-7, and binds to the late endosome with Ema. The 
guanine exchange factor ArfGTP may activate the Class C VPS/HOPS complex but it can perform this 
function only through the activation of the ArfGDP/Sec7 complex. It is at the ArfGDP/Sec7 complex 
where BFA works. The drug binds to the ArfGDP-Sec7 interface and stabilizes the complex making it 
inactive as an ArfGDP/Sec complex preventing Arf activation (Cherfils & Melancon, 2005; Zeghouf et 
al., 2005), thus inhibiting the early-to-late endosome conversion. Abbreviations: Arf (ADP-ribosylation 
factor, a GTPase). ArfGDP/Sec 7 (a guanine nucleotide exchange factor, the target of BFA). BFA 
(brefeldin A). GEF (guanine nucleotide exchange factor, a GTPase). Class C VPS/HOPS (vacuolar 
protein sorting/homotypic fusion and vacuolar protein sorting, a GEF for Rab7). STX-7 (Syntaxin-7, a 
vsnare). Ema (an endosomal membrane protein).  

7. Virus escape from endosomes 

Paradoxically, parvoviruses must have a capsid shell rugged enough and stable enough to 
protect their single stranded DNA genomes from damage and degradation during transit 
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from host to host and from portal of entry to ultimate target tissue, yet sensitive enough to 
navigate the cell-entry process leading to final uncoating within the proper viral replication 
compartment. Intracellular navigation, in the case of parvoviruses, requires subtle 
reorientations of capsid structural proteins exposing functional domains on the VP1u motif 
(Cotmore & Tattersall, 2007).  Conceptually, a T=1 virus capsid would be constructed of 60 
copies of a structural polypeptide. MVM empty capsids are constructed, on average, of 50 
molecules of VP2 and 10 copies of VP1. In parvoviruses, the major (most abundant) 
structural polypeptide is the smallest structural protein (VP2 or VP3). Altogether, as noted 
above, the capsids contain either two or three related structural polypeptides that are 
coterminal at their carboxyterminals and have small unique sequences on their amino 
terminals. Unique to the larger versions of the polypeptides are elements on the VP1u 
region that are required for trafficking through the host’s entry pathways (Cotmore & 
Tattersall, 2007). VP1 is dispensable for capsid assembly and genome packaging, but is 
absolutely required for infectivity. The VP1u sequence, which is within the N-terminal 
unique region, contains both the PLA2 phospholipase domain and nuclear localization 
signals. The proteins are translated from a large mRNA and initiate either by leaky scanning 
or after differential splicing so that the upstream initiation codon is removed and leaves a 
downstream codon available for starting translation of the smaller capsid protein. One of 
these elements, PLA2 which is a lipolytic enzyme is employed to breach the endosomal 
membrane allowing virus escape from the endocytic organelles, releasing it into the cytosol. 
An MVMp PLA2 mutant deficient in this enzyme is unable to escape from its vacuolar 
confine and these particles accumulate in the endosomes. Once the virus is released, the 
virus targets the nucleus presumably by cellular factors that facilitate transport to the 
nuclear membrane, penetration across the nuclear membrane, capsid disassembly, exposure 
of the genome, and movement to an appropriate intranuclear replication compartment. 
Preliminary capsid conformational change, which may allow eventual endosomal escape, 
may occur in the early or late endosome but remains to be clarified for the various 
parvoviruses. It’s likely that parvoviruses as a group utilize their phospholipase activity to 
escape the endosomal pathway. The parvovirus capsid is structurally dynamic undergoing 
multiple conformational changes during its replication cycle including the externalization of 
the VP1 N terminus during entry. In such a condition, VP1 remains tethered to the viral 
shell and appears to be active in particle escape from the endosome. Interestingly, an active 
particle may also operate in trans allowing for escape of VP1u-deficient particles if contained 
in the same endosome (Farr et al., 2005). It has also been shown that parvovirus B19, the 
human virus that causes erythema infectiosum (fifth disease) has a VP1-unique region that 
contains PLA2 activity (Dorsch et al., 2002) and presumably operates in a manner similar to 
that described for MVM. 

When studies use high multiplicities of virus and track the particles in infected cells, many 
of the particles enter dead-end pathways and never enter the nucleus. Moreover, in cases 
where ratios of numbers of physical particles to infectious particles have been studied, the 
ratio is quite high, 300:1 for MVMp and 1000:1 for CPV (Cotmore & Tattersall, 2007). Since 
only a small number of particles actually arrive at their nuclear destination, it makes the 
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interpretation of vacuolar transport studies that use high viral multiplicities somewhat 
difficult. Many of these particles may be flagged for destruction and not infection. In studies 
on BPV entry, virus was labeled with fluorescein, cells exposed to high multiplicities of 
virus, then observed microscopically over time to assess virus transport through the cell. 
Labeled virus appeared in vacuolar structures but whether virus was visible in the nucleus 
was not conclusive (Dudleenamjil & Johnson, unpublished results).  

A B

        
Figure 3. Aggregation of parvovirus particles at acid pH. A) Adeno-associated Virus Type-3 at pH 7.4 
negatively stained with uranyl acetate. B) AAV-3 particles shifted to pH 6.1 also negatively stained with 
uranyl acetate, showing extensive particle aggregation and formation of crystalline array. Original 
micrograph magnification: 141,000x.  

8. Transport to the nucleus and nuclear invasion 

In the parvovirus life cycle, structural proteins must be transported at least twice from 
cytoplasm to the nucleus: following structural protein synthesis so that nuclear capsid 
assembly can be accommodated and also after virus entry during infection for invasion of 
the host cell nucleus. Both MVM and CPV have nuclear localization signals (NLS) on their 
capsid proteins (Cotmore & Tattersall, 2007; Lombardo et al., 2002). Because capsid-
associated VP1 undergoes structural rearrangement during entry exposing functional 
signals, it is possible that the VP1 NLS motif participates in penetration of the invading 
capsid across the nuclear membrane. Thus, a life-cycle advantage that parvoviruses have 
over other nuclear-dependent viruses is their small size, small enough at 26 nm to be able to 
import into the nucleus as an intact (although modified) virion controlled by a bifunctional 
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set of NLS motifs. In support of capsid transport across the nuclear membrane, CPV virions 
microinjected into cells were found to translocate into the nucleus intact and initiate gene 
expression (Suikkanen et al., 2003; Vihinen-Ranta et al., 2000). Entry of the microinjected 
virions circumvented the natural endocytic pathway and placed them in position to 
penetrate the nucleus, but it is unclear if the NLS motifs were active in the process. As an 
alternative mechanism of nuclear entry, MVM nuclear penetration in mouse fibroblast cells 
was tracked by fluorescence microscopy and electron microscopy (Cohen et al., 2006). It was 
found that this virus caused marked changes in nuclear shape, alterations of nuclear lamin 
immunostaining and breaks in the nuclear membrane. These changes may allow direct 
physical access to the nuclear interior for the virus. 

Microtubule-associated activity in parvoviral trafficking is involved with dynein-dependent 
endosomal trafficking of CPV capsids before escape. Further, dynein dependency is seen in 
movement of CPV capsids after escape through the cytoplasm to the nucleus (Suikkanen, 
2003). It was reported that AAV-2 trafficking to the nucleus utilizes the PI13 kinase 
activation cascade directing virus along microtubules and microfilaments (Sanlioglu et al., 
2000). Surprisingly, one study found AAV’s trafficking to the nucleus appears to be 
independent from the microtubule network (Hirosue et al., 2007). These authors found that 
overexpression of dynamitin which results in a functional inhibition of the minus-end-
directed micotubule motor protein dynein did not inhibit transduction of rAAV2. Treatment 
of HeLa cells with nocadazole or vinblastine disrupted microtubules but did not 
significantly affect virus transduction. In contrast, high concentrations of taxol resulted in 
microtubule stabilization and high vinblastine concentrations caused formation of tubulin 
paracrystals both reducing rAAV2 transduction. These authors concluded that these results 
demonstrate that AAV2 can infect HeLa cells independent of dynein function or an intact 
microtubule network. In another report (Johnson & Samulski, 2009), a population of rAAV2 
virions entered the nucleus and accumulated in the nucleolus after infection but empty 
capsids were excluded from nuclear entry. Interestingly, virions trafficked to the nucleolus 
were found to retain infectivity in secondary infections. Thus, in the case of AAV, 
mobilization from the nucleolar site to nucleoplasmic locations likely permits uncoating and 
gene expression. Also in this study proteosome inhibitors were found to potentiate 
nucleolar accumulation. 

Proteosome activity is essential for PPV infection (Boisvert et al., 2010). In the presence of 
lactacystin and MG-132, two commonly used proteosome inhibitors, the virus remains in a 
more diffused state in the perinuclear area of the cell and low-level replication occurs. 
Supportive data showed that PPV capsid proteins were ubiquitinated early in infection. 
These observations suggest proteosomal interaction during the last stages of transport prior 
to nuclear entry. Interaction with the proteosome has also been demonstrated for MVM (Ros 
et al., 2002; Ros & Kempf, 2004). The exact role for ubiquitination and proteosomal 
interaction for these viruses remains to be elucidated. 

Because the autonomously replicating parvoviruses require the S-phase nuclear 
environment for replication, after they penetrate the nucleus they remain in a  



 
Molecular Regulation of Endocytosis 204 

genomic nonsynthetic state until S-phase occurs. The Dependoviruses do not have this 
constraint as the helper virus provides the synthetic environment, yet these viruses have a 
constraint of their own, the necessary co-infection with the helper virus. Once in  
the nucleus, AAV appears to undergo subnuclear mobilization accumulating in the 
nucleolus (Johnson et al., 2010), uncoating and genome replication. Although the purpose 
of this review is to only take the entering virus to the intranuclear environment, it is 
interesting to note that in CPV infection the nuclear replication compartment expands and 
is accompanied by chromatin marginalization to the vicinity of the nuclear membrane, 
virus capsids move by passive diffusion, intranuclear structure and dynamics are 
extensively affected enlarging the interchromosomal domain which contains viral 
proteins, genomes, and capsids (Ihalainen et al., 2009).  After parvovirus assembly  
and maturation within the nucleus of infected cells, they egress by processes that  
include apoptosis (Poole et al., 2004; Poole et al., 2006) and cell necrosis (Abdel-Latif et  
al., 2006).  

9. Conclusion 

Not all parvoviruses have been examined in detail for their entry and trafficking pathways, 
but the model viruses that have been studied reveal some commonalities shared by the 
viruses in this family. Among these are: 

1. Parvoviruses penetrate their host cell through receptor-mediated endocytosis, 
interacting with a host cell receptor, and entering in clathrin-coated vesicles. 

2. The viruses are processed in the early to late endosome and possibly lysosome prior to 
nuclear entry. 

3. In preparation for vacuolar escape, the low pH environment induces capsid protein 
conformational shifts which display the viral VP1 PLA2 domain and nuclear location 
signals. 

4. Viral escape from the endosome is mediated by PLA2. 
5. Microtubules and actin generally play a role in virus particle transport to the  

nuclear membrane where capsid penetration to the intranuclear environment  
occurs. 

6. Intranuclear mobility occurs by random diffusion for some and for others (AAV) by 
tracking to the nucleolus.  

Alternative pathways may exist for some of these viruses, as seen by macropinocytosis for 
PPV. There is yet much to be learned about the virus-cell interactions utilized by 
parvoviruses, mechanisms of bridging the nuclear membrane, intranuclear localization and 
the uncoating process. 
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1. Introduction 

Endocytosis is critical for the internalization and maturation of many DNA viruses. Since all 
non-enveloped DNA viruses replicate in the nucleus, they can also take advantage of 
endocytosis trafficking for transport from the cell surface to the nucleus. The internalization 
often involves clathrin-mediated endocytosis (ClaME), but also macropinycytosis, caveolae-
mediated endocytosis (CavME) and other less characterized internalization mechanisms. 
Viruses strive to avoid evidence of cell entry, and thus of immune attack, and therefore as 
much as possible take advantage of existing systems. Consequently, virus entry has been 
extensively studied to understand endocytosis. In contrast to inert cargo, like dextran, well-
defined virus particles can be mutated to change biological properties, e.g. receptor 
interaction, maturation steps or penetration of the endosomal membrane to the cytosol, and 
thus provide additional tools for the study of endocytosis. However, the use of viruses also 
poses major challenges since (i) the virus particle population may be heterogeneous; (ii), 
only one out of a thousand particles may be infectious; (iii), viruses may be using different 
pathways at the same time; (iv), viral entry pathways may depend on the cell types used; 
(v), some viruses, eg. papillomaviruses are difficult to reproduce in tissue culture; (vi)  the 
mobility of the infecting particles may be heterogeneous; and (vii), viruses often developed 
mechanisms to avoid infected cells (e.g. viral neuraminidases). The use of purified viruses 
and cell cultures, although imparting useful models, may not reproduce the in vivo situation. 
Moreover, viruses may have adapted to in vitro cells and may use other pathways then in 
vivo. In this chapter, we focus on entry of non-enveloped DNA viruses, such as circoviruses, 
parvoviruses, polyomaviruses, papillomaviruses, adenoviruses and iridoviruses. 
Particularly, we will highlight the effects of binding of these viruses to the cell surface, the 
internalization and endocytosis processes, and escape from endosomes by breaching the 
endosomal barrier. The wide array of strategies employed by these viruses, even within the 
same virus family, will be highlighted. An understanding of these processes, which may 
result in a plethora of effects on cells, is essential for a wide variety of applications in basic 
research as well as providing blueprints for applied usages such as gene therapy. 

© 2012 Boisvert and Tijssen, licensee InTech. This is a paper distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.
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2. Overview of non-enveloped DNA viruses and tools to study their entry 

2.1. Non-enveloped DNA viruses 

Viruses can be used as a tool to study endocytosis since their defined structure can be 
modified specifically by site-directed mutagenesis to study different parts of the endocytic 
pathways. Functions related to virus entry are embedded in the virus capsid. Therefore, we 
will summarize here the structures and properties of these viruses. All, except the 
iridoviruses, have been solved by X-ray crystallography and their properties are 
recapitulated in Table 1. 

2.1.1. Circoviruses 

Circoviruses are among the smallest DNA viruses; the diameter of the icosahedral particle is 
about 20 nm. The virus has a circular, 2 kb single-stranded DNA genome (ssDNA). The T=1 
capsid consists of 60 subunits (1, 2). The best-known species infect pigs and birds. Soluble 
monomers of the porcine circovirus 2 (PCV2) capsid have been expressed in E.coli and could 
be assembled into virus-like particles (VLPs). X-ray crystallography (2) revealed two 
protrusions emanating from the icosahedral 2- and 5-axes. PEPSCAN analysis (3) and 
structural analysis (2) identified 4 surface epitopes, two epitopes at the subunit interface 
near the 3-fold axis and two at the interior surface. The interior epitope mapped to the N-
terminus of the subunit, which, as for parvoviruses and some other animal viruses, may be 
transiently externalized. This domain may have membrane-disrupting activity required for 
infectivity. PCV2 binds to heparan sulfate receptors on cells (4). Clefts that bind sulfate ions, 
and are positively charged at neutral pH, on the exterior surface of the PCV2 structure 
surrounding the 2-fold axis are highly conserved. Heparan sulfate may thus bind to this 
region. 

2.1.2. Parvoviruses 

The icosahedral viral capsid of parvoviruses infecting vertebrates is made up of two or three 
proteins that have large common C-terminals part and different N-terminal extensions, due 
to different translation initiations or proteolysis. The rugged capsid structure is very 
resistant to acids, bases, solvents such as chloroform or butanol, and temperatures to 
beyond 50°C. The X-ray structures of many parvoviruses have been solved, but these 
structures lack the N-terminal extensions (5-10). Parvoviruses, such as the minute virus of 
mice (MVM), package their linear ssDNA genome into preformed capsids, in a process that 
is probably driven by a virus-encoded NS1 (helicase). Each of the twelve 5-fold vertices have 
a roughly cylindrically shaped pore created by the juxtaposition of 10 antiparallel beta-
strands, two from each of the 5-fold-related capsid proteins. Mutant capsids that have their 
5-fold channels blocked are unable to package DNA, strongly suggesting that the 5-fold 
pore is the packaging portal for genome entry (11). It may also be the DNA delivery site 
after the conformational changes occurring in these pores in the endosome. Virtually all 
parvoviruses also contain a phospholipase A2 activity (PLA2) in the N-terminal extension of  
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Family Structure2 Capsid composition Entry mode Escape 
Circoviridae1 

 

PDB : 3R0R 

T=1 
60 proteins/subunits

20 nm 
ClaME 

Uncoating by 
serine 
proteases; 
Escape early 
(not at very 
low pH) 

Parvoviridae1 

 

PDB : 2CAS 

T=1 
60 proteins/subunits

25 nm 

Majority: 
ClaME 

Also: CavME 
Macropino-

cytosis 
CLIC/GEEC 

LE / lysosomes 
Viral PLA2 
activity 

Polyomaviridae1 PDB : 1SVA 
T=7 

360 VP1 proteins 
(72 capsomers) 

45 nm 

CavME 

ER,  
Viral VP2 
cellular 
proteins BAP31 
and BiP 

Papillomaviridae1 

 

PDB : 1L0T 
T=7 

360 L1 proteins 
(72 capsomers) 

55 nm 

Majority :
ClaME 
Other : 
CavME 

Macropino- 
cytosis 

Cellular Nexin-
17 
viral capsid 
protein L2 

Adenoviridae1 

 
 

PDB : 1VSZ 

 

Pseudo-T=25
720 hexon proteins 

(240 subunits) 
12 penton bases 
Cement proteins 

Fiber proteins 
90 nm

Majority : 
ClaME 

 
Others : 

Macropino-
cytosis 

Sorting 
endosomes 
 
Penton base, 
L3/p23 
protease, 
protein VI. 

Iridoviridae 

 

PDBe3 : 1580 T=147
1460 hexon proteins 
(each forms trimer) 

12 pentameric 
vertexes 

Fiber proteins (CIV) 
185 nm

ClaME 
CavME 

May involve 
partial 
uncoating and 
internal 
membrane 

1Virus models, except of iridovirus, from Viral Zone, EXPASY (http://viralzone.expasy.org/); 2Crystal structures from 
VIPER data base (http://viperdb.scripps.edu/); 3CIV iridovirus cryo-EM structure is from http://www.ebi.ac.uk/pdbe/. 
In the iridovirus model, the trisymmetrons are depicted in green (quasi-equivalent capsomers in dark green) and 
pentasymmetrons in turquoise.   

Table 1. Synopsis of nonenveloped DNA viruses and entry and exit of endosomes 
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the largest capsid protein (12, 13). This domain is located inside the capsid and needs to be 
externalized for it to be able to breach the endosomal membrane barrier (12). These 
multistep conformational changes occur in the endosomes.  

2.1.3. Polyomaviruses 

The 45 nm diameter T=7 icosahedral particles polyomaviruses virions (SV40, BK virus) are 
non-enveloped. The crystal structure of SV40 has been solved and found to be organized 
unlike other viruses (14-16). The 3 capsid proteins, VP1-3, form 72 pentameric capsomers, 60 
hexagonally coordinated plus 12 pentamerically coordinated (at the vertices), i.e. the 
capsomers at the 5-fold axis have all 5 neighboring capsomers whereas the other 60 have 6 
capsomer neighbors via different intercapsomer interactions. The 72 pentameric capsomers in 
each virus particle contain together 360 copies of VP1 plus 30-60 copies each of VP2 and VP3, 
i.e. ~1 copy in the tapering cavity inside of each pentamer. VP2 is important during cell entry. 
Each copy of VP1 has a sialic acid binding site on the surface and these are part of the receptor-
binding site for the virus; hence the particles have haemagglutinating properties. The long C-
terminal arms of VP1 stabilize the interpentameric contacts by invading neighboring 
capsomers. VP2 is myristylated at its NH2-terminus, and is also believed to be important in 
holding the particle together (17). Recently, it was also shown that the cysteine at position 9 in 
VP1 forms C9-C9 disulfide bonds and thus contributes to intercapsomeric  crosslinks (18). 

2.1.4. Papillomaviruses 

Previously, the Papovaviridae family contained both the Papillomaviridae and the 
Polyomaviridae. Now, these two are separate families but their earlier co-classification 
indicates a certain degree of similarity (19, 20). The diameter of the papillomaviruses is 
about 20% larger than that of polyomaviruses, mainly due to the larger L1 as compared to 
VP1 (21, 22).The atomic structure resembles that of polyomaviruses (23), in particular the 
core capsomers, and the 55 nm diameter T=7 icosahedral particles also have 72 pentameric 
capsomers (20, 24, 25). However, the cysteine residues involved in intercapsomer disulfide 
bonds are C175 and C428 (23). 

2.1.5. Adenoviruses 

The over 50 serotypes of the Adenoviridae family can be categorized in about 6 subgroups. 
The icosahedral outer capsid of these viruses surrounds a (double stranded) dsDNA-protein 
core and has a diameter of about 90 nm (26). The most prevalent protein in the capsid are 
720 subunits of hexon proteins arranged in 240 trimers (12 hexon trimers on each of the 20 
facets); penton base proteins are found at each of the 12 vertices. A unique "spike" or 
trimeric fiber is associated to each of these penton bases. Moreover, the penton base contains 
an exposed arginine-glycine-aspartate (RGD) motif and both this motif and the fiber are 
involved in cell attachment. Minor capsid proteins (III, VI, VIII and IX) are also present to 
stabilize the capsid. The pseudo-T=25 capsid is the largest virus so far of which the near-
atomic structure has been solved by X-ray crystallography (27, 28). The fibers were 
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shortened in order to make crystallization possible. An unusual symmetry mismatch occurs 
between the fivefold symmetric penton base and the threefold symmetric fiber protein. This 
has a potential impact on cell receptor interactions and subsequent disassembly in the 
endosomal pathway. In this respect, the ability of the penton base to adapt large changes, 
resulting in very different central pore sizes, is striking. The large-pore, but not the small-
pore, conformation would allow insertion of the fiber. These conformational changes seem 
to reflect early events in cell entry when the fiber is released from the penton base.  

2.1.6. Iridoviruses 

Iridoviruses have recently been reviewed in detail (29). Currently, the Iriodviridae family is 
divided into five genera: Iridovirus, Chloriridovirus, Ranavirus, Lymphocystivirus, and 
Megalocytivirus. Chilo Iridescent Virus (CIV) is the type specie of this family. Although, it is 
unlikely that the structures of these large icosahedral dsDNA viruses are amenable to X-ray 
crystallographic analysis, various details about their assembly and structure have been 
obtained by cryo-electron microscopy (cryo-EM) and 3D reconstruction (30, 31). Enveloped 
particles that acquire an envelope by budding from the plasma membrane seem also to exist 
for all iridoviruses and may be more infectious than naked particles (29). The CIV T=147 
capsid has a diameter of about 185 nm. Its dsDNA-protein core is surrounded by a lipid 
bilayer, derived from the endoplasmic reticulum that follows the contour of the outer 
icosahedral capsid shells. The external capsid is essentially consistent with the classical 
quasiequivalent symmetry prediction. It has 1460 hexameric capsomers and 12 pentameric 
vertex complexes that are organized in 20 trisymmetrons and 12 pentasymmetrons. Each 
capsomer in CIV, but not in frog virus type 3 (FV3), has a central fiber that appears to be 
extended about 35 nm beyond the capsid surface. These flexible fibers are probably the first 
component that comes into contact with the host cell. The minor zip and finger proteins are 
suggested to stabilize the capsid by acting as intercapsomer cross-links and could be 
important during virus conformational changes during entry. Furthermore, the minor 
anchor protein appears to extend into the internal lipid membrane for further stabilization. 
Although the inner membrane is generally 4 nm thick, it is only 3 nm in regions just below 
the pentameric complex. Small icosahedral viruses are usually assembled from monomers 
having hexamers and pentamers, or only pentamers, in quasi-equivalent environments. The 
larger viruses, like adenovirus, iridoviruses and large algal and bacterial viruses, have 
significantly greater coding capacities that have allowed divergent evolution and 
specialized pentameric complexes. In contrast to adenovirus, CIV does not have fibers 
associated with its pentameric complexes but a complex mushroom-like structure that has 
the appearance of a five-blade propeller. This propeller could have an important role in 
assembly but a role in entry is not excluded.  

2.2. Tools used to study endocytosis and trafficking of viruses 

2.2.1. Imaging  

Transmission electron microscopy (TEM) is still widely used, and enables visualization of 
virus in endocytic cups (size and shape, presence of coats). For instance, TEM imaging 
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demonstrated that Adeno-associated virus 5 (AAV5) can enter cells in non-coated vesicles, 
pointing to a non-clathrin mechanism (32). Immunohistochemistry using gold-labeled 
antibody can be used in TEM to colocalize structures. Scanning electron microscopy (SEM) 
facilitates 3D imaging that can be helpful to see ruffles on cell surface, as shown in an AAV2 
study (33).  

Fluorescence, particularly confocal microscopy, is an excellent tool to visualize viruses and 
cellular structures. It is frequently used to confirm use of a pathway by co-localisation of the 
virus and pathway components. It can also be used in live imaging to see the movements of 
the virus along cellular structures, such as plasma membrane (filopodia) and actin or tubulin 
structural networks. One should be aware that conformational epitopes may change during 
the endosomal pathway and that some viruses have very high GCE/FFU ratios (genome copy 
equivalent/foci forming unit), so that an excess of non-infectious virus in the viral preparation 
could mask the real infectious pathway. For further details, see chapter by Aaron and Timlin. 

2.2.2. Chemical inhibitors  

Chemical inhibitors are widely used and provide an excellent basis for endocytosis studies of a 
particular cargo (34) (Table 2). These are usually not expensive, easy to work with, and have 
the major advantage of providing a uniform treatment of the cells. None of the extensively 
used pharmacological inhibitors have complete specificity, but, some parameters can be 
controlled to limit the possibility of artefacts. Dose-response curves to establish lowest 
concentrations and shortest exposition times possible to limit side effects on the cells are 
valuable, and limit upregulation of compensatory mechanisms. It is also easy to wash out the 
inhibitors to recover a normal state of the cells, in the case of reversible inhibition. This also 
remove virus that did not yet penetrate the cells, and allows continuing the infection with 
only endocytosed virus in normal conditions of the cells. Confirmation with another inhibitor, 
without the same side effects, is convenient. A combination of methods with siRNA or 
dominant negative/constitutive mutants can be exploited to identify the entry pathway of a 
specific cargo. Readers are referred to selected literature for further details on any particular 
inhibitor for comprehensive discussions (34, 35).  

2.2.3. Dominant-negative/constitutive mutants 

Dominant-negative mutants drive the expression of non-functional versions of the protein of 
interest (Table 3). The regular protein is still present but strong expression of the mutant 
form will result in an inactive pathway (35). The main challenges using dominant-negative 
mutants is to choose the appropriate protein and to achieve high efficiencies in the 
transfection of the constructs. Stable transfection, with selection of the transfected cells, is 
not a good choice, since long (constitutive) treatments that donwnregulate a pathway is 
prone to result in the upregulation of compensatory pathways that could be used by the 
cargo. Using dominant-negative mutants can also be more time-consuming and become 
more costly than chemical inhibitors. A constitutively active protein can block a pathway at 
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mutants is to choose the appropriate protein and to achieve high efficiencies in the 
transfection of the constructs. Stable transfection, with selection of the transfected cells, is 
not a good choice, since long (constitutive) treatments that donwnregulate a pathway is 
prone to result in the upregulation of compensatory pathways that could be used by the 
cargo. Using dominant-negative mutants can also be more time-consuming and become 
more costly than chemical inhibitors. A constitutively active protein can block a pathway at 
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a certain step, e.g. constitutively active Rab5 protein inhibits the passage from early 
endosomes and late endosomes (see section 4.2.2.). There is also a complex signalisation 
process involved in endocytosis, and any modification can have some side effect on the cells. 
 

Pathway Inhibitor Mechanism of action Side effect 

Clathrin 
Hypertonic 
sucrose 

Dispersion of clathrin 
sub-units, preventing 
basket formation 

Inhibits CavME and 
macropinocytosis (high doses); 
Induces important remodelling 
of the actin network  

 Chlorpromazine 
Clathrin and AP2 
relocalized at the 
endosomes  

Inhibits phagocytosis and 
formation of large vesicles 

 Potassium 
depletion 

Prevents clathrin 
basket formation  

Reduces other non-clathrin 
endocytosis mechanisms;  
Alteration of actin cytoskeleton  

 
Cytosol 
acidification 

Blocks budding of 
vesicles  

Inhibition of macropinocytosis;  
Alters actin cytoskeleton  

Caveolae Nystatin 
Induces cholesterol 
sequestration and 
aggregation 

Can affect macropinocytosis at 
high concentrations 

 Methyl-β- 
cyclodextrin 

Disperse cholesterol, 
mislocalisation of 
caveolin-1 

High concentration leads to 
inhibition of ClaME and fluid 
phase endocysotis; 
Affects actin structure 

 
Cholesterol 
oxydase 

Relocalization of the 
caveolin-1 to the 
Golgi 

Action of the enzyme is 
sensitive to several factors that 
may lead to false negatives 

Macropino-
cytosis 

Amiloride 

Inhibits Na+/H+-
ATPase exchangers;  
Prevents membrane 
extension formation 

Can affect ClaME;
Can reduce lipid raft 
internalization; 
Alters actin structure 

 Cytochalasin D Prevents membrane 
projection by actin 

Other mechanisms depend on 
actin and membrane modelling 

 Wortmannin 

Inhibition of PI3K, 
important for 
formation and fusion 
of vesicles 

Not exclusive for 
macropinocytosis 

Acidification of 
endosomes Bafilomycin A 

Block the V-ATPase 
proton pumps 

No effect on recycling pathway, 
prevents transfer from EE to LE 

 
Weak base 
(NH4Cl, 
chloroquine) 

Gently raise the pH of 
the compartment;  

Does not affect the transport of 
cargo to the lysosomes 

Table 2. Chemical inhibitors to study endocytosis of viruses  
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Pathway / 
component 

Protein Mode of action 

ClaME EPS15 
Deletion of EH domains results in loss of recruitment of 
clathrin and AP2 at endocytosis site (36) 

 Clathrin 
Overexpression of the HUB domain in the cells leads to the 
inhibition of the cage assembly at endocytosis site. 

CavME Caveolin-1 
Overexpression of the WT protein stabilizes the caveolin 
structure located at the plasma membrane, thus prevent 
membrane curvature and/or vesicle budding 

 Caveolin-3 
Deletion of N-terminal, or fusion with EGFP in N-terminal 
inhibits endocytosis (37) 

Dynamin 
Dynamin-1/ 
Dynamin-2 

K44A is widely used.  
Dynamin is involved in ClaME, CavME and other less 
described non-ClaME/ non-CavME mechanisms 

Macropino-
cytosis 

Pak-1 Important in the regulation of vesicle cycling 

 Rac-1 
Important for membrane ruffling, inhibited with 
N17Rac1(33); Blocks cell cycle in G2/M phase 

Other 
pathways 

GRAF1 
Key player in the newly described CLIC/GEEC pathway (33, 
38) 

Table 3. Dominant-negative / constitutive mutants 

2.2.4. Gene silencing 

Another way to target a particular protein, as opposed to chemical inhibitors and dominant-
negative mutants, is gene silencing. Several endocytosis studies use transfection of small 
interfering RNA (siRNA) or small hairpin RNA (shRNA) to specifically knock down key 
proteins of different endocytosis pathways (see section 4.3). This method is relatively simple 
and selective, but depends on good delivery of the interfering RNA. A good knockdown of 
the target protein needs to be confirmed by Western blot analysis, and only then can 
endocytosis studies can be performed. However, since there are some entry pathways not 
fully described yet, it remains a possibility that some proteins that we believe specific to a 
certain entry mode will be demonstrated in the future to be involved with other pathways.  

3. Docking of virus to cell surface and induced signalling pathways 

3.1. Virus attachment to cells 

The first interaction between a virus and a cell is crucial to promote endocytosis. In its 
simplest form, the virus binds to a cell surface receptor and triggers directly its endocytosis. 
However, several viruses have either multiple receptors, or they also bind abundant 
structure on the cell surface, e.g. as sialic acids, before binding to the “real” receptor. In its 
most sophisticated form, the virus needs to bind to a primary receptor to trigger 
conformational changes that will allow binding to a secondary receptor that will in turn 
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trigger endocytosis. Binding to the cell surface is also the first element that can determine 
viral tropism, if the virus uses a specific receptor present only on certain cell type.  

3.1.1. Cell attachment by circoviruses 

Monocyte/macrophage lineage cells are target cells PCV2 replication. Misinzo et al. (4) used 
the porcine monocytic cell line 3D4/31, that supports PCV2 replication in vitro, and 
glycosaminoglycans (GAG), used by several viruses as receptors, for attachment studies.  
They observed that heparin, heparan sulfate (HS), chondroitin sulfate B (CS-B), but not CS-
A, and keratan sulfate reduced PCV2 infection when these GAG were incubated with PCV2 
prior to and during inoculation of 3D4/31 cells. Also, enzymatic removal of HS and CS-B 
prior to PCV2 inoculation of 3D4/31 cells significantly reduced PCV2 infection. Similarly, 
when PCV2 virus-like particles (VLP) were allowed to bind onto 3D4/31 cells in the presence 
of heparin and CS-B, attachment was strongly reduced. This was confirmed for the wild-
type virus. Together, these results demonstrated that HS and CS-B are components of the 
attachment receptors for PCV2.  

3.1.2. Cell attachment by parvoviruses 

The Parvoviridae family is very large, and its members infect a wide range of hosts from 
invertebrates to vertebrates such as humans. Family members display different strategies to 
complete their replication cycle. Most parvovirus interactions with cells are neuraminidase-
sensitive, indicating binding  to abundant sialoglycoproteins, e.g. porcine parvovirus (PPV) 
(39), dependoviruses (AAVs) (40), minute virus of mice (MVM), canine (CPV) and feline 
(FPV) parvoviruses (41). These glycan-specific interactions occur usually in the depressions 
around the twofold symmetry axes. Specific receptors are not currently known for all 
parvoviruses. One of the best characterized interactions is between CPV/FPV and the 
transferrin receptor (TfR) (42). CPV and FPV is a well-documented evolution of virus 
characterised by species jump. Thus FPV, a virus that can infect only cats, acquired two 
mutations on the capsid protein, enabling the binding to the canine TfR and thus emerge as 
CPV2, a virus that could only infect dogs, and that caused serious health problems in dogs 
in the late 1970’s. Shortly after, the CPV2a emerged and this virus was able to infect both 
species, because it could bind to both receptors. PPV, that can bind and enter many cell 
types, but that can complete the replication cycle only in few cell types (43). 

3.1.3. Cell attachment by polyomaviruses 

SV40 binds cell surfaces via major histocompatibility complex 1 (MHC-1) (37). This binding 
provokes the clustering of the virus in lipid rafts, and entry by CavME. Infection can be 
efficiently inhibited by pre-incubation of the cells with antibodies directed at the MHC-1. It 
was observed that initial binding (when endocytosis is inhibited by incubating the cells at 
4°C) occurs outside of the lipid raft, and that at that point, there was no co-localisation with 
caveolin (37). However, when the cells are at 37°C, translocation to the caveolin-positive 
domain is fast and efficient. 
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3.1.4. Cell attachment by papillomaviruses  

Uptake of papillomaviruses is very slow, and the virus can stay at the cell surface for several 
hours and the half-time of uptake can be as high as 14 hours. A major issue with this family 
of viruses that have slowed progress in their research was that, in the host, viruses only 
complete their replication cycle in terminally differentiated keratinocytes (44). Thus, it was 
only since the 2000’s that virus could be efficiently produced, using “packaging cell lines” 
(45, 46). It is also hard to infect cells in vitro, since there are only a few permissive cell lines 
such as the HaCaT cells. There is still limited information concerning the uptake and nuclear 
delivery of those viruses. Concerning binding, growing evidence suggests that the 
extracellular matrix (ECM) can provide the first binding of the virus. Capsid protein L1 
binds to the heparan sulfate proteoglycans (HSPG), or laminin 5 present in the ECM. Then 
the virus is transferred to the cellular filopodia, and slowly translocated to the body of the 
cell. Binding to this primary receptor will trigger conformational changes, lowering affinity 
for the primary receptor, and allowing binding to a still unidentified secondary receptor. 
The minor L2 capsid protein, usually not accessible at the virus surface will become 
exposed, and cleaved by cellular furin. This cleavage is absolutely required for successful 
infection and it is believed to be important later in the endosomal escape. Although in vitro 
binding to the surface receptor is critical, the in vivo situation is different in that the 
basement membrane is the primary site of binding (47). 

3.1.5. Cell attachment by adenovirus  

The first high-affinity interaction between the cell and the virus occurs between the globular 
knob of the C-terminal segment of the viral fiber protein and the cellular CAR (Coxackie and 
Adenovirus Receptor, belonging to the Ig superfamily) or CD46, for sub group C and B 
adenovirus respectively. The second interaction, of low affinity is between the RGD motive 
on the viral penton base and the cellular integrins. Together they will form a strong and 
irreversible connection between the cell and the virus, leading to endocytosis (48). 

3.1.6. Cell attachment by iridovirus 

Little is known about iridovirus receptors; although the central fibers of the capsomers have 
been proposed to be involved (31) not all iridoviruses have these fibers. Eaton et al. showed 
that anti-FV3 serum present at the time of FV3 (Ranavirus) infection enhances infectivity of 
the virus in non-immune teleost cell lines, but not in a non-immune mammalian cell line, 
suggesting a cell surface receptor specific to teleost cell lines (49). They observed that this 
antibody dependent enhancement (ADE) of FV3 was dependent on the Fc portion of anti-
FV3 antibodies but not to complement.  

3.2. Induced signalling pathways  

Signalization from cell surface is an important process in coordination of different events of an 
organism. Readers are referred to two extensive reviews on the subject for further details (50, 
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51). Signalling also regulate endocytosis processes. Binding to a receptor can trigger signalling 
pathways that promote endocytosis by upregulating the quantity of clathrin at the cell surface. 
Src kinase was shown to increase new clathrin basket formation by phosphorylation of the 
clathrin, leading to assembly of the triskelions (52). Activation of p38 increases Rab5 
recruitment to plasma membrane, promoting endocytosis (53). Raf kinase is implicated in 
recycling of the transferrin receptor to the cell surface (54). In the case of viruses, binding of the 
virus to the cell surface receptor can trigger other endocytosis mechanisms such as 
macropinocytosis which is not a constitutive process (55). Differential endocytosis can also be 
used by the cell to control the level of signalling. For example, activated EGFR can be 
endocytosed by ClaME or CavME. CavME is used when the level of activation is particularly 
high and lead to degradation of the receptor, while ClaME leads to recycling of the receptor.  

4. Entry mechamisms  

4.1. Initial steps of entry 

Viruses have developed multiple ways to hijack cellular entry processes ideally without any 
remaining trace at the cell surface to prevent detection by the immune system. The three 
best understood mechanisms are clathrin-mediated endocytosis (ClaME), caveolae 
endocytosis (CavME) and macropinocytosis (Figure 1).  

 
Figure 1. Major endocytosis pathways. Major components of 3 most described endocytosis 
mechanisms. Main intracellular targets are indicated (e.g. early endosome for most, but also others such 
as endoplasmic reticulum and Golgi for the CavME 

ClaME is probably the best characterized cellular uptake mechanism. Cellular uptake was 
first observed using transmission electron microscopy (TEM) in the 1960’s. One main 
characteristic is the assembly of clathrin proteins forming basket shape vesicles. As a result 
it was postulated that the size of material that can be taken via ClaME is limited in order to 
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form the basket clathrin cage. ClaME proceeds in five steps (56). First, it requires specific 
receptor engagement to trigger intracellular signaling required for the beginning of 
membrane modeling, a process called “nucleation”. The key element is the highly conserved 
adaptor protein AP2, recruited from the cytoplasm to the membrane. The next step is the 
“cargo selection”. At this stage there will be several interactions between the cargo, its 
receptor and several adaptor and accessory proteins. The tetrameric AP2 adaptor protein, 
like clathrin, has disproportionally large numbers of interactors, such as dynamin and 
Eps15, and is a hub of protein networks. Accessory proteins may swap from the AP2 
appendage hub to the clathrin hub during coated pit assembly. Clathrin protein will also be 
recruited at the membrane in the “clathrin coat assembly” step. Clathrin proteins are 
recruited as triskelions and will be polymerized into the basket shape forming pentagons 
and hexagons. When the polymerization reaches the point where only a neck shape remains 
between the forming coated vesicle and the plasma membrane the dynamin protein will be 
recruited to perform the “vesicle scission” step required for the budding. GTP hydrolysis 
will be necessary to complete the process. The final step will be the “uncoating and 
recycling” step. This uncoating is important before the nascent vesicle can move on and fuse 
with the endosomes. After this, there will be a sorting step deciding whether the vesicle is 
simply returned to the plasma membrane or pushed forward into the endosomal pathway.  

CavME main characteristic is its origin in lipid rafts, small domains rich in sphingolipids 
and cholesterol (57). This endocytosis mechanism thus depends on cholesterol homeostasis 
of the cell. Caveolin is a membrane protein that binds to the cholesterol, as a result depletion 
of cholesterol leads to mis-localization of caveolin and inhibition of the pathway. Several 
components are involved such as caveolin-1 (caveolin-2 can be present but not required, 
caveolin-3 is present primarily in muscles), dynamin and actin (implicated in caveolin 
rigidity/motility). Vesicles acquire caveolin coats while forming; the released caveosomes 
will keep a neutral pH and can interact with the endosomal pathway, the Golgi system, or 
as in the case of SV40 endocytosis, transit to the smooth endoplasmic reticulum (37).  

Macropinocytosis is an active uptake pathway that requires activation in most cells types 
(58). Activation of the pathway will lead to intense actin and microfilaments modulation 
and membrane ruffling. By definition pinocytosis is the uptake of fluids and membranes by 
the cell (“fluid phase endocytosis”). The main difference with other endocytosis mechanisms 
is that, once activated, uptake of material will not depend on receptor binding. In 
macropinocytosis, the membrane ruffles will or will not be closed and the size of the 
macropinosome is not directed by the cargo. The diameter will usually range between 0.5 to 
10 µm, and thus is larger than in other endocytosis mechanisms. In contrast to phagocytosis, 
that is limited to few cell types, most cells are capable of macropinocytosis. The closure of 
the macropinosomes will require several cellular factors. Myosins will provide contractile 
activity, and fusion factors together with kinases, GTPases, will help the process. Once in the 
cytoplasm, macropinosomes will acidify and interact with the endosomal pathway.  

Phagocytosis is a pathway limited to specialised immune cells such as macrophages, 
dendritic cells, neutrophils and monocytes. This pathway is mostly used by bacteria and 
fungi. Recent studies reported the use of this pathway also by herpes simplex virus (59) and 
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mimivirus (60), both displaying membranes. The non-enveloped DNA viruses that fall in 
the scope of this chapter do not use it. 

Novel pathways were revealed by investigating entry mechanism of viruses. They are often 
referred to as clathrin independent endocytosis. Since molecular components involved in 
these mechanisms depend not only on cargo but also on cell type, several groups suggested 
classifying them as dependent or independent of such components. For example, no matter 
which mechanism is involved the forming vesicle will need to be pinched of the cellular 
membrane. While ClaME, uses dynamin proteins some clathrin-independent endocytosis, 
were reported to be dependent on dynamin and some are independent.  

4.2. Endosomal pathway 

Regardless of the endocytosis pathways, virtually all the vesicles formed during entry will 
fuse or at least interact with the early endosomes, and acquire the Rab5 and EEA1 markers 
(61). After endocytosis, cargos enter the highly-coordinated endosomal pathways (62). 
General endocytosis is a highly active and dynamic process. In a mammalian cell up to 
180%, of the cell surface will be endocytosed each hour (62). A simple model of the 
endosomal pathway is shown in Figure 2.  

 
Figure 2. Endosomal pathway. Most endocytosis mechanisms lead to the early endosomes. Sorting will 
determine if the vesicle is recycled to the cell surface, caveosomes or continue in the degradation 
pathway towards the lysosomes. Acidification occurs throughout the endosomal pathway. Crosstalk 
between the trans-Golgi network (TGN) and the different compartments provides cellular components 
to the pathway. Transport of the vesicles on microtubules ensures steady traffic towards the nucleus. 
Rab proteins are regulators of the pathway and can be used as markers.  
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The first compartment encountered is the early endosome (EE) which is slightly acid 
(pH~6.5), highly pleomorphic, large and tubular shaped. The EEs are the main organelle 
where sorting will take place. The main markers of EEs are Rab5 and EEA1 proteins. The 
tubular projection contains microdomains for sorting, and will generate vesicles targeted to 
the recycling endosomes (with Rab4 and Rab11), or the trans-Golgi network (TGN). The 
TGN is constantly communicating with the endosomes at all stages of the pathway. It 
provides components necessary for the maturation of the endosomes. A marker for the 
shuttles between the TGN and the endosomes is Rab9. All endosomes contain internal 
vesicles that are used to isolate certain components such as receptors. While endosomes 
proceeds to the end of the pathway, these internal vesicles increase greatly in numbers. It 
has become clear for polyomaviruses and papillomaviruses that EE shuttle also to 
caveosomes (section 5). Maturation of the EEs into late endosomes (LE) includes 
replacement of the Rab5 proteins by Rab7 proteins (63). The maturation of EE in LE will 
create intermediate endosomes containing both Rab5 and Rab7 markers. The displacement 
of Rab5 by Rab7 begins by the recruitment of Rab7 by the activated form of Rab5. This 
recruitment will lead to the inactivation and dissociation of Rab5. This sequence is 
absolutely required for EE conversion into LE. The newly formed Rab7-positive endosomes 
will recruit specific proteins for the maturation of the LE.  

LEs have an increased regular oval shape, their pH is more acidic (pH~5.5), and they contain 
many internal vesicles (62). LEs are generated close to the cell surface and will mature while 
moving towards the nuclear periphery. Fusion events will occur between LEs, and between 
LE and lysosomes. The lysosome is highly acid (pH<5) and contains various hydrolases. 
Acidification of the endosomes is provided by proton pumps within the membrane of the 
endosomes, the V-ATPases. The gradual acidification of the pathway is regulated by the 
concentration of these pumps, the isoforms present, and the presence of other complexes. 
Markers of the lysosomes are the LAMP proteins. In addition to transport of cargo to the 
lysosomes, there is also transport of cellular components to the lysosomes. The different 
hydrolases and membrane proteins are renewed to conserve the lysosome integrity, acidic 
pH and activities. Transport comes mostly from the TGN via the late endosomes. Mobility 
of the endosomes is dynamic, and involves both major transport on actin and the 
microtubule (Mt) networks. Also, transport is not unidirectional, but oscillating, since the 
vesicles interact both with the kinesins (transport toward cell periphery) and the dyneins 
(transport toward nucleus) on the Mts. As the maturation of the endosomes proceeds, the 
net movement will be toward the nucleus (64). Movement of the LEs toward the nucleus is 
important to reach the lysosomes (mostly located in the nuclear periphery). The actin 
network is also important for transport of the EEs to the LEs, and to generate small vesicles 
from the EEs that are targeted to the TGN or from LEs toward lysosomes. Actin is also 
important for fusion between the LEs and lysosomes. 

There are more than 60 different Rab GTPases that have specific membrane localizations. 
Rab small GTPases are important regulators of the endosomal pathway (65) and thus they 
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either GDP or GTP, (66). Rab proteins are involved in multiple events. Rab5 is implicated in 
the recruitment of the clathrin subunits, with other regulator proteins, such as GAPGDI, will 
enable uncoating of the vesicle. Rab proteins were also shown to interact with actin (myosin) 
and microtubule (dynein and kinesin) motors. An example is the Rab11 family of proteins 
that link recycling vesicles to myosin (67). Also an effector of the Rab7 protein interacts with 
the dynein motor to promote minus-end traffic on the microtubules, transporting late 
ensosomes toward the lysosomes. Membrane fusion also involves several proteins, 
including the Rab protein, and SNAREs (soluble NSF attachment protein receptor) (68). In 
this case Rab protein could mediate targeting of the appropriate membrane and docking of 
the membranes, for SNAREs to achieve fusion event.  

4.3. Pathways selected by various non-enveloped DNA viruses 

Members of the same family or the same genus may use different pathways. There is 
growing evidence that certain viruses evolved the use of multiple entry pathways. This can 
be an advantage to infect different cell types. However, it can be difficult to determine 
whether multiple entry pathways are involved or if one complex pathway use different 
components. Often viruses can have multiple sequential binding to the cell surface, which 
can trigger different signaling pathways inside the cell, calling for components normally 
observed to drive different entry pathways. 

4.3.1. Endocytosis of circoviruses 

Porcine circovirus (PCV) infects a wide variety of cell types, including hepatocytes, 
cardiomyocytes, and macrophages via an unknown receptor. PCV utilizes ClaME to enter 
the cell, though other pathways may be involved (69, 70). In contrast, although a dynamin- 
and cholesterol-independent, but actin- and small GTPase-dependent pathway, allows 
PCV2 internalization in epithelial cells that leads to infection, a clathrin-mediated PCV2 
internalization in epithelial cells is not followed by a full replication (69). Recent evidence 
suggests dendritic cells (DC) are involved through their particularly elevated endocytosis of 
the virus. PCV2 can accumulate to high levels both in vitro and in vivo, a phenomenon 
dependent on the virus capsid protein, inferring that the viral capsid or genome impedes 
DC endocytic degradation of the virus (71). However, PCV2 in DC does not interfere with 
processing of other antigens. 

4.3.2. Endocytosis of parvoviruses 

Most Parvoviridae family members were shown to enter cells by ClaME (39, 72, 73). When 
investigating early steps of infection of porcine parvovirus (PPV), we found that inhibition 
of ClaME affected PPV infection, but we could not achieve complete inhibition (39). 
Inhibition of fluid phase endocytosis components also reduced PPV infection. Interestingly 
combination of inhibition of both pathways reduced more the infection level, but still, some 
cells could be infected, suggesting a third pathway might be involved. It is important to 
consider the fact that inhibition of endocytosis pathways will result in upregulation of 
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compensatory mechanisms that can influence viral infection. Laboratory experiments often 
use highly-purified viruses. We demonstrated, however, that after replication most PPV is 
present in aggregates which used preferentially fluid phase endocytosis, compared to the 
purified isolated particles that preferred ClaME (39). Purified viral preparations might not 
reflect the actual mode of infection inside the host. In vivo, aggregates are likely to form and 
be involved in further infection of other cells.  

Adeno-associated viruses (AAVs) are members of the Dependovirus genus. They cannot 
complete their replication cycle without a helper virus, such as adenovirus. Many groups 
study AAVs entry and genome delivery in the nucleus, since they represent a good platform 
for gene therapy. However, the early steps of infection are not efficient (just like all 
parvoviruses) and a better understanding of the mechanism involved could lead to 
genetically modified viruses that are better suited for gene delivery. AAV5 can enter cells 
via ClaME (32), but it was shown to be able to use CavME too (32). To date, it is the only 
known parvovirus using this pathway. The authors observed the virus in non-coated 
vesicles using TEM. These vesicles contained caveolin-1. This pathway could not be found 
in all cell types, highlighting the fact that specific cargos can use different pathways 
depending on the cell type.  

CLIC-GEEC (CLathrin-Independent Carrier/GPI-anchored protein-Enriched Endosomal 
Compartment) is a clathrin/caveolin independent entry pathway, identified in the past 10 
years Figure 3. This pathway is constitutive, and thus attractive for pathogens. The size and 
shape of the vesicles can vary greatly, and could potentially accommodate large or multiple 
viruses. An important protein is GRAF1, serving as a marker or by inhibiting the pathway by 
gene silencing. Another interesting feature of the pathway, for viruses, is that resulting vesicles 
will acidify, and can provide proper environment for conformational changes.  

 
Figure 3. CLIC-GEEC entry mechanism. Characteristic features of this endocytosis mechanism include 
location in the lipid rafts, tubular shaped, large, pleomorphic invaginations, taking up large volume of 
membrane and fluids. Those required actin polymerisation involving Cdc42, and membrane curvature 
involving Arf1. GRAF-1 is a key player that can be used as marker or as target to inhibit this mechanism 
of uptake. 
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Adeno-associated viruses type 2 (AAV2) endocytosis was recently extensively studied, and 
revealed a complex mechanism (33). This endocytosis was independent of clathrin and 
caveolin. Also, only one known inhibitor (EIPA) of macropinocytosis could affect the entry 
of the virus. This inhibitor was shown to inhibit Rac1 and Cdc42 signaling, thus affecting 
other mechanisms as well (74). This endocytosis required actin cytoskeleton and cholesterol. 
Membrane and actin remodeling was observed by TEM and immunofluorescence, 
respectively. Virus bound to the cell surface was located in lipid rafts. These features led to 
the recently described CLIC/GEEC pathway  (38). Dominant negative mutants revealed the 
critical role of Arf1 and Cdc42 for AAV2 endocytosis (33). GRAF1 (GTPase Regulator 
Associated with Focal adhesion kinase) was also demonstrated to be essential in CLIC-
GEEC endocytosis, and postulated to act as a “coat” for that pathway (38). Expression of a 
truncated mutant of the protein, as well as the use of siRNA, both reduced the endocytosis 
of AAV2 (33). GRAF-1 is not implicated in ClaME or CavME, and thus appears specific to 
CLIC-GEEC endocytosis. Combination of GRAF1 and dynamin inhibition further 
diminished entry of AAV2, confirming that both proteins are important for endocytosis of 
AAV2. Interestingly, endosomes of the CLIC-GEEC pathway are known to acidify quickly 
and inhibition of acidification reduced transduction by AAVs (33). Then the virus is 
transported to the Golgi apparatus, and no co-localisation is observed with endosomal 
markers (Rab proteins).  

4.3.3. Endocytosis of polyomaviruses 

SV40 is probably the best described virus using CavME (75). Initial observations were made 
by electron microscopy (TEM) where the virus was not present in a coated vesicle, as 
opposed to ClaME. Entry is dependent of cholesterol, actin polymerization, dynamin and 
caveolin (37, 76). SV40 provides a good example of a particular traffic that does not involve 
classical endosomal pathway (37). Virus can be a great tool when used as a tracer for the 
endocytosis pathway, by using fluorescent viruses and either regular confocal microscopy 
or live imaging. Pelkmans et al. showed that SV40 traffic to the ER in two distinct steps (37). 
They saw, using live imaging that the virus once bound to its receptor will move on the 
surface of the cell until it reach the caveolae. Then the virus is endocytosed into very small 
vesicles. These will transport the virus to larger vesicle already present in the cytoplasm. 
These vesicle contained several virus particle and were caveolin-positive (“caveosomes”). 
Then the virus left the caveosomes in tubular-shaped small vesicles that moved along the 
microtubules toward the nucleus. The virus was then delivered to the smooth ER. No co-
localisation with clathrin was observed, and inhibition of ClaME does not affect SV40 
infection. SV40 was also reported to infect cells that do not express caveolin (77).  In these 
cells, entry involved tyrosine kinases and cholesterol but again was not dependent of 
clathrin or dynamin (77). Entry could not be reduced when inhibiting ClaME or 
macropinocytosis. It was also faster than regular CavME, but led to the ER in a microtubule 
dependent manner similar to CavME. This is a good example of virus adaptation, enabling 
infection in a wide range of cells. In caveolae-expressing cells, both pathways are used. They 
share important characteristics such as dependence of cholesterol, tyrosine kinases and 
transit in neutral vesicles using the microtubule network leading to the ER (77). 
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BK virus is a polyomavirus that poses serious health problems (78). It causes diseases in 
immunosuppressed patients after renal transplants. Immunosuppression therapy can enable 
usually non-threatening viruses to replicate easily leading to diseases. More than 80% of the 
population has been infected often at young age and latent infection of the kidney is present 
in 50% of the population. Efforts are being made to understand infection by this virus. It was 
demonstrated that it hijacks CavME, as its relative virus SV40. Cholesterol depletion 
efficiently inhibited infection. Knock-down of caveolin-1 by siRNA inhibited the infection, 
while a knockout of clathrin had no effect. Immunofluorescence and co-localisation with 
confocal microscopy confirmed that BK virus use CavME in cell culture (78-80).  

4.3.4. Endocytosis of papillomaviruses 

Papillomaviruses are a good example of different family members using different entry 
pathways even after binding to similar receptors, thus co-receptors could shunt the virus to 
different pathways. BPV1 entered cells by ClaME (81), and HPV31 preferred CavME (82). To 
determine which pathway was important they used chemical inhibitors, dominant-negative 
mutants and TEM. Another publication showed that for HPV16 and HPV31 
macropinocytosis was important in NK cells (83). In this case, membrane ruffling was 
observed when the cells were incubated with the virus-like particles (VLPs). Then, co-
uptake of fluid phase was demonstrated with fluorescent dextran. Inhibition by chemical 
inhibitors prevented this fluid-phase uptake. In term of RhoGTPases, HPV VLPs induced 
activation of Cdc42 and inhibition of Rac1. Papillomaviruses are highly asynchronous and 
their pathways chosen are disputes in the literature. 

4.3.5. Endocytosis of adenoviruses 

Adenovirus could be observed in clathrin-coated vesicles by TEM (84). It is also present in 
non-coated vesicles. Dominant-negative constructs confirmed the ClaME (55). The 
involvement of integrins (85, 86) suggests that adenovirus endocytosis is highly regulated. 
These integrins activate PI(3)K which in turn induces actin polymerization and promotes 
adenovirus endocytosis (87). Another observation was that fluid uptake (macropinocytosis) 
increased with adenovirus infection (55). Amiloride was effective to inhibit infection. This 
additional infection pathway also required actin, small Rho GTPases and PKC. 

4.3.6. Endocytosis of iridoviruses 

The enveloped form of the iridovirus FV3 (genus Ranavirus) was discovered in early 1980s 
by TEM research, and shown to be internalized by ClaME whereas the naked particles were 
suggested to enter by fusion at the plasma membrane (29, 88). This model was questioned in 
recent reports with a closely related virus (TFV) and the ISKNV virus (89, 90) with both 
pointing to caveolae-dependent endocytosis. However, caution is warranted since infection 
of cells from non-physiological host, i.e. BHK-21, may cloud a direct comparison of TFV and 
FV3 entry. Similar studies coupled with TEM could resolve these issues. The TFV iridovirus, 
a ranavirus nearly identical to FV3, enters cells by an atypical, pH-dependent, CavME 
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pathway. Experiments using chlorpromazine and over-expression of a dominant-negative 
form of Esp15 that inhibited assembly of clathrin-coated pits did not affect entry into HepG2 
cells. Also, endocytosis of TFV was dependent on membrane cholesterol and was blocked by 
caveolin-1 scaffolding domain protein. Therefore, Guo et al. suggested that FV3, since its 
nearly identical in nucleotide sequence to TFV, may also enter via CavME. Later, these 
authors demonstrated that ISKNV, a fish iridovirus, enters fish cells also via CavME since 
inhibitors of ClaME had no effect on infection, in contrast to inhibitors of caveolin-1-
involved signaling events (90). Moreover, ISKNV co-locates with caveolin-1 during virus 
infection and is dependent on dynamin and the microtubule cytoskeleton. 

5. Virus maturation and endosomes escape 

Non-enveloped viruses display a variety of strategies to gain access to the cytoplasm of the 
cell. Conformational changes are required in capsids to expose hydrophobic domains that 
anchor or disrupt the endosomal membrane during breaching. Parvoviruses have acquired 
an enzyme for membrane translocation. Virus trafficking is therefore highly temporally and 
spatially regulated and a plethora of tools have been developed to study these events. 

5.1. Endosomal trafficking of circoviruses and escape to cytoplasm 

PCV2 enters monocytic cells predominantly by ClaME and requires an acidic environment 
for infection. After endosomal escape, the virus aggregates in intracytoplasmic inclusion 
bodies (ICIs). Subsequently, PCV2 closely associates with mitochondria, completing a first 
cytoplasmic phase and enters the nucleus for replication (91). In epithelial cells, PCV2 is 
internalized via a clathrin-, caveolae-, and dynamin-independent small GTPase-regulated 
pathway (69).The latter leads to a more efficient PCV2 replication while the former seems to 
trap PCV2 leading to accumulation of the virus within epithelial cells. Inhibition of 
acidification of the endosomal/lysosomal system reduces PCV2 infection of the monocytic 
cells, indicating the requirement for a pH drop during replication. Surprisingly, inhibiting 
acidification highly increases PCV2 replication in epithelial cells, indicating that uncoating 
occurs at another pH. Serine proteases mediate PCV2 uncoating in both epithelial cells and 
cells of the monocytic cells but may have different optima in these cells (92). It is not clear 
how this uncoating process impacts on the endosomal escape. 

5.2. Endosomal trafficking of parvoviruses and escape to cytoplasm 

Parvoviruses have a unique enzyme domain, phospholipase A2, in their capsid (12, 13, 93). 
This protein domain with this motif is located inside the mature virion, and thus the virus 
needs to undergo a conformational change in order to expose and use this enzyme. The 
pentamer at the fivefold symmetry axis has a 0.8 nm central pore and is itself encircled by a 
1.5 nm-deep depression (“canyon”).  The hairpins of the central cylinder (see section 2.1.2) 
can thus move outward leading to a greater pore and allowing N-termini of VP2, during the 
transit in the endosome and acidification (94), to become exposed one by one and their N-
termini proteolytically cleaved, yielding successively a larger pore. The internal unique part 
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of VP1 (that resists proteolysis) is then able to externalize and expose its phospholipase A2 
domain. Phospholipases catalyze hydrolysis of phospholipids, providing a means to breach 
the endosomal barrier. This motif is absolutely essential for parvoviruses infection and acts 
prior to the delivery of the genome to the nucleus (13). Millimolar calcium concentrations 
present in the endosome but not in the cytosol, are required for optimal activity of the 
enzyme (12). Since it was required after accumulation of the virus in the perinuclear region, 
but prior to DNA expression in the nucleus, it was hypothesized that its role could be the 
ensodomal escape. Co-uptake studies showed that small dextran particles, but not α-sarcin, 
could be released from the endosomes together with parvovirus escape. These observations 
suggested that parvovirus escape implicated small pore formation and not broad endosome 
disruption. Viruses harboring mutations in the PLA2 enzymatic domain remained trapped 
in endosomes in perinuclear areas, but could be complemented in trans in co-infection 
experiments with wild-type capsids (93). Moreover, induced endosomes disruption induced 
by treatment of the cells with polyethylenimine (PEI) was enough to rescue the infection, 
strongly suggesting that the main function of PLA2 is the escape of the virus from the 
ensosomal pathway. 

5.3. Endosomal trafficking of polyomaviruses and escape to cytoplasm 

SV40 enters via caveolin-1 containing vesicles that budded from the caveolae and that are 
transferred to caveosomes (lack markers for endosomes, lysosomes, ER and Golgi) (37). SV40 
is then transferred from caveolin-free, tubular vesicles to the ER via an intermediate COP1 
compartment that is brefeldin A-sensitive (95). Interestingly, polyomavirus is delivered to 
early endosomes and a crosstalk between ClaME and CavME has been reported for JCV (96). 
Nevertheless, after passage through early endosomes these are sorted to caveosomes. Escape 
occurs from the ER to the cytosol before reaching the nucleus (97). An elegant and elaborate 
study in an attempt to describe mechanisms involved in this escape was published in 2011 
(97). TEM studies suggested profound conformational changes in the ER where the capsid 
diameter decreased from 45nm to 34nm. These conformational changes led to exposing 
structural protein VP2, which was not accessible in the mature virion that entered the cell. This 
VP2 protein contains hydrophobic structures that interact with the ER membrane. In the 
absence of VP2, the capsid can be targeted to the ER, but would not be able to transit back to 
the cytosol. There are several cellular proteins essential for SV40 escape to the cytosol. BAP31, 
highly-abundant membrane protein of the ER, is essential for SV40 infection. The chaperone 
BiP is also important for the escape, and will play its role after BAP31-induced conformational 
changes in the capsid suggesting that the ERAD-factors (isomerases, Derlin) assist is in SV4 
ER- cytosol dislocation as used for misfolded proteins (97).  

5.4. Endosomal trafficking of papillomaviruses and escape to cytoplasm 

This subject is, due to the lack of suitable study models, still controversial. Conformational 
changes occur quickly after HPV entry and capsid protein L1 conformational epitope 
becomes inaccessible after endocytosis (44). Uncoating can be observed by L2 detection 
(normally buried and inaccessible in mature virions), or DNA detection. Papillomavirus 
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escape from the endosomal pathway, at a relatively early stage, and only partial co-
localisation between the virus and the lysosome can be seen (44, 98). Structural protein L2 is 
a major player in the escape. The protein has a hydrophobic C-terminal, adjacent to 
positively-charged residues, believed to destabilize the membrane structure and leading to 
disruption. It was recently described that the cellular protein nexin-17 was also important 
(98). The suggested role of this protein is to retain the virus in the late endosomes, 
preventing degradation in the lysosomes. When this protein is knocked down, strong co-
localisation of the virus with the lysosomes was observed. Importantly, the binding 
sequence in L2 protein is conserved among Papillomaviridae family, both for low- and high-
risk viruses. Recent studies suggested that BPV1 and human papillomavirus type 16 
(HPV16, the most common etiological agent of cervical cancer) enter via ClaME, but that 
subsequent steps, as for JCV polyomavirus, require caveolin-1-mediated trafficking (81, 99). 
This novel trafficking may explain the requirement for the CavME pathway because ClaME 
typically does not lead to the ER.  

5.5. Endosomal trafficking of adenoviruses and escape to cytoplasm 

During entry, fibers are released, the penton base structures dissociated, the proteins 
connecting the DNA to the inside surface of the capsid degraded or shed, and the capsid-
stabilizing minor proteins eliminated (100). The uncoating process starts immediately upon 
endocytic uptake with the loss of fibers and ends with the uptake of dissociated hexon 
proteins and DNA into the nucleus. For the adenoviruses, the escape will occur quickly, and 
is postulated to be as early as the sorting endosomes (48). An acidic pH is not sufficient for 
conformational changes in the virus structure to occur but a large number of factors, such as 
integrin, are involved (101). Integrin binding together with CAR-mediated drifts supported 
fiber shedding from adenovirus particles, leading to exposure of the membrane-lytic 
internal virion protein VI and enhanced viral escape from endosomes (102). The Ts1 mutant, 
which lacks the viral protease and cannot process the capsid or release the fibers during 
endosomal trafficking, will not be able to breach the endosomal membrane and ends up in 
lysosomes where it is degraded (103).   

For subgroup B adenoviruses, Kalin et al. showed by confocal laser scanning microscopy, 
electron microscopy, and live cell imaging (104) that Ad35 colocalized with fluid-phase 
markers in large endocytic structures that were positive for CD46, alphanu integrins, and 
also CtBP1 (89).Their results extended observations with HAdV-3 (Ad3), using chemical 
inhibitors and dominant-negative mutants, that macropinocytosis is an infectious pathway 
for subgroup B human adenoviruses in epithelial and hematopoietic cells. 

5.6. Endosomal trafficking of irdoviruses and escape to cytoplasm 

Maturation of iridoviruses during entry has not been investigated in detail. The minor zip 
and finger proteins may play an essential role for capsid destabilization. Uncoating may 
occur at the nuclear membrane but, unlike herpesviruses, iridovirus genomes are not 
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infectious, indicating that virion-associated proteins are required to initiate viral gene 
transcription (105). Early EM studies showed that FV3 ended up in the lysosome (88); 
however this may be a non-productive pathway. It has been suggested that ISKNV traffics 
via the caveosome to the ER, similar to SV40, and TFV via the caveosome to the trans-Golgi 
(89, 90). Chitnis et al. demonstrated that apoptosis induction by CIV iridovirus : (i) requires 
entry and endocytosis of virions or virion proteins, (ii) is inhibited under conditions 
permitting early viral expression, and (iii) requires the JNK signaling pathway (106). 
Apoptosis was inhibited by Z-IETD-FMK, an apical caspase inhibitor, indicating that CIV-
induced apoptosis requires caspase activity. The JNK inhibitor SP600125 demonstrated 
drastic suppression of CVPE-induced apoptosis and showed that the JNK signaling 
pathway is significant for apoptosis in this system. Virus interaction with the cell surface 
was not sufficient for apoptosis since CIV(UV) particles bound to polysterene beads failed to 
induce apoptosis. Furthermore, blocking viral DNA replication with aphidicolin or 
phosphonoacetic acid suppressed apoptosis and Cf-caspase-i activity, indicating that early 
viral expression is necessary for inhibition of apoptosis, and de novo synthesis of viral 
proteins is not required for induction. 

6. Conclusions 

Endocytosis is a wide subject that has been studied for a very long time. Viruses are 
definitely great tool to study endocytosis since they are masters in hijacking every single 
possibility of the cell to achieve infection. Elucidating steps in viral replication often leads to 
hitherto unknown mechanisms that expand our knowledge of normal cellular processes. It 
is also interesting to realise that significant differences are found inside a family of closely 
related viruses. Co-evolution with different hosts, in different conditions pushed viruses to 
adapt in different direction and provide a great variety of tools. However, in the case of life 
threatening or economically-important viruses, it is sometimes very hard to find a way to 
prevent infection without impeding with normal cellular processes. This growing field of 
research will surely provide new exiting insights to previously unknown cellular process, 
and will continue to provide good targets for antiviral drugs.  

Author details 

Maude Boisvert and Peter Tijssen* 
INRS-Institut Armand-Frappier, Institut Pasteur International Network, Université du Québec, 
QC, Canada 

Acknowledgement 

Authors wish to thank Natural Sciences and Engineering Research Council of Canada for 
grant to support P.T. and for the scholarship to M.B. 
                                                                                    
* Corresponding Author 



 
Molecular Regulation of Endocytosis 238 

infectious, indicating that virion-associated proteins are required to initiate viral gene 
transcription (105). Early EM studies showed that FV3 ended up in the lysosome (88); 
however this may be a non-productive pathway. It has been suggested that ISKNV traffics 
via the caveosome to the ER, similar to SV40, and TFV via the caveosome to the trans-Golgi 
(89, 90). Chitnis et al. demonstrated that apoptosis induction by CIV iridovirus : (i) requires 
entry and endocytosis of virions or virion proteins, (ii) is inhibited under conditions 
permitting early viral expression, and (iii) requires the JNK signaling pathway (106). 
Apoptosis was inhibited by Z-IETD-FMK, an apical caspase inhibitor, indicating that CIV-
induced apoptosis requires caspase activity. The JNK inhibitor SP600125 demonstrated 
drastic suppression of CVPE-induced apoptosis and showed that the JNK signaling 
pathway is significant for apoptosis in this system. Virus interaction with the cell surface 
was not sufficient for apoptosis since CIV(UV) particles bound to polysterene beads failed to 
induce apoptosis. Furthermore, blocking viral DNA replication with aphidicolin or 
phosphonoacetic acid suppressed apoptosis and Cf-caspase-i activity, indicating that early 
viral expression is necessary for inhibition of apoptosis, and de novo synthesis of viral 
proteins is not required for induction. 

6. Conclusions 

Endocytosis is a wide subject that has been studied for a very long time. Viruses are 
definitely great tool to study endocytosis since they are masters in hijacking every single 
possibility of the cell to achieve infection. Elucidating steps in viral replication often leads to 
hitherto unknown mechanisms that expand our knowledge of normal cellular processes. It 
is also interesting to realise that significant differences are found inside a family of closely 
related viruses. Co-evolution with different hosts, in different conditions pushed viruses to 
adapt in different direction and provide a great variety of tools. However, in the case of life 
threatening or economically-important viruses, it is sometimes very hard to find a way to 
prevent infection without impeding with normal cellular processes. This growing field of 
research will surely provide new exiting insights to previously unknown cellular process, 
and will continue to provide good targets for antiviral drugs.  

Author details 

Maude Boisvert and Peter Tijssen* 
INRS-Institut Armand-Frappier, Institut Pasteur International Network, Université du Québec, 
QC, Canada 

Acknowledgement 

Authors wish to thank Natural Sciences and Engineering Research Council of Canada for 
grant to support P.T. and for the scholarship to M.B. 
                                                                                    
* Corresponding Author 

 
Endocytosis of Non-Enveloped DNA Viruses 239 

7. References 

[1] Crowther RA, Berriman JA, Curran WL, Allan GM, Todd D. Comparison of the 
structures of three circoviruses: chicken anemia virus, porcine circovirus type 2, and 
beak and feather disease virus. J Virol. 2003;77(24):13036-41. Epub 2003/12/04. 

[2] Khayat R, Brunn N, Speir JA, Hardham JM, Ankenbauer RG, Schneemann A, et al. The 
2.3-angstrom structure of porcine circovirus 2. J Virol. 2011;85(15):7856-62. Epub 
2011/06/03. 

[3] Mahe D, Blanchard P, Truong C, Arnauld C, Le Cann P, Cariolet R, et al. Differential 
recognition of ORF2 protein from type 1 and type 2 porcine circoviruses and 
identification of immunorelevant epitopes. J Gen Virol. 2000;81(Pt 7):1815-24. Epub 
2000/06/22. 

[4] Misinzo G, Delputte PL, Meerts P, Lefebvre DJ, Nauwynck HJ. Porcine circovirus 2 uses 
heparan sulfate and chondroitin sulfate B glycosaminoglycans as receptors for its 
attachment to host cells. J Virol. 2006;80(7):3487-94. Epub 2006/03/16. 

[5] Tsao J, Chapman MS, Agbandje M, Keller W, Smith K, Wu H, et al. The three-
dimensional structure of canine parvovirus and its functional implications. Science. 
1991;251(5000):1456-64. Epub 1991/03/22. 

[6] Kaufmann B, El-Far M, Plevka P, Bowman VD, Li Y, Tijssen P, et al. Structure of Bombyx 
mori densovirus 1, a silkworm pathogen. J Virol. 2011;85(10):4691-7. Epub 2011/03/04. 

[7] Kaufmann B, Bowman VD, Li Y, Szelei J, Waddell PJ, Tijssen P, et al. Structure of 
Penaeus stylirostris densovirus, a shrimp pathogen. J Virol. 2010;84(21):11289-96. Epub 
2010/08/13. 

[8] Simpson AA, Hebert B, Sullivan GM, Parrish CR, Zadori Z, Tijssen P, et al. The structure 
of porcine parvovirus: comparison with related viruses. J Mol Biol. 2002;315(5):1189-98. 
Epub 2002/02/06. 

[9] Simpson AA, Chipman PR, Baker TS, Tijssen P, Rossmann MG. The structure of an 
insect parvovirus (Galleria mellonella densovirus) at 3.7 A resolution. Structure. 
1998;6(11):1355-67. Epub 1998/11/18. 

[10] Agbandje-McKenna M, Llamas-Saiz AL, Wang F, Tattersall P, Rossmann MG. 
Functional implications of the structure of the murine parvovirus, minute virus of mice. 
Structure. 1998;6(11):1369-81. Epub 1998/11/18. 

[11] Plevka P, Hafenstein S, Li L, D'Abrgamo A, Jr., Cotmore SF, Rossmann MG, et al. 
Structure of a packaging-defective mutant of minute virus of mice indicates that the 
genome is packaged via a pore at a 5-fold axis. J Virol. 2011;85(10):4822-7. Epub 
2011/03/04. 

[12] Canaan S, Zadori Z, Ghomashchi F, Bollinger J, Sadilek M, Moreau ME, et al. Interfacial 
enzymology of parvovirus phospholipases A2. J Biol Chem. 2004;279(15):14502-8. Epub 
2004/01/17. 

[13] Zadori Z, Szelei J, Lacoste MC, Li Y, Gariepy S, Raymond P, et al. A viral phospholipase 
A2 is required for parvovirus infectivity. Dev Cell. 2001;1(2):291-302. Epub 2001/11/13. 



 
Molecular Regulation of Endocytosis 240 

[14] Yan Y, Stehle T, Liddington RC, Zhao H, Harrison SC. Structure determination of 
simian virus 40 and murine polyomavirus by a combination of 30-fold and 5-fold 
electron-density averaging. Structure. 1996;4(2):157-64. Epub 1996/02/15. 

[15] Liddington RC, Yan Y, Moulai J, Sahli R, Benjamin TL, Harrison SC. Structure of simian 
virus 40 at 3.8-A resolution. Nature. 1991;354(6351):278-84. Epub 1991/11/28. 

[16] Baker TS, Drak J, Bina M. The capsid of small papova viruses contains 72 pentameric 
capsomeres: direct evidence from cryo-electron-microscopy of simian virus 40. Biophys 
J. 1989;55(2):243-53. Epub 1989/02/01. 

[17] Streuli CH, Griffin BE. Myristic acid is coupled to a structural protein of polyoma virus 
and SV40. Nature. 1987;326(6113):619-22. Epub 1987/04/09. 

[18] Schelhaas M, Malmstrom J, Pelkmans L, Haugstetter J, Ellgaard L, Grunewald K, et al. 
Simian Virus 40 depends on ER protein folding and quality control factors for entry into 
host cells. Cell. 2007;131(3):516-29. Epub 2007/11/06. 

[19] Sapp M, Day PM. Structure, attachment and entry of polyoma- and papillomaviruses. 
Virology. 2009;384(2):400-9. Epub 2009/01/23. 

[20] Belnap DM, Olson NH, Cladel NM, Newcomb WW, Brown JC, Kreider JW, et al. 
Conserved features in papillomavirus and polyomavirus capsids. J Mol Biol. 
1996;259(2):249-63. Epub 1996/06/07. 

[21] Chen XS, Casini G, Harrison SC, Garcea RL. Papillomavirus capsid protein expression 
in Escherichia coli: purification and assembly of HPV11 and HPV16 L1. J Mol Biol. 
2001;307(1):173-82. Epub 2001/03/13. 

[22] Chen XS, Garcea RL, Goldberg I, Casini G, Harrison SC. Structure of small virus-like 
particles assembled from the L1 protein of human papillomavirus 16. Mol Cell. 
2000;5(3):557-67. Epub 2000/07/06. 

[23] Modis Y, Trus BL, Harrison SC. Atomic model of the papillomavirus capsid. EMBO J. 
2002;21(18):4754-62. Epub 2002/09/18. 

[24] Hagensee ME, Olson NH, Baker TS, Galloway DA. Three-dimensional structure of 
vaccinia virus-produced human papillomavirus type 1 capsids. J Virol. 1994;68(7):4503-
5. Epub 1994/07/01. 

[25] Baker TS, Newcomb WW, Olson NH, Cowsert LM, Olson C, Brown JC. Structures of 
bovine and human papillomaviruses. Analysis by cryoelectron microscopy and three-
dimensional image reconstruction. Biophys J. 1991;60(6):1445-56. Epub 1991/12/01. 

[26] Chailertvanitkul VA, Pouton CW. Adenovirus: a blueprint for non-viral gene delivery. 
Curr Op Biotech. 2010;21(5):627-32. Epub 2010/07/20. 

[27] Reddy VS, Natchiar SK, Stewart PL, Nemerow GR. Crystal structure of human 
adenovirus at 3.5 A resolution. Science. 2010;329(5995):1071-5. Epub 2010/08/28. 

[28] Reddy VS, Natchiar SK, Gritton L, Mullen TM, Stewart PL, Nemerow GR. 
Crystallization and preliminary X-ray diffraction analysis of human adenovirus. 
Virology. 2010;402(1):209-14. Epub 2010/04/17. 



 
Molecular Regulation of Endocytosis 240 

[14] Yan Y, Stehle T, Liddington RC, Zhao H, Harrison SC. Structure determination of 
simian virus 40 and murine polyomavirus by a combination of 30-fold and 5-fold 
electron-density averaging. Structure. 1996;4(2):157-64. Epub 1996/02/15. 

[15] Liddington RC, Yan Y, Moulai J, Sahli R, Benjamin TL, Harrison SC. Structure of simian 
virus 40 at 3.8-A resolution. Nature. 1991;354(6351):278-84. Epub 1991/11/28. 

[16] Baker TS, Drak J, Bina M. The capsid of small papova viruses contains 72 pentameric 
capsomeres: direct evidence from cryo-electron-microscopy of simian virus 40. Biophys 
J. 1989;55(2):243-53. Epub 1989/02/01. 

[17] Streuli CH, Griffin BE. Myristic acid is coupled to a structural protein of polyoma virus 
and SV40. Nature. 1987;326(6113):619-22. Epub 1987/04/09. 

[18] Schelhaas M, Malmstrom J, Pelkmans L, Haugstetter J, Ellgaard L, Grunewald K, et al. 
Simian Virus 40 depends on ER protein folding and quality control factors for entry into 
host cells. Cell. 2007;131(3):516-29. Epub 2007/11/06. 

[19] Sapp M, Day PM. Structure, attachment and entry of polyoma- and papillomaviruses. 
Virology. 2009;384(2):400-9. Epub 2009/01/23. 

[20] Belnap DM, Olson NH, Cladel NM, Newcomb WW, Brown JC, Kreider JW, et al. 
Conserved features in papillomavirus and polyomavirus capsids. J Mol Biol. 
1996;259(2):249-63. Epub 1996/06/07. 

[21] Chen XS, Casini G, Harrison SC, Garcea RL. Papillomavirus capsid protein expression 
in Escherichia coli: purification and assembly of HPV11 and HPV16 L1. J Mol Biol. 
2001;307(1):173-82. Epub 2001/03/13. 

[22] Chen XS, Garcea RL, Goldberg I, Casini G, Harrison SC. Structure of small virus-like 
particles assembled from the L1 protein of human papillomavirus 16. Mol Cell. 
2000;5(3):557-67. Epub 2000/07/06. 

[23] Modis Y, Trus BL, Harrison SC. Atomic model of the papillomavirus capsid. EMBO J. 
2002;21(18):4754-62. Epub 2002/09/18. 

[24] Hagensee ME, Olson NH, Baker TS, Galloway DA. Three-dimensional structure of 
vaccinia virus-produced human papillomavirus type 1 capsids. J Virol. 1994;68(7):4503-
5. Epub 1994/07/01. 

[25] Baker TS, Newcomb WW, Olson NH, Cowsert LM, Olson C, Brown JC. Structures of 
bovine and human papillomaviruses. Analysis by cryoelectron microscopy and three-
dimensional image reconstruction. Biophys J. 1991;60(6):1445-56. Epub 1991/12/01. 

[26] Chailertvanitkul VA, Pouton CW. Adenovirus: a blueprint for non-viral gene delivery. 
Curr Op Biotech. 2010;21(5):627-32. Epub 2010/07/20. 

[27] Reddy VS, Natchiar SK, Stewart PL, Nemerow GR. Crystal structure of human 
adenovirus at 3.5 A resolution. Science. 2010;329(5995):1071-5. Epub 2010/08/28. 

[28] Reddy VS, Natchiar SK, Gritton L, Mullen TM, Stewart PL, Nemerow GR. 
Crystallization and preliminary X-ray diffraction analysis of human adenovirus. 
Virology. 2010;402(1):209-14. Epub 2010/04/17. 

 
Endocytosis of Non-Enveloped DNA Viruses 241 

[29] Chinchar VG, Yu KH, Jancovich JK. The molecular biology of frog virus 3 and other 
iridoviruses infecting cold-blooded vertebrates. Viruses. 2011;3(10):1959-85. Epub 
2011/11/10. 

[30] Yan X, Olson NH, Van Etten JL, Bergoin M, Rossmann MG, Baker TS. Structure and 
assembly of large lipid-containing dsDNA viruses. Nature Struct Biol. 2000;7(2):101-3. 
Epub 2000/02/03. 

[31] Yan X, Yu Z, Zhang P, Battisti AJ, Holdaway HA, Chipman PR, et al. The capsid 
proteins of a large, icosahedral dsDNA virus. J Mol Biol. 2009;385(4):1287-99. Epub 
2008/11/26. 

[32] Bantel-Schaal U, Braspenning-Wesch I, Kartenbeck J. Adeno-associated virus type 5 
exploits two different entry pathways in human embryo fibroblasts. J Gen Virol. 
2009;90(Pt 2):317-22. Epub 2009/01/15. 

[33] Nonnenmacher M, Weber T. Adeno-associated virus 2 infection requires endocytosis 
through the CLIC/GEEC pathway. Cell Host Microbe. 2011;10(6):563-76. Epub 
2011/12/20. 

[34] Ivanov AI. Pharmacological inhibition of endocytic pathways: is it specific enough to be 
useful? Methods Mol Biol. 2008;440:15-33. Epub 2008/03/29. 

[35] Sieczkarski SB, Whittaker GR. Dissecting virus entry via endocytosis. J Gen Virol. 
2002;83(Pt 7):1535-45. Epub 2002/06/21. 

[36] Benmerah A, Bayrou M, Cerf-Bensussan N, Dautry-Varsat A. Inhibition of clathrin-
coated pit assembly by an Eps15 mutant. J Cell Sci. 1999;112 ( Pt 9):1303-11. Epub 
1999/04/09. 

[37] Pelkmans L, Kartenbeck J, Helenius A. Caveolar endocytosis of simian virus 40 reveals 
a new two-step vesicular-transport pathway to the ER. Nat Cell Biol. 2001;3(5):473-83. 
Epub 2001/05/02. 

[38] Lundmark R, Doherty GJ, Howes MT, Cortese K, Vallis Y, Parton RG, et al. The 
GTPase-activating protein GRAF1 regulates the CLIC/GEEC endocytic pathway. Curr 
Biol. 2008;18(22):1802-8. Epub 2008/11/28. 

[39] Boisvert M, Fernandes S, Tijssen P. Multiple pathways involved in porcine parvovirus 
cellular entry and trafficking toward the nucleus. J Virol. 2010;84(15):7782-92. Epub 
2010/05/21. 

[40] Opie SR, Warrington KH, Jr., Agbandje-McKenna M, Zolotukhin S, Muzyczka N. 
Identification of amino acid residues in the capsid proteins of adeno-associated virus 
type 2 that contribute to heparan sulfate proteoglycan binding. J Virol. 2003;77(12):6995-
7006. Epub 2003/05/28. 

[41] Hueffer K, Govindasamy L, Agbandje-McKenna M, Parrish CR. Combinations of two 
capsid regions controlling canine host range determine canine transferrin receptor 
binding by canine and feline parvoviruses. J Virol. 2003;77(18):10099-105. Epub 
2003/08/28. 



 
Molecular Regulation of Endocytosis 242 

[42] Parker JS, Murphy WJ, Wang D, O'Brien SJ, Parrish CR. Canine and feline parvoviruses 
can use human or feline transferrin receptors to bind, enter, and infect cells. J Virol. 
2001;75(8):3896-902. Epub 2001/03/27. 

[43] Oraveerakul K, Choi CS, Molitor TW. Restriction of porcine parvovirus replication in 
nonpermissive cells. J Virol. 1992;66(2):715-22. Epub 1992/02/01. 

[44] Sapp M, Bienkowska-Haba M. Viral entry mechanisms: human papillomavirus and a 
long journey from extracellular matrix to the nucleus. FEBS J. 2009;276(24):7206-16. 
Epub 2009/11/03. 

[45] Buck CB, Pastrana DV, Lowy DR, Schiller JT. Efficient intracellular assembly of 
papillomaviral vectors. J Virol. 2004;78(2):751-7. Epub 2003/12/25. 

[46] Pyeon D, Lambert PF, Ahlquist P. Production of infectious human papillomavirus 
independently of viral replication and epithelial cell differentiation. Proc Natl Acad Sci 
U S A. 2005;102(26):9311-6. Epub 2005/06/17. 

[47] Roberts JN, Buck CB, Thompson CD, Kines R, Bernardo M, Choyke PL, et al. Genital 
transmission of HPV in a mouse model is potentiated by nonoxynol-9 and inhibited by 
carrageenan. Nature Med. 2007;13(7):857-61. Epub 2007/07/03. 

[48] Leopold PL, Crystal RG. Intracellular trafficking of adenovirus: many means to many 
ends. Adv Drug Del Rev. 2007;59(8):810-21. Epub 2007/08/21. 

[49] Eaton HE, Penny E, Brunetti CR. Antibody dependent enhancement of frog virus 3 
infection. Virol J. 2010;7:41. Epub 2010/02/20. 

[50] Polo S, Di Fiore PP. Endocytosis conducts the cell signaling orchestra. Cell. 
2006;124(5):897-900. Epub 2006/03/15. 

[51] Sorkin A, von Zastrow M. Endocytosis and signalling: intertwining molecular 
networks. Nat Rev Mol Cell Biol. 2009;10(9):609-22. Epub 2009/08/22. 

[52] Wilde A, Beattie EC, Lem L, Riethof DA, Liu SH, Mobley WC, et al. EGF receptor 
signaling stimulates SRC kinase phosphorylation of clathrin, influencing clathrin 
redistribution and EGF uptake. Cell. 1999;96(5):677-87. Epub 1999/03/25. 

[53] Cavalli V, Vilbois F, Corti M, Marcote MJ, Tamura K, Karin M, et al. The stress-induced 
MAP kinase p38 regulates endocytic trafficking via the GDI:Rab5 complex. Mol Cell. 
2001;7(2):421-32. Epub 2001/03/10. 

[54] Nekhoroshkova E, Albert S, Becker M, Rapp UR. A-RAF kinase functions in ARF6 
regulated endocytic membrane traffic. PloS one. 2009;4(2):e4647. Epub 2009/02/28. 

[55] Meier O, Boucke K, Hammer SV, Keller S, Stidwill RP, Hemmi S, et al. Adenovirus 
triggers macropinocytosis and endosomal leakage together with its clathrin-mediated 
uptake. J Cell Biol. 2002;158(6):1119-31. Epub 2002/09/11. 

[56] McMahon HT, Boucrot E. Molecular mechanism and physiological functions of 
clathrin-mediated endocytosis. Nat Rev Mol Cell Biol.12(8):517-33. Epub 2011/07/23. 

[57] Lajoie P, Nabi IR. Regulation of raft-dependent endocytosis. J Cell Mol Med. 
2007;11(4):644-53. Epub 2007/09/01. 

[58] Mercer J, Helenius A. Virus entry by macropinocytosis. Nat Cell Biol. 2009;11(5):510-20. 
Epub 2009/05/01. 



 
Molecular Regulation of Endocytosis 242 

[42] Parker JS, Murphy WJ, Wang D, O'Brien SJ, Parrish CR. Canine and feline parvoviruses 
can use human or feline transferrin receptors to bind, enter, and infect cells. J Virol. 
2001;75(8):3896-902. Epub 2001/03/27. 

[43] Oraveerakul K, Choi CS, Molitor TW. Restriction of porcine parvovirus replication in 
nonpermissive cells. J Virol. 1992;66(2):715-22. Epub 1992/02/01. 

[44] Sapp M, Bienkowska-Haba M. Viral entry mechanisms: human papillomavirus and a 
long journey from extracellular matrix to the nucleus. FEBS J. 2009;276(24):7206-16. 
Epub 2009/11/03. 

[45] Buck CB, Pastrana DV, Lowy DR, Schiller JT. Efficient intracellular assembly of 
papillomaviral vectors. J Virol. 2004;78(2):751-7. Epub 2003/12/25. 

[46] Pyeon D, Lambert PF, Ahlquist P. Production of infectious human papillomavirus 
independently of viral replication and epithelial cell differentiation. Proc Natl Acad Sci 
U S A. 2005;102(26):9311-6. Epub 2005/06/17. 

[47] Roberts JN, Buck CB, Thompson CD, Kines R, Bernardo M, Choyke PL, et al. Genital 
transmission of HPV in a mouse model is potentiated by nonoxynol-9 and inhibited by 
carrageenan. Nature Med. 2007;13(7):857-61. Epub 2007/07/03. 

[48] Leopold PL, Crystal RG. Intracellular trafficking of adenovirus: many means to many 
ends. Adv Drug Del Rev. 2007;59(8):810-21. Epub 2007/08/21. 

[49] Eaton HE, Penny E, Brunetti CR. Antibody dependent enhancement of frog virus 3 
infection. Virol J. 2010;7:41. Epub 2010/02/20. 

[50] Polo S, Di Fiore PP. Endocytosis conducts the cell signaling orchestra. Cell. 
2006;124(5):897-900. Epub 2006/03/15. 

[51] Sorkin A, von Zastrow M. Endocytosis and signalling: intertwining molecular 
networks. Nat Rev Mol Cell Biol. 2009;10(9):609-22. Epub 2009/08/22. 

[52] Wilde A, Beattie EC, Lem L, Riethof DA, Liu SH, Mobley WC, et al. EGF receptor 
signaling stimulates SRC kinase phosphorylation of clathrin, influencing clathrin 
redistribution and EGF uptake. Cell. 1999;96(5):677-87. Epub 1999/03/25. 

[53] Cavalli V, Vilbois F, Corti M, Marcote MJ, Tamura K, Karin M, et al. The stress-induced 
MAP kinase p38 regulates endocytic trafficking via the GDI:Rab5 complex. Mol Cell. 
2001;7(2):421-32. Epub 2001/03/10. 

[54] Nekhoroshkova E, Albert S, Becker M, Rapp UR. A-RAF kinase functions in ARF6 
regulated endocytic membrane traffic. PloS one. 2009;4(2):e4647. Epub 2009/02/28. 

[55] Meier O, Boucke K, Hammer SV, Keller S, Stidwill RP, Hemmi S, et al. Adenovirus 
triggers macropinocytosis and endosomal leakage together with its clathrin-mediated 
uptake. J Cell Biol. 2002;158(6):1119-31. Epub 2002/09/11. 

[56] McMahon HT, Boucrot E. Molecular mechanism and physiological functions of 
clathrin-mediated endocytosis. Nat Rev Mol Cell Biol.12(8):517-33. Epub 2011/07/23. 

[57] Lajoie P, Nabi IR. Regulation of raft-dependent endocytosis. J Cell Mol Med. 
2007;11(4):644-53. Epub 2007/09/01. 

[58] Mercer J, Helenius A. Virus entry by macropinocytosis. Nat Cell Biol. 2009;11(5):510-20. 
Epub 2009/05/01. 

 
Endocytosis of Non-Enveloped DNA Viruses 243 

[59] Clement C, Tiwari V, Scanlan PM, Valyi-Nagy T, Yue BY, Shukla D. A novel role for 
phagocytosis-like uptake in herpes simplex virus entry. J Cell Biol. 2006;174(7):1009-21. 
Epub 2006/09/27. 

[60] Ghigo E, Kartenbeck J, Lien P, Pelkmans L, Capo C, Mege JL, et al. Ameobal pathogen 
mimivirus infects macrophages through phagocytosis. PLoS Pathog. 2008;4(6):e1000087. 
Epub 2008/06/14. 

[61] Mayor S, Pagano RE. Pathways of clathrin-independent endocytosis. Nat Rev Mol Cell 
Biol. 2007;8(8):603-12. Epub 2007/07/05. 

[62] Huotari J, Helenius A. Endosome maturation. EMBO J. 2011;30(17):3481-500. Epub 
2011/09/01. 

[63] Rink J, Ghigo E, Kalaidzidis Y, Zerial M. Rab conversion as a mechanism of progression 
from early to late endosomes. Cell. 2005;122(5):735-49. Epub 2005/09/07. 

[64] Driskell OJ, Mironov A, Allan VJ, Woodman PG. Dynein is required for receptor sorting 
and the morphogenesis of early endosomes. Nat Cell Biol. 2007;9(1):113-20. Epub 
2006/12/19. 

[65] Stenmark H. Rab GTPases as coordinators of vesicle traffic. Nat Rev Mol Cell Biol. 
2009;10(8):513-25. Epub 2009/07/16. 

[66] Pfeffer SR. Structural clues to Rab GTPase functional diversity. J Biol Chem. 
2005;280(16):15485-8. Epub 2005/03/05. 

[67] Seabra MC, Coudrier E. Rab GTPases and myosin motors in organelle motility. Traffic. 
2004;5(6):393-9. Epub 2004/05/01. 

[68] Stenmark H, Parton RG, Steele-Mortimer O, Lutcke A, Gruenberg J, Zerial M. Inhibition 
of rab5 GTPase activity stimulates membrane fusion in endocytosis. EMBO J. 
1994;13(6):1287-96. Epub 1994/03/15. 

[69] Misinzo G, Delputte PL, Lefebvre DJ, Nauwynck HJ. Porcine circovirus 2 infection of 
epithelial cells is clathrin-, caveolae- and dynamin-independent, actin and Rho-GTPase-
mediated, and enhanced by cholesterol depletion. Virus Res. 2009;139(1):1-9. Epub 
2008/10/28. 

[70] Misinzo G, Meerts P, Bublot M, Mast J, Weingartl HM, Nauwynck HJ. Binding and 
entry characteristics of porcine circovirus 2 in cells of the porcine monocytic line 
3D4/31. J Gen Virol. 2005;86(Pt 7):2057-68. Epub 2005/06/17. 

[71] McCullough KC, Ruggli N, Summerfield A. Dendritic cells--at the front-line of 
pathogen attack. Vet Immun Immunopathol. 2009;128(1-3):7-15. Epub 2008/11/28. 

[72] Douar AM, Poulard K, Stockholm D, Danos O. Intracellular trafficking of adeno-
associated virus vectors: routing to the late endosomal compartment and proteasome 
degradation. J Virol. 2001;75(4):1824-33. Epub 2001/02/13. 

[73] Parker JS, Parrish CR. Cellular uptake and infection by canine parvovirus involves 
rapid dynamin-regulated clathrin-mediated endocytosis, followed by slower 
intracellular trafficking. J Virol. 2000;74(4):1919-30. Epub 2000/01/22. 



 
Molecular Regulation of Endocytosis 244 

[74] Koivusalo M, Welch C, Hayashi H, Scott CC, Kim M, Alexander T, et al. Amiloride 
inhibits macropinocytosis by lowering submembranous pH and preventing Rac1 and 
Cdc42 signaling. J Cell Biol.188(4):547-63. Epub 2010/02/17. 

[75] Norkin LC. Simian virus 40 infection via MHC class I molecules and caveolae. Immunol 
Rev. 1999;168:13-22. Epub 1999/07/10. 

[76] Pelkmans L, Puntener D, Helenius A. Local actin polymerization and dynamin 
recruitment in SV40-induced internalization of caveolae. Science. 2002;296(5567):535-9. 
Epub 2002/04/20. 

[77] Damm EM, Pelkmans L, Kartenbeck J, Mezzacasa A, Kurzchalia T, Helenius A. 
Clathrin- and caveolin-1-independent endocytosis: entry of simian virus 40 into cells 
devoid of caveolae. J Cell Biol. 2005;168(3):477-88. Epub 2005/01/26. 

[78] Moriyama T, Marquez JP, Wakatsuki T, Sorokin A. Caveolar endocytosis is critical for 
BK virus infection of human renal proximal tubular epithelial cells. J Virol. 
2007;81(16):8552-62. Epub 2007/06/08. 

[79] Dugan AS, Eash S, Atwood WJ. Update on BK virus entry and intracellular trafficking. 
Transplant Infect Dis. 2006;8(2):62-7. Epub 2006/06/01. 

[80] Moriyama T, Sorokin A. Repression of BK virus infection of human renal proximal 
tubular epithelial cells by pravastatin. Transplantation. 2008;85(9):1311-7. Epub 
2008/05/14. 

[81] Laniosz V, Holthusen KA, Meneses PI. Bovine papillomavirus type 1: from clathrin to 
caveolin. J Virol. 2008;82(13):6288-98. Epub 2008/04/18. 

[82] Bousarghin L, Touze A, Sizaret PY, Coursaget P. Human papillomavirus types 16, 31, 
and 58 use different endocytosis pathways to enter cells. J Virol. 2003;77(6):3846-50. 
Epub 2003/03/01. 

[83] Renoux VM, Bisig B, Langers I, Dortu E, Clemenceau B, Thiry M, et al. Human 
papillomavirus entry into NK cells requires CD16 expression and triggers cytotoxic 
activity and cytokine secretion. Eur J Immunol. 2011;41(11):3240-52. Epub 2011/08/11. 

[84] Brown DT, Burlingham BT. Penetration of host cell membranes by adenovirus 2. J Virol. 
1973;12(2):386-96. Epub 1973/08/01. 

[85] Suomalainen M, Nakano MY, Boucke K, Keller S, Greber UF. Adenovirus-activated 
PKA and p38/MAPK pathways boost microtubule-mediated nuclear targeting of virus. 
EMBO J. 2001;20(6):1310-9. Epub 2001/03/17. 

[86] Wickham TJ, Mathias P, Cheresh DA, Nemerow GR. Integrins alpha v beta 3 and alpha 
v beta 5 promote adenovirus internalization but not virus attachment. Cell. 
1993;73(2):309-19. Epub 1993/04/23. 

[87] Li E, Stupack D, Klemke R, Cheresh DA, Nemerow GR. Adenovirus endocytosis via 
alpha(v) integrins requires phosphoinositide-3-OH kinase. J Virol. 1998;72(3):2055-61. 
Epub 1998/03/14. 

[88] Braunwald J, Nonnenmacher H, Tripier-Darcy F. Ultrastructural and biochemical study 
of frog virus 3 uptake by BHK-21 cells. J Gen Virol. 1985;66 ( Pt 2):283-93. Epub 
1985/02/01. 



 
Molecular Regulation of Endocytosis 244 

[74] Koivusalo M, Welch C, Hayashi H, Scott CC, Kim M, Alexander T, et al. Amiloride 
inhibits macropinocytosis by lowering submembranous pH and preventing Rac1 and 
Cdc42 signaling. J Cell Biol.188(4):547-63. Epub 2010/02/17. 

[75] Norkin LC. Simian virus 40 infection via MHC class I molecules and caveolae. Immunol 
Rev. 1999;168:13-22. Epub 1999/07/10. 

[76] Pelkmans L, Puntener D, Helenius A. Local actin polymerization and dynamin 
recruitment in SV40-induced internalization of caveolae. Science. 2002;296(5567):535-9. 
Epub 2002/04/20. 

[77] Damm EM, Pelkmans L, Kartenbeck J, Mezzacasa A, Kurzchalia T, Helenius A. 
Clathrin- and caveolin-1-independent endocytosis: entry of simian virus 40 into cells 
devoid of caveolae. J Cell Biol. 2005;168(3):477-88. Epub 2005/01/26. 

[78] Moriyama T, Marquez JP, Wakatsuki T, Sorokin A. Caveolar endocytosis is critical for 
BK virus infection of human renal proximal tubular epithelial cells. J Virol. 
2007;81(16):8552-62. Epub 2007/06/08. 

[79] Dugan AS, Eash S, Atwood WJ. Update on BK virus entry and intracellular trafficking. 
Transplant Infect Dis. 2006;8(2):62-7. Epub 2006/06/01. 

[80] Moriyama T, Sorokin A. Repression of BK virus infection of human renal proximal 
tubular epithelial cells by pravastatin. Transplantation. 2008;85(9):1311-7. Epub 
2008/05/14. 

[81] Laniosz V, Holthusen KA, Meneses PI. Bovine papillomavirus type 1: from clathrin to 
caveolin. J Virol. 2008;82(13):6288-98. Epub 2008/04/18. 

[82] Bousarghin L, Touze A, Sizaret PY, Coursaget P. Human papillomavirus types 16, 31, 
and 58 use different endocytosis pathways to enter cells. J Virol. 2003;77(6):3846-50. 
Epub 2003/03/01. 

[83] Renoux VM, Bisig B, Langers I, Dortu E, Clemenceau B, Thiry M, et al. Human 
papillomavirus entry into NK cells requires CD16 expression and triggers cytotoxic 
activity and cytokine secretion. Eur J Immunol. 2011;41(11):3240-52. Epub 2011/08/11. 

[84] Brown DT, Burlingham BT. Penetration of host cell membranes by adenovirus 2. J Virol. 
1973;12(2):386-96. Epub 1973/08/01. 

[85] Suomalainen M, Nakano MY, Boucke K, Keller S, Greber UF. Adenovirus-activated 
PKA and p38/MAPK pathways boost microtubule-mediated nuclear targeting of virus. 
EMBO J. 2001;20(6):1310-9. Epub 2001/03/17. 

[86] Wickham TJ, Mathias P, Cheresh DA, Nemerow GR. Integrins alpha v beta 3 and alpha 
v beta 5 promote adenovirus internalization but not virus attachment. Cell. 
1993;73(2):309-19. Epub 1993/04/23. 

[87] Li E, Stupack D, Klemke R, Cheresh DA, Nemerow GR. Adenovirus endocytosis via 
alpha(v) integrins requires phosphoinositide-3-OH kinase. J Virol. 1998;72(3):2055-61. 
Epub 1998/03/14. 

[88] Braunwald J, Nonnenmacher H, Tripier-Darcy F. Ultrastructural and biochemical study 
of frog virus 3 uptake by BHK-21 cells. J Gen Virol. 1985;66 ( Pt 2):283-93. Epub 
1985/02/01. 

 
Endocytosis of Non-Enveloped DNA Viruses 245 

[89] Guo CJ, Liu D, Wu YY, Yang XB, Yang LS, Mi S, et al. Entry of tiger frog virus (an 
Iridovirus) into HepG2 cells via a pH-dependent, atypical, caveola-mediated 
endocytosis pathway. J Virol. 2011;85(13):6416-26. Epub 2011/05/06. 

[90] Guo CJ, Wu YY, Yang LS, Yang XB, He J, Mi S, et al. Infectious spleen and kidney 
necrosis virus (a fish iridovirus) enters Mandarin fish fry cells via caveola-dependent 
endocytosis. J Virol. 2012;86(5):2621-31. Epub 2011/12/16. 

[91] Rodriguez-Carino C, Duffy C, Sanchez-Chardi A, McNeilly F, Allan GM, Segales J. 
Porcine circovirus type 2 morphogenesis in a clone derived from the l35 
lymphoblastoid cell line. J Comp Pathol. 2011;144(2-3):91-102. Epub 2010/08/31. 

[92] Nauwynck HJ, Sanchez R, Meerts P, Lefebvre DJ, Saha D, Huang L, et al. Cell tropism 
and entry of porcine circovirus 2. Virus Res. 2012;164(1-2):43-5. Epub 2011/11/22. 

[93] Farr GA, Zhang LG, Tattersall P. Parvoviral virions deploy a capsid-tethered lipolytic 
enzyme to breach the endosomal membrane during cell entry. Proc Natl Acad Sci U S 
A. 2005;102(47):17148-53. Epub 2005/11/15. 

[94] Mani B, Baltzer C, Valle N, Almendral JM, Kempf C, Ros C. Low pH-dependent 
endosomal processing of the incoming parvovirus minute virus of mice virion leads to 
externalization of the VP1 N-terminal sequence (N-VP1), N-VP2 cleavage, and 
uncoating of the full-length genome. J Virol. 2006;80(2):1015-24. Epub 2005/12/28. 

[95] Norkin LC, Anderson HA, Wolfrom SA, Oppenheim A. Caveolar endocytosis of simian 
virus 40 is followed by brefeldin A-sensitive transport to the endoplasmic reticulum, 
where the virus disassembles. J Virol. 2002;76(10):5156-66. Epub 2002/04/23. 

[96] Querbes W, O'Hara BA, Williams G, Atwood WJ. Invasion of host cells by JC virus 
identifies a novel role for caveolae in endosomal sorting of noncaveolar ligands. J Virol. 
2006;80(19):9402-13. Epub 2006/09/16. 

[97] Geiger R, Andritschke D, Friebe S, Herzog F, Luisoni S, Heger T, et al. BAP31 and BiP 
are essential for dislocation of SV40 from the endoplasmic reticulum to the cytosol. Nat 
Cell Biol. 2011;13(11):1305-14. Epub 2011/09/29. 

[98] Bergant Marusic M, Ozbun MA, Campos SK, Myers MP, Banks L. Human 
papillomavirus L2 facilitates viral escape from late endosomes via sorting nexin 17. 
Traffic. 2012;13(3):455-67. Epub 2011/12/14. 

[99] Laniosz V, Dabydeen SA, Havens MA, Meneses PI. Human papillomavirus type 16 
infection of human keratinocytes requires clathrin and caveolin-1 and is brefeldin a 
sensitive. J Virol. 2009;83(16):8221-32. Epub 2009/06/06. 

[100] Greber UF, Willetts M, Webster P, Helenius A. Stepwise dismantling of adenovirus 2 
during entry into cells. Cell. 1993;75(3):477-86. Epub 1993/11/05. 

[101] Meier O, Greber UF. Adenovirus endocytosis. J Gene Med. 2004;6 Suppl 1:S152-63. 
Epub 2004/02/24. 

[102] Burckhardt CJ, Suomalainen M, Schoenenberger P, Boucke K, Hemmi S, Greber UF. 
Drifting motions of the adenovirus receptor CAR and immobile integrins initiate virus 
uncoating and membrane lytic protein exposure. Cell Host Microbe. 2011;10(2):105-17. 
Epub 2011/08/17. 



 
Molecular Regulation of Endocytosis 246 

[103] Greber UF, Webster P, Weber J, Helenius A. The role of the adenovirus protease on 
virus entry into cells. The EMBO J. 1996;15(8):1766-77. Epub 1996/04/15. 

[104] Kalin S, Amstutz B, Gastaldelli M, Wolfrum N, Boucke K, Havenga M, et al. 
Macropinocytotic uptake and infection of human epithelial cells with species B2 
adenovirus type 35. J Virol. 2010;84(10):5336-50. Epub 2010/03/20. 

[105] Willis DB, Goorha R, Granoff A. Nongenetic reactivation of frog virus 3 DNA. 
Virology. 1979;98(2):476-9. Epub 1979/10/30. 

[106] Chitnis NS, D'Costa SM, Paul ER, Bilimoria SL. Modulation of iridovirus-induced 
apoptosis by endocytosis, early expression, JNK, and apical caspase. Virology. 
2008;370(2):333-42. Epub 2007/10/19. 



 
Molecular Regulation of Endocytosis 246 

[103] Greber UF, Webster P, Weber J, Helenius A. The role of the adenovirus protease on 
virus entry into cells. The EMBO J. 1996;15(8):1766-77. Epub 1996/04/15. 

[104] Kalin S, Amstutz B, Gastaldelli M, Wolfrum N, Boucke K, Havenga M, et al. 
Macropinocytotic uptake and infection of human epithelial cells with species B2 
adenovirus type 35. J Virol. 2010;84(10):5336-50. Epub 2010/03/20. 

[105] Willis DB, Goorha R, Granoff A. Nongenetic reactivation of frog virus 3 DNA. 
Virology. 1979;98(2):476-9. Epub 1979/10/30. 

[106] Chitnis NS, D'Costa SM, Paul ER, Bilimoria SL. Modulation of iridovirus-induced 
apoptosis by endocytosis, early expression, JNK, and apical caspase. Virology. 
2008;370(2):333-42. Epub 2007/10/19. 

Section 4 

 

 
 
 

Pathogens and Toxins 

  



 

 



 

 

Chapter 10 

 

 

 
 

© 2012 Römer et al., licensee InTech. This is an open access chapter distributed under the terms of the 
Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits 
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

Pathogen and Toxin Entry –  

How Pathogens and Toxins Induce  
and Harness Endocytotic Mechanisms 

Thorsten Eierhoff, Bahne Stechmann and Winfried Römer 

Additional information is available at the end of the chapter 

http://dx.doi.org/10.5772/45946 

1. Introduction 

Humans have been exposed to a plethora of pathogens (bacteria, viruses) ever since. 
Infectious diseases are among the leading causes of death worldwide. For example, in 
2011, 1.34 million people died of tuberculosis, which is caused by an infection with 
Mycobacterium tuberculosis. Even more died of an infection by the human 
immunodeficiency virus (HIV; 1.78 million) or lower respiratory tract infection (3.46 
million) [1]. In addition, recurring pandemic outbreaks of the influenza A virus, as in 
2009, or an epidemic outbreak of enterohemorrhagic E. coli (EHEC) in Germany in 2011, 
show quite plainly that pathogens in the 21th century still are a severe health problem, not 
only in developing countries.  

During evolution, defence mechanisms have been developed by the host to counter 
pathogens, which in turn needed to respond with new strategies to gain entry into host cells. 
As a consequence, a wide variety of invasion mechanisms have evolved, of which only a few 
have been characterised in molecular detail to date. 

In this chapter, we describe the different invasion strategies of bacteria, viruses and toxins 
by illustrating the mechanisms using prominent examples. Rather than relying passively on 
cellular mechanisms of their hosts, diverse pathogens and toxins actively induce the first 
steps of their uptake into a wide range of target cells. In most cases, the pathogen plays a 
key role in subverting the cellular machinery to stimulate actin re-arrangements, which 
facilitates the invasion process. As an example, recent progress in our understanding of the 
molecular mechanism of lipid-mediated endocytosis of carbohydrate-binding viruses and 
toxins is presented. In particular, we highlight the critical role of lipid species underlying 
these processes. 

© 2012 Römer et al., licensee InTech. This is a paper distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.
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Bacteria invade cells as a means to escape host immune responses. Once inside a hijacked 
cell, the pathogen is protected against active factors of the immune system (e. g. complement 
factors, antibodies) and is conveniently provided with nutrients. In addition, viruses 
critically depend on the cellular machinery of host cells for their replication.  

The initial step in the cellular uptake process of diverse pathogens and toxins is 
characterised by the binding to carbohydrate moieties exposed by a lipid or a protein in the 
plasma membrane of target cells. For example: cholera toxin binds with its B-subunit to the 
ganglioside GM1 in intestinal cells, the opportunistic human pathogen Pseudomonas 
aeruginosa attaches to respiratory cells by binding to asialo-GM1 and asialo-GM2 through 
type IV pili [2, 3], and the influenza A virus initiates its uptake by binding to sialic acids in 
the host cell membrane [4]. Conventionally considered as adhesion receptors for toxins, 
viruses and bacteria, recent data indicate that glycosphingolipids are also crucial parameters 
for the self-induced endocytosis of toxins and viruses [5, 6].  

Glycosphingolipids, such as Gb3 or GM1, are enriched in the external leaflet of the plasma 
membrane and comprise a glycan and a ceramide lipid moiety of sphingosine (a long-chain 
amino alcohol) linked to a fatty acid [7]. The structure of the ceramide moiety of 
glycosphingolipids is highly divers and varies in length, saturation degree and 
hydroxylation. However, glycosphingolipids are traditionally classified by the structure of 
their glycans.  

A second important type of lipids, which is critically important for the uptake of pathogens, 
is phosphatidylinositol-phosphate (PIP). PIPs are essential components of cell membranes 
implicated in a variety of signalling events. They are glycero-phospholipids with a 
negatively charged myo-inositol head group, which can be phosphorylated at different OH-
positions of the inositol ring (D1-D5) [8]. More than 50 enzymes have been identified to 
combinational phosphorylate and dephosphorylate the inositol ring [9].  

PIPs are signalling molecules rather than structural components of the plasma membrane, 
considered to be involved in dynamic cellular processes like (plasma) membrane dynamics, 
vesicle trafficking and actin polymerisation [8]. Probably this is the reason why many 
invasive bacteria as well as viral pathogens hijack these lipids to manipulate the plasma 
membrane in order to ensure their proper uptake into host cells.  

One strategy by which invasive bacteria manipulate the PIP metabolism is the translocation 
of effector proteins, which act as phosphatidylinositol phosphatases (e.g. IpgD of Shigella 
and SopB/SigD of Salmonella, discussed below). A second option to interfere with the PIP 
metabolism is the engagement of specific host cell receptors.  

The invasion process of pathogens is highly complex because it involves a specific 
spatiotemporally regulated interplay of different subsets of host cell and pathogenic factors. 
In addition, the composition and architecture of biological membranes is extensive. To 
understand how individual factors contribute to the entry process, less complex and easy-
to-manipulate synthetic systems are needed. Artificial membrane systems gain more and 
more in importance as simpler and controllable systems to reconstitute and study 
endocytotic processes (see “EXCURSUS” box). 
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EXCURSUS: Artificial Membrane systems – powerful tools to study endocytotic 
membrane processes 

Liposomes (also called vesicles) are more and more used as simple synthetic models for 
biological membranes. They represent a sphere of a cytosol-free unilamellar lipid bilayer 
and consist of a defined lipid composition resembling e.g. that of the plasma membrane. 
Manipulations at the outside can be conducted with ease. Giant unilamellar liposomes 
(GUVs) with diameters between 1 and 50 µm can be obtained by swelling of a 
phospholipid bilayer in water within an electrical field [10] (Figure 1).  Because of its 
simplicity compared to native cells, this type of liposomes has been used recently to 
identify the initial steps of the cellular uptake of Shiga toxin [5, 11].  

 
Figure 1. Giant unilamellar vesicles (GUVs) as a minimal membrane system to investigate 
endocytotic processes. Shiga toxin-induced tubular membrane invaginations on a HeLa cell (left 
image; in red colour) can be reconstituted on GUVs in the complete absence of cellular energy and 
cytosolic proteins (right image; red colour). Systems of different complexity are helpful and 
complementary to identify the molecular mechanisms of cellular processes.  

The electroformation technique to produce liposomes is simple and rapid, but less 
suitable for embedding cytosolic proteins into the lumen of the lipid bilayer. For instance, 
the examination of the scission process of Shiga toxin-induced membrane invaginations 
requires the addition of the protein machinery at the internal (cytosolic) side of the 
membrane. For this, proteins could be microinjected into GUVs, or GUVs could be grown 
in the presence of protein machinery in the buffer solution. While the former method is 
very time-consuming and may easily provoke vesicle rupture, the latter is inefficient, not 
really well controlled, and proteins might be denatured (due to the application of an 
electric field during liposome formation). Moreover, in this setup, it is practically 
impossible to apply acute changes in buffer conditions (e.g. addition of ATP). 
 
A model membrane system that better responds to the challenge of manipulating the 
protein machinery at both sides of the membrane are liposomes produced by the inverse 
emulsion technique [12] which allows for the use of two different buffers inside and 
outside. This technique has been used, for example, to reconstitute nucleation and 
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assembly of cortical actin at the inner side of a liposome. In principle, an inverted 
phospholipid micelle containing the protein(s) of interest is sedimented through a 
phospholipid monolayer at the phase boundary of oil and an aqueous buffer solution. By 
the addition of a pore forming α-hemolysin, ATP and ions can pass the liposome 
membrane to induce actin polymerization within the liposome [13]. In addition, this 
technique has already been successfully used to study the actin-driven scission of 
endocytotic membrane invaginations [11]. 
The inverse emulsion technique has several advantages compared to the now classical 
electroformation technique, apart from the preservation of protein functionality. First, it 
allows for the incorporation of proteins in very small volumes (a few microliters). Second, 
it allows for the use of two different buffers inside and outside of the vesicle (providing 
that the osmotic pressure is kept constant). Third, since the two membrane monolayers 
are prepared independently of each other, lipid asymmetry within the lipid bilayer can be 
taken into account.  
However, the inverse emulsion technique still has some major limitations. Most notably, 
the inclusion of proteins within the liposomal lumen remains tedious as liposomes must 
be generated in the presence of the protein mix. Furthermore, the high diffusion mobility 
of small liposomes makes observation by microscopy cumbersome and prevents from 
following the same object over periods longer than a few seconds.  
 
Already established for impedance spectroscopy measurements and single ion channel 
recordings [14, 15], pore-suspending membranes based on highly ordered pore arrays 
might represent marvellous tools to study endocytotic processes. This hybrid membrane 
system combines the advantages of freestanding and solid supported lipid membranes. 
While part of the lipid bilayer is anchored to the surface of the porous matrix and resembles 
a solid supported membrane, the pore suspending parts can be viewed as freestanding lipid 
membranes. Highly ordered alumina and silicon pore arrays with pore sizes in the nano- 
and micrometer range can be chosen as supports for lipid bilayer immobilization. 
The porous support can either be covered by a synthetic lipid bilayer or native plasma 
membrane sheets, depending on the application. The advantage of this technique is that 
both sides of the membrane are freely accessible. This is particularly interesting, when 
native plasma membrane sheets are analyzed, considering their asymmetric composition. 
In general, two different methods exist to produce native plasma membrane sheets: the 
rip off and the lysis-squirting technique. In both cases adherent cells are first grown on 
the porous membranes. For the rip off technique, a chip with a nanostructured, porous 
surface is pressed on top of cultured, adherent cells to form direct molecular contacts 
with the cells. The chip is then removed, thereby peeling off the upper plasma 
membranes of the adhering cells, which are now located on the chip as supported 
membranes [16]. With the lysis-squirting technique, adherent cells are incubated in 
hypotonic buffer for a few minutes before being squirted with the same buffer. The basal 
part of the membrane remains attached to the support and can be studied further [17]. 
The pore-suspending membranes can be analyzed by e.g. atomic force microscopy, 
fluorescence microscopy or electrophysiological measurements. 
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Besides already established concepts of pathogen and toxin uptake, we will discuss the 
novel concept of glycosphingolipid-driven uptake starting at a low complexity level with 
toxins. With an increase in size and complexity of the objects of interest, we will continue 
our reflection about viruses and bacteria. 

2. Toxins 

The pathology of infections caused by different species of Shigella, enterohemorrhagic 
strains of E. coli (EHEC) and Vibrio cholerae is closely linked to the action of their 
glycosphingolipid-binding toxins: Shiga toxin (Stx), Shiga-like toxins (SLTs) and cholera 
toxin (Ctx), respectively. Commonly these toxins lead to severe diarrhoea, accompanied by 
hemorrhagic lesions in the intestine in the case of infections by EHEC and some strains of 
Shigella.  

Because of their structural organisation with a monomeric A-subunit and a pentameric B-
subunit, Stx, Ctx and SLTs belong to a group of toxins referred to as AB5 toxins. The A-
subunit consists of the enzymatic part of the toxin, which modifies intracellular targets: The 
RNA N-glycosidase activity of Stx, for example, targets cellular 28S rRNA, rendering 
ribosomes inactive for protein synthesis [18] and the ADP-ribosyltranferase activity of Ctx 
targets heterotrimeric G-proteins, thereby activating adenylate cyclases in mucosal epithelial 
cells of the small intestine [19]. The A-subunit is non-covalently linked to the B-subunit, 
which binds to host cell glycosphingolipids [20]. To exert their catalytic functions in the 
cytosol, the toxins have to be endocytosed and the A-subunits translocated into the cytosol. 
We will also introduce the plant toxin ricin, which gained notoriety due to its misuse as a 
bioterrorism weapon. 

2.1. Shiga toxins and other bacterial toxins 

Shigella dysenteriae and certain other Shigella strains secrete two types of enterotoxins: the so-
called Shiga toxins I and II (Stx1 and Stx2; or verotoxins). These toxins are functionally and 
structurally related to the Shiga-like toxins I and II (SLTs), which are produced by 
enterohemorrhagic Escherichia coli (EHEC) strains [21]. In humans, these toxins cause serious 
complications in the gastrointestinal tract, including haemolytic colitis, which may 
(especially in children and elderly people) further progress to hemolytic-uremic syndrome 
(HUS) and severe complications of the central nervous system [22, 23]. Most recently, more 
than 50 patients in Germany died of EHEC infections [24-26].  

While the sequence homology between Stx1 and Stx2 is only modest, S. dysenteriae´s Shiga 
toxin I and E. coli´s Shiga-like toxin I are 99% identical [27]. Shiga toxins are composed of a 
catalytic active A-subunit (StxA) of 32 kDa, which is non-covalently associated to the 
receptor-binding B-subunit pentamer (StxB; molecular mass of 5 x 7.7 kDa) [28, 29]. Despite 
the modest sequence homology (only 56% of the amino acid sequence), the B-subunits of 
Stx1 and Stx2 form a similarly structured homo-pentamer and bind to the same cellular 
receptor, the neutral glycosphingolipid globotriaosylceramide (Gb3, also known as CD77 or 
Pk blood group antigen) [30]. 
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Other bacterial toxins, which use glycosphingolipids as their cellular receptors, include the 
GM1-binding cholera toxin (Ctx) of Vibrio cholerae, which is the causative agent of cholera 
[31], the respectively GM1 and GD1a-binding Heat-labile enterotoxins 1 and IIb of certain 
E.coli strains [32], Tetanus neurotoxin of Clostridium tetani and Botulinum toxin of 
Clostridium botulinum.  

Crystal structures of Shiga toxins, cholera toxin, and Heat-labile enterotoxins revealed that 
the B-subunits of all these toxins fold into a doughnut-shaped pentamer and are of 
remarkable resemblance, although no amino acid sequence homology exists. Even more 
striking, the GM1-binding simian virus 40 capsid protein VP1, which we will present in 
more detail later, shares a structurally very closely related pentameric structure with each 
binding pocket arranged some 30 Å apart. 

The binding affinity of the B-subunit of Shiga toxin (StxB) and cholera toxin (CtxB) to 
individual Gb3 and GM1 molecules, respectively, is very low (in the mM range) [33, 34], but 
the cooperative binding of multiple lipid molecules (up to 15 Gb3 molecules in the case of 
StxB) markedly increases the apparent affinity of the toxin to its receptor (in the nM range) 
[35-37]. Mutations of individual binding-pockets in the B-subunits of Stx and Ctx 
dramatically decrease the ability of the toxins to strongly associate to its receptor, and 
consequently to efficiently infect cells [38-40]. 

After receptor binding, Stx is internalized by clathrin-dependent as well as clathrin-
independent endocytosis [41-44]. Even though Ctx has been found to be associated with 
caveolae, Ctx is efficiently endocytosed into cells devoid of caveolin-1 (a critical structural 
component of caveolae) [45], arguing that the caveolae-mediated endocytosis is not the 
major internalization pathway for Ctx in certain cells.  

Studies on artificial membrane systems and energy-depleted cells (i.e. under conditions 
where the functionality of the cytosolic machinery is efficiently impaired) showed that StxB 
and CtxB are able to strongly cluster their glycosphingolipid receptors in the outer 
membrane leaflet, provoking the inward-bending of the plasma membrane and the 
generation of deep tubular membrane invaginations (Figure 1 and 2) [5, 6], suggesting that 
the toxin is able to trigger its own internalization into host cells, independently of host cell 
factors. These studies have uncovered a previously unknown mechanism for generating 
negative membrane curvature, and they have created a new paradigm that allows the 
conceptualization of why endocytotic coats are not detected at many sites of clathrin-
independent endocytosis. 

After binding of the toxins to glycosphingolipids, the invaginated membrane remains 
connected to the extracellular space as long as scission does not occur. The scission 
process requires cellular energy in contrast to the tubule formation. As a key factor in 
membrane scission, the GTPase dynamin has been described [46, 47]. However, dynamin-
independent and cholesterol-dependent scission can also be observed, e.g. for the 
clathrin-independent endocytosis of clustered glycosylphosphatidylinositol (GPI)-
anchored proteins when they laterally associate with proximal transmembrane proteins 
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[48]. Interestingly, the dynamin-independent scission involves glycosphingolipids. In line 
with this, it was shown that Stx-induced membrane tubules that undergo dynamin-
independent and cholesterol-dependent scission by an Arp2-based reorganization of the 
cortical actin covering the tubule, ultimately leading to membrane constrictions [11]. How 
actin is linked to the plasma membrane is not clear, but binding of Stx to Gb3 leads to a 
redistribution of different proteins that are involved in the regulation of the cytoskeletal 
organisation including ezrin, CD44, vimentin, cytokeratin, paxillin, focal adhesion kinase 
(FAK), alpha- and gamma-tubulins beneath the plasma membrane [49]. Interestingly, 
among the redistributed proteins, ezrin (one of many proteins that links the actin 
cytoskeleton to the plasma membrane) [50] was shown to be phosphorylated in response 
to the binding of Stx to Gb3, in a process that is dependent on cholesterol, 
phosphoinositide 3-kinase (PI3K), Src family kinases and Rho associated kinase 1 [49]. 
These studies hint to ezrin as a possible linker between the plasma membrane and actin 
on Stx-induced membrane tubules. However, how the different identified kinases regulate 
the Stx-induced phosphorylation of ezrin and if ezrin phosphorylation is important for 
tubule scission has to be investigated.  

On Hela cells and other toxin-sensitive cells, Stx- and Ctx-containing plasma membrane 
derived vesicles localise to early endosomes from which they are transported along the 
retrograde pathway via the Golgi apparatus to the ER. There, the A-subunit is retro-
translocated into the cytosol to inhibit protein biosynthesis [51]. The escape of Stx from 
the early endocytotic pathway to enter the retrograde pathway critically depends on 
clathrin [42], the phosphatidylinositol (4)-phosphate-binding clathrin adaptor epsinR [44] 
and the curvature- and cargo-recognizing retromer complex [52]. Following a model 
proposed by Popoff et al. [53], clathrin, which is recruited to early endosomal membranes 
by the PI(4)P-binding protein epsinR [44], induces membrane curvatures on early 
endosomes to form retrograde tubules that are processed by retromer-dependent scission 
[21]. The subsequent transport from early endosomes to the Golgi complex is specifically 
regulated by the delta isoform of the protein kinase C (PKCδ), which is activated by 
binding of Stx to Gb3. Inhibiton of PKCδ results in the accumulation of Stx in early 
endosomes, which fails to reach the Golgi complex [54]. In addition, Stx also activates 
spleen tyrosine kinase (Syk) upon binding to Gb3, which causes a rapid phosphorylation 
of the clathrin heavy chain (CHC). Prevention of CHC-phosphorylation results in an 
ineffective transport of Stx from the early endosome to the Golgi complex. These findings 
again establish clathrin as a critical regulator of the endosome-to-Golgi transport of Stx. It 
needs to be addressed by additional studies how PKC and Syk interact on this part of the 
retrograde transport of Stx. 

The retrograde transport is the main route for intoxication of Stx (and other AB5-toxins), and 
highly specific, protective small-molecule inhibitors of intracellular toxin transport have 
recently been identified [55]. Indeed, human monocyte-derived macrophages and dendritic 
cells are resistant to Stx intoxication, probably because StxB fails to associate with membrane 
microdomains and does not detectably enter the retrograde route [56].  
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Figure 2. Schematic representation of entry strategies of some prominent pathogens and pathogenic 
products (toxins) and their (proposed) glycolipid receptors. As a common feature, clustering of 
glycolipids or glycosylated receptors has been proposed to trigger the endocytotic uptake of the toxin or 
the pathogen. The different elements in the scheme are not drawn to scale.  
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Lipid-mediated endocytosis represents a unique opportunity for several bacterial toxins to 
actively impose their invasion into host cells. This concept of a self-induced, lipid-mediated 
cellular uptake, seems not to be restricted to toxins alone. We will see in the section on 
viruses that a member of the polyomaviridae family, simian virus 40, follows this strategy in 
order to ensure efficient endocytosis into the host cell.  

2.2. Ricin 

Other lipid-binding toxins are the plant toxins ricin and the less-well characterized abrin, 
which are found in the seeds of castor beans (Ricinus communis) and of rosary pea (Abrus 
precatorius), respectively. These thermally stable proteins can be purified with ease in larger 
quantities, which prompted the Centers for Disease Control and Prevention (CDC) to 
categorise them as “Category B” agents (second highest priority) [57]. On the flipside, abrin 
and ricin were instrumental in Paul Ehrlich´s seminal work on the induction of immunity in 
mice, which have been fed with small amounts of ricin and later become immune against 
otherwise lethal toxin doses [58]. 

Despite being produced by unrelated plants and sharing only limited sequence homology, 
abrin and ricin exhibit a similar overall molecular structure [59, 60]: they are composed of a 
catalytic (toxic) A-subunit, which is covalently linked via a disulfide bond to a receptor-
binding B-subunit.  

The A-subunit possesses an N-glycosidase activity (identical to Shiga toxins and Shiga-like 
toxins) and strongly inhibits protein biosynthesis by removing a specific adenine residue 
from the 28S ribosomal RNA (A4324 in rat ribosomes), which prevents the binding of 
elongation factors [61]. These enzymes are highly efficient and a single toxin molecule 
suffices to kill a HeLa cell [62]. It is a remarkable observation that toxins produced by certain 
plants (ricin, abrin) and bacteria (Shiga toxins, Shiga-like toxins) exert their deleterious effect 
by an identical catalytic mechanism.  

The B-subunit of ricin is a lectin with two functional binding pockets [63, 64] for ß1→4 
linked galactose and N-acetylgalactoseamine residues of glycoproteins and glycolipids [65]. 
Whether these two binding sites operate independently from each other or cooperativity 
exists, remains a matter of debate. However, it is unlikely that an active lipid clustering 
effect, by which the toxin imposes its own uptake into cells as it has been proposed for Shiga 
toxin and simian virus 40, applies to ricin. Rather, ricin opportunistically binds to any 
glycoprotein or glycolipid with a terminal galactose at the cell surface and is passively taken 
up piggyback along with its binding partner. Due to its promiscuous binding, ricin enters 
cells by multiple endocytosis pathways (clathrin-dependent as well as clathrin-independent) 
[66] and its retrograde transport from the plasma membrane to the ER is highly inefficient: 
only an estimated 5% of cell-bound ricin is transported via the trans-Golgi network to the 
ER, from which it translocates into the cytosol, while the vast majority of toxin is either 
being recycled back to the cell surface or degraded in late endosomes and lysosomes [67]. 
This indiscriminate binding of ricin also explains why it is so difficult to identify distinct 
molecular players involved in the intracellular trafficking of ricin, while the retrograde 
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transport of the Shiga toxin, which specifically uses the glycosphingolipid Gb3 as cellular 
receptor, is currently much better characterised [21, 68]. Recently, a genome-wide RNAi 
screen shed some light on the molecular requirements of ricin intoxication [69]. This study 
corroborates earlier observations that only a subset of molecular factors that are required for 
ricin trafficking is also involved in the retrograde transport of other toxins, such as Shiga 
toxin or Pseudomonas exotoxin, and that several intertwined retrograde transport pathways 
exist in parallel. Ablating specifically the retrograde transport of ricin by small-molecule 
inhibitors in vivo protects mice against an otherwise lethal dosis of ricin [55]. 

3. Viruses 

As opposed to bacteria (discussed in the next section), viruses require the cellular machinery 
of the host for their replication and therefore must deliver their genome into their eukaryotic 
target cells. In contrast to viruses that directly fuse with the plasma membrane, for example 
retroviruses, herpes viruses and HIV, most of the enveloped viruses, including Influenza A 
Virus, hijack endocytotic pathways for their cellular entry [70-72], thereby taking advantage 
of the endosomal sorting machinery to reach a defined cellular compartment for uncoating. 
In the following section, we exemplify the entry of non-enveloped as well as enveloped 
viruses through the simian virus 40 and the Influenza A Virus, respectively. 

3.1. Simian virus 40 

Several non-enveloped viruses bind with their capsid to glycosphingolipids on the host cell 
and use them as viral receptors for efficient endocytosis and infection. The best 
characterized of these viruses are two members of the polyomaviridae family, the simian virus 
40 (SV40) and the mouse polyoma virus (mPy), which bind to the gylcosphingolipids GM1, 
GD1a and GT1b, respectively. Other lipid-binding, non-enveloped viruses include the BK 
virus, Merkel cell polyomavirus and murine norovirus [73, 74].  

Interestingly, the binding to glycosphingolipids at the plasma membrane pre-determines the 
uptake mechanism and intracellular trafficking route of viruses: instead of being degraded 
in the late endocytotic pathway or recycled back to the plasma membrane after endocytosis, 
these viruses are transported from the plasma membrane to the ER [75], from which they 
translocate into the cytosol [76]. Once they reach the nucleus, viruses subvert the cellular 
machinery and replicate. 

Natural hosts for SV40 are Asian macaques, where it induces persistent infections in the 
kidneys. However, it was also shown that SV40 is significantly associated with human brain 
tumours and bone cancer [77], indicating its cell transforming properties.  

The viral capsid is mainly composed of 72 VP1 protein pentamers in an icosahedral 
organisation [78]. The VP1 of SV40 folds into a doughnut conformation and bears five 
highly specific GM1-binding sites [79, 80]. Minor differences in the carbohydrate moiety of 
GM1, which is exposed into the extracellular space, strongly affect the binding affinity of the 
virus [80]. 



 
Molecular Regulation of Endocytosis 258 

transport of the Shiga toxin, which specifically uses the glycosphingolipid Gb3 as cellular 
receptor, is currently much better characterised [21, 68]. Recently, a genome-wide RNAi 
screen shed some light on the molecular requirements of ricin intoxication [69]. This study 
corroborates earlier observations that only a subset of molecular factors that are required for 
ricin trafficking is also involved in the retrograde transport of other toxins, such as Shiga 
toxin or Pseudomonas exotoxin, and that several intertwined retrograde transport pathways 
exist in parallel. Ablating specifically the retrograde transport of ricin by small-molecule 
inhibitors in vivo protects mice against an otherwise lethal dosis of ricin [55]. 

3. Viruses 

As opposed to bacteria (discussed in the next section), viruses require the cellular machinery 
of the host for their replication and therefore must deliver their genome into their eukaryotic 
target cells. In contrast to viruses that directly fuse with the plasma membrane, for example 
retroviruses, herpes viruses and HIV, most of the enveloped viruses, including Influenza A 
Virus, hijack endocytotic pathways for their cellular entry [70-72], thereby taking advantage 
of the endosomal sorting machinery to reach a defined cellular compartment for uncoating. 
In the following section, we exemplify the entry of non-enveloped as well as enveloped 
viruses through the simian virus 40 and the Influenza A Virus, respectively. 

3.1. Simian virus 40 

Several non-enveloped viruses bind with their capsid to glycosphingolipids on the host cell 
and use them as viral receptors for efficient endocytosis and infection. The best 
characterized of these viruses are two members of the polyomaviridae family, the simian virus 
40 (SV40) and the mouse polyoma virus (mPy), which bind to the gylcosphingolipids GM1, 
GD1a and GT1b, respectively. Other lipid-binding, non-enveloped viruses include the BK 
virus, Merkel cell polyomavirus and murine norovirus [73, 74].  

Interestingly, the binding to glycosphingolipids at the plasma membrane pre-determines the 
uptake mechanism and intracellular trafficking route of viruses: instead of being degraded 
in the late endocytotic pathway or recycled back to the plasma membrane after endocytosis, 
these viruses are transported from the plasma membrane to the ER [75], from which they 
translocate into the cytosol [76]. Once they reach the nucleus, viruses subvert the cellular 
machinery and replicate. 

Natural hosts for SV40 are Asian macaques, where it induces persistent infections in the 
kidneys. However, it was also shown that SV40 is significantly associated with human brain 
tumours and bone cancer [77], indicating its cell transforming properties.  

The viral capsid is mainly composed of 72 VP1 protein pentamers in an icosahedral 
organisation [78]. The VP1 of SV40 folds into a doughnut conformation and bears five 
highly specific GM1-binding sites [79, 80]. Minor differences in the carbohydrate moiety of 
GM1, which is exposed into the extracellular space, strongly affect the binding affinity of the 
virus [80]. 

Pathogen and Toxin Entry –  
How Pathogens and Toxins Induce and Harness Endocytotic Mechanisms 259 

The multivalent binding of the VP1 pentamer to GM1 enables the tight association of the 
virus to the host cell despite the otherwise low affinity of individual binding sites of SV40 to 
GM1 [79]. In addition, a recent study on cellular and artificial membranes revealed that by 
virtue of this multivalent binding of GM1, SV40 induces the reorganization of membrane 
lipids and the segregation of specific lipids into membrane nanoscale domains, and thereby 
actively promotes its own uptake into the host cell [6]. This process critically depends on the 
lipid structure of GM1 and is essential for efficient infection by SV40 (Figure 2). 

The precise physiological function of caveolae – uncoated, flask-like pits, enriched in 
cholesterol and glycosphingolipids (e.g. GM1, GM3) – still remains debated. A recent study 
supports the notion that caveolae act as a membrane reservoir to counter mechanical stress 
[81]. The role of caveolae in clathrin-independent endocytosis is equally a matter of much 
debate [82, 83]. FRAP (fluorescence recovery after photobleaching)-experiments on cells, 
which express GFP-tagged caveolin-1 (the major protein component of caveolae in epithelial 
cells) show that caveolae are rather immobile structures, a finding that argues against a 
major role of caveolae in constitutive endocytosis [84]. Though earlier studies suggest that 
the uptake of SV40 occurs via caveolae [85-88], recent work shows that the majority of SV40 
does not partition into caveolae and that SV40 efficiently infects cells devoid of caveolin-1 [6, 
89], corroborating the idea that the caveolin-independent, lipid-induced pathway represents 
the major route for efficient SV40-infection. 

3.2. Influenza A Virus 

Influenza A Virus (IAV) is the causative agent of flu, which is an infectious disease, primary 
affecting the deep respiratory tract. IAV is an enveloped virus, which possesses a single 
stranded RNA genome in a negative orientation. Infectious particles of influenza viruses are 
pleomorphic, filamentous or spherically shaped particles with a mean diameter of 120 nm 
[90]. IAV particles attach to their host cells by binding with their trimeric haemagglutinin 
(HA) to terminal α2,6 or α2,3 glycosidic-bound N-acetylneuraminic acids (sialic acids) on 
the surface of the host cells [4]. Following receptor binding, virions undergo endocytosis 
and become uncoated in a pH-dependent manner [91]. The low pH of late endosomes 
induces a conformational change in the HA, resulting in the fusion of HA with the 
endosomal membrane [92, 93] and the release of the RNA into the cytosol of the infected 
cell.  

Electron microscopy-based studies revealed that plasma membrane-derived vesicles 
containing IAV are surrounded by clathrin, indicating that clathrin is involved in the uptake 
of IAV [93]. Since IAV particles have also been observed in smooth, non-coated vesicles, it 
was speculated that IAV also enter host cells by clathrin- and caveolin-independent 
endocytosis. This notion was supported by the observation that cells expressing dominant 
negative Eps15 (a clathrin adaptor) and caveolin-1 were still infected by IAV. Interestingly, 
subsequent studies showed that IAV actively induce the de novo formation of clathrin-coated 
pits by binding to the host cell surface [72]. The mechanism that triggers the recruitment of 
clathrin is unknown. It was speculated that IAV by binding to the host cell surface induces 



 
Molecular Regulation of Endocytosis 260 

negative membrane curvatures that are sensed by BAR-domain containing proteins, which 
in turn recruit clathrin. However, the membrane-bending properties of IAV have not yet 
been shown. In this regard it is interesting that IAV, SV40 VP1 and Shiga toxin all bind to 
glycosphingolipids to induce endocytotic processes. Although experimental data are 
missing to this end, it is conceivable that IAV is able to bend membranes through clustering 
of sialic acid receptors for entry (Figure 2). The process of membrane bending and receptor 
clustering would likely be more complex than for Shiga toxin and SV40 VP1, considering 
that two different membranes (i.e. plasma membrane of the host cell and the viral envelope) 
are involved in this process.  

Although more specific receptors than sialic acids are not yet identified for IAV, the virus 
activates specific cellular kinases for its efficient uptake, for example PI3K. PI3K is activated 
during the first 60 min of infection and was demonstrated to be required for efficient uptake 
[94]. The precise function of PI3K for the entry of IAV is not completely understood. 
Interestingly, IAV-activated PI3K seems to regulate an entry step, which precedes endosomal 
sorting [94]. In the context of bacterial invasion, PI3K activation is often associated with 
dramatic actin re-arrangements leading to macropinocytosis of the bacterium. Interestingly, 
this pathway has been reported recently as an alternative entry pathway for IAV that is 
dependent on the kinases Rac1 and Src, but independent of dynamin [95]. It was speculated 
that the virus activates this pathway by interacting with receptor tyrosine kinases (RTK) in the 
plasma membrane of the host cell. A study published at the same time reports that EGF 
receptor, a RTK, is activated by sialic acid-dependent IAV binding to ensure the efficient 
uptake of IAV [96]. This study hints to RTK, such as the EGF receptor, as entry receptors that 
promote the efficient uptake of the virus in a sialic acid dependent manner. It was 
hypothesized that sialic acids containing signalling receptors and/or glycosphingolipids 
become clustered upon binding by viral HA, leading to the activation of these signalling 
receptors and subsequent induction of PI3K signalling required for the cellular uptake [96]. So 
far, PI3K activation has not been linked to the re-arrangements of the cytoskeleton by actin 
polymerisation, although it was shown for polarized epithelial cells; actin dynamics and the 
motor protein myosin IV are apparently indispensable for the internalisation of IAV [97].  

Despite the vast number of reports analysing the entry processes of IAV at the plasma 
membrane, additional studies are required to understand the exact mechanistic role of sialic 
acids during the entry mechanism. In particular, less is known about the trans-bilayer 
signalling of sialic acids on the outer membrane leaflet towards the cytosolic machinery in 
the context of IAV entry.  

So far, we have addressed the endocytotic mechanisms of toxins and viruses. In the 
following, we will review the internalization strategies of invasive bacteria. The most 
significant difference to toxin molecules and viruses regarding the initial entry steps, is that 
bacteria sense environmental changes (e.g. Ca2+ levels, temperatures, surfaces) and 
dynamically respond to them in a more complex manner than toxins and viruses can (e.g. by 
the expression of a secretion system for their uptake [98], as discussed below). By doing so, 
these pathogens can manipulate their local microenvironment to a certain level, which 
makes the invasion process more complex as compared to toxins and viruses. 
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4. Non-invasive bacteria and the role of phagocytosis 

A limited number of immune cells, such as macrophages, monocytes, dendritic cells, and 
neutrophils, are able to incorporate large particles in an actin-dependent process called 
phagocytosis and thus eliminate cellular debris, apoptotic bodies and pathogens [99]. 
During phagocytosis, the tight interaction between the particle and cell surface receptors of 
the host cell (e.g. Fc or complement receptors) induces a transient reorganization of the actin 
cytoskeleton and the generation of local membrane protrusions that engulf the particle.  

Several pathogens, such as Mycobacteria (including M. tuberculosis and M. leprae) and 
Brucella, have exploited this mechanism for their uptake into host cells. During the invasion 
by means of phagocytosis, the pathogen is passively taken up into the cell together with 
extracellular fluid. After internalization, pathogens alter the cellular machinery (e.g. 
prevention of the fusion of phagosomes and lysosomes) or are equipped to counter the 
phagocytic attacks (e.g. certain components in the outer bacterial membrane protect the 
pathogen against lysosomal enzymes; secreted enzymes neutralize toxic oxygen species) in 
order to survive inside the phagocytic cell, where they can replicate. The uptake of M. 
tuberculosis nicely illustrates the role for host cell PIPs in the invasion of pathogenic bacteria. 
Under normal conditions PI(4,5)P2 and PI(3,4,5)P3 are mainly localized and formed at the 
plasma membrane and recruit proteins important for phagocytosis. During the maturation 
of the phagosomes the small GTPase Rab5, the most abundant protein on pre-mature 
phagocytic vacuoles, recruits the PI3K hVps34 to generate PI(3)P. PI(3)P is now the 
dominating PIP species on the phagosomal membrane and attracts PI(3)P-binding proteins. 
These include the early endosomal antigen 1 (EEA1), which is critical for the further 
maturation of pre-mature phagocytic vesicles into phagolysosomes [100]. M. tuberculosis has 
evolved a mechanism to prevent the fusion of the bacterium-containing phagosome with 
early endosomes. By secreting the phosphatidylinositol analogon lipoarabinomannan 
(LAM), M. tuberculosis inhibits an increase of the cytosolic calcium in infected cells, thereby 
blocking Ca2+/calmodulin kinase II, which is required for the activation of the PI3K hVps34 
and the generation of PI(3)P [101]. Phosphatidylinositol mannoside (PIM), which is another 
mycobacterium-secreted phosphoinositide, stimulates early endosome fusion and 
consequently blocks phagosomal maturation [102]. PI(3)P is also directly dephosphorylated 
by the mycobacterium-secreted PI phosphatase SapM, which additionally contributes to the 
arrest of phagosomal maturation. [103]. These examples illustrate the powerful defence of 
M. tuberculosis to prevent its digestion in lysosomes by interfering with the host cell PIP 
metabolism. 

5. Invasive bacteria: trigger versus zipper mechanism 

As only a subset of cells phagocytose, so-called “invasive bacteria” have developed 
strategies to actively induce their own uptake into non-phagocytic cells (e.g. intestinal 
epithelial cells). These invasive bacteria are categorized by their entry mechanism into two 
groups: “triggering” and “zippering” bacteria. Swanson and Baer were the first who 
proposed these mechanisms for particle phagocytosis in 1995 [99]. 
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Principally, “triggering” bacteria secret effector proteins into their target cells. These cells 
respond with a re-arrangement of the cytoskeleton that promotes the entry of the bacterium. 
In contrast, bacteria that enter cells via the “zipper” mechanism engage specific surface 
receptors of the target cell, leading to just moderate actin re-modelling concomitant by less 
dramatic alterations of the host cell surface. As a result of both strategies, these bacteria are 
tightly engulfed by the host cell plasma membrane [104] (Figure 3). In the following, we 
discuss these invasion strategies by using the examples of the best-characterised 
“triggering” and “zippering” bacteria. 

5.1. “Triggering” bacteria 

Many Gram-negative bacteria, such as Salmonella enterica, Shigella flexneri, and Pseudomonas 
aeruginosa, invade cells through a “trigger” mechanism.  

Salmonella, as well as Shigella, (described in the toxin section above), Listeria and Yersinia 
(described below), are foodborne pathogens, which cause gastritic infections by ingestion of 
contaminated food or water. Typical symptoms of an infection by Salmonella species, e.g. 
Salmonella enterica, are diarrhoea, abdominal cramps and fever. 

By virtue of a type III secretion system (T3SS), which serves as a translocation pore, 
Salmonella, Shigella and P. aeruginosa inject virulence factors directly into the host cell cytosol 
during infection. The T3SS spans the bacterial membrane and is then inserted into the host 
cell membrane. It is assembled in the different species by SipB and SipC in Salmonella; IpaB 
and IpaC in Shigella; and EspB and EspD in enteropathogenic Escherichia coli [105, 106].  

For an efficient invasion, a specific membrane microenvironment is critical. Indeed, it has 
been shown for Salmonella, Shigella, FimH-expressing E. coli and P. aeruginosa that 
specialized lipid membrane microdomains, which are enriched in cholesterol and 
sphingolipids, are required for efficient binding of bacteria to target cells, the activation of 
their T3SS, the translocation of effectors into the host cell cytosol and for the activation of 
cellular signalling pathways essential for bacterial invasion [107-110].  

The translocated bacterial virulence factors subvert various cellular activities of the host cell, 
which leads to a massive polymerization of actin and enables the internalization of the 
pathogen into the target cell [111, 112]. In the case of Shigella, VirA binds to αβ-tubulin 
heterooligomers and induces a local destabilization and depolymerisation of microtubules, 
which triggers the activation of the kinase Rac1 and promotes membrane ruffling [113]. 
Other virulence factors, such as SipC, SipA, SopE and SopE2 in Salmonella and IpaB and 
IpaC in Shigella, induce the polymerization of actin directly (SipC) or in a Rac1- and Cdc42-
dependent manner via activation of the Arp2/3 complex (IpaC and SopE/SopE2) [114-116]. A 
further stimulus of the actin polymerization is mediated by phosphatidylinositol phosphatases 
(IpgD in Shigella and SopB/SigD in Salmonella), which hydrolyse PI(4,5)P2 into PI(5)P, causing 
the disconnection of cortical actin from the plasma membrane and enhancing actin dynamics 
at the bacterial entry site [117, 118]. The resulting membrane protrusions engulf the pathogen, 
which is then (i.e. upon actin depolymerisation) internalized into the host cell. 
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Pseudomonas aeruginosa is a Gram-negative opportunistic pathogen leading to acute 
infections of the respiratory tract, the urinary tract and the skin. Like other Gram-negative 
bacteria mentioned above, P. aeruginosa also injects effector proteins into host cells by 
virtue of a T3SS. Among the different strains presented so far, those that produce the T3SS 
effector proteins ExoT and ExoS are more efficiently internalized than those that do not 
produce these proteins [119]. Both, ExoS and ExoT are bifunctional proteins containing a 
C-terminal ADP-ribosylase and a N-terminal GTPase activating protein (GAP)-activity. 
Both functions redundantly disrupt the actin cytoskeleton [120]. Surprisingly, ExoS and 
ExoT act as anti-internalization factors [121], probably by interfering with components of 
the Abl pathway [122]: Rac1, Cdc42 and Crk were demonstrated to be activated by, and 
necessary for, the cellular uptake of P. aeruginosa [123]. Interestingly, additional 
experiments performed with ΔExoS and ΔExoT deletion mutants of P. aeruginosa revealed 
that ExoT abrogated Rac1 and Cdc42 activation, whereas ExoS activates these GTPases in 
order to promote efficient uptake [123]. However, the role of ExoS/T in the P. aeruginosa 
entry seems to be complex, in particular considering that ExoS/T production is 
characteristic for invasive strains.  

Early studies demonstrate that P. aeruginosa binds to asialo-gangliosides [2]. Among these, 
asialo-GM1 seems to be important for the attachment of the bacteria to target cells in the 
respiratory tract by type IV pili [3]. Surprisingly, studies applying the small-molecule 
inhibitor PPMP, which inhibits the glucosylceramide synthase and consequently the 
biosynthesis of glycosphingolipids [124], revealed that glycosphingolipids are rather 
important for the internalization instead of the adhesion to target cells [125]. Based on these 
observations, one can speculate that those bacterial lectins, which bind to 
glycosphingolipids, might also promote the cellular invasion of P. aeruginosa into host cells. 
In this scenario, such lectins bend the plasma membrane by multivalent binding to their 
glycosphingolipid receptors in a similar manner as StxB (see section: Toxins), which might 
at least facilitate the initial steps of bacterial uptake. However, additional studies are 
required to proof this concept.  

On the cytoplasmic side of the plasma membrane, PIPs were found to be important for the 
entry of P. aeruginosa. It was shown that invasive P. aeruginosa activate, and depend on, PI3K 
activity for efficient internalization [126]. Interestingly, PI(3,4,5)P3 was found to accumulate 
at the bacteria entry site. However, it is not clear, which bacterial factor activates PI3K 
signalling and how PI3K leads to the internalization of P. aeruginosa. It was speculated that 
PI3K-regulated actin dynamics in the context of macropinocytosis leads to the 
internalization of the bacterium. This idea is supported by the fact that actin is required for 
the internalization of P. aeruginosa into host cells [127]. In subsequent studies using 
polarized epithelial cells, P. aeruginosa activates and recruits PI3K to the bacterial attachment 
site at the apical membrane of the cells. These processes were accompanied by the induction 
of membrane protrusions, enriched in filamentous actin and PI(3)P [128]. It needs to be 
determined how PI(3)P induces actin dynamics at the plasma membrane in order to 
promote the internalization of P. aeruginosa.  
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Figure 3. The two principle invasion mechanisms for invasive bacteria: the trigger and the zipper 
mechanism.  
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In general, less is known about the PIP metabolism in the context of P. aeruginosa uptake. It 
would be interesting to analyse whether P. aeruginosa also affects other PIPs and whether the 
T3SS effectors ExoS and ExoT also interfere with the PIP metabolism to induce the cellular 
uptake of the bacterium. These open questions necessitate additional studies to obtain more 
detailed insights into the molecular invasion mechanism of P. aeruginosa. 

5.2. “Zippering” bacteria 

The zipper mechanism is best characterized for the cellular invasion of Listeria monocytogenes 
and Yersinia pseudotuberculosis. By interacting with host cell receptors, these pathogens 
induce signalling events in the host cell to stimulate modest cytoskeletal rearrangements 
and membrane extensions for efficient invasion. L. monocytogenes is a foodborne pathogen, 
which crosses several host barriers leading to listeriosis, gastroenteritis and central nervous 
system infections [129]. The foodborne Y. pseudotuberculosis causes gastrointestinal and 
extra-intestinal infections, which can be accompanied by an abscess-forming mesenteric 
lymphadenitis [130]. 

Internalin (InlA) of L. monocytogenes binds to the cellular adhesion glycoprotein E-cadherin 
[131, 132], which is critically involved in the formation and integrity of adherens junctions in 
epithelial cells. Actin reorganization required for the entry of L. monocytogenes is triggered 
by the cytoplasmic domain of E-cadherin, which binds transiently to the actin cytoskeleton 
via interactions with α- and β-catenins and in concert with ARHGAP10 (the guanosine-
activating protein (GAP) for RhoA and Cdc42), and the GTPase Arf6 [133, 134]. E-cadherin-
mediated actin remodelling is further stimulated by the phosphorylation of cortactin [135] 
and the activation of the Arp2/3 complex in a Rac-dependent manner [136]. The efficient 
entry of L. monocytogenes also requires caveolin for the clustering of E-cadherin. In this 
scenario, caveolin is a prerequisite for the InlA-induced clustering of E-cadherin, which is 
localized around the bacterium. The clustered E-cadherin becomes tyrosine phosphorylated 
by Src, recruiting the ubiquitin ligase Hakai, which mediates the ubiquitination of E-
cadherin. Finally, the ubiquitinated E-cadherin triggers the recruitment of clathrin to the 
entry site, which leads to the internalization of Listeria [137]. Furthermore, myosin VIIA and 
its ligand vezatin have been implicated in the endocytosis of L. monocytogenes [138]. 

The second invasion protein of L. monocytogenes, Internalin B (InlB), interacts with the 
ubiquitously expressed HGF (hepatocyte growth factor)-receptor Met [139]. Upon binding, 
the tyrosine-kinase Met dimerizes and autophosphorylates, which leads to the recruitment 
of the adaptor proteins Cbl, Gab1, Shc and Crk2 [140]. The subsequent activation of PI3K, 
which phosphorylates PI(4,5)P2 into PI(3,4,5)P3, promotes actin polymerization through the 
stimulation of the Arp2/3 complex in a Rac1-dependent manner [141]. Interestingly, depletion 
of membrane cholesterol with methyl-ß-cyclodextrin (MβCD) diminishes the activation of 
Rac1, but not of PI3K, indicating a possible need for the repartitioning of PI(3,4,5)P3 into 
cholesterol-enriched membrane microdomains [142]. Surprisingly, clathrin, dynamin and 
several other components of the endocytotic machinery co-localize with the bacterial entry site 
and are essential for invasion of L. monocytogenes and Y. pseudotuberculosis [143].  
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While clathrin is crucial for the internalization of these “zippering” bacteria, it is not 
required for the entry of “triggering” bacteria (Salmonella, Shigella) [144]. More studies are 
needed to elucidate the functional interplay between clathrin and cholesterol-enriched 
membrane domains. 

Recently, another class of GTPases – Septins - have been identified to be required for the 
efficient, InlB-dependent entry of L. monocytogenes [145]. Septins regulate actin organisation 
[146] and phagosome formation in macrophages [147]. The mechanism of septins during the 
uptake of L. monocytogenes is not yet clear. Interestingly, septin and actin colocalize at the 
same bacterial entry site. However, based on the ring-like assembly of septins, which is 
different from the actin architecture at the bacterial entry site, it is suggested that actin and 
septins fulfil distinct or complementary roles during the internalization process [145]. 

Upon internalisation, L. monocytogenes is located within a vacuole, from which it eventually 
escapes into the cytosol by the synergistic action of the pore forming toxin listeriolysin O 
and the bacterial encoded, PIP-specific PLC [140].  

Similar to L. monocytogenes, enteropathogenic Yersinia species activate PI kinases by 
interaction of the Yersinia outer membrane protein invasine to the heterodimeric β1 integrin 
receptor [148] and subsequent activation of the Rac1 pathway. The activation of the Rac1 
pathway leads to the local enrichment of PI(4,5)P2 through the recruitment and activation of 
PI5K [148], which is a lipid kinase that selectively phosphorylates the inositol ring at D5 
position of PIs. However, the final activation of PI5K seems to be induced by Arf6, a GTP 
binding protein that normally regulates the production of PI(4,5)P2 [149]. It is assumed that 
Arf6-driven actin dynamics mediate the formation of the phagocytic cup surrounding 
Yersinia [150]. At this stage of entry, Yersinia is located in an intermediate compartment, 
termed prevacuole, which is still connected to the plasma membrane. It could be shown that 
PI(4,5)P2 needs to be hydrolyzed in order to proceed the maturation of the prevacuole into a 
separate, sealed compartment. This step is mediated by the inositol-5-phosphatases OCRL 
and Inpp5b, which are recruited to the Yersinia-containing prevacuole. As a prerequisite for 
this recruitment, the GTPase Rab5 must associate with the prevacuole and it could indeed be 
shown that PI3K seems to mediate this step [151].  

This is an intriguing example that illustrates how invasive pathogens dynamically regulate 
host cell PIPs to complete their internalization.  

6. Conclusion 

The example of SV40 shows how pathogens are able to initiate their uptake by engaging 
glycosphingolipids on the surface of host cells. It is intriguing to see that this concept of 
endocytotic uptake resembles those found for Stx uptake. This suggests that 
glycosphingolipid-driven endocytosis is not restricted to specific pathogens or toxins, but 
rather seems to be a general concept for initiating endocytotic processes at biological 
membranes. Considering that invasive bacteria bind carbohydrate receptors in the plasma 
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membrane for proper attachment to host cells, an interesting question is whether such 
adhesion receptors are also engaged as internalization receptors allowing invasive 
pathogens to gain access to host cells. In such a scenario, the invasive bacterium binds via 
some of its lectins to host cell receptors, which subsequently become clustered, thereby 
creating asymmetrical stress in the lipid bilayer and leading to membrane invaginations that 
facilitate the bacterial uptake. In particular, it would be interesting to know if the putative 
lectin-induced membrane invagination modulates host cell PIP metabolism at the 
cytoplasmic side of the plasma membrane for the efficient entry of the pathogen. 
Additionally, it needs be clarified whether the lectin-bended plasma membrane is sensed by 
cellular effector proteins, for example by BAR domains, that could stabilise and/or further 
assist in the invagination of the plasma membrane to accomplish the endocytosis process.  

As most pathogens, in particular invasive bacteria, depend on the rearrangement of actin for 
their cellular uptake, it remains to be determined to which extent actin dynamics, as 
observed for Stx-induced membrane tubules, also contribute to the scission of the bacteria-
containing vacuoles.  

Glycolipids are often found co-clustered with protein receptors in the plasma membrane. It 
remains to be identified, if specific glycolipids, which are used as pathogen or toxin 
receptors, preferentially interact with other proteins in the plasma membrane to specify the 
endocytotic route of a toxin or an invasive pathogen. 

As yet, less is known about these specific issues of the initial steps of pathogen 
internalization, and many more studies need to be carried out to examine the exact 
functional and mechanistic role of glycosphingolipids and phosphoinositides in pathogen 
invasion.  

Author details 

Thorsten Eierhoff 
Albert-Ludwigs-University Freiburg,  
Institute of Biology II and BIOSS Centre for Biological Signalling Studies, Freiburg, Germany 

Bahne Stechmann 
Leibniz-Institut für Molekulare Pharmakologie (FMP), Berlin, Germany 

Winfried Römer 
Albert-Ludwigs-University Freiburg,  
Institute of Biology II and BIOSS Centre for Biological Signalling Studies, Freiburg, Germany 

7. Acknowledgement 

This work was supported by the German Excellence Initiative of the Deutsche 
Forschungsgemeinschaft (EXC 294) and by a starting grant of the European Research 
Council to W.R. (Programme “Ideas” - call identifier: ERC-2011-StG 282105-lec&lip2invade). 



 
Molecular Regulation of Endocytosis 268 

8. References 

[1] WHO, The top 10 causes of death. WHO Fact sheet 2011. N° 310. Available: 
http://www.who.int/mediacentre/factsheets/fs310/en/index.html 

[2] Krivan, H.C., V. Ginsburg, and D.D. Roberts, Pseudomonas aeruginosa and 
Pseudomonas cepacia isolated from cystic fibrosis patients bind specifically to 
gangliotetraosylceramide (asialo GM1) and gangliotriaosylceramide (asialo GM2). 
Archives of biochemistry and biophysics, 1988. 260(1): p. 493-6. 

[3] Saiman, L. and A. Prince, Pseudomonas aeruginosa pili bind to asialoGM1 which is 
increased on the surface of cystic fibrosis epithelial cells. The Journal of clinical 
investigation, 1993. 92(4): p. 1875-80. 

[4] Skehel, J.J. and D.C. Wiley, Receptor binding and membrane fusion in virus entry: the 
influenza hemagglutinin. Annual review of biochemistry, 2000. 69: p. 531-69. 

[5] Romer, W., et al., Shiga toxin induces tubular membrane invaginations for its uptake 
into cells. Nature, 2007. 450(7170): p. 670-5. 

[6] Ewers, H., et al., GM1 structure determines SV40-induced membrane invagination and 
infection. Nature cell biology, 2010. 12(1): p. 11-8; sup pp 1-12. 

[7] Ajit Varki (2009) Essentials of Glycobiology. Cold Spring Harbor (NY). 
[8] Falkenburger, B.H., et al., Phosphoinositides: lipid regulators of membrane proteins. The 

Journal of physiology, 2010. 588(Pt 17): p. 3179-85. 
[9] Sasaki, T., et al., The physiology of phosphoinositides. Biological & pharmaceutical 

bulletin, 2007. 30(9): p. 1599-604. 
[10] Mathivet, L., S. Cribier, and P.F. Devaux, Shape change and physical properties of giant 

phospholipid vesicles prepared in the presence of an AC electric field. Biophysical 
journal, 1996. 70(3): p. 1112-21. 

[11] Romer, W., et al., Actin dynamics drive membrane reorganization and scission in 
clathrin-independent endocytosis. Cell, 2010. 140(4): p. 540-53. 

[12] Pautot, S., B.J. Frisken, and D.A. Weitz, Engineering asymmetric vesicles. Proceedings 
of the National Academy of Sciences of the United States of America, 2003. 100(19): p. 
10718-21. 

[13] Pontani, L.L., et al., Reconstitution of an actin cortex inside a liposome. Biophysical 
journal, 2009. 96(1): p. 192-8. 

[14] Romer, W., et al., Channel activity of a viral transmembrane peptide in micro-BLMs: 
Vpu(1-32) from HIV-1. Journal of the American Chemical Society, 2004. 126(49): p. 
16267-74. 

[15] Romer, W. and C. Steinem, Impedance analysis and single-channel recordings on nano-
black lipid membranes based on porous alumina. Biophysical journal, 2004. 86(2): p. 
955-65. 

[16] Danelon, C., et al., Cell membranes suspended across nanoaperture arrays. Langmuir : 
the ACS journal of surfaces and colloids, 2006. 22(1): p. 22-5. 

[17] Ziegler, U., et al., Preparation of basal cell membranes for scanning probe microscopy. 
FEBS letters, 1998. 436(2): p. 179-84. 



 
Molecular Regulation of Endocytosis 268 

8. References 

[1] WHO, The top 10 causes of death. WHO Fact sheet 2011. N° 310. Available: 
http://www.who.int/mediacentre/factsheets/fs310/en/index.html 

[2] Krivan, H.C., V. Ginsburg, and D.D. Roberts, Pseudomonas aeruginosa and 
Pseudomonas cepacia isolated from cystic fibrosis patients bind specifically to 
gangliotetraosylceramide (asialo GM1) and gangliotriaosylceramide (asialo GM2). 
Archives of biochemistry and biophysics, 1988. 260(1): p. 493-6. 

[3] Saiman, L. and A. Prince, Pseudomonas aeruginosa pili bind to asialoGM1 which is 
increased on the surface of cystic fibrosis epithelial cells. The Journal of clinical 
investigation, 1993. 92(4): p. 1875-80. 

[4] Skehel, J.J. and D.C. Wiley, Receptor binding and membrane fusion in virus entry: the 
influenza hemagglutinin. Annual review of biochemistry, 2000. 69: p. 531-69. 

[5] Romer, W., et al., Shiga toxin induces tubular membrane invaginations for its uptake 
into cells. Nature, 2007. 450(7170): p. 670-5. 

[6] Ewers, H., et al., GM1 structure determines SV40-induced membrane invagination and 
infection. Nature cell biology, 2010. 12(1): p. 11-8; sup pp 1-12. 

[7] Ajit Varki (2009) Essentials of Glycobiology. Cold Spring Harbor (NY). 
[8] Falkenburger, B.H., et al., Phosphoinositides: lipid regulators of membrane proteins. The 

Journal of physiology, 2010. 588(Pt 17): p. 3179-85. 
[9] Sasaki, T., et al., The physiology of phosphoinositides. Biological & pharmaceutical 

bulletin, 2007. 30(9): p. 1599-604. 
[10] Mathivet, L., S. Cribier, and P.F. Devaux, Shape change and physical properties of giant 

phospholipid vesicles prepared in the presence of an AC electric field. Biophysical 
journal, 1996. 70(3): p. 1112-21. 

[11] Romer, W., et al., Actin dynamics drive membrane reorganization and scission in 
clathrin-independent endocytosis. Cell, 2010. 140(4): p. 540-53. 

[12] Pautot, S., B.J. Frisken, and D.A. Weitz, Engineering asymmetric vesicles. Proceedings 
of the National Academy of Sciences of the United States of America, 2003. 100(19): p. 
10718-21. 

[13] Pontani, L.L., et al., Reconstitution of an actin cortex inside a liposome. Biophysical 
journal, 2009. 96(1): p. 192-8. 

[14] Romer, W., et al., Channel activity of a viral transmembrane peptide in micro-BLMs: 
Vpu(1-32) from HIV-1. Journal of the American Chemical Society, 2004. 126(49): p. 
16267-74. 

[15] Romer, W. and C. Steinem, Impedance analysis and single-channel recordings on nano-
black lipid membranes based on porous alumina. Biophysical journal, 2004. 86(2): p. 
955-65. 

[16] Danelon, C., et al., Cell membranes suspended across nanoaperture arrays. Langmuir : 
the ACS journal of surfaces and colloids, 2006. 22(1): p. 22-5. 

[17] Ziegler, U., et al., Preparation of basal cell membranes for scanning probe microscopy. 
FEBS letters, 1998. 436(2): p. 179-84. 

Pathogen and Toxin Entry –  
How Pathogens and Toxins Induce and Harness Endocytotic Mechanisms 269 

[18] Endo, Y., et al., Site of action of a Vero toxin (VT2) from Escherichia coli O157:H7 and of 
Shiga toxin on eukaryotic ribosomes. RNA N-glycosidase activity of the toxins. 
European journal of biochemistry / FEBS, 1988. 171(1-2): p. 45-50. 

[19] Sharp, G.W. and S. Hynie, Stimulation of intestinal adenyl cyclase by cholera toxin. 
Nature, 1971. 229(5282): p. 266-9. 

[20] Falnes, P.O. and K. Sandvig, Penetration of protein toxins into cells. Current opinion in 
cell biology, 2000. 12(4): p. 407-13. 

[21] Johannes, L. and W. Romer, Shiga toxins--from cell biology to biomedical applications. 
Nature reviews. Microbiology, 2010. 8(2): p. 105-16. 

[22] Karmali, M.A., et al., Sporadic cases of haemolytic-uraemic syndrome associated with 
faecal cytotoxin and cytotoxin-producing Escherichia coli in stools. Lancet, 1983. 
1(8325): p. 619-20. 

[23] Bale, J.F., Jr., C. Brasher, and R.L. Siegler, CNS manifestations of the hemolytic-uremic 
syndrome. Relationship to metabolic alterations and prognosis. American journal of 
diseases of children, 1980. 134(9): p. 869-72. 

[24] Frank, C., et al., Epidemic profile of Shiga-toxin-producing Escherichia coli O104:H4 
outbreak in Germany. The New England journal of medicine, 2011. 365(19): p. 1771-80. 

[25] Beutin, L. and A. Martin, Outbreak of Shiga toxin-producing Escherichia coli (STEC) 
O104:H4 infection in Germany causes a paradigm shift with regard to human 
pathogenicity of STEC strains. Journal of food protection, 2012. 75(2): p. 408-18. 

[26] Bielaszewska, M., et al., Characterisation of the Escherichia coli strain associated with 
an outbreak of haemolytic uraemic syndrome in Germany, 2011: a microbiological 
study. The Lancet infectious diseases, 2011. 11(9): p. 671-6. 

[27] Jackson, M.P., et al., Nucleotide sequence analysis of the structural genes for Shiga-like 
toxin I encoded by bacteriophage 933J from Escherichia coli. Microbial pathogenesis, 
1987. 2(2): p. 147-53. 

[28] Stein, P.E., et al., Crystal structure of the cell-binding B oligomer of verotoxin-1 from E. 
coli. Nature, 1992. 355(6362): p. 748-50. 

[29] Fraser, M.E., et al., Crystal structure of the holotoxin from Shigella dysenteriae at 2.5 A 
resolution. Nature structural biology, 1994. 1(1): p. 59-64. 

[30] Lindberg, A.A., et al., Identification of the carbohydrate receptor for Shiga toxin 
produced by Shigella dysenteriae type 1. The Journal of biological chemistry, 1987. 
262(4): p. 1779-85. 

[31] Heyningen, S.V., Cholera toxin: interaction of subunits with ganglioside GM1. Science, 
1974. 183(4125): p. 656-7. 

[32] Lencer, W.I. and D. Saslowsky, Raft trafficking of AB5 subunit bacterial toxins. 
Biochimica et biophysica acta, 2005. 1746(3): p. 314-21. 

[33] St Hilaire, P.M., M.K. Boyd, and E.J. Toone, Interaction of the Shiga-like toxin type 1 B-
subunit with its carbohydrate receptor. Biochemistry, 1994. 33(48): p. 14452-63. 

[34] Schon, A. and E. Freire, Thermodynamics of intersubunit interactions in cholera toxin 
upon binding to the oligosaccharide portion of its cell surface receptor, ganglioside 
GM1. Biochemistry, 1989. 28(12): p. 5019-24. 



 
Molecular Regulation of Endocytosis 270 

[35] Fuchs, G., et al., Pathogenesis of Shigella diarrhea: rabbit intestinal cell microvillus 
membrane binding site for Shigella toxin. Infection and immunity, 1986. 53(2): p. 372-7. 

[36] Kuziemko, G.M., M. Stroh, and R.C. Stevens, Cholera toxin binding affinity and 
specificity for gangliosides determined by surface plasmon resonance. Biochemistry, 
1996. 35(20): p. 6375-84. 

[37] Turnbull, W.B., B.L. Precious, and S.W. Homans, Dissecting the cholera toxin-
ganglioside GM1 interaction by isothermal titration calorimetry. Journal of the 
American Chemical Society, 2004. 126(4): p. 1047-54. 

[38] Bast, D.J., et al., The identification of three biologically relevant globotriaosyl ceramide 
receptor binding sites on the Verotoxin 1 B subunit. Molecular microbiology, 1999. 
32(5): p. 953-60. 

[39] Soltyk, A.M., et al., A mutational analysis of the globotriaosylceramide-binding sites of 
verotoxin VT1. The Journal of biological chemistry, 2002. 277(7): p. 5351-9. 

[40] Wolf, A.A., et al., Attenuated endocytosis and toxicity of a mutant cholera toxin with 
decreased ability to cluster ganglioside GM1 molecules. Infection and immunity, 2008. 
76(4): p. 1476-84. 

[41] Sandvig, K., et al., Endocytosis from coated pits of Shiga toxin: a glycolipid-binding 
protein from Shigella dysenteriae 1. The Journal of cell biology, 1989. 108(4): p. 1331-43. 

[42] Lauvrak, S.U., M.L. Torgersen, and K. Sandvig, Efficient endosome-to-Golgi transport 
of Shiga toxin is dependent on dynamin and clathrin. Journal of cell science, 2004. 
117(Pt 11): p. 2321-31. 

[43] Nichols, B.J., et al., Rapid cycling of lipid raft markers between the cell surface and 
Golgi complex. The Journal of cell biology, 2001. 153(3): p. 529-41. 

[44] Saint-Pol, A., et al., Clathrin adaptor epsinR is required for retrograde sorting on early 
endosomal membranes. Developmental cell, 2004. 6(4): p. 525-38. 

[45] Kirkham, M. and R.G. Parton, Clathrin-independent endocytosis: new insights into 
caveolae and non-caveolar lipid raft carriers. Biochimica et biophysica acta, 2005. 
1746(3): p. 349-63. 

[46] Ferguson, S.M. and P. De Camilli, Dynamin, a membrane-remodelling GTPase. Nature 
reviews. Molecular cell biology, 2012. 13(2): p. 75-88. 

[47] Schmid, S.L. and V.A. Frolov, Dynamin: functional design of a membrane fission 
catalyst. Annual review of cell and developmental biology, 2011. 27: p. 79-105. 

[48] Mayor, S. and R.E. Pagano, Pathways of clathrin-independent endocytosis. Nature 
reviews. Molecular cell biology, 2007. 8(8): p. 603-12. 

[49] Takenouchi, H., et al., Shiga toxin binding to globotriaosyl ceramide induces 
intracellular signals that mediate cytoskeleton remodeling in human renal carcinoma-
derived cells. Journal of cell science, 2004. 117(Pt 17): p. 3911-22. 

[50] Vaheri, A., et al., The ezrin protein family: membrane-cytoskeleton interactions and 
disease associations. Current opinion in cell biology, 1997. 9(5): p. 659-66. 

[51] Sandvig, K., et al., Retrograde transport of endocytosed Shiga toxin to the endoplasmic 
reticulum. Nature, 1992. 358(6386): p. 510-2. 



 
Molecular Regulation of Endocytosis 270 

[35] Fuchs, G., et al., Pathogenesis of Shigella diarrhea: rabbit intestinal cell microvillus 
membrane binding site for Shigella toxin. Infection and immunity, 1986. 53(2): p. 372-7. 

[36] Kuziemko, G.M., M. Stroh, and R.C. Stevens, Cholera toxin binding affinity and 
specificity for gangliosides determined by surface plasmon resonance. Biochemistry, 
1996. 35(20): p. 6375-84. 

[37] Turnbull, W.B., B.L. Precious, and S.W. Homans, Dissecting the cholera toxin-
ganglioside GM1 interaction by isothermal titration calorimetry. Journal of the 
American Chemical Society, 2004. 126(4): p. 1047-54. 

[38] Bast, D.J., et al., The identification of three biologically relevant globotriaosyl ceramide 
receptor binding sites on the Verotoxin 1 B subunit. Molecular microbiology, 1999. 
32(5): p. 953-60. 

[39] Soltyk, A.M., et al., A mutational analysis of the globotriaosylceramide-binding sites of 
verotoxin VT1. The Journal of biological chemistry, 2002. 277(7): p. 5351-9. 

[40] Wolf, A.A., et al., Attenuated endocytosis and toxicity of a mutant cholera toxin with 
decreased ability to cluster ganglioside GM1 molecules. Infection and immunity, 2008. 
76(4): p. 1476-84. 

[41] Sandvig, K., et al., Endocytosis from coated pits of Shiga toxin: a glycolipid-binding 
protein from Shigella dysenteriae 1. The Journal of cell biology, 1989. 108(4): p. 1331-43. 

[42] Lauvrak, S.U., M.L. Torgersen, and K. Sandvig, Efficient endosome-to-Golgi transport 
of Shiga toxin is dependent on dynamin and clathrin. Journal of cell science, 2004. 
117(Pt 11): p. 2321-31. 

[43] Nichols, B.J., et al., Rapid cycling of lipid raft markers between the cell surface and 
Golgi complex. The Journal of cell biology, 2001. 153(3): p. 529-41. 

[44] Saint-Pol, A., et al., Clathrin adaptor epsinR is required for retrograde sorting on early 
endosomal membranes. Developmental cell, 2004. 6(4): p. 525-38. 

[45] Kirkham, M. and R.G. Parton, Clathrin-independent endocytosis: new insights into 
caveolae and non-caveolar lipid raft carriers. Biochimica et biophysica acta, 2005. 
1746(3): p. 349-63. 

[46] Ferguson, S.M. and P. De Camilli, Dynamin, a membrane-remodelling GTPase. Nature 
reviews. Molecular cell biology, 2012. 13(2): p. 75-88. 

[47] Schmid, S.L. and V.A. Frolov, Dynamin: functional design of a membrane fission 
catalyst. Annual review of cell and developmental biology, 2011. 27: p. 79-105. 

[48] Mayor, S. and R.E. Pagano, Pathways of clathrin-independent endocytosis. Nature 
reviews. Molecular cell biology, 2007. 8(8): p. 603-12. 

[49] Takenouchi, H., et al., Shiga toxin binding to globotriaosyl ceramide induces 
intracellular signals that mediate cytoskeleton remodeling in human renal carcinoma-
derived cells. Journal of cell science, 2004. 117(Pt 17): p. 3911-22. 

[50] Vaheri, A., et al., The ezrin protein family: membrane-cytoskeleton interactions and 
disease associations. Current opinion in cell biology, 1997. 9(5): p. 659-66. 

[51] Sandvig, K., et al., Retrograde transport of endocytosed Shiga toxin to the endoplasmic 
reticulum. Nature, 1992. 358(6386): p. 510-2. 

Pathogen and Toxin Entry –  
How Pathogens and Toxins Induce and Harness Endocytotic Mechanisms 271 

[52] Bujny, M.V., et al., The retromer component sorting nexin-1 is required for efficient 
retrograde transport of Shiga toxin from early endosome to the trans Golgi network. 
Journal of cell science, 2007. 120(Pt 12): p. 2010-21. 

[53] Popoff, V., et al., The retromer complex and clathrin define an early endosomal 
retrograde exit site. Journal of cell science, 2007. 120(Pt 12): p. 2022-31. 

[54] Torgersen, M.L., et al., Protein kinase Cdelta is activated by Shiga toxin and regulates 
its transport. The Journal of biological chemistry, 2007. 282(22): p. 16317-28. 

[55] Stechmann, B., et al., Inhibition of retrograde transport protects mice from lethal ricin 
challenge. Cell, 2010. 141(2): p. 231-42. 

[56] Falguieres, T., et al., Targeting of Shiga toxin B-subunit to retrograde transport route in 
association with detergent-resistant membranes. Molecular biology of the cell, 2001. 
12(8): p. 2453-68. 

[57] Roxas-Duncan VI, Smith LA, Of Beans and Beads: Ricin and Abrin in Bioterrorism and 
Biocrime. J Bioterr Biodef, 2012. S7:002. doi:10.4172/2157-2526.S7- 002  

[58] Arthur M Silverstein (2002) Paul Ehrlich´s receptor immunology: The magnificent 
obsession. Academic Press. 

[59] Montfort, W., et al., The three-dimensional structure of ricin at 2.8 A. The Journal of 
biological chemistry, 1987. 262(11): p. 5398-403. 

[60] Tahirov, T.H., et al., Crystal structure of abrin-a at 2.14 A. Journal of molecular biology, 
1995. 250(3): p. 354-67. 

[61] Endo, Y. and K. Tsurugi, RNA N-glycosidase activity of ricin A-chain. Mechanism of 
action of the toxic lectin ricin on eukaryotic ribosomes. The Journal of biological 
chemistry, 1987. 262(17): p. 8128-30. 

[62] Eiklid, K., S. Olsnes, and A. Pihl, Entry of lethal doses of abrin, ricin and modeccin into 
the cytosol of HeLa cells. Experimental cell research, 1980. 126(2): p. 321-6. 

[63] Sphyris, N., et al., Mutational analysis of the Ricinus lectin B-chains. Galactose-binding 
ability of the 2 gamma subdomain of Ricinus communis agglutinin B-chain. The Journal 
of biological chemistry, 1995. 270(35): p. 20292-7. 

[64] Wales, R., et al., Mutational analysis of the galactose binding ability of recombinant 
ricin B chain. The Journal of biological chemistry, 1991. 266(29): p. 19172-9. 

[65] Baenziger, J.U. and D. Fiete, Structural determinants of Ricinus communis agglutinin 
and toxin specificity for oligosaccharides. The Journal of biological chemistry, 1979. 
254(19): p. 9795-9. 

[66] Lord, M.J., et al., Ricin. Mechanisms of cytotoxicity. Toxicological reviews, 2003. 22(1): 
p. 53-64. 

[67] van Deurs, B., et al., Estimation of the amount of internalized ricin that reaches the 
trans-Golgi network. The Journal of cell biology, 1988. 106(2): p. 253-67. 

[68] Johannes, L. and V. Popoff, Tracing the retrograde route in protein trafficking. Cell, 
2008. 135(7): p. 1175-87. 

[69] Moreau, D., et al., Genome-wide RNAi screens identify genes required for Ricin and PE 
intoxications. Developmental cell, 2011. 21(2): p. 231-44. 

[70] Pelkmans, L. and A. Helenius, Insider information: what viruses tell us about 
endocytosis. Current opinion in cell biology, 2003. 15(4): p. 414-22. 



 
Molecular Regulation of Endocytosis 272 

[71] Sieczkarski, S.B. and G.R. Whittaker, Dissecting virus entry via endocytosis. The Journal 
of general virology, 2002. 83(Pt 7): p. 1535-45. 

[72] Rust, M.J., et al., Assembly of endocytic machinery around individual influenza viruses 
during viral entry. Nature structural & molecular biology, 2004. 11(6): p. 567-73. 

[73] Ewers, H. and A. Helenius, Lipid-mediated endocytosis. Cold Spring Harbor 
perspectives in biology, 2011. 3(8): p. a004721. 

[74] Rydell, G.E., et al., QCM-D studies of human norovirus VLPs binding to 
glycosphingolipids in supported lipid bilayers reveal strain-specific characteristics. 
Glycobiology, 2009. 19(11): p. 1176-84. 

[75] Kartenbeck, J., H. Stukenbrok, and A. Helenius, Endocytosis of simian virus 40 into the 
endoplasmic reticulum. The Journal of cell biology, 1989. 109(6 Pt 1): p. 2721-9. 

[76] Schelhaas, M., et al., Simian Virus 40 depends on ER protein folding and quality control 
factors for entry into host cells. Cell, 2007. 131(3): p. 516-29. 

[77] Vilchez, R.A., et al., Simian virus 40 in human cancers. The American journal of 
medicine, 2003. 114(8): p. 675-84. 

[78] Liddington, R.C., et al., Structure of simian virus 40 at 3.8-A resolution. Nature, 1991. 
354(6351): p. 278-84. 

[79] Neu, U., et al., Structural basis of GM1 ganglioside recognition by simian virus 40. 
Proceedings of the National Academy of Sciences of the United States of America, 2008. 
105(13): p. 5219-24. 

[80] Campanero-Rhodes, M.A., et al., N-glycolyl GM1 ganglioside as a receptor for simian 
virus 40. Journal of virology, 2007. 81(23): p. 12846-58. 

[81] Sinha, B., et al., Cells respond to mechanical stress by rapid disassembly of caveolae. 
Cell, 2011. 144(3): p. 402-13. 

[82] Rothberg, K.G., et al., Caveolin, a protein component of caveolae membrane coats. Cell, 
1992. 68(4): p. 673-82. 

[83] Kurzchalia, T.V., et al., VIP21, a 21-kD membrane protein is an integral component of 
trans-Golgi-network-derived transport vesicles. The Journal of cell biology, 1992. 118(5): 
p. 1003-14. 

[84] Thomsen, P., et al., Caveolae are highly immobile plasma membrane microdomains, 
which are not involved in constitutive endocytic trafficking. Molecular biology of the 
cell, 2002. 13(1): p. 238-50. 

[85] Anderson, H.A., Y. Chen, and L.C. Norkin, Bound simian virus 40 translocates to 
caveolin-enriched membrane domains, and its entry is inhibited by drugs that 
selectively disrupt caveolae. Molecular biology of the cell, 1996. 7(11): p. 1825-34. 

[86] Pelkmans, L., J. Kartenbeck, and A. Helenius, Caveolar endocytosis of simian virus 40 
reveals a new two-step vesicular-transport pathway to the ER. Nature cell biology, 
2001. 3(5): p. 473-83. 

[87] Pelkmans, L., et al., Genome-wide analysis of human kinases in clathrin- and 
caveolae/raft-mediated endocytosis. Nature, 2005. 436(7047): p. 78-86. 

[88] Stang, E., J. Kartenbeck, and R.G. Parton, Major histocompatibility complex class I 
molecules mediate association of SV40 with caveolae. Molecular biology of the cell, 
1997. 8(1): p. 47-57. 



 
Molecular Regulation of Endocytosis 272 

[71] Sieczkarski, S.B. and G.R. Whittaker, Dissecting virus entry via endocytosis. The Journal 
of general virology, 2002. 83(Pt 7): p. 1535-45. 

[72] Rust, M.J., et al., Assembly of endocytic machinery around individual influenza viruses 
during viral entry. Nature structural & molecular biology, 2004. 11(6): p. 567-73. 

[73] Ewers, H. and A. Helenius, Lipid-mediated endocytosis. Cold Spring Harbor 
perspectives in biology, 2011. 3(8): p. a004721. 

[74] Rydell, G.E., et al., QCM-D studies of human norovirus VLPs binding to 
glycosphingolipids in supported lipid bilayers reveal strain-specific characteristics. 
Glycobiology, 2009. 19(11): p. 1176-84. 

[75] Kartenbeck, J., H. Stukenbrok, and A. Helenius, Endocytosis of simian virus 40 into the 
endoplasmic reticulum. The Journal of cell biology, 1989. 109(6 Pt 1): p. 2721-9. 

[76] Schelhaas, M., et al., Simian Virus 40 depends on ER protein folding and quality control 
factors for entry into host cells. Cell, 2007. 131(3): p. 516-29. 

[77] Vilchez, R.A., et al., Simian virus 40 in human cancers. The American journal of 
medicine, 2003. 114(8): p. 675-84. 

[78] Liddington, R.C., et al., Structure of simian virus 40 at 3.8-A resolution. Nature, 1991. 
354(6351): p. 278-84. 

[79] Neu, U., et al., Structural basis of GM1 ganglioside recognition by simian virus 40. 
Proceedings of the National Academy of Sciences of the United States of America, 2008. 
105(13): p. 5219-24. 

[80] Campanero-Rhodes, M.A., et al., N-glycolyl GM1 ganglioside as a receptor for simian 
virus 40. Journal of virology, 2007. 81(23): p. 12846-58. 

[81] Sinha, B., et al., Cells respond to mechanical stress by rapid disassembly of caveolae. 
Cell, 2011. 144(3): p. 402-13. 

[82] Rothberg, K.G., et al., Caveolin, a protein component of caveolae membrane coats. Cell, 
1992. 68(4): p. 673-82. 

[83] Kurzchalia, T.V., et al., VIP21, a 21-kD membrane protein is an integral component of 
trans-Golgi-network-derived transport vesicles. The Journal of cell biology, 1992. 118(5): 
p. 1003-14. 

[84] Thomsen, P., et al., Caveolae are highly immobile plasma membrane microdomains, 
which are not involved in constitutive endocytic trafficking. Molecular biology of the 
cell, 2002. 13(1): p. 238-50. 

[85] Anderson, H.A., Y. Chen, and L.C. Norkin, Bound simian virus 40 translocates to 
caveolin-enriched membrane domains, and its entry is inhibited by drugs that 
selectively disrupt caveolae. Molecular biology of the cell, 1996. 7(11): p. 1825-34. 

[86] Pelkmans, L., J. Kartenbeck, and A. Helenius, Caveolar endocytosis of simian virus 40 
reveals a new two-step vesicular-transport pathway to the ER. Nature cell biology, 
2001. 3(5): p. 473-83. 

[87] Pelkmans, L., et al., Genome-wide analysis of human kinases in clathrin- and 
caveolae/raft-mediated endocytosis. Nature, 2005. 436(7047): p. 78-86. 

[88] Stang, E., J. Kartenbeck, and R.G. Parton, Major histocompatibility complex class I 
molecules mediate association of SV40 with caveolae. Molecular biology of the cell, 
1997. 8(1): p. 47-57. 

Pathogen and Toxin Entry –  
How Pathogens and Toxins Induce and Harness Endocytotic Mechanisms 273 

[89] Damm, E.M., et al., Clathrin- and caveolin-1-independent endocytosis: entry of simian 
virus 40 into cells devoid of caveolae. The Journal of cell biology, 2005. 168(3): p. 477-88. 

[90] Harris, A., et al., Influenza virus pleiomorphy characterized by cryoelectron 
tomography. Proceedings of the National Academy of Sciences of the United States of 
America, 2006. 103(50): p. 19123-7. 

[91] Lakadamyali, M., M.J. Rust, and X. Zhuang, Endocytosis of influenza viruses. Microbes 
and infection / Institut Pasteur, 2004. 6(10): p. 929-36. 

[92] Maeda, T. and S. Ohnishi, Activation of influenza virus by acidic media causes 
hemolysis and fusion of erythrocytes. FEBS letters, 1980. 122(2): p. 283-7. 

[93] Matlin, K.S., et al., Infectious entry pathway of influenza virus in a canine kidney cell 
line. The Journal of cell biology, 1981. 91(3 Pt 1): p. 601-13. 

[94] Ehrhardt, C., et al., Bivalent role of the phosphatidylinositol-3-kinase (PI3K) during 
influenza virus infection and host cell defence. Cellular microbiology, 2006. 8(8): p. 
1336-48. 

[95] de Vries, E., et al., Dissection of the influenza A virus endocytic routes reveals 
macropinocytosis as an alternative entry pathway. PLoS pathogens, 2011. 7(3): p. 
e1001329. 

[96] Eierhoff, T., et al., The epidermal growth factor receptor (EGFR) promotes uptake of 
influenza A viruses (IAV) into host cells. PLoS pathogens, 2010. 6(9): p. e1001099. 

[97] Sun, X. and G.R. Whittaker, Role of the actin cytoskeleton during influenza virus 
internalization into polarized epithelial cells. Cellular microbiology, 2007. 9(7): p. 1672-
82. 

[98] Hueck, Type III Protein Secretion Systems in Bacterial Pathogens of Animals and Plants. 
Microbiol. Mol. Biol. Rev. , 1998. 62(2). 

[99] Swanson, J.A. and S.C. Baer, Phagocytosis by zippers and triggers. Trends in cell 
biology, 1995. 5(3): p. 89-93. 

[100] Kinchen, J.M. and K.S. Ravichandran, Phagosome maturation: going through the acid 
test. Nature reviews. Molecular cell biology, 2008. 9(10): p. 781-95. 

[101] Vergne, I., J. Chua, and V. Deretic, Tuberculosis toxin blocking phagosome maturation 
inhibits a novel Ca2+/calmodulin-PI3K hVPS34 cascade. The Journal of experimental 
medicine, 2003. 198(4): p. 653-9. 

[102] Vergne, I., et al., Mycobacterium tuberculosis phagosome maturation arrest: 
mycobacterial phosphatidylinositol analog phosphatidylinositol mannoside stimulates 
early endosomal fusion. Molecular biology of the cell, 2004. 15(2): p. 751-60. 

[103] Vergne, I., et al., Mechanism of phagolysosome biogenesis block by viable 
Mycobacterium tuberculosis. Proceedings of the National Academy of Sciences of the 
United States of America, 2005. 102(11): p. 4033-8. 

[104] Cossart, P. and P.J. Sansonetti, Bacterial invasion: the paradigms of enteroinvasive 
pathogens. Science, 2004. 304(5668): p. 242-8. 

[105] Menard, R., et al., Extracellular association and cytoplasmic partitioning of the IpaB 
and IpaC invasins of S. flexneri. Cell, 1994. 79(3): p. 515-25. 



 
Molecular Regulation of Endocytosis 274 

[106] Ide, T., et al., Characterization of translocation pores inserted into plasma membranes 
by type III-secreted Esp proteins of enteropathogenic Escherichia coli. Cellular 
microbiology, 2001. 3(10): p. 669-79. 

[107] Lafont, F., et al., Initial steps of Shigella infection depend on the 
cholesterol/sphingolipid raft-mediated CD44-IpaB interaction. The EMBO journal, 2002. 
21(17): p. 4449-57. 

[108] van der Goot, F.G., et al., Rafts can trigger contact-mediated secretion of bacterial 
effectors via a lipid-based mechanism. The Journal of biological chemistry, 2004. 
279(46): p. 47792-8. 

[109] Schoehn, G., et al., Oligomerization of type III secretion proteins PopB and PopD 
precedes pore formation in Pseudomonas. The EMBO journal, 2003. 22(19): p. 4957-67. 

[110] Shin, J.S., Z. Gao, and S.N. Abraham, Involvement of cellular caveolae in bacterial 
entry into mast cells. Science, 2000. 289(5480): p. 785-8. 

[111] Ogawa, M., et al., The versatility of Shigella effectors. Nature reviews. Microbiology, 
2008. 6(1): p. 11-6. 

[112] McGhie, E.J., et al., Salmonella takes control: effector-driven manipulation of the host. 
Current opinion in microbiology, 2009. 12(1): p. 117-24. 

[113] Yoshida, S., et al., Shigella deliver an effector protein to trigger host microtubule 
destabilization, which promotes Rac1 activity and efficient bacterial internalization. The 
EMBO journal, 2002. 21(12): p. 2923-35. 

[114] Tran Van Nhieu, G., et al., IpaC induces actin polymerization and filopodia formation 
during Shigella entry into epithelial cells. The EMBO journal, 1999. 18(12): p. 3249-62. 

[115] Hayward, R.D. and V. Koronakis, Direct nucleation and bundling of actin by the SipC 
protein of invasive Salmonella. The EMBO journal, 1999. 18(18): p. 4926-34. 

[116] Srikanth, C.V., et al., Salmonella effector proteins and host-cell responses. Cellular and 
molecular life sciences : CMLS, 2011. 68(22): p. 3687-97. 

[117] Norris, F.A., et al., SopB, a protein required for virulence of Salmonella dublin, is an 
inositol phosphate phosphatase. Proceedings of the National Academy of Sciences of 
the United States of America, 1998. 95(24): p. 14057-9. 

[118] Niebuhr, K., et al., Conversion of PtdIns(4,5)P(2) into PtdIns(5)P by the S.flexneri 
effector IpgD reorganizes host cell morphology. The EMBO journal, 2002. 21(19): p. 
5069-78. 

[119] Engel, J. and P. Balachandran, Role of Pseudomonas aeruginosa type III effectors in 
disease. Current opinion in microbiology, 2009. 12(1): p. 61-6. 

[120] Barbieri, J.T. and J. Sun, Pseudomonas aeruginosa ExoS and ExoT. Reviews of 
physiology, biochemistry and pharmacology, 2004. 152: p. 79-92. 

[121] Ha, U. and S. Jin, Growth phase-dependent invasion of Pseudomonas aeruginosa and 
its survival within HeLa cells. Infection and immunity, 2001. 69(7): p. 4398-406. 

[122] Pendergast, A.M., The Abl family kinases: mechanisms of regulation and signaling. 
Advances in cancer research, 2002. 85: p. 51-100. 

[123] Pielage, J.F., et al., RNAi screen reveals an Abl kinase-dependent host cell pathway 
involved in Pseudomonas aeruginosa internalization. PLoS pathogens, 2008. 4(3): p. 
e1000031. 



 
Molecular Regulation of Endocytosis 274 

[106] Ide, T., et al., Characterization of translocation pores inserted into plasma membranes 
by type III-secreted Esp proteins of enteropathogenic Escherichia coli. Cellular 
microbiology, 2001. 3(10): p. 669-79. 

[107] Lafont, F., et al., Initial steps of Shigella infection depend on the 
cholesterol/sphingolipid raft-mediated CD44-IpaB interaction. The EMBO journal, 2002. 
21(17): p. 4449-57. 

[108] van der Goot, F.G., et al., Rafts can trigger contact-mediated secretion of bacterial 
effectors via a lipid-based mechanism. The Journal of biological chemistry, 2004. 
279(46): p. 47792-8. 

[109] Schoehn, G., et al., Oligomerization of type III secretion proteins PopB and PopD 
precedes pore formation in Pseudomonas. The EMBO journal, 2003. 22(19): p. 4957-67. 

[110] Shin, J.S., Z. Gao, and S.N. Abraham, Involvement of cellular caveolae in bacterial 
entry into mast cells. Science, 2000. 289(5480): p. 785-8. 

[111] Ogawa, M., et al., The versatility of Shigella effectors. Nature reviews. Microbiology, 
2008. 6(1): p. 11-6. 

[112] McGhie, E.J., et al., Salmonella takes control: effector-driven manipulation of the host. 
Current opinion in microbiology, 2009. 12(1): p. 117-24. 

[113] Yoshida, S., et al., Shigella deliver an effector protein to trigger host microtubule 
destabilization, which promotes Rac1 activity and efficient bacterial internalization. The 
EMBO journal, 2002. 21(12): p. 2923-35. 

[114] Tran Van Nhieu, G., et al., IpaC induces actin polymerization and filopodia formation 
during Shigella entry into epithelial cells. The EMBO journal, 1999. 18(12): p. 3249-62. 

[115] Hayward, R.D. and V. Koronakis, Direct nucleation and bundling of actin by the SipC 
protein of invasive Salmonella. The EMBO journal, 1999. 18(18): p. 4926-34. 

[116] Srikanth, C.V., et al., Salmonella effector proteins and host-cell responses. Cellular and 
molecular life sciences : CMLS, 2011. 68(22): p. 3687-97. 

[117] Norris, F.A., et al., SopB, a protein required for virulence of Salmonella dublin, is an 
inositol phosphate phosphatase. Proceedings of the National Academy of Sciences of 
the United States of America, 1998. 95(24): p. 14057-9. 

[118] Niebuhr, K., et al., Conversion of PtdIns(4,5)P(2) into PtdIns(5)P by the S.flexneri 
effector IpgD reorganizes host cell morphology. The EMBO journal, 2002. 21(19): p. 
5069-78. 

[119] Engel, J. and P. Balachandran, Role of Pseudomonas aeruginosa type III effectors in 
disease. Current opinion in microbiology, 2009. 12(1): p. 61-6. 

[120] Barbieri, J.T. and J. Sun, Pseudomonas aeruginosa ExoS and ExoT. Reviews of 
physiology, biochemistry and pharmacology, 2004. 152: p. 79-92. 

[121] Ha, U. and S. Jin, Growth phase-dependent invasion of Pseudomonas aeruginosa and 
its survival within HeLa cells. Infection and immunity, 2001. 69(7): p. 4398-406. 

[122] Pendergast, A.M., The Abl family kinases: mechanisms of regulation and signaling. 
Advances in cancer research, 2002. 85: p. 51-100. 

[123] Pielage, J.F., et al., RNAi screen reveals an Abl kinase-dependent host cell pathway 
involved in Pseudomonas aeruginosa internalization. PLoS pathogens, 2008. 4(3): p. 
e1000031. 

Pathogen and Toxin Entry –  
How Pathogens and Toxins Induce and Harness Endocytotic Mechanisms 275 

[124] Abe, A., et al., Improved inhibitors of glucosylceramide synthase. Journal of 
biochemistry, 1992. 111(2): p. 191-6. 

[125] Emam, A., W.G. Carter, and C. Lingwood, Glycolipid-Dependent, Protease Sensitive 
Internalization of Pseudomonas aeruginosa Into Cultured Human Respiratory 
Epithelial Cells. The open microbiology journal, 2010. 4: p. 106-15. 

[126] Kierbel, A., et al., The phosphoinositol-3-kinase-protein kinase B/Akt pathway is 
critical for Pseudomonas aeruginosa strain PAK internalization. Molecular biology of 
the cell, 2005. 16(5): p. 2577-85. 

[127] Evans, D.J., et al., Pseudomonas aeruginosa invasion and cytotoxicity are independent 
events, both of which involve protein tyrosine kinase activity. Infection and immunity, 
1998. 66(4): p. 1453-9. 

[128] Kierbel, A., et al., Pseudomonas aeruginosa exploits a PIP3-dependent pathway to 
transform apical into basolateral membrane. The Journal of cell biology, 2007. 177(1): p. 
21-7. 

[129] Lecuit, M., Understanding how Listeria monocytogenes targets and crosses host 
barriers. Clinical microbiology and infection : the official publication of the European 
Society of Clinical Microbiology and Infectious Diseases, 2005. 11(6): p. 430-6. 

[130] Galindo, C.L., et al., Pathogenesis of Y. enterocolitica and Y. pseudotuberculosis in 
Human Yersiniosis. Journal of Pathogens, 2011. 2011: p. 1-16. 

[131] Mengaud, J., et al., E-cadherin is the receptor for internalin, a surface protein required 
for entry of L. monocytogenes into epithelial cells. Cell, 1996. 84(6): p. 923-32. 

[132] Schubert, W.D., et al., Structure of internalin, a major invasion protein of Listeria 
monocytogenes, in complex with its human receptor E-cadherin. Cell, 2002. 111(6): p. 
825-36. 

[133] Lecuit, M., et al., A role for alpha-and beta-catenins in bacterial uptake. Proceedings of 
the National Academy of Sciences of the United States of America, 2000. 97(18): p. 
10008-13. 

[134] Sousa, S., et al., ARHGAP10 is necessary for alpha-catenin recruitment at adherens 
junctions and for Listeria invasion. Nature cell biology, 2005. 7(10): p. 954-60. 

[135] Helwani, F.M., et al., Cortactin is necessary for E-cadherin-mediated contact formation 
and actin reorganization. The Journal of cell biology, 2004. 164(6): p. 899-910. 

[136] Kovacs, E.M., et al., E-cadherin homophilic ligation directly signals through Rac and 
phosphatidylinositol 3-kinase to regulate adhesive contacts. The Journal of biological 
chemistry, 2002. 277(8): p. 6708-18. 

[137] Bonazzi, M., et al., Successive post-translational modifications of E-cadherin are 
required for InlA-mediated internalization of Listeria monocytogenes. Cellular 
microbiology, 2008. 10(11): p. 2208-22. 

[138] Sousa, S., et al., Unconventional myosin VIIa and vezatin, two proteins crucial for 
Listeria entry into epithelial cells. Journal of cell science, 2004. 117(Pt 10): p. 2121-30. 

[139] Shen, Y., et al., InIB-dependent internalization of Listeria is mediated by the Met 
receptor tyrosine kinase. Cell, 2000. 103(3): p. 501-10. 



 
Molecular Regulation of Endocytosis 276 

[140] Pizarro-Cerda, J. and P. Cossart, Listeria monocytogenes membrane trafficking and 
lifestyle: the exception or the rule? Annual review of cell and developmental biology, 
2009. 25: p. 649-70. 

[141] Ireton, K., et al., A role for phosphoinositide 3-kinase in bacterial invasion. Science, 
1996. 274(5288): p. 780-2. 

[142] Seveau, S., et al., A FRET analysis to unravel the role of cholesterol in Rac1 and PI 3-
kinase activation in the InlB/Met signalling pathway. Cellular microbiology, 2007. 9(3): 
p. 790-803. 

[143] Veiga, E. and P. Cossart, Listeria hijacks the clathrin-dependent endocytic machinery 
to invade mammalian cells. Nature cell biology, 2005. 7(9): p. 894-900. 

[144] Veiga, E., et al., Invasive and adherent bacterial pathogens co-Opt host clathrin for 
infection. Cell host & microbe, 2007. 2(5): p. 340-51. 

[145] Mostowy, S., et al., Septins regulate bacterial entry into host cells. PloS one, 2009. 4(1): 
p. e4196. 

[146] Kremer, B.E., L.A. Adang, and I.G. Macara, Septins regulate actin organization and 
cell-cycle arrest through nuclear accumulation of NCK mediated by SOCS7. Cell, 2007. 
130(5): p. 837-50. 

[147] Huang, Y.W., et al., Mammalian septins are required for phagosome formation. 
Molecular biology of the cell, 2008. 19(4): p. 1717-26. 

[148] Wong, K.W. and R.R. Isberg, Arf6 and phosphoinositol-4-phosphate-5-kinase activities 
permit bypass of the Rac1 requirement for beta1 integrin-mediated bacterial uptake. 
The Journal of experimental medicine, 2003. 198(4): p. 603-14. 

[149] Brown, F.D., et al., Phosphatidylinositol 4,5-bisphosphate and Arf6-regulated 
membrane traffic. The Journal of cell biology, 2001. 154(5): p. 1007-17. 

[150] Pizarro-Cerda, J. and P. Cossart, Subversion of phosphoinositide metabolism by 
intracellular bacterial pathogens. Nature cell biology, 2004. 6(11): p. 1026-33. 

[151] Sarantis, H., et al., Yersinia Entry into Host Cells Requires Rab5-Dependent 
Dephosphorylation of PI(4,5)P(2) and Membrane Scission. Cell host & microbe, 2012. 
11(2): p. 117-28. 



 
Molecular Regulation of Endocytosis 276 

[140] Pizarro-Cerda, J. and P. Cossart, Listeria monocytogenes membrane trafficking and 
lifestyle: the exception or the rule? Annual review of cell and developmental biology, 
2009. 25: p. 649-70. 

[141] Ireton, K., et al., A role for phosphoinositide 3-kinase in bacterial invasion. Science, 
1996. 274(5288): p. 780-2. 

[142] Seveau, S., et al., A FRET analysis to unravel the role of cholesterol in Rac1 and PI 3-
kinase activation in the InlB/Met signalling pathway. Cellular microbiology, 2007. 9(3): 
p. 790-803. 

[143] Veiga, E. and P. Cossart, Listeria hijacks the clathrin-dependent endocytic machinery 
to invade mammalian cells. Nature cell biology, 2005. 7(9): p. 894-900. 

[144] Veiga, E., et al., Invasive and adherent bacterial pathogens co-Opt host clathrin for 
infection. Cell host & microbe, 2007. 2(5): p. 340-51. 

[145] Mostowy, S., et al., Septins regulate bacterial entry into host cells. PloS one, 2009. 4(1): 
p. e4196. 

[146] Kremer, B.E., L.A. Adang, and I.G. Macara, Septins regulate actin organization and 
cell-cycle arrest through nuclear accumulation of NCK mediated by SOCS7. Cell, 2007. 
130(5): p. 837-50. 

[147] Huang, Y.W., et al., Mammalian septins are required for phagosome formation. 
Molecular biology of the cell, 2008. 19(4): p. 1717-26. 

[148] Wong, K.W. and R.R. Isberg, Arf6 and phosphoinositol-4-phosphate-5-kinase activities 
permit bypass of the Rac1 requirement for beta1 integrin-mediated bacterial uptake. 
The Journal of experimental medicine, 2003. 198(4): p. 603-14. 

[149] Brown, F.D., et al., Phosphatidylinositol 4,5-bisphosphate and Arf6-regulated 
membrane traffic. The Journal of cell biology, 2001. 154(5): p. 1007-17. 

[150] Pizarro-Cerda, J. and P. Cossart, Subversion of phosphoinositide metabolism by 
intracellular bacterial pathogens. Nature cell biology, 2004. 6(11): p. 1026-33. 

[151] Sarantis, H., et al., Yersinia Entry into Host Cells Requires Rab5-Dependent 
Dephosphorylation of PI(4,5)P(2) and Membrane Scission. Cell host & microbe, 2012. 
11(2): p. 117-28. 

Chapter 11 

 

 

 
 

© 2012 Touz, licensee InTech. This is an open access chapter distributed under the terms of the Creative 
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, 
distribution, and reproduction in any medium, provided the original work is properly cited. 

The Unique Endosomal/Lysosomal  
System of Giardia lamblia 

Maria C. Touz 

Additional information is available at the end of the chapter 

http://dx.doi.org/10.5772/45786 

1. Introduction 

Endocytosis, which is important for the internalization of nutrients from the plasma 
membrane as well as extracellular fluids, has been extensively described in mammalian cells 
and yeast. The protozoan parasite Giardia lamblia (syn. Giardia intestinalis, Giardia duodenalis) 
is an early branching eukaryote that possesses a reduced membrane network with highly 
polarized vesicles, denominated peripheral vacuoles (PVs), neighboring the plasma 
membrane (reviewed by Adam, 2001; Faso and Hehl, 2011; Touz, 2011). This is an important 
zone of interaction between the parasite and its environment (the host intestine in vivo or the 
culture medium in vitro), and was shown to be the place involved in fluid-phase and 
receptor-mediated endocytosis (Gaechter et al., 2008; Rivero et al., 2010). Another 
characteristic of these PVs is that they contain hydrolytic activity resembling the function 
performed by lysosomes. These vacuoles have a high lytic capacity and a low luminal pH, 
both properties of mature lysosomes (Ward et al., 1997; Touz et al., 2002b).  

More than twenty years after the first morphological description of the PVs, there is a 
consensus that these vesicles are rather an unusual combination of endosomal and lysosomal 
compartments. Conserved markers and mechanisms that govern trafficking to the PVs have 
been found, but there are particularities that show Giardia as a simplified organism compared 
with higher eukaryotes. This makes Giardia a unique biological cell model for investigating the 
minimal machinery employed by a eukaryote to regulate endocytosis and degradation. Here, 
we will discuss emerging data that are beginning to shed light on the endosomal-lysosomal 
system in Giardia and the molecules involved in this selective trafficking. 

2. The parasite  
Giardia lamblia is a flagellated protozoan that inhabits the upper small intestine of its 
vertebrate hosts and is the most common cause of defined waterborne diarrhea worldwide. 

© 2012 Touz, licensee InTech. This is a paper distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.
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Clinical manifestations of giardiasis vary from asymptomatic infection to acute or chronic 
disease associated with diarrhea and malabsorption (Adam, 2001). It is the most common 
cause of diarrheal disease in the United States (Barwick et al., 2000). In developing countries, 
there is a very high prevalence and incidence of infections, and data suggest that long-term 
growth retardation can result from chronic giardiasis (Fraser et al., 2000).  

Giardia was initially described by van Leeuwenhoek in 1681 from examining his own diarrheal 
stools under the microscope (Dobell, 1950), but it was not until 1981 that the World Health 
Organization classified Giardia as a human pathogen. Infections initiate with the ingestion of the 
cyst forms, which excyst in the upper small intestine of the host. The trophozoites replicate and 
colonize the intestinal surface and some of them encyst in the lower small intestine after sensing 
the stimulus for encystation (Lujan et al., 1997; Adam, 2001). Interestingly, during differentiation 
(encystation/excystation), trophozoites undergo important biochemical and morphological 
modifications involving the secretory machinery of the cell. Recent studies about these changes 
have provided new insights into the mechanisms of secretion in this organism, but the 
molecular events leading to intracellular protein trafficking and secretion in Giardia remain 
poorly understood or controversial (Lujan and Touz, 2003; Faso and Hehl, 2011). 

The trophozoite is between 10 and 15 microns long and 5 microns wide, pear-shaped and cut 
along the longitudinal axis (pyriform morphology) (Figure 1A). It presents bilateral symmetry, 
has two diploid nuclei with nuclear membranes, four pairs of flagella and two media bodies 
consisting of microtubules (Adam, 2001), suggested to be the storage reservoir of microtubules 
of the cell (Piva and Benchimol, 2004). The trophozoite also possesses a complex cytoskeleton 
and endomembrane system including the endoplasmic reticulum (ER), which extends 
symmetrically throughout the cell body, and the PVs located underneath the plasma 
membrane. In the front half, on the ventral surface, is the adhesive disc which is used to bind 
to the intestinal epithelium of the host (Elmendorf et al., 2003). The oval cyst size is between 9 
and 12 microns and contains four nuclei, the axostyle (structure at the base of the flagella) and 
remnants of flagella (Figure 1B). It is characterized by a rigid outer wall glycoprotein, 
composed of proteins and carbohydrate (Jarroll et al., 1989; Manning et al., 1992; Gerwig et al., 
2002). The construction of the extracellular cyst wall (CW; Cyst Wall) is of paramount 
importance because it allows the parasite to persist in fresh water, survive even the action of 
disinfectants and resist stomach acid in its new host, and then start infection in the gut.  

 
Figure 1. Giardia lamblia stages. (A) Giardia trophozoite, the ventral disk structure and the flagella are 
highlighted. (B) Giardia cyst. 
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Figure 1. Giardia lamblia stages. (A) Giardia trophozoite, the ventral disk structure and the flagella are 
highlighted. (B) Giardia cyst. 
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3. Giardia secretory pathway 

Eukaryotic cells have to deal with the fact that, after translation at the ribosomes, most 
proteins must be specifically targeted from the cytoplasm to the organelle in which they 
must function. As cellular components became more complex and abundant during 
evolution, subcellular compartmentalization developed into an essential feature to prevent 
the inappropriate meeting of certain intracellular components, as well as facilitating efficient 
ordered reactions (Munro, 2004). To maintain these compartments, cells have evolved 
mechanisms to ensure that specific proteins are delivered to specific organelles. In most 
eukaryotes, the Golgi complex serves as a major sorting point in the secretory pathway, 
selectively targeting proteins and lipids to different organelles (Gu et al., 2001). Giardia 
possesses a distinctive endomembrane system involving the nuclear membrane, the ER, and 
lysosome-like PVs (Figure 2). 

 
Figure 2. Giardia organelles. Confocal microscopy showing the nuclei, endoplasmic reticulum (ER) and 
PVs labeled with DAPI (4',6-diamidino-2-phenylindole), anti-BiP mAb, and anti-AP2 mAb, respectively. 
Bar, 10 µm. 

On the other hand, it lacks other organelles characteristic of higher eukaryotes such as 
canonical endosomes, lysosomes, mitochondria, peroxisomes, and Golgi apparatus 
(reviewed by Lujan and Touz, 2003; Hehl and Marti, 2004). In most eukaryotic cells, the 
Golgi apparatus consists of a series of flattened cisternal membranes forming a stack 
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(Ladinsky et al., 2002). The architecture of this organelle is remarkably conserved 
throughout eukaryotic evolution (Mellman and Simons, 1992); however, a typical Golgi 
complex with organized and parallel cisternae is not apparent in vegetative Giardia 
trophozoites. Several pieces of evidence suggest that Giardia trophozoites may possess 
organelle(s) in which typical Golgi functions take place, even though they do not have a 
Golgi-like appearance. The fact that both constitutive and regulated mechanisms for protein 
transport exist in Giardia is an example of Golgi functions, since the sorting and selection 
process generally occurs in the trans-Golgi network in more complex cells (Gu et al., 2001). 
The constitutive pathway in Giardia is represented by continuous expression and trafficking 
to the plasma membrane of the transmembrane-anchored variant-specific surface proteins 
(VSPs) (Nash, 2002; Marti et al., 2003a; Touz et al., 2005). The regulated pathway takes place 
only during encystation and associates with the appearance of encystation-specific vesicles 
(ESVs), which transport cyst wall components to the plasma membrane of the encysting cell 
and release their content to the cell exterior during cyst wall formation (Reiner et al., 1989; 
McCaffery and Gillin, 1994; Lujan et al., 1995; Sun et al., 2003). A selective pathway sorting 
proteins to the endosomal/lysosome membrane system has been recently demonstrated by 
our group, although Giardia do not possess distinctive endosomes or lysosomes (Touz et al., 
2003; Touz et al., 2004; Rivero et al., 2010; Rivero et al., 2011).  

Analyses of genes and proteins used for phylogenetic classification indicate that Giardia is in 
fact one of the earliest branching eukaryotes (Sogin et al., 1989; Hashimoto et al., 1998), but 
some of the particular cellular characteristics of this organism are probably a result of the 
secondary loss of complex cell structures, as a consequence of its parasitic life style, rather 
than the primitive simplicity supposed for early diverging protists (Dacks and Doolittle, 
2002; Lujan and Touz, 2003).  

4. The endosomal/lysosomal system of Giardia 

Most eukaryotes have a system of endosomes and lysosomes that mediate the 
internalization, recycling, transport and breakdown of cellular and extracellular components 
and facilitate dissociation of receptors from their ligands. Early endosomes (EE) internalize 
endocytosed proteins to allow for their subsequent return to the cell membrane. Later, 
conversion of the EEs to late endosomes (LE) takes place, undergoing homotypic fusion 
reactions, growing in size, and acquiring more intraluminal vesicles. What follows is the 
fusion of an endosome with a lysosome and maturation of the subsequent endolysosome 
into lysosome, which constitutes a storage organelle for lysosomal hydrolases at acidic pH, 
and membrane components. Although this is a highly dynamic system, discrete 
compartments can be distinguished (Huotari and Helenius, 2011).  

In contrast to most eukaryotes, Giardia has highly polarized vacuoles, located underneath 
the plasma membrane of the dorsal side, which combine some of the characteristics of 
endosomes and some of lysosomes (Lindmark, 1988; Lanfredi-Rangel et al., 1998; Touz et al., 
2004). These PVs, distinguished by their localization, are about 150 nm in diameter with 
variable oval shapes and contain a core of low electron density (Figure 3). They are acidic, as 
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shown by the uptake of acridine orange and the lysosomal markers Lyso-sensor and Lyso-
tracker (Lanfredi-Rangel et al., 1998; Touz et al., 2002b; Touz et al., 2003). The first description 
of hydrolase activity in the PVs came from studies in which acid phosphatase activity was 
tested, showing a cytochemical localization in these vacuoles as well as in the ER and 
nuclear envelope cisternae (Feely and Dyer, 1987). The presence of hydrolase activities in the 
PVs was also proved for cysteine proteases and RNases, demonstrating their lysosomal 
characteristics (Lindmark, 1988; Ward et al., 1997; Touz et al., 2002b). In addition, their 
potential role in endocytosis was demonstrated by the uptake of exogenous ferritin and 
Lucifer yellow (Bockman and Winborn, 1968; Lanfredi-Rangel et al., 1998). Pulse-chase 
experiments with horseradish peroxidase and fluorescent dextran showed an early and 
persistent labeling of the PVs, suggesting that there is no distinction between early and late 
endocytic vesicles in Giardia, in contrast to what occurs in higher eukaryotes (Lanfredi-
Rangel et al., 1998; Gaechter et al., 2008).  

 
Figure 3. Giardia trophozoite ultrastructure. Electromicrograph of a growing Giardia trophozoite, 
showing the peripheral vacuoles (PVs) located underneath the plasma membrane (arrows). Nuclei are 
also denoted. G: electron-dense glycogen deposits. Bar, 0.5 µm. From Rivero et al., 2010. 
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Analysis of fluid-phase endocytosis demonstrated that there is no lateral exchange of fluid 
phase markers between individual PVs (Gaechter et al., 2008). It was observed that, after 
internalization, some fluid-phase markers translocated rapidly to the ER or to an 
associated membrane compartment termed the tubulo-vesicular network (TVN) 
(Abodeely et al., 2009). Moreover, the presence of protease functions within the TVN, plus 
3-D reconstruction and electron microscopy tomography of trophozoites stained for acid 
phosphatase and glucose-6-phosphatase, suggest that there might be a connection 
between some vesicles and profiles of the ER (Lanfredi-Rangel et al., 1998; Abodeely et al., 
2009a). However, a recent work showed, by immunofluorescence and 3-D reconstruction, 
that the ER membranes are found throughout the cytoplasm, but do not permeate the 
space occupied by PVs (Faso and Hehl, 2011). Recently, it was shown that a mechanism of 
receptor-mediated endocytosis occurs in this organism, with specific molecules selectively 
directed to the PVs through a classical endocytic mechanism (Rivero et al., 2010; Rivero et 
al., 2011). These data suggest that uptake of soluble material into PVs is not selective at 
this step but is still capable of redirecting specific molecules to the TVN (Hernandez et al., 
2007; Abodeely et al., 2009b). In terms of receptor-mediated endocytosis, movement 
between vesicles could be observed (Figure 4), which suggests, not only that Giardia 
possesses a refined and conserved mechanism of endocytosis, but also that the PVs 
population might not be as homogeneous as was thought but rather organized depending 
on their functions (Rivero & Touz, unpublished).  

 
Figure 4. Epifluorescence microscopy shows the internalization and delivery of LDL to the PVs. 
Eight frames from 5 s to 40 s were artificially colored and combined (merge 1-3) to determine the 
movement of endocytosed BODIPY-LDL. The lateral movement of the LDL between the PVs in living 
cells is observed following the sequence red, green, blue (5 s, 10 s, 15 s) for merge 1; magenta, yellow, 
cyan (20 s, 25 s, 30 s) for merge 2; and red and green (35 s and 40 s) for merge 3. In the insertions a, b 
and c, movement of BODIPY-LDL is observed in detail. PC: phase contrast. Bars, 10 µm. From Rivero & 
Touz, unpublished. 
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During evolution, eukaryotic cells differentiated, adapting to their increasingly complex 
environment by acquiring new abilities for nutrient uptake, internalization of growth 
factors, and entry of pathogens, among others. A complex array of endosomal 
compartments are preserved as modules that are able to perform specific functions in 
modern eukaryotic cells. In the case of less-evolved eukaryotes, the variety and simplicity of 
these systems is only starting to become apparent. Thus, Giardia possesses the endosomal-
lysosomal system concentrated in the PVs, which may represent an ancient organellar 
system that later subdivided into compartments as early and late endosomes and lysosomes. 

5. Endosomal-lysosomal protein trafficking 

5.1. Clathrin  

Clathrin-mediated endocytosis (CME) regulates many cell physiological processes, such as 
the internalization of growth factors and receptors, entry of pathogens, and synaptic 
transmission. Within the endocytic network, clathrin functions as a central organizing 
platform for coated pit assembly and dissociation via its terminal domain. As isolated from 
coated vesicles, clathrin is a trimer of 190-kDa heavy chains, each with an associated 25-kDa 
light chain forming a spiderlike molecule, the ‘triskelion’ (Kirchhausen, 2000). The unusual 
geometry of the triskelion allows it to assemble into regular polyhedral structures, the 
‘clathrin coats’, which eventually give rise to clathrin-coated vesicles (CCVs). The dense 
protein coat of the CCV and its bristle-like morphology were first described by Roth & 
Porter (1964), who noted the involvement of these vesicles in RME of yolk proteins in 
mosquito oocytes (Roth and Porter, 1964). The formation of CCVs occurs at the plasma 
membrane, trans-Golgi network and endosomes (Kirchhausen and Toyoda, 1993), and 
follows a sequence of coordinated steps, in which membrane invagination is coupled to 
growth of the clathrin lattice, leading to lattice closure and vesicle budding (Kirchhausen, 
2000).  

The Giardia genome encodes an ortholog of the clathrin heavy chain (CHC) (Morrison et al., 
2007), and has a molecular weight of about 200 kDa, with three C-terminal clathrin repeats 
and one N-terminal propeller, according to a protein family database (Finn et al., 2008). 
Analysis of GlCHC expression showed that clathrin is expressed almost equally in both 
stages of the parasite and is located in close association with the PVs in trophozoites, and in 
the ESVs in immature cysts (Marti et al., 2003a; Marti et al., 2003b; Hehl and Marti, 2004; 
Gaechter et al., 2008). On the basis of these observations, it was suggested that recruitment of 
clathrin to late ESVs could serve to disperse large ESVs into smaller transport vesicles in 
response to the secretion signal (see below). The identification of a clathrin light chain (CL) 
ortholog in the GDB has so far been unsuccessful, probably because the sequences of CLs 
are not uniformly conserved among species. The differential expression of the CLs (e.g. one 
from yeast, two mammalian tissues with the presence of isoforms in mammalian neurons) 
might be associated with the high degree of specialization involved in clathrin vesicle 
trafficking.  
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Several groups have presented evidence for a role of clathrin in endocytosis in Giardia (Touz 
et al., 2004; Hernandez et al., 2007; Gaechter et al., 2008; Rivero et al., 2010). However, neither 
typical membrane-associated clathrin lattices nor emerging clathrin-coated pits have been 
observed in this parasite. Instead, uncharacteristic coated pits were seen in close association 
with the PVs (Lanfredi-Rangel et al., 1998), suggesting that a distinct arrangement of clathrin 
might occur in this parasite. It is then possible that, as was observed in vitro (Zhang et al., 
2007), clathrin may be organized in a hexagonal array, forming tubes instead of vesicles. 
Indeed, a different type of clathrin-coated transport carriers (TCs), consisting of larger 
tubular/vesicular structures having one or more clathrin-coated buds, have been identified 
(Polishchuk et al., 2006). These TCs travel long distances from the juxtanuclear area of the 
cell until they fuse with peripheral endosomes. The function of the TCs might be to mediate 
long-range distribution of mannose 6-phosphate receptors (MPR) and their cargo hydrolases 
to the peripheral cytoplasm (Puertollano et al., 2003). Similar to TCs in HeLa cells 
(Polishchuk et al., 2006), the tubules might not break down into CCVs en route to PVs in 
Giardia. In mammalian cells, it has been shown that TCs contain mannose-phosphate 
receptors, clathrin, Golgi-localizing Gamma-ear containing ARF-binding proteins (GGAs), 
and/or adaptor protein 1 (AP-1), and it was suggested that these might be uncoated during 
the TC-endosome fusion or could become integrated into the endosome membrane 
(Polishchuk et al., 2006). Possibly supporting this hypothesis, giardial clathrin and AP-1 
were observed not only on ER-exist sites but also in PVs (Marti et al., 2003a; Marti et al., 
2003b; Touz et al., 2004; Gaechter et al., 2008). As we said, the ER tubular-vesicular network 
apparently extends to and contacts the PVs in the periphery of the cell (Abodeely et al., 
2009b) but it was recently reported that no ER membranes invade the space occupied by PVs 
(Faso and Hehl, 2011). An explanation that reconciles these observations might be that at 
least some of the clathrin-dependent trafficking in Giardia involves tubular carriers that 
extend from the ER-exit sites to the peripheral cytoplasm until they meet with distally 
located PVs.  

5.2. Adaptor proteins 

The classic model for clathrin-dependent sorting comprises the participation of cargo 
receptors, adaptor heterotetramers and clathrin triskelia. Because clathrin has no affinity for 
biological membranes, its recruitment to membranes and capture of transmembrane cargo 
requires the action of clathrin-associated adaptor proteins (AP), which bind to clathrin 
through the amino-terminal domain of the CLH (Bonifacino and Traub, 2003). Among these 
adaptors are AP-1, AP-2 and AP-3, which comprise two large chains (one each of // and 
1-3, respectively), one medium-sized chain (1-3), and one small chain (1-3) (Boehm and 
Bonifacino, 2002). These complexes are localized to different subcellular compartments, 
where they function in cargo selection (Boehm and Bonifacino, 2002). At least one of the 
large subunits in each AP complex (//) mediates binding to the target membrane. The 
other large subunit, 1-3, recruits clathrin through a ‘clathrin-box’ motif (Boehm and 
Bonifacino, 2001; Brodsky et al., 2001). The 1-3 subunits are involved in the recognition of 
tyrosine-based, YXXØ signals (where X represents any amino acid and Ø indicates a residue 
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with a bulky hydrophobic side chain), and combinations of ασ2, γσ1 and δσ3 recognize 
dileucine-based, [DE]XXXl[LI] signals (Collins et al., 2002; Bonifacino and Traub, 2003). A 
fourth AP complex, AP-4, is thought to be a component of a non-clathrin coat and to 
recognize a different type of signal (Burgos et al.). Besides the putative GlCHC, orthologs of 
two large, one medium, and one small subunit of each AP-1 and AP-2 are present in the 
Giardia genome. The colocalization of AP-1 with lysosomal proteins, its interaction with the 
GlCHC, together with the observation that lysosomal protein trafficking is altered in 1-
depleted trophozoites, support the participation of this complex in the forward transport of 
proteins towards the PVs in Giardia (Touz et al., 2004). AP-1 also plays a central role during 
parasite differentiation, since 1 depletion impairs encystation (Touz et al., 2004). On the 
other hand, AP-2 is localized to the PVs and plasma membrane in trophozoites and also 
neighboring the ESV in encysting cells (Rivero et al., 2010). AP-2 participates in RME and is 
crucial in the internalization of lipoproteins (Rivero et al., 2010). Although the 1–2 and 2 
mRNA transcripts change little during the completion of the cell cycle (Marti et al., 2003b; 
Rivero et al., 2010), the role of the corresponding AP complexes appears essential for the 
adaptation of the parasite. AP-1 is not critical for Giardia trophozoite survival and 
multiplication, but it is necessary for cyst formation, acting indirectly in this process by 
transporting a transmembrane protein to the PVs (Touz et al., 2002b; Touz et al., 2003; Touz 
et al., 2004). In contrast, AP-2 is essential for Giardia growth and survival, being involved in 
the endocytosis of essential molecules (e.g., exogenous lipids) (Rivero et al., 2010) and in the 
fragmentation of ESVs into small transport vesicles containing cyst wall proteins during 
encystation (Rivero & Touz, unpublished). The fast secretion and deposition of cyst wall 
material has been reported to involve clathrin- and dynamin-dependent breakup of ESVs 
into small vesicles targeted for the plasma membrane (Hehl and Marti, 2004; Gaechter et al., 
2008). It is possible that this parasite requires the concerted action of clathrin and adaptors 
as well as accessory proteins at the time of cyst wall formation.  

Taken together, these results support the hypothesis that Giardia possesses molecular 
mechanisms for lysosomal protein trafficking involving adaptor proteins similar to those of 
other eukaryotes. AP-1 and AP-2 appear to be the only two adaptors involved in lysosomal 
protein trafficking in Giardia, since there is no evidence of the participation of other adaptor 
proteins such as AP-3, AP-4, and monomeric adaptors (i.e., the GGAs). It has been 
suggested that the two prototypic Giardia AP complexes predict the point of separation of 
Giardia after the first coordinated round of gene duplications, resulting in an AP-3 and an 
AP-1/2/4 ancestor (Marti et al., 2003b). Phylogenetic reconstruction from comparative 
genomics has shown that all four AP complexes were present in the Last Common 
Eukaryotic Ancestor (LCEA), as was the F-COP subcomplex (Boehm and Bonifacino, 2001). 
However, the GGAs, which also exhibit homology to the ear region of the AP-1 γ protein, 
are restricted to animal and fungal lineages (Field et al., 2007). Therefore, individuality of the 
species lineage and secondary loss are common characteristics in the evolutionary history of 
the adaptins. Secondary losses of adaptors can be observed in Drosophila melanogaster, 
Caeanorhabditis elegans, Saccharomyces cerevisiae and Schizosaccharomyces pombe, which lack the 
AP-4 complex (Field et al., 2007). In addition, comparative genomic and phylogenetic 
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analyses of protozoan parasites have shown loss of the AP-3 complex in the species Theileria, 
Cryptosporidium parvum, and Babesia bovis, while Trypanosome brucei and Leishmania major 
lack AP-2 and AP-4, respectively (Nevin and Dacks, 2009). Thus, examination of the role of 
the reduced set of AP complexes in protozoa provides insight into the depths of our cellular 
history and highlights the importance of essential cell biology adaptations of the ancestral 
cellular organization. 

5.3. Lysosomal proteins 

Lysosomal integral membrane proteins (e.g., LAMP/LIMP family proteins) are transported 
to lysosomes by binding of their cytosolic motifs to AP complexes (Bonifacino and 
Lippincott-Schwartz, 2003). The carboxy-terminal β-sandwich domain of the µ subunits of 
AP-1, AP-2, and AP-3 binds directly to YXXØ-type sequences, while the γσ1, ασ2 and δσ3 
hemicomplexes bind to the [DE]XXXL[LI] sequences (Janvier et al., 2003; Doray et al., 2007). 
Although lysosomal integral membrane glycoproteins have not been identified in Giardia, it 
was reported that a cysteine protease termed ESCP (encystation-specific cysteine protease) is 
transported to the PVs through a tyrosine-based motif. This enzyme is homologous to 
cathepsin C enzymes of higher eukaryotes and possesses a transmembrane domain and a 
YRPI motif within the cytoplasmic tail. ESCP localizes to the PVs in growing trophozoites 
and also to the plasma membrane in encysting cells (Touz et al., 2003). Deletion of the YRPI 
motif or suppression of µ1 mislocalizes this protein to the plasma membrane or to the ER-
exit sites, respectively (Touz et al., 2003; Touz et al., 2004).  

Soluble acid hydrolases, on the other hand, are synthesized in the ER and transported to the 
Golgi complex, where their carbohydrate chains are modified by resident enzymes before 
delivery to lysosomes. In mammalian cells, the hydrolases are modified with mannose 6-
phosphate residues that function as recognition signals for MPRs in late Golgi 
compartments. In yeast, the vacuolar hydrolases lack mannose 6-phosphate, and the sorting 
receptor is the product of the VPS10 (Vacuolar Protein Sorting 10) gene. In both cases, 
however, sorting signals present in the cytosolic tails of the receptors interact with clathrin 
adaptors and direct packaging of the hydrolase-receptor complexes within CCVs or clathrin-
coated TCs (Ohno et al., 1995; Ohno et al., 1996). Recently, multi-ligand type-1 receptors 
Sortilin, SorCS1, SorCS2, SorCS3, and SorLA were discovered, containing an N-terminal 
Vps10p domain (Rezgaoui et al., 2001; Hermey, 2009). These are transmembrane proteins 
that convey Golgi-endosome transport and bind a number of unrelated ligands. 

In Giardia, high hydrolase activity in the PVs has been implicated in protein degradation 
during growth (Lujan and Touz, 2003), encystation (Touz et al., 2002a; Touz et al., 2003) and 
excystation (Slavin et al., 2002). A family of three cysteine protease genes (CP1, CP2, and 
CP3) has been shown to encode members of the cathepsin B subgroup of the peptidase 
family C1 (Ward et al., 1997), and soluble CP2 has been found in PVs and ER of trophozoites 
(Ward et al., 1997; Abodeely et al., 2009a). Also, AcPh activity has been examined 
cytochemically, revealing communication of the PVs with the ER (Feely and Dyer, 1987; 
Lanfredi-Rangel et al., 1998; de Souza et al., 2004). Unlike AcPh in other eukaryotes, 
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analyses of protozoan parasites have shown loss of the AP-3 complex in the species Theileria, 
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including protozoa, Giardia AcPh is a soluble protein that is transported from the ER-exit 
site to the PVs via AP-1 (Touz et al., 2004). It is thus possible that a specific receptor, 
possessing a function similar to the MPR or Vps10p, is involved in the trafficking of soluble 
hydrolases toward the PVs. Recent studies have identified a type-I membrane protein that 
interacts with AcPh and contains an YQII (YXXØ-type) motif in its cytosolic tail (Rivero & 
Touz, unpublished). In silico analysis revealed that this protein (GDB: GL50803_28954) might 
be orthologous to the Vps10p receptor. Further biochemical studies on this putative receptor 
in both vegetative and encysting trophozoites and its participation in hydrolase delivery are 
necessary to elucidate the exact function of this protein.  

Comparative analysis of lysosomal proteins present in Giardia and other cells reveals some 
intriguing differences. For instance, AcPh is soluble in Giardia but exists as a type-I 
membrane protein containing a YXXØ-type internalization sequence in cells as different as 
Leishmania and humans (Gottlieb and Dwyer, 1981; Waheed et al., 1988; Shakarian et al., 
2002), with transport to the lysosome occurring through several cycles of plasma membrane 
internalization and recycling. In the lysosome of mammalian cells, the luminal domain of 
AcPh is processed and released in soluble form (Peters et al., 1990). Moreover, while the 
AcPh tail interacts with AP-2 in these cells, the lysosomal traffic of Giardia AcPh depends on 
AP-1 (Touz et al., 2004). Because much of the machinery involved in lysosomal trafficking is 
derived from a few protein families (where the various family members perform the same 
basic mechanistic function), the analysis of the similarities and differences between 
organisms might provide further insight into eukaryotic cell evolution.  

As mentioned above, recent studies have shown that AP-2 participates in endocytosis of 
the Giardia Low-density lipoprotein Receptor-related Protein or LRP (Rivero et al., 2010). 
Giardia LRP is a type-I membrane protein, which shares the substrate-N-terminal binding 
domain and a FXNPXY-type endocytic motif with human LRP1. This receptor localizes 
predominantly to the ER but is also found in the PVs and plasma membrane in Giardia, 
and internalizes both low density lipoproteins (LDL) and chylomicrons as shown by in 
vitro studies. The FXNPXY motif of LRP was shown to bind directly to the 2 subunit of 
AP-2, with this interaction being necessary for its proper localization, processing, and 
function.  

One common characteristic of LDLR family members such as the LRPs is that they have at 
least one copy of the FXNPXY-like sequence in their cytosolic tail, which serves as the signal 
for endocytosis or as a binding element for adaptor proteins involved in signal transduction 
(Harris-White and Frautschy, 2005). In other eukaryotes, FXNPXY signals are recognized by 
the adaptor proteins Disabled homolog 2 (Dab2) and Autosomal Recessive 
Hypercholesterolemia (ARH), which contain a phosphotyrosine-binding (PTB) domain 
(Traub, 2009). However, no PTB-containing proteins such as Dab2 or ARH are encoded in 
the Giardia genome, supporting the idea that AP-2 might be the key endocytic adaptor in 
this parasite. Indeed, it has been shown by surface plasmon resonance and photoaffinity 
labeling that the FXNPXY-like motif binds to 2 purified from bovine-brain-coated vesicles 
(Boll et al., 2002). Interestingly, in spite of the strong interaction found between ARH and 
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LRP1 in an in vitro binding assay, the subcellular localization of LRP1 was not affected in 
the liver of ARH-deficient mice, whereas LDLR was found to be redistributed from 
intracellular localizations to the cell membrane (Jones et al., 2003). Thus, the importance of 
the availability of intracellular adaptor proteins might determine the specific cellular 
function of lipoprotein receptors. Since Giardia trophozoites do not have the capacity of de 
novo synthesis of cholesterol, its acquisition may depend on the internalization of 
chylomicrons from the host intestine by LRP. Moreover, because the trophozoites normally 
thrive in an environment where they never come in contact with LDL, it is possible that the 
binding of LDL to LRP represents a result of exaptation, thereby shifting the function of this 
protein allowing growth of parasites in culture medium.  

5.4. Accessory proteins 

5.4.1. Dynamin 

Dynamins are large GTPases that belong to a protein superfamily, which are involved in 
many processes including clathrin-mediated endocytosis, clathrin-independent endocytosis, 
budding of transport vesicles, organelle division, cytokinesis and pathogen resistance 
(McNiven et al., 2000; Ochoa et al., 2000; Cao et al., 2003; Krueger et al., 2003). Substantial 
evidence indicates that dynamin oligomerization around the necks of endocytosing vesicles 
and subsequent dynamin-catalyzed GTP hydrolysis are responsible for membrane fission 
(Sweitzer and Hinshaw, 1998). Mammalian dynamins 1, 2 and 3 are the founder members of 
the dynamin family that, along with other large GTPases, possesses five identifiable 
domains: GTPase domain, middle domain, a lipid binding Pleckstrin-homology (PH) 
domain, GTPase Effector domain (GED) and C-terminal proline-arginine rich domain (PRD) 
(Hinshaw, 2000).  

Recent studies indicate that Giardia possesses a single dynamin homolog (GlDRP, dynamin-
related protein), with the predicted protein containing the N-terminal GTPase domain (33–
219), the middle domain (230–523) and a C-terminal GED (628–719) (Marti et al., 2003b). The 
giardial dynamin (GlDRP, dynamin-related protein), has a PRD of 70 amino acids (538–608) 
(Gaechter et al., 2008). While the PRDs of dynamins are normally localized at the C-
terminus, after the GED, in other eukaryotes, the PDR of the giardial dynamin is inserted 
between the middle domain and the GED. Interestingly, a typical PH domain that could 
mediate direct interaction with membrane lipids is missing.  

GlDRP partially colocalizes with clathrin at the PVs and is necessary for endocytosis of 
plasma membrane proteins but not for fluid-phase endocytosis in Giardia trophozoites. 
Moreover, the expression of a mutant GlDRP, with reduced affinity for GTP and GDP, 
impaired endocytosis and resulted in enlarged PVs, indicative of blocked vesicular 
fission in these organelles. Also in these cells, GlDRP is detected at the ER, with only a 
minor proportion being present as a cytoplasmic pool. During encystations, however, 
both clathrin and GlDRP localize in part in the ESVs containing cyst wall material (Marti 
et al., 2003b; Hehl and Marti, 2004; Gaechter et al., 2008). Interestingly, matching the 
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function observed in depleted-µ2 encysting trophozoites (Rivero et al., 2010), expression 
of a dominant-negative GlDRP affects the formation of small vesicles containing cyst 
wall proteins (CWPs) and blocks its exocytosis to form the cyst wall. Because close 
contact of the ESVs and PVs has been frequently reported (Marti et al., 2003b; Touz et al., 
2003; Hehl and Marti, 2004; Gaechter et al., 2008), exchange of material between these 
two structures may occur, with the PVs finally acting as sorting organelles, probably by 
delivering the CWPs to the plasma membrane and/or returning other proteins to the ER-
exit site.  

With the characterization of dynamic-like proteins from Homo sapiens, Drosophila 
melanogaster, Caenorhabditis elegans, yeast species, Arabidopsis thaliana, and Giardia, it may 
now be possible to reveal the many varied functions of the members of the dynamin 
superfamily in different organisms.  

5.4.2. Snares and rabs 

The basic steps underlying vesicle-mediated transport between the secretory and endocytic 
pathways are vesicle formation from a donor compartment, translocation of transport 
intermediates to a target organelle, tethering of transport intermediates with the target 
compartment, and, finally, the docking and fusion of vesicles with the membrane target. 
SNAREs (soluble N-ethylmaleimide-sensitive factor-attachment protein receptors) function 
in the final event of docking of vesicles with the target membrane, catalyzing the fusion of 
the opposing membranes. Compared to other organisms, Giardia has a relatively small 
number of SNARE proteins (Morrison et al., 2007; Elias et al., 2008). Seventeen putative 
SNAREs have been identified and partially characterized, with five representing Qa-
SNAREs, five Qb-SNAREs, four Qc-SNAREs and three R-SNAREs. Although some of these 
SNAREs localize to the PV area, their function has not been investigated and has rather been 
inferred from the participation of their orthologs in other cells (Elias et al., 2008). For 
example, different gSNAREs are present in the PVs/plasma membrane area, Qa1, gQa3, 
gQa5, gQb2, gQb4, gQb5, and gR3, with the presence of three different gQa SNAREs 
suggested to be involved in distinct pathways such as exocytosis, endocytosis, and PV-PV 
fusion (Elias et al., 2008).  

The Rab family GTPases regulates many steps of membrane traffic, including vesicle 
formation, vesicle movement along actin and tubulin networks, and membrane fusion. So 
far, over 70 members of the Rab family have been identified in mammalian cells, and each 
seems to have a characteristic intracellular localization and function. For instance, Rab5 
plays roles in endocytosis, early endosome fusion, and caveolar vesicle targeting to early 
endosomes (Barbieri et al., 2000; Pelkmans et al., 2004), while Rab11 mediates slow endocytic 
recycling through recycling endosomes, and Rab4 mediates fast endocytic recycling directly 
from early endosomes (van der Sluijs et al., 1992; Ullrich et al., 1996). There is also a 
coordinated action of Rab5 and Rab7 in the sorting of cargo receptors by the retromer 
complex (Rojas et al., 2008).  
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Similar to the SNAREs, there is a remarkable reduction in the members of this family, with 
only seven Rab proteins being present in the Giardia genome (Morrison et al., 2007). The 
giardial Rab11 has been localized to the PVs and cytoplasm but relocalizes to the ESVs 
during encystation (Morrison et al., 2007; Abodeely et al., 2009b). A Giardia Rab1 that 
localizes to ER-exit sites and PVs is also associated with the ESVs during encystation 
(Langford et al., 2002).  

The question of whether Rabs and SNAREs participate in delivery of lysosomal proteins to 
the PVs remains unanswered and could be addressed in greater detail by functional 
analysis. Since each member of the Rab and SNARE family retains analogous biological 
functions in almost all the species analyzed, it will be interesting to determine whether, in 
Giardia, selective pressures might have been operating on distinguishing aspects of the 
lysosomal trafficking pathway, adapting the specificities of these proteins to accomplish 
their function. 

6. Conclusion 

Over the past few years, our understanding of the cell biological processes underlying the 
function of the PVs during Giardia growth and differentiation has advanced considerably. 
This is largely because of the complete sequencing and annotation of the Giardia genome, 
the development of transfection systems, highly sophisticated morphological analyses, 
and the identification of new parasite proteins that participate in endosomal/lysosomal 
trafficking. Endosomal/lysosomal trafficking pathways exhibit significant complexity and 
diversity in terms of morphology, function, and mechanisms among different organisms 
and cell types. As shown by several studies, part of the Giardia transport machinery is 
fairly well conserved. The existence in this organism of the GlCHC and dynamin, the 
presence of tetrameric adaptor proteins, and endosomal-lysosomal sorting motifs within 
cargo proteins, support an early acquisition of genes necessary for endosomal/lysosomal 
trafficking during eukaryotic evolution. Nevertheless, this parasite has experienced 
considerable diversification (Figure 5). The constraints of living under parasitic conditions 
have probably been the major driver for the reductive evolution of lysosome/endosome 
and Golgi compartments to maintain only those components that are essential for specific 
compartmentalization needs. For example, this parasite possesses only two of the four AP 
complexes, AP-1 and AP-2, which are involved in sorting signal recognition. No 
monomeric adaptor proteins have been identified so far. Also, reduced members of the 
Rab family are present and, although Rab11 has been associated with the PVs, further 
analysis will be necessary to assess Rab participation in membrane tethering and fusion to 
preserve the PVs identity. Similarly, investigation on the SNARE proteins closely 
associated with PVs will shed light on the mechanism of vesicle-vacuole fusion. Despite 
the progress in the field, it is clear that our molecular understanding of this complex 
situation remains far from complete. In particular, the current view that this parasite 
needs a reduced set of organelles and machinery to control nutrient uptake as well as 
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degradation of intracellular proteins and endocytosed macromolecules is without 
precedent and raises several conceptual questions, some of which have been addressed in 
this chapter. In the last decade, PVs are emerging as sorting stations were molecules can 
be sorted and selected for plasma membrane or ER delivery. The future challenge will  
be to complete the pieces of this important puzzle to understand and unravel functions  
of the PVs and to throw light on the fundamental organizational principles of 
endosome/lysosome biogenesis in all eukaryotes. 

 
Figure 5. Schematic representation of lysosomal protein trafficking in growing Giardia trophozoites. 
From the ER-exit sorting site, the membrane protease ESCP is directed to the lysosome-like PVs in AP-1 
and clathrin-coated vesicles. By the same pathway, the hydrolase AcPh is probably associated with the 
membrane receptor Vps10p and AP-1. AP-2 is involved in LDL/LRP endocytosis and PV delivery. The 
cytosolic proteins, clathrin and dynamin, are localized in the PVs. Rab11, and the SNAREs Qa1, gQa3, 
gQa5, gQb2, gQb4, gQb5, and gR3 may participate in vesicle trafficking to and/or from the PVs. H+ 
represents the acidic pH of the PV lumen. Unconfirmed protein participation is depicted in green. 
Modified from (Touz, 2011). 
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1. Introduction 

Epidermal growth factor (EGF) receptor (EGFR), also known as HER1 or ErbB1, is the 
prototypal member of the superfamily of receptors with intrinsic tyrosine kinase activity 
and is widely expressed in many cell types including epithelial and mesenchymal lineages 
[1, 2]. The other three members of the ErbB receptor family include Her2/ErbB2/neu [3, 4], 
Her3/ErbB3 [5] and Her4/ErbB4 [6] (Fig. 1A). EGFR is a 170 kDa membrane glycoprotein 
composed of three domains. The heavily glycosylated 622-amino acid extracellular domain 
containing two cysteine rich regions is responsible for ligand binding. The transmembrane 
domain is a single 23-amino acid α-helical transmembrane peptide. The 542-residue 
intracellular cytoplasmic domain contains a 250-amino acid conserved protein tyrosine 
kinase core followed by a 229-amino acid C-terminal tail with regulatory tyrosine residues 
(Fig. 1B) [7]. Eleven ligands have been identified for ErbB receptors. These ligands can be 
classified into three groups based on their ability to bind to different ErbB receptors. The 
first group of ligands includes EGF, transforming growth factor-α, amphiregulin and epgen, 
which specifically binds to EGFR. The second group of ligands includes betacellulin, 
heparin-binding EGF and epiregulin, which binds to both EGFR and ErbB4. The third group 
of ligands includes neuregulin/heregulin, which binds to ErbB3 and ErbB4 [8, 9] (Fig. 1A). 

The EGFR family of receptor tyrosine kinases lies at the head of a complex signal 
transduction cascade that modulates cell proliferation, survival, adhesion, migration and 
differentiation [1, 2, 10]. While growth factor-induced EGFR signalling is essential for many 
normal morphogenic processes and is involved in numerous additional cellular responses, 
the aberrant activity of the members of this receptor family has been shown to play a key 
role in the development and growth of tumour cells [10-12]. The ErbB receptors were first 
implicated in cancer when the avian erythroblastosis tumor virus was found to encode an 
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aberrant form of EGFR. Now, EGFR has been implicated in many cancers including 
squamous cell head and neck cancer, colorectal cancer, non-small cell lung cancer, gastric 
cancer, pancreatic cancer, breast cancer, ovarian cancer, renal cancer, glimas prostatic cancer 
and cervical cancer [13]. The dysregulation of ErbB receptor signalling in cancer can occur 
by various mechanisms, including overexpression due to gene amplification, autocrine 
ligand production, heterodimerization, deficiency in endocytosis, and gene mutations that 
increase receptor transcription, translation, protein stability and kinase activity[14, 15].  

 
Figure 1. ErbB receptor family. (A) ErbB receptors and their ligands. ErbB family receptors are 
composed of four members: EGFR/ErbB1/Her1, ErbB2/Her2/neu, ErbB3/Her3 and ErbB4/Her4. Eleven 
ligands are identified for ErbB family receptors. (B) Linear structure of EGFR.  
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The binding of EGF at the cell surface induces dimerization of EGFR, which results in the 
activation of EGFR tyrosine kinase and receptor trans-autophosphorylation [16, 17]. EGFR 
activation stimulates various signaling pathways, leading to cell mitogenesis and survival [9, 
10]. EGFR is overexpressed or hyper activated in many epithelial tumors and plays important 
roles in cancer development and progression [12]. The activated receptors are rapidly 
internalized into endosomes and eventually degraded in lysosomes [18]. Initially, the 
endocytosis of ligand-activated receptors was considered a mechanism to attenuate signaling. 
Recently, more evidence suggests that the internalized receptors may maintain their ability to 
generate cell signaling in endosomes [19-23]. Thus, the alteration of EGFR endocytosis may 
result in abnormal cell signaling, leading to cancer. On the other hand, EGFR endocytosis is 
firmly regulated by signal recognition and various signaling proteins at every step. 

2. EGFR-mediated cell signaling 

EGFR plays important roles in initiating cell signaling to produce specific effects on cell 
growth and development [9, 10]. EGFR is activated through the homodimerization or 
heterodimerization with other ErbBs such as ErbB2 and ErbB3 in response to ligand 
stimulation (Fig. 2)[2]. The dimerization of EGFR at the plasma membrane induces the 
activation of the EGFR tyrosine kinase and trans-autophosphorylation. The sites of tyrosine 
phosphorylation in the activated EGFR form signaling complexes with many signaling 
proteins, including Grb2, Shc, phospholipase C-γ1 (PLC-γ1), the p85α subunit of PI3K (p85), 
p120 rasGAP, Src, Stats, and Cbl [2, 24-26] [2]. The formation of the receptor-signaling protein 
complexes then initiates the activation of various signaling pathways (Fig. 3A)[9-11, 27-29].  

 
Figure 2. Dimerization of EGFR and the association with signaling proteins. EGFR is homodimerized or 
heterodimerized with other ErbB proteins in response to ligand.  
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Figure 3. Signaling pathways activated by EGFR. (A) Binding of EGF to EGFR at the plasma membrane 
initiate the activation of various signaling pathways. The well-defined pathways include Ras-Erk 
pathway, PI3K-Akt pathway, PLC-γ1 pathway, Stat pathway and Src pathway. (B)The signaling 
cascade of Ras-Erk pathway. (C) The signaling cascade of PLC-γ1 pathway. (D) The signaling cascade of 
PI3K-Akt pathway. 
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The activated EGFR interacts with Shc and Grb2 through multiple phosphorylated tyrosine 
(pY) residues localized at the C-terminus, which results in the recruitment of Sos to the 
plasma membrane to activate Ras. Activated Ras mediates Raf activation, which then 
phosphorylates and activates MEK. Activated MEK then phosphorylates and activates ERK. 
Activated ERK phosphorylates Rsk, which in turn translocates into the nucleus to activate 
transcription factors such as c-fos and SRF. Activated ERK may also translocate into the 
nucleus to activate transcription factors such as Elk1 and c-fos, which is critical in 
controlling cell mitogenesis (Fig. 3B) [2, 24, 30-34]. 

Activated EGFR also interacts with PLC-γ1 with multiple pY residues at the C-terminal 
regulatory domain, which results in the phosphorylation of PLC-γ1 and an increase in its 
enzymatic activity [35-37]. Active PLC-γ1 hydrolyzes phosphatidylinositol 4, 5-
bisphosphate (PtdIns(4,5)P2) to form the second messengers inositol 1, 4, 5-triphosphate 
(InsP3) and diacylglycerol (DAG). InsP3 and DAG mobilize intracellular calcium and activate 
protein kinase C (PKC), respectively. Recent studies have shown that PLC-γ1 is involved in 
broad cell signaling. Interestingly, most recently identified interactions between PLC-γ1 and 
its binding proteins are mediated by its SH3 domain. EGF stimulates the interaction 
between PLC-γ1 and PLD2, which is mediated by the PLC-γ1 SH3 domain [38]. PLC-γ1 
binds directly to Akt in response to EGF through its SH3 domain [39]. The PLC-γ1 SH3 
domain acts as a guanine nucleotide exchange factor (GEF) for PIKE [40], dynamin [41] and 
Rac1 [42]. The activated PLC-γ1 regulates cell mitogenesis and migration (Fig. 3C)[39, 42-
44].  

Activated EGFR also activates PI3K either through its direct interaction with the p85α 
subunit or through the activated Ras [45, 46]. Activated PI3K then catalyzes the production 
of the second messenger phosphatidylinositol-3,4,5-trisphosphate (PIP3) by phosphorylating 
phosphatidylinositol-4,5-bisphosphate (PIP2). A direct antagonist of PI3K is the phosphatase 
and tensin homologue deleted on chromosome 10 (PTEN). PTEN dephosphorylates PIP3 
into PIP2 to reverse the activity of PI3K and therefore function as an important negative 
controlling element of incoming signals. PIP3 transduces activating signals by binding to 
pleckstrin homology (PH) domains of proteins to recruit them to the cell membrane. One 
centrally important downstream mediator of the PI3K signalling cascade is the serine 
threonine (Thr) kinase Akt. Akt is recruited to the plasma membrane by its SH3 domain 
interaction with PIP3, which exposes Akt Thr 308 for phosphorylation by 3-
phosphoinositide-dependent kinase 1 (PDK-1), which is already located at the membrane. 
The rapamycin complex 2 (mTORC2) phosphorylates Ser 473 in the C-terminus, which leads 
to full Akt activation. Activated Akt then mediates signals promoting cellular growth and 
survival and suppresses pro-apoptotic signals. Akt phosphorylates several intracellular 
proteins, including forkhead box O transcription factors (FoxO), the BCL2-associated 
agonist of cell death (BAD), and the glycogen synthase kinase 3 (GSK3), to promote cell 
cycle entry and cell survival. The proteins TSC1 (Hamartin) and TSC2 (Tuberin) form a 
complex that inhibits the activity of the small G-protein ras homologue enriched in the brain 
(Rheb), which is necessary for mTORC1 activation. The Akt-mediated phosphorylation of 
TSC2 releases Rheb from its inhibited state. Rheb then accumulates in a GTP-bound state 
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and can directly activate mTORC1, which phosphorylates the p70S6 kinase (S6K1) and the 
eukaryotic translation initiation factor 4E binding protein 1 (4EBP1), leading to increased 
protein translation (Fig. 3D), which protects the cell from undergoing apoptosis [45, 47, 48].  

Activated EGFR also activate Stats directly by binding to and phosphorylating Stats, or 
indirectly by activating c-Src. Activation can occur via cytokine signaling (IL-6), growth 
factor receptor signaling (EGFR), or non-receptor tyrosine kinase signaling (Src). JAK is not 
required when Stats bind directly to EGFR for activation, but JAK provides maximal 
activation of Stats phosphorylated by EGFR-activated Src. Grb2 and SOCS can inhibit Stat-
mediated EGFR signaling respectively, by either binding to the STAT activation site on 
EGFR or by binding to JAK to suppress Src activation of Stats. Once activated, Stats 
dimerize and translocate to the nucleus where they activate the transcription of genes 
involved in proliferation, differentiation, and survival [49].  

Importantly, Src kinases, which have been reported to be activated in many cancers with 
high EGFR levels, have been shown to potentiate EGFR signaling [50-52]. The c-Src 
potentiation of EGFR has been demonstrated to be associated with the c-Src-dependent 
phosphorylation of EGFR and the complex formation between c-Src and EGFR [50, 51]. In 
addition to focal adhesion kinase (FAK), which is involved in the regulation of adhesion and 
migration, PI3K and Stat3 are also substrates for c-Src [53]. Although the Src kinase has been 
linked with the development and progression of cancer for many years, we still do not 
completely understand its role in cancer [54]. Src is a member of a ten-gene family (FYN, 
YES, BLK,FRK, FGR, HCK, LCK LYN, and SRMS) of non-RTKs that play a fundamental role 
in the regulation of cell proliferation, migration, adhesion, and tumor angiogenesis [55, 56]. 
Src signaling is cross-connected with many signaling pathways, such as the PI3K and Stat 
pathway [55, 56]. Even though tyrosine kinase activity of Src is independent of RTK 
signaling, it may interact with RTKs such as EGFR. As such, Src-EGFR interaction may 
enhance EGFR signaling, and on the other hand it may be involved in resistance to EGFR-
targeted therapy [54, 57]. 

3. EGFR-mediated endocytosis 

3.1. Clathrin-dependent and clathrin-independent endocytic pathways 

The concept of receptor-mediated endocytosis was formulated in 1974 to explain how the 
sequential cell surface binding, internalization, and intracellular degradation of plasma low 
density lipoprotein (LDL) regulates cellular cholesterol metabolism [58]. Receptor-mediated 
endocytosis is a multiple step event [58]. In general, receptor-mediated endocytosis consists 
of two stages: internalization and intracellular trafficking. Endocytic pathways are generally 
classified as either clathrin-dependent or clathrin-independent. Much work has focused on 
clathrin-mediated endocytosis (CME). In this process, cargo proteins are recruited into 
developing clathrin-coated pits (CCPs), and subsequently form clathrin-coated vesicles 
(CCVs) [59]. Several proteins or protein complexes, including clathrin, adaptin AP-2, 
dynamin and Eps15, participate in the CME of all receptors. Adaptin AP-2 is a cytoplasmic 
protein complex that interacts with the cytoplasmic tails of various receptors. These 
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interactions are thought to account for the ability of cells to selectively direct receptors to 
CCVs. Clathrin is ideally designed to form a scaffold which, when attached to the 
membrane, causes the membrane to deform into a budding vesicle. Clathrin presumably 
binds to the membrane by interacting with membrane-bound AP-2. Dynamin has been 
identified as a major player in the endocytic pathway and is essential for the scission of 
coated vesicles. Eps15 is an essential component of the early endocytic pathway [59-61].  

Although CME is certainly an extremely important endocytic mechanism, accounting for a 
large proportion of endocytic events, an ever expanding array of cargos has been shown to 
undergo non-clathrin-mediated endocytosis (NCE) [62]. Many NCE pathways have been 
reported, including caveolar-type endocytosis, CLIC/GEEC-type endocytosis, the putative 
flotillin-associated endocytic structures, phagocytosis, macropinocytosis, dorsal ruffles (or 
waves), and entosis [62, 63]. Caveolar-type endocytosis is the best studied NCE.  

3.2. Endocytic and sorting signals 

The targeting of transmembrane proteins to different compartments of the endocytic 
pathways is largely dependent upon sorting signals contained within the cytoplasmic 
domains of the proteins [64-66]. Most of these sorting signals are short, linear sequences of 
amino acid residues. These signals can be classified to two groups. One group of signals is 
referred to as tyrosine-based sorting signals and the other group of signals is known as 
dileucine-based signals. All of these signals are recognized by components of protein coats 
peripherally associated with the cytosolic face of membranes [66]. 

Tyrosine-based signals constitute a family of degenerate motifs minimally defined by the 
presence of a critical tyrosine residue [66]. Most tyrosine-based signals conform to the 
consensus motifs YXXΦ (Y is tyrosine, X is any amino acid and Φ is an amino acid with a 
bulky hydrophobic side chain) [67] or NPXY (N is asparagine and P is proline) [68-71]. It 
was shown by several groups that the substitution of tyrosine residues in the cytosolic 
domains of various endocytic receptors devoid of NPXY motifs impaired internalization [72-
77]. NPXY signals have been shown to mediate only the rapid internalization of a subset of 
type I integral membrane proteins, and not mediate other intracellular sorting events. The 
interaction between NPXY motif and endocytic protein is less understood. However, several 
proteins, including clathrin, AP-2, and Dab2, have been proposed to function as recognition 
proteins for NPXY signals. There are several NPXY motifs located in the EGFR C-terminus 
[78]. Systematic mutational analyses led to the identification of another tyrosine-based 
motif, YXXΦ, as the major determinant of endocytosis of the mannose 6-phosphate as well 
as many other transmembrane proteins [67, 78, 79]. In mammalian cells, virtually all YXXΦ 
signals mediate rapid internalization from the cell surface. Some YXXΦ signals can 
additionally mediate lysosomal targeting [64-66]. Recent evidence suggests that the µ2 
subunit of AP2 directly interacts with YXXΦ to mediate rapid internalization [80-83].  

Di-leucine-based sorting signals have been implicated in various sorting process [78]. Two 
classes of di-leucine-based sorting motifs have been distinguished. [DE]XXXL[LI] signals 
play critical roles in the sorting of many type I, type II and multispanning transmembrane 
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proteins. The [DE]XXXL[LI] signals in mammalian proteins mediate rapid internalization 
and target the proteins to endosomal-lysosomal compartments, suggesting that they can be 
recognized both at the plasma membrane and at intracellular locations. [DE]XXXL[LI] 
signals are recognized by the adaptor protein (AP) complexes. DXXLL signals are present in 
several transmembrane receptors and other proteins that cycle between the TGN and 
endosomes. DXXLL signals are recognized by another family of adaptors known as GGAs. 

Ubiquitination of cytosolic lysine residues constitutes another important signal for sorting 
transmembrane receptors at various stages of the endosomal-lysosomal system. Ubiquitin is 
a globular protein consisting of 76 amino acids that is able to covalently conjugate to other 
proteins [84]. Ubiquitin is covalently conjugated to proteins by forming a bond between the 
carboxy-terminal glycine of ubiquitin and the ε-NH2 group of a lysine residue in the 
substrate protein. Alternatively, ubiquitin can be conjugated to the α-NH2 group of the N-
terminal amino acid of the substrate [85, 86]. Conjugated ubiquitin is recognized by UIM, 
UBA, or UBC domains present within many components of the internalization and 
lysosomal targeting machinery. It has been shown that EGFR is ubiquitinated in response to 
EGF, which plays an important role in EGFR degradation in lysosomes. The presence of 
these various type of sorting signals within the transmembrane receptors and their 
interaction with the signal recognition proteins ensures the dynamic but accurate 
distribution of transmembrane proteins to different compartments along the endocytic 
pathways. 

3.3. Endocytosis of EGFR 

The first comprehensive study of EGF endocytosis, in which many of the key concepts of 
internalization and lysosomal degradation of EGF have been established, was published by 
Carpenter and Cohen [87]. The binding of EGF results in the clustering and internalization 
of EGFR. The accumulation of EGF and EGFR can be detected in the early endosome after 1-
5 min of incubation with EGF at 37oC. EGF and EGFR accumulate in late endosomes after 
10-20 min at 37oC. A substantial number of EGFR can be detected in organelles with typical 
biochemical and morphological features of mature lysosomes only after 40-60 min of 
continuous internalization at 37oC [16, 88]. Intracellular trafficking of receptors involves a 
series of membrane budding and fusion events [89]. Endosome fusion is regulated by 
specific cytosolic and membrane-associated protein factors, including a group of Ras-like 
small guanosine triphosphatases (GTPases) called Rabs [90-92]. Four classes of endocytic 
organelles are typically distinguished based largely on their relative kinetics of labeling by 
endocytic tracers: early endosomes (EEs), late endosomes (LEs), recycling vesicles (RVs), 
and lysosomes [65]. The precise relationship among these structures has yet to be 
determined, and in fact may never be known because of the great plasticity and dynamics of 
the system. 

The internalization of constitutively internalized receptors is largely mediated by sorting 
signals such as YXXΦ and NPXY. However, for the receptors that are internalized in 
response to ligand binding, there is likely some means of switching their sorting signals on 
and off [93]. Given that ligand binding is essential for the rapid internalization of EGFR, the 
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events induced by the ligand binding likely contribute to the regulation of ligand-induced 
EGFR internalization. These events include receptor dimerization, activation of intrinsic 
tyrosine kinase activity, autophosphorylation and association with various binding proteins.  

The initial results are very controversial regarding the role of EGFR kinase activity in EGFR 
internalization. Data from some research groups suggest that kinase-dead EGFR is deficient 
in EGF-induced internalization [94, 95]; however, data from other research groups suggest 
that kinase-dead EGFR is internalized normally like wild type EGFR, but is quickly recycled 
back to the plasma membrane [96, 97]. Since the mid 1990s, most studies suggest that EGFR 
kinase activity is required for EGF-induced EGFR internalization. It was reported that EGFR 
kinase activation is required for the recruitment of EGFR into coated pits [98]. The EGFR 
activation of c-Src tyrosine kinase has been implicated in the regulation of the clathrin-
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expressed in CHO cells, a kinase-dead EGFR (EGFR K721A), was internalized following 
EGF stimulation in a similar pattern to wild type EGFR, which indicates that EGFR kinase 
activation is not required for EGFR internalization [103-107].  
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before the activation of EGFR kinase is the dimerization of EGFR. It is well established that 
receptor dimerization is critical for EGFR kinase activation [108]. In fact, it is generally 
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dimerization by deleting the receptor dimerization loop abolishes EGF-induced EGFR 
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induced EGFR dimerization causes necessary conformational changes of the receptor to 
expose the cryptic internalization codes. Alternatively, the internalization regulating 



 
Molecular Regulation of Endocytosis 310 

proteins essential for EGFR internalization may have a dimeric nature and can only bind to 
dimerized EGFR [105].  

Many studies have also focused on the role of EGFR C-terminus in EGFR internalization 
(Fig. 4). The EGFR mutants truncated from the C-terminus to residue 991 [110] or to residue 
973 [111] are internalized inefficiently and the mutant truncated at residue 958 is not 
internalized [110]. Simultaneous point mutation of the five-tyrosine residues (Y992, Y1068, Y 
1086, Y1148 and Y1173) to phenylalanines significantly reduces EGFR internalization [112]. 
EGFR is co-immunoprecipitated with adaptin AP-2 [88]. The binding between EGFR and 
AP-2 is mediated by EGFR amino acid residues 970-991, especially Y974 [113, 114]. This 
interaction accelerates EGFR internalization when EGFR is expressed at high levels, but is 
not required for EGFR internalization when EGFR is expressed at low levels [83, 113, 114]. A 
15-amino acid domain (residues 943-957) was found to be essential for binding sorting 
nexin-1 (SNX1) which is involved in targeting EGFR to lysosome [115], but not EGFR 
internalization. It was shown that the EGFR C-terminal sequences from 992 to 1044 are 
essential for mediating EGF-induced EGFR internalization with or without the inhibition of 
EGFR kinase activation [105]. It was further shown that EGFR residues 1005-1017, especially 
the di-leucine 1010LL1011 is required for EGF induced rapid internalization of full length EGFR 
and the role of 1010LL1011 in EGFR internalization is independent of EGFR kinase activation 
[106]. The identification of 1010LL1011 as essential for EGFR internalization is very interesting. 
EGFR di-leucine motif 1010LL1011 proceeded with TSRTP, which is different from the two 
classes of di-leucine-based sorting signals described above. Two di-leucine motifs including 
679LL680 and 1010LL1011 have been implicated in EGFR sorting. It was reported that 679LL680 is 
required for the efficient transport of EGFR to lysosomes and for the retention of EGFR in 
endosomes [116, 117]. It was also shown that 1010LL1011 is critical in the tyrosine 
phosphorylation of β2 subunit of clathrin adaptor complex AP-2 and is required for EGFR 
degradation [118]. The only data suggesting a possible role of 1010LL1011 in EGFR endocytosis 
is that it regulates the slow endocytosis of a mutant EGFR truncated at amino acid 1022 
[119]. However, other data from the same group showed that 1010LL1011 is not involved in the 
endocytosis of full length EGFR [118, 119].  

The role of various EGFR binding proteins in EGFR endocytosis has also been extensively 
studied. Some proteins that bind to pY sites of EGFR have also been implicated in EGFR 
endocytosis. These proteins including Grb2, Eps15, PLD, Cbl, Rin1, and Src [41, 99, 100, 119-
123]. Grb2 regulates EGFR endocytosis, possibly through its SH3 domain interaction with 
dynamin [120]. Knocking-down Grb2 with siRNA also blocks EGFR endocytosis [119, 124]. 
EGF receptor endocytosis is dependent upon PLD and the PLD1 regulators, protein kinase 
C alpha and RalA [125]. Tyrosine phosphorylation of Eps15 is necessary for the 
internalization of EGFR [100]. Eps15 functions as a scaffolding adaptor protein and is 
involved in both secretion and endocytosis. Eps15 has been shown to bind to AP-1 and AP-2 
complexes, to inositol lipids, and to several other proteins involved in the regulation of 
intracellular trafficking [126]. Phosphorylation of clathrin heavy chain by Src facilitates 
EGFR endocytosis [99]. Rin1 binds to EGFR and regulates EGFR endocytosis through its 
SH2 domain [123]. Although it is generally agreed that Cbl acts to negatively regulate EGFR 
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activity by promoting the intracellular trafficking and degradation of EGFR, it is still 
disputed whether Cbl binding or Cbl-mediated ubiquitination is altogether required for 
ligand-induced EGFR endocytosis [122, 127]. Some recent data indicate that Cbl-mediated 
ubiquitin of EGFR is not required for EGFR endocytosis [127, 128]. While PI3K is required 
for β-PDGFR endocytosis and down-regulation [129-131], PI3K activity is not required for 
EGFR endocytosis [132].  

 
Figure 4. Internalization and sorting signals within EGFR intracellular domain. 

Strong evidence suggests that CME is the major pathway of EGFR endocytosis. EGF and 
EGFR are found concentrated in CCP and CCV. EGFR endocytosed with a rate similar to 
those of other receptors that are internalized by CME, such as LDL and transferrin (Tfn). 
Knockdown of clathrin heavy chain or dynamin by RNA interference (RNAi) inhibits EGFR 
endocytosis [18]. Although CME is certainly an extremely important endocytic mechanism, 
accounting for a large proportion of endocytic events, an ever expanding array of cargos has 
been show to undergo endocytosis in clathrin-independent manner [62, 133]. Clathrin-
independent endocytosis itself has been further dissected into seemingly distinct pathways, 
based on the reliance of these pathways on certain proteins and lipids, their differential drug 
sensitivities and their abilities to internalize particular cargos [134]. Many NCE pathways 
have been reported including caveolar-type endocytosis, CLIC/GEEC-type endocytosis, the 
putative flotillin-associated endocytic structures, phagocytosis, macropinocytosis, dorsal 
ruffles (or waves), and entosis [62, 63]. New evidence suggests that EGF-induced EGFR 
endocytosis may also be mediated by NCE. NCE of EGFR via dorsal waves was observed in 
several types of cells [135]. This pathway required the activity of the EGFR kinase, PI3K and 
dynamin [135]. The NCE of EGFR involving cholesterol-rich lipid rafts and/or caveolar has 
also been reported [136]. This cholesterol-dependent endocytosis was observed under 
conditions of high EGFR occupancy by EGF in Hela cells. All of the reported NCE pathways 
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are significantly slower than CME, although they are faster than constitutive receptor 
endocytosis [18].  

4. Regulation of EGFR signalling by endocytosis 

Endocytosis is essential for cells to perceive extracellular signals and transduce them in a 
temporally and spatially controlled fashion, directly influencing not only the duration and 
intensity of the signaling output, but also their correct location. It is well established that the 
endocytosis of EGFR from the plasma membrane to lysosomes results in the degradation of 
the receptor, which can attenuate receptor signaling and may even be conceived of as a 
tumor suppressor pathway [19]. On the other hand, accumulated evidence suggests that the 
internalized EGF-EGFR complex may maintain its ability to generate cell signaling from 
endosomes [19-23].  

4.1. Downregulation of EGFR by endocytosis 

Endocytosis has been recognized as the most significant pathway to downregulate EGFR by 
removing the receptor from the cell surface for degradation in lysosomes [137]. This 
downregulation of EGFR is a complicated and tightly regulated process. During this process 
the EGFR-containing internalized vesicles mature into multivesicular bodies (MVBs), which 
then fuse with lysosomes to allow degradation of their content. This was first shown by 
Cohen and his colleagues, who observed that ferritin-conjugated EGF was rapidly 
internalized upon binding to EGFR and trafficked to MVBs within 15 minutes exposure of 
cells to ligand [87, 138]. The impaired endocytic downregulation of signaling receptors is 
frequently associated with cancer, since it can lead to increased and uncontrolled receptor 
signaling [139].  

The role of endocytosis in the downregulation of EGFR signalling is best illustrated by the 
findings that the inhibition of EGFR endocytosis frequently leads to cancer. The best 
characterized EGFR mutant with impaired endocytosis is EGFRvIII. EGFRvIII has been 
implicated in many types of tumors [140-145]. EGFRvIII is a mutant EGFR with the deletion 
of amino acid residues 6–273 in the extracellular domain of EGFR. This results a truncated 
145 kDa receptor with a non-functional ligand binding pocket and no dimerization arm. In 
spite of not binding any ligands, the receptor is constitutively active [146], and is able to 
activate Ras-Erk1/2 and PI 3-kinase-Akt pathways [142, 147]. In concordance with this, 
EGFRvIII was shown to transform fibroblasts and to enhance the proliferation and/or 
tumorigenicity of cells both in vivo and in vitro [142, 148-152]. The constitutive activity may 
be important for tumorigenicity, but impaired downregulation certainly enhances the effect. 
Two recent reports show that EGFRvIII is not degraded in cells with endogenous levels of 
Cbl, instead, internalized EGFRvIII is recycled back to the plasma membrane [153].  

It is generally accepted that ErbB2 avoids efficient endocytic downregulation [154-158], 
which contributes to its important role in the development of various cancers [2, 10]. As 
ErbB2 and the EGFR-ErbB2 heterodimers are impaired in EGF-induced endocytosis [158], 
EGFR-mediated cell signaling are significantly sustained in the cells with overexpressed 
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ErbB2 due to the formation of EGFR-ErbB2 heterodimers. EGFR signaling can also be 
sustained if the molecular machinery normally involved in receptor downregulation does 
not function optimally. Indeed, several mutations of such proteins have been found in 
tumors, including Cbl, TSG101 (an ESCRT-I subunit), and VPS25 (an ESCRT-II subunit) 
(recently reviewed in [159]. In conclusion, endocytic impairment may be a returning theme 
of oncogenic EGFR mutants.  

The role of endocytosis in the downregulation of EGFR signalling is also frequently and 
successfully explored as a therapy for cancer. Since the lack of endocytic downregulation is 
an emerging theme in ErbB cancer biology, it is evident that the stimulation of ErbB 
endocytosis and lysosomal degradation is an attractive means to inhibit tumor growth. 
Polyvalent antibodies have been developed to stimulate EGFR and other ErbB endocytosis 
by crosslinking the receptors together [156, 160]. One good example is trastuzumab 
(Herceptin). Trastuzumab is a humanized recombinant mAb that binds to the extracellular 
domain of ErbB2 protein [161, 162]. Currently, it is the only ErbB2-targetted therapy 
approved by FDA for metastatic breast cancer treatment [163]. Although several recent 
studies suggest that Trastuzumab does not induce the endocytosis of ErbB2 to a significant 
degree [154, 156, 157], the dominating opinion has been that Trastuzumab causes endocytic 
downregulation of ErbB2 [2, 164-166]. 

Cetuximab is an antibody targeting EGFR that is currently used in treatment of colorectal 
cancer and head and neck cancer [167]. Several studies have shown that Cetuximab induces 
the internalization of EGFR [109, 168]. Cetuximab-induced EGFR internalization is 
independent of receptor tyrosine kinase activity, and it is both slower and less efficient in 
terms of receptor downregulation than ligand-induced endocytosis [109]. At present, the 
knowledge of mechanisms underlying antibody-mediated endocytic downregulation is 
relatively sparse. A useful observation is that extensive antibody-based crosslinking of ErbB 
receptors is far more efficient at inducing ErbB endocytic downregulation than single 
antibodies are [156, 160]. Crosslinking can either be done using antibodies that form 
multivalent aggregates via secondary antibodies or gold particles (Hommelgaard2004}, or 
by a more clinically relevant approach using combinations of monoclonal antibodies against 
distinct epitopes in an ErbB receptor [160]. Thus, whereas the administration of 
Trastuzumab alone did not induce significant ErbB2 endocytosis, the combination of 
Trastuzumab with another monoclonal antibody to ErbB2 was very efficient at 
downregulating ErbB2. In addition, the combination of two antibodies was much more 
efficient at inhibiting tumor growth in a mouse model compared to Trastuzumab 
administered alone [160, 166]. 

Although the endocytic downregulation of EGFR has been mostly attributed to clathrin-
dependent endocytosis [18], other endocytic pathways have also been proposed during 
recent years, especially following stimulation with high concentrations of EGF [136]. The 
concentration of EGF varies greatly throughout the human body. The EGF concentration in 
most tissue fluid is about 1–2 ng/ml, but it is much higher, up to 100 ng/ml or more, in 
tubular duct lumens of kidney, salivary glands, and the mammary gland [87, 169]. 
Normally, EGFR is not reached by the high luminal concentrations of EGF in these systems, 
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since the receptor is present at the basolateral site of the epithelial cells. However, during 
wound healing or malignant transformation, the tight junctions disappear and allow the 
high concentrations of EGF to access the receptor [170]. Very high EGF concentration can 
also be found in solid tumors [171]. It was reported that at high concentrations of EGF (20 
ng/ml) the receptor became ubiquitinated and was to a high degree internalized by caveolae 
[136]. Incubation of epithelial cells with 30 ng/ml of EGF for 5–20 min resulted in an eight to 
tenfold increase in the number of plasma membrane caveolae due to EGF-induced tyrosine 
phosphorylation of caveolin-1 [172]. Moreover, live cell imaging revealed increased 
dynamics of green fluorescent protein (GFP)-tagged caveolin upon stimulation of cells with 
30 ng/ml EGF. Thus, some studies suggest a role of caveolae in EGFR endocytosis. More 
interesting, it was further revealed by Sigismund et al that EGFRs internalized via CME are 
not targeted for degradation, but instead are recycled to the cell surface. By contrast, 
clathrin-independent internalization preferentially commits the receptor to degradation 
[173]. A prior study has shown that TGFβ receptor is internalized by two distinct endocytic 
pathways, clathrin-mediated endocytosis leading to TGFβ receptor signaling and lipid-raft-
mediated endocytosis leading to the degradation of TGFβ receptor [174]. 

4.2. Signalling endosomes 

The concept of EGFR signalling from endosomes or "signalling endosomes" has been 
gradually developed. Early evidence to support signalling from endosomes was reported in 
middle to late 1980s. These researches showed that internalized EGFR is 
autophosphorylated and catalytically active [175-177]. Various signaling molecules that 
regulate Ras activity, including Grb2, SHC, Sos and GAP, are co-internalized with EGFR 
into endosomes and remain associated with the receptor in endosomes [20, 178-181]. 
Afterwards, more results confirmed the interaction between EGFR and various signaling 
proteins in endosomes [182-186].  

The major evidence supporting endosomal EGFR signalling came from endocytosis 
inhibition experiments. Since the mid 1990s, researchers have developed many ways to 
inhibit EGFR endocytosis and then examine the effects on cell signalling. These experiments 
have yielded mixed results regarding what signalling pathways activated by endosomal 
EGFR and the physiological relevance of EGFR signaling from endosomes. The inhibition of 
EGFR endocytosis by a dominant-negative mutant dynamin enhances the activation of PLC-
γ1 and cell proliferation, but decreases ERK activation [187]. In a study of EGFR 
transactivation by G-protein coupled receptors, it was found that the inhibition of EGFR 
endocytosis by either mutant dynamin or β-arrestin abolished ERK activation [188, 189]. The 
inhibition of EGFR endocytosis by phospholipase D also blocks EGF stimulated-ERK 
activation [125]. However, none of these researches provided a mechanism to explain why 
activated EGFR at the plasma membrane is unable to activate ERK. On the other hand, other 
research showed that the inhibition of EGFR internalization enhances ERK activation [190, 
191]. EGFR efficiently activates mitogen-activated protein kinase in HeLa cells and Hep2 
cells, which is conditionally defective in clathrin-dependent endocytosis by overexpressing 
dominant negative dynamin [191]. Sprouty2 attenuates EGFR ubiquitination and 
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endocytosis, and consequently enhances Ras/ERK signalling [190]. Initially, in the few cases 
where biological end points were measured, inhibition of endocytosis did not result in the 
attenuation of biological effects [187, 192]. These results argue against a physiological 
relevance of endosome-originated signals [193].  

The controversy over endosomal signaling and its physiological relevance is in part due to 
the limitation of current approaches. For example, while it has made significant contribution 
and remains a powerful tool to study endosomal signaling, this endocytosis-inhibition 
approach has its limitations. While the inhibition of EGFR endocytosis eliminates endosomal 
signaling, the retention of EGFR at the cell surface also enhances signaling from the plasma 
membrane. Thus, it is difficult to determine whether the observed effects are due to the lack 
of endosomal signaling or due to prolonged plasma membrane signaling. Blocking EGFR 
endocytosis by mutant dynamin or β-arrestin affects all endocytic events mediated by these 
factors. Thus, it is difficult to determine whether the observed effects are due to the 
inhibition of EGFR endosomal signaling or due to a broad inhibition of endocytosis. 
Moreover, this approach is not suitable for studying the dynamics of endosomal signaling. 
None of these approaches offered mean to get activated receptors inside a cell without initial 
activation at the cell surface [194] 

In the early 2000s, a novel system was established to allow the specific activation of 
endosome-associated EGFR without the initial activation at the plasma membrane and 
without disrupting the overall endocytosis pathway. To specifically activate endosomal 
EGFR, cells were treated with EGF in the presence of AG1478, a specific EGFR tyrosine 
kinase inhibitor, and monensin that blocks the recycling of EGFR. This treatment led to the 
internalization of inactive EGF-EGFR complex into endosomes. The endosome-associated 
EGFR was then activated by removing AG1478 and monensin. No surface EGFR 
phosphorylation was detected [103, 104]. The specific activation of endosome-associated 
EGFR was also achieved without using monensin[103, 104]. In this system EGFR follows the 
same endocytic pathway as the control: EGF receptor is first internalized into Rab5-positive 
endosomes and eventually traffics to lysosomes for degradation. The only difference is that 
the EGF receptor is not activated during its internalization from the plasma membrane to 
endosomes and stops at endosomes until being activated. Thus, this system not only allows 
the generation of specific endosomal signaling of EGFR, but also under a condition very 
similar to the endosomal signaling of EGFR following its activation at the plasma 
membrane. By using this system, it was shown that 1) endosomes can serve as a nucleation 
site for the formation of signaling complexes, 2) endosomal EGFR signaling is sufficient to 
activate the major signaling pathways leading to cell proliferation and survival, and 3) 
endosomal EGFR signaling is sufficient to suppress apoptosis induced by serum-withdrawal 
[103] and to stimulate cell proliferation [195].  

In most cases, the endosomal EGFR signaling is the continuation of EGFR signaling at the 
plasma membrane, serving to maintain EGFR signaling and provide spatial-temporal 
regulation of EGFR signaling. However, in some cases, specific and novel signaling may be 
initiated only from endosomes as these signaling events require factors to be brought 
together by endocytosis. While specific signaling complexes can be assembled through their 
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recruitment to the early endosomal resident protein RAB5, there are no convincing 
examples that specific and novel signaling is initiated from endosomes in the context of 
EGFR signaling. However, it is well illustrated in TGFβ signaling that specific and novel 
signaling may be initiated only from endosomes. TGFβ receptors (TGFβR) become 
phosphorylated at Ser residues and are internalized by endocytosis following ligand 
binding. Once localized into endosomes, TGFβR can bind to SMAD anchor for receptor 
activation (SARA). The protein complex induced phosphorylation of the transcription 
factors SMAD1 or SMAD2 by their Ser/Thr kinase receptors. Upon phosphorylation, SMADs 
are released into the cytoplasm, bind to a cofactor (SMAD4), enter the nucleus, and promote 
gene transcription [137, 174].  

Together, it is clear that EGFR signals from both the plasma membrane and the endosomes, 
and that the signals from both locations are able to activate major signaling pathways, 
stimulate cell proliferation, and promote cell survival. However, following EGF stimulation, 
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5. Remaining questions, perspectives and future research 

In spite of intensive research and significant progress, many important issues remain 
unsolved regarding EGFR endocytosis and its regulation of cell signaling. One issue is 
clathrin-mediated endocytosis vs non-clathrin-mediated endocytosis. Significant evidence 
supportting the presence of non-clathrin mediated endocytosis and EGFR also internalized 
through non-clathrin mediated endocytic pathways. However, the mechanisms dictating 
which endocytic pathways EGFR follows under various conditions are far from clear and 
the functions of these different endocytic pathways are not clear either. While a few recent 
researchers showed that EGFR undergoes non-clathrin mediated endocytosis at high EGF 
concentrations and leads to EGFR degradation [137], the extensive data that support the role 
of chathrin-mediate endocytosis in EGFR internalization and degradation in lysosomes in 
the past several decades are mostly obtained at high EGF concentrations. A recent study 
showed that during cell mitosis, EGFR follows non-clathrin mediated endocytic pathway 
under both low and high EGF concentrations [107], which suggest that EGF concentration is, 
at least, not the only factor dictating the entry of EGFR into different endocytic pathways. It 
is also difficult to explain why cells choose the much slower non-clathrin mediated 
endocytosis to degrade EGFR, because it provides the heavily phosphorylated EGFR too 
much time to signal before degradation.  

Another issue is the role of EGFR kinase activity in EGFR endocytosis. Both of the opposing 
claims that EGF-induced EGFR endocytosis is dependent on EGFR kinase activity and that it 
is independent of EGFR kinase activity are supported by many data. It is difficult to 
reconcile the differences in the literature. However, a recent piece of research may shed 
some light. It was recently reported that EGF-induced EGFR endocytosis is independent of 
EGFR kinase activity during interphase, but is dependent on EGFR kinase activity during 
mitosis [107]. During mitosis, EGF-induced EGFR endocytosis is slower and independent of 
clathrin [107]. As previous research never distinguished the cells at interphase from cells at 
mitosis and at any given time there is a portion of cells at mitosis, the reported results are 
always a combination of kinase-independent and kinase-dependent endocytosis. Depending 
on the cell type and experimental conditions, the data may vary significantly. Moreover, 
EGFR may also undergo both kinase-dependent and kinase independent endocytosis during 
interphase depending on the cell type and experimental conditions. It has been shown that 
antibody-induced EGFR endocytosis is independent of EGFR kinase activity [109]. Future 
research is needed to elucidate the molecular mechanisms underlying kinase-independent 
and kinase-dependent endocytic pathways.  

Last, but not least, the function and significance of EGFR signaling from endosome vs EGFR 
signaling from the plasma membrane provides room for further research. It is clear that 
EGFR signals from both the plasma membrane and the endosomes, and that the signals 
from both locations are able to activate major signaling pathways, stimulate cell 
proliferation, and promote cell survival. However, the extent of the difference between these 
two signals is unclear. So far, the results have come from either the comparison between 
endosomal signaling and standard EGFR signaling, or the comparison between plasma 
membrane signaling and standard EGFR signaling. A direct comparison between 
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endosomal EGFR signaling and the plasma membrane EGFR signaling is needed to define 
the functional difference and their physiological significance of these two signals. The 
spatio-temporal dynamics of EGFR signaling in controlling cell function has become a new 
focus of current research. EGFR signaling along the endocytic route from the plasma 
membrane to endosomes allows a vigorous regulation of spatio-temporal dynamics of EGFR 
signaling. 
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1. Introduction 

In mechanistic terms, endocytosis is the process by which plasma membrane (PM) 
components, together with extracellular solutes, macromolecules and particles, are 
internalized in the cell. Once the endocytic vesicle (or vacuole) is formed by fission of the 
PM, it is generally delivered to a specialized membrane compartment – the endosome – for 
recycling, degradation or re-routing. 

In cell-physiological terms, endocytosis exerts multiple functions, which are only partially 
known and characterized. At a minimum, it maintains PM homeostasis by counterbalancing 
the apposition of new membrane (due to exocytosis) and by renewing PM components. More 
extensively, endocytosis constantly modulates PM composition and takes an active part in a 
variety of normal and pathological cell processes, including cell nutrition, cell motility, mitosis, 
neurotransmission, immune response, and microorganism entry (reviewed in [1-8]).  

1.1. Endocytosis and signaling 

In recent years, much of the effort to investigate this extensive endocytic activity has been 
focused upon unveiling the reciprocal interplay between endocytosis and cell signaling. In 
this introductory section, we provide a quick overview of the key concepts in the field to 
explain the endocytic function in Notch signaling. We refer those readers who wish to 
explore the relationship between endocytosis and cell signaling in details to other papers in 
this volume, and to recent reviews in the field [3, 9-11].  

Originally, endocytosis was linked to the termination of PM-generated signals by reducing 
the availability of membrane receptors for ligand binding, and by degrading the ligand-
receptor complex (reviewed in [10, 12-14]). Hence, blockage or dysregulation of endocytosis 
closely correlates with increased cell proliferation by the activation of receptor-tyrosine kinase 
pathways and cancer promotion (reviewed in [10, 15, 16]). More recently, new strategies for 
the endocytosis-mediated regulation of signaling have been uncovered: (i) endocytosis can 
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activate/modulate some PM-generated signals either directly (e.g. by controlling ligand 
availability, as in the case of the cell-to-cell Eph/Ephrin signaling pathway [17]), or indirectly 
(e.g. by regulating the composition of specific signaling platforms, as in the case of 
phospholipase C and PI3Kinase signaling activated via EGF receptor [18]); (ii) endocytosis can 
propagate signals to intracellular compartments, especially the endosomal compartment, 
where these signals are sustained, specified, spread over long distances or rerouted (reviewed 
in [9, 19-22]); (iii) endocytosis can ensure spatial restriction to signaling responses emanating 
from the PM and/or from the endosome (e.g. the endocytosis/recycling function in the spatial 
restriction of signaling controlling migratory programs (reviewed in [23], or in determining the 
timing, levels, and localization of guidance receptors, thus determining the outcome of 
guidance decisions [24]). On the other hand, signaling can modulate endocytosis: (i) activation 
of specific signaling pathways can upregulate or downregulate endocytosis, thus modulating 
other PM- and/or endosome-generated signals (e.g. EGF receptor activation increases SRC 
kinase-mediated phosphorylation of the clathrin heavy chain, which redistributes to the cell 
periphery, potentiating endocytosis [25]); (ii) actin dynamics/signaling takes an active part in 
the endocytic reaction by helping membrane invagination [26, 27], vesicle transportation [28, 
29], and endosomal microdomain organization [30]. We will see that many of these endocytic 
strategies to control signaling are exploited in Notch signaling.  

1.2. Types of endocytosis and their regulation 

In order to promote its many functions, endocytosis relies on a variety of specialized 
mechanisms and accessory factors to guarantee selectivity, vectoriality and plasticity.  

Regarding these mechanisms, there are multiple forms of endocytosis that act concomitantly 
in the cell (reviewed in [4, 31-33]). The best studied, and perhaps the most common, forms 
are clathrin-based. Their central paradigm is the recruitment and assembly of clathrin to the 
PM, triggered by a variety of adaptor proteins, which bind (and sometimes bend) the PM by 
means of lipid- and protein-interacting domains (reviewed in [34]). Invagination of the PM 
to form a bud depends on a concerted action of the clathrin lattice rearrangement (which 
shapes the high curvature profile of the bud [35]), polymerization of bending proteins 
(which shape the neck of the bud (reviewed in [36])), and actin polymerization (which helps 
the extension and constriction of the neck of the bud [37, 38]). Constriction of the bud and its 
fission to form free clathrin-coated vesicles requires the pinchase action of the GTPase 
dynamin(s) (reviewed in [39-41]). Free vesicles are then stripped of their coat by an 
uncoating complex, composed of the ATPase heat shock cognate 70 (HSC70) [42] and the J-
domain-containing co-chaperone auxilin [43]. Structural requirements for the uncoating 
reaction are reviewed in [44, 45]. An essential function is also carried out by 
phosphoinositides, and more specifically by the PtdIns(4,5)P2 present in the membrane of 
coated vesicles, which has to be hydrolyzed by synaptojanin for efficient release of endocytic 
adaptors, which precedes clathrin disassembly [46, 47].  

Clathrin-mediated endocytosis (CME) is not the only type of endocytosis. It is now many 
years since evidence for clathrin-independent endocytosis (CIE) has been accumulated, 
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although the mechanism behind this process is as yet poorly characterized. The 
development of specialized techniques, reagents and markers to trace endocytosis has 
unveiled a whole new world of internalization routes that persist after inhibition of the 
clathrin function (reviewed in [32, 48-50]). A common finding is the exquisite sensitivity of 
CIE to cholesterol depletion, although CME is also somewhat sensitive to cholesterol levels, 
and some forms of CIE can still occur without membrane cholesterol [51]. On the PM, 
cholesterol is transiently enriched in microdomains, commonly known as lipid rafts [52]. 
This fact, together with the absence of rafts in clathrin intermediates and with the 
observation that most of the raft components are endocytosed by non-clathrin-dependent 
pathways, has led to the idea that most CIE occurs in these lipid microdomains. At rafts, 
signaling events are subcompartmentalized in specific nanoplatforms, whose composition 
and, therefore, activity is continuously changing [52]. The wealth of proteins that participate 
in raft signaling events also gives rise to a number of different CIE pathways which differ 
for (i) fission machinery (i.e. dynamin-dependence), (ii) coat composition and (iii) Rab 
effector specificity (reviewed in [4, 32, 50]). Both CME and CIE forms participate in Notch 
signaling activation and regulation. 

Regarding accessory factors, tens of molecules, both proteins and lipids, interact with 
endocytic machinery at various stages. Several recognition modules have been identified, 
including protein-lipid (e.g. PH domain) and protein-protein interaction modules (e.g. BAR, 
SH3-, proline rich-, EH-, coiled-coil domains, ubiquitin interacting motifs (UIM)). It is 
conceivable that this array of interactions may help regulate both CME and CIE by: (i) 
assisting coat assembly/disassembly, (ii) regulating membrane shaping/sculpting and 
fission, and (iii) mediating interaction of the coat with signaling molecules and the 
cytoskeleton (reviewed in [4, 9, 34, 53-55]. 

In this review, we will focus on the molecular details at the basis of the endocytic control of 
Notch activation. Specific emphasis will be made on genetic data in mammals and 
invertebrates that support or validate in vitro interaction and/or models. Since dysregulation 
of Notch signaling contributes to the multi-step progression of a variety of cancers by 
inducing uncontrolled proliferation, the possible therapeutic value of this information can 
be clearly envisaged. 

2. Overview of the Notch signaling pathway 

The first Notch gene was identified in Drosophila melanogaster by J.S. Dexter, in T.H. 
Morgan’s laboratory about a century ago, as a dominant mutant with a peculiar 
toothed/notched wing margin in heterozygosity [56]; this phenotype was later associated 
with additional defects, including thickened wing veins, and bristle abnormalities [57]. In 
hemizygosity, or in homozygous females in flies, Notch loss-of-function mutations are 
embryonic lethal with neuralization of important parts of the ectoderm, leading to 
hypertrophy of the central nervous system and corresponding hypotrophy of the epidermis 
of the fully developed embryo [58, 59]. As anticipated by these data, in higher metazoan the 
Notch pathway is one of a handful of signaling pathways (including Wnt/wingless, 
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BMP/TGF-beta, Sonic Hedgehog, receptor tyrosine kinases, nuclear receptors, JAK/STAT) 
that act reiteratively in cell fate decision and determination in tissues that derive from all 
three germ layers (reviewed in [60, 61]). After development, Notch signaling is required for 
the homeostasis of tissues and stem cells, as underscored by the high number of tumors 
associated with Notch signaling dysregulation, which was an early finding in Notch 
research in mammals.  

The Notch signaling is a cell-to-cell communication pathway that is activated when Notch 
ligands (Delta/Serrate/Lag2-DSL in invertebrates and Delta-like/Jagged, in mammals) on the 
sending cell bind to Notch receptor(s) on the receiving cell. This triggers a sequence of 
proteolytic cleavages, which starts with an ADAM-mediated cleavage at site 2 (S2) [62]. 
While ADAM17/TACE seems to be the main metalloprotease able to cleave Notch receptors 
in vitro [63], animal models point to ADAM10/Kuzbanian metalloprotease for this essential 
function in vivo [62, 64-68]. ADAM proteases leaves a short-lived fragment anchored to the 
PM, called NEXT (for Notch extracellular truncation, see Fig.1), which becomes a substrate 
for the aspartyl-protease presenilin(s), a component of the γ-secretase complex [69, 70]. This 
protease complex (which includes four core proteins, i.e. presenilin 1 or 2, anterior pharynx 
defective 1 (APH1), nicastrin, and presenilin enhancer 2 (PEN2) [71]) operates an 
intramembrane cleavage at site 3 (S3), which releases the Notch intracellular domain 
(NICD). Then, NICD translocates to the nucleus and turns a transcription factor of the CSL 
family (Cp-binding factor 1 (CBF-1)/recombination signal sequence-binding protein Jk 
(RBP-Jk) in mammals, Su(H) (Suppressor of Hairless) in Drosophila, and LAG-1 in nematodes) 
from a repressor [72-74] to a transcriptional activator. Although Notch signaling has such a 
broad impact in a variety of cellular functions, only a limited number of Notch primary 
targets have so far been identified, of which the best characterized are the helix-loop-helix 
transcription factors of the Hairy/enhancer of split (Hes) and Hes-related (Hesr, also known 
as Hey/HRT, CHF and gridlock) families (reviewed in [75-78]). CSL binding sites have also 
been identified in the promoter region of other genes, including c-myc, cyclinD1, p21/Waf1, 
NFk B2, glial fibrillary acidic protein (GFAP), Nodal, GATA3, bcl-2 and CD25 (alpha chain 
of the IL-2 receptor), although the role of these genes as direct Notch targets has still not 
been unambiguously shown (reviewed in [78, 79]). 

2.1. Domain structure of Notch components 

Let us now briefly analyze the architecture of Notch receptors and ligands to highlight those 
structural features that are key factors in endocytosis-mediated signaling activation 
(reviewed in [80, 81]). 

While Drosophila has a single Notch receptor gene, C. Elegans has two (Glp-1 and Lin-12 
[82], which are highly redundant [83]), and mammals have four paralogues (Notch1-4) with 
only partially superimposable functions. The Notch receptor is a type-I transmembrane 
protein which is cleaved in mammals by a furin-like convertase at an external site close to 
the PM (the site 1 (S1)). Proteolytic cleavage occurs in the trans-Golgi network to generate a 
heterodimer at the cell surface composed of two non-covalently associated fragments: the 
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of the IL-2 receptor), although the role of these genes as direct Notch targets has still not 
been unambiguously shown (reviewed in [78, 79]). 

2.1. Domain structure of Notch components 

Let us now briefly analyze the architecture of Notch receptors and ligands to highlight those 
structural features that are key factors in endocytosis-mediated signaling activation 
(reviewed in [80, 81]). 

While Drosophila has a single Notch receptor gene, C. Elegans has two (Glp-1 and Lin-12 
[82], which are highly redundant [83]), and mammals have four paralogues (Notch1-4) with 
only partially superimposable functions. The Notch receptor is a type-I transmembrane 
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Endocytosis in Notch Signaling Activation 335 

Notch extracellular domain (NECD) and the Notch transmembrane domain (NTMD); 
NTMD contains a small portion of the extracellular region, the transmembrane region, and 
the intracellular domain [84, 85] (see Fig.1). The impact of cleavage on signaling activation is 
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delivery of receptors to the cell surface [84, 85], other groups have shown that Notch 
receptors which are defective for S1 cleavage are normally exposed to the cell surface, but 
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support the hypothesis that dissociation of NECD from NTMD (by endocytosis, see later) 
may be a prerequisite for S2 proteolysis. Notably, S1 cleavage-defective Notch receptors 
exhibit little change in their crystal and NMR structure in comparison with wild-type 
receptors [88]; this is in contrast to what happens with some viruses (including avian 
influenza virus, HIV-1, measles and papilloma virus [89-92]) in which furin cleavage 
induces major conformational changes leading to protein activation (reviewed in [93]).  
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transmembrane domain), and which contains the S2 site (at 12 amino acids from the 
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(for Notch binding to the transcription factor CSL/CBF1/Suppressor of Hairless/Lag-1)), 
seven ankyrin repeats (ANK), a transcription activation domain (TAD) and a PEST domain 
(which is implicated in NICD degradation by proteolysis and whose mutation leads to 
increased receptor stability , a condition that closely correlates with cancer, including some 
T-cell leukemias) (reviewed in [80]). LNRs, plus the heterodimerization domain, form the 
so-called negative regulatory region (NRR), which folds onto the S2 cleavage site by means 
of extensive interdomain interactions [94-98]. As analyzed in greater details in section 3.1.1, 
this conformation makes the S2 site inaccessible to ADAM metalloproteases, thus protecting 
the Notch receptor from ligand-independent activation; the key importance of this region is 
underlined by the fact that mutations of the NRR, which activates the Notch receptor, 
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2.1.2. Notch ligand architecture 
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mammalian ligands, three belonging to the Delta-like family (Dll-1, -3 and -4) and two to 
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the Jagged (Serrate homologous) family (Jagged-1 and -2). Starting from the N-terminus, the 
domain structure of the Notch ligands can be outlined as follows (Fig.1): (i) a module at the 
N-terminus of Notch ligands (also known as the MNNL domain) of unknown structure but 
functionally relevant since Jag-1 mutations in this region are present in a subset of patients 
with the Alagille syndrome [99, 100]; (ii) a DSL domain; (iii) a number of EGF-like repeats 
(ranging in number from 16 in the Jagged family to 5–9 in the Delta-like family); (iv) a 
cysteine-rich domain (CRD) present in Jagged but not in Dll ligands; (v) a transmembrane 
domain and (vi) an intracellular domain, highly divergent among Notch ligands, but with a 
conserved PDZ-binding domain in the mammalian Jagged-1, Delta-like-1 and -4. The 
function of this latter domain is unknown, although there is some evidence that its 
interaction with PDZ-containing adherens-junction proteins inhibits cell motility and favors 
epithelial cell assembly [101-103]. Similar to Notch receptors, Notch ligands undergo 
ectodomain shedding by ADAM metalloproteases [104, 105] and RIP) by the presenilin/γ-
secretase complex [104] with the release of a C-terminal intracellular fragment (CTIF). As for 
many other γ-secretase products, including Notch and amyloid precursor protein (APP) 
intracellular domains, CTIF translocates to the nucleus where it may help transcriptional 
activities [104]. In particular, Jagged1 CTIF selectively stimulates the expression of reporter 
genes driven by the AP-1 response element, but not by other broad-spectrum enhancer 
elements [104]; these data point to a possible role of CTIF as a transcriptional co-activator. 

 

 
Figure 1. The domain architecture of mammalian Notch receptors (i.e. Notch-1) and Notch 
ligands/DSLs (i.e. Dll-1) is schematized in this drawing. Asterisks (*) indicate the EGF-like 11 and 12 of 
Notch receptors, which are keys for ligand binding. PM=Plasma Membrane; for other abbreviations, 
please refer to the text.  

2.2. Notch ligand-receptor interaction 

In the last few years, major advances have been made in clarifying the structural details of 
Notch-DSL interaction. This information is highly relevant to understand the effect of 
internalization and membrane trafficking on Notch signaling activation. 
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2.2.1. Structural requirements 

By screening Drosophila Notch deletion mutants for their ability to promote aggregation of 
S2 cells [106], the EGF-like repeats 11-12 of Notch has been identified as the major 
interacting site for DSLs [107, 108]. Subsequent analyses have confirmed this initial 
observation, but have also shown that optimal binding between Notch and its ligands 
requires many of the 36 EGF-like repeats: a minimal Notch interacting fragment composed 
only of the EGF domains 10–13 has a 45-fold lower binding ability to Delta-expressing cells 
in comparison with full-length Notch receptors [109]. The relatively large size of EGF 
domains, their need for extensive disulphide bonding and, possibly, glycosylation for 
proper folding, have hampered the possibility to obtain structural data for Notch ligand-
receptor interaction for many years. However, when an unglycosylated fragment of Notch-1 
encompassing the EGF domains 11-13, was in vitro redox-refolded and demonstrated to be 
able to bind Notch ligands in a calcium-dependent manner, the way to get structural data 
for EGF repeats was discovered: the NMR structure of this fragment was readily solved, 
showing a well-defined, rod-like orientation of EGF-like 11-12, rigidified by calcium [110]. In 
the meantime, other studies have identified the DSL domain of Jagged-1 as the minimum 
binding site for Notch-2, both in vivo and in vitro; interestingly, the EGF-like repeats of 
Jagged-1 immediately downstream of the DSL domain, in particular the first and second 
EGFs, had been shown to considerably improve this interaction with their stabilizing action 
[111]. The convergence of previous information has made it possible to better define the 
structure of the Notch ligand-receptor interaction: the crystal structure of the minimal DSL 
binding site (i.e. the Jagged1 fragment comprising DSL plus EGF 1-3 (Jagged1DSL-EGF3)), and 
that of its Notch receptor counterpart (i.e. the Notch-1 EGF 11-13 fragment (Notch-111-13)), 
were separately obtained [112]. Although it was not possible to make a co-crystal of the 
interaction, in silico docking of Jagged1DSL-EGF3 and Notch-111-13 structures using restraints 
from parallel NMR binding data gave precious information: a single DSL surface is 
responsible for both cis-inhibiting and trans-activating complex of ligand and receptor [112]. 
A parallel study from the same group has also demonstrated that selective mutagenesis of 
the calcium binding site in the EGF-like repeat 12 abrogates ligand binding, thus strongly 
supporting the idea that this EGF repeat is actually the major DSL-binding site [113]. 

2.2.2. Glycosylation function 

Post-translational modifications play a key role in modulating Notch activation. NECD is 
heavily glycosylated and many studies have tried to address the impact of these 
modifications on Notch signaling.  

A protein O-fucosyltransferase (Ofut1 in Drosophila and Pofut1 in mammals [114]) binds 
fucose to specific serine and threonine residues of the EGF-like repeats (reviewed in [115]); 
afterwards, acetylglucosaminyltransferases of the Fringe family (Fringe in Drosophila, 
Lunatic fringe (Lfng), Radical fringe (Rfng) and Manic fringe (Mfng) in mammals) can 
elongate the sugar chain by adding N-acetylglucosamine residues [116].  
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In Drosophila, Ofut1 downregulation by RNAi or gene inactivation results in classic Notch 
loss-of-function phenotypes, including neurogenic defects [115, 117]. The requirement of 
fucosylation for Notch activation is even more evident in mammals, where constitutive 
inactivation of the Pofut1 gene produces developmental defects that are undistinguishable 
from the most aggressive Notch mutants [118]; notably, defects due to Pofut1 absence can be 
fully rescued by expressing a constitutively active form of Notch1, at least in the 
hematopoietic compartment [119]. Taken together, these data show that fucosylation is 
required for proper Notch signaling activation in all species.  

The precise role played by Pofut1 in this process was partially addressed by creating a 
mouse mutant bearing a Notch1 allele which was deficient for the fucosylation in a critical 
EGF-like repeat for DSL binding, i.e. EGF-12: trans-heterozygous mice carrying the Notch112f 
allele and a Notch1 null allele exhibit embryonic lethality, and defects similar to Notch1 
knockouts [120]. However, homozygous Notch112f mice are viable, but with defects in T cell 
specification and functions and, notably, a sharply decreased binding capacity to Delta1-
expressing cells [120], thus pointing to a key function of fucosylation in regulating the 
affinity of Notch receptors for Notch ligands.  

Quite recently, experimental evidence has accumulated for other key roles of Ofut1 besides 
fucosylation. In Drosophila, depletion of Ofut1 determines Notch accumulation in the 
endoplasmic reticulum, where the fucosyltransferase is resident; since transfection of the 
mouse Pofut1 rescues this accumulation defect, it was proposed that Ofut1 might have 
additional chaperone activity for the trafficking of Notch out of the endoplasmic reticulum 
[121].  

Gene knockdown of the Drosophila GDP-4,6-mannose-deshydratase (GMD, a cytosolic 
enzyme that converts GDP-mannose in GDP-4-keto-6-deoxymannose, an intermediate in the 
synthesis of GDP-fucose [122]) generates a loss-of-function Notch phenotype with increased 
Notch degradation but no accumulation in the ER; instead, co-silencing of Ofut1 and GMD 
restored ER accumulation, thus further supporting to the idea that an additional Ofut1 
activity (independent from O-fucosylation) is required for proper exiting of Notch from the 
ER [123]. An Ofut1 chaperone function was suggested to be related to a quality control 
mechanism that scrutinizes Notch receptors for inappropriate inter- or intramolecular bonds 
between EGF-like repeats [124-127]; evidence of such a conserved function in mammals is 
lacking, at the moment.  

Regarding the extension of O-fucosylated residues, Fringe deletion in flies results in a partial 
Notch phenotype with dorsal-ventral boundary defects during wing development [128, 
129], thus formally proving the relevance of this additional glycosylation step at least for 
some aspects of Notch signaling activation (reviewed in [130, 131]). In mammals, evidence 
for a similar conserved function is accumulating. Although the three Fringe homologues 
have very similar enzymatic activity, substrate specificities and tissue distribution [132], 
only Lfng inactivation results in Notch-related defects, including (i) impairment of T cell 
maturation (since a developmental stage–specific expression of Lfng is required for the 
access of T cell progenitors to intrathymic niches that support Notch1-dependent T cell 
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development [133]), and (ii) subversion of somitogenesis in some body districts, with major 
alterations in vertebral and rib cage morphogenesis [134, 135]). Conversely, Rfng and Mfng 
knockouts display no obvious phenotypic defects. Furthermore, no synergistic defects were 
observed in mice lacking all fringe genes, thus questioning function redundancy in this gene 
family [136-138]. Notably, in vitro glycosylation and ligand binding studies and in vivo 
genetic data have established that the addition of N-acetylglucosamine onto O-fucose 
indeed modulates the affinity of Notch ligand-receptor interaction in an opposite manner, 
i.e. by enhancing Notch binding to Delta and inhibiting Notch binding to Serrate [139-141].  

In addition to fucosylation, Notch receptors are also modified by O-glucosylation. Genetic 
studies in flies and mammals have shown that inactivation of the only enzyme responsible 
for the addition of O-glucose to EGF-like repeats, i.e. protein O-glucosyltransferase (Poglut/ 
Rumi), results in severe Notch phenotypes [142, 143]. Notably, Rumi activity is required in 
the signal-sending cell, where it has neither chaperone-like activity [142, 143] nor a function 
in ligand binding, since Notch in fly rumi knockdown cells binds Delta as efficiently as in 
control cells [142]. The concentration of NICD is dramatically reduced in several tissues of 
Rumi mutants [142], thus pointing to a function of O-glucosylation in Notch proteolysis, 
rather than in ligand binding. The structural basis of this function is unknown, but it is 
plausible that O-glucosylation may affect the structure of the NECD so that an initial 
constraint for S2 cleavage is removed [131, 144].  

Therefore, genetic and in vitro data on Notch glycosylation indicate (i) that O-fucosylation 
and O-glucosylation play a general role in Notch signaling activation (albeit with different 
mechanisms), while N-acetylglucosamine addition is required for more specific aspects of 
this signaling activation, and (ii) that O-fucosylation and its acetylglucosamine extension 
mainly acts by regulating the affinity of DSL-Notch interaction. 

3. Endocytosis in notch signaling activation 

An absolute requirement for endocytosis was an early finding in Notch studies. Notably, the 
shibire mutant (i.e. a temperature-sensitive mutant of the endocytic fission protein dynamin 
in flies [145]), results in a developmental phenotype with an excess of neural cells when 
raised to restrictive temperature, i.e. with defects which closely phenocopy the Notch 
mutant [146, 147]. This phenotype is in sharp contrast to other signaling pathways, which 
are not severely disrupted in the shibire mutant (e.g. wingless [148], although even this 
signaling is affected by endocytic defects [149-151], as for most other signaling pathways 
(reviewed in [152])). The staminal observation of genetic interaction between dynamin and 
Notch prompted investigation of the requirement for dynamin function (i.e. endocytosis) for 
Notch signaling during the segregation of sensory bristles of the fly [153]. Overexpression of 
activated Notch isoforms (either membrane tethered or soluble) suppresses the shibire 
phenotype, thus indicating that endocytosis main action is upstream of the signal 
transduction promoted by Notch activation [153]. Notably, when wild-type Notch has to be 
activated by its ligand Delta, dynamin is required in both signaling and receiving cells, as 
shown by mosaic analysis in which bristles along the border can be either wild-type or 
mutant [153]. 
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Localization studies of Notch and Delta during fly development showed that both Notch 
and Notch ligands were in a dynamic equilibrium between a PM pool and an intracellular 
vesicle pool, with a transition to internalized pool upon interaction of adjacent cells [154]. 
Delta is detected at both the PM and in vesicles only at some stages of specific 
developmental systems, while it is mostly internalized in others, including all stages and cell 
types of retinal development [154-158]. Morphological analyses of Delta subcellular 
localization in this latter development system have clarified that most, if not all, Delta-
containing vesicles have an endocytic origin [159, 160]: Delta is re-localized to the PM in the 
full endocytic mutants, hook and shibire, thus supporting the idea that Delta is initially 
transported to the cell surface, but then it is taken up very quickly and efficiently by 
endocytosis to be delivered to the endocytic compartment [159, 160]. These and other 
observations [106, 161] suggested that an endocytic event could precede Notch activation. 
Direct evidence in support of this hypothesis came from (i) antibody uptake assays in living 
Drosophila tissue and in mammalian cells, which showed that DSLs are rapidly and 
efficiently internalized upon antibody binding and clustering [162-164], (ii) transfection 
assays with endocytosis-defective DSLs, which provided direct evidence that Notch ligand 
internalization is required to activate Notch signaling [164, 165], and (iii) uptake assays of 
recombinant forms of DSL (Delta1-Fc chimeric protein) [166] and of Notch-1 (N1Fc chimeric 
protein) [167], which showed that even soluble fragments of Notch ligands and Notch 
receptors, upon clustering, could potently promote the internalization of their cognate 
partners. Under these conditions, the Delta1-Fc chimera was also proved to be able to fully 
activate canonical Notch signaling [166].  

Thus, the paradigm in the field is that Notch signaling critically depends on DSL 
endocytosis for its activation and modulation. We shall now analyze the molecular 
machinery involved in this process. At present, as the reader will see, only partial 
information is available, with (many) puzzling and (some) conflicting results. 

3.1. Notch ligand endocytosis 

The molecular characterization of DSL endocytosis began to attract great interest when it 
was published an in-depth morphological analysis of the effect of the shibire mutation on the 
localization of Delta and Notch in retinal development. This seminal work prompted a 
wealth of new studies on the relationship between endocytosis and Notch signaling [165]. In 
this paper, it was shown with stunning morphological data that NECD detaches from the 
Notch receptor on the signal-receiving cells (i.e. on the latticework cells) and is internalized 
or, more specifically, trans-endocytosed in the signal-sending cells (i.e. in the cone cells) in a 
complex with Delta. Notably, this process tightly correlates with the Notch signaling 
activation that underlies the cell fate specification of the retinal latticework, thus supporting 
the idea that NECD trans-endocytosis is requested for Notch activation. As expected, Notch 
receptor dissociation and its trans-endocytosis were severely hampered in the shibire mutant 
(i.e. in a condition in which endocytosis is blocked at the fission reaction of the clathrin-
coated pit from the PM - see above), as well as when endocytosis-defective mutants of Delta 
were expressed in cultured cells [165]. Furthermore, this trans-endocytic mechanism was 
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also found to be active in another developmental system under strict Notch control, i.e. 
wing vein development, thus suggesting its universal use in Notch activation [165]. Besides 
further supporting a role of endocytosis in Notch activation, these data suggest a possible 
mechanism of how DSL endocytosis might control Notch signaling: the dissociation of 
NECD, which is triggered by DSL endocytosis, is the event that activates Notch by possibly 
giving access to its cleavable sites. In partial support of this hypothesis, previous studies 
indicated that Delta proteins lacking the intracellular domain (i.e. lacking the binding site 
for endocytic adaptors so that DSL endocytosis cannot occur) acted as dominant-negative 
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epsin was found to be implicated in a subset of DSL endocytic events which were able to 
activate Notch, while the bulk of DSL endocytosis (i.e. the constitutive endocytosis of Delta) 
was neither related to epsin function nor to Notch signaling [171]. Rescue of epsin absence 
was achieved by expressing a chimeric DSL, in which the intracellular tail was replaced by a 
short internalization signal of the LDL receptor, which was known to mediate the 
internalization and recycling of many proteins through the endosome [172]. Further studies 
in Drosophila and in mammalian cells have substantiated this initial observation of the 
existence of a possible trafficking step for the maturation of Notch ligands: (i) a defect in 
Delta trafficking through the recycling endosome was proposed to cause the aberrant cell 
fate transformation in sec15 mutant sensory lineages (see next paragraph for links of this 
developmental pathway to Notch signaling) [173]; (ii) expression of a dominant negative 
Rab11 (a small GTPase which regulates trafficking from the recycling endosome to the PM) 
was associated with DSL accumulation in endosomes and Notch signaling failure in a 
mammalian co-culture system [174]; (iii) an ubiquitylation-defective mutant of Dll1 can be 
efficiently endocytosed, but in contrast to the wild-type isoform is unable to recycle back to 
the cell surface and, possibly as a consequence of this trafficking defect, to efficiently bind 
Notch1 in a mammalian cell system [175].  

An important question on the “ligand maturation” model regards the nature of the DSL 
activation process. In the lqf paper [171], a proteolytic step for lqf was identified, which was 
absent in epsin mutants but present in wild type-cells; it was speculated that this processing 
could indeed be Delta’s activation step. Other Authors have looked for DSL processing in 
another system in which Notch ligand trafficking is essential, i.e. the sensory organ 
precursors (SOP) system (see next paragraph), but they failed to detect any evidence of DSL 
pre-cleavage [176], thus leaving unsolved the question of which molecular action eventually 
makes DSLs competent for Notch activation.  

Intracellular trafficking can also activate DSLs with another mechanism, i.e. by re-localizing 
DSL from a membrane domain where it cannot interact with Notch to a membrane domain 
where this interaction can efficiently occur. This “highly-polarized cell” model is supported 
by at least two key sets of experiments undertaken in the Drosophila SOP system. This 
system is related to the development of the sensory organs (i.e. the mechanosensory bristles) 
located along the cuticle of the adult Drosophila, and is critically dependent on Notch: during 
a program of three rounds of asymmetric cell division [177, 178], each division generates one 
daughter cell that assumes the signal-sending role and uses DSLs to activate Notch in its 
sibling, which acts as a signal-receiving cell [179]. In the signal-sending cells of SOP, Delta 
localizes both at the apical and at the basolateral membrane, while Notch accumulates 
apically [180]. By using a pulse chase antibody uptake assay coupled to confocal microscopy 
sectioning, it was demonstrated that the basolateral pool of Delta is continuously 
endocytosed and delivered to the apical PM, where the interaction with Notch is most likely 
to occur [180]. This observation was extended by the same Authors to highly-polarized 
mammalian cells: by using a compartmentalized antibody uptake assay, they showed that 
Dll1 is similarly internalized from the basolateral membrane of Madin-Darby canine kidney 
cells and then transcytosed to the apical plasma membrane where Notch1 accumulates 
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[180]. In a second set of experiments on SOP the function of two primary regulators of actin 
dynamics was explored, i.e. the Arp2/3 complex and the Wiskott-Aldrich syndrome protein 
(Wasp) (reviewed in [181-183]). It was found that Arp2/3 and WASp were responsible for 
the nucleation of a filamentous actin-rich structure (termed ARS) underneath the PM of pIIb 
(signal-sending) and pIIa (signal-receiving) cells at two different locations: (i) the apical 
domain, where it is responsible for microvilli elongation, and (ii) the lateral cell-cell contacts 
between pIIa and pIIb cells following SOP division [176]. Besides giving rise to this 
specialized actin cytomatrix, Arp2/3 and WASp also regulated the trafficking of Delta along 
the ARS in quite a unique manner: Delta was internalized from that part of the apical cell 
surface where microvilli were not clustered, and travelled basally, where it was then re-
localized apically to the microvilli-rich portion, exactly where the contact with Notch 
usually occurs [176]. By inactivating Arp2/3 function, the ARS architecture was perturbed 
while Delta was still internalized. However, Delta failed to be delivered to the apical 
microvillar portion of the PM, being stopped in the basal portion of pIIb cells. Collectively, 
these data support a fundamental function of actin cytoskeleton in Delta trafficking, which 
is requested in the SOP system in order to localize DSL where interaction with Notch can 
occur. Conversely, a role of actin in DSL internalization is not requested in this 
developmental organ system [176, 184], while it is essential in other systems, cells and 
organisms (reviewed in [185-188].  

A universal requirement for DSL trafficking does not seem exist for all tissues or 
developmental systems. Rab11 function, which was found to be essential for Delta 
trafficking and activation in the SOP system, is not required for Drosophila eye development 
[189], nor for germinal cell signaling [190]. In both these Notch-dependent events, 
endocytosis was required and a specific need for epsin, but not recycling, was evident at 
least in eye development [189]. 

More recently, the emerging structural findings described in section 2.2.1 have steered and 
re-focused the attention on the “pulling force” model. Direct evidence supports this model. 
As already discussed, using classical techniques to study membrane trafficking events it was 
possible to demonstrate that DSL-mediated receptor dissociation precedes and permits the 
proteolytic activation of Notch both in flies and in mammalian cells [87, 165]. A better 
structural appreciation of this event was acquired by using a material science technique to 
study surface morphology at the atomic level. Atomic force microscopy, applied to protein 
(or other molecules) interactions, can quite precisely measure the force applied to make 
contact between two interacting surfaces (the contact force) and the force applied to detach 
them after contact (the detachment force). This technique was then adapted to measure cell-
cell adhesion [191] and was used to characterize Notch interaction [192]. A specific setup 
was engineered to mount a single S2-Delta-expressing Drosophila cell on the “tip-less” 
cantilevers, while immobilizing a S2-Notch-expressing cell in a plate well, and adhesion 
forces derived from this cell-cell interaction were measured [192]. The results of this elegant 
experiment showed that (i) expression of full-length Notch is required to produce maximal 
adhesion force (in the order of ~14 nN, comparable to a cell-cell adhesion contact) and 
signaling with S2-Delta cells; (ii) upon contact, this considerable adhesion force is lost within 
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minutes (~10min.), as a direct result of the proteolytic cleavage of Notch, then signaling 
starts to rise very quickly (this timing is compatible with the time-course of Notch signaling 
in lateral inhibition models where the signaling event is accomplished in less than 20 min 
[193, 194]); (iii) Ofut1 RNAi in S2-Notch cells abolish the detachment force from S2-Delta 
cells, consistent with a reduced binding capacity of unfucosylated Notch to Delta [120, 195] 
(iv) if pulling is applied to S2-Delta cells by cantilever retraction, the detachment force from 
the S2-Notch cell drops with an increased kinetics, suggesting that a stretching action 
accelerates proteolytic cleavage of Notch. Taken together, these observations support the 
notion that Notch proteolytic cleavage depends on the strength of Delta binding [192], thus 
providing key structural data to support the “pulling force model” of Notch activation. 

Since Notch proteolysis proceeds constitutively after exposing the S2 cleavage site (either by 
shedding of the Notch ectodomain or through its stretching), this unmasking reaction has to 
be considered the true rate limiting step of Notch signaling activation [196]. What are the 
structural constraints that keep S2 in an inactive silent state, preventing unwanted activation 
before ligand interaction? How are these constraints lifted/eased/modified during Delta-
mediated NECD pulling? As anticipated in section 2.1.1, experimental evidence points to the 
NRR region of NECD for this key inhibitory action of Notch cleavage. Receptors that lack 
EGF-like repeats cannot undergo constitutive proteolytic cleavage and are functionally inert 
[70, 94, 108, 197-199]; conversely, an NTMD construct undergoes constitutive cleavage to 
release NICD [87]. Taken together, these data indicate that the restraints on ligand-
independent activation of Notch receptors reside in a region downstream of EGF-like 
repeats but upstream of NTMD. This region corresponds to the three LNR repeats plus the 
HD domain, i.e. the NRR (see Fig.1). Key evidence to support this idea came from the 
isolation of Notch gain-of-function or loss-of-function phenotypes directly related to the 
NRR. (i) Antibodies raised against the NRR region did not compete with ligand binding to 
the receptor, but strongly inhibited Notch activation [96, 200]. Notably, those inhibitory 
antibodies recognized a conformational epitope lying on a face where the first LNR repeat 
(LNR-A) approaches the β-sheets of the HD (HD2), supporting the idea that autoinhibition 
is due to the clamp of LNR1 and HD2 together (see later for structural considerations) [96]. 
Conversely, an anti-Notch-1 antibody that recognized a linear epitope in the LNR1 domain 
only was activating Notch signaling, possibly by inducing a conformational change of the 
LNR1 that opened the access to the S2 site [96]. (ii) Mutations in the NRR of Notch receptors 
produced gain-of-function phenotypes in various biological contexts, including invertebrate 
developments. An activating mutation of the glp-1 Notch receptor in C. Elegans was located 
in the LNR1 of the molecule [201], while a bunch of activation mutations of the other Notch 
receptor in worms (i.e. lin-12) were found to be spread in both the LNR and HD region, with 
a preference for the latter domain [202]. (iii) A subset of patients, who develop T-cell acute 
lymphoblastic leukemia, have gain-of-function mutations of Notch-1, which clusters in two 
regions: the HD domain and the C-terminus (including the TAD and PEST domains). While 
the C-terminal mutations were found to increase NICD stability, the HD mutations increase 
Notch-1 proteolysis, as suggested by the blocking of their stimulatory activity by γ-secretase 
inhibitors [203].  
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Many structural data have been collected in recent years that have helped to clarify the 
mechanistic details of NRR function, in particular (i) the NRR role in protecting S2 from 
constitutive cleavage and (ii) the kinetics of S2 autoinhibition. At present, the crystal structure 
of the NRR of human Notch-1 [88], of human Notch-2 [98], and the co-crystal of inhibiting 
antibodies, together with their target NRR epitopes [204], have been solved at high resolution. 
The NRR of Notch-2, the first NRR analyzed, was seen to form a very compact structure with 
overall dimensions of 60Åx45Åx25Å [98]. The three irregularly folded LNRs wrap around the 
HD domain forming “a cauliflower-like shape, in which the LNRs 'florets' cover and protect 
the HD domain 'stem'” [98]. The two halves of the HD domain, (i.e. the HD-N before the S1 
site and HD-C after this site, see Fig.1) form an intimately intertwined α/β sandwich 
containing three α-helices and five β-strands connected by several conserved loops [98]. The 
inner, concave face of the HD domain has hydrophobic residues pointing toward its center. 
The S2 site is on the β5-strand of the HD-C and it is actually buried in a small pocket that 
prevents protease accessibility; the pocket is formed by the hydrophobic residues of  α-HD -C 
and of the LNR-AB linker. In particular, it is thought that a leucine residue (L1457) extends 
from the LNR-AB linker toward a critical valine residue (V1666) at the C-terminus of the S2, 
thus obliterating the access to the ADAM cleavage site [98]. The α3-helix above the S2 site is 
stabilized by hydrophobic interactions with residues in the LNR-B and in the LNR-AB linker 
plus a conserved hydrogen bond from LNR-A [98]. Consistent with previous structural data, 
deletion of LNR-A, the LNR-AB linker and LNR-B makes a constitutively activated Notch-2 
[98]. The Notch-1 NRR structure is similar, although not identical, to that of the human Notch-
2 NRR, with the classic conformation of the LNR-AB linker providing a key leucine residue 
that packs tightly against the C-terminal valine of the S2 site. As for NRR2, the folding of the 
HD domain has a rather stiff structure that is stabilized by extensive interaction between 
helices and strands. These data confirm a common autoinhibition strategy that is implemented 
among Notch family members [95].  

Additional and fundamental structural data on Notch NRR function and dynamics came 
from the field of Notch immunotherapy and from the application of unconventional 
structural techniques. In an effort to overcome problems generated by the clinical use of 
presenilin inhibitors to silence the Notch pathway (in particular, the lack of selectivity for 
this pathway with a consequent broad toxicity), phage display technology was used to 
generate highly specific antibodies that could selectively antagonize a single Notch paralog 
(i.e. able to distinguish between Notch-1 and Notch-2) [204]. A co-crystal of this interaction 
shows that inhibitory, anti-NRR1 Fab-fragments bridge the LNR and HD domains, thus 
locking the NRR in a clamped conformation, which makes the S2 site unreachable for 
metalloproteases [204]. Further key data for the understanding of NRR-dependent S2 
activation came from the application of hydrogen exchange mass spectrometry, a technique 
that monitors the exchange of deuterium between the solvent and the backbone amides 
during conformational changes [205, 206]. More specifically, when a surface of a protein is 
exposed it is rapidly deuterated, while when it is masked the exchange of hydrogen for 
deuterium is slow, or it does not happen at all. This technique was used to monitor the 
accessibility of the S2 cleavage site in a condition which should mimic ligand-dependent 
Notch activation, i.e. by chelation of Ca2+, a condition which causes the dissociation of the 
Notch receptor and triggers its signaling [207] (although widely used, Ca2+ chelation cannot  
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Figure 2. The different recycling and activation pathways of Notch ligands (DSLs) and of Notch 
receptors are outlined. In Red=Notch ligands/DSLs, in green=NECD, in blue=NTDM, in violet=the 
Notch transcriptional complex, PM=plasma membrane, S3=the Notch S3 site, which is cleaved by the γ-
secretase complex to release NICD (where indicated, it represents the location of its presumable action); 
the orange (*) asterisk indicates a putative, activated state of DSL, after its recycling. For abbreviations, 
please refer to the text and to Fig.1.  
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be considered a surrogate of DSL action on the Notch receptor but obvious experimental 
constraints prevented the use of a more physiological condition). The results of these 
experiments showed that (i) upon Ca2+ chelation, LNR-A unfolding was the first event to 
occur, followed by the unfolding of LNR-B; (ii) after unfolding of the first two LNRs, the S2 
site became accessible to the external environment, thus confirming previous results with 
deletion mutants in which removal of the LNR-A and LNR-B regions was sufficient to 
obtain a constitutively activated receptor [98]; (iii) Ca2+ is fundamental in stabilizing the 
secondary structure of LNR repeats [98]; (iv) HD-N and HD-C do not separate when S2 is 
exposed, and the HD domain maintains its folding for a very long time after Ca2+ chelation 
(i.e. well beyond the proteolytic cleavage of the receptor is terminated). This latter 
observation may indicate that ectodomain shedding is not an absolute prerequisite for the 
activation of the Notch proteolytic cascade [97]. To summarize, these structural data suggest 
that LNR-A and –B repeats are the fundamental gatekeepers of Notch activation as they 
control access to the Notch S2 cleavage site. Interestingly, in a recent paper, topology-based 
coarse-grained and physics-based atomistic molecular dynamics simulations were used to 
predict the conformational changes that occurred in the NRR by intrinsic and force-induced 
mechanisms [208]. These computer simulations showed that LNR unfolding is not sufficient 
to unmask the S2 site, but the continuous application of an external stretching/pulling force 
is needed to unfold the HD domain and, in particular, its β-5 strand [208]. Notably, the 
extension force required to unfold the β5 strand should be much lower than the force 
needed for heterodimer dissociation [208], suggesting that dissociation of Notch receptor is 
not needed for its activation, since an intermediate state with exposed S2 site might persist 
for a significant period of time before global unfolding and heterodimer disassociation 
occur. These predictions provide new and unforeseen roles for HD in Notch activation that 
definitely need experimental support. 

3.1.2. Specialized endocytic machinery 

Genetic evidence in invertebrates and mammals points to ubiquitylation (also referred to as 
ubiquitination) as the master regulatory mechanism controlling the endocytosis implicated 
in Notch signaling activation (reviewed in [209-211]). 

Ubiquitylation, i.e. the conjugation of ubiquitin to proteins, is a rather common post-
translational modification that regulates protein stability, localization, and activity 
(reviewed in [9, 11, 212-215]). Ubiquitin is a small conserved protein, whose C-terminal 
glycine (Gly76) can be engaged in a covalent isopeptide bond with the ε-amino group of 
lysine residues in substrate proteins. Ubiquitin can serve as an acceptor to form a 
polyubiquitin chain via one of its seven lysine residues (K6, K11, K27, K29, K33, K48 and 
K63). A hierarchical set of three enzymes acts in a sequential process to operate ubiquitin 
modification: (i) ubiquitin-activating (E1), (ii) -conjugating (E2), and (iii) -ligating (E3) 
enzymes. The large numbers of the latter enzymes (of which, the best studies are the Really 
Interesting New Genes (RING)-type and Homologous to the E6-AP Carboxyl Terminus 
(HECT)-type E3s) provide specificity to this post-translational modification in determining 
which substrate proteins will be modified. Ubiquitin can be attached in different amounts 
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which have an impact on protein stability, localization and activity: (i) as a single molecule 
(monoubiquitylation), (ii) as multiple monomers linked to different lysine residues of a 
protein (multiubiquitylation), and/or (iii) as chains of ubiquitin molecules of various lengths 
and linkages (polyubiquitylation). Based on the linkage type, polyubiquitylation can be 
homotypic or heterotypic: it is homotypic when the same lysine residue is used for the 
sequential conjugation of ubiquitin moieties, while it is heterotypic (or mixed-linkage) when 
different ubiquitin’s lysines are used to add monomers to the growing chain [216]. 
Furthermore, polyubiquitin chains can be linear (usually when homotypically built) or 
ramified (when the heterotypical linkage is used). Ubiquitin moieties are recognized and 
non-covalently bound by specific modular elements, collectively called ubiquitin-binding 
domains (UBDs), which are now classified in different families, according to their structural 
homology [217]. Ubiquitylation is requested for many cellular processes, including 
proteasomal targeting and degradation of proteins, cell division, apoptosis, immune 
response, cytoskeleton dynamics, DNA transcription and repair, signal transduction, quality 
control and, last but not least, membrane trafficking, of which endocytosis and endosomal 
sorting are the best characterized ubiquitin-regulated events (reviewed in [6, 11, 212, 214, 
218-224]}. Ubiquitylation can be reversed by multiple deubiquitinating enzymes (DUBs), the 
study of which constitutes a fast growing field of research (reviewed in [225-230]). 

The first hint that ubiquitylation might be a necessary step for Notch activation came from 
the correlation between two sets of data, obtained almost twenty years apart: (i) a mutation 
screening in Drosophila identified neuralized (neur) among various genes phenocopying 
Notch neurogenic defects [59], thus indicating genetic interaction between that protein and 
Notch signaling; (ii) neur was seen to encode for a RING-type ubiquitin E3 ligase [231, 232]}, 
whose mutations in the catalytic domain were not able to rescue neur mutant embryos, thus 
formally proving that ubiquitylation is essential for Notch signaling in vivo [232]. In the 
same year, Xenopus neuralized was seen to carry out the same functional and biochemical 
activities as for the fly homologue [233].  

Since then, an impressive number of experiments has been carried out on Neuralized 
activity and action in invertebrates. Key advances can be summarized as follows. (i) The 
RING domain was found to be critically required for Delta endocytosis: as expected, when 
the mutant neur is expressed, Delta stays mainly on the PM but re-localizes to internal 
vesicles upon (over) expression of the wild-type gene [163, 231, 234, 235]. The activity of 
Neur was firmly localized in the Notch-sending/DSL-bearing cell following cell-
transplantation experiments [234]. As a collateral observation, it was documented that fly 
cells overexpressing Neur had a reduced level of Delta due to increased proteasomal 
activity, secondary to massive polyubiquitylation [231, 234]. (ii) Two critical lysine residues 
for Neur-mediated ubiquitylation (K688, K742R) were identified in a screening of Delta 
mutants for aberrant subcellular trafficking (i.e. mutants with a stable PM localization) [236]. 
Similar results were seen in a study on Serrate to uncover motifs leading to its 
internalization: two highly conserved lysines (K1272, K1290) were identified which are 
conserved between Drosophila Serrate and mammalian Jagged, and whose mutation resulted 
in blockage of DSL endocytosis and Notch activation [237]. However, the sites and types of 
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ubiquitylation for endogenous DSLs are not yet known [237]. (iii) Neuralized-binding 
motifs, independent of ubiquitylated lysines, were identified on Delta and Serrate in the 
form of an NXXN sequence conserved among species, [238, 239]. (iv) Since a function of 
Neur in cis-inhibition was supposed due to its activity in Delta degradation [231, 233], it was 
demonstrated that overexpression of Neur indeed causes cis-inhibition, but Neur activity is 
not requested for this fundamental function during development [237]. 

In mammals, two neuralized-like genes, Neurl1 and Neurl2, are present. Quite surprisingly, 
inactivation of these genes does not result in major phenotypic defects [240-242]. Only subtle 
defects were scored in Neurl1-/- mice: (i) male mutants are sterile due to a defect in the 
axonemal organization of spermatozoa that leads to immotile sperm [242]; (ii) female KOs are 
defective in the final stages of mammary gland maturation during pregnancy [242]; (iii) 
Neurl1-/- mice are hypersensitive to ethanol effects on motor coordination and exhibit a defect 
in olfactory discrimination [241]. Only these latter defects can be putatively connected to an 
impairment of some subtle (yet to be defined) function of Notch in mammalian neurons, but 
no classical Notch signaling defects are identifiable in these mutants. Clearly, a compensation 
by the remaining Neurl2 gene was suspected, but, surprisingly and unexpectedly, inactivation 
of both Neurl1 and 2 did not result in any overt Notch defect in mice [240]. 

Neurls are not the only Notch-ligand specific E3 ligases present in vertebrate genomes. 
Another family, named after its first member mind bomb (mib), was identified in Zebrafish in 
a screening for neurogenic phenotypes (in which several Notch signaling components were 
also isolated [164]). Mib encodes for another RING-type E3 ligase, whose loss-of-function 
mutants cause major Notch developmental defects in the Danio R. [164]. Mib and Neuralized 
show complementary functions: (i) as for Neur, Mib(s) act(s) in the signal-sending cell [164] 
by promoting endocytosis of various DSLs, including Xenopus Delta [243] and Zebrafish 
Delta [164]; (ii) two mib genes are present in Drosophila with tissue distribution that 
complements that of Neur: inactivation of Mib indeed caused Notch defects in flies, but only 
in those tissues in which Neur was not expressed, while in tissues in which both Neur and 
Mib(s) were expressed, Notch phenotypes arose only upon co-inactivation of all E3 ligases 
[162, 243-245]. (iii) Mib1 cannot rescue Drosophila neur mutants [162], and, conversely, Neur 
and Mib1 cannot compensate for mib2 defects in myoblast fusion and muscle homeostasis 
[246], thus showing that Mib(s) and Neur probably have other functions besides the 
ubiquitylation of DSL substrates. 

Inactivation of Mib1 in mice finally results in a pure Notch phenotype, which recapitulates 
the most severe mammalian mutants of this signaling pathway [240]. Surprisingly, triple 
Neurl1/Neurl2/Mib2 knockout mice do not show major phenotypic defects, suggesting that 
Mib1 is the only essential E3 ligase for Notch activation. In support of these genetic data, 
knockdown of mib1 expression by siRNA dramatically reduces Notch activation in 
mammalian co-culture experiments [247, 248].  

Activation of DSL internalization by ubiquitin moieties requires UBDs recognition and 
functional binding. Genetic experiments in mammals and invertebrates point to epsin 
family members as the principal actors in linking endocytosis, ubiquitylation and Notch 
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activation. Epsins are highly conserved genes with two homologues in yeast (Ent1, Ent2) 
[249], one in Drosophila (Lqf) [250], and three epsin genes (Epn1, 2 and 3) in mammals. 
While epsins 1 and 2 are expressed in all tissues [251, 252], epsin 3 is restricted to surface 
epithelia [253, 254]. Epsins have a characteristic, highly conserved, three domain structure: 
(i) a Epsin N-Terminal Homology (ENTH)-domain for phosphoinositides binding, in 
particular PtdIns(4,5)P2 [255, 256]; (ii) a central region which interacts with clathrin and its 
adaptor AP2; (iii) a C-terminal domain with multiple NPF motifs for the recognition of 
Eps15-homology (EH)-domain-containing proteins, including the endocytic adaptors 
Eps15(R) and intersectin1/2 [251, 257]; (iv) multiple Ubiquitin Interacting Motifs (UIMs) 
between the ENTH domain and the central domain for mono/polyubiquitin binding and for 
epsin (mono)ubiquitylation [258]. Epsin was initially characterized to be at the center of a 
highly regulated network of ubiquitinating and deubiquitinating enzymes: (i) Drosophila 
epsin (lqf) is the substrate of fat facets (faf), a deubiquitinating enzyme whose mutation is 
embryonically lethal in the fly [250]; (ii) RPM1/Highwire/Hiw, an E3 ligase of the RING 
type, regulates synaptic morphology (in flies and nematodes [259]), where a lqf function was 
also demonstrated [260]; (iii) although Lqf is not a substrate for Highwire [259], Hiw and Fat 
facets interact genetically and act as mutually antagonistic regulators of presynaptic growth 
[261]; (iv) epsin in neurons undergoes cycles of multi(mono)ubiquitylation/deubiquitylation, 
that change epsin affinities for interactors [262]. Based on this interaction, epsins were 
classified as housekeeping clathrin-associated sorting proteins (CLASPs) with specificity for 
ubiquitylated cargos (e.g. the EGF receptor upon ligand binding [251, 258, 263-267]), with 
the additional function of promoting membrane curvature [256, 268]. Genetic studies in 
yeast and Dictyostelium have also shown an additional role of epsin hortologues in the actin 
dynamics, which correlates with the endocytic function [269, 270]. However, at least in 
yeast, endocytosis has different requirements, being actin- but not clathrin-dependent, as in 
multicellular organisms (reviewed in [187, 188]).  

Genetic studies in invertebrates have shown that the only epsin gene present in these species 
is required for the activation of Notch signaling [171, 245, 271, 272], and that this function is 
closely related to DSL ubiquitylation [245]. Genetic experiments in mammals have 
confirmed those studies and firmly established the essential role of epsin1 and 2 in Notch 
activation in vertebrates [273]: (i) the absence of epsin1/2 expression during mouse 
development correlates with embryonic lethality at midgestation, with multiorgan defects 
highly reminiscent of the most severe Notch mutants; (ii) accordingly, expression of Notch 
primary target genes is severely reduced in epsin1/2 double knockout embryos. 
Surprisingly, housekeeping forms of clathrin-mediated endocytosis were not impaired in 
cells deriving from those embryos [273]. 

A very recent study has provided evidence that epsins might have a previously unforeseen 
role in membrane fission [274]. In particular, predictions based on biophysical models 
support the idea that amphipathic helices (as those present in the epsin ENTH domain) 
could create a higher energy state due to their limited insertion into the polar head region, 
but not into the hydrocarbon region of the PM. This accumulated energy, when released, 
will crucially favor the fission reaction. This hypothesis was carefully tested in vitro by cell-
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free vesiculation assays and some correlative morphological tests in cultured cells: results 
confirm the prediction, thus sustaining a role for epsins that could parallel to or substitute 
that of dynamin [274]. Furthermore, it was found that simultaneous depletion of epsin1/2/3 
by knockdown experiments results in the impairment of all current paradigms of clathrin-
dependent endocytosis, thus suggesting a general role of epsin in the core machinery of this 
endocytic pathway [274]. Interestingly, single epsin KDs, or any combination of two of 
them, have little effect on endocytosis [274].  

Taken together, these experiments suggest that epsins are the best candidates to explain the 
molecular action of ubiquitylation in DSL endocytosis, although the machinery behind this 
function has still to be fully uncovered. Triple epsin knockout mice could be the key to shed 
light on this molecular network. 

Regarding the types of endocytosis, most of the evidence cited in section 3.1 strongly 
supports a clathrin-dependent pathway for DSL uptake. However, in invertebrates and, 
more specifically, in their oogenesis, Delta endocytosis could occur in an AP-2- and clathrin-
independent way, as assayed by Notch activation of surrounding follicular cells triggered 
by germline clones bearing mutations of clathrin and AP-2 adaptor subunits, but not 
dynamin [190]. In the same system, it was also analyzed the dependence of Notch activation 
on endosomal trafficking in signal-sending cells: germline clones mutant for small GTPases 
that critically regulate the endosomal compartment, including Rab5 and Rab11, normally 
activate Notch in follicular cells. Taken together, these data support the absolute 
requirement for dynamin in DSL uptake. Conversely, neither CME nor endosomal entry of 
DSLs are universally required for Notch activation [190] (and, see section 3.1.1). 

3.2. Notch receptor endocytosis  

As discussed at the beginning of section 3, a strict requirement for endocytosis in the signal-
receiving cell is supported by Drosophila studies on the shibire mutation in the sensory bristle 
development [153]. However, the mechanistic and molecular information available for 
Notch receptor endocytosis is very poor (and, sometimes, contradictory) in comparison with 
the large amount of data available for DSL internalization and trafficking. 

3.2.1. Notch receptor internalization and PM-emanating signals 

Some recent results seem to question the requirement of Notch receptor internalization for 
the activation of its signaling. In mammalian HeLa cells, overexpression of a dominant 
negative form of dynamin (the K44A mutation) does not prevent the processing of a 
chimeric NEXT to generate the NICD, which then translocates to the nucleus and activates 
signaling [275]. Blockage of the internalization step increases γ-secretase-mediated Notch 
processing and downstream signaling, suggesting that Notch receptor endocytosis might 
tame the Notch signaling emanating from the PM, as observed for other signaling pathways 
(see section 1).  
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This puzzling result is supported by other observations both in vivo and in vitro. (i) 
Presenilin can cleave any single-pass transmembrane protein provided that its extracellular 
domain is sufficiently small (<300 amino acids) [276]. Such presenilin substrates can 
normally be processed in the initial rounds of neuroblast segregation in shibireTS embryos, 
suggesting that presenilin-dependent cleavage is not inherently dependent on Notch 
receptor endocytosis (at least during the first few hours upon temperature shifting, while 
experiments in [153] were scored after more than 6 hours) [276]. (ii) Proteolysis at S3 does 
not occur at a unique site but at multiple sites of NEXT, both in HEK293T cells and in a cell-
free system. NICD fragments showed different stability and, therefore, signaling intensity, 
according to the proteasome N-end rule, where N-terminal valine provided maximal 
stability and signaling. Notably, PM-derived NICDs contain preferentially N-val, i.e. the 
most stable NICD, while endosome-generated NICD showed the lowest stability [277].  

In the same set of experiments on HeLa cells, the machinery responsible for Notch 
internalization was also partially characterized. It was found that Notch uptake is strictly 
dependent on clathrin, since it is suppressed by knockdown of this latter gene and of its 
adaptor AP-2, while it is attenuated in the absence of epsin1 [275]. Notably, epsin1 
interaction with Notch was ubiquitin-dependent, and the HECT domain-containing E3 
ligase Nedd4 was found to participate in that action [275]. In the Drosophila system, Nedd4 is 
a negative regulator of Notch signaling by targeting Notch and Deltex (see later) to 
endocytosis and degradation, possibly protecting unstimulated cells from sporadic 
activation of Notch signaling [278].  

To summarize, these data suggest that, in specific cell systems, PM emanating signals (from 
Notch receptors) can be (down)regulated by endocytosis, which uses the same machinery of 
the Notch signal-sending cell, i.e. clathrin-mediated endocytosis triggered by ubiquitylation 
with a role of epsin in coat formation and membrane invagination (and perhaps fission). The 
suppressive action of endocytosis on Notch activation can have many functions, including 
the termination of Notch signaling and the cell-fate determination of the Notch signal-
sending cell, as Numb function seems to suggest (see next section). 

3.2.2. Notch receptor trafficking and endosomal-emanating signals 

In elegant morphological experiments, Notch receptor localization, processing, and 
signaling output in subsequent steps of its endocytic route were monitored by analyzing 
imaginal discs in Drosophila bearing homozygous mutations for key endocytic factors [279]. 
In the shibire and Rab5 mutations, Notch accumulated at or below the plasma membrane, 
respectively, with no signaling effect in either case as scored by activation of a 
transcriptional reporter of Notch signaling. These data confirm the role of dynamin in Notch 
activation (in sharp contrast with that the role of endocytosis reported in the previous 
section), but, more importantly, they identify a new membrane compartment that is 
required for Notch activation, i.e. the endosome, in which Rab5 regulates the entry of 
endocytic cargos (reviewed in [280]). As expected, wing discs that express a constitutively 
active Rab5 show strong up-regulation of signaling, but similar results were also obtained 
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with overexpression of Hrs, which regulates entry into multivescicular bodies (MVBs). 
Taken together, these experiments suggest that the transport of Notch receptor to 
endosomes and to MVBs potently stimulates Notch signaling possibly making the 
endosome the preferential station for the full activation of Notch receptor.  

In a search for factors that regulate Notch activation in endosomes, it was found that 
mutations of the vacuolar proton pump (V-ATPase) produce defects in the processing of the 
internalized Notch receptor and its signaling [281, 282]. These results, together with the 
observation that presenilin works optimally in an acidic environment such as that present in 
the endosome/lysosome [283], support the idea that endosomal sorting of Notch is required 
for best activation of its S3 cleavage. However, unrestricted access of Notch receptors to the 
endosome should be prevented, since the acidic pH could dissociate the NECD, thus 
triggering ligand-independent Notch activation [210].  

Another somewhat newer protagonist in Notch activation from endosomes is Deltex, whose 
mutation results in a lethal phenotype when associated to a gene dosage defect of one of the 
DSLs or Notch. Deltex encodes for a highly conserved gene endowed with three domains 
(reviewed in [284]): (i) a N-terminal WWE domain which binds the ANK repeats of Notch, 
(ii) a central proline-rich region for the binding to yet unknown SH3 domain-containing 
proteins, and (iii) a C-terminal RING-domain which has the signature of an E3 ligase, yet 
formal evidence of a Deltex direct ubiquitylation of Notch is lacking [284]. All domains are 
necessary for Deltex function, whose action has been studied intensively in recent years.  

Data support a Deltex action both in Notch internalization and activation. Evidence for these 
functions can be summarized as follows: (i) in the Deltex-null Drosophila mutant, Notch 
accumulates on the cell surface and in some unknown endosomal compartment, but failes to 
be efficiently incorporated into internalized vesicles from the PM and in transport vesicles 
from early endosomes to lysosomes [285]; (ii) Deltex overexpression promotes Notch 
accumulation in late endosomes, where its signaling activity is potently stimulated [286]; 
(iii) Deltex makes a functional complex with critical regulators of late endosome formation 
or maturation [287], i.e. AP-3 (which selects cargos for late endosomes and lysosomes [288]) 
and HOPS (which participates in late endosome maturation in lysosomes [289]). To 
summarize, Deltex regulates Notch activation by stably localizing Notch in the late 
endosomal compartment, thus avoiding its delivery to MVBs where signaling is suppressed 
(since internalization of Notch in MVBs would prevent NICD release in the cytosol, see 
Fig.2). 

However, the positive or negative outcome of endosomal sorting on Notch activation 
depends on other regulatory factors that control or antagonize the action of Deltex. (i) A 
member of the Nedd4 family of E3 ligases, Suppressor of Deltex (Su(dx)), permits the exit of 
Notch from the late endosomal compartment to incorporation into MVBs, thus terminating 
Notch signaling by avoiding the cytoplasmic release of NICD [287]. It was hypothesized that 
this negative regulatory function might be favored by a direct ubiquitylation of Notch by 
Su(dx), which, however, has not yet been detected [284]. In contrast, other members of 
Nedd4 family promote Notch ubiquitylation and degradation both in Drosophila and 



 
Molecular Regulation of Endocytosis 354 

mammals (see section 3.2.1). (ii) A binding partner of Deltex is Kurtz (Krz), the homologue 
of mammalian non-visual β-arrestins. This protein family is involved in the desensitization 
and endocytosis of G-coupled receptors [290], TGF β [291] and Frizzled 4 [292]. Deltex, Krz 
and Notch form a complex in endocytic vesicles [293]. Krz mutants show upregulation of 
Notch signaling without altering Deltex levels, thus suggesting that the trimeric complex is 
important in the ubiquitin/proteasome-mediated degradation of Notch and subsequent 
signaling termination [293]. (iii) A critical component of the ESCRT III complex, Shrub, also 
seems to be involved in Deltex-Krz dependent Notch degradation. Shrub affects Notch 
trafficking and induces Notch accumulation in MVBs by promoting its polyubiquitylation 
and antagonizing Deltex, that instead promotes monoubiquitylation in the absence of Shrub 
[294]. Those opposite ubiquitylation states modulate Notch ligand-independent activation, 
by regulating how the receptor is trafficked in the endocytic path: polyubiquitylation targets 
Notch to MVBs for degradation, whereas monoubiquitylation is associated to Notch 
activation by γ-secretase [294]. Taken together, these results strongly support a preferential 
activation of Notch receptor during its intracellular trafficking and, more specifically, after 
its delivery to the (late) endosomal compartment, a trafficking event that is critically 
controlled by Deltex, at least in invertebrates. 

A key aspect of Notch signaling is the need to establish differential signaling between two 
cell populations, i.e. the signal-receiving cells in which Notch activation can be triggered 
and the signal-sending cells in which Notch activation is suppressed. In invertebrates, Notch 
expression at the cell surface of the signal-sending cell is dramatically downregulated in 
order to inactivate Notch signaling in this cell population. One way of obtaining this effect is 
to target the Notch receptor to endosomal degradation with a specialized machinery. 
During the first division of the SOP, a membrane-associated protein called Numb is 
asymmetrically partitioned in the pIIb cell, which is committed to become the Notch signal-
sending cell [295]. Loss of NUMB function causes all SOP descendants to differentiate in 
outer support cells, i.e. in Notch signal-receiving cells. Conversely, ectopic Numb expression 
during SOP division results in overproduction of neuronal precursors, i.e. of cells with the 
Notch signal-sending phenotype [295]. The epistaticity between Numb and Notch is further 
supported by genetic data in which reduction of Notch function can partially suppress the 
phenotypes resulting from loss of Numb [296]. Experiments in mammalian cells have shown 
that Numb is an endocytic factor, which binds the α-adaptin subunit of the clathrin-adaptor 
AP-2 [297, 298] and, together with this adaptor, co-localizes with internalizing receptors in 
mammalian cells [297]. In the SOP system in flies, Numb asymmetrically segregates AP-2 in 
the pIIb cell, and mutant isoforms of α-adaptin that no longer bind Numb fail to 
asymmetrically partition and cause Numb-like defects in SOP division [299].  Direct 
evidence of Numb function in Notch internalization was recently seen in anti-Notch 
antibody uptake experiments in the SOP lacking Numb expression [300].  

Since Numb can co-exist with Notch in some cell systems without antagonizing its function 
(as in the lateral inhibition of Drosophila neuroectoderm [300]), it is plausible that other 
factors come into play to force the functional interaction of Numb with Notch receptors. In 
particular, two proteins have been identified as critical Numb-Notch interactors: (i) the 
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mammals (see section 3.2.1). (ii) A binding partner of Deltex is Kurtz (Krz), the homologue 
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During the first division of the SOP, a membrane-associated protein called Numb is 
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AP-2 [297, 298] and, together with this adaptor, co-localizes with internalizing receptors in 
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antibody uptake experiments in the SOP lacking Numb expression [300].  
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HECT-domain E3 ubiquitin ligase Itch, which ubiquitylates Notch receptors [301, 302] and 
many other proteins involved in key signaling pathways in mammalian cells (for a review 
see [303]) and (ii) the four-pass transmembrane protein Sanpodo (Spdo) [304, 305]. Numb, 
cooperatively enhances Itch-dependent ubiquitylation of Notch-1 [302]. This action requires 
direct and simultaneous binding of Numb to the ANK repeats of the Notch receptor and to 
the WW1-2 domains of Itch [302]. Therefore, Numb acts as an adaptor, facilitating or 
stabilizing the interaction between Itch and its substrate and, therefore, its catalytic activity. 
Numb-dependent endosomal sorting of Notch-1 in C2C12 cells critically depends on Itch 
function, since Numb mutants that do not interact with Itch (or that cannot interact with 
endocytic proteins) fail to promote Notch-1 degradation. All together, these experiments 
support a scenario in which Itch-mediated ubiquitylation is used to re-route Notch receptors 
to the late endosome for degradation and signaling suppression [306].  

Another key interactor of Numb is Spdo, which is expressed in flies in both the Notch 
ligand-bearing and Notch receptor-bearing cells, where it acts differentially: in neuroblast 
division, Spdo is required for the activation of the Notch receptor in the A cell (a cell with 
Notch-dependent fate) [305] while in the B (signal-sending) cells it stimulates the endocytic 
degradation of the Notch receptor, in concert with Numb [305]. Notably, Numb in pIIb 
(signal-sending) cells of SOP induces the endocytosis of Spdo in early and late (but not 
recycling) endosomal vesicles. As for Numb internalization, Spdo endocytosis requires α–
adaptin both in SOP [307] and in the neuroblast divisions in the flies [298]. As a result of 
SPDO loss-of-function, SOP cell stem cells divide symmetrically into two pIIb (signal-
sending) cells, confirming that Spdo is required for Notch activation [300, 307]. In the case of 
Spdo ectopic overexpression, pIIb cells are generated as a result of Numb/Spdo-induced 
downregulation of Notch from the PM [307, 308]. Hence, Spdo may either activate or inhibit 
Notch signaling, depending on the presence or absence of Numb, and both actions are 
related to endocytosis.  

4. Conclusions 

In 2013, it will be one hundred years since the first Notch gene was discovered. During this 
century, fundamental aspects of gene functioning have been uncovered, including the key 
molecular mechanisms involved in the normal and pathological activation of Notch 
signaling. What emerged is that endocytosis is the master regulator of Notch activation. This 
function is exerted by means of a specialized endocytic machinery, which acts differentially 
in the Notch signal-sending cell compared with the Notch signal-receiving cell.  

In Notch signal-sending, genetic, cell biology, structural, and biophysical studies point to a 
mechanical action of the Notch ligand on its receptor, so that critical proteolytic sites are 
uncovered for constitutive activation. Although the molecular machinery has not been fully 
characterized, genetic evidence in vertebrates and invertebrates supports clathrin-mediated 
endocytosis of ubiquitylated DSLs, as being the key mechanism that exerts the pulling 
action on the Notch receptor. In some developmental and cell culture systems, trafficking of 
the Notch ligand by transcytosis is another crucial mechanism which exerts the fundamental 
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action of locating the Notch ligands in PM domains, where the interaction with the Notch 
receptor occurs with the highest efficiency. Evidence in specialized developmental systems 
in invertebrates supports a third function of endocytosis in the Notch signal-receiving cell, 
where DSL trafficking through the recycling endosome may serve the purpose of making 
Notch ligands competent for interaction with Notch receptors. However, the molecular 
event that pre-activates the Notch ligand is unknown, and no evidence has been provided 
yet to support a similar request in mammalian cells. 

In comparison with the Notch signal-sending cell, where an endocytosis requirement is well 
established and many molecular details of its action are known, very little information is 
available, especially in vertebrates, to help us understand the need for endocytosis in the 
Notch signal-receiving cell. Genetic and cell-biology studies suggest that Notch signaling 
preferentially spreads from the endosomal compartment, where the acidic environment 
favors the γ-secretase release of the Notch active fragment (i.e. the NICD). As in the signal-
sending cell, ubiquitylation is requested for this process, and its modulation by a variety of 
factors either firmly localizes Notch in a membrane trafficking compartment for signal 
activation, or quickly moves it to lysosomes for signal suppression.  

Although we are beginning to see the “the big picture”, crucial mechanisms are still missing. 
Although incomplete, some of the available endocytosis-related information has already 
entered medical experimentation [309]. A clear example is γ-secretase inhibitors (GIS), 
whose action is exploited in many current clinical trials for T-ALL, breast carcinoma, colon 
cancer, medulloblastoma, glioblastoma, osteosarcoma, pancreatic cancer, small-cell lung 
carcinoma, and melanoma, just to cite some of these studies. Analyses of GIS have also been 
extended to basically all cell lines and animal models in which a function of Notch for tumor 
promotion, progression and spreading was not only proved, but merely supposed. 
However, GIS use in current medical practice is far from established since the molecules that 
have so far been tested are plagued by significant human toxicity involving gastrointestinal 
bleeding and immunosuppression, which is attributable to widespread suppression of 
Notch signaling in many tissues. As discussed throughout this review, Notch actually 
plays a key role in the homeostasis of a variety of adult tissues, and its suppression thus 
hampers the functionality of many organs and systems. More unconventional approaches 
of Notch-related therapy are based on raising inhibiting or activating antibodies that 
regulate the level of Notch signaling by interfering with the Notch ligand-Notch receptor 
interaction, and, consequently, by directly or indirectly affecting the endocytic regulation 
of Notch signaling. Some of these antibodies are already in the initial phases of clinical 
trials, and they promise to offer better selectivity in targeting specific Notch components, 
thus minimizing side effects.  

Notch-targeting therapies have a wide potential spectrum of application besides cancer, 
which includes developmental, vascular, cardiac, and other diseases associated with Notch 
pathway malfunction, or where Notch function could be exploited profitably for their 
treatment. It is not difficult to envisage a future interest for a highly-specific “endocytic-
based” therapeutic approach to Notch dysregulation.  
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1. Introduction 

Hyaluronan (HA) is a non-sulfated linear glycosaminoglycan composed of multiple copies 
of the disaccharide unit of D-glucuronic acid (GlcA) and N-acetyl-D-glucosamine 
(GlcNAc); [β-1,4-GlcA-β -1,3-GlcNAc-]n where n is the number of repeating disaccharide 
subunits. HA is synthesized by the HA synthase family of enzymes. Three HA synthases, 
termed HAS1 through HAS3, have been identified in humans and in mice. These enzymes 
differ from each other in their catalytic activities (HAS3 > HAS2 > HAS1) as well as in the 
sizes of their final products. HAS1 and HAS2 polymerize long stretches of GlcA-GlcNAc 
disaccharide chains, whereas HAS3 polymerizes relatively short stretches (<300 kDa). 
Biosynthesis of HA is regulated by exogenous stimuli. For example, HA synthesis in 
fibroblasts is upregulated by phorbol esters, tumor growth factor alpha, and platelet 
derived growth factor, whereas HA synthesis in keratinocytes is upregulated by retinoic 
acid, epidermal growth factor, and tumor growth factor alpha and suppressed by 
corticosteroids [1-4]. HA is unique among extracellular matrix components in that it is not 
synthesized within the cell and transported to the surface via vesicles. Hyaluronan 
synthase is an integral membrane protein on the surface of cells. It links together UDP-α-N-
acetyl-D-glucosamine and UDP-α-D-glucuronate to spin out long strands of HA. Because, 
unlike other extracellular matrix carbohydrates, HA is spooled out from the cell surface, it 
can achieve molecular weights ranging from five thousand Daltons to twenty million 
Daltons. 

Although HA was originally considered to be an inert filling material in the extracellular 
matrix and intercellular spaces, this simple carbohydrate is now known to have a number of 
functions in several different biological processes including development, cancer biology, 
wound healing and the immune response. 

© 2012 Racine and Mummert, licensee InTech. This is a paper distributed under the terms of the Creative 
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.
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2. HA endocytic pathway 

A scheme for the endocytosis of high molecular weight HA (HMW-HA) and its catabolism 
to HA oligomers have been suggested previously [5]. Figure 1 illustrates the current model 
for uptake of HMW-HA and its processing to bioactive oligomeric fragments. 

HMW-HA in the extracellular matrix can be degraded to fragments that are 50-100 
saccharides in length by the HA digesting enzyme, hyaluronidase 2 (Hyal2) [6]. Hyal2 is 
expressed in the lysosome and also as a GPI-linked cell surface protein [7]. This raises the 
interesting question of how cell surface Hyal2 retains catalytic activity for HA digestion 
given its requirement for an acid environment to function. Previous investigations have 
shown that binding of HA to the HA-receptor, CD44, leads to the interaction of CD44 with 
the NHE1 Na+/H+ exchanger. In turn, the NHE1 Na+-H+ exchanger creates an acidic 
environment facilitating Hyal2 activity [8]. The HA saccharides generated by Hyal2 can then 
be endocytosed by one of multiple pathways. To date, receptor mediated endocytosis of HA 
and macropinocytosis of bulk phase HA have been reported. Receptor mediated 
endocytosis can occur via lipid rafts or by the clathrin coated pit pathway. Receptors for HA 
endocytosis may be recycled to the cell surface or turned-over. HA saccharides are further 
digested to HA oligosaccharides by hyaluronidase 1 (Hyal1) in the endosome. The HA 
oligosaccharides could then potentially be degraded into its GlcA and GlcNAc building 
blocks by the concerted activities of β-D-glucuronidase and β-N-acetyl-D-hexosaminidase 
[9] or HA oligosaccharides could be exocytosed. The exocytosed HA fragments could have 
myriad biological functions which will be detailed below. 

Although HA endocytosis and subsequent degradation may be important for generation of 
bioactive HA fragments, the HA endocytic pathway is also essential for HA homeostasis. In 
a 70 kilogram human there is approximately 15 grams of total HA [10]. Up to 50% of the 
total HA in the body is expressed in the skin [11]. HA is turned over at a rate of 
approximately 5 grams per day [10]. In the skin, HA has a metabolic half-life <1.5 days [11]. 
HA is turned-over locally in tissues while systemic HA is cleared mostly in the liver and to a 
lesser extent the kidneys and spleen [12,13]. HA in the tissue extracellular matrix is thought 
to be partially degraded and then enters the lymph nodes via the draining lymphatics. 
Specific HA receptors in the lymphatics will be discussed below.  

3. Mechanisms of hyaluronan endocytosis 

3.1. Receptor mediated endocytosis 

Uptake of hyaluronan by various receptors has been widely studied, and several key 
receptors have been identified. Some receptors, such as CD44 and LYVE-1, serve dual 
purposes in that they not only facilitate the endocytosis of HA, but also trigger signaling 
events that generate cell specific responses to HA binding. ICAM-1 was initially believed to 
serve as a metabolic receptor for HA only but is now suspected to have cell signaling roles 
in response to HA binding [14,15].  
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3.1.1. CD44 

CD44 is a cell surface glycoprotein that serves as the endocytic receptor for HA in 
keratinocytes, chondrocytes, and breast cancer cells [16-18]. It is important to stress that the 
binding of HA to CD44 and the uptake of HA by CD44 mediated endocytosis are two 
separate events that often do not take place at the same time [19]. Internalization of HA 
through CD44 mediated endocytosis has been shown to require acylation of the CD44 
cytoplasmic tail [20]. CD44 associates with lipid rafts for internalization as determined by 
gradient ultracentrifugation. Palmitoylation of CD44 on two cysteine residues, Cys286 in the 
transmembrane domain and Cys295 in the cytoplasmic domain, was found to be essential for 
lipid raft association, but not for HA binding. These acylation reactions could be cell type 
specific, which may explain why CD44 does not endocytose HA in all CD44 expressing cell 
types, such as B16-F10 melanoma cells [19]. There is also evidence that CD44 interacts 
directly with endocytosis proteins such as coatomer protein complexes [21]. Previous 
investigations have suggested that endocytosed CD44 can be recycled to the cell surface 
provided it is not ubiquitinated after endocytosis [22]. Recent studies in fibroblasts have 
shown that clathrin-independent carriers (CLIC) form an endocytic sorting system at the 
leading edge of migrating cells. Adhesion molecules, including CD44, are recycled in the 
CLIC pathway. CD44 and other CLIC cargo are concentrated within flotillin-1 and 
cholesterol enriched microdomains. Actin and GRAF-1 form the initial carriers within 15 
seconds. Next, Rab11 and Rab5 / EEA-1 complexes allow bulk membrane flow to early 
endosomes and plasma membrane recycling [23]. It is tempting to speculate that the CLIC 
pathway in CD44 recycling is also involved in HA endocytosis. 

3.1.2. RHAMM 

The Receptor for Hyaluronic Acid Mediated Motility (RHAMM) was discovered originally 
as a soluble protein that altered the migration of cells and could bind HA [24]. RHAMM has 
no cytoplasmic or transmembrane domain and has no signaling domains, but it has been 
implicated in ERK1/2 signaling through a complex with CD44 upon HA binding [25]. 
RHAMM is also found in the cytoplasm where it associates with the mitotic spindle 
apparatus, which is responsible for establishing cell polarity and distribution of 
chromosomes during mitosis [25]. RHAMM can be transported out of the cytoplasm to the 
cell surface. In terms of RHAMM endocytosis, very little is known. By contrast, a number of 
studies have shown a role for RHAMM in tumor progression and the differentiation of 
osteoblasts [26,27]. As it is known that CD44 and RHAMM can associate with each other 
and that RHAMM binds HA, it is possible that RHAMM/CD44/HA complexes can be 
endocytosed or leads to signaling. There is evidence that RHAMM and CD44 co-signal 
through the ERK1/2 pathway to increase basal motility in breast cancer cells and increase 
fibroblast migration and differentiation during wound repair [28,29]. 

3.1.3. LYVE-1 

Lymphatic vessel endothelial-1 (LYVE-1) is expressed on the surface of lymphatic 
endothelial cells. Interestingly, LYVE-1 has a glycosylation domain on its extracellular 
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domain that renders it inactive. Cleavage of this glycosylated region allows LYVE-1 to bind 
HA [30]. The LYVE-1 binds HA which is then bound by leukocyte CD44 in order to facilitate 
their adhesion and entry into the lymphatics [31]. Not much is known about the 
mechanisms of LYVE-1 endocytosis of HA, but it is thought to occur similarly to CD44 
mediated uptake of HA; i.e., LYVE-1 associates with lipid rafts before endocytosis [31]. 
LYVE-1 may be responsible for the transport of HA to the luminal side of the lymphatics. It 
has previously been shown that LYVE-1 binds to HA on the lymphatic endothelial cells, 
endocytosis of the complex occurs, and then the vesicles are released on the lumen side of 
the lymphatics allowing for release of HA which can possibly modulate immune responses 
or mediate removal of HA from the lymph for clearance [32]. Importantly, the lymph nodes 
are the first sites of clearance for total body HA turn-over. In fact, about 85% of total body 
HA is cleared by the lymph nodes. The remaining HA is largely turned over in the liver [33]. 

3.1.4. HARE 

Hyaluronan Receptor for Endocytosis (HARE) is expressed on sinusoid hepatocytes, the 
venous sinuses of the red pulp in spleen and the medullary sinuses in lymph nodes where it 
is important for the turnover of systemic HA [34]. Indeed, blocking HARE results in an 
inhibition of HA clearance in the liver [35]. HARE also plays a role in chondroitin sulfate 
proteoglycan endocytosis [36]. Previous investigations infer that HARE endocytosis occurs by 
the clathrin coated pit pathway and it appears that HARE is recycled to the cell surface [37]. 
Binding of HARE to HA was observed using ligand blotting and immunohistochemistry 
which shows that the HARE HA binding event occurs prior to HA internalization [38]. Four 
putative AP-2 / clathrin mediated endocytosis signaling domains have been identified in the 
HARE cytoplasmic domain: YSYFRI2485, FQHF2495, NPLY2519, and DPF2534 (315-HARE 
numbering). Deletion analyses of the signaling domains showed that three signal sequences 
(YSYFRI, FQHF, and NPLY) provide redundancy to mediate coated pit targeting and 
endocytosis of HARE. Importantly, the coated pit targeting domains did not impact binding 
of the HARE ectodomain to HA showing that HA binding to HARE and HARE mediated 
endocytosis of HA are separate events [39]. 

It is noted that HARE and LYVE-1 are both expressed in the lymph nodes. Interestingly, 
HARE and LYVE-1 show different and non-overlapping distributions [33]. How and if 
LYVE-1 and HARE coordinate HA turn-over remains to be determined. 

3.1.5. ICAM-1 

Intercellular adhesion molecule 1 (ICAM-1) is perhaps the least studied of the receptors for 
HA. It appears not to facilitate HA endocytosis but rather, it is a receptor for HA that has 
signaling capacity. Preliminary data suggests that ICAM-1 functions as a signaling molecule 
when HA binds to it. When HA is added to the macrophage cell line U937, it induces Akt 
phosphorylation which activates the nuclear factor-kappa B pathway, inducing interleukin-
6 production, but blocking of ICAM-1 with an antibody stops this from occurring [14,15].  
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3.2. Non-receptor mediated endocytosis 

3.2.1. Macropinocytosis of hyaluronan 

It has been demonstrated that HA uptake can occur without the aid of endocytic receptors. 
In [19], it was determined that B16-F10 melanoma cells endocytosed HA through 
macropinocytosis. The cells were observed to display membrane ruffling and localization of 
HA within vesicles as well as strong co-localization of HA with fluorescently labeled 
dextran, a macropinocytosis tracer. The uptake was also inhibited by amiloride, an inhibitor 
of macropinocytosis. Interestingly, the B16-F10 melanoma cells expressed surface CD44. 
Moreover, CD44 mediated adhesion of the melanoma cells to HA-coated plates. On the 
other hand, removal of CD44 from the B16-F10 melanoma cells by proteolytic cleavage 
failed to impact HA uptake. These results showed that CD44 did not play a significant role 
in the endocytosis of soluble HA. As mentioned in the previous section, the uptake of HA 
by CD44 requires CD44 to be in a specific state. It is possible, through splice variants of 
CD44, that these modifications were not present, and that there are distinct pathways in 
which HA can be taken up by cells. The ability of HA to induce macropinocytosis in B16-F10 
melanoma cells is most likely due to its ability to non-specifically interact with the cell 
surface. HA has been shown to interact with and cause rearrangement of the cell surface 
[40]. [41] also showed that blocking of CD44 failed to inhibit the uptake of HA by 10T1/2 
fibroblasts. 

4. Potential biological functions of endocytosed HA 

As shown in Figure 1, HA oligomers are produced by degradation of HA following its 
endocytosis. On the other hand, most studies on the biological activities of HA have been 
performed by adding exogenous HA oligomers to cell cultures and then determining their 
effect on biological activity. Presumably, HMW-HA co-polymers are endocytosed and 
digested and the resulting low molecular weight-HA (LMW-HA) fragments exocytosed 
under physiological conditions. Indeed, the hyaluronidase inhibitor apigenin resulted in 
accumulation of HA in pre-lysosomal endosomes in rat keratinocytes in vitro [18]. On the 
other hand, direct evidence for exocytosis of HA fragments are currently lacking. It is 
important to note that in some cases, the hyaluronidases may be secreted into the 
extracellular matrix or in the case of Hyal-2, expressed on the cell surface. HA degrading 
activity can also be exocytosed [42]. Obiviously, secreted hyaluronidase and cell surface 
Hyal-2 could circumvent the requirement for endocytosis.  

4.1. Cell activation via HA 

A number of investigators have reported that LMW-HA can induce molecular pathways 
culminating in gene expression. [43] has shown that oligomeric HA stimulated various 
transcription factors in chondrocytes including Sp1 and NF-κB. The same group showed that 
HA oligosaccharides induce expression of matrix metalloproteinase 13 by p38 MAPK and 
transcriptional activation of NF-κB [44]. It has also been shown that HA oligosaccharides  
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HMW-HA (~106Da) is first degraded by hyaluronidase 2 (HYAL2) into smaller 104Da sized fragments before it is taken 
up by a cell. The cell can either utilize surface HA receptors for receptor mediated endocytosis or macropinocytosis. 
Once internalized the HA is degraded by hyaluronidase 1 (HYAL1) into small 102Da fragments and then exocytosed. 

Figure 1. Schematic overview of HA endocytosis and processing. 

inhibit the expression of runt-related gene 2 (Runx2) in chondrocytes. Runx2 is a 
transcription factor for chondrocyte differentiation in hypertrophic chondrocytes [45,46]. 
Thus, HA oligosaccharides may impact the differentiation of chondrocytes during 
endochondrol ossification. [46] showed that binding of HA fragments to the HA receptor 
CD44 induces the Nanog-Stat-3 signaling pathway culminating in expression of the 
multidrug resistance gene, MDR-1, in breast and ovarian tumor cells. Expression of MDR-1 
in the tumor cells conferred resistance to chemotherapeutic drugs doxorubicin and 
paclitaxel. Finally, it has been shown that LMW-HA upregulated CD44 expression and 
increased the expression levels of PKCδ and PKCϵ [47]. 

4.2. Cancer cell invasion and metastasis 

Controversy has surrounded the role of the hyaluronidase enzymes in tumor biology with 
initial reports suggesting that Hyal1 was a tumor suppressor [48]. Early positional cloning 
studies identified the Hyal1 locus on 3p21.3 with LuCa1 (Lung Cancer 1). Because LuCa1 
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was either deleted or there was a loss in heterozygosity in LuCa1 in most lung cancers, it 
was hypothesized that Hyal1 behaved as a tumor suppressor. However, subsequent studies 
showed that Hyal1 was not the relevant tumor suppressor at the examined locus [49]. 
Nonetheless, the suppressive activity of hyaluronidses was confirmed by investigations 
showing that administration of high doses (300 U) of PH20 to mice with human breast 
tumor xenografts showed a significant reduction in tumor growth [50]. The over-expression 
of Hyal1 in a rat colon carcinoma line also inhibited tumor growth further suggesting that 
Hyal1 is a tumor suppressor [51]. 

Groundbreaking work by [52] showed that Hyal1 promoted tumor growth, invasion and 
angiogenesis. On the other hand, overproduction of Hyal1 to high levels (100 mU / 106 cells) 
inhibited tumor growth. These results suggested that high concentrations of Hyal1 may 
result in tumor inhibition while at lower levels Hyal1 leads to tumor progression. 

Previous studies have shown that anti-sense Hyal1 stably expressed in bladder and prostate 
cancer cells induced down regulation of cdc25c, cyclin B1, cdk1 and cdk1 kinase activity 
[52,53]. Expression of Hyal1 in oral carcinoma cells resulted in a dramatic increase in cells in 
S-phase and a decrease in the number of cells in the G0-G1 phase [54]. To date, the 
mechanism whereby Hyal1 promotes tumor cell growth remains unknown. On the other 
hand, treatment of mouse fibroblasts with PH20 leads to phosphorylation of JNK-1 and -2 as 
well as p42 / p44 ERK [55]. Importantly, ERK plays a role in the G1-S transition [56]. 

The activities of the hyaluronidase enzymes also appear to have roles in the biology of 
malignant melanoma (MM) tumors. [57] found that aberrant expression of PH20 by MM 
cells was correlated with their induction of angiogenesis in a mouse model. Histological 
studies of MM showed that tumor associated HA expression was correlated with patient 
survival with low HA levels showing poor prognosis [58]. Because the activities of HA 
synthesis (by the HAS enzymes) and HA degradation (by the hyaluronidase enzymes) is 
highly regulated and may be interconnected, these results might suggest that an imbalance 
in HA metabolism in MM tumors may lead to cancer progression in humans. 

Hyaluronidase activity has also been evaluated as a biomarker in bladder cancer. Tumor 
associated Hyal1 is released into the urine of bladder cancer patients [59]. Urinary 
hyaluronidase activity was elevated in patients with intermediate and high grade bladder 
cancer as compared with patients with: a) low grade bladder cancer, b) patients with a 
history of bladder cancer, c) normal individuals, and d) patients with benign urologic 
conditions [60]. These findings underscore the potential utility of the hyaluronidases to 
serve as biomarkers for cancer grading. 

4.3. Wound healing  

Tissue contraction during wound healing is achieved by myofibroblasts. Fibroblasts 
differentiate into myofibroblasts which line up at the edges of the wound and adhere to each 
other with desmosomes. They then use their actin networks to contract the ECM around the 
wound and shrink the size of the wounded area. Fibroblasts in the area around the wound 
then secrete collagen to stabilize the contraction. The trigger for contraction is HA production, 
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and HA plays a key role in regulating this process by directing fibroblast migration and 
proliferation at wound sites [61].  

HA’s role in wound healing is not clearly understood, but it is known that in a fetal state, as 
compared to an adult state, the extracellular matrix is composed of primarily HA. This 
abundance of HA rather than collagen reduces scar formation. CD44 mediated endocytosis 
of HA fragments also aids fibroblasts in migration to wound sites [62].  

5. Applications of hyaluronan endocytosis 

5.1. Drug delivery 

HA may allow the targeted delivery of chemotherapeutic reagents to tumor cells via CD44. 
HA have a number of functional groups for “decoration” including a carboxylate on the 
glucuronic acid, the N-acetylglucosamine hydroxyl and the reducing end. Thus, a wide 
array of different chemotherapeutic reagents can be chemically conjugated to HA. A review 
of the chemical derivatization of HA and the potential applications of HA to disease 
treatment is beyond the scope of this chapter but has been recently reviewed [63,64]. In 
brief, previous investigations in vitro showed that a taxol-HA bioconjugate was cytotoxic to 
a panel of tumor cell lines (breast, colon and ovarian) but not human fibroblasts [65]. 
Although there are relatively few in vivo studies that have evaluated the efficacy of HA 
bioconjugates, previous investigations with a paclitaxol-HA bioconjugate have shown that it 
inhibits tumor growth of RT-112/84 human transitional cell carcinomas in mice and 
increases the survival of mice that had been inoculated with the NMP-1 or SK-OV-3ip 
human ovarian carcinoma lines [66,67]. Similarly, a butyrate-HA bioconjugate was found to 
inhibit tumor growth and reduced lung metastasis in mice inoculated with LL3 murine lung 
carcinoma cells [68]. Thus, a number of reports reinforce the concept that HA may be useful 
as a drug carrier / ligand targeting delivery agent. Other investigators conjugated 
doxorubicin, a chemotherapeutic agent, to HA and administered it topically to B16-F10 
melanoma tumors in mice [69]. They found that doxorubicin-conjugated HA selectively 
targeted the tumor cells and reduced tumor growth. These findings open the door for future 
work with drug delivery to tumor cells using HA. 

HA may also be a useful carrier of carboranes for boron neutron capture therapy for tumors. 
Previous investigations have shown that a water soluble HA-polycarborane derivative was 
taken up and showed toxicity to a number of tumor cell lines in vitro [70]. 

5.2. Imaging  

HA may also be derivatized for imaging tumor cells. An activatable HA molecular probe, 
called FRET-HA, designed to detect hyaluronidase activity was recently reported [71]. 
Briefly, the HA co-polymer was chemically labeled with donor and acceptor fluorescent 
probes. Energy transfer from the donor to acceptor probe resulted in quenching of the 
acceptor (i.e., fluorescence resonance energy transfer or FRET). Because energy transfer is 
distance dependent, an increase in the distance between the donor and acceptor probes, for 
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and HA plays a key role in regulating this process by directing fibroblast migration and 
proliferation at wound sites [61].  

HA’s role in wound healing is not clearly understood, but it is known that in a fetal state, as 
compared to an adult state, the extracellular matrix is composed of primarily HA. This 
abundance of HA rather than collagen reduces scar formation. CD44 mediated endocytosis 
of HA fragments also aids fibroblasts in migration to wound sites [62].  

5. Applications of hyaluronan endocytosis 

5.1. Drug delivery 

HA may allow the targeted delivery of chemotherapeutic reagents to tumor cells via CD44. 
HA have a number of functional groups for “decoration” including a carboxylate on the 
glucuronic acid, the N-acetylglucosamine hydroxyl and the reducing end. Thus, a wide 
array of different chemotherapeutic reagents can be chemically conjugated to HA. A review 
of the chemical derivatization of HA and the potential applications of HA to disease 
treatment is beyond the scope of this chapter but has been recently reviewed [63,64]. In 
brief, previous investigations in vitro showed that a taxol-HA bioconjugate was cytotoxic to 
a panel of tumor cell lines (breast, colon and ovarian) but not human fibroblasts [65]. 
Although there are relatively few in vivo studies that have evaluated the efficacy of HA 
bioconjugates, previous investigations with a paclitaxol-HA bioconjugate have shown that it 
inhibits tumor growth of RT-112/84 human transitional cell carcinomas in mice and 
increases the survival of mice that had been inoculated with the NMP-1 or SK-OV-3ip 
human ovarian carcinoma lines [66,67]. Similarly, a butyrate-HA bioconjugate was found to 
inhibit tumor growth and reduced lung metastasis in mice inoculated with LL3 murine lung 
carcinoma cells [68]. Thus, a number of reports reinforce the concept that HA may be useful 
as a drug carrier / ligand targeting delivery agent. Other investigators conjugated 
doxorubicin, a chemotherapeutic agent, to HA and administered it topically to B16-F10 
melanoma tumors in mice [69]. They found that doxorubicin-conjugated HA selectively 
targeted the tumor cells and reduced tumor growth. These findings open the door for future 
work with drug delivery to tumor cells using HA. 

HA may also be a useful carrier of carboranes for boron neutron capture therapy for tumors. 
Previous investigations have shown that a water soluble HA-polycarborane derivative was 
taken up and showed toxicity to a number of tumor cell lines in vitro [70]. 

5.2. Imaging  

HA may also be derivatized for imaging tumor cells. An activatable HA molecular probe, 
called FRET-HA, designed to detect hyaluronidase activity was recently reported [71]. 
Briefly, the HA co-polymer was chemically labeled with donor and acceptor fluorescent 
probes. Energy transfer from the donor to acceptor probe resulted in quenching of the 
acceptor (i.e., fluorescence resonance energy transfer or FRET). Because energy transfer is 
distance dependent, an increase in the distance between the donor and acceptor probes, for 
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example due to HA degradation, results in de-quenching of the donor. The rate of donor 
fluorescence change was used to determine the enzyme kinetics of bovine testes 
hyaluronidase with high precision and accuracy. FRET-HA has also been used to detect 
hyaluronidase activity in B16-F10 melanoma cells in vitro (unpublished results). The 
potential utility for FRET-HA to detect increased hyaluronidase activities in vivo is 
currently under investigation. 

Recently, HA has been coated onto superparamagnetic iron oxide nanoparticles [72]. These 
HA-coated nanoparticles were endocytosed by cancer cells allowing their magnetic 
resonance imaging in vitro. 

6. Conclusion 

HA is a glycosaminoglycan with diverse biological functions. The molecular weight of HA is 
important for dictating its biological functions with HA fragments inducing distinct responses 
from high molecular weight co-polymers. Endocytosis of HA via receptor dependent and 
independent pathways is likely required for digestion of HA to biologically active fragments. 
In addition, endocytosis of HA may be exploited for the uptake of chemotherapeutic drugs for 
cancer treatment or imaging probes for the detection of metastatic tumors. Future directions 
include, 1) better understanding of the endocytic mechanism for HA metabolism, 2) better 
understanding of HA receptor signaling and interactions and 3) the development of second 
generation HA scaffolds for delivery and medical imaging. 
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1. Introduction 

Proteins can be covalently modified by ubiquitin. These modifications are the result of a 
coordinated enzymatic process and regulate many cellular networks and processes 
(Schwartz & Ciechanover, 2009, Weissman et al., 2011). First, ubiquitin is activated by an 
ubiquitin activating enzyme (E1), then the activated ubiquitin is transferred to the active 
cysteine of an ubiquitin conjugating enzyme (E2), which interacts with a substrate 
recognizing enzyme, the ubiquitin ligating enzyme (E3). This enzyme positions ubiquitin 
towards the substrate, after which ubiquitin is covalently linked via its C-terminal glycine 
residue to the ε-amino group of a lysine residue. The human genome contains two E1, 35 E2, 
and more than 1000 E3 enzymes. The E3s are subdivided in three types: Hect, Ring and U-
box domain containing. Ubiquitin has seven internal lysine residues that can be modified 
with ubiquitin, resulting into chains of multiple ubiquitin moieties. Depending on the 
internal lysine that is modified, different types of ubiquitin chains can be synthesized. The 
most abundant ubiquitin chains are linked via lysine-48 (K48), lysine-63 (K63), or 
combinations, resulting in mixed chains (Goto et al., 2010). Additionally, it was recently 
discovered that linear ubiquitin chains are important in NFκB activation. These chains are 
formed by LUBAC (“linear ubiquitin chain-assembly complex”), by conjugating ubiquitin 
moieties head-to-tail (Iwai K & Tokunaga, 2009, Rahighi et al., 2009). Substrates can be 
modified by one ubiquitin moiety (mono-ubiquitylation), by one ubiquitin moiety on more 
than one lysine in the same substrate (multiple mono-ubiquitylation) or by chains of 
ubiquitin (poly-ubiquitylation). Analogous to phosphorylation, ubiquitin can be removed 
from substrates. A special class of proteases, the deubiquitylating enzymes (DUBs) of which 
there are approximately 100 genes in the human genome, can specifically remove ubiquitin 
moieties (reviewed in Soboleva & Baker, 2004).  Modification by ubiquitin can have several 
outcomes for a substrate protein. Besides degradation by the proteasome, ubiquitin 

© 2012 Strous et al., licensee InTech. This is a paper distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.
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modification can regulate a.o. DNA repair as well as sorting of transmembrane proteins, 
which is the topic of this chapter. Clathrin mediated endocytosis, a well characterized mode 
of endocytosis of membrane and cargo molecules, involves the recognition of cargo, 
assembly of the coat and the pinching off of the invagination (Marsh & McMahon, 1999). 
The cargo is acquired by adapter proteins such as AP-2 or by AP-2 binding proteins such as 
Epsin1 or Eps15, after which the clathrin lattice is formed and the membrane is curved by 
BAR domain-containing proteins (Kirchhausen, 1999). The curved domain is pinched off by 
dynamin and forms a cargo-containing coated vesicle. Subsequently, this vesicle is uncoated 
and fused with early endosomes (van der Bliek et al., 1993). From the early endosomes the 
cargo can either be transported toward the lysosome, ultimately resulting in degradation, or 
recycled back to the plasma membrane. These decisions are mediated by three endosomal 
sorting complexes, ESCRT-I, -II and -III (Jovic et al., 2010). 

The involvement of ubiquitin in membrane traffic was first described in yeast, where 
ubiquitylation of both the α-factor receptor and carboxypeptidase S by the HECT E3 ligase 
Rsp5 is essential for endocytosis as well as for their correct trafficking into the multi 
vesicular bodies (MVB) (Hicke & Riezman, 1996). In mammalian cells, the role of ubiquitin 
was first studied for the growth hormone (GH) receptor and the sodium channel ENaC 
(Staub et al., 1996, Strous et al., 1996). ENaC is ubiquitylated by the HECT E3 Nedd4-2 and is 
subsequently recognized by the ubiquitin binding domain containing clathrin adapter 
Epsin1. After endocytosis, deubiquitylation of ENaC by the DUBs UHC-L3 and USP2 
determines its fate at the multivesicular bodies. ENaC that remains ubiquitylated is 
recognized by the ESCRT complexes and degraded in the lysosome, whereas 
deubiquitylated ENaC is recycled back toward the plasma membrane (Butterworth & 
Johnson, 2008). A second DUB involved in ENaC down regulation is USP10, which can 
deubiquitylate sorting nexin 3, resulting in both decreased ENaC endocytosis and increased 
recycling. USP10 is also implied in endocytosis and recycling of the cystic fibrosis 
transmembrane conductance regulator CFTR (Bomberger et al., 2010, Boulkroun et al., 2008).  

The role of ubiquitylation in endocytosis of receptor tyrosine kinases has been extensively 
studied for the tyrosine kinase receptor, the epidermal growth factor (EGF) receptor. The 
RING E3 ligase c-Cbl and the E2 enzyme Ube2D1-4 are involved in ubiquitylation of the 
EGF receptor. Its clathrin-dependent endocytosis is regulated via binding to the clathrin 
adapter AP-2, either directly or via the ubiquitin binding endocytosis adapter Eps15 or 
Epsin1. Ubiquitin plays also an important role in sorting of the EGF receptor from the 
endosomal system toward the lysosome. This receptor is actively sorted away from the 
recycling endosome by binding to Hrs, which in turn binds the flat clathrin coat on the 
endosome (Madshus & Stang, 2009). Hrs binds to the ESCRT-I component Tsg101 that 
delivers the EGF receptor to the ESCRT machinery. Incorporation of the EGF receptor into 
intraluminal vesicles depends on the DUBs AMSH and USP8 that are associated with the 
ESCRT-III machinery (Row et al., 2007). However, other studies have shown that USP8 can 
also act , earlier at the level of ESCRT-I, by preventing entry into multivesicular bodies 
promoting recycling. The interaction of USP8 to both ESCRT-I and ESCRT-III indicates a 
complex role for this DUB in sorting of endosomal cargo (Berlin et al., 2010). 
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For the cytokine receptors interferon-α receptor chain 1 (IFNAR1), the prolactin, the 
erythropoietin and GH receptor, βTrCP, the substrate recognizing subunit of the E3 ligase 
complex skip-culling-F-box (SCF), is essential for endocytosis and degradation (Kumar et 
al., 2004, Li et al., 2004, Meyer et al., 2007, van Kerkhof et al., 2007). Clearly, cytokine 
receptors appear particularly well regulated by the ubiquitin system. To identify additional 
regulators of ubiquitylation events involved in trafficking of cytokine receptors we used our 
model, the GH receptor. 

The GH receptor plays an important role in growth and metabolic pathways. In contrast to 
the EGF receptor, the GH receptor is constitutively endocytosed and degraded in lysosomes. 
Using a temperature-sensitive E1 mutant, we previously showed that endocytosis is 
clathrin-mediated and depends on an intact ubiquitin system (Strous et al., 1996). This 
activity is mediated via the ubiquitin-dependent endocytosis (UbE) motif, a 12 amino acid 
stretch in the cytosolic tail of the GH receptor (Govers et al., 1999). The ring E3 ligase 
SCF(βTrCP) binds to the UbE motif and this binding is required for proper endocytosis (van 
Kerkhof et al., 2007). Recently, it was shown that, in addition to endocytosis, βTrCP is 
involved in sorting the GH receptor from multivesicular bodies towards the lysosome (van 
Kerkhof et al., 2011). In the absence of βTrCP, transport of the GH-GH receptor complex is 
halted at the multivesicular bodies and routed back to the plasma membrane. Interestingly, 
ubiquitylation of the receptor itself is not required for proper sorting, but it does require 
binding of this E3 ligase. These findings suggest that the GH receptor travels from the cell 
surface to the lysosome using βTrCP as a cargo-specific adapter that ubiquitylates (an 
ancillary factor of) the machinery instead of the cargo itself. In this study we used small 
interfering ribonucleic acid (siRNA) in a cell-based assay to find additional regulators of 
ubiquitylation involved in the fate of GH receptors expressed at the cell surface. We 
screened a library of siRNAs targeting DUBs and other ubiquitylation factors for their 
involvement in GH receptor sorting towards the lysosomes. 

2. Materials and methods 

2.1. Antibodies, chemicals, and cells 

The DUB siRNA library (Table 1) was obtained from Dharmacon, Thermo Scientific. Anti 
GH receptor (B) was previously described (van Kerkhof et al., 2000). Anti-actin was 
obtained from ICN. Lipofectamine2000 was obtained from InVitrogen. Butyrate was 
obtained from Sigma. NHis6-GH receptor expressing HepG2 cells ware grown in MEM 
(InVitrogen), supplemented with 10% FCS, 100 units/ml penicillin and 0.1 mg/ml 
streptavidin and geneticin.  GH receptor U2OS cells were generated and propagated as 
described in van Kerkhof et al., 2011. 

2.2. SiRNA transfection and screening  

Mixtures of 0.07 µl lipofectamine2000 and siRNAs in a total volume of 10 µl Optimem with 
a final concentration of 48 nM siRNA per well (348 well plates) were incubated for 30 min at 
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room temperature. Four thousand Nhis6-GH receptor expressing HepG2 cells were added 
to the mixture and allowed to propagate. After 48 h, 10 mM butyrate was added to increase 
the expression of GH receptor. After 72 h, the cells were incubated at 37°C with 5 ng/µl Cy3-
GH for 30 min, and fixed with 3% paraformaldehyde for 4 h at room temperature. After 
three 5-min washes with PBS, cells were incubated with 50 µl DAPI, 0.5 µg/ml for 10 min 
and washed with PBS. Automated image acquisition was performed by the BD Pathway 855 
system (BD Bioscience). DAPI was used for focusing and 4 images per well were acquired 
using a 20x objective. 
 

Gene 
Symbol 

Accession 
Number 

Gene 
Symbol 

Accession 
Number 

Gene 
Symbol

Accession 
Number 

Gene 
Symbol 

Accession 
Number 

ATXN3L XM045705 UBE1C NM003968 UBL4 NM014235 USP33 NM015017 
BAP1 NM004656 UBE1DC1 NM024818 UBL5 NM024292 USP34 XM291018 

COPS5 NM006837 UBE1L NM003335 UBR1 NM174916 USP35 XM290527 
CXORF53 NM024332 UBE2A NM003336 UBTD1 NM024954 USP36 NM025090 

CYLD NM015247 UBE2B NM003337 UCHL1 NM004181 USP37 NM020935 
DUB1A XM377830 UBE2C NM007019 UCHL3 NM006002 USP38 NM032557 
DUB3 NM201402 UBE2D1 NM003338 UCHL5 NM015984 USP39 NM006590 
FBXO7 NM012179 UBE2D2 NM003339 UEV3 NM018314 USP4 NM003363 
FBXO8 NM012180 UBE2D3 NM003340 UFD1L NM005659 USP40 NM018218 

FLJ14981 NM032868 UBE2E1 NM003341 USP1 NM003368 USP41 XM036729 
JOSD1 NM014876 UBE2E2 NM152653 USP10 NM005153 USP42 XM166526 

LOC391622 NM212553 UBE2E3 NM006357 USP11 NM004651 USP43 XM371015 
MJD NM004993 UBE2G1 NM003342 USP12 NM182488 USP44 NM032147 

MYSM1 XM055481 UBE2G2 NM003343 USP13 NM003940 USP45 XM371838 
OTUB1 NM017670 UBE2H NM003344 USP14 NM005151 USP46 NM022832 
OTUB2 NM023112 UBE2I NM003345 USP15 NM006313 USP47 NM017944 
OTUD1 XM166659 UBE2J1 NM016021 USP16 NM006447 USP48 NM033236 
OTUD4 NM017493 UBE2J2 NM058167 USP18 NM017414 USP5 NM003481 
OTUD5 NM017602 UBE2L3 NM003347 USP19 XM496642 USP50 NM203494 

OTUD6B NM016023 UBE2L6 NM004223 USP2 NM004205 USP51 NM201286 
OTUD7 NM130901 UBE2M NM003969 USP20 NM006676 USP52 NM014871 
PARP11 NM020367 UBE2N NM003348 USP21 NM012475 USP53 XM052597 
PRPF8 NM006445 UBE2NL XM372257 USP22 XM042698 USP54 NM152586 

PSMD14 NM005805 UBE2Q NM017582 USP24 XM165973 USP6 NM004505 
SBBI54 NM138334 UBE2R2 NM017811 USP25 NM013396 USP7 NM003470 
SENP2 NM021627 UBE2S NM014501 USP26 NM031907 USP8 NM005154 

SHFM3P1 AF174606 UBE2V2 NM003350 USP28 NM020886 USP9X NM004652 
STAMBP NM006463 UBE3A NM000462 USP29 NM020903 USP9Y NM004654 

STAMBPL1 NM020799 UBE3B NM130466 USP3 NM006537 VCPIP1 NM025054 
TNFAIP3 NM006290 UBE4A NM004788 USP30 NM032663 YOD1 NM018566 

TRFP NM004275 UBE4B NM006048 USP31 NM020718 ZA20D1 NM020205 
UBE1 NM003334 UBL3 NM007106 USP32 NM032582 ZRANB1 NM017580 

Table 1. DUB siRNA library. 2Underlined genes are ubiquitin-related proteins without DUB activity 



 
Molecular Regulation of Endocytosis 394 

room temperature. Four thousand Nhis6-GH receptor expressing HepG2 cells were added 
to the mixture and allowed to propagate. After 48 h, 10 mM butyrate was added to increase 
the expression of GH receptor. After 72 h, the cells were incubated at 37°C with 5 ng/µl Cy3-
GH for 30 min, and fixed with 3% paraformaldehyde for 4 h at room temperature. After 
three 5-min washes with PBS, cells were incubated with 50 µl DAPI, 0.5 µg/ml for 10 min 
and washed with PBS. Automated image acquisition was performed by the BD Pathway 855 
system (BD Bioscience). DAPI was used for focusing and 4 images per well were acquired 
using a 20x objective. 
 

Gene 
Symbol 

Accession 
Number 

Gene 
Symbol 

Accession 
Number 

Gene 
Symbol

Accession 
Number 

Gene 
Symbol 

Accession 
Number 

ATXN3L XM045705 UBE1C NM003968 UBL4 NM014235 USP33 NM015017 
BAP1 NM004656 UBE1DC1 NM024818 UBL5 NM024292 USP34 XM291018 

COPS5 NM006837 UBE1L NM003335 UBR1 NM174916 USP35 XM290527 
CXORF53 NM024332 UBE2A NM003336 UBTD1 NM024954 USP36 NM025090 

CYLD NM015247 UBE2B NM003337 UCHL1 NM004181 USP37 NM020935 
DUB1A XM377830 UBE2C NM007019 UCHL3 NM006002 USP38 NM032557 
DUB3 NM201402 UBE2D1 NM003338 UCHL5 NM015984 USP39 NM006590 
FBXO7 NM012179 UBE2D2 NM003339 UEV3 NM018314 USP4 NM003363 
FBXO8 NM012180 UBE2D3 NM003340 UFD1L NM005659 USP40 NM018218 

FLJ14981 NM032868 UBE2E1 NM003341 USP1 NM003368 USP41 XM036729 
JOSD1 NM014876 UBE2E2 NM152653 USP10 NM005153 USP42 XM166526 

LOC391622 NM212553 UBE2E3 NM006357 USP11 NM004651 USP43 XM371015 
MJD NM004993 UBE2G1 NM003342 USP12 NM182488 USP44 NM032147 

MYSM1 XM055481 UBE2G2 NM003343 USP13 NM003940 USP45 XM371838 
OTUB1 NM017670 UBE2H NM003344 USP14 NM005151 USP46 NM022832 
OTUB2 NM023112 UBE2I NM003345 USP15 NM006313 USP47 NM017944 
OTUD1 XM166659 UBE2J1 NM016021 USP16 NM006447 USP48 NM033236 
OTUD4 NM017493 UBE2J2 NM058167 USP18 NM017414 USP5 NM003481 
OTUD5 NM017602 UBE2L3 NM003347 USP19 XM496642 USP50 NM203494 

OTUD6B NM016023 UBE2L6 NM004223 USP2 NM004205 USP51 NM201286 
OTUD7 NM130901 UBE2M NM003969 USP20 NM006676 USP52 NM014871 
PARP11 NM020367 UBE2N NM003348 USP21 NM012475 USP53 XM052597 
PRPF8 NM006445 UBE2NL XM372257 USP22 XM042698 USP54 NM152586 

PSMD14 NM005805 UBE2Q NM017582 USP24 XM165973 USP6 NM004505 
SBBI54 NM138334 UBE2R2 NM017811 USP25 NM013396 USP7 NM003470 
SENP2 NM021627 UBE2S NM014501 USP26 NM031907 USP8 NM005154 

SHFM3P1 AF174606 UBE2V2 NM003350 USP28 NM020886 USP9X NM004652 
STAMBP NM006463 UBE3A NM000462 USP29 NM020903 USP9Y NM004654 

STAMBPL1 NM020799 UBE3B NM130466 USP3 NM006537 VCPIP1 NM025054 
TNFAIP3 NM006290 UBE4A NM004788 USP30 NM032663 YOD1 NM018566 

TRFP NM004275 UBE4B NM006048 USP31 NM020718 ZA20D1 NM020205 
UBE1 NM003334 UBL3 NM007106 USP32 NM032582 ZRANB1 NM017580 

Table 1. DUB siRNA library. 2Underlined genes are ubiquitin-related proteins without DUB activity 

 
Identification of Ubiquitin System Factors in Growth Hormone Receptor Transport 395 

2.3. Western blotting 

GH receptor expressing U2OS cells were transfected with the siRNAs to silence the 
indicated genes. Cells were lysed in 1% Triton X-100, 10 µg/ml leupeptin, 10 µg/ml aprotinin 
and 1 mM PMSF in PBS for 20 min and centrifuged at 13,000 x g for 5 min at 4°C. The 
supernatant was boiled in Laemmli sample buffer, and the proteins were separated on SDS-
PAGE and transferred to Immobilon-FL polyvinylidenedifluoride membrane (Millipore). 
Blots were immunostained with primary antibodies followed by Alexa Fluor 680 or IRDye 
800 conjugated anti-mouse or anti-rabbit antibodies. An Odyssey system was used for 
detection (Li-Cor Biosciences, Lincoln NE). 

3. Results 

3.1. High throughput screening 

GH receptor transport from the plasma membrane toward the lysosome is a complex 
process that requires, in addition to general endocytosis factors, specific regulatory proteins. 
As the ubiquitin system was implied in this process (Govers et al., 1997), we set up an assay 
to identify novel modifiers of regulatory ubiquitilation involved in GH uptake.  

Since the liver is an important target of GH, we used the human hepatocellular carcinoma 
cell line HepG2 for this assay. These epithelial cells are non-tumorigenic and synthesize a 
variety of liver-specific proteins, such as the asialoglycoprotein receptor and several plasma 
proteins (albumin, transferrin and the acute phase proteins fibrinogen, β2-macroglobulin, 
α1-antitrypsin, and plasminogen). Although HepG2 cells are GH sensitive, they have 
insufficient GH receptors to probe the effect of gene silencing. Therefore, we constructed a 
HepG2 cell line that expresses 100-200,000 rabbit GH receptors per cell. To identify genes 
involved in GH receptor endocytosis and degradation, we transfected the GH receptor 
expressing HepG2 cells with siRNAs as indicated. After 72 h, the cells were allowed to take 
up GH conjugated with Cy3 (Cy3-GH) for 30 min at 37°C, after which they were 
immediately fixed and assessed for Cy3-GH uptake (Fig. 1).  

We screened a commercial siRNA library targeting 84 DUBs and 44 other ubiquitylation-
related enzymes (Table 1) for regulators of GH uptake and receptor sorting (Dharmacon). 
This arrayed library consists of siRNA pools constituted of 4 unique siRNA sequences, 
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1 (first row) shows that clathrin depletion resulted in accumulation of Cy3-GH at the plasma 
membrane, whereas Tsg101 depletion resulted in Cy3-GH accumulation in both internal 
vesicles and on the plasma membrane. These data show that our screen setup has sufficient 
sensitivity to detect accumulation of GH receptor. Using the same method we identified 13 
genes: 7 in category I, 3 in category II and 3 in category III (Table 2). The E1 enzyme (UBE1) 
was identified as a category I hit, in concordance with its previously described role in GH 
receptor endocytosis (Strous et al., 1997) 

 

Figure 1. Representative images of observed phenotypes in the screen. Cells were transfected with 
smartpool siRNA, containing 4 individual siRNAs directed against a specific target. After 72 h, cells 
were incubated with Cy3-GH at 37°C for 30 min and fixed. Four images of the samples were 
automatically acquired, and analysed by eye. All the targets that were considered hits are shown. The 
image is a representative of 2 experiments. The images are grouped according to three pheno-typical 
categories: I: Cy3-GH enrichment on the plasma membrane, II: Cy3-GH enrichment on both the plasma 
membrane and intracellular, and III: intracellular enrichment only. 
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Gene Protein Function Cat 

USP19 
Ubiquitin carboxyl-terminal 

hydrolase 19 
DUB functioning in ER folding 

 I 

MJD Ataxin-3 
DUB functions in IGF-1 signalling and 

longevity in C. Elegans 
I 

USP30 Ubiquitin specific protease 30 
DUB located at outer mitochondrial 

membrane, function unknown 
I 

OTUD6B OTU domain containing 6B 
Member of the otubain DUB family, 

function unknown 
II 

PARP11 
poly (ADP-ribose) polymerase 

family, member 11 
Poly (ADP-ribose) polymerase family 

member, mRNA processing 
I 

PRPF8 
pre-mRNA processing factor 8 

(PRPF8 homolog, yeast) 
mRNA processing factor functions in 

the spliceosome 
III 

UBE1 
Ubiquitin activating enzyme 

E1 
Human ubiquitin-activating enzyme E1 I 

USP52 Ubiquitin specific peptidase 52 DUB, function unknown I 

USP8 ubiquitin specific peptidase 8 
DUB, involved in EGF receptor sorting 

at multivesicular bodies 
II 

UBE2I 
ubiquitin-conjugating enzyme 

E2I  (UBC9 homolog, yeast) 

Human homolog of UBC9, activating 
enzyme for ubiquitin like protein 

SUMO 
III 

UBE2L3 
ubiquitin-conjugating enzyme 

E2L 3 
Ubiquitin conjugating enzyme, cell 

cycle, can function together with Triad1 
I 

UBE2N 
ubiquitin-conjugating enzyme 
E2N  (UBC13 homolog, yeast) 

Ubiquitin conjugating enzyme able to 
catalyse K-63 linked ubiquitin chains 

II 

UBL5 
ubiquitin-like protein 5 

(BEACON homolog, human) 
Ubiquitin like protein, differentially 
expressed between lean and obese 

III 

Table 2. Screening results: Genes with a phenotype 

3.2. Validation of hits 

To validate candidate genes, we tested 8 siRNA pools with the strongest phenotypes in the 
first screen (USP19, Ubc9, Usp52, Usp8, Ubc13, Ubl5, PRPF8, and OTUD6B) in a second 
screen using a different cell type. For this purpose, we transfected osteosarcoma U2OS cells 
with rabbit GH receptor and selected a clone that expressed a limited number of exogenous 
GH receptors (Fig. 2A). In our experience, U2OS cells have a limited capacity to endocytose 
cargo via the clathrin-mediated pathway, a feature that renders the endocytosis assay 
particularly sensitive. In addition to the siRNA pools we transfected the individual siRNAs 
that constituted the pools (data not shown). In all cases at least 2 out of 4 siRNAs showed a 
similar phenotype as the pool, decreasing the likelihood of off-target effects. These 8 hits 
were examined in more detail. 
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3.2.1. Usp19 

Usp19 depletion showed an overall increase in Cy3-GH signal as well as some cell surface 
labelling (Fig 2A). Usp19 is an ER-localized membrane protein (Hassink et al., 2009), which 
was originally identified as a DUB induced in atrophying muscle (Combaret et al., 2005). It 
stabilizes ER localized proteins like CFTR and TCRα (Hassink et al., 2009) as well as cytosolic 
proteins like Hif1α, Siah1 and 2, c-IAP1 and 2, and the cyclin-dependent kinase inhibitor 
regulating ubiquitin ligases KPC1 and 2 (Altun et al., 2012, Lu et al., 2009, Mei et al., 2011). 
Interestingly, the catalytic activity of USP19 does not seem to be required for the stabilization 
of its substrates, but for stabilization of itself, facilitated via self-association (Altun et al., Mei et 
al., 2011). It also modulates transcription of major myofibrillar proteins (Sundaram et al., 2009), 
probably in a similar way as the earlier mentioned proteins. Furthermore, Usp19 is 
upregulated in smoke-induced muscle atrophy conditions in mice (Liu et al., 2011).  

 
Figure 2. Validation of hits obtained by the initial screen. GH receptor expressing U2OS cells were 
transfected with siRNAs as indicated. A) After 72 h, the cells were allowed to take up Cy3-GH for 30 
min at 37°C and immediately fixed. Cy3-GH uptake was assessed by automated confocal microscopy; 
images are representative of 4 experiments. B) After 72 h, cells were lysed and proteins were separated 
by SDS-PAGE followed by Western blot analysis for GH receptor (GHR) using actin as a loading 
control.  The upper GHR band represents the mature GHR, while the lower band is the immature (ER) 
form. The ratio mature/immature for the GHR species was taken as a measure for the turnover of the 
GHR related to the steady state situation in control cells. 
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Since the predominant splice variant is a type IV membrane protein, USP19 might act as an 
ER resident protein with no direct role in GH receptor regulation at the endosomal level. 
Further characterization was beyond the scope of this study. Alternative roles in the cytosol 
will undoubtedly become clear in the future. 

3.2.2. Usp8 

Usp8, also known as UBPY, is a deubiquitylating enzyme that functions in protein sorting at 
multivesicular bodies. Depletion of Usp8 showed a perinuclear accumulation of Cy3-GH 
punctae (Fig. 2A), reminiscent of the phenotype resulting from Tsg101 depletion. To 
characterize the effects of gene silencing on the GH receptor degradation further we 
performed Western blot analysis for the GH receptor. This approach reveals additional 
details related to the role of USP8 in GH receptor trafficking. At steady state, Western blot 
analyses of the GH receptor show an approximately 1:1 ratio of the amount of ‘immature’ 
(high mannose oligosaccharides-containing) receptor, mainly located in the rough ER, and 
the amount of the ‘mature’, complex-glycosylated GH receptor, mainly present at the 
plasma membrane. Previously, we determined the half-life of both GH receptor species to be 
50 min at 37°C. The half-life of the high-mannose GH receptor is defined as the time it takes 
for the GH receptor to exit the ER and arrive at the Golgi complex to receive the ‘complex’ 
sugar moieties, while the half-life of the ‘mature’ GH receptor is defined as the time 
required for its transport from plasma membrane to the lysosomes. As Usp8 depletion 
caused a relative increase in mature over immature GH receptor levels, the results suggest 
that Usp8 promotes GH receptor degradation. 

Usp8 can bind to ESCRT-III components and its depletion leads to enlarged endosomes 
and diminished incorporation of EGF receptors into the intraluminal vesicles (ILV) of the 
multivesicular bodies (Bowers et al., 2006). In addition, it has been reported that Usp8 
can interact with the ESCRT-0 component STAM via its SH3 domain and that its 
depletion results in accelerated degradation of EGF receptor in the lysosome, strongly 
suggesting that Usp8-dependent deubiquitylation of EGF receptor prevents EGF receptor 
from being recognized by the ESCRT machinery, a recognition depending on ESCRT-0 
component Hrs (Berlin et al., 2010, Rao et al., 2011). Furthermore, the ability of Usp8 to 
bind both ESCRT-I and ESCRT-III suggests a dual function for Usp8 in receptor sorting. 
Indeed, at the plasma membrane Usp8 can inhibit degradation of receptors by removing 
the ubiquitin tag that directs them to the multivesicular bodies, while at the 
multivesicular bodies Usp8 can promote degradation of receptors by allowing 
incorporation of receptors into the ILVs (Wright et al., 2011). We demonstrate here that 
depletion of Usp8 increases the level of intracellular GH receptor indicative of a defect in 
sorting towards the lysosome, most likely at the level of ESCRT-III. The latter is 
supported by previous data showing that the transport of GH receptor from 
multivesicular bodies to the lysosome does not depend on ESCRT-0 components. 
Apparently, the GH receptor enters the ESCRT complexes at the level of ESCRT-I (van 
Kerkhof et al., 2011). 
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3.2.3. Ubl5 

Ubl5 depletion leads to an increased accumulation of Cy3-GH in endosomes. The Western 
blot analyses showed a complex pattern wherein both the immature GH receptor band and 
the mature GH receptor were increased compared to control cells. Ubl5 is a small ubiquitin 
like modifier that, in contrast to other ubiquitin like molecules, does not have a C-terminal 
glycine residue. A remarkable finding implicated a mutation in non-coding regions of Ubl5 
in metabolic syndrome-related phenotypes (Bozaoglu et al., 2006). In a recent study, Mishra 
and co-workers show that its yeast homologue Hub1 alters the splice specificity for certain 
non-canonical 5' splice sites by non-covalent attachment to elements of the spliceosomes 
(Mishra et al., 2011). Combining the above renders it plausible that expression levels of Ubl5, 
altered by mutations in the non-coding region, attenuate the expression of proteins 
ultimately affecting metabolism. Since the GH receptor is tightly involved in regulation of 
metabolic pathways, the involvement of Ubl5 in GH receptor trafficking toward the 
lysosome is interesting. Either the GH receptor itself or GH receptor-regulating factors 
might be affected by Ubl5. Preliminary data from 125I-GH uptake experiments suggest that 
depletion of Ubl5 does not alter the internalization and degradation kinetics of the receptor.  
Furthermore, a direct interaction between the GH receptor and Ubl5 could not be identified 
(data not shown). Since steady state levels of GH receptor as measured with Western blot 
analyses did increase as a result of Ubl5 silencing (Fig. 2B), the data suggest that Ubl5 either 
influences transcription or synthesis of the GH receptor. To fully understand the role of 
Ubl5 more investigation is required. 

3.2.4. PrPF8 

Pre-mRNA-processing-splicing factor 8 (PrPF8) is a large nuclear protein that functions in 
the U2, U12 and trans-spliceosome, and has an active role in processing of pre-mRNA 
(reviewed in Grainger & Beggs, 2005). PrPF8 knockdown showed an intracellular 
accumulation of Cy3-GH. In addition, the Western blot analysis showed an increase in the 
immature form of GH receptor and a complex band pattern of slower migrating bands. 
This might indicate that multiple pathways are affected. Because of PrpF8’s role in the 
spliceosome, it is likely that depletion of this protein can influence correct splicing of 
many factors including the GH receptor and proteins of the endocytosis machinery. We 
did not yet elucidate whether PrPF8 is directly or indirectly involved in GH receptor 
endocytosis. For example, previously, we have shown that alternative splicing of βTrCP 
isoforms may affect their localization, which may have consequences for GH receptor 
endocytosis (Putters et al., 2011b). Because the GH receptor mRNA was artificially 
transcribed from a plasmid driven by a CMV promoter (pcDNA3) it is possible that this 
might indirectly lead to alterations in sorting of GH receptor at the plasma membrane or at 
endosomes by exceeding the sorting capacity of these systems. Alternatively, absence of 
PrPF8 may affect the balance of folding factors in the ER, resulting in ER overload of GH 
receptors that cannot leave the ER, e.g. due to defective dimerization (van den Eijnden et 
al., 2006). 
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3.2.5. OTUD6B 

Ovarian tumour (OTU) domain containing 6B (OTUD6B) is a member of the OTU-domain 
Ubal-binding protein (otubain) domain containing protein family that constitutes a specific 
subset of deubiquitylating enzymes. The function of OTUD6B is not known. Substrates of 
two other OTU domain containing proteins, OTUB1 and OTUB2, are GRAIL (Soares et al., 
2004), oestrogen receptor (Stanisic et al., 2009), p97 (Ernst et al., 2009), RhoA (Edelmann et 
al.), Traf3 and Traf6 (Li et al., 2010). They have been implicated in non-canonical DNA-
damage response (Nakada et al., 2010). Furthermore, OTUB1 shows substrate specificity 
towards K48 linked ubiquitin chains (Wang et al., 2009). We have identified OTUD6B as a 
novel factor in GH receptor endocytosis. Its depletion leads to a phenotype where mature 
GH receptor accumulates, mainly in the endosomes but also at the plasma membrane. Fig. 
2B clearly shows a decreased degradation with little effect on its biosynthesis. Analogous to 
Tsg101 depletion, this might point to a role in multivesicular body function. Further 
investigations are necessary to determine whether OTUB6D acts specific on the GH receptor 
or has a general role in endosomal sorting. 

3.2.6. Ubc13 and associated E3s 

The presence of UBE2N, encoding for the E2 enzyme Ubc13, in our hit list was striking. 
Previously, after our finding that ubiquitylation is required for GH receptor endocytosis and 
degradation, we identified SCF(βTrCP) as an E3 that specifically binds to the UbE motif of 
the GH receptor and conjugates K48 poly-ubiquitin chains to the GH receptor (Putters et al., 
2011a, van Kerkhof et al., 2007). With the identification of Ubc13 it became plausible that 
also K63-linked ubiquitin chains might be involved in GH receptor endocytosis, as Ubc13 
together with the pseudo E2s UEV1A and MMS2 can synthesize K63 linked ubiquitin chains 
(Deng et al., 2000).  
 

Gene Protein Function Reference

ARIH2* Triad1 Cell cycle, cell growth (Marteijn et al., 2009) 

CHFR* CHFR Cell cycle (Bothos et al., 2003, Loring et al., 2008) 

PARK2* Parkin 
Neuroprotection, cell 

death 
(Lo Bianco et al., 2004) 

RNF8* RNF8 DNA repair (Plans et al., 2006) 

Rad5 Rad5 DNA repair (Torres-Ramos et al., 2002) 

Rad18 PCNA DNA repair (Ulrich & Jentsch, 2000) 

STUB1* CHIP Heat shock system (Zhang et al., 2005) 

TRAF2 Traf2 TNF signalling (Habelhah et al., 2004) 

TRAF6 Traf6 TNF signalling (Wooff et al., 2004) 

Table 3. E3 ligases known to interact with Ubc13 



 
Molecular Regulation of Endocytosis 402 

Furthermore, these K63-linked ubiquitin chains have been implied in endocytosis in yeast 
(Lauwers et al., 2009) and in mammalian cells (Kamsteeg et al., 2006). To investigate 
whether K63-linked ubiquitylation is indeed involved in GH receptor endocytosis, we 
selected nine E3 ubiquitin ligases that are known to interact with Ubc13 (listed in Table 3) 
(Bothos et al., 2003, Deng et al., 2000, Loring et al., 2008, Marteijn et al., 2009, Plans et al., 
2006, Sun et al., 2004, Torres-Ramos et al., 2002, Zhang et al., 2005). As gene silencing of 
Traf2 and Traf6 induced cell death in previous experiments (data not shown), and rad5 and 
rad18 are mainly involved in DNA repair, we excluded them from further investigation and 
performed gene silencing experiments for the 5 remaining E3 ligases using validated 
siRNAs (Table 3, asterisk).  

We transfected GH receptor-expressing U2OS cells with these siRNAs and propagated them 
for 3 days prior to performing the assay as described above. Cells, treated with siRNAs for 
ARIH2 and STUB1, encoding Triad1 and CHIP, respectively, showed a strong phenotype 
(Fig. 3). Not only was the label intensity much higher, silencing of both genes also induced 
accumulation of Cy3-GH signal on the plasma membrane. Recently, we published details 
about the role of the ubiquitin ligase CHIP in GH receptor endocytosis involving a direct 
interaction with specific amino acid sequences in the cytosolic tail of the receptor. The same 
study shows that CHIP acts in collaboration with UBC13, implicating K63-specific 
ubiquitylation in the GH receptor endocytosis (Slotman et al., 2012). This is in accordance 
with Fig. 2.  

 

 
 

Figure 3. Mini-screen for E3s involved in Ubc13 mediated ubiquitylation. GH receptor-expressing 
U2OS cells were transfected with validated siRNAs targeting 5 E3 ligases that can function together 
with the E2 Ubc13. After 72 h, the cells were allowed to take up Cy3-GH at 37°C for 30 min after which 
they were fixed. Cy3-GH uptake was assessed by confocal microscopy. Shown cells are representative 
for all cells in the samples of 2 independent experiments. 
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Triad1-depleted cells showed larger internal vesicles with an altered pattern as compared 
to wild type. Triad1 is an E3 ligase that has 2 RING domains and, consequently, has the 
ability to bind two ubiquitin conjugases. Previously, Marteijn and co-workers identified 
both Ubc13 and UbcH7 as E2s involved in Triad1 action (Marteijn et al., 2009). As seen in 
Fig. 1 and Table 2, UBCH7 (UBE2L3) also tested positive in our initial screen, 
strengthening the involvement of Triad1 in the sorting of GH receptors in endosomes  
(Fig. 1, Table 2) 

In conclusion, we identified three novel genes in GH-induced endocytosis via the GH 
receptor, two of which (UBC13 and STUB1) demonstrated identical phenotypes, while 
silencing of ARIH2 resulted in a different pattern. All three enzymes are involved in K63-
linked ubiquitin chain formation. Further studies are being performed to determine whether 
ARIH2 acts specifically on the GH receptor or whether it has a broader function in 
endocytosis and/or lysosomal degradation (Hassink et al., 2012). 

4. Discussion 

We performed a siRNA screen in which we assayed 84 DUBs and 44 other enzymes of the 
ubiquitin and related systems. In the first screen we identified 13 genes that showed an 
altered uptake or degradation pattern of Cy3-GH. As expected, the UBE1 gene, encoding the 
E1 enzyme, one of two ubiquitin activating enzymes in mammalian cells, was among the 13 
hits. It is known that by disrupting the enzymatic activity of the E1 enzyme GH receptor 
endocytosis is blocked (Strous et al., 1996). The observation that E1 silencing results in a 
similar phenotype shows that the screen setup is valid and able to pick up factors of the 
ubiquitin system that are involved in (GH receptor) endocytosis. Furthermore, the large 
number of hits in this screen clearly shows that GH receptor trafficking by ubiquitin is a 
complex and well regulated process.  

Among the proteins that did not appear in our screen as a hit, but would be expected to 
show a phenotype, is the activating enzyme (E1) of the ubiquitin like modifier ISG15. 
ISG15ylation of Ubc13 disrupts its function (Zou et al., 2005) and depletion of this E1 would 
lead to less ISG15ylation of Ubc13 that might result in an increased endocytosis of GH 
receptor. Unfortunately, our approach lacks the sensitivity to register accelerated 
endocytosis. An assay that would pick up such an effect must be suited to measure 
endocytosis in a quantitative way rather than qualitatively. Another factor that we expected 
to find was UBE2M, which functions as the E2 for neddylation of cullins, the modification 
by the ubiquitin like protein Nedd8. Cullin neddylation activates SCF(βTrCP), which is 
essential for GH receptor ubiquitylation and degradation (van Kerkhof et al., 2007). 
Recently, the ubiquitin conjugase UBE2F was identified as a Nedd8 conjugating enzyme 
(Huang et al., 2009). Therefore, UBE2M and UBE2F might have a redundant function, 
possibly explaining the absence of UBE2M among our hits. Of note, UBE2F was not targeted 
by our siRNA library and was therefore not tested in our assay. 
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The screen identified two proteins involved in ubiquitin-like mechanisms, UBE2I, also 
known as UBC9, the E2 for SUMOylation, and UBL5, an ubiquitin like protein. This is the 
first time that these two pathways are implicated in GH receptor trafficking. Many 
similarities exist between the ubiquitin-based and ubiquitin-like mechanisms with many 
examples of interplay. In GH receptor trafficking SUMOylation might block ubiquitylation 
and vice versa (Denuc & Marfany, 2010). The action of UBL5 is more mysterious, since it 
cannot be conjugated to substrates due to a lack of a C-terminal glycine residue. 
Hypothetically, ubiquitin binding domains could be blocked by the structurally very similar 
UBL5 and in this a way UBL5 may regulate ubiquitylation events (McNally et al., 2003). A 
correlation between obesity and UBL5 mRNA levels was found in P. obesus (Walder et al., 
2002) but this finding is still debated in humans (Bozaoglu et al., 2006, McNally et al., 2003). 
Since GH receptor signalling is highly involved in growth and obesity (Erman et al., 2010, 
Gao et al., 2010), altering the sorting of GH receptor could be involved. Hence, GH receptor 
sorting defects, UBL5, and growth and metabolic diseases may be linked.  

We identified two novel ubiquitin ligases that are involved in GH receptor trafficking, CHIP 
and Triad1; thus, together with SCF(βTrCP), at least three E3s have a regulatory role in GH 
receptor degradation. This indicates that both K48 and K63-linked ubiquitin chain formation 
are involved. In addition, we identified six DUBs involved in GH receptor endocytosis and 
homeostasis: USP19, MJD, USP30, OTUD6B, UPS52 and USP8. These DUBs might 
antagonize the action of the ligases mentioned above, providing a high level regulation. 
Together, these proteins are part of a complex system that regulates ubiquitylation of many 
substrates. In part by spatial en temporal regulation, ubiquitylation and deubiquitylation 
events modulate the sorting of GH receptor, and thereby respond quickly to different forms 
of stress. Additionally, the number of distinct E2, E3, and DUB enzymes involved in 
ubiquitylation provides specificity in regulating different classes of receptors in disparate 
ways within the same endocytic system. 

These findings underscore the complexity of the ubiquitylation system and endocytosis 
process, and, at the same time, offer interesting opportunities to discover drugs that 
specifically target the GH receptor. As this receptor is implicated both in anabolism, in 
longevity and insulin sensitivity (Bartke, 2012), drugs that can either up- or down regulate 
its activity are highly relevant.  

5. Conclusion  

The ubiquitin proteasome system plays an essential role in trafficking of the growth 
hormone receptor from the plasma membrane to the lysosomes, where degradation takes 
place. When ubiquitylation is disabled, the GH receptor accumulates at the plasma 
membrane and its degradation is inhibited. As endosomal sorting is a highly regulated 
process that depends on a variety of ubiquitylation events, we set up a cell-based, high 
content siRNA screen targeting 128 genes of the ubiquitylation system. In this study we 
report the identification of 13 modifiers of regulatory ubiquitylation events that are involved 
in trafficking and degradation of the GH receptor. As the GH receptor is a key regulator of 
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The screen identified two proteins involved in ubiquitin-like mechanisms, UBE2I, also 
known as UBC9, the E2 for SUMOylation, and UBL5, an ubiquitin like protein. This is the 
first time that these two pathways are implicated in GH receptor trafficking. Many 
similarities exist between the ubiquitin-based and ubiquitin-like mechanisms with many 
examples of interplay. In GH receptor trafficking SUMOylation might block ubiquitylation 
and vice versa (Denuc & Marfany, 2010). The action of UBL5 is more mysterious, since it 
cannot be conjugated to substrates due to a lack of a C-terminal glycine residue. 
Hypothetically, ubiquitin binding domains could be blocked by the structurally very similar 
UBL5 and in this a way UBL5 may regulate ubiquitylation events (McNally et al., 2003). A 
correlation between obesity and UBL5 mRNA levels was found in P. obesus (Walder et al., 
2002) but this finding is still debated in humans (Bozaoglu et al., 2006, McNally et al., 2003). 
Since GH receptor signalling is highly involved in growth and obesity (Erman et al., 2010, 
Gao et al., 2010), altering the sorting of GH receptor could be involved. Hence, GH receptor 
sorting defects, UBL5, and growth and metabolic diseases may be linked.  

We identified two novel ubiquitin ligases that are involved in GH receptor trafficking, CHIP 
and Triad1; thus, together with SCF(βTrCP), at least three E3s have a regulatory role in GH 
receptor degradation. This indicates that both K48 and K63-linked ubiquitin chain formation 
are involved. In addition, we identified six DUBs involved in GH receptor endocytosis and 
homeostasis: USP19, MJD, USP30, OTUD6B, UPS52 and USP8. These DUBs might 
antagonize the action of the ligases mentioned above, providing a high level regulation. 
Together, these proteins are part of a complex system that regulates ubiquitylation of many 
substrates. In part by spatial en temporal regulation, ubiquitylation and deubiquitylation 
events modulate the sorting of GH receptor, and thereby respond quickly to different forms 
of stress. Additionally, the number of distinct E2, E3, and DUB enzymes involved in 
ubiquitylation provides specificity in regulating different classes of receptors in disparate 
ways within the same endocytic system. 

These findings underscore the complexity of the ubiquitylation system and endocytosis 
process, and, at the same time, offer interesting opportunities to discover drugs that 
specifically target the GH receptor. As this receptor is implicated both in anabolism, in 
longevity and insulin sensitivity (Bartke, 2012), drugs that can either up- or down regulate 
its activity are highly relevant.  

5. Conclusion  

The ubiquitin proteasome system plays an essential role in trafficking of the growth 
hormone receptor from the plasma membrane to the lysosomes, where degradation takes 
place. When ubiquitylation is disabled, the GH receptor accumulates at the plasma 
membrane and its degradation is inhibited. As endosomal sorting is a highly regulated 
process that depends on a variety of ubiquitylation events, we set up a cell-based, high 
content siRNA screen targeting 128 genes of the ubiquitylation system. In this study we 
report the identification of 13 modifiers of regulatory ubiquitylation events that are involved 
in trafficking and degradation of the GH receptor. As the GH receptor is a key regulator of 
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metabolism, this study highlights the complexity of pathways that underlie its regulation. 
These findings may guide the development of specific drugs that either up- or down-
regulate GH-based signal transduction. As GH signalling is implicated in longevity, insulin-
sensitivity, and cancer, studies focussed at factors that regulate ubiquitylation and GH 
receptor levels are highly relevant. 
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1. Introduction 

Macrophages are known to take up “invaders” such as pathogens and viruses mainly by 
phagocytosis to protect the host from infections by them. This process of phagocytosis is 
disadvantageous in general for exhibition of an efficient pharmacological effect of particle 
formulations containing drugs, because the uptake of particles by macrophages reduces the 
extracellular drug concentration. Hence, it is important to understand what properties of 
particles are advantageous or disadvantageous for phagocytic uptake by macrophages. 
Modification of particles by polyethylene glycol (PEG), which forms a hydrated phase on 
the surface of particles, enables long-lasting circulation of such particles in the bloodstream 
by circumventing their uptake by macrophage cells [1].  

In contrast, particle formulations that are easily taken up by macrophages would be highly 
advantageous for macrophage-targeting drug delivery [2]. In this case, a typical example is 
the treatment of tuberculosis (TB). Namely, Mycobacterium tuberculosis (MTB) cells are easily 
trapped in the phagosomes of alveolar macrophages. However, these cells are not digested 
by macrophages, because the fusion of the MTB-containing phagosomes with lysosomes, 
which are indispensable for the digestion of bacteria inside phagosomes, is inhibited. As a 
result, MTB cells proliferate and accumulate inside macrophages [3]. Hence, the delivery of 
particles containing antituberculosis agents to alveolar macrophages would be expected to 
be effective for TB therapy.  

As summarized in Figure 1, endocytic uptake including phagocytosis is classified according 
to the mechanism of vesicle formation as well as the size of particles ingested [4-7]. 
Phagocytosis is performed by specialized cells such as macrophages, and it plays a role in 
the clearance of particles having a diameter greater than 0.5 m. On the other hand, 

© 2012 Hirota and Terada, licensee InTech. This is a paper distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.
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pinocytosis occurs in all cells, including macrophages and cancer cells, for obtaining 
nutrients and biological mediators. It is noteworthy that macropinocytosis covers a broad 
range of particle sizes from 100 nm to 5 m [8-10].  

 
Figure 1. Classification of endocytosis in relation to particle sizes favorable for ingestion.  

In this chapter, features of phagocytosis of particles in terms of particle properties, as well as 
phagocytosis-induced physiological events of macrophages, are described. In addition, the 
promising aspect of clinical treatment by the utilization of endocytosis-mediated drug action 
is reviewed.  

2. Effect of particle properties on endocytosis 

Drug-containing particle formulations are commonly used for delivery of drugs. The 
particle base is the most important part of a formulation. Poly (lactic-glycolic) acid (PLGA) 
is one of the candidates for drug-containing particle formulations, because PLGA is 
biodegradable and biocompatible [11]. Drug release from the particles and its sustainability 
can be regulated by changing the molecular weight and composition of the lactate and 
glycolate moieties of PLGA [12].  

Phagocytic uptake of particles by macrophage cells proceeds as follows: 1) access of particles 
to the surface of the macrophage membrane, 2) particle recognition by phagocytic receptors 
on the macrophage membrane, and 3) dynamic changes in membrane structure (protrusion 
or invagination). Particle size, shape, and surface properties affect efficient entrapment and 
subsequent uptake by macrophages.  
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2.1. Particle size 

Particle size is likely the primary factor that governs endocytic uptake of particles. The 
optimum size of particles for efficient endocytic uptake varies according to the cell type. 
Macrophage cells are able to ingest large particles having a diameter between 1 m and 10 
m to eliminate invaders from outside the body [13,14]. The optimal sizes of the particles for 
the uptake by alveolar macrophages range between 3 m and 6 m [15], but those by 
peritoneal macrophages and peripheral blood mononuclear cells are reportedly from 0.3 m 
to 1.1 m [16-18]. The uptake mechanism of the particles, such as 3-m particles, was 
interpreted by the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory [19]. 

Nanoparticles are advantageous for attacking carcinoma cells, which mainly originate from 
epithelial cells. The optimal size of the particles for the uptake by carcinoma cells was reported 
to be around 50 nm, as determined by the use of gold nanoparticles [20]. Besides micrometer-
size particles, macrophages also take up nano-size particles [21]. The uptake of nano-size 
particles mainly proceeds via pinocytosis in such a way that the rate of pinocytosis is 
dependent on the extracellular particle concentration and time of exposure. For ingestion of 
liquid phase, this rate for mouse fibroblast L cells is 18.7 m3/hr/cell, which value is less than 
that for mouse resident peritoneal macrophages, 46.5 m3/hr/cell [22,23]. Hence, 
understanding of particle properties other than size is also important for particle delivery.  

2.2. Shape 

Particle shape is another major factor affecting endocytic uptake by macrophages. The 
macrophage membrane undergoes structural changes in such a way that the membrane 
spreads around the particle, starting from the initial contact site between particle and 
membrane; and the progression of endocytic uptake of particles is dependent on the contact 
angle between particle and macrophage membrane. For example, an elliptical disk-shaped 
particle is internalized along its long axis when the particle has attached perpendicularly to 
the cell membrane, in which case the contact angle is small [24]. In this case, the membrane 
spreads symmetrically around the particle, engulfing it. In contrast, attachment when the 
short axis is perpendicular to the membrane increases the angle of contact and the number 
of contact points with the membrane, which then starts to spread asymmetrically. As a 
result, the particle is not engulfed. However, when the long axis of particles ranges from 2-3 
m, which corresponds to that of most bacteria, maximum attachment to macrophage cells 
occurs; and engulfment is successful even though the angle of contact is large [25].  

2.3. Surface properties 

Most mammalian cells including macrophage cells have negative charges on their surface 
[26,27]. As the loss of the negative surface charge of the membrane is thought to influence 
protein localization during endocytosis [28], the surface charge of particles is thought to be 
also critical for endocytic uptake. In fact, it is reported that changes in cellulose particles by the 
introduction of extremely negatively charged sulphoethyl residues or of positively charged 
diethylaminoethyl groups affect the endocytic uptake by mouse peritoneal macrophage cells 
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and that the endocytic uptake is the lowest for particles without having surface charge, as 
determined in terms of zeta potential [29].  

Charge density is also important. The Ohshima theory, based on the analysis of the membrane 
surface in terms of electrophoretic “softness” and the density of the fixed charge [30], will be 
effective for understanding of the interaction of particles with cell membranes [31]. 
Polystyrene particles having electrophoretic softness and a low negative electrical charge 
density by the introduction of primary amine and carboxyl groups on their surface were 
reported to be more susceptible to endocytic uptake by rat alveolar macrophage cells than 
those having more rigid and higher electrical charge density by the introduction of hydroxyl 
and sulfate groups [13].  

2.4. Particle formulations 

Particle formulations affect directly the interaction of particles with the endocytic receptors 
of macrophage cells. The exposure of the phosphatidylserine moiety on the membrane of 
apoptotic lymphocytes is important for their removal by endocytosis by macrophage cells 
through recognition via scavenger receptors on the macrophages [32]. Based on this 
mechanism, liposomes containing phosphatidylserine are more susceptible to uptake by 
macrophage-like HL-60RG cells than those containing phosphatidylethanolamine or 
phosphatidic acid [33].  

PLGA has been commonly used as a base of particle formulations. Macrophage cells eat PLGA 
particles more efficiently than polystyrene latex ones. It is noteworthy that phagocytosis of 
PLGA particles by alveolar macrophage cells stimulates their phagocytic activity in such a way 
that their uptake increases both the population of phagocytic macrophage cells and the 
number of particles that have been taken up by individual macrophage [34]. However, the 
mechanism of interaction of PLGA with macrophage cells is still unknown. 

3. Induction of inflammatory responses by endocytosis 

Macrophage cells patrol around the tissue where they reside and play a central role in the 
clearance of invaders. The total surface area of human alveoli is approx. 70 m2, where 23 billion 
alveolar macrophage cells reside [35,36]. Namely, a single macrophage cell should monitor 
invaders in an area of a square with a side length of 55 m. When macrophage cells encounter 
invaders, the cells eliminate them by phagocytosis and subsequent digestion with lysosomal 
enzymes. Simultaneously, macrophage cells generate inflammatory mediators, working as 
signals to inform the surrounding cells that invaders are coming. Macrophage cells also 
recognize drug carrier particles as invaders, and then, “undesirable” immune responses such 
as the production of antibody and inflammatory mediators take place. Hence, silent nature 
toward macrophage cell functions is required for efficient drug carrier particles.  

In the case of endocytosis-mediated drug action (see section 5), high particle uptake by 
macrophages is favorable. Such efficient uptake will be achieved by up-regulation of endocytic 
activity, but this action may trigger undesirable immune responses from macrophages. If 
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efficient particle uptake is not associated with the induction of the undesirable responses, the 
particles could be very useful as drug carriers. As summarized in Table 1, PLGA particles are 
those having such a desirable silent nature regarding inflammatory responses, although they 
are yet well phagocytosed by macrophages compared with polystyrene latex (PSL) particles 
[34,37]. Namely, the PLGA particle behaves like a “Ninja,” having stealth and concealment 
activities. However, it is still unknown how particle formulation and modification are relevant 
to this silent nature. In this section, we review two distinct pathways involved in signal 
transduction to generate inflammatory mediators, one using phagocytic receptors and the 
other, pattern recognition receptors (PRRs).  
 

Responses 
Particles

PLGA PSL LPS 

Cell death - + ++ 
TNF- - + ++ 
NO - + ++ 
IL-10 - - + 
TGF- - + - 
Phagostimulation + -  

These data are summarized from reports [34,37]. Rat alveolar macrophage cells (NR8383)  
were exposed to PLGA and PSL particles at a number 10 times greater than the cell number. LPS existing in micellar 
form in the incubation medium was used at the concentration of 1 g/mL as a reference. (-), no responses; (+), mild 
responses; (++), significantly high response than (+). 

Table 1. Alveolar macrophage cellular responses induced by particle uptake. 

3.1. Phagocytosis-mediated inflammatory response 

Phagocytic cells, such as macrophages, monocytes, and polymorphonuclear cells, take up 
particles and pathogens typically with sizes of more than 0.5 m to clear them from the 
body mainly by phagocytosis [4,38]. In the case of macrophages, the ingestion of particles 
proceeds in such a way that the interaction of the particles with phagocytic receptors causes 
extension of pseudopods from the plasma membrane to capture the particles, which action 
is followed by engulfment by these phagocytes [5]. This phagocytic mechanism, called the 
“zipper” model, requires a reorganization of the actin-based cytoskeleton underlying the 
region of plasma membrane in contact with the particles and induces signal transduction 
through the Fc receptor (FcR) and complement-receptor 3 (CR3) [39].  

The cross-linking of the FcR by particles simultaneously initiates a series of signal 
transduction events mediated by multiple protein tyrosine kinases, phosphoinositide, and 
free arachidonic acid [40-42]. In the case of monocytes, the cross-linking of FcR by IgG 
initiates the release of TNF-, IL-1, IL-6, IL-8, and monocyte chemoattractant protein-1 
(MCP-1), which molecules are classified as T helper 1 (TH1) cytokines [43-47]. Macrophage 
cells are also stimulated by the cross-linking of FcR by IgG; and these cells generate TNF- 
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through MAPK signal transduction, leading to NF-B activation [48,49]. In the presence of 
IL-3 and a high density of IgG, IL-4 and IL-10 of the TH2 inflammatory cytokine family are 
synthesized in macrophage cells by the cross-linking via IgG [50,51]. Signal transduction 
initiated from FcRs is involved in inflammatory immune responses.  

In contrast, CR3-mediated phagocytosis by macrophages, which is cooperative with FcR-
mediated phagocytosis [52], seems to be involved in anti-inflammatory responses rather 
than in inflammatory responses, though various signal transductions mediated by tyrosine 
kinase are initiated from CR3 [53]. Generation of IL-12 in human monocytes is known to be 
stimulated by phagocytosis of Staphylococcus aureus. However, treatment of the phagocytic 
monocytes with iC3b, the natural CR3 ligand, down-regulates the generation of IL-12, 
suggesting that CR3 suppresses the inflammatory response [54]. In addition, ligation of CR3 
suppresses the release of TH1 cytokines, such as TNF-, IL-6 and IL-12, and the TH2 cytokine 
IL-10 from LPS-stimulated bone marrow-derived mouse dendritic cells [55]. Hence, it is 
possible that CR3 is associated with the silent nature of the entry of particles, such as PLGA 
particles, into phagocytic cells. 

3.2. Pattern recognition-mediated inflammatory responses 

There are macrophage cells in various vertebrates and invertebrates that are capable of 
recognizing highly conserved pathogenic molecular patterns by receptors called pattern 
recognition receptors (PRRs) [56,57]. These receptors are classified into two major groups, 
one involved in endocytic uptake, such as scavenger receptors (SRs), and the other 
associated with transmission of danger signals independent of endocytosis, such as Toll-like 
receptors (TLRs) and nucleotide-binding domain leucine-rich repeat-containing receptors 
(NLRs) [57,58]. It is of importance to understand signal transduction from these receptors 
for construction of silent drug delivery using particles.  

Lipopolysaccharide (LPS) micelles and silica particles are reported to bind with SRs, which 
binding is followed by their engulfment by macrophages [59-61]. In sepsis patients, SRs play 
a role in efficient clearance of LPS and attenuation of LPS-induced inflammatory responses 
[62]. However, signaling pathways initiated from SRs are difficult to identify, because 
ligands of SRs, such as LPS and polyinosinic acid, simultaneously stimulate TLRs as well. 
Overexpression of class B SRs in human epithelial carcinoma HeLa cells and human 
embryonic kidney cells (HEK293) increases the production of the inflammatory mediator IL-
8 associated with increased uptake of LPS [63]. This inflammatory response seems to be due 
to interaction of SRs with LPS. In contrast, CD163, a hemoglobin scavenger receptor, down-
regulates TH1 inflammatory responses by initiation of signaling leading to secretion of TH2 
cytokines [64]. SRs are associated with TLR-independent signaling pathways and involved 
in inflammatory responses similarly as FcR. 

TLRs play an important role in innate immunity and recognize various molecules derived 
from bacteria and viruses [65]. TLR3 and TLR7 express on the endosomal membrane and 
work as sensors for elimination of unnecessary nucleic acids by induction of 
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inflammatory responses; and these responses should be taken into account for delivery of 
nucleic acids, such as small interfering RNA (siRNA). Administration of siRNA via 
liposomes or transgenic reagent Lipofectamine® induce potent immunostimulation 
generating TH1 inflammatory cytokines from human monocytes and plasmacytoid 
dendritic cells [66,67]. In addition, immune responses through TLRs’ signals cause 
adoptive immunity, such as the generation of antibody [68]. It is of importance to study 
the mechanism of signal transduction associated with TLRs for understanding of the 
generation of undesirable immune responses. To overcome these problems, nanoparticles 
will be effective, because they are able to escape from endosomes into the cytosol, where 
these nanoparticles release drugs. Based on this strategy, delivery of siRNA-containing 
nanoparticles into HeLa cells and human pancreatic carcinoma PanC-1 cells is reported to 
be successful [69,70].   

The role of NLRs should also be taken into consideration in the delivery of particles. One 
of the most characterized NLRs is NLRP3 (also known as NALP3 or cryopyrin) [71]. It is 
noteworthy that the inflammasome (NLRP3), which contains procaspase-1, senses 
lysosomal enzymes in the cytosol, leading to the activation of caspase-1 and that this 
event is followed by secretion of the inflammatory mediators IL-1, IL-18, and IL-33 
[58,72]. Uptake of micro-particles of silica crystals and aluminum hydroxide causes 
leakage of the lysosomal enzyme cathepsin B into the cytosol due to destabilization of the 
lysosomal membrane in human and mouse macrophage cells [73,74]. Possibly, NLRs work 
as a sensor of danger signals initiated from lysosomal destabilization caused by uptake of 
such micro-particles. It should be important to know the effect of undegradable particles 
on the stability of lysosomes for understanding of the onset of cytotoxicity by 
phagocytosis of particles. 

4. Lipid-raft-dependent uptake of particles 

When particles are caught by macrophage cells, the macrophage membrane undergoes 
structural changes after recognition of the particles by endocytic receptors located in  
the membrane region. This membrane region, referred to as a lipid raft, is enriched in 
sphingolipids and cholesterol, which serve as a scaffold for the proper functioning  
of endocytic receptors and various signal transduction pathways [75,76]. In microglia, 
signaling cascades triggered in response to gangliosides are mediated by recruitment  
of Src homology 2 domain-containing protein-tyrosine phosphatase 2 (SHP-2) to lipid 
rafts [77].  

Caveolae, a subset of lipid rafts, control various biological events including endocytosis [78] 
and are associated with the incorporation of pathogens [79]. There is another possibility that 
inclusion of protein receptors in the rafts is closely associated with phagocytic uptake of 
particles, because CD36, a class B SR, exists in caveolin-containing lipid rafts in human 
melanoma cells [80]. A cyclodextrin, MCD is commonly used as a reagent to disrupt lipid 
rafts by the extraction of cholesterol [81]. Treatment of mouse macrophage-like J774 cells 
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with MCD inhibits recruitment of SRs to lipid raft domain [82]. As a result, phagocytic 
activity toward PSL particles, which are ingested through SRs, decreases. Similarly, 
recruitment of CD36 to raft domains is necessary for phagocytosis of amyloid  by 
microglial cells [83]. Lipid rafts are essential for recruitment of phagocytic receptors; and, 
hence, they are associated with delivery of drug-containing particles by phagocytosis. 

An alternative function of lipid rafts is to provide a scaffold for TLRs associated with danger 
signal transduction. Stimulation of human peripheral blood monocytes with LPS causes 
clustering of the signaling receptor TLR4 with its accessory protein CD14 [84], and 
association of this receptor cluster with lipid rafts is thought to be necessary for LPS-
induced signal transduction [85]. An increase in membrane fluidity due to ethanol at a 
concentration of higher than 50 mM inhibits the association of TLR4 with lipid rafts, 
suppressing LPS-induced TNF- production in mouse macrophage cells [86]. However, it is 
interesting to note that treatment with MCD does not affect LPS-induced gene expression 
relating to inflammation [87]. This could be because MyD88, the adaptor protein of TLR4, 
exists in a membrane region other than lipid rafts [88]. In addition, generation of nitric oxide 
from macrophage cells after disruption of lipid rafts by MCD is comparable to that of intact 
macrophage cells, though the MCD treatment decreases phagocytic activity toward the 
PSL particles by a half [87]. Further studies on the operation of inflammatory signaling 
cascades in relation with lipid rafts are needed. 

5. Endocytosis-mediated drug action 

In the lungs, macrophage cells patrol the air/cell interfaces and play a role in protecting the 
host from invaders such as pathogens and viruses by phagocytic uptake. However, some 
pathogens, such as MTB, survive in macrophage cells and proliferate well by using them as 
incubators after the pathogens have been inhaled into the alveoli by respiration [3]. Owing 
to this survival strategy, MTB is able to escape from the attack of antitubercular agents, and 
this is one of the reasons why effective treatment of TB has not been successful till now.  

As macrophages phagocytose particle formulations besides bacteria and viruses, utilization 
of this phagocytosis-mediated transport of these drug formulations into MTB-infected 
macrophages is expected to be promising for therapy of TB. For this approach, particles 
containing an antitubercular agent are delivered to the lungs, where alveolar macrophages 
infected with MTB reside. The macrophages take up the particles, and the antitubercular 
agent thus phagocytosed in a form of particles attacks the MTB. The effect of PLGA 
microspheres containing rifampicin (RFP), one of the first-line drugs for TB treatment, on 
MTB has been well examined to date [89,90]. PLGA microspheres containing RFP (RFP-
PLGA) were prepared by various methods such as double-emulsification and spray-drying. 
The PLGA MS thus prepared deliver an amount of RFP into rat alveolar macrophage 
NR8383 cells in vitro about 20 times greater than that added in the free form in solution 
[12,37]. Inhalation of PLGA MS containing the antitubercular agent rifabutin increases the 
drug residence time in the lungs to more than that by intravenous administration in mice 
due to uptake of the particles by alveolar phagocytic cells [91]. However, the bacterial 
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relating to inflammation [87]. This could be because MyD88, the adaptor protein of TLR4, 
exists in a membrane region other than lipid rafts [88]. In addition, generation of nitric oxide 
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PSL particles by a half [87]. Further studies on the operation of inflammatory signaling 
cascades in relation with lipid rafts are needed. 

5. Endocytosis-mediated drug action 

In the lungs, macrophage cells patrol the air/cell interfaces and play a role in protecting the 
host from invaders such as pathogens and viruses by phagocytic uptake. However, some 
pathogens, such as MTB, survive in macrophage cells and proliferate well by using them as 
incubators after the pathogens have been inhaled into the alveoli by respiration [3]. Owing 
to this survival strategy, MTB is able to escape from the attack of antitubercular agents, and 
this is one of the reasons why effective treatment of TB has not been successful till now.  

As macrophages phagocytose particle formulations besides bacteria and viruses, utilization 
of this phagocytosis-mediated transport of these drug formulations into MTB-infected 
macrophages is expected to be promising for therapy of TB. For this approach, particles 
containing an antitubercular agent are delivered to the lungs, where alveolar macrophages 
infected with MTB reside. The macrophages take up the particles, and the antitubercular 
agent thus phagocytosed in a form of particles attacks the MTB. The effect of PLGA 
microspheres containing rifampicin (RFP), one of the first-line drugs for TB treatment, on 
MTB has been well examined to date [89,90]. PLGA microspheres containing RFP (RFP-
PLGA) were prepared by various methods such as double-emulsification and spray-drying. 
The PLGA MS thus prepared deliver an amount of RFP into rat alveolar macrophage 
NR8383 cells in vitro about 20 times greater than that added in the free form in solution 
[12,37]. Inhalation of PLGA MS containing the antitubercular agent rifabutin increases the 
drug residence time in the lungs to more than that by intravenous administration in mice 
due to uptake of the particles by alveolar phagocytic cells [91]. However, the bacterial 
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population in the rat lung is not significantly decreased by pulmonary administration of 
RFP-PLGA MS, though granuloma formation on the surface of the lung is reduced [92].  

To achieve efficient phagocytosis-mediated TB treatment, at least three requirements must 
be met. Namely, drug-containing particles should be 1) well phagocytosed by alveolar 
macrophages, 2) exhibit a potent bactericidal effect on MTB inside the macrophages, and 3) 
should not be toxic to the phagocytes. PLGA particles containing an antitubercular agent 
well satisfy these three requirements. In addition, homogeneous distribution of drug-
containing particles in the target tissue is required to obtain the optimum effect. 
Understanding of endocytic activities of MTB-infected macrophages toward drug-
containing particles in vivo is thus important for improving TB therapy. 

Another promising aspect of endocytosis-mediated therapy could be the treatment of 
cancer. One possible way would be the induction of inflammatory mediators, such as NO 
and TNF-, in macrophages by immunomodulators such as TLR-ligands, leading to their 
cytotoxic effects on tumor cells [93-95]. In addition, “re-education” of the healing-type 
macrophages (M2 macrophages) to the killer-type macrophages (M1 macrophages) by 
immunomodulators should be effective as well [96]. An increase in the M1 macrophage 
population could be advantageous for the treatment of tumors. As TLRs are expressed on 
various cell membranes in the body, endocytosis-mediated delivery of TLR-ligands to 
macrophage cells should be effective in overcoming malignant neoplasms without the 
induction of undesirable immune responses.  

6. Conclusions 

The physiological function of macrophage cells is important in overcoming various diseases, 
because they rid the body of pathogens by phagocytosis. Hence, phagocytosis-mediated 
drug delivery is useful for a direct attack against pathogenic bacteria and viruses residing 
inside macrophage cells. As summarized in Figure 2, the optimum properties of particles 
targeting macrophage cells are a) “macrophage-philicity,” especially toward phagocytic 
receptors and lipid rafts, b) ability to stimulate actin reorganization, c) a silent nature like a 
“Ninja” with respect to inflammatory responses, and d) ability to allow rapid release of the 
incorporated drugs. Of these, items “a” and “b” refer to the feasibility of particles for their 
efficient ingestion; and spherical particles having about 3-m diameter and surface charges 
are likely to be favorable for phagocytic uptake. Item “c” is associated with a nontoxic effect 
on macrophage function; and item “d” is important for exhibition of drug action, in which 
the release of drugs from the particles modulates the drug action.  

In addition, activation of the macrophages of the immune system is advantageous for attack 
against pathological cells residing close to macrophages, such as tumor cells. It is noteworthy 
that certain bases, such as PLGA, of the particles themselves modulate the immune functions 
of macrophages. Development of drug-containing particles, which efficiently attack the 
pathogens or pathological cells, and which upregulate the immunological function of 
macrophages, is beneficial to overcome infectious diseases and cancer. 
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Figure 2. Biochemical events associated with endocytosis-mediated drug delivery via particles. 
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1. Introduction 

Nucleic acids, including plasmid DNA (pDNA) and small interfering RNA (siRNA), are 
potential therapeutic macromolecules that have been widely explored for the treatment or 
prevention of various human diseases in the last three decades. pDNA encoding a 
therapeutic gene sequence can be introduced into the nuclei of the target cells to express 
functional proteins through transcription and translation in order to produce therapeutic 
effects. The therapeutic scope of pDNA includes a vast number of diseases, such as cancers 
(El-Aneed 2004; Yamamoto and Curiel 2005; Johnson, Morgan et al. 2009), genetic disorders 
(Gaspar, Parsley et al. 2004; Aiuti, Cattaneo et al. 2009; Griesenbach and Alton 2009), 
infections (Yu, Poeschla et al. 1994; Hashiba, Suzuki et al. 2001; Cull, Bartlett et al. 2002) and 
cardiovascular diseases (Stewart, Hilton et al. 2006; Vinge, Raake et al. 2008; Henry and 
Satran 2012). To date, over 1600 gene therapy clinical trials have been initiated 
(http://www.abedia.com/wiley/phases.php; Edelstein, Abedi et al. 2007). Apart from pDNA, 
siRNA has recently been intensively studied as a new therapeutic agent. RNA interference 
(RNAi) was discovered by Fire and colleagues based on the study of C. elegans (Fire, Xu et 
al. 1998). According to their observation, double-stranded RNA (dsRNA) mediates potent 
and specific silencing of homologous genes. Elbashir et al. demonstrated that the sequence-
specific mediator of RNAi is 21-23-nucleotide siRNA produced from the cleavage of longer 
dsRNA by ribonuclease III (Elbashir, Lendeckel et al. 2001). Since then the mechanism of 
RNAi has been revealed and reviewed in many publications (Bernstein, Caudy et al. 2001; 
Hammond, Boettcher et al. 2001; Ketting, Fischer et al. 2001; Hannon and Rossi 2004; Mello 
and Conte 2004). Briefly, siRNA interacts with the RNA-induced silencing complex (RISC) 
located in the cell cytoplasm and subsequently induces cleavage of mRNA with 
complementary sequences, thereby inhibiting the translation of a specific protein. Soon after 
RNAi was discovered to work in mammalian cells (Sui, Soohoo et al. 2002), it quickly 
emerged as a new therapeutic strategy to suppress the expression of disease-causing gene. 

© 2012 Liang and Lam, licensee InTech. This is a paper distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.
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So far, the therapeutic potential of siRNA has been demonstrated successfully both in vitro 
and in vivo (Shim and Kwon 2010) while a number of siRNA-based therapy clinical trials 
have been initiated, including therapeutics directed against inherited skin disorder 
(Leachman, Hickerson et al. 2009), solid tumor (Davis, Zuckerman et al. 2010), respiratory 
syncytial virus (RSV) infection (DeVincenzo, Cehelsky et al. 2008; DeVincenzo, Lambkin-
Williams et al. 2010) and age-related macular degeneration (AMD) (Kaiser, Symons et al. 
2010). Until now however, there are no pDNA or siRNA-based therapeutic products 
approved by the FDA; the lack of an efficient and safe delivery system being the major 
hurdle to limit the clinical application of nucleic acids.  

1.1. Nucleic acid delivery 

In terms of delivery, therapeutic nucleic acids must be transported to their target sites 
(nucleus for pDNA or RISC in the cytoplasm for siRNA) before producing their biological 
effects. A delivery system must overcome a series of extracellular and intracellular barriers 
(Sanders, Rudolph et al. 2009). Nucleic acids are susceptible to endogenous nuclease 
degradation in the serum and the half-life of unprotected nucleic acids is approximately 10 
minutes in mouse whole blood (Kawabata, Takakura et al. 1995). In addition, nucleic acids 
are negatively charged, hydrophilic macromolecules and are incapable of crossing the 
plasma membrane unassisted (Khalil, Kogure et al. 2006; Lam, Liang et al. 2012). To achieve 
successful transfection, an effective nucleic acid delivery system must be able to perform 
several functions: (i) bind or condense nucleic acids into nanoparticles, (ii) protect nucleic 
acids from enzymatic degradation, (iii) promote cellular uptake, (iv) release nucleic acids 
into the cytoplasm, (v) promote nuclear entry (for pDNA delivery) (Bally, Harvie et al. 
1999). The use of a carrier system such as cationic polymers (Laga, Carlisle et al. 2012), 
lipids/ liposomes (Ewert, Zidovska et al. 2010) or peptides (Hassane, Saleh et al. 2010) is the 
most commonly investigated delivery method for clinical purposes. It was soon found that 
the transfection efficiency of nucleic acid delivery systems is correlated to not only the level 
of cellular uptake but also with their ability to escape from endosomal compartments (El 
Ouahabi, Thiry et al. 1997). Some nucleic acid delivery systems successfully attain high 
cellular uptake, but fail to achieve good transfection, partly due to their deficiency of 
endosomolytic property (Medina-Kauwe, Xie et al. 2005). Therefore additional measures 
must be adopted to promote endosomal escape of the nucleic acid delivery system.  

1.2. Intracellular delivery 

Viral vectors are known for their high efficiency in transferring nucleic acids into host cells 
as they have evolved sophisticated endosomal releasing mechanisms which take advantage 
of the acidic environment inside the endosomes (Cho, Kim et al. 2003). However, the clinical 
application of viral vectors is limited because of the strong immunogenicity and potential 
fatal adverse effects (Baum, Düllmann et al. 2003; Hacein-Bey-Abina, von Kalle et al. 2003; 
Raper, Chirmule et al. 2003; Hacein-Bey-Abina, Garrigue et al. 2008). Compared with viral 
vectors, non-viral vectors offer advantages of relatively low toxicity and immune response. 
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However, the delivery efficiency of non-viral vectors is generally poor (Pérez-Martínez, 
Guerra et al. 2011). To enhance transfection efficiency, substantial efforts have been made to 
elicit effective endosomal escape. Endocytosis is the major route of cellular entry for non-
viral nucleic acid delivery (Khalil, Kogure et al. 2006; Pathak, Patnaik et al. 2009). A number 
of endocytosis pathways are known to be involved in the uptake of non-viral gene delivery 
systems, including clathrin-mediated endocytosis, caveolae-mediated endocytosis, 
macropinocytosis and phagocytosis. However the contribution of each pathway in the 
internalization of non-viral vectors is not clearly understood due to the diversity of carriers 
(Morille, Passirani et al. 2008).  

After non-viral delivery systems enter into the cells via endocytosis they are immediately 
transported into the endocytic vesicles. Initially, the delivery vectors are trapped in the early 
endosomes where the pH drops from neutral to around pH 6. Early endosomes may fuse 
with sorting endosomes in which the internalized content can be recycled back to the 
membrane and transported out of the cell by exocytosis. More often, the delivery systems 
are trafficked to late endosomes which are rapidly acidified to pH 5–6 by the action of the 
membrane-bound ATPase proton-pump. Subsequently, the late endosomes fuse with 
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membrane bilayer (Kichler, Mason et al. 2006). Last but not least, photochemical 
internalization (PCI) is a technique that aims to improve endosomal release. A 
photosensitizer is localized in the endosomal membrane and destabilizes the membrane 
upon illumination, triggering the release of endosomal content into cytosol (Berg, Kristian 
Selbo et al. 1999; Endoh and Ohtsuki 2009).  

In order to achieve high levels of transfection, different strategies have been employed to 
protect nucleic acids from degradation inside endosomes and facilitate their early release 
from acidic compartments into the cytosol. Various endosomal escape mechanisms of non-
viral vectors as well as the endosomolytic reagents which can promote endosomal release 
are introduced in detail here. 

2. Strategies of non-viral vectors for endosomal escape 

2.1. The ‘proton sponge’ hypotheses (pH-buffering effect) 

There is a long history regarding the application of cationic polymers to mediate nucleic 
acid transfer into cells. Cationic polymers can form polyplexes with nucleic acids through 
electrostatic interaction. Polylysine (PLL) was one of the first cationic polymers investigated 
for nucleic acid delivery although it failed to display desirable transfection efficiency (Pack, 
Hoffman et al. 2005). Later, it was discovered that polymers that contain protonable residues 
at physiological pH, like polyamidoamine (PAMAM) dendrimers and lipopolyamines 
(Remy, Sirlin et al. 1994) successfully achieve high transfection efficiency in contrast to PLL, 
which does not possess buffering capacity because of the presence of the strongly charged 
amino groups (Haensler and Szoka Jr 1993). This pH-buffering property was soon shown to 
be an important feature of cationic polymers that may induce endosomal disruption and 
prevent nucleic acids from lysosomal degradation.  

Polyethylenimine (PEI) is a synthetic cationic polymer with high amine density and various 
applications (Godbey, Wu et al. 1999). In 1995, Boussif et al. investigated the DNA delivery 
potential of PEI and found that this polymer can effectively transfer luciferase reporter gene 
into a variety of cell lines and primary cells (Boussif, Lezoualc'h et al. 1995). The remarkable 
nucleic acid-delivery ability of PEI was attributed to a “proton sponge” effect in which the 
extensive buffering capacity of PEI serves a dual purpose: (i) to inhibit the activity of 
lysosomal nuclease and (ii) to change the osmolarity of acidic vesicles resulting in 
endosomal swelling and rupture. 

The ‘proton sponge’ phenomenon has been observed in certain cationic polymers with a 
high pH buffering capability over a wide pH range. These polymers usually contain 
protonatable secondary and/or tertiary amine groups with pKa close to 
endosomal/lysosomal pH. During the maturation of endosomes, the membrane-bound 
ATPase proton pumps actively translocate protons from the cytosol into the endosomes, 
leading to the acidification of endosomal compartments and activation of hydrolytic 
enzymes. At this stage, polymers with the ‘proton sponge’ property will become protonated 
and resist the acidification of endosomes (fig. 1). As a result, more protons will be 
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continuously pumped into the endosomes with the attempt to lower the pH. The proton 
pumping action is followed by passive entry of chloride ions, increasing ionic concentration 
and leading to water influx. Eventually the osmotic pressure causes swelling and rupture of 
endosomes, releasing their contents to the cytosol (Boussif, Lezoualc'h et al. 1995; Behr 1997; 
Pack, Hoffman et al. 2005). Sonawane et al. (Sonawane, Szoka Jr et al. 2003) tested this 
hypothesis by studying the concentration of chloride ions, pH and the volume of endosomes 
after internalization of polyplexes composed of pDNA, non-buffering PLL as well as the 
highly buffering PEI and PAMAM. Significant chloride ion accumulation, volume 
expansion and membrane lysis were detected in PEI and PAMAM containing endosomes 
but not the ones with PLL. This finding provides direct support for the proton sponge 
hypothesis and a rationale for the design of polymer-based nucleic acid delivery vectors.  

 
Figure 1. The ‘proton sponge’ hypotheses (pH-buffering effect). (A) Polyplexes enter cell via 
endocytosis and are trapped in endosomes. (B) The membrane bound ATPase proton pumps actively 
translocate protons into endosomes. Polymers become protonated and resist the acidification of 
endosomes. Hence more protons will be pumped into the endosomes continuously to lower the pH.  
(C) The proton pumping action is followed by passive chloride ions entry, increasing ionic 
concentration and hence water influx. High osmotic pressure causes the swelling and rupture of 
endosomes, releasing their contents to cytosol. 

To date, PEI has been demonstrated to transfect nucleic acids successfully into a broad range 
of cells and tissues both in vitro and in vivo (Boletta, Benigni et al. 1997; Goula, Remy et al. 1998; 
Coll, Chollet et al. 1999; Urban-Klein, Werth et al. 2004; Merkel, Beyerle et al. 2009; Pfeifer, 
Hasenpusch et al. 2011). However, the clinical application of PEI is limited by its substantial 
toxicity. Chollet et al. (Chollet, Favrot et al. 2002) injected linear PEI (L-PEI) –pDNA polyplexes 
into mice intravenously. Signs of toxicity caused by L-PEI were observed 15 minutes after 
injection of 50 mg of L-PEI/DNA complexes. Increasing the dose up to 100 mg remarkably 
enhanced the transfection efficiency, but most of the animals suffered from liver necrosis. If the 
dose was increased to 150 mg, all the treated animals died of shock within the first 30 minutes. 
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Modified versions of PEI, such as low molecular weight PEI (LMW-PEI) (Kunath, von Harpe 
et al. 2003) and low branching degree PEI (Fischer, Bieber et al. 1999), have been investigated 
to reduce the toxicity of the polymers without compromising their pH buffering capacity 
(Kunath, von Harpe et al. 2003; Arote, Kim et al. 2007).  

On the contrary, polymeric carriers that do not possess pH buffering properties, such as 
chitosan and PLL, fail to achieve satisfactory nucleic acid delivery efficiencies because of 
their inability to induce endosomal escape even though they are capable of binding to 
nucleic acids and promoting cellular entry (Wagner and Kloeckner 2006). To enhance 
transfection efficiency, functional moieties were included into these polymeric systems for 
improving their buffering capacity. Histidine is one of the commonly employed molecules 
that was added as functional group of polymers or incorporated into peptide sequences to 
enhance their pH buffering capacity.  

The buffering capacity of histidine is due to the presence of an imidazole ring that has a pKa 
around 6 and hence can be protonated in a slightly acidic pH (Midoux, Pichon et al. 2009). 
Midoux et al. (Midoux and Monsigny 1999) reported that partial substitution of PLL with 
histidine residues resulted in transfection 4-5 orders of magnitude higher than the 
unmodified PLL/pDNA polyplexes. Upon protonation of the imidazole groups, the histidine 
residues trigger destabilization of polyplexes and fusion with endosomal membrane, 
leading to the release of polyplexes into cytosol. Chang et al. (Chang, Higuchi et al. 2010) 
introduced histidine to the amino groups of chitosan via disulfide bonds. The result showed 
that histidine-modified chitosan has a broader pH buffering range, wider distribution in the 
cytosol as well as a higher transfection level. It is evident that histidine can facilitate pDNA 
escape from endosomes by increasing the buffering capacity of chitosan inside the acidic 
compartments. A similar approach was adopted by other researchers to enhance other 
polycations by introducing imidazole moieties to enhance the pH buffering capacity and 
ultimately promote endosomal escape. (Yang, Lee et al. 2006; Moreira, Oliveira et al. 2009).  

2.2. Flip-flop mechanism 

Lipids and liposomes, whether anionic, cationic, neutral and/or pH-sensitive, present 
another category of non-viral carriers that have been extensively investigated for delivering 
nucleic acid into mammalian cells. In general, the in vitro and in vivo transfection efficiency 
of non-cationic lipids or liposomes is relatively low when compared with their cationic 
counterparts (Legendre and Szoka Jr 1992). Cationic lipids or liposomes form lipoplexes 
with the anionic nucleic acids through electrostatic interactions and the overall charge of the 
lipoplexes are usually positive so that they can easily associate with the negatively charged 
cell surface to promote cellular entry (Felgner, Gadek et al. 1987).  

The mechanism of how lipoplexes gain entry into the cells is controversial. According to 
literature, there are at least two routes of cellular uptake: (i) direct fusion with the plasma 
membrane; and (ii) endocytosis (Pedroso de Lima, Simões et al. 2001). Physicochemical 
properties of lipoplexes such as particle size distribution, lipid composition and charge ratio 
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may also influence their uptake route. In order to gain a better insight of the uptake 
mechanism of lipid-based system, Wrobel and Collins studied the interaction between 
cationic liposomes and model anionic membrane as well as cultured mammalian cells. The 
results indicated that cell surface binding alone is insufficient for cationic liposomes to gain 
entry into cells via membrane fusion in the absence of endocytosis (Wrobel and Collins 
1995). Zhou et al. investigated the DNA transfection of cationic liposomes containing 
lipopolylysine and found that only 2% of the treated cells were transfected and the uptake 
was mediated by membrane fusion (Zhou and Huang 1994). No correlation between fusion 
of the lipoplexes with the plasma membrane and the transfection level in monocytic THP-1 
cells was observed (Pires, Simões et al. 1999). Nevertheless, some investigators believed that 
membrane fusion is significant in the internalization of lipoplexes and the contribution of 
this uptake pathway cannot be completely ruled out.  

To find out the intracellular fate of the lipoplexes following endocytosis, an electron 
microscopic study was carried out by Zabner et al. (Zabner, Fasbender et al. 1995). It was 
observed that after cellular uptake, lipoplexes were delivered to perinuclear vesicular 
compartments which fuse with early endosomes. It was also noticed that the dissociation of 
nucleic acids from lipoplexes and their escape from endosomes are crucial barriers for 
successful transfection. To elucidate this endosomal escape mechanism of cationic 
liposomes, Zelphatl et al. identified the biomolecules that are responsible for dissociating of 
nucleic acids from the lipoplexes and releasing them into cytosol. Anionic liposomes with 
similar components with the cytoplasmic-facing monolayer of plasma membrane were used 
as an endosomal model. It was found that the anionic liposomes were able to trigger a rapid 
release of nucleic acid from lipoplexes. On the basis of this result, a ’flip-flop’ mechanism 
(fig. 2) was proposed by the authors to describe how nucleic acids were able to dissociate 
from the lipoplexes and escape from the endosomes into the cytosol (Zelphati and Szoka 
1996; Zelphati and Szoka 1996). Once inside the endosomes, there is an electrostatic 
interaction between the cationic lipoplexes and the negatively charged lipids (mainly found 
in the cytoplasmic-facing leaflet) of the endosomal membrane. The anionic lipids of the 
endosomal membrane laterally diffuse into the lipoplexes and form charge-neutralized ion 
pairs with the cationic lipids of the lipoplexes. As a result, the nucleic acids are displaced 
from the lipoplexes, allowing the nucleic acids to be released into the cytoplasm (Zhou and 
Huang 1994; Xu and Szoka Jr 1996; Zelphati and Szoka 1996).  

Neutral lipids such as the phosphatidylethanolamine (DOPE) are widely used as helper lipids 
in combination with cationic liposomes. It is well established that inclusion of DOPE in 
lipoplexes may significantly improve their transfection activity, whereas replacement of DOPE 
with other neutral phospholipid dioleoylphosphatidylcholine (DOPC) fails to accomplish the 
helper function. The role of DOPE as helper lipid is attributed to its endosomolytic activity. 
Zhou and Huang used transmission electron microscopy to study intracellular trafficking of 
cationic liposomes and found that DOPE-containing lipoplexes can destabilize the endosomal 
membrane (Zhou and Huang 1994) whereas the DOPC-containing lipoplexes did not show the 
same effect. A study carried out by Farhood et al. indicated that a substantial amount of DOPE 
needs to be incorporated into cationic liposomes in order to achieve endosomal membrane 
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destabilization (Farhood, Serbina et al. 1995). Both DOPE and DOPC share very similar acyl 
chain composition (Hui, Langner et al. 1996) and the major difference between the two 
phospholipids is their headgroups. The former has an ethanolamine head group whereas the 
latter contains a choline head group. The cone-shape ethanolamine head group of DOPE 
displays a high tendency to form inverted hexagonal phase especially at acidic pH while the 
choline head group of DOPC does not. Zuhorn et al. hypothesized that the formation of 
hexagonal phase of DOPE containing lipoplexes plays a prominent role both in dissociation of 
nucleic acids from lipoplexes and in efficient destabilizing endosomal membrane (Zuhorn, 
Bakowsky et al. 2005).  

 
Figure 2. Flip-Flop Mechanism. (A) Lipoplexes are endocytosed and become entrapped inside the early 
endosomes. (B) There is an electrostatic interaction between the cationic lipoplexes and the anionic 
lipids which are present in the cytoplasmic-facing side of endosomal membrane. The anionic lipids of 
the endosomal membrane laterally diffuse into the lipoplexes and form charge-neutralized ion pairs 
with the cationic lipids of the lipoplexes. (C) The nucleic acids are displaced from the lipoplexes, 
allowing the nucleic acids entry into the cytoplasm. 

Apart from helper lipids, other approaches have been investigated to potentiate endosomal 
lysis and the release of nucleic acid from lipoplexes to cytosol through the ‘flip-flop’ 
mechanism. Simoes et al. (Simoes, Slepushkin et al. 1999) described the use of the pH-
sensitive endosome-disruptive peptide, GALA, together with lipoplexes (more 
endosomolytic peptides will be discussed later). A significant improvement in transfection 
was observed in several cell types and the enhancement was blocked by bafilomycin A1, a 
specific inhibitor of the vacuolar ATPase proton pump that inhibits the acidification of the 
endosomes. Since low pH is a triggering factor of the membrane disruption propensity of 
GALA, the authors speculated that the membrane destabilizing activity of GALA involves 
structural changes of the peptide which induce the dissociation of nucleic acids from 
lipoplexes inside the endosomes. As a result, the dissociated cationic lipids become available 
to interact with the anionic lipids of the endosomal membrane more readily, leading to the 
release of nucleic acids into the cytosol via the ‘flip-flop’ mechanism. 
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2.3. Endosomal membrane fusion or destabilization mechanism 

Cell-penetration peptides (CPPs) have attracted tremendous attention as non-viral nucleic 
acid delivery vectors in recent years. Typically cationic and/or amphipathic in nature, CPPs 
are short sequences of amino acids, usually 10-30 residues, claimed to have ability to cross 
the plasma membrane of living cells. They can facilitate the transportation of various 
hydrophilic macromolecules including proteins, peptides and nucleic acids into cells 
without the disruption of plasma membrane (Richard, Melikov et al. 2003). CPPs were 
originally derived from viruses, with TAT peptide being the first CPP identified and was 
derived from the transcription activating factor of human immunodeficiency virus 1 (HIV-l) 
(Brooks, Lebleu et al. 2005). Many different sequences of CPPs were soon discovered and 
synthetic analogues were also rapidly developed. Until now there are a number of CPPs that 
were documented for nucleic acid delivery. 

CPPs either form complexes with nucleic acids, through electrostatic interaction, or can be 
incorporated into polymeric and lipidic delivery system. In general, they can be categorized 
into two main classes (Futaki 2006; Patel, Zaro et al. 2007): (i) Cationic peptides that usually 
contain arginine and lysine residues, e.g., TAT peptide, penetratin (Derossi, Joliot et al. 1994; 
Derossi, Calvet et al. 1996; Muratovska and Eccles 2004) and oligoarginines (Futaki 2006); (ii) 
Amphipathic peptides that consist of both hydrophobic and hydrophilic segments. The 
amphipathicity of these peptides generates from either the primary structure or the 
secondary structure. Primary amphipathic peptides are sequentially made up of 
hydrophobic and hydrophilic residues (Fernández-Carneado, Kogan et al. 2004; Deshayes, 
Morris et al. 2005), and include e.g., MPG (Simeoni, Morris et al. 2003; Veldhoen, Laufer et 
al. 2006), pep-1 and its analogues. Secondary amphipathic peptides adopt an amphipathic 
helical conformation with hydrophilic and hydrophobic regions and include e.g., HA-2 
(Wagner, Plank et al. 1992; Plank, Oberhauser et al. 1994), GALA (Li, Nicol et al. 2004), 
KALA (Wyman, Nicol et al. 1997), and LAH4 derivatives (Kichler, Leborgne et al. 2003; 
Kichler, Mason et al. 2006; Lam, Liang et al. 2012). The sequences and the endosomal escape 
mechanism of these peptides are summarized in table 1. In the past, it was generally 
accepted that a non-endosomal pathway or direct penetration was the major route of entry 
for CPPs (Morris, Chaloin et al. 2000). Early studies indicated that the uptake of CPPs into 
cells could progress at low temperature. It appeared to be energy-independent and 
insensitive to endocytosis inhibitors (Vivès, Brodin et al. 1997). However recent studies 
suggested otherwise, that endocytosis may actually be involved in the internalization of 
CPPs (Richard, Melikov et al. 2003; Lundin, Johansson et al. 2008). Until now, the uptake 
mechanism still remains controversial (Futaki 2005).  

Nevertheless, a variety of CPPs have been shown to enter cells via an endosomal pathway 
and induce endosomolytic activity. The majority of these membrane-destabilizing peptides 
were developed to mimic the endosomal disruptive properties of fusogenic sequences of 
viral fusion proteins. Taking the haemagglutin subunit HA2 of influenza virus as an 
example, this protein chain is responsible for facilitating membrane fusion. The C-terminal 
end is embedded in the viral membrane whereas the N-terminal end contains a fusion 



 
Molecular Regulation of Endocytosis 438 

peptide with a sequence of hydrophobic amino acids. Once inside the endosomes, HA 
undergoes conformation change in response to the low pH environment and expose the 
highly conserved hydrophobic N-terminal region. Subsequently, this triggers the fusion of 
viral membrane with the endosomal membrane, leading to viral genome leakage to cytosol 
(Stegmann 2000). Wagner et al. introduced HA2 as endosomolytic component in polyplexes 
containing transferrin/PLL/DNA, resulting in significantly augmentation of the delivery 
efficiency (Wagner, Plank et al. 1992). In contrast, peptides that are derived from HIV-1 
fusion protein gp41 usually adopt a pH-independent membrane fusion capacity and are 
capable of fusing with both plasma membranes and endosomes at neutral pH (Fischer, 
Krausz et al. 2001).  

Since the α-helical component of the HA2 appears to play a crucial role in endosomal 
membrane destabilization (Oehlke, Scheller et al. 1998), a series of pH-sensitive amphipathic 
α-helical structural motifs were designed and their structure–activity relationship were 
investigated. GALA is a synthetic peptide with 30 amino acid residues designed to interact 
with lipid bilayers at low pH. It contains a histidine and a tryptophan residue, as well as a 
glutamic acid-alanine-leucine-alanine (EALA) repeat. When the pH of the surrounding 
environment drops from 7.0 to 5.0, GALA experiences a conformational change from a 
random coil to an amphipathic α-helix, leading to disruption of model lipid membranes and 
therefore the release of entrapped aqueous content. The membrane-destabilizing character 
of this pH sensitive peptide in an acidic environment raises the possibility of enhancing the 
delivery of nucleic acid by facilitating endosomal escape (Li, Nicol et al. 2004). Haensler and 
Szoka Jr et al reported that when GALA is covalently attached to the dendrimer via a 
disulfide linkage, an increase of gene expression by 2-3 orders of magnitude was observed 
(Haensler and Szoka Jr 1993). Simoes’s study revealed that by incorporating GALA with 
transferrin containing lipoplexes, there was a significant increase in luciferase gene 
expression in COS-7 cells (Simoes, Slepushkin et al. 1999). Similarly, introducing GALA 
peptide into the multifunctional envelope-type nano device (MEND) can lead to 
improvement of nucleic acid transfer by facilitating nanoparticle endosomal escape (Sasaki, 
Kogure et al. 2008). 

The negatively charged GALA cannot bind with nucleic acid through electrostatic 
interaction, GALA can only be added as an additional functional component to polyplexes 
or lipoplexes. Newer peptides were soon developed to combine both nucleic acid binding 
and membrane destabilizing properties in order to produce a simpler delivery system. 
KALA is a modified version of GALA by partially replacing glutamic acid with lysine. It is 
one of the first generation peptides that is designed to bind nucleic acids as well as 
destabilize the endosomal membranes. Interestingly, the membrane destabilization 
mechanism of KALA is substantially different from that of GALA although they share 
similar amino acid sequence. KALA adopts α-helix conformation in a wide pH range and 
undergoes a pH-dependent conformational change from amphipathic α-helical to a mixture 
of α-helix and random coil as the pH is lowered (Wyman, Nicol et al. 1997). Apart from 
GALA and KALA, other amphipathic peptides that attain endosomal escape ability that is 
related to their α-helical structure include the Hel series peptides (Niidome, Takaji et al.  
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Peptide Primary Sequence Endosomal Escape 
Mechanism 

Reference 

TAT GRKKRRQRRRPPQ Unclear, endosomal 
escape is inefficient 
 

(Vives 2003; Brooks, 
Lebleu et al. 2005; 
Lee, Johnson  
et al. 2011) 

Penetratin RQIKIWFQNRRMKWKK Unclear, endosomal 
escape is inefficient 
 

(Muratovska  
and Eccles 2004) 

EBI LIRLWSHLIHIWFQNRRLKW
KKK 

Membrane 
destabilization 

(Lundberg,  
El-Andaloussi  
et al. 2007) 

MPG GALFLGFLGAAGSTMGAWS
QPKKKRKV 
 

Bypass endosomes 
through non-endosomal 
uptake 

(Morris, Vidal  
et al. 1997;  
Simeoni, Morris  
et al. 2003) 

HGP LLGRRGWEVLKYWWNLLQ
YWSQELC 

Membrane 
destabilization, possibly 
pore formation 

(Kwon, Bergen  
et al. 2008) 

Pep-2 KETWFETWFTEWSQPKKKR
KV 

Bypass endosomes 
through non-endosomal 
uptake 

(Morris, Depollier  
et al. 2001; Gros, 
Deshayes et al. 2006; 
Deshayes,  
Morris et al. 2008) 

HA-2 
derived 
fusogenic 
peptide 

GLFGAIAGFIEGGWTGMIDG
WYG 

Membrane fusion and 
destabilization 

(Wagner, Plank  
et al. 1992;  
Plank, Oberhauser  
et al. 1994;  
Navarro-Quiroga, 
Antonio González-
Barrios et al. 2002) 

H5WYG 
 

GLFHAIAHFIHGGWHGLIHG
WYG 

Membrane 
destabilization 

(Midoux, Kichler  
et al. 1998; 
Pichon, Gonçalves  
et al. 2001) 

INF-7 GLFEAIEGFIENGWEG 
MIDGWYG 

Membrane fusion and 
destabilization 

(Plank, Oberhauser 
et al. 1994;  
van Rossenberg, 
Sliedregt-Bol  
et al. 2002;  
Funhoff, van 
Nostrum et al. 2005) 
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Peptide Primary Sequence Endosomal Escape 
Mechanism 

Reference 

E5 & 
E5CA 

GLFGAIAGFIEGGWTGMIDG
 
GLFEAIAEFIEGGWEGLIEGC
A 

Membrane fusion and 
destabilization 

(Midoux, Mendes  
et al. 1993;  
Pichon, Freulon  
et al. 1997; 
Vliegenthart, 
Knollen et al. 1999; 
Klink, Chao  
et al. 2001) 

JTS-1 GLFEALLELLESLWELLLEA Membrane 
destabilization 

(Gottschalk, Sparrow 
et al. 1996; Fominaya, 
Gasset et al. 2000; 
van Rossenberg, 
Sliedregt-Bol  
et al. 2002; Vlasov, 
Lesina et al. 2005) 

ppTG1 GLFKALLKLLKSLWKLLLKA Membrane 
destabilization 

(Rittner, Benavente  
et al. 2002; Numata 
and Kaplan 2010) 

GALA WEAALAEALAEALAEHLAE
ALAEALEALAA 

Membrane 
destabilization, Pore 
formation & flip-flop of 
membrane lipids  

(Parente, Nir et al. 
1990; Haensler and 
Szoka Jr 1993; Fattal, 
Nir et al. 1994; Plank, 
Oberhauser  
et al. 1994; Simoes, 
Slepushkin  
et al. 1999;  
Li, Nicol et al. 2004) 

KALA WEAKLAKALAKALAKHLA
KALAKALKACEA 

Membrane 
destabilization 

(Wyman,  
Nicol et al. 1997;  
Li, Nicol et al. 2004;  
Min, Lee et al. 2006) 

CADY GLWRALWRLLRSLWRLLWR
A 
 

Bypass endosomes 
through non-endosomal 
uptake 

(Crombez, Aldrian-
Herrada et al. 2008) 

Peptide 46 
& 
analogues 

LARLLARLLARLLRALLRAL
LRAL 
 

Membrane 
destabilization 

(Niidome, Ohmori  
et al. 1997) 

HEL 
peptides & 
analogues 

KLLKLLLKLWKKLLKLLK Membrane 
destabilization 

(Ohmori, Niidome  
et al. 1998; Niidome, 
Takaji et al. 1999) 
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Peptide Primary Sequence Endosomal Escape 
Mechanism 

Reference 

LAH4 & 
analogues 

KKALLALALHHLAHLALHL
ALALKKA 

Membrane 
destabilization 

(Kichler, Leborgne  
et al. 2003; Kichler, 
Mason et al. 2006; 
Lam, Liang  
et al. 2012) 

Table 1. The sequences and the endosomal escape mechanism of selected CPPs that are being 
investigated for nucleic acid delivery. 

1999), INF 7 (Plank, Oberhauser et al. 1994), HGP (Kwon, Bergen et al. 2008), JTS-1 
(Gottschalk, Sparrow et al. 1996), EBI (Lundberg, El-Andaloussi et al. 2007), ppTG1 (Rittner, 
Benavente et al. 2002) and CADY (Crombez, Aldrian-Herrada et al. 2008; Konate, Crombez 
et al. 2010). 

The LAH4 peptide and its derivatives are another class of peptide that exhibits efficient gene 
transfer activity (Kichler, Leborgne et al. 2003; Lam, Liang et al. 2012). Peptides of the LAH4 
family are synthetic cationic amphipathic peptides containing a variable number of histidine 
residues and hydrophobic amino acids (mainly alanines and leucines). They were initially 
designed to investigate the interactions that determine the alignment of membrane-
associated proteins (Bechinger 1996; Vogt and Bechinger 1999). In vitro transfection 
experiments indicated that peptides with four to five histidine residues in the central region 
of the sequence achieved high transfection efficiency that is comparable to PEI. The 
transfection activity was significantly abolished in the presence of proton pump inhibitor 
bafilomycin A1, suggesting acidification is important for these peptides to mediate high 
transfection level. In a model membrane experiment, it was noticed that there was a 
preferential peptide-lipid interaction between LAH4 derivatives and anionic lipids, leading 
to the disruption of the lipid acyl chains in the acidic environment (Mason, Martinez et al. 
2006). Furthermore, LAH4 peptides experience a pH-dependent conformational change 
from transmembrane orientation at neutral pH to an in-plane orientation at low pH. The pH 
at which the conformation transition takes place is crucial and highly affects the transfection 
efficiency (Bechinger 1996; Vogt and Bechinger 1999; Kichler, Leborgne et al. 2003). Based on 
these observations, it was proposed that at neutral pH, LAH4 adopts a transmembrane 
orientation without disrupting the membrane integrity. During acidification of the 
endosomes, the imidazole groups of histidine residues become protonated and the peptide 
changes to an in-plane alignment and interact with the anionic lipids in the endosomal 
membrane. Membrane destabilization occurs, followed by the release of nucleic acid into the 
cytosol (Kichler, Mason et al. 2006). 

2.4. Pore formation 

Pore formation is another mechanism to explain the endosomal escape of peptide-based 
nucleic acid delivery systems. Parente et al. (Parente, Nir et al. 1990) investigated content-
leaking kinetics of peptide GALA from phospholipid vesicles over a wide range of pH. As 
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previously mentioned, GALA undergoes a pH-dependent conformational change to give a 
helical structure at acidic environment. It was suggested that leakage from phospholipid 
vesicles is promptly initiated by low pH (pH＜6) and is rapidly terminated when the pH is 
raised to 7.5. The author assumes that GALA becomes incorporated into the vesicle bilayer 
and aggregates to form a pore with diameter ranges from 5 to 10 Å. Fattal et al. further 
investigated the mechanism of pore-forming peptides GALA in details. They concluded that 
pore formation is a key event that may result in phospholipid flip-flop of biological 
membranes, leading to the releasing of contents (Fattal, Nir et al. 1994). Simoes et al. (Simoes, 
Slepushkin et al. 1999) combined GALA with lipoplexes and found significant improvement 
of transfection in several cell cells. The results indicated that the cellular uptake of lipoplexes 
is though endocytosis and the endosomal escape play a crucial role in intracellular delivery 
of lipoplexes. However, the authors believe that the dimension of the pores (5 to 10 Å) 
formed by this peptide may not be big enough to permit the escape of nucleic acid from 
endosomes. Multiple mechanisms may be accounted for the enhancement of transfection 
efficiency, including structural changes of the peptide, facilitation of nucleic acid 
dissociation from the lipoplexes and the flip-flop mechanism.  

2.5. Photochemical internalization (PCI) 

Photochemical internalization (PCI) is a light-directed delivery technology that utilizes 
photosensitizers to facilitate the transport of membrane impermeable macromolecules from 
endocytic vesicles into cytoplasm. The mechanism of PCI as an endosomal escape enhancer 
strategy is very straight-forward (Fig.3). Photosensitizers that are employed in the PCI 
technology are usually amphiphilic compounds which can bind to and localize in the 
plasma membrane. After being taken up by the cells through endocytosis, the 
photosensitizers are confined to the endosomal membranes and remain inactive until 
triggered by light with specific wavelengths matching their absorption spectra (Selbo, 
Weyergang et al. 2010). Once activated, they induce the formation of highly reactive oxygen 
species, mainly singlet oxygen, leading to the rupture of endosomes and lysosomes 
membrane. As a result, macromolecules that are trapped inside the endosomes/lysosomes 
can be liberated into the cytosol (Berg, Kristian Selbo et al. 1999). Photosensitizers used in 
clinical application are highly reactive reagents with short range of action (10-20 nm) and 
short life-time (0.01-0.04 μs), thus restricting the damaging effect to the production site 
(within the endosomal membrane) without affecting other cellular components (Moan and 
Berg 1991; Berg, Weyergang et al. 2010). Most of the photosensitizers do not localize to the 
nucleus of the cells, thereby reducing the possibility of causing any mutagenic effects 
(Dougherty, Henderson et al. 1998). 

PCI was initially investigated for anti-tumour drug delivery. A synergistic effect of 
combining PCI with chemotherapeutic agents was found. PCI principally targets cellular 
endocytosis that may affect the distribution of molecules that are taken up by the cells via 
endosomal pathway. It was later employed as a tool to improve the cellular delivery of a 
large variety of bioactive macromolecules and nucleic acids including pDNA, siRNA and 
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oligonucleotides (Selbo, Weyergang et al. 2010). Examples of photosensitizers that are used 
in non-viral nucleic acid delivery including disulfonated meso-tetraphenylporphine (TPPS2a) 
(Prasmickaite, Høgset et al. 2000; Kloeckner, Prasmickaite et al. 2004; Maurice-Duelli, Ndoye 
et al. 2004; Ndoye, Merlin et al. 2004; Ndoye, Dolivet et al. 2006; Oliveira, Fretz et al. 2007; 
Boe, Longva et al. 2008; Raemdonck, Naeye et al. 2009; Bøe, Sæbøe-Larssen et al. 2010), 
disulfonated aluminium phthalocyanine (AlPcS2a) (Berg, Prasmickaite et al. 2003; Hellum, 
Høgset et al. 2003; Ndoye, Dolivet et al. 2006; Yip, Weyergang et al. 2007), Zinc-
phthalocyanine (Zn-Pc) dendrimer (Nishiyama, Iriyama et al. 2005; Arnida, Nishiyama et al. 
2006) and 5,10,15-tri(4-acetamidophenyl)-20-mono(4-carboxyl-phenyl)porphyrin (TAMCPP) 
conjugated to G4 PAMAM dendrimer (Shieh, Peng et al. 2008). 

 
Figure 3. The mechanism of photochemical internalization technology. (A) Photosensitizers bind to and 
localize in the plasma membrane. (B) Photosensitizers can be taken up by the cells through endocytosis 
with the delivery systems. (C) Photosensitizers are confined to the endosomal membrane and remain 
inactive. (D) Photosensitizers are activated by illumination and induce the formation of highly reactive 
oxygen species, leading to the rupture of endosomes /lysosomes membrane. (E) Molecules that are 
trapped inside the endosomes/lysosomes can be liberated into the cytosol. 

To employ PCI in clinical applications, the penetration of light into the deep tissue is an 
important issue (Oliveira, Fretz et al. 2007). With the development of fiber optics and laser 
technology, the control of illumination to sites that are deep inside the human body becomes 
possible, e.g. gastrointestinal tract, urogenital organs, lungs, brain and pancreas (Dougherty, 
Henderson et al. 1998; Chatterjee, Fong et al. 2008). PCI mediated therapy can be used in 
many regions of the body where light delivery can be achieved and where local activation of 
a drug is desirable. A photosensizer is injected as a single dose prior to light activation. 
Parameters such as the dose of photosentizers and light, as well as the time interval between 
administration of photosentiziers and drugs must be carefully optimized. In vivo 
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experiments demonstrated that PCI, in combination with a chemotherapeutic agent, has a 
good effect on cancer treatment (Selbo, Sivam et al. 2001; Berg, Dietze et al. 2005; Hirschberg, 
Zhang et al. 2009; Norum, Gaustad et al. 2009). In the field of nucleic acid delivery, it has 
been shown that PCI was able to transfer pDNA and siRNA into cytosol efficiently to 
enhance their biological effects in vitro. Only a number of in vivo studies have been carried 
out to demonstrate the feasibility of PCI technology to enhance the delivery of pDNA to 
conjunctival tissue (Nishiyama, Iriyama et al. 2005) and tumour tissues (Ndoye, Dolivet et 
al. 2006), as well as the delivery of siRNA to a tumour site (Oliveira, Hogset et al. 2008). The 
result was very promising. Perhaps more effort should be invested to further develop this 
technology for clinical use. 

2.6. Other endosomal escape mechanisms 

Exogenous additives, such as chloroquine and inactivated adenovirus, have been exploited 
to promote endosomal escape and enhance the efficiency of nucleic acid delivery. 
Chloroquine is a weak base that can rapidly penetrate the plasma membrane, accumulate in 
acidic vesicles and increase the pH of the acidic compartment (Maxfield 1982; Mellman, 
Fuchs et al. 1986). Preventing endosome acidification may subsequently inhibit hydrolytic 
enzymes such as proteases and nucleases (Cotten, Längle-Rouault et al. 1990). Chloroquine 
also causes the swelling and rupture of endosomal vesicle by increasing the osmotic 
pressure inside the acidic compartment (Khalil, Kogure et al. 2006). Since it can neutralize 
acidic compartment and induce rupture of endocytic vesicles, adding chloroquine is an 
alternative measure to improve nucleic acid transfer (Erbacher, Roche et al. 1996).  

A number of early studies found that chloroquine is able to enhance DNA transfection in 
various cell types (Luthman and Magnusson 1983; Cotten, Längle-Rouault et al. 1990; 
Erbacher, Roche et al. 1996). Chloroquine promotes escape of polyplexes or lipoplexes from 
endosome via increasing endosomal pH and hindering endosome fusion with lysosome. To 
date, chloroquine has been widely used to elucidate the uptake mechanism of non-viral 
nucleic acid delivery systems (Legendre and Szoka Jr 1992; Simeoni, Morris et al. 2003; 
Lehto, Abes et al. 2010). However, it is worth noting that chloroquine does not always lead 
to an improvement of transfection efficiency, depending on the uptake pathway of the 
delivery systems. Haensler and Szoka reported that transfection of PAMAM was not 
affected by the presence of chloroquine (Haensler and Szoka Jr 1993). The authors suggested 
the endosomal lysis activity of PAMAM is strong enough to allow liberation of its content to 
cytosol with and without the presence of chloroquine. Legendre and Szoka (Legendre and 
Szoka Jr 1992) described an increase in transfection efficiency after chloroquine was added 
to DOTMA/DOPE liposomes. Interestingly, chloroquine exerts a negative effect on 
carcinoma cells transfected by DOPE/CHEMS pH-sensitive liposomes. The authors 
explained that the membrane destabilization activity of pH-sensitive liposome is attenuated 
when the acidic environment of endosome is perturbed by chloroquine. Transfection is a 
complicated process involving multiple steps, such as cellular binding, internalization and 
nuclear transport (in the case of DNA delivery). Apart from endosomal escape, other factors 
may also affect the eventual transfection efficiency.  
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Besides chloroquine, physically coupling chemically inactivated adenovirus particles is 
another approach for promoting endosomal escape. This method takes the advantage of the 
endosomolytic activity of adenovirus to facilitate the release of nucleic acids from the 
endosomes (Curiel, Agarwal et al. 1991; Cotten, Wagner et al. 1992; Wagner, Zatloukal et al. 
1992). Curiel et al. explored the application of adenovirus as an endosome disruption agent. 
The inactivated adenoviruses were coupled with transferring-polyplexes. It was observed 
that pDNA delivery into HeLa cells was improved 1000-fold or more when replication-
defective adenovirus particles were present (Curiel, Agarwal et al. 1991).  

However, the application of both chloroquine and inactivated adenovirus particles are 
limited due to safety concern. Although chloroquine is approved by the FDA as an anti-
malaria medication, it is found to be toxic to many cell types and can trigger 
gastrointestinal and nervous adverse effects in high dose (Pack, Putnam et al. 2000). For 
defective adenovirus particles, the complexity of vector production and potential 
immunogenicity raised by the virus components make this strategy problematic (Pack, 
Hoffman et al. 2005). Unless the safety issues can be solved, both methods will remain 
unsuitable for clinical use. 

3. Conclusion  

Non-viral vectors are considered to be promising vehicles for delivering therapeutic nucleic 
acids because of their relatively safe profile and high versatility as compared to their viral 
counterparts. However, the transfection efficiency of non-viral vectors is less than 
satisfactory for clinical purpose. The endocytosis pathway is a major route for the cellular 
entry of non-viral nucleic acid delivery agents. Poor endosomal escape of non-viral systems 
pose a major challenge for the intracellular delivery of nucleic acids. An ideal nucleic acid 
delivery system should fulfill several criteria: negligible toxicity, biocompatible and 
biodegradable, offer protection to nucleic acids from enzymatic degradation, facilitate 
cellular uptake, promote endosomal escape and release the nucleic acids at site of action. 
Elucidation of the mechanism of endosomal escape is beneficial in the development of more 
effective non-viral delivery vectors. However, the uptake and cytoplasmic transportation 
mechanisms of a variety of non-viral nucleic acid carriers still need to be investigated in 
more detail. In the future, with the development of cell imaging techniques such as high 
resolution, spinning disk live cell confocal imaging and the fluorescence correlation 
spectroscope, the details of intracellular trafficking of non-viral nucleic acid delivery 
systems will be unveiled. This will guide the future design and development of novel 
efficient non-viral nucleic acid delivery vectors.  
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